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Foreword

By the dawn of the new millennium, robotics has undergone a major transformation
in scope and dimensions. This expansion has been brought about by the maturity of
the field and the advances in its related technologies. From a largely dominant in-
dustrial focus, robotics has been rapidly expanding into the challenges of the human
world. The new generation of robots is expected to safely and dependably co-habitat
with humans in homes, workplaces, and communities, providing support in services,
entertainment, education, healthcare, manufacturing, and assistance.

Beyond its impact on physical robots, the body of knowledge robotics has pro-
duced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences, virtual simulation, animation, surgery, and sensor networks among others.
In return, the challenges of the new emerging areas are proving an abundant source
of stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to
bring, in a timely fashion, the latest advances and developments in robotics on the
basis of their significance and quality. It is our hope that the wider dissemination of
research developments will stimulate more exchanges and collaborations among the
research community and contribute to further advancement of this rapidly growing
field.

This volume is the outcome of the eight edition of the biennial Workshop Algo-
rithmic Foundations of Robotics (WAFR). Edited by G. Chirikjian, H. Choset, M.
Morales and T. Murphey, the book offers a collection of a wide range of topics in
advanced robotics, including networked robots, distributed systems, manipulation,
planning under uncertainty, minimalism, geometric sensing, geometric computa-
tion, stochastic planning methods, and medical applications.

The contents of the forty-two contributions represent a cross-section of the current
state of research from one particular aspect: algorithms, and how they are inspired by
classical disciplines, such as discrete and computational geometry, differential ge-
ometry, mechanics, optimization, operations research, computer science, probability
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and statistics, and information theory. Validation of algorithms, design concepts, or
techniques is the common thread running through this focused collection.

Rich by topics and authoritative contributors, WAFR culminates with this unique
reference on the current developments and new directions in the field of algorithmic
foundations. A very fine addition to the series!

Naples, Italy
September 2009 Bruno Siciliano

STAR Editor



Preface

Robot algorithms span areas including motion planning, dynamics, control, manip-
ulation, state estimation, and perception. These algorithms draw from a number of
sources including discrete and computational geometry, differential geometry, me-
chanics, optimization, operations research, theoretical computer science, probability
and statistics, and information theory. Concepts from these classical disciplines are
recombined in new ways and enriched when applied to problems in robotics. And
broader fields of scientific inquiry (such as biomolecular modeling, rehabilitation,
computer-integrated surgical systems, medical imaging, sensor networks, automated
transportation systems, MEMS, and computer-aided design) all have benefitted from
the application of robotics algorithms. The computations performed as a result of
these robot algorithms may be implemented in software on classical or parallel
computers, hardwired in electronics, encoded in neural networks, or in the future
might be implemented in yet-to-be demonstrated technologies such as biomolecular
or quantum computing. Therefore, research in robot algorithms is highly connected
to the broader scientific community.

The Eighth International Workshop on the Algorithmic Foundations of Robotics
(WAFR) brought together a group of approximately one hundred researchers from
the US, Europe, and Mexico. The Eighth WAFR was held December 7-9, 2008 at
the Camino Real Hotel in historic Guanajuato, México, which was founded in 1546.
Forty-two refereed papers were presented, which are reflected in this volume. Three
keynote lectures were given by: Kazuhiro Saitou, U. of Michigan; José Luis Marro-
qun, CIMAT, and Joel Burdick, Caltech. Topics of papers can be roughly classified
into the categories of networked robots, distributed systems, manipulation, planning
under uncertainty, minimalism, geometric sensing, geometric computation, stochas-
tic planning methods, and medical applications.

In addition to the organizers, the program committee consisted of the following
people who contributed reviews and advertised the workshop: Devin Balkcom, Ale-
jandra Barrera, Timothy H. Chung, Noah Cowan, Magnus Egerstedt, Claudia Es-
teves, Robert Ghrist, Bill Goodwine, Dan Halperin, Seth Hutchinson, David Hsu,
Lydia Kavraki, Sven Koenig, Vijay Kumar, Steve LaValle, Kevin Lynch, Mark
Moll, Rafael Murrieta, Jim Ostrowski, Mark Overmars, Daniela Rus, Gildardo
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Sánchez-Ante, Nicola Simeon, Sidd Srinivasa, Enrique Sucar, Jeff Trinkle, Yunfeng
Wang, Alfredo Weitzenfeld, Jing Xiao, Dianna Xu.

We are in debt with many individuals and organizations whose help and dedicated
work made this meeting possible. We give our thanks to: the student volunteers from
ITAM, CIMAT, Tec. de Monterrey campus Guadalajara, and UAEM for their hard
work; our institutions (CMU, ITAM, Johns Hopkins, Colorado) for their support;
Sara Ridel, Carmen Rosas, and Leticia Vitela from Viajes Polanco for their patience
and diligence to help the meeting run smoothly; Sen. Francisco Arroyo Vieyra for
promoting support from the government of Guanajuato; Sergio Rodrı́guez and the
members of Secretarı́a de Desarrollo Turı́stico del Estado de Guanajuato for their
assistance with the logistics and for sponsoring the transportation to the banquet;
the personnel from Hotel Camino Real who made us feel at home; and the WAFR
steering committee for their thoughtful advice in preparation for the meeting.

September 2009 Gregory S. Chirikjian
Howie Choset

Marco Morales
Todd Murphey
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Probabilistic Network Formation through
Coverage and Freeze-Tag

Eric Meisner, Wei Yang, and Volkan Isler

Abstract. We address the problem of propagating a piece of information among
robots scattered in an environment. Initially, a single robot has the information. This
robot searches for other robots to pass it along. When a robot is discovered, it can
participate in the process by searching for other robots. Since our motivation for
studying this problem is to form an ad-hoc network, we call it the Network Forma-
tion Problem. In this paper, we study the case where the environment is a rectangle
and the robots’ locations are unknown but chosen uniformly at random. We present
an efficient network formation algorithm, Stripes, and show that its expected perfor-
mance is within a logarithmic factor of the optimal performance. We also compare
Stripes with an intuitive network formation algorithm in simulations. The feasibility
of Stripes is demonstrated with a proof-of-concept implementation.

1 Introduction

Consider the following scenario: a number of robots are performing independent
tasks autonomously in an environment where there is no communication infrastruc-
ture. Suppose, at a certain point, mission priorities change and a piece of information
must be propagated to all nodes. For example, robots could be initially stationed to
perform monitoring or surveillance in a large environment. Upon detection of an
event, they may have to form a network or perform a collaborative task. What is a
good strategy to get all robots involved as quickly as possible?
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In this paper, we study this process of propagating information as quickly as pos-
sible. Specifically, we study the case where the process is initiated by a single robot.
This robot could, for example, be sent out from the command and control center.
Alternatively, it could be the robot that detects an intruder. The primary difficulty
in solving the problem arises from the fact that the robots do not know each oth-
ers’ positions. The first robot must therefore start a search. Once discovered, other
robots can participate in propagating the information. Since our primary motivation
for studying this problem is to form a connected network, throughout the paper we
will refer to it as the Network Formation Problem.

Our Contributions: In this paper, we study a probabilistic scenario where the lo-
cations of robots are chosen uniformly at random in a rectangular environment. For
this scenario, we present a network formation strategy (Stripes) and prove that its
expected performance (i.e. network formation time) is within a logarithmic factor of
the optimal performance. To obtain this result, we also obtain a lower bound on the
expected performance of any network formation strategy. We also compare Stripes
with a natural, intuitive “Split and Cover” strategy and show that in large environ-
ments, Split and Cover has inferior performance to Stripes. In addition to formal
performance bounds, we demonstrate the utility of Stripes with simulations and its
feasibility with a proof-of-concept implementation. In the next section, we start with
an overview of related work where we establish connections between the network
formation problem and other fundamental problems such as rendezvous, coverage
and freeze-tag.

1.1 Related Work

Considerable work has been done in designing decentralized protocols for propagat-
ing information in networks (also known as gossip protocols) [7]. Gossip protocols
are mainly designed for stationary networks. In contrast, we focus on information
propagation among mobile robots. The network formation problem is closely re-
lated to the Freeze-Tag problem [4]. In freeze-tag, a number of players are “frozen”.
A single unfrozen player must visit each frozen player in order to unfreeze it, at
which point it can aid in unfreezing other players. In freeze tag, it is assumed that
the players know each others’ positions. In network formation, we focus on the case
where the node locations are unknown to each other.

Recently, Poduri and Sukhatme explicitly addressed the problem of forming a
connected network under the name coalescence [11, 12]. In their model, all of the
nodes (other than the base station) are performing a random walk on a torus. The
authors obtain bounds on the network formation time. The advantage of the random-
walk strategy is that it does not require localization with respect to a global reference
frame. However, the network formation is rather slow because nodes visit most lo-
cations many times. This may not be acceptable in time-critical applications. In the
present work, we address the problem of explicitly designing motion strategies for
network formation with guaranteed performance. Since we focus on the case where
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the robot locations are unknown, the network formation problem is related to ren-
dezvous and coverage.

The rendezvous search problem [1] asks how two players with the same speed
can locate each other when placed at arbitrary locations in a known environment.
Typically, each player has a radius of detection within which the players can es-
tablish communication. The goal of the players is to find each other as quickly as
possible. The rendezvous problem has been studied extensively for two players on a
line. Optimal or provably good strategies for various versions of this problem have
been established [2].

The problem of multi-player rendezvous search on a complete graph is studied
in [14]. This work addresses the question of whether players that meet should stick
together or split and meet again later. The result of this work shows that, if the play-
ers have no memory, then the optimal strategy is to stick together. Also, simulations
show that as the number of players increases, the split and meet strategy becomes
less effective. In general, this work has limited applications because the environ-
ment is a complete graph. In other words, players can teleport to arbitrary locations
at every time step.

Work in [3] describes a time optimal strategy for two-player limited visibility
rendezvous in the plane with known and unknown distances. The optimal solution
in this case is for one of the players to follow a semi-circular spiral trajectory. This
work also relates rendezvous in the continuous domain to coverage problems. Deter-
ministic and randomized multi-robot rendezvous strategies were proposed in [13].
More recently, results on rendezvous in simply-connected polygons have been ob-
tained [8]. In [9], the authors provide upper and lower bounds on the time complex-
ity of two geometric laws that result in rendezvous.

The coverage or lawn mowing problem [5, 6] has been extensively studied and is
known to be closely related to Traveling Salesperson Problem. The primary differ-
ence between network formation and standard multi-robot coverage is that in cov-
erage, all robots participate in the coverage process from the beginning. In network
formation, the process starts with one robot, who must “recruit” others to participate
in coverage.

In short, the algorithm presented in this paper can be considered a novel algo-
rithm for (i) online freeze-tag, (ii) probabilistic multi-robot coverage, and (iii) net-
work formation.

2 Problem Formulation

Since the robot locations are unknown, network formation is an online problem.
Online problems are typically analyzed using competitive analysis where the input
is chosen by an adversary. The competitive ratio of an online algorithm O is the
worst case ratio of the performance of O to the optimal offline performance. In
other words, we compare O with the optimal algorithm that has access to all of O’s
input in advance and consider the worst case deviation from this optimal behavior.
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It is easy to see that there is no online algorithm for the network formation prob-
lem with bounded competitive ratio: no matter which path the first robot chooses,
the adversary can place all other robots at the last location the first robot will visit. In
the case of a square environment with area a2, the online algorithm would take time
proportional to a2 whereas the optimal offline cost would be at most in the order of
a. Therefore the competitive ratio would be a and it would grow unboundedly with
the size of the environment.

Since there are no competitive online algorithms for network formation, in this
paper we focus on the probabilistic case where the locations of the robots are sam-
pled from a distribution. In the absence of any information, it is reasonable to as-
sume that the locations are chosen uniformly at random from the environment. The
goal is to minimize the expected time to discover all robots. In this paper, we focus
on rectangular environments and uniform distributions. We believe that the rectan-
gular environment case has practical relevance for robots operating in an open field
as well as for Unmanned Aerial Vehicles. We discuss extensions to general convex
environments in Section 6.

2.1 Robot Model

In network formation, several identical mobile robots are distributed uniformly at
random within the bounded rectangle A with one of these robots possessing in-
formation that needs to be propagated to all of the other robots. The rectangle A
has a width w and height h where w ≥ h. We assume that the robots are initially
stationary. Once discovered, they can move anywhere within the rectangle A at a
constant speed and can communicate with each other within a limited range. Once
a robot is within the communication range of another robot, they can exchange any
information that either robot might have, including the information that needs to be
propagated. In this paper, we assume that the robots can localize themselves within
A. We also ignore energy limitations and assume that the robots will always move
at their maximum speed and can utilize their wireless radio anytime.

Notation and Conventions: We normalize the units so that the robots move at unit
speed per time-unit. In the rest of the paper, we use A to denote both the rectangle
environment and its area. This convention implies that a single robot can cover the
entire environment in A time units. Hence, A is a trivial upper bound on network for-
mation since inactive nodes are stationary. The number of robots in the environment
is k. We assume that the first robot enters the environment at a corner of A.

3 Stripes: An Efficient Network Formation Strategy

In this section, we present our main result: an efficient network formation strategy
which we refer to as “Stripes”. This strategy relies on dividing the rectangular envi-
ronment into n equal sized vertical stripes S1, . . . ,Sn (Figure 1). For now, we treat n
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Fig. 1. Stripes strategy: The environment is divided into equal vertical stripes which are cov-
ered sequentially. Active robots split the current stripe equally. Once a stripe is covered, all
active robots (including newly discovered robots) meet at the boundary of the stripe.

as a variable whose value will be fixed later. Let S denote the area of a single stripe
which is equal to the time to cover a single stripe with one robot.

In the beginning, a single robot is active and proceeds to cover S1 with a simple
back and forth sweeping motion. That is, the robot follows the well-known bous-
trophedon1 path. When an inactive robot is encountered and activated, this newly
active robot does not join in the coverage of S1 right away2. Instead, it heads to a
designated location on the line that separates S1 and S2 and waits for the first active
robot to finish its coverage of S1 and arrive at the designated location. When the
first robot is finished, it meets all newly active robots at the same designated loca-
tion. Let k1 denote the number of active robots. The robots evenly divide S2 among
themselves so that it can be covered in parallel in time S2/k1.

When these k1 robots encounter other inactive robots in S2, the same procedure
is repeated and all active robots meet at a designated meeting location on the line
which separates S2 and S3. This process repeats for the remaining stripes until all of
the stripes are covered, at which point, the entire bounded area will be covered and
all of the robots will be activated.

For most of the paper, we will focus on rectangular environments which are large
with respect to the number of robots. In other words, we focus on the case where
w ≥ h � k.

In the remaining case, the number of robots exceeds the size of the shorter side
of the rectangle (i.e. k ≥ h). We refer to this case as the saturated case. When the
number of active robots reach h, the remaining m×h area can be covered in m steps
by the active robots. We present the analysis of the algorithm for the saturated case
in the appendix.

3.1 Network Formation with Stripes

In this section, we establish an upper bound on the network formation time of Stripes
for an unsaturated environment. We will use the following lemma.

Lemma 3.1. If k balls are assigned to n bins randomly, the expected number of
empty bins is at most ne−k/n.

Proof. We say that bin i is “hit” if it is non-empty after the kth throw. The probability
pi that the ith bin is not hit is (1 − 1

n )k. Let Xi be a random variable which takes the

1 Boustrophedon = “the way of the ox” [6].
2 In practice, this robot can participate in covering the stripe. However, this does not improve

the analysis. Hence, we ignore this benefit for analysis purposes.
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value one if bin i is not hit and zero otherwise. Then, E[Xi] = pi. The number of
empty bins is given by the random variable ∑n

i=1 Xi whose expected value is npi.
The lemma follows from the inequality (1 + u) ≤ eu.

To obtain an upper bound on the network formation time with Stripes, we treat the
robots as balls and stripes as bins. Note that the coverage time is maximized when
the empty stripes occur at the beginning, and non-empty stripes have the following
property: let m be the number of non-empty stripes. m − 1 stripes have only one
robot inside and all the remaining robots are in a single stripe which occurs after all
other stripes. We compute the expected coverage time for this worst case.

If we pick n = k
logk , by Lemma 3.1 the number of empty stripes is at most 1

logk ,
which is less than or equal to 1 for k > 1.

This results in a coverage time of A
n for the first non-empty stripe, A

n

(
1
2

)
for the

second, A
n

( 1
3

)
and so on for the remaining stripes. Since there is at most one non-

empty stripe, the total coverage time will be bounded by:

A
n

+
n

∑
i=1

A
n

(
1
i

)
=

A
n

+
A
n

n

∑
i=1

1
i

≈ A
n

+
A
n

logn (1)

By plugging in n = k
logk , we have the following result.

Lemma 3.2. The expected network formation time for k robots in a rectangular
unsaturated environment with area A is O(A

k log2 k) when robots execute the Stripes
algorithm with n = k

logk stripes.

Since robots group together before and after covering a stripe, there is some over-
head associated with the different strategies that can be used to cover an individual
stripe. In establishing Lemma 3.2, this overhead is ignored. We justify this in the
next section, where we present the strategy to cover individual stripes.

3.2 Covering a Single Stripe

The Stripes algorithm calls for the set of active robots to meet and regroup between
covering stripes. In this section, we present a strategy for multiple robots to cover a
single stripe in a way that minimizes the overhead of meeting to redistribute assign-
ments. Our proposed single stripe strategy ensures that each robot travels the same
distance during an epoch, and arrives at a common meeting location.

In order to minimize the coverage time of a single stripe, its area must be split
equally between all of the active robots. This can be done by simply dividing the
strip along the long side to create equal sized rectangular areas, one for each of the
active robots. However, this will result in some robots traveling longer distances to
reach their assigned coverage objectives. Since this area will eventually be covered
by the other robots, this produces an overhead of 2h per stripe, adding up to 2nh
for the entire bounded area A. Our single stripe strategy divides the active stripe
into sections such that, 1) the area covered by each robot is equal and 2) the time
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Fig. 2. Our single stripe coverage strategy divides a vertical stripe into equally sized areas that
take into account any additional area covered by a robot as it travels away from the meeting
locations (large black dots). This figure shows the resulting divisions for six active robots and
the designated Bi values used to reference the height of the horizontal rectangular areas.

required to cover each section and then reach the meeting location is equal. In the
end, the paths of the robots resemble archways with different sized horizontal areas
that are inversely proportional to the distance a robot needs to travel to the meeting
location (Figure 2). The “legs” of the archways represent the areas covered by each
robot as they travel up to their assigned rectangular areas.

Given a particular vertical stripe to cover with r active robots, let A1,A2, . . . ,Ar

denote the total assigned coverage area for each robot, with robot i covering Ai and
robot i = 1 covering the area that is furthest away from the meeting location. Since
each stripe is vertical, its area is h w

n = hw′. We use Bi to denote the distance between
the upper boundaries of each successive region (see Figure 2). This parameter can
be varied to offset the additional cost of traveling. Each robot is assumed to cover
one unit area per time step so the additional travel area covered by r1 is simply
twice the distance from the meeting point to its assigned coverage area or 2(h −
B1). This produces the following equation for calculating the area Ai of each region
(equation 5):

A1 = B1w′ + 2(h − B1) = B1(w′ − 2)+ 2h (2)

A2 = B2(w′ − 2)+ 2(h − B1− B2) = B2(w′ − 4)+ 2h − 2B1 (3)

A3 = B3(w′ − 4)+ 2(h − B1− B2 − B3)
= B3(w′ − 6)+ 2h − 2B1 = 2B2 (4)

Ai = Bi(w′ − 2(i− 1))+ 2(h −
i

∑
j=1

B j) (5)

Since each robot must cover the same area, we can determine the relationship
between Bi and Bi−1 by setting the generic area formula at i and i− 1 equal to each
other (Equation 6). The remaining Ai and Bi values can be determined by succes-
sively applying Equations 7 and 8. In Equation 7, A1 is equated to hw′

r , producing
equation 8 where B1 is expressed using the number of active robots, r, the width of
a stripe w′ = w

n , and the height of the overall environment, h.
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Bi

Bi−1
= 1 +

4
w′ − 2i

(6)

A1 =
hw′

r
= B1(w′ − 2)+ 2h (7)

B1 =
hw′

r − 2h

w′ − 2
=

h(w′ − 2r)
r(w′ − 2)

(8)

The limitation of this single stripe strategy is that the number of active robots
must be less than half of a single stripe’s width, r < w′

2 . This does not present a
problem for the analyzed environment, where it is assumed that w = h >> k. There-
fore, from the single stripe strategy, each stripe can be divided into r equally sized
areas with minimal repeated coverage and thus, eliminating the overhead coverage
time from the Stripes equation.

3.3 Lower Bound

In this section, we establish a lower bound on the expected network formation time
that can be achieved by any algorithm. It is easy to see that the best coverage time
for any area occurs when all of the robots are active at the beginning and the area
is evenly split between all of them. Therefore, the absolute lower bound for total
coverage time, regardless of algorithm, is T (A,k) = A

k . For the case when the robots
are uniformly distributed, we can obtain a better bound using the following result.

Lemma 3.3 ([10], pp.45). When n balls are assigned uniformly at random to n bins,
with probability at least 1 − 1

n , no bin has more than α = logn
loglogn balls in it.

Now consider any network formation strategy for k robots in area A. During the
execution of this strategy, we divide the coverage process into epochs where ith

epoch ends when all active robots cover a (previously uncovered) total area of A/k.
Let Si denote the subset of A covered during epoch i. Let E1 be the event that no Si

has more that α balls. By Lemma 3.3, E1 happens with probability (1 − 1/k).
When E1 happens, the maximum number of robots in S1 is α . Therefore, the

minimum time it takes to cover S1 is T1 = A
kα . There will be α new robots in S2,

therefore its coverage time T2 is at least A
k2α . Similarly, the ith epoch will last at least

Ti = A
kiα steps. Since there are k epochs, the total time for all epochs to finish will be:

k

∑
i=1

A
kiα

≈ A
αk

logk =
A
k

loglogk (9)

When E1 does not happen (with probability 1
k ), the coverage time is at least A/k as

discussed earlier. This gives us the lower bound on the expected coverage time of
any algorithm.
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Lemma 3.4. The expected time for k robots to cover rectangular area A is at least
(1 − 1

k )A
k loglogk +( 1

k )A
k .

Ignoring o( 1
k2 ) terms, we establish a lower bound of Ω(A

k loglogk). Using Lem-
mata 3.2 and 3.4, we establish our main result:

Theorem 3.1. The performance of the Stripes strategy is within a factor O( log2 k
log logk )

of the optimal performance for a rectangular environment where w ≥ h � k.

3.4 Split and Cover

In this section, we discuss the performance of the following intuitive and nat-
ural network formation strategy: The first robot moves up and down the envi-
ronment following a boustrophedon path as before. When it meets an undiscov-
ered node, the two nodes split the undiscovered parts of the environment evenly
and recursively cover their assigned partitions (see Figure 3). The justification for
this natural “Split-and-Cover” strategy is that since the nodes are scattered uni-
formly in the environment, each split should divide the load equally between
discovered robots, therefore balancing (and intuitively minimizing) the network
formation time.

It turns out that Split-and-Cover is not an effective strategy for large environments
for the following reason: suppose that when the split happens, one of the partitions
has a very small number of robots. Even though this event has a small probability
for a single split, as the number of robots (and hence the number of splits) increases,
it becomes probable. When such an imbalance occurs, the algorithm can not recover
from it. A small number of robots must cover a large environment making Split-and-
Cover inefficient. We will further justify this argument with simulations and show
that the Stripes algorithm is much more efficient than Split-and-Cover in unsaturated
environments.

Fig. 3. Split and Cover Strategy

4 Simulations

In this section, we compare Stripes and Split-and-Cover in simulations. We also
present simulation results that demonstrate the effect of the number of Stripes on
the performance of the Stripes algorithm. Our simulations were performed by rep-
resenting each of the individual robots as a point within the rectangular world. Each
robot can be assigned to sweep along a continuous piecewise linear path. As de-
scribed in the Section 3, an active robot can detect an inactive robot when it is
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Fig. 4. This figure shows the simulation of the Stripes algorithm. Green circles are active
robots, and red circles are inactive. The black lines represent the paths of active robots within
the current stripe.

within communication range. Each robot moves one unit distance per unit time and
maintains an internal clock, to represent the time with respect to the start of the first
robot. Robots that meet can synchronize clocks. We place the robots uniformly at
random within the environment at the start of each trial. The simulation runs the
algorithm exactly as it is stated in Section 3.4.

4.1 Results

In the first simulation, we compare Stripes and Split-and-Cover in environments that
are sparse and dense with respect to the number of robots per area. Figure 5a shows
the results of the Split-and-Cover and Stripes algorithms in an environment where
the concentration of robots is low. The simulations use a 1000x1000 environment
and 20 robots. The plotted values are the average time to completion of 1000 trials,
and the value for each number of stripes uses the same set of initial robot distribu-
tions. From these simulations, we conclude that (i) the performance of the Stripes
algorithm is sensitive to the number of stripes, and (ii) in sparse environments (with
a “good” stripe-number selection) Stripes outperforms Split-and-Cover. This is also
justified by Figures 6a and 6b, where we plot the histogram of running times of the
Stripes algorithm (with 25 Stripes) and Split-and-Cover. Stripes not only outper-
forms Split-and-Cover on the average but also its worst case performance is consid-
erably better.

On the other hand, when the concentration of robots is high, Split-and-Cover
outperforms Stripes (Figures 5b,6c,6d). There are two reasons that this is true.
First, for Split-and-Cover, the unbalanced split described in the previous section
occurs infrequently when the concentration of robots is high. Second, for Stripes
the overhead cost of meeting up to evenly distribute the coverage of a stripe be-
comes very large compared to the discovery time. In most instances, saturation
took place after the fist stripe due to the high concentration of the robots. There-
fore, the running time of Stripes was often given by the time to discover the first
stripe followed by a parallel scan with 7 robots. In conclusion, simulation results
suggest that Stripes should be used in sparse environments with the number of
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stripes equal to the number of robots. In dense environments, split-and-cover algo-
rithm is expected to yield better performance.

5 Experiments

We demonstrate the feasibility of the Stripes algorithm using a small team of three
Acroname Garcia robots shown in Figure 8c. The robots are each equipped with
ARM/risk PCs, and wireless network adapters. When configured to work in ad-hoc
mode, the robots form a wireless sensor network, each capable of determining its
own set of neighbors in the network graph.

Currently, our robots do not have visual localization capabilities. Therefore, we
rely on motor encoders and dead reckoning for position information. We also utilize
an external stereo camera as a means of determining the robot positions off-line
(to obtain ground truth). The external camera allows us to compute robot positions,
but also limits the size of the work area to the field of view of the camera. Our
experiments take place in a square workspace of 7.5 meters by 7.5 meters. These
experiments where conducted inside of the institute gymnasium.
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Fig. 5. Comparison of Split-and-Cover strategy with Stripes algorithm for varying number of
stripes. The plotted values are the average time to completion of 1000 trials. Left: 1000×1000
unit world with 20 robots. Right: 100 × 100 unit world with 100 robots.
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(a) Robot 1 (b) Robot 2 (c) Robot 3

Fig. 7. The ideal trajectories for robots 1, 2 and 3 ( 7a, 7b, and 7c respectively). The stripes
are denoted by alternating white and gray. The first robot starts at the lower left corner. The
circle in Figure 7a is the meeting location with robot 2. The third robot is discovered by robot
2. The meeting location is shown in Figure 7b

In practice, it would be useful to use wireless connectivity and connection
strength to determine when an inactive node has been detected. However, in this
setup the nodes would have to be separated by very large distances before observing
a noticeable decline in signal strength. Therefore, in order to demonstrate the algo-
rithm in our restricted space, we simulate restrictions in communication by allowing
inactive nodes to be discovered only when they are within a short range. Figure 7
shows the placement of the robots and their ideal strategies when executing Stripes.
Figure 8a shows an image of the experimental setup from the external camera. The
white lines superimposed on the image outline the workspace and stripe boundaries.
Figure 8b shows actual robot trajectories during the experiment computed from the
image to ground plane homography.
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Fig. 8. 8a This image of the experimental setup shows the environment divided into three
stripes. The paths traversed by each robot are shown in red, green and blue (lines superim-
posed). 8b This image shows the actual trajectory of each robot computed using the homog-
raphy between the image and ground planes.
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5.1 Results

For this small number of robots, we use a simpler single-stripe strategy. In the ex-
periment, each stripe is selected so that it can be covered by a single robot in 24
time units. This corresponds to three up and down motions (Figure 7). The initial
placement of the robots is shown by the start of each of the three paths in Figure 8a.
Robots move approximately 1 meter per time unit. The total area of the workspace
is approximately 56 m2. The stripes are completed in 24, 16, and 8 time units re-
spectively. Hence, the total completion time is 48 units. Note that the total coverage
time for a single robot is 72 time units. The measured path lengths of each robot are
41.08, 25.848, and 13.26 meters respectively. In this setup, even though odometry
errors resulted in deviations from the ideal trajectories in Figure 7, they were not
significant enough to prevent proper execution of Stripes.

6 Extension to General Convex Environments

As mentioned earlier, the time to cover the environment is a trivial upper bound on
the network formation time. This is because the undiscovered nodes are stationary,
and by covering the environment, the first robot can guarantee that all nodes are
discovered. In a convex environment, this coverage time is proportional to the area
of the environment A. In the case of an unsaturated rectangular environment, we
showed that the Stripes algorithm performs better than this upper bound.

In general environments, even when the environment is convex, the upper bound
would be achieved. To see this, consider a long 1 × A environment. In this envi-
ronment, even when the robot locations are chosen randomly, the network forma-
tion time would be roughly A because the information is propagated sequentially
and one of the robots is expected to be close to the “other” end of the environ-
ment. Therefore, the upper bound of A can not be beaten in some general convex
environments.

7 Conclusion and Future Work

In this paper, we introduced a novel network formation problem with ties to freeze-
tag and coverage problems. In the network formation problem, a robot tries to prop-
agate a piece of information to other robots with unknown locations as quickly as
possible. Once a robot is discovered, it joins in the information propagation process
by searching for other robots.

We presented an algorithm for rectangular environments and analytically proved
that its performance is within a logarithmic factor of the optimal performance. We
demonstrated the utility of the algorithm further with simulations and a proof-of-
concept implementation.

In our future work, we will address network formation in general environ-
ments. We will start with general convex environments. We believe that the Stripes
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algorithm can be modified to achieve good performance in such scenarios (com-
pared to the optimal performance). Arbitrary environments, represented as polygons
with holes, seem to be more challenging due to the lack of a natural way of parti-
tioning the environment. We plan to study this interesting and equally challenging
problem in our future work.

Acknowledgements. This work is supported in part by NSF CCF-0634823 and NSF CNS-
0707939, NSF IIS-07455373.
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Appendix: Saturated Environments

In a saturated environment where k ≥ h, the performance of Stripes can be improved
with a simple modification after the number of active robots reach the height of
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the environment. The main difference between the coverage time for a saturated
environment and an unsaturated environment is how the k ≥ h constraint affects the
coverage of a single stripe.

In a saturated environment, after the number of active robots in a stripe, r, exceeds
the height of a stripe, it is no longer possible to divide a stripe into r equal, non-
overlapping regions. However, it is possible to line up the active robots along the
height of the environment. Afterwards, they can cover the remaining portion of the
environment without meeting again. Therefore, when r ≥ h, the coverage time for
a stripe becomes w

n where n is the number of stripes. We will call any stripe where
this occurs as saturated.

This changes the original upper bound equation (Equation 1) to contain an ad-
ditional term. For the saturated environment, the term in the logarithm will instead
be the number of non-empty stripes until stripes become saturated or simply h. The
remaining area A′ = A(1 − h

n) can be covered in time A′
h . Therefore, the coverage

time of an A = h × w environment is bounded by:(A
n

+
A
n

logh
)

+ w− A
n

=
A
n

logh + w (10)



Planning Aims for a Network of Horizontal and
Overhead Sensors

Erik Halvorson and Ronald Parr

Abstract. This paper considers the problem of planning sensor observations for a
network of overhead sensors which will resolve ambiguities in the output of a hori-
zontal sensor network. Specifically, we address the problem of counting the number
of objects detected by the horizontal sensor network, using the overhead network to
aim at specific areas to improve the count. The main theme of our results is that, even
though observation planning is intractable for such a network, a simple, greedy al-
gorithm for controlling the overhead sensors guarantees performance with bounded
and reasonable suboptimality. Our results are general and make few assumptions
about the specific sensors used. The techniques described in this paper can be used
to plan sensor aims for a wide variety of sensor types and counting problems.

1 Introduction

The problems of sensor placement and observation planning have become increas-
ingly relevant as sensor networks increase in both capability and complexity. Of-
ten, however, sensor placement and planning problems lead to instances of classical
planning problems or partially observable Markov decision processes, both of which
are intractable in general. Although there exist algorithms which give optimal so-
lutions to these problems, their potentially enormous computational makes them
undesirable.

Consider a horizontal network of sensors with the goal of counting the number
of distinct objects it detects. Due to occlusion, the sensor network may not be able
to sense all the objects and thus it may not be able to determine the exact count.
This paper considers an observation planning problem where the goal is to plan the
aims of a set of overhead sensors to resolve these ambiguities. The overhead sen-
sors are used to resolve specific portions in the region of interest where the count is

Erik Halvorson and Ronald Parr
Department of Computer Science, Duke University
e-mail: {erikh,parr}@cs.duke.edu

G.S. Chirikjian et al. (Eds.): Algorithmic Foundations of Robotics VIII, STAR 57, pp. 19–34.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

{erikh,parr}@cs.duke.edu


20 E. Halvorson and R. Parr

ambiguous. An example of such a network would be a set of horizontal, fixed po-
sition cameras, with pan-tilt cameras mounted on unmanned aerial vehicles (UAVs)
providing the overhead sensors.

Counting the number of objects within a region is a basic problem in the field of
surveillance. Once determined, the number of objects has many potential uses, such
as counting people moving across a border, identifying vehicle movements, or pro-
viding an accurate count of the people attending an outdoor gathering. Traditional
(non computer-based) methods typically rely on manual head counting and would
not work in these situations. We consider the problem of developing an accurate
count with no human involvement.

Depending on the different kinds of sensors in the network, there are a wide vari-
ety of ways to count the distinct objects. This paper will use a geometric approach to
counting, inspired by the previous work of Yang, et al. [10], which used a visual hull
to determine upper and lower bounds on the number of people in a scene viewed by
horizontal cameras. Though the visual hull is typically associated with cameras, the
concept generalizes to other sensor types which can detect occupancy. We also note
that the counting method described by Yang, et al. is not specific to counting people
and can be used to count any objects detectable by the sensor network.

The work of Yang et al. assumes that objects move, which helps reduce ambigui-
ties as the patterns of occlusion change over time. Even if the objects are in motion,
however, the gap between these bounds may not converge to zero or, depending
upon the speed at which the objects are moving, may not converge at an acceptable
rate. We consider the use of overhead sensors to supplement the horizontal network.
Such sensors can provide a faster and more accurate count when object motion alone
is not sufficient. Overhead sensors, like those found on aircraft, can be redirected in
seconds, which makes it safe to assume that in many cases, several iterations of
aiming and retargeting of the overhead sensors will be possible before the scene has
changed significantly from the perspective of the horizontal based sensors.

We propose using a simple, greedy algorithm to aim the overhead sensors. Our
analysis first bounds the suboptimality over a single set of aims, which we refer to
as a phase. Since most scenes will require multiple phases, the next portion of our
analysis extends these results to multiple phases, bounding the number required rel-
ative to an optimal algorithm. We also show that computing an optimal multiphase
plan is intractable, and show that two closely related problems are intractable: the
subproblem of orienting the overhead sensors to maximize the number of viewed
potential objects, and computing the smallest number of objects consistent with a
set of observations by the horizontal network.

2 Previous Work

One common approach to the counting problem involves tracking. Multi-target
tracking algorithms generally either assume a known, fixed number of targets, or
attempt to solve the counting problem while simultaneously tracking the targets.
Many approaches to the latter problem attempt to model the arrival and departure
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of new targets, generally when an unrecognized object is detected [9, 11]. Several
appearance-based tracking algorithms have been specifically applied to the prob-
lem of counting people [6, 7]. Accurately determining whether a target has been
previously detected, however, is non-trivial and error-prone. Counting is itself an
interesting problem because it could be used to initialize many multi-target tracking
algorithms.

Observation planning approaches to tracking generally assume a known num-
ber of targets; He and Chong [4], for example, formulate the tracking problem as
a POMDP and use an approximate solution based on sampling. Guestrin, et al. [3]
develop a greedy approach for the sensor placement problem and bound its subop-
timality.

One very different approach to counting uses a geometric construction called a
visual hull, which is defined as the intersection of all the silhouette cones seen from
each sensor. A silhouette cone is a projection of a sensor detection into a conical
region in front of the sensor. For example, in the case of a camera that has detected
a change in the scene that spans several pixels, the corresponding silhouette cone
would be a cone extending from the lens into the world that covers all points in the
world which project onto the effected pixels. It is possible to reconstruct the ge-
ometry of one or more objects by considering the geometry of the silhouette cones
as seen from several sensors. Though originally developed for this purpose, visual
hulls have been shown to be useful for counting the number of distinct objects de-
tected by a sensor network [10]. The original concept was developed by Laurentini
[5], who designed algorithms for constructing the visual hull in both two and three
dimensions. In this paper, we compute a planar projection of the visual hull; this
projection results in a number of polygons lying in the plane. Yang, et al, [10] use
these polygons to give lower and upper bounds on the number of objects which cre-
ate a visual hull, and rely on the objects moving to reduce the gap in bounds. Even
with considerable movement, however, this gap can remain quite large.

3 Static Bound Calculation

We begin by formalizing the concept of a visual hull. We assume that the horizon-
tal sensors in the network are capable of detecting objects and creating silhouette
cones (see previous section) where these objects are detected. The sensors are not,
however, capable of differentiating distinct objects, so objects lying in the same
cone (i.e. those seen as either fully or partially occluded) do not generate additional
silhouette cones; rather, these additional detections appear to be a single occupied
region. See Figure 1 (top left) for an example. Given a horizontal network of such
sensors, each viewing the same scene from different angles, the silhouette cones can
be combined into a visual hull:

Definition 3.1. A planar projection of a visual hull is a set of polygons P lying at
the intersections of the silhouette cones from each sensor.

Assuming that the entire region of interest is covered by at least two horizontal
sensors, all objects in the scene must be located within polygons, although not all



22 E. Halvorson and R. Parr

c1 c2 c3 c4

Fig. 1. (top left) Example silhouette cones. c1 and c2 both contain exactly one object, c3
contains two objects where the object farther from the sensor is viewed partially occluded, and
the rear object is fully occluded in c4. (top right) A visual hull with two objects. The dashed
lines are the silhouette cones, while the solid lines represent the polygons in P. (bottom) Two
identical visual hulls created by different numbers of objects. By convention, we show only
the sensors with detections. Empty areas are presumed clear of objects because other sensors
(not shown) that cover area of interest did not detect anything.

polygons necessarily contain objects, as shown in figure 1 (bottom). Note that much
of the plane is not in P because at least one of the sensors failed to detect an object
in these locations and the location is thus outside the intersection of the cones. We
also assume that the region of interest is bounded by walls which limit the sensor’s
detection range.

The visual hull can be created by any sensor capable of creating silhouette cones
where objects are detected. For example, the cones could be created by applying
background subtraction techniques with a camera. The set of polygons, along with
the silhouette cones, can be used to develop bounds on the number of objects seen
by the network [10]. We first formalize a simple lower bound.

Definition 3.2. The cone upper bound of a cone c, cub(c), is the number of polygons
contained in c.

Definition 3.3. A polygon, generated by intersecting set of cones C, is provably
occupied if ∃c ∈ C with cub(c) = 1

For example, in Figure 2 (a), there are two polygons provably occupied (circled).
The cone counts are also given. The middle polygon is not provably occupied, since
both the cones containing it have a cub of 2. Figure 2 (b) has no provably occupied
polygons, as all cones have a cone upper bound of two.

The number of provably occupied polygons is a lower bound on the number of
objects contained by the visual hull. This is a more rigorous definition of the lower
bound presented by Yang, et al. This definition of the lower bound is weak in the
sense that the minimum number of objects consistent with the visual hull could
be significantly larger, as in Figure 2 (b), where the number of provably occupied
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Fig. 2. (left images) Example Visual hulls with (a) two provably occupied polygons (circled)
and one ambiguous polygon and (b) no provably occupied polygons. (right images) A planar
graph before (c) and after (d) the reduction of LowerBound (Theorem 3.1). The cones in this
case have a very small angle, making them essentially lines. Note that the polygons occur at
the intersections.

polygons is 0, but the number of objects is at least 2. Though weak, this lower bound
is informative, in that all objects contributing to the bound have a known location in
the visual hull.

A simple upper bound can also be derived by assuming that all objects are of size
at least MINSIZE:

UB(P) = ∑
p∈P

⌊
area(p)

MINSIZE

⌋

Additionally, if all objects must be larger than MINSIZE, then polygons smaller than
this size can be discarded from the visual hull. Thus every polygon in the visual hull
contributes at least one to the upper bound. This is the same upper bound used by
Yang et al. [10]. This bound is weak in the sense that it assumes objects can fill
the polygons completely, which could lead to over-estimating the true number of
objects inside a single polygon. It may be possible to tighten this bound by making
additional assumptions about the geometry of the objects (e.g., circles of at least
some radius).

3.1 Hardness Result for Lower Bound

The optimal lower bound is a true count of the smallest number of objects that
could produce a given visual hull. Based on the definition of the visual hull, one
could equivalently define this number as the size of the smallest set of polygons
such that each cone contains at least one polygon in the set. This formulation leads
to the following decision problem and hardness result.

Definition 3.4. Given a Visual Hull V , represented using rational numbers, and in-
teger k, LowerBound decides whether it is possible to produce V with k or fewer
objects.

Theorem 3.1. LowerBound is NP-complete.

Proof. The reduction follows from Planar Vertex Cover. Given a planar graph con-
sisting of only straight edges1 and the vertices in general position, fill in the empty

1 Chrobak and Payne [1] give a linear-time algorithm for producing a drawing of a planar
graph consisting of only straight lines.
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regions of the graph with walls. Place a single sensor for each edge in this manner:
For the edge (u,v), select either u or v - we will use u for the purposes of this proof.
Position a sensor at the chosen vertex looking down the edge towards v. These sen-
sors should be thought of as having a very small field of view. From each sensor,
place a cone down the edge, terminating at the wall beyond v. With proper place-
ment of the cones, the only created polygons will be located at the vertices of the
graph. See Figure 2 (c, d).

The original graph has a size k vertex cover if and only if this visual hull could
have been created by k objects. Since edges in the graph became cones in the visual
hull, placing objects in polygons is the same as placing vertices in the cover. Thus,
LowerBound can solve Planar Vertex Cover and LowerBound is NP-hard. Note that,
given a set of polygons, it is easy to verify that all the cones contain at least one;
thus, LowerBound is also trivially in NP, and thus is NP-complete. 	

This reduction creates a visual hull with many long, narrow passages and intersec-
tions at the vertices. We expect that the proof can be generalized to regions without
interior walls by adding a polynomial number of additional sensors (without detec-
tions) aimed at the additional intersections which occur when the walls are removed.
The details of this construction are somewhat messy because it requires ensuring
that the additional sensors have coordinates which can be expressed compactly.

4 Aim Planning

The general aim planning problem involves aiming auxiliary sensors to query the
status of portions of the visual hull, reducing the gap between the upper and lower
bounds. Since it may not be possible to cover the entire visual hull at once, multiple
phases of sensor aiming could be required before all possible information has been
extracted from a scene, where a phase specifies a single aim for each overhead
sensor. The goal of this section is to give an algorithm for planning the aims for
the overhead sensors and bound the number of phases required to reduce the gap in
bounds, UB - LB, to zero (or the smallest number possible).

Our analysis of the multi-phase aim planning problem is divided into parts. First,
we analyze a single sensor aim and the possible suboptimality resulting from a sim-
ple aiming strategy. We then consider the subproblem of choosing a set of sensor
aims to maximize the number of potential objects viewed, and the suboptimality re-
sulting from a greedy strategy. Finally, we combine these results to address the full,
multi-phase aiming problem.

4.1 Overhead Sensor Model

The overhead sensors are aimed by directing the sensor towards a particular area in
the plane. To abstract away from the specifics of the hardware, we describe sensor
aims by the corresponding area in the plane which is sensed, rather the specific
motions or joint angles required to position the sensor.
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Definition 4.1. An aim is the area in the plane that is within the field of view of an
overhead sensor for some possible configuration of the sensor.

We generally assume that the area covered by an aim corresponds to a ball in some
metric space, e.g. the L∞ ball corresponding to the coverage area of a solid state
image sensor that is high overhead.

The overhead sensors behave in a manner similar to the horizontal sensors; they
detect occupancy in a conical region extending from the sensor and into the scene.
What makes the overhead sensors special is their cones are orthogonal to the plane.
Moreover, with the mild assumption that objects are not stacked on top of each other,
the overhead sensors are immune to ambiguities from occlusions. Each detection by
an overhead sensor introduces a new polygon in the plane corresponding to the
intersection of the sensor’s detection cone with the plane. Figure 3 (left and center)
give an example of this sensor model, both before viewing and after.

function polyselect(S) ; S = list of sensors
if S is empty, stop
for i:1..size(S)

mx[i] = maxaim(S[i])
sstar = argmax(mx[i])
swap(S[0], S[sstar])
mark the view sstar as viewed
polyselect(S[1..size(S)])

Fig. 3. (left and center) Result of overhead aims. On the left, assume that 5 horizontal cones
have produced a polygon which is large enough to contain several objects, in this case 2. The
center shows the result of an overhead aim that contains the entire original polygon. Two
objects have been detected and polygons corresponding to the intersection of the detection
cones with the plane are added, while the rest of the original polygon is removed. The new,
square polygons would arise from the detection cones of square image sensor pixels. (right)
The Polyselect Algorithm.

4.2 Bound Tightening

This section proves that no reasonable algorithm can do too poorly at tightening
the gap between the bounds. We will use the informative lower bound (LB) and the
simple upper bound (UB) defined in Section 3. Before stating the major result of
this section, we define a useful property of an aim:

Definition 4.2. Given an aim v which covers unviewed polygons p(v) in the visual
hull, C(v) is the number of potential objects seen by v:

C(v) = ∑
p∈p(v)

⌊
area(p∩ v)
MINSIZE

⌋

C(v) also provides a lower bound on the greatest change in bounds caused by a
single aim.

Lemma 4.1. Assuming all objects are the same size, choosing aim v will reduce
the gap in bounds by at least C(v), regardless of the number of objects detected in
the aim.
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Proof. Suppose the overhead sensor detects a total of k objects. Viewing k objects
creates k new polygons, each of size roughly equal to the size of the objects, as in
Figure 3. All other area inside the aim will be removed from the visual hull. Since
all objects are the same size, the UB decreases by C(v)− k (the area removed from
the visual hull) and the LB increases by k, giving a net change of C(v). 	

This does not, however, provide an upper bound on the maximum change in the gap
between bounds. Consider viewing an empty polygon; after viewing, this polygon
will be removed from the visual hull, changing the cone upper bounds (see Sec-
tion 3) for all the cones that it occupied. It is possible that the cone upper bound is
reduced to 1 for each of these cones, creating several new provably occupied poly-
gons. We refer to this deduction as inference. For example, in Figure 2 (b), viewing
p1 warrants the inference that both the polygons p2 and p3 are provably occupied.

To quantify the change in bounds as a result of inference, let cmax be the max-
imum number of cones per polygon; cmax is at most the number of sensors in the
horizontal network, since each polygon can be composed of at most one cone per
sensor. Since the motivation for using overhead sensors will be that the horizontal
sensors are sparse enough to create ambiguities, it is reasonable to assume that cmax

will not be large in practical applications. This definition, along with Lemma 4.1,
leads to an approximation ratio for a general class of algorithms.

Theorem 4.1. Let A and B be two algorithms for aiming the overhead sensors that
choose vA and vB (respectively), with C(vA) = C(vB). Let A be an optimal algorithm
with respect to the bounds gap, whereas B is any algorithm yielding C(vA) = C(vB).
B is a cmax + 1 approximation to A.

Proof. Consider the change in bounds for algorithm B. In the worst case, the bounds
will change by C(vB), as demonstrated by Lemma 4.1; this corresponds with the
case where all the polygons are fully occupied. A can, however, potentially change
the bounds by as much as C(vA)+ |p(vA)| · (cmax) by seeing only empty polygons
and, for each one, inferring that up to cmax other polygons are occupied. This maxi-
mum change in bounds for A can be at most C(vA) · (cmax + 1), since each polygon
contributes at least one to C(vA). Thus, B is a cmax + 1 approximation. 	

Since this theorem makes no assumptions about B, any algorithm for choosing an
aim with C(vA) potential objects would be a cmax + 1 approximation algorithm. Of
course, the number of potential objects viewed by an optimal algorithm is not known
a priori. If B maximizes the number of potential objects viewed, however, then A
cannot view more, and B must be a cmax + 1 approximation.

4.3 Maximizing the Number of Potential Objects Viewed by
Multiple Sensors

This section considers the problem of choosing a set of aims to maximize the num-
ber of viewed potential objects. The main result of this section is that a simple,
greedy approach yields a constant factor approximation for the largest number of
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potential objects the overhead network can see. If the overhead sensors have dis-
tinct sets of possible aims, then the greedy algorithm is a 2-approximation. If the
overhead sensors are interchangeable in the sense that all aims are possible for all
sensors, then the greedy algorithm is an e

e−1 approximation.
Figure 3 (right) presents the pseudocode for a greedy aiming algorithm called

Polyselect. Polyselect assumes the existence of a function called maxaim that ex-
haustively considers all possible aims for a sensor and returns the maximum num-
ber of new potential objects viewable given the set of aims possible for the sensor.
Clearly, there are many opportunities for caching and incremental computation in
the implementation of maxaim. Among all sensors for which an aim is not already
assigned, Polyselect chooses the sensor and aim that maximizes the number of pre-
viously unviewed potential objects. The area chosen by this aim is marked so that
subsequent aims do not consider the overlap and the procedure continues until aims
are determined for all sensors.

4.3.1 Non-interchangeable Sensors

Theorem 4.2. Polyselect is a 2-approximation of the optimal aim selection proce-
dure.

Proof. Polyselect is a 2-approximation because if it chooses a suboptimal aim, then
the potential objects contributing to this suboptimality were previously viewed by
Polyselect.

More formally, let G1,G2, . . . ,Gm be the total number of previously unviewed
potential objects seen by the aims chosen by Polyselect, given in descending order,
i.e., the ordering chosen by Polyselect. Now consider the output of an optimal al-
gorithm, O1,O2, . . . ,Om, where O j is the optimal aim for sensor j in the Polyselect
ordering. Both quantities are only the new potential objects seen by each sensor,
meaning that Ok does not count any potential objects counted by O1...k−1.

Define the loss to be the difference between the number of potential objects
viewed by the greedy algorithm and the number viewed by an optimal algorithm.
Trivially:

loss = ∑
i

(Oi −Gi) ≤ ∑
i

max{0,Oi −Gi}

Now consider some O j > G j, i.e. one of the sensors that contributes to the final
summation. For this sensor j, there is an aim viewing a larger number of potential
objects than what Polyselect chose, and there are at least O j − G j more potential
objects at this aim. Since the greedy algorithm chose the aim giving G j (instead
of O j), however, these additional potential objects must have been covered by sen-
sors Polyselect fixed earlier, and are accounted for in G1,G2, . . . ,G j−1. Thus, the
suboptimality must be bounded by the total number of potential objects seen by
Polyselect. More formally,

loss ≤ ∑
i

max{0,Oi −Gi} ≤ ∑
i

Gi



28 E. Halvorson and R. Parr
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R2R1

n n+1 n+1 n

Fig. 4. (top) An example demonstrating the tightness of the approximation ratio in theorem
4.2. There are two aims available to each sensor; for L, the aims available cover n or n+1 po-
tential objects. For R, the aims available cover n or 0 potential objects. The potential objects
seen by R1 are a subset of those seen by L2. The optimal aims are clearly L1 and R1, but Poly-
select picks L2 and R2. (bottom) An example where Polyselect will give a 4/3-approximation
with interchangeable sensors. A sensor can choose to cover any two adjacent sets of potential
objects. The optimal aims are the two dashed rectangles, while Polyselect chooses the solid
rectangles. (The dashed rectangles are smaller for expository purposes only.)

Substituting into the original expression for the loss:

∑
i

Oi −∑
i

Gi ≤ ∑
i

Gi ⇒ ∑
i

Gi ≥ 1
2 ∑

i

Oi

yielding a 2-approximation for the optimal set of aims. 	

This approximation ratio is also tight. Consider the scenario in Figure 4 (top). Poly-
select will choose to aim the sensors at L2 and R2, yielding a total of n+1 potential
objects. An optimal algorithm, however, will aim the sensors at L1 and R1, with a
total of 2n potential objects.

4.3.2 Interchangeable Sensors

If the sensors are interchangeable, meaning that all aims are possible for all sensors,
the greedy algorithm achieves a better approximation ratio. This result draws upon
earlier work on maximizing submodular functions. Nemhauser et al. [8] established
several equivalent criteria for a set function z, defined over the subsets of the set A,
to be a submodular non-decreasing function. We use the following criterion:

z(S ∪{i})− z(S) ≥ z(T ∪{i})− z(T) ≥ 0 , ∀S ⊂ T ⊂ A,∀i ∈ A
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Lemma 4.2. Let A be the set of available aims and zC : 2A → N be the number of po-
tential objects viewed by a subset of these aims. zC is a non-decreasing, submodular
function.

Proof. Let S ⊂ T be subsets of A. Consider adding an additional aim i to both sets.
Since zC counts the number of distinct potential objects viewed by a subset of the
aims, the additional aim i cannot contribute fewer new potential objects to S than it
would to T . zC is also non-decreasing because adding an aim cannot reduce the num-
ber of potential objects. 	

Note that interchangeability is necessary for submodularity. Without interchange-
ability, zC is not a set function, as there are some aims which are not available to all
the sensors.

Theorem 4.3. If the overhead sensors are interchangeable, Polyselect is an e/
(e − 1)-approximation of the optimal aim selection procedure.

Proof. Nemhauser et al. describe a greedy, e/(e − 1) approximation algorithm that
starts with an empty set and iteratively builds a solution by adding the item i which
maximizes z(S∪{i})− z(S). Polyselect follows the same procedure and is therefore
an instance of this algorithm with the objective function zC. Since zC is submodular,
the e/(e−1) approximation follows as an immediate consequence of the Nemhauser
et al. results. 	

Figure 4 (top) shows a case where Polyselect with interchangeable sensors yields a
4/3-approximation to the optimal solution. This is the worst case we have devised,
suggesting that the bound in Theorem 4.3 may not be tight.

4.3.3 Hardness of Maximizing Number of Viewed Potential Objects

Could a polynomial time algorithm choose a maximizing set of aims? This section
shows that, in general, some form of approximation will be necessary because the
basic problem is intractable.

Definition 4.3. Given a collection S of overhead sensors (with |S| = c) and a set
P of polygons represented with rational coordinates, MaxObject decides whether
there exists a set of aims which allow the sensors in the network to see at least k
potential objects.

Theorem 4.4. MaxObject is NP-hard.

Proof. This problem is NP-hard so long as the number of overhead sensors is con-
sidered part of the input. The reduction follows from the c-center problem: Given a
set of points P (with |P| = n) in ℜd, does there exist a set of c “balls” of radius r
which can completely cover all the points in P?2

2 This problem is generally known as the p-center problem.
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The c-center problem is NP-hard even for d = 2 so long as c is part of the input,
even when the metric is L∞ [2]. Note that “balls” of radius r in L∞ are axis paral-
lel squares of size 2r. An instance of the c-center problem can be converted to an
instance of MaxObject by creating very small (MINSIZE) polygons for each point,
and then creating c sensors which can each view a square of size 2r. Clearly, an algo-
rithm which can solve this instance of MaxObject can also be used to solve the origi-
nal instance of c-center. MaxObject is thus NP-hard. 	

This theorem demonstrates that finding the aims maximizing the number of viewed
potential objects is intractable if the number of overhead sensors is part of the prob-
lem input. If the number of sensors is a constant c and there are n discrete aims per
sensor, then the maximizing set of aims can be found in polynomial time via exhaus-
tive search since there are O(nc) possible choices. If the set of aims is continuous
then finding the maximizing set of aims will require techniques from computational
geometry. In either case, the runtime of these procedures can be quite high, even for
moderate values of c, making approximation algorithms more practical.

4.4 Multi-phase Bound Resolution

This section considers how Polyselect performs when applied over multiple phases
of sensor aims. A phase assigns an aim to each sensor and processes the results of
the aims, updating the visual hull. In each phase, the network gathers more infor-
mation about the count in the region. It is assumed that the objects do not move
between phases, a reasonable assumption if the objects are either stationary or mov-
ing slowly relative to the speed of the sensor movements – a reasonable assumption
if the overhead sensors are pan-tilt cameras which can pan or tilt in a second or less.

The goal of this section is to determine how many greedy phases are required to
minimize UB - LB, relative to an optimal algorithm. This problem is particularly
interesting because the optimal strategy could be conditional: The selection of a
certain aim could depend upon the outcome of earlier aims. This section will use
the word resolve to mean determining the status of a potential object, either through
inference or viewing.

The analysis in this section proceeds in two steps. The first step uses the results
from Sections 4.2 and 4.3 to bound the performance of the greedy algorithm over the
course of one round, where a round is the number of phases an optimal algorithm
takes to resolve all the potential objects. This bound leads to a simple recurrence
which can then be solved to give an upper bound on the total number of greedy
rounds required to minimize the gap between the bounds. This section considers
both interchangeable and general sensors.

Lemma 4.3. If an optimal algorithm requires k phases (one round) to resolve n
potential objects, then Polyselect will view at least n/(2(cmax +1)) potential objects
in one round with non-interchangeable sensors, and at least (n(e − 1))/(e(cmax +
1)) with interchangeable sensors.
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Proof. By Theorem 4.1, an algorithm that exploits inference can resolve at most
a factor of cmax + 1 more potential objects than an algorithm that doesn’t plan to
exploit inference. To resolve n potential objects, the optimal algorithm must view at
least n/(cmax + 1) potential objects. If it is possible to view n/(cmax + 1) potential
objects, then by Theorem 4.2, Polyselect will view at least n/2(cmax + 1) when the
sensors are not interchangeable and at least (n(e − 1))/(e(cmax + 1)) when they are
interchangeable. 	

Theorem 4.5. Using a greedy d-approximation to plan the sensor aims in each
phase requires no more than d(cmax + 1) log2 n times as many rounds as an opti-
mal algorithm that plans to exploit inference.

Proof. Suppose that after some round i of the greedy algorithm, nle f t potential ob-
jects remain. The same set of aims used by the optimal algorithm will suffice to
resolve these nle f t potential objects. Therefore, by Lemma 4.3, the greedy algorithm
will be able to view at least nle f t/d(cmax + 1) in the next round. Each round, in the
worst case, Polyselect cuts the number of remaining potential objects by a constant
factor. Letting a = d(cmax + 1) be this constant fraction, this reasoning leads to a
simple recurrence:

T (n) = T

((
1− 1

a

)
n

)
+1

Solving the recurrence yields:

T (n) = log a
a−1

n =
log2 n

log2 a− log2 (a−1)

The denominator, log2 a − log2 (a − 1), is a finite difference approximation of the
derivative of log2 at a. Since log is concave, this must be larger than the true deriva-
tive of log2 at a, 1/a, implying:

T (n) =
log2 n

log2 a− log2 (a−1)
≤ log2 n

1
a

= a log2 n

For a = d(cmax +1), T (n) ≤ d(cmax +1) log2 n. 	

Corollary 4.1. Polyselect requires at most 2(cmax + 1) logn more rounds than an
optimal algorithm when using general sensors.

Corollary 4.2. Polyselect requires at most e
e−1 (cmax +1) logn more rounds than an

optimal algorithm when using interchangeable sensors.

4.4.1 Hardness of Multi-phase Planning

In the previous sections, we demonstrated that applying an approximation algorithm
to aim a set of sensors at each phase has bounded suboptimality relative to an opti-
mal planning algorithm. One question remains, however: Could a polynomial time
algorithm compute this optimal plan? This section shows that computing such an
optimal plan is intractable, even when the number of sensors is fixed.

Definition 4.4. Given a collection S of c overhead sensors and a set P of polygons,
NumPhases decides whether it is possible to view P with m phases.
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Fig. 5. (top) Plot of the gap in bounds for TrueGreedy (left) and Polyselect (right) vs Phase
for two sensors and several different numbers of objects. (bottom) A plot of the gap in bounds
for TrueGreedy (let) and Polyselect (right) vs. Phase for 15 objects and various numbers of
overhead sensors. Data were averaged over 15 experiments for the top plots and over 12 for
the bottom plots. Note that in both cases, the plots are essentially the same.

Theorem 4.6. NumPhases is NP-hard, even when the number of sensors is fixed a
priori.

Proof. The reduction is from the rectilinear c-center problem, and follows a similar
line of reasoning as used in Theorem 4.4. Given a set of points P, create a very small
polygon for each point; these polygons should be small enough that none overlap.
Next, create a single overhead sensor with a square field of view of radius r and
position it such that it can aim at any location within the region of interest.

An algorithm to decide this instance of NumPhases will also decide the original
instance of rectilinear c-center. Consider the set of aims chosen by the algorithm
deciding NumPhases. These k aims would correspond with k squares (of size 2r)
covering all the points in P, thus also deciding the original decision problem. There-
fore, NumPhases is NP-hard. 	

This result is much stronger than the result proved in Section 4.3.3 as the problem
remains NP-hard even when the number of sensors a constant.

5 Empirical Results

We evaluated our greedy approach using a simulated version of our counting prob-
lem with nine horizontal sensors by running Polyselect to completion and measuring
the change in bounds over time. To implement maxaim, we developed a sweepline
approach which finds local maxima in the number of viewed potential objects as
the overhead sensor’s aim is swept in the y-direction. This sweepline algorithm was
then run for a discrete set of x positions (each separated by a constant amount),
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generating a set of local optima. This set of detected local maxima is then used
as a basis for choosing the aims for Polyselect. We compared the performance of
Polyselect to a procedure that truly maximizes the area of viewed polygons (True-
Greedy) using a brute-force search over all combinations of aims. Both algorithms
chose from the same set of aims. The optimal, non-myopic strategy is too expen-
sive to compute because the non-myopic strategy is conditional and could require
computing the change in bounds for all possible sequences of aims, as opposed to
all possible sequences of just the local maxima. All of the tested configurations had
interchangeable sensors.

With two overhead sensors TrueGreedy runs up to 40× slower than PolySelect,
and TrueGreedy can be hundreds of times slower with three or more sensors. Figure
5 (top) shows two plots of the bound gap (UB - LB), for TrueGreedy and Polyse-
lect, with various numbers of objects. Figure 5 (bottom) shows the gap in bounds
for TrueGreedy and Polyselect for various numbers of overhead sensors. Note that
no more than ten phases were required for any of the experiments. We have noticed
empirically that Polyselect is often an excellent approximation algorithm, in many
cases choosing equivalent aims to TrueGreedy. Consequently, the suboptimality for
both sets of plots in Figure 5 is less than a fraction of an object, even for many sen-
sors. As the graphs demonstrate, the suboptimality of using Polyselect is reasonable.

6 Conclusion

We described a simple, greedy method for planning the aims of a set of overhead
sensors to resolve an ambiguous count of the number of objects seen by a network
of horizontal sensors. We proved that the suboptimality of this approach is both
bounded and reasonable, and works well in practice. We also demonstrated that
solving the sensor aiming problem optimally is intractable.
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Mobile Wireless Sensor Network Connectivity
Repair with K-Redundancy

Nuzhet Atay and Burchan Bayazit

Abstract. Connectivity is an important requirement for wireless sensor networks
especially in real-time monitoring and data transfer applications. However, node
movements and failures change the topology of the initial deployed network, which
can result in partitioning of the communication graph. In this paper, we present a
method for maintaining and repairing the communication network of a dynamic
mobile wireless sensor network. We assume that we cannot control the motion of
wireless sensor nodes, but there are robots whose motion can be controlled by the
wireless sensor nodes to maintain and repair the connectivity of the network. At the
heart of our method lies a novel graph property, k-redundancy, which is a measure
of the importance of a node to the connectivity of a network. We first show that this
property can be used to estimate repair time of a dynamic network. Then, we present
a dynamic repair algorithm that minimizes expected repair time. Finally, we show
the effectiveness of our method with extensive simulations and its feasibility with
experiments on real robots and motes.

1 Introduction

Communication connectivity is a fundamental requirement for wireless sensor net-
works for the effective use of such systems. It is also observed by several researchers
such as [13] that local connectivity improved the system performance in multi-
robot applications. In this paper, we are addressing this problem and propose a new
method to provide connectivity in a wireless sensor network. In our approach, we
classify the nodes as uncontrolled and controlled nodes. The uncontrolled nodes
could be mobile or static and we can control the motion of the later class. In the
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rest of the paper, we will call controllable nodes as robots and uncontrollable nodes
as mobile nodes. Our goal is to improve connectivity of the system with the help
of mobile robots. Our approach is based on in-network computing, where robots
do not know the intentions of mobile nodes, but mobile nodes plan and guide the
movements of robots to provide better connectivity.

In order to provide better connectivity, we first introduce a new graph property, k-
redundancy, to determine the communication characteristics of a dynamic wireless
sensor network. This property provides a tool to identify low-connected parts of a
communication graph and means to reinforce the network structure before discon-
nection happens. Briefly, we define k-redundancy of a node as the minimum number
of node removals required to disconnect any two neighbors of that node. This pro-
vides a measure to represent the importance of a node in connecting its neighbors.
k-redundancy is also important for the robustness of the network because as the
redundancy of nodes increase, the routes between neighboring nodes increases.

As we will see in Section 4, k-redundancy can be utilized to estimate the repair
time in a network. One approach to provide better connectivity is to assign some
robots to provide communication bridges if the network is disconnected (reactive
repair). An alternative approach is to place robots before the disconnection so that
the repair time would be minimum if disconnection happens (proactive repair). In
this paper we compare both approaches and show how k-redundancy information
can be used to improve proactive repair performance. For this purpose, we introduce
several proactive repair strategies and compare their performances using simulations
with a realistic network simulator (NS-2 [1]). Our results show that by using k-
redundancy, we can reduce the disconnections in a dynamic mobile network. We
also provide real hardware experiments with several mobile robots and motes to
show the applicability of our algorithm to real systems.

The rest of the paper is organized as follows. The next section gives a brief sum-
mary of the related research and brief comparison to our approach when it is appli-
cable. We introduce problem definition in section 3. Section 4 introduces the con-
cept of k-redundancy and Section 5 describes our solution. In section 6, we present
our simulation results. Section 7 shows the implementation of our method on real
hardware and Section 8 concludes the paper.

2 Related Work

Using mobility to maintain connectivity has attracted many researchers. The general
approach has been using mobility for carrying data between disconnected compo-
nents of the network [26], and using mobile vehicles to improve data collection
by actively using vehicles as data carriers [21]. One other approach is storing data
when connectivity is disrupted, and sending it when connectivity repairs [25, 19].
The problem with these approaches is the latency in data transfer for time critical
applications. The main advantage of our approach is that we are using mobile nodes
for forming a connected network where data transfer is never interrupted. There are
also approaches to maintain uninterrupted connectivity with dynamic networks. For
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example, the decentralized planner of [5] can be extended to retain a communication
network. A dynamic radiomap is used in [14] to navigate in good communication ar-
eas. In [22], the authors propose a technique for providing radio connectivity while
moving a group of robots from one configuration to another. Another approach [12]
aims to provide radio connectivity and line of sight while moving a swarm from one
configuration to another. Generally, these approaches have explicit assumptions on
the communication properties which can be violated in practice. The advantages of
our technique are 1: We assume there can be obstacles in the environment, 2: We
allow links to be canceled and reformed, 3: We do not have any assumptions on the
communication model, i.e. there is no assumption on the communication range or
the properties of links.

3 Problem Definition

We have a network of mobile nodes whose motion we cannot control. Our pur-
pose is to maintain and repair connectivity of this network using a group of mobile
robots which are capable of moving to appropriate regions and build communication
bridges. We assume robots are controlled by nodes. The network is monitored by
nodes and nodes determine where robots should be located to improve connectiv-
ity. Robots and nodes do not have location information, neither for themselves nor
for other members of the network. However, each of them is capable of measuring
distance and determining the direction to a neighbor if that neighbor is in its line of
sight. Each member of the network is equipped with a low-power radio for wireless
communication with limited range. Robots and nodes are holonomic with limited
speed. There are obstacles in the environment which can obstruct line of sight and
interrupt communication. Nodes and robots can fail anytime. We do not assume
any communication model, environment map, or motion prediction of nodes when
deciding robot locations. Our solution is distributed and we do not use any global
information.

4 K-Redundancy and Expected Repair Time

4.1 K-Redundancy

K-connectivity is a property which is used to define the minimum number of nodes
that need to be removed in order to partition a graph. If a graph is K-connected,
the graph remains connected if any K − 1 nodes are removed. One problem with
this property is that it gives information about the whole graph, not about individ-
ual nodes or parts of the graph. So even if most of the graph is fully connected, a
small low-connected region determines the connectivity of the whole graph. This
fact considerably limits the information we can obtain about graphs.

Although K-connectivity is defined for the graph as a whole and a global prop-
erty, we can modify this concept to define the connectivity property of individual
nodes. For this purpose, we define a new graph property (i, j,k)-redundancy for
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each node. We are using this property to represent the goodness of the connectivity
among the neighbors of each node. It should be noted that a node could create a
communication bridge between any pair of its neighbors, but if there are alternative
routes between the neighbors, the importance of that node on connectivity reduces.

Definition 4.1 (i-neighborhood). Let v be a node of graph G with vertex set V (G)
and edge set E(G). We denote i-neighborhood of node v as Ni(v), which is the set
of nodes whose distance to the node v is at most i. The subgraph induced by Ni(v)
is denoted by G[Ni(v)], which is the set of vertices Ni(v) with edges whose both
endpoints are in Ni(v).

Definition 4.2 ((i, j,k)-redundancy). A node n is defined to be (i, j,k)-redun-dant
if Ni(n)− S is contained in one connected component of G[Nj(n)− S] for all sets S
with k − 1 vertices of Nj(n) and j ≥ i.

In other words, a node n is (i, j,k)-redundant if k is the minimal number of nodes
in the j-neighborhood of n to separate any two nodes in the i-neighborhood n. We
can also say that a node n is (∞,∞,k)-redundant if the graph G is k-connected,
and G[V (G)−{n}] is (k −1)-connected. Various definitions of local k-connectivity
can be derived by adjusting i and j. We denote by k-redundancy the special case
(1,∞,k)-redundancy, which is measuring the connectivity of 1-neighbors of n over
the whole graph. k-redundancy for nodes with only one neighbor is undefined fol-
lowing this definition, but we define their connectivity as ∞ for practical purposes.
It should be noted that a 0-redundant node is an articulation point (cut vertex) of
the graph. Our definition is a generalization of this property, which enables us to
obtain more information about the connectivity of the graph. To the best of our
knowledge, there is no graph property similar to (i, j,k)-redundancy. In our im-
plementation, we find (i, j,k)-redundancy by evaluating the accessibility of each
node in i-neighborhood of n. The details of our implementation can be found at [3].
We see an efficient algorithm for finding (i, j,k)-redundancy as an interesting open
problem.

Fig. 1(a) shows an example graph where the vertices represent the nodes and
edges represent the connections between the nodes. Nodes have different redun-
dancy values which is a representation of their role in the connectivity. For exam-
ple, n8 is 0-redundant because n9 and n7 can communicate only with the help of n8,
so removing it from the graph results in disconnection. n3 is 1-redundant because
in case it fails, all of its neighbors can communicate with the help of n1, removing
also n1 partitions the graph. n6 is 2-redundant because after removing it, at least two
more nodes need to be removed to partition its neighbors (n3 and n5 can be removed
to isolate n4).

4.2 Expected Repair Time

Now consider a scenario where a wireless sensor network is disconnected and we
have some robots that can move in and build a communication bridge that would
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Fig. 1. (a) Nodes have various k-redundancy values according to their role in the connectivity
of the graph. (b) Node n4 fails and r1 repairs the network. x41 is the optimal location for robot
r1 to repair the network in case n4 fails, and τ41 is the time to reach there.

reconnect the disconnected parts. In this section, we will investigate the expected
repair time if there is only one disconnection.

We first define network repair time (τrepair) as the time from the moment of dis-
connection to reach a network topology where all the nodes are connected again.
Reconnection may occur because of the dynamic changes in the network, such as
the random movements of nodes, without utilizing any robot for repair, but in this
part, we only consider the time for using a robot to repair a disconnected network.

Utilizing a robot enables us to formalize the expected repair time in a wireless
sensor network with several nodes of various k-redundancy levels. Remember that
in order to make two neighbors of a k-redundant node unreachable to each other,
it requires k nodes to be disconnected from the network in addition to that node.
Assuming that the network topology is stable from the time disconnection occurs
to the time a robot repairs it, we can repair the network by sending a robot to the
location of the node that caused disconnection. However, in some cases, a robot can
repair the connection even before reaching the location of the failed node. We call
xi j the optimal position that a robot j needs to move to repair the network in case
node i fails and network gets disconnected. We define τi j as the time of robot j to
reach xi j. Fig. 1(b) illustrates the optimal location to repair the network and the time
for the closest robot to reach there. In this figure, r1 repairs the network in case
node n4 fails. If we assume that a node has probability p to disconnect, then the
probability of the network disconnecting at a k-redundant node is pk+1, because k
additional nodes need to fail in addition to that node so as to obtain a disconnected
network. Then, we can write expected repair time as a function of the probability
that the network disconnects at a given node and the time for a robot to reach to a
position to repair the network.

E(τ) =
n

∑
i=1

min j(τi j) ∗ pki+1, 1 ≤ j ≤ m (1)

where n is the number of nodes, m is the number of robots, and ki is k-redundancy
for the node i.
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In Equation 1, we assume that all nodes have the same probability of getting dis-
connected. The equation could easily be extended to include different probabilities
for each node (perhaps based on the signal strength, direction of nodes or distance
between nodes). Please also note that this equation presents a theoretical basis for
our algorithm, and we do not need to know the exact values of p and τi j for anal-
ysis purposes. In later sections, we will discuss different approaches to find robot
placements.

5 Network Repair

Our goal is to provide at least the minimum k-redundancy for all mobile nodes in the
wireless sensor network. We achieve this by continuously checking k-redundancy
for each node and request assistance from a mobile robot if k-redundancy becomes
less than the minimum redundancy. Please note that, if the minimum redundancy
is selected to be 0, reduction in the redundancy means that the network is discon-
nected. Alternatively, we can enforce a high redundancy value to (a) provide more
robust network, (b) increase the throughput between mobile nodes. In this section,
we will discuss how we can find k-redundancy for each node. We will also present
two methods for repairing a disconnection. In the first method, the reactive algo-
rithm, the network directs robots when the k-redundancy of a node becomes less
than minimum value. In the second method, the proactive method, the network place
the robots at locations that minimize the repair time in case k-redundancy becomes
less than the minimum value.

5.1 Computing K-Redundancy

(i, j,k)-redundancy definition requires finding all alternative paths between the i-hop
neighbors of a node, where paths can cover the j-hop neighborhood. Hence, in order
for a mobile node to find its redundancy, a communication mechanism is required.
In our approach, each node stores j-hop neighborhood information. To determine
its role in connectivity, each node enumerates all ways of communication between
each pair of i-hop neighbors. This way, each node can determine its role in commu-
nication. The pair which has the least number of ways of communication determines
that node’s (i, j,k)-redundancy. We are only interested in evaluating the importance
of a node in connecting its immediate neighbors, so we compute (1, j,k). In prac-
tice, j must be small, as a result, computed redundancy value (1, j,k)-redundancy
can be different from k-redundancy, which is defined as (1,∞,k)-redundancy. How-
ever, the local value is a lower limit on the redundancy of nodes, i.e., nodes can have
higher redundancies if they are computed globally, but nodes cannot have lower re-
dundancy. So, redundancy values computed using local information are a good indi-
cator of graph connectivity. Our experiments suggest that 2-redundancy is sufficient
for practical applications of network repair [3].
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5.2 Reactive Repair

The reconnection process starts when a node starts drifting away from one of its
immediate neighbors. If losing this neighbor does not reduce k-redundancy of this
node to a value less than the minimum redundancy, no action is taken. Otherwise,
one of the robots in the network needs to move to that region and form connec-
tions with those two nodes. If possible, robots try to form connections to as many
nodes as possible, which in turn increases redundancy of the node. After this time,
robots assume the responsibility of maintaining connectivity just as a regular node,
i.e. they can call other robots to repair connection. This allows the robots to build
bridges consisting of several robots between the disconnected parts of the network.
To avoid unnecessary deployment of robots, a periodic connectivity detection mech-
anism works on the nodes who has connection to the robot. If all nodes can com-
municate between each other without the help of the robot, the robot is unnecessary
and leaves that region.

5.3 Proactive Repair

In proactive repair, we place robots in locations that minimize the repair time in case
of node failures or disconnections. Once the robots are in these locations, they are
utilized around there until a node’s redundancy goes below than minimum redun-
dancy, i.e., reactive repair is required. The best location for a robot to minimize the
expected repair time is the location that minimizes Equation. 1.

Finding the best locations to minimize expected repair time can be represented as
the facility location problem. Facility location problem has been studied extensively
because of its practical applications, and it involves challenging combinatorial and
geometrical problems. In general, the facility location problem is finding the loca-
tions of a set of facilities F to serve a set of demand locations D with minimum
cost, where cost function ci j is the weighted distance function for j ∈ D and i ∈ F
that is nearest to j. In our original problem, facilities are the robots, demand lo-
cations are the locations that the robots can move to repair the network, and cost
function is the weighted distance where weight is the probability of a node failing
and causing disconnectivity. As facility location problems are NP-Hard, solution to
Equation. 1 is also NP-Hard. We propose three policies for solving this problem: (i)
robots can be placed only around nodes, and if a node fails, a robot can repair the
network by taking its place (P1), (ii) a robot can repair the network by taking the
failed node’s place as before, but robots can be placed anywhere (P2), (iii) robots
can be placed anywhere, but instead of moving all the way to take the place of the
failed node, it moves to the point which is closest to the robot and enough to repair
the network (P3).

In the following, we will discuss how our policies can be implemented by using
several variations of the facility location problem.



42 N. Atay and B. Bayazit

5.3.1 Discrete Demand and Facility Sets for Policy I

Facility location problem is called k-median when both demand and facility sets
are discrete, and at most k facilities can be used. Our first policy is k-median, as
we assume that robots can be located only around nodes, and they can move to
the previous location of the failed node to repair the network. So, both feasible
facility locations and demand locations are node locations, and k is the number of
idle robots.

K-median problem is NP-Hard [11], so exact solutions are not feasible. How-
ever, there are several heuristics that work well in practice. We discuss two different
algorithms for the solution of this problem:

Greedy Approach: In the first algorithm, we locate robots around low redundant
nodes. This approach comes from the fact that a robot near a lower redundancy
node would have faster repair time than a robot near a higher redundancy node.
Please see [3] for the proof demonstrating this on certain graphs. We use point-
greedy algorithm [11] for solving this problem. In this algorithm, one facility is
added at a time that minimizes cost. More formally, start with solution set S = /0, and
update S = S ∪ fk where fk ∈ F − S such that cost(S) is minimized. This algorithm
is very fast but it has an approximation ratio O(n), where n is the number of demand
locations.

Local Search: In the second algorithm, instead of a step-by-step allocation, we
check different combinations and minimize the cost over all combinations. This is
the exact solution of k-median and is NP-Hard. Best known polynomial time solu-
tion to this problem is local search. In this approach, one random feasible solution
is determined, and at each step, at most p facilities are swapped until no more im-
provement can be obtained, i.e. some facilities are removed and some are utilized,
keeping at most k facilities utilized at any time. This approach has approximation
ratio 3 + 2/p and the running time is O(np) [2], where n is the number of facilities.

This approximation ratio is for metric k-median problem, i.e. cost function needs
to be symmetric and satisfy triangle inequality. Although the cost function in our
problem definition is symmetric, there are cases where it violates triangle inequality.
In order to overcome this problem, we define the distance between a node and a
robot as the length of the shortest path on the graph.

Local search method is a centralized method, but it is suitable for computing in
a distributed fashion. This approach starts with a greedy solution where robots are
located near low redundant nodes. Then, each node assigns itself to the closest robot,
creating a partitioning of the network. After this step, the algorithm starts running
asynchronously. We assume each robot is controlled by the node that is closest to
it. Each node, at a random time, computes the cost of the solution if it moves the
robot to one of its neighbors. If this solution gives a lower cost, then it actually sends
the robot. Otherwise, after waiting for a random amount of time, it checks another
node, until all neighbors are tried and no more improvement can be obtained. In a
network of m robots and n nodes, assuming random sampling prevents more than
one node to swap robots, i.e., p = 1, our algorithm finishes in O(n) time, and the
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approximation ratio is 5 [2]. The details of the algorithm, as well as its pseudocode
can be found at [3].

5.3.2 Discrete Demand and Continuous Facility Sets for Policies II and III

Facility location problem is called Fermat-Weber [23] problem when facilities can
be located anywhere in the plane and only 1 facility can be utilized. More formally,
let D = {a1,a2, . . . ,am} be the set of m points in ℜn, Fermat-Weber problem is to
find a point q which minimizes the sum of the weighted Euclidean distances to the
points in D:

min
q

d(q) =
m

∑
i=1

wi‖q − ai‖n (2)

where ‖.‖n denotes Euclidean distance in ℜn and wi is the weight for point ai.
Proactive repair approach can be transformed into this problem when there is

only one robot, by using k-redundancy to define the weights in the formula. In this
case, let D = {n1,n2, . . . ,nm} be the set of nodes in ℜ2, our problem is to locate the
robot r to minimize expected repair time:

min
r

E(r) =
m

∑
i=1

pki+1
i ‖r − ni‖2 (3)

This problem does not have an exact analytical solution even when m = 5 [4].
However, if the points in the set D are not collinear, then this function is positive
and strictly convex, hence it has a unique minimum. In the case where the points are
collinear, at least one of the points in D is the minimum, and it can be found in linear
time. For the noncollinear case, one of the most popular algorithms is Weiszfeld’s
algorithm [24] which is an iterative method. The iteration function is given by:

T (r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m

∑
i=1

pki+1
i ni

‖r − ni‖
m

∑
i=1

pki+1
i

‖r − ni‖

if r �= n1, . . . ,nm

ni if r = ni

(4)

Weiszfeld’s algorithms is defined using this function as an iterative scheme:

ri+1 = T (ri) i = 0,1,2 . . . (5)

This function is continuous and differentiable everywhere except the points in D.
If no ri results in a point in D, these points converge to the global optimal solution
ropt in a finite number of iterations [16]. However, when any ri is in D, then the
algorithms terminates at ri without convergence. The set of initial points r0 that
causes any ri ∈ D where i > 0 is denumerable (countable) [9, 7, 8], if the convex
hull of the points in D has full dimension. In our problem, we are working on ℜ2,
hence the convex hull of the points in D has 2-dimensional convex hull as long as the



44 N. Atay and B. Bayazit

points are noncollinear. As a result, the set of starting points is always denumerable
when the points in D are noncollinear. We only use this algorithm when the points
are noncollinear, so we can claim that the set of starting points that will cause early
termination without convergence is denumerable. Thus, by selecting another starting
point whenever the algorithm terminates early, ropt can be found in finite number of
steps. However, in practice, it is very unlikely that any ri will exactly land on a point
in D with the exact numerical precision.

The negative gradient of the function E(r) is defined as:

R(r) =
m

∑
i=1

pki+1
i

‖r − ni‖ (ni − r) (6)

Convexity of E(r) implies that the necessary and sufficient condition for optimal-
ity is R(ropt) = 0. We use this result to generate the stopping criterion. Algorithm
stops at iteration i when ‖R(ri)‖2 ≤ ε , where ε is small and positive.

The rate of convergence depends on whether or not ropt is in D. If ropt �∈ D, then
the rate of convergence is linear. On the other hand, if ropt ∈ D, the convergence rate
can be linear, superlinear or sublinear [15].

Multi-Facility: When multiple facilities are used, facility location problem with
continuous facility set turns into a very hard optimization problem, and it has
been shown to be NP-Hard [17]. Although properties of the optimal solution is
known [20], there is no known heuristic with performance bound. We have chosen
one of best heuristics, sequential location and allocation (SLA) [10, 6]. This method
starts with an arbitrary solution, and assigns each demand location to the closest fa-
cility which results in a clustering of demand locations. Then, single facility location
problem (1-Weber) is solved for each cluster, and new facility locations are found.
This process continues until no more improvement can be obtained, and converges
to a local optimal solution.

In order to apply this solution to our problem, we assign continuous facility set
as the feasible robot locations in the plane, so that F ⊆ ℜ2. Discrete demand set
are the locations for the robots to move and repair the network in case a node fails
and repair is required. The details of the algorithm, as well as its pseudocode can
be found at [3]. For solving the 1-Weber problem, we are using the Weiszfeld’s
algorithm. In this part, we also explore two different policies:

• Constant Demand Set: In our second policy (P2), we set demand set as the
node locations and apply SLA algorithm. Initially, we set robot locations as their
initial locations and find an assignment for nodes, which results in a clustering
of nodes. We then solve Weber problem inside each cluster, and continue until
robot locations cannot be changed to reduce expected repair time.

• Updated Demand Set: In the last policy (P3), we first form the regions that
a robot can move and repair connectivity (repair regions whose construction
explained in [3]), and pick the closest points inside these regions as the de-
mand locations. The solution of the problem using this policy gives the solu-
tion of Equation. 1. We again use SLA algorithm to solve this problem. In this
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algorithm, each time robot locations are selected and single facility location is
solved, demand set is updated according to the new robot locations.

6 Simulations

In our simulations, we want to determine the characteristics of connectivity in mo-
bile networks and the effect of using robots to reinforce network and repair connec-
tivity. We are interested in observing the effects of increasing k-redundancy, success
of the proposed methods in maintaining connectivity, effects of obstacles and node
failures. Because of space limitations, we only present some of the results. Our
full results can be found at [3]. We implemented and tested our algorithm on the
network simulator NS-2 [1]. NS-2 is one of the most commonly used network sim-
ulators and it can simulate realistic network conditions including message transfer,
network congestion, delay etc. In our experiments, we have selected k = 2 (see [3]
for evaluation of different k values). We setup communication range to be 45 me-
ters which is around the range of low-power radios. Before presenting simulation
results, we discuss properties for measuring connectivity.

6.1 Connectivity Measure

There are two metrics for measuring connectivity in our experiments. The first one
is the classical measure which is 1 when network is connected, and 0 if the network
is partitioned. The second metric which is called reachability [18] is more useful
to measure connectivity on a continuous scale. This metric is defined as the ratio
of the total number of node pairs that can communicate among each other to the
2-combination of all nodes. This number reaches 1 when all nodes are connected,
and 0 when there is no connection between any nodes.

6.2 Simulation Results

Success Rate: These simulations show the success of the proposed methods in
maintaining network connectivity when there are different number of robots in the
system. For this purpose, we present average total disconnection time during the
simulation period and average reachability. We measure these in two different se-
tups. We first let robots move randomly just like nodes, and in the second one, we
have the robots controlled by nodes using reactive and proactive methods. We allow
robots to move randomly and compare to our technique, instead of simply adding
robots to the network because increasing the number of mobile entities alone can
help connectivity. As a result, the number of mobile units is same in comparison,
only the behavior of robots change. We started with a network of 10 mobile nodes,
and added one robot at each experiment. We used 10 different initial graphs for any
given number of robots, and the experiment has been repeated by starting with each
graph 100 times. Each simulation time is 500 seconds.
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Fig. 2(a) shows the time the graph remains disconnected. When there is only one
robot in the network, the difference in the times between random and controlled
robot motion is about 15 seconds. However, as the number of robots increase, the
time difference starts increasing. The difference in disconnected time between ran-
dom motion and reactive approach reaches 80 seconds when there are 10 robots for
repair. The results show that proactive approach performs better than reactive ap-
proach. In the proactive approach, we have tested point greedy (PG), local search
(LS), sequential location and allocation with constant demand set (SLA-CD), and
sequential location and allocation with updated demand set (SLA-UD) methods. As
it can be seen in Fig. 2(a), PG, SLA-CD and SLA-UD performs similar, whereas
LS outperforms all these three methods. When there are 10 robots, the time differ-
ence between LS and PG, SLA-CD and SLA-UD reaches 25 seconds. The time we
obtain using LS is 150 seconds better than random motion, and 70 seconds better
than reactive approach. We should note that the algorithm used to send robots to
repair the network in case a disconnection is detected is the same with reactive and
proactive approach. This shows that placing robots using k-redundancy can provide
improvement about 70 seconds over 500 seconds.

One interesting observation is that both SLA-CD and SLA-UD perform very
similar to PG. Although SLA can place robots anywhere in the 2-D Euclidean space,
it can perform much worse than optimal solution on certain graphs. When the initial
distribution of the robots is uneven among the different parts of the graph, one part
of the graph can have very little expected repair time, whereas the other part has very
high because of the uneven distribution of robots. This solution is possible to obtain
using SLA because there is no force that can push some of the robots from the dense
part of the graph to the sparse part of the graph. PG can also suffer from this problem
because of the greedy approach. The greedy approach minimizes cost at each step.
So if there are two dense parts of the graph connected by a single bridge and there
are two robots, the first robot goes along that bridge, and the second robot goes to
one of the dense parts. In an optimal solution though, each robot is placed in one
dense part. However, LS can avoid these cases by moving the robots to other parts
of the network as long as improvement can be obtained. Finally, we have also seen
that there is not statistically significant difference between SLA-CD and SLA-UD.
With SLA-CD, all nodes send their own locations to be used in the computation of
Weber point, whereas with SLA-UD, nodes send the closest point required to repair
network. However, the optimal position of the robot is always among the nodes, so
most of the time, the change in the distance computations of the nodes opposite to
each other with respect to the robot cancel each other, and the location of the Weber
point changes very little. Although the expected repair time with SLA-UD turns out
to be smaller than SLA-CD, the optimal robot position is very similar.

Reachability measurements show similar results(Fig. 2(b)). When there is only
one robot, the difference in reachability between random motion and reactive ap-
proach is 0.03, and the difference between random motion and LS is 0.07. Reacha-
bility increases with all methods as the number of robots increase. The reachability
of LS reaches up to 0.9 when there are 10 robots, which means that on average, 90%
of the nodes in the network are connected to each other over 500 seconds. With 10
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(a) (b)

Fig. 2. (a) Average disconnected time as the number of robots increase. (b) Reachability as
the number of robots increase.

robots, the difference between random motion and reactive approach reaches 0.1,
and the difference between random motion and LS reaches 0.22. This means us-
ing LS, 22% more nodes can communicate among each other compared to random
motion.

7 Experiments

We show the feasibility of our approach with experiments on real hardware. For this
purpose, we experimented on a network formed of 3 robots (2 AmigoBots, 1 Pioneer
3-DX) and 10 Tmote sky motes. Each robot is equipped with a mote, and the other 7
motes are used as static nodes. 1 AmigoBot is used as a mobile node, and the other
robots are used as connectivity repair robots. We present the working of the system
in an environment of size 8mx8m. In our experiments, we set a communication
range of 2.5 meters to imitate radio communication range, so although motes hear
all other motes in the environment, they filter out messages from motes who are
further away than 2.5m.

Initial experiment setup is shown in Fig. 3(a). The mobile node represented with
an AmigoBot is working as a bridge between the upper and lower parts of the net-
work. Two repair robots are located at the two minimum redundant nodes in the up-
per part. When AmigoBot moves closer to the camera, this causes a disconnectivity

(a) (b) (c) (d)

Fig. 3. Real experiments in a scenario that represents bridge forming and node failure han-
dling
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in the network, so the closest idle robot (Pioneer) moves towards that region to repair
connectivity (Fig. 3(b)). Then, AmigoBot fails (Fig. 3(c)) so another disconnection
occurs in the network. This time, the robot who is supposed to provide connec-
tivity (Pioneer) acts as a mobile node and calls for another robot, and the second
AmigoBot reaches the region and maintains connectivity with the neighbors of the
failed node (Fig. 3(d)).

8 Conclusion

In this paper, we have presented a new graph property, k-redundancy, to define the
communication characteristics of a dynamic wireless sensor network. This property
provides a way to represent the effects of removing a node from the network on
the connectivity. We show that this property can be used to estimate repair time to
reconnect a network. We have presented an in-network algorithm that is based on
k-redundancy to improve the network’s connectivity where mobile nodes request
mobile robots to repair low connected areas. Finally, we have showed the perfor-
mance of our algorithm in simulations and real hardware.

Acknowledgements. We would like to thank Steve LaValle, Robert Ghrist, Douglas West,
Joseph Mitchell, Robert Pless, Jianer Chen and Jennifer Welch for useful discussions about
the novelty of k-redundancy who guided us in the development of this graph property. We
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On Endogenous Reconfiguration in Mobile
Robotic Networks

Ketan Savla and Emilio Frazzoli

Abstract. In this paper, our focus is on certain applications for mobile robotic net-
works, where reconfiguration is driven by factors intrinsic to the network rather
than changes in the external environment. In particular, we study a version of the
coverage problem useful for surveillance applications, where the objective is to po-
sition the robots in order to minimize the average distance from a random point in
a given environment to the closest robot. This problem has been well-studied for
omni-directional robots and it is shown that optimal configuration for the network is
a centroidal Voronoi configuration and that the coverage cost belongs to Θ(m−1/2),
where m is the number of robots in the network. In this paper, we study this problem
for more realistic models of robots, namely the double integrator (DI) model and
the differential drive (DD) model. We observe that the introduction of these motion
constraints in the algorithm design problem gives rise to an interesting behavior.
For a sparser network, the optimal algorithm for these models of robots mimics that
for omni-directional robots. We propose novel algorithms whose performances are
within a constant factor of the optimal asymptotically (i.e., as m → +∞). In particu-
lar, we prove that the coverage cost for the DI and DD models of robots is of order
m−1/3. Additionally, we show that, as the network grows, these novel algorithms
outperform the conventional algorithm; hence necessitating a reconfiguration in the
network in order to maintain optimal quality of service.

1 Introduction

The advent of large scale sensor and robotic networks has led to a surge of interest
in reconfigurable networks. These systems are usually designed to reconfigure in a
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reactive way, i.e., as a response to changes in external conditions. Due to their im-
portance in sensor network applications, reconfiguration algorithms have attracted
a lot of attention, e.g., see [8]. However, there are very few instances in engineering
systems, if any, that demonstrate an internal reconfiguration in order to maintain
a certain level of performance when certain intrinsic properties of the system are
changed. However, examples of endogenous reconfiguration or phase transitions are
abound in nature, e.g., desert locusts [4] who switch between gregarious and social
behavior abruptly, etc. An understanding of the phase transitions can not only pro-
vide insight into the reasons for transitions in naturally occurring systems but also
identify some design principles involving phase transition to maintain efficiency in
engineered systems.

In this paper, we observe such a phenomenon under a well-studied setting that
is relevant for various surveillance applications. We consider a version of the so-
called Dynamic Traveling Repairperson Problem, first proposed by [11] and later
developed in [2]. In this problem, service requests are generated dynamically. In
order to fulfill a request, one of the vehicles needs to travel to its location. The
objective is to design strategies for task assignment and motion planning of the
robots that minimizes the average waiting time of a service request. In this paper,
we consider a special case of this problem when service requests are generated
sparingly. This problem, also known as coverage problem, has been well-studied in
the robotics and operations research community. However, we consider the problem
in the context of realistic models of robots: double integrator models and differential
drive robots. Some preliminary work on coverage for curvature-constrained vehicles
was reported in our earlier work [7]. In this paper, we observe that when one takes
into consideration the motion constraints of the robots, the optimal solution exhibits
a phase transition that depends on the size of the network.

The contributions of this paper are threefold. First, we identify an interesting
characteristic of the solution to the coverage problem for double integrator and
differential drive robots, where reconfiguration is necessitated intrinsically by the
growth of the network, in order to maintain optimality. Second, we propose novel
approximation algorithms for double integrator robots as well as differential drive
robots and prove that they are within a constant factor of the optimal in the asymp-
totic (m → +∞) case. Moreover, we prove that, asymptotically, these novel algo-
rithms will outperform the conventional algorithms for omni-directional robots.
Lastly, we show that the coverage for both, double integrator as well as differen-
tial drive robots scales as 1/m1/3 asymptotically.

Due to space limitations, we do not present all the proofs. Missing proofs and
details are presented in the extended version of this article [12].

2 Problem Formulation and Preliminary Concepts

In this section, we formulate the problem and present some preliminary concepts.
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Problem Formulation

The problem that we consider falls into the general category of the so called Dy-
namic Traveling Repairperson Problem, originally proposed in [11]. Let Q ⊂ R

2 be
a convex, compact domain on the plane, with non-empty interior; we will refer to
Q as the environment. For simplicity in presentation, we assume that Q is a square,
although all the analysis presented in this paper carries through for any convex and
compact Q with non-empty interior in R

2. Let A be the area of Q. A spatio-temporal
Poisson process generates service requests with finite time intensity λ > 0 and uni-
form spatial density inside the environment. In this paper, we focus our attention on
the case when λ → 0+, i.e., when the service requests are generated very rarely.

These service requests are identical and are to be fulfilled by a team of m robots.
A service request is fulfilled when one of m robots moves to the target point associ-
ated with it.

We will consider two robot models: the double integrator model and the differ-
ential drive model. The double integrator (DI) model describes the dynamics of a
robot with significant inertia. The configuration of the robot is g = (x,y,vx,vy) ⊂ R

4

where (x,y) is the position of the robot in Cartesian coordinates, and (vx,vy) is its
velocity. The dynamics of the DI robot are given by

ẋ(t) = vx(t),

ẏ(t) = vy(t), vx(t)2 + vy(t)2 ≤ v2
max ∀t

v̇x(t) = ux(t),

v̇y(t) = uy(t), ux(t)2 + uy(t)2 ≤ u2
max ∀t,

where vmax and umax are the bounds on the speed and the acceleration of the robots.
The differential drive model describes the kinematics of a robot with two inde-

pendently actuated wheels, each a distance ρ from the center of the robot. The con-
figuration of the robot is a directed point in the plane, g = (x,y,θ ) ⊂ SE(2) where
(x,y) is the position of the robot in Cartesian coordinates, and θ is the heading angle
with respect to the x axis. The dynamics of the DD robot are given by

ẋ(t) =
1
2
(wl(t)+ wr(t))cosθ (t),

ẏ(t) =
1
2
(wl(t)+ wr(t))sin θ (t),

θ̇ (t) =
1

2ρ
(wr(t)− wl(t)), |wl(t)| ≤ wmax∀t, |wr(t)| ≤ wmax∀t,

where the inputs wl and wr are the angular velocities of the left and the right wheels,
which we assume to be bounded by wmax. Here, we have also assumed that the robot
wheels have unit radius.

The robots are assumed to be identical. The strategies of the robots in the
presence and absence of service requests are governed by their motion coordina-
tion algorithm. A motion coordination algorithm is a function that determines the
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actions of each robot over time. For the time being, we will denote these func-
tions as π = (π1,π2, . . . ,πm), but do not explicitly state their domain; the output of
these functions is a steering command for each vehicle. The objective is the design
of motion coordination algorithms that allow the robots to fulfill service requests
efficiently. To formalize the notion of efficiency, let T ( j) be the time elapsed be-
tween the generation of the j-th service request, and the time it is fulfilled and let
Tπ := lim j→+∞ limλ→0+ E[T ( j)] be defined as the system time under policy π , i.e.,
the expected time a service request must wait before being fulfilled, given that the
robots follow the algorithm defined by π . We shall also refer to the average sys-
tem time as the coverage cost. Note that the system time Tπ can be thought of as a
measure of the quality of service collectively provided by the robots.

In this paper, we wish to devise motion coordination algorithms that yield a qual-
ity of service (i.e., system time) achieving, or approximating, the theoretical optimal
performance given by Topt = infπ Tπ . Since finding the optimal algorithm maybe
computationally intractable, we are also interested in designing computationally ef-
ficient algorithms that are within a constant factor of the optimal, i.e., policies π
such that Tπ ≤ κTopt for some constant κ . Moreover, we are interested in studying
the scaling of the performance of the algorithms with m, i.e., size of the network,
other parameters remaining constant. Since, we keep A fixed, this is also equiva-
lent to study the scaling of the performance with respect to the density m/A of the
network.

We now describe how a solution to this problem gives rise to an endogenous
reconfiguration in the robotic network.

Endogenous Reconfiguration

The focus of this paper is on endogenous reconfiguration, that is a reconfiguration
necessitated by the growth of the network (as the term ‘endogenous’ implies in bi-
ology), as opposed to any external stimulus. We formally describe its meaning in
the context of this paper. In the course of the paper, we shall propose and analyze
various algorithms for the coverage problem. In particular, for each model of the
robot, we will propose two algorithms, π ′ and π ′′. The policy π ′ closely resembles
the omni-directional based policy, whereas the novel π ′′ policy optimizes the per-
formance when the motion constraints of the robots start playing a significant role.
We shall show that there exists a constant c > 1 such that

lim
m/A→0+

Tπ ′

Topt
= 1, lim

m→+∞

Tπ ′′

Tπ ′
= 0, limsup

m→+∞

Tπ ′′

Topt
≤ c.

This shows that, for sparse networks, the omni-directional model based algorithm
π ′ is indeed a reasonable algorithm. However, as the network size increases, there
is a phase transition, during which the motion constraints start becoming important
and the π ′′ algorithm starts outperforming the π ′ algorithm. Moreover, the π ′′ algo-
rithm performs with a constant factor of the optimal in the asymptotic (m → +∞)
case. Hence, in order to maintain efficiency, one needs to switch away from the π ′
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policy as the network grows. It is in this sense that we shall use the term endoge-
nous reconfiguration to denote a switch in the optimal policy with the growth of the
network.

3 Lower Bounds

In this section, we derive lower bounds on the coverage cost for the robotic net-
work that are independent of any motion coordination algorithm adopted by the
robots. Our first lower bound is obtained by modeling the robots as equivalent omni-
directional robots. Before stating the lower bounds formally, we need to briefly
review a related problem from computational geometry which has direct conse-
quences for the case omni-directional robots.

The Continuous m-median Problem

Given a convex, compact set Q ⊂ R
2 and a set of points p = {p1, p2, . . . , pm} ∈ Qm,

the expected distance between a random point q, sampled from a uniform distribu-
tion over Q, and the closest point in p is given by

Hm(p,Q) :=
∫

Q

1
A

min
i∈{1,...,m}

‖pi − q‖ dq =
m

∑
i=1

∫
Vi(p)

1
A

‖pi − q‖ dq,

where V (p) = (V1(p),V2(p), . . . ,Vm(p)) is the Voronoi (Dirichlet) partition [9] of
Q generated by the points in p, i.e.,

Vi(p) = {q ∈ Q : ‖q − pi‖ ≤ ‖q − p j‖,∀ j ∈ {1, . . . ,m}}, i ∈ {1, . . . ,m}.

The problem of choosing p to minimize Hm is known in geometric optimization [1]
and facility location [6] literature as the (continuous) m-median problem. The m-
median of the set Q is the global minimizer

p∗
m(Q) = argminp∈Qm Hm(p,Q).

We let H ∗
m (Q) = Hm(p∗

m(Q),Q) be the global minimum of Hm. The solution of the
continuous m-median problem is hard in the general case because the function p �→
Hm(p,Q) is not convex for m > 1. However, gradient algorithms for the continuous
multi-median problem can be designed [5]. We would not go further into the details
of computing these m-median locations and assume that these locations are given or
that a computationally efficient algorithm for obtaining them is available.

This particular problem formulation, with demand generated independently and
uniformly from a continuous set, is studied thoroughly in [10] for square regions and
[13] for more general compact regions. It is shown in [13] that, in the asymptotic

(m → +∞) case, H ∗
m (Q) = chex

√
A
m almost surely, where chex ≈ 0.377 is the first

moment of a hexagon of unit area about its center. This optimal asymptotic value
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is achieved by placing the m points on a regular hexagonal network within Q (the
honeycomb heuristic). Working towards the above result, it is also shown in [13]
that for any m ∈ �:

2
3

√
A

πm
≤ H ∗

m (Q) ≤ c(Q)

√
A
m

, (1)

where c(Q) is a constant depending on the shape of Q. In particular, for a square Q,
c(Q) ≈ 0.38.

We use two different superscripts on Topt for the two models of the robots, i.e.,
we use T DI

opt for the DI robot and T DD
opt for the DD robot. Finally, we state a lower

bound on these quantities as follows.

Lemma 3.1. The coverage cost satisfies the following lower bound.

T DI
opt ≥ H ∗

m (Q)
vmax

, T DD
opt ≥ H ∗

m (Q)
wmax

.

Remark 3.1. Since from Equation (1), H ∗
m (Q) ∈ Ω(1/

√
m), Lemma 3.1 implies that

T DI
opt and T DD

opt also belong to Ω(1/
√

m).

This lower bound will be particularly useful for proving the optimality of algorithms
for sparse networks. We now proceed towards deriving a tighter lower bound which
will be relevant for dense networks. The reachable sets of the two models of robots
will play a crucial role in deriving the new lower bound. We study them next.

Reachable Sets for the Robots

In this subsection, we state important properties of the reachable sets of the dou-
ble integrator and differential drive robots that are useful in obtaining tighter lower
bound.

Let τ : G×R
2 → R

+ be the minimum time required to steer a robot from initial
configuration g in G to a point q in the plane. For the DI robot, G = R

4 and for DD
robots G = SE(2). With a slight abuse of terminology, we define the reachable set
of a robot, Rt(g), to be the set of all points q in Q that are reachable in time t > 0
starting at configuration g. Note that, in this definition, we do not put any other
constraint (e.g., heading angle, etc.) on the terminal point q. Formally, the reachable
set is defined as

Rt(g) = {q ∈ R
2 | τ(g,q) ≤ t}.

We now state a series of useful properties of the reachable sets.

Lemma 3.2 (Upper bound on the small-time reachable set area). The area of the
reachable set for a DI robot starting at a configuration g = (x,y, ẋ, ẏ) ∈ R

4, with
ẋ2 + ẏ2 = v0, satisfies the following upper bound.

Area(Rt(g)) ≤
{

2v0umaxt3 + o(t3), as t → 0+ for v0 > 0,
u2

maxt4 for v0 = 0.
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The area of the reachable set for a DD robot starting at any configuration g ∈ SE(2)
satisfies the following upper bound.

Area(Rt(g)) ≤ 5
6ρ

w3
maxt3 + o(t3), as t → 0+.

Lemma 3.3 (Lower bound on the reachable set area). The area of the reachable
set of a DI robot starting at a configuration g = (x,y, ẋ, ẏ) ∈ R

4, with ẋ2 + ẏ2 = v0,
satisfies the following lower bound.

Area(Rt(g)) ≥ v0umax

3
t3 ∀t ≤ π

2
v2

0

umax
.

The area of the reachable set of a DD robot starting at any configuration g ∈ SE(2)
satisfies the following lower bound.

Area(Rt(g)) ≥ 2
3ρ

w3
maxt3.

Lemma 3.4. The travel time to a point in the reachable set for a DI robot starting
at a configuration g = (x,y, ẋ, ẏ) ∈ R

4, with ẋ2 + ẏ2 = v0, satisfies the following
property. ∫

Rt (g)
τ(g,q)dq ≥ v0umax

12
t4 ∀t ≤ π

2
v2

0

umax
.

The travel time to a point in the reachable set for a DD robot starting at any config-
uration g ∈ SE(2) satisfies the following property.∫

Rt(g)
τ(g,q)dq ≥ w3

max

6ρ
t4.

We are now ready to state a new lower bound on the coverage cost.

Theorem 3.1 (Asymptotic lower bound on the coverage cost). The coverage cost
for a network of DI or DD robots satisfies the following asymptotic lower bound.

liminf
m→+∞

T DI
optm

1/3 ≥ 1
24

( A
2vmaxumax

)1/3
, and

liminf
m→+∞

T DD
opt m1/3 ≥ 1

5wmax

(6ρA
5

)1/3
.

Proof. We state the proof for the double integrator robot. The proof for the differ-
ential drive robot follows along similar lines.

In the following, we use the notation Ai = Area(DV i(g)), where DV i(g) :=
{q ∈ Q | τ(gi,q) ≤ τ(g j,q) ∀ j �= i}. We begin with
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T DI
opt = inf

g∈R4m

m

∑
i

∫
DV i(g)

1
A

τ(gi,q) dq

≥ inf
g∈R4m

∫
Q

1
A

min
i∈{1,...,m}

τ(gi,q)dq. (2)

Let R̄Ai(gi) be the reachable set starting at configuration g and whose area is Ai. Us-
ing the fact that, given an area Ai, the region with the minimum integral of the travel
time to the points in it is the reachable set of area Ai, one can write Equation (2) as

T DI
opt ≥ inf

g∈R4m

m

∑
i

∫
R̄Ai (gi)

1
A

τ(gi,q) dq. (3)

Let ti be defined such that Area(Rti(gi)) = Ai. Lets assume that as m → +∞, Ai →
0+ (this point will be justified later on). In that case, we know from Lemma 3.2 that,

ti can be lower bounded as ti ≥
(

Ai
2viumax

)1/3
, where vi is the speed associated with

the state gi. Therefore, from Equation (3) and Lemma 3.4, one can write that

T DI
opt ≥ inf

g∈R4m

m

∑
i

∫
Rti (gi)

1
A

τ(gi,q) dq

≥ inf
g∈R4m

m

∑
i

1
A

viumax

12
t4
i . (4)

Using the above mentioned lower bound on ti, Equation (4) can be written as

T DI
opt ≥ 1

24 3
√

2A

1

u1/3
max

inf
g∈R4m

A4/3
i

v1/3
i

≥ 1

24 3
√

2A

1

u1/3
maxv1/3

max

min
{A1,A2,...,Am}∈Rm

m

∑
i

A4/3
i

subject to
m

∑
i

Ai = A and Ai ≥ 0 ∀i ∈ {1, . . . ,m}.

Note that the function f (x) = x4/3 is continuous, strictly increasing and convex.
Thus by using the Karush-Kuhn-Tucker conditions [3], one can show that the quan-

tity ∑m
i A4/3

i is minimized with an equitable partition, i.e., Ai = A/m, ∀i. This also
justifies the assumption that for m → +∞, Ai → 0+.

Remark 3.2. Theorem 3.1 shows that both T DI
opt and T DD

opt belong to Ω(1/m1/3).

4 Algorithms and Their Analyses

In this section, we propose novel algorithms, analyze their performance and explain
how the size of the network plays a role in selecting the right algorithm.
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We start with an algorithm which closely resembles the one for omni-directional
robots. Before that, we first make a remark relevant for the analysis of all the algo-
rithms to follow.

Remark 4.1. Note that if n0 is the number of outstanding service requests at initial
time, then the time required to service all of them is finite (Q being bounded). During
this time period, the probability of appearance of a new service requests appearing
is zero (since we are dealing with the case when the rate of generation of targets λ
is arbitrarily close to zero). Hence, after an initial transient, with probability one, all
the robots will be in their stationary locations at the appearance of the new target.
Moreover, the probability of number of outstanding targets being more than one is
also zero. Hence, in the analysis of the algorithms, without any loss of generality,
we shall implicitly assume that there no outstanding service requests initially.

The Median Stationing (MS) Algorithm

Place the m robots at rest at the m-median locations of Q. In case of the DD robot,
its heading is chosen arbitrarily. These m-median locations will be referred to as the
stationary locations of the robots. When a service request appears, it is assigned to
the robot whose stationary location is closest to the location of the service request.
In order to travel to the service location, the robots use the fastest path with no
terminal constraints at the service location. In absence of outstanding service tasks,
the robot returns to its stationary location. The stationary configurations are depicted
in Figure 1.

Let T DI
MS and T DD

MS be the coverage cost as given by the above policy for the DI
and DD robots, respectively.

Fig. 1. Depiction of typical stationary configurations for the Median Stationing Algorithm.
On the left: DI robots at rest at their stationary locations. On the right: DD robots with arbi-
trary headings at their stationary locations. In both the figures, the shaded cell represents a
typical region of responsibility for a robot.
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Theorem 4.1 (Analysis of the MS algorithm). The coverage cost for a network of
DI and DD robots with the MS algorithm satisfies the following bounds.

H ∗
m (Q)
vmax

≤ T DI
MS ≤ H ∗

m (Q)
vmax

+
vmax

2umax
+

√
2
√

2A
umax

.

H ∗
m (Q)

wmax
≤ T DD

MS ≤ H ∗
m (Q)

wmax
+

ρπ
2wmax

.

Proof. The lower bounds on T DI
MS and T DD

MS follow trivially from Lemma 3.1.
For a double integrator robot, the minimum travel time from rest at location p to

a point q is given by

τ((p,0),q) ≤
⎧⎨⎩
√

2‖p−q‖
umax

for ‖p − q‖ ≤ v2
max

2umax
,

‖p−q‖
vmax

+ vmax
2umax

otherwise.

Therefore, for any q, τ((p,0),q) can be upper bounded as

τ((p,0),q) ≤‖p − q‖
vmax

+
vmax

2umax
+

√
2‖p − q‖

umax

≤‖p − q‖
vmax

+
vmax

2umax
+

√
2
√

2A
umax

.

The upper bound on T DI
MS is then obtained by taking the expected value over all

q ∈ Q while taking into consideration the assignment policies for the services to
robots. For a differential drive robot, the travel time from any initial configuration
(p,θ ) to a point q can be upper bounded by ‖p−q‖

wmax
+ πρ

2wmax
. The result follows by

taking expected value of the travel time over all points in Q.

Remark 4.2. Theorem 4.1 and Lemma 3.1 along with Equation (1) imply that,

lim
m/A→0+

T DI
MS

T DI
opt

= 1 and lim
m/A→0+

T DD
MS

T DD
opt

= 1.

This implies that the MS algorithm is indeed a reasonable algorithm for sparse net-
works, where the travel time for a robot to reach a service location is almost the
same as that for an omni-directional vehicle.

However, as the density of robots increases, the assigned service locations to the
robots start getting relatively closer. In that case, the motion constraints start having
a significant effect on the travel time of the robots and it is not obvious in that case
that the MS algorithm is indeed the best one.

In fact, for dense networks, one can get a tighter lower bound on the performance
of the MS algorithm:
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Theorem 4.2. The coverage cost of a dense network of DI and DD robots with the
MS algorithm satisfies the following bounds:

liminf
m→∞

T DI
MSm1/4 ≥ 0.321

(
A

u2
max

)1/4

.

liminf
m→∞

T DD
MS ≥ πρ

4wmax
.

In other words, for DI robots, the MS algorithm requires them to stay stationary in
absence of any outstanding service requests. Once a service request is assigned to
a robot, the amount of time spend in attaining the maximum speed vmax becomes
significant as the location of assigned service requests start getting closer. Similar
arguments hold for DD robots.

An alternate approach, as proposed in the next algorithm, is to keep the robots
moving rather than waiting in absence of outstanding service requests. The algo-
rithm assigns dynamic regions of responsibility to the robots.

The Strip Loitering (SL) Algorithm

This algorithm is an adaptation of a similar algorithm proposed in [7] for Dubins
vehicle, i.e., vehicles constrained to move forward with constant speeds along paths
of bounded curvature.

Let the robots move with constant speed v∗ = min{vmax,

√√
Aumax

3.22 } and follow a
loitering path which is constructed as follows. Divide Q into strips of width w where

w = min
{(

4
3
√

ρ∗
A+10.38ρ∗√A

m

)2/3
,2ρ∗

}
, where ρ∗ := v∗2

umax
. Orient the strips along

a side of Q. Construct a closed path which can be traversed by a double integrator
robot while always moving with constant speed v∗. This closed path runs along the
longitudinal bisector of each strip, visiting all strips from top-to-bottom, making
U-turns between strips at the edges of Q, and finally returning to the initial config-
uration. The m robots loiter on this path, equally spaced, in terms of path length. A
depiction of the Strip Loitering algorithm can be viewed in Figure 2. Moreover, in
Figure 3 we define two distances that are important in the analysis of this algorithm.
Variable d2 is the length of the shortest path departing from the loitering path and
ending at the target (a circular arc of radius ρ∗). The robot responsible for visiting
the target is the one closest in terms of loitering path length (variable d1) to the point
of departure, at the time of target-arrival. Note that there may be robots closer to the
target in terms of the actual distance. However, we find that the assignment strategy
described above lends itself to tractable analysis.

After a robot has serviced a target, it must return to its place in the loitering path.
We now describe a method to accomplish this task through the example shown in
Fig. 3. After making a left turn of length d2 to service the target, the robot makes
a right turn of length 2d2 followed by another left turn of length d2, returning it to
the loitering path. However, the robot has fallen behind in the loitering pattern. To
rectify this, as it nears the end of the current strip, it takes its U-turn early.
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Fig. 2. Depiction of the loitering path for the double integrator robots. The segment providing
closure of the loitering path (returning the robots from the end of the last strip to the beginning
of the first strip) is not shown here for clarity of the drawing.

Let T DI
SL be the coverage cost as given by the above algorithm for DI robots. We

now state an upper bound on T DI
SL .

Theorem 4.3 (Analysis of the SL algorithm). The coverage cost for a team of
DI robots implementing the SL algorithm satisfies the following asymptotic upper
bound.

limsup
m→+∞

T DI
SL m1/3 ≤ 1.238

v∗
(
ρ∗A+ 10.38ρ∗2√A

)1/3
.

Remark 4.3. Theorem 4.3 and Theorem 3.1 imply that T DI
opt belongs to Θ(1/m1/3).

Moreover, Theorem 4.3 and Theorem 4.2 together with Equation 1 imply that
T DI

SL /T DI
MS → 0+ as m → +∞. Hence, asymptotically, the SL algorithm outperforms

the MS algorithm and is within a constant factor of the optimal.

We now present the second algorithm for DD robots.

The Median Clustering (MC) Algorithm

Form as many teams of robots with k :=
⌈

4.09
(

ρ√
A

)2/3
m1/3

⌉
robots in each team.

If there are additional robots, group them into one of these teams. Let n :=
⌊

m
k

⌋
denote the total number of teams formed. Position these n teams at the n-median
locations of Q, i.e., all the robots in a team are co-located at the median location of
its team. Within each team j, j ∈ {1, . . . ,n}, the headings of the robots belonging
to that team are selected as follows. Let � j ≥ k be the number of robots in team j.
Pick a direction randomly. The heading of one robot is aligned with this direction.
The heading of the second robot is selected to be along a line making an angle π

� , in
the counter-clockwise direction, with the first robot. The headings of the remaining
robots are selected similarly along directions making π

� -angle with the previous one
(see Figure 4). These headings will be called the median headings of the robots.
Each robot in a team is assigned a dominance region which is the region formed
by the intersection of double cone making half angle of π

2� with its median heading
and the Voronoi cell belonging to the team (see Figure 4). When a service request
appears, it is assigned to the robot whose dominance region contains its location.
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d2d1 δ

target

point
of

departure

ρ

Fig. 3. Close-up of the loitering path with construction of the point of departure and the
distances δ , d1, and d2 for a given target, at the instant of appearance.

The assigned robot travels to the service location in the fastest possible way and,
upon the completion of the service, returns to the median location of its team and
aligns itself with its original median heading.

Let T DD
MC be the coverage cost as given by the above policy. We now state an upper

bound on T DD
MC in the following theorem.

Theorem 4.4 (Analysis of the MC algorithm). The coverage cost for a team of
DD robots while implementing the MC algorithm satisfies the following asymptotic
upper bound.

limsup
m→+∞

T DD
MC m1/3 ≤ 1.15

wmax
(ρA)1/3.

Proof. The travel time for any robot from its median location p to the location q
of a service request is upper bounded by ‖p−q‖

wmax
+ πρ

2wmaxk . Taking the expected value
of this quantity while taking into consideration the assignment policy of the service
requests gives us that

Fig. 4. Depiction of the Median Clustering Algorithm with teams of 4 robots each. The shaded
region represents a typical region of responsibility for a robot.
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T DD
MC ≤ H ∗

n (Q)
wmax

+
πρ

2wmaxk
. (5)

From Equation (1), H ∗
n (Q) ≤ 0.38

√
A
n . Moreover, for large m, n ≈ m/k. This com-

bined with Equation (5), one can write that, for large m,

T DD
MC ≤ 0.38

wmax

√
A

m/k
+

πρ
2wmaxk

. (6)

The right hand side of Equation (6) is minimized when k = 4.09
(

ρ√
A

)2/3
m1/3. Sub-

stituting this into Equation (6), one arrives at the result.

Remark 4.4. Theorem 4.4 and Theorem 3.1 imply that T DD
opt belongs to Θ(1/m1/3).

Moreover, Theorem 4.4 and Theorem 4.2 together with Equation 1 imply that
T DD

MC /T DD
MS → 0+ as m → +∞. Hence, asymptotically, the MC algorithm outperforms

the MS algorithm and is within a constant factor of the optimal.

5 Conclusion

In this paper, we considered a coverage problem for a mobile robotic network mod-
eled as double integrators and differential drives. We observe that the optimal al-
gorithm for omni-directional robots is a reasonable solution for sparse networks of
double integrator or differential drive robots. However, these algorithms do not per-
form well for large networks because they don’t take into consideration the effect
of motion constraints. We propose novel algorithms that are within a constant factor
of the optimal for the DI as well as DD robots and prove that the coverage cost for
both of these robots is of the order 1/m1/3.

In future, we would like to obtain sharper bounds on the coverage cost so that we
can make meaningful predictions of the onset of reconfiguration in terms of system
parameters. It would be interesting to study the problem for non-uniform distri-
bution of targets and for higher intensity of arrival. Also, this research opens up
possibilities of reconfiguration due to other constraints, like sensors (isotropic ver-
sus anisotropic), type of service requests (distributable versus in-distributable), etc.
Lastly, we plan to apply this research in understanding phase transition in naturally
occurring systems, e.g., desert locusts [4].
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Simultaneous Control of Multiple MEMS
Microrobots

Bruce R. Donald, Christopher G. Levey, Igor Paprotny, and Daniela Rus

Abstract. We present control algorithms that implement a novel planar microassem-
bly scheme using groups of stress-engineered microrobots controlled through a sin-
gle global control signal. The global control signal couples the motion of the de-
vices, causing the system to be highly underactuated. Despite the high degree of
underactuation, it is desirable that each robot be independently maneuverable. By
exploiting differences in the designs and the resulting electromechanical interaction
with the control signal, the behavior of the individual robots can be differentiated.
We harness this differentiation by designing the control signal such that some de-
vices remain confined in small circular orbits (limit cycles), while the non-orbiting
robots perform work by making progress towards the goal. The control signal is de-
signed to minimize the number of independent control voltage levels that are used
for independent control, allowing us to maximize the number of simultaneously
controllable devices.

Our algorithms were tested on systems of fabricated untethered stress-engineered
MEMS microrobots. The robots are 240–280 μm × 60 μm × 7–20 μm in size and
are controlled in parallel (simultaneously) within the same operating environment.
We demonstrated the feasibility of our control algorithms by accurately assembling
5 different types of planar microstructures.
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1 Introduction

The operation of multiple untethered microrobotic devices have many potential ap-
plications in medicine, surveillance, and assembly [13]. In this work we use the term
microrobot to denote an untethered robot that fits strictly within a 1 mm3 volume.

In [6], we presented a globally controllable 240 μm × 60 μm × 10 μm mobile
stress-engineered MEMS microrobot. A scanning-electron micrograph of a stress-
engineered MEMS microrobot, and an optical micrograph of four microrobots dur-
ing an assembly experiment, are shown in Figure 1. The robot has a steering arm
(Fig. 1a(i)), and operates on a planar substrate (its operating environment), which
couples an external control and power delivery signal to the device regardless of its
pose. Simultaneous control of multiple microrobots within a single operating envi-
ronment is desirable, but presents a significant challenge when only a single, global
control signal can be used to control all the devices: the resulting system is highly
underactuated.

We show that designing microrobots with different steering arms that respond to
different voltages allows us to independently maneuver multiple microrobots. Each
steering arm has two transition voltages (voltage levels at which the steering arm
is either pulled down or released from the substrate). We show that it is sufficient
that each steering arm has a unique transition voltage pair, i.e. the combination of
both transition voltages is unique. Details of fabrication, designs and testing were
reported in [9]. In this work, we present the theory for designing the control signal to
enable simultaneous control of multiple microrobots for microassembly. Enabling
our control algorithms are new theorems that minimize the control bandwidth re-
quirements. These theorems were essential for controlling multiple untethered mi-
crorobots to move and assemble independently, and are not covered in [9].

(a) (b)

Fig. 1. Scanning-electron micrograph of a stress-engineered MEMS microrobot (a), and opti-
cal micrograph of four microrobots (b). a: The microrobot consists of an untethered scratch-
drive actuator (USDA) that provides forward motion, and a curved steering-arm actuator (i)
that determines whether the robot moves in straight-line motion or turns. A lithographically-
patterned chrome-layer defines the curvature of the steering arm (ii). b: Four different stress-
engineered microrobots on their operating environment. The robots are differentiated by the
design of their steering-arm actuators.
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2 Related Work

Small, often completely autonomous mobile robotic devices, with size on the order
of centimeters [12] are called miniature robots. Miniature robots containing micro-
fabricated components [11] are called MEMS robots. The components of MEMS
robots are often manufactured separately and then assembled to form complete sys-
tems. The size of such MEMS robots ranges from hundreds of micrometers to sev-
eral centimeters. In [6, 9] and this paper, we use the term microrobot to denote
mobile untethered MEMS robots with their dimensions strictly confined within a
1 mm3 cube. Other microrobotic systems include a magnetic micro-needle that is
actuated using magnetic fields [15].

Microassembly is one potential application for cooperating microrobotic sys-
tems. Currently, the assembly of micro-components is performed either using se-
rial robotic manipulators with micro-scaled end-effectors [3], using a distributed
manipulation approach, [1], or through parallel but less controllable self-assembly
(SA) [14]. In contrast with SA, our microassembly scheme relies on intersecting
trajectories, rather than component affinity, to promote structure aggregation. The
concept of selective response of individual units to a global, broadcasted, control
signal (Global Control, Selective Response (GCSR) [5]) is common in micro- or
nanoscale biological systems. Bretl [2] presented a related theoretical motion plan-
ning approach for systems of robots with limited controllability, showing that even
simple devices controlled through a global signal can perform useful tasks.

3 Stress-Engineered MEMS Microrobot

All the control and assembly algorithms presented in this paper are implemented
using groups of parallel-actuated stress-engineered MEMS micrororobots [6]. A
stress-engineered microrobot has two actuated internal degrees of freedom (DOF);
an untethered scratch-drive actuator (USDA) [7] that provides forward locomotion,
and a steering-arm actuator that determines whether the robot moves in a straight-
line or turns. The steering-arm consists of a cantilever beam with a circular pad and
a .75–1.2 μm deep dimple. The cantilever beam is curved (out-of-plane) using a
stress-engineering process [9], which determines the deflection of the steering arm.
The microrobot operates on fields of zirconia-insulated interdigitated electrodes.
When a voltage is applied across these electrodes, the electrodes and the conduc-
tive microrobot chassis form a capacitive circuit inducing an electric potential on
the microrobot body. This voltage (waveform) is varied over time to provide power
to the untethered scratch-drive actuator and to control the state of the steering-arm.
This waveform is called the control waveform. Figure 2(a) illustrates one cycle of
the control waveform. The waveform is divided into a control cycle, containing one
or more control pulses (Va, j), that sets the state of the steering-arm actuator, and a
power-delivery cycle that provides power to the scratch-drive actuator. For a single
robot, a specific control waveform, defined through the voltage triple (Va,1,Vb,Vs),
is called a control primitive; one control primitive causes the robot to turn, while
another causes it to move in a straight line.
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(a) (b)

Fig. 2. The control and power delivery waveform for a single stress-engineered MEMS mi-
crorobot (a), and kinematics of the stress-engineered MEMS microrobot (b).

Similar to an electrostatic cantilever beam, the steering arm of the stress-
engineered MEMS microrobot has two distinct voltage-levels at which it abruptly
changes state. These voltages are called the transition voltages. While clearly the
state of our microrobot includes the state of the steering arm and the state of the
scratch-drive actuator, for the purpose of this section it suffices to consider only the
states of the steering-arm actuators, which we call the robots’ control states. Con-
sequently, a single actuated stress-engineered microrobot can be in one of only two
control states; the steering-arm can be either raised (0) or lowered (1). When the
voltage supplied to the robot reaches the steering-arm’s snap-down transition volt-
age (Vd), the arm is pulled into contact with the substrate. When the voltage is re-
duced past the release transition voltage (Vu), the arm is released from the substrate.
The transition voltages are a function of the design of the individual steering-arm
actuators: for example, smaller air gaps or larger steering pads reduce both Vu and
Vd . Microrobots with identical steering-arms are classified as belonging to the same
microrobot species. The difference between the snap-down and release voltage of a
steering-arm is called the hysteresis gap.

The kinematics of our robot is illustrated on Fig. 2(b). The configuration of the
robot is given by the vector q = (x,y,θ )T in configuration space (C-space). The
configuration of the robot is measured at the point Zo in the middle of its bushing.
The robot moves like a Dubins car that can turn in one direction only. The velocity

of the robot is q̇ = v
(
sinθ ,cosθ , ah

r

)T
, where h ∈ {−1,1} and denotes whether the

steering arm is on the right or the left side, v is the velocity of the scratch-drive
actuator, r is the turning radius and a ∈ {0,1} is the state of the steering arm (0 = up,
1 = down). The velocity v can be varied by changing the frequency of the stepping
pulses, however for the remainder of this paper we will consider v to be a positive
constant (positive because the robot can not back up). It follows that the robot is not
small-time locally controllable (STLC).
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4 STRING Theory: Control Signal Design for Parallel
Actuation

Multiple microrobots operating simultaneously within the same environment re-
ceive the same, single, global control signal. Here we show how to design the con-
trol signal, constructing a set of control primitives that allows us to independently
maneuver multiple microrobots when implementing microassembly.

Suppose we have a set of m control primitives that can be applied through the
operating environment to control a set of n microrobots. A mapping between the
control primitives and the motion of the individual devices is expressed through a
control matrix M of size (n × m), where each entry (i, j) contains the control state
of microrobot j during the application of the control primitive i. The control ma-
trix describes the coupling of the microrobot motion as a function of the control
signal, linking the electromechanical functionality of the steering-arms with the ap-
plication of the control primitives. An example of the control matrix is shown in
Eq. (3) on p. 76. Our control strategies (described in sec. 5) require that the control
matrix is structured such that the robots progressively start turning as the control
primitives with higher index i are applied. We prove that such a control matrix can
be constructed with the smallest number of independent voltage levels in the con-
trol signal necessary to achieve independent control, allowing us to maximize the
number of simultaneously controllable microrobots.

For a system of n microrobots, let Vd,i and Vu,i denote the snap-down and release
voltages of microrobot i. Let VΩ be the breakdown voltage of the operating environ-
ment, Vf lx be the minimum voltage at which the backplate of the USDA generates
enough flexure to produce a forward step of the scratch-drive actuator, and Vrel be
the maximum voltage at which the backplate of the USDA relaxes, allowing it to
take a step forward (each stepping pulse must cycle through Vf lx and Vrel in order
to supply power to the USDA). The snap-down and release voltages of each device
must satisfy to the following constraints:

1. Vd,i < VΩ : snap-down voltage cannot exceed the break-down voltage of the op-
erating environment.

2. Vd,i > Vu,i : dictated by the electromechanics of cantilever beams.
3. Vrel > Vu,i for all i : ensures the microrobot can receive power during all the

control states.
4. Vf lx ≤min

i (Vd,i) : Ensures that the USDA flexes sufficiently to produce forward
motion during the power delivery cycle.

The control voltage bandwidth ξ of a microrobot system is the number of inde-
pendent electromechanically-addressable transition voltage levels that can be used
for control. ξ depends on four parameters: the break-down voltage of the oper-
ating environment, VΩ , the inherent variability of the power coupling between
the robot and the underlying substrate, the precision of the fabrication process,
and the minimum range of voltages required to reliably power the USDA, VSDA

(VSDA = Vf lx −Vrel). The variability in the power coupling causes deviations in the
potential induced between the steering arm and the substrate, while inaccuracies
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in the fabrication process cause deviations in the transition voltages of the steering
arms. Let δv be the maximum deviation of the transition voltage manifested dur-
ing the microrobot operation, determined by these two parameters. We define two
transition voltages to be significantly independent if they are separated by at least
2δv . Note that, although in general, VSDA = Vf lx −Vrel, it is possible for the stepping

pulse to overlap with the lowest snap-down voltage, min
i∈Zn Vd,i. Consequently, we de-

fine V ′
SDA as the additional control voltage bandwidth that is required by the power

delivery cycle to ensure reliable actuation of the USDA, as follows:

V ′
SDA =

{
0, if Vf lx −Vrel ≤ 2δv ,

Vf lx −Vrel − 2δv, otherwise.
(1)

The control voltage bandwidth of a microrobot system is then ξ =
⌊

VΩ −V ′
SDA

2δv

⌋
,

assuming Vf lx and Vrel can vary by at least 2δv (otherwise ξ =
⌊

Vrel
2δv

⌋
+
⌊

VΩ −Vf lx
2δv

⌋
).

How much of ξ is actually used to control the microrobotic system is related to the
number of accessible control states of the steering arm actuators. Define the con-
trol voltage bandwidth requirement, ξn , of a n-microrobot system as the number of
independent voltage levels necessary to achieve independent control during our mi-
croassembly application. Clearly it must hold that ξn ≤ ξ . In general, a microrobotic
system with fewer accessible control states has a lower control voltage bandwidth
requirement. More specifically, the accessibility of the control states depends on the
relation between the hysteresis gaps of the individual robots.

Consider a system of two microrobots, D1 and D2, with steering arms that have
Nested Hysteresis Gaps (NHG) (first proposed in [6]). Fig. 3(a) shows the relation
between the transition voltages for such a system. The snap-down and release volt-
ages are shown as circles and rectangles, respectively. Without loss of generality, we
consider only significantly independent voltage levels of the control signal (labeled
as Vα -Vδ on Fig. 3). Fig. 3(b) shows the programming cycles for the four control
primitives that access the four control states (11), (10), (01) and (00) (we assume
Vb = Vrel). More generally, we classify the system of n steering arms, sorted accord-
ing to ascendingVd,i, as having NHG when (Vd,i +2δv <Vd, j) and (Vu,i−2δv >Vu, j),
for all i < j. NHG systems can access all 2n control states. However each device
requires two unique control voltage levels, and so the control voltage bandwidth
requirement of this system is ξn = 2n.

NHG are sufficient but not necessary, to control multiple devices during assem-
bly. Consider a two-robot system where the hysteresis gaps of the robots are not
nested, as shown in Fig. 4(a). In this particular system, only three control states are
electromechanically accessible. The control cycles (control pulses only) that access
all three control states, (00), (10) and (11), are shown in Fig. 4(b). Control state (01)
can not be accessed, because pulling down the steering-arm of D2 also pulls down
the steering-arm of D1, and the steering-arm of D1 can not be released without also
releasing the arm of D2.

In general, an n-microrobotic system, first sorted according to ascending values
of Vd , and then sorted according to ascending values of Vu, has non-nested hysteresis
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(a) (b)

Fig. 3. Transition voltages for a system of two microrobots with nested hysteresis gaps (NHG)
(a), and the control cycles for the four control primitives that access all control states for the
system (b).

gaps if (Vd,i ≤ Vd, j) and (Vu,i ≤ Vu, j), for all i < j. However, in the case when |Vd,i −
Vd, j| < 2δv and |Vu,i −Vu, j| < 2δv , the behavior of robots i and j is indistinguishable,
and such two devices cannot be controlled independently. We call such two robots
a degenerate pair. Let a STRIctly Non-nested hysteresis Gaps (STRING) system be
a non-nested hysteresis gap system with no degenerate pairs of devices.

Lemma 4.1. An n-robot STRING system has exactly n+1 accessible control states.

The complete proof of Lemma 4.1 is provided in Supplementary Material (SM)
Section 1 available online in Ref. [10]. We now construct the control primitives
and corresponding control matrix that can access the n + 1 control states of a n-
robot STRING system. The ordering of the robots is determined by the transition
voltages of the steering arms, i.e., the robots must be primarily sorted according to

(a) (b)

Fig. 4. Transition voltages for a system of two microrobots with non-nesting hysteresis gaps
(a), and the control cycles for the control primitives that access three of the control states for
the system.
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increasing order of Vu,i and secondarily sorted according to increasing order of Vd,i.
We construct the control primitive Pj such that it snaps down the arms of devices
Di for i ≤ j, and releases the arms of devices Di for all i > j. Pj is defined by a
control cycle containing two control pulses, Pj = (Va,1,Va,2), assume Vb = Vrel and
Vs =Vf lx ≤Vd,1. Consider the STRING system shown on Fig. 5(a), where Vα , · · · ,Vε
represent significantly independent control voltage levels. We define Pj as:

Pj =

⎧⎪⎨⎪⎩
(V0,V0) , if j = 0;(
Vd, j,Vu, j+

)
, if j ∈ Zn−1;(

Vd,n,Vd,n
)
, if j = n,

(2)

where Vu, j+ = Vu, j + 2δv . In practice, Vu, j+ is the next significantly independent
release voltage above Vu, j. Also, note that in order for Vd, j to cause reliable snap
down, it must be δv above the designed (nominal) Vd, j level. Correspondingly, Vu, j

must be δv below the designed (nominal) Vu, j level to ensure reliable steering arm
release.

The first control pulse (Va,1) snaps down the steering arms of all the devices Di,
i ∈ Zj, as well as any devices Dk, k > j with Vd,k = Vd, j. The second control pulse
(Va,2) releases all the devices Dk, k > j that were snapped down by the first control
pulse, because in the case when Vd,k = Vd, j, it must hold that Vu, j < Vu, j+ ≤ Vu,k. An
example control cycle is also shown in Fig. 5(a).

The n+1 control primitives generated by Pj form a (n+1)×n control matrix M.
An example of such control matrix for four devices is:

M =

⎛⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎞⎟⎟⎟⎟⎠ . (3)

We refer to M as the STRING control matrix, the n + 1 control primitives con-
tained in M as the STRING control primitives, and the n + 1 control states accessi-
ble using these control primitives as the STRING control states. Note that because
adding a new control state to a STRING system requires the addition of another
independent voltage level (per Lemma 4.1), the control bandwidth requirement for
a STRING system is ξn = n + 1.

Lemma 4.2. Any stress-engineered n-microrobotic system with no degenerate pairs
of robots can be sorted such that all n + 1 STRING control states are accessible.

Proof. By construction. Consider a microrobot system with k independent snap-
down voltages, and � independent release voltages. Assuming no degenerate pairs of
devices, it follows that n ≤ k�. In the case when n = k�, the n steering arms encode
all the possible k� combinations of snap-down and release voltages. We call such
system for electromechanically saturated (ESat). We can enumerate the hysteresis
gaps for an ESat system given both k and �. Consider an ESat system, sorted pri-
marily according to increasing release voltage Vu,i and secondarily sorted according
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(a) (b)

Fig. 5. Construction of a STRING control matrix (a), An example of an ESat system with
k = 3 and l = 2 (b).

to increasing snap-down voltage Vd,i. Fig. 5(b) shows such system when k = 3 and
l = 2. Note that sorting ensures a monotonic increase of Vu,i with increasing index i.
For such an order, there exists a recursive formula, shown in Eq. (4), that generates
all n + 1 STRING control primitives. The control cycle for each control primitive
defined by Eq. (4) contains a sequence of up to 2n control pulses (in contrast with 2
control pulses in Eq. (2)). Again, we assume Vb = Vrel and Vs = Vf lx ≤ Vd,1.

Pj =

{
(V0,V0) , if j = 0;(
Pj−1,Vd, j,Vu, j+

)
, if j ∈ Zn.

(4)

Pj generates n+1 control primitives that form a STRING control matrix, by causing
devices Di (i ≤ j) to be in state 1, while robots Di (i > j) are in state 0. Consider the
base case P0, where all D j, ( j ∈ Zn) is in state 0. We make the inductive argument
that after application of the recursive part of Pj, Pj−1, all D1, · · · ,D j−1 robots are
in control state 1. It is clear that Vd, j,Vu, j+, ( j ∈ Zn), will snap down D j. The Vu,i-
then Vd,i-sorting implies that, for a device Dk, k > j, only two case are possible with
respect to its transition voltages: (a) Vd, j < Vd,k (e.g. j = 2 and k = 3 in Fig. 5(b)),
or (b) Vu, j < Vu, j+ ≤ Vu,k (e.g. j = 3 and k = 5 in Fig. 5(b)). It is clear that in case
(a), Vd, j sets D j to state 1, while Dk, k > j is in state 0. The sorting ensures that any
previously applied control primitive Pi, i < j with Va,1 ≥ Vd,k (which also inadver-
tently snaps down the arm of Dk) must have have been followed by a control pulse
Va,2 ≤Vu,k −2δv (which would release the arm of Dk). In case (b), Vu, j+ releases any
devices Dk, k > j. �
Note that because the devices are sorted according to Vi,u and Vd,i, Eq. (4) also holds
for any microrobotic system, even one that is not ESat.

Theorem 4.1. A system of n STRING microrobots contains the minimum number
(n + 1) of electromechanically accessible control states of any stress-engineered
microrobot system without degeneracy.
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Proof. Per Lemma 4.1; an n-microrobot STRING system has exactly n+1 accessi-
ble control control states, and by Lemma 4.2, any n stress-engineered microrobotic
system without degenerate pairs of robots contains at least n + 1 control states. �
Theorem 4.2. An algorithm that solves the gross motion planning problem (i.e. finds
the control sequence S) for a STRING system can be applied to solve the gross mo-
tion planning problem for any non-degenerate system of stress-engineered micro-
robots.

Proof. A consequence of Lemma 4.2; a STRING control matrix can be constructed
for any n-stress-engineered microrobotic system. �
Theorem 4.2 allows us to further reduce the control bandwidth requirements for a
microrobotic system. The control voltage bandwidth requirement for a microrobot
system with k independent snap-down voltage levels and � independent release volt-
age levels is ξn = k + �. In an ESat system, n = k�. It follows that n is maximized
when � = k = ξn/2, and n = ξ 2

n
/4. We call such system symmetric electromechan-

ically saturated, or SESat. As a consequence, the control bandwidth requirement
for an ESat system is ξn ≥ 2�√n�, while it is ξn = 2�√n� for an SESat system. It
follows that an SESat system maximizes the number of simultaneously controllable
microrobots.

5 STRING Parallel Control for Microroassembly

We now use the structure of the STRING matrix M to decouple the motion of the
individual robots by reducing the problem of controlling n microrobots in parallel
to the problem of controlling only two robots in parallel, followed by sequential
control of single devices. We can perform this reduction whenever M has the form
of a STRING control matrix by constraining some robots to orbit along limit cycles
without making progress towards the goal. Note that our planning algorithms are
not fully general and require a minimum separation between the orbiting robots.

The assembly is performed in n−1 steps. Fig. 6(a) and (b) show the assembly for
a system of n = 3 microrobots assembling the shape G2 (from Fig. 9). The STRING
control matrix M for this system is shown on Eq. (3) p. 76. Further details of the
reduction are provided in SM [10] Section 2.

5.1 Microassembly Step 1

The two microrobots with the highest index, Dn−1 and Dn are maneuvered to assem-
ble an initial stable shape, G1. Only control primitives Pn−2, Pn−1 and Pn are used
to control Dn−1 and Dn. Pn−2, Pn−1 and Pn cause only turning motion in robots Di,
(i < n−1, e.g. robot D1 in Fig. 6(a)), and consequently these robots remain in circu-
lar orbits. The assembly of G1 takes place in two stages, because even though both
Dn−1 and Dn move simultaneously, error correction is only performed on a single
microrobot at any given time.
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(a) (b)

Fig. 6. Example assembly of three microrobots in two steps. a: Step 1, the assembly of the
initial stable shape. b: Step 2, docking of D1 to form the target shape.

5.2 Microassembly Step 2, · · · ,n−1

A single robot, Di, is maneuvered to dock with the assembling shape (See Fig. 6(b)).
Only control primitives Pi and Pi−1 are used to maneuver Di, causing the devices
D j, ( j < i), to follow circular orbits. Because the target shape (Gk out of a set of p
available target shapes, G = {G1,G2, · · · ,GP}) is assembled in the descending order
of the device index i, the devices D j, ( j > i) are immobilized by compliance within
the assembling shape.

5.3 EDR-Based Control

We used the theory of Error Detection and Recovery (EDR) [4] to construct control
strategies that allow us to reliably maneuver the microrobots to target regions in
the presence of control error. Our control strategies are based on progressive execu-
tion and replanning of the microrobot trajectories during each of the steps described
above. However, in order to increase the precision of the assembly, we switch to
a fine-motion control strategy as the robots approach their docking configurations
(the dashed trajectories in Fig. 6). The fine-motion trajectory is based on interpo-
lated turning, and allows us to sacrifice precise control of the incident angle for the
docking robot in favor of precise control of its docking location. The accumulat-
ing error in rotation is later reduced using compliance. Details regarding the control
strategies are provided in SM [10] Section 3 for the interested reviewer.

6 Experimental Results

The control strategies presented in this paper have been tested experimentally on
groups of fabricated stress-engineered micrororobots. This section uses experimen-
tal data that has been previously reported in [9], but describes how this data validates
the algorithms above, and gives the explicit construction of the control matrices nec-
essary to replicate the results.
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6.1 Fabrication of STRING Microrobots

We fabricated 15 microrobots classified into five microrobot species. The micro-
robot species are differentiated through the designs of their steering arm actuators.
Fig. 7 shows a scanning-electron micrograph of a microrobot from each species.
The species are designed such that multiple copies can be reproducibly fabricated
despite the inherent variability of our fabrication process.

Fig. 7. Reprinted with permission from [9]. Scanning-electron micrographs of the five micro-
robot species used to implement microassembly. Yellow color is used to highlight the areas
of the steering-arms covered by the chrome layer.

The steering-arm designs were determined based on closed-form equations [6],
finite-element analysis and empirical data, such that the transition voltage, (Vd,i and
Vu,i), for all the robots are reproducibly confined to the ranges shown in Fig. 8(a).
Snap-down voltages (Vd,i) are marked by circles, while the rectangles denote the
release voltages (Vu,i). The ranges are marked by a vertical bar, with two dots sig-
nifying that the lower or upper bound is not fixed or measured. Groups of robots
from species 1,3,4,5 and 2,3,4,5 form STRING systems, while species 1 and 2 form
a degenerate pair. The exact parameters of the steering-arms defining all five species
are described in [9]. The waveforms (control pulse and three power delivery pulses
only) of the five control primitives used to control the four-robot STRING groups
are show in Fig. 8(b). Average Va, Vb and Vs voltage levels are shown. The actual
voltage-levels used to control the individual groups of microrobots could vary by up
to ± 10 V.

6.2 Microassembly

We applied the control algorithms to groups of four STRING microbots, generating
a total of 14 planar structures. The assembled structures belong to five types of
target shapes, labeled G1 – G5. Optical micrographs of microstructures for each type
of target shape are shown on Fig. 9.

The robots were operated on a 2 mm2 environment, and their position was reg-
istered using a digital video-camera attached to an optical microscope with a 6.7 ×
objective lens. Table 1 shows the average match (portion of the target structure cov-
ered by the assembled shape) for the five assembled shapes, G1 – G5. The assembly
experiments were conducted starting from two different classes of initial configu-
rations: R1 – robots are arranged along the corners of a rectangle with sides 1 by
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Fig. 8. Transition voltage ranges (a) and corresponding control primitives (b) used to control
the five microrobot species.

Fig. 9. Reprinted with permission from [9]. Optical micrographs of five types of target shapes
assembled using our microrobots.

0.9 mm, all devices oriented along the y-axis (see Fig. 10(a) for a representative ex-
ample), and R2 – robots are arranged in a line with average separation of 360 μm,
and with variable orientation. The initial position of the microrobots was set using
batch-transfer structures called transfer-frames [9] and microprobes. We used com-
mon geometric shapes (a line and a rectangle) to demonstrate the ability to achieve
successful assembly from arbitrary different initial configurations.

The results in Table 1 do not include completely failed assemblies. We recorded a
11% failure rate during the consecutive assembly of nine structures over the course

Table 1. Precision of Microassembly.

Goal Configurations
Initial Configurations G1 G2 G3 G4 G5 Average

R1 96±4% 98±3% 96±2% 96% 93% 96±3%
(3 runs) (2 runs) (2 runs) (1 run) (1 run) (3 runs)

R2 99±2% 98% 93% 89% na 95±4%
(2 runs) (1 run) (1 run) (1 run) (2 runs)

Average 97±3% 98±2% 95±2% 93±5% 93% 96±3%
(5 runs) (3 runs) (3 runs) (2 runs) (1 run) (5 runs)
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Fig. 10. Reprinted with permission from [9]. Composite optical micrograph of experimental
assembly-data using devices from species 1,3,4 and 5. The devices are labeled according to
the number of their respective species.

of three assembly experiments. This reflects that the assembly of one of the nine
structures failed due to the loss of stability of an intermediate structure, which was
attributed to an initial unfortunate misalignment between the microrobots forming
the intermediate assembly. Fig. 10 illustrates a representative assembly experiment.
In this experiment, the target shape G5 is generated via the assembly of G1 and G4.
The experiment terminated when all four microrobots were successfully incorpo-
rated in the assembled structure. A movie of this assembly experiment is available
online at [8].

7 Conclusions

We presented novel control algorithms for implementing planar microassembly
using groups of stress-engineered microrobots. The experimental data, reprinted
from [9], indicates the feasibility of our algorithms, and represents the first im-
plementation of a multi-microrobotic system. This work presents the planning and
control challenges to achieve independent microrobot control and implement the
microassembly scheme.

Our control scheme minimizes the control voltage bandwidth requirements of an
n-microrobotic system. The sub-linear (O(

√
n)) control voltage bandwith require-

ment is a large improvement over O(n) in our previously proposed approach [6].
Reducing the control voltage bandwidth requirement was the enabling technology
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that allowed us to experimentally demonstrate simultaneous control of four devices.
We used the STRING control matrix to implement planning and control algorithms
that reduce parallel motion of n robots to parallel motion of only two robots, fol-
lowed by sequential motion of single devices.

We believe the concept of selective response to a global control signal (GCSR
[5]) will be important for controlling future multi-microrobotic systems. GCSR is
common in biological, micro, and nano-scale systems, and may be the paradigm of
choice for controlling groups of micro, and nano-robots.
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Simultaneous Coverage and Tracking (SCAT) of
Moving Targets with Robot Networks

Luciano C.A. Pimenta, Mac Schwager, Quentin Lindsey, Vijay Kumar,
Daniela Rus, Renato C. Mesquita, and Guilherme A.S. Pereira

Abstract. We address the problem of simultaneously covering an environment and
tracking intruders (SCAT). The problem is translated to the task of covering en-
vironments with time-varying density functions under the locational optimization
framework. This allows for coupling the basic subtasks: task assignment, coverage,
and tracking. A decentralized controller with guaranteed exponential convergence
is devised. The SCAT algorithm is verified in simulations and on a team of robots.

1 Introduction

Three important problems in the field of cooperative robotics are: (i) environment
coverage, (ii) task assignment, and (iii) target (intruder) tracking. These three prob-
lems are the basic subtasks that must be solved in the global problem of tracking
multiple intruders in a pre-specified region. When the number of intruders and their
locations is unknown, the need for environment coverage is important to maximize
the probability of detecting them. Task assignment is necessary to define when a
given agent should perform a coverage behavior and when it should do intruder
tracking. For multiple intruders it is also necessary to allocate intruders to tracking
agents. After assigning an intruder-tracking task to an agent, it is desirable to use
control laws with guaranteed convergence.

A distributed and asynchronous approach for optimal coverage of a domain
with identical mobile sensing agents is proposed in [3] based on a framework for

Luciano Pimenta, Quentin Lindsey, and Vijay Kumar
GRASP Lab, University of Pennsylvania, USA
e-mail: {pimenta,quentinl}@seas.upenn.edu,kumar@grasp.upenn.edu

Mac Schwager and Daniela Rus
CSAIL, MIT, USA, e-mail: schwager@mit.edu,rus@csail.mit.edu

Luciano Pimenta, Guilherme Pereira, and Renato Mesquita
Departamento de Engenharia Elétrica, Universidade Federal de Minas Gerais, Brazil
e-mail: {lucpim,renato,gpereira}@cpdee.ufmg.br

G.S. Chirikjian et al. (Eds.): Algorithmic Foundations of Robotics VIII, STAR 57, pp. 85–99.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

{pimenta,quentinl}@seas.upenn.edu, kumar@grasp.upenn.edu
schwager@mit.edu, rus@csail.mit.edu
{lucpim,renato,gpereira}@cpdee.ufmg.br


86 L.C.A. Pimenta et al.

optimized quantization derived in [7]. Each agent (robot) follows a gradient descent
control algorithm that minimizes a functional encoding the quality of the sensing
coverage. Further, this control law depends only on the information about the po-
sition of the robot and that of its immediate neighbors, which are the robots in
neighboring Voronoi cells. These control laws are computed without the require-
ment of global synchronization. The functional also uses a distribution density func-
tion, which weights points or areas in the environment according to importance.
This adaptive technique can cope with changing environments, tasks, and network
topology.

Several extensions of the framework devised in [3] have been proposed. In [1]
the problem of limited-range interaction between agents was addressed. In [10] dif-
ferent distance metrics were used to address heterogeneous sensor footprints and
nonconvex environments. In addition, constraints were added to the minimization
problem to deal with finite sized robots. The problem of learning the distribution
density function online while moving toward the optimal locations was addressed
in [11].

The most relevant paper to this work is [2], in which the authors presented the
problem of tracking an intruder in time-varying environments. In this case, a dy-
namic target was defined and its position used in the density function computation.
The problem of covering environments with time-varying density functions was
addressed by using a control law where convergence guarantees were difficult to
establish.

In this paper, we translate the problem of optimally covering an environment
while tracking intruders into the problem of covering environments with time-
varying density functions. The proposed framework allows for the coupling of the
three previously mentioned basic subtasks: target assignment, coverage, and track-
ing in an elegant distributed manner. For the first time, a decentralized controller
with guaranteed exponential convergence is also derived. Simulations and actual
robots experiments are also presented to verify the proposed approach.

2 Locational Optimization Framework

Locational optimization addresses how to place facilities or resources to minimize
some cost [12, 4]. The canonical example is placing retail facilities to minimize
the aggregate travel time of a population of customers. The locational optimization
framework has been recently applied to the optimal placement of mobile sensors
to provide sensor coverage of an environment [3]. In this section, we give a brief
introduction to the locational optimization results relevant to our problem.

Let there be n mobile sensing agents in a bounded environment represented
by Q ⊂ R

N , and the location of the ith sensor is given by pi ∈ Q. Then P =
[pT

1 , . . . ,pT
n ]T ∈ Q× . . .× Q is a vector representing the configuration of the mobile

sensor network. Consider the cost function

H (P) =
∫

Q
min

i∈{1,...,n}
f (d(q,pi))φ(q)dq , (1)
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where d : R
N × R

N → R≥0 is a function that measures distances between points
q ∈ Q and sensor positions pi ∈ Q. The function φ : Q → R≥0 is a distribution
density function, which defines a weight for each point in Q. The density function
may reflect the probability of occurrence of events in different regions, or a mea-
sure of relative importance of different regions in Q. Therefore, points with greater
weight values should be better covered than points with smaller values. The func-
tion f : R → R is a continuously differentiable, strictly increasing function over the
range of d that measures the degradation of sensing performance with distance. The
minimum over sensors reflects the fact that a point q should be the responsibility of
the sensor that has the best sensing performance at q. Covering the environment, Q,
becomes an optimization to minimize the cost function (1). In the following subsec-
tion the necessary conditions to minimize the function in (1) are established, which
will give the basis for a control strategy.

2.1 Computations with Voronoi Tessellations

Consider the minimization of (1)

min
P

H (P) = min
P

∫
Q

min
i

f (d(q,pi))φ(q)dq .

The minimum inside the integral induces a partition of Q into non-overlapping cells,
Vi, to give

min
P

H (P) = min
P

n

∑
i=1

∫
Vi

f (d(q,pi))φ(q)dq , (2)

where Vi = {q ∈ Q | f (d(q,pi)) ≤ f (d(q,p j)),∀ j �= i}. Since f is strictly increasing,
this is equivalent to

Vi = {q ∈ Q | d(q,pi) ≤ d(q,p j),∀ j �= i}. (3)

The region Vi is the Voronoi cell of pi. The collection of Voronoi cells is called the
Voronoi tessellation of Q [9]1.

We now define a number of quantities relating to Voronoi cells. Let ∂Vi and ∂Q
be the boundary of Vi and Q, respectively. By q∂Vi

(P) we mean a point q ∈ ∂Vi, and
n∂Vi

is the outward facing unit normal of ∂Vi. Given a robot i, we define Ni as the
index set of robots that share Voronoi boundaries with Vi, Ni = { j | Vi ∩Vj �= /0}.
We denote the set of points on the Voronoi boundary shared by agents i and j as
li j = Vi ∩Vj as shown in Fig. 1. Then qli j (pi,p j) is a point on that shared boundary,
and nli j is the unit normal of li j from pi to p j. By the definition of the Voronoi cell
(3), we know the following facts:

1 It is convenient for us to use ≤ in the definition of Voronoi cell, rather than the more
common definition with <.
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∂Vi = (∪ j∈Ni li j)∪ (∂Vi ∩∂Q) , (4)

li j = l ji , (5)

nli j = −nl ji . (6)

When d is the Euclidean distance, the shared boundaries li j are hyperplanes, and the
Voronoi cells are convex.

The following lemma states an important fact about the cost function (2).

Lemma 2.1 (Distributed Gradient)

∂H

∂pi
=
∫

Vi

∂
∂pi

f (d(q,pi))φ(q)dq

Proof. Differentiating under the integral sign [5], we have

∂H

∂pi
=
∫

Vi

∂
∂pi

f (d(q,pi))φ(q)dq

+
∫

∂Vi∩∂Q
f (d(q,pi))φ(q)

∂q∂Vi
(P)

∂pi
n∂Vi

dq

+ ∑
j∈Ni

∫
li j

( f (d(q,pi)− f (d(q,p j)))φ(q)
∂qli j (pi,p j)

∂pi
nli j dq .

where
∂q∂Vi

(P)
∂pi

and
∂ql ji

(pi,p j)

∂pi
are N × N matrices. By definition of li j , d(q,pi) =

d(q,p j) ∀q ∈ li j, so the last sum vanishes. Since points on the boundary of the
environment do not change position as a function of pi, we have

∂q∂Vi

∂pi
= 0 ∀q ∈ ∂Vi ∩∂Q

and the second term vanishes. �
Lemma 2.1 means that the gradient

∂H

∂P
=

[
· · · ∂H

∂pi

T

· · ·
]T

is distributed among the agents in the sense that an agent i can compute its own
gradient component, ∂H /∂pi, using only information relevant to its Voronoi cell.
This allows the design of distributed gradient algorithms, as was shown in [3].

2.2 Euclidean Setting

For the remainder of the paper, we will restrict ourselves to agents living on a plane
(N = 2), where d is the Euclidean distance, f (x) = x2, and the environment Q is
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convex. For a discussion of controllers for the general setting, please see [10]. In
this restricted setting, the cost function becomes

H =
n

∑
i=1

∫
Vi

‖q− pi‖2φ(q)dq . (7)

Define the quantities

MVi =
∫

Vi
φ(q)dq , LVi =

∫
Vi

qφ(q)dq , and CVi = LVi/MVi . (8)

Then Lemma 2.1 simplifies to

∂H

∂pi
= −

∫
Vi

2(q− pi)φ(q)dq = −2MVi(CVi − pi) . (9)

Clearly, critical points of H (configurations where the gradient is zero) are those
in which every agent is at the centroid of its Voronoi cell, pi = CVi ∀i. The resulting
partition of the environment is commonly called a Centroidal Voronoi Tessellation
(CVT). It is known that the critical points are local minima of H 2. Therefore, we
desire that every agent drives to the generalized centroid of its Voronoi region to
locally minimize the cost function (7). We do not attempt to find global optima as
that is known to be difficult (NP-hard for a given discretization of Q) even in the
fully centralized case. Next, we present a distributed control law that is used in [3]
to converge to a CVT.

2.3 Continuous-Time Lloyd Algorithm

A classic discrete-time method to compute CVTs is Lloyd’s algorithm [7]. In each
iteration this method executes three steps: (i) compute the Voronoi regions; (ii) com-
pute the centroids; (iii) move each point site to the corresponding centroid.

In [3] a continuous-time version of this approach is proposed for kinematic
models

ṗi = ui. (10)

The control law
ui = γ(CVi − pi) (11)

guarantees that the system converges to a CVT, where γ is a positive gain. This
control law is a gradient-descent approach (ui ∝ −∂H /∂pi from (9)).

3 Tracking Moving Targets

Consider the time-dependent coverage function

2 To prove this, one may consider the positive definiteness of the Hessian of H at such
points.
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H (P,t) =
n

∑
i=1

∫
Vi

‖q− pi‖2φ(q, t)dq . (12)

More specifically, we are interested in tracking targets that invade a given region Q.
In our approach, we do not limit the number of intruders. Furthermore, the location
where they will appear and the instant of time of invasion are unknown. Therefore,
we define the problem of tracking intruders while also keeping uniform coverage of
Q. The uniform coverage is important to increase the probability of detecting new
intruders. In order to provide a fully decentralized approach, the assignment of tasks
should also be decentralized. There are l(t)+ 1 tasks, where l(t) is the number of
intruders at a given time t, (l(t) tracking tasks and 1 uniform coverage task) to be
accomplished. The number of tracking tasks, l(t), can change over time as intruders
enter and leave the environment. An intruder is only tracked while it is inside the
environment Q.

We assume that each agent, i, is able to estimate the position and velocity of
an intruder that is located inside the corresponding Voronoi cell Vi. In addition, we
assume that the position and velocity of an intruder that is located at a distance Rt

from the Voronoi cell Vi can be obtained by means of estimation or communication.
This tuning parameter, Rt , represents the maximum tracking distance. This means
that intruders located at distances greater than Rt from Vi will not be considered for
the control law of agent i. In other words, the task of tracking this intruder will not
be assigned to i.

We model the task assignment problem by composing radial basis functions, φi,
which represent each intruder. Thus, we define the time-varying density function

φ(q, t) =
l

∑
i=1

αiφi(q, t)+ β , (13)

where αi and β are positive tuning constants that define the importance of a given
task. The parameter αi defines the importance of tracking intruder i, while the pa-
rameter β defines the importance of uniform coverage.

We consider radial basis functions that are centered at the intruder position, reach
a maximum value at this position, and decreases to a negligible value at a distance
Rt from the center. Therefore, the local computation of φ , performed by agent i,
considers only the intruders within tracking distance. An option is the Gaussian
function in [2]:

φi(q,t) = Aexp(− (x − xi(t))2

2σ2 − (y − yi(t))2

2σ2 ). (14)

In this case, Rt is related to the value of σ . We let Rt = λ σ , where λ is a positive
constant such that the values of φ at points out of this λ σ range can be neglected.

One could also think of a probabilistic model of intruders and also use Gaussian
density functions which could even have a different standard deviation for each axis.
Such a modelling and procedures to find optimal tuning parameters αi, β , A, and σ
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are out of the scope of this paper. In the next subsection we discuss a decentralized
controller that minimizes H (P,t).

3.1 Exponential Controller

The optimal deployment occurs when each agent is located at its Voronoi centroid,
which is computed according to (8), (see section 2.1). Optimal deployment for time-
varying density functions requires each agent to track its corresponding centroid
over time. If the centroids were perfectly tracked, we would be able to guarantee
that the function in (12) remains at a local minimum. Based on this, we define the
performance function

E =
n

∑
i=1

MVi‖CVi − pi‖2 , (15)

which yields a controller with exponential performance.
To maintain or improve tracking of the centroid according to the function in (15),

we desire Ė ≤ 0, ∀t. Computing the time derivative leads to

Ė =
n

∑
i=1

(
∂E
∂pi

T

ṗi + Fi

)
(16)

where

Fi = (CVi − pi)T
∫

Vi

(2q− CVi − pi)φ̇ (q, t)dq (17)

is the term resulting from the fact that φ(q, t) is time varying. After some algebraic
effort, we can calculate the partial derivatives of E as

∂E
∂pi

= −2(LVi + Ri − MVipi) , (18)

where

Ri = ∑
j∈Ni

[
1
2
Mi j(CT

Vi
CVi − CT

Vj
CVj )−Li j(CVi − CVj)

]
, (19)

with

Mi j =
∫

li j

φ(q)
∂qli j

∂pi
nli j dq , and (20)

Li j =
∫

li j

φ(q)q
(∂qli j

∂pi
nli j

)T

dq. (21)
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The vector Ri is due to the moving boundaries of the Voronoi regions and can be
thought as a disturbance to the centroid position.

Collecting these terms together results in

Ė =
n

∑
i=1

(−2(LVi + Ri − MVipi)T ṗi + Fi
)

. (22)

We propose to use the controller

ui =
(LVi + Ri − MVipi)

2‖LVi + Ri − MVipi‖2 (kMVi‖CVi − pi‖2 + Fi). (23)

With the integrator dynamics ṗi = ui, this controller gives the result Ė = −kE , by
substituting (23) back into (22). This means that our controller results in an expo-
nential decay of the performance function

E(t) = E(0)e−kt . (24)

There is still a question as to the boundedness of the control signal ui for the control
law (23). We will discuss this point in subsection 3.3.

It is important to emphasize the decentralized aspect of the controller in (23). In
order to compute all the terms in (23), each agent relies only on local information.
Due to the properties of the intruder functions φi, previously discussed, each agent
only needs to obtain the positions and velocities of intruders that are within a certain
tracking distance from the corresponding Voronoi cell. Besides, each agent only
needs the centroids of neighbor cells.

3.2 Computation of Boundary Terms

There remains a significant practical difficulty in computing the boundary terms Ri.
We will exploit the geometry of the Voronoi cell to derive a parametric formula for
the computation of (∂qli j /∂pi)nli j . Then computing Mi j and Li j will be a matter
of integrating an explicit formula over a single parameter, and Ri can be readily
computed. Define li j parametrically by

li j = {q | q = vi j1α + vi j2(1 − α), α ∈ [0,1]}, (25)

where vi j1 ,vi j2 ∈ R
2 are the end points of the line segment li j. Now we can write

q(α) for q ∈ li j. By the definition of the Voronoi cell, any point q(α) must satisfy

nT
li j

(
q(α)− p j + pi

2

)
= 0 ∀q ∈ li j, (26)

where

nli j =
p j − pi

‖p j − pi‖ . (27)



Simultaneous Coverage and Tracking 93

Fig. 1. This figure shows the quantities and constraints associated with the Voronoi boundary
shared between neighboring agents.

Figure 1 shows a schematic of the quantities and constraints associated with the
boundary shared between neighboring agents.

Differentiate (26) implicitly with respect to pi to find the relation

∂nli j

∂pi

(
q(α)− p j + pi

2

)
+

∂qli j

∂pi
nli j −

nli j

2
= 0 (28)

where

∂nli j

∂pi
=

nli j n
T
li j

− I2

‖p j − pi‖ . (29)

Simplify and substitute using q = vi j1 α + vi j2(1 − α) to find the desired formula

∂qli j

∂pi
nli j =

(I2 − nli j n
T
li j

)((vi j1 − vi j2)α + vi j2 − pi)

‖p j − pi‖ +
nli j

2
, (30)

where I2 is the 2×2 identity matrix. Notice (30) is linear in α and can be computed
readily given the known quantities pi, p j, vi j1 , and vi j2 . Then the integrals Mi j and
Li j potentially can be computed analytically over α ∈ [0,1] if φ(q(α)) is in a form
that allows for this (e.g. if it is polynomial), yielding closed form equations for the
boundary terms. If φ(q(α)) is not in a form for which the integrals can be performed
analytically, they can be approximated numerically without much computational
burden. This gives a method to compute the term Ri (19).

3.3 Asymptotic Analysis

In this subsection we address the asymptotic behavior of the control signal ui. One
must take care that a singularity does not appear in the control signal as the cen-
troidal configuration is reached. Firstly we formalize the requirement that the envi-
ronment cannot change too quickly.

Assumption 1 (Bound). ‖∫Vi
(2q− CVi − pi)φ̇ (q, t)dq‖ ≤ Bi ∀i and ∀t.
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This is a design requirement that means that φ(q, t) cannot change at an unbounded
rate (e.g. the intruders have a bounded velocity).

Now we evaluate the limit to determine the asymptotic behavior of ui

lim
p j→CVj ,∀ j

‖ui‖ =

lim
p j→CVj ,∀ j

‖LVi + Ri − MVipi‖
2‖LVi + Ri − MVipi‖2 |kMVi‖CVi − pi‖2 + Fi|

≤ lim
p j→CVj ,∀ j

kM−1
Vi

‖LVi − MVipi‖2 + |Fi|
2‖LVi + Ri − MVipi‖

≤ lim
p j→CVj ,∀ j

k‖LVi − MVipi‖2 +‖LVi − MVipi‖Bi

2MVi‖LVi + Ri − MVipi‖

= lim
p j→CVj ,∀ j

‖LVi − MVipi‖Bi

2MVi‖LVi + Ri − MVipi‖
where Bi is the bound from Assumption 1.

Conjecture 3.1 (Singularity)

(LVi − MVipi) �= −Ri ∀i and ∀t except when CVi = pi.

Conjecture 3.2 (Finite Limit)

lim
p j→CVj ,∀ j

‖LVi − MVipi‖
2MVi‖LVi + Ri − MVipi‖ is bounded.

Remark 3.1. Conjecture 3.1 states that the control signal will never become un-
bounded in finite time due to a cancellation of vectors in the denominator. It would
be difficult to prove whether our system has this property a priori for a given set of
initial conditions, but one can easily enforce a saturation bound on the control input
to avoid this problem. Indeed, we do not see this problem occurring in simulation or
hardware experiments.

Remark 3.2. Conjecture 3.2 states that the control input does not blow-up asymptot-
ically as an agent converges to its centroid. One straightforward way to prove this
conjecture would be to show that Ri does not converge to zero. Unfortunately, it can
be proved that for bounded Mi j and Li j

pi = CVi ∀i implies Ri = 0 ∀i (31)

Again, we were unable to prove this conjecture, but we rely upon simulations and
experiments which show that the input does not blow-up. In practice one can impose
saturation constraints to prevent this from happening.
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4 Numerical Simulations

In this section we present ideal simulations that verify the proposed approach. The
simple model in (10) is used. In these simulations and all the other simulations
and experiments presented in this paper, we used parameters αi = 50, β = 1, and
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Fig. 2. Simulation results for three scenarios: (i) five robots and one intruder, k = 40, (Figs.
2a, 2b, 2c, and 2j), (ii) five robots and two intruders, k = 40, (Figs. 2d, 2e, 2f, and 2k),
(iii) nine robots and three intruders, k = 20, (Figs. 2g, 2h, 2i, and 2l). The positions of the
agents are given by the circles while the positions of the intruders are given by the dots. The
crosses show the positions of the centroids. For each scenario it is shown initial configuration,
trajectories, final configuration, and Lyapunov function evolution (solid line) along with the
theoretical bound in (24)(dashed line).
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Gaussian density function (eq. (14)) with parameters σ = 0.5, A = 0.64. We imple-
mented the controller in (23) which is related to the Lyapunov function in (15). Figs.
2a, 2b, and 2c present the initial configuration, executed path, and final configura-
tion, respectively, for a simulation with a team of five robots and one intruder. The
intruder moves with constant speed of 0.1m/s in a uniform circular motion centered
at the origin with unitary radius. Figs. 2d, 2e, and 2f present simulation results with
five robots and two intruders. The second intruder moves with constant velocity vec-
tor [0,0.1]T . In both cases we used k = 40. A more complicated scenario is shown in
Figs. 2g, 2h, and 2i where we have a team of nine robots and three intruders. Once
again, one intruder moves according to the uniform circular motion. The other two
intruders move with constant velocity vectors [0,−0.05]T and [−0.05,0]T . In this
last simulation we used k = 20.

The Lyapunov function exponential decay is verified in Figures 2j, 2k, and 2l
where we also show the bound given in (24). One can observe that the Lyapunov
functions follow the expected bound as desired, even though we noticed some
“jumps” in some simulations as in Fig. 2l. These “jumps” were caused by numeri-
cal errors related to the resolution in the numerical computation of integrals and also
the simulation time step used. In fact, we verified that the system is very sensitive
to these numbers.

5 Experiments

In this section, we verify the proposed approach in Gazebo [6], a simulated robotic
environment, and on actual robots. These experiments were based on five Scarabs,
differential drive robots, shown in Figure 3. For more information refer to [8]. We
assumed an 6 m × 4 m environment.

The first scenario is the one presented in the last section with five robots and one
intruder. The initial configuration of the robots are the same as in Figure 2a. First, we
present the Gazebo simulation results. In Figures 4a and 4b, the final configuration
of the robots are given along with the Lyapunov function E . One can see that this
function is not bounded by the theoretical bound in (24) when k = 40. This inconsis-
tency with the theoretical results comes from many factors including the saturation

Fig. 3. Scarab, differential drive robotic platform, outfitted with a camera, Urg laser unit and
tracking beacon.
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Fig. 4. Results for one moving intruder and five robots. Fig. 4a The final configuration and
trajectories for a Gazebo simulation. Fig. 4b Evolution of the Lyapunov function for the
Gazebo simulation. Figs. 4c and 4d Corresponding results for actual robots experiment.

of the acceleration caused by the limitations of a simulated robot, the nonholonomic
constraints, and the repulsion term added to ui to avoid collisions:

ui,expt = ui + ∑
i�= j

κ
‖pi − p j‖2 nl ji , (32)

where κ is a small positive collision avoidance gain.
The experiment was conducted using actual robots. Each robot localizes using an

overhead tracking system and velocity information from its motor controllers. Their
pose and velocities are sent to a single computer running Player [6], which calculates
the new controls and sends these commands to the individual robots. Each robot is
kinematically controlled using feedback linearization.

In Figures 4c and 4d, the results of the robot experiment are presented. We ob-
served the same decay seen in Gazebo simulations as shown in Figure 4b along with
the inconsistency with the theoretical bound.

We also conducted gazebo simulations for the scenario where we have nine
robots and three intruders. The trajectories and configurations for different instants
of time are presented in Figs. 5a, 5b, and 5c. Fig. 5d presents the Lyapunov function
evolution. As expected, once again the exponential decay does not match the bound,
with k = 20 in this case.
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Fig. 5. Results for three moving intruders and nine robots. Figs. 5a,5b, and 5c show trajec-
tories for t = 0.00 to 20.20 sec, t = 20.20 to 40.44 sec, and t = 40.44 to 60.60 sec. Fig. 5d
Evolution of the Lyapunov function for the Gazebo simulation.

6 Conclusion

This work proposes an extension of the framework proposed in [3] to solve the prob-
lem of tracking multiple intruders in a pre-specified region. The basic subtasks: task
assignment, coverage, and tracking are coupled in an elegant manner. The proposed
decentralized controller guarantees exponential convergence. A complete analysis
of the singularities that are present in the controller is difficult. However, after con-
ducting simulations and experiments we believe that such singularities do not pose
a problem in practice.
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Cooperative Towing with Multiple Robots

Peng Cheng, Jonathan Fink, Soonkyum Kim, and Vijay Kumar

Abstract. In this paper, we address the cooperative towing of payloads by multiple
mobile robots that move in the plane. Robots pull via cables attached to an object
or a pallet carrying a payload and they coordinate their motion to manipulate the
payload through a planar, warehouse-like environment. We formulate a quasi-static
model for manipulation and derive equations of motion that yield the motion of the
payload for a prescribed motion of the robots in the presence of dry friction and
tension constraints. We derive conditions of stable equilibrium for one, two, and
three or more robots towing the payload and propose abstractions for the task that
lend themselves to simple algorithms for motion planning. We present simulation
and experimental results that demonstrate the basic concepts.

1 Introduction

There are many important applications in which vehicles are used to tow payloads
using cables or chains. Conventional oceanographic data collection is largely de-
pendent on towed systems. Tugboats are used to maneuver large boats and ships
through rivers and canals. Tow boats are generally used for pushing while tug boats
are used for towing a barge or multiple barges tied together. Helicopters are often
used to carry suspended payloads.

In this paper we are primarily interested in cooperative towing of payloads by
multiple vehicles. Cooperative lifting of large payloads by multiple helicopters has
great benefits in humanitarian or military field operations. There are advantages to
using multiple tugboats for towing. Smaller tugboats which have better maneuver-
ability can be reconfigured to tow large barges depending on their payloads. For
warehousing operations, automatic guided vehicles (AGVs) are generally used for
carrying pallets. But pallets can also be towed by AGVs. And if pallets of different
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sizes and weights are used, multiple robots can be reconfigured to tow pallets based
on the size and payload.

From the standpoint of robotics, towing is an important manipulation process [12].
However, there are few studies of robotic towing, especially tasks involving coop-
eration between multiple robots. The kinematics and dynamics of cable-actuated,
parallel manipulators, which have been studied extensively [14, 2, 16, 17], are rele-
vant to this work. However, this body of literature primarily addresses the control of
the cable extensions or forces in order to manipulate the payload. In contrast, towing
involves cables of fixed length where manipulation is accomplished by controlling
the motions of the ”pivot points” in the parallel manipulators. While manipulation
using cables has been studied in the context of distributed manipulation [8, 6, 7],
these papers do not address the mechanics or control of the cooperative manipula-
tion task.

Because we address the quasi-static manipulation of objects on a plane, the body
of work on the mechanics of objects sliding on a rough plane is very relevant. Be-
cause assumptions of rigidity and planar contact are not compatible in practice, pla-
nar surface contact is difficult to model. It has been shown that any planar contact
with dry friction can be modeled by three point contacts [12, 15]. Quasi-static anal-
ysis of a planar rigid body on a rough, horizontal plane reduces to first determining
the force distribution in the vertical direction using a three-point-contact support,
and then determining the frictional forces from the motion of the rigid body. How-
ever, there is no canonical three-point-contact support for a rigid body. Further, dry
friction is very difficult to model [10].

Finally, the unilateral constraints imposed by cables that can only admit positive
forces introduce another degree of complexity into the problem. Because the tension
on a cable can only be positive and the distance between the two end-points of a ca-
ble cannot be more than its free length, and further the tension is non zero only when
the distance is equal to the free lengths – each cable introduces a complementarity
constraint of the type:

s ≥ 0, λ ≥ 0, λ s = 0 (1)

where s is the slack in the cable and λ is the tension in the cable. The solutions to
systems of linear equations subject to such constraints, the so-called Linear Com-
plementarity Problem (LCP), have been studied extensively [5]. Even though all the
terms in the LCP are linear in the unknowns, the system can have multiple solutions
or no solutions at all. In addition to having complementarity constraints, the planar
towing problem considered here has frictional constraints which are nonlinear.

In this paper, we first formulate a quasi-static model of towing planar objects
with multiple robots in Section 2. In [4], we establish the quasi-static towing prob-
lem with n cables has a unique solution under certain conditions. In other words,
if the robot motions are known, there is instantaneously a unique object motion.
These results are briefly summarized in Section 3. However, because we can never
know the exact distribution of forces at the contact surface, predicting the correct
object motion is difficult. In Section 4, we show that there are stable equilibrium
configurations for single-robot and multi-robot towing, independent of the support
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distribution. In Section 5, we develop abstractions for towing that are independent
of the uncertainties in support forces. In Section 6, we show how these abstractions
can be used to develop an algorithm to follow a specified motion plan as well as
simulation and experimental results.

2 The Quasi-static Model for Cooperative Towing

Our task is to control multiple robots so they can cooperatively tow or carry an
object subject to gravity and frictional forces from any initial part configuration to a
desired goal part configuration as depicted in Fig. 1. The position and orientation of
the payload is given by (X ,Y,θ ) in the world frame. The velocity of the payload is a
planar twist in the body-fixed frame, xb − yb, attached to the payload: ξ = [ẋ, ẏ, θ̇ ]T .
Let R j denote the position of a reference point on robot j. There are m robots, each
of which is attached via an inextensible cable that connects the point R j on robot j

and the point Pj on the payload. If
∣∣∣−−→PjR j

∣∣∣ equals the free length of the cable, then

the dot product of the unit vector u j with the relative velocity of the point Pj to the
point R j is non negative, which can be written as unilateral kinematic constraints1:

Aξ ≥ b where A =

⎡⎣A1

. . .
Am

⎤⎦ , b =

⎡⎣b1

. . .
bm

⎤⎦ , (2)

A j is a function of the unit vector u j, showing the direction of the cable j, and the

position vector ρ j =
−−→
ObP j:

AT
j =

⎡⎣ u j · i
u j · j

(ρ j × u j) ·k

⎤⎦ , (3)

i, j and k are respectively unit vectors along xb, yb, and zb axis, and b j is a function
of u j and the velocity vR, j of the towing robot j:

b j = uT
j vR, j. (4)

Note that b j ∈ [−vmax
R ,vmax

R ] because the robot velocity vR, j is bounded by vmax
R .

The set of twists of freedom [11] is defined with respect to the tuple (A,b) as
follows:

Σ(A,b) = {ξ |Aξ ≥ b}. (5)

Note that this set is determined by the towing configuration of the robots and the
payload, specified by the matrix A, and the velocities of the robots, given by the
vector b.

The kinematics-statics duality is evident in this problem. λc, the m-vector of cable
tensions is non negative and is non zero only when the equality in (2) is satisfied.

1 The vector inequality denotes that each element of the vector satisfies the inequality.
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Fig. 1. Quasi-static manipulation: The object is supported by three support points, Si, with
normal forces (out of the plane), λn,i and tangential frictional forces, λt,i. It is pulled by
m cables, each exerting a force λc, j. Note the robot R j pulls by moving the object with a
prescribed (given) velocity.

Thus we write complementarity constraints:

0 ≤ λc ⊥ Aξ − b ≥ 0, (6)

where “⊥” implies λc, j(Aξ − b) j = 0.
In order to model the dry friction between the object and the support surface, we

assume that the object is supported by a finite number of frictional point contacts.
For three non collinear support points, the support forces λn,i ≥ 0, i = 1,2,3 can be
uniquely obtained from the following equation⎡⎣ 1 1 1

ys,1 ys,2 ys,3

xs,1 xs,2 xs,3

⎤⎦⎡⎣λn,1

λn,2

λn,3

⎤⎦=

⎡⎣mg
0
0

⎤⎦ , (7)

where (xs,i,ys,i) for i = 1,2,3 are the coordinates of the support points in the body-
fixed frame.

If the object undergoes quasi-static motion, the tensions associated with m cables
and the frictional forces (λt,i,x,λt,i,y) at each of the three support points (i = 1,2,3)
must add to zero. Thus, we have the equilibrium equations:

BT λt + AT λc = 0, λc ≥ 0 (8)

where B is a full rank 6 × 3 matrix:

BT =
[
BT

1 BT
2 BT

3

]
=

⎡⎣ 1 0 1 0 1 0
0 1 0 1 0 1

−ys,1 xs,1 −ys,2 xs,2 −ys,3 xs,3

⎤⎦ , Bi =
[

1 0 −ys,i

0 1 xs,i

]
, (9)

and λt is an unknown 6-vector with compoents in the body-fixed frame:

λt = [λ T
t,1, λ T

t,2, λ T
t,3]

T , λt,i = [λt,i,x, λt,i,y]T . (10)
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We use FCi to denote the friction cone at the ith support point defined by
Coulomb friction:

0 ≤ ‖λt,i‖ ≤ μλn,i, ‖λt,i‖ =
√

λ 2
t,i,x + λ 2

t,i,y. (11)

Note that FCi is the friction cone with a known λn,i.
For a given object twist, the velocity vector of the support point can be written in

the body-fixed frame:

vt,i = Bi ξ =
[

1 0 −ys,i

0 1 xs,i

]
ξ . (12)

From Coulomb’s law, the friction forces are equal to μλn,i and are opposite to the
direction of slip, except if the slip is zero when the magnitude is indeterminate. This
can be written as

λ t(ξ ) ∈ argmin
λ i∈FCi

ξ T BT λ . (13)

It is not too hard to verify that this is equivalent to the Coulomb friction law [1].

3 Existence and Uniqueness of Solutions to (6), (8), and (13)

In this section, we will summarize the results in [4] about the existence and unique-
ness of solutions to (6), (8), and (13), which will be used in this paper. We will omit
the proofs. Please see [4] for more details.

The existence and uniqueness are established by considering the following max-
min problem:

maximize
ξ∈Σ(A,b)

minimize
λ t,i∈FCi

L(ξ ,λ t) (14)

with the saddle function L(ξ ,λ t) ≡ ξ T BT λ t being bilinear in its arguments. The
minimization part corresponds to the Coulomb friction law, which means that the
support frictional forces will try to minimize the dissipation power with respect to a
given object twist. The maximization part means that the part will move with a twist
which maximizes the dissipation power due to support frictional forces. We say that
a pair (ξ ,λ t) is feasible if ξ satisfies the kinematic constraint (2) and λ t satisfies
the friction constraints: λ t,i ∈ FCi for all i = 1,2,3. By definition, a feasible pair
(ξ̄ , λ̄ t) is a saddle point of L if for all feasible pairs (ξ ,λ ):

L(ξ̄ ,λ t) ≥ L(ξ̄ , λ̄ t) ≥ L(ξ , λ̄ t). (15)

It is known [9, Theorem 1.4.1] that the following three statements are equivalent:

(a) (ξ̄ , λ̄ t) is a saddle point of L over the feasible pairs of admissible twists and
friction forces;

(b) ξ̄ ∈ argmax
ξ∈Σ(A,b)

ϕ(ξ ) and λ̄ t ∈ argmin
λ t,i∈FCi

ψ(λt), where
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ϕ(ξ ) ≡ min
λ t,i∈FCi

L(ξ ,λ t) and ψ(λ t) ≡ max
ξ∈Σ(A,b)

L(ξ ,λ t);

(c) ϕ(ξ̄ ) = ψ(λ̄ t) = L(ξ̄ , λ̄ t).

The existence and uniqueness of a solution to the quasi-static towing problem for-
mulated in (6), (8), and (13) are established in two steps: (a) such a solution is
characterized as a saddle point of L in (14); and (b) such a saddle point exists and is
unique. The result below establishes the first step.

Theorem 3.1. [4] A feasible pair (ξ̄ , λ̄ t) is a saddle point of L if and only if λ̄c exists
such that the triple (ξ̄ , λ̄ t , λ̄c) satisfies conditions (6), (8), and (13).

To show that a unique saddle point exists, notice that

ϕ(ξ ) =
3

∑
i=1

minimize
λt,i∈FCi

{
(Biξ )T λ t,i

}
= −

3

∑
i=1

μ λn,i

√(
ẋ− ys,iθ̇

)2 +
(

ẏ + xs,iθ̇
)2

.

ϕ(ξ ) is the sum of the dissipation power caused by the frictional forces at the
three support points. The first equality in the above equation is from the defini-
tion of ϕ(ξ ). For the second equality, the dissipation power at support point i is
|λt,i|‖Biξ‖ because of the Coulomb friction law, the tangential frictional force |λt,i|
equals μλn,i for the fixed three support points, and the sliding velocity ‖Biξ‖ equals√(

ẋ − ys,iθ̇
)2 +

(
ẏ+ xs,iθ̇

)2
. We next consider the maximization of ϕ(ξ ) over

Σ(A,b).

Theorem 3.2. [4] Suppose that Σ(A,b) is not empty (i.e., there exists a twist that sat-
isfies the kinematic constraint in (2)) and that B ∈ R

6×3 is full rank. There exists a
unique ξ̂ and possibly non unique (λ̂ t , λ̂c) such that (ξ̂ , λ̂ t , λ̂c) satisfies the condi-

tions (6), (8), and (13); moreover, ξ̂ is the unique solution of the problem:

minimize
ξ=(ẋ,ẏ,θ̇)

− ϕ(ξ ) subject to Aξ ≥ b (16)

and for i = 1,2,3, λ̂ t,i ∈ argmin
λ t,i∈FCi

vt,i(ξ̂ )T λ t,i.

Remark: The optimization problem (16) is a convex program. Indeed, it is equiva-
lent to a non-standard linear program over a second-order cone:

minimize
ξ=(ẋ,ẏ,θ̇),σ

3

∑
i=1

μ λn,i σi

subject to Aξ ≥ b

and
√(

ẋ− ys,iθ̇
)2 +

(
ẏ+ xs,iθ̇

)2 ≤ σi, for i = 1,2,3.

(17)
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where σi is a positive upper bound for the sliding velocity at the support point i.
This is a problem that has been extensively studied in the recent mathematical pro-
gramming literature; see e.g. [3]. We use CVX2 and Matlab c© functions to solve for
the object twist to generate the results shown in Section 6.

4 Steady-State Analysis

In this section, we will study the steady-state of the towing system when one or two
robots move along straight lines as depicted in Fig. 2.

yb

xb

ob
),( yx pp

1

),( ,, ybxbb vvv

2

bx

by

bo

Fig. 2. (Left) Arbitrary initial configuration. (Center) Stable equilibrium configuration.
(Right) The equilibrium of two-robot towing.

4.1 One-Robot Towing Case

The single robot towing system will converge to an equilibrium in which the system
exhibits pure translation and the cable, the robot, and the center of mass of the part
will be aligned as shown in Fig. 2. The result is stated in the following theorem.

Theorem 4.1. If a single robot tows the part with positive cable tension and moves
in the invariant direction along a straight line, the angle φ will converge to zero.

Proof. Because the cable will have positive tension, the kinematic constraint will be
an equality constraint and the part twist will be the result of the following optimiza-
tion problem:

ξ ∗(φ) =

⎡⎣ ẋ(φ)
ẏ(φ)
θ̇ (φ)

⎤⎦=
argmin

ξ
−ϕ(ξ )

subject to A(φ) = b
. (18)

We will prove this by showing that θ̇ φ < 0 and θ̇ = 0 if φ = 0.
Step 1: We will first prove that ξ ∗(φ) is well-defined and thus continuous.
Because there is only one robot, the matrix A(φ) is full rank and it is easy to

check that the statement
∃λc > 0, AT λc = 0 (19)

2 http://www.stanford.edu/∼boyd/cvx/
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is false because the unique solution to the equality is λc = 0 which does not satisfy
the inequality. By Stiemke’s lemma, (19) false implies that

∃ξ : A ξ > 0 (20)

For any given b, if elements b j ≤ 0, (20) implies the constraint A jξ ≥ b j is satisfied.
If there are elements b j > 0, then we can always scale ξ with a positive scalar so
that a feasible ξ that satisfies A jξ ≥ b j can be found. Thus, Σ(A,b) is not empty.

Theorems 3.1 and 3.2 guarantee that there always exists a unique part twist ξ̂ for
(6), (8), and (13). Therefore, ξ ∗(φ) is a well-defined function.

Because the convex objective function in (16) and constraint function A(φ)ξ = b
are continuous, using the implicit function theorem, it can be easily shown that
ξ ∗(φ) is a continuous function of φ .

Step 2: When θ̇ = 0, the part exhibits pure translation and does not rotate around
any of the three support points. Therefore, the objective function is differentiable at
θ̇ = 0 and we can compute the following necessary KKT conditions.

3

∑
i=1

αi(ẋ − ys,iθ̇ )− λ cosφ = 0,
3

∑
i=1

αi(ẏ + xs,iθ̇ )− λ sin φ = 0, (21)

3

∑
i=1

αi(−ys,i(ẋ − ys,iθ̇ )+ xs,i(ẏ+ xs,iθ̇ ))− λ ρ sin φ = 0, (22)

in which

αi =
μλn,i√

(ẋ − ys,iθ̇ )2 +(ẏ+ xs,iθ̇ )2
. (23)

Solving these equations, we can see that θ̇ = 0 if and only if φ = 0, π , or −π
Step 3: It can also be checked that when φ > 0, the resulting θ̇ is negative.

Similarly, when φ < 0, the resulting θ̇ is positive. �
Please see Fig. 4 for simulation and experimental results supporting the stable equi-
librium of one-robot towing.

4.2 Two-Robot Towing Case

An equilibrium of two-robot towing is stated in the following theorem.

Theorem 4.2. When two robots tow the part by moving in the same direction and
velocity (therefore maintaining fixed relative positions), the part can have zero an-
gular velocity if the line passing through the center of mass and the intersection
point of two cables is parallel to the robot direction of motion as shown in Fig. 2.

Proof. The position vector ρi = [ρi cos(αi),ρi sin(αi)]T in the body fixed frame, in
which ρi is the length of the vector ρi. Let φ j to be the angle between the anchor
point position vector and the cable direction. Then the direction of cable will be
u j = [cos(α j + φ j),sin(α j + φ j)]T in the body fixed frame.
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Assuming both robots and the part have a pure translation with the velocity of
vb = [vb,x,vb,y]T in the body fixed frame, the wrench balance equation is⎡⎣ cos(α1 + φ1) cos(α2 + φ2)

sin(α1 + φ1) sin(α2 + φ2)
ρ1 sin(φ1) ρ2 sin(φ2)

⎤⎦[λc,1

λc,2

]
=

⎡⎢⎣ μmg
vb,x
‖vb‖

μmg
vb,y
‖vb‖

0

⎤⎥⎦ , (24)

which is true only when

ρ2 sin(φ2)sin(α1 + φ1)− ρ1 sin(φ1)sin(α2 + φ2)
ρ2 sin(φ2)cos(α1 + φ1)− ρ1 sin(φ1)cos(α2 + φ2)

=
vb,y

vb,x
. (25)

It can be easily checked that (25) is true when the line of action of the first cable,
the line of action of the second cable, and the line passing through the center of
mass and parallel to the robot moving direction intersect at a single point. �
Exhaustive simulation and experimental results show that the two robot system con-
verges to the equilibrium state shown in Fig. 2, given by (24). However, we have
not been able to prove this analytically. Thus the result of a stable equilibrium under
two-robot towing remains a conjecture.

5 Abstractions for Towing

Because of the uncertainties in the support force distribution, it is difficult to predict
the object twist for a given robot motion. In this section, we will study geometric
and kinematic abstractions for single and multi-robot towing that allow us to develop
controls to guide the towed object along a planned path within specified tolerances.

5.1 Geometric Abstractions

The inextensible cable ensures that the distance between the anchor points on the
robot and the part is no larger than the free length of the cable no matter what
is the support distribution. We can use this property to derive the set of reachable
configurations for the towed object.

One-robot towing: When the anchor point of the robot i is at (xi,yi), the inextensi-
ble cable of length li constraint will ensure that the configuration of the part will be
in the following set (allowing the cable to be slack):

Ri = {(x,y,θ ) |
√

(x − xi)2 +(y − yi)2 ≤ li + ρi,θ ∈ [0,2π)}. (26)

Two-robot towing: When the part is attached via cables to the robots i and j and
the cables are allowed to be slack, then the part configuration will be in Ri ∩R j.

If both cables have positive tension, then the system can be modeled as a four bar
linkage assuming the positions of the two robots are fixed. The set of all possible
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configurations of the part can be derived considering the admissible configuration
space of a four bar linkage system.

5.2 Kinematic Abstractions

When there are no less than three robots, three cables are in tension, and their lines
of action are independent, the twist of the towed object will be uniquely determined
by the kinematic constraint Aξ = b, i.e., the velocity and configuration of the robots.
This enables us to achieve any object twist by maintaining the relative position of
the robots with respect to the object.3

Three robot towing: It is worth noting that there exist object twists that cannot be
achieved instantaneously by three robots as shown in the following theorem.

Theorem 5.1. [4] If A is full rank and there are m ≤ 3 robots, not all twists can be
produced.

See [4] for proof.
It is important to recognize that even when the kinematic constraints of a twist ξ

are satisfied with a particular configuration A, the assumption that all three cables are
in tension only holds if positive cable tensions can balance the possibly unknown
support friction wrenches. We shall see in the following section that this can be
difficult to guarantee for unknown support distributions.

Towing with more than three robots: We can also show in the following theorem
that with one more robot any twist can be achieved by a fixed towing configuration
of four towing robots.

Theorem 5.2. [4] Given four towing robots and any part twist ξ des, we can find
β ∈ (0,1) and (A,b) such that ξ̂ = β ξ des is the unique solution to (14).

See [4] for proof.

5.3 Incorporating Uncertainty for Abstractions

In our model of quasistatic towing presented above, we rely on a three-point model
of the support friction. However, in real systems, it may be impossible to know the
locations of these virtual support points or even the location of the center of mass
for an arbitrary part. By using the following model of support friction uncertainty,
we can characterize the set of possible wrenches Ws applied to the part by friction
resulting from a particular twist ξ .

Our approximation of Ws(ξ ) is computed by first assuming that the center of
mass lies within some ε-inset area of the part and then considering the effect of
a mass distribution concentrated at a single point. For a given part twist ξ with

3 In reality, since there will be errors in robot positioning, one or more cables can become
slack. In this case, the object can be thought to be ”caged” with a finite reachable set that
contracts to point when the robot errors are zero.
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Fig. 3. On the left is the depiction of a specific center of rotation and the resulting components
of the bounds for Ws. On the right is a visualization of Ws wth μmin = 0 and arbitrary μmax.

center of rotation O, the minimum and maximum angles φmin,φmax that subtend the
ε-inset geometry from the point O provide two bounds on the set Ws(ξ ) as depicted
in Fig 3. Magnitudes of these frictional forces will be in the set [μminmg,μmaxmg].
The minimum and maximum frictional moments are determined based on the points
closest and farthest from the center of rotation O with distances dmin(ξ ),dmax(ξ ).

Now is it possible for a given towing configuration A to test if, for a given part
twist ξ , the cables can generate wrenches to equilibritate any possible frictional
wrenches and thus satisfy the quasi-static assumption while maintaining tension in
each cable. In the next section, we will show how a convex over-approximation
of Ws(ξ ) can be used to efficiently find a towing configuration for a desired
twist ξ des.

This characterization of the set of possible frictional wrenches allows for alter-
nate explanations of the one, two, and three-robot towing results we have presented
above. For one-robot towing, it is clear that the towing wrench is one-dimensional
and thus can only balance the wrench set Ws when it reduces to a one-dimensional
subset and they have the same alignment. This will occur only when the center of
rotation moves to infinity (for pure translation) and the only-allowable center of
mass aligns with the towing cable. With two-robot towing, the towing wrench spans
a two-dimensional set which can balance Ws when it reduces to a two-dimensional
set corresponding to center of rotation at infinity. Finally, three-robot towing yields
a three-dimensional towing wrench space which can be chosen to span the frictional
wrench space Ws(ξ ).

5.4 Summary

In conclusion, we have three levels of abstraction for quasi-static towing. Geometric
models allow us to model the set of all reachable configurations. Kinematic models
allow us to predict and control the instantaneous object twist. Additionally, quasi-
static models predict stable configurations that are eventually reached when robot(s)
move along (parallel) straight line trajectories. Finally, we provide a characteriza-
tion of the uncertain wrenches due to friction which allows for the design of robust
towing configurations that are invariant to the mass distribution of the part.
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6 Motion Planning for Towing and Experimental Results

In this section, we will provide algorithms, simulation and experimental results on
motion planning and control of systems that consist of several SCARAB mobile
robots towing an L-shaped object. Details on the SCARAB platform as well as the
accompanying architecture and tracking system (which provides localization infor-
mation for the robots) can be found in [13]. Since the SCARAB robot uses a differ-
ential drive with nonholonomic constraints, we are able to attach the towing cable
at a feedback linearization point which can be kinematically controlled.

6.1 Motion Planning

Motion planning for the towing system we have described can proceed in two ways.
We can generate trajectories that, for a given towing configuration, consist solely
of feasible twists.4 Alternatively, we can use existing motion planning techniques
to generate arbitrary trajectories for the part (expanded to include towing robots)
in SE(2) and then post-process the trajectories to find towing configurations that
satisfy the required twist at each point. In this work, we shall pursue this second
option.

In order to provide a tractable method for determining if a particular configuration
A can positively span all wrenches in Ws, we rely on a convex over-approximation of
Ws that consists of eight points. If A positively spans this over-approximation, then
it can balance any wrench in Ws and equilibriate the system. We can easliy solve this
test via a linear program as detailed in Algorithm 1.

Now, suppose we have a desired part twist ξ des for which the current towing con-
figuration Acur cannot span Ws(ξ des). The problem of finding a towing configuration
A which can span Ws(ξ des) (let alone one which is close to Acur) is difficult - both
non-linear and non-convex. While we have experimented with some hueristics to

4 Consider feasible twists to be those for which we can balance all possible support friction
wrenches in Ws and for which we can satisfy the kinematic constraint AT ξ > 0 so that each
robot is doing positive work.
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find A given ξ , the search strategy detailed in Algorithm 2 has proven to be the most
reliable.5

Given a desired part trajectory q(t), q̇(t), one can consider several design goals
when attempting to post-process and generate a suitable configuration trajectory
A(t) which in turn dictates individual robot trajectories. In this work, we are simply
focusing on feasible trajectories but will look into optimizations in future work. Our
current strategy is inheriently greedy; we procees the trajectory at discrete values tk
and simply find A(tk+1) that is closest to A(tk).

6.2 One-Robot Towing Experiments

While it is not possible to predict the exact motion for one-robot towing, we have
proved convergence properties above for straight-line trajectories. Fig. 4 provides
a plot of the φ angle for a series of experiments and matching simulations. Note
that the rate of convergence depends on the uncertain support force distribution
and that this accounts for some errors between the experimental and simulated data
shown here.

6.3 Two-Robot Towing Experiments

As in the one-robot case, we have proved that there exists an equilibrium configu-
ration for two-robot towing. Fig. 4 depicts experimental verification of this equlib-
rium where a number of towing configurations (with fixed distance between towing
robots) are executed from different initial conditions.

5 In implementation, we utilize a lookup table to improve the performance of this search
algorithm.
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Fig. 4. (Top) Experimental and simulated trajectories of the φ angle showing that it ap-
proaches an equilibrium from several different initial conditions for a straight-line trajectory.
(Bottom) Experimental verification of two-robot towing equilibrium.

6.4 Three-Robot Towing Experiments

With three robots, we are able to post-process the part trajectory to generate individ-
ual robot trajectories so that the part’s motion is constrained to follow the desired
trajectory. Fig. 5 demonstrates the use of three robots to tow a part along a com-
plicated part trajectory to demonstrate this ability. Of course, a disadvantage here
is that we must carefully coordinate between the three robots - a task that is often
quite difficult in the presence of sensing uncertainty.
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Fig. 5. (a) Plot of experimental part trajectory while being towed along a desired twist by
three robots. Snapshots from the measured part configuration are overlayed on the desired
envelope. (b) Position error relative to the desired trajectory

7 Conclusion and Discussion

In this paper, we studied the mechanics of planar, multi-robot towing in which
multiple robots tow a planar payload subject to friction. The problem formula-
tion incorporates complementarity constraints which are necessary to allow for
cables becoming slack during a towing maneuver. We established the uniqueness
and existence for the solutions to the forward dynamics problems using a max-min
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problem formulation. We also showed that a payload towed by one robot driving
along a straight line, or two robots driving along parallel straight lines, converges
to an equilibrium configuration independent of the uncertainty in the support force
distribution. Next we constructed a characterization of the uncertain support force
distribution that allows us to find three-robot towing configurations that are invariant
to even the center of mass location. Finally, we developed an algorithm by which
allows a team of three-robots to cooperatively tow an object along an arbitrary tra-
jectory within tolerances dictated only by the ability to kinematically control the
robots.
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Manipulation



Two Finger Caging: Squeezing and Stretching

Alberto Rodriguez and Matthew T. Mason

Abstract. This paper studies the problem of placing two point fingers to cage a
mobile rigid body in a Euclidean space of arbitrary dimension. (To cage an object is
to arrange obstacles so that all motions of the mobile body are bounded). This paper
shows that if a compact connected contractible object is caged by two points, then it
is either stretching caged or squeezing caged or both, where stretching caged means
the body is trapped even if the point fingers are given the freedom of moving apart,
and squeezing caged means the the body is trapped even if the fingers are given the
freedom of moving closer. This result generalizes a previous result by Vahedi and
van der Stappen [18] which applied to two points trapping a polygon in the plane.
Our use of a topological approach led to the generalization, and may lead to further
generalizations and insights.

1 Introduction

A cage is an arrangement of obstacles that bounds the collision-free paths of some
object. Caging is interesting for two reasons. First, caging an object is a way to
manipulate it without immobilizing it. Second, even if an immobilizing grasp is
needed/preferred over a cage, the cage may provide a useful waypoint to the immo-
bilizing grasp. From some cages a blind policy exists that achieves an immobiliza-
tion while preserving the cage.

Caging is weaker than immobilizing. While the objective of an immobilizing
grasp might be to precisely locate an object relative to the hand, the objective of a
cage is just to guarantee that the object is within the reach of the manipulator and
cannot escape. By weakening the objective, the ultimate task may be easier both in
theory and in practice.
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Caging an object with point fingers assumes that the fingers are rigidly fixed
relative to the hand and to each other. Vahedi and van der Stappen[18] recently
introduced a variation where the fingers are allowed some relative motion while the
object remains caged. An object is squeezing caged if all its motions are bounded,
even if the fingers are allowed to move while not increasing the initial separation
between them. Similarly, the object is stretching caged if it cannot escape, even if
the fingers are allowed to move while not decreasing the initial separation between
them. Vahedi and van der Stappen showed that any cage of a planar polygon by two
disk fingers is either a squeezing cage, a stretching cage, or both.

This paper extends Vahedi and van der Stappen’s result to include arbitrary com-
pact connected contractible objects in Euclidean spaces of arbitrary dimension. Thus
the squeezing and stretching caging characterization becomes a fundamental prop-
erty of the configuration space of a two fingered manipulator.

2 Related Work

The earliest mathematical work on trapping objects was by Besicovitch in 1957 [1]
and Shephard in 1965 [13]. Both worked on the problem first posed by Besicovitch
as a contest problem to undergraduates, of trapping a sphere with a net. However,
it was not until 1990 that Kuperberg [3] posed a formal definition of the 2D caging
problem:

“Let P be a polygon in the plane, and let C be a set of k points which lies in the
complement of the interior of P. The points capture P if P cannot be moved arbitrarily
far from its original position without at least one point of C penetrating the interior of
P. Design an algorithm for finding a set of capturing points for P.”

Since then, there have been several approaches to the problem, from different per-
spectives and with different goals. Rimon and Blake [10, 11] introduced the notion
of a caging set: the maximal connected set of caging configurations that contains a
given grasping configuration. They applied Morse Theory to the case of 1-parameter
two-fingered grippers to show that the limit configurations where the cage is bro-
ken correspond to equilibrium grasps of the object. Later, Davidson and Blake [2]
extended the result to 1-parameter 3-fingered planar grippers.

Sudsang and Ponce [15, 16] proposed and studied the application of caging to
motion planning for three disc-shaped planar robots manipulating an object. They
provided a geometrical method to compute conservative approximations of the so
called Inescapable Configuration Space regions. They also analyzed in-hand ma-
nipulation using caging [17, 14].

Pereira, Campos and Kumar [9] applied caging to decentralized multirobot ma-
nipulation. They used the geometrical description of the robots to develop a conser-
vative, on-line and decentralized test to maintain cageness.

Vahedi and van der Stappen [18] formalized squeezing and stretching caging to
cage polygonal objects with two disc-shaped fingers, and used that idea to develop
the first complete algorithm to compute the entire caging set of two fingers. Their



Two Finger Caging: Squeezing and Stretching 121

Fig. 1. a) Workspace: two obstacles and a moving object. b) Cspace obstacles. c) Free space.
d) A more liberal definition of free space with unwanted thin bits.

algorithm generates a graph structure in the configuration space of the fingers that
finds all caging grasps in O

(
n2 logn

)
and handles cageness queries in O(logn).

3 Preliminary Concepts

3.1 Configuration Space

Assume the workspace to be R
d , and let the manipulator be a set of position-

controlled point fingers p1 . . . pn in R
d . Let Pi be the configuration space of fin-

ger pi, and let M = P1 × . . . × Pn be the configuration space of the manipulator
(dimM = n ·d).

We assume the object O is a compact region of the workspace. It induces an ob-
stacle for each of the fingers, and therefore for the manipulator. Let Oi be the obsta-
cle induced for finger i in Pi, and let OM be the obstacle induced for the manipulator
in M. We can decompose the manipulator obstacle:

OM = {(p1 . . . pn) ∈ M | ∃pi ∈ O} =
n⋃

i=1

{(p1 . . . pn) | pi ∈ O} =
n⋃

i=1

OM
i (1)

where OM
i is the obstacle induced in M by the interaction of object O with finger i.

Following the convention of [12, 18] we define the free space of the manipulator
to be Mfree = M \ (OM

)
, where

(
OM
)

is the interior of OM as a subset of R
n·d .

We define the configurations in Mfree to be the admissible configurations of the
manipulator. This definition induces a free space in the configuration space of finger
i, Pfree

i = Pi \ (O).
Note that there are alternative, more liberal, definitions of admissible configura-

tions [5, 4]. The advantage of the stricter convention is that the free space is regu-
lar—it is the closure of its interior. Consequently it has no “thin bits” (Fig. 1). We
will skip the proof to conserve space. By [5], regularity of the free space enables the
following proposition:

Proposition 3.1 (Connectivity of the Free Space). For any two configurations in
the same connected component of the free space, an admissible connecting path
exists, and lies in the interior of the free space except possibly at some isolated
points.
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Proposition 3.1 implies that if two configurations of the manipulator are in the
same connected component of the free space, they can be joined by a path that
avoids contact with the object O except at isolated configurations. This property is
essential to prove the main result in Sect. 5.3.

3.2 Paths in the Configuration Space

Given a configuration c of the manipulator in Mfree, a closed path based at c refers
to a parameterized curve α : [0,1] −→ Mfree with α(0) = α(1) = c. A contractible
path is a closed path that is path homotopic to a point in Mfree.

Contractibility of a path, then, implies the existence of a continuous map H,
called a homotopy of paths:

H : [0,1]× [0,1] −→ Mfree (2)

such that H(t,0) = α(t) and H(t,1) = H(0,s) = H(1,s) = c, for all t,s ∈ [0,1].
The next proposition, with proof in appendix 6, relates the contractibility of paths

in Mfree to the contractibility of the individual fingers’ paths. First we define Πi, the
natural projection from the configuration space of the manipulator to the configura-
tion space of finger i:

Πi : M −→ Pi

(p1 . . . pn) −→ pi
(3)

Proposition 3.2 (Characterization of contractible paths). A closed path α at c is
contractible in Mfree if and only if for each finger i, Πi (α) describes a contractible
path in Pfree

i .

4 Caging

4.1 Introduction to Caging

To formalize the definition of caging proposed by Kuperberg [3] we could consider
an object to be caged if and only if the object configuration lies in a compact con-
nected component of its free space.

However, it is simpler and equivalent to consider the object to be fixed, and in-
stead study the rigid motions of the manipulator, yielding the definition:

Definition 4.1 (Caging Configuration). Let Mc be the set of all configurations with
the same pairwise finger distances as c. A caging configuration is a configuration c
of the manipulator that lies in a compact connected component of Mfree ∩Mc.

Hence, an object is caged if and only if the manipulator is unable to escape from the
object while preserving its shape.

In the case of a two fingered manipulator, the Euclidean distance between the fin-
gers is the only constraint that defines Mc. Let the map r : M −→ R be that distance.
The set Mc is then defined as:
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Fig. 2. Examples of squeezing (left) and stretching (right) caging configurations.

Mc = {q ∈ M | r(q) = r(c)} (4)

4.2 Squeezing and Stretching Caging

Intuitively, the manipulator is in a squeezing (stretching) caging configuration if the
object cannot escape, even by allowing the fingers to move closer (separate), Fig. 2.
The definition can be formalized in a similar way as in the case of caging.

Let Mc and Mc be the sets:

Mc = {q ∈ M | r(q) ≤ r(c)} (5)

Mc = {q ∈ M | r(q) ≥ r(c)} (6)

Then we define:

Definition 4.2 (Squeezing Caging configuration). Configuration c of the manipu-
lator that lies in a compact connected component of Mfree ∩Mc.

Definition 4.3 (Stretching Caging configuration). Configuration c of the manipu-
lator that lies in a compact connected component of Mfree ∩Mc.

The main objective of this work is to show that all caging configurations are either
squeezing caging, stretching caging or both.

5 The Squeezing and Stretching Caging Theorem

5.1 The Result

Theorem 5.1 (Squeezing-Stretching Caging). Given a two finger caging config-
uration of a compact connected contractible object in R

d, it is squeezing caging,
stretching caging or both.

We will prove the contrapositive. Suppose that a certain two finger configuration c
is neither squeezing nor stretching caging. That means there is an escape path α if
squeezing is permitted, and there is also an escape path α if stretching is permitted.
We will use the existence of these two escape paths to construct a third escape path
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Fig. 3. The proof of theorem 5.1. (left) The contractible curve crossing Mc at infinity. (right)
Simplest case intersection between the contraction and Mc.

in Mc, establishing the noncageness of c. From a topological perspective, we can un-
derstand the constructed escape path as an average of the squeezing and stretching
escaping paths.

The proof consists of two steps (Fig. 3):

1. Using the two escape paths we build a closed contractible curve in Mfree, with the
property that every crossing through Mc, except for c, is known to be noncaging.

2. When the contractible curve is actually contracted, the intersection with Mc will
give a rigid body path from c to one of the known noncaging configurations.

5.2 Building the Contractible Curve

The contractible curve must satisfy two requirements:

• All crossings of the curve through Mc, except for c, must be known to be
noncaging.

• Both the curve and the contraction must live in Mfree.

Let B ⊂ R
d be a ball containing O such that any placement of the fingers outside B

is a noncaging configuration of the manipulator. We will say that any configuration
with the fingers outside B is at infinity. Note that if O is compact, B always exists.
For the case of two fingers we can choose B to be any circumscribing ball.

We can assume the escape paths α and α to terminate respectively at configu-
rations c and c at infinity. Let α ⊕ α be the curve defined by the concatenation of
both escaping paths. Closing α ⊕ α with an additional curve lying entirely outside
B guarantees that all crossings of the complete curve through Mc will be noncaging.
Hence we just need to see that always exists a curve β that closes α ⊕ α outside B
in such a way that the complete closed curve is contractible.

By proposition 3.2, we can construct the completion of the curve independently
for each finger. As long as each projected path Πi (α ⊕ α) is closed in a contractible
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Fig. 4. Completion of the contractible path β1 in Pfree
1 .

way in Pfree
i , the curve in M and its contraction will be in Mfree, satisfying the second

requirement. Let βi be the curve in Pfree
i that closes Πi (α ⊕ α):

• If d > 2, as O is contractible (i.e. does not have holes) any path from Πi(c) to
Πi(c) gives a closed contractible path.

• If d = 2, choose βi to go around B as many times as needed to undo the winding
number of Πi (α ⊕ α) (Fig. 4).

The curve β = (β1 . . .βn) closes α ⊕ α in a contractible way.

5.3 Intersection of the Contraction with Mc

The contractibility of the constructed path implies the existence of an homotopy H,
as in equation (2), that contracts the closed path to c in Mfree.

Let H(S) be the image of the square S = [0,1] × [0,1] in M by the homotopy
map. We are interested in the intersection of the homotopy image with the rigid
motions set, H(S)∩ Mc. It may seem obvious that an escape path lives within that
intersection, as illustrated by the simple case of Fig. 3, but for a more pathological
homotopy the path may not exist. We will show that H can always be approximated
by a well behaved contraction that yields a nondegenerate intersection.

The construction of the intersection relies on lemma 5.1, borrowed from differ-
ential topology [8].

Lemma 5.1. Let M be an m-dimensional manifold and N an n-dimensional mani-
fold, with m ≥ n. If f : M −→ N is smooth, and if y ∈ N is a regular value, then the
set f −1(y) ⊂ M is a smooth manifold of dimension m− n.

If M is a manifold with boundary and y is also regular for the restriction f |
∂M, then f −1(y) is a smooth (m − n) manifold with boundary. Furthermore, the
boundary ∂

(
f −1(y)

)
is precisely equal to the intersection of f −1(y) with ∂M.
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Fig. 5. Quotient map.

The rest of this section uses lemma 5.1 to construct the intersection H(S) ∩ Mc,
requiring some special care to satisfy the smoothness requirements.

To simplify later arguments we will change the domain of the homotopy from a
square to a disc. We can view the homotopy H as a parametrization of the set H(S),
where ∂S is mapped to the contractible curve α ⊕β ⊕α with the inconvenience that
three sides of S are mapped to c. Let π be the quotient map that identifies those three
sides of the square into one single point q. The map π transforms S into a disc D,
whose boundary is a one to one mapping of the contractible curve.

The characteristic properties of the quotient topology [6], expressed in theo-
rem 5.2, guarantee the existence and uniqueness of a continuous map H̃ : D −→
Mfree that commutes the diagram on Fig. 6. From now on all mentions to the con-
traction will refer to that quotient induced map H̃.

Theorem 5.2 (Passing to the Quotient). Suppose π : X −→ Y is a quotient map, B
is a topological space, and f : X −→ B is any continuous map that is constant on
the fibers of π (i.e., if π(p) = π(q), then f (p) = f (q)). Then there exists a unique
continuous map f̃ : Y −→ B such that f = f̃ ◦ π , as in Fig. 5.

Fig. 6. Construction of the homotopy H̃ induced by the quotient map. See that H̃(q) = c.
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Let F be the composition of the contraction H̃ with the distance map r:

F : D
H̃−→ Mfree r−→ R (7)

If rc is the distance between the finger points at c, then F−1(rc) parameterizes the
intersection set H̃(D) ∩ Mc. H̃ maps the set F−1(rc) ∩ ∂D to the crossings of the
contractible curve through Mc. By construction, except for q that maps to c, all
points in F−1(rc)∩∂D are mapped by H̃ to noncaging configurations.

Showing that c is also a noncaging configuration – i.e. there is a rigid escape
path for c – is equivalent to finding a path from q to any other point in ∂D within
F−1(rc). Lemma 5.1 allow us to construct the set F−1(rc) and prove the existence
of that path.

If F is smooth and rc is a regular value, lemma 5.1 says that F−1(rc) is a one-
dimensional smooth manifold with the set F−1(rc)∩∂D as boundary – a finite union
of copies of S 1 entirely in the interior of D and smooth paths that begin and end in
∂D. Since q ∈ F−1(rc) and q ∈ ∂D, it follows that q must be connected to another
point in ∂D within F−1(rc). Thus, the connecting curve in D maps to a rigid escape
path from q and the theorem is true. All that remains is to see what happens when F
is not smooth or rc is not a regular value.

5.3.1 Smoothness of H̃

To apply lemma 5.1 to F , F = r◦ H̃ must be smooth, hence the contraction H̃ needs
to be smooth. For the contraction to be smooth, the contractible curve α ⊕ β ⊕ α
must also be smooth. We address this issue using theorem 5.3, Whitney’s Approxi-
mation Theorem [7], to construct smooth ε-approximations of both.

Theorem 5.3 (Whitney Approximation Theorem). Let M be a smooth manifold
and let F : M −→ R

k be a continuous function. Given any positive continuous func-
tion ε : M −→ R, there exists a smooth function F̂ : M −→ R

k that is ε-close to F
(‖F(x)− F̂(x)‖ < ε(x) ∀x ∈ M). If F is smooth on a closed subset A ⊂ M, then F̂
can be chosen to be equal to F in A.

The challenge is to preserve two key properties of H̃ when we construct the approx-
imation:

1. All crossings of Mc through the boundary of H̃(D), other than c, must remain
noncaging.

2. The approximation of H̃ must still live in Mfree.

The first property was obtained by making the contractible curve go to infin-
ity before crossing Mc. Spurious crossings of Mc must be prevented. This is espe-
cially awkward near the crossing at c. No matter how small an ε we choose, the
ε-approximation of H̃ could cross again. Similarly, where H̃ makes contact with
the obstacle, the ε-approximation might violate the second property by leaving the
free space Mfree. The following procedure produces a smooth approximation while
avoiding the problems:
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1. Replace the contractible curve locally at c by a smooth patch in Mfree, as shown in
Fig. 7. This is possible because of our “stricter” definition of free space, ensuring
the free space has no thin bits. Even if c is in contact with OM, there is still
freedom to smoothly escape the contact through half of the directions on the
tangent space.

2. Apply a similar patch wherever the contractible curve contacts the object. Thanks
to the regularity of the free space, proposition 3.1 guarantees that these contact
points are isolated configurations.

3. Apply theorem 5.3 to approximate the contractible curve by a smooth curve,
equal to the original curve on the patches.

4. Define the contraction H̃ as before, but using the smoothed contractible curve.
5. If the contraction makes contact with the object, the approximation could violate

the second key property. Repeat the previous strategy of defining smooth patches.
6. Apply theorem 5.3 once more to approximate the contraction by a smooth one Ĥ

that equals the original contraction on the closed set ∂D ⊂ D and on any patches,
and otherwise lives in the free space Mfree.

5.3.2 Regularity of rc

If rc is a regular value of the now smooth mapping F̂ = r ◦ Ĥ, lemma 5.1 says that
F−1(rc) is a one-dimensional smooth manifold. We have seen that consequently
there is a smooth escape path within F−1(rc) that connects q with another point in
∂D, mapped by Ĥ to a known noncaging configuration. But if rc is not regular then
F−1(rc) might not be a manifold and the argument fails. This section shows that
in such cases the escape path connecting q with a boundary point of F−1(rc) still
exists.

Sard’s Theorem characterizes the critical points of a smooth map:

Theorem 5.4 (Sard’s Theorem). Let f : U −→ R
p be a smooth map, with U open in

Rn and let C be the set of critical points; that is the set of all x ∈U with rank d fx < p.
Then f (C) ⊂ R

p has measure zero.

The theorem says that for a smooth real valued function, the set of regular values is
dense on the image of the function. Consequently, given any critical value z of the

Fig. 7. Smooth patch for replacing the contractible curve in a neighborhood of c and eliminate
possible nonsmoothness at c.
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Fig. 8. For every εn, there is a smooth path in F−1(rc − εn) from qεn . The sequence of those
paths defines in the limit the escape path from q.

smooth function f , there is a monotonic sequence of regular values converging to z,
{zn}n −→ z.

In the specific case of the smooth map F̂ : D −→ R, if rc ∈ R is a critical value,
let {rn} be a monotonic sequence of regular values converging to rc. Let εn be the
positive difference rc − rn so that:

{εn}n −→ 0 and {rc − εn}n −→ rc (8)

We know that the contractible path goes from Mc to Mc locally at c. As Ĥ maps
∂D to the contractible curve, the restriction F̂ |∂D is monotonic in a neighborhood

Fig. 9. Impossible to undo the winding number of α ⊕α outside B, due to the nonconnected-
ness of O.
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of q. Therefore we can expect to find a monotonic sequence of points {qεn}n in a
neighborhood of q at ∂D that converges to q, such that qεn ∈ F−1(rc − εn) ∀n.

The sets F−1(rc − εn) are smooth one-dimensional manifolds, because rc − εn =
rn are regular values. Consequently there is a smooth path from qεn to another point
in ∂D within F−1(rc − εn). The sequence of regular values {rc − εn}n induces a
sequence of smooth paths that gradually approaches the set F−1(rc) with εn −→ 0,
as illustrated in Fig. 8.

Each path of the succession defines a subset Rn ⊂ D bounded partially by the
smooth path and partially by the boundary of D itself. Each region in the sequence
is a subset of the next, because two smooth paths of different regular values cannot
cross, and the sequence of regular values increases monotonically.

The union of all those regions R =
⋃

n Rn defines a set in D that, by construction,
is partially bounded by ∂D and the set F−1(rc). The section of that boundary within
the set F−1(rc) provides the desired path. Since {qεn} converges on q, the limit path
connects q with another point in ∂D. Thus in Fig. 8 while F−1(rc) might not be a
manifold, and the path obtained might not be smooth, it still exists.

5.4 Requirements Revisited

Theorem 5.1 imposes three requirements on the object O as a subset of R
d : com-

pactness, connectedness and contractibility. The theorem implies their sufficiency,
but not their necessity.

• Compactness: One of the requirements when building the contractible curve is
that all crossings through Mc should be known noncaging configurations, ex-
cept for c. We obtain this by constructing a ball around the object, which easily
addresses the issue for compact objects. However, noncompact objects do not
necessarily falsify the theorem.

• Connectedness: We used connectedness to build the contractible curve in a sys-
tematic way. For nonconnected objects (Fig. 9) it may be impossible to undo the
winding number of α ⊕α outside the ball B, but there may be some other way to
construct a suitable contractible curve.

• Contractibility: If the object O has holes and d > 2, we may again be unable to
close the path in a contractible way outside the ball B.
Contractibility is not required in the planar case, because:

– If one or two fingers are inside a hole, the object is clearly caged, squeezing
caged and stretching caged.

– If none of the fingers are inside a hole, the hole is irrelevant and Theorem 5.1
applies directly.

5.5 Implications

The squeezing and stretching theorem (theorem 5.1) gives an interesting character-
ization of caging configurations: if an object is trapped, it will remain trapped even
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if we allow the point fingers a partial motion freedom: squeezing in some cases,
stretching in others.

This squeezing and stretching result connects caging to immobilization. Suppose
that c is a caging configuration, and for example it is the squeezing caging case.
By definition, c lies in a compact connected component of Mfree ∩Mc. If the fingers
squeeze, even in a blind way, the motion is bounded, and the path must inevitably
end in an immobilization, at least for frictionless generic shapes. Caging helps to
solve the immobilization problem by thickening the zero measure set of immobiliz-
ing configurations to regions of positive measure.

The immobilization problem is the problem of finding a manipulator configura-
tion that eliminates the object’s freedom of movement, given a geometric description
of its shape and location. The formulation of the problem has two main inconve-
niences:

• The set of solutions to the immobilization problem is a subset of the contact
space. Therefore, the set of solutions to the problem, as a subset of the configu-
ration space of the manipulator, has measure zero.

• The theoretical formulation of the problem relies on unrealistic assumptions such
as having a perfect geometrical model of the object both in terms of shape and
location, and the ability to place the manipulator perfectly in a specific configu-
ration.

These two properties would seem to make immobilization impractical, since any
error would make it impossible to place the manipulator on a set of measure zero.

Nonetheless, manipulators do achieve immobilizing configurations. Feedback of
contact sensor data is part of the answer. More importantly, the inherent compli-
ance of the effector mechanism, the servos, and the object can accommodate errors.
Even if the robot does not reach the desired configuration, it may reach a nearby
immobilizing configuration.

The squeezing and stretching theorem facilitates the process of achieving an im-
mobilization by providing an initial condition and a blind strategy for achieving an
immobilization.

6 Conclusions and Future Work

Our main result is that any caging of a compact connected contractible object in R
d

by two points is either a squeezing caging, a stretching caging, or both. This general-
izes the result of Vahedi and van der Stappen [18] which assumes a polygonal object
in the plane. Vahedi and van der Stappen developed the squeezing and stretching
caging idea to compute the caging configurations for planar polygons. The gener-
alization suggests that the squeezing and stretching caging idea is a fundamental
attribute giving structure to the configuration space of two-fingered manipulators.

Sect. 5.5 shows that Theorem 5.1 addresses the immobilization problem. From
any caging configuration there is a blind policy to immobilize the object. The result
says that caging regions are partially bounded by immobilizations, and that there is
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always a policy to reach them. Therefore, caging thickens the zero measure set of
immobilizing configurations to regions of positive measure.

Does the result generalize to n fingers? One approach is to define an n finger
manipulator with a one-dimensional shape space [2], but there are other possi-
ble generalizations. One advantage of the topological approach is that the entire
proof is independent of dimension, and should yield a natural generalization of the
squeezing-stretching concept to the case of n fingers.

Acknowledgements. This work is sponsored by the Defense Advanced Research Projects
Agency. This work does not necessarily reflect the position or the policy of the U.S. Govern-
ment. No official endorsement should be inferred. Alberto Rodriguez has been awarded and
sponsored by the graduate fellowships of Caja Madrid and La Caixa.

Appendix - Contractible Paths

Proposition 6.1 (Characterization of contractible paths). A closed path α at c is
contractible in Mfree if and only if Πi (α) describes a contractible path in Pfree

i ∀i.

Proof. The result is a consequence of M being the cartesian product of the configu-
ration space of each finger point, M = ⊗n

i=1Pi. Let’s prove both implications:
[⇒] Suppose α is contractible in Mfree. Let H(t,s) be the corresponding path

homotopy. The natural projections of α are the closed curves Πi (α) ⊂ Pfree
i . We

need to show that αi is contractible in Pfree
i ∀i.

Consider then the natural projections of the homotopy H(s, t):

Hi : [0,1]× [0,1] H−→ Mfree Πi−→ Pfree
i

(t,s) → H(t,s) → Πi (H(t,s))
(9)

Each Hi is a continuous map because it is a composition of continuous maps (Hi =
Πi ◦ H). Each Hi is a homotopy of paths because:

Hi(t,0) = Πi (H(t,0)) = Πi (α(t)) = αi(t) ∀t
Hi(t,1) = Πi (H(t,1)) = Πi(c) ∀t
Hi(0,s) = Hi(1,s) = Πi (H(0,s)) = Πi(c) ∀s

(10)

We conclude that each αi is contractible.
[⇐] Suppose that each natural projection αi = Πi (α) is contractible in its corre-

sponding space Pfree
i . Let Hi(t,s) ⊂ Pfree

i be the corresponding path homotopy.
Consider the path in M, α = (α1 . . .αn). Note that by construction α ⊂ Mfree:

Suppose ∃ t | α(t) /∈ Mfree eq.(1)⇐⇒ α(t) ∈ OM ⇐⇒ ∃ i | α(t) ∈ OM
i . By definition of OM

i
that happens iff αi(t) ∈ O. However this contradicts αi(t) being defined on Pfree

i by
hypothesis. Therefore we conclude that α ⊂ Mfree and is well defined.

Consider now the map H = (H1(t,s) . . .Hn(t,s)). same way we proved it for α we
know that H(t,s) ⊂ Mfree, and therefore is well defined. It suffices to check that:
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H(t,0) = (α1(t) . . .αn(t)) = α(t) ∀t
H(t,1) = (α1(0) . . .αn(0)) = p ∀t
H(0,s) = H(1,s) = (α1(0) . . .αn(0)) = p ∀t

(11)

to conclude that H is a path homotopy for α and therefore, α is contractible.
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A State Transition Diagram for Simultaneous
Collisions with Application in Billiard Shooting

Yan-Bin Jia, Matthew Mason, and Michael Erdmann

Abstract. This paper models a multibody collision in the impulse space as a state
transition diagram, where each state represents a phase during which impacts are
“active” at only a subset of the contact points. A state transition happens whenever
an active impact finishes restitution, or an inactive impact gets reactivated, depend-
ing on whether the two involved bodies are instantaneously penetrating into each
other or not. The elastic energy due to an impact is not only affected by the impulse
at the corresponding contact point, but also by other impulses exerted on the two
involved bodies during the impact. Consequently, Poisson’s impulse-based law of
restitution could result in negative energy. A new law governing the loss of elastic
energy during restitution is introduced. Convergence of the impulse sequence gen-
erated by the state transition diagram is established. The collision outcome depends
on the ratios of the contact stiffnesses rather than on their individual values. The
collision model is then applied in an analysis of billiard shooting in which the cue
stick impacts the cue ball, which in turn impacts the pool table. The system is driven
by the normal impulses at the two contacts with the tangential impulses determined
via a contact mode analysis.

1 Introduction

Analysis of frictional impact has been a subject of controversy in order to be con-
sistent with Coulomb’s law of friction, Poisson’s hypothesis of restitution, and the
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law of energy conservation. It requires correct detection of contact modes (sliding,
sticking, reverse sliding) and impact phases (compression and restitution). When the
sliding direction stays constant (with possible reversals), the tangential impulse can
be determined from the normal impulse based on Coulomb’s law via case-based rea-
soning. The total impulse stays in the plane and grows along a polyline. Routh [15]
developed a graphical method that constructs the trajectory of impulse accumula-
tion based on Poisson’s hypothesis. It was applied in the subsequent studies of
two-dimensional rigid-body collisions with friction by Han and Gilmore [6] and
by Wang and Mason [18] who classified impact and contact modes and offered a
solution for each case. Later, Ahmed et al. [1] extended Routh’s method to impact
analysis for multibody mechanical systems with a similar classification.

To an impact in three dimensions, however, Routh’s method hardly applies since
the impulse builds along a space curve. The sliding direction generally varies during
the impact. A differential equation in the normal impulse can be set up and solved to
determine how the sliding direction varies in the course of the impact, as shown by
Keller [9]. Closed-form solution does not exist for many three-dimensional impact
problems.

This paper deals with simultaneous collisions in three dimensions. No existing
impact laws are known to model the physical process well. Previous methods either
sequence them into two-body collisions [5] by order of normal approach veloc-
ity, or set up linear complementarity conditions at all contacts [16, 2]. High-speed
photographs of such collisions nonetheless show that multiple objects are simulta-
neously in contact rather than two at a time [17].

Stewart [17] pointed out that one difficulty with multiple contacts lies in the lack
of a continuous impact law. Observations seem to suggest, during simultaneous col-
lisions, the involved objects may have broken and re-established contacts multiple
times. We represent the collision process as a sequence of states based on which
impacts are instantaneously “active”, or equivalently, which contacts are instanta-
neously effective. During a state, multiple impacts may be acting upon one body.
A transition from one state to another happens when either an active impact fin-
ishes restitution or an inactive impact gets reactivated. A state transition diagram
is introduced in Section 2 via the example of a ball falling onto another resting on
the table.

The impulses produced by a pair of active impacts accumulate at a relative rate
determined by themselves and by the stiffness ratio. The elastic energy stored at
one contact point is no longer affected by just the impulse at this point, but also by
those at other contact points involving one or both of these two bodies in the dura-
tion of this impact, which could span multiple states. Poisson’s hypothesis may lead
to overgrowth of an impulse during restitution, driving the contact elastic energy
negative sometimes. The solution is to introduce a new law of restitution that over-
sees the loss of elastic energy not the growth of impulse.1 We will also see that the
outcome of impact is affected by the ratios of stiffnesses at the contact points. This

1 The roles of the coefficients of restitution and friction were discussed in respect of energy
loss [4], and solutions were given to two planar single-impact problems.
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concept of “relative stiffness” is cited in [17] as missing from the current impact
literature.

Section 3 applies the state transition diagram to model billiard shooting with a
cue stick. This is a three-dimensional problem with simultaneous impacts between
the cue stick and the cue ball, and between the cue ball and the pool table. Analysis
of frictional contact modes is required.

In Section 4, we will discuss the extension to simultaneous collisions involving
three or more bodies, and introduce an ongoing project to build a robot pool player.

2 System of Two Balls

We start by considering the problem of a rigid ball B1 with mass m1 and velocity
v0 < 0 striking down onto another rigid ball B2 with mass m2 and resting on a table.
The centers of the two balls are vertically aligned, as shown on the left in Fig. 1. The
lower ball B2 in turn impacts the table. Let v1 and v2 be the respective velocities (<
0 if downward) of the two balls during the collision, where the gravitational forces
are negligible compared to the large impulsive forces. Our goal is to determine the
ball velocities at the end.

v1

v2

F1

F2

v0

1

2 2

1

m2

m1

m1

m2

B 1

B 2

l  + x

l  + x

Fig. 1. Two-ball collision.

We attach a virtual spring between B1 and B2, and
another one between B2 and the table, as shown on
the right in Fig. 1. Let x1 and x2 be the changes in
the lengths of these springs, which have stiffnesses
k1 and k2, respectively. The kinematic and dynamic
equations are given below:

ẋ1 = v1 − v2, (1)

ẋ2 = v2, (2)

m1v̇1 = F1 = −k1x1, (3)

m2v̇2 = F2 − F1 = k1x1 − k2x2, (4)

where F1 and F2, both positive, are the contact forces, and the dot ‘·’ denotes differ-
entiation with respect to time. The above are a system of four differential equations
in four variables vi and xi, i = 1,2.

Since an impact happens in infinitesimal time, it is best analyzed in the impulse
space. During the two-ball collision, there are two impulses: I1 =

∫ t
t0

F1 dt and I2 =∫ t
t0

F2 dt with initial values I(0)
1 = I(0)

2 = 0. Integration of (3) and (4) yields the ball
velocities in terms of the impulses:

v1 = v(0)
1 +

1
m1

Δ I1, where Δ I1 = I1 − I(0)
1 , (5)

v2 = v(0)
2 +

1
m2

(Δ I2 − Δ I1), where Δ I2 = I2 − I(0)
2 . (6)
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The two virtual springs store elastic energies E1 = 1
2 k1x2

1 and E2 = 1
2 k2x2

2, respec-
tively. To eliminate x1, from equations (1), (3), (5), (6) we obtain

dx1

dI1
=

ẋ1

İ1
=

v(0)
1 − v(0)

2 +( 1
m1

+ 1
m2

)Δ I1 − 1
m2

Δ I2

−k1x1
. (7)

Multiply both sides of the above equation with −k1x1dI1 and then integrate. We

obtain the change in the elastic energy E1 from its initial value E(0)
1 :

ΔE1 =
(

v(0)
2 − v(0)

1

)
Δ I1 − 1

2

( 1
m1

+
1

m2

)
Δ I2

1 +
1

m2

∫ I1

I(0)
1

Δ I2 dI1. (8)

Similarly, from equations (2) and (6) we derive the change in E2 from E(0)
2 :

ΔE2 = −v(0)
2 Δ I2 − 1

2m2
Δ I2

2 +
1

m2

∫ I2

I
(0)
2

Δ I1 dI2. (9)

A relationship between the two impulses I1 and I2 can be now set up:

dI2

dI1
=

İ2

İ1
=

k2x2

k1x1
=

√
k2E2√
k1E1

=
√

k2

k1
·
√√√√E(0)

2 + ΔE2

E(0)
1 + ΔE1

. (10)

With no closed-form solution to (10) in general, the impact process is simulated
via numerical integration with a step size of I1, say, h. To initialize ρ = dI2

dI1
(h), we

plug into (8)–(10) the values I1(h) = h, I2(h) ≈ ρh, and
∫ h

0 Δ I2 dI1 =
∫ ρh

0 Δ I1 dI2 ≈
1
2 ρh2. Solve the resulting quadratic equation in ρ :

dI2

dI1
(h) =

2k2

k1 · (b +
√

b2 + 4k2/k1)
, where b = −2 · m2v0

h
− 1 − m2

m1
+

k2

k1
. (11)

As h tends to zero, b goes to infinity. Hence dI2
dI1

(0) = limh→0 ρ = 0.

2.1 State Transition Diagram

An impact is divided into two stages [12, p. 212]: compression and restitution. In
the classical problem of a particle of mass m with downward velocity v0 striking
a horizontal table, the impact ends compression when the velocity becomes zero,
which gives the impulse I = −mv0. Poisson’s hypothesis states that I will accumu-
late −emv0 more during restitution to yield the final velocity −ev0, where e is the
coefficient of friction. Setting up a virtual spring at the contact point, we can derive
the elastic energy E = −v0I − 1

2m I2. Restitution starts with E assuming the max-
imum value 1

2 mv2
0 and ends with loss of energy 1

2 mv2
0 · (1 − e2). Since 0 ≤ e ≤ 1,
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S 2 S 3

S 1
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1

2
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otherwise, spring 1otherwise, spring 2

ends restitution

spring 2 ends

before spring 1
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before spring 2

restitution first
v  > v 1 2

restitution first
(            )

21

(           )

spring 1 ends 

restitution together
both springs end 

End of Collision

Fig. 2. State transition diagram for the two-ball collision in Fig. 1. During each state, v1 and
v2 can be either upward or downward, except v2 is upward in S3.

there is always enough elastic energy to provide the impulse accumulation −emv0

during restitution.
Coming back to the two-ball collision problem, the ball-ball and ball-table im-

pacts have coefficients of restitution e1,e2 ∈ [0,1], respectively. Compressions end
when ẋ1 = 0 and ẋ2 = 0, respectively; or equivalently, by (1), (2), (5), and (6), when

v0 +
(

1
m1

+
1

m2

)
I1 − 1

m2
I2 = 0 and I1 = I2, respectively. (12)

The two impacts will hardly start restitution at the same time, neither will they
end restitution so. When one of them, say, between the two balls, finishes restitution
first, the other one (between the ball and the table) will continue. As a result, the
two balls may start moving toward each other at some point later, reactivating the
first impact.

The above discussion suggests us to partition the collision process into (repeats
of) three states: S1 when both impacts are active, S2 when only the ball-table im-
pact is active, and S3 when only the ball-ball impact is active. Fig. 2 shows a state
transition diagram. The collision starts with the state S1. A transition from S1 to S2

happens when the ball-ball impact finishes restitution before the ball-table impact.
So the two balls are “breaking” contact momentarily. Since the impulse I1 was in
restitution just before the transition, ẋ1 > 0, which by (1) implies v1 > v2 when S2

begins. Because gravity is neglected during the collision, v1 will not vary during S2.
The state will transition back to S1 when v2 increases to become equal to v1 before
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restitution ends. If this does not happen, the ball-table impact will finish restitution
with v1 ≥ v2, hence the end of collision.

Similarly, a transition from S1 to S3 happens when the ball-table impact finishes
restitution before the ball-ball impact. The state S3 will transition to S1 when v2 = 0,
that is, when the lower ball is “re-establishing”contact with the table. Otherwise, the
collision will end within the state.

The transition diagram describes the collision as a sequence of states, each being
one of S1,S2,S3. Now, Ii, i = 1,2, represent the impulses accumulated since the start
of the collision. An impact may start with one state, end compression in another,
and finish restitution with a third.

By induction on the number of states, we can generalize (5) and (6):

v1 = v0 +
1

m1
I1 and v2 =

1
m2

(I2 − I1). (13)

It is easy to show that the conditions (12) respectively hold when the two impacts
end their compressions in a state.

2.2 An Energy-Based Model

The superscript ‘(0)’ continues to refer to the value of a physical quantity at the start
of a state, and the notation ‘Δ ’ its increment so far in the state. The relationship (8)
between ΔE1 and Δ I1 in the state S1 depends on the masses and initial velocities
of both balls, as well as an integral of Δ I2 over I1. If we were to let the impulse
I1 accumulate by a factor of e1 after restitution under Poisson’s hypothesis, there
may not be enough elastic energy E1 left to provide such an increase.2 To deal
with multiple simultaneous impacts, we limit the amount of energy to be released
during restitution relative to the amount accumulated during compression. Since in
the single particle impact case, the loss of energy is 1

2 mv2
0 · (1 − e2), we see that e2

is the needed ratio.
When compression ends, the elastic energy is at its maximum Emax. Restitution

will finish when E = (1 − e2)Emax. The remaining amount e2Emax can be seen as
lost at the state transition instead of at the end of compression. In this view, during
a state, equations (8) and (9) hold for our convenience, while the total (elastic and
dynamic) energy is conserved.

Single-Impact States. The state S2 starts with v(0)
2 < v(0)

1 since restitution of the

ball-ball impact has just finished. During the state, v1 ≡ v(0)
1 and Δ I1 ≡ 0. From (6),

we conclude that restitution, if not in process, would happen during the state when

Δ I2 = −m2v(0)
2 with E2max = E(0)

2 + 1
2 m2v(0)

2

2
by (9). The next state will be S1 if

S2 starts during compression and v(0)
1 < 0. Since v2 increases toward zero by (6),

it will reach v(0)
1 before compression ends, hence the transition to S1. Under the

new energy-based model, a transition to S1 will also happen if S2 starts during

2 An example will be given at the end of Section 2.3.
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restitution with E(0)
2 + 1

2 m2v(0)
2

2
> 1

2 m2v(0)
1

2
+(1− e2

2)E2max. If neither case of tran-
sition happens, the collision will end. The impulse accumulation during S2 is

Δ I2 =

⎧⎪⎨⎪⎩
m2(v

(0)
1 − v(0)

2 ), if S1 next,

m2

(√
v(0)

2

2
+ 2

E
(0)
2 −(1−e2

2)E2max
m2

− v(0)
2

)
, if impact ends.

A similar analysis based on (8) applies to S3 in determining whether the collision
will end or S1 will follow, and the amount Δ I1 during S3.

Double-Impact State. Evolution in the state S1 is governed by the differential
equation (10) with increasing impulses I1 and I2. If S1 is the start of the collision
or follows S3, I1 is the primary impulse (variable), and I2 is the secondary impulse
(function of I1). If S1 follows S2, the roles of the two impulses reverse. Similar
to (11), we initialize the impulse derivatives dI1

dI2
(h) or dI2

dI1
(h) accordingly for numer-

ical integration. In these two cases, dI1
dI2

(0) = 0 and dI2
dI1

(0) = 0, respectively.
At each step of the numerical integration of (10), we check (12) to see if com-

pression has just ended for either impact, and if so, set the maximum elastic energy
E1max or E2max accordingly. The state transitions to S2 when E1 = (1 − e2

1) · E1max

during restitution of the ball-ball impact, or to S3 when E2 = (1− e2
2) ·E2max during

restitution of the ball-table impact, whichever occurs earlier.

2.3 The Impulse Curve

In the state S1, the differential equation (10), along with (8) and (9), has only one
occurrence of the stiffness ratio k2

k1
but none of k1 or k2 separately. Meanwhile, the

outcome of the states S2 and S3 are independent of k1 or k2.

Theorem 2.1. The outcome of the collision depends on the stiffness ratio k1/k2 but
not on individual values of k1 and k2.

The next theorem bounds the total elastic energy using the impulses.

Theorem 2.2. The following is satisfied during the collision:

0 ≤ E1 + E2 ≤ −v0I1 − 1
2m1

I2
1 − 12m2(I1 − I2)2. (14)

Proof of the theorem is by induction on the number of states while making use of
equations (8), (9), and (13). Details are omitted.

In the plane with I1 and I2 as the two axes, the impulse curve describes the evolu-
tion of their values during the collision. Theorem 2.2 states that this curve is bounded
by an ellipse:

1
2m1

I2
1 +

1
2m2

(I1 − I2)2 + v0I1 = 0. (15)
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In Fig. 3, the ellipse has its semi-minor axis rotated from the I1-axis by θ =
1
2 arctan

(
− 2m1

m2

)
and its center at

(
−v0 cosθ

cos2 θ
m1

+ 1−sin(2θ )
m2

, v0 sinθ
sin2 θ

m1
+ 1+sin(2θ )

m2

)
. It is tangent to

the I2-axis at the origin and to the line I1 = −2m1v0 at (−2m1v0,−2m1v0).3

v  > v 1 2

v  < v 1 2

v  < v 1 2

v  <2 0

v  <2 0

v  >2 0

1 0m v

I2

I1

v  > v 1 2
v  >2 0

1 0m v−2

1 0m v−2

l  1

l2

I

IV

II

1 0m v

2m v0

−

−

III

Fig. 3. Impulse plane.

The impulse curve is monotone in the sense
that I1 and I2 never decrease. This is clear if the
state is S2 or S3 in which one of the impulses in-
creases while the other does not vary. After S1

starts, the strain energies E1,E2 > 0, which implies
the derivative dI2/dI1 =

√
k2E2/

√
k1E1 > 0, hence

the monotonicity.
Add two lines �1 and �2 defined by equa-

tions (12). Referred to as the compression lines,
they partition the feasible elliptic region (I1 ≥ 0)
into four smaller regions I–IV. The impulse curve
evolves from the origin into region I within the
state S1 as dI2

dI1
increases from 0. As I1 increases un-

constrained, the curve will cross �1 (or �2) when
the ball-ball impact (or the ball-table impact) ends
compression. During the state S2, the curve stays to
the right of the line �1, and evolves vertically up-
ward, ending either inside region IV (in which case
the collision ends) or on the line �1 for a transition to S1. Similarly, during S3, the
curves stays to the left of �2 and evolves horizontally to the right, ending either
inside the region IV or on the line �2 for a transition to S1.

Fig. 4 illustrates a collision instance which results in a sequence of four states
S1, S3, S1, S2. In (a), the impulse curve is plotted, along with the bounding ellipse:
−3I1 + 1

2 I2
1 + 1

2(I1 − I2)2 = 0 and the two compression lines �1: −3 + 2I1 − I2 = 0
and �2 : I1 = I2. The impulse segments corresponding to different states are labeled
in the order and separated by the dots. The first segment (of a S1 state) crosses �2

before �1, indicating that the ball-table impact goes into restitution before the ball-
ball impact. The ball-table impact subsequently finishes restitution. This is marked
as C2-C1-R2 in table (b), where each row describes the status at the end of a state.
Diagram (c) in the figure plots the evolution of the elastic energies E1 and E2 with
four segments also labeled in the state order. It shows energy losses at the end of all
but the second states. The loss in the total (elastic and dynamic) energy E during the
collision is calculated to be 1.2494.

Suppose restitution were decided by impulse accumulation according to Pois-
son’s hypothesis for single impact. The same collision would generate an impulse
curve exiting the bounding ellipse (15) in the fourth state — the increase of I1 to the
required value 5.906 would result in a negative elastic energy (E1 = −1.01).

3 The two horizontal bounding lines are I2 = (−m1 ±√
m1m2)v0 with points of tangency to

the ellipse at I1 = −m1v0.
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2I

I1

1

2

l1

l2

4

3

state v1 v2 I1 I2 Comp. Res.
S1 0.6088 0.3573 3.6085 3.9661 C2-C1-R2
S3 0.9661 0 3.9661 3.9661
S1 2.4414 −0.1211 5.4414 5.3202 R1
S2 2.4414 0.7355 5.4414 6.1769 C2-R2

(b)

E1

3.793.5726

(0.3826, 0.6692)0.6692

(3.79, 0.4609)

2

13
4

2E

(a) (c)

Fig. 4. The impulse and energy curves for a collision of two balls as in Fig. 1 with masses
m1 = m2 = 1kg, the stiffness ratio k2

k1
= 10, the coefficients of restitution e1 =

√
0.9 and

e2 =
√

0.4, and the upper ball velocity v0 = −3m/s.

Every state terminates. This is trivial for S2 and S3 for which Δ I1 and Δ I2 are
given in Section 2.2. Within the state S1, the ‘primary impulse’ must stop increasing
because the impulse curve is bounded inside the ellipse (15).

Denote by I(i)
1 and I(i)

2 the values of the two impulses at the end of the ith state.

The sequence {(I(i)
1 , I(i)

2 )} is monotone non-decreasing. In case it is finite, the state
transitions terminate with v1 ≥ v2 ≥ 0 according to the diagram in Fig. 2 as the im-
pulse curve stops inside region IV in Fig. 3 or on it boundary.4 In case the sequence
is infinite, because it is bounded inside the ellipse (15), by a result from calculus it
must converge to some point (I∗

1 , I∗
2 ). We can show that this point must lie on the

boundary of region IV.

Theorem 2.3. The state transitions will either terminate with v1 ≥ v2 ≥ 0 or the
generated impulse sequence will converge with either v1 = v2 ≥ 0 or v1 > v2 = 0.

As v0 scales by a factor of s, we can show that throughout the collision the im-
pulses I1, I2 and the velocities v1,v2 scale by s while the elastic energies E1 and E2

scale by s2. The differential equation (10) still holds after the scaling, as well as the
conditions (12) for ending of compressions and the conditions on state transitions.

Theorem 2.4. At the end of the collision, the ratios v1/v0 and v2/v0 are constants
depending on m1,m2, e1,e2 and the stiffness ratio k1/k2 only.

4 The curve will reach the bounding ellipse at termination only if e1 = e2 = 1.
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2.4 Preliminary Experiment

To validate the collision model, we let a ping pong ball B1 fall onto another one
B2 resting on a plexiglass block. The ball has mass 0.00023kg and radius 0.019m.
The block is placed horizontally on the marker tray of a (vertical) office whiteboard,
and against a vertical axis � drawn on the board. The ball B1 is held in the hand.
Both balls are positioned almost in contact with the whiteboard such that � “passes
through” their centers in the frontal view.

To measure the coefficient of restitution e2 between a ball and the plexiglass
surface, we drop the ball from certain height h1 onto the surface and record the
rebounding height h2 (on the axis by human vision). Thus e2 ≈√h2/h1. Sixteen
measurements from different heights (with four balls) have generated a mean esti-
mate of 0.846529 with a standard deviation of 0.020827. To measure the coefficient
of ball-ball restitution e1, B2 is held steady on the surface, and B1 is dropped from
the same height onto B2 multiple times with the highest rebound (from the closest-
to-a-perfect hit) recorded. The mean value of e1 calculated over eight different drop-
ping heights is 0.807755 with standard deviation 0.021231.

v0

v2

v1

one trial

(     )m/s

(     )m/s

Fig. 5. Collisions between two ping pong balls and a
plexiglass surface: experimental results (dots) vs. pre-
dictions (lines) by the impact model (with guess
k2/k1 = 10).

A collision trial involves
dropping B1 from a fixed height
onto B2 multiple times, and
choosing the one with the high-
est rebounds of both balls. The
input velocity v0 and the out-
put velocities v1 and v2 are cal-
culated. Results from ten tri-
als, each with a different drop-
ping height, are plotted in Fig. 5
as pairs of points (−v0,v1) and
(−v0,v2). Also shown are the
two lines v1 and v2 as v0 varies
from −2m/s to −4m/s. Despite
the rather primitive setup and
measurement method, the re-
sult suggests a reasonably good
match between the model and
the physical collision process.

3 Shooting a Billiard

We apply the impact model to the problem of a cue stick shooting the cue ball in the
game of pool, as illustrated in Fig. 6. The cue stick has initial velocity vc0. Let c be
the unit vector vc0/‖vc0‖, n the unit normal at the point of impact on the ball, and z
the unit normal at the table contact. The condition n ·c < 0 must hold for the shot to
happen. During the shot, we assume that the cue stick is constrained to move along
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c or −c.5 The cue stick has velocity vc, the ball has velocity v and angular velocity
ω , all varying during the shot.

I2z

c
I1

stick
cue

cue 
ball

n

Fig. 6. Pool shot.

Denote by I1 and I2 the impulses at the cue-ball and the
ball-ball contacts, respectively, as shown in the figure. The
impulse I1 consists of a normal component I1nn and a tan-
gential component I1⊥. The impulse I2 consists of a ver-
tical component I2zz and a horizontal component I2⊥. We
have I1n > 0 or I2z > 0 whenever the corresponding impact is
active.

Two virtual springs, with stiffnesses kcb and kbt, are at-
tached at the points of impact in alignment with the normals n and z, respectively.
Based on the impact model, the shot by the cue stick has three states: S1 (illustrated
in Fig. 7) during which both the ball-ball and the ball-table impacts are active, S2

during which only the ball-table impact is active, and S3 during which only the ball-
ball impact is active. The shot starts with S1 and ends in either S2 or S3.

S 1

vc

2

n

z

ω

v

1

Fig. 7. State S1.

Denote by vcb the relative velocity of the cue stick to the
ball, and by vbt that of the ball to the pool table. The state
transition diagram has the same structure as that in Fig. 2
except in the transition conditions, v1 − v2 and v2 are respec-
tively replaced by the normal velocity components vcb ·n and
vbt · z. A cue-ball impact is in compression when vcb · n < 0.
A ball-table impact is in compression when vbt · z < 0.

If the cue stick shoots the ball below its equator (i.e., n ·z <
0) or at the equator horizontally or upward, only the cue-ball
impact exists. In this case, the transition diagram has only one
state — S3.

3.1 Dynamics and Impact State Analysis

The symbols (0) and Δ carry the same meanings as in Section 2. For instance,

Δvcb = vcb −v(0)
cb is the change in the relative velocity of the cue stick to the cue ball

during a state from its starting value v(0)
cb .

Let M be the mass of the cue stick. Let the ball have radius r and mass m, thus
angular inertia 2

5 mr2. Changes in the velocities during a state can be expressed in
terms of the impulse accumulations Δ I1 and Δ I2:

Δvc =
1
M

(Δ I1 · c)c, Δv =
1
m

(Δ I2 − Δ I1), (16)

Δω =
5
2

1
mr2

(
rn × (−Δ I1)+ (−rz)× Δ I2

)
, (17)

Δvcb = Δvc − Δv− Δω × (rn), Δvbt = Δv− Δω × (rz). (18)

5 This is the case with our design of a mechanical cue stick to be shown in Fig. 8.
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To find out how the normal impulses I1n = I1 · n and I2z = I2 · z are related to
each other in the state S1, we notice that the two virtual springs at the cue-ball and

the ball-table contacts have their lengths change at the rates ẋ1 = n · (v(0)
cb + Δvcb)

and ẋ2 = z · (v(0)
bt + Δvbt), respectively. From these rates, İ1n = −kcbx1, and İ2z =

−kbtx2, we obtain the derivatives dx1
dI1n

and dx2
dI2z

as linear expressions in Δ I1 and
Δ I2 over −kcbx1 and −kbtx2, respectively. Multiplying away the denominators in
the derivative equations and integrating both sides of each equation, we obtain the
changes in the elastic energies:

ΔE1 = E1 − E(0)
1 = −n ·

(
Δ I1nv(0)

cb +
( 1

M
ccT +

1
m

)
D1 − 1

m
D2

)
, (19)

ΔE2 = E2 − E(0)
2 = −z ·

(
Δ I2zv

(0)
bt − 1

m
D3

)
− 1

m
D4, (20)

where the four integrals during the state are defined as D1 =
∫ I1n

I(0)
1n

Δ I1 dI1n, D2 =∫ I1n

I
(0)
1n

Δ I2 dI1n, D3 =
∫ I2z

I
(0)
2z

Δ I1 dI2z, and D4 = 1
2 Δ I2

2z. This sets up a differential rela-

tionship between I1n and I2z:

dI2z

I1n
=

İ2z

İ1n
=

−kbtx2

−kcbx1
=

√
kbt

kcb
·
√√√√E(0)

2 + ΔE2

E(0)
1 + ΔE1

. (21)

The system of equations (19)–(21), along with a contact mode analysis, deter-
mines the evolution within the state S1. A closed-form solution does not exist in
general. Numerical integration is performed as follows.

Entering a state, we need to set dI1n to h and compute dI2z/dI1n if at the start
of the shot or the previous state is S3, or set dI2z to h and compute dI1n/dI2z if the
previous state is S2. The tangential impulse increments dI1⊥ and dI2⊥, as well as
D1,D2,D3,D4, are also initialized. This is similar to that for the two-ball collision
as described right before Section 2.1 but is much more involved since we need also
determine the contact modes.

After initialization, iterate until one of the impacts ends restitution. At each iter-
ation step, update vcb, vbt according to (18), and E1, E2 according to (19)–(20). In
case one impact is starting restitution, set maximum elastic energy E1max or E2max

accordingly. Compute dI1n and dI2z by (21), and I1⊥ and I2⊥ based on a contact
mode analysis to be described below. The iteration step finishes with updating the
values of Δ I1, Δ I2, D1,D2,D3,D4.

Contact Modes. Contact modes depend on the tangential components vcb⊥ and
vbt⊥ of the two contact velocities vcb and vbt. Let μcb and μbt be the coefficients
of friction between the cue tip and the ball and between the ball and the table,
respectively. When a tangential velocity, say, vcb⊥, is not zero, the cue tip is sliding
on the ball. We have dI1⊥ = −μcbdI1n · v̂cb⊥ under Coulomb’s law, where v̂cb⊥ =
vcb⊥/‖vcb⊥‖. Similarly, dI2⊥ = −μbtdI2z · v̂bt⊥ when the ball is sliding on the table.
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When one tangential velocity is zero, there are three cases: (1) vcb⊥ = 0 but vbt⊥ �=
0, (2) vbt⊥ = 0 but vcb⊥ �= 0, and (3) vcb⊥ = 0 and vbt⊥ = 0. We here treat the first
case only as the other two cases can be handled similarly.

In case (1), dI2⊥ = −μbtdI2z · v̂bt⊥. We obtain the derivative of vcb⊥ with respect
to I1n in terms of those of the tangential impulses I1⊥ and I2⊥. To stay in sticking
contact, dvcb⊥/dI1n = 0, which determines the value of dI1⊥/dI1n. If ‖dI1⊥/dI1n‖ ≤
μcb, the contact stays sticking. Otherwise, the contact starts sliding in the direction
of dvcb⊥/dI1n, which can be solved.

Ball-Table Impact Only. In the state S2, E1 = 0 and I1 = 0. In the case that
S2 begins during compression, we set the maximum elastic energy E2max = E(0)

2 +
1
2 m(v(0)

bt · z)2. From (16)–(18) under Δ I1 = 0, the change in the tangential velocity is
Δvbt⊥ = (1 − zzT )Δvbt = 7

2m Δ I2⊥. So vbt⊥ and I2⊥ will not change their directions
during the state. Once vbt⊥ reduces to zero, it will stay zero so as not to contradict

Coulomb’s law. To make v(0)
bt zero, Δ I2⊥ = −mv(0)

bt , which requires Δ I2z ≥ m
‖v(0)

bt ‖
μbt

.
Also, S2 would switch to the state S1 when vcb ·n = 0. We hypothesize the outcome
of S2 (a transition to S1 or the end of collision), and in the first case, the contact
mode (sticking or sliding). Then we test these hypotheses by checking some derived

inequalities which depend on v, v(0)
c , v(0)

bt , E(0)
2 , ΔE2, and E2max.

Cue-Ball Impact Only. Entering the state S3 from S1, the ball-table impact had

just finished restitution, so v(0)
bt · z > 0. Substituting Δ I2 = 0 into (18), we obtain

the change in the tangential velocity: Δvcb⊥ = 1
M (c ·Δ I1)c⊥ + 7

2m Δ I1⊥. Two special
cases, c = n and c · z = n · z = 0, can be treated with analyses similar to that for the
case of ball-table impact only.

Generally, I1⊥ varies its direction along a curve in the tangent plane. Numerical
integration similar to that described earlier for the two-impact state is employed.
The procedure is nevertheless simpler given only one impulse I1.

3.2 Billiard Simulation

Table 1 shows four different shots and the trajectories6 resulting from three of them.
With some simplifications7, the ball trajectory is completely determined by the x
and y components of its velocity v and angular velocity ω. It is known that the ball
will first slide along a parabolic arc (unless ω · v = 0) and then roll along a straight
line before coming to a stop.

The first shot, vertical but not through the ball center, yields a straight trajectory
in figure (a). The second shot (figure (b)), horizontal along the x-axis, hits the point
at the polar angle 3π

4 on the ball’s equator. Due to friction, the ball trajectory forms a
smaller angle with the x-axis than with the y-axis, exhibiting some effect of English.

6 The trajectory equations are omitted, though some can be found in [11].
7 We ignore the effects on the trajectory due to (possibly) multiple collisions between the

ball and the table.
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Table 1. Four shots at the cue ball (with the x-y plane on the pool table). Trajectories (a),
(b), (c) are produced by the 1st, 2nd, 4th shots, respectively. On each trajectory, the red dot
marks where sliding switches to pure rolling; and the green line represents the cue stick. We
use the following measured physical constants: m = 0.1673kg, M = 0.5018kg, r = 0.0286m,
μbt = 0.152479, ecb = 0.656532, and ebt = 0.51625. We set μcb = 0.4 [14] and the stiffness
ratio kcb/kbt = 1.5.

shot n v(0)
c v ω

vertical (−1,−2,1)√
6

(0,0,−2) (0.3963,0.7926,0.4506) (27.97,−13.98,0)

horizontal (−
√

2
2 ,−

√
2

2 ,0) (0.8,0,0) (0.6299,0.4614,0) (0,0,10.42)

jump (−
√

2
2 ,0,−

√
2

2 ) (1,0,−1) (1.169,0,0.1883) (0,13.15,0)
massé (−2,−1,12)√

149
(4,0,−16) (−0.3253,0.2938,6.232) (−88.48,179.8,−3.178)

(a) (b) (c)

The third is a jump shot in the x-z plane. The last one, shown in figure (c), is a massé
shot with the cue erected.

4 Discussion and Future Work

The introduced impact model makes use of the fact that the velocity and angular
velocity of a body in simultaneous collisions are linear in the impulses at its contact
points (with other bodies) like in (5)–(6) or (16)–(17). The linearity carries over
to an object of arbitrary shape with angular inertia matrix Q. Suppose the forces
f i are applied on the object at the locations ri. Integrating the dynamic equation
∑i ri × f i = Qω̇ +ω ×Qω over the duration Δ t of an impact, we obtain ∑i ri × Ii =
QΔω since ω is bounded.

Fig. 8. A mechani-
cal cue stick.

The state transition diagram can deal with three or more im-
pact points via state partitioning based on which impacts are
instantaneously “active” and which are not. A transition hap-
pens whenever the set of active impacts changes. The evolution
within a state is driven by the primary impulse. The elastic en-
ergy at a contact can still be expressed in terms of the impulses
affecting the two involved bodies as in (8)–(9). A differential
relationship like (21) holds between the active normal impulses
at two contact points.

We would like to compare the model with other existing
models [3, 8, 5] on multiple impacts. Our main effort, though,
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will be experimental verification of the impact model for billiard shots. A shooting
mechanism has been designed as shown in Fig. 8. It includes a steel cue stick con-
strained to linear motions by ball bearings inside an aluminum box. The cue stick
can be elevated by adjusting the slope of the attached incline. We plan to exam-
ine issues like area contact, shearing effect of the cue tip, bending of the cue stick,
gravity, etc.

The long term objective is to design a robot able to play billiards with human-
level skills based on understanding of the mechanics. To our knowledge, none of the
developed systems [13, 10, 7] perform shots based on the mechanics of billiards, or
have exhibited real shooting skills.

Acknowledgment. This work began during the first author’s 6-month sabbatical
visit at Carnegie Mellon University in 2007, and has since continued primarily at
Iowa State University and in China. The work was sponsored in part by both uni-
versities, and in part by DARPA under contract HR0011-07-1-0002. This work does
not necessarily reflect the position or the policy of the U.S. Government. No official
endorsement should be inferred. The authors are grateful to Amir Degani and Ben
Brown for their generous help in the design of the billiard shooting mechanism, and
to the anonymous reviewers for their valuable comments.

References

1. Ahmed, S., Lankarani, H.M., Pereira, M.F.O.S.: Frictional impact analysis in open-loop
multibody mechanical systems. J. Applied Mechanics 121, 119–126 (1999)

2. Anitescu, M., Porta, F.A.: Formulating dynamic multi-rigid-body contact problems with
friction as solvable linear complementarity problems. ASME J. Nonlinear Dynamics 14,
231–247 (1997)

3. Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies.
Computer Graphics 23, 223–232 (1989)

4. Brach, R.M.: Rigid body collisions. J. Applied Mechanics 56, 133–137 (1989)
5. Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse

space considerations. J. Applied Mechanics 65, 939–951 (1998)
6. Han, I., Gilmore, B.J.: Impact analysis for multiple-body systems with friction and slid-

ing contact. In: Sathyadev, D.P. (ed.) Flexible Assembly Systems, pp. 99–108. American
Society Mech. Engineers Design Engr. Div. (1989)

7. Ho, K.H.L., Martin, T., Baldwin, J.: Snooker robot player — 20 years on. In: Proc. IEEE
Symp. Comp. Intell. Games, pp. 1–8 (2007)

8. Ivanov, A.P.: On multiple impact. J. Applied Math. Mechanics 59, 887–902 (1995)
9. Keller, J.B.: Impact with friction. J. Applied Mechanics 53, 1–4 (1986)

10. Long, F., et al.: Robotic pool: an experiment in automatic potting. In: Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., pp. 2520–2525 (2004)

11. Marlow, W.C.: The Physics of Pocket Billiards. Marlow Advanced Systems Technolo-
gies (1994)

12. Mason, M.T.: Mechanics of Robotic Manipulation. The MIT Press, Cambridge (2001)
13. Moore, A.W., Hill, D.J., Johnson, M.P.: An empirical investigation of brute force to

choose features, smoothers and function approximators. In: Hanson, S.J., et al. (eds.)
Computational Learning Theory and Natural Learning, pp. 361–379. The MIT Press,
Cambridge (1995)



150 Y.-B. Jia, M. Mason, and M. Erdmann

14. Cross, R.: Billiarads,
http://physics.usyd.edu.au/˜cross/Billiards.htm

15. Routh, E.J.: Dynamics of a System of Rigid Bodies. MacMillan and Co., Basingstoke
(1913)

16. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics
with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Engr. 39, 2673–
2691 (1996)

17. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Review 42, 3–39
(2000)

18. Wang, Y., Mason, M.T.: Two-dimensional rigid-body collisions with friction. J. Applied
Mechanics 59, 635–642 (1991)

http://physics.usyd.edu.au/~cross/Billiards.htm


A Variational Approach to Strand-Based
Modeling of the Human Hand

Elliot R. Johnson, Karen Morris, and Todd D. Murphey

Abstract. This paper presents a numerical modeling technique for dynamically
modeling a human hand. We use a strand-based method of modeling the muscles.
Our technique represents a compromise between capturing the full dynamics of the
tissue mechanics and the need for computationally efficient representations for con-
trol design and multiple simulations appropriate for statistical planning tools of
the hand. We show how to derive a strand-based model in a variational integra-
tor context. Variational integrators are particularly well-suited to resolving closed-
kinematic chains, making them appropriate for hand modeling. We demonstrate the
technique first with a detailed exposition of modeling an index finger, and then ex-
tend the model to a full hand with 19 rigid bodies and 23 muscle strands. We end
with a discussion of future work, including the need for impact handling, surface
friction representations, and system identification.

1 Introduction

Dynamic models of the hand are difficult to create because of strong coupling be-
tween every part of the system. Coupling arises from the geometry of the muscles
and tendons (e.g. a single tendon affects multiple joints rather than just one), the
physical structure (e.g. coupling between muscles), and neurological factors. Phys-
iologists typically reduce the complexity by focusing on a single finger or joint.
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Fig. 1. The dynamic model of a human hand. (Left) The thin lines represent the mus-
cle/tendon strands that actuate the hand. (Right) Contact can be modeled by holonomic con-
straints between finger tips and an object. (The STL model was derived from http://www-
static.cc.gatech.edu/projects/large models/hand.html)

Roboticists often simplify the hand’s complicated tendon geometry into models that
apply torque directly at each joint. While appropriate for engineered systems (e.g.
the RIC hand [1]–but not the Shadow Hand [9] which is cable-driven), this approach
discards the coupling and geometry that are crucial for studying the mechanical ca-
pabilities and control strategies of the hand.

Studies of complete hands in physiology have mostly been restricted to static
models because of complexity. Static models are useful for applications such as
predicting fatigue and maximum finger-tip forces in equilibrium, but they are fun-
damentally limited. The hand activates different muscles and activation patterns in
dynamic motions compared to static contractions, even when moving through iden-
tical postures [22]. Dynamic models are clearly an important yet underdeveloped
research area.

This paper presents a dynamic model of a complete hand that is free of numer-
ical dissipation. The muscle/tendon pairs are modeled as one degree of freedom
(DOF) elastic elements (e.g. linear or nonlinear springs) called strands [2, 20]. The
model, including muscle strands, is shown in Fig. 1. Modeling is accomplished with
a tree-based [7] variational integrator [21]. The tree approach provides a consistent
framework for describing a system’s geometry and including elements like forces,
constraints, and potential energies. Variational integrators have excellent numeric
stability and energy conservation properties, and handle closed kinematic chains
extremely well. They also behave well with both elastic and plastic impacts as well
as friction. Together, variational integrators and tree-form representations provide
stable, physically accurate simulations in generalized coordinates even for mechan-
ically complex systems like the hand.
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Variational integrators should be of particular interest to the computer science
part of the robotics community. They represent dynamics in a naturally discrete
setting–hence the term discrete mechanics–rather than a continuous one. This fea-
ture, along with the fact that variational integrators are valid over long time horizons,
makes probabilistic planning and optimal control more feasible. Moreover, because
variational integrators are particularly simple to implement they can be integrated
easily into other algorithms. Lastly, algorithms capable of computing variational in-
tegrators typically can compute other quantities such as the linearization; this allows
one to evaluate the local singular value decomposition of a system at any operating
point. The key point is that variational integrators provide a particularly compu-
tational view of mechanics, starting from their derivation, and this is useful when
working with complex systems in a robotics context.

This work demonstrates that a variational modeling approach leads to numer-
ically stable models that are easy to modify and extend. The model includes dy-
namics without resorting to PDEs, favoring useful abstractions and computational
tractability instead. Variational integrators also deal with constraints (particularly
closed kinematic chains) in a natural and robust way. Hence, these techniques can
also be used on simpler systems such as the Shadow Hand [9] and other cable-driven
robots.

We begin with a background discussion of hand anatomy and discuss previously
published models in Sec. 2. We continue with an overview of variational integrators
and discrete mechanics in Sec. 3. Section 4 discusses the strand abstraction our
model uses for muscles/tendons in the hand. Finally, we present several simulations
in Sec. 5 that use our model.

2 Background: Hand Modeling

Hand physiology is a complex subject that involves understanding the mechani-
cal structure (i.e. system identification), characterizing the nervous system’s con-
trol strategies, and developing mechanical models of the hand. We present a brief
overview of hand anatomy and modeling strategies.

2.1 Hand Anatomy

The human hand contains 27 bones [6] with approximately 30 degrees of freedom
[12]. It is actuated by 29 muscles, some of which are subdivided into parts that
contract independently to provide a total of 38 unique actuators. Modeling the hand
involves complex geometry due to the joints of the skeleton, sliding of the muscles,
and the routing of the tendons.

We focus on the hand from the wrist to the finger tips. Each of the four digits is
associated with four bones: the metacarpal (MCP), proximal phalanx (PP), middle
phalanx (MP), and distal phalanx (DP). There are approximately five DOF for each
digit: one at the base of the MCP, two at the MCP/PP joint, one at the PP/MP joint,
and one at MP/DP joint.
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Fig. 2. The dark lines are a schematic representation of an extensor tendon. The single tendon
attaches to several bones and muscles. Diamonds indicate fixed insertions to bones. Arrows
represent muscle forces. The complex geometry results in strong coupling between muscles
and non-trivial control.

The thumb has three bones (MCP, PP, and DP) and approximately four DOF
allowing it to oppose, abduct, adduct, and flex [5]. The muscles actuating the thumb
have complex geometry compared to those for the digits. As a result, the thumb is
often not modeled despite contributing 40% of the function of the hand [8]. The
abstractions used in this paper scale well with this type of complexity, and so the
thumb is included in our model.

Bone geometry plays a significant role in hand dynamics. Tendons slide along
bone surfaces, changing where forces are applied as the bones move. Because of the
role that bone geometry plays, rapid prototyping is essential for generating mean-
ingful hand models; physiologists often have insight about how a muscle/tendon
moves across a bone during hand motion.

One of the hardest aspects of hand models are the tendons. Tendons are made up
of dense connective tissue that is elastic, flexible, and strong [18, 5]. We will divide
types of tendon into three classes for our purposes.

The first class we will define is made of simple tendons that are short connectors
between a muscle and a single bone. The tendons that connect muscles to their
origins are typically this simple type.

The second class has slightly more complicated tendons that connect one muscle
to two bones, but work over long pathways. These tendons may slide over many
bones, joints and fibrous sheaths that act as pulleys. As a result, the tension in the
tendon applies forces to multiple points along its path and creates coupling between
joints [19]. The flexor tendons of the hand are examples of this class.

Finally, the most complex tendons connect multiple bones and muscles, and also
work over long pathways. These tendons can branch off and connect in many places
to form complex structures. The extensor tendons, shown in Fig. 2 are this type.
Identifying accurate representations of these tendons is still an open research prob-
lem in physiology [23].

Dynamic modeling of the hand is complicated by other physiological factors as
well. The hand is over-actuated [6] and kinematically redundant [4] so there is no
one-to-one mapping between muscles and joint torques. There is also significant
coupling between muscles caused by both mechanical coupling and activation of
more than one muscle at a time. This is again distinct from traditional robotic hands
where all joints are independently controlled. Coupling plays an important role in
all aspects of hand motion. Muscles are often co-activated such that some provide
the major force while others stabilize the motion.
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2.2 Hand Modeling

Partial differential equations have been used for modeling walking [15], facial
movements [17], the surface of the heart [10], etc. However, there is no intrinsic
reason to believe that a model that simplifies the hand system to a series of one
degree-of-freedom-spring kinematic chains would be any less accurate than a highly
complex PDE simulation [15]. This is because PDE models necessarily make as-
sumptions about the underlying homogeneity of the muscle and bone tissue, leading
to models that cannot be identified well. Moreover, for control purposes we wish
to have a “simple” model that incorporates all the hand geometry and coupling in a
dynamically correct manner.

Assuming one accepts a finite dimensional modeling setting, a finger can be mod-
eled as a kinematic chain [13]. Lee and Kroemer [11] created a kinematic model of
the finger that included flexion and extension. The moment arms of the tendons are
constant and external forces were considered. This model was used to measure fin-
ger strength. Static equilibrium problems were used to make inferences about the
dynamics of the model. Notably, there has been relatively little work on whole hand
modeling.

Muscle models in the hand are often modeled as weightless expandable threads
[2]. Models in the past that use the weightless expandable threads in hand modeling
do so by solving static problems at each step and then animate the steps to create a
smooth motions of the hand (see Sueda et al. [20]). The use of static poses and ani-
mation is effective at producing human like movement, but may not be natural. The
model presented in this paper also uses the weightless expandable thread technique
to model the tendons, but has the advantage of having no numerical dissipation (the
major drawback described in [20]). Lastly, kinematic redundancy can be dealt with
by adding constraints that reflect the physiology of the hand. These constraints can
be easily included in our numerical simulation because variational integrators (de-
scribed in the next section) are particularly well-suited to modeling closed kinematic
chains.

3 Background: Variational Integrators

Variational integrators are a result of relatively recent research in discrete mechan-
ics. These integrators are derived in a similar way as the Euler-Lagrange equations.
They have been shown to respect important mechanical properties like conservation
of energy and momentum (in the absence of nonconservative forcing), and have
been observed to have other desirable properties like good dissipation modeling for
systems with friction, excellent closed-kinematic chain behavior, and good conver-
gence. Variational integrators also work directly in generalized coordinates which
are preferred for describing anatomical aspects of the hand.

We introduce variational integrators with an overview of how the Euler-Lagrange
equation is derived from a variational principle and discuss how the derivation is
modified to obtain variational integrators.
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Lagrangian mechanics provide a coordinate-invariant method for generating a
system’s dynamic equations. Lagrangian mechanics are derived from a variational
principle. We define the Lagrangian of system as its total kinetic energy minus po-
tential energy in terms of generalized coordinates q = [q1,q2, . . . ,qn] ∈ R

n and their

time derivative q̇ =
[

∂q1
∂ t , ∂q2

∂ t , . . . , ∂qn
∂ t

]
:

L(q, q̇) = KE(q, q̇)− PE(q) (1)

The integral of the Lagrangian over a trajectory is called the Action (Fig. 3a):

S(q([t0, t f ])) =
∫ t f

t0
L(q(τ), q̇(τ))dτ (2)

Hamilton’s Least Action Principle states that a mechanical system will naturally
follow the trajectory that extremizes (e.g. minimizes) the action; hence, it is not
so much a least action principle as an action stationarity principle. Extremizing (2)
with a variational principle shows that such trajectories satisfy the Euler-Lagrange
equation:

∂
∂ t

∂L
∂ q̇

(q, q̇)− ∂L
∂q

(q, q̇) = 0 (3)

which is a second-order ordinary differential equation (ODE) in q. Given a set of ini-
tial condition (q(t0), q̇(t0)), we numerically integrate (3) to simulate the system dy-
namics. The derivation can be extended to include holonomic/non-holonomic con-
straints, external forces, and dissipation [14].

In derivation of (3), the system’s trajectory is always continuous. The trajectory is
not discretized until the last step during numeric integration. A variational integrator,
on the other hand, is derived by introducing the time discretization before applying
the variational principle.

3.1 Discrete Mechanics

In discrete mechanics, we seek a sequence {(t0,q0),(t1,q1), . . . ,(tn,qn)} that ap-
proximates the actual trajectory of a mechanical system (qk ≈ q(tk)). In this paper,
we assume a constant time-step (tk+1 − tk = Δ t ∀ k) for simplicity, but in general,
the time-step can be varied to use adaptive time-stepping algorithms.

A variational integrator is derived by defining a discrete Lagrangian, Ld , that
approximates the continuous action integral over a short time interval.

Ld (qk,qk+1) ≈
∫ tk+1

tk
L(q(τ), q̇(τ))dτ (4)

The discrete Lagrangian allows us to replace the system’s action integral with an
approximating action sum.

S(q([t0,t f ])) =
∫ t f

t0
L(q(τ), q̇(τ))dτ ≈

n−1

∑
k=0

Ld (qk,qk+1) (5)
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Fig. 3. The discrete action sum approximates the continuous action integral using the discrete
Lagrangian (which requires a choice of quadrature rule, in this case the standard Riemann
integral).

where t f = tn. This approximation is illustrated in Fig. 3. The shaded region in Fig.
3a represents the continuous action integral. The shaded boxes in Fig. 3b represent
values of the discrete Lagrangian, which are summed to calculate the discrete action.

In continuous mechanics, a variational principle is applied to extremize the action
integral and derive the well-known Euler-Lagrange equation. The same approach is
used to extremize (5) to get the discrete Euler-Lagrange (DEL) equation1.

D1Ld (qk,qk+1)+ D2Ld (qk−1,qk) = 0 (6)

h(q) = 0 (7)

where Eq. (7) represents constraints if there are any. Nonholonomic constraints can
be represented as well, but for simplicity we do not discuss them here.

This is an implicit difference equation that depends on the previous, current, and
future states. Given qk−1 and qk, (6) is treated as a root-finding problem to find
qk+1. After advancing k, this process is repeated to simulate the system for as long
as desired.

Constraints play a crucial role in simulations with contact and grasping. We can
often represent mechanical contact with a holonomic constraint (i.e. a constraint
on the system’s configuration manifold). In continuous mechanics, holonomic con-
straints are typically differentiated and included as velocity/acceleration constraints.
Over time, numeric integration errors build up and the trajectory violates the origi-
nal holonomic constraint. In differential-algebraic techniques that enforce the con-
straint, the error is either accepted or corrected with heuristic methods that (as a
side effect) artificially inject or dissipate energy. This is acceptable for computer en-
tertainment applications, but leads to unrealistic system identification and unstable
controllers for physical applications.

Variational integrators avoid this problem and implement holonomic constraints
well as a result. At each time step, the constraints h(q) are satisfied (to within the
tolerance of the numeric root solver) by appending them to (6) and including a con-
straint forcing term in the discrete Euler-Lagrange equation. The constraint resolu-
tion is also directly coupled to the dynamics via the discrete Lagrange D’Alembert
principle rather than being a heuristic fix as in the continuous case.

1 Dn f (. . .) is the derivative of f (. . .) with respect to its n-th argument. This is sometimes
called the slot derivative.
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3.2 Complexity

A common problem with Euler-Lagrange simulations is that the equations grow too
quickly as the system becomes larger (or more complex). Most simulation methods
are therefore based on force balance methods and avoid generalized coordinates.
Our recent work [7] discusses a new approach to Lagrangian simulations that sig-
nificantly reduces the complexity growth and keeps generalized coordinates feasible
for much larger systems. This approach ensures through the use of caching in a tree-
structure that every transformation is only computed once, trivially leading to O(n)
computation of Eq. (6) for unconstrained systems (for constrained system one gets
O(n + m) to compute Eqs. (6) and (7) with m constraints). However, most root-
solving techniques require differentiating Eqs. (6) and (7) so that Newton’s Method
can be applied. This entails inverting an n×n matrix, which in many cases is also an
O(n) calculation so long as one is careful to take advantage of the group structure.

It is worth noting here that the computational complexity of computing f (·) in
ẋ = f (x,u) is not always the relevant notion of complexity; it assumes that we are
only interested in the complexity of evaluating a single step of an integrator. Rather,
we are typically interested in knowing the complexity of obtaining a solution that
is within some error of the “true” solution to the equations of motion. We have an
example in [7] of a system–the scissor lift–that scales linearly in terms of computing
f (·) but scales exponentially in terms of computing the correct solution. This point
should not be taken lightly–it implies that one of the main metrics we use for eval-
uating simulation techniques is often times off-point. For that example, variational
integrators are substantially more efficient at computing the correct solution even
though they are less efficient at computing Eqs. (6) and (7).

We have implemented these ideas in a freely available, open-source package
called trep2. trep is designed as an easy to use tool for rapid, incremental devel-
opment of simulations without sacrificing performance. It provides useful facilities
like compact representations of systems and automatic visualization. Most impor-
tantly, trep is easy to extend with new types of potentials, forces, and constraints.
This allows us, for example, to quickly explore different muscle/tendon representa-
tions in a common, structured environment. The ability to quickly adapt a simulation
is critical to a low-dimensional model’s success.

4 Strand Models of the Hand

We now move on to the use of strand models in a variational context. As previously
mentioned, a simplified but useful model in physiology is to consider muscle/tendon
groups as linear springs. A spring constant, k, is chosen to reflect the bulk elastic-
ity of the the tendon and muscle tissue. The muscle is contracted and relaxed by
controlling the natural length, x0, of the spring.

For the spring model to be useful for hand models, we must extend it to han-
dle the routing and sliding needed for extrinsic muscle tendons. We can think of a

2 http://trep.sourceforge.net
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muscle/tendon as a strand that connects two points and slides through intermediate
points.

Formally, a strand is defined by a spring constant, k ∈ R, a (possibly time-
varying) natural length x0 ∈ R, and a set of points p1, p2 . . . pN ∈ R

3 where N ≥ 2.
The current length of the strand is found by accumulating the linear distance be-
tween adjacent points:

x(q) =
N−1

∑
i=1

||pi(q)− pi+1(q)|| (8)

=
N−1

∑
i=1

[
(pi(q)− pi+1(q))T (pi(q)− pi+1(q))

] 1
2

The potential energy of the strand is then:

V (q, t) = 1
2 k (x(q)− x0(t))

2 . (9)

As one would expect, one can replace a nonlinear potential with the quadratic one.
trep also requires the derivative of (9) to implement the strand potential. These are
straightforward to calculate by applying chain rule.

∂V
∂q

(q,t) = k (x(q)− x0(t)) · ∂x
∂q

(q)

The derivative of x(q) is found similarly.

∂x
∂q j

(q) =
N−1

∑
i=1

(
1
2

[
(pi(q)− pi+1(q))T (pi(q)− pi+1(q))

]− 1
2 ·[(

∂ pi

∂q j
(q)− ∂ pi+1

∂q j
(q)
)T

(pi(q)− pi+1(q))+

(pi(q)− pi+1(q))T
(

∂ pi

∂q j
(q)− ∂ pi+1

∂q j
(q)
)])

=
N−1

∑
i=1

(pi(q)− pi+1(q))T
(

∂ pi
∂q j

(q)− ∂ pi+1
∂q j

(q)
)

||pi(q)− pi+1(q)||

There are a number of ways this model can be improved. The most simple im-
provement is to use non-linear potentials instead of a linear model. Once a better
potential shape is identified experimentally, it can be used by updating (9) and (4).
The strands should also be extended to include branching and sliding so that com-
plex tendons like the digit extensors can be modeled correctly. However, this will
require system identification to determine how the topology should be defined; real
tendons do not join at unique locations and are instead defined by large, somewhat
amorphous regions of connection.



160 E.R. Johnson, K. Morris, and T.D. Murphey

Fig. 4. A graphical user interface (GUI) makes it easy to integrate new muscle strands in the
model.

5 Model Implementation

The strand model was implemented as a new potential type in trep. We created a
2D finger model (Sec. 5.1) and a full 3D hand model (Sec. 5.2). A third model is pre-
sented by adding a sphere and holonomic constraints to simulate grasping contact.
Hand dimensions were based on the STL model in Fig. 1 and the spring constants
were chosen to be rather stiff (100-300 N/m) to represent the stiffness of the ten-
dons. However, careful system identification using the whole model should be done
in the future (along the lines of [16]) to properly calculate the model parameters.

Simulations were developed using Blender3 as a graphical user interface (GUI).
Figure 4 shows a custom plug-in provides convenient ways to define and modify
new strands. Blender was also used to define the desired trajectories and poses. The
combination of trep and Blender makes extending and improving the model easy.

The sources for the hand model can be downloaded from trep’s website at
http://trep.sourceforge.net/examples/hand.html.

5.1 A Finger

A two-dimensional finger is simple compared to a full hand, but also easier to un-
derstand. The model is shown in Fig. 5. We have simplified the extensor tendon into
a simple tendon with one muscle. The model has three degrees of freedom and four
muscle strands.

The simulation was created by defining a desired trajectory and computing the
corresponding natural lengths for each strand. The dynamic system was then simu-
lated using these lengths as inputs. The result is a rudimentary control scheme that
does not incorporate feedback. It is intended to demonstrate the dynamic model
rather than accurately simulate hand control.

3 http://www.blender.org
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Fig. 5. The 2D finger model has three degrees of freedom and four muscles/tendon strands.

Fig. 6. The finger was moved through several motions. The strand model was capable of
actuating the finger to follow the trajectory.

The model was simulated in trep for 30.0s with a time step of 0.01s. The simu-
lation took approximately 34s to compute on a 2.2GHz Intel Core2 Duo processor.
The results are shown in Fig. 6.

The trajectories for the three joint angles are plotted in Fig. 7. For each of the
three motions, the joint angles tend to move in the same direction as a result of the
coupling introduced by the tendons.

5.2 Full Hand

We extended the finger to a full hand model. The goal for this model is to demon-
strate that the fingers can be individually actuated when there is no coupling be-
tween muscle groups; coupling and co-activation can always be added to this model
without difficulty because once the tendon topology is known these simply add
stress/strain relationships. Our model has 20 degrees of freedom along with 23 in-
dependently actuated strands. Fig. 8 illustrates the model.

The most significant simplification is that the extensor tendons have been divided
into several different muscle/tendons.

The model was tested using a hand closure trajectory. The hand begins with all
digits extended. The digits are flexed inwards toward the palm and then return to
their original extended configurations. The simulation is defined and run in the same
manner as the above finger simulation.
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Fig. 7. Joint angles vs. time for a finger simulation. Note how all three angles tend to move
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Fig. 8. The complete hand model including coupling between fingers.

The simulation lasts for 10 seconds and uses a time step of 0.001s. A 2.2GHz
Intel Core2 Duo Processor completed the simulation in approximately one hour.
Several stages of the simulation are shown in Fig. 9.

The simulation is slow (compared to real-time) because of the small time steps
that are required by large spring constants. However, the corresponding high-
frequency oscillations are almost completely absent in the trajectory. This suggests
that a stiff elastic tendon model may be inappropriate for grasping/large-movement
simulations. A better model might take muscle tension as input and use the strand
geometry to determine the resulting forces on the hand. While this has been deferred
for future work, the change is straightforward in trep.
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Fig. 9. This figure shows several stages of the simulation results. (Time advances left to right,
top to bottom)

Fig. 10. This figure shows several stages of the simulation results. The simulation exhibits
the expected behavior of the ball settling down as the tendons are stretched. (Time advances
left to right, top to bottom)

5.3 Grasping Simulation

Finally, we demonstrate the extendibility of the model with a grasping simulation.
A sphere was added and brought into contact with the five finger tips. Holonomic
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constraints attach the finger tips to the sphere’s surface, so we are modeling assum-
ing “infinite” friction between the finger tip surface and the sphere surface. For this
simulation, the natural length of each strand was fixed and gravity was added. The
resulting trajectory is due entirely to the dynamic interaction between the sphere
and hand.

The simulation ran for 10 seconds with a time step of 0.001s. The simulation
was completed in approximately one and half hours on a 2.2GHz Intel Core2 Duo
processor. Several stages of the simulation are shown in Fig. 10.

Again, the length of time for the simulation could be dramatically reduced by
changing the dynamic model of the strands to avoid the high spring constants and
the associated high frequency vibrations that occur in the strands. This is a focus of
future work, but our preliminary work in this area suggests that in addition to using
strand tension as an input, treating the strands as kinematic variables (while leaving
the rest of the hand dynamic) results in between one and two orders of magnitude
faster calculation.

6 Conclusions and Future Work

We have developed a strand-based model of the hand that simulates the complete
hand. The model is based on variational integrators which provide excellent behav-
ior with constraints, coupling, and closed kinematic chains and fixes the numerical
dissipation issues that the hand model in [20] exhibits. The variational integrators
also simulate the system directly in generalized coordinates.

This work represents only the first steps towards accurate hand models for manip-
ulation tasks. The next step in modeling is to design more advanced tendon models
that are capable of branching, sliding, and becoming slack.

The simulation environment also needs to be extended to handle elastic impacts,
plastic impacts, and nonholonomic constraints. Relevant theoretical work has al-
ready been done [3] and variational integrators are known to handle these well.
trep is currently being improved in this direction.

Better models of friction, including stick/slip phenomenon are also needed. This
is an active research area in the dynamics community. The progress there is expected
to work well in the variational integrator setting.

A hand model can only be as accurate as the parameters used to design it.
System identification experiments are needed to collect empirical data and char-
acterize the hand [16]. This includes measuring properties like elasticity or damp-
ing, and improving abstract representations like spring networks for the extensor
tendons.

Lastly, this paper does not address control for manipulation. Future work in this
direction includes automating the calculation of Jacobians for torque/force calcula-
tion and linearization of the dynamics for feedback control design (including opti-
mal control).



A Variational Approach to Strand-Based Modeling of the Human Hand 165

References

1. Baker, B.: The magic touch: Scientist invent the cyberhand, a brain controlled robotic
hand with fingers that can actually feel (2006),
http://www.popsci.com/article/2006-03/magic-touch

2. Biryukova, E., Yourovskaya, V.: A model of hand dynamics. In: Schuind, F., An, K.,
Cooney, W., Elias, M.G. (eds.) Advances in the Biomechanics of Hand and Wrist, pp.
107–122. Plenum Press (1994)

3. Fetecau, R.C., Marsden, J.E., Ortiz, M., West, M.: Nonsmooth Lagrangian mechan-
ics and variational collision integrators. SIAM Journal on Applied Dynamical Systems
(2003)

4. Flanagan, J.R., Haggard, P., Wing, A.M.: The task at hand. In: Wing, A.M., Haggard, P.,
Flanagan, J.R. (eds.) Hand and Brain, pp. 5–13. Academic Press, Inc., London (1996)

5. Henry Gray, F.R.S.: The Complete Gray’s Anatomy. Merchant Book Company, Finland
(2003)

6. Hepp-Reymond, M.-C., Huesler, J., Maier, M.A.: Precision grip in humans: temporal and
spatial synergies. In: Wing, A.M., Haggard, P., Flanagan, J.R. (eds.) Hand and Brain, pp.
33–68. Academic Press, Inc., London (1996)

7. Johnson, E.R., Murphey, T.D.: Scalable variational integrators for constrained mechani-
cal systems in generalized coordinates. IEEE Transactions on Robotics (2008) (submit-
ted)

8. Jones, L., Lederman, S.: Human Hand Function. Oxford University Press, New York
(2006)

9. Kochan, A.: Shadow delivers first hand. Industrial Robot: An International Journal 32(1),
15–16 (2005)

10. Kounchev, O., Wilson, M.J.: Mathematics of Surfaces. Springer, Heidelberg (2003)
11. Lee, K.-H., Kroemer, K.H.E.: A finger model with constant tendon moment arms. In:

Proceedings of the Human Factors and Ergonomics Society, pp. 710–714 (2007)
12. Lin, J., Wu, Y., Huang, T.S.: Modeling the constraints of human hand motions. In: Human

Motion, 2000. Proceedings, pp. 121–126. IEEE, Los Alamitos (2000)
13. Linscheid, R.L.: Historical perspective of finger joint motion: the hand-me-downs of our

predecessors. Journal of Hand Surgery 27, A:1–A:25 (2002)
14. Marsen, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica,

357–514 (2001)
15. Pandy, M.G.: Computer modeling and simulation of human movement. Annual Review

of Biomedical Engineering 3, 245–273 (2001)
16. Pearlman, J., Roach, S., Valero-Cuevas, F.: The fundamental thumb-tip force vectors

produced by the muscles of the thumb. Journal of Orthopaedic Research 22(2), 306–312
(2006)
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A Stopping Algorithm for Mechanical Systems

Jason Nightingale, Richard Hind, and Bill Goodwine

Abstract. Analysis and control of underactuated mechanical systems in the nonzero
velocity setting remains a challenging problem. In this paper, we demonstrate the
utility of a recently developed alternative representation of the equations of mo-
tion for this large class of nonlinear control systems. The alternative representation
gives rise to an intrinisic symmetric form. The generalized eigenvalues and eigen-
vectors associated with the symmetric form are used to determine control inputs
that will drive a class of mechanical systems underactuated by one control to rest
from an arbitrary initial configuration and velocity. Finally, we illustrate the stop-
ping algorithm by presenting numerical simulation results for the planar rigid body,
snakeboard and planar rollerblader.

1 Introduction

Mechanical control systems form a large and important subclass of nonlinear con-
trol systems. The areas of application of control theory for mechanical systems are
diverse and challenging. Such areas include autonomous aerospace and marine ve-
hicles, robotics and automation, mobile robots, and constrained systems. The for-
malism of affine connections and distributions on a Riemannian manifold provides
an elegant framework for modeling, analysis and control. This framework has given
rise to new insights into nonlinear controllability in the zero velocity setting moti-
vating stabilization, tracking and motion planning algorithms [1]. For fully actuated
mechanical systems, it is possible to provide a comprehensive solution to the prob-
lem of trajectory tracking [10]. In contrast, motion planning algorithm for underac-
tuated mechanical systems is still not well understood. Due to the challenging nature
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Fig. 1. A schematic of the planar rollerblader.

of these problems, many of the existing results have been limited for example to gait
generation algorithms applicable only to the specific systems [9] [8], configuration
to configuration algorithms with zero-velocity transitions between feasible motions
for specific systems [3] and numerically generated optimal trajectories [4].

This paper is also closely related to several efforts that have been made to obtain
conditions in the zero velocity setting from properties of a certain intrinsic vector-
valued quadratic form which does not depend upon the choice of basis for the input
distribution [2], [6]. It has been observed that vector-valued quadratic forms come
up in a variety of areas in control theory which has motivated a new initiative to
understand the geometry of these forms [7].

1.1 Motivating Example

As a concrete example, take the planar rollerblader illustrated in Figure 1. The
schematic drawing illustrates the kinematics and actuator locations of the model.
Note that each leg is composed of two links which are connected by a translation
joint at the knee and a pin joint at the hip. The foot is a roller blade which is con-
strained to the plane in such a way that prohibits motion of the foot perpendicular
to the blade. A single actuator capable of generating torque in both the clockwise
and counterclockwise directions is placed at each pin joint. Another set of linear
actuators are placed at each translation joint. The planar rollerblader has five de-
grees of freedom and only four actuators. This is an example of an underactuated
control system. Whenever fewer actuators are available than degrees of freedom,
various control questions arise. For instances, it is not immediately clear whether
the moving rollerblader can be “stopped” using the limited control authority. If it
cannot be stopped, then the set of reachable velocities does not include zero veloc-
ity. In this, and other underactuated mechanical systems, existing geometric control
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theory does not provide a general test for stopping and more generally speaking,
the set of reachable velocities from a nonzero velocity is not well understood. The
modern development of geometric control of mechanical systems has been limited,
for the most part, to the zero velocity setting. Yet the underlying mathematical struc-
ture is that of second-order dynamics where the state of the system is defined by a
configuration and velocity. Theoretical results that are limited to zero velocity states
do not provide an adequate characterization of the behavior of mechanical systems
and limits the development of motion planning algorithms.

1.2 Statement of Contribution

The fundamental approach of this paper is to exploit the inherent geometric struc-
ture for the purpose of stopping an underactuated mechanical system. We use the
governing equations of motion of the mechanical control system to partition or fo-
liate the velocity-phase manifold (e.g. set of all configurations and velocities). This
partitioning has given rise to two key theoretical results which have been the main
topics of recent works [13], [14]. First, we have identified an intrinsic vector-valued
symmetric bilinear form that can be associated with an underactuated mechanical
control system. Second, we have provided computable tests dependent upon the def-
initeness of the symmetric form to determine if the system can or cannot be driven
to rest.

Our theoretical results are useful for two reasons. First, such results are neces-
sary conditions for a stopping algorithm. If zero velocity is not contained in the set
of reachable states then it is impossible to specify a control law that will drive the
system to rest. Second, these results are useful design tools which provide construc-
tive strategies for actuator assignment and help to make the control scheme robust
to actuator failure. The task of actuator assignment is always a balance between the
sophistication of the system design and the associated complexity of the controller.
For example, a system which is fully actuated requires a simple control scheme to
drive it to rest. In contrast, if the system is underactuated even by just one control,
a control scheme must take into account the underlying geometry or nonlinearities
of the geometric model. Such a control scheme is theoretically challenging due to
nonzero drift which indicates a component of the dynamics that is not directly con-
trolled. These systems are not amendable to standard techniques in control theory.
However, underactuated systems do appear in many practical applications resulting
from design choices motivated by cost reductions or in some cases they are the result
of a failure in fully actuated mechanical systems.

The main contribution of this paper is a stopping algorithm for mechanical sys-
tems underactuated by one control. We focus our analysis on such systems whose
symmetric form is indefinite for almost all configurations. The choice of control
inputs are dependent upon the generalized eigenvalues and eigenvectors associated
with the symmetric form. The stopping algorithm is applied to the planar rigid body,
snakeboard [9] and rollerblader [8]. For each system, we provide the geometric
model, our alternative representation and simulation results.
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2 Geometric Model

2.1 Mechanical Control System

We consider a simple mechanical control system with no potential to be comprised
of an n-dimensional configuration manifold M; a Riemannian metric G which rep-
resents the kinetic energy; m linearly independent one forms F1, . . . ,Fm on M which
represents the input forces; a distribution H on M which represents the constraint;
and U = R

m which represents the set of inputs. We do not require the set of inputs to
be a subset of R

m. This allows use to focus on the geometric properties of our system
that inhibit or allow motion in the foliation as opposed to a limitation on the set of
inputs. We represent the input forces as one forms and us the associated dual vector
fields Ya = G

�(Fa), a = 1, . . . ,m in our computations. Formally, we denote the con-
trol system by the tuple Σ = {M,G,Y ,V,U} where Y = {Ya | Ya = G

�(Fa) ∀ a}
is the input distribution. Note we restrict our attention to control systems where the
input forces are dependent upon configuration and independent of velocity and time.
DoCarmo [12] provides an excellent introduction to Riemannian geometry. A thor-
ough description of simple mechanical control systems is provided by Bullo and
Lewis [1].

It is well known that the Lagrange-d’Alembert principle can be used to generate
the equations of motion for a forced simple mechanical system in coordinate invari-
ant form. If we set the Lagrangian equal to the kinetic energy, then the equations are
given by

∇γ̇(t)γ̇(t) = ua(t)Ya(γ(t)) (1)

where ∇ is the Levi-Civita connection corresponding to G, u is a map from I⊂R �→
R

M , γ : I →M is a curve on M and t ∈ I. Therefore, a controlled trajectory for Σ is
taken to be the pair (γ,u) where γ and u are defined on the same interval I⊂R. Note
the usual summation notation will be assumed over repeated indices throughout this
paper.

Given a constraint distribution H of rank k, we may restrict the Levi-Civita con-
nection ∇ to H [11]. Bullo and Zefran [5] showed that given two vector fields X and
Y on M then the so-called constrained affine connection ∇̃ is given by

∇̃XY = P(∇XY )

where P is the orthogonal projection T M �→H. The latter approach provides a com-
putationally efficient method and is used to generate the coordinate expression for
the constrained affine connection for the roller racer and the snakeboard.

The natural coordinates on T M are denoted by ((q1, . . . ,qn), (v1, . . . ,vn))
where (v1, . . . ,vn) are the coefficients of a tangent vector given the usual basis
{ ∂

∂q1 , . . . , ∂
∂qn }. We will denote a point in TM by vq. We may lift the second-order

differential equation defined by (1) to T M. This gives rise to the following system
of first-order differential equations on T M
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dqk

dt
= vk, (2)

dvk

dt
= −Γ k

i j v
iv j + uaY k

a ,

where Γ k
i j is the usual Christoffel symbol and i, j,k = 1, . . . ,n.

A critical tool used to analyze distributions and mechanical control systems is the
symmetric product. Given a pair of vector fields X ,Y , their symmetric product is the
vector field defined by

〈X : Y 〉= ∇XY + ∇Y X .

2.2 Symmetric Bilinear Form

In this section we expand upon and adapt the definition of an affine subbundle found
in Hirschorn and Lewis [6]. We restrict our attention to configuration manifolds that
admit a well defined global set of basis vector fields however our results general-
ize under appropriate conditions. The basic geometry of our construction can be
captured by assuming H = T M however we can always relax this assumption by
properly accounting for the orthogonal projection P.

Recall that an input distribution Y on M is a subset Y ⊂ T M having the property
that for each q ∈M there exists a family of vector fields {Y1, . . . ,Ym} on M so that
for each q ∈M we have

Yq ≡ Y ∩TqM = spanR{Y1(q), . . . ,Ym(q)}.

We refer to the vector fields {Y1, . . . ,Ym} as generators for Y . Let Y ⊥ denote
an orthonormal frame {Y⊥1 , . . . ,Y⊥n−m} that generates the G-orthogonal complement
of the input distribution Y . Note that even though Y ⊥ is canonically defined, we
must choose an orthonormal basis. It is clear that {Yq,Y ⊥

q } forms a basis for TqM
at each q ∈M. Note that Y = {Y1, . . . ,Ym} is a set of m linearly independent vector
fields while Y ⊥ = {Y⊥1 , . . . ,Y⊥n−m} is a set of n−m orthonormal vector fields. This
basis will be used to define an affine subbundle and construct an affine foliation of
the tangent bundle.

An affine subbundle on M is a subset A⊂ TM having the property that for each
q ∈M there exists a family of vector fields {Y0, . . . ,Ym} so that for each q ∈U we
have

Aq ≡ A∩TqM

= {Y0(q) = Y⊥1 (q)+ · · · +Y⊥n−m(q)}
+spanR{Y1(q), . . . ,Ym(q)}.

An affine foliation, A , on T M is a collection of disjoint immersed affine subbundles
of T M whose disjoint union equals T M. Each connected affine subbundle A is called
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an affine leaf of the affine foliation. Now let us apply this framework to a simple
mechanical control system.

Definition 2.1. Let (M,G,V,Y ,U) be a simple mechanical control system with the
input distribution Y generated by {Y1, . . . ,Ym} and the corresponding G-orthogonal
distribution Y ⊥ generated by {Y⊥1 , . . . ,Y⊥n−m}. An input foliation AY is an affine
foliation whose affine leaves are affine subbundles given by

As(q) = {vq ∈ TM | 〈〈Y⊥,vq〉〉= s,s ∈ R
n−m}.

Remark 2.1. The input foliation is parametrized by s ∈R
n−m. Note that when s = 0,

A0 = Y and A0(q) = Yq where Y is an immersed submanifold of T M and Yq is a
linear subspace of TqM. Thus, the input distribution Y is a single leaf of the affine
foliation.

Given a basis of vector fields {X1, . . . ,Xn} on M, we define the generalized Christof-
fel symbols of ∇ to be

∇XiXj = Γ̂ k
i j Xk.

Note that when Xi = ∂
∂qi we recover the usual Christoffel symbols of ∇. We intro-

duce the symmetrization of the generalized Christoffel symbols.

Definition 2.2. We define the generalized symmetric Christoffel symbols for ∇
with respect to the basis of vector fields {X1, . . . ,Xn} on M as the n3 functions Γ̃ k

i j :
M →R defined by

Γ̃ k
i j Xk =

1
2

(
Γ̂ k

i j + Γ̂ k
ji

)
Xk

=
1
2
〈Xi : Xj〉.

We may define the velocity vector γ̇(t) = γ̇ i(t) ∂
∂qi of the curve γ(t) in terms of the

family of vector fields {Y ,Y ⊥}. The new expression for γ̇(t) is in the form

γ̇(t) = wa(t)Ya(γ(t))+ sb(t)Y⊥b (γ(t)) (3)

where sb(t) = 〈〈γ̇(t),Y⊥b 〉〉γ(t). We now provide a local expression for a measure of
a simple mechanical control system’s ability to move among the leaves of the input
foliation AY .

Lemma 2.1. Let (M,G,V,Y ,U) be a simple mechanical control system with an
input foliation AY defined above. The following holds along the curve γ(t)
satisfying (1):
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d
dt

sb(t) = −1
2

wa(t)wp(t)〈〈〈Ya : Yp〉,Y⊥b 〉〉 (4)

−1
2

wa(t)sr(t)〈〈〈Ya : Y⊥r 〉,Y⊥b 〉〉

−1
2

sr(t)wp(t)〈〈〈Y⊥r : Yp〉,Y⊥b 〉〉

−1
2

sr(t)sk(t)〈〈〈Y⊥r : Y⊥k 〉,Y⊥b 〉〉

where a, p ∈ {1, . . . ,m}, b,k,r ∈ {1, . . . ,n−m}.

Proof. Recall from the definition of an input foliation that

sb(t) = 〈〈Y⊥b , γ̇(t)〉〉. (5)

We could proceed by substituting (3) into (5) and differentiating taking advantage
of the compatibility associated with the Levi-Civita connection. Alternatively, we
use the notion of a generalized symmetric Christoffel symbol. It follows from the
construction of Y ⊥ that the bth component of Γ̃ b

i j along the the orthonormal vector

field Y⊥b can be expressed as a projection using G.

We observe that (5) is quadratic in the parameter w(t). Now we relate an intrinsic
vector-valued symmetric bilinear form to the measure derived in Lemma 2.1.

Definition 2.3. Let (M,G,V,Y ,U) be a simple mechanical control system with the
input distribution Y generated by {Y1, . . . ,Ym} and the corresponding G-orthogonal
distribution Y ⊥ generated by {Y⊥m+1, . . . ,Y

⊥
n }. We define the intrinsic vector-

valued symmetric bilinear form to be B : Yq ×Yq → d⊥q given in coordinates
by

Bb
apwawp =

1
2
〈〈〈Ya : Yp〉,Y⊥b 〉〉wawp,

where a, p ∈ {1, . . . ,m},b ∈ {1, . . . ,n−m}.

Remark 2.2. If Σ is underactuated by one control then b = 1 and B is a real-valued
symmetric bilinear form.

The intrinsic vector-valued symmetric bilinear form defined above is an important
measure of how the velocity components w parallel to the input forces influence the
velocity components s orthogonal to the input forces. The remainder of the paper
will detail the properties of B that form the foundation for the stopping algorithm.

3 Stopping Algorithm

The stopping algorithm consists of three simple stages. The first stage of the algo-
rithm is driving the w-velocities towards the appropriate eigenvector. Recall that the
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symmetric form measures the influence the w-velocities have on the s-velocity. If we
wish to decrease the s-velocity then we drive the w-velocities toward the eigenvector
associated with the most negative eigenvalue of the symmetric form. In contrast, if
we desire to increase the s-velocity then we drive the w-velocities toward the eigen-
vector associated with the most positive eigenvalue of the symmetric form. For this
paper, we assume that the symmetric form is indefinite for almost all configurations.
This guarantees the existence of both positive and negative eigenvalues.

The second stage of the algorithm consists of driving w-velocities along the ap-
propriate eigenvector. The third stage of the algorithm consists of driving the w-
velocities to zero. This is achieved by choosing a control input directly opposing
the current w-velocities. The stopping algorithm cycles through each stage until the
magnitude of each velocity component drops below a specified bound. The cycling
can be observed in the simulation results for three different mechanical systems
underactuated by one control found in Section 4.

4 Examples

4.1 Planar Rigid Body

In this section we review the geometric model of the planar rigid body (Fig. 2).
The configuration manifold for the system is the Lie group SE(2) and the poten-

tial function is assumed to be identically zero. Let us use coordinates (x,y,θ ) for the
planar robot where (x,y) describes the position of the center of mass and θ describes
the orientation of the body frame {b1,b2} with respect to the inertial frame {e1,e2}.
In these coordinates, the Riemannian metric is given by

G = mdx⊗dx + mdy⊗dy + Jdθ⊗dθ ,

e1

e2

b2

b1

F2

F1

h

Fig. 2. A schematic of the planar rigid body.
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where m is the mass of the body and J is the moment of inertia about the center
of mass. The inputs for this system consist of two independent forces applied to an
arbitrary point. We assume that the point of application of the force is a distance
h > 0 from the center of mass along the b1 body-axis. Physically, the input force
can be thought of as a variable-direction thruster on the body which can be resolve
into components along the b1 and b2 directions. The control inputs are given by

F1 = cosθdx + sinθdy,

F2 = −sinθdx + cosθdy−hdθ .

Using Lemma 2.1, we determine that

ds
dt

=
√

2
2

w1(t)w2(t)− 1
2

s(t)w1(t).

It also follows from Definition 2.3 that the symmetric form is given by

B12 = B21 =−1
2
〈〈〈Y1 : Y2〉,Y⊥〉〉=

√
2

4

B11 = B22 = 0.

Figure 3 is a simulation of the stopping algorithm driving the planar rigid body
to rest given the initial velocities w1(0) =−10, w2(0) = 5 and s(0) =−60.
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Fig. 3. A simulation of the stopping algorithm applied to the planar rigid body.
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Fig. 4. A schematic of the snakeboard.

4.2 Snakeboard

In this section we review the geometric model of the snakeboard (SB) (Fig. 4).
The configuration manifold for SB is SE(2)× S× S with local coordinates

(x,y,θ ,ψ ,φ). The Riemannian metric is given by

G = mdx⊗dx + mdy⊗dy + l2mdθ ⊗dθ
+Jrdψ⊗dθ + Jrdθ ⊗dψ + Jrdψ⊗dψ + Jwdφ ⊗dφ ,

where m > 0 is the total mass of SB, Jr > 0 is the moment of inertia of the rotor
mounted on top of the body’s center of mass, and Jw > 0 is the moment of inertia of
the wheel axles. The constraint one-forms are given by

0 = sin(φ −θ )dx + cos(φ −θ )dy + l cos(φ)dθ ,

0 = −sin(φ + θ )dx + cos(φ + θ )dy− l cos(φ)dθ .

The two control forces are pure torques F1 = dψ and F2 = dφ .
Using Lemma 2.1, we determine that

ds
dt

= 2

{
−cos(φ)

√
1

10cos(2φ)+ 30

}
w1(t)w2(t)

It also follows from Definition 2.3 that the symmetric form is given by

B12 = B21 =−1
2
〈〈〈Y1 : Y2〉,Y⊥〉〉=−cos(φ)

√
1

10cos(2φ)+ 30

B11 = B22 = 0
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Fig. 5. A simulation of the stopping algorithm applied to the snakeboard.
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Fig. 6. A simulation of the stopping algorithm applied to the planar rollerblader.

Figure 5 is a simulation of the stopping algorithm driving the snakeboard to rest
given the initial velocities w1(0) = 5, w2(0) =−3 and s(0) = 10.
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4.3 Planar Rollerblader

The schematic model and description of the planar rollerblader (RB) can be found
in the introduction of this paper. The configuration manifold for RB is SE(2)×S×
R× S×R with local coordinates (x,y,θ ,γ1,d1,γ2,d2). The Riemannian metric is
given by
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(
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Let the mass and rotational inertia of the central platform of the robot be M and
Ic respectively. Let each link have a rotational inertia Ip. The mass of the link is
assumed to be negligible. Each roller blade has mass m, but is assumed to have no
rotational inertia. The constraint one-forms are given by

0 = −sin(θ + γ1)dx + cos(θ + γ1)dy−bsin(γ1)dθ −dd1

0 = −sin(θ + γ2)dx + cos(θ + γ2)dy−bsin(γ2)dθ + dd2.

The four control forces consist of two torques F1 = dγ1 and F2 = dγ2, as well as,
two linear actuators F3 = dd1 and F4 = dd2.

Here we only include the simulation results due to the complexity associated with
the symbolic representation of the symmetric form. Figure 6 is a simulation of the
stopping algorithm driving the planar rollerblader to rest given the initial velocities
w1(0) = 1, w2(0) =−1, w3(0) = 2, w4(0) =−5 and s(0) = 10.

5 Conclusions

We seek to extend our results to mechanical systems underactuated by an arbitrary
number of controls. This will involve characterizing coordinate invariant properties
of the intrinsic vector-valued symmetric bilinear form that allow motion in the input
foliation.
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Perceived CT-Space for Motion Planning in
Unknown and Unpredictable Environments�

Rayomand Vatcha and Jing Xiao

Abstract. One of the ultimate goals in robotics is to make high-DOF robots work
autonomously in unknown changing environments. However, motion planning in
completely unknown environments is largely an open problem and poses many
challenges. One challenge is that in such an environment, the configuration-time
space (CT-space) of a robot is not known beforehand. This paper describes how
guaranteed collision-free regions in the unknown CT-space can be discovered pro-
gressively via sensing in real time based on the concept dynamic envelope, which
is not conservative, i.e., does not assume worst-case scenarios, and is robust to un-
certainties in obstacle behaviors. The introduced method can be used in general by
real-time motion planners for high-DOF robots to discover the existence of guaran-
teed collision-free future motions efficiently. The utility is further confirmed both in
simulation and in real-world testing involving a 5-DOF robot manipulator.

1 Introduction

Most of the existing work addresses robot motion planning in known environments,
which can be catogorized into the following:

1. Path planning for a robot in a static and known environment to search a collision-
free path in the (static) configuration space (C-space) [6] of the robot. Ap-
proaches include finding collision-free regions or free space in the C-space
[3][10] and sampling-based planners to deal with high-dimensional C-space for
robots of high degrees of freedom (DOF)[2][4].
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2. Motion planning for a robot in a known dynamic environment to search a tra-
jectory in the CT-space [3] of the robot. Again, sampling-based planners were
used here [4] to avoid constructing high-dimensional CT-obstacles. For a mobile
robot, the notion of “Inevitable Collision Regions” (ICS) in the CT-space was
introduced [1] essentially to characterize the CT-obstacles.

In both cases planning can be done off-line without the need of sensing (sensing is
only used to deal with uncertainities during actual execution of motion). Collision
detection is usually the most time consuming component of any sampling-based
planner. Its complexity increases as the complexity of the robot and environment
increases.

An extension to the above basic problems is through adding some obstacles of
unknown motion into the largely known environment. This is mostly addressed by
on-line revising pre-planned paths with reactive schemes to avoid collisions (e.g.,
[11][16][5]). These schemes usually assume partially unchanging/known C-space
or CT-space to limit the scale of revising/replanning in order to facilitate real-time
computation.

A further extension is motion planning in drastically changing environments
with unknown obstacle motions. A real-time adaptive planning approach [9][8] for
high-DOF robots is very effective, characterized by simultaneous planning and ex-
ecution based on sensing. However, the approach assumes known obstacles with
unknown motions. Thus, planning future motion is based on predicting obstacle
motion through tracking and frequently updating the predictions.

Note that in those approaches, unknown changes in an environment are dealt
with by repeated computation or recomputation of (some parts of) paths/trajectories,
which involve repeated collision checking.

Another extension is motion planning in unknown but static environments. No
information about the obstacles is known. Such a problem needs active sensing of
the environment. One approach represents an environment in terms of voxels so
that obstacle geometry need not be known [13]. Sensing is used to discover which
voxels are occupied by obstacles. Such sensor based motion planners [14][12] are
often adapted from model based planners to plan paths incrementally, as unknown
C-Space becomes known gradually by sensing.

A largely open problem is motion planning in completely unknown environ-
ments, where obstacle geometries and states are unknown, i.e., if and when they
move or not is not known. In other words, the CT-space of a robot is completely un-
known. The existing approaches to deal with known obstacles of unknown motions
are not suitable here as obstacles cannot be distinguished, and thus their motions
cannot be tracked and predicted.

This paper addresses this open problem. We present a novel approach to discover
guaranteed collision-free regions in the unknown and unpredictable CT-space in
real-time via sensing. We show how the approach can be used for real-time motion
planning in such an environment and test it through simulation and experiments.
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2 Perceived CT-Space vs. Predicted CT-Space

We are interested in discovering true collision-free regions, or free space, in the CT-
space of a robot in an unknown and unpredictable environment (i.e., obstacles are
not known and whether and how they move are not known).

This is different from the existing approaches that predict the CT-space to deal
with obstacles of unknown motion. Such approaches predict an obstacle’s motion
mostly by tracking its location or assuming constant velocity within a planning pe-
riod. Motion planning is then done in the predicted CT-space of a robot, involving
collision checking of the robot’s configuration at any future time against the pre-
dicted obstacle configurations at the same time instant. However, if obstacles them-
selves are unknown, they cannot be detected or tracked so that prediction-based
approaches are not suitable.

Moreover, predicted CT-space is often not the true CT-space and only matches
closely to it within a short period immediately after the time when the prediction is
made. It requires repeated modification as new sensing information becomes avail-
able. Hence, motion planning based on prediction will lead to re-computation of
motions, and the planned motions may fail to be collision-free due to inaccurately
predicted CT-space. It is too conservative to assume worst-case obstacle motion in
order to have guaranteed collision-free motions of the robot with the CT-obstacle
space exaggerated.

We use the term perceived CT-space to call the CT-space discovered by our ap-
proach via sensing, which includes actual (i.e., guaranteed) collision-free regions
discovered that will not turn false later as sensing continues. Therefore, it is not the
same as a predicted CT-space. Figure 1 illustrates the difference between the two.
It compares predicted vs. perceived vs. actual CT-space in a 2-D example. Both

Fig. 1. Predicted CT-space vs. Perceived CT-Space
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predicted CT-space and perceived CT-space will change as sensing/time progresses.
However, unlike predicted CT-space, where a point predicted collision-free may not
be actually collision-free, the perceived CT-space consists of actual collision-free
regions that can only grow over time and uncertain regions, which can be either
free or CT-obstacle regions.

3 Perceived CT-Space

We now show how the actual CT-free space can be perceived over time.

3.1 Atomic Obstacles

First of all, with obstacles completely unknown in an environment, it will be difficult
to try to distinguish different geometric obstacles from sensing. For static environ-
ments, this problem can be addressed by, for example, representing an environment
in terms of voxels without knowing obstacle geometry [13]. However, if the envi-
ronment is changing drastically, this is computationally costly as the entire set of
voxels are only valid for the current sensing interval and have to be re-computed at
each subsequent sensing interval. Hence, it makes sense to use the lower-level data
from sensors directly to represent obstacles without ever performing elaborate sen-
sor information processing. Without the loss of generality, the lower-level sensory
data for obstacles can be treated as atomic obstacles of similar and simple geometry
at different locations. Collectively the atomic obstacles represent actual obstacles
in an environment without distinguishing them (see Section 4). At each sensing in-
stant, only the locations of atomic obstacles (with default geometry) can be sensed.
However, we can put an upper bound on the changing rate of the environment in
terms of a maximum possible speed vmax of each atomic obstacle. Of course, an
atomic obstacle may have varied actual speeds in [0,vmax].

3.2 Dynamic Envelope

We are interested in discovering collision-free regions via sensing in real-time in the
otherwise unknown CT-space for a general (high-DOF) robot. Assume sensing data
are obtained/updated at discrete times starting at t = 0. For any CT-point (q, t), we
ask the question: will the robot be guaranteed collision-free at (q, t) based on the
sensed information at the current time ti?

We can answer this question using the concept of dynamic envelope.

Definition 3.1. For a CT-point χ = (q, t), a dynamic envelope Eto(χ , ti), as a func-
tion of current time ti ≤ t, is a closed surface enclosing the region occupied by the
robot at configuration q in the physical space so that the minimum distance between
any point on Eto(χ ,ti) and the region is di = vmax(t− ti), where to ≤ ti is the time
when the envelope was created. t− to is the maximum lifespan of Eto(χ , ti).



Perceived CT-Space for Motion Planning 187

The following are general properties of a dynamic envelope Eto(χ , ti). They capture
non-worst case scenarios regarding atomic obstacle motions, without assuming any
particular kinds of obstacle motion.

1. A dynamic envelope shrinks monotonically over sensing time with speed vmax,
i.e., Eto(χ ,ti+m)⊂ Eto(χ ,ti), where m > 0, to ≤ ti < ti+m ≤ t.

2. An atomic obstacle not on or inside Eto(χ , to) will never be on or inside Eto(χ , ti).
3. An atomic obstacle on Eto(χ , to) will never be inside Eto(χ , ti).
4. An atomic obstacle either on or inside Eto(χ , to) can be outside Eto(χ , ti), for

certain ti, if not moving towards the robot in maximum speed vmax all the time,
i.e., if not moving in the worst case.

From these properties, one can envision the following: suppose some atomic
obstacles are on or inside a dynamic envelope Eto(χ , ti) initially; as the dynamic
envelope shrinks during its maximum lifespan, no new atomic obstacles will ever
enter the dynamic envelope, and the atomic obstacles initially on or inside it will be
”squeezed” out of the envelope at some later time during the lifespan if these atomic
obstacles do not always move towards the robot configuration q in vmax, i.e., under
non-worst case scenarios. Hence, at time ti, if no atomic obstacle is on or inside the
dynamic envelope Eto(χ ,ti), χ = (q, t) is guaranteed collision-free, i.e., the above
question is answered. Moreover, all the continuous configuration-time points in the
interval [(q,ti),(q,t)] are guaranteed collision-free.

Figure 2 shows an example, where χ = ((3,3),3), vmax = 1 unit/s.

(a) E0.1(χ,0.1) (b) E0.1(χ,1) (c) E0.1(χ,1.89)

Fig. 2. Dynamic envelope of a planar rod robot. In (c), χ is percieved collision free at
ti = 1.89s.

In general, as soon as at some tl , no atomic obstacle sensed is on or inside the
dynamic envelope Eto(χ ,tl), the envelope is no longer needed, and it can expire at
tl , i.e., before its maximum lifespan is reached.

3.3 Collision-Free Region vs. Uncertain Region

We have answered in the above that a CT-point (q, t) can be perceived at ti(≤ t)
as guaranteed collision-free and also explained that if (q, t) is perceived at ti as
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guaranteed collision-free, the hyperline segment [(q,ti),(q, t)] in the CT-space is
also guaranteed collision-free.

Now a natural next question is: given a configuration q, what is the longest hy-
perline segment [(q,ti),(q,t)], or the furthest time t, that can be perceived at ti as
guaranteed collision-free? The answer to that question depends on the minimum
distance dmin(q, ti) between the robot (if it were) at configuration q and the closest
atomic obstacle sensed at ti. Let

Δ t(q,ti) =
dmin(q, ti)

vmax
, (1)

which is the minimum period before a collision can possibly occur at q. Let

t f (q, ti) = ti + Δ t(q,ti) (2)

Clearly, as long as t is within the time interval [ti, t f (q, ti)), the hyperline seg-
ment [(q,ti),(q, t)] can be perceived at ti as guaranteed collision-free. Thus, the
longest hyperline segment that can be perceived at ti as guaranteed collision-free is
[(q, ti),(q, t f (q, ti)).

The union of all the guaranteed collision-free hyperline segments of the CT-space
perceived at ti is the maximum collision-free region (that may include multiple con-
nected continuous regions) perceived at ti, denoted as F(ti). F(ti) consists of only
CT-points for t ≥ ti. The union of the rest of the regions in the CT-space for time
t ≥ ti forms the uncertain region U(ti).

Theorem 3.1. For any ti and t j, such that ti ≤ t j, if a CT-point (q, t), where t ≥ t j,
belongs to F(ti), then it also belongs to F(t j). On the other hand, if the point (q, t)
belongs to U(ti), it may still belong to F(t j).

Proof. From ti to t j, the change in minimum distance at configuration q can be
expressed as:

dmin(q,t j)−dmin(q, ti) = pvmax(t j− ti), −1≤ p≤ 1. (3)

From equations (1) and (2), and using equation (3), we get

t f (q, t j)− t f (q,ti) = (t j− ti)+ dmin(q,t j)−dmin(q,ti)
vmax

= (1 + p)(t j− ti)
⇒ t f (q, t j)− t f (q, ti)≥ 0

That is, if (q,t) is on the hyperline [ti,t f (q, ti)), then, since t ≥ t j, it is also on the
hyperline [t j,t f (q,t j)). On the other hand, if (q,t) belongs to U(ti), then t ≥ t f (q, ti),
but as long as t < t f (q,t j), (q,t) belongs to F(t j). ��

The significance of the above theorem is that more collision-free CT-space points
can be discovered as sensing time progresses, i.e., the collision-free regions can only
grow, while uncertain regions can only shrink.
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4 Representing Unknown Obstacles of Unknown Geometry: An
Example

There is much research on how to explore an unknown (mostly static) environment
using robots with sensors mounted, and issues studied include how to move a robot
to maximize sensing views (i.e., minimize occlusions) [15] and how to map an envi-
ronment accurately through repeated exploration (e.g., SLAM [7]). For sensor-based
robot navigation, different kinds of sensors are used either mounted in the environ-
ment to provide a world view or mounted on a robot to provide a robot-centric, local
view. However, these issues regarding the arrangement and style of sensing is out of
the scope of this paper. It is important to note that the concepts introduced in Section
3 are independent of any kind of sensing style.

In general, the lowest level data points of whatever sensor (e.g., laser range find-
ers, sonar, etc.) constitute atomic obstacles (as mentioned in Section 3). As a con-
crete example, consider that an overhead stereovision sensor is used to provide a
view of an unknown environment. The stereovison sensor provides an image of the
environment. Every pixel (i, j) of that image maps to a surface region Ri j of 3-D
points in the physical world. We can further obtain the 3-D point (x,y,z) in Ri j that
is closest to the image plane. This mapping between 3-D point (x,y,z) and pixel
(i, j) is a one-to-one mapping.

Fig. 3. An atomic obstacle Oi j from stereo vision

Since Ri j occludes the space behind it, from it one cannot tell if and how there are
objects in that occluded space. Therefore, to be safe, Ri j and the infinite volume of
points it occludes can be viewed as an atomic obstacle Oi j that a robot cannot collide
with. Oi j is associated with a pixel (i, j) of the image, which starts from the point
(x,y,z) extending towards infinity. It can be viewed as a trapezoidal ray originated
from (x,y,z) as shown in Figure 3. The 3-D environment can now be viewed as
consisting of only these atomic obstacles Oi j for all (i, j)’s in the image. Let M×N
be the size of the image.

Note that since actual obstacles in the environment are entirely unknown and can
move/change unpredictably, we cannot relate the atomic obstacles from an image
taken at time tk to those from a image taken at tk+1. Thus, the low-level sensory data
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from tk is only useful within that sensing interval and should be replaced entirely by
the sensory data obtained from tk+1. In other words, there is no need for accumu-
lating sensory data, and the space complexity for storing sensory data is simply a
constant C = M×N.

Now consider the time complexity of using the stored data. Since the sensed
atomic obstacles are used for perceiving collision-free or uncertain CT-points, only
those atomic obstacles enclosed in a dynamic envelope (of the robot at the consid-
ered CT-point) need to be considered. For this example, atomic obstacles are directly
indexed by (i, j) in a one-to-one mapping between a physical 3-D point (x,y,z) to a
pixel (i, j). Projecting a dynamic envelope onto the image plane, we can obtain the
indices (i, j) of the atomic obstacles enclosed and consider only them for collision
test. Let n indicate the number of such indices, then for any CT-point (q, t), the time
complexity of collision test is a function of n, which is usually much smaller than
C. As the dynamic envelope shrinks overtime, so is the time for collision test.

Of course, as viewing directions change, the atomic obstacles as defined above
change too, but that does not matter because we are not concerned here with what
the actual obstacles look like. Also note that the atomic obstacles do not have to have
the same size. It is important that the atomic obstacles come directly from sensory
data and are of simple shapes.

5 Computing Motions in the Perceived CT-Space

The concept of dynamic envelope introduced in section 3 can be used by motion
planners to discover collision-free regions in the CT-space for future motions effi-
ciently, which do not require re-computation or revision.

Let q1 and q2 be two configurations of a robot. Let (q1, ts) and (q2, te) be two
points in the CT-space, and let the current time be to < ts. We are interested in
finding whether a trajectory segment connecting (q1, ts) and (q2, te), where ts <
te, is collision-free or not, based on sensing at each ti ∈ [to, ts), i = 1,2, .... The
trajectory segment can be represented by a sequence Γ of CT-points between (q1, ts)
and (q2,te) through interpolation. If the resolution for interpolation is chosen such
that the maximum gap between the robot put at two consecutive CT-space points
(after interpolation) is smaller than the known size of an atomic obstacle, then if the
two CT-space points are guaranteed collision-free, the CT-points in between are also
guaranteed collision-free. In that sense, the sequence Γ truly represents a continuous
motion segment in the perceived CT-Space.

For every point χk = (qk,tk) in the sequence Γ , where t1 = ts, tm = te, and 1 ≤
k ≤ m, we need to check if it is collision-free or not. This can be done by creating
the dynamic envelope Eto(χk,to) at to for each k. Note that for a robot consisting of
many links, a dynamic envelope can be built for each link with a simple shape. We
next observe all Eto(χk,ti)’s along Γ shrink as the sensing time ti progresses from
to. If for every dynamic envelope Eto(χk, ti), there exists a time tk

i ∈ [to, ts) when
Eto(χk,tk

i ) is free of atomic obstacles, then it means Γ is a guaranteed collision-free
motion segment, discovered before its starting time ts. Moreover, if the starting time
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of Γ is moved to t ′s, such that max(tk
i ) ≤ t ′s < ts (i.e., earlier than ts), the shifted Γ

(along the time axis) is also guaranteed collision-free. This means that the whole
sweped region of Γ along the time axis from max(tk

i ) to ts in the CT-space is now
discovered to be collision-free.

Our general algorithm to check whether a CT-point χ = (q, t) is collision-free or
not based on the (shrinking) dynamic envelope Eto(χ , ti), for ti ∈ [to, t), is called the
collision-free perceiver (CFP) as shown in Algorithm 1. CFP is quite efficient for
real-time operation because of the following: (1) CFP returns a boolean value and
does not require (more expensive) minimum distance computation. (2) As shown
in Section 4, CFP only needs to consider a subset of the atomic obstacles sensed.
The number n of such atomic obstacles is related to the size of the dynamic en-
velope, which shrinks over time. (3) Both the atomic obstacles and the dynamic
envelope are of simple shapes. A time-limit for CFP can be further imposed. The
above method of computing guaranteed collision-free motion segments in CT-space
using CFP can be employed by any real-time motion planner seeking collision-free
motion in an unknown and unpredictable environment. As the robot moves along a
perceived collision-free trajectory segment, the planner can continue finding subse-
quent collision-free motion segments. Since the segment currently followed by the
robot is truly collision-free, the robot can safely stay on it until it needs to execute
a subsequent collision-free motion segment provided by the planner. As the planner
does not need to worry if the current segment being executed by the robot will be-
come infeasible, it can solely focus on planning the next motion segment. In section
7, we will show concrete simulation and real-world examples of real-time planning
using CFP.

6 Robustness of Approach over Exaggerated vmax

As vmax, the maximum speed of an atomic obstacle, is the only known or esti-
mated parameter we assume in our approach dealing with completely unknown
environment, it is necessary to investigate how robust our approach of perceiving
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collision-free CT-space points is with respect to very inaccurate vmax. Specifically,
it is natural to over-estimate vmax to be safe, i.e., the estimated v′max satisfies: v′max >
vmax. The effect of such over-estimation can be stated in the following theorem.

Theorem 6.1. Let v′max = cvmax,c > 1, and let (q, t) be a collision-free CT-point. If
t ′k and tk are the respective time instants when (q, t) is perceived to be collision-free,
then, they satisfy: tk < t ′k ≤ t.

Proof. Suppose at time to, the dynamic envelopes Eto((q,t), to) and E ′to((q, t),to) for
(q, t) were created with respect to vmax and v′max respectively, where

do = vmax(t− to) , and
d′o = v′max(t− to) = cvmax(t− to)

Clearly for any time to ≤ ti < t, E ′to((q, t), ti) is greater than Eto((q, t),ti). Suppose
further that at least one atomic obstacle was on or inside Eto((q, t),to). Thus, it was
also on or inside E ′to((q,t),to).

Suppose at time tk, where to ≤ tk ≤ t, the dynamic envelope Eto((q, t),tk) has
shrunk enough to just “squeeze out” atomic obstacles, i.e., the CT-point (q, t) is
perceived collision-free. Recall that dmin(q,tk) is the minimum distance between
the robot if put at q and the atomic obstacles. Thus,

dk = vmax(t− tk) = dmin(q,tk)− ε (4)

where ε > 0 is very small. Clearly at tk, E ′to((q, t), tk) still has atomic obstacles
because it is larger than Eto((q, t),tk). Later, suppose at time instant t ′k, where
tk < t ′k ≤ t, E ′to((q,t),t ′k) has shrunk enough to “squeeze out” atomic obstacles in
it, perceiving the CT-point (q,t) as collision-free. Thus,

d′k = cvmax(t− t ′k) = dmin(q, t ′k)− ε. (5)

From (4) and (5), we have d′k−dk = dmin(q, t ′k)−dmin(q, tk). From the above equa-
tion and equation (3), we have

d′k−dk = pvmax(t ′k− tk), −1≤ p ≤ 1 (6)

From the equations (4), (5), and (6), we can further obtain

t ′k− tk = (
c−1
c + p

)(t− tk)≤ t− tk (7)

Hence, tk < t ′k ≤ t. ��

The significance of the theorem is that, if a CT-point (q, t) is collision-free, then
it will be perceived as collision-free no later than time t no matter how badly the
actual vmax is overestimated as v′max. Moreover, t ′k = t only in the very scenario when,
at any time ti ∈ [tk,t], the nearest atomic obstacle at tk originally inside Eto((q,t), to)
moves towards the robot’s configuration q with vmax, and in all other cases, t ′k < t.
This shows the robustness of the CFP.
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7 Implementation and Experimental Results

We have tested our approach in both simulation and real-world experiments.

7.1 Test in Simulation

A planar rod robot was considered in the test. It can only translate on a plane with a
fixed orientation θ =−45◦. Thus the robot has two translational degrees of freedom,
with reference position set at the top point of the rod. As shown in Figure 4, the robot
is initially at a collision-free CT-point (S, to) and needs to reach a goal configuration
G in this completely unknown environment, where there are unknown obstacles of
arbitrary shapes formed by what the robot can only sense as identical red circles
(called the atomic obstacles). The sensing frequency is 20 Hz. The obstacles can
either be static or move randomly with changing speeds no greater than vmax units/s,
which can be overestimated by the robot as v′max > vmax.

We want to check how effective the collision-free perceiver (CFP) of Algorithm
1 can be used by a real-time motion planner to guide the rod robot to its goal while
avoiding obstacles. While the robot waits at the starting configuration S, the plan-
ner can explore the perceived CT-space to find a motion segment for the robot to
move. Different planners can be used here, and the difference is only that they will
provide different candidate motion segments for CFP to check for feasibility (i.e., if

Fig. 4. Simulation environment

Fig. 5. Static narrow passage of
width approximately 1 unit

(a) ti = 0.05s (b) ti = 0.7s

(c) ti = 3.25s (d) ti = 5.8s

Fig. 6. Snapshots of an example run in simulation
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guaranteed collision-free or not). A motion segment can consist of multiple straight-
line segments.

We use the real-time adaptive motion planner (RAMP) [9] to provide CFP candi-
date motion segments. The planner is implemented in C#, on Dell Optiplex GX620.
RAMP can simultaneously establish a diverse set of trajectories starting from the
robot’s current location for the CFP to check and let the robot to execute the best
feasible trajectory segment. While the robot executes the guaranteed collision-free
trajectory segment, RAMP continues planning subsequent feasible trajectory seg-
ments, using CFP. Thus, once the robot finishes executing the current segment, it
can hopefully move to the next guaranteed collision-free trajectory segment seam-
lessly without stop.

Figure 6 shows the snapshots of an example run, when the rod robot of unit length
moves from position S= (1,1) to the goal G= (9,9) with speed 5 units/s. vmax = 1
unit/s, and the obstacles can change velocities instantly. The sequences of green (or
dark in B/W) reference positions show the perceived collision-free trajectory seg-
ments (without showing the time instants). The sequences of red reference positions
indicate uncertain trajectory segments at each moment of perception, which may or
may not be collision-free. The robot executes the best green option found. Note that
the robot never hits an obstacle while moving along a green trajectory because it is
guaranteed collision-free. The attached movie shows the process in four examples
with increasing number of obstacles and vmax. The robot may only get hit by an ob-
stacle (and momentarily change color to blue) when it cannot find a green trajectory
so fast and has to stop its motion.

We tested the effects of overestimating the speed bound vmax of obstacles in the
same environment of the example run. Figure 7 shows the average results over 30
runs for each c. The total time is the average total time for the robot to plan and move
simultaneously from the start position to the goal position. If the robot cannot find
a collision-free trajectory segment to move to when it reaches the end of the current
collision-free trajectory segment, it has to stop its motion until a new collision-free
segment is found. Thus, the # stops means the average number of stops the robot
has to make during its journey from the start position to the goal position. The # hits
is the average number of times when the robot got hit by obstacles during its stops
(i.e., before the next collision-free trajectory segment is found). The results show
that increasing c, or the level of over-estimation of vmax, has little effect on those

(a) c vs. total time (sec) (b) c vs. # hits and # stops

Fig. 7. Effects of Over-estimating vmax as v′max = cvmax, c≥ 1
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performance parameters. The ups and downs in the curves reflect the randomness in
the environment.

We also tested how our approach works in a static environment (vmax = 0) with a
narrow passage shown in figure 5, where the robot has to move through the narrow
passage to a goal, shown in every position of the path. We performed experiments
for varied over-estimation 1 ≤ v′max ≤ 4. In all cases, the travel time for the robot
from the start to the goal position was constant: 2.49s. This, in fact, experimentally
verified the second theorem.

7.2 Real-World Experiments with a High DOF Robot

We have also tested the CFP (Algorithm 1) by embedding it in a simple real-time
motion planner for a real desktop 5-DOF robot manipulator with revolute joints in
an unknown and unpredictable environment, sensed via an overhead stereovision
sensor (Figure 8). Our real-time motion planner finds a collision-free straight-line
segment in the CT-space as the next-step motion for the robot to execute, with a
search method compromising randomized and greedy search1 and using CFP for
discovering collision-free motion. As the robot moves, the planner simultaneously
finds again the subsequent next step until the goal is reached.

The planner was implemented in C++ on a low-end PC (Dell Optiplex GX260).
The 5-DOF manipulator is made from the Robix Rascal RC6 kit. The stereo vision
camera is PGR’s Digiclops. The obstacles are blocks unknown to the robot, which
can be moved in ways also unknown to the robot. Table 1 shows the input param-
eter values to the planner, where S and G are the starting and goal configurations
respectively. q̇−ve and q̇+ve are the negative and positive bounds on the joint speeds
of the robot. Note that the number of atomic obstacles of an actual obstacle increase
if the obstacle is close to the origin of the camera frame.

The atomic obstacles generated from stereo vision are as described in section 4.
The atomic obstacles representing the robot itself and the known desk surface (as
“floor”) were filtered out. The shape of an atomic obstacle was approximated as a
straight-line ray. The shape of a link of the robot was simplified by a cylindrical
bounding volume. The number of atomic obstacles in the test environment were in
the range of 345–800. The average rate of collision checking in the CFP computa-
tion was 1430.64 CT-points/second.

Figure 9 shows a test environment and two different resulting paths that the robot
traveled. The environment had 4 blocks as obstacles, where two were placed at the
corners and two were stacked together to form a taller obstacle in between. The taller
obstacle created a local optima for the given robot structure with limited dexterity,
which our planner was able to overcome.

Figure 10 shows a sequence of selected snapshots of the robot motion in another
test environment, where there are four obstacles, and two of them are dynamic,

1 In this way the planner is able to overcome local minima, but the details of search and
handling local minima is not the focus of this paper since a number of different strategies
can be used.
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(a) (b)

Fig. 8. Experimental setup. Fig(a) shows Robix Rascal RC 6 and obstacles of unknown ge-
ometry in its workspace and (b) shows kinematics of the manipulator

Table 1. Input Parameters and Values

S, G vmax (q̇−ve,q̇+ve) Sensor min#O(i, j)
(degrees) cm/sec (degrees/sec) Image resolution per obstacle

[−70,45,0,0,0]T 1 ([−6,−6,−5,−6,−7]T , 160×120 115
[70,−45,0,0,0]T [ 6, 6, 5, 6, 7]T )

moved by the two hands of a human operator. (Note that a grid of 1×1 cm2 squares
on the desk was used as a guidance to move obstacles close to vmax = 1cm/s.) As
shown, the operator first moved one block towards the robot. Between step 9 to
step 18, the planner tried to get most of links closer to their goal positions while
avoiding the moving block and the block at the bottom left corner. After step 18, the
moving block decreased its speed, and a new block was moved into the visible robot
workspace. The planner noticed the reduced speed of the first moving block in time
due to the non-conservative nature of the dynamic envelopes and simply guided the
robot to pass by the moving block and the static block, while moving away from

(a) Path 1

(b) Path 2

Fig. 9. An environment
(Env1) and two traveled
paths by the robot

(a) Step #4 (b) Step #9 (c) Step #18

(d) Step #19 (e) Step #25 (f) Step #27

Fig. 10. Selected steps taken by the robot in an unknown dynamic
environment (Env2). In (a), robot is near the configuration S and
in (f), robot is at configuration G



Perceived CT-Space for Motion Planning 197

Table 2. Average results from two environments (for the same start and goal configurations
of the robot)

Env Path length (deg) #Steps Total time (sec) #Sensing cycle (Hz)
Env1 514.924 62.2 82.8 3.5
Env2 235.98 27 49 4.58

the newly entered block to reach the goal in step 27. Table 2 shows the resulting
statistics characterizing the planner performance in the two task environments.

8 Conclusions and Future Work

The paper introduces the notion of perceived CT-Space for a robot, which character-
izes what truely collision-free regions can be perceived from sensing in an otherwise
completely unknown and unpredictable environment. Through the novel concept of
dynamic envelopes complemented by low-level atomic obstacles directly from sens-
ing, the paper presents an approach to discover guaranteed collision-free motion
segments to facilitate real-time robot motion planning in completely unknown and
unpredictable environments. The approach is in essence efficient because it does
not assume worst-case behaviors but rather operates based on perceiving the actual
obstacle behaviors, and no re-computation is needed for the already found collision-
free motion segments. The approach is also proven robust with respect to unknown
maximum velocities of obstacles. It can be used by different motion planners re-
gardless of specific planning strategies. It is tested in both simulation and real ex-
periments with a real 5-DOF robot manipulator.

We will further take into account the robot’s position and control uncertainty in
producing guaranteed collision-free motions and further test the approach in ex-
periments to see how fast the obstacles have to move relative to the robot for the
approach to be infeasible.
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Bounded Uncertainty Roadmaps for Path
Planning

Leonidas J. Guibas, David Hsu, Hanna Kurniawati, and Ehsan Rehman

Abstract. Motion planning under uncertainty is an important problem in robotics.
Although probabilistic sampling is highly successful for motion planning of robots
with many degrees of freedom, sampling-based algorithms typically ignore uncer-
tainty during planning. We introduce the notion of a bounded uncertainty roadmap
(BURM) and use it to extend sampling-based algorithms for planning under uncer-
tainty in environment maps. The key idea of our approach is to evaluate uncertainty,
represented by collision probability bounds, at multiple resolutions in different re-
gions of the configuration space, depending on their relevance for finding a best
path. Preliminary experimental results show that our approach is highly effective:
our BURM algorithm is at least 40 times faster than an algorithm that tries to evalu-
ate collision probabilities exactly, and it is not much slower than classic probabilistic
roadmap planning algorithms, which ignore uncertainty in environment maps.

1 Introduction

Probabilistic sampling is a highly successful approach for motion planning of robots
with many degrees of freedom. Sampling-based motion planning algorithms typi-
cally assume that input environments are perfectly known in advance. This assump-
tion is reasonable in carefully engineered settings, such as robot manipulators on
manufacturing assembly lines. As robots venture into new application domains at
homes or in offices, environment maps are often acquired through sensors subject
to substantial noise. It is essential for sampling-based motion planning algorithms
to take into account uncertainty in environment maps during planning so that the
resulting motion plans are relevant and reliable.
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Fig. 1. An uncertainty roadmap. The positions of polygon vertices are uncertain and modeled
as probability distributions. The rectangular boxes around the vertices indicate the regions
of uncertainty. In the insets, for each configuration marked along a roadmap edge, there are
two circles indicating the upper and lower bounds on the probability that the configuration
is collision-free. The size of the circles indicates the probability value. In region 1, the two
circles have similar size, indicating that the probability bounds are tight.

In sampling-based motion planning, a robot’s configuration space C is assumed
to be known and represented implicitly by a geometric primitive Free(q), which
returns true if and only if the robot placed at q does not collide with obstacles in
the environment. The main idea is to capture the connectivity of C in a graph,
usually called a roadmap. The nodes of the roadmap correspond to collision-free
configurations sampled randomly from C according to a suitable probability distri-
bution. There is an edge between two nodes if the straight-line path between them is
collision-free. Now suppose that the shapes or poses of obstacles in the environment
are not known exactly, but are modeled as a probability distribution πC of possible
shapes and poses. Then Free(q) cannot always determine whether q is collision-
free or not: it depends on the distribution of obstacle poses and shapes. Instead of
relying on Free(q), we need to compute the probability that q is collision-free
with respect to πC , and instead of a usual roadmap, we construct an uncertainty
roadmap U by annotating roadmap edges with probabilities that they are collision-
free (Fig. 1). We then process path planning queries by finding a path in U that is
best in the sense of low collision probability or other suitable criteria that take into
account, e.g., path length as well.

Unfortunately, constructing a complete uncertainty roadmap U incurs high com-
putational cost, as computing collision probabilities exactly is very expensive com-
putationally. It effectively requires integrating over a high-dimensional distribution
πC of obstacle shapes and poses. The dimensionality of πC depends on the geo-
metric complexity of the environment obstacles. Consider, for example, a simple
two-dimensional environment consisting of 10 line segments. Each line segment is
specified by its endpoints, whose positions are uncertain. We then need to integrate
over a distribution of 10×2×2 = 40 dimensions!

To overcome this difficulty, we turn the high-dimensional integral into a series
of lower-dimensional ones. More interestingly, observe that a path planning query
may be answered without knowing the complete uncertainty roadmap with exact
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collision probabilities. We maintain upper and lower bounds on the probabilities
and refine the bounds incrementally as needed. We call such a roadmap a bounded
uncertainty roadmap (BURM). See the insets in Fig. 1 for an illustration. The key
idea of our approach is to evaluate uncertainty, represented by the collision proba-
bility bounds, at multiple resolutions in different regions of the configuration space,
depending on their relevance for finding a best path in U . Often, the critical decision
of favoring one path over another depends on the uncertainty in localized regions
only, for example, in narrows passages where the robot must operate in close prox-
imity of the obstacles. It is thus sufficient to evaluate uncertainty accurately only
in those regions and only to the extent necessary to choose a best path. Consider
the example in Fig. 1. If we want to go form A to A′, it is important to evaluate
the precise collision probabilities in region 1 in order to decide whether to take the
risk of going through the narrow passage or to make a detour. Knowing the pre-
cise collision probabilities in regions 2 and 3 is much less relevant for this decision.
Thus, evaluating collision probabilities at different resolutions hierarchically leads
to drastic reduction in computation time by avoiding unnecessarily computing the
exact collision probabilities.

In the following, we start by briefly reviewing related work (Section 2). We then
introduce the notion of a BURM (Section 3) and describe our approach for path
planning with BURMs (Section 4). Preliminary experimental results show that our
approach for path planing under uncertainty is highly effective: in our tests, it is at
least 40 times faster than an algorithm that tries to evaluate collision probabilities
exactly, and it is not much slower than classic probabilistic roadmap planning al-
gorithms, which ignore environment uncertainty (Section 5). Finally, we conclude
with directions for future work (Section 6).

2 Related Work

Motion planning under uncertainty is an important problem in robotics and has been
studied widely [13, 14, 22]. In robot motion planning, uncertainty arises from two
main sources: (i) noise in robot control and sensing and (ii) imperfect knowledge
of the environment. In this work, we address the second only. Partially observ-
able Markov decision processes (POMDPs) is a general and principled approach for
planning under uncertainty [20, 10]. Unfortunately, under standard assumptions, the
computational cost of solving a POMDP exactly is exponential the number of states
of the POMDP [18]. An uncertain environment usually generates a large number
of states. Despite the recent advances in approximate POMDP solvers [19, 21, 12],
uncertain environments still pose a significant challenge for POMDP planning. In
mobile robot motion planning, a common representation of an uncertain environ-
ment is an occupancy grid. Each cell of an occupancy grid contains the probability
that the cell is occupied by obstacles. Assuming that uncertainty in robot control
and sensing is negligible, one can find a path with minimum expected collision
cost by graph search algorithms, such as Dijkstra’s algorithm or the A* algorithm.
In the motion planning literature, occupancy-grid planning belongs to the class of
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approximate cell decomposition algorithms [13], whose main disadvantage is that
they do not scale up well as a robot’s number of degrees of freedom increases.

Probabilistic sampling of the robot’s configuration space is the most success-
ful approach for overcoming this scalability issue [5, 8, 14]. Our work is based on
this approach, but extends it to deal with uncertainty in environment maps. Usually,
sampling-based motion planning algorithm first build a roadmap that approximates
the connectivity of the robot’s configuration space and then search for a collision-
free path in the roadmap. The idea that a path planning query can be answered
without constructing the complete roadmap in advance is a form of lazy evaluation
and has appeared before in sampling-based algorithms for single-query path plan-
ning, e.g., Lazy-PRM [2], EST [9], and RRT [15]. However, since classic motion
planning assumes perfect knowledge of the geometry of the robot and the obstacles,
lazy construction of the roadmap is simpler.

Sampling-based motion planning has been extended to deal various types of un-
certainty, including robot control errors [1], sensing errors [4, 23], and imperfect
environment maps [17]. Our problem is related to that in [17]. To overcome the dif-
ficulty of computing collision probability, the earlier work proposes a nearest-point
approximation technique. Although the approximation is supported by experimen-
tal evidence, its error is difficult to quantify. Also, the technique is restricted to
two-dimensional environments only [17].

3 Bounded Uncertainty Roadmaps

Let us start with two-dimensional environments. The obstacles are modeled as
polygonal objects, each consisting of a set of primitive geometric features—line
segments for two-dimensional environments. The endpoints of the line segments
are not known precisely and modeled as probability distributions with finite sup-
port, such as truncated Gaussians. See Fig. 1 for an illustration. Environment maps
of this kind can be obtained by, for example, feature-based extended Kalman filter-
ing (EKF) mapping algorithms [22]. For generality, we model the robot in exactly
the same way. In three-dimensional environments, the representation is similar, but
the primitive geometric feature are triangles rather than line segments.

Given such a representation of the obstacles and the robot, we can construct an
uncertainty roadmap U in the robot’s configuration space C . The nodes of U are
configurations sampled at random from C . For every pair of nodes u and u′ that
are close enough according to some metric, there is an edge in U , representing the
straight-line path between u and u′. Recall that in classic motion planning, sampling-
based algorithms construct a roadmap whose nodes and edges are guaranteed to be
collision-free, and the goal is to find a collision-free path in the roadmap. In our
setting, due to the uncertainty, we cannot guarantee that the nodes and edges of U
are collision-free, and there may exist no path that is collision-free with probabil-
ity 1. So instead, we want to find a path with minimum cost according to a suitable
cost function. A cost function may incorporate various properties of the desired
path. To be specific, our cost function incorporates two considerations: the collision
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probability and the path length. This allows us to trade off the distance that the robot
must travel against the risk of collision.

To define such a path cost function, we assign a weight to each edge e of U :

W (e) = �(e)+ E[C(e)], (1)

where �(e) is the length of e and C(e) is the cost of collision for e. E[C(e)] denotes
the expected collision cost, and the expectation is taken over πC , the probability
distribution of the obstacle and robot geometry. This cost function assumes that col-
lision is tolerable and we want to trade off the risk of collision against the robot’s
travel distance. Paths that do not conform to this assumption, e.g., those that pene-
trate through the interior of obstacles, must be excluded. To obtain W (e), we need
to calculate E[C(e)]. Doing so directly is extremely difficult, because of the need to
integrate over πC , a high-dimensional distribution whose dimensionality is propor-
tional to the number of geometric features describing the obstacles and the robot, as
illustrated by the example in Section 1. Furthermore, we must perform this integra-
tion for every edge of U . Instead of this, we break down the integration process into
several steps. First, we integrate over the configurations contained in e:

C(e) =
∫

q∈e
C(q)dq,

where we slightly abuse the notation and use C(q) to denote the collision cost at q.
Following the usual practice in sampling-based motion planning, we discretize the
edge e into a sequence of of configurations (q1,q2, . . . ,qn) at a fixed resolution and
approximate the integral by

C(e) =
n

∑
i=1

C(qi). (2)

Next, recall that the obstacles and the robot are each represented as a polygonal
object consisting of a set of primitive geometric features. Denote the two feature sets
by S for the obstacles and S′ for the robot. We define the collision cost of the robot
with the obstacles as the sum of collision costs of all pairs of geometric features
s ∈ S and s′ ∈ S′. This can model, for example, the preference that configurations
with fewer feature pairs in collision are more desirable. In formula, we have

C(q) = ∑
s∈S,s′∈S′

Cs,s′(q), (3)

where Cs,s′(q) is the collision cost for the feature pair s and s′ when the robot is
placed at configuration q. Combining Eqs. (1–3) and using the linearity of expec-
tation, we get W (e) = �(e)+ ∑n

i=1 ∑s∈S,s′∈S′ E[Cs,s′(qi)]. Let Is,s′(q) denote the event
that s and s′ intersect when the robot is placed at q. Then E[Cs,s′(qi)] = α P(Is,s′(q)),
where α is the cost of collision when a pair of features intersect. The value of α
is usually constant for two-dimensional environments, but may vary according to s
and s′ for three-dimensional environments. In practice, α is adjusted to reflect our
willingness to take the risk of collision in order to shorten the robot’s travel distance.
To summarize, the weight of an edge e is given by



204 L.J. Guibas et al.

W (e) = �(e)+
n

∑
i=1

∑
s∈S,s′∈S′

α P(Is,s′(qi)), (4)

and the cost of a path γ in U is the sum of the weights of all edges contained in γ .
To compute the cost of a path, each edge of an uncertainty roadmap U must

carry a set of probabilities P(Is,s′(qi)). Although s and s′ are primitive geometric fea-
tures of constant size, computing P(Is,s′(qi)) exactly is still expensive. If s and s′ are
both uncertain, then the computation requires integration over a distribution of 8
dimensions for two-dimensional features and 18 dimensions for three-dimensional
features. To reduce the computational cost, we maintain upper and lower bounds on
P(Is,s′(qi)) rather than calculate the exact probability. Thus each edge e of U carries
a set of probability bounds on P(Is,s′(qi)) for each configuration qi ∈ e resulting from
the discretization of e and for each pair of features s ∈ S and s′ ∈ S′. We call such
a roadmap a bounded uncertainty roadmap or BURM for short. The probability
bounds are refined incrementally by subdividing the integration domain hierarchi-
cally during the path finding.

4 Path Planning with BURMs

4.1 Overview

Suppose that we are given the (uncertain) geometry of the obstacles and the robot in
the representation described in the previous section. Our goal is to find a minimum-
cost path between a start configuration qs and a goal configuration qg. Conceptually,
there are two steps, First, we construct a BURM U with trivial probability bounds
by sampling the robot’s configuration space C . Next, we tighten up the probability
bounds incrementally while searching for a minimum-cost path in U .

The first step is similar to that in the usual sampling-based motion planning algo-
rithms. We sample a set of configurations from C according to a suitable probability
distribution and insert the sampled configurations along with qs and qg as nodes of
U . We then create an edge for every pair of nodes that are sufficiently close ac-
cording to some metric. We filter out those nodes and edges that are in collision.
Here collision is defined with respect to the mean geometry of the obstacles and the
robot, which means that the primitive geometric features representing the obstacles
and the robot are all at their mean positions. The purpose of filtering is to exclude
those paths that cause the robot to pass through the interior of the obstacles. It is
well known that the probability distribution for sampling C is crucial, and there is
a lot of work on effective sampling strategies for motion planning. See [5, 8, 14]
for comprehensive surveys. There is also recent work on how to adapt the sampling
distribution when the environment map is uncertain. In this paper, we do not address
the issue of sampling strategies. BURMs can be used in combination with any of the
existing sampling strategies.

In the second step, we search for a minimum-cost path in U using a variant of
Dijkstra’s algorithm. While Dijkstra’s algorithm deals with path cost, a BURM con-
tains only bounds on path cost. When there are two alternative paths, we may not be
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Algorithm 1. Searching for a minimum-cost path in a BURM.

1: For every node u of a BURM U , initialize the lower and upper bounds on the cost of the
minimum-cost path from qs to u: K(u) = 0,K(u) = 0 if u = qs, and K(u) = +∞,K(u) =
+∞ otherwise.

2: Insert all nodes of U into a priority queue Qu.
3: while Qu is not empty do
4: Find in Qu a node u such that K(u)≤ K(v) for all v ∈Qu. Remove u from Qu.
5: if u = qg then return.
6: for every node v incident to u do
7: Discretize the edge between u and v at a given resolution into a sequence of config-

urations qi, i = 1,2, . . ..
8: For every qi, invoke FindColEvents(qi,S,S′) to find feature pairs s∈ S and s′ ∈

S′ that are likely to have P(Is,s′(qi)) > 0. For each such feature pair, set P(Is,s′(qi)) = 0

and P(Is,s′(qi)) = 1, and insert Is,s′(qi) into Qe.
9: Set Ku(v) = K(u)+W (u,v) and Ku(v) = K(u)+W (u,v).

10: while the two intervals (Ku(v),Ku(v)) and (K(v),K(v)) overlap do
11: RefineProbBounds(Qe,U ,qs,u,v).
12: end while
13: if Ku(v) < K(v) then
14: Set K(v) = Ku(v) and K(v) = Ku(v).
15: Update Qu, using the new bounds on the cost of the minimum-cost path to v.

Call RefineProbBounds if needed.
16: end if
17: end for
18: end while

able to decide which one is better, as their bounds may “overlap”. To resolve this,
we need to refine the probability bounds in a suitable way. The details are described
in the next three subsections.

4.2 Searching for a Minimum-Cost Path

Given a BURM U , we search for a minimum-cost path in U using a variant of Dijk-
stra’s algorithm. A sketch of the algorithm is shown in Algorithm 1. For each node
u in U , we maintain the lower bound K(u) and upper bound K(u) on the minimum-
cost path from qs to u. Recall that every edge e of U carries a set of probability
bounds on Is,s′(qi), for every qi ∈ e resulting from the discretization of e and ev-
ery feature pair s ∈ S and s′ ∈ S′. Let P(Is,s′(qi)) and P(Is,s′(qi)) denote the lower
and upper bounds on the probability of Is,s′(qi), respectively. Using these bounds,
we can calculate the lower bound W (e) and upper bound W (e) on the edge weight
for each edge e ∈ U . By the definition, K(u) and K(u) can then be obtained by
summing up the bounds on the edge weights. Like Dijkstra’s algorithm, we insert
each node u of U into a priority queue Qu, which is implemented as a heap, and then
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dequeue them one by one until a minimum-cost path to qg is found. However, in-
stead of using the path cost from qs to u as the priority value, we use the path cost
bounds (K(u),K(u)). For two nodes u and v in U , We say that u has higher pri-
ority than v, if K(u) ≤ K(v). In our implementation of Qu, if the bound intervals
(K(u),K(u)) and (K(v),K(v)) overlap, we refine the probability bounds until we
can establish which node has higher priority in Qu.

As we have mentioned in Section 3, computing collision probabilities requires
integration over a high-dimensional distribution and is very expensive computation-
ally. We use two techniques for efficient computation of the probability bounds. In
line 8 of Algorithm 1, FindColEvents find feature pairs s ∈ S and s′ ∈ S′ such
that s and s′ are likely to intersect with non-zero probability, when the robot is placed
at qi. For each such feature pair, we attach an initial probability bound of [0,1] to
the event Is,s′(qi) and insert Is,s′(qi) into a set Qe as a candidate for probability bound
refinement in the future. Observe that usually, at each configuration, only a small
number of feature pairs are in close proximity and likely to intersect with non-zero
probability. Therefore, this step drastically reduce the number of collision proba-
bility bounds that need to be calculated. To search for the intersecting feature pairs
efficiently, we exploit a hierarchical representation of the geometry of the obstacles
and the robot (see Section 4.3) and quickly eliminate most of the feature pairs that
are guaranteed to have zero collision probability.

In lines 11 and 15 of Algorithm 1, RefineProbBounds refines probability
bounds. While searching for a minimum-cost path in U , we may encounter two
paths γ and γ ′ and must decide which one has lower cost. If the bound intervals on
the cost of γ and γ ′ overlap, refinement of the probability bounds becomes necessary.
To do so, we find all events Is,s′(q) in Qe such that q lies in an edge along γ or γ ′.
We then refine the probability bounds on these events (see Section 4.4), until we can
determine the path with lower cost. For efficiency, we order the events found with a
heuristic and process those more likely to separate the bound intervals first.

To focus on the main issue and keep the presentation simple, Algorithm 1 uses
Dijkstra’s algorithm for graph search. Informed search, such as the A* algorithm
with an admissible heuristic function, is likely to give better results. In our case, one
possible heuristic function is the Euclidean distance between two configurations.

4.3 Bounding Volume Hierarchies

In this and next subsections, we describe our computation of probability bounds.
We restrict ourselves to the two-dimensional case. The basic idea generalizes to the
three-dimensional case in a straightforward way, but the details are more involved.

For the two-dimensional case, FindColEvents (Algorithm 1, line 8) finds
line segment pairs s ∈ S and s′ ∈ S′ that are likely to have intersection probability
P(Is,s′(q)) > 0, when s′ is placed at configuration q. It does so by quickly elimi-
nating most of the line segment pairs with P(Is,s′(q)) = 0. Recall that we model
the endpoints of these line segments as probability distributions with finite support.
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Fig. 2. The line segment
pair s and s′ intersect with
(a) probability 0 and (b)
probability 1.

Without loss of generality, assume that the support
regions are rectangular. Let R(s) denote the end-
point regions for a line segment s and H(s) denote
the convex hull of R(s). Using the result below, we
can check whether a line segment pair s and s′ has
P(Is,s′(q)) = 0 in constant time, as the convex hulls
and the endpoint regions of s and s′ are all polygons
with a constant number of edges. See Fig. 2 for an
illustration.

Theorem 4.1. Let s and s′ denote two line segments
with uncertain endpoint positions in two dimensions.

(1)If H(s)∩H(s′) = /0, then s and s′ intersect with prob-
ability 0.

(2)If H(s)∩H(s′) �= /0, R(s)∩H(s′) = /0, and R(s′)∩
H(s) = /0, then s and s′ intersect with probability 1.

Fig. 3. A sphere tree over two
uncertain line segments.

If S and S′ contain m and n line segments, respec-
tively, it takes O(mn) time to check all line segment
pairs s ∈ S and s′ ∈ S′. This is very time-consuming,
as we need to invoke FindColEvents repeatedly
at many configurations. To improve efficiency, we
apply a well-known technique from the collision de-
tection literature and build bounding volume hier-
archies over the geometry of the obstacles and the
robot. There are many different types of bounding
volume hierarchies. See [16] for a survey. We have
chosen the sphere tree hierarchy, though other hier-
archies, such as the oriented bounding box (OBB) tree, can be used as well. Specif-
ically, we build two sphere trees for S′ and S, respectively. Each leaf of a sphere tree
contains the convex hull H(s) for a line segment s, and each internal node v con-
tains a sphere that encloses the geometric objects in the children of v (Fig. 3). Clearly
H(s) and H(s′) can intersect only if their enclosing sphere intersect. It then follows
from Theorem 4.1 that s and s′ intersect with non-zero probability only if the spheres
enclosing H(s) and H(s′) intersect. By traversing the sphere trees hierarchically, we
can quickly eliminate most of the line segment pairs that have zero intersection prob-
ability and reduce the cost of checking a quadratic number of line segment pairs to
a much smaller number. We omit the details of constructing sphere tree hierarchies
and traversing them for collision detection, as they are well documented elsewhere
(see, e.g., [16]).

In summary, by exploiting a hierarchical representation, FindColEvents effi-
ciently identifies most line segment pairs with intersection probability 0 and reduce
the trivial probability bound of [0,1] to [0,0] for all of them together. For the remain-
ing line segment pairs, which are usually small in number, their probability bounds
are further refined when necessary (see next subsection).
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Fig. 4. Decomposing the integration domain for intersection probability calculation. (a) The
quadtree-based procedure. (b) Our procedure that takes into account the geometry of inter-
secting line segments. The example shows that after roughly a same number of cuts, our
procedure identifies a large part of the domain for which no further decomposition is needed.

4.4 Hierarchical Refinement of Collision Probability Bounds

We now consider the problem of refining the bounds on the intersection probability
P(Is,s′(q)) for some line segment pair s ∈ S and s′ ∈ S′. To simplify the notation, we
will omit the parameter q and assume that s′ is translated and rotated suitably.

Computing P(Is,s′) is in essence an integration problem. Let x1 and x2 be the end-
points of s, and let x3 and x4 be the endpoints of s′. Suppose that xi has probability
density function fi(xi) with rectangular support regions Ri. We can calculate the
probability that s and s′ intersect by integrating over R1×·· ·×R4:

P(Is,s′) =
∫

R1×···×R4

A(x1, . . . ,x4) f1(x1)dx1 · · · f4(x4)dx4, (5)

where A(x1, . . . ,x4) is an index function that is 1 if and only if s and s′ intersect. In
two-dimensional environments, this integral is 8-dimensional.

To evaluate this integral, we decompose the integration domain R1×·· ·×R4 hier-
archically into a set of subdomains such that in each subdomain, the index function A
is constant. By summing up the probability mass associated with all the subdomains
where A is 1, we get the value for P(Is,s′). During the hierarchical decomposition
process, we maintain three lists of subdomains: (i) subdomains where A is always 1,
(ii) subdomains where A is always 0, and (iii) subdomains where A has mixed values
(0 or 1). Interestingly, these three lists provide an upper bound and a lower bound
on P(Is,s′) at any moment during the decomposition process. Let p1 and p2 be the
probability mass associated with subdomains in list (i) and (ii), respectively. Clearly,
we have p1 ≤ P(Is,s′)≤ 1− p2. The probability mass associated with subdomains in
list (iii) is 1− p1− p2. It represents the gap between the upper and lower bounds.
To refine the bounds, we simply take a subdomain from list (iii) and decompose it
further until some of the refined subdomains can be assigned to either list (i) or (ii).

To decompose an integration domain R1× ·· ·×R4, we take a horizontal or ver-
tical cut on one or more of the endpoint regions Ri and obtain a set of subdomains
R′1× ·· ·×R′4 such that R′i is rectangular and R′i ⊆ Ri for i = 1,2,3,4. Using Theo-
rem 4.1, we can easily determine whether the index function A has constant value
over a subdomain and assign the subdomain to the appropriate list.
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There are various strategies to decompose a rectangular integration domain. The
main goal is to assign each subdomain to list (i) or (ii) and avoid unnecessarily de-
composing into a large number of tiny subdomains. One possible decomposition
procedure, based on the quadtree [6], always cuts an endpoint region in the middle
either horizontally or vertically (Fig. 4a). This is simple to implement, but does not
always results in the best decomposition, as it may unnecessarily cut a domain into
small pieces. Our decomposition procedure uses the geometry of the two intersect-
ing line segments s and s′ to decide where to cut. This results in better decomposi-
tion, but the trade-off is that each decomposition step is slightly more expensive. To
determine how to cut, our procedure enumerates several cases that depend on the
relative positions of the endpoint regions and convex hulls for s and s′. The details
are not particularly important. An example decomposition is shown in Fig. 4b for
illustration. In the experiments, our decomposition procedure usually gives slightly
better performance than the quadtree-based procedure.

An alternative way of evaluating the integral in (5) is to perform Monte Carlo in-
tegration [11] by sampling from the integration domain R1×·· ·×R4. Each sample
consists of four points x1, . . . ,x4 with xi ∈ Ri. Let Ai be the value of the index func-
tion A for the ith sample, and p be the value of the integral in (5). Then an estimate
of p is given by

pN =
1
N

N

∑
i=1

Ai. (6)

The values Ai, i = 1,2, . . . ,N are in fact a set of independent and identically dis-
tributed (i.i.d.) random variables. Under a wide range of sampling distributions, the
mean of Ai is equal to p. Let VA be the variance of Ai. By (6), pN is a random vari-
able with mean p and variance VA/N. We can then apply Chebychev’s inequality
and obtain

P
(
|pN− p)| ≥ (1/δ )(VA/N)−1/2)

)
≤ δ , (7)

which implies that pN converges to p at the rate O(N−1/2). More precisely, for any
δ arbitrarily small, we can determine the number of samples, N, needed to ensure
that the estimate pN does not deviate too much from p. So instead of maintain-
ing upper and lower bounds on the collision probabilities, we can choose N large
enough to get sufficiently accurate estimates for all the collision probabilities and
find a minimum-cost path with high probability. Unfortunately, using Monte Carlo
integration this way is not efficient (see Section 5), as it uses the same number of
samples for estimation everywhere over the entire environment.

An interesting method is to combine probability bound refinement and Monte
Carlo integration. We start by decomposing the integration domain as described
earlier. When the probability mass associated with a subdomain is small enough, we
apply the Monte Carlo method with a small number of samples to get an estimate
and close the gap between the upper and lower bounds. Strictly speaking, if we
do this, we cannot guarantee that the algorithm finds a minimum-cost path in U .
However, if we use a sufficient number of samples for Monte Carlo integration,
we can provide the guarantee with high probability. Furthermore, even when the
algorithm fails to find a minimum-cost path, the cost of the resulting path is still a
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good approximation to the minimum cost. The reason is that due to the bound in
(7), we make a mistake only when two paths have very similar cost. We use this
combined method in our implementation of the algorithm, and it achieves better
performance better than one that uses pure probability bound refinement.

5 Experiments

We made a preliminary implementation of our algorithm and compared it with two
alternatives. One algorithm, which we developed for the purpose of comparison,
is similar to BURM. It also builds an uncertainty roadmap. However, instead of
refining the probability bounds incrementally when necessary, it estimates the exact
probabilities using Monte Carlo integration. We call this algorithm MCURM. In our
tests, MCURM uses 100 samples to evaluate each intersection probability P(Is,s(q)).
The other algorithm that we compared is Lazy-PRM [2], which does not take into
account uncertainty during planning.

In our tests, all three algorithms use the same sampling strategy, which is a hy-
brid strategy consisting of the bridge test and the uniform sampler [7]. We ran the
algorithms on each test case and repeated 30 times independently. The performance
statistics reported here are the averages of 30 runs. In each run, the three algorithms
used the same set of sampled configurations. So the performance difference results
from the way they find a minimum-cost path in an (uncertainty) roadmap rather than
random variations in sampling the configuration space.

The test results are shown in Fig. 5 and Table 1. In tests 1–3, the robot has a rect-
angular shape and only translates. In these three tests, the environments are similar.
The robot essentially chooses between two corridors to go from the start to the goal
position. The main differences among the tests are (i) the level of uncertainty in the
obstacle geometry and (ii) the robot start position. In test 1 (Fig. 5a), the uncertainty
is low and roughly the same everywhere. So the robot chooses the upper corridor,
based mainly on the path length consideration. However, it is interesting to observe
that although a shortest path with respect to the path length normally touches obsta-
cle boundaries, our minimal-cost path stays roughly in the middle of the corridor. It
does so to avoid collision due to the uncertainty in obstacle geometry. In test 2, the
upper corridor has substantially higher uncertainty than the lower corridor. On bal-
ance, it is better for the robot to choose the slightly longer, but safer lower corridor
(Fig. 5b). In test 3, the uncertainty in obstacle geometry remains the same as that in
test 2, but the start position for the robot moves higher. The robot again decides to
go through the upper corridor, because despite the higher collision risk of the upper
corridor, it is much shorter than the lower corridor (Fig. 5c).

In test 4, the robot can both translate and rotate. To reach its goal, the robot can
either take the risk of collision and squeeze through the narrow passage or make a
long detour. It is not obvious which choice is better. The answer depends, of course,
on the cost of collision. In this case, the robot decides to take the riskier, but shorter
path (Fig. 5d). Interestingly, our algorithm finds two paths of similar cost, depending
on the set of sampled configurations. One path veers to the right (Fig. 5d) when it
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(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4

Fig. 5. Test environments and results. The boxes around the vertices mark the support regions
of the probability distributions modeling the endpoint positions of line segments forming the
obstacle boundaries.

approaches the obstacle near the lower entrance to the narrow passage, and the other
veers to the left. This is in fact not surprising, because regardless of whether the path
veers to the the left or right, the uncertainty that the path encounters remains similar
and the path length does not differ by much.

Now let us look at the performance statistics. For each test case, Table 1 lists
the number of nodes in the (uncertainty) roadmap, the running times, and the cost
of the paths found by the three algorithms. Note that the absolute running times
reported in Table 1 are a little slow, as our implementation is still preliminary and
does not optimize the speed of important primitive geometric operations such as the
intersection test. We plan to improve the implementation in the future. However, this

Table 1. Performance statistics.

Test Env. No. Nodes Cost Time (s)
BURM MCURM Lazy-PRM BURM MCURM Lazy-PRM

1 300 699 699 789 59 3,119 42
2 300 741 741 1,059 72 2,871 42
3 300 761 760 891 74 2,994 35
4 500 526 526 668 61 2,534 36
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(a) (b) (c)

Fig. 6. Color-coded BURMs. Red, gray, and blue-green marks edges with tight, intermediate,
and loose collision probability bounds, respectively. Bright green marks edges with collision
probability 0.

does not significantly affect the comparison of the three algorithms based on their
relative performance, as they use the same implementation of primitive operations.

BURM and MCURM find paths with almost the same cost. BURM is, however,
40–50 times faster. This clearly demonstrates the advantage of the approach of eval-
uating uncertainty hierarchically at multiple resolutions.

The comparison between BURM and Lazy-PRM is even more interesting. As
expected, BURM finds paths with lower cost, as it takes uncertainty into account
during planning. However, it is somewhat surprising that BURM is not much slower
than Lazy-PRM: BURM is only 2 times slower than Lazy-PRM, while it is at least
40 faster than MCURM. The reason is that uncertainty comes into play in decid-
ing the best path when the robot operates in close proximity of the obstacles. This
usually happens in localized regions of the configuration space only. BURM takes
advantage of this by maintaining bounds on collision probabilities rather than cal-
culating the exact probabilities. It refines these bounds incrementally by exploiting
bounding volume hierarchies on the geometry of the obstacles and the robot and by
hierarchically decomposing the integration domain for collision probability calcu-
lation. The running time comparison with Lazy-PRM provides further evidence on
the advantage of our approach.

To better understand the behavior of BURM, we applied it to an environment
similar to that in tests 1–3 and varied the uncertainty level in the obstacle geome-
try. The resulting bounded uncertainty roadmaps are shown in Fig. 6. The edges of
the roadmaps are colored to indicate how tight the associated collision probability
bounds are. The roadmap in Fig. 6a serves as a reference point for comparison. The
uncertainty is low in both the upper and lower corridors, and the collision proba-
bility bounds are refined to various degrees. As the uncertainty gets higher in the
upper corridor, the collision probability bounds there are tightened to differentiate
the quality of the paths (Fig. 6b). It is also interesting to observe that the upper
corridor is not explored as much, because the paths in the lower corridor are far
better. Finally, as the uncertainty in the lower corridor also increases, both corridors
must be explored, and the collision probability bounds carefully tightened in order
to determine the best path (Fig. 6c).

Bounded uncertainty roadmaps can be used with any existing sampling strate-
gies. To demonstrate this, we performed additional tests by varying the sampling
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(a) (b)

Fig. 7. The change in the cost of the minimum-cost path found as a function of the sampling
strategy and the number of nodes in the uncertainty roadmap.

strategy used and the number of nodes in the uncertainty roadmap. We tried two
additional strategies: the uniform sampler and the Gaussian sampler [3]. For all
sampling strategies, as the roadmap size increases, the running time increases cor-
respondingly. Two plots of representative results are shown in Fig. 7. They indicate
that the cost of the minimum-cost path found decreases with the roadmap size up
to a certain point and then stabilizes. So one way of minimizing the path cost is to
run our algorithm in an “anytime” fashion by gradually adding more nodes to the
roadmap. The effect of different sampling strategies is more pronounced in com-
plex environments. In the simpler environment (see Fig. 5b), when the number of
roadmap nodes is sufficiently large, the results obtained by the different sampling
strategies are comparable. When the number of nodes is small, the Gaussian sampler
does not behave very well, as it biases sampling towards the obstacle boundaries, re-
sulting in high collision cost. In the more complex environment (see Fig. 5d), which
contains several narrow passages, the hybrid bridge test and the Gaussian sampler
have clear advantages over the uniform sampler. Just as in classic motion planning,
effective sampling strategies for constructing uncertainty roadmaps are important
and require further investigation.

6 Conclusion

We have introduced the notion of a bounded uncertainty roadmap and used it to
extend sampling-based algorithms for planning under uncertainty in environment
maps. By evaluating uncertainty hierarchically at multiple resolutions in different
regions of a robot’s configuration space, our approach greatly improves planning ef-
ficiency. Experimental results, based on a preliminary implementation of our plan-
ning algorithm, demonstrate that it is highly effective.

There are many interesting directions for future work. The main idea of our ap-
proach, evaluating uncertainty hierarchically at multiple resolutions, is not restricted
to the particular path cost function used here. For example, our current path cost
function sums up the collision costs for the configurations along a path. Sometimes
it may be more suitable to take the maximum of rather than sum up the collision
costs. Our idea can be applied to this new path cost function with small modifi-
cations. We would also like to understand the effect of sampling strategies on the



214 L.J. Guibas et al.

running time and the quality of the result for our algorithm with respect to particular
classes of path cost functions. One idea is to sample a robot’s configuration space
adaptively and adjust the sampling distribution based on the collision probabilities
of previously sampled configurations. Finally, we will implement our algorithm and
test it in three-dimensional environments.

Acknowledgements. This work is supported in part by MoE AcRF grant R-252-000-327-
112 and NSF grants CCF-0634803 and FRG-0354543.

Appendix 1 Proof of Theorem 1

Proof. To prove part (1), observe that since H(s)∩H(s′) = /0, line segments s and
s′ has no intersection for all pairs s and s′ whose endpoints lie in R(s) and R(s′),
respectively. This immediately implies that the intersection probability is 0.

Now consider part (2). We start with a simple observation. Let σ be a fixed line
segment such that the endpoints of σ lie outside H(σ ′) for some line segment σ ′
with uncertain endpoint positions and σ does not intersect with R(σ ′). Then either
σ intersects with σ ′ for all σ ′ whose endpoints lie in R(σ ′), or σ intersects with
none of them. Since R(s)∩H(s′) = /0, the endpoints of s must lie outside of H(s′).
Furthermore, s does not intersect with R(s′), as R(s′)∩H(s) = /0. From our observa-
tion, it follows that s intersects with all s′ with endpoints in R(s′) or intersects with
none of them at all, and this is true for all s with endpoints lying in R(s). Now, since
H(s)∩H(s′) �= /0, there exists at least one pair of intersecting line segments s and
s′ with endpoints in R(s) and R(s′). By the convexity of R(s),R(s′),H(s) and H(s′),
we conclude that all line segment pairs s and s′ intersect. Thus the probability of
intersection is 1. ��
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A Sampling Hyperbelief Optimization
Technique for Stochastic Systems

James C. Davidson and Seth A. Hutchinson

1 Introduction

Uncertainty plays a dramatic role not only on the quality of the optimal solution of
POMDP system, but also on the computational complexity of finding the optimal
solution, with a worst case running time that is exponential in the length of the time
horizon for the exact solution. However, given the importance of finding optimal or
nearly optimal solutions for systems subject to uncertainty, numerous researchers
have developed approaches to approximate POMDP systems to overcome this lim-
itation (refer to [22, Ch. 15 & 16] for a survey of such approaches). The majority
of these methods are for discounted, infinite-horizon problems. Moreover, many of
these techniques must reperform all the computational effort when the objective
function changes.

A central theme of almost all approximation techniques is to reduce the set of
possibilities to be evaluated, whether simplifying the representation of the belief or
by the simplifying the value function. Drawing on insights offered in [8] about why
belief sampling techniques (such as [21, 15, 17, 18, 19, 20]) are so effective, we de-
velop an alternative method that is inspired by graph sampling-based methods (e.g.,
[10]). In [6], we introduce the notion of hyperfiltering, which evolves forward into
future stages the probability function over the belief, or the hyperbelief. We refer to
the space of probability functions over the belief as the hyperbelief space. Interest-
ingly, the evolution of a system over the hyperbelief space is deterministic. Thus, we
can find the optimal plan in the hyperbelief space using an approach derived from
standard search techniques.
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To do so, we abstract the problem into a two-level planner. At the high level, a
set of points in the hyperbelief space is randomly generated. Edge weights between
each ordered pair of samples are then generated using the lower level planner. The
lower level planner commissions local, greedy feedback controllers to predict the
evolution of the robot from one sampled hyperbelief point to another. Because of
the stochastic, partially observed nature of the problem, hyperfiltering is used to
estimate the future hyperbelief, under a given policy, from one stage to the next. In-
stead of requiring that each hyperbelief sample reach the target hyperbelief sample,
the distance between the hyperbelief sample and the target sample is included with
the edge information between each pair of samples.

At the cost of completeness, this graph representation reduces the set of possi-
bilities to be explored from a continuum in an infinite number of dimensions to a
finite set. Moreover, because the evolution is deterministic in the hyperbelief space,
optimizing over the graph can be performed in worst case quadratic time complex-
ity in the number of vertices in a complete graph using standard graph optimization
algorithms–without the exponential explosion when planning in the belief space.
Because the local policy may not attain the exact position of the target hyperbelief
sample, a refinement algorithm is used to incrementally identify a possibly better
policy and then simulate this policy to determine the actual cost and, thus, if the
newly proposed policy is better. The bound on the optimal value can only decreases
with every iteration, so that the refinement technique will find the best solution for
a given graph in a finite amount of time.

One of the attributes of the proposed sampling-based hyperbelief optimization
technique (SHOT) is the capability to generate an abstracted representation of the
structure of the hyperbelief space that is independent of the cost function. This way,
as with sampling-based methods in general, the majority of work can be performed
offline. With relatively little computation expense, the nearly optimal policy for a
variety of objectives can be determined based on the current status of the robot as
well as changing the initial conditions such as the starting hyperbelief.

The proposed method will be developed in Section 4. However, first related re-
search (Section 2) is explored and background concepts (Section 3) are introduced.
Examples are provided in Section 5, and we conclude with some final remarks and
comments in Section 6.

2 Related Research

Finding optimal policies for partially observable systems is intractable, with a best
known computational time complexity that is exponential in both the time horizon
and the number of observations [9]. Thus, many researchers have focused on finding
efficient approximation methods (such as [21, 15, 17, 18, 19, 20]). These techniques
approximate the POMDP optimization problem by simplifying the expression of the
value function while performing value iteration. Each of these methods are generate
a set of beliefs that are used to approximate the value function from one stage of the
value backup to the next.
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Many robotic motion planning approximation approaches are sampling-based as
well. In fact sampling-based methods have become one of the dominant methods for
planning in the robotics community (refer to [3, Ch. 7] for an overview and survey
of sampling-based techniques). As described in [10], probabilistic sampling-based
methods generate a series of samples in the configuration space and simple planners
are used to link the samples (or vertices) together. In this way a roadmap (or graph)
of the samples is created. The majority of sampling-based methods focus on finding
feasible, but not necessarily optimal solutions. However, in [11], Kim et al. develop
a technique to determine the optimal solution over the roadmap.

The concept of stochastic uncertainty in the process model was first introduced
into sampling-based methods in [2]. This method created a discrete approximation
of a continuous space by creating a roadmap. Then, probabilities of transitions from
one node to another are assigned. By abstracting the problem this way, Apaydin
et al. are able to reduce a continuous Markov decision process system to a finite
Markov decision process. This method focuses on determining feasible solutions,
while recently in [1] the concept of optimizing over the roadmap was introduced via
the stochastic motion roadmap, whereby Alterovitz et al. sample a set of points in
the configuration space to generate the roadmap. Next, for each node in the roadmap
they generate a random set of resulting states for a given action. They then associate
an edge weight between the node and any other node according to the number of
times, out of the total, that the given action resulted in reaching the other node. Ex-
panding to POMDPs, Prentice and Roy in [16] generate a sampling based approach
for linear Gaussian systems. In their approach, a set of mean samples are generated
corresponding to points in the configuration space. Next, a traditional probabilistic
roadmap is used to generate a roadmap of the system (without consideration of the
uncertainty). They generate the transfer function to the belief samples and gener-
ate their respective covariances. Next they use a standard graph search (e.g., A∗)
to search the graph in a forward manner, while generating the best estimate of the
actual covariance as the search progresses.

3 Background

3.1 POMDP Formulation

As a general model of stochastic systems, POMDPs incorporate the possibility of
incomplete and uncertain knowledge when mapping states to observations. Such a
representation enables the modeling and analysis of systems where sensing is lim-
ited and imperfect.

POMDPs include at least the following components: the state space X represent-
ing the finite set of states of the world; the finite set of control actions U that can be
executed; the transition probability function pxk|xk−1,uk−1

representing the likelihood
of the system being in one state xk−1 and transferring into another state xk at stage k
given the applied action uk−1 at stage k−1; the set of all possible observations Y ;
the observation probability function: pyk|xk

describing the likelihood of a particular
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observation yk occurring given the system is in a specified state xk; and the cost
function c(·), which defines the objective to be optimized for the POMDP.

3.2 Hyperfiltering

Hyperfiltering is a method for systems modeled by POMDPs to propagate the esti-
mate of the belief and its uncertainty forward into future stages for unseen observa-
tions and unactualized control inputs. By choosing the probability function over the
beliefs, hyperfiltering is able to sequentially evaluate the estimate of the system and
its uncertainty forward from one stage to the next. Moreover, by adopting the com-
plete representation of the uncertainty, instead of a limited number of statistics of
the belief, a more accurate representation of the evolution of the system is obtained.

The evolution of the probability function p(xk|Ik) at stage k, also known as the
belief bk, can be determined given the previous belief bk−1 and an applied control
action uk ∈U via the belief transition function:

bk = B(bk−1,uk−1,yk),

where the belief transition function describes the Bayesian filtering over all states
x ∈X , or

B(bk,uk,yk+1)(xk+1) =
p(yk+1|xk+1)∑xk∈X p(xk+1|xk,uk)bk(xk)

∑xk+1∈X p(yk+1|xk+1)∑xk∈X p(xk+1|xk,uk)bk(xk)
. (1)

The notation B(·)(xk+1) is adopted to represent the resulting functional evaluated at
a specific state xk+1. The belief at each stage k resides in the belief space Pb, which
is the space of all possible beliefs. For discrete state POMDPs, the belief space is
represented as an |X |− 1 dimensional simplex Δ |X |−1, where |X | is the number
of states in the state space.

When predicting future behavior, the observations are unknown and stochastic
in nature. The future belief therefore becomes a random variable defined by the
stochastic process:

bk+1 = B(bk,uk,yk+1). (2)

The evolution from one stage to the next via the stochastic process (2) generates a
random variable; thus, a representation of the probability function over the belief is
needed to proceed.

The hyperbelief is a probability function over the belief space at each stage. The
initial hyperbelief β1 at stage k = 1 is given; for k > 1, the hyperbelief is defined as

βk � pbk|β1,π .

Each βk is contained in the hyperbelief space Pβ .
The belief transition probability function p(bk+1|bk,uk), represents the probabil-

ity of the outcome bk+1 of the stochastic process B(bk,uk,yk+1) given bk and the ap-
plied control input uk. Since both π and bk are known, the probability function over
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the observations can be inferred. The function that transfers a hyperbelief βk ∈Pβ
into the hyperbelief βk+1 ∈Pβ given a policy π ∈ Π is denoted as the hyperbe-
lief transition function ϒ , such that ϒ : Pβ ×Π → Pβ , where Π is the set of all
information feedback policies. The hyperbelief transition function is represented as

βk+1 = ϒ (βk,π)

where, for each bk+1 ∈Pb,

ϒ (βk,π)(bk+1) �
∫

bk∈Pb

p(bk+1|bk,π (bk))βk(bk)dbk.

The notation ϒ (·)(bk+1) is adopted to represent the resulting function evaluated at a
specific belief bk+1 ∈Pb.

Due to the high nonlinearity of the hyperbelief transition function, we will ap-
proximate the hyperbelief transition function using the hyper-particle filter. When
the belief transition probability function is chosen as the importance sampling func-
tion, the computational complexity of hyper-particle filtering is O(Knq), where K
is the desired time-horizon, n is the number samples representing the probability
function over the belief space, and q is the number of samples representing a belief.
Refer to [6] for a more thorough explanation of both hyperfiltering and the hyper-
particle filtering approximation method.

4 Methodology

Our proposed method determines a nearly optimal policy for POMDP systems by
approaching the problem from a two-tier, hierarchical approach. A digraph is gen-
erated where the vertices represent sampled hyperbeliefs and the edges represent
paths, which are generated by using local feedback policies, between ordered pairs
of the hyperbelief samples. Before we outline this process in more detail, we will
introduce the class of cost functions and policies that we consider in this approach.

4.1 Cost Function and Policy Representation

Unlike typical approaches where the value function is the expected cost over the
set of beliefs, we define the value function as a total sum of costs relative to the
hyperbelief. We therefore can optimize the hyperbelief cost functions of the form
c : Pβ ×Π → R, (where Π is the set of all feedback policies) and terminal cost
cK : Pβ → R. The value for a given initial hyperbelief β0 is defined as

V (β0) = min
π∈Π

K−1

∑
k=0

c(βk,π)+ cK(βK).

In this hierarchical approach, we restrict the lower level to be a local, greedy
policy within some class of local feedback policies Πl . A digraph G =< N,E > is
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constructed, where each vertex is associated with hyperbelief sample that is both
the source and target for a set of greedy policies. The upper level policy γ(·) se-
lects the local policy based which edge in G is being traversed and on the current
stage to produce a closed-loop policy, such that γ : Pβ → E . The complete policy
is a switching-based controller (see [14] for an overview of hybrid/switching-based
methods), whereby the local policy being executed is determined based on some
switching surface. In our formulation the switching surface is defined as the inflec-
tion point of the derivative of the distance measurement from the current hyperbelief
to the target hyperbelief as specified by the target of the current edge. At the point
that the derivative becomes positive, the controller switches to the next edge speci-
fied, whereby the target in the previous edge is the source in the new edge.

The set of all possible switching policies is denoted as Γ . The value function
for a given system becomes V (β0)≈minγ∈Γ ∑K−1

k=0 c(βk,πγ(βk))+ cK(βk). When we
derive the optimal solution over the graph, we will have to take into consideration
the fact that each initial hyperbelief sample may not be able to reach each target
hyperbelief sample. To address this issue we will bound, from above and below,
the cost based in the distance from terminal hyperbelief to the target hyperbelief
sample. Thus, we assume that in addition to the cost function c(·), both a function
giving an upper-bound c̄(·), and a lower-bound function c(·) are provided so that
c(β ,π)≤ c(β ,π)≤ c̄(β ,π), ∀β ∈Pβ ,π ∈Π . One possibility is to select Liptshitz
continuous cost functions, whereby there exists a linear bounds between any two
points, such that an upper and lower linear bound can be established for the cost
based on the distance.

Algorithmically, SHOT proceeds in two steps: 1) generating the digraph G and
2) optimizing over the digraph G (or hyperbelief space roadmap) and then refining
the results. Both of these steps will be described in more detail in the following
sections.

4.2 Generating the Digraph

To approximate a given POMDP system using SHOT, we begin by generating the
vertices for the digraph G =< N,E > (or roadmap), whereby each vertex ni corre-
sponds to a randomly sampled hyperbelief β i. For notational convenience we will
label the vertices with the same label as the hyperbelief samples to minimize con-
fusion. Next the digraph is instantiated by generating the edge information between
neighboring hyperbeliefs. Planning between each source and target hyperbelief sam-
ple is then performed to generate bounds on the cost and distance from initial hy-
perbelief sample and terminal hyperbelief sample.

4.2.1 Generating the Vertices: Sampling a Random Hyperbelief Set

Sampling is a difficult problem and an enormous amount of research has gone into
sampling for probabilistic roadmap methods [3, Ch. 7]. The difficulties of effec-
tively sampling the hyperbelief space could be exacerbated by sampling in the hy-
perbelief space because the hyperbelief space is infinite dimensional. However, we
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Fig. 1. Random set, N ,of hyperbelief samples in the hyperbelief space Pβ and corresponding
vertices

conjecture that POMDP systems are often locally insensitive to variations in the
starting hyperbelief position, so that two nearby hyperbeliefs converge together un-
der the same feedback policy.

To generate the vertices of the graph we sample a set of random beliefs and then
push them through the transition and observation probability functions for random
number of stages to generate hyperbelief samples. The motivation for this is that
often the initial belief/hyperbelief becomes less influential in the outcome of the hy-
perbelief as the number of stages increases (or as the size of the information history
increase). Undoubtedly this method of sampling is not ideal. In the future, we wish
to implement a more intelligent sampling schemes. However, we will demonstrate
later in Section 5 that even a naive sampling method performs well for the examples
provided.

An illustration of the process of generating belief samples to create a hyperbelief
sample, which represents a vertex in the digraph G, is depicted by Figure 1, where
a total of 9 hyperbeliefs are sampled. The bottom illustration corresponds to the be-
lief space. There are two clusters of weighted impulses, each of which corresponds
to a hyper-particle set, which is an approximated hyperbelief. Each of these hyper-
particle sets is then a point in the hyperbelief space: points β 1 and β 8 the center
illustration in the figure. The top illustration represents the digraph with each ver-
tex corresponding to a sample in the hyperbelief space (e.g., β 6 is associated with
vertex n6.

4.2.2 Generating the Edge Information: Planning between Hyperbelief
Samples

After generating the sample hyperbelief set, which corresponds to the vertices in
the digraph G, the edge information is then generated (where each edge β i to β j

is denoted as i → j). The edge information comprises the set of intermediary hy-
perbeliefs from the source hyperbelief (corresponding to the source vertex) and the
final distance from the target hyperbelief (corresponding to the target vertex). Inter-
mediate hyperbeliefs comprise the set of hyperbeliefs that represent the system as it
evolves from the source hyperbelief sample towards a target hyperbelief sample.

Local policies are employed to plan between hyperbelief samples and are meant
to be simple functions that only capture the value landscape locally. To determine
the policy for an intermediate hyperbelief, we employ a policy that minimizes the
cost of some value function vl : Pβ ×K → R.
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One choice is for the cost to be the distance to the target hyperbelief. There are
various distance measures between beliefs such as the expected graph distance or the
Jensen-Shannon divergence (see [7] for a catalog of probability distance functions)
that are defined over the belief space. We can then use the probability metric over
the hyperbelief space utilizing the belief distance function. The probability metric
PM(·) [12] between two hyperbeliefs is defined as the expected distance between
the two hyperbeliefs, or

PM(β i‖β j) =
∫

bi,b j∈Pb

d(bi,b j)p(bi,b j|β i,β j)dbidb j.

The distance between any two hyperbeliefs, using the probability metric, is bounded
by the maximum distance between any two beliefs in the belief space. Thus, any two
hyperbeliefs are only a finite distance apart.

Once the local policy is selected, the next set of intermediate hyperbeliefs is gen-
erated. Starting for some source hyperbelief sample β i and some target hyperbelief
sample β j, corresponding to some vertex in G, the policy for the source hyperbelief
sample is determined and hyper-particle filtering performed to evolve the system
forward one stage into the future to generate an approximation of

β i→ j
k = ϒ (β i

k−1,πi→ j),

where we denote β i→ j
0 = β i→ j. This process repeats, generating a set of intermediate

hyperbeliefs until a maximum number of iterations is exceeded or until the greedy
policy can no longer make any progress towards the target hyperbelief sample. This
method is then performed for a specified number of neighbors for each vertex in the
digraph. The result a digraph with intermediate hyperbeliefs.

As an example, the distance from the terminal and closest hyperbelief from the
target hyperbelief (e.g., d4→2

end between source β 4 and target β 2) is illustrated in
Figure 2. As can be seen in Figure 2, each vertex attempts to reach β 2. For instance
β 4 proceeds to plan into the future for five stages before the greedy policy is unable
to make any additional progress towards β 2. Once the local policy terminates, each
edge has associated with it the distance from the final intermediate hyperbelief to

Fig. 2. Graph G and associated edge information directed to vertex β 2
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Algorithm 1. Generate hyperbelief sample graph
Require: Pβ : hyperbelief space, n: number of vertices, K: maximum number of iterations,

π: greedy policy
Ensure: G: digraph with vertices N, and edges E (includes edge information (e.g. weights))

N = {β i}n
i=1 ← randomly generate n samples from Pβ

for all i ∈ N do
for all j ∈ N do

β i← j
0 ← β i

min dist ← distance between β i← j
0 and β j

dist ← -∞
k ← 1
while k ≤ K and dist ≤ min dist do

β i→ j
k ← ϒ (β i→ j

k−1 ,π)

dist ← distance between β i← j
k and β j

if dist ≤ min dist then
add β i← j

k to Ei← j edge information
end if
k ← k +1

end while
end for

end for
return G ← < N,E >

hyperbelief β 2 as well as each of the intermediate hyperbeliefs (which is illustrated
for β 4). The algorithm for the digraph generation (including both the hyperbelief
sampling and the planning) is described in Algorithm 1.

4.2.3 Generating Distance and Stage Bounds

With the the edge information for the digraph determined, we can determine the
sensitivity of a source hyperbelief sample at reaching a target hyperbelief sample.
We will generate both a lower bound di→ j(·) and an upper bound d̄i→ j(·) for each
edge i → j in the graph G. Together the lower and upper bounding functions indicate
a range for how close a hyperbelief sample nearby the source hyperbelief is able to
reach a target hyperbelief sample. The bounding functions determine the terminal
distance relative to how far the starting distance is from the source hyperbelief (such
that d : R → R and d̄ : R → R). This information is used below in Section 4.3.2 to
generate bounds on the cost function from one edge to the next along a path in
the graph.

One method to determine the sensitivity of the hyperbelief space around some
source hyperbelief sample is to generate a set of samples around the source hyper-
belief sample and then execute the local policy to determine the ability of the set
of hyperbeliefs at attaining the target hyperbelief sample. A similar method is then
used to determine upper and lower bounding functions for the number of stages.
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With all the bounding information determined, we can perform graph optimization
to determine the nearly optimal policy.

4.3 Finding the Approximately Optimal Policy

With the vertices and the edge information for the digraph G determined, we can
perform digraph optimization on the directed graph to determine the optimal choice
of edges to traverse. This set of ordered edges defines the higher level policy.

4.3.1 Generating Edge Costs

We begin the optimization process by generating the weight for each edge is gen-
erated based on the intermediate hyperbeliefs. The total weight for a given edge is
then computed as vi→ j = ∑Ki→ j

k=0 c(β i→ j
k ,πi→ j,k)+ cK(β j), where Ki→ j is the num-

ber of intermediate hyperbeliefs and where β i→ j
0 is the source hyperbelief sample.

The terminal cost cK(β j) is determined by performing simulations of each vertex
in the digraph to minimize the the terminal cost associated with each vertex. In this
way, each vertex also has a terminating cost of cK(β j).

For discounted cost functions, the discount applied to the value function for each
edge is initialized to start at stage 0. As the evaluation from edge to edge proceeds,
the value of each edge is multiplied by the discount factor raised to the total number
of stages performed before reaching the said edge.

One of the main attributes of this method is that the value of each edge can be
determined on-line for various cost functions without having to re-execute the graph
edge algorithm because each edge stores the transient hyperbeliefs and the distance
to the target hyperbelief, both of which are cost function independent.

4.3.2 Digraph Optimization

Local policies are used to plan between hyperbelief samples, so all that remains is
to establish what is the optimal choice of hyperbelief samples to visit. To do this,
we optimize the cost over the digraph. However, as discussed in Section 4.2.2, each
source hyperbelief sample may not be able to attain a target hyperbelief sample
using the applied greedy policy. To account for the error introduced in the edge
weights on the digraph, we utilize c̄(·) to generate an upper-bound on the value
function. Because, for some i and j in N, vi→ j is a linear sum of the cost of each
hyperbelief, and we can derive bounds for each i, j ∈ N on v̄i→ j(·), which represents
the upper-bound and vi→ j(·) as the lower bound on the value function of each node,
respectively. Both bounds are a function of the distance between any hyperbelief
and the source vertex of the edge. Thus, where d j→l = d(β i→ j

Ki→ j ,β
j→l

0 ), the bounds
on the value between path i → j → l, are given as

vi→ j + v j→l(d j→l)≤ vi→ j→l ≤ vi→ j + v̄ j→l(d j→l).
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When more there is more than one intermediate vertex in a path n1 → n2 → . . . → nt ,
the upper bound on the cost along the path becomes

v̄n1→nt =vn1 +vn2(dn1→n2)+
t−1

∑
s=3

max
d

ns−1→ns
min ≤d≤d

ns−1→ns
max

v̄s(d)+ max
d

nt−1→nt
min ≤d≤d

nt−1→nt
max

vt
K(d),

(3)
where

dns−1→ns
max = max

d
ns−2→ns−1
min ≤d≤d

ns−2→ns−1
max

d̄ns−1→ns(d)

and
dn1→n2

max = dn1→n2
end . (4)

The lower bound distance can be defined by substituting max with min in (4). Sim-
ilarly, a lower bound on the cost can be found by substituting max for min and v̄ for
v into (3). The bound on the distance is determined at each stage and then passed
along the path to the next vertex to be used to estimate the bounds on the distance
at the next stage. These distance bounds are then used to determine both the upper
and lower bounds on the cost for the specified path.

We derive the graph optimization method based Bellman Ford’s algorithm [4, Ch.
24], which can handle negative weight cycles. The basic idea is to start with each
vertex i ∈ N. Update the minimal value for that vertex as the cost cK(β i). Then for
each edge i → j ∈ E , evaluate the minimum upper bound and the minimum lower-
bound on the cost from vertex i to adjacent vertex j and update the cost of the edge.
We then repeat this step for the number of vertices. This method has a computational
complexity of O(|N|2 |E|)).

This process is performed to determine both the least upper-bound cost and path
as well as the the lower-bound cost associated with that path. We then simulate the
system using to least upper-bounded path on the digraph because the graph opti-
mization provides a bound on the cost. The result of the simulation is the actual cost
of the specified policy. With the actual cost and a bound on the lowest cost for the
system, we can provide the range that the optimal solution may reside.

One of the deficiencies of this approach is that the resulting policy, and the the as-
sociated total cost, is not necessarily optimal for the specified hyperbelief set. What
is achieved is a bound on the optimal policy and cost. To overcome this shortcom-
ing we present an iterative refinement algorithm, which will find the exact optimal
solution for a given digraph in a finite amount of time and that each iteration of the
method will only improve the quality of the solution.

4.3.3 Refinement

The quality of the bounding functions (both the upper and lower bounds) potentially
plays a critical role in producing a suitable solution in the previously outlined opti-
mization technique. We present a refinement algorithm to mitigate the effects of the
bounding function and also to guarantee the optimal solution for the given digraph
will be found if enough time is given.
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(a) Example least lower-bound and least
upper-bound optimal switching policy

(b) Possible configuration of the cost for every
possible policy

Fig. 3. Example least lower-bound and least upper-bound optimal switching policy

The process initiates just as the method without refinement. Then the optimiza-
tion technique described above is performed to obtain the least upper-bound path
with its associated upper-bound V̄ α1

and lower-bound Vα1
costs. An example least

upper-bound path is depicted in Figure 3a as α1. Then the least upper-bound path is

Algorithm 2. Refinement method
Require: optimal-cost, optimal-policy, verified-policies: a list policies evaluated so far, G:

hyperbelief graph, k: refine iteration
Ensure: optimal-cost, optimal-policy

check-path ← the k−1’th verified-policies
while check-path is not empty do

i ← pop off vertex from the end of check-path
for all neighbors j of i do

value-list(j) ← vi.end + v̄(i,j)
end for
append to v-list second lowest vertex in value list

end while
insert v-list policy into sorted verified-policies
least-bound ← min of least-bound and lower bound for v-list policy
k-policy ← determine k’th lowest policy from verified-policies
if bounded cost of k-policy < optimal-cost then

new-cost ← simulate system with k-policy
if new-cost < verified-cost then

optimal-policy ← new-policy
end if

end if
if k < maximum refine iterations and (optimal-cost - least-bound) ≥ threshold then

optimal-policy ← refine(optimal-cost, optimal-policy, verified-policies, G, k + 1)
end if
return optimal-cost, optimal-policy
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simulated to obtain the actual cost V α1
. Then the refinement begins by determining

the second least upper-bound path, e.g., α2 in Figure 3a. The upper-bound cost V̄ α2

and lower-bound cost Vα2
induced by path α2 is then determined. The resulting cost

V α1
is compared to the second least upper-bounded cost. If the lower bound Vα2

of
second to lowest cost is above the actual cost of the already simulated cost, then
the next (third) least-upper bound path is determined. However, if the actual cost
V α1

for α1 resides within the bound of this second to least upper-bound path, then
the second to least upper-bounded path is simulated. The cost V α2

of the resulting
simulation is then compared to the previous lowest cost. If the newly simulated cost
is the lowest then it is selected as the minimum. In Figure 3b, after simulation of
α2, it is determined that the cost V α1

is greater than Vα2
. Thus α2 is simulated and

it is discovered that α2 achieves a lower cost than α2.
This process continues until a maximum number of iterations (less than or equal

to the number of possible paths in the digraph) or minimum threshold on the bound
of the cost is met. At any stage of this process the bound on the cost is evaluated
as the minimum actual simulated cost to the least lower-bounded cost of the re-
maining (non-simulated) paths. The resulting minimum path imposes a switching
order for the local policies. The set of local policies and the switching order is the
approximately optimal policy. The algorithm describing this process is outlined in
Algorithm 2.

5 Results

To verify the SHOT technique, we applied it to several of the benchmark problems
found in the literature: namely, 4x4 and hallway2. Both of these methods are dis-
counted infinite horizon problems. To simulate the system we adapted k to represent
each stage of execution. For the presented examples, we generate upper bounds ex-
perimentally by measuring the sensitivity of the cost associated with the starting
distance of each neighboring edge. For example, given edge i → j, we determine
the relationship of the cost for vl→i relative to the distance of edge l to i for each
l such that edge l → i exists. We then generate a piecewise linear, Lipshitz upper
and lower bound for the cost. In a similar manner, bounds for the distance from one
edge to the next were determined as well as the bounds on the number of elapsed
iterations.

The limited results produced so far seem to verify that that this method is compa-
rable to other POMDP approximation methods. For the 4x4 example with average
of 18 hyperbeliefs, SHOT achieved an average cost of 3.703 with no variance in
the 10 iterations run. The method HSVI2 presented in [18] achieved a reward of
3.75 for this example. With the he hallway2 example similar relative performance
was achieved: 0.416, which is on par with the the expected reward 0.48 achieved by
SARSOP [13]. The hallway2 example averaged 127.6 hyperbelief samples.

One point to note is that each of these problems comprise a set of states the once
entered results in the system being uniformly distributed over the state space at the
next iteration. This reset mechanism is pivotal in finding the optimal solution and
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if none of the hyperbelief sample are able to place some probability over this state,
then the resulting policy fails to achieve the target and receives an inferior reward.
This sensitivity is one of the motivating factors of behind the SHOT approach.

The examples presented were chosen to demonstrate the validity of the SHOT
method. However, the presented method was developed with large observation
spaces and planning for systems where the number of stages required to achieve
a satisfactory result is prohibitive for most current POMDP approximation meth-
ods. To more fully address this class of problems and the performance of presented
method, a more exhaustive set of experimental results for the SHOT method can be
found at [5].

6 Conclusion

A method for finding nearly optimal policies for POMDPs with total cost or finite
time horizons was presented. The proposed method (SHOT) was a sampling-based
technique using a two-level hierarchical planner, whereby the lower level planner
executes local, greedy feedback policies and the higher level planner coordinates the
order of hyperbelief samples that are visited. This method attempts to capture the
structure of the POMDP system, which is independent of the starting hyperbelief (or
belief) and the objective function, so that an efficient multi-query technique can be
utilized for any initial hyperbelief or objective function for a given POMDP system.

Future research includes evaluating alternate sampling schemes, such as generat-
ing event samples from the observation space. Sampling from the observation space
has the potential to alleviate some of the issues that arise from attempting to sample
from the hyperbelief space directly.
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On the Value of Ignorance: Balancing Tracking
and Privacy Using a Two-Bit Sensor

Jason M. O’Kane

Abstract. We consider a target tracking problem in which, in addition to sensing
some information about the position of a mobile target, the tracker must also ensure
that the privacy of that target is preserved, even in the presence of adversaries that
have complete access to the tracker’s sensor data. This kind of problem is important
for many kinds of robot systems that involve communication systems or agents that
cannot be fully trusted. In this paper, we (1) introduce a formal, quantitative defini-
tion for privacy, (2) describe algorithms that allow a robot to maintain conservative
estimates of its performance in terms of tracking and privacy, (3) give strategies for
the tracker to maximize its tracking performance, subject to constraints on the al-
lowable privacy levels, and (4) present an implementation of these methods along
with some experimental results.

1 Introduction

Robots must deal continually with uncertainty. The general problem of sensing and
acting to reduce uncertainty is well-studied and continues to receive attention. This
paper considers the related but complementary problem of sensing and acting in
order to maintain uncertainty, rather than eliminating it. To motivate this (perhaps
counterintuitive) idea, consider the following problem (inspired by [8, 9]):

Panda tracker problem: A giant panda moves unpredictably through a
wilderness preserve. A mobile robot tracks the panda’s movements, periodi-
cally sensing partial information about the panda’s whereabouts and transmit-
ting its findings to a central base station. At the same time, poachers attempt
to exploit the presence of the tracking robot — either by eavesdropping on
its communications or by directly compromising the robot itself — to locate
the panda. We assume, in the worst case, that the poachers have access to any
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sensing

communication
eavesdropping

direct attack

Fig. 1. Basic components of the panda tracker problem. The tracking robot needs to sense the
panda’s location and communicate this information to the base station, while preventing the
poacher from exploiting this information to locate the panda.

information collected by the tracking robot, but they cannot control its mo-
tions. The problem is to design the tracking robot so that the base station can
record coarse-grained information about the panda’s movements, without al-
lowing the poachers to obtain the fine-grained position information they need
to harm the panda. See Figure 1.

In this problem, the tracking robot must collect some information about the panda’s
location, but cannot collect too much information without endangering the privacy
(and therefore, the safety) of the panda. More generally, this sort of privacy concern
is relevant in at least three kinds of robotics applications:

1. Applications which require communication over an untrusted channel.
2. Applications which require communication with an untrusted recipient.
3. Applications in which the robot itself cannot be fully trusted.

For each of these classes of problems, it is essential to design a robot and its pro-
gramming to ensure that the information it collects or transmits is not harmful to
disclose. We emphasize that the goal is to ensure that privacy is preserved even
when the best possible use is made of all the available information. This approach
specifically precludes the possibility of getting a “free ride” by intentionally forget-
ting. It also allows us to avoid explicitly considering the actions and knowledge of
the poachers — we simply ensure that it is acceptable for them to know everything
that the tracker knows.

In this paper, we consider one version of the panda tracker problem, in which a
target moves in the plane unpredictably but with bounded velocity. A tracker mon-
itors that target’s motions using a sensor that reports very coarse information about
the direction from the tracker to the target. A crucial first observation is that the
ability to maintain privacy is closely related to the informative value of the robot’s
sensors. A tradeoff exists between strong sensors (which make tracking easy but
privacy difficult) and weak sensors (which make privacy easy to maintain at the ex-
pense of tracking accuracy). We present results suggesting that a reasonable balance
between tracking and privacy can be obtained using sensors that provide relatively
little information.
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Our approach is based on analyzing the tracker’s information states as they
change over time. In this context, the information state at a particular time is simply
the set of states that are consistent with the history of actions executed and sensor
readings obtained by the tracker up to that time. A distinctive feature of this work
is that we maintain upper and lower bounds on the extent of the information state,
without needing to compute the information states themselves.

The primary goal of this work is to investigate the role that privacy concerns can
play in robotic tracking problems. After reviewing related prior work in Section 2,
this paper makes several new contributions.

1. We give quantitative definitions for tracking and privacy, in terms of the tracker’s
information states. These definitions appear in Section 3.

2. We describe representations and algorithms for the tracker to maintain a lower
bound on privacy and an upper bound on the tracking accuracy achieved through-
out its execution. These algorithms, which are introduced in Section 4, require
O(1) storage and O(1) update time, so they are well-suited to implement, for
example, on extremely simple mobile sensor platforms.

3. We derive reactive strategies, in Section 5, for planning the motions of the tracker
that keep privacy and tracking within acceptable bounds. Implementations of
these algorithms are presented.

Concluding discussion appears in Section 6.

2 Relationship to Prior Work

The panda tracker problem was first proposed in the context of wireless sensor net-
works. Both temporal [8] and spatial [9] privacy of an observed target can be pro-
tected by careful design of the network’s routing protocols. Crucial to both of these
works is their application of Kerckhoffs’ Principle, under which it is assumed that
the adversaries have complete knowledge of the protocol used by the network. This
view is paralleled by our assumption that the adversaries have access to all of the
information the tracker does. We encompass both forms of privacy by considering
how position information changes over time. To our knowledge, the present work is
the first to directly examine the effects of sensing and action on privacy.

Our work is also closely related to the lines of research that seek to understand
tasks by solving them in spite of severe sensing limitations. Problems in manipula-
tion [3, 5], localization [4, 17], navigation [10, 12], mapping [7], and pursuit-evasion
[6] have been solved for such systems. These examples are meant to be represen-
tative, rather than exhaustive. A common thread through much of this work is a
two-step approach, based on solving the passive information state update problem
before considering how to choose actions actively. In each case, the solution de-
pends on representing and updating the robot’s knowledge in ways that make this
active planning manageable. This work follows the same approach.

More specifically, target tracking problems have also been studied in the liter-
ature. Much of this work is focused on maintaining visibility between the tracker
and the target within a cluttered environment. Specific methods have used dynamic
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programming [11], sampling-based [15], and reactive [14] approaches. The novelty
of our work is that we are the first to explicitly include privacy in the formulation.
One closely related variation is the stealth tracking problem, in which the tracker
must maintain visibility of the target, while remaining near the boundary of the tar-
get’s visibility polygon to avoid possible detection [1]. Our work differs primarily
because we are concerned with the privacy of the target’s location, rather than that
of tracker’s location, and because we consider a much weaker sensor.

3 Problem Statement

This section formalizes the panda tracker problem. We begin in Section 3.1 with
a general formulation for which we give a quantitative definition of privacy, then
in Section 3.2 apply this formulation to the specific version of the panda tracker
problem solved in this paper.

3.1 General Formulation

Consider a formulation with the following elements:

• A division of time into a sequence of discrete, but not necessarily equal length,
stages, numbered k = 1,2, . . . . In each stage, the robot can both sense and act.

• A state space X . In stage k, the relevant information about the situation in the
world is modeled by a state xk ∈ X .

• A distance function d : X ×X → R for pairs of states, under which X is a metric
space.

• An initial condition η0 ⊆ X representing a set of possible starting states. Unless
η0 is a singleton set, the actual starting state is unknown to the robot.

• An observation space Y , so that yk ∈ Y models the sensor information collected
by the robot at stage k.

• An observation function h : X → Y , under which yk = h(xk). That is, h describes
how the observation yk is determined by the current state xk.

• An action space U . The robot chooses one action uk ∈U to execute in each stage.
• A nature action space Θ . The nature action θk ∈Θ at stage k models the effects

of noise, actions by other decision makers, or both.
• A state transition function f : X ×U ×Θ → X that describes how the state

changes. The state xk+1 at stage k + 1 is given by xk+1 = f (xk,uk,θk).

From these basic ingredients, we can make two additional definitions for conve-
nience. First, define an iterated transition function to apply multiple transitions
at once: f (x,u1,θ1, . . . ,uk,θk) = f (· · · f ( f (x,u1,θ1),u2,θ2) · · · ,uk,θk). Second, de-
note the preimage of each observation y by H(y), so that H(y) = {x∈ X | h(x) = y}.
The robot does not necessarily know its state, but instead must rely on its sensor-
action history to make its decisions. At stage k, this information consists of y1, . . . ,yk

and u1, . . . ,uk−1. This history can be used to determine the set of possible states at
stage k. The following two definitions make this notion precise.
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Definition 3.1. A state x ∈ X is consistent with a sensor-action history (y1, u1, . . .,
yk−1, uk−1, yk) if there exists some x1 ∈ η0 and a sequence of nature actions
θ1, . . . ,θk−1 such that x = f (x1,u1,θ1, . . . ,uk−1,θk−1) and y j = h( f (x1,u1,θ1, . . .,
u j−1, θ j−1)) for each j = 1, . . . ,k.

Definition 3.2. The information state (I-state) ηk at stage k is the set of all states
consistent with the robot’s sensor-action history. The information space (I-space)
I is the powerset of X , which contains all possible I-states.

The intuition is that a state x is a member of an I-state ηk if and only if the robot
cannot conclusively rule out x as a possible state at stage k. Such I-states are useful
because the robot can always keep track of its I-state, even when there is insufficient
information to determine the underlying true state. Let F : I ×U×Y → I denote
an information transition function that describes how the I-state changes over time.
Given an information state ηk, and action uk, and an observation yk+1, we have
ηk+1 = F(ηk,uk,yk+1). We can describe this information transition in terms of f
and H:

F(ηk,uk,yk+1) = { f (x,uk,θ ) | x ∈ ηk,θ ∈Θ}∩H(yk+1). (1)

How are these I-states related to privacy and tracking? Informally, privacy is pre-
served whenever the I-state is a relatively large set; conversely good tracking de-
pends on keeping the I-state relatively small. This intuition leads us to the following
quantitative definitions of privacy and tracking.

Definition 3.3. A closed ball B is a privacy disk for an I-state ηk if B⊆ cl(ηk). The
privacy margin of an I-state ηk is the largest radius over all privacy disks of ηk.

Definition 3.4. A closed ball B is a tracking disk for an I-state ηk if cl(ηk)⊆ B. The
tracking margin of an I-state ηk is the smallest radius over all tracking disks of ηk.

The intuition is that the privacy and tracking disks form inner and outer circles
around the boundary of ηk. A privacy disk is a region within which no states can be
ruled out; a tracking disk is a region outside of which every state can be ruled out.
The radii of these two disks provide quantitative measures of privacy and tracking.
Note that the privacy disk of maximal radius is not necessarily unique (for example
if ηk is the region between two concentric circles), but the minimal tracking disk is
unique.

One might imagine an alternative to Definitions 3.3 and 3.4 based directly on the
area or volume of the I-state. Such an approach would not use separate measures
for privacy and tracking, but instead quantify the robot’s uncertainty by the volume
of its I-states and work to ensure that this value remains within given bounds. Our
decision to use Definitions 3.3 and 3.4 rather than this type of volume-based ap-
proach is motivated by several considerations. First, our definitions are more strict
than the volume-based alternative — an I-state will, in general, have volume greater
than or equal to that of its largest privacy disk and less than or equal to that of its
smallest tracking disk. Therefore, the performance bounds we obtain are valid for
the volume-based definitions as well. Second, the fact that we are concerned only
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with the largest ball contained within and the smallest ball around the I-state allows
us to maintain bounds on tracking and privacy that do not require computing the I-
state’s exact shape. Finally, for tracking in particular, the volume of the I-state may
not represent the tracking accuracy very well. In extreme cases, the I-state may con-
sist of several small regions distant from one another. Such an I-state would have
small volume, but would require a large amount of travel to search completely.

3.2 The Panda Tracker Problem

Now we can state the panda tracker problem as a specific instance of the general
formulation from Section 3.1.

A single target moves unpredictably in an obstacle-free plane. Its motions are
continuous and are constrained by a known maximum velocity, but nothing else is
known about its trajectory. A single tracker, modeled by a point with orientation in
the plane, monitors the movements of the target using a low-speed, low-resolution
bearing sensor that reports, in a coordinate system attached to the tracker, which
quadrant contains the target. The tracker is able to move very quickly in comparison
to the target. Each stage models a period of motion by both the target and the tracker,
followed by a sensor reading by the tracker. Formally, we can describe this system
as follows:

• The state space is X = R
2. A single state represents the target’s position relative

to the tracker, in coordinate frame with the tracker’s position at its origin and its
positive y-axis in the direction the tracker faces. We denote the individual coor-
dinates of a state using superscripts, so that x = (x(1),x(2)) for each x ∈ X . Note,
however, that it will sometimes be more straightforward to consider a global
frame, specifying the position and orientation of the tracker and the position of
the target relative to a stationary reference point.

• The distance metric d is the standard Euclidean metric over R
2.

• The initial condition η0 is a disk known to contain the target. This includes, as
a special case in which the disk is centered at the origin, the situation where the
tracker starts with an upper bound on the distance to the target.

• The action space U is the set of rigid body transformations achievable by the
tracker within one stage (that is, between two consecutive sensor readings). For
concreteness, we consider a robot that can translate and rotate freely with maxi-
mal velocity vtrk and maximal angular velocity ωtrk.

• The nature action space Θ is the set of translations of magnitude at most vtgt , the
displacement achievable by the target in a single stage.

• The state transition function f : X ×U ×Θ → X applies the motion uk of the
tracker and the motion θk of the target to the current state xk to compute the new
state xk+1 = f (xk,uk,θk).

• The observation space is Y = {0,1}×{0,1}.
• The observation function h : X → Y returns the quadrant containing the target,

according to
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y = (0, 0)

y = (1, 1)

y = (0, 1)

y = (1, 0)

Fig. 2. Observation preimages for the panda tracker problem. The sensor reports which
quadrant contains the target.

h(xk) = h
(

x(1)
k ,x(2)

k

)
=
([

x(1)
k ≥ 0

]
,
[
x(2)

k ≥ 0
])

,

in which [ · ] is the indicator function that returns 1 if its argument is true and 0
otherwise. See Figure 2.

For purposes of comparison, we consider two specific, mutually independent choices
for the tracker’s goal:

G1: Minimize tracking margin — Keep the tracking margin as small as
possible, without regard for the privacy margin.

G2: Maintain privacy bound — Keep the tracking margin as small as
possible, while ensuring that the privacy margin is no smaller than
a given minimum, denoted ρ .

In each case, we are concerned with the worst-case tracking and/or privacy margins,
taken over all possible trajectories of the target. We discuss strategies to achieve
these two goals in Section 5.

4 Passive Updates

This section presents algorithms for maintaining a lower bound on the privacy mar-
gin and an upper bound on the tracking margin for the panda tracker problem defined
in Section 3.2. These techniques are passive in the sense that we defer (to Section 5)
the question of how to choose actions for the tracker, considering for now only how
to estimate the performance during a given execution. We present two approaches
to this problem: an optimal algorithm based on computing the I-state itself, and a
second approach that is more efficient, but produces only upper and lower bounds
on the tracking and privacy margins, respectively.

4.1 Updates Directly from the I-State

For the first approach, consider how the tracker might maintain an explicit repre-
sentation of the I-state ηk. The initial I-state η0 is a disk. In subsequent stages, to
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(b) (c)(a)

Fig. 3. Computing explicit information transitions for the panda tracker problem. (a) Rigid
body transformation by uk. (b) Minkowski sum with Θ . (c) Intersection with H(yk+1).

compute ηk+1 from ηk, we must perform three transformations on ηk (recalling that
states are represented in a coordinate frame attached to the tracker):

1. Rigid body transformation by uk, reflecting the motion of the tracker.
2. Minkowski sum of the resulting region with Θ , which is a disk of radius vtgt ,

reflecting all possibilities for the unknown motion θk of the target.
3. Intersection of the resulting region with a quarterplane1(the observation preimage

H(yk+1)), reflecting the new information supplied by the sensor.

Brute force algorithms for these operations would take time linear in the complexity
of boundary of ηk. In practice, the circular arcs arising in Step 2 can be approx-
imated by polygonal chains. With this information, the exact privacy margin can
be computed by finding the largest disk inside ηk in O(n) time [2]. Likewise, the
exact tracking margin can be found by computing, in O(n) time [13], the smallest
enclosing disk around ηk.

4.2 Indirect Updates with Limited Memory

For some applications, including those in which the tracker is a very simple mobile
sensor platform, computation and memory resources are at a premium. This section
presents passive update algorithms appropriate for such situations, which maintain
estimates on the tracking and privacy margins but require only relatively small, con-
stant amounts of time and space. The central idea is to define two sequences of
disks, P1 . . . ,Pk, and T1, . . . ,Tk, so that, at each stage i, we have Pi ⊆ ηi ⊆ Ti. Note
that these need not necessarily be the largest privacy disks or the smallest tracking
disks for their respective I-states. In the initial condition, the I-state itself is a disk,
so we start with P1 = T1 = η0. In subsequent stages, we use Pk to compute Pk+1 and
Tk to compute Tk+1, as described below. After the tracker computes Pk+1 and Tk+1,
it discards Pk and Tk.

First, we consider how to compute a new privacy disk Pk+1 given a privacy disk
Pk ⊆ ηk, an action uk, and an observation yk+1. Accounting for the motions of the
tracker and the target is straightforward. As in Section 4.1, we perform a rigid body
transformation on Pk by uk, followed by a Minkowski sum with Θ . Since Pk is a disk,
these operations can be realized by a translation of the center of Pk and an increase

1 We use the term quarterplane to refer to the planar intersection of two halfplanes with
orthogonal boundary lines.
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of its radius by vtgt . Let P′k denote the disk resulting from these operations. It remains
to consider the effects of the observation yk+1. At stage k, no states within Pk can
be ruled out. Therefore, we choose for Pk+1 the largest disk inside of P′k ∩H(yk+1),
resulting in a region in which no states in Pk+1 can be ruled out for stage k + 1. The
problem is thereby reduced to find the largest disk inside the region of intersection
between a disk and a quarterplane.

Computing a new tracking disk Tk+1 from Tk, uk, and yk+1 follows a similar pro-
cedure, but instead requires finding the smallest disk around the quarterplane/disk
intersection region. Due to space constraints, details about both of these algorithms
appear in a separate technical report [16].

5 Active Tracking

In this section we build on the passive update methods from Section 4 by introducing
techniques to actively control the tracker to achieve goal conditions G1 (Section 5.1)
and G2 (Section 5.2). In Section 5.3 we discuss an implementation of these algo-
rithms and present some experimental results.

Throughout this section, we use a global coordinate frame, considering the mo-
tions of the tracker and target relative to an arbitrary but fixed external reference
point. Since the observation received is determined by the tracker’s position and
orientation, we can view the active tracking problem as a problem of deciding
where, and in what orientation, to place the tracker, thereby indirectly positioning
the boundaries of the observation preimages. Throughout this section, we assume
that the tracker has access at each stage to the privacy disk Pk and the tracking disk
Tk, computed as described in Section 4.2. The strategies we derive are expressed by
prescribing the destination of the tracker, relative to Pk and Tk. Note, however, that if
the tracker has sufficient computation power, it can instead use the explicit passive
update method described in Section 4.1, and replace Pk and Tk with the smallest en-
closing and largest enclosed disks of ηk. In either case, we retain from Section 4 the
convention that P′k denotes a circle with the same center as Pk, with a radius larger by
vtgt (the translation is not needed in this coordinate frame); T ′k is defined similarly
in terms of Tk.

5.1 Minimizing the Tracking Margin (G1)

Goal condition G1 requires the tracker to keep the tracking margin as small as pos-
sible, without regard for privacy. Thus, G1 refers to a typical target-tracking appli-
cation. Our approach to achieving this goal is based on the following observation:

Lemma 5.1. For a given Tk, the worst-case tracking margin for stage k + 1 is mini-
mized when the tracker moves to the center of Tk.

Proof. If the tracker positions itself at the center of Tk, the sensor preimage bound-
aries divide Tk into four parts that are identical up to a rotation. Regardless of the
target’s position, the resulting Tk+1 will have the same radius. In contrast, if the
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Fig. 4. [left] Positioning the tracker at the center of Tk minimizes the worst-case tracking
margin at stage k+1. [right] Other positions for the tracker lead to larger worst-case tracking
margins. In this case, the tracker is positioned below and to the left of the center of Tk, and
the worst case occurs if the target is in the top right quadrant.

tracker is not at the center of Tk, then for at least one of the four possible obser-
vations, the resulting Tk+1 will be larger, thereby degrading the worst-case tracking
margin. See Figure 4.

This observation leads directly to a strategy to achieve G1:

Strategy for G1. Move to the center of Tk.

To execute this strategy, the tracker must be fast enough to move in a single stage
between the centers of successive tracking disks Tk and Tk+1.

5.2 Maintaining a Privacy Bound (G2)

Next, we consider G2, in which the tracker wants to keep the tracking margin as
small as possible, subject to the constraint that the privacy margin can become no
smaller than a given minimum, denoted ρ . Our basic approach is to compute at each
stage a “safe region” of destinations for the tracker, within which the privacy bound
is maintained, while collecting some information. If this region is empty, the tracker
instead chooses a position from which only one observation is possible, preventing
any reduction of the privacy margin. The following lemma makes this idea more
precise.

Lemma 5.2. For given Tk and Pk, the privacy margin at stage k + 1 will be at least
ρ if, at the end of stage k, either

(a) the radius of P′k is at least (1 +
√

2)ρ , and the tracker is within distance√
radius(P′k)

2−2radius(P′k)ρ−ρ , of the center of Pk, facing the center of Pk, or

(b) the tracker is farther than
√

2radius(T ′k ) from the center of Tk, oriented so that
none of the observation preimage boundaries cross the interior of T ′k .

Proof. First consider condition (a). Notice that for a fixed distance from the cen-
ter of Pk, the worst-case privacy is maximized when the tracker faces the center of
Pk. Assuming the tracker takes this orientation, we consider (as in Section 4.2) a
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coordinate system in which the center of Pk lies on the vertical axis, and the hori-
zontal axis bisects H(yk+1). Let (0,c) denote the center of Pk and let (s,0) denote
the vertex of H(yk+1). Note that because the tracker faces (0,c), we have c = s.
It remains to find the value of c such that the resulting largest enclosed disk has
radius ρ . Let (a,0) denote the position of the center of the largest enclosed disk.
The distance from this point to observation preimage boundary is (a− c)/

√
2;

the distance to the boundary of Pk is radius(P′k)−
√

c2 + a2. The radius of the
largest enclosed disk is maximized when these values are equal, which occurs at

c =
√

radius(P′k)
2/2− radius(P′k)ρ−ρ/

√
2. Finally, for the tracker to generate this

c (and, therefore, to maintain privacy margin ρ), it must have distance
√

2c of the
center of Pk. For condition (b), notice that both P′k and T ′k will be fully contained
within H(yk+1). In this case, only one observation is possible, and neither Pk+1 nor
Tk+1 will be affected the observation.

Lemma 5.2 provides two options for the tracker: To stay near the center of Pk (con-
dition (a)), or to move far from the center Tk (condition (b)). Recalling the proof of
Lemma 5.1, note that whenever the former option is available, it results in a smaller
tracking margin in stage k + 1. As a result, we can state the following motion strat-
egy for the tracker:

Strategy for G2. If r > (1+
√

2)ρ , move to the point in the disk described in condi-
tion (a) of Lemma 5.2 closest to the center of Tk, facing the center of Pk. Otherwise,
move distance

√
2radius(T ′k ) from the center of Tk, facing an angle of π/4 away

from the line between the center of Tk and the tracker’s destination.

In either case, the tracker’s destination is straightforward to compute using circle-
line intersection methods.

5.3 Simulation and Experimental Results

To evaluate our approach, we have implemented these algorithms in simulation. Fig-
ures 5 and 6 show several stages of example executions of G1 and G2, respectively.
In these figures, the target’s position is shown with a small circle. The tracker’s cur-
rent position and orientation are shown with a shaded triangle; the destination for
the tracker is shown as an unshaded triangle. The large outer circle is the boundary
of Tk, and the shaded region is the I-state ηk. Figure 6 also shows the boundary of Pk.

One natural question is to ask how much the tracking performance is degraded
when the tracker’s goal is G2 with nonzero ρ , compared to the “pure tracking” per-
formance of G1. That is, how much tracking accuracy must be sacrificed in order to
guarantee a given level of privacy? To answer this question, we performed experi-
ments with vtgt = 2.5 and values of ρ varying between 0.1 and 2.5 in increments of
0.1. In each trial, the target moved through a sequence of randomly-selected destina-
tion points and we recorded the tracking radius achieved for each of these 25 values
of ρ . Each trial lasted for 1,000 stages, and we averaged the results over 1,000 tri-
als. Figure 7 summarizes the results of this experiment. The results, as one might
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(a) (b) (c) (d)

Fig. 5. Execution snapshots the Strategy for G1 described in Section 5.1. (a) The initial
condition, in which the tracking disk and the true information state are identical. (b) After
the first observation is received, the tracking disk encloses the information state (which the
tracker does not compute). The tracker’s destination is the center of this tracking disk. (c)
Before sensing in stage 28 of this execution. The information state η28 and tracking disk T ′28
are shown. (d) After sensing in stage 28. Notice that in this example, the tracking disk Tk is
only a poor approximation of the smallest tracking disk.

Fig. 6. Execution snapshots the Strategy for G2 described in Section 5.2. Shown left to right
are the situations after sensing for k = 1,2,3,4. Notice that the safe region is empty for k = 1
and k = 4.

expect, illustrate a tradeoff between tracking and privacy. When ρ = 0.1, the aver-
age results are similar to those for G1, and for larger values of ρ , the tracking radii
increase roughly linearly. More substantial differences can be seen when comparing
the maximum tracking radius that occurred in each trial.

We also performed experiments to assess the performance advantage gained by
using the explicit updates of Section 4.1 compared to the constant time and space
indirect updates of Section 4.2. We used vtgt = 1.5, two different motion patterns
for the target: a random walk and repeated circuits around a square of radius 10, and
three motion strategies for the tracker: random movements, our strategy for G1, and
our strategy for G2 with ρ = 1.5. For each of these six combinations, we performed
100 trials of 1,000 stages each, computed the ratios of tracking radii for explicit
compared to implicit updates, and computed similar ratios for the privacy margins.
For both tracking and privacy, we divided the smaller value by the larger one, so
that a result of 1.0 would indicate optimal performance. Figure 8 shows the results.
Privacy results are shown only for the cases in which the tracker’s goal is G2; for
the other two goals, Pk is quickly eliminated, leading to average ratios very close
to zero.
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Fig. 7. Comparison of tracking radii for various tracker goals, including G1, and G2 with
varying values of ρ .

Tracking Tracker: random Tracker: G1 Tracker: G2
Target: random 0.596 0.838 0.619
Target: square 0.352 0.770 0.386

Privacy Tracker: G2
Target: random 0.789
Target: square 0.696

Fig. 8. Comparison of implicit versus explicit update methods for various motion strategies.
In each table, a value of 1 would indicate that the performance of the implicit algorithm
perfectly matches the explicit (optimal) algorithm. [left] Ratio of exact tracking margins for
explicit updates to tracking margin upper bounds for implicit updates [right] Ratio of privacy
margin lower bounds for implicit updates to exact privacy margins for explicit updates.

Several interesting phenomena can be observed in the results. For tracking, im-
plicit updates generate the best results when the tracker’s goal is G1. This reflects
the fact that, in general, the I-states achieved in this condition have the approxi-
mate shape of a right isosceles triangle, with the center of Tk on the hypotenuse.
This leads to similar results for both implicit and explicit updates. Observe also
that, across all tracker strategies, the approximation is superior for random motions
of the target than for the square pattern. This reflects that fact that, whenever the
target makes a long motion in a single direction, implicit updates repeatedly make
the same kinds of over- or underestimates. The issue is especially visible for G2, in
which the tracker is frequently “held back” by a need to stay within Pk.

6 Discussion and Conclusion

This paper presented an initial investigation of the role that a geometric view of pri-
vacy can play in robotic tracking problems. Unsurprisingly, many important ques-
tions have been left unanswered.

In this paper we considered only one particular kind of sensor for the tracker,
one in which the preimages are quarterplanes. Alternatives we contemplated in the
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development of this work include sensors whose preimages are disks and their pla-
nar complements (that is, the plane with a disk deleted), halfplanes, and annuli. Each
requires its own method for passively updating the tracker’s information and its own
unique active motion strategies. Note, however, that depending on the sensor mod-
els used, it may be challenging or impossible to design active strategies to satisfy
G1 or G2. For example, if the observation preimages are a disk and its complement
(such as would be the case if the sensor reported only whether the target was within
a certain radius), then regardless of the tracker’s strategy, the worst-case tracking
margin would increase without bound, corresponding the case in which the target
moves far away from the tracker throughout its execution. Similar difficulties occur
if the observation preimages are halfplanes.

Recall also that the sensor models used in this work are deterministic, not al-
lowing for sensor noise. The primary effect that sensor noise would have on our
formulation is that the observation preimages would overlap, allowing the observa-
tion to be chosen in some unknown way whenever the state is in an overlap region.
This enlargement of the preimages can be expected to make privacy easier to main-
tain at the expense of increased difficulty in tracking. For the particular case of our
quadrant sensor, the update algorithms would require only slight generalizations,
and we expect the resulting active strategies to be quite similar as well.

Finally, several other extensions merit additional research, the most interesting
of which include the presence of obstacles; related problems with multiple trackers,
multiple targets, or both; and nontrivial mobility constraints.
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On the Existence of Nash Equilibrium for a Two
Player Pursuit-Evasion Game with Visibility
Constraints

Sourabh Bhattacharya and Seth Hutchinson

Abstract. In this paper, we present a game theoretic analysis of a visibility based
pursuit-evasion game in a planar environment containing obstacles. The pursuer and
the evader are holonomic having bounded speeds. Both the players have a complete
map of the environment. Both the players have omnidirectional vision and have
knowledge about each other’s current position as long as they are visible to each
other. The pursuer wants to maintain visibility of the evader for maximum possible
time and the evader wants to escape the pursuer’s sight as soon as possible. Under
this information structure, we present necessary and sufficient conditions for surveil-
lance and escape. We present strategies for the players that are in Nash Equilibrium.
The strategies are a function of the value of the game. Using these strategies, we
construct a value function by integrating the adjoint equations backward in time
from the termination situations provided by the corners in the environment. From
these value functions we recompute the control strategies for the players to obtain
optimal trajectories for the players near the termination situation. As far as we know,
this is the first work that presents the necessary and sufficient conditions for tracking
for a visibility based pursuit-evasion game and presents the equilibrium strategies
for the players.

1 Introduction

Consider a situation in which a group of mobile pursuers having bounded speeds are
trying to keep sight of an unpredictable evader in a cluttered environment. In order to
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deploy minimum number of pursuers needed to track the evader it would be useful to
know the best strategy that can be used by a single pursuer. In this work, we analyze
the problem of a mobile pursuer trying to track a mobile evader in an environment
containing obstacles. Both the pursuer and the evader are holonomic with bounded
speeds and can see each other at the beginning of the game. The players do not have
knowledge of each other’s future actions. We formulate the problem of tracking as
a game in which the goal of the pursuer is to keep the evader in its field-of-view
for maximum possible time and the goal of the evader is to escape the pursuer’s
field-of-view in minimum time by breaking the line of sight around a corner.

An interesting application of this problem is in security and surveillance systems.
It may be useful for a security robot to track a malicious evader that is trying to
escape. Also, an “evader” may not be intentionally trying to slip out of view. A
pursuer robot may simply be asked to continuously follow and monitor at a distance
an evader performing a task not necessarily related to the target tracking game[6].
The pursuer may also be monitoring the evader for quality control, verifying the
evader does not perform some undesired behavior, or ensuring that the evader is
not in distress. The results are useful as an analysis of when escape is possible.
If it is impossible to slip away, it may be desirable for the evader to immediately
surrender or undertake a strategy not involving escape. In home care settings, a
tracking robot can follow elderly people and alert caregivers of emergencies. Target-
tracking techniques in the presence of obstacles have been proposed for the graphic
animation of digital actors, in order to select the successive viewpoints under which
an actor is to be displayed as it moves in its environment [19].

In the past, we have addressed tracking problems similar to the one in this paper.
In [7], we address the problem of a pursuer trying to track an antagonistic evader
around a single corner. We partition the visibility region of the pursuer into regions
based on the strategies used by the players to achieve their goals. Based on these
partitions we propose a sufficient condition of escape for the evader in general en-
vironments. In [8], given the initial position of the evader in a general environment,
we use the sufficient condition to compute an approximate bound on the initial po-
sitions of the pursuer from which it might track the evader. The bound depends on
the ratio of the maximum speed of the evader to that of the pursuer. If the initial
position of the pursuer lies outside this bound, the evader can escape the pursuer’s
sight. Moreover, we provide strategies for the evader to escape irrespective of pur-
suer’s actions. In this work, we formulate the target-tracking problem as a game in
which the pursuer wants to maximize the time for which it can track the evader and
the evader wants to minimize it. We compute the strategies for the players that are
in Nash equilibrium. If a player follows its equilibrium strategy, it is guaranteed of
a minimum outcome without any knowledge of the other player’s future actions.
Moreover when a pair of strategy for the players is in Nash equilibrium then any
unilateral deviation of a player from its equilibrium strategy might lead to a lower
outcome for it. Consider a situation in which the pursuer can keep the evader in
sight for time t f when the players follow their equilibrium strategies. If the evader
deviates from its equilibrium strategy then the pursuer has a strategy to track it for a
time greater than t f . On the other hand, if the pursuer deviates from its equilibrium
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strategy then the evader can escape in time less than t f . Hence there is no motivation
for either of the players to deviate from their equilibrium strategies due to the lack
of knowledge of the other player’s future actions. For a pair of equilibrium strategies
for the players either the evader can escape the pursuer’s sight in finite time or the
pursuer can track the evader forever. Hence computing them gives us the strategies
sufficient for tracking or escape, whichever holds at a given point in the state space.
As far as we know, this is the first work that addresses the necessary and sufficient
conditions for tracking and provides equilibrium strategies for the players. We use
these strategies to integrate the kinematic equations of the system backward in time
from the termination situations to obtain the optimal trajectories for the players.

Prior work regarding the problem of tracking is based on discretizing the motion
models of the players or the state-space in which the game is being played[17, 5].
These techniques lead to approximate numerical solutions that become computa-
tionally inefficient with increasing time horizon of the game. Moreover they as-
sume a prior model of uncertainty for the evader’s future actions. Contrary to these
works, we use continuous time motion models for the players and provide closed
form solutions to the coupled non-linear differential equations that govern our sys-
tem kinematics. Hence no error is introduced in the solutions due to discretizations
of any form. Further, our results are valid for scenarios in which the players have no
knowledge about each others future actions.

Some variants of the tracking problem have also been addressed. In [11], the au-
thors take into account the positioning uncertainty of the robot pursuer. Game theory
is proposed as a framework to formulate the tracking problem, and an approach is
proposed that periodically commands the pursuer to move into a region that has no
localization uncertainty in order to re-localize and better track the evader afterward.
[10] presents an off-line algorithm that maximizes the evader’s minimum time to
escape for an evader moving along a known path. Since the entire trajectory of the
evader is known beforehand, the problem reduces to a single player optimization
problem. In [14] and [4], gradient descent algorithms have been proposed by for-
mulating a local risk function for a pursuer having the local map of the evader. [4]
deals with the problem of stealth target tracking where a robot equipped with visual
sensors tries to track a moving target among obstacles and, at the same time, remain
hidden from the target. Obstacles impede both the tracker’s motion and visibility,
and also provide hiding places for the tracker. A tracking algorithm is proposed that
applies a local greedy strategy and uses only local information from the tracker’s
visual sensors and assumes no prior knowledge of target tracking motion or a global
map of the environment. In [23], the problem of target tracking has been analyzed
at a fixed distance between the pursuer and evader. Optimal motion strategies are
proposed for a pursuer and evader based on critical events.

In this work, we use differential games to analyze a pursuit-evasion problem. The
theory of deterministic pursuit-evasion was single-handedly created by R.Isaacs that
culminated in his book [15]. A general framework based on the concepts in classical
game theory and the notion of tenet of transition was used to analyze pursuit-evasion
problems. Problems like the Lady in the Lake, Lion and the Man, Homicidal chauffer
and Maritime Dogfight Problem were introduced in this book. A modification to
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the classical problems involves the consideration of discrete-time versions of these
problems and the application of a proper information structure to compute the value
of the game [13, 12]. An exhaustive analysis of solved and partly solved zero-sum
differential games is provided in [3] and [18]. Most of the classical problems in
pursuit-evasion deal with players in obstacle-free space having either constraints
on their motion or constraints on their control due to under-actuation. In the recent
past, researchers have analyzed pursuit-evasion problems with constraints in the
state space. In [20, 21, 22], a pursuit-evasion game is analyzed with the pursuer and
the evader constrained to move on a two-dimensional conical surface in a three-
dimensional space. Our work belongs to this category of problems. In our problem,
the state constraints arise due to the presence of obstacles that obstruct visibility as
well as motion of the players in the workspace and the control constraints arise as a
result of the bounded speed of the players. Apart from these problems, researchers
have also analyzed pursuit-evasion in R

n [16], in non-convex domains of arbitrary
dimension [1], in unbounded domains[2] and in graphs [24].

In Section II, we present the formulation of the game. In Section III, we analyze
the termination situations presented by the obstacles around any corner in the en-
vironment. In Section IV, we present the strategies for the players that are in Nash
equilibrium. In Section V we present the construction of the optimal trajectories. In
Section VI, we present the conclusions and the future work.

2 Formulation of the Game

We consider a mobile pursuer and an evader moving in a plane with velocities
u = (up,θp) and v = (ue,θe) respectively. up and ue are the speeds of the play-
ers that are bounded by vp and ve respectively. θp and θe are the direction of the
velocity vectors. We use r to denote the ratio of the maximum speed of the evader to
that of the pursuer r = ve

vp
. They are point robots with no constraints in their motion

except for bounded speeds. The workspace contains obstacles that restrict pursuer
and evader motions and may occlude the pursuer’s line of sight to the evader. The
initial position of the pursuer and the evader is such that they are visible to each
other. The visibility region of the pursuer is the set of points from which a line seg-
ment from the pursuer to that point does not intersect the obstacle region. Visibility
extends uniformly in all directions and is only terminated by workspace obstacles
(omnidirectional, unbounded visibility). The pursuer and the evader know each oth-
ers current position as long as they can see each other. Both the players have a com-
plete map of the environment. In this setting, we consider the following game. The
pursuer wants to keep the evader in its visibility region for maximum possible time
and the evader wants to break the line of sight to the pursuer as soon as possible. If
at any instant, the evader breaks the line of sight to the pursuer, the game terminates.
Given the initial position of the pursuer and the evader, we want to know the optimal
strategies used by the players to achieve their respective goals. Optimality refers to
the strategies used by the players that are in Nash equilibrium.
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Fig. 1. State variables and Control inputs

We model the system as a non-rigid bar of variable length representing the line of
sight between the pursuer and the evader. The bounded velocities of the pursuer and
the evader are modeled as control inputs at opposite ends of the bar. Any occlusion
between the pursuer and the evader leads to a situation in which the bar intersects the
obstacles. Hence the pursuer’s goal is to keep the bar in free space for the maximum
possible time and the evader’s goal is to force the bar to intersect some obstacle as
soon as possible. In this work we assume that the line of sight is not blocked due
to grazing contact with the boundary. Hence visibility is retained even if a vertex in
the environment is incident on the bar.

Figure 1 shows the configuration of the system along with the state variables and
the control inputs. (x,y) is the position of the end of the bar controlled by the pursuer.
l is the length of the bar and θ is the angle made by the bar with the horizontal
line. The configuration of the system can be expressed as (x,y, l,θ ) and hence it is
R

3×S1. In the rest of the paper, x(∈R
3×S1) will be used to represent the state of the

bar. The pursuer controls the velocity, u, of one end of the bar and the evader controls
the velocity, v, of the other end of the bar. The differential equation describing the
kinematics of the system is given by the following equation.

˙⎛⎜⎜⎝
x
y
l
θ

⎞⎟⎟⎠=

⎛⎜⎜⎝
up cosθp

up sin θp

ue cos(θe−θ )−up cos(θp−θ )
ue
l sin(θe−θ )− up

l sin(θp−θ )

⎞⎟⎟⎠
The above equation can also be expressed in the form ẋ = f (x,u,v).

3 State Constraints and Termination Situations

In this section, we present a description of the obstacles in the configuration space.
The workspace contains polygonal obstacles in the plane that obstruct the visibil-
ity and motion of the players. Since the system is modeled as a bar representing
the line of sight between the players, the obstruction of mutual visibility as well
as the motion of the players caused due to obstacles in the workspace can be ex-
pressed as a state constraint in R

3×S1. These state constraints can be expressed as
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(a) Configuration space obstacles (b) Types of contacts on the boundary

Fig. 2. Configuration Space Obstacles

configuration space obstacles. In R
3×S1, the configuration space obstacles are the

set of all (x,y, l,θ ) such that the bar has a non-empty intersection with some obsta-
cle in the workspace. Figure 2 shows two such configurations of the bar that lies
in configuration space obstacles. In one configuration the obstacle blocks the line-
of-sight between the pursuer and the evader. In the other configuration a player is
inside the obstacle which is forbidden according to the rules of the game.

The game set is the set of all points in R
3× S1 that belong to the free space.

Hence the boundary of the game set is same as the boundary of the configuration
space obstacles. The boundary of the game set consists of two kinds of contact
between the bar and the obstacles. Refer to Figure 2(b). The first kind of contact
occurs when at least one end of the bar touches an obstacle in the plane. At no
point in time, the state of the game can cross the boundary at such a point as this
is equivalent to either of the players penetrating into an obstacle in the workspace.
The second kind of contact occurs when a vertex of an obstacle is incident on the
bar and these set of points on the boundary of the game set is called the Target set.
At any point in time, if the current state of the game lies on the target set, then it can
cross the boundary according to the rules of the game since in the workspace this
is equivalent to breaking the mutual visibility between the players which results in
the termination of the game. Since we are interested in situations where the mutual
visibility between the players can be broken, we are only interested in the part of
the boundary that forms the target set.

In this game, termination occurs only when the evader can break the line of sight
to the pursuer around a corner. Every corner in the environment presents an op-
portunity for the evader to break the line of sight. Hence every corner presents a
termination situation for the game.

If the state of the system lies on the target set then a vertex of some obstacle is
incident on the bar. The evader cannot guarantee termination at every point on the
target set. Figure 3 shows a configuration of the bar in which the system is on the
target set. Let dp denote the distance of the vertex from (x,y) which is same as the
distance of the pursuer from the vertex. Let l denote the length of the bar which
is same as the distance between the pursuer and the evader. The evader can force
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Fig. 3. A configuration of the bar on the target set.

termination if and only if the maximum angular velocity of the evader around the
corner is greater than the maximum angular velocity achievable by the pursuer
around the corner. This can happen if and only if dp

l > 1
1+r . Hence we can further

subdivide the target set depending on whether the evader can guarantee termina-
tion at that point. The part of the target set where evader can guarantee termina-
tion regardless of the choice of the controls of the pursuer is called the usable part
(UP). The remaining part of the target set outside the UP is called the non-usable
part(NUP) and the game will never terminate on the NUP. Given any initial position
of the pursuer and the evader, the game will always terminate on the UP.

Now we present the equations characterizing the target set around a vertex of an
obstacle. Refer to Figure 3. The figure shows a configuration of the bar in which a
vertex, v, lies on the bar. Hence the current state of the bar lies on the target set. We
want the equation of the hyperplane that characterizes the target set generated by v.
Let (x,y, l,θ ) be the configuration of the bar and (xo,yo) be the coordinates of the
vertex of the obstacle. Let λ ∈ (0,1) be a variable that determines the fraction of the
length of the bar between (x,y) and the corner (xo,yo). We can write the following
equations of constraints for the bar.

xo− x = λ l cosθ

yo− y = λ l sinθ

In the above equation, as λ changes, the point of contact between the bar and the
vertex changes. Hence the target set is characterized by the following equation.

⇒ F(x,y, l,θ ) = (yo− y)cosθ − (xo− x)sinθ = 0 (1)

Since the above equation applies to any λ ∈ ( r
1+r ,1), Equation (1) also characterizes

the usable part of the target set.
Given a vertex, the target set generated by it in the configuration space has the

following boundaries.

• The pursuer lies on the corner⇒ (x,y) = (xo,yo).
• The evader lies on the corner⇒ (x + l cosθ ,y + l sinθ ) = (xo,yo).
• The bar is parallel to either of the edges incident on the vertex : θ = θ2 or θ = θ1.
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Every vertex will generate a target set. The final boundary of the target set gen-
erated by a vertex will depend on the position of the other vertices and edges in the
environment. But the equation of the target set will be given by (1).

The unit normal to a point (x,y, l,θ ) on the target set is given by

n(x,y, l,θ ) = ∇F =
1√

1 +(xo− x)2 sec2 θ
[sinθ − cosθ 0 − (xo− x)secθ ]T

(2)

4 Optimal Strategies

In this section we present the optimal controls for the players. Before we define the
concept of optimality we need to define the payoff for the players in the game. Con-
sider a play that terminates at time t f . Since the pursuer wants to increase the time of
termination its payoff function can be considered as t f . On the other hand since the
evader wants to minimize the time of termination its payoff can be considered to be
−t f . Since the payoff functions of the players add to zero, this is a zero sum game.
Another way to show that it is a zero sum game is to observe that the pursuer’s gain
is equal to the evader’s loss and vice-versa. The time of termination is a function of
the initial state x0 and the control history during the play, u and v. Let π denote the
functional π : (x0,u,v) → t f ∈R. π is called the outcome functional and is given by
the following expression.

π [x0,u,v] =
∫ t f

0
L[x(τ),u(τ),v(τ)]dτ + G[x(t f )]

In the above expression L[x(τ),u(τ),v(τ)] is called the running cost function
and G[x(t f )] is called the terminal cost function. The running cost function is the
cost incurred while the game is being played. The terminal cost function is the
cost incurred for reaching a particular terminal state on the target set. In this game,
L[x(τ),u(τ),v(τ)] = 1 and G[x(t f )] = 0. The pursuer wants to maximize the out-
come functional and the evader wants to minimize it.

For a point x in the state space, J(x) represents the outcome if the players imple-
ment their optimal strategy starting at the point x. It is the time of termination of the
game when the players implement their optimal strategies. It is also called the value
of the game at x. Any unilateral deviation from the optimal strategy by a player can
lead to a better payoff for the other player. For example, for a game that starts at a
point x, if the evader deviates from the optimal strategy then there is a strategy for
the pursuer in which its payoff is greater than J(x) and if the pursuer deviates from
the optimal strategy then there is a strategy for evader in which its payoff is greater
than −J(x). Since this is a zero sum game, any strategy that leads to a higher payoff
for one player will reduce the payoff for the second player.

∇J = [Jx Jy Jl Jθ ]T denotes the gradient of the value function. The Hamil-
tonian of any system is given by the following expression.
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H(x,∇J,u,v) = ∇J · f (x,u,v)+ L(x,u,v)

Let u∗ = (u∗p,θ ∗p) and v∗ = (u∗e,θ ∗e ) be the optimal controls used by the pursuer
and the evader respectively. The Hamiltonian of the system satisfies the following
conditions along the optimal trajectories[15]. These are called the Isaacs conditions.

1. H(x,∇J,u,v∗)≤H(x,∇J,u∗,v∗)≤ H(x,∇J,u∗,v)
2. H(x,∇J,u∗,v∗) = 0

Condition 1 implies that when the players implement their optimal strategies any
unilateral deviation by the pursuer leads to a smaller value for the Hamiltonian and
any unilateral deviation by the evader leads to a larger value of the Hamiltonian.
Moreover condition 2 implies that when the players implement their optimal con-
trols the Hamiltonian of the system is zero. The Isaacs conditions are an extension
of the Pontryagin’s principle in optimization to a game.

The Hamiltonian of our system is given by the following expression.

H(x,∇J,u,v) = ∇J · f (x,u,v)+ L

= up[Jx cosθp− Jl cos(θp−θ )− Jθ
l

sin(θp−θ )+ Jy sin θp]

+ue[Jl cos(θe−θ )+
Jθ
l

sin(θe−θ )]+ 1

Since the evader wants to minimize the time of escape and the pursuer wants to
maximize the time of escape, Isaacs first condition requires the following to be true
along the optimal trajectories.

(u∗e ,θ
∗
e ,u∗p,θ

∗
p) = min

ue,θe
max
up,θp

H(x,∇J,u,v) (3)

We can see that the Hamiltonian is separable in the controls up and ue i.e., it can
be written in the form up f1(x,∇J)+ue f2(x,∇J). Hence the optimal controls for the
players are given by the following expressions in terms of the gradient of the value
function.

(cosθ ∗p ,sinθ ∗p) || (Jx− Jl cosθ +
Jθ
l

sinθ ,Jy− Jl sin θ − Jθ
l

cosθ )

(cos(θ ∗e −θ ),sin(θ ∗e −θ )) || (−Jl,−
Jθ
l

)

u∗e = ve

u∗p = vp (4)

Due to lack of space, the derivation is presented elaborately in [9]. In the first
and the second equation || is used to denote parallel vectors. In case Jx− Jl cosθ +
Jθ
l sinθ = 0 and Jy − Jl sinθ − Jθ

l cosθ = 0 then θ ∗p can take any value and the

pursuer can follow any control strategy. Similarly if Jl = 0 and Jθ
l = 0, then θ ∗e
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can take any value and the evader can follow any control strategy. These conditions
represent singularity in the Hamiltonian.

The entire game set can be partitioned into two regions depending on the value
of the game. For all the initial positions of the pursuer and the evader for which the
value of the game J(x) is finite, the evader can break the line of sight in finite time
by following the strategies in Equation(4). For all the initial positions of the pursuer
and the evader for which the value of the game is infinite, the pursuer can track the
evader forever if it follows the controls given in Equation (4). Hence Equation (3)
are the necessary and sufficient conditions for pursuer to track the evader in terms
of the Hamiltonian of the system.

The analysis done in this section implies that if we are given the value function
J(x) then we can compute the optimal strategies for the players by using equa-
tion (4).

5 Construction of Optimal Trajectories

In this section we present the trajectories generated by the optimal control laws
that terminate on the UP. We use the following theorem to construct the optimal
trajectories.

Theorem 5.1. [15]Along the optimal trajectory, the following equation holds.

d
dt

∇J[x(t)] =− ∂
∂x

H(x,∇J,u∗,v∗)

The above equation is called the adjoint equation and the components of ∇J(x) are
called adjoint variables. The retro-time(time-to-go) form of the adjoint equations is

d
dτ

∇J[x(τ)] =
∂
∂x

H(x,∇J,u∗,v∗)

where τ = t f − t is called the retro-time. t f is the time of termination of the game.

The adjoint equation is a differential equation for the gradient of the value function
J(x) along the optimal trajectories in terms of the optimal controls. Since Equation
(4) gives the optimal controls of the players as a function of ∇J(x), we integrate
the adjoint equations backward in time from the UP to obtain ∇J(x) in terms of the
state variables. Substituting ∇J(x) into the optimal controls gives a feedback control
strategy for the players. Substituting the feedback control laws for the players into
the kinematic equation leads to the optimal trajectories. Due to lack of space, the
construction of the optimal trajectories is provided elaborately in [9].

From the analysis done in [9], we present the optimal trajectories of the players.
Let (x f ,y f , l f ,θ f ) denote the configuration of the bar at the termination situation.
The optimal trajectory of the pursuer as a function of retro-time is given by the
following equations.
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xp(τ) = x f + τvp sinθ f

yp(τ) = y f − τvp cosθ f (5)

The optimal trajectory of the evader as a function of retro-time is given by the fol-
lowing equations.

xe(τ) = x f + l f cosθ f − veτ sinθ f

ye(τ) = y f + l f sinθ f + veτ cosθ f (6)

The optimal trajectories for the pursuer and the evader are straight lines. More-
over the trajectories are perpendicular to the orientation of the bar at the termination
situation and hence parallel to each other. The players move in opposite directions as
they follow the optimal trajectories. Figure 4 shows the optimal trajectories for the
pursuer and the evader that terminate at a corner at the origin. The evader is shown
by the red dots and the pursuer is shown by green dots. The black line joining the
pursuer and the evader represents the orientation of the bar(line-of-sight) at different
time instants. The value of the speed ratio, r, is 0.5. At the termination situation, the
bar is oriented at an angle of π

4 with respect to the x, the position of the pursuer is
(−3,−3) and the position of the evader is (1,1). The payoff for both the players at
any point on the optimal trajectory is given by the variable τ since it is the time re-
quired for termination. In the figure, the payoff for an orientation of the bar is shown
on the side of the bar. The bar with τ = 0 represents the termination situation. If the
pursuer deviates from its optimal strategy then the evader has a strategy for which
it can escape around the corner in time less than τ . If the evader deviates from its
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Fig. 5. Optimal trajectories for an environment having a single point obstacle

optimal trajectory then the pursuer has a strategy for which it can track the evader
for a time greater than τ . This is due to the fact that the trajectories are obtained
from strategies that are in Nash equilibrium. Hence there is no motivation for either
of the players to deviate from their optimal strategies.

For a general environment in the plane, the optimal trajectories lie in R
3×S1. In

order to depict them in R
3, we need to consider a subspace of the optimal paths ter-

minating at a corner. In the following examples, for each corner in the environment
we show the subspace of the optimal paths that have a fixed distance of the pursuer
from the corner at the termination situation. The value of the speed ratio, r, is 0.66
in all the following examples. Figure 5 shows the optimal trajectories for the players
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Fig. 7. Optimal trajectories of the players for a hexagonal obstacle in space

in a simple environment containing a point obstacle at the origin. The line of sight
between the pursuer and the evader is broken if it passes through the origin. The
evader wants to minimize the time required to break the line of sight and the pursuer
wants to maximize it. Let (x f ,y f , l f ,θ f ) represent the orientation of the bar at the
termination situation. Figure 5(a) shows the optimal trajectories of the players for
all possible values of l f for a constant value of x f , y f and θ f . Figure 5(b) shows the
optimal trajectories for every orientation of the bar at the termination situation. The
z axis represents the angle of the bar at the termination situation. A cross-section
parallel to the xy-plane gives the optimal trajectories of the players in a plane for a
given θ f . The red line in the middle denotes the point obstacle. The inner spiral is
formed by the optimal trajectories of the evader and the outer spiral is formed by
the optimal trajectory of the pursuer. The color of a point is a representative of the
value of the game, J(x), at that point. The value of the game increases as the color
changes from blue to red.

Figure 6(a) shows a single corner in the plane. The internal angle at the corner
is 2π

3 . Figure 6(b) shows the optimal trajectories of the players for the corner. The
symmetry in the trajectories is due to the fact that termination situations occur sym-
metrically around a corner.

Figure 7(a) shows a regular hexagon in the plane. Figure 7(b) shows the optimal
trajectories of the players for the hexagonal obstacle.

6 Conclusion and Future Work

In this paper, we address a visibility based pursuit-evasion game in an environment
containing obstacles. The pursuer and the evader are holonomic having bounded
speeds. The pursuer wants to maintain visibility of the evader for maximum



264 S. Bhattacharya and S. Hutchinson

possible time and the evader wants to escape the pursuer’s sight as soon as possible.
Both the players have knowledge about each others current position. Under this in-
formation structure, we present necessary and sufficient conditions for surveillance
and escape. We present strategies for the players that are in Nash Equilibrium. The
strategies are a function of the value of the game. Using the strategies, we construct
a value function by backward integration of the adjoint equations from the termina-
tion situations provided by the corners in the environment. From the value functions
we recompute the control strategies for the players to obtain optimal trajectories for
the players near the termination situation. We show that the optimal strategy for the
players is to move on straight lines parallel to each other in opposite directions to-
wards a termination situation. We show a subspace of the optimal trajectories for a
point obstacle, a corner and a hexagonal obstacle in space.

In the future, we would like to provide complete solutions for a general polygonal
environment. This would include analysis of various kinds of singular surfaces.
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On the Topology of Plans

Michael Erdmann

Abstract. This paper explores a topological perspective of planning. A series of
examples and theorems establishes a fundamental coupling between tasks on graphs
and simplicial complexes. Planning under uncertainty is one application. The paper
introduces strategy and loopback complexes. The paper’s main theorem shows that
tasks specified by goal states in nondeterministic graphs have guaranteed solutions
if and only if their loopback complexes are homotopic to spheres.

1 Introduction

This paper explores a topological perspective of planning, focusing on graphs with
nondeterministic actions. Such graphs capture a wide variety of robotics prob-
lems, including motion in the presence of control and sensing uncertainty. The
research was motivated by Robert Ghrist’s technology transfer between topol-
ogy and robotics [4, 12, 10, 11], by Steve LaValle’s work on information spaces
[13, 22, 24, 23], and by workshops on topology and robotics organized by Michael
Farber at ETH Zürich in 2003 and 2006 [20].

Topology

Let us frame the word “topology.” Sometimes (not here) the term refers to the con-
tact topology of an assembly, or the topology of the configuration space of a robot,
or the topology of a network, or the topology of amino acid connections in a pro-
tein, to name a few possibilities. In these examples, a physical structure has some
topology that researchers seek to describe abstractly. While methods from topology
certainly have much to say about such problems, they are not the focus of this pa-
per. Instead, this paper explores topological descriptions of tasks and topological
characterizations of task solvability.
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An analogy might be the relationship of linear algebra to vectors written with spe-
cific coordinates. Linear algebra provides abstract techniques for representing and
manipulating vectors, independent of coordinates. Anything one can do with matrix
and vector notation one can do as well by writing out arrays of coordinates and ma-
nipulating the coordinates directly. Indeed, ultimately computations in a computer
must work with numbers in some coordinate system. However, the numbers are
like trees that obscure the forest. By thinking instead at the abstract level of linear
subspaces, kernels, eigenvectors, and so forth, one can recognize fundamental struc-
ture. How easy it is to say that a high-dimensional positive definite system always
decomposes into orthogonal one-dimensional systems; how cumbersome it would
be to convey that truth by numbers or coordinates alone.

Result Flavor

This perspective has precedent in other areas of computer science, such as pioneer-
ing work of Herlihy on asynchronous computation. For instance, [15] shows that an
asynchronous decision task has a wait-free protocol if and only if there exists a cer-
tain color-preserving continuous function between two chromatic simplicial com-
plexes determined by the task. In other words, a computational problem is equivalent
to a topological problem. The simplicial complexes reflect the structure of the input
and output spaces of the task. The continuous function is a topological constraint
between those spaces and thus a constraint on solvability of the decision task.

In topological robotics, Farber initiated a line of work to describe the topological
complexity of motion planning problems on a space in terms of the cohomology of
that space [9]. This complexity reflects the discontinuities inherent to any controller
that maps start and goal configurations of a robot to trajectories between those con-
figurations.

The current paper focuses on tasks that may be specified by goal states in some
nondeterministic graph; the task is to attain a goal state from anywhere within the
graph. The paper’s key result says (roughly) that such a task has a guaranteed solu-
tion if and only if a certain simplicial complex associated with the task is homotopic
to a sphere of a certain dimension. This observation is motivated by similar results
describing the structure of complete directed graphs [3] and strongly connected di-
rected graphs [16]. Indeed, our proof techniques build on the foundations of those
two papers.

Contributions

The primary contribution of this paper is the previously unseen structure it reveals
in planning problems. The paper shows how the details of a nondeterministic graph
can be abstracted away leaving a purely topological description of the task: One can
reason about task solvability by thinking in terms of spheres and contractible spaces.

A second contribution is the introduction of strategy complexes. A single strategy
on a graph is a nondeterministic control law for moving acyclically within some
portion of the graph. A strategy complex consists of all possible strategies on a
graph. Strategy complexes are useful for reasoning about alternate strategies, such as
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backup strategies that a system might need if a selected strategy for accomplishing
a task fails unexpectedly.

Third, although beyond the scope of this paper, a large number of ancillary results
flow from our characterization of task solvability, among them: (i) One can answer
purely topologically the question whether a set of actions is essential to solving a
task. (ii) One can recast various questions about tasks into measurements by the Eu-
ler characteristic. (iii) One can describe graph composition in terms of the joining of
spheres. (iv) One can view Bellman-style backchaining as the repeated enlargement
of an existing sphere.

We anticipate that yet more structure exists to be discovered in planning problems
via the lens of topology. In particular, we already know that the key theorems of this
paper extend, fairly readily, to stochastic graphs. The details, however, are beyond
the scope of this short paper. We will instead convey the core ideas by focusing on
nondeterministic graphs.

2 An Example: Nondeterminism, Cycles, and Strategies

Imagine an ambulance rescue in an old complicated city, perhaps after an earth-
quake. There are many opportunities for nondeterminism: Entries into the city might
be blocked, maps might be wrong, navigation might lead to circular paths. The left
panel of Fig. 1 shows such a toy scenario; let us focus on the final step in which
ambulance workers must pass through a narrow opening to reach their patient, as
in the right panel. Something might go wrong, a collapse of some sort, forcing the
rescue workers to either side, as in Fig. 2. The rescuers may then take additional
steps around buildings bounding the original narrow opening to reach their patient.

We can model this scenario using the graph1 in the left panel of Fig. 3. The action
to move from A (ambulance) to X (patient) might nondeterministically lead to X but
perhaps also to B or C, depending on whether and how a collapse occurs on the direct
path from A to X. In the example, there then are deterministic actions from either B
or C to X. Such a graph is essentially a compressed AND/OR graph [1].

We can now represent the strategy just described as a triangle (right panel of
Fig. 3). The triangle or strategy is effectively a control law. The vertices of the tri-
angle are the individual actions to be executed at any particular location during the
rescue operation. So, for instance, the control law says “When at location B, execute
the action B → X.”

Strategies Should Avoid Cycles

Perhaps it is also possible to move from B to C, as in Fig. 4, and vice versa. We can
augment our graph to include these actions, as shown in the left panel of Fig. 5.

One must be careful not to include both of these new actions, B → C and C → B,
together in a control law. Otherwise, the rescuers (who could be robots, not humans)

1 This paper depicts nondeterministic actions as follows: in a graph, by directed edges tied
together with a circular arc; in a strategy complex, by multiple outcomes to the right of an
“arrow” (→).
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Fig. 1. Nondeterministic events hamper rescue effort.

Fig. 2. Direct access might be blocked.

might cycle forever between B and C, never reaching their patient at X. Instead, there
now exist several distinct strategies for reaching X. These are represented by the
two tetrahedra in the right panel of Fig. 5. Observe that the two tetrahedra intersect
in a triangle that is the original triangle from Fig. 3, but there is no simplex that
simultaneously includes the two actions B → C and C → B.

Strategy Complex

The strategy complex of a nondeterministic graph consists of all sets of actions of
the graph that cannot give rise to cyclic paths in the underlying directed graph. We
will refer to such sets of actions as acyclic. Each acyclic set of actions is a simplex of

Fig. 3. Nondeterministic graph and strategy complex modeling the motions of Fig. 2.
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Fig. 4. Actions that move between the far locations B and C.

Fig. 5. With additional (potentially cycle-inducing) actions, the strategy complex now con-
tains two tetrahedra.

the strategy complex. For background on simplicial complexes see [21, 2]. Section
5 contains a brief summary as well.

The two tetrahedra we just mentioned generate the strategy complex of the res-
cue graph of Fig. 5. Each tetrahedron represents a strategy (or control law or plan)
consisting of actions that may be executed without accidentally creating cycles in
the graph. Each triangle or edge or vertex of one of these tetrahedra, formed from
a subset of the actions comprising the tetrahedron, also represents some strategy
(perhaps with a different goal).

The semantics of the top tetrahedron of Fig. 5 are:

– When at A, execute the action A → B,X,C.
– When at B, execute either the action B → X or the action B → C.

It does not matter which; pick one, perhaps nondeterministically.
– When at C, execute the action C → X.

Nondeterminism appears in both the outcomes and choices of the strategy:

1. Nature acts as an adversary during execution of the action A → B,X,C, making
the outcome uncertain. This can be bad.

2. The system has available multiple actions at location B. This is good. The bigger
a strategy simplex, the better. The system can simply choose to ignore the extra
action B → C if it wishes and instead always move B → X, perhaps appropriate if
speed of rescue is important.
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Fig. 6. The original triangular strategy of Fig. 3 is a face of both tetrahedra in the enlarged
strategy complex of Fig. 5. If one of the original actions fails unexpectedly, it may be possible
to find a revised backup strategy in the strategy complex.

This second observation, that the tetrahedral strategy has extra actions, is useful.
It tells us that if an unmodeled event occurs and the action B → X from the original
strategy of Fig. 3 no longer seems appealing, then there is a backup, via the sequence
of actions B → C; C → X. See Fig. 6 for a comparison.

Comment: The graph just described is ubiquitous in planning under uncertainty.
For instance, it captures the essential difficulty of the peg-in-hole problem [19].

3 More Examples: Graphs, Loopbacks, and Spheres

3.1 Two Graphs and Their Strategy Complexes

Let us consider an even simpler example, to build intuition. The graph on the left
of Fig. 7 is a standard directed graph. Each edge of the directed graph is a possible
“action” the system could perform, moving it from some state2 of the graph to some
other state.

The strategy complex of this graph is shown in the right panel of Fig. 7. The
biggest simplex one could possibly expect to see in the strategy complex would be
a tetrahedron, consisting of all four actions present in the directed graph. However,
two of the actions, namely 1 → 2 and 2→ 1, could give rise to a cycle in the graph,
so no simplex of the strategy complex can contain both these actions. The complex
is in fact generated by two triangles.

2 We refer to a graph node as a “state” and reserve the term “vertex” for singleton simplices
in simplicial complexes.
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1   2

2   1

2   31   3

This triangle 
constitutes one strategy 

for attaining graph state 3.

This edge is 
the backchained

strategy for attaining
graph state 3.

This edge constitutes 
the strategy to move away
from graph state 1.

Fig. 7. The graph on the left defines the strategy complex shown on the right.

1    2,3 2    1,3

Fig. 8. The graph on the left has two nondeterministic actions that could create a cycle, so the
strategy complex on the right consists of two isolated points.

The two triangles, as well as three of the five edges in the complex, constitute
strategies for attaining state 3 in the graph. The central edge, consisting of the ac-
tions {1→ 3; 2→ 3}, is the strategy one would obtain by backchaining from state 3.

Observe that a strategy complex may contain strategies for a variety of goals. For
instance, the top left edge of the complex in Fig. 7, comprising the set of actions
{1 → 3; 1 → 2}, is a strategy that simply says “move away from state 1.”

For contrast, consider the graph of Fig. 8. It contains two actions, one each at
states 1 and 2. Each action has two nondeterministic outcomes. The two actions
cannot appear together as a simplex since, depending on the actual nondeterministic
transitions at runtime, these actions could cause cycling in the graph between states
1 and 2. As a result, the strategy complex consists of two isolated points, represent-
ing the two strategies “move away from state 1” and “move away from state 2.” In
particular, there are no strategies guaranteed to attain state 3 from the other two
states.

3.2 Loopback Graphs and Complexes

Now let us modify the graph of Fig. 7. We will add artificial deterministic transitions
from state 3 to each of states 1 and 2, which we call loopback actions. Think of
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2  1 1

1  3

3  1

2  3
1  2

3  2
Fig. 9. A loopback graph and loopback complex associated with the graph of Fig. 7. The
complex contains 6 vertices, 12 edges, and 6 triangles (shaded). The two triangular endcaps
outlined in dashed red are not part of the complex, since each gives rise to a cycle in the
graph. The complex is homotopic to S1.

these actions as “topological electrodes” that allow us to measure whether the graph
contains a guaranteed strategy for attaining state 3 from all states.

The left panel of Fig. 9 shows the resulting loopback graph. Now imagine con-
structing the strategy complex associated with that graph, as shown in the right panel
of the figure. We refer to it as a loopback complex of our original graph. The com-
plex in this case looks roughly like a polygonal cylinder. The complex is homotopic
to a circle3, as represented by either open end of the cylinder. One says that the
loopback complex has the homotopy type of a circle. Notice that one cannot contin-
uously deform the complex (within itself) into a point. This is crucial. Homotopy
type is an equivalence relation on topological spaces. Spaces that have the same ho-
motopy type as a point are said to be contractible. Spheres are not contractible. (A
circle is a one-dimensional sphere.)

In contrast, suppose we add both possible loopback actions at state 3 to the graph
of Fig. 8. The resulting graph and loopback complex are show in Fig. 10. Now the
loopback complex is homotopic to a point; one can continuously deform it within
itself to a point.

The Punch Line: No matter how complicated the nondeterministic graph, if we
add all loopback actions to it that transition from some state s to the remaining
states, then the resulting loopback complex will always be homotopic either to a
sphere or to a point. A sphere tells us that there is a strategy guaranteed to attain
state s from all states in the graph; a point tells us that no such strategy exists. See
Theorem 1 of Section 5.

3 “Homotopic” means, in this case, that the complex, viewed as a topological space, can be
continuously deformed within itself into a subspace that is topologically a circle. For a
more precise and general definition, see [21, 2].
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1    2,3 2    1,3

3    2 3    1
Fig. 10. A loopback graph and loopback complex associated with the graph of Fig. 8. The
complex is contractible.

3.3 A Loopback Complex Homotopic to S2

As a third example, the graph of Fig. 11 contains three deterministic actions tran-
sitioning to state 4, one each from states 1, 2, and 3. Adding the loopbacks to this
graph at state 4 adds three more actions. The associated loopback complex is a tri-
angulation of the two-dimensional sphere. Each of the six actions of the loopback
graph is a vertex in this triangulation. The complex further contains 12 edges and 8
triangles. The triangle {1 → 4; 2 → 4; 3 → 4} represents the strategy for attaining
state 4 from all states. The triangle {4→ 1; 4→ 2; 4→ 3} represents the (loopback)
strategy “move away from state 4.”

Removing an action, say 1→ 4, from the original graph is the same as puncturing
the sphere, thereby producing a contractible loopback complex. Contractibility is
consistent with the fact that the modified graph would no longer contain a strategy
for attaining state 4 from all states.

3   4

2   41   4
4  3

4   14   2

Fig. 11. The graph in the top left contains three deterministic transitions to state 4, one each
from the other three states. The graph in the bottom left is this same graph along with loop-
back actions from state 4 to the other three states. The resulting loopback complex shown on
the right is homotopic to S2.
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4 Topological Thinking in Partially Observable Spaces

This section shows by example how the topological characterization of task solv-
ability may help decide whether a task has a guaranteed solution.

4.1 Inferring Task Unsolvability from Duality

This example shows how the topology of strategy complexes may imply task un-
solvability.

The spherical characterization of task solvability has a dual statement (Theorem
2 of Section 5), with the following necessary condition: If the loopback complex
associated with a particular goal is homotopic to a sphere, then the subcomplex
formed by all actions at any nonempty set of nongoal states must be contractible.
Intuitively, this subcomplex is obtained by slicing the sphere into two well-behaved
parts, then discarding the part containing the loopback actions. What remains must
be contractible. Failure of this condition is evidence of a potentially inescapable
cycle, indicating that the task has no guaranteed solution.

4

3
Right Left

21 

RightLeft

Imperfect SensorState Graph

Enter

{4}

Right Left

Inescapable Cycle

{1,2}

{3}

Enter

Fig. 12. A graph, an imperfect sensor, and a potentially inescapable cycle between knowledge
states {4} and {1,2} (indicated by the solid arrows).

The state graph of Fig. 12 might model a robot moving in either of two corridors
(states 1 and 2). In any one corridor the robot can move RIGHT or LEFT. Atriums
connect the corridors at either ends. The task is to reach one particular atrium (state
3). Entry into the corridors from the other atrium (state 4) is imprecise. The gray
triangle in the strategy complex of Fig. 13 constitutes a strategy for accomplishing
this task, assuming perfect sensing. The strategy is to ENTER from state 4, move
RIGHT from 1, LEFT from 2.

Now imagine a robot controller unable to distinguish the two corridors (states 1
and 2) based on sensing alone. The task no longer has a guaranteed solution. One
could see this in a variety of ways, for instance, by explicitly constructing the robot’s
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(Enter)

(Right) (Left)

Strategy Complex with Perfect Sensing

4           1,2

2   3

2   4 1   4

1   3

Enter

Right Left

(imperfect sensing)
Induced Subcomplex

Fig. 13. With perfect sensing, the strategy complex of the state graph of Fig. 12 consists of a
triangle joined to an edge of a tetrahedron. With sensing ambiguity at states 1 and 2, this strat-
egy complex collapses, inducing a non-contractible subcomplex of strategies in knowledge
space that signals an inescapable cycle.

knowledge space4, part of which is shown in the right panel of Fig. 12. Let us take
a related but more topological perspective.

One does not need to construct the knowledge space directly. Instead, one can
reason about strategies. Consider the strategy complex of the original graph (left
panel, Fig. 13). As we will see, this complex induces a non-contractible subcom-
plex of strategies in knowledge space (right panel, Fig. 13) that violates the duality
theorem.

Let us focus on the actions at two key knowledge states, namely {4}, represent-
ing certainty that the system is at state 4, and {1,2}, representing uncertainty as to
whether the system is at state 1 or 2. The tetrahedron of the original complex de-
scribes the strategies possible with perfect sensing at the graph states 1 and 2. The
tetrahedron collapses to an edge under sensing ambiguity. This edge represents the
two actions, RIGHT and LEFT, possible at state {1,2} in knowledge space. In the
original complex, only a portion of the tetrahedron joins with the action ENTER;
action RIGHT at state 2 and action LEFT at state 1 do not join with ENTER. In the
knowledge space complex, the edge {RIGHT,LEFT} consequently cannot join with
the action ENTER.

We have thus exhibited a non-contractible complex describing the strategies
available at a subset of knowledge space. This means, no matter what the surround-
ing knowledge space might look like, there can exist no guaranteed solution to the
task of attaining state 3 in the presence of control uncertainty at state 4 and sensing
confusion between states 1 and 2.

4.2 Hypothesis-Testing and Sphere Suspension

This example shows how the topology of loopback complexes may imply task
solvability.

4 Knowledge space is the graph whose states are sets of potential robot locations consistent
with the robot’s sensing and action history at runtime [8, 5, 7, 18].
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Imperfect Sensor

Fig. 14. An imperfect sensor stratifies a graph into two subgraphs (the “a wing” and the “b
wing”), over each of which sensing is effectively perfect.

Fig. 14 shows a variant of the previous example. Once again there is some control
uncertainty, once again the sensor cannot distinguish certain corridors. The system
cannot move reliably to state 3 using pure feedback control (that is, using sensing
alone, without history). For some sensor values, neither of the actions RIGHT or
LEFT will make progress toward the goal 3 at all states consistent with the sensor
value.

Fortunately, this time the confusable corridors lie in different “wings” of the
building. The sensor stratifies the graph into two subgraphs, both containing the
goal. Within each subgraph the sensor is effectively perfect and each subgraph con-
tains a strategy guaranteed to attain the goal from anywhere within that subgraph.

Whenever a sensor stratifies a graph into subgraphs in this manner, there exists
a hypothesis-testing strategy for attaining the goal from anywhere in the overall
graph. Hypothesis-testing means: The system assumes it is in one of the subgraphs;
it commands actions and interprets sensor readings as if it really were in that sub-
graph, but also verifies consistency between predicted motions and observed sensor
readings. If an inconsistency occurs, the hypothesis of being in that subgraph has
been falsified and the system moves on to another hypothesis. Intuitively, this strat-
egy eventually converges at the goal.

Hypothesis-testing is a strategy in knowledge space, but one does not need to
construct knowledge space. In general, knowledge space may contain additional,
possibly shorter, strategies. For the example of Fig. 14, hypothesis-testing is effec-
tively the only strategy.

There is a short topological argument that hypothesis-testing converges:
Hypothesis-testing amounts to repeated sphere suspension.5 Further details: The
graph Hi describing motions under the ith hypothesis is equivalent to the subgraph

5 A suspension of a complex is another complex formed by joining each simplex with
each of two new vertices [21, 14]. For instance, the complex in Fig. 5 is a suspension
of the complex in Fig. 3. The key property relevant here is that the suspension of a sphere
of any dimension is another sphere, of one higher dimension.
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Gi being hypothesized, except that some actions may move nondeterministically to
a new state ⊥i, signaling falsification of the hypothesis. We also add an “action”
from ⊥i to the goal, as explained below. Without loss of generality6, every action
of Gi, and thus Hi, contains a nondeterministic transition to the goal. The loopback
complex ΓHi of Hi is then a suspension, formed by joining the loopback complex ΓGi

of Gi with the loopback action goal→⊥i and the action⊥i → goal. Since Gi con-
tains a strategy guaranteed to attain the goal from any state in Gi, ΓGi is homotopic
to a sphere. Consequently so is ΓHi , proving that hypothesis-testing converges.

What is the mysterious action ⊥i → goal ? It is the inductive-hypothesis that
there exists a strategy for attaining the goal once the ith graph-hypothesis has been
falsified! (The base case is similar, except that there is no need for a state ⊥i. The
final graph-hypothesis is certain.)

Two comments: (1) One can make a very similar argument directly at the graph
level, further underscoring the parallel between spheres and task solvability. That
parallel shows as well that backchaining is much like repeated sphere suspension.
(2) Hypothesis-testing is related to randomization [5, 6, 7].

5 Mathematical Details

An (abstract) simplicial complex Σ is a collection of finite sets, such that if σ is
in Σ then so is every subset of σ [21]. The elements of Σ are called simplices; the
elements of a simplex and singleton simplices are both called vertices. We permit the
empty simplex /0, for combinatorial simplicity [3, 17]. The complex { /0}, consisting
solely of the empty simplex, is the empty complex. It is also the sphere of dimension
−1. The complex /0, consisting of no simplices, is the void complex. All complexes
in this paper are finite. Any nonvoid finite complex has a geometric realization in
some Euclidean space, with relative topology the same as its polytope topology [21].
Thus we view Σ as a topological space.

A nondeterministic graph G = (V,A ) is a set of states V and a collection of
actions A . Each A ∈ A is a nonempty set of directed edges {(v,u1),(v,u2), . . .},
with v and all ui in V ; v is A’s source and each ui is a nondeterministic target.
Distinct actions may have overlapping or identical edge sets. All graphs and actions
in this paper are finite. A possible path of length k in G is a sequence of states
v0,v1, . . . ,vk such that (vi,vi+1) ∈ Ai, for some actions {Ai}k−1

i=0 ⊆A . G is acyclic if
none of its possible paths have v0 = vk with k ≥ 1.

Any B ⊆ A defines a nondeterministic subgraph HB = (V,B) of G. Given a
desired stop state s ∈ V , we say that G contains a complete guaranteed strategy
for attaining s if there is some set of actions B ⊆ A such that HB is acyclic and
B contains at least one action with source v for every v ∈ V\{s}. Observe that B
cannot contain actions with source s and that every possible path in HB with vk �= s
can be extended to a longer path. Iterating, this process converges at s, since HB is

6 Adding these transitions does not affect the existence of strategies for attaining the goal,
but focuses on the topologically significant simplices in the complexes.
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acyclic. We refer interchangeably to both HB and B as being acyclic, a complete
guaranteed strategy, etc.

Given a nondeterministic graph G = (V,A ) with V �= /0, let ΔG be the simplicial
complex whose simplices are the acyclic sets of actions B ⊆A . If V = /0, let ΔG =
/0. Observe that no action of G with a self-loop can appear in ΔG. Given desired
stop state s ∈ V , let G←s be the nondeterministic graph identical to G except that
all actions with source s have been discarded, replaced instead by (|V | − 1)-many
loopback actions {(s,v)}, each consisting of a single edge from s to some v, with v
ranging over V\{s}. Define ΔG←s accordingly. ΔG is the strategy complex and ΔG←s

is a loopback complex of G.

Theorem 1. Let G = (V,A ) be a nondeterministic graph and s ∈V.
If G contains a complete guaranteed strategy for attaining s, then ΔG←s is homo-

topic to the sphere Sn−2, with n = |V |. Otherwise, ΔG←s is contractible.

Proof. I. Let B be a complete guaranteed strategy for attaining s and let A ′ be
the actions of G←s. We may assume V = {1, . . . ,n} and s = n. For each A ∈ A ′

define the open polyhedral cone UA =
⋂

(i, j)∈A{x ∈ Rn | xi > x j}. Observe that a
set of actions {A1, . . . ,Ak} is acyclic if and only if UA1

⋂ · · ·⋂UAk is not empty.
When nonempty, the intersection is contractible. By the Nerve Lemma [14], ΔG←s

therefore has the homotopy type of
⋃

A∈A ′UA. We claim that this union covers all
of Rn except for the line on which all coordinates are equal. Thus it is homotopic
to Sn−2.

To see coverage: Clearly no point with all coordinates equal can be in the union.
The cones determined by the loopback actions cover all points x ∈ Rn for which
xn > xi, some i. Suppose some x in Rn\{x1 = · · · = xn} is not inside any UA. Then
xi ≥ xn for all i, with at least one xi > xn. Some action B ∈B has that i as a source.
B ⊆ A ′, so x �∈ UB, meaning there is some target j of B such that x j ≥ xi > xn.
Repeating this argument with j, etc., produces an arbitrarily long and thus cyclic
possible path in HB. Contradiction.

II. If G does not contain a complete guaranteed strategy for attaining s, then no
simplex of ΔG←s contains actions at all states of V\{s}. For every simplex σ ∈ ΔG←s

there is therefore a unique nonempty maximal set τσ of loopback actions such that
σ
⋃

τσ ∈ΔG←s . A standard collapsing argument now shows that ΔG←s is contractible
(Lemma 7.6 of [3] is useful). ��

The following theorems, stated here without proof, further characterize the topol-
ogy of strategies on nondeterministic graphs. Notation and definitions are as be-
fore. Also, given G = (V,A ) and any subset W ⊆ V , define the subgraph G|W =
(V,A |W ) with A |W all actions of G whose sources lie in W .

Theorem 2. G contains a complete guaranteed strategy for attaining s ∈ V if and
only if ΔG|W is contractible for every nonempty W contained in V\{s}.

Theorem 3. Suppose n = |V |> 0. ΔG is homotopic to Sn−2 if and only if, for every
v ∈V, G contains a complete guaranteed strategy for attaining v.
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Theorem 4. For any finite simplicial complex Σ , there is a nondeterministic graph
G such that ΔG is isomorphic as a simplicial complex to sd(Σ) (the first barycentric
subdivision of Σ ).

Theorems 1 and 2 are dual topological perspectives. Theorem 3 provides a “graph
controllability” condition: There exist actions to attain any desired goal state in a
graph despite control uncertainty (modeled by nondeterminism) precisely when the
graph’s strategy complex is homotopic to a sphere of a specific dimension. We may
therefore view graphs satisfying this condition as nondeterministic analogues of
strongly connected directed graphs. Theorem 4 shows that nondeterministic graphs
and simplicial complexes are essentially the same topologically.

6 Conclusions

This paper has drawn a parallel between planning and the topology of simplicial
complexes. Theorem 1 characterizes the existence of plans purely topologically.
Theorem 4 suggests that methods from algebraic topology may offer further new ap-
proaches for planning in the presence of uncertainty. The CONTRIBUTIONS section
of the INTRODUCTION mentions additional results. In particular, our key theorems
generalize to stochastic graphs.
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Mirror-Based Extrinsic Camera Calibration

Joel A. Hesch, Anastasios I. Mourikis, and Stergios I. Roumeliotis

Abstract. This paper presents a method for determining the six degree-of-freedom
transformation between a camera and a base frame of interest. A planar mirror is ma-
neuvered so as to allow the camera to observe the environment from several viewing
angles. Points, whose coordinates in the base frame are known, are observed by the
camera via their reflections in the mirror. Exploiting these measurements, we deter-
mine the camera-to-base transformation analytically, without assuming prior knowl-
edge of the mirror motion or placement with respect to the camera. The computed
solution is refined using a maximum-likelihood estimator, to obtain high-accuracy
estimates of the camera-to-base transformation and the mirror configuration for each
image. We validate the accuracy and correctness of our method with simulations and
real-world experiments.

1 Introduction

Cameras are utilized in a wide variety of applications ranging from surveillance
and crowd monitoring, to vision-based robot localization. In order to obtain mean-
ingful geometric information from a camera, two calibration procedures must be
completed. The first is intrinsic calibration, that is, determining the internal cam-
era parameters (e.g., focal length, principal point, and skew coefficients), which
affect the image measurements. The second is extrinsic calibration, which is the
process of computing the transformation between the camera and a base frame of
reference. In a surveillance application, the base frame may be the room or build-
ing coordinate system, whereas on a mobile robot, the base frame could be the
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robot-body frame. Several authors have addressed extrinsic calibration of a cam-
era to another sensor (e.g., for odometry-to-camera [13], inertial measurement unit
(IMU)-to-camera [14], or laser scanner-to-camera [1, 21]). These exploit measure-
ments from both sensors to determine their mutual transformation. However, very
little attention has been devoted to determining the camera-to-base transformation,
for a generic base frame.

In this paper, we deal exclusively with extrinsic camera calibration. Our objec-
tive is to determine the camera-to-base transformation from observations of points
whose coordinates in the base frame are known. We consider the most limiting case,
in which the known points do not lie within the camera’s field of view but can only
be observed using a planar mirror. We maneuver the mirror in front of the camera
to provide multiple views of the points. In our formulation, no prior information
about the mirror motion or placement with respect to the camera is assumed. The
configuration of the mirror and the camera-to-base transformation are treated as
unknowns to be computed from the observations. The main contribution of this pa-
per is an algorithm for determining the camera-to-base transformation analytically,
which requires a minimum of 3 non-collinear points tracked in 3 images.

A direct approach to extrinsic camera calibration is to utilize all of the mea-
surements in a maximum-likelihood estimator (MLE) for computing the unknown
transformation [7]. This takes the form of a nonlinear least-squares problem, which
seeks to iteratively minimize a nonconvex function of the unknown variables. While
appealing for its ease of implementation, this method has two drawbacks. First,
without an accurate initial guess, the minimization process may take several itera-
tions to converge, or even fail to find the correct solution. Second, the MLE provides
no framework for studying the minimal measurement conditions required to com-
pute a solution. To address the first issue, in the method presented in this paper we
first determine the transformation analytically, and then employ an MLE to refine
the computed solution (cf. Section 3). Moreover, we determine the minimal number
of measurements required for a unique solution. Finally, in Appendix 2 we comment
on the extension of this work to robot-body 3D reconstruction.

2 Related Work

Before presenting our method, we first review the related work, which falls into two
categories: (i) hand-eye calibration, and (ii) catadioptric systems. Hand-eye calibra-
tion is the process of determining the six degree-of-freedom (6 d.o.f.) transformation
between a camera and a tool, which are both mounted on a robot manipulator [20, 2].
The hand-eye problem is solved by correlating the measurements of the camera and
the encoders, which measure displacements of the robot joints. This process de-
termines the pose of the camera with respect to the robot base. Subsequently, the
camera-to-tool transformation is calculated by combining the estimated camera-to-
robot-base transformation, and the robot-base-to-tool transformation, which is as-
sumed to be known. This necessitates the availability of precise technical drawings,
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and limits the applicability of these methods, since they cannot determine the
camera-to-base transformation for a generic base frame.

Next, we turn our attention to catadioptric systems, which are employed to per-
form synthetic multiple-view vision. Methods have been presented utilizing a single
camera and planar [3, 8], or conic mirrors [9]. Others accomplish stereo vision with
reflections from free-form surfaces [22], and a trinocular mirror-based vision system
also exists [17]. Additionally, stereo is achieved with a static camera and a moving
mirror [11], or with a moving camera and two stationary spherical mirrors of known
radii [15]. While the use of mirror reflections relates these approaches to our work,
the key difference is that we do not perform synthetic stereo, i.e., only a single ob-
servation of each point is available in each image.

Jang et al. demonstrate a system for 3D scene reconstruction using a moving
planar mirror [10]. Exploiting a combination of fiducial points on the mirror and
vanishing points in the reflections, they solve for the position of the mirror with
respect to the camera. The 3D scene is determined based on synthetic stereo from
multiple reflections. In contrast to this approach, we do not assume that the dimen-
sions of the mirror, or its position with respect to the camera, are available. Finally,
Kumar et al. determine the transformations between multiple cameras with non-
overlapping fields of view, using mirror reflections of a calibration grid [12]. They
require 5 views (per camera) of the calibration pattern to form a set of linear con-
straints, which are solved for the unknown transformations. In contrast to [12], our
method requires only 3 images, each containing observations of 3 known points, to
determine the camera-to-base transformation analytically.

3 Computing the Transformation

In this section, we describe our approach for analytically determining the transfor-
mation between the camera frame, {C}, and a frame of interest, {B}, from observa-
tions of 3 points whose coordinates in {B} are known. Frame {B} is arbitrary and
without loss of generality, we will refer to {B} as the “base frame.” Example base
frames vary by application, and may include: (i) the robot-body frame, if the camera
is mounted on a robot, (ii) the room or building frame, if the camera is utilized in a
surveillance application, and (iii) the rig mount, if the camera is part of a stereo pair.

We address the most limiting scenario in which the points are only visible through
reflections in a planar mirror that is moved in front of the camera to provide multi-
ple views of the scene. We exploit these observations to compute the transformation
between {B} and {C}, without knowledge of the mirror’s placement or motion with
respect to the camera (cf. Algorithm 1). In what follows, we present the measure-
ment model and discuss its relation with the three-point pose estimation problem
(P3P). We comment cases where a unique solution does not exist, and present an
analytical method to compute the unknown transformation from a minimum of 3
points observed in 3 images that differ by rotations about two axes. Lastly, we sum-
marize a maximum-likelihood approach for refining the computed transformation,
a detailed discussion of which is available in [7].
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Algorithm 1. Computing the Camera-to-Base Transformation

Input: Observations of 3 points tracked in Nc images
Output: Camera-to-base transformation {C

BR,CpB}
for each image in Nc do

Convert to three-point pose estimation problem (P3P)
Solve P3P to obtain combined homogeneous/reflection transformation: {A,b}k

end for
for each triplet of solutions {A,b}k, {A,b}k′ , {A,b}k′′ do

Compute mirror configurations from (14)
Compute camera-to-base rotation C

BR from (23)
Compute camera-to-base translation CpB from (16)

end for
Utilize clustering to select the correct solution {C

BR,CpB}
Refine the solution using a maximum-likelihood estimator

3.1 Measurement Model

First, we present the measurement model that describes each of the camera obser-
vations. To simplify the presentation, in this section we focus on the case of a single
point, observed in a single image. Consider a point p, whose position with respect
to frame {B}, Bp, is known1. We seek to express the point p in the camera reference
frame {C}. From geometry (cf. Fig. 1) we have two constraint equations:

Cp′ = Cp+ 2dp
Cn (1)

dp = d−CnTCp (2)

where Cp′ is the reflection of Cp, Cn is the mirror normal vector expressed in the
camera frame, d is the distance between the mirror and the camera, and dp is the
distance between the mirror and the known point (both distances are defined along
the mirror normal vector). Note also that

Cp = C
BRBp+CpB (3)

where C
BR is the matrix which rotates vectors between frames {B} and {C}, and

CpB is the origin of {B} with respect to {C}. We substitute (2) and (3) into (1), and
rearrange the terms to obtain:

Cp′ =
(
I3−2CnCnT)Cp+ 2d Cn

=
(
I3−2CnCnT)(C

BRBp+CpB
)
+ 2d Cn (4)

1 Throughout this paper, X y denotes a vector y expressed with respect to frame {X}, X
W R

is the rotation matrix rotating vectors from frame {W} to {X}, and X pW is the origin of
{W}, expressed with respect to {X}. In is the n×n identity matrix, and 0m×n is the m×n
matrix of zeros.
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Fig. 1. Observation of the point Cp′ which is the reflection of Cp. In this figure, the mirror
plane is perpendicular to the page. Only the reflected point is in the camera’s field of view;
the real point is not observed directly by the camera.

which can be written in homogeneous coordinates as:[
Cp′

1

]
=
[(

I3−2CnCnT
)

2d Cn
01×3 1

][
C
BR CpB

01×3 1

][
Bp
1

]
. (5)

The reflection of p is observed by the camera, and this measurement is described by
the perspective projection model:

z =
1
p3

[
p1

p2

]
+ η = h(Cp′)+ η, Cp′ =

[
p1 p2 p3

]T
(6)

where η is the pixel noise, assumed to be a zero-mean, white Gaussian process with
covariance matrix σ2

η I2. Equations (4) and (6) define the measurement model, which
expresses the observed image coordinates, z, of the point as a function of the known
position vector, Bp, the unknown camera-to-base transformation, {C

BR,CpB}, and the
unknown configuration of the mirror with respect to the camera, {Cn, d}. Note that
the transformation between the mirror and camera has 6 d.o.f., however, only 3 d.o.f.
appear in the measurement equation. These are expressed by the vector d Cn, which
has 2 d.o.f. from the mirror normal, Cn, and 1 d.o.f. from the camera-to-mirror dis-
tance, d. The remaining 3 d.o.f., which correspond to rotations about Cn and transla-
tions of the mirror-frame origin in the mirror plane, do not affect the measurements.

3.2 Three-Point Perspective Pose Estimation Problem

We now briefly review the three-point perspective pose estimation problem (P3P)
and discuss how it relates to our problem. The goal of P3P is to determine the 6
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d.o.f. transformation, {C
BR,CpB}, between a camera frame, {C}, and a base frame,

{B}, given the known coordinates of 3 non-collinear points, Bpi, i = 1 . . .3, in {B},
and their corresponding perspective projections, zi, in {C}, defined as:2

zi =
1

p3i

[
p1i

p2i

]
, Cp′i =

[
p1i p2i p3i

]T (7)[
Cp′i
1

]
=
[

C
BR CpB

01×3 1

][
Bpi

1

]
. (8)

This problem has up to 4 pairs of solutions, where for each pair, there is one solution
lying in front of the center of perspectivity and one behind it [4].

Equation (8) differs from (5) in that the former expresses a homogeneous trans-
formation, while the latter describes a homogeneous transformation followed by a
reflection. Effectively, our scenario is equivalent to a P3P in which an “imaginary”
camera {C∗} with a left-handed reference frame lies behind the mirror and observes
the true points (not the reflections). To bring (5) into a form similar to (8), we convert
the imaginary camera to a right-handed system by pre-multiplying with a reflection
across the y-axis (although any axis can be chosen):[

C̆p′

1

]
=
[(

I3−2e2eT
2

)
03×1

01×3 1

][(
I3−2 CnCnT

)
2d Cn

01×3 1

][
C
BR CpB

01×3 1

][
Bp
1

]
=
[

C̆
BR C̆pB

01×3 1

][
Bp
1

]
(9)

where e2 =
[
0 1 0

]T
, and {C̆

BR,C̆pB} is the transformation between {B} and the
right-handed frame {C̆} of the “imaginary” camera behind the mirror. The origin of
{C̆} coincides with that of {C∗}, their x- and z-axes are common, and their y-axes
lie in opposite directions. Note that this additional reflection can be implemented
easily, by simply negating the sign of the y-coordinates of the image measurements.

Applying any P3P solution method to the modified problem in (9), we obtain
up to 4 solutions, in general, for the unknown transformation {C̆

BR,C̆pB}. We then
reflect each of the solutions back, to obtain:[

Cp′

1

]
=
[(

I3−2e2eT
2

)
03×1

01×3 1

][
C̆
BR C̆pB

01×3 1

][
Bp
1

]
=
[

A b
01×3 1

][
Bp
1

]
(10)

where the pair {A,b}, describes a reflection and a homogeneous transformation.
Equating (5) and (10), we observe that:

A =
(
I3−2 CnCnT)C

BR (11)

b =
(
I3−2 CnCnT)CpB + 2d Cn. (12)

2 The indices in this paper are: i for points, j for images, and k for solutions.
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To summarize, in order to exploit the similarity of our problem to the P3P, we ex-
ecute the following steps: First, the y-coordinates of the image measurements are
negated. Then, the measurements are processed by a P3P algorithm to obtain up to
4 solutions {C̆

BR,C̆pB}. Subsequently we employ (10), to obtain up to 4 solutions for
A and b. In the next section, we describe our approach for recovering the unknowns,
{C

BR,CpB,Cn,d}, from A and b using (11) and (12).

3.3 Solution from 3 Points in 3 Images

We first examine the number of measurements required for a unique solution. When
less than 3 points are observed, regardless of the number of images, there is not
enough information to determine the transformation, since 3 non-collinear points
are required to define the base frame of reference3. From 1 image with 3 points,
there are not enough constraints to determine the unknowns [cf. (5) and (6)]. From 2
images with 3 points observed in each, the number of constraints equals the number
of unknowns; however, in this case rotations of the 2 mirror planes about the axis of
their intersection are unobservable, and thus 2 images are not sufficient [6].

From 3 images with 3 points in each, there are 18 scalar measurements [cf. (6)]
and 15 unknowns; 6 from {C

BR,CpB}, and 3 for each mirror configuration {n j,d j},
j = 1 . . .3 [cf. (5)]. This is an overdetermined system, which is nonlinear in the un-
known variables. In what follows, we show how to obtain a solution for this system.

Using P3P as an intermediate step, and momentarily ignoring multiple solutions,
we obtain constraints of the form (11), (12) for each of the 3 images: {A j,b j},
j = 1 . . .3. For each pair of images, j, j′ ∈ {1 . . .3}, we define the unit vector m j j′ , as
the perpendicular direction to n j and n j′ (i.e., nT

j m j j′ = nT
j′m j j′ = 0). Alternatively

stated, m j j′ = αn j×n j′ , where α is a scaling constant to ensure unit length. Using
(11), we obtain:

A jAT
j′m j j′ =

(
I3−2 Cn j

CnT
j

)(
I3−2 Cn j′

CnT
j′

)
m j j′ = m j j′ . (13)

Thus, by computing the eigenvector corresponding to the unit eigenvalue of A jAT
j′ ,

we determine m j j′ up to sign (it can be shown that A jAT
j′ is a special orthogonal ma-

trix with 2 complex conjugate eigenvalues, and 1 eigenvalue equal to 1). Employing
the properties of the cross product, we obtain:4

n1 =
m13×m12

||m13×m12||
, n2 =

m21×m23

||m21×m23||
, n3 =

m13×m23

||m13×m23||
. (14)

Once we have determined the unit vectors corresponding to the 3 mirror planes, the
rotation matrix, C

BR, can be computed independently from 3 sets of equations:

3 In the case of 2 points, or 3 or more collinear points, rotations about the line that the points
lie on are not observable.

4 For the remainder of the paper, we drop the superscript ‘C’ from n j, j = 1 . . .3.
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C
BR j =

(
I−2n jnT

j

)
A j, j = 1 . . .3. (15)

In order to utilize all the available information, and to reduce numerical errors, we
seek to compute an “average” C

BR from these 3 sets of equations. However, employ-
ing the arithmetic mean is inappropriate since the property of orthonormality is not
maintained. We address this issue with the procedure described in Appendix 1.

Once the rotation, C
BR, and the mirror normal vectors, n j, j = 1 . . .3, are deter-

mined, the remaining unknowns {CpB, d1, d2, d3} appear linearly in the constraint
equations [cf. (12)]

⎡⎣(I−2n1nT
1

)
2n1 03×1 03×1(

I−2n2nT
2

)
03×1 2n2 03×1(

I−2n3nT
3

)
03×1 03×1 2n3

⎤⎦
⎡⎢⎢⎣

CpB

d1

d2

d3

⎤⎥⎥⎦=

⎡⎣b1

b2

b3

⎤⎦⇔ Dx = c (16)

where D is a 9×6 known matrix, c is a 9×1 known vector, and x is the 6×1 vec-
tor of unknowns. The least-squares solution for x in this linear system is x = D†c,
where D† denotes the Moore-Penrose generalized inverse of D. From (14), (15),
(23), and (16) the mirror configurations, as well as the camera-to-base transforma-
tion are computed.

Up to this point, we assumed that the P3P solution was unique, however, there
may be up to 4 solutions per image. Recall that 3 images are required to compute
the camera-to-base transformation analytically, hence, there are up to 64 solutions
for {C

BR,CpB,d1,d2,d3,n1,n2,n3}, arising from the 4×4×4 possible combinations
of P3P solutions. When the measurements are noiseless, we have observed in simu-
lations that only one of these solutions yields a zero-reprojection error (i.e., satisfies
all the constraints exactly). This is because the problem at hand is over-constrained
(18 constraints for 15 unknowns), and we expect to have a unique solution. In the
presence of pixel noise, none of the solutions will satisfy the measurements exactly,
thus, we choose the one with the minimum reprojection error.

Moreover, when Nc > 3 images are available, there are Ns =
(Nc

3

)
analytically

computed transformations. However, some of these may be inaccurate as a result
of degenerate sets of measurements (e.g., when 3 images are all taken from similar
viewing angles). In order to identify the correct solution, we employ spectral clus-
tering to determine the largest set of similar solutions [16]. Specifically, we adopt
the unit-quaternion representation of rotation [19], Cq̄B, which corresponds to C

BR,

and denote each solution as {Cq̄(k)
B ,Cp(k)

B } for k = 1 . . .Ns. To perform spectral clus-
tering, we define an affinity matrix, L, in which each element is the Mahalanobis
distance between a pair of solutions, indexed by k and k′:

Lkk′ =
[
δθθθ T

kk′ δpT
kk′
][(

HT
k Q−1Hk

)−1 +
(
HT

k′Q
−1Hk′

)−1
]−1

[
δθθθ kk′

δpkk′

]
(17)

where δθθθ kk′ is the quaternion error-angle vector between Cq̄(k)
B and Cq̄(k′)

B [19], and

δpkk′ = Cp(k)
B −Cp(k′)

B is the difference between the translation vectors. The matrices
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Hk and Hk′ are the measurement Jacobians with respect to the transformation [6],
and Q = σ2

η I2 is the covariance of the pixel noise. We compute the transformation,
{C

BR,CpB}, from the largest spectral cluster. The rotation, C
BR, is determined from

(23) using all the quaternions in the cluster (cf. Appendix 1), and the translation,
CpB, is computed as the arithmetic mean of the translations in the cluster.

3.4 Refining the Solution

Due to the presence of pixel noise, and the fact that noise was not accounted for
in the analytical solution, the result of the procedure presented in Sections 3.2-3.3
may be coarse (cf. Section 4). Hence, we employ an MLE to refine our analytically
computed estimate. We now present an overview of the MLE for determining the
unknown transformation between the camera and base frame [7]. Let the vector
of all unknown parameters be denoted by x. This vector comprises the unknown
transformation, as well as the parameters {Cn j,d j}, j = 1 . . .Nc, that describe each
mirror configuration:

x =
[

CpT
B

Cq̄T
B

CnT
1 d1 . . . CnT

Nc
dNc

]T
. (18)

Assuming Gaussian pixel noise, the likelihood of the measurements is given by:

L(Z ;x) =
Np

∏
i=1

Nc

∏
j=1

p(zi j;x) =
Np

∏
i=1

Nc

∏
j=1

1
2πσ2

η
exp

[
−
(

zi j−h
(

Cj p′i
))T(

zi j−h
(

Cj p′i
))

2σ 2
η

]

=
Np

∏
i=1

Nc

∏
j=1

1
2πσ2

η
exp

[
− (zi j−hi j(x))T(zi j−hi j(x))

2σ 2
η

]
where the dependence on x is explicitly shown [cf. (5), (6)], and Np is the total
number of points observed in each of the Nc images. Maximizing the likelihood is
equivalent to minimizing its negative logarithm, or minimizing the cost function:

c(x) =
Np

∑
i=1

Nc

∑
j=1

(zi j−hi j(x))T(zi j−hi j(x)). (19)

We solve this nonlinear least-squares problem with Gauss-Newton iterative mini-
mization to estimate x. At each iteration, indexed by �, the estimate is changed by

δx(�)=

(
∑
i, j

J(�)T
i j J(�)

i j

)−1(
∑
i, j

J(�)T
i j

(
zi j−hi j(x(�))

))

where J(�)
i j is the Jacobian of hi j with respect to x, evaluated at the current iterate,

x(�). The analytically computed solution from Sections 3.2-3.3 is utilized as the
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Fig. 2. Average RMS error over 10 trials for attitude and position plotted versus: (a) pixel
noise, (b) number of images, (c) mirror distance, and (d) range of mirror rotation.

initial iterate, x(0). Since the MLE is not the main contribution of this work, we
limit our discussion here, but refer the reader to [7] for more details.

4 Simulations

In this section, we study the accuracy of the analytically computed camera-to-base
transformation (cf. Sections 3.2-3.3). In particular, we investigate how the accu-
racy is affected by the following parameters: (i) pixel noise, (ii) number of images,
(iii) distance from camera to mirror, and (iv) range of the mirror’s angular motion.
We consider a “standard” case, in which 3 points placed at the corners of a right tri-
angle with sides measuring 20×20×20

√
2 cm are observed in 200 images, while a

mirror placed at a distance of 0.5 m is rotated by 30o in two directions. We vary each
of the aforementioned parameters individually to examine its effect on the solution
accuracy. In Fig. 2, we plot the average RMS error for the position and attitude,
computed over 10 trials. Some key observations are:
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• Increasing the camera’s pixel noise decreases the accuracy of the computed solu-
tion. When the camera measurements become substantially noisy, e.g., σ = 2 pix-
els, the average RMS error is 1o in attitude and 15 cm in position.

• Increasing the number of images results in higher accuracy. However, the im-
provement follows the “law of diminishing returns,” i.e., when a large number of
images is already available, the impact of recording more observations is smaller.

• Changing the distance from the mirror to the camera has a significant effect on
the position accuracy. When the mirror is at a distance of 1 m, the average RMS
error for position is approximately 13 cm. The magnitude of this error suggests
that the mirror distance should be kept small. Additionally, it highlights the need
to refine our analytically computed transformation with an MLE. As we show
in [7], the accuracy of the MLE is approximately 5 times better in attitude, and
10 times better in position compared to the analytical solution.

• Increasing the range of the mirror’s angular motion results in improved accuracy.
The effect is significant and every effort should be made to move the mirror in
the widest range of motion allowed by the camera’s field of view.

As a final remark, we note that using the analytical solution as an initial guess for the
MLE enables the latter to converge to the correct minimum 100% of the time. On
average, fewer iterations were required (approx. 7) when compared to using a naı̈ve
initial guess (approx. 18). This shows that a precise analytical solution improves the
speed and robustness of the overall estimation process.

5 Experiments

The method described in the preceding sections was employed for computing the
transformation between a camera and a base frame attached on the robot-body. For
this purpose, 3 fiducial points were placed in known positions on the robot as shown
in Fig. 3b. The origin of {B} coincides with the top-left fiducial point; both {B} and
{C} are right-handed systems with the axes of {B} approximately aligned with those
of {C}. These points were tracked using the KLT algorithm [18] in 1000 images,
recorded by a Firewire camera with resolution of 1024×768 pixels.

A planar mirror was maneuvered in different spatial configurations (rotating about
two axes), and in distances varying between 30 and 50 cm from the camera, in or-
der to generate a wide range of views. All the measurements were processed to
compute the transformation analytically: CpB =

[
−14.13 −10.25 −13.89

]T
cm, and

Cq̄B =
[
−0.0401 −0.0017 −0.0145 0.9991

]T
. This initial solution was refined us-

ing the MLE described in Section 3.4, to obtain a better estimate for the transforma-
tion between the two frames of interest. The Gauss-Newton iterative minimization
converged after 8 iterations, to the following solution for the transformation: CpB =[
−14.80 −15.96 −14.95

]T
cm, and Cq̄B =

[
0.0045 0.0774 0.0389 0.9962

]T
. The

corresponding 3σ uncertainty bounds are
[
1.1 1.6 5.0

]
mm for the position, and[

0.2419 0.2313 0.0665
]

degrees for the orientation estimates. We point out that the
estimates agree with our best guess from manual measurement. We believe that the
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Fig. 3. (a) Observation of a point on the robot reflected in the mirror, and (b) an image with 3
fiducial points, captured during experimentation.

attained accuracy (given by the 3σ bounds from the MLE) is sufficiently high for
most practical applications.

6 Conclusions and Future Work

In this paper, we propose a method for computing the 6 d.o.f. transformation be-
tween a camera and a base frame of reference. A mirror is maneuvered in front of
the camera, to provide observations of known points from different viewing angles
and distances. These measurements are utilized to analytically compute the camera-
to-base transformation, and the solution is refined using a maximum-likelihood es-
timator, which produces estimates for the camera-to-base transformation, as well
as for the mirror configuration in each image. The approach was validated both in
simulation and experimentally. One of the key advantages of the proposed method
is its ease of use; it only requires a mirror, and it provides a solution with as lit-
tle as 3 points viewed in 3 images. When more information is available, it can be
incorporated to produce a more accurate estimate of the transformation.

In our future work, we will investigate the feasibility of mirror-based robot-body
3D reconstruction which we briefly discuss in Appendix 2. Furthermore, we plan to
extend this method to the case where the coordinates of the points in the base frame
are not known a priori, but are estimated along with the camera-to-base transforma-
tion and the mirror configurations.
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Appendix 1

In this section, we describe the procedure employed for computing an “average rota-
tion,” given Nq rotation estimates q̄ j, j = 1 . . .Nq. We adopt the quaternion notation
from [19] and denote the quaternion of rotation arising from the jth set of equations
as q̄ j, which corresponds to C

BR j [cf. (15)]. Assuming that q̄ is the optimal estimate,
and employing the small error-angle approximation, we write the following expres-
sion for the error in each q̄ j:

q̄ j⊗ q̄−1 �
[

k̂ j
δθ j

2
1

]
, j = 1 . . .Nq (20)

where⊗ denotes quaternion multiplication, k̂ j is the unit-vector axis of rotation, and
δθ j is the error angle between the two quaternions. Rewriting this last expression
as a matrix-vector multiplication [19], yields

L (q̄ j) q̄−1 =

[
k̂ j

δθ j
2

1

]
, j = 1 . . .Nq (21)

where L (q̄ j), is the left-side quaternion multiplication matrix parameterized by q̄ j.
Projecting this relation, to keep only the error components, we obtain:

PL (q̄ j) q̄−1 = k̂ j
δθ j

2
, j = 1 . . .Nq (22)

where P =
[
I3 03×1

]
. Stacking these relations, we have⎡⎢⎣ PL (q̄1)

...
PL

(
q̄Nq

)
⎤⎥⎦ q̄−1 =

1
2

⎡⎢⎢⎣
k̂1

δθ1
2

...

k̂Nq

δθNq
2

⎤⎥⎥⎦ . (23)

Our goal is to find the q̄−1 that minimizes the norm of the right-hand side. This
occurs when q̄−1 = v(σmin), i.e., we select q̄−1 to be the right singular vector cor-
responding to the minimum singular value of the 3Nq×4 matrix multiplying q̄−1 in
(23). After finding q̄−1 by SVD, we compute the optimal estimate for the rotational
matrix C

BR = R(q̄), which is the rotational matrix parameterized by q̄.

Appendix 2

We turn our attention to mirror-based robot-body 3D reconstruction using mirror
reflections. We assume that in addition to the 3 points which are known in the robot-
body frame, {B}, we observe another point, pu, which is unknown in {B}. From one
image, we have [cf. (4)]:
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β Cp′u0
=
(
I3−2CnCnT)C

BRBpu +
(
I3−2CnCnT)CpB + 2d Cn (24)

where β is an unknown scale factor and Cp′u0
is the unit vector along the direction

of Cp′u. Pre-multiplying both sides by the reflection matrix yields

β
(
I3−2CnCnT)Cp′u0

= C
BRBpu +CpB−2d Cn. (25)

We assume that the transformation from {B} to {C}, as well as the mirror config-
uration have been determined using the method outlined in this paper. Hence, the
quantities {C

BR,CpB,Cn, d} are known and Cp′u0
is measured, while the quantities

{β ,Bpu} are unknown. From a single image, there are 3 constraints [cf. (25)] and 4
unknowns; hence, we can constrain Bpu to lie on a line parameterized by β . If the
point is observed in 2 consecutive images, then we will have 6 constraints and 5 un-
knowns, 3 corresponding to the unknown point’s coordinates and 2 to the unknown
scale factors. In this case, we expect that Bpu can be determined uniquely.

This problem is analogous to triangulation of a point from two image views ([5],
ch. 12). It is solvable when the origin of the camera frame is different for the two
views. This corresponds to the quantity d Cn changing. Thus, it suffices to either
change the distance to the mirror, or the mirror’s orientation with respect to the cam-
era. We expect that the location of every unknown point on the robot-body, which is
visible in the mirror reflections, can be determined in the body frame of reference,
given that it can be reliably tracked in at least 2 images taken from different views.
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On the Analysis of the Depth Error on the Road
Plane for Monocular Vision-Based Robot
Navigation�

Dezhen Song, Hyunnam Lee, and Jingang Yi

Abstract. A mobile robot equipped with a single camera can take images at differ-
ent locations to obtain the 3D information of the environment for navigation. The
depth information perceived by the robot is critical for obstacle avoidance. Given a
calibrated camera, the accuracy of depth computation largely depends on locations
where images have been taken. For any given image pair, the depth error in regions
close to the camera baseline can be excessively large or even infinite due to the
degeneracy introduced by the triangulation in depth computation. Unfortunately,
this region often overlaps with the robot’s moving direction, which could lead to
collisions. To deal with the issue, we analyze depth computation and propose a pre-
dictive depth error model as a function of motion parameters. We name the region
where the depth error is above a given threshold as an untrusted area. Note that the
robot needs to know how its motion affect depth error distribution beforehand, we
propose a closed-form model predicting how the untrusted area is distributed on
the road plane for given robot/camera positions. The analytical results have been
successfully verified in the experiments using a mobile robot.

1 Introduction

Vision-based navigation is preferable because cameras can be very small, passive,
and energy-efficient. Using a single camera to assist a mobile robot is the most
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simplistic configuration and is often adopted in small robots. However, images from
cameras contain rich information of the environment, and understanding the imag-
ing data is nontrivial. Extracting geometry information from images is critical for
obstacle avoidance. Stereo vision approaches are often employed.

For the monocular system, the stereo information can be constructed using struc-
ture from motion (SFM) approach[1]. This method constructs depth information
using images taken at different perspectives. Since the robot motion changes cam-
era perspectives, the baseline distance is not limited by the width of the robot and
it is desirable for small robots. However, the SFM approach has its own limitation.
The depth of obstacles located at the baseline cannot be obtained because the cam-
era centers and obstacle locations are collinear. Unfortunately, if the robot moves
along a straight line, its forward direction is always the baseline direction.

Understanding depth error distribution on the road plane is critical for appli-
cations such as robot navigation. We model how depth error is distributed on the
road plane and partition the road plane using a given error threshold. The predictive
closed-form model is a function of robot motion settings and can be used to predict
how the region beyond the given error threshold changes on the road plane. Hence
the model has the potential to benefit a variety of applications including 1) guiding
the robot for mixed initiative motion planning for better sensing and navigation, 2)
guiding the selection of visual landmarks for vision-based simultaneous localization
and mapping (SLAM), and 3) improving the visual tracking performance for mobile
robots.

The proposed predictive depth error distribution model has been tested in physi-
cal experiments. The experiments use a mobile robot and artificial obstacles to vali-
date the predictive depth error model. The experimental results have confirmed our
analysis.

2 Related Work

Our research is related to monocular vision systems for robots, structure from mo-
tion (SFM) [1], and active vision[2, 3, 4].

Due to its simple configuration, a monocular vision system is widely used in mo-
bile robots with space and power constraints. The research work in this category can
be classified into two types including SLAM and vision-based navigation. SLAM
[5, 10, 7, 8] focuses on the mapping and localization aspects and is often used in
structured indoor environments where there are no global positioning system (GPS)
signals to assist robots in navigation. SLAM focuses on identifying and managing
landmark/feature points from the scene for map building and localization. Obstacle
avoidance is not the concern of SLAM.

Our work focuses on monocular vision-based navigation for obstacle detection
and avoidance. Due to the inherent difficulty in understanding the environment using
monocular vision, many researchers focus on applying machine learning techniques
to assist navigation [9, 6, 11, 12]. However, those methods are appearance-based
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and only utilize color and texture information. Lack of geometry information limits
their ability in obstacle detection.

Our work is a geometry-based approach that uses SFM to obtain the information
of the environment. SFM can simultaneously estimate both the 3D scene and cam-
era motion information[1]. Since the camera motion information is usually avail-
able from on-board sensors such as an inertial measurement unit (IMU) or wheel
encoders, the dimensionality of the SFM problem can be reduced to the only es-
timation of the 3D scene, namely the triangulation computation. The depth error
is determined by the image correspondence error and the camera perspectives. To
obtain the 3D information, it is necessary to find the corresponding points between
the overlapping images. However, due to the fact that images are discrete represen-
tations of the environment and the inherent difficulty in image matching, it is un-
avoidable that matching errors are introduced into the corresponding points[13, 14].
There are many newly developed techniques that can be used to reduce correspon-
dence errors. Such techniques include low-rank approximations [15, 16, 17], power
factorization [18], closure constraints [19], and covariance-weighted data [20]. In
addition, new features, such as planar parallax [21, 22, 23, 24] and the probabil-
ity of correspondence points [25], can be used instead of correspondence points to
reduce the correspondence error.

Our work accepts the fact that image correspondence cannot be eliminated com-
pletely. We instead study how the depth error is affected by the image correspon-
dence error. Although the variance of the image correspondence error are the same
across the image plane[13, 14], the variance of depth error is not uniformly dis-
tributed across the image coverage[26]. Therefore, robot navigation and camera mo-
tion planning should take the depth error distribution information into account. This
observation inspires our development.

3 Problem Description

3.1 Coordinate Systems

Our algorithm runs every τ0 time. In each period, the robot has a trajectory T (τ), τ ∈
[0,τ0]. The period length τ0 is a preset parameter depending on the speed of the robot
and the computation time necessary for stereo reconstruction. The most common
approach to assist robot navigation is to take a frame F at τ = 0 and another frame F
at τ = τ0 for the two-view stereo reconstruction. As a convention, we use underline
and overline with variables to indicate their correspondence to F and F , respectively.
To clarify the problem, we introduce the following right hand coordinate systems as
illustrated in Fig. 1.

• World coordinate system (WCS): A fixed 3D Cartesian coordinate system. Its
y-axis is the vertical axis, and its x-z plane is the road plane. Trajectory T (τ)
is located in the x-z plane with T (τ0) located at the origin of the WCS. Hence,
T (τ) = [xw(τ),zw(τ)]T ,0≤ τ ≤ τ0 as illustrated in Fig. 1.
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Fig. 1. Definition of coordinate systems and their relationship. The WCS is a fixed coordinate
system while a CCS is attached to the moving camera.

• Camera coordinate system (CCS): A 3D Cartesian coordinate system that is at-
tached to a camera mounted on a robot with its origin at the camera optical center.
Its z-axis coincides with the optical axis and points to the forward direction of the
robot. Its x-axis and y-axis are parallel to the horizontal and vertical directions of
the CCD sensor plane, respectively.

• Image coordinate system (ICS): A 2D image coordinate system with the u-axis
and v-axis parallel with the horizontal and vertical directions of an image, re-
spectively. Its origin is located at its principal point. Coordinates u and v are
discretized pixel readings. When we mention frames such as F , F and F , they
are defined in the ICS.

Frames such as F and F have their corresponding CCSs and ICSs. We use the no-
tation CCS(F) to represent the corresponding CCS for frame F . As illustrated in
Fig. 1, the origin of CCS(F) projects to T (τ0) on the road plane, which is the origin
of the WCS. The vertical distance between the origins of the CCS(F) and the WCS
is the camera height h. The origin of CCS(F) projects to T (0) on the road plane.

3.2 Assumptions

• We assume that obstacles in the environment are either static or slow-moving.
Therefore, the SFM algorithm can be applied to compute the depth information.

• We assume both intrinsic and extrinsic camera parameters are known either from
pre-calibration or camera angular potentiometers and robot motion sensors. The
camera has square pixels and zero skew factors, which is valid for most cameras.

• The robot takes frames periodically for the stereo reconstruction. During each
period, we assume that the road surface can be approximated by a plane, which
is the x-z plane of the WCS as illustrated in Fig. 1.

• We assume that the pixel correspondence error across different frames is uni-
formly distributed in the ICS. We believe that the pixel correspondence errors do
not have an infinite tail distribution in reality and the uniform distribution is a
conservative description of the property.
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• We assume all CCSs are iso-oriented with the CCS(F), which is determined by
the navigation direction at time τ0. Although the robot may have different posi-
tions and orientations when taking images, we can project the images into the
CCSs that are iso-oriented with CCS(F) using a perspective re-projection be-
cause we know accurate camera parameters.

3.3 Problem Context

For frames such as F and F , we need to define their corresponding robot locations
and camera parameters. As illustrated in Fig. 1, the camera is mounted at a height of
h. Hence the camera position is uniquely defined by its coordinates (xw,h,zw) in the
WCS. In order to have a good coverage of the road, the camera usually tilts towards
the ground as illustrated in Fig. 1. The tilt angle is defined as t.

The previous period provides an obstacle-free road region R f . The robot needs to
stay in R f and reach T (τ0) at the end of the current period.

A camera frame usually covers a wide range, from adjacent regions to an infinite
horizon. For navigational purposes, the robot is not interested in regions that are too
far away. As illustrated in Fig. 1, the z-axis of the WCS points to the robot’s forward
direction at time τ = τ0 when frame F is taken. zM is defined as the maximal distance
that the robot cares about in the next iteration of the algorithm. The region of interest
Ri is a subset of camera coverage,

Ri = {(xw,zw)|0≤ zw ≤ zM,(xw,zw) ∈Π(F)}, (1)

where xw and zw are defined in the WCS and function Π(F) is the coverage of F
in the x-z plane of the WCS. Our research problem is to understand how the depth
error is associated with objects in Ri. To study how the depth error is distributed on
the road plane, we introduce the untrusted area below.

3.4 Untrusted Area and Problem Formulation

The computed depth information is not accurate due to the image correspondence
error. According to our assumptions, for a given pixel in F , the corresponding pixel
in F can be found with an error that is uniformly and independently distributed.
Hence, the depth error is also a random variable. Define e = zw− ẑw as the depth
error, which zw is the true depth of the corresponding object in the WCS and ẑw is
the depth computed from the stereo reconstruction process. e has a range |e| ≤ |eΔ |.
The depth error range eΔ will be formally defined later. We adopt |eΔ | as the metric
to characterize the quality of the depth information. et > 0 is a pre-defined threshold
for |eΔ |. To facilitate robot navigation, we want to ensure that |eΔ | ≤ et .

Although the image correspondence error is uniformly and independently dis-
tributed in the ICS, the influence of the image correspondence error on the depth is
non-uniform due to a nonlinear stereo reconstruction process. For the two camera
frames F and F taken from two different camera perspectives, we can construct the
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depth map for the overlapping regions of the two frames Π(F ∩F). We define the
untrusted area Au(F ,F) that is constructed by the image pair (F,F) in the WCS as

Au(F ,F) = {(xw,zw)|(xw,zw) ∈Π(F ∩F), |eΔ (xw,zw)|> et}, (2)

because we know that the depth information in Au is untrustworthy due to the ex-
cessive |eΔ |. Our problem is,

Definition 3.1. For a given threshold |eΔ |, a pair of overlapping frames (F ,F), and
the corresponding camera parameters, compute Au(F ,F).

The error threshold |eΔ | is not necessarily a constant. For example, we define et =
ρzw where ρ is the relative error threshold and 0 < ρ < 1. The choice of |eΔ | and
ρ depends on how conservative the motion planning is. A smaller value results in
larger Au and the robot has to travel longer distance to avoid Au. In our experiments,
ρ = 20% works well for navigation purpose.

4 Analysis of Depth Error

4.1 Computing Depth from Two Views

In stereo vision, 3D information is computed through triangulation under the per-
spective projection based on the extracted correspondence points from each pair of
images[27]. Define c and c as camera centers for frames F and F , respectively. De-
fine P and P as the camera projection matrices for F and F , respectively. Since the
CCSs of F and F are iso-oriented and only differ from the WCS by a tilt value t in
orientation, the orientation of the WCS with respect to the CCSs can be expressed
by a rotation matrix

RX(−t) =

⎡⎣ 1 0 0
0 c(t) s(t)
0 −s(t) c(t)

⎤⎦ .

Note that we use s(·) and c(·) to denote sin(·) and cos(·), respectively. If CCSs are
not iso-oriented, it is not difficult to extend the rotation matrix using Euler angle sets.
The origin of the WCS with respect to the CCSs of F and F are defined as W and W ,
respectively. Since T (0) = [xw(0),zw(0)]T , T (τ0) = [0,0]T , and the camera height
is h, the camera center positions with respect to the WCS are c = [xw(0),h,zw(0)]T

and c = [0,h,0]T , respectively. Then we have,

W =−RX(−t)c, and W =−RX(−t)c.

Therefore,

P = K[RX(−t)|W ], P = K[RX(−t)|W ],K = diag( f , f ,1),

where f is the focal length of the camera divided by the side length of a pixel.
Let q = [u v 1]T and q = [u v 1]T be a pair of corresponding points in F and F ,
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respectively. Define Q = [xw,yw,zw]T as their corresponding point in WCS. Let Q
c
=

[xc y
c

zc]
T and Qc = [xc yc zc]T be Q’s position in the CCSs of F and F , respectively.

Also, we know that Q
c

and Qc can be expressed as,

Q
c
= RX(−t)Q+W , and Qc = RX(−t)Q+W . (3)

The following holds according to the pin-hole camera model,

q =
1
zc

P

[
Q
1

]
=

1
zc

KQ
c
, and q =

1
zc

P

[
Q
1

]
=

1
zc

KQc. (4)

From (3), we know Q
c
= Qc +(W −W ), namely,

xc = xc− xw(0), y
c
= yc− zw(0)s(t), and zc = zc− zw(0)c(t). (5)

From (4) and (5), we obtain,

q =
1

zc− zw(0)c(t)
(
zcq+ K(W −W)

)
. (6)

Since K, W , W , q, and q are known, (6) consists of a system of equations with zc

as an unknown quantity. There is one unknown variable and a total of two equa-
tions (e.g. the first two equations in (6)). This is an overly-determined equation
system. A typical approach would be to apply a least-square (LS) method [27]. Us-
ing the solution from LS method would result in a high-order polynomial when
analyzing the depth error. Solving the high-order polynomial is computationally in-
efficient. Another method is to simply discard one equation and solve it directly.
This method has a speed advantage and its solution quality is slightly worse than
that of the LS method. The advantage is that the format of solution can be expressed
in simpler format that allows us to derive the depth error distribution. Actually, a
worse solution can actually provide a more conservative error bound than that of the
LS method. Employing the method and solving the first equation in (6), we have

zc = xw(0) f−uzw(0)c(t)
u−u . From (3), we know zw = zc

(
v
f s(t)+ c(t)

)
. Hence,

zw =
xw(0) f −uzw(0)

u−u

(
v
f

s(t)+ c(t)
)

. (7)

Depth zw describes the distance from the robot to an obstacle along the z-axis of
the WCS. Its error directly affects the robot’s collision avoidance performance.

4.2 Estimating the Depth Error Range

For the given pair of corresponding points (q, q) from (F , F) with camera centers (c,
c), the geometric interpretation of the above triangulation process is the following.
If we back project a ray from c through q, it intersects with the ray generated by
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Fig. 2. An illustration of depth error caused by the image correspondence error in F . The
intersection zone between the ray from q, and the pyramid from q is the error range. If the
error range projects onto the z axis, it is always bound between zw(u + r,v + r) and zw(u−
r,v− r).

back-projecting from c through q, provided that both q and q are accurate. The
intersection point in the 3D space is Q; see Fig. 2.

However, for a given point q, finding the accurate q is unlikely due to noises and
pixelization errors. According to our assumptions, the corresponding errors in u and
v are independently distributed according to U(−r,r), where r is usually 0.5-2 pixels
in length. This means that q is distributed in a small square on F . When we back
project the square, it forms a pyramid in 3D space as illustrated in Fig. 2. When the
pyramid meets the ray that is back-projected from q, it has a range of intersections
instead of a single point. The estimated depth zw is a function of random variables
(u,v) and can be expressed as zw(u,v). It is apparent that zw is a random variable
that could take any value in this intersection zone.

To compute the intersection zone, we need to compute the intersection points
between the ray from c through q and all four side planes of the pyramid. However,
the solution cannot be expressed in a closed-form for further analysis. Instead, we
employ the upper and the lower bounds of the length of the intersection zone as
illustrated in Fig. 2. Then the bound of the maximum length of the intersection zone
is defined as |eΔ |, where

eΔ = zw(u+ r,v+ r)− zw(u− r,v− r). (8)

We skip the process of deriving the bound due to the page limit. The intuition is that
any line segment bounded inside the pyramid truncated between plane zw(u+ r,v+
r) and zw(u− r,v− r) is shorter than eΔ . Similarly, another choice is zw(u− r,v +
r)− zw(u + r,v− r). Since both the analysis method and results are similar, we use
(8) in the rest of the paper.
|eΔ | describes the range of the depth error and is employed as the metric to mea-

sure the quality of the stereo reconstruction. To simplify the notation in computing
eΔ , we define the following intermediate variables for (7).
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λ = β v+ c(t), ζd = u−u, β =
s(t)

f
, ζn = xw(0) f −uzw(0). (9)

Then zw = λ ζn
ζd

according to (7) and (9). Substituting them into (8), we have,

eΔ = (λ + rβ )
ζn

ζd + r
− (λ − rβ )

ζn

ζd− r
= ζn

2r(β ζd−λ )
ζ 2

d − r2
. (10)

Eq. (10) illustrates eΔ in the ICS. For robot navigation purposes, we are inter-
ested in eΔ in the x-z plane of the WCS. Hence u, u and v in (10) should be
transformed into functions of xw and zw. Recall that s(·) and c(·) denote sin(·)
and cos(·), respectively. From (4), (7), and (9), we know u = xw f

zc
= f λ xw

zw
, and

yw =
(

v
f c(t)− s(t)

)
zc + h. Since we are interested in obstacles on the x-z plane,

yw = 0, we have v = f (zws(t)−hc(t))
zwc(t)+hs(t) . Similarly, from (4), (7), and (9), we know

u = αxxw + α0, where αx = f
zc−zw(0)c(t) = f λ

zw−zw(0)c(t)λ , and α0 = −xw(0)αx. Plug-

ging into (9), we obtain the intermediate variables λ , ζn, and ζd , in terms of xw

and zw.

λ =
zw

zwc(t)+ hs(t)
, ζn = nxxw + n0, and ζd =

nxλ
zw

xw +
n0λ
zw

,

where nx = −zw(0)c(t)αx and n0 = xw(0)zwαx/λ . Plugging them into (10), we ob-
tain eΔ as a function of xw and zw,

eΔ =
2rβ λ zw(nxxw + n0)2−2rλ z2

w(nxxw + n0)
λ 2(nxxw + n0)2− r2z2

w
. (11)

For an obstacle located at (xw,0,zw), Eq. (11) allows us to estimate eΔ . It is clear
that the depth error range varies dramatically in different regions, and thus should
be considered in robot navigation to avoid obstacles.

4.3 Predicting Untrusted Area

For a given frame pair with the corresponding robot locations, we can partition Ri

using a preset depth error threshold et > 0. We are now ready to predict Au by
computing its boundary using Eq. (11).

4.3.1 Partition Ri According to the Sign of eΔ

To find the regions corresponding to |eΔ |< et , there are two possible cases to con-
sider: eΔ < 0 and eΔ > 0. We can rewrite (11) as,

eΔ =
2rλ zw(xw− μn1)(xw− μn2)

(xw− μd1)(xw− μd2)
, (12)
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where

μn1 =
xw(0)

zw(0)λ c(t)
zw, μn2 =

xw(0)
zw(0)λ c(t)

zw−
zw(zw− zw(0)λ c(t))

f zw(0)λ β c(t)
,

μd1 =
xw(0)

zw(0)λ c(t)
zw +

rzw(zw− zw(0)λ c(t))
f zw(0)λ 2c(t)

,

μd2 =
xw(0)

zw(0)λ c(t)
zw−

rzw(zw− zw(0)λ c(t))
f zw(0)λ 2c(t)

.

Recall that t is the camera tilt angle and a typical camera setup has 0 ≤ t ≤ 30◦. A
regular camera would have a focal length of 5-100 mm and pixel side length of 5-10
μm. Therefore, f ≥ 100. Since β = s(t)/ f ,

0 < β ≤ sin(30◦)/100 = 0.005. (13)

Also we know that

λ = β v+ c(t) = s(t)
v
f

+ c(t) > β (14)

because | v
f |< 1 for any camera with a vertical field of view less than 90◦. Combining

this information, we have 0 < β < r/λ and β < λ . For obstacles in Ri, zw > 0
according to the definition of the WCS. Also zw(0) < 0 as illustrated in Fig. 1.
Hence, we have

zw(zw− zw(0)λ c(t))
f zw(0)λ c(t)

< 0. (15)

Combining the inequalities above, we can derive the following relationship:

μd1 < μn1 < μd2 < μn2. (16)

Combining (16) with (12), we have,

eΔ > 0 if μn1 < xw < μd2 or xw < μd1, (17)

eΔ < 0 if μd2 < xw < μn2 or μd1 < xw < μn1. (18)

We ignore the region xw > μn2 in eΔ > 0 as this region is always outside of the
camera’s coverage.

We are now ready to compute Au for the two cases defined in (17) and (18).

4.3.2 Computing Au for eΔ > 0

This is the case illustrated in Fig. 2(a). Recall that the untrusted area satisfies eΔ > et .
It is worth mentioning that the error threshold et is usually not a fixed number but
a function of zw. Recall that et = ρzw where ρ is the relative error threshold. There
are two cases: Case (i): xw < μd1 and Case (ii): μn1 < xw < μd2.

Case (i): when xw < μd1, the denominator of eΔ in (12) is positive. Plug (12) into
eΔ > et , and we have
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(etλ 2−2rβ λ zw)n2
xx2

w +(2(etλ 2−2rβ λ zw)nxn0 + 2rλ nxz2
w)xw+

(etλ 2−2rβ λ zw)n2
0− etr

2z2
w + 2rλ n0z2

w < 0. (19)

The solution to the quadratic inequality (19) is

−κ1−
√

κ2
1 −4κ2κ0

2κ2
< xw <

−κ1 +
√

κ2
1 −4κ2κ0

2κ2
, (20)

where

κ2 = (etλ 2−2rβ λ zw)n2
x, κ1 = 2(etλ 2−2rβ λ zw)nxn0 + 2rλ nxz

2
w,

κ0 = (etλ 2−2rβ λ zw)n2
0− etr

2z2
w + 2rλ n0z2

w.

The untrusted area is the region that satisfies (20) and xw < μd1. To compute the
intersection, we need to understand the relationship between the solution in (20) and
the coefficients in (12). Combining them, we know,

μd1−
−κ1−

√
κ2

1 −4κ2κ0

2κ2
=

rzw(zw− zw(0)λ c(t))
f zw(0)λ 2c(t)

(
1− λ +

√
λ 2 + ρ2λ 2−2rβ λ ρ

ρλ −2rβ

)
.

Notice that 0 < r ≤ 2, 0 < ρ < 1, β is very small according to (13), and λ > 0
according to (14). Therefore, 2rβ and 2rβ λ ρ are close to zero. Hence, we approx-

imate

(
1− λ+

√
λ 2+ρ2λ 2−2rβ λ ρ

ρλ−2rβ

)
≈ 1− 2

ρ < 0. Combining this equation with (15),

we know,

μd1 >
−κ1−

√
κ2

1 −4κ2κ0

2κ2
. (21)

Similarly, we can obtain

μd1 <
−κ1 +

√
κ2

1 −4κ2κ0

2κ2
. (22)

According to (20), (21), (22), and xw < μd1, the untrusted area for this case is
given by,

−κ1−
√

κ2
1 −4κ2κ0

2κ2
< xw < μd1. (23)

Case (ii): when μn1 < xw < μd2, from (16), we know that the denominator of (12)
is negative. Hence, κ2x2

w + κ1xw + κ0 > 0. Similar to the analysis in Case (i), we
obtain,
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−κ1 +
√

κ2
1 −4κ2κ0

2κ2
< xw < μd2. (24)

Similarly, we can compute Au for eΔ < 0. Combing the results, we can obtain the
boundaries of Au. Represented as a function of xw, we define the lower boundary
and the upper boundary of Au as x−w and x+

w , respectively. Hence we have the two
boundaries

x∓w (zw,xw(0),zw(0)) =
xw(0)zw

zw(0)λ c(t)
+

rzw(zw− zw(0)λ c(t))
f zw(0)λ c(t)(±etλ 2−2rβ λ zw)

(zwλ +
√

λ 2z2
w + e2

t λ 2∓2retβ λ zw). (25)

5 Experiments

We have verified our analysis for the depth error estimation using a three-wheeled
mobile robot. The robot has two front driving wheels and one rear castor. The robot
is 30 cm long, 30 cm wide, 33 cm tall and can travel at a speed of 25 cm/s with a
25 lbs payload. It is also equipped with two wheel encoders and a digital compass.
The camera mounted on the robot is a Canon VCC4 pan-tilt-zoom camera with a
47.5◦ horizontal field of view. The camera mounting height h = 44 cm. The intrinsic
camera parameters are estimated using the Matlab calibration toolbox[28]. During
the experiment, we set zM = 4 m and t = 15◦ according to our robot and camera
configurations. We conducted the experiments in the H. R. Bright Bldg. at Texas
A&M University. The obstacles used in the experiments are books and blocks with
a size of 20 cm × 14.5 cm × 10 cm.
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Fig. 3. (a) An illustration of |eΔ |. Robot positions are set to be xw(0) = 10 cm, zw(0) =−50
cm. (b) Aus with different robot positions (xw(0),zw(0)), which are the black dots in the
figure. We set the threshold et = 0.2zw.
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Fig. 4. The effectiveness of depth error reduction. The height of the bar is the mean value of
er and the vertical interval represents the variance of er . The number in the parenthesis is the
total number of trials.

Fig. 3a illustrates how |eΔ | is distributed on the road plane yw = 0 according to our
analysis. The 3D mesh is just an approximation of actual |eΔ | distribution because
it is generated by a finite set of testing locations. The illustration avoids the points
on the baseline because the corresponding error range is infinite. It is apparent that
the depth error is excessive in the area that is close to the camera baseline.

The second test is to show to how the different camera perspectives affect the
location of Au. Fig. 3b gives three examples of Au for different camera perspectives
(xw(0),zw(0)). It is clear that the selection of perspective can determine the location
of Au.

We also compared the depth error for objects inside and outside Au in actual
robot navigation. To facilitate the comparison, we defined the relative depth error in
percentage er = |e|

zw
×100, where zw is the measured depth that is used as a ground

truth. We compare er for objects inside and outside the Au for two scenarios: (a) the
different depth of objects and (b) different robot positions as illustrated in Fig. 4.
In (a), in each trial, the testing objects are randomly placed with a fixed depth. In
(b), we change the relative position between two camera perspectives to verify the
depth error with respect to Au. Obstacles are randomly placed in each trial. The
accurate total number of trials for each setup is shown above the bars in the figures.
In both (a) and (b), we first compute the obstacle depth using stereo vision and then
compare it with the measured ground truth by computing er. Note that the mean and
the variance of er are significantly reduced if the robot stays outside Au.

6 Conclusion and Future Work

We analyzed the depth error range distribution across the camera coverage for a
mobile robot equipped with a single camera. For SFM-based stereo vision for nav-
igation, we showed that the depth error can be excessively large and hence cause
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collisions in robot navigation. We defined and modeled the untrusted area where
the depth error range is beyond a preset threshold. Physical experiment results con-
firmed our analysis. In the future, we will apply the analysis into a new robot motion
planning algorithm that will purposefully generate trajectories to avoid the untrusted
area. The introduction of the untrusted area will help us to add more camera per-
spectives for the SFM. The introduction of the predictive model of the untrusted
area opens a door to add depth-error aware planning into a variety of applications
involving the monocular vision system. It is possible to use the untrusted area to
guide the visual landmark selection for SLAM. Similarly, the untrusted area can
be used to improve visual tracking performance when the robot plans to follow a
moving target.
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Sensor Beams, Obstacles, and Possible Paths

Benjamin Tovar, Fred Cohen, and Steven M. LaValle

Abstract. This paper introduces a problem in which an agent (robot, human, or an-
imal) travels among obstacles and binary detection beams. The task is to determine
the possible agent path based only on the binary sensor data. This is a basic filtering
problem encountered in many settings, which may arise from physical sensor beams
or virtual beams that are derived from other sensing modalities. Methods are given
for three alternative representations: 1) the possible sequences of regions visited, 2)
path descriptions up to homotopy class, and 3) numbers of times winding around
obstacles. The solutions are adapted to the minimal sensing setting; therefore, pre-
cise estimation, distances, and coordinates are replaced by topological expressions.
Applications include sensor-based forensics, assisted living, security, and environ-
mental monitoring.

1 Introduction

Imagine installing a bunch of cheap, infrared eye beams throughout a complicated
warehouse, office, or shopping center; see Figure 1. Just like the safety beam on a
motorized garage door, a single bit of information is provided: Is the beam currently
obstructed? Now suppose that there are one or more moving bodies, which could be
people, robots, animals, and so on. If the beams are distinguishable and we know the
order in which beams were crossed, what can we infer about the paths taken by the
moving bodies? This may be considered as a filtering problem, but with minimal,
combinatorial information, in contrast to popular Kalman filters and particle filters.

This paper proposes the study of inference problems that arise from bodies cross-
ing beams among obstacles. It turns out that the subject is much more general
than the particular scenario just described. In addition to binary detection beams or
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regions placed around an environment, the mathematical model arises in other con-
texts. For example, if a robot carries a camera and certain image features critically
change, then the event may be equivalent to crossing a “virtual” beam in the envi-
ronment (see Section 3).

Our questions are inspired by many problems that society currently faces. There
is widespread interest in developing assisted living systems that use sensors to mon-
itor the movements of people in their homes or hospitals. How much can be ac-
complished with simple detection beams, which are affordable, robust, and respect
privacy? Alternatively, imagine the field of sensor-based forensics, in which po-
lice investigators or lawyers would like to corroborate or refute a testimony about
how people moved at a crime scene. A simple verification test might based on the
sequence of beam crossings might establish that someone is lying. Other problems
include tracking wildlife movement for conservation purposes, landmark-based nav-
igation with outdoor vehicles, sensor-assisted safe child care, and security.

Suppose there is one moving body, called an agent, and we have the information
that a sequence of beams was crossed. We focus on three kinds of questions: 1) Sup-
posing regions are delineated by the arrangement of beams, what possible sequences
of regions did the agent visit? 2) What path did the agent take up to homotopy? 3)
How many times did the agent wind around each obstacle? These questions form
the basis of Sections 4 to 6. Multiple agents are briefly considered in Section 7.
The last two questions are familiar problems in topology and group theory, and
are motivated by homotopy and homology, respectively. In particular, the topic is
close to word problems in group theory, in which it must be determined whether
two words (e.g., abac−1b and cab−1) are the same group element. In the general
group-theoretic setting, such questions go back to 1910 with Dehn’s fundamental
problems (see [9]).

The most closely related works are algorithms to decide whether two paths in
a punctured plane are homotopic [1, 3]. These algorithms are based on extending
vertical lines from each of the punctures. The vertical lines serve two purposes:

a

b

e

d

c

f

Fig. 1. What can be determined about the path using only the word cbabdeeefe, which indi-
cates the sequence of sensor beams crossed?
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First, any given path is represented with the sequence of vertical rays it intersects.
Second, they connect the different fibers of a covering space of the punctured plane.
In this context, two paths are homotopic if and only if they have the same endpoints
when they are lifted to the universal covering space. The novelty in our work is that
we start with sensor words and must first convert them into path descriptions. This
represents an inverse problem that is constrained by the geometry and topology of
the sensors and obstacles.

Minimal sensing requirements have been studied to solve a particular task [4].
This typically involves a characterization and simplification of the information space
associated with the task [7], which considers the whole histories of commands given
to the actuators and sensing observations. Following a minimal sensing perspective
in the context of sensor networks, works such as [10] detect and count targets using
binary proximity sensors. The binary proximity sensors can be considered as over-
lapping beams that go off when an agent is in range. Tracking targets is done with
a particle filter, in which each particle is a candidate trajectory of a target. In [12]
the location of moving agents is inferred from combinatorial changes in sensing ob-
servations. Such combinatorial changes may correspond to visual events, which can
be abstracted in our work as sensor beams. An example of this is presented in this
paper in Section 3, in which the combinatorial changes correspond to crossing of
landmarks [11]. The careful consideration of visual events is the basis for solutions
to problems such as localization [2, 6] and visibility-based pursuit-evasion [5, 8].

2 Problem Formulation

Let W ⊆ R
2 be the closure of a contractible open set. A common case is W = R

2.
Let O be a set of n pairwise-disjoint obstacles, which are each the closure of a
contractible open set. Let X be the free space, which is the open subset of W that
has all o ∈ O removed. Let B be a set of m beams, each of which is an open linear
subset of X . If W is bounded, then every beam is a line segment with both endpoints
on the boundary of X . (Note that beams may connect an obstacle boundary to itself,
another obstacle’s boundary, or the boundary of W ; also, a beam may connect the
boundary of W to itself.) If W is unbounded, then some beams may be open rays
that emanate from the boundary of an obstacle or even lines that are contained in
the interior of W .

Regions: The collection of obstacles and beams induces a decomposition of X into
connected cells. If the beams in B are pairwise disjoint, then each B ∈B is a 1-cell
and the 2-cells are maximal regions bounded by 1-cells and portions of the boundary
of X . If beams intersect, then the 1-cells are maximal segments between any beam
intersection points or boundary elements of X ; the 2-cells follow accordingly. Every
2-cell will be called a region.

Agent path: Suppose that an agent moves along a state trajectory (or path) x̃ :
[0,1] → X , in which [0,1] is imagined as a time interval. (Alternatively, [0, t f ] could
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be allowed for any t f > 0; however, this flexibility is unnecessary because speed and
time scaling are irrelevant to our questions.)

Sensor model: If the agent crosses a beam, what exactly is observed? Assume that
the set of possible x̃ is restricted so that: 1) every beam crossing is transverse (the
agent cannot “touch” a beam without crossing it and the agent cannot move along
a beam) and 2) the agent never crosses an intersection point between two or more
beams (if any such intersections exist).

Let L be a finite set of labels. Suppose each beam is assigned a unique label by
some bijection α : B → L. The sensor model depicted in Figure 1 can be obtained
by a sensor mapping h : X → Y , in which Y = L∪ {ε} is the observation set. If
x̃(t) ∈ B for some B ∈B, then h(x̃(t)) = α(B); otherwise, h(x̃(t)) = ε , which is a
special symbol to denote “no beam”. This is referred to as the undirected beam
model because it indicates that the beam was crossed, but we do not know the
direction.

To obtain a directed beam model, let D = {−1,1} be a set of directions. In this
case, the observation set is Y = (L×D)∪{ε}, and the sensor mapping yields the
orientation of each beam crossing (note that in addition to x̃(t), the sensor mapping
must now know what side of the beam the agent was on at time t−).

So far, the beams have been fully distinguishable because α is a bijection. It is
possible to make |L|< m (the number of beams) and obtain some indistinguishable
beams, in which case α : B → L is not bijective.

If a collection of beams is disjoint, distinguishable, and directed, the case will be
referred to as ddd-beams, which is the best situation.

Sensor words: What observations are accumulated after x̃ is traversed? We assume
that all ε observations are ignored, resulting in a sequence ỹ, called the sensor word,
of the remaining observations (ỹ is a kind of observation history [7]). For the ex-
ample in Figure 1, suppose L = {a,b,c,d,e, f}. In the case of a undirected beams,
the sensor word is cbabdeee f e. If the beams were directed so that left-to-right and
bottom-to-top are the “forward” direction, then the sensor word could be encoded
as c−1ba−1b−1dee−1e f e−1. For each l ∈ L, l denotes the forward direction and l−1

denotes the backward direction.

Inference: Let Ỹ be the set of all possible sensor words and let X̃ be the set of
all possible state trajectories. Let φ : X̃ → Ỹ denote the mapping that produces the
sensor word ỹ = φ(x̃).

Suppose that ỹ has been obtained with no additional information. What can be
inferred about x̃? Let φ−1(ỹ) denote the preimage of ỹ:

φ−1(ỹ) = {x̃ ∈ X̃ | ỹ = φ(x̃)}. (1)

The inference problem amounts to: Under what conditions can we compute a useful
description of the preimages?

The following are three ways to partially characterize these preimages, forming
the basis of Sections 4, 5, and 6, respectively:
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1. Using ỹ, compute the set of possible sequences of regions visited by x̃. This
characterizes φ−1(ỹ) in a stage-by-stage manner.

2. If there are n obstacles, the fundamental group π1(X) is the free group Fn on n let-
ters. Using some combinations of initial conditions, and assuming fixed starting
and stopping paths, compute a representation of the possible paths as an element
of Fn. This clearly throws away some information by considering only the homo-
topy equivalence class of paths. Hence, it is an over-approximation of φ−1(ỹ).

3. Compute the signed number of windings around each obstacle, in which the order
that windings are made is dropped. This throws away even more information
than the homotopy equivalence class; therefore, it yields an even larger over-
approximation of φ−1(ỹ).

Using these representations, we can answer questions such as: Do two sensor words
correspond to homotopic paths? Do they correspond to homologous paths? Is it
possible for them to visit the same regions in the same order?

Combinatorial filters: Whenever possible, we try to design a filter, which com-
putes statistics incrementally as new data are obtained. The most common example
is the Kalman filter, which computes the next mean and covariance based on the
new sensor reading and the previous mean and covariance. In this paper, we design
combinatorial filters, which are minimalist non-probabilistic analogs to Bayesian
filters. For a sensor word ỹk of length k, let κ(ỹk) denote a statistic, which could,
for example, be the set of possible current regions. A combinatorial filter efficiently
computes κ(ỹk+1) using only κ(ỹk) and yk+1, in which yk+1 is the last (most recent)
letter in ỹk+1. This implies that ỹk does not need to be stored in memory; only κ(ỹk)
is needed.

3 Concrete Scenarios

This section motivates the general formulation of Section 2 to illustrate the wide
range of settings to which it applies.

Physical sensor beams: The first set of examples corresponds to actually engineer-
ing a physical environment with the placement of cheap beam sensors among with
nonconvex obstacles. Recall Figure 1. In this case, virtually any model from Sec-
tion 2 can be realized in practice. In the remainder of this section, we obtain beams
virtually via other sensing modalities.

Crossings of landmarks: Imagine that a robot moves in a large field, in which
several landmarks (e.g., radio towers) are visible using an omni-directional camera.
This can be modeled by W = R

2 and O as a set of point obstacles. Suppose that
the landmarks are fully distinguishable and some simple vision software indicates
when a pair of landmarks are “on top of each other” in the image. In other words,
the robot and two landmarks are collinear, with one of the two landmarks in the
middle. The result is mathematically equivalent to placing n(n−1) beams as shown
in Figure 2.a, in which rays extend outward along lines passing through each pair of
landmarks.
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(a) (b)

Fig. 2. a) Virtual beams based on pairwise crossings in an image, b) virtual beams based on
passing directly north of an obstacle.

Several interesting variations are possible based on precisely what is detected
in the image. If the only information is that oi and o j crossed each other in the
image, then all beams are undirected and the two beams associated with oi and o j

are indistinguishable. If we know whether oi passes in front of or behind o j, then
the beams become fully distinguishable. If we know whether oi passes to the left or
right of o j in the image, then the beams even become directed.

Passing over a windshield mark: Keeping the landmark-based example, consider
changing the sensing so that instead of detecting pairwise landmark crossings, the
robot simply knows when some landmark is directly south. This could be achieved
by using a compass to align the vehicle and noting when a landmark crosses a fixed
spot on the image plane or windshield. Figure 2.b shows virtual beams that are
obtained in this way. Directed and undirected beam models are possible, based on
whether the sensor indicates the left-right direction that the landmark moves as it
crosses the fixed spot. An important property of this model is that the beams do not
intersect (assuming the points are not collinear). Section 5 utilizes this property to
reconstruct the path up to homotopy equivalence.

4 Region Filters

In this section, we present a simple method to keep track of the possible regions in
which the agent might be after obtaining the sensor word. Suppose that n obstacles
O and m beams B are given, which leads to the cell decomposition of X , discussed
in Section 2. The beams may intersect and may or may not be directed.

Let R0 denote the set of possible regions that initially contain the agent, before
any sensor data is observed. Let Rk denote the set of possible regions after a sensor
word ỹk, of length k, has been obtained. The task is to design a filter that computes
Rk+1, given Rk and yk+1, which is the most recent observation in ỹk+1.

Let G denote a directed (multi)graph that possibly contains self-loops. Each ver-
tex of G is a region, and a directed edge is made from region r1 to region r2 if
either: 1) they share an interval of an undirected beam along their boundary, or 2)
they share an interval of a directed beam that is directed from r1 to r2. The edge
is labeled with the beam label. A self-loop in G is made if it is possible to cross a
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Fig. 3. a) Two intersecting directed beams and four region sequences (and possible paths)
that can be inferred from the sensor word ab; b) the corresponding graph G.

beam and remain in the same region, which is illustrated in Figure 3.a; a or b may
be crossed while remaining in r1 the whole time. Also, note that if the initial region
is unknown and ỹ = ab is the sensor word, there are four possible interpretations
in terms of the possible regions traversed. The corresponding graph G is shown in
Figure 3.b.

Simulation as a Nondeterministic Machine

The region filter is implemented on G in a way similar to the simulated operation
of a nondeterministic finite automaton. The method keeps track possible states by
marking the corresponding vertices of G. Initially, mark every vertex in R0. The
filter proceeds inductively. At stage k, the marked vertices are precisely those cor-
responding Rk. Suppose that yk+1 is observed, which extends the sensor word by
one observation. For each marked vertex, look for any outgoing edge labeled with
yk+1. In each case, the destination vertex is marked. If yk+1 = l−1 for some l ∈ L
and an ingoing edge is labeled with l, then the edge’s source vertex is marked. Any
vertex that was marked at stage k but did not get marked in stage k + 1 becomes
cleared. Note that the total number of marked vertices may increase because from
a single vertex there may be multiple edges that match yk+1. Also, this approach
works for the case of partially distinguishable beams because the match is based
on the observation yk+1, rather than the particular beam. The set of marked vertices
yields Rk+1.

Suppose that after computing Rk, we would like to know the possible sequence
of regions traversed by the agent. The graph G can be used for this computation as
well by taking each region in Rk and working backwards using the sensor word to
construct possible regions at earlier stages. Note that once Rk is given, the set of
possible regions Ri, which was computed at some earlier stage i < k, might contain
regions that are known at stage k to have been impossible. In other words, infor-
mation gained at later stages can refine our belief about what might have occurred
several stages earlier.
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Algorithm complexity

The region filter based on marking vertices in G runs in time O(|V |+ |E|) for each
update from k to k + 1, in which |V | and |E| are the numbers of vertices and edges
in G, respectively. Note that the number of computations grows with the number of
marked vertices, which reflects the amount of uncertainty about the current region.
In some cases the number of marked vertices cannot increase, as in the case of
ddd-beams. Using exponential space (undesirable), each update can be performed
in constant time, similar to the classical NFA to DFA transformation.

5 Reconstruction Up to Homotopy

In this section, the task is to use the sensor word ỹ to reconstruct a description of
possible paths x̃ ∈ X̃ up an equivalence class of homotopic paths. Assume that all
paths start and stop at some fixed basepoint x0 ∈ X which lies in the interior of some
region; this assumption is lifted at the end of the section. Paths can be described up to
homotopy using the fundamental group π(X), which is known to be Fn for a planar
region with n holes (caused by the obstacles). Each element of Fn is an equivalence
class of homotopic loop paths with endpoints fixed at x0. The set Fn is called the free
group on n letters, and its elements can be considered as the set of all finite strings
that can be formed using any l ∈ L and their inverse forms l−1. Since Fn is a group,
it also contains an identity element ε . Furthermore, the relations εl = lε = l and
l l−1 = ε must be applied to shorten strings by applying cancellations and deleting
identity elements. The result is referred to in group theory as a reduced word.

An important issue with Fn is its choice of basis. Recall from linear algebra that
there are many ways to define and transform bases for a vector space. A similar but
more complicated situation exists for Fn. For any fixed ordered basis (called letters
above), a1, . . ., an, every other possible ordered basis is given by g(a1), . . ., g(an).
The elements g run over every element in the automorphism group of Fn, which is
denoted by Aut(Fn). In other words, there is a natural one-to-one correspondence
between every ordered basis of Fn and Aut(Fn). This structure is currently under
active investigation in pure mathematics. In this paper, a basis of Fn will be chosen
in the most straightforward way and other bases will be directly transformed to it.
The full structure of Aut(Fn) will thus be avoided.

5.1 Perfect Beams

Let a beam be called outer if it is either an infinite ray (possible only if X is un-
bounded) or it is a finite segment that connects an obstacle to the boundary of
W . For a set of n obstacles, let a perfect collection of beams mean that there are
exactly m = n ddd-beams (recall that this means disjoint, distinguishable, and di-
rected beams), with exactly one outer beam attached to each obstacle. For conve-
nience, further assume that all beams in a perfect collection are oriented so that a
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Fig. 4. a) A perfect collection of beams; b) a construction that converts the sensor word ỹ
into an element of the fundamental group Fn.

counterclockwise traversal corresponds to the “forward” direction, as shown in
Figure 4.a.

Proposition 5.1. For a perfect collection of beams, the sensor word ỹ maps directly
to an element of Fn by simply renaming each letter.

Proof. While preserving homotopy equivalences, the obstacles and basepoint can be
moved into a canonical form as shown in Figure 4.b. This corresponds to choosing a
particular basis of Fn in which each generator ai is exactly a counterclockwise loop
around one obstacle. Each bi corresponds to a beam and letter in L. Using the given
sensor word ỹ, a word f (ỹ) ∈ Fn is formed by mapping each ai in ỹ to bi in f (ỹ).
Each beam crossing then corresponds directly to a generator of Fn under the chosen
basis. This converts every ỹ into an element of Fn that represents the loop path that
was traversed using basepoint x0. ��

Note that reductions of the form εl = lε = l and l l−1 = ε may be performed in ỹ or
f (ỹ), either before or after the mapping f is applied.

5.2 Sufficient ddd-Beams

What if the collection of beams is not perfect? For some arrangements of obstacles,
it might not even be possible to design a perfect collection (unless beams are allowed
to be nonlinear). Suppose that a collection B of m ≥ n ddd-beams is given. It is
called sufficient if all of the resulting regions are simply connected; see Figure 5.a.
Note that any sufficient collection must contain at least one outer beam. Also, any
perfect collection is also sufficient.

Suppose that a sensor word ỹ is obtained for a sufficient collection B of beams.
The first step in describing the path as an element of Fn is to disregard redundant
beams. To achieve this, let B′ ⊆B be a minimal subset of B that is still sufficient.
Such a collection is called minimally sufficient and can be computed using spanning
tree algorithms such as depth-first or breadth-first search. An example is shown in
Figure 5.b.

Proposition 5.2. For a minimally sufficient collection B of ddd-beams, the sensor
word ỹ maps directly to an element of Fn by simply renaming each letter; however,
a different basis is obtained for Fn in comparison to Proposition 5.1.
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Fig. 5. a) A sufficient collection of ddd-beams; b) a minimally sufficient collection of ddd-
beams forms trees that each contain one outer beam. This example is obtained by removing
beams from the the figure on the left; c) Forming a basis using a sufficient tree of beams.

Proof: A basis for the fundamental group is defined as follows. For each tree of
beams in B, a collection of loop paths can be formed as shown in Figure 5.c. Each
loop must cross transversely the interior of exactly one beam and enclose a unique
nonempty set of obstacles. Such loops always exist and can be constructed induc-
tively by first enclosing the leaves of the tree and then progressing through parents
until a loop is obtained that traverses the outer beam. Since there is only one region,
it is possible to inductively construct such a collection of loops for every tree of
beams in B. The total collection of loops forms a basis of Fn, which can be related
to the basis in Proposition 5.1 via classical Tietze transformations. The mapping f
from ỹ to f (ỹ) ∈ Fn is once again obtained by mapping each letter in ỹ to its corre-
sponding unique loop that traverses the beam. ��
Using Proposition 5.2, a simple algorithm is obtained. Suppose that any sufficient
collection B of ddd-beams is given and a sensor word ỹ is obtained. A spanning tree
B′ ⊆B of beams is computed, which is minimally sufficient. Let L′ ⊆ L denote the
corresponding set of beam labels. To compute the element of Fn, the first step is to
delete from ỹ any letters in L\L′. This yields a reduced word ỹ′ for which each letter
can be mapped directly to a loop using Proposition 5.2 to obtain a representation
of the corresponding path in Fn. Once again, reductions based on the identity and
inverses in Fn can be performed before or after the mapping is applied.

5.3 The General Case

Consider a collection B of beams in which some may intersect, some may be undi-
rected, and some may even be indistinguishable. The collection is nevertheless as-
sumed to be sufficient, which means that all of the corresponding regions are simply
connected. Rather than worry about making a minimal subset of B, the method for
the general case works by inventing a collection of imaginary beams that happens
to be minimally sufficient. Since the ambiguity may be high enough to yield a set of
possible paths, the region filter from Section 4 is used.

Before any sensor words are processed, the following preprocessing steps are
performed based on W , O , B, L, and α:
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1. Compute the arrangement of regions and multigraph G from Section 4.
2. For each vertex in G choose a sample point in its corresponding region.
3. For each directed edge e in G, compute a piecewise-linear sample path that: i)

starts at the sample point of the source vertex of e, ii) ends at the sample point of
the destination vertex of e, and iii) crosses the beam associated with e in a manner
consistent with its label. The sample path cannot intersect any other beams.

4. Construct any minimally sufficient collection BI of imaginary ddd-beams. A
convenient choice is to make all imaginary beams vertical.

5. For all computed sample paths from Step 3, compute their intersections with the
imaginary beams of Step 4 and record the order in which they occur.

Now suppose that a sensor word ỹ is given. The region filter of Section 4 is used
to determine the set of possible region sequences. For each region sequence, a path
x̃′ is obtained from the corresponding sample points and paths in G. An imaginary
sensor word ỹ′ is obtained by the sequence of beams in BI that are crossed by x̃′.
The mapping from sensor words and elements in Fn is provided by the following
Corollary to Proposition 5.2.

Corollary 5.1. For minimally sufficient collection BI of imaginary ddd-beams, the
imaginary sensor word ỹ′ maps directly to an element of Fn, by simply renaming
each letter.

Proof: Use ỹ′ = ỹ for the sensor word, and B = BI as the set of beams. ��
As usual, reductions can be applied to ỹ′ or its image in Fn. Once elements of Fn are
computed and reduced for each possible region sequence, duplicates are removed to
obtain the complete set of possible homotopically distinct paths based on the sensor
word ỹ. Refer to Figure 6 for a computed example. Note that BI essentially allows
the user to define whatever basis of Fn is desired to express the result, however
a subtle technical point should be taken into account. Considet the region r that
contains the basepoint. The imaginary beams in BI that intersect r subdivide it into
“subregions”. If the sample point of r and the basepoint lie in different subregions,
then the word obtained corresponds to paths starting and ending at the sample point,
not at the basepoint. All of the words obtained will be shifted in the same manner.
This is because the words corresponding to the paths starting at the sample point
and the basepoint are conjugate, which gives an automorphism of Fn.

Now remove the assumption that only loop paths are executed using a basepoint
x0. If all paths start at some x0 and terminate at some x1, then a fixed path segment
that connects x1 back to x0 can be chosen. This path may intersect some beams,
which is false information; however, actual possible paths executed by the agent
can at least be compared up to homotopy. If either of the endpoints is not fixed,
then all paths become trivially homotopic by continuously shrinking each path to
the other basepoint. One possibility is to assume that there are several possible fixed
points based on the starting and final regions produced in each sequence from the
region filter. In this way, possible paths can at least be compared if their starting and
terminating regions match.
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6 Path Winding Numbers

Rather than characterizing paths up to homotopy, this section considers the number
of times the path “winds” around each obstacle. Suppose that the agent travels along
a loop path. There is an integer winding number vi ∈ Z for each oi ∈O , in which mi

is defined as the number of times the path wraps counterclockwise around oi after
deleting all other obstacles and pulling the path tight around oi using homotopy. If
there are n obstacles, then a vector of n winding numbers is obtained. Two paths are
called homologous if and only if their vector of winding numbers are identical.

6.1 Perfect Beams

In the case of perfect beams, the winding numbers are obtained by directly “abelian-
izing” the sensor word ỹ. Due to Proposition 5.1, the sensor word maps directly to
the free group element f (ỹ) ∈ Fn. The winding numbers are then obtained by ap-
plying the commutativity relation to f (ỹ) (or conveniently, directly to ỹ) and sorting
the terms. For example, ỹ = aba−1bbab−1b−1ab−1b−1b−1 is abelianized to:

ỹ =aba−1bab−1b−1ab−1b−1b−1

=aaaa−1bbb−1b−1b−1b−1b−1

=a2b−3.

(2)

The first step sorts the terms, and the second step performs cancellations. This result
is expressed as a monomial in which lk is a sequence of k l’s and l−k is a sequence

p
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vwx
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vwx

(a) (b)

Fig. 6. Computed examples, with 337 faces, and 70 beams. In the examples, the three different
kinds of dashed line segments represent three different classes of undirected beams. That is,
the beams are disjoint, but not directed and only partially distinguishable. The vertical solid
segments in (b) are imaginary beams. The black discs are the obstacles, and candidate paths
are shown in gray (red). Figure (a) shows the possible candidate paths for a given sensor
word, assuming the agent could start in any region. Figure (b) shows the sample paths used
to computed the possible homotopy classes for a particular sensor word. Both examples were
computed in about two seconds on a commercial PC.
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of k l−1’s for each l ∈ L. The winding numbers are simply the exponents; for (2)
we obtain w = (2,−3). Note that the winding numbers can computed in time O(|ỹ|)
without actually sorting by simply maintaining n counters, one for each letter in
l ∈ L. Scan across ỹ and increment or decrement each counter, based on whether l or
l−1, is encountered, respectively. Note that this makes a constant-time combinatorial
filter, as defined in Section 2, by computing the winding numbers wk+1 at step k +1
from the winding number vector wk and the last observation yk+1, which is the last
letter of ỹk+1.

6.2 Sufficient ddd-Beams

Once a minimally sufficient collection is determined, the computation for this case
then proceeds in the same way as for perfect beams. This yields winding informa-
tion, but it needs to be transformed to obtain the correct result. Recall the basis from
Figure 5.c and suppose that for a path, the abelianized word obtained is a5b−3c4d.
Each exponent may contain information about multiple winding numbers. For ex-
ample, a5 implies that the agent wrapped 5 times around o3, but it also wrapped
5 times around o1, o2, and o4. Likewise, b−3 wraps −3 times around o1 and o2.
A counter is made for each obstacle and each computed exponent raises or low-
ers some counters. After being performed for each exponent, the result is obtained.
For the example a5b−3c4d based on Figure 5.c, the winding numbers are (3,2,5,9).
Note that if the positive direction of a beam is in the clockwise direction, then the
computed winding number needs to be multipled by −1.

6.3 The General Case

Now suppose that a sufficient collection of general beams has been given, which
is the model used in Section 5.3. A straightforward approach is to first run the al-
gorithm of Section 5.3. After the sufficient collection of imaginary beams has been
placed and the free group elements have been computed, they can be abelianized
to obtain the exponents in the method just described. This yields a set of vectors
of winding numbers. This approach, however, computes more information than is
needed to simply obtain the winding numbers. Suppose that a sufficient collection
of beams is given that is not necessarily disjoint, but all beams are directed and
distinguishable. Since the winding number essentially ignores all other beams, an
approach can be developed by picking a minimally sufficient collection of beams
that is not necessarily disjoint. The beam intersections do not interfere with the
calculation of winding numbers. For a given sensor word, any letters that do not ap-
pear in the minimally sufficient collection can simply be deleted. The method then
proceeds as in the case of ddd-beams. In the most general setting of a sufficient
collection of beams, the region filter of Section 4 can be applied to yield possible
region sequences. For each computed region sequence, the particular beam and its
direction crossed can be inferred. Based on this information, the method described
for distinguishable, directed beams can be applied.
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ba

Fig. 7. A simple commutator example that yields sensor word aba−1b−1 and winding num-
bers (0,0), but corresponds to a non-trivial path.

6.4 Higher-Order Winding Numbers

Winding numbers give some crude data concerning free groups and an agent path.
These give a measure of how many times an agent circles a given obstacle without
counting how the agent weaves in between obstacles. However, winding numbers
are insensitive to paths such as a commutator around obstacles, as shown in Figure 7.
There are “higher order winding numbers” which keep track of how a agent does in
fact interweave through different obstacles. These “higher order winding numbers”
in the case above arise in two classical ways reflecting the interplay between ge-
ometry and a free group. These are the Lie algebras which arise from either (i) the
descending central series of a free group, or (ii) principal congruence subgroups of
level pr in the group of SL(2,Z). These Lie algebras provide measures of complex-
ity in addition to “higher order winding numbers” and it remains an open problem
to develop computation methods that characterize them for a given sensor word.

7 Multiple Agents

The formulation in Section 2 can be naturally extended by allowing more than one
agent to move in W . In this case, suppose that the sensor beams cannot distinguish
between agents. They simply indicate the beam label whenever crossed. For simplic-
ity, assume that agents never cross beams simultaneously. The task is to reconstruct
as much information as possible about what path they might have taken. We could
proceed as in Sections 4 - 6 and determine region sequences, path homotopy class,
and winding numbers. The high level of ambiguity, however, may require further
simplifications.

Figure 8.a shows a simple example of this, in which there is one obstacle, two
agents, and three undirected beams. Question: If the agents start together in a room,
are they together some room after some sensor word was observed? Consider de-
signing the simplest algorithm that answers this question. Figure 8.b shows a sur-
prisingly simple four-state automaton that answers the question for any sensor word.
The T state means they are together in some room. Each Dx state means they are
in different rooms, with beam x separating them. With only two bits of memory,
arbitrarily long sensor words can be digested to produce the answer to the ques-
tion. Many open questions remain, especially for substantially more complicated
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Fig. 8. a) A three-region problem with two agents; b) a tiny automaton (combinatorial filter)
that determines whether the agents are together in a room.

environments, such as the one in Figure 2.a with several agents. For which ques-
tions can small automata be designed? For a given question, what is the complexity
in terms of numbers of agents, obstacles, and beams? What other ways exist for
reconstructing and describing and possible paths taken by multiple agents?

8 Conclusions and Open Questions

In this paper we identified a basic inference problem based on agents moving among
obstacles and detection beams. Recall from Section 3 that the beams may directly
model physical sensors or they may arise virtually from a variety of other sensing
models. Therefore, the region filter, homotopic reconstruction, and winding-number
computations provide basic information that arises in numerous settings such as
robotics, security, forensics, environmental monitoring, and assisted living.

The results presented here represent a first step in understanding this broad class
of problems. Many open issues remain for future research, several of which are sug-
gested here: 1) It is assumed that the geometric arrangement of obstacles and beams
is known. What happens when this is uncertain? For example, we might not even
know which beams intersect. The sensor words can be used to make simultaneous
inferences about the agent path and the beam arrangement. 2) Without the assump-
tion of transverse beam crossings and crossings are intersection points, significantly
more ambiguity arises. How do these affect the computations? 3) What are the limits
of path reconstruction when there are two or more agents? How efficient can filters
be made for such problems when there are many obstacles and beams? 4) What
other specific path statistics can be computed efficiently from beam data? Can Lie
algebra constructions be applied to efficiently compute higher-order winding num-
bers (based on commutators) for the paths? Can the sensor data be used to compare
paths as elements of the braid group? 5) Since the methods so far provide only infer-
ence, how can their output be used to design motion plans? In other words, how can
the output be used as a filter that provides feedback for controlling how the agents
move to achieve some task?
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A Motion Planner for Maintaining Landmark
Visibility with a Differential Drive Robot

Jean-Bernard Hayet, Claudia Esteves, and Rafael Murrieta-Cid

Abstract. This work studies the interaction of the nonholonomic and visibility con-
straints of a robot that has to maintain visibility of a static landmark. The robot is a
differential drive system and has a sensor with limited field of view. We determine
the necessary and sufficient conditions for the existence of a path for our system to
be able to maintain landmark visibility in the presence of obstacles. We present a
complete motion planner that solves this problem based on a recursive subdivision
of a path computed for a holonomic robot with the same visibility constraints.

1 Introduction

Landmarks are of common use in robotics, either to localize the robot with respect to
them [17] or to navigate in all kinds of environments [3], being used as goals or sub-
goals to reach or perceive during the motion. Landmarks can be defined in several
manners: From single, characteristic image points with useful properties, up to a 3D
object associated with a semantic label and having 3D position accuracy [7]. In all
cases, this definition involves at some degree properties of saliency and invariance
to viewpoint changes.

To use landmarks in the context of mobile robotics, the first basic requirement is
to perceive them during the robot motion. It is to this end that our current research
efforts are focused on. Although landmarks have been extensively used, this is to our
knowledge the first attempt to show whether or not a path of a holonomic robot in the
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e-mail: {jbhayet,murrieta}@cimat.mx

Claudia Esteves
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presence of obstacles that has to maintain visibility of one landmark with a limited
sensor can be transformed into a feasible path for a differential drive robot (DDR).
We believe that our research is very pertinent given that a lot of mobile robots are
DDRs equipped with limited field of view sensors (e.g., lasers or cameras).

As it is well known in mobile robotics research, nonholonomic systems are char-
acterized by constraint equations involving the time derivatives of the system con-
figuration variables. If the state transition equation is integrable, the corresponding
system is said holonomic; otherwise, it is said nonholonomic [10].

From the point of view of motion planning, the main implication of nonholomic
constraints is that a collision-free path in the configuration space does not neces-
sarily induce a feasible path for the system. Purely geometric techniques to find
collision-free paths do not apply directly here.

1.1 Related Work

Motion planning with nonholonomic constraints has been a very active research
field (a nice overview is given in [10]). The most important results in this field have
been obtained by addressing the problem with tools from differential geometry and
control theory. Laumond pioneered this research and produced the result that a free
path for a holonomic robot moving among obstacles in a 2D workspace can always
be transformed into a feasible path for a nonholonomic car-like robot by making car
maneuvers [11]. Recently, a significant amount of work has been done on the prob-
lem of planning collision-free paths for nonholonomic systems, for instance, Isler et
al. have used the results of the Dubins car to address pursuit-evasion problems [8].

The study of optimal paths for nonholonomic systems has also been an active
research topic. Reeds and Shepp determined the shortest paths for a car-like robot
that can move forward and backward [14]. In [16] a complete characterization of
the shortest paths for a car-like robot is given. In [1], Balkcom and Mason deter-
mined the time-optimal trajectories for a DDR using Pontryagin’s Maximum Prin-
ciple (PMP) and geometric analysis. In [4], PMP is used to obtain the extremal
trajectories to minimize the amount of wheel rotation for a DDR. In [13], the au-
thors used the curves proposed by [2] in the context of visual servoing. Here, we
use similar curves but the fact that our environments are populated with obstacles
makes the problem substantially different.

1.2 Contributions

In this paper, we consider the problem of planning paths for a DDR, whose motion is
further constrained by sensing considerations and by obstacles in the environment.
These constraints generate both, motion and visibility obstructions. We extend our
results from previous works [2]. We provide the necessary and sufficient conditions
to compute feasible trajectories for the DDR with limited sensing capabilities to
maintain landmark visibility in the presence of obstacles. Our contributions are:
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1. We propose a complete planner to compute collision-free paths for a circular
holonomic robot maintaining landmark visibility among obstacles.

2. We provide the controls for the execution of the optimal motion primitives.
3. We give the necessary and sufficient conditions for the feasibility of a path for the

DDR in the presence of obstacles and with visibility constraints, provided that a
collision-free path generated for the holonomic system with the same visibility
constraints exists.

4. We implement a complete motion planner for the DDR maintaining landmark
visibility, based on a recursive subdivision of the holonomic path.

2 Problem Settings and Approach Overview

2.1 The Differential Drive Robot

The DDR is described in Fig. 1. It is controlled through commands to its two wheels,
i.e. through angular velocities wl and wr. We make the usual assignment of a body-
attached x′y′ frame to the robot. The origin is at the midpoint between the two
wheels, y′-axis parallel to the axle, and the x′-axis pointing forward, parallel to the
robot heading. The angle θ is the angle formed by the world x-axis and the robot
x′-axis. The robot can move forward and backward. The heading is defined as the
direction in which the robot moves, so the heading angle with respect to the robot
x-axis is zero (forward move) or π (backward move). The position of the robot w.r.t
the origin will be defined either in Cartesian coordinates (x,y) or in polar coordi-
nates (r,α) : r =

√
x2 + y2, α = arctan y

x . Figure 1 sums up these conventions.
The robot is equipped with a pan-controllable sensor with limited field of view

(e.g., a camera), that can move w.r.t. the robot basis. We will suppose that this sensor
is placed on the robot so that the optical center always lies directly above the origin
of the robot’s local coordinate frame, i.e., the center of rotation of the sensor is the
same as the one of the robot. Its pan angle φ is the angle from the robot x′-axis to
its optical axis. The sensor is limited, both in angle and in range: φ ∈ [φ1,φ2] and
the robot visibility region is made by the points p such that the Euclidean distance d
from p to the robot satisfy dmin ≤ d ≤ dmax. Notice that the limitation of the sensor
induces virtual obstacles in the configuration space even without physical obstacles.
We first assume that the robot moves in the absence of physical obstacles, and then
remove this assumption in Section 3.

2.2 Optimal Curves under Visibility Constraints for a DDR

In [2], it has been shown that the shortest distance paths, in the absence of obstacles
for a DDR under angular constraints only are composed of three motion primitives:
straight-line segments, in-site rotations without translation and logarithmic spirals,
i.e. curves for which the camera pan angle is saturated. In [2], a characterization
of the shortest paths for the system based on a partition of the plane into disjoint
regions was also provided. This characterization (called a synthesis) attempted to



336 J.-B. Hayet, C. Esteves, and R. Murrieta-Cid

θ

y′

D

ωr

ωl

x′O
x

y

r

α
φ

Fig. 1. DDR with visibility constraints. The
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obtain the globally optimal paths. Recently in [15], it has been shown that the syn-
thesis presented in [2] was incomplete. Indeed, the work presented in [15] showed
a concatenation of motion primitives in which the path is shorter than the one pro-
posed in [2]. Motivated by the work in [15], we have revisited the problem and found
the complete partition of the plane (see Fig. 2) and the corresponding globally opti-
mal paths in the absence of obstacles [6]. In that work we showed that the globally
optimal paths without obstacles are made of at most seven motion primitives, four
(at most) of which produce translation (line-spiral*spiral-line)1 and three (at most)
correspond to in-site rotations. Seven types of trajectories are possible (D, D− S,
S−D, S− S, D− S ∗ S, S ∗ S−D and D− S ∗ S−D). By lack of space, we cannot
further develop on this issue in this paper, but the reader is referred to [6] (available
on line) for details.

In this paper, we present a complete motion planner for the DDR maintaining
landmark visibility in the presence of obstacles, based on a recursive subdivision of
the holonomic path. The curves from [2, 6] replace the holonomic path.

2.3 Approach Overview

In [11] it has been shown that a free path for a holonomic robot moving among
obstacles in a 2D workspace can always be transformed into a free path for a non-
holonomic car-like robot. Three necessary and sufficient conditions guarantee the
existence of the path for the car-like robot in the presence of obstacles, provided
that a path for a holonomic robot exist.

1. The nonholonomic robot must be Small Time Local Controllable (STLC).
2. The existence of obstacles forces the use of some given metric in the plane to

measure the robot clearance. Hence, the topology induced by the robot motion

1 In the description of trajectories, “*” means a non-differentiable point, and “-” is a smooth
transition point.
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primitives metric and the one induced by the metric measuring the distance be-
tween the obstacles and the robot must be equivalent.

3. There must be ε > 0 clearance between the robot and the obstacles.

Here, we follow the same methodology presented in [11], that we applied to a
DDR equipped with a sensor with a limited range and field of view.

The remaining of this work is organized as follows: In Section 3 we present a
complete motion planner for a holonomic disk, which generates collision-free paths
while maintaining landmark visibility. In Section 4 we show the admissible controls
to generate our motion primitives with our state transition equation (system model)
and we prove the STLC of our system. In Section 5 we use our motion primitives
to determine lower and upper bounds of the paths metric and we show that the
topology of the robot motion primitives metric and the metric used to measure the
distance between the obstacles and the robot are equivalent. Section 6 presents a
motion planner for the DDR able to maintain landmark visibility and simulation
results. Finally in Section 7 we present the conclusion and future work.

3 Configuration Space Induced by Visibility Constraints

3.1 Configuration Space without Obstacles

As mentioned above, our robot must maintain visibility of a landmark. By visibility
we mean that a clear line of sight, lying within the minimal and maximal bounds
of the sensor rotation angle and range, can join the landmark and the sensor. The
landmark is static and coincident with the origin O of the coordinate system. The
visibility constraints imposed by the landmark can be written as

θ = α−φ +(2k + 1)π , k ∈ Z, (1)

φ1 ≤ φ ≤ φ2, (2)

dmin ≤ r ≤ dmax. (3)

From these equations, we can describe precisely the robot admissible configura-
tion space Cadm. The robot can be seen as living in SE(2), as from Eq. 1, φ is not
really a degree of freedom. Moreover, Eq. 1 adds a constraint on x,y and θ , that can
be rewritten

φ1 ≤−θ + arctan(
y
x
)+ (2k + 1)π ≤ φ2 for some k ∈ Z. (4)

This means that the visibility constraint both in range and angle can be translated
into virtual obstacles in SE(2). From Eq. 4, it is straightforward to deduce the ad-
missible configuration space, which is SE(2) minus these obstacles. Fig. 3 gives a
representation of the virtual obstacle (there is actually only one obstacle) in SE(2)
for φ2 = −φ1 = π

2 (a) and φ2 = −φ1 = π
3 (b), as the hollow volume in SE(2). It is

worth noting that the free space resulting from this visibility obstacle is made of
one single, helical-shaped component of SE(2), which becomes smaller while the
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Fig. 3. Admissible configuration space C
φ
adm in the case of a (x,y,θ ) configuration space:

visibility acts as a virtual obstacle in SE(2). The obstacle is depicted for (φ1,φ2) = (− π
2 , π

2 )
(left) and (φ1,φ2) = (− π

3 , π
3 ) (right) .

authorized pan range is smaller. We call C
φ
adm the admissible configuration space

resulting from the angular constraints 2 and 3.
As far as the range constraints of the inequalities 3 are concerned, they introduce

two other virtual cylindrical obstacles which reduce the admissible configuration
space into C r

adm. Finally the combination of these constraints gives rise to the ad-
missible configuration space :

Cadm = C φ
adm∩C r

adm.

A simpler characterization can be made in the (x,y,φ) space, instead of the clas-
sical (x,y,θ ). These two representations are equivalent, since φ and θ are related
by Equation 1, and so are the constraints equations, but the admissible configura-
tion space, as depicted on Fig. 4, left, is easier to handle, as the constraints over φ
(inequalities 2) do not depend on x or y. As a result, in that case, C φ

adm is simply the
space between the two planes φ = φ1 and φ = φ2, and Cadm is the intersection of this
volume with C r

adm. The advantage of this representation is that it makes easier the
task of determining a complete algorithm for the holonomic version of the DDR.

3.2 Finding a Path for a Holonomic Robot with Visibility
Constraints

Let us suppose that our DDR is disk-shaped. We also suppose we are given a holo-
nomic robot with the same circular shape. The holonomic robot evolves in a plane
filled with obstacles and has to respect the visibility constraint.

The free space C f ree is defined as the set of configurations inside Cadm which
(1) are not in collision with the physical obstacles and (2) are not in the shadow
areas created by these same obstacles. We can build it on top of Cadm as depicted
on Fig. 4, right, by working in its projection on the xy plane. To begin with, all the
physical obstacles, dilated by the circular robot, are subtracted from Cadm. We get,
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φ

Fig. 4. Left, Cadm for a (x,y,φ) configuration space, delimited by two horizontal planes on
φ and two vertical cylinders. Right, construction of C g

f ree for the (x,y,φ) representation. By
dilating physical obstacles in the xy plane to define collision obstacles (white), the circular
robot can be reduced to a point (black). Shadows and visibility constraints define visibility
obstacles (light gray).

in white, the collision obstacles. In a second step, we remove the obstacles shadows
w.r.t. the origin. We get, in light gray, the visibility (virtual) obstacles. The resulting
projection of C f ree is the dark gray area, delimited by arcs of circles and straight
line segments. Note that the obstacles, and in particular the visibility ones, do not
depend on the values of φ , so that Cobst is made of cylinders in SE(2), by translating
the projection of Fig. 4, right along the φ axis.

Let C g
f ree be the domain in the xy plane that generates C f ree. Several complete

algorithms can generate a path for a 2D point in C g
f ree, e.g. by building a roadmap

capturing the domain connectivity [9]. Among them :

• the Generalized Voronoi Graph (GVG) approach. Obstacles here are made of
arcs of circles and line segments, hence the GVG is made of arcs of parabola
(circle-line), of hyperbola (circle-circle) and line segments (line-line). This is the
approach taken in the simulations of section 6,

• the Visibility Graph approach. It consists in generating a graph connecting all
mutually visible points among vertices from the obstacles.

Any of these two approaches gives a complete algorithm for finding a path for
a 2D point in C g

f ree by connecting the desired start and end points to the generated
graph [9]. By using this classical result, we can now state

Theorem 3.1. The problem of planning a path in C f ree ⊂ SE(2) for a holonomic,
circular robot with visibility constraints on both range and angular displacement
of its sensor is reductible to the problem of finding a path for a single point in
C g

f ree ⊂ R
2.

Proof. Let Pi = (xi,yi,θi)T and Pf = (x f ,y f ,θ f )T be two free initial and final con-
figurations in SE(2). By construction, the 2D points (xi,yi)T and (x f ,y f )T belong
to C g

f ree. Now suppose that we can find a path sg connecting them in C g
f ree,
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sg : [0,1] → C g
f ree

sg(0) = (xi,yi)T , sg(1) = (x f ,y f )T

sg(t) = (x(t),y(t))T .

Then, if φi and φ f are the sensor angle relative to the robot (given by Eq. 1) at
initial and final configurations, let us define:

sθ : [0,1] → SO(2)
sθ (t) = arctan( y(t)

x(t) )− (1− t)φi− tφ f + π .

The function sθ is continuous on [0,1] since sg is also continuous and (x(t),y(t)) �=
(0,0). Then we can define the following path in SE(2) :

s : [0,1] → SE(2)
s(t) = (x(t),y(t),sθ (t))T .

The path is continuous, it satisfies the initial and final constraints, and, by con-
struction, as for all t ∈ [0,1], (1− t)φi + tφ f ∈ [0,2π), it also satisfies the visibility
constraints at every point.

Conversely, if we are not able to find any free path in C g
f ree, we cannot have any

free path in SE(2): if there were, its projection on R
2 would also be free, which

contradicts our initial assumption. As a consequence, an algorithm that solves the
planning problem in C g

f ree also solves the problem in C f ree. ��

4 System Controls and Small Time Local Controlability

We generate a state transition equation with two controls only. In this scheme, we
suppose that the sensor is pointing to the landmark by adjusting its angle value
according to equation 1, thus the sensor control is not considered in this motion
analysis. It must be determined, whether this system is STLC or not. Far enough
from the visibility obstacles, the robot can move forward and backward, hence it is
a symmetric system. The construction of the state transition equation is as follows.

First, we get the derivatives φ̇ and α̇:

φ̇ = α̇− θ̇ and α̇ =
ẏx− ẋy
x2 + y2 . (5)

The linear and angular velocities u1 and u2 can be expressed in function of the
wheels controls wl and wr, as:

u1 = wr + wl , u2 = wr−wl. (6)

Therefore, the state variables are:

θ̇ = wr−wl , ẋ = cosθ (wr + wl) and ẏ = sinθ (wr + wl). (7)
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A key observation is the following: φ is not a degree of freedom. It can be ex-
pressed as a function of x,y and θ . Hence, the robot configuration is totally defined
by (x,y,θ ). φ and φ̇ are adjusted so that the system maintain landmark visibility.

The derivative φ̇ can be expressed directly in function of the controls u1,u2 and
the configuration variables (θ ,x,y). This can be done by substituting in 5, the values
of α̇ and θ̇ from Equations 5 and 7,

φ̇ =
(ycosθ − xsinθ )u1

x2 + y2 −u2. (8)

Therefore, the state transition equation takes the form:⎛⎝ ẋ
ẏ
θ̇

⎞⎠=

⎛⎝ cosθ 0
sinθ 0

0 1

⎞⎠( u1

u2

)
, (9)

which is exactly the same of the differential drive robot[1, 12].
We underline that, the three only motion primitives are straight lines, rotation in

site and logarithmic spirals [2]. The vector field associated to the straight line is
−→
X1 =

(cosθ ,sinθ ,0)T , the one associated to the rotation in site is simply
−→
X2 = (0,0,1)T .

Now let us express the vector field associated to the spirals. The equations of
these curves are [2]:

r = r0e(α0−α)/ tanφ , (10)

where (r0,α0) is one point of the spiral and φ remain constant along it. From the
previous equation, and by using (1) the equation φ = α − θ + π and (2) the rela-
tion α = arctan y

x , we can easily derive the corresponding vector field, after some
algebraic developments

−→
X3 =

⎛⎜⎝ − x2+y2

y−x tan θ

− tanθ x2+y2

y−x tanθ
1

⎞⎟⎠ . (11)

This vector field is not defined for y = x tanθ , which corresponds to zones where
the robot has to follow a straight line. In fact, in that case

−→
X3 =

−→
X1.

A question that naturally arises is: What are the open-loop controls needed for
the robot to follow the logarithmic, saturating sensor pan angle? These controls can
be derived from the following. When the robot moves drawing sector of logarithmic
spirals, the camera pan angle is saturated and hence the landmark is in the limit of
the sensor field of view. Hence, the saturated sensor pan angle, and more generally
any trajectory maintaining the sensor pan angle constant, satisfy φ̇ = 0.

Now, by using Eq.8, we obtain a relation between u1 and u2:

(ycosθ − xsinθ )u1 = (x2 + y2)u2,
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which can be easily re-written in its polar form

u2 =
1
r

u1 sin(α−θ ). (12)

In terms of left and right wheels controls, we deduce from Eq.12, for r > 0,{
wr = 1

wl = r−sin(α−θ)
r+sin(α−θ) .

Again in terms of u1 and u2, and by setting u1 = 1,{
u1 = 1

u2 = sin(α−θ)
r .

Thus, make our system follow the optimal motion primitives, it is sufficient to
consider three admissible pairs of controls (u1,u2) that allow to satisfy the visibility
constraint and lead the robot to trace these primitives: Straight lines, rotation in site
and logarithmic spirals. These controls are respectively(

1
0

)
,

(
0
1

)
and

(
1

sin(α−θ)
r

)
. (13)

As shown above, the third control produces a logarithmic spiral, and corresponds
to a linear combination of the first two vector fields

−→
X1 and

−→
X2,

−→
X3 = a1

−→
X1 + a2

−→
X2 where ai ∈ R. (14)

Hence, the state transition equation presented in 9 can be used to model our
system and trace our motion primitives, and therefore our system is STLC by using
Chow theorem [10, 5, 12].

The Lie bracket operation computed over vector files
−→
X1 and

−→
X2 is

(sinθ ,−cosθ ,0)T . It is immediate to see that this new vector field is linearly in-
dependent from

−→
X1 and

−→
X2. Hence, this system is small time locally controllable

everywhere in the open of the free space.
Note that the first two controls are constant and therefore bounded, and the third

one is also bounded since we consider r > dmin > 0.

5 Analysis of the Metric Induced by Shortest Paths

Let us prove that the metric induced by the total lengths along the shortest paths
defined by optimal primitives under visibility constraints is locally equivalent to the
Euclidean metric in R

2. Let (xi,yi)T and (x f ,y f )T be a pair of initial and final points
in the free space. As recorded in 2.2, there are seven kinds of shortest paths: line
segments (on which the length is obviously equal to the Euclidean distance in R

2),
and four concatenations of one or two line segments with one or two logarithmic
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Pf

Q
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PiO
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O

(DSS)(DS)

M M
Q

Pf
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O

Fig. 5. Some of the shortest paths: concatenation of a line and a φ2 spiral (DS, left), concate-
nation of a φ2 and a φ1 spiral (SS, center), and concatenation of line and two spirals (DSS,
right).

spiral at saturated φ . Examples of S*S curves, S-D curves, D-S*S curves, and D-
S*S-D curves are depicted in Fig. 5. An important consideration is that, as it is
shown in [6], if the families of 3− and 4−letter trajectories (e.g. D-S*S) give the
optimal path for some configuration (Pi,Pf ) then they are either shorter than the
D−S (or S−D) path, or shorter than the S−S path (which are just instantiations of
these families). As a consequence, we can simply focus on the lengths dDS and dSS.

First note that the length of an arc on a logarithmic spiral keeping φ constant,
starting from a point P0 = (r0,α0)T and reaching a point P1 = (r1,α1)T is

lφ (P0,P1) =
r0

cosφ
|1− e

α0−α1
tanφ |. (15)

Also note that since r ≥ dmin > 0, whenever P1 is close enough to P0,

lφ (P0,P1)≤
3r0

2|sinφ | |α0−α1| ≤
9r0

4|sinφ | |sin(α0−α1)| ≤
9‖P0P1‖
4|sinφ | . (16)

Case of a line segment and a spiral (DS). In that case (Fig. 5, left), the distance
between Pi and Pf is given by

dDS(Pi,Pf ) = ‖PiM‖+ lφ1(M,Pf ).

Now note that if Pf is close enough to Pi, by using the bound 16, we get

dDS(Pi,Pf )≤ ‖PiM‖+
9

4|sinφ2|
‖MPf‖ ≤ (1 +

9
4|sinφ2|

)(‖PiM‖+‖MPf‖).

Now an analysis of points O, Pi, Pf and M shows that π
2 < π−φ2 < ∠Pf MPi < π

(with φ2 > 0) so that −1 < cos(Pf MPi) < −cosφ2. From the cosine rule in the
triangle PiMPf , we derive

‖PiM‖2 +‖MPf‖2 + 2cosφ2‖PiM‖‖MPf ‖ ≤ ‖PiPf‖2,
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which induces ‖PiM‖+ ‖MPf‖ ≤ 1√
cosφ2

‖PiPf ‖. Combining this result with the
equation above, we have a relation of local equivalence between distances, for
φ2 < π

2 ,

‖PiPf ‖ ≤ dDS(Pi,Pf )≤
1√

cosφ2
(1 +

9
4|sinφ2|

)‖PiPf ‖. (17)

Case of two spirals (SS). By using the Equation 15 twice on the two spirals
(Fig. 5, center), and with t1 = tanφ1, t2 = tanφ2,

dSS(Pi,Pf ) = lφ2(Pi,Q)+ lφ1(Q,Pf )

=
rPi

cosφ2
(1− e

αPi
−αQ
t2 )+

rPf
cosφ1

(1− e
αPf

−αQ
t1 ).

The intersection point Q between the spirals can be easily shown to be

αQ =
t1t2

t1− t2
log

rPi

rPf

+
t1

t1− t2
αPi −

t2
t1− t2

αPf ,

which can be plugged into the previous equation to give, after simplifications,

dSS(Pi,Pf ) = a2rPi + a1rPf − (a1 + a2)e
αPf

−αPi
t1−t2 rγ

Pi
r1−γ

Pf
,

where al = 1
cosφl

for l = 1,2 and γ = −t2
t1−t2

.

Whenever Pf is sufficiently close to Pi (which we will suppose on thex-axis), by
using Taylor expansion around Pi,

dSS(Pi,Pf )≈ Kx|xPi − xPf |+ Ky|yPi− yPf |,

where Kx = sinφ2+sinφ1
sin(φ2+φ1) > 0 and Ky = a1+a2

t2−t1
. It is then straightforward to get, for

some other positive constant K′

‖PiPf ‖ ≤ dSS(Pi,Pf )≤ K′‖PiPf ‖. (18)

Note that in both cases involving spirals, the condition r ≥ dmin > 0 is important
to get a neighborhood size that is independent of point Pi. As a consequence, we can
state that for any neighborhood of a point Pi in C g

f ree, there is a smaller neighborhood
around Pi such that all the points in this neighborhood can be attained from Pi by the
shortest paths of the DDR under visibility constraints that we get from the synthesis
of [6]. We can now state the following theorem:

Theorem 5.1. If a collision-free path for a holonomic robot that maintains visibility
of a landmark exists, then, a feasible collision-free path for a DDR with the same
visibility constraints also exists, provided that it moves only along the paths com-
posed with the three motion primitives.
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Proof. This theorem is proven given the three properties already shown: (1) The
system is STLC, then it can locally maneuver in a neighborhood of the open
space. (2) Our motion primitives can be executed with a bounded control and (3)
The metric of the primitives induce the same topology and are locally equiva-
lent to the euclidean metric in R

2, from this it follows that the holonomic paths
can be always divided and replaced by paths composed of the three motion
primitives. ��

6 Motion Planner and Simulations

Here, the results from the previous section are used to propose a complete plan-
ner for a circular-shaped DDR navigating among obstacles and having to maintain a
landmark in sight, whereas its sensor is under range and angular constraints. Inspired
from the classical roadmap-based approach, we implemented a simple planning al-
gorithm according to the following steps :

1. Build C g
obst = C g

f ree by taking the union of the dilated obstacles with the shadows
induced by the landmark visibility;

2. Build the GVG on C g
f ree; as C g

f ree is made of line segments and arcs of circle,
the resulting Voronoi Diagram is made of line segments and arcs of parabola or
hyperbola; the graph edges weights are a combination of the edge lengths and
of the minimal clearance along this edge, so as to find a compromise between
shortest and clearest paths;

3. Given a starting and a goal configurations, compute a path ŝ for the holonomic
system associated to the robot by connecting these locations to the GVG; if not
possible, no non-holonomic path can be found as well;

Fig. 6. (Left) Shortest paths for a DDR under visibility constraints alone (angular and distance
ranges, represented by the inner and outer circles). The robot shape, heading, and gaze are
drawn here, and then omitted for the sake of readability. The Voronoi-based path is in dark, so
is the final computed path. (Center) Obstacles (dark) and regions visible from the landmark
(light gray). (Right) Construction of C g

f ree: dilated obstacles (dashed grey) are removed from
the visible area and underlying GVG.
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Fig. 7. (Left) Examples of a path computed by the recursive algorithm. (Center) and (Right)
Behavior of the planner in narrow passages: as expected, a solution may imply a quantity of
maneuvers to finally reach the goal. (Right) is a zoomed view of (Center).

4. Recursively try to connect the starting and ending points with the optimal prim-
itives of section 2.2; whenever the sub-paths induced by these primitives are in
collision, use as a sub-goal the point at middle-path in ŝ and apply the recursive
procedure to the two resulting pairs of points.

Figures 6 (center) and (right) illustrate the first two steps of the algorithm (up to
the construction of the GVG), whereas in (left), in the free space, a curve composed
of two spirals and in-site rotations is shown. Figure 7 (left) shows an example of
path planning among obstacles, all made of concatenations of line segments, in-site
rotations and logarithmic spirals. Finally, Figures 7 (center) and (right) illustrate the
behavior of the algorithm in narrow passages, where a large number of maneuvers
may have to be done to connect the starting and ending points.

Based on the metrics equivalence, we can ensure the convergence of the recursive
algorithm, i.e., whenever a holonomic path exists, we obtain a path for the non-
holonomic robot (DDR) after a finite number of iterations.

7 Conclusions and Future Work

In this work, we have proposed a complete motion planner to compute collision-free
paths for a holonomic disk robot able to maintain landmark visibility in the presence
of obstacles. We have shown that if a path exist for the holonomic robot then a
feasible (collision free and maintaining landmark visibility) path composed by our
three motion primitives shall always exist for the DDR. We have also provided the
motion controls to execute these motion primitives. Finally, we have implemented
a motion planner for the DDR based on a recursive sub-division of the holonomic
path. In our planner the motion primitives replace the sections of the holonomic
path. As future work, we would like to study the problem of determining a path
as sequence of sub-goals defined by several landmarks. In the scheme at least one
landmark should be visible at every element of the motion sequence.
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Geometric Computations



On Approximate Geodesic-Distance Queries
amid Deforming Point Clouds�

Pankaj K. Agarwal, Alon Efrat, R. Sharathkumar, and Hai Yu

Abstract. We propose data structures for answering a geodesic-distance query
between two query points in a two-dimensional or three-dimensional dynamic envi-
ronment, in which obstacles are deforming continuously. Each obstacle in the envi-
ronment is modeled as the convex hull of a continuously deforming point cloud. The
key to our approach is to avoid maintaining the convex hull of each point cloud ex-
plicitly but still able to retain sufficient geometric information to estimate geodesic
distances in the free space.

1 Introduction

The geodesic-distance query problem in an obstacle-present environment arises in
motion planning, assembly planning, gaming industry, computational geometry, and
related fields. The goal is to construct a suitable data structure based on the geometry
of the environment, so that the length of a shortest obstacle-avoiding path between
two query points can be reported quickly. This was the focal of motion planning.
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However, most of the existing work has focused on answering geodesic distance
queries in a static environment or when each obstacle moves as a rigid body. There
are several reasons to study geodesic-distance query problems when the queries are
time dependent and obstacles are deforming continuously:

• With the availability of sensing and tracking technology, it is possible to monitor
many geo-temporal phenomena in real time. Wild fires, areas contaminated by
hazardous gas, regions under surveillance of enemy forces (in military applica-
tions), and regions with bad atmospheric conditions (in flights scheduling appli-
cations) can all be modeled as obstacles deforming in time, where one wishes to
find a short path avoiding all the obstacles within some time frame.

• In an environment with a large numbers of moving obstacles one might wish to
hierarchically cluster the obstacles and represent each cluster by its convex hull.
Answering motion-planning queries can be done by either avoiding all obstacles
within a cluster, if possible, or solving the problem with the convex hulls of the
children sub-clusters. Obstacles might change their trajectory, start or stop being
vertices of the convex hulls, and move from cluster to a sibling cluster, according
to their location.

• The asteroid avoidance problem is to plan the path of a robot from source to
destination while avoiding moving obstacles and not exceeding a given velocity.
This important problem is known to be PSPACE-hard [17]. A natural heuristic
to the problem is to dividing the free space and time domain into fine enough
cells, so that within each region obstacles can be considered static with respect to
the velocity of the robot, and the (portion of the) shortest path is constrained to
the cell. One could use our algorithm as a tool to answer many geodesic distance
queries in different time intervals or to recompute shortest paths after refining the
time intervals.

Motivated by these applications, we focus on a model in which each obstacle is
represented as the convex hull of a dynamic point cloud, e.g., it may correspond
to a squad of enemy troops in motion, a scatter of spreading wild fire, or a cluster
of asteroids. In the following, we introduce the model of motion to be followed
throughout the paper and define our problem formally.

Model of motion. We use the kinetic data structure (KDS for short) framework
proposed by Basch et al. [6] to handle dynamics of the environment. Let τ denote the
time parameter. A moving point p(τ) in R

d , for d = 2,3, is a function p : R → R
d .

We call p(τ) algebraic if each individual coordinate of p(τ) (a real-valued function)
is an algebraic function of τ . We use point clouds to model a deforming convex
polytope P(τ) in R

d . In this point-cloud model, let S(τ) = {p1(τ), · · · , pn(τ)} be a
finite set of moving points in R

d , and a deforming convex polytope P(τ) is defined
to be convS(τ) — the convex hull of S(τ). We emphasize that points in S(τ) are
allowed to change their trajectories at any moment if needed.

In the KDS framework, we maintain a data structure on the fly, accompanied by
a set of geometric predicates, called certificates, to serve as a proof of correctness
for the maintained data structure. Since the current motion of objects are known,
the KDS is able to predict the time (called failure time) at which each certificate
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becomes invalid. All the failure times are scheduled in a global queue called event
queue. The KDS does nothing until the time reaches the first failure time in the
event queue. At that moment, an event occurs, and the KDS processes this event
by updating the data structure to restore its correctness, as well as updating the
certificates and the event queue accordingly. The KDS then moves on towards the
next event.

As mentioned above, a change of trajectory or speed for an object is allowed, and
it is assumed that the KDS is notified about the change when it occurs. A KDS is
called local if each moving object is involved in a small number of certificates. A
local KDS is able to quickly respond to the motion change of an object, by recom-
puting the failure times of all the certificates involving the object. All our KDS’s are
local and therefore accommodate motion changes efficiently.

Problem statement. Let F be a path-connected closed subset in R
d , for d = 2,3. For

two points s,t ∈F, a geodesic path between s and t within F, denoted by ΠF(s, t), is
a path from s to t completely lying inside F and with minimum length. The geodesic
distance between s and t, denoted by dF(s, t), is the length of ΠF(s, t). In this paper,
the subset F in question is the free space of a set P of k pairwise disjoint convex
polytopes in R

d , that is, F = R
d \ int

⋃
P∈P P. A path (line segment, point) is free

(with respect to P) if it lies in F. So ΠF(s, t) is the shortest free path between s and t.
Let P(τ) be a collection of pairwise disjoint deforming convex polytopes in R

2 or
R

3, each defined by the point-cloud model, and let F(τ) be the free space of P(τ).
Our problem is to maintain a certain data structure as τ varies, so that at any τ , the
geodesic distance between any two query points s, t ∈ F(τ) can be reported.

Many existing data structures for geodesic-distance queries in static environ-
ments (to be reviewed shortly) are quite complicated and unlikely to render efficient
kinetic data structures for dynamic environments. Given this situation and taking
into account practical considerations, our goal in this paper is to design a kinetic
data structure that meets the following criteria:

(a) The number of events of the KDS is small, ideally nearly O(n) in R
2 and nearly

O(n2) in R
3. In particular, one cannot maintain each polytope in P(τ) explicitly

as the point cloud deforms because the number of events for maintaining P(τ)
alone would be Ω(n2) in R

2 [2] and Ω(n3) in R
3 in the worst case.

(b) The KDS provides a flexible tradeoff between the query time and the number of
events.

(c) The KDS handles motion changes and transient obstacles (i.e., obstacles in P(τ)
may be added or deleted) efficiently.

As a compromise, we allow that the data structure only reports a (reasonable) ap-
proximation of the geodesic distance, and that the query time can depend on the
number of obstacles (but not their total complexity).

Related work. Geodesic-distance queries in a static environment have been exten-
sively studied. Chiang and Mitchell [8] proposed a polynomial sized data structure
that answers geodesic-distance query amid polygonal obstacles in R

2 in O(logn)
time; n is the total number of obstacle vertices. They also proposed tradeoffs
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between space and query time. Chen [7] observed that an algorithm of Clarkson [9]
can be turned into a data structure of size O(n2) to support (1 + ε)-approximate
geodesic-distance queries in O(ε−1 logn) time, for a fixed parameter ε . He also de-
signed a data structure of size O(n logn) to answer (6 + ε)-approximate geodesic-
distance queries in O(logn) time (see also [5]). Very few results are known on
geodesic-distance queries in R

3. Agarwal et al. [1] designed a data structure of
size O(n6m1+δ ), for 1 ≤ m ≤ n2 and for any δ > 0, to store a convex polytope P
with n vertices in R

3 so that the geodesic-distance query for any two points on P
can be answered in O((

√
n/m1/4) logn) time. Har-Peled [11] considered the same

problem but allowed (1 + ε)-approximations for ε > 0, and showed that a (1 + ε)-
approximation of the geodesic distance between two query points can be reported in
O(ε−3/2 logn + ε−3) time. Recently, Agarwal et al. [3] have developed data struc-
ture for answering geodesic-distance queries in R

3 from a fixed source point.
We are not aware of any existing work on geodesic-distance queries in the dy-

namic environment. For an account of extensive work on collision detection and
motion planning in dynamic environments, we refer the readers to [14, 18] and the
references therein.

Our results. We present simple kinetic data structures for answering approximate
geodesic-distance queries amidst a collection P of k pairwise disjoint deforming
convex polytopes in R

2 and R
3. Each polytope P ∈ P is defined as the convex hull

of a set of moving points, each moving along a bounded-degree algebraic trajectory.
Let n be the total number of such points.

In R
2, for a prescribed parameter ε > 0, our kinetic data structure uses O(n/

√
ε)

space and processes O(λc(n)/
√

ε) events in total, where λc(n) is the maximum
length of Davenport-Schinzel sequences of order c on n symbols and is nearly
linear (throughout the paper, c denotes a constant integer related to the degree of
the motion). Processing each event takes O(log2 n) time. It can be used to report,
in O((k/

√
ε) log(k/ε)) time, a (1 + ε)-approximation to the geodesic distance be-

tween two arbitrary query points s,t in the free space. In R
3, for a prescribed pa-

rameter 1≤ m≤ n, our data structure uses O(n) space and processes O(nλc(n/m))
events in total, each of which can be handled in O(log2 n) time. At any moment,
given two query points s,t in the free space, the data structure is able to return, in
O(mk log(n/m)) time, an O(kst)-approximation to the geodesic distance between s
and t, where kst is the number of polytopes intersected by the line segment st and
is expected to be small in practice. Our data structures are simple enough to allow
for points defining the polytopes to be inserted or deleted or change their motion in
polylogarithmic time per event.

2 Geodesic Distance Queries in R
2

For notational convenience, we will omit the time parameter τ when no confusion
arises. Let P = {P1, · · · ,Pk} be a collection of k pairwise disjoint deforming convex
polygons, where each Pi is defined as the convex hull of a set Si of ni moving points.
Instead of explicitly maintaining each Pi, we maintain a certain “sketch” P̃i of each
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Pi, so that the geodesic distance between any two points s,t in the free space F is
approximately preserved. More formally, a set P̃ = {P̃1, · · · , P̃k} of convex polygons
is called an ε-sketch of P if

(i) P̃i ⊆ Pi, for each 1≤ i≤ k;
(ii) for any two points s,t ∈ F, dF(s, t) ≤ (1 + ε)d

F̃
(s, t), where F ⊆ F̃ is the free

space of P̃.

Since F ⊆ F̃, d
F̃
(s, t) is well-defined for any pair s, t ∈ F and dF(s, t)≥ d

F̃
(s, t).

We construct an ε-sketch of P as follows. Set r =
⌈
2π/

√
2ε
⌉
. For 0 ≤ j < r, let

u j = (cos( j
√

2ε),sin( j
√

2ε)). The set N = {u j | 0≤ j < r} forms a uniform set of
directions in R

2. For 1 ≤ i ≤ k and 0 ≤ j < r, let p j
i = argmaxp∈Si

〈
u j, p

〉
denote

the extremal point of Si in the direction u j ∈N. Let S̃i = {p j
i | 0 ≤ j < r}, P̃i is the

convex hull of S̃i and P̃ = {P̃1, · · · , P̃k}.
Maintaining P̃ as P deforms over time is straightforward. For each Si and each

u j ∈ N, we use a kinetic tournament1 to keep track of the extreme point p j
i . Note

that p0
i , p1

i , · · · , pr−1
i are in convex position and naturally represent P̃i in this order.

(Although Pi deforms continuously, P̃i may change discontinuously at certain time
instances; a change of extremal point in some direction u j may result in a discon-
tinuous change in the shape of P̃i.) When a point p is inserted or deleted or changes
its trajectory, we update O(1/

√
ε) kinetic tournaments involving that point. A point

cloud can also be added to or removed from the environment in a straightforward
manner.

Lemma 2.1. P̃ is an ε-sketch of P.

Proof. Clearly, for 1 ≤ i≤ k, S̃i ⊆ Si and as such P̃i ⊆ Pi. Hence P̃ satisfies (i). We
next prove P̃ also satisfies (ii).

Let s, t be two points in F. Consider a geodesic path Π = Π
F̃
(s, t,). If Π ⊆ F,

then Π is also ΠF(s,t,) and there is nothing more to prove. So from now on we
assume that Π intersects F̃ \F.

By our construction, F̃ \F consists of a set of convex polygons whose interiors
are pairwise disjoint (see Figure 1). For each such polygon O, one of its edges called
the base of O is an edge of P̃i for some i, and the other edges called the dome of O
come from a subsequence of edges of Pi. Let p j

i p j+1
i be the base of O. Since p j

i

(resp., p j+1
i ) is an extreme point of Pi in direction u j (resp., u j+1), any point on

the dome of O is extreme only in some direction between u j and u j+1 on S
1. In

other words, the outward unit normal of a point on the dome O lies in the interval[
u j,u j+1

]
.

1 A kinetic tournament [6] can be used to maintain the maximum (or minimum) of a set S
of n moving points on the real line. The total number of events is O(λc(n)), each of which
can be processed in O(log2 n) time. Every point in S participates in O(logn) certificates,
and hence a motion update can be performed in O(log2 n) time. Similarly, a moving point
can be inserted into or deleted from the kinetic tournament in O(log2 n) time.
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tΠ′
Π

s

Fig. 1. Surgery on the path Π from s to t to make it free; shaded area represents F̃ \F, which
consists of a set of convex polygons.

Let O be one of these polygons intersected by Π . Since O is convex and Π cannot
cross the base of O, Π ∩O is a line segment between two points p,q on the dome of
O. We modify Π to bypass O, by replacing the segment pq on Π with the path Πpq

between p and q along the dome of O. Clearly, Πpq ⊆ F. This surgery increases the
length of Π , but by not much. More precisely, Let z be the intersection of the two
tangents of O at p and q respectively. By the discussion in the preceding paragraph,
we have ∠pzq≥ π−

√
2ε . Hence,

|Πpq| ≤ |pz|+ |qz| ≤ |pq|/sin(∠pzq/2)≤ |pq|/sin
(
π/2−

√
ε/2

)
≤ |pq|/(1− ε/2)≤ (1 + ε)|pq|.

Here, the first inequality follows from a standard convexity argument, the second
inequality follows from elementary trigonometry, and the last inequality assumes
ε ≤ 1.

We perform the above surgery on Π for each of the polygons in F̃\F intersected
by the original path Π . In the end, the new path Π ′ lies in F. Therefore dF(s, t) ≤
|Π ′| ≤ (1 + ε)d

F̃
(s,t), and P̃ is indeed an ε-sketch of P. �

The total number of vertices of P̃ is O(k/
√

ε). For query points s, t ∈ F, we use the
algorithm of Hershberger and Suri [13] to compute d

F̃
(s, t) in time O

(
|P̃| log |P̃|

)
=

O((k/
√

ε) log(k/ε)) and return (1+ ε)d
F̃
(s, t) which is a (1+ ε)-approximation of

dF(s, t) by the preceding lemma.

Theorem 2.1. Let P = {P1, · · · ,Pk} be a collection of pairwise disjoint deforming
convex polygons in R

2, where each Pi is defined as the convex hull of a set of ni

moving points. Let n = ∑k
i=1 ni. There is a kinetic data structure that reports, in

O((k/
√

ε) log(k/ε)) time, a (1+ε)-approximation to the geodesic distance between
two arbitrary query points s,t in the free space. The data structure has O(n/

√
ε) size

and processes O(λc(n)/
√

ε) events in total, each requiring O(log2 n) time. A point
(used for defining one of the convex hulls) can be inserted or deleted or change its
motion in O((1/

√
ε) log2 n) time.
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3 Geodesic-Distance Queries in R
3

In this section we consider the geodesic-distance query problem amidst three-
dimensional dynamic point clouds. We first describe the data structure for the case
of one single point cloud; and then extend it to multiple point clouds.

3.1 Single Polytope

Consider a single polytope P defined as the convex hull of a set S of n moving
points in R

3. We start by considering the special case in which the query points
s,t both lie on the surface of P (boundary query) and then extend to the case in
which s,t are two arbitrary points in the free space F (generic query). In the former
case, it is well known that ΠF(s, t) is also a path lying on the boundary of P, i.e.,
dF(s,t) = d∂P(s,t).

Existing data structures for geodesic-distance query on the boundary of a convex
polytope P [11] make use of the Dobkin-Kirkpatrick hierarchy [10] of P. However,
as in the two-dimensional case, we do not want to explicitly maintain P explic-
itly, nor its Dobkin-Kirkpatrick hierarchy. The starting point of our algorithm is the
work of Hershberger and Suri [12], in which a linear-time procedure is proposed
for computing a constant-factor approximation for the geodesic-distance between
two points s,t ∈ ∂P. Their procedure makes use of the two unit normals us and ut

at s and t respectively to guide the computation. Briefly, if the angle between us

and ut is small (say, less than π/2), then the Euclidean distance‖st‖ is a good ap-
proximation to their geodesic distance; otherwise, there is a point p ∈ ∂P such that
‖sp‖+ ‖pt‖ is a good approximation, and moreover up makes small angles with
both us and ut , where up is the normal to a plane containing p, avoiding the interior
of P, and pointing away from P. In our case, since the polytope will not be explic-
itly maintained, we do not know the normals at s and t and therefore need a more
careful design.

Data structure. For a unit vector u ∈ S
2, we denote the plane 〈p,u〉 = 0 (p ∈ R

3)
by hu and the great circle hu∩S

2 on S
2 by gu. For a set X ⊆ R

3 and a unit vector
u ∈ S

2, we denote by ⇓u (X) the projection of X onto hu. On the positive hemi-
sphere S

2
+ (i.e., the closed hemisphere of S

2 lying on or above the xy-plane), we
choose a (π/8)-net N, that is, for any u,v ∈ N, ∠u,v ≥ π/8, and for any u ∈ S

2
+,

there is a v ∈ N so that ∠u,v ≤ π/8 (here ∠u,v denotes the angle between u and
v). It can be shown that |N| = O(1). For each u ∈ N, we fix arbitrarily a pair
{ux,uy} of orthogonal unit vectors in the plane hu. We maintain the following
information:

(I1) for each u ∈N, the convex hull Cu of ⇓u(S) in the plane hu;
(I2) for each Cu, an auxiliary data structure Du so that given a point p∈ hu, it returns,

in O(logn) time, the (at most) four edges of Cu that the rays from p in directions
±ux,±uy first hit.
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The data structure can be readily maintained under motion. Each Cu can be main-
tained efficiently using a kinetic convex hull algorithm2. The data structure Du

is a balanced binary tree over the edges of Cu. Since |N| = O(1), we obtain the
following.

Lemma 3.1. The data structure uses O(n) space and can be maintained under mo-
tion in O(log2 n) time per event, with a total of O(nλc(n)) events.

Answering a boundary query. A face f of P is called positive with respect to
a direction u ∈ S

2 if
〈
u f ,u

〉
≥ 0, where u f is the outward unit normal of f , and

negative if
〈
u f ,u

〉
≤ 0. The positive faces form a connected component on ∂P called

positive component, and similarly the negative faces form a negative component.
The boundary between the positive and negative components consists of a sequence
Eu of edges of P called horizon edges. It can be shown that, for any u∈ S

2, ⇓u(Eu) =
Cu, i.e., the projection of the horizon edges is the set of edges of the convex hull of
⇓u(S).

For u ∈ S
2, let Iu = {p ∈ R

3 | ⇓u(p) lies inside Cu}. The set Iu forms an infinite
prism containing P, and Iu∩F consists of two connected components separated by
the horizon edges Eu. Given two points s, t ∈ Iu∩F, we say that u separates s from t
if s, t lie in these two connected components respectively. As a convention, if either s
or t lies on Eu, then u also separates s and t. (When s,t are both on ∂P, this definition
is equivalent to s,t lie in positive and negative components of ∂P respectively; the
general definition presented here will be useful later for generic queries.)

The following procedure estimates the geodesic distance between two query
points s and t lying on the boundary of P.

BOUNDARY QUERY (s,t)
s, t: two points on the boundary of P

(1) Nst ← {u ∈N | u separates s, t};
(2) for each direction u ∈Nst

d[u] ← ‖q ⇓u(s)‖1,
where q is the point closest to ⇓u(s) on Cu under the L1-norm;

(3) D ← ‖st‖+
√

2 ·maxu∈Nst d[u];
(by convention, maxu∈Nst d[u] = 0 if Nst = /0)

(4) return D;

Since s, t are on the boundary of P, they lie inside Iu∩F for any u ∈ S
2. So step (1)

is well defined.
2 A kinetic convex hull algorithm [4, 6] can be used to maintain the convex hull of a set

S of n moving points in R
2. There are O(nλc(n) log n) events in total, each of which can

be processed in O(log2 n) time. In addition, each point participates in O(logn) certificates
and hence a motion update can be performed in O(log2 n) time. A moving point can also
be inserted or deleted in O(log2 n) time [4].
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Fig. 2. Using (I2) to test whether u separates s,t, and to compute the closest point of ⇓u(s)
on Cu under L1-norm.

In step (1), we need to decide for a direction u ∈ N whether u separates s from
t. This can be done as follows. Let v1v2 and v3v4 be the two edges of Cu that ⇓u(s)
projects onto in directions±uy (see Figure 2). Let pi ∈ S be such that ⇓u(pi) = vi, for
i = 1,2,3,4. By examining whether s lies above or below the tetrahedron p1 p2 p3 p4

along direction u, one can decide which component of Iu ∩F contains s. (Recall
that s ∈ F, so it does not lie inside the tetrahedron.) A similar statement holds for t.
Hence deciding whether u separates s, t can be done in O(logn) time using (I2).

Since |N|= O(1), step (1) takes O(logn) time and step (3) takes O(1) time. The
lemma below shows that step (2) also takes O(logn) time using (I2). Hence the total
time for answering a query is O(logn).

Lemma 3.2. Let p be any point lying inside Cu. Let s1, · · · ,s4 be the four projections
of p onto Cu in directions ±ux,±uy. In the plane hu equipped with the coordinate
frame {ux,uy}, one of s1, · · · ,s4 is a point on Cu that is closest to p under L1-norm.

Proof. For any line �⊂ hu, let p1 and p2 be the projections of p onto � in direction
ux (or −ux) and uy (or−uy) respectively. It is easy to verify that if � makes an angle
≤ π/4 with ux or −ux, then p2 is the point on � closest to p (under L1-norm), and
otherwise p1 is the closest. So either p1 or p2 realizes the closest point to p. Now,
consider the projections of p in direction ux to all the lines containing an edge of
Cu. The point s1 is closest to p among all such projections (see Figure 2). Similarly,
s2 (resp., s3,s4) is the point closest to p among all projections of p onto these lines
in direction −ux (resp., uy,−uy). Hence, the closest point on Cu to p must be one of
s1, · · · ,s4. �

Next we show that BOUNDARY QUERY indeed produces a constant-factor
approximation to d∂P(s,t). Observe that, if two points s, t ∈ ∂P are separated along
a direction u ∈ N, then s lies on the positive component and t lies on the negative
component, or vice versa. In particular, if there are outward unit normals us and ut

of P at s and t that lie on different sides of the great circle gu on S
2, then u separates

s from t.
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Lemma 3.3. D≤ 3 ·d∂P(s,t).

Proof. If Nst = /0, then trivially D = ‖st‖ ≤ d∂P(s, t). So assume Nst �= /0. Let u be
any direction in Nst . Since u separates s,t, one of s,t lies on the positive compo-
nent and the other lies on the negative component. Hence by continuity, Π∂P(s, t)
intersects Eu at some point p. Note that ⇓u(p) ∈ Cu. Let q be defined as in (2) of
BOUNDARY QUERY. Then,

d∂P(s, t) ≥ ‖sp‖ ≥ ‖ ⇓u(s) ⇓u(p)‖ ≥ ‖ ⇓u(s) ⇓u(p)‖1/
√

2

≥ (1/
√

2) · ‖q ⇓u(s)‖1 = (1/
√

2) ·d[u].

Since trivially d∂P(s,t)≥ ‖st‖, we have

‖st‖+
√

2 ·d[u]≤ 3 ·d∂P(s, t).

As this is true for any u ∈Nst , we have D≤ 3 ·d∂P(s, t) as claimed. �
For a plane h⊆R

3 avoiding P, we use h+ to denote the halfspace bounded by h and
containing P. For two non-parallel planes h1,h2 both avoiding P, the boundary of
h+

1 ∩h+
2 is called a wedge, and the dihedral angle of h1,h2 in the quadrant h+

1 ∩h+
2 is

the angle of this wedge. It is shown in [12] that, for any two points p,q on a wedge
W of angle θ , dW (p,q)≤ ‖pq‖/sin(θ/2).

Lemma 3.4. D≥ (sin(π/16)/
√

2) ·d∂P(s, t).

Proof. Let us,ut be the outward unit normals of P at s and t respectively (if the
normal is not unique, choose one arbitrarily). We first consider the case in which the
angle between us and ut (denoted by ∠us,ut ) is at most π/2. Let W be the wedge
formed by the two tangent planes of P at s and t with normals us and ut respectively.
The angle of W is π−∠us,ut ≥ π/2. Therefore,

d∂P(s,t)≤ dW (s,t)≤ ‖st‖/sin(π/4) =
√

2 · ‖st‖.

Hence D≥ ‖st‖ ≥ (1/
√

2) ·d∂P(s, t).
Next consider the case ∠us,ut ≥ π/2. Let γ be the middle point on the geodesic

arc between us,ut on S
2, and η ∈ S

2
+ be the direction orthogonal to the great circle

of S
2 passing through γ . Since N is a (π/8)-net of S

2
+, there exists a direction u∈N

for which ∠u,η ≤ π/8. Using elementary spherical geometry, it can be shown that
us and ut lie on different sides of gu and thus u separates s, t; furthermore, the angle
between us and the plane hu is at least (1/2) ·∠us,ut − π/8 ≥ π/8, implying that
∠us,v≤ π−π/8 for all v ∈ gu.

Let p be a point on Eu such that ⇓u(p) = q for q defined in (2) of BOUND-
ARY QUERY. Since p∈Eu, there is an outward unit normal up at p such that up ∈ gu;
in particular, ∠us,up ≤ π −π/8 by the preceding discussion. Let W be the wedge
formed by the two tangent planes of P at s and p with normals us and up respectively.
The angle of W is π−∠us,up ≥ π/8. So,

d∂P(s, p)≤ dW (s, p)≤ ‖sp‖/sin(π/16).
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Fig. 3. Illustration for the proof of Lemma 3.4.

Similarly, d∂P(p, t)≤ ‖pt‖/sin(π/16). Then we have

d∂P(s,t) ≤ d∂P(s, p)+ d∂P(p, t)
≤
(
‖sp‖+‖pt‖

)
/sin(π/16)

≤
(
‖ ⇓u(s) ⇓u(p)‖+‖ ⇓u(t) ⇓u(p)‖+ 〈s− t,u〉

)
/sin(π/16)

≤
(
2 · ‖ ⇓u(s) ⇓u(p)‖+‖ ⇓u(s) ⇓u(t)‖+ 〈s− t,u〉

)
/sin(π/16)

≤
(
2 · ‖ ⇓u(s) ⇓u(p)‖+

√
2 · ‖st‖

)
/sin(π/16)

≤
(
2 · ‖ ⇓u(s) ⇓u(p)‖1 +

√
2 · ‖st‖

)
/sin(π/16)

=
(
2 ·d[u]+

√
2 · ‖st‖

)
/sin(π/16).

Hence, D≥ ‖st‖+
√

2 ·d[u]≥ (sin(π/16)/
√

2) ·d∂P(s, t). �

By Lemmas 3.3 and 3.4, it immediately follows that:

Lemma 3.5. BOUNDARY QUERY(s, t) returns a constant-factor approximation to
d∂P(s, t) in O(logn) time.

Answering a generic query. Now we generalize the above boundary query to
generic queries in which s,t are two arbitrary points in F. The data structure re-
mains the same as in (I1) and (I2). We only have to slightly change line (1) of the
query procedure BOUNDARY QUERY to the following.

(1’) Nst ← {u ∈N | u separates s, t, or ⇓u(s) or ⇓u(t) lies outside Cu};

Note that (I2) can be used to determine whether a point p ∈ hu lies inside Cu or not.
So (1’) takes O(logn) time. The resulting query procedure is GENERIC QUERY.

Lemma 3.6. GENERIC QUERY(s, t) returns a constant-factor approximation to
dF(s, t) in O(logn) time.

Proof. We first prove the following claim: dF(s, t) = d∂P′(s, t), where P′ = convS∪
{s,t}. When either s or t does not lie on the boundary of P, there are two cases. If
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s and t are visible to each other, then clearly ΠF(s,t) is the line segment between s
and t, which also appears as an edge on the boundary of P′. If s and t are not visible,
then ΠF(s, t) consists of three components: a line segment from s to a point s′ ∈ ∂P,
a geodesic path from s′ to a point t ′ ∈ ∂P (which lies on the boundary of P), and a
line segment from t ′ to t. Note that no points in the interior of the path Π∂P(s′,t ′)
are visible to either s or t, as otherwise ΠF(s, t) can be shortcutted. Hence ΠF(s, t)
must lie on the boundary of P′, and the claim follows.

Therefore, to compute dF(s, t), it suffices to compute d∂P′(s, t). Imagine running
BOUNDARY QUERY (s,t) on P′. Lemma 3.5 then guarantees that it would return
a constant-factor approximation. Let N′st be the set produced at line (1) of its ex-
ecution, and Nst be the set produced at line (1’) of GENERIC QUERY. Consider a
direction u ∈ N. If both ⇓u(s) and ⇓u(t) lie inside Cu, then clearly u ∈ Nst if and
only if u ∈ N′st . If either ⇓u(s) or ⇓u(t) lies outside Cu, we have u ∈ Nst ; but at the
same time, one of ⇓u(s),⇓u(t) must lie on the corresponding C′u for P′ and therefore
u ∈ N′st . Hence, N′st is the same as Nst . The correctness of GENERIC QUERY then
follows. �

Remark. It is possible to modify GENERIC QUERY so that it also reports a free path
between s, t whose length is within a constant factor of dF(s, t), although P is not
explicitly maintained. We omit the details.

3.2 Tradeoffs

So far we have described a kinetic data structure for the approximate geodesic-
distance query problem on the boundary of a single polytope, which uses O(n)
space, processes O(nλc(n)) events, each requiring O(log2 n) processing time, and
answers queries in O(logn) time. These performance bounds are favorable when
there are many queries. However, when the number of queries is expected to be
small, then a scheme to trade query efficiency for kinetic maintenance efficiency is
desirable. We present such a scheme by using generalized linear programming [15].

Let m be an adjustable integer parameter between 1 and n. We divide S into m
groups S1, · · · ,Sm, each of size n/m (assume for the sake of simplicity that n is a
multiple of m). For each u ∈ N, instead of maintaining Cu directly as in (I1), we
maintain the convex hull Cu,i of ⇓u(Si) in the plane hu, for each i = 1, · · · ,m, using
the kinetic convex hull algorithm. Clearly, the total size of the data structure remains
O(n). The total number of events is m ·O((n/m)λc(n/m)) = O(nλc(n/m)), and the
time to process each event remains O(log2 n).

We next explain how to compute the projection of an arbitrary point p ∈ hu onto
Cu in direction uy, in O(m log(n/m)) time using the Cu,i’s. By handling each of
the other directions −uy,±ux similarly, we thereby fulfill (I2). The query times of
both BOUNDARY QUERY and GENERIC QUERY are dominated by the query time
provided here.

For simplicity, assume that hu is xy-plane, p is the origin, and uy is +y-axis.
We first describe a simple but slower procedure that runs in O(m2 log(n/m)) time,
which will become useful later. We only consider the upper chain C+

u,i of each Cu,i
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in direction uy, that is, the upper part of Cu,i lying between its two extreme vertices
along ±x-axis. We further divide each C+

u,i into two sub-chains, the left chain L+
u,i

which lies to the left of +y-axis, and the right chain R+
u,i which lies to the right of

+y-axis. If there is an edge of C+
u,i intersecting +y-axis, it does not belong to either

subchains. For each pair of left chain L+
u,i and right chain R+

u, j, since they are dis-
joint, we can use an algorithm of Overmars and van Leeuwen [16] to compute their
common outer tangent line �i, j in O(log |L+

u,i|+ log |R+
u, j|) = O(log(n/m)) time. Let

pi, j be the intersection of �i, j with +y-axis. We can compute all such pi, j’s in time
O(m2 log(n/m)).

Let v1v2 be the edge of Cu that contains the sought projection of p, and � be the
line containing v1v2. Assume without loss of generality that v1 lies to the left of +y-
axis and v2 to the right. Consider the left chain L+

u,a that v1 belongs to as a vertex, and
the right chain R+

u,b that v2 belongs to as a vertex. Observe that the line � is tangent

to both L+
u,a and R+

u,b and thus is their common tangent. As such, the intersection
pa,b of �a,b (i.e., �) with +y-axis is exactly the sought projection of p. For a common
tangent �i, j other than �a,b, observe that pi, j belongs to convL+

u,i∪R+
u,i ⊆ conv⇓u(S)

and hence lies below pa,b on +y-axis. Thus, the highest point on +y-axis among all
pi, j’s is the projection of p onto Cu in direction +y.

Next we improve the time for finding the projection to O(m log(n/m)), by for-
mulating it as an LP-type problem. Consider the following optimization problem
specified by pairs (H,w), where H =

{
⇓u(Si) | i = 1, · · · ,m} and w : 2H → R is a

function that maps each subset G⊆H to the y-coordinate of the projection of p (the
origin) onto conv

⋃
X∈G X in direction +y (w(G) = −∞ if the projection does not

exist). For a subset G ⊆H with w(G) > −∞, a basis of G is a minimal subset B of
G with w(B) = w(G). The goal is to compute a basis B of H, from which the value
of w(H) then can be computed from w(B). We verify the following properties of
(H,w):

Finite basis: every subset of H has a basis of size at most two. For a subset G ⊆
H with w(G) > −∞, Let v1v2 be the edge on conv

⋃
X∈G X that p projects onto in

direction +y. Let X1,X2 ∈ G be elements of G that contain v1,v2 respectively. Then
clearly {X1,X2} is a basis of G. See Figure 4.

Monotonicity: for any F ⊆ G ⊆ H, w(F) ≤ w(G). This is because F ⊆ G implies
conv

⋃
X∈F X ⊆ conv

⋃
X∈G X .

Locality: for any F ⊆ G ⊆ H with w(G) = w(F) > −∞, and any X ∈ H, w(G) <
w(G∪{X}) implies w(F) < w(F∪{X}). Let � be the line containing the edge of
conv

⋃
X∈G X that p projects onto. The condition w(G) < w(G∪{X}) implies that X

contains a point lying above �. By w(F) = w(G) and F ⊆ G, it can be shown that �
is also the line containing the edge of conv

⋃
X∈F X that p projects onto. It follows

that w(F) < w(F∪{X}).
Matoušek et al. [15] showed that such an optimization problem (H,w) can be

solved in O(|H| ·T +E · log |H|) expected time, where T is the time to test whether
w(B) = w(B∪ {X}) for some basis B and element X ∈ H, and E is the time to
compute a basis of B∪{X} for some basis B and element X ∈H. In our context,
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v2

X2

p

v1

X1

Fig. 4. Reducing computing the projection to an LP-type problem.

|H|= m. Furthermore, any basis consists of at most two elements in H, both T and
E are in O(log(n/m)), by applying the aforementioned slower procedure. Hence,
the projection of p on Cu can be computed in O(m log(n/m)) expected time.

Theorem 3.1. Let P be the convex hull of a set of n points in R
3 under algebraic

motion. For any parameter 1 ≤ m ≤ n, there is a kinetic data structure that can be
used to report, in O(m log(n/m)) expected time, a constant-factor approximation
to the geodesic distance between two arbitrary query points s, t in the free space.
The data structure has O(n) size and processes O(nλc(n/m)) events in total, each
requiring O(log2 n) time. A point (used for defining one of the convex hulls) can be
inserted or deleted or change its motion in O(log2 n) time.

3.3 Multiple Polytopes

Let P = {P1, · · · ,Pk} be a collection of k pairwise disjoint deforming convex poly-
topes in R

3, where each Pi is the convex hull of a set of ni moving points. Set
n = ∑k

i=1 ni. We maintain a separate data structure of Theorem 3.1 for each Pi. The
total space of these data structures is ∑i O(ni) = O(n), and the total number of events
is ∑i O(niλc(ni/m)) = O(nλc(n/m)).

Let s, t be two query points in the free space F. As observed in [12], one can
obtain an O(k)-approximation to the geodesic distance between s,t by summing
up the query results for each of the k separate data structures. We can improve
the approximation factor to O(kst) by a simple trick, where kst is the number of
polytopes in P intersected by the line segment st, as follows: among the k returned
distances, we simply add up those whose values are Ω(‖st‖). We omit the details.

Theorem 3.2. Let P be a collection of k deforming obstacles each of which is the
convex hull of a dynamic point cloud under algebraic motion. Let n be the total
number of points in all the point clouds. For any parameter 1 ≤ m ≤ n, there is a
kinetic data structure that can be used to report, in O(mk log(n/m)) expected time,
a O(kst)-approximation to the geodesic distance between two arbitrary query points
s, t in the free space. The data structure has O(n) size and processes O(nλc(n/m))
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events in total, each requiring O(log2 n) time. A point (used for defining one of the
convex hulls) can be inserted or deleted or change its motion in O(log2 n) time.

References

1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.: Star unfolding of a polytope with
applications. SIAM J. Comput. 26, 1689–1713 (1997)

2. Agarwal, P.K., Guibas, L., Hershberger, J., Veach, E.: Maintaining the extent of a moving
point set. Discrete Comput. Geom. 26, 353–374 (2001)

3. Agarwal, P.K., Sharathkumar, R., Yu, H.: Approximate Euclidean shortest paths amid
convex obstacles. In: Proc. 20th ACM-SIAM Sympos. Discrete Algorithms (to appear)

4. Alexandron, G., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for convex
hulls and upper envelopes. Comput. Geom. Theory Appl. 36, 144–158 (2007)

5. Arikati, S., Chen, D., Chew, L., Das, G., Smid, M., Zaroliagis, C.: Planar spanners and
approximate shortest path queries among obstacles in the plane. In: Dı́az, J. (ed.) ESA
1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996)

6. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31,
1–28 (1999)

7. Chen, D.: On the all-pairs Euclidean short path problem. In: Proc. 6th Annu. ACM-SIAM
Sympos. Discrete Algorithms, pp. 292–301 (1995)

8. Chiang, Y.-J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the plane.
In: Proc. 10th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 215–224 (1999)

9. Clarkson, K.: Approximation algorithms for shortest path motion planning. In: Proc.
19th Annu. ACM Sympos. Theory Comput., pp. 56–65 (1987)

10. Dobkin, D.P., Kirkpatrick, D.G.: Determining the separation of preprocessed polyhedra
— a unified approach. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 400–413.
Springer, Heidelberg (1990)

11. Har-Peled, S.: Approximate shortest-path and geodesic diameter on convex polytopes in
three dimensions. Discrete Comput. Geom. 21, 217–231 (1999)

12. Hershberger, J., Suri, S.: Practical methods for approximating shortest paths on a convex
polytope in R

3. Comput. Geom. Theory Appl. 10, 31–46 (1998)
13. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane.

SIAM J. Comput. 28, 2215–2256 (1999)
14. Ling, M., Manocha, D.: Collision and proximity queries. In: Goodman, J., O’Rourke, J.

(eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 787–808. CRC
Press, Boca Raton (2004)
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Constrained Motion Interpolation with Distance
Constraints

Liangjun Zhang and Dinesh Manocha

Abstract. We present a novel constraint-based motion interpolation algorithm to
improve the performance of local planners in sample-based motion planning. Given
two free-space configurations of a robot, our algorithm computes a one-dimensional
trajectory subject to distance constraints between the closest features of the robot
and the obstacles. We derive simple and closed form solutions to compute a path that
guarantees no collisions between these closest features. The resulting local planner
is fast and can improve the performance of sample-based planners with no changes
to the underlying sampling strategy. In practice, we observe speedups on bench-
marks for rigid robots with narrow passages.

1 Introduction

The problem of computing an interpolating motion between two configurations
arises in different applications including robot motion planning, kinematics, dy-
namic simulation, CAD/CAM, and keyframe animation. Given the initial and final
configurations, the goal is to compute a one-dimensional function that interpolates
the two configurations. Moreover, some applications impose constraints on the re-
sulting trajectory such as smoothness or limits on its derivatives.

In this paper, we address the problem of computing a collision-free interpolat-
ing motion between two free-space configurations. The goal is to compute a tra-
jectory that is less likely to intersect with any obstacles in the configuration space
(C-space). The main motivation is the local planning step in sample-based planners,
which attempts to connect two nearby free-space samples with a collision-free path.
Typically, the local planners operate in two steps: computation of an interpolating
path and checking that path for collisions with the obstacles. In practice, one of
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the most time-consuming steps in sample-based planners is checking whether the
motion produced by the local planner is collision-free or not [3, 7, 15, 17, 18].

The performance of sample-based planners may degrade when the free space has
narrow passages. The narrow passages are defined as small regions of free space
whose removal or perturbation can change the connectivity of the free space. Most
of the prior work in improving the performance of planners has focused on increas-
ing the probability of sampling in these regions [2, 6, 9, 22]. The underlying phi-
losophy of these sampling strategies is that the planner would eventually generate a
sufficient number of samples in and around the narrow passages, which can be easily
connected using simple local planning algorithms (e.g. linear interpolation). How-
ever, the problem of generating sufficient number of samples in narrow passages is
non-trivial. Moreover, the narrow passages may have poor visibility properties [9],
which can result in high failure rates for the interpolation paths computed by the
local planners. Some powerful local planners have been proposed to connect the
samples [1, 7, 10], but they can either result in more expensive collision checking
or do not take into account the position of the obstacles in the environment.

Main Results: We present a novel motion interpolation algorithm to improve the
performance of local planners for sample-based motion planning. Given two free-
space configurations, q0 and q1, our algorithm maintains distance constraints be-
tween the closest feature pairs at these configurations. We derive simple and closed
form solutions to guarantee that the sign of the distance between each feature pair
does not vary along the trajectory. As a result, there are no collisions between the
closest features along that trajectory. Since a local planning algorithm is typically
invoked between nearby configurations, the closest features are the most likely can-
didates for collisions. As a result, our motion interpolation algorithm is more likely
to result in a collision-free path as compared to other interpolation schemes that ig-
nore the position of the obstacles in the environment. Our local planner can be com-
bined with sample-based planners with no changes to the sampling strategy or tech-
niques used to compute nearest neighbors. We have combined our algorithm with
a retraction-based planner that generates more samples near the contact space and
narrow passages. We observe performance gains of the overall planner on bench-
marks with narrow passages. Overall, our constrained interpolating motion offers
the following benefits:

• Simplicity: We present simple and closed form solutions to compute the path
based on the closest features.

• Efficiency: The main additional overhead of our interpolation algorithm is the
computation of closest features at the initial and final configurations, which only
takes up to a few milli-seconds.

• Generality: Our local planning algorithm is general to all rigid robots that can
be represented as polygonal soups. It can also maintain constraints for compliant
motion planning.

• Improved performance: Our local planning algorithm explicitly takes into ac-
count the position of the obstacles in the environment and is effective in connect-
ing nodes in or near the narrow passages.
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Organization: The rest of the paper is organized in the following manner. We sur-
vey related work on motion interpolation and local planning algorithms in Section 2.
Section 3 introduces the notation and gives an overview of our approach. We present
the constrained interpolation algorithm for a single distance constraint in Section 4
and extend it to handle multiple constraints in Section 5. We highlight the perfor-
mance of our local planning algorithm on challenging benchmarks in Section 6. We
discuss some properties and extensions of our interpolation scheme in Section 7.

2 Previous Work

In this section, we give a brief overview of previous work on motion interpolation
and local planning algorithms.

2.1 Motion Interpolation

Many formulations have been proposed to interpolate the motion between two con-
figurations. The simplest algorithms use straight-line linear interpolation or spheri-
cal linear interpolation [12]. Other algorithms tend to compute the minimal-length
curve based on appropriate distance metrics, or maintain smoothness constraints
[5, 14, 20]. However, these algorithms may not take into account the position of
the obstacles in the environment. A related problem is to generate constrained mo-
tion that maintains a contact with the given surface or avoid obstacles [11]. Other
more general variational-based interpolation schemes [8, 19] have also been pro-
posed. However, the formulation and path computation using these approaches can
be expensive as compared to other interpolation techniques.

2.2 Local Planning

The local planning algorithms generate an interpolating motion and check the re-
sulting path for collision with the obstacles. The simplest local planners perform
discrete collision detection along a finite number of samples on the continuous path.
Discrete collision checking is easy and can be efficiently performed using bounding
volume hierarchies. However, there is no guarantee that the portions on the path that
are not sampled are collision-free. In order to overcome this issue, some continuous
collision detection algorithms based on distance bounds or adaptive bisection have
been proposed [18, 15, 23].

Many researchers have analyzed the performance of local planning algorithms
and distance metrics, and suggested techniques to improve the performance of the
overall motion planner [1, 7, 12]. Improved algorithms for local planning have been
designed by combining them with potential field approaches [7] or path optimization
[10]. However, these improved local planning algorithms are expensive and can have
additional overhead in terms of collision checking.
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3 Overview

In this section, we give an overview of our constrained motion interpolation scheme.
We further present our formulation for specifying distance constraints algebraically.
The interpolation scheme discussed here is for rigid robots. Later in Section 7.4, we
present a simple heuristic to extend it to articulated models.

3.1 Notation

We assume that the rigid robot and the obstacles are polyhedral models. We denote
the features of vertices, edges, and faces on the boundary of the robot or obstacles
as V, E, and F, respectively. We use superscripts to enumerate the features, e.g. V0,
V1, V2, and so forth. For the moving robot, we use subscripts to denote the position
of its feature at time t, e.g. a specific vertex V at t = 0, t = 1 or t is denoted as
V0, V1, or Vt , respectively. A configuration q for a rigid robot is represented by
using a vector T for translation and a rotation matrix R, i.e. q = (R,T). In order
to interpolate two given configurations q0 and q1, without loss of generality, we
assume q0 = (I, [0,0,0]t) and the rotational component of q1 is the rotation matrix
about z-axis by θ .

The motion interpolation problem is to compute a one-dimensional trajectory -
{Mt = (Rt ,Tt)|t ∈ [0,1]} with M0 = q0 and M1 = q1. For example, undergoing a
linear interpolating motion, the robot has constant angular and translation velocities
with

Rt =

⎡⎣ cos(θ t) −sin(θ t) 0
sin(θ t) cos(θ t) 0

0 0 1

⎤⎦ (1)

and Tt is (1− t)T0 + tT1.
When the robot moves along an interpolating motion, the position of any point x

on the model at time t can be computed:

xt = Rtx0 + Tt , (2)

where x0 is the position of x at time t = 0.

3.2 Constrained Motion Interpolation

Most prior motion interpolation schemes do not take into account the position of
the robot and the obstacles in the environment. The resulting interpolating motion
may not be collision-free when the robot is near an obstacle. Formally speaking,
this corresponds to the situation when the two interpolated configurations q0 and q1

are close to the contact space, a subset of configurations in C-space at which the
robot only touches one or more obstacles without any penetration. Fig. 1(a) shows
one example where the robot is near the obstacle. A simple linear interpolation
scheme will generate a motion where the robot’s rotational center o undergoes a
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(a) Linear Motion
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Fig. 1. Motion Interpolation between two configurations q0 and q1: (a) There is collision at
the intermediate configuration qt if we use a linear interpolation; (b) Using our constrained
interpolation algorithm, we obtain a collision-free trajectory for this case. (c) We take into
account multiple closest feature pairs ((V0,F0) and (V1,F1) in this case) at the two configu-
rations, and guarantee no collisions among these feature pairs along the trajectory.

straight line motion. However, due to the affect of the rotation, the other points on
the robot (e.g. V) follow a non-linear trajectory. Since the robot is near the obstacle
in this example, the vertex V collides with the face F on the obstacle when the robot
moves. The collision may happen even when the robot undergoes a small rotation
only if the vertex V is far from o.

Our goal is to compute an interpolating motion that is less likely to result in a
collision between the robot and the obstacles. In order to generate such a trajectory
between q0 and q1, we compute the closest feature pairs between the robot at both
configurations and the obstacles. Every feature corresponds to a vertex (V), an edge
(E), or a face (F) on the boundary. Moreover, we impose constraints so that there
is no collision among these closest features along the interpolated trajectory. This
is also highlighted in Fig. 1(b), where the constrained motion ensures that the clos-
est feature pair (V,F) does not collide when the robot moves. Intuitively, in many
cases the closest features are the most likely candidates for a collision between the
robot and the obstacles. By ensuring that there is no collision amongst these clos-
est features, our interpolation algorithm is more likely to compute a collision-free
trajectory for the entire robot. In this manner, our interpolation scheme takes into
account the position of the robot and the obstacles in the environment. Moreover,
we show that there is very little extra overhead of using our interpolation algorithm
over prior methods.

3.3 Distance Constraints

The main issue to formulate the constrained interpolation is the representation of
non-collision constraints among the closest features. We use a sufficient condition
given by the following lemma:

Lemma 1. Let {Pi} the set of the closest feature pairs between the robot at the con-
figuration q0 and the configuration q1, and the obstacles. If the sign of the distance
function dt for each feature pair (formally defined in Section 3.4) dose not change
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when the robot moves along this trajectory, then there is no collision in each feature
pair Pi.

We highlight the use of distance constraints based on an example. Consider the case
in Fig. 1(b), where there is only one closest feature pair (V, F) between the robot
and the obstacles. Let V0 (V1) as the position of the vertex V at the configuration
q0(q1). The signed distance between V0 (V1) and the plane containing the face F is
d0 (d1), respectively. Furthermore, we assume the signed distances d0 and d1 have
the same sign. In this case, a constrained motion can be computed by imposing
the distance dt is a linear interplant of d0 and d1 with t. This ensures the sign of
distance function does change along the motion. In this way, our constrained motion
guarantees that there is no collision between these features along the trajectory (as
per Lemma 1). Given d0 and d1 with the same signs, in order to guarantee that the
sign of the whole distance function does not change, a simple but sufficient way is to
perform a linear interpolation on the signed distances. Quadratic or more complex
interpolation functions may be chosen.

Multiple Distance Constraints: In many cases, taking multiple distance constraints
into account increases the probability of computing a collision-free path for the local
planner. Fig. 1(c) shows such an example. If we can guarantee that the signs of the
distance functions between feature pairs (V0,F0) and (V1,F1) do not change along
the trajectory, then there is no collision between these feature pairs throughout the
motion.

Solving the Constrained System: Under multiple constraints, the motion interpo-
lation is formulated as a constrained system:

C(Rt ,Tt ) = 0, (3)

where C denotes the collection of distance constraints.
The system is non-linear due to the rotational component Rt . For simplicity, we

choose a simple interpolation scheme for Rt that is independent of the position of
the obstacles (e.g. a linear interpolation in Eq. (1)). By plugging Rt , the system
reduces to a linear one with three variables in the translational component Tt . If the
total number of closest features is less than three, this system is under-constrained
and one has to choose a meaningful solution from the infinite solution set. If there
are exactly three independent distance constraints, the system has a unique solution.
We address these issues in more details in Sections 4 and 5.

3.4 Formulation of Distance Constraints

Given a pair of features from the robot and the obstacles, we want to impose a
constraint that the signed distance between the pair of features varies linearly. We
consider three possible types of closest feature pairs between the boundaries:

1. (V,F): the closest features are a vertex on the robot and a face of the obstacle,
2. (F,V): the closest features are a face of the robot and a vertex of the obstacle,
3. (E,E): the closest features are an edge of the robot and an edge of the obstacle.
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To handle other types of closest feature pairs, we first decompose them. For exam-
ple, a (V,E) pair can be decomposed into two (V,F) pairs.

(V,F) Distance Constraint: Suppose the equation of the plane containing the face
F is {x|N · x + D = 0,‖N‖= 1,x ∈ R

3}. Let d0 as the signed distance between the
vertex V0 (V at q0) and this plane. Similarly, d1 is defined as the distance for q1.
Given d0 and d1 with same signs, we want the sign of distance function between the
vertex V and the plane does not change when the robot moves. This constraint can
be satisfied by:

N · (RtV0 + Tt)+ D−dt = 0, (4)

with dt = (1− t)d0 + td1, a linear interpolant of the signed distances d0 and d1.
This constraint can be reformulated as Nt ·Tt + st = 0, where:{

Nt = N,

st = N ·RtV0 + D−dt.
(5)

(F,V) Distance Constraint: Given a face on the robot at q0 with the plane equation
{x|N0 ·x+D0 = 0,‖N0‖= 1,x∈R

3} and a vertex V on the obstacle, the sign of the
distance function between the plane and the point should not change between t = 0
and t = 1 (Fig. 2(a)). This can be expressed as:

(RtN0) · (V−Tt)+ D0−dt = 0, (6)

where dt = (1− t)d0 + td1.
We reformulate this constraint as Nt ·Tt + st = 0, where:{

Nt =−RtN0,

st = (RtN0) ·V+ D−dt.
(7)

(E,E) Distance Constraint: Given an edge on the robot at q0 with end points a0
0 and

a1
0, and an edge on the obstacle with end points b0 and b1, the sign of the distance

function between the lines containing the edges should not change between t = 0
and t = 1 (Fig. 2(b)). In this case, the normal of the plane that contains both the lines
is given as:

Nt = Normalize((b1−b0)× (Rt(a1
0−a0

0))) (8)

This constraint can be expressed as:

Nt · (Rta0
0 + Tt −b0)−dt = 0, (9)

where dt = (1− t)d0 + td1.
The constraint then can be reformulated as Nt ·Tt + st = 0, with st = Nt · (Rta0

0−
b0)−dt .
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Fig. 2. (a) Motion Interpolation with a single (F,V) distance constraint (Section 4.2). We
highlight the closest points on the face F of the robot at t = 0 , a0

0 and at t = 1, a1
1. The closest

feature on the obstacle is the vertex V. (b) Motion Interpolation with a single (E,E) Distance
Constraint (Section 4.3). These edges correspond to La on the robot and Lb on the obstacle.
We also highlight the closest points on the edges at t = 0 and t = 1.

4 Motion Interpolation: Single Distance Constraint

In the previous section, we presented our formulation for specifying the distance
constraints for different types of feature pairs. In order to compute the interpolating
motion, we need to consider different combinations of closest feature pairs at the
configuration q0 and q1. In this section, we present our motion interpolation algo-
rithm for a single (V, F), (F, V), or (E,E) distance constraint. In other words, the
closest feature pair at q0 and q1 is identical. With only one distance constraint, the
system for computing the motion (Eq. (3)) is under-constrained even if the rotational
component R(t) is given. Its solution set at any time t is a two-dimensional plane.
We compute an interpolation motion using a simple geometric construction scheme.
The resulting motion satisfies the distance constraint specified in Section 3.4.

4.1 Motion Interpolation with (V,F) Distance Constraint

We first consider the case when the closest features of the robot and the obstacle are
a vertex V and a face F, respectively. In order to generate an interpolation motion
that satisfies the distance constraint between features V and F at any time t, our
algorithm rotates the robot around the vertex V at q0 (denoted as V0), instead of its
origin o (Fig. 1). The robot is meanwhile translated along the vector from V0 to V1

(V at q1). More specifically, the equation to compute the coordinate of any point on
the robot x at time t can be expressed as:

xt = Rt(x0−V0)+ V0 + t(V1−V0), (10)

Therefore, we can represent this motion as:

xt = Rtx0 + Tt ,
Tt =−RtV0 + V0 + t(V1−V0),

(11)

where Rt is any interpolant on the rotational component.
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4.2 Motion Interpolation with (F,V) Distance Constraint

Lets consider the case when the closest features of the robot and the obstacle are a
face F and a vertex V, respectively. The goal is to generate an interpolating motion
that satisfies the distance constraint for these features. Based on Fig. 2(a), we denote
a0

0 and a1
1 as the projected points of the point V on the plane containing F at the

configurations q0 and q1, respectively. We use the symbol a1
0 to denote the point a1

at time t = 0. At time t, we first compute the point at
0, which is the linear interplant

of t on the points a0
0 and a1

0; we then compute at
t , which is the point at

0 at time t
by using Eq. (2). If we impose the motion such that at

t is the closest point between
the point V and the plane containing F at time t, the distance constraint between the
point V and this plane can be expressed as:

V−dtNt = Rtat
0 + Tt , (12)

where dt is a linear interpolant on the signed distances d0 and d1; Nt = RtN0, where
N0 as the normal of the plane at q0.

Therefore, the translational component Tt is given as:

Tt = V−dt(RtN0)−Rtat
0. (13)

4.3 Motion Interpolation with (E,E) Distance Constraint

Lets consider the case when the closest features are both edges. The line containing
such edges on the robot and the obstacle are denoted as La and Lb, respectively (Fig.
2(a)). Moreover, we use the symbols b0 and a0

0 as the closest points on the lines Lb

and La, respectively, at time t = 0, while b1 and a1
1 are the closest points between

the lines at time t = 1. We further denote:

bt = (1− t)b0 + tb1,
at

0 = (1− t)a0
0 + ta1

0,
at

t = Rtat
0 + Tt ,

Nt = Normalize(Rt(a1
0−a0

0)× (b1−b0)).

(14)

If we impose the motion such that at
t and bt are the closest points between the

line La at time t and the line Lb, their distance constraint now can be expressed as:

Rtat
0 + Tt = bt + dtNt , (15)

where dt is a linear interpolant on the signed distances of d0 and d1.
Therefore, Tt can be represented as:

Tt = dtNt + bt−Rtat
0. (16)

One can show that our motion interpolation algorithm satisfies the distance con-
straint, as stated by the following lemma:
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Lemma 2. The motion interpolated by Eq. (11), (13), or (16) satisfies the input
distance constraint between the given feature pairs specified by Eq. (5), (7), or (9),
respectively.

5 Motion Interpolation: Multiple Distance Constraints

In the previous section, we presented our motion interpolation algorithm for a single
constraint. Our formulation had assumed that the closest features at configurations
q0 and q1 are same and thereby handle a single distance constraint. In this sec-
tion, we extend to the case of multiple distance constraints. We compute the locally
closest feature pairs between the robot and obstacles. We derive closed forms for
our constrained interpolation which can consider up to three locally closest feature
pairs. By taking into account multiple constraints, the resulting interpolating motion
conforms better to the local geometry of C-obstacles in the configuration space.

5.1 Two Distance Constraints

Similar to the earlier cases, we again assume that the rotational component of the
motion, Rt , is interpolated by a simple interpolant (e.g. linear interpolation). The
goal of our motion interpolation is to compute so that the signed distances between
each of two locally closest features vary according a given interpolant. This can be
expressed as: {

N0
t ·Tt + s0

t = 0,

N1
t ·Tt + s1

t = 0,
(17)

where Ni and si is any type of distance constraint formulated in Section 3.4.
The goal is to compute Tt for this system. With three unknown variables and

two equations, this is an under-constrained system. Furthermore, for a given value
of time t, the system is linear since both Ni

t and si
t can be calculated according to

our distance constraint formulation in Section 3.4. In general, the solution to this
linear system is a one-dimensional set. In order to solve the system, we specify one
more constraint explicitly as follows. The two equations at time t in Eq. (17) deter-
mine a line in R

3. We first compute a base point ζ at any time t (denoted as ζt ) on
this line: ⎧⎪⎨⎪⎩

N0
t ·ζt + s0

t = 0,

N1
t ·ζt + s1

t = 0,

N2
t ·ζt = 0.

(18)

Here N2
t is given as:

N2
t = Normalize(N0

t ×N1
t ). (19)
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Fig. 3. Computation of the translational component Tt of the interpolating motion with two
distance constraints. We use the distance constraints for each type of feature pair defined in
Section 3.4, and compute the vector N2

t accordingly.

ζ at time t can be easily computed by the following equation:

ζt =

⎡⎣N0
t

N1
t

N2
t

⎤⎦−1

[−s0
t ,−s1

t ,0]T . (20)

Based on it, we can show that both ζ0 and ζ1 are 0.
Now, the base point ζt is displaced along the direction N2

t . The equation to com-
pute Tt can be expressed as:

Tt = ζt + tλ N2
t

=

⎡⎣N0
t

N1
t

N2
t

⎤⎦−1

[−s0
t ,−s1

t ,0]T + tλ N2
t ,

(21)

where λ = T1 ·N2
1, so that the result of this equation at time t = 1 interpolates T1.

5.2 Three Distance Constraints

Next we consider the case when there are three pairs of closest features between the
robot and obstacles. In this case, we obtain a linear system with three constraints. In
general, Tt can be calculated by solving this linear system:⎧⎪⎨⎪⎩

N0
t ·Tt + s0

t = 0,

N1
t ·Tt + s1

t = 0,

N2
t ·Tt + s2

t = 0,

(22)

where Ni and si is any type of distance constraint formulated in Section 3.4, as
shown in Eqs. (6), (8) or (10).

Therefore:

Tt =

⎡⎣N0
t

N1
t

N2
t

⎤⎦−1

[−s0
t ,−s1

t ,−s2
t ]

T . (23)
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Fig. 4. Benchmarks: We highlight the collision-free paths computed for Notch-g, Alpha Puz-
zle and Flange benchmarks. Each benchmark has narrow passages. The performance im-
provement using our constrained motion interpolation algorithm is summarized in Table 2.

Lemma 3. The motion computed by Eq. (21) or (23) satisfies the input two or three
distance constraints between the given feature pairs.

5.3 Degenerate Situations

Our algorithm to compute the interpolating motion with multiple distance con-
straints is general. Depending on the specific pairs of closest features, it uses the
appropriate formulations derived in Section 3.4. However, the formulation can re-
sult in degenerate situations, which can happen during the normalization operation
in Eq. (19) or the matrix inverse operation in Eqs. (21) and (23). Conceptually,
the degeneracy happens when Nt for two specific constraints becomes parallel at
some time t. We can easily detection these situations by computing a bound on
dot-product of Nt for the whole interval t ∈ [0,1], either using discrete sampling or
a continuous scheme based on interval arithmetic computation. Once a degenerate
case is detected, our algorithm generates a new motion interpolation by only con-
sidering a subset of the given distance constraints (e.g. only one constraint instead
of two constraints).

6 Implementations and Performance

We have implemented our constrained motion interpolation algorithm and used it
for local planning step in sample-based motion planning. All the timings reported
in this section were taken on a 3.6GHz Xeon PC.

6.1 Implementation and Performance

Our implementation makes no assumption about the models or connectivity and is
applicable to all general rigid models that can be represented as polygonal soups.



Constrained Motion Interpolation with Distance Constraints 379

Table 1. This table gives a breakdown of the timing among different steps of a local planner
that uses our constrained interpolation algorithm. This table presents the average timings per
query in milli-seconds on different benchmarks. Most of the time is spent is spent in collision
checking, which is similar to other local planners.

Notch-g Alpha Puzzle Flange
Compute closest features (ms) 1.315 2.045 18.619

Formulate distance constraints (ms) 0.046 0.137 0.179

Collision checking (ms) 9.418 26.193 69.452

Distance Computation for Polygonal Soup Models: In order to compute multiple
closest feature pairs between the robot and the obstacles, we extend a distance com-
putation algorithm in library - PQP [13]. More specifically, we determine all feature
pairs between the robot at q0 and q1, and obstacles, whose distances are less than a
user-specified tolerance. This can be efficiently performed by making use of bound-
ing volume hierarchy in PQP. We then use a simple heuristic of clustering to choose
a set of representative feature pairs, i.e. the locally closest feature pairs between the
models [21]. As shown in Fig. 5, we compute two locally closest feature pairs in (a)
and three pairs in (b). Compared with other distance computation algorithms (such
as Lin-Canny or GJK algorithms), our implementation is able to handle polygonal
soup models and compute a set of locally closest feature pairs.

Constrained Motion Interpolation: We use the set of locally closest feature pairs
to setup the distance constraints for computing the interpolation motion. Our formu-
lation can take up to three feature pairs. If any feature pair results in a degeneracy
situation, we ignore that pair. Table 1 highlights the performance of our constrained
interpolation algorithm, showing a breakdown of timing in different steps of the
algorithm on various benchmarks. There is very little extra overhead of using our
algorithm to compute the motion.

Collision Checking: Though our algorithm guarantees no collisions between the
closest features, we still need to check whether there are collision between other
features of the robot and obstacles. Currently, we use the simplest method by gener-
ating a finite number of discrete samples and performing discrete collision detection
at those samples.

6.2 Integration with Sample-Based Planners

Sample-based planners randomly generate samples and connect nearby free-space
samples using local planning algorithms. To improve the overall performance of
planners, many sampling strategies have been proposed to increase the probabil-
ity of sampling in narrow passages. Instead, our motion interpolation algorithm is
used to improve the local planning step. In general, our interpolation algorithm is
more useful for sampling strategies which tend to generate more samples near con-
tact space [2, 15, 16, 4, 22]. For samples in open free space, simple interpolation
schemes such linear interpolation can work well. However, when samples are closer
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Table 2. Benefit of our constrained motion interpolation algorithm: We compare our lo-
cal planner based on constrained motion interpolation with other interpolation schemes. All
these local interpolation algorithms were integrated with a retraction-based RRT planner and
applied to different benchmarks. This table presents the average timings on computing a
collision-free path on different benchmarks. In models with complex narrow passages, like
Notch-g and Alpha Puzzle, we observe significant speedups due to our planner. Moreover,
the resulting planner needs to generate fewer samples.

Notch-g Alpha Puzzle Flange
Constrained Motion (timing) 56.4s 1,043.0s 33.4s

Constrained Motion (# samples) 2,659 53,535 80

Linear Interpolation (timing) 272.1s 1,861.4s 46.3s
Linear Interpolation (# samples) 11,762 94,283 117

Slerp Interpolation (timing) 295.9s 2,029.8s 50.6s
Slerp Interpolation (# samples) 12,568 113,298 113

(a) (b)

Fig. 5. Motion Interpolation With Distance Constraints: given two configurations q0 and q1,
our algorithm computes a constrained interpolating motion (two constraints in (a) and three
constraints in (b)). The resulting motion is more likely collision-free.

to the C-obstacle boundary or lie in narrow passages, they are more difficult to be
connected. To address this issue, our constrained motion interpolation formulation
takes into account the position of C-obstacle.

In our experiment, we integrate our interpolation algorithm with a variant RRT
planner, namely RRRT [22]. The RRRT planner uses a retraction-based sampling
strategy to generate more samples near the contact space and bias the exploration
towards difficult or narrow regions. We use our constrained motion interpolation to
connect samples near contact space. For the other samples (e.g. in the open free
space), we use a simpler interpolation scheme, such as linear interpolation. In our
current implementation, we perform discrete collision checking on a finite number
of samples along the interpolated motion.

Table 2 highlights the performance improvement in our new planner on different
benchmarks. The total timing and the number of nodes in the resulting RRT tree are
reported. We observe the overall performance improvement on these benchmarks.
In Fig. 7, we highlight the performance on a more complex benchmark for part
disassembly application.
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7 Properties and Extensions

In this section, we first highlight some properties of our constrained motion inter-
polation scheme. We further show the extensions to compliant motion planner and
articulated robots.

7.1 Coordinate-Invariance Property

Our formulation of constrained motion interpolation is coordinate-invariant.We out-
line the proof as follows and omit the detailed proof due to the space limitation.
First, the formulation is left-invariant w.r.t the choice of the inertial frame of the
robot. This can be proved in a similar way as [20] by replacing the exponential map
with the transformation matrix for representing rotational components. Secondly,
the formulation is also right-invariant w.r.t the choice of the body-fixed frame of
the robot. Consider the simplest (V,F) closest feature case. In this motion equation
Eq. (11), the terms x0, V0 and V1 do not vary w.r.t the change of the body frame.
Therefore, the position xt does not change as well. This guarantees right-invariance.
For the other cases, we can prove this property in a similar manner.

7.2 Visibility Function Formulation

Our interpolation scheme can improve the visibility between samples near contact
space and in narrow passages. In many ways, our constrained motion interpolation
algorithm can be interpreted as defining a new visibility function between nearby
configuration that is more effective for sample-based planners. This is shown by Ta-
ble 3. We generate a set of samples near the contact space of the robot and obstacles.
Then we performs link queries among adjacent samples by using different interpo-
lation schemes in each experiment. We compute the failure ratio of link queries,
which is defined as the number of link queries reporting collisions divided by the
total number of link queries performed between the samples near the contact space.
Table. 3 highlights the improved ratios obtained using constrained motion interpo-
lation algorithm.

7.3 Compliant Motion Generation

Given two contact configurations q0 and q1, our algorithm can be used to interpolate
a motion, which maintains a contact among the closest features pairs at q0 and q1.
In order to generate such a motion, the signed distances d0 and d1 in our distance
constraint formulations are set as zero, since q0 and q1 are contact configurations.
Fig. 5(b) shows the motion that maintains the contact among the given feature pairs
along the trajectory. We still need to check whether any other features of the robot
have penetrated into the obstacle. This formulation can be combined with sample-
based compliant motion planners [11].
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q0 q1
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qt

V

Fig. 6. Articulated Models: our interpolation scheme can be potentially applied to articulated
models.

Table 3. Improved Visibility Formulation near Contact Space: Our constrained motion inter-
polation algorithm is more effective in connecting the samples near the contact space.

Notch-g Alpha Puzzle Flange
Constrained Motion 27.62% 13.22% 16.41%
Linear Interpolation 47.02% 27.82% 22.19%
Slerp Interpolation 46.60% 28.63% 26.57%

7.4 Articulated Models

In Sections 4 and 5, we described our algorithm for rigid robots. In this section,
we present a simple heuristic to extend the approach to articulated models. Fig.
6 illustrates a simple scheme for a serial chain robot with movable base. We first
compute the link of the robot that is closest to the obstacles. When the robot is near
the obstacle, this link would be a likely candidate for collisions with the obstacle. We
treat this link as a rigid robot and compute a constrained interpolating motion for it
between the two configurations based on the algorithm described in Section 5. Given
the motion of this link, we use inverse kinematics to compute the interpolating path

Fig. 7. Disassembly of a Seat outside a Car Body: for this complex benchmark, our plan-
ner using constrained motion takes 181.2s while the same planner using linear motion takes
242.7s.
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for the other links. Intuitively speaking, we are imposing the geometric constraint on
the motion of the link which is most likely to result in collisions with the obstacles.

8 Conclusion and Future Work

We present a simple and general algorithm for motion interpolation and local plan-
ning. Based on the closest features at the two configurations, we derive closed for-
mulations of the trajectories. The main additional overhead is the computation of
closest features. Our local planning algorithm can be combined with sample-based
planners. The main benefit of our approach arises in computing collision-free paths
in narrow passages, especially when the samples are very close to the boundary of
the contact space. In that case, the paths computed using straight-line linear interpo-
lation, spherical linear interpolation or screw motion may overlap with the obstacles.
On the other hand, our formulation adapts to the boundary of the contact space and
can generate collision-free paths more likely. As a result, we observe speedups in
the performance of overall planner.

Limitations: Our approach has a few limitations. The closed-form formulas for
motion interpolation are more complex as compared to other interpolation schemes
(e.g. linear interpolation). As a result, there is some additional overhead of comput-
ing feature pairs. Furthermore, the parameterization of the constrained motion is not
uniform, and we may need to reparameterize in order to compute appropriate dis-
crete samples for collision checking. Most of the prior algorithms for local planning
and exact collision checking [18] work well in relatively open space. Therefore, our
algorithm is applied only for the cases when the robot becomes nearer any obsta-
cle within a user-defined parameter. This introduces a new parameter that has to be
optimized.

Future Work: There are many avenues for future work. We would like to design
efficient continuous collision detection algorithm based on motion bound computa-
tion. One difficulty is to compute the bounds for the constrained motion with mul-
tiple constraints. Furthermore, we would like to perform a detailed performance
evaluation on articulated robots with serial and parallel joints. Finally, it may be
possible to further improve the performance of the planner by designing appropri-
ate sampling strategies and nearest neighbor selection algorithms that can take into
account some of the properties of our motion interpolation algorithm.
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Generating Uniform Incremental Grids on
SO(3) Using the Hopf Fibration

Anna Yershova, Steven M. LaValle, and Julie C. Mitchell

Abstract. The problem of generating uniform deterministic samples over the ro-
tation group, SO(3), is fundamental to many fields, such as computational struc-
tural biology, robotics, computer graphics, astrophysics. We present the best-known
method to date for constructing incremental, deterministic grids on SO(3); it pro-
vides the: 1) lowest metric distortion for grid neighbor edges, 2) optimal dispersion-
reduction with each additional sample, 3) explicit neighborhood structure, and 4)
equivolumetric partition of SO(3) by the grid cells. We also demonstrate the use of
the sequence on motion planning problems.

1 Introduction

Discretization of SO(3), the space of 3D rotations, is a difficult problem that arises
in numerous engineering and scientific fields. Examples include biological protein
docking problems, robot motion planning, aerospace trajectory design, and quan-
tum computations. Typical operations on this space include numerical optimiza-
tion, searching, integration, sampling, and path generation. Multiresolution grids
are widely used for many of these operations if the space is nicely behaved, as in
the case of rectangular subsets of R

2 or R
3.

It would be wonderful to achieve the same for SO(3); however, the space of 3D
rotations is substantially more complicated. In its basic form, SO(3) is defined as a
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set of matrices that satisfy orthogonality and orientation constraints. It is an implic-
itly defined, three-dimensional surface embedded in R

9. One approach is to place
a coordinate systems on the surface, causing it to behave like a patch in R

3. How-
ever, any such coordinates cause metric distortions in comparison to distances on the
original surface. Only few representations of SO(3), such as quaternions, preserve
distances and volumes. They treat SO(3) as a unit sphere S3 ⊂ R

4 with antipodal
points identified. The volumes of surface patches on S3 correspond to the unique
Haar measure for SO(3), which is the only way to obtain distortion-free notions of
distance and volume. This implies that if we want to make multiresolution grids
on SO(3), we are faced with warping them onto S3. Such curvature prohibits the
introduction of distortion-free grids, similarly to the problem of making distance-
preserving maps of the world (e.g., Greenland usually looks too big on a flat map).
In addition, the identification of antipodal points causes a minor complication in that
only half of S3 is used, with unusual connectivity in the equatorial three-plane.

Due to widespread interest in discretizing SO(3) in numerous fields, there have
been considerable efforts in the past. The problem of generating point sets on
spheres minimizing such criteria as energy functions, discrepancy, dispersion, and
mutual distances has been extensively studied in mathematics and statistics [5, 18,
19]. Problems of sampling rotational groups and spheres have been applied in the
context of computational structural biology, physics, chemistry, computer graphics,
and robotics [4, 12, 14, 17, 20, 21].

In this paper, we introduce the best-known deterministic method to date for SO(3)
that provides the: incremental generation, optimal dispersion reduction with each
additional sample, explicit neighborhood structure, lowest metric distortion for grid
neighbor edges, and equivolumetric partition of SO(3) into grid cells.

The rest of the paper is organized around the presentation of the method. Section
2 defines the topological properties of SO(3) together with different parametriza-
tions and coordinate systems that are crucial for presenting our method. Section 3
overviews sampling requirements for the sequence. We discuss the relevant sam-
pling methods that influenced our work in Section 4. Finally, we present our method
in Section 5 and experimental results in application to several motion planning prob-
lems in Section 6. We conclude our work in Section 7.

2 Properties and Representations of SO(3)

The special orthogonal group, SO(3), arises from rotations around the origin in R
3.

Each rotation, by definition, is a linear transformation that preserves the length of
vectors and orientation of space. The elements of SO(3) form a group, with the
group action being the composition of rotations. SO(3) is not only a group, but also
a manifold, which makes it a Lie group.

• Topology of SO(3). SO(3) is diffeomorphic to the real projective space, RP
3. It

is hard to visualize the real projective space, because it can not be embedded in
R

3. Fortunately, it can be represented as RP
3 = S3/(x∼−x), the more familiar

3-sphere, S3, embedded in R
4, with antipodal points identified. Topologists say
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that the 3-sphere is a double covering of RP
3, since one point of the projective

space has two corresponding points on the 3-sphere.
• Haar Measure on SO(3). Up to a scalar multiple, there exists a unique measure

on SO(3) that is invariant with respect to group actions. This is called the Haar
measure. That is, the Haar measure of a set is equal to the Haar measure of all
of the rotations of the set. In our particular situation, we can think of the Haar
measure as being invariant under all orthogonal coordinate changes. The Haar
measure is an intrinsic property of SO(3) which comes from the group structure,
and is independent of its topological structure.

We have not used any coordinate system or parametrization of SO(3) yet, since
the notion of Haar measure is very abstract. One has to use extreme caution when
expressing the measure in terms of any of the representations we describe next. Not
all of these naturally preserve the Haar measure.

• Quaternions. One of the most useful representations of the projective space
is the set of quaternions. Let x = (x1,x2,x3,x4) ∈ R

4 be a unit quaternion,
x1 +x2i+x3j+x4k, ||x||= 1, representing a 3D rotation. Because of the topolog-
ical relationship between the projective space and the 3-sphere, once the identi-
fications of the opposite points on the 3-sphere are taken into account, metrics
similar to those defined for the 3-sphere can be used for the projective space.
Moreover, such metrics will respect the Haar measure on SO(3).

The most natural way to define a metric for any two points x,y ∈RP
3 is as the

length of the shortest arc between x and y on the 3-sphere:

ρ
RP3(x,y) = cos−1 |(x · y)|, (1)

in which (x ·y) denotes the dot product for vectors in R
4, and the absolute value,

| . |, guarantees that the shortest arc is chosen among the identifications of the two
quaternions [7].

Quaternion representation is also useful for calculating the composition of
rotations, which is expressed as multiplication of quaternions. Any rotation in-
variant surface measure on S3 naturally preserves the Haar measure for SO(3)
and can be used for quaternions. However, the surface measure is not straight-
forwardly expressed using quaternions. Other representations, such as spherical
or Hopf coordinates, are more convenient for measuring the volume of surface
regions.

• Spherical Coordinates for SO(3). Because of the relationship between the 3-
sphere and RP

3, hyperspherical coordinates can be used for SO(3). Consider
a point (θ ,φ ,ψ) ∈ S3, in which ψ has a range of π/2 (to compensate for the
identifications, we consider only one hemisphere of S3), θ has a range of π , and
φ has a range of 2π . For each ψ , the ranges of θ and ψ define a 2-sphere of radius
sin(ψ). The quaternion x = (x1,x2,x3,x4) corresponding to the rotation (θ ,φ ,ψ)
can be obtained using the formula:
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x1 = cos(ψ)
x2 = sin(ψ)cos(θ )
x3 = sin(ψ)sin(θ )cos(φ)
x4 = sin(ψ)sin(θ )sin(φ).

(2)

The volume element of the SO(3) defines the Haar measure and has the following
expression in spherical coordinates:

dV = sin2(ψ)sin(θ )dθ dφ dψ (3)

This representation is not convenient for integration though, because of the com-
plicated expression for the Jacobian. Spherical coordinates are also cumbersome
for computing compositions of rotations.

• Hopf Coordinates for SO(3). As opposed to spherical coordinates for hyper-
spheres, the Hopf coordinates are unique for the 3-sphere, and thus for RP

3.
They naturally describe the intrinsic structure of both the 3-sphere and RP

3 and
provide a natural tool for obtaining uniform distributions on these spaces.

The Hopf fibration describes RP
3 in terms of a circle S1 and an ordinary 2-

sphere S2. Intuitively, RP
3 is composed of non-intersecting fibers, such that each

(a) (b)

(c) (d)

Fig. 1. Visualization of the spherical and Hopf coordinates on SO(3) using angle and axis
representation. This representation corresponds to a projection of the S3 onto the equatorial
solid sphere which we draw in R3. (a) The full range of the spherical coordinate ψ ∈ [0,π/2]
is shown while the coordinates (θ ,φ) form a discretization of size 20 over S2. (b) The half-
spheres show the ranges of the spherical coordinates (θ ,φ), while ψ takes four discrete values
over [0,π/2]. (c) The full range of the Hopf coordinate ψ ∈ [0,2π] is shown while the coor-
dinates (θ ,φ) form a discretization of size 12 over S2. (b) The spheres show the ranges of the
Hopf coordinates (θ ,φ), while ψ takes four discrete values over S1.
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fiber is a circle corresponding to the 2-sphere. This fiber bundle structure is de-
noted as RP

3 ∼= S1⊗̃S2. The Hopf fibration has the important property of lo-
cally being a Cartesian product space. The projective space, RP

3, however, is not
(globally) a Cartesian product of S2 and S1. Intuitively, RP

3 is the product of S2

and S1 similarly to the way the Möbius band is locally the Cartesian product of
an interval and a circle S1. That is, locally a sequence of coordinates from each
subspace results in a global parametrization of the space, whereas the global em-
bedding into the Euclidean space does not have the Cartesian product structure.
The Hopf coordinates can also be used for the 3-sphere, because of the topologi-
cal relationship between the 3-sphere and RP3.

Each rotation in Hopf coordinates can be written as (θ ,φ ,ψ), in which ψ
parametrizes the circle S1 and has the range of 2π . The ranges of θ and φ are π
and 2π respectively, and they represent spherical coordinates for S2. The trans-
formation to a quaternion x = (x1,x2,x3,x4) can be expressed using the formula:

x1 = cos(θ/2)cos(ψ/2)
x2 = cos(θ/2)sin(ψ/2)
x3 = sin(θ/2)cos(φ + ψ/2)
x4 = sin(θ/2)sin(φ + ψ/2).

(4)

Equation (4) represents each rotation from SO(3) as the rotation by an angle
ψ ∈ S1 around an axis z, followed by the rotation, which places z in a position
(θ ,φ) ∈ S2. Formula (4) is obtained after the composition of the two rotations.
The volume element on RP

3 which respects the Haar measure is then defined as
the surface volume on S3:

dV = sinθ dθ dφ dψ . (5)

Note that sinθ dθ dφ represents the surface area on the 2-sphere, and dψ is the
length element on the circle. This formula additionally demonstrates that the vol-
umes from the two subspaces, S2 and S1, are simply multiplied to obtain the vol-
ume on SO(3). The Hopf coordinates, though, are not convenient for expressing
compositions of rotations.

• Axis-Angle Representation for SO(3). One of the most intuitive ways to repre-
sent rotations is by using Euler’s theorem, which states that every 3D rotation
is a rotation by some angle θ around a unit axis n = (n1,n2,n3), ||n|| = 1. The
transformation from angle and axis representation to quaternions is achieved by:

x = (cos(θ/2),sin(θ/2)n1,sin(θ/2)n2,sin(θ/2)n3). (6)

The angle and axis representation is useful for visualizing the projective space
in R3. Each rotation is drawn as a vector with direction n and a magnitude cor-
responding to θ (a multiple or a function of θ can be used; see Section 5.5, and
[1]). Figure 1 shows the visualization of the spherical and Hopf coordinates on
SO(3) using the angle and axis representation. From this visualization one can
immediately notice the singularities produced by the spherical coordinates. It is
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also possible to see the advantage of using Hopf coordinates from this visualiza-
tion. Hopf coordinates do not introduce singularities. The circles represented by
the range of the variable ψ are non-intersecting; they uniformly cover the SO(3).
The fiber structure formed by these circles is also seen on the figure.

• Euler Angles Representation. Euler angles are often used in robotics to represent
rotations. Each rotation is then a vector (x1,x2,x3),xi ∈ [−π ,π ]/−π ∼ π . The
topology of the resulting space is S1× S1× S1, and, therefore, Euler angles do
not correctly capture the structure of SO(3). There are many detrimental con-
sequences of this. Special tricks (see [7]) are needed to implement metric and
measure that preserve Haar measure. Moreover, Euler angles are hard to com-
pose, and present problems of singularities and the gimbal lock [15, 22]. In the
rest of the paper we use Hopf coordinates and quaternions to represent rotations.

3 Sampling Terminology and Problem Formulation

In applications such as motion planning the algorithms are often terminated early
and the particular order in which samples are chosen becomes crucial. Sampling lit-
erature distinguishes between a sample set and a sample sequence. For a sample set,
the number of points, n, is specified in advance, and a set of n points is then chosen
to satisfy the requirements of the method. The notion of ordering between points is
not defined for a sample set but becomes important for sequences. Successive points
in a sequence should be chosen carefully so that the resulting sample sets are all of
good quality. Sequences are particularly suitable for motion planning algorithms, in
which the number of points needed to solve the problem is not known in advance.

Now that the background definitions for SO(3) have been presented in Section 2,
to generate samples over SO(3) we need to formulate the desirable properties for the
samples. The first requirement is that samples form a sequence. We also require that
samples get arbitrarily close to every point in SO(3), i.e. that the sequence of sam-
ples is dense in SO(3). Next we formulate several requirements on the uniformity
properties of samples.

3.1 Discrepancy and Dispersion

Additional requirements that the sequence needs to satisfy are described by the uni-
formity measures, discrepancy and dispersion.

Intuitively, discrepancy can be thought of as enforcing two criteria: first, that no
region of the space is left uncovered; and second, that no region is left too full.
Dispersion eliminates the second criterion, requiring only the first. It can be shown
that low discrepancy implies low dispersion [11].

To define discrepancy, choose a range space, R, as a collection of subsets of
SO(3). Let R ∈R denote one such subset. Range spaces that are usually considered
on spheres are the set of spherical caps (intersections of the 3-sphere with half-
spaces) or the set of spherical slices (intersections of two 3-hemispheres) [13], which
can be used on SO(3) once the identifications of the 3-sphere are taken into account.



Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration 391

Random Succ. Orth. Images Layered Sukharev HEALPix this work
incremental yes no yes no yes
uniform yes yes no yes yes
deterministic no yes yes yes yes
grid no no/yes yes yes yes
spaces SO(3) SO(n) SO(3) and Sn S2 SO(3)

Fig. 2. The comparison of different sampling methods related to the problem of Section 3.2.
The rows correspond to the desired properties of these methods.

Let μ(R) denote the Haar measure of the subset R. If the samples in the set
P are uniform in some ideal sense, then it seems reasonable that the fraction of
these samples that lie in any subset R should be roughly μ(R) divided by μ(SO(3))
(which is simply π2). We define the discrepancy [11] to measure how far from ideal
the sample set P is:

D(P,R) = sup
R∈R

∣∣∣∣ |P∩R|
N

− μ(R)
μ(SO(3))

∣∣∣∣ (7)

in which | · | applied to a finite set denotes its cardinality.
While discrepancy is based on measure, a metric-based criterion, dispersion, can

be introduced:
δ (P,ρ) = max

q∈SO(3)
min
p∈P

ρ(q, p). (8)

Above, ρ denotes any metric on SO(3) that agrees with the Haar measure, such as
(1). Intuitively, this corresponds to the spherical radius of the largest empty ball that
fits in between the samples (assuming all ball centers lie on SO(3)).

3.2 Problem Formulation

In summary, the goal of this paper is to define a sequence of elements from SO(3)
which:

• is incremental and deterministic
• minimizes the dispersion (8) and discrepancy (7) on SO(3),
• has grid structure with respect to the metric (1) on SO(3).

4 Sampling Methods Overview

Our work was influenced by many successful sampling methods developed recently
for spheres and SO(3). As demonstrated in the table of Figure 2, several of them
are highly related to the problem formulation in Section 3.2. However, none of the
methods known to date has all of the desired properties.

Random Sequence of SO(3) Rotations. There are several ways of sampling the
space of rotations uniformly at random [16, 23]. The subgroup algorithm [2] for
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selecting random elements for SO(3) is the most popular method for uniform ran-
dom sampling of SO(3). Essentially, this method utilizes the Hopf coordinates. An-
other way of obtaining uniformly distributed random samples over SO(3) is by using
spherical symmetry of the multidimensional Gaussian density function [3]. Random
sequences of rotations are used in many applications, however, they lack determin-
istic uniformity guarantees, and the explicit neighborhood structure.

Successive Orthogonal Images on SO(n). Related to the subgroup method for gen-
erating random rotations is the deterministic method of Successive Orthogonal Im-
ages [10], which generates lattice-like sets with a specified length step based on
uniform deterministic samples from the subgroup, S1, and the coset space, S2. The
method utilized Hopf coordinates, and is also generalized to arbitrary SO(n).

The deterministic point sets can be applied to the problems in which the number
of the desired samples is specified in advance. If the sample on S2 is chosen so that
it has a grid structure, the resulting sample on SO(3) has the explicit neighborhood
structure. Part of the current work will be in applying this method in a way that
provides the incremental quality necessary for our motion planning applications.

Layered Sukharev Grid Sequence. Uniform, deterministic sequences were first
designed for the unit cube [8]. To minimize dispersion, the method places one res-
olution of grid at a time inside of the unit cube. A discrepancy-optimal ordering is
then generated for each resolution. The sequence can be extended to spheres, and
SO(3) [22] using the projection from faces of an inscribed cube. For SO(3), though,
the distortions produced by the method result in some grid cells being four times the
volume of others.

The general method for designing Layered Sukharev Grid sequences inside
Cartesian products was later presented in [9]. Our current paper builds on top of
these works by combining the method in [9], with the Successive Orthogonal Im-
ages [10] generation of rotations, Hopf coordinates, and the HEALPix spherical
sampling method [4] described in the next section.

HEALPix. The HEALPix package [4] was designed for applications in astro-
physics. It provides a deterministic, uniform, and multiresolution sampling method
for the 2-sphere with additional properties, such as equal-area partitioning, and iso-
latitude sampling on the 2-sphere.

The method takes advantage of the measure preserving cylindrical projection of
the 2-sphere. This intrinsic property of the 2-sphere cannot be generalized directly
to higher dimensional spheres. However, this work shows that an extremely uniform
grid can be constructed on such a non-trivial curvature space as the 2-sphere. It is
also not difficult to make this grid incremental using the method from [9].

5 Our Approach

In this section we present an approach which satisfies all of the requirements of
Section 3.2, and Figure 2. The fiber bundle structure of SO(3) locally behaves sim-
ilarly to the Cartesian product of two spaces, S1, and S2. Therefore, the method
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(a) (b) (c) (d)

Fig. 3. Different sampling methods on S2. (a) 200 random samples (b) 192 Sukharev grid
samples [22] (c) icosahedron samples (d) 216 HEALPix samples [4]

presented in [9] for constructing multiresolution grid sequences for Cartesian prod-
ucts of spaces, can be used for constructing a grid sequence on SO(3). The resulting
rotations are computed using the Hopf coordinates, as was first described in [10].
It is a much simpler problem to construct nicely behaved grids on the 1-sphere and
2-sphere. Hopf coordinates allow the two grids be lifted to the space of rotations
without loss of uniformity. Next we outline the details of this construction.

Let ψ be the angle parametrizing the circle, S1, and (θ ,φ) be the spherical co-
ordinates parametrizing the sphere, S2. Using these coordinates, define T1 to be the
multiresolution grid over the circle, and T2 be the grid over the sphere. Let m1 and m2

be the number of points at the base resolution 0 of the grids T1 and T2 respectively.
There are numerous grids that can be defined on S2 (see Figure 3 for an illus-

tration of some). In this work we have selected the HEALPix grid [4] on S2, and
the ordinary grid for S1. Both of these grids are uniform, have simple neighborhood
structure, and can have multiple resolutions.

Next consider the space S2⊗̃S1. The multiresolution grid sequence that we define
for SO(3) has m1 ·m2 ·23l points at the resolution level l, in which every successive
23 points define a cube in Hopf coordinates. Each element of the sequence is ob-
tained by combining the corresponding coordinates in the subspaces, p = (θ ,φ ,ψ),
using formula (4). If the grid regions are defined on the two subspaces S1 and S2,
the corresponding grid regions are also obtained on SO(3) by combining the cor-
responding coordinates. The dispersion, and discrepancy of the resulting sequence
can be easily computed using the representation for the metric and volume element
from equations (1), and (5).

5.1 Choosing the Base Resolution

One of the issues arising when combining the two grids from S1 and S2 is the length
of a grid cell along each of the coordinates. For this we have to match the number
of cells in each base grids on both of the subspaces, so that they have cell sides of
equal lengths [10]. That is, the following equation should hold for m1 and m2:

2π
m1

=
√

4π
m2

, (9)

in which 2π is the circumference of the circle S1, and 4π is the surface area of S2.
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Fig. 4. The base grid of the HEALPix sequence consists of 12 points. The cylindrical pro-
jection of the grid cells from S2 to (cos(θ ),φ) coordinates is shown. Each next resolution
subdivides each of the spherical squares into 4 squares of equal area[4].

In our particular case, the base HEALPix grid consists of m2 = 12 cells, and the
surface area of each cell is equal to 4π/12 = π/3 (Figure 4). Therefore, the length
of the side of each grid cell is approximately the square root of that value, that is
1. Then, the number of points in the base resolution of the grid on S1 needs to be
m1 = 6, since it should be close to the length of the circle, which is 2π . Therefore,
the base grid of the sequence for SO(3) consists of m1 ·m2 = 6 ·12 = 72 points (the
projections of the grid regions on the Hopf coordinates are shown on Figure 5).

5.2 Choosing the Base Ordering

The next step is to choose the ordering of the m = m1m2 points within the base
resolution on SO(3). In general, the initial ordering will influence the quality of the
resulting sequence, and a method similar to [9] can be used for deciding the ordering
of the general base sequences.

In our case we have to define the ordering on the first 72 points of the sequence
(see Figure 5 for the illustration of the associated grid regions). To do this, one
can notice that there are antipodal grid cells in both of the subspaces. Removing
antipodal cells from the final sequence can significantly eliminate the number of the
base resolution grid cells on SO(3).

In our preliminary experiments in the application to motion planning problems
(Section 6) we have manually selected such an ordering. However, it is possible
to design a program that would run through the orderings and select the ones that
minimize the discrepancy. For the further analysis results we assume that the optimal
ordering function fbase : N → [1, . . .72] is given.
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θcos

ψ

ϕ

Fig. 5. The base grid of the proposed SO(3) sequence consists of 72 points. For the Hopf
coordinates (θ ,φ ,ψ) the projections of the grid cells on each of the coordinates are shown.
Grid cells for ψ are chosen according to the ordinary grid on S1. The grid cells for (cos(θ ),φ)
are obtained using HEALPix.

5.3 The Sequence

The sequence for SO(3) is constructed one resolution level at a time. The order in
which the points from each resolution level are placed in the sequence can be de-
scribed as follows. The ordering fbase() of the first m points in the base resolution
determines the order of the grid regions within SO(3) and is taken from the previ-
ous section. Every successive m points in the sequence should be placed in these
grid regions in the same order. Each of the grid regions is isomorphic to the [0,1]3,
and is subdivided into 8 grid regions in each successive resolution. Where exactly
each point should be placed within each of the grid regions is determined by the
ordering fcube : N → [1, . . .8] and recursion procedure defined for the cube [0,1]3

in [8].
The resulting procedure for obtaining the coordinates of the ith element in the

sequence is the following:

1. Assign fbase(i) to be the index of the base grid region that the i-th element has to
be placed within.

2. Assign the ceiling of the division, icube = �i/m�, to be the index that determines
the subregion of the region fbase(i) that the i-th element has to be placed within.

3. Call the recursive procedure from [8] to determine the coordinates of the subre-
gion of the cube [0,1]3 determined by the index icube and the ordering fcube. The
i-th element is then placed within this subregion of the fbase(i) region.

5.4 Analysis

Several claims, similar to those obtained in [8], can be made for the new approach.
The most important distinction is that the new sequence provides equal volume par-
tition of the SO(3) which results in strong dispersion guarantees.

Proposition 5.1. The dispersion of the sequence T at the resolution level l satisfies:
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δ (T )≤ 2 sin−1

⎛⎝1
2

√
δ 2(T2)+

(
π

m12l

)2
⎞⎠ ,

in which δ (T2) is the dispersion of the sequence T2 defined over S2.

Proof: The bound follows directly from the Pythagorean theorem, and the disper-
sion bound on the ordinary grid T1 at the resolution level l. ��

Proposition 5.2. The sequence T has the following properties:

• It is discrepancy-optimal with respect to the set of grid regions defined over S1

and S2.
• The position of the i-th element of T can be generated in O(log i) time.
• For any i-th sample any of the 2d nearest grid neighbors from the same layer can

be found in O((log i)/d) time.

Proof: The proof closely follows similar considerations in [8]. ��

5.5 Visualization of the Results

To visualize our sequence and compare it with other sequences designed for SO(3),
we use the angle and axis, (θ ,n), representation from Section 2. It can be shown
that if the rotations are uniformly distributed, then the distribution of an angle θ is
(sin(θ )−θ )/π [1]. This allows us to draw the elements of SO(3) as the points inside
a ball in such a way that every radial line has uniform distribution of elements. This

(a) (b)

(c) (d)

Fig. 6. Different sets of samples on SO(3) (a) 2000 random samples (b) 2048 Sukharev grid
samples (c) 1944 icosahedral samples (d) 1944 HEALPix samples
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(a) (b)

Fig. 7. Motion planning problems involving: a) moving a robot (black) from the north pole
to the south pole. Multiple views of the geometry of the problem are shown (obstacles are
drawn in lighter shades); and b) moving a robot along the corridor.

provides a more intuitive visualization, which partially preserves the uniformity.
See Figure 6 for visualization of several of the methods of sampling over SO(3),
compared to the proposed approach. Specifically, the images show points in the
direction of the axis of rotation and with distance to the origin equal to (sin(θ )−
θ )/π . Using this representation, the distribution of points increases linearly as a
function of distance from the origin. In comparison, a set of points that was uniform
with respect to the measure on R

3 would have a distribution that varies as the cube
of distance from the origin.

6 Application: Motion Planning

We have implemented our algorithm in C++ and applied to implementations of
PRM-based planner [6] in the Motion Strategy Library. The experiments were per-
formed on a 2.2 Ghz Pentium IV running Linux and compiled under GNU C++.

It is important to note that the experiments we present here are just one of possible
applications of the developed sequences to motion planning problems. Alternate
applications may exist in other areas of computer science, or related fields.

In our experimental setup we consider the rotation-only models for which the
configuration space is SO(3). For the two problems shown in Figure 7 we have
compared the number of nodes generated by the basic PRM planner using the
pseudo-random sequence (with quaternion components [16]), the layered Sukharev
grid sequence, and the new sequence derived from the use of Successive Orthogo-
nal Images, the HEALPix method and incremental Sukharev ordering. For the first
problem the results are: 258, 250, and 248 nodes, respectively. To solve the second
problem the PRM planner needed 429, 446 and 410 nodes, respectively. In each trial
a fixed, random quaternion rotation was premultiplied to each deterministic sample,
to displace the entire sequence. The results obtained were averaged over 50 trials.

Based on our results we have observed that the performance of our method is
equivalent or better than the performance of the previously known sequences for the
basic PRM-based planner. This makes our approach an alternative approach for use
in motion planning. It is important to note, however, that for some applications, such
as verification problems, only strong resolution guarantees are acceptable.
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7 Conclusions

In conclusion, we have developed and implemented a deterministic incremental grid
sequence on SO(3) that is highly uniform, can be efficiently generated, and divides
the surface of SO(3) into regions of equal volume. Sequences that minimize unifor-
mity criteria, such as dispersion and discrepancy, at each step of generation are espe-
cially useful in applications in which the required number of samples is not known
in advance. One such application is robotic motion planning. We have demonstrated
the use of our method on several motion planning problems, showing that resolution
completeness guarantees can be achieved at small computational cost.

There is a number of ways to improve current work, which we plan to address in
the future. We plan to complete a more rigorous analysis, as well as comparison of
different base sequences for S2 to improve our understanding of the benefits of our
method. A more extensive experimental evaluation of the sequences is also a part
of our future work. It is yet inconclusive, but tempting, to assess the general rate of
convergence for motion planning solution using different sampling sequences.

There are many general open problems arising from this research. Nicely dis-
tributed grids are not yet developed for general n-spheres, n > 3. Implicitly defined
manifolds, such as the ones arising from motion planning for closed linkages, are
very hard to efficiently and uniformly sample. Such manifolds also arise as the con-
formation spaces of protein loops. In such cases, efficient parametrization is the
bottleneck for developing sampling schemes.
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References

1. Chirikjian, G.S., Kyatkin, A.B.: Engineering Applications of Noncommutative Har-
monic Analysis. CRC Press, Boca Raton (2001)

2. Diaconis, P., Shahshahani, M.: The subgroup algorithm for generating uniform random
variables. Prob. in Eng. and Info. Sci. 1, 15–32 (1987)

3. Fishman, G.F.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Berlin
(1996)
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A Simple Method for Computing Minkowski
Sum Boundary in 3D Using Collision Detection

Jyh-Ming Lien

Abstract. Computing the Minkowski sum of two polyhedra exactly has been shown
difficult. Despite its fundamental role in many geometric problems in robotics, to
the best of our knowledge, no 3-d Minkowski sum software for general polyhedra is
available to the public. One of the main reasons is the difficulty of implementing the
existing methods. There are two main approaches for computing Minkowski sums:
divide-and-conquer and convolution. The first approach decomposes the input poly-
hedra into convex pieces, computes the Minkowski sums between a pair of convex
pieces, and unites all the pairwise Minkowski sums. Although conceptually simple,
the major problems of this approach include: (1) The size of the decomposition and
the pairwise Minkowski sums can be extremely large and (2) robustly computing
the union of a large number of components can be very tricky. On the other hand,
convolving two polyhedra can be done more efficiently. The resulting convolution
is a superset of the Minkowski sum boundary. For non-convex inputs, filtering or
trimming is needed. This usually involves computing (1) the arrangement of the
convolution and its substructures and (2) the winding numbers for the arrangement
subdivisions. Both computations are difficult to implement robustly in 3-d. In this
paper we present a new approach that is simple to implement and can efficiently
generate accurate Minkowski sum boundary. Our method is convolution based but
it avoids computing the 3-d arrangement and the winding numbers. The premise of
our method is to reduce the trimming problem to the problems of computing 2-d
arrangements and collision detection, which are much better understood in the lit-
erature. To maintain the simplicity, we intentionally sacrifice the exactness. While
our method generates exact solutions in most cases, it does not produce low dimen-
sional boundaries, e.g., boundaries enclosing zero volume. We classify our method
as ‘nearly exact’ to distinguish it from the exact and approximate methods.

1 Introduction

Given two geometric models and their configurations in the space, such as the knot
and the frame models shown in Fig. 1(a), there are several important questions that
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(a) (b) (c)

Fig. 1. Can you find a configuration that keeps the knot (in red) interlocked but without
colliding with the cubic frame (in white) in the figure (a) above? Although it seems, from an
external view (b), the Minkowski sum boundary of the knot and the frame models is simple,
the inside view (c) shows that the Minkowski sum contains many holes. By placing the knot’s
reference point in one of these holes, the knot remains interlocked and collision free with the
frame. There are in total 10 510 facets in this Minkowski sum boundary.

we can ask about these two models. For example, what is their shortest separa-
tion distance? Is it possible to physically separate the knot and the frame without
intersections? If not, can we modify the knot, e.g., make the knot thinner, so the
problem above becomes solvable? What are the set of the collision-free configura-
tions that makes the knot and the frame interlocked? The answers to these questions
play central and fundamental roles in algorithmic robotics, such as motion planning,
penetration depth estimation, and object containment. However, all these questions
are not easy to answer either visually or computationally due to the geometrical and
topological complexity of the problem. In fact, these questions are all closely related
to the concept of set sum (also known as the Minkowski sum). The Minkowski sum
of two polyhedra P and Q is defined as:

P⊕Q = {p + q | p ∈ P,q ∈Q}. (1)

In Fig. 1(b) and Fig. 1(c), we show the Minkowski sum of the knot and the frame.
The inner view reveals a large number of holes in their Minkowski sum despite
the simplicity of the input models. Indeed, computing the Minkowski sum of non-
convex polyhedra can have the time complexity as high as O(n3m3) [12], where m
and n are the complexity of the input models.

Given two polyhedral models P and Q represented by their boundaries ∂P and
∂Q, the boundary of their Minkowski sum ∂ (P⊕Q) �= ∂P⊕∂Q. Therefore, comput-
ing the boundary-based representation of the Minkowski sums is more than applying
Eq. 1 to P and Q. Many methods have been proposed during the last three decades.
Even though several methods [13, 4, 8, 5] are known to compute the Minkowski
sum of convex polyhedra efficiently in 3-dimensions, most approaches proposed for
general polyhedra remain in theoretical stage. Only a few practical implementations
exist and none of them are available to the public. We will provide a more detailed
review on the related work in Section 2.
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Our approach. An important goal of our work is to provide a simple method
that can efficiently and accurately compute the Minkowski sum boundaries. The
proposed method is based on convolution. The convolution of two polyhedra P and
Q is a set of facets in 3-d that is generated by ‘combining’ the facets of P and Q and
forms a superset of the Minkowski sum boundary of P and Q. Convolution will be
defined more carefully in Sections 2 and 3.1.

Briefly, our method first generates the convolution and computes the facet-facet
intersections within the convolution. These intersections then induce an arrange-
ment of line segments embedded on each facet. The cells from all the (2-d) arrange-
ments are then merged into ‘simple regions’ (defined in Section 3.4), which are then
filtered so that only the regions on the boundary are kept. We deliberately avoid
computing the 3-d arrangement and the winding numbers, which have been shown
difficult to compute robustly. Our method is designed to tolerate inaccuracy in the
convolution and depends only on solving the problems of 2-d arrangement and col-
lision detection, which are much better understood in the literature. We will discuss
the details of our method in Section 3.

Our method does not solve the problem of 3-d Minkowski sum entirely. The
simplicity of our method is gained by sacrificing the exactness. That is our method
provides only nearly exact Minkowski sum whose low dimensional boundaries, e.g.,
boundaries enclosing zero volume, are not identified. Fortunately, when P and Q do
not interlock too tightly, the proposed method keeps all boundaries exact (although
may still suffer from numerical errors), thus provides more accuracy than the ap-
proximate methods [19, 14] do. We should also point out that our method shares
some similarity with our previous work on the point-based method [14]. Beside the
difference in their representations (mesh vs. points), the proposed method provides
significant improvements over the point-based method in terms of both quality and
efficiency. We will carefully compare these two approaches in Section 4.

2 Related Work

During the last three decades, many methods have been proposed to compute the
Minkowski sums of polygons or polyhedra; see more detailed surveys in [6, 19, 4]
for the Minkowski sums of the models in boundary-based representation. Despite
the large volume of work, most methods can be categorized into one of the two main
frameworks: divide-and-conquer and convolution.

Divide-and-Conquer. In the divide-and-conquer framework, the input models
are decomposed into components. Because computing the Minkowski sum of con-
vex shapes is easier than non-convex shapes, convex decomposition (either surface
or solid) is widely used. The next step in this framework computes the pairwise
Minkowski sums of the components. Finally, all these pairwise Minkowski sums
are united to form the final Minkowski sum of the input shapes.

This approach is first proposed by Lozano-Pérez [16] to compute C -obst for mo-
tion planning. Although the main idea of this approach is simple, the divide step
(i.e., convex decomposition) and the merge step (i.e., union) can be very difficult
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to implement robustly in practice, in particular when the input shapes are complex.
For example, it is known that creating solid convex decomposition robustly is dif-
ficult, e.g., it is necessary to maintain the 2-manifold property after the split [2]. In
addition, Agarwal et al. [1] have shown that different decomposition strategies can
greatly affect the efficiency of this approach. Hachenberger [11] presents a robust
and exact implementation using the Nef polyhedra in CGAL. However, his results
are still limited to simple models.

The union step is even more troublesome. The decomposition step normally gen-
erates many components. Even though methods exist to perform union operation,
no existing methods can robustly compute the union of thousands even millions of
pairwise Minkowski sums. In particular, the size and the complexity of the geometry
generated during the intermediate steps can be overwhelming. Flato [3] computes
the unions using the cells induced by the arrangement of the line segments. He uses
a hybrid strategy that combines arrangement with incremental insertion to gain bet-
ter efficiency. Hachenberger [11] also studies how the order of the union operation
affects the efficiency. To avoid this explicit union step, Varadhan and Manocha [19]
proposed an approach that generates meshes approximating the Minkowski sum
boundary using marching cube technique to extract the iso-surface from a signed
distance field. They proposed an adaptive cell to improve the robustness and ef-
ficiency of their method. Because their approach still depends on convex decom-
position, it still suffers from the excessive number of convex components from
decomposition.

Convolution. The convolution of two shapes P and Q, denoted as P×Q, is a set
of line segments in 2-d or facets in 3-d that is generated by ‘combining’ the segments
or the facets of P and Q [9]. One can think of the convolution as the Minkowski
sum that involves only the boundary, i.e., P×Q = ∂P⊕ ∂Q. It is known that the
convolution forms a superset of their Minkowski sum [6], i.e., ∂ (P⊕Q) ⊂ P×Q.
To obtain the Minkowski sum boundary, it is necessary to trim the line segments or
the facets of the convolution.

For 2-d polygons, Guibas and Seidel [10] show an output sensitive method to
compute convolution curves. Later, Ghosh [6] proposed an approach, which unifies
2-d and 3-d, convex and non-convex, and Minkowski addition and decomposition
operations. The main idea in his method is the negative shape and slope diagram.
Slope diagram is closely related to Gaussian map, which has been recently used to
compute to implement robust and efficient Minkowski sum computation of convex
objects by Fogel and Halperin [4]. Kaul and Rossignac [13] proposed a linear time
method to generate a set of Minkowski sum facets. Output sensitive methods that
compute the Minkowski sum of polytopes in d-dimension have also been proposed
by Gritzmann and Sturmfels [8] and Fukuda [5].

The main difficulty of the convolution-based methods is to remove the portion
of the facets that are inside the Minkowski sum. Recently, Wein [20] shows a ro-
bust and exact method based on convolution for non-convex polygons. To obtain
the Minkowski sum boundary from the convolution, his method computes the ar-
rangement induced by the line segments of the convolution and keeps the cells with
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non-zero winding numbers. No practical implementation is known for polyhedra
using convolution due to the difficulty of computing the 3-d arrangement and its
substructures [18].

Point-Based Representation. Alternatively, points have been used to repre-
sent the Minkowski sum boundary. Representing the boundary using only points
has many benefits. First of all, generating such points is easier than generating
meshes and can be done in parallel and in multi-resolution fashion. Moreover, point-
based representation can be generalized to higher dimensional motion planning
problems [15].

Peternell et al. [17] proposed a method to compute the Minkowski sum of two
solids using points densely sampled from the solids, and compute local quadratic
approximations of these points. However, their method only identifies the outer
boundary of the Minkowski sum using a regular grid, i.e., no hole boundaries are
identified. This can be a serious problem in particular when we study problems in
motion planning and penetration depth computation.

We proposed a completely different method [14] that guarantees to produce a
point set covering the boundary. However, our method also has drawbacks. For
example, a large number of points are required if the Minkowski sum has small
features (e.g., the models in Fig. 9). In addition, our method treats each point inde-
pendently. This is good for the purpose of parallelization but the local relationship
between the neighboring points is completely ignored. The method proposed in this
paper does not suffer from these problems.

3 Our Method

In this section, we begin to discuss more details about the proposed method. The
proposed method is convolution based and comprises five main steps. Our method
first computes the convolution using a brute force method (Section 3.1). Then, we
identify all the intersecting facets in the convolution (Section 3.2). Next, each facet is
subdivided into sub-facets from the facet-facet intersections (Section 3.3). All sub-
facets are stitched into simple regions based on the properties that will be discussed
later (in Section 3.4). A simple region is either entirely inside or entirely on the
boundary of the Minkowski sum. Finally, we use a collision detector to remove
the regions inside the Minkowski sum (Section 3.5). We conclude this section by
providing a discussion on the benefits provided by the proposed method and its
current limitations (Section 3.6).

3.1 Brute Force Convolution

We use a brute force method to compute the convolution because of its simplicity. As
we will see in our experiments, the convolution step actually takes very little time
(on average 0.4% of the entire computation), even using the brute force method,
comparing to all the other steps.
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f
v

e2

e1

Fig. 2. Gaussian map of f v- (left) and ee- (right)
facets.

Our brute force method checks
all possible facet/vertex and edge/
edge pairs of P and Q and keeps
all the facets that satisfy the criteria
stated in Observation 3.1. The re-
sult of the brute force convolution
is a set of facets that reside in the
interior and on the boundary of the
Minkowski sum.

Given two polyhedra P and Q, the convolution of P and Q can only come from
two sources [13]: (i) the facets, called f v-facets, generated from a facet of P and a
vertex of Q or vice versa and (ii) the facets, called ee-facets, generated from a pair
of edges from P and Q, respectively.

Observation 3.1. A facet f and a vertex v produce a valid f v-facet if and only if
the normal of f is inside the region enclosed by the normals of the facets incident
to v in the Gaussian map. Similarly, a pair of edges e1 and e2 form an ee-facet if
the corresponding edges in the Gaussian map cross each other. Fig. 2 illustrates the
necessary conditions of both f v- and ee-facets.

Our goal in the next few steps is to remove the portions of the convolution inside
the Minkowski sum.

3.2 Facet-Facet Intersections

The goal of this step is to identify all the intersecting facets for each facet in the
convolution. To do so, we construct a bounding volume hierarchy from top-down
using spheres that enclose all the facets. For each facet, we use its bounding sphere
to identify all the intersecting spheres, which contain potential intersections. Fi-
nally, the intersecting facets are then determined from all these spheres. Because
all the facets generated in the convolution must be convex if the input models have
only convex facets, exact facet-facet intersection can be performed efficiently in 3-
d. Without the loss of generality, we assume that the models used in this paper are
composed of triangles.

3.3 Split Facets

We use the intersections above to split the convolution facets. Essentially, this step
computes the 2-d arrangements of the facet-facet intersections obtained from the
previous step. For each facet, we project the intersections to the supporting plane of
the facet. The arrangement embedded in the facet is induced by these projected line
segments and the boundary of the facet. It should be noted that when the interior of
a segment partially or entirely overlaps with other segments, we handle this degen-
erate case by creating cells with zero areas enclosed by the overlapped segments.
As we will see later, these ‘area-less’ regions also serve as a form of ‘insulator’ to
prevent the facets from being stitched.
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For the facet without any intersections, we simply treat it as an arrangement with
a single cell (two cells if we count the unbounded subdivision). To simplify our
discussion, we call a cell created in this step a ‘sub-facet.’

3.4 Stitch Sub-facets

e

e

Fig. 3. Examples of facets that
cannot be stitched.

Our goal in this step is to stitch all the sub-facets into
simple regions. A simple region is composed of a set
of contiguous sub-facets that are completely on the
Minkowski sum boundary or are completely inside
the Minkowski sum. Our method constructs the sim-
ple regions by stitching the neighboring sub-facets
iteratively until all sub-facets are stitched. We say
that two sub-facets f1 and f2 are neighbors if they
share an edge.

Stitching criteria. Let C be an existing compo-
nent and let f1 be a facet on the boundary of C. We
further let f2 be a neighbor of f1 that is not in C and
let e12 be the edge shared by f1 and f2. Then f1 and
f2 are stitched if they do not violate the following
constraints.

1. e12 does not overlap with the intersections of the interior of the convolution
facets.

2. e12 is 2-manifold.

Note that the first constraint can be readily checked from the intersection step
earlier and is in fact a special case of the second constraint. This is because a pair
of intersecting facets must generate a non-manifold region. The second constraint is
used to check for non-manifold edges shared by more than two the adjacent (non-
intersecting) sub-facets. Fig. 3 shows two examples that violate these criteria.

3.5 Determine the Boundary Regions

In this final step, we determine which simple regions are non-boundary regions and
should be discarded using collision detection calls. Our method uses the close rela-
tionship between the Minkowski sum boundary and the concept of “contact space”
in robotics. Every point in the contact space represents a configuration that places
the robot in contact with (but without colliding with) the obstacles. Given a trans-
lational robot P and obstacles Q, the contact space of P and Q can be represented
as ∂ ((−P)⊕Q), where −P = {−p | p ∈ P}. In other words, if a point x is on the
boundary of the Minkowski sum of two polyhedra P and Q, then the following con-
dition must be true:

(−P◦+ x)∩Q◦ = /0 ,

where Q◦ is the open set of Q and (P+ x) denotes translating P to x.
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Using this observation, we can determine if a simple region R is on the boundary
by simply placing−P at a point x sampled from a facet f ∈ R and testing if (−P+x)
is in collision with Q. If (−P + x) is collision free, then we can conclude that R is
on the Minkowski sum boundary. Otherwise, we discard R.

3.6 Discussion and Implementation Details

The proposed method is simple and efficient, but it does not produce low dimen-
sional (isolated) boundaries composed of only edges and vertices. In this section,
we provide more detailed discussion regarding the implementation and the advan-
tages and the limitations (and possible improvements) in some steps of the proposed
method. The readers can also skip these details and go to Section 4 for experimental
results.

Convolution. Our brute-force method does not compute exact 3-d convolutions,
but a superset of the convolution. As far as we know, no practical method can com-
pute the convolution of polyhedra exactly and robustly, even though methods exist
to compute the convolution of polygons, such as the techniques in [10, 20]. Our
method, unlike [20, 10], does not use the (mesh) connectivity of P and Q to con-
struct the convolution, and, due to numerical errors, may generate ‘isolated’ facets
in the final ‘convolution’ instead of a set of closed 2-manifolds. Note that all the
isolated facets are inside the Minkowski sum boundary.

These two weaknesses of our brute-force method make the computations of the
arrangement and the winding numbers even more difficult. However, because we
intentionally avoid these two steps, our method does not suffer from the inaccuracy.

Given two polyhedra P and Q with size m and n, the brute-force method takes
O(mn) time. As we mentioned earlier, the convolution step is not the bottleneck
of the entire computation. Even though computing the convolution from the non-
planar Gaussian maps using a strategy similar to the ideas in [10, 20] can definitely
increase the efficiency, the improvement to the entire computation is limited.

Facet-facet intersection. We use bounding sphere hierarchy to detect the inter-
sections. We use spheres because they are invariant under rotation. This step takes
O((N + k) logN) time, where N = mn is the size of the convolution and k is the
intersection size.

Stitch sub-facets. The idea of stitching is to maintain a set of the largest 2-
manifolds from the convolution. We claim that each of this 2-manifold is a simple
region. The criteria proposed to construct the simple regions (in Section 3.4) also
focus this goal. In Lemma 3.1, we show that these two criteria is indeed sufficient
to generate simple regions.

Lemma 3.1. A simple region is either on the Minkowski sum boundary or in the
interior of the Minkowski sum if the simple region is constructed using the criteria
in Section 3.4.

Proof (Sketch). Let C be the convolution of two polyhedra and let A(C) be the ar-
rangement of C. Essentially, a simple region identified in Section 3.4 is a set of
contiguous sub-facets that form or entirely reside on the boundary shared by two
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(3-d) cells of C(A). Since a cell must not cross the Minkowski sum boundary, the
simple region will not cross the boundary. Thus, a simple region is either on the
boundary or in the interior of the Minkowski sum.

Given the strong connection between the simple region and the arrangement cell,
one might wonder if we can further stitch the simple regions into cells. There are
several reasons that we do not go in this direction. First, given x cells in the ar-
rangement of the convolution, there can be O(x) simple regions, Therefore, further
stitching regions into cells may not improve the efficiency (at least asymptotically).
Second, this additional step greatly increases the difficulty of the implementation.
Many degenerated cases, in particular with isolated regions, should be considered. In
addition, from our preliminary results, little or no performance is gained by stitching
further. Due to these reasons, we do not further stitch simple regions into arrange-
ment cells.

Determine the boundary regions. We use collision detection calls to determine
the type of a simple region. For detecting collisions, we use a modified version of
RAPID [7]. An issue that we have to deal with when working with RAPID (and
most collision detectors) is that RAPID cannot distinguish if two objects are in the
contact configurations or are in fact in collision. To work around this problem, we
perturb each point we sampled with an infinitesimally small vector pointing in the
outward direction of the facet (from the convolution) where the point is sampled
from. Note that the normal directions of all f v- and ee-facets are readily available
from the convolution step.

After the perturbation, the point will most likely become collision free if it is
indeed on the Minkowski sum boundary. The exceptions to the above case occur
when the Minkowski sum boundary degenerates to an isolated vertex, edge or sliver
(enclosing zero or a very small volume). This is the reason why our method provides
only ‘nearly’ exact Minkowski sum.

Another concern of using collision detection to replace winding number is the ef-
ficiency. However, as our experiment shows, collision detection, although dominates
the computation in some examples, does not significantly slow down our method.

4 Experimental Results

In this section, we show experimental results. All the experiments are performed on
a PC with two Intel Core 2 CPUs at 2.13 GHz with 4 GB RAM. Our implementation
is coded in C++. For detecting collisions, we use a modified RAPID [7]. Fig. 4
shows a set of models used in this section. All the models and the Minkowski sum
boundaries in our experiments are in Wavefront OBJ format and can be downloaded
from our project webpage.

4.1 Geometric Modeling

Our method can be used to perform operations such as offsetting, erosion, and
sweeping on large geometric models. Fig. 5 shows an example of the offsetting
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Sphere (500) Cone (78) Axes (36) Frame (96) Knot (992)

Wrench (772) Clutch (2116) Bull (12396) Inner Ear (32236)

Fig. 4. Models used in this paper. The number following the model name is the number of
facets of the model.

Fig. 5. Offsetting of the clutch model.

operation of the clutch model. Offsetting is done by computing its Minkowski sum
with a sphere. The top figure of Fig. 5 shows the Minkowski sum boundary (13
974 facets) of the clutch model and the sphere model. Each colored patch (best
viewed from the submitted pdf file) on the Minkowski sum boundary indicates a
simple region bounded by red line segments. Interestingly, for some models, the red
line segments that separate simple regions tend to go through the areas with high
concavity. Therefore, the simple regions seem to represent visually meaningful seg-
mentations of the model. The bottom figure of Fig. 5 shows an internal view of the
Minkowski sum.

In Fig. 6, we show an example of the swept volumes of two large models: a spoon
and a horse. The swept volume is generated by computing the Minkowski sum of the
spoon and the horse models with a thin tube representing a trajectory. An internal
view of the horse model’s swept volume is also shown.
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(a) (b) (c)

Fig. 6. (a) A swept volume of the spoon model (89 822 facets). The boundary is composed
of 138 801 facets. (b) A swept volume of the horse model (39 694 facets). The boundary is
composed of 73 912 facets. (c) An internal view of (b).

4.2 Computation Time

A step-by-step analysis. Fig. 7 shows our first experiment result using the models
in Fig. 4, which include convex/non-convex models, zero and non-zero genus mod-
els, and CAD and digitized models. These models are selected carefully to test the

P⊕Q Cone Axes Frame Knot Wrench Clutch Bull Inner Ear

Sphere Sphere
0.031 0.038 0.14 0.95 0.90 2.7 13.7 13.6

Cone Cone
0.030 0.021 0.12 0.63 0.64 1.5 8.6 7.8

Axes Axes
0.017 0.076 1.17 0.77 1.5 22.1 20.9

Frame Frame
1.38 21.3 4.81 23.5 289.3 202.0

Knot Knot
255.5 37.0 347.0 755.1 920.8

creation intersection

collision detectionsplit/stitch

Fig. 7. Computation time of the proposed method. Each Minkowski sum computation is
shown as a pie chart, representing the cost of each step, and a number below the chart, repre-
senting the total computation time (in seconds). Models used in this experiment can be found
in Fig. 4.
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Fig. 8. Computation time for generating points covering the Minkowski sum boundaries.
Notice that the x and y axes are both in logarithmic scale.

proposed method. In Fig. 7, we show the computation time of each Minkowski sum
and the ratio of each step in an entire Minkowski sum computation. It is clear that
the facet-facet intersection and collision detection steps dominate the computation.
We observe that the ratio of the creation time decreases when the size of the model
increases. When the size of the model increases, the intersection step becomes more
dominating. When the models have handles, the ratio of the collision detection in-
creases due to the increasing number of holes (e.g., Frame and Knot).

Point-based vs. Mesh-based Minkowski sum. We compare the proposed
method (hereafter named mesh-based method) to the point-based Minkowski sum
[14] since it is the only implementation available to the public that supports general
polyhedra. In order to make fair comparisons, we sample points from the facets gen-
erated by the mesh-based method. Like point-based Minkowski sum, these points
form a d-covering1 of the Minkowski sum boundary. It is obvious that when d
is large point-based method can outperform mesh-based method. In Fig. 8, we
vary the value of d from 10 to 0.05. As we can see that, as the value of d de-
creases, the computation time of the mesh-based method is slightly elevated while
the collision detection call number remain the same. On the other hand, the point-
based method slows down significantly as d decreases due to rapidly increasing
detection calls.

In addition to the benefit of being faster than the point-based method, the mesh-
based method proposed in this paper does not suffer from the sampling den-
sity issues. In particular, when small features are present in the Minkowski sum
boundary, high density points (i.e., small d) are needed to reveal these features.
In Fig. 9, we show a ‘classic’ example of two grate-like shapes, from which a
large number points will need to be sampled in order to capture the long and
skinny columns of the Minkowski sum boundary. Our mesh-based method does
not suffer from this problem and successfully generates the exact Minkowski sum
boundary.

1 We say that a set of points S is a d-covering of a surface M if, for every point m of M, there
exists a point in S whose distance to m is less than d.
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P Q

∂ (P⊕Q) P⊕Q internal

Fig. 9. Minkowski sum of two grate-like models. P has 27 teeth and 540 facets, and Q has
48 teeth and 942 facets, and P⊕Q has 71043 facets. The total computation time is 318.5
seconds using 1 thread. These models imitate the grate models created by Halperin [12] and
from Varadhan and Manocha [19].

5 Conclusion

In this paper we proposed a simple 3-d Minkowski sum method. In essence, our idea
is to avoid computing the exact convolution, 3-d arrangement and the winding num-
bers. Instead, we filter and trim facets using only 2-d arrangements and collision de-
tector. Our method starts with an inaccurate convolution generated by a brute force
method. For each facet in the convolution, we subdivide the facet into sub-facets
induced by the arrangement of the facet-facet intersections within the convolution.
Sub-facets are then grouped into simple regions, which are filtered by a collision
detector. Our method does not solve the problem of 3-d Minkowski sum entirely.
The simplicity of our method is gained by sacrificing the exactness. Although pro-
viding only nearly exact Minkowski sum, our method is more accurate than the
approximate methods. In our experiment, we demonstrated the proposed method’s
ability of handling large geometric models. We also showed the efficiency of the
proposed method comparing to the point-based Minkowski sum method. While we
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are currently optimizing the performance of our implementation, we plan to release
the software developed for this paper to the public.
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Polyhedral Assembly Partitioning with Infinite
Translations or The Importance of Being Exact�

Efi Fogel and Dan Halperin

Abstract. Assembly partitioning with an infinite translation is the application of
an infinite translation to partition an assembled product into two complementing
subsets of parts, referred to as a subassemblies, each treated as a rigid body. We
present an exact implementation of an efficient algorithm to obtain such a mo-
tion and subassemblies given an assembly of polyhedra in R

3. We do not as-
sume general position. Namely, we handle degenerate input, and produce exact
results. As often occurs, motions that partition a given assembly or subassem-
bly might be isolated in the infinite space of motions. Any perturbation of the
input or of intermediate results, caused by, for example, imprecision, might re-
sult with dismissal of valid partitioning-motions. In the extreme case, where there
is only a finite number of valid partitioning-motions, no motion may be found,
even though such exists. The implementation is based on software components that
have been developed and introduced only recently. They paved the way to a com-
plete, efficient, and concise implementation. Additional information is available at
http://acg.cs.tau.ac.il/projects/internal-projects/
assembly-partitioning/project-page.

1 Introduction

Assembly planning is the problem of finding a sequence of motions that move the
initially separated parts of an assembly to form the assembled product. The reversed
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(a) (b) (c) (d)

Fig. 1. (a) The Split Star puzzle, and (b),(c), and (d) the Split Star six parts divided into three
pairs of symmetric parts. The six parts are named according to their color R(ed), G(reen),
B(lue), P(urple), Y (ellow), and T (urquoise).

order of sequenced motions separates an assembled product to its parts. Thus, for
rigid parts, assembly planning and disassembly planning refer to the same prob-
lem, and used interchangeably. In this paper we concentrate on the case where the
assembly consists of polyhedra in R

3 and the motions are infinite translations.
The motion space is the space of possible motions that assembly parts may un-

dergo. For each motion in a motion space, a subassembly of a given assembly may
collide with a different subassembly, when transformed as a rigid body according
to the motion. Pairs of subassemblies that collide constitute constraints. The motion
space approach dictates the precomputation of a decomposition of a motion space
into regions, such that the constraints among the parts in the assembly are the same
for all the motions in the same region. All constraints over a region are represented
by a graph, called the directional blocking graph (DBG) [23]. The collection of all
regions in a motion space together with their associated DBGs can be used to obtain
assembly (or disassembly) sequences.

Degenerate input is commonplace in computational-geometry applications, and
numerical errors are inevitable when arithmetic based on machine number-type
(e.g., floating-point) is used to carry out algebraic computation. Traditional imple-
mentations, which ignore these observations, may yield incorrect results, get into
an infinite loop, or just crash, while running on a degenerate, or nearly degener-
ate, input (see [15] for examples). The problem intensifies in assembly planning,
as motions might be isolated in the infinite space of motions. Any perturbation of
the input or of intermediate results, caused by, for example, imprecision, might re-
sult with dismissal of valid partitioning-motions. In the extreme case, where there is
only a finite number of valid partitioning-motions, as occurs in the assembly shown
in Figure 1, no motion may be found, even though such exists.

The general framework and some of the techniques presented here have already
been described in a series of papers and reports published in the past mainly during
the late 90’s. Halperin, Latombe, and Wilson made the connection between previ-
ously presented techniques that had used the motion space approach, and introduced
a unified general framework [11] at the end of the previous millennium. Only few
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publications related to this topic appeared ever since, to the best of our knowledge,
which creates a long gap in the time line of the respective research. We certainly
hope that the tools exposed in this paper will help revive the research on algorith-
mic assembly planing, a research subject of considerable importance. Moreover, we
believe that the machinery presented here, together with other recent advances in
the practice of computational-geometry algorithms, can more generally support the
development of new and improved techniques in algorithmic automation.1

Solution to the assembly planning problem enables better feedback to design-
ers. It helps them to create products that are more cost-effective to manufacture and
maintain. This is emphasized in light of the strategy to “plan anywhere, build any-
where” many CAD/CAM companies are trying to adopt. Assembly sequences are
also useful for selecting assembly tools and equipment, and for laying out manufac-
turing facilities.

We restrict ourselves to two-handed partitioning steps, meaning that we parti-
tion the given assembly into two complementing subsets each treated as a rigid
body. Even for two-handed partitioning, if we allow arbitrary translational mo-
tions (and not restrict ourselves to infinite translations) the problem becomes NP-
hard [12]. The assembly-sequencing general problem of planning a total ordering
of assembly operations that merge the individual parts into the assembled prod-
uct, is PSPACE-hard, even when each part is a polygon with a constant number of
vertices [18].

Notice that the problem that we address in this paper, namely partitioning with in-
finite translations, is technically considerably more complex than partitioning with
infinitesimal motions. Although the latter may sound more general, as it handles in-
finitesimal translations and rotations, it is far simpler to implement, since it deals
only with constraints that can be described linearly. Thus, the problem can be re-
duced to solving linear programs. Indeed, there are several implementations for par-
titioning with infinitesimal motions (see, e.g., [9, 19]), but none that we are aware
of, dealing robustly with infinite translations. The shortcoming of using infinites-
imal motions only is that suggested disassembly moves may not be extendible to
practical finite-length separation motions.

Infinite-translation partitioning was not fully robustly implemented until recently,
in spite of being more useful than infinitesimal partitioning, most probably due to the
hardship of accurately constructing the underlying geometric primitives. What en-
ables the solution that we present here, is the significant headway in the development
of computational-geometry software over the past decade, the availability of stable
code in the form of the Computational Geometry Algorithms Library (CGAL)2 in
general and code for Minkowski sums of polytopes in R

3 and arrangements in R
2

in particular [22].
The implementation presented in this paper is based on a package of CGAL

called Arrangement on surface 2 [21]. It supports the robust construction and
maintenance of arrangements of curves embedded on two-dimensional parametric

1 http://goldberg.berkeley.edu/algorithmic-automation
2 http://www.cgal.org
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surfaces [2], and robust operations on them, e.g., overlay computation. The imple-
mentation uses in particular arrangements of geodesic arcs embedded on the sphere.
It exploits supported operations, and requires additional operations, e.g., polyhedra
central projection, which we implemented. We plan to make these new components
available as part of a future public release of CGAL as well. The ability to robustly
construct such arrangements, and carry out exact operations on them using only (ex-
act) rational arithmetic is a key property that enables an efficient implementation.

1.1 Split Star Puzzle

We use the assembly depicted in Figure 1 as a running example throughout the pa-
per. The name “Split Star” was given to this shape by Stewart Coffin in one of his
Puzzle Craft booklet editions back in 1985. He uses the term puzzle to refer to any
sort of geometric recreation having pieces that come apart and fit back together.
We use it as an assembly. He describes how to produce the actual pieces out of
wood [4], and suggests that they are made very accurately. He observes that finding
the solution requires dexterity and patience, when the pieces are accurately made
with a tight fit. Even though the assembly seems relatively simple, this should come
as little surprise, since the first partitioning motion is one out of only eight possi-
ble translations of four symmetric pairs of motions in opposite directions associated
with two complementing subassemblies of three parts each. Evidently, any auto-
matic process that introduces even the slightest error along the way, will most likely
fail to compute the correct first motion in the sequence, and falsely claim that the
assembly is interlocked.

The Split Star assembly has the assembled
shape of the first stellation of the rhombic
dodecahedron [17], illustrated atop the right
pedestal in M. C. Escher’s Waterfall wood-
cut [3]. Its orthogonal projection along one
of its fourfold axes of symmetry is a square,
while the Star of David is obtained when it
is projected along one of its threefold axes of
symmetry, as seen on the left; for more details
see [4]. The assembly is a space-filling solid

when assembled. It consists of six identical concave parts. Each part can be decom-
posed into eight identical tetrahedra yielding 48 tetrahedra in total. As manufactur-
ing the pieces requires extreme precision, it is suggested to produce the 48 identical
pieces and glue them as necessary. Each part can also be decomposed into three con-
vex polytopes — two square pyramids and one octahedron, yielding 18 polytopes
in total. The partitioning described in this paper requires the decomposition of the
parts into convex pieces. The choice of decomposition may have a drastic impact
on the time consumption of the entire process, as observed in a different study in
R

2 [1], and shown by experiments in Section 5.
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1.2 Outline

The rest of this paper is organized as follows. The partitioning algorithm is described
in Section 2 along with the necessary terms and definitions. In Section 3 we provide
implementation details. Section 4 presents optimizations that are not discussed in
the preceding sections, some of which we have already implemented, and proved to
be useful. We report on experimental results in Section 5.

2 The Partitioning Algorithm

The main problem we address in this paper, namely, polyhedral assembly partition-
ing with infinite translations, is formally defined as follows: Let A = {P1,P2, . . . ,Pn}
be a set of n pairwise interior disjoint polyhedra in R

3. A denotes the assembly that
we aim to partition. We look for a proper subset S⊂ A and a direction d in R

3, such
that S can be moved as a rigid body to infinity along d without colliding with the
rest of the parts of the assembly A\S. (We allow sliding motion of one part over the
other. We disallow the intersection of the interior of two polyhedra.)

We follow the NDBG approach [23], and describe it here using the general for-
mulation and notation of [11]. The motion space in our case, namely the space of
all possible partitioning directions, is represented by the unit sphere S

2. Every point
p on S

2 defines the direction from the center of S
2 towards p. Every direction d

is associated with the directed graph DBG(d) = (V,E) that encodes the blocking
relations between the parts in A when moved along d as follows: The nodes in V
correspond to polyhedra in A; we denote a node corresponding to the polyhedron Pi

by v(Pi) ∈V . There is an edge directed from v(Pi) to v(Pj), denoted e(Pi,Pj) ∈ E , if
and only if the interior of the polyhedron Pi intersects the interior of the polyhedron
Pj when Pi is moved to infinity along the direction d, and Pj remains stationary.

The key idea behind the NDBG approach is that in problems such as ours, where
the number of parts is finite, and any allowable partitioning motion can be described
by a small number of parameters, there is only a relatively small (polynomial) num-
ber of distinct DBGs that need to be constructed in order to detect a possible par-
titioning direction. Stated differently, the motion space can be represented by an
arrangement subdivided into a finite number of cells each assigned with a fixed
DBG. Once this arrangement is constructed, we construct the DBG over each cell
of the arrangement, and check it for strong connectivity. A DBG that is not strongly
connected is associated with a direction, or a set of directions in case the cell is not a
singular point, that partition the given assembly. The desired movable subset S ⊂ A
is a byproduct of the algorithm that checks for strong connectivity. If all the DBGs
over all the cells of the arrangement are strongly connected, we conclude that the
assembly is interlocked, as a subset of the parts in A that can be separated from the
rest of the assembly by an infinite translation does not exist.

Next we show how to construct the motion-space arrangement and compute the
DBG over each one of the arrangement cells. Each ordered pair of distinct polyhedra
< Pi,Pj > defines a region Qi j on S

2, which is the union of all the directions d,
such that when Pi is moved along d its interior will intersect the interior of Pj.
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How can we effectively compute this region? Let Mi j denote the Minkowski sum
Pj ⊕ (−Pi) = {b− a |a ∈ Pi, b ∈ Pj}. We claim that the central projection of Mi j

onto S
2 is exactly Qi j.

Lemma 2.1. A direction d is in the interior of the central projection of Mi j onto S
2

if and only if when Pi is moved along d its interior will intersect the interior of Pj.

Proof. Let d be some direction in the central projection of Mi j onto S
2. In other

words, there exists a point m ∈Mi j, such that m = s ·d, for some positive scalar s.
As m is in Mi j, there exist two points pi ∈ Pi and p j ∈ Pj, such that m = p j − pi.
Thus, p j = pi + s ·d, meaning that the point pi intersects p j when moved along d.
A similar argument can be used to show the other way around. ��

Next, we describe how, given two polyhedra Pi and Pj, we compute the region Qi j,
using a robust and efficient hierarchy of building blocks, which we have developed
in recent years. The existing tools that we use are (i) computing the arrangement of
spherical polygons [2, 8, 7, 22], and (ii) construction of Minkowski sums of convex
polytopes [2, 5, 8, 7]. We also need some extra machinery, as explained below.

Assume Pi is given as the union of a collection of (not necessarily disjoint) convex
polytopes Pi

1,P
i
2, . . . ,P

i
mi

, and similarly Pj is given as the collection of convex poly-

topes P j
1 ,P j

2 , . . . ,P j
mj . It is easily verified that Mi j =

⋃
k=1,...,mi,�=1,...,mj

P j
� ⊕ (−Pi

k).

So we compute the Minkowski sum of each pair P j
� ⊕ (−Pi

k), and centrally project
it onto S

2. Finally, we take the union of all these projections to yield Qi j.
There are several ways to effectively compute the central projection of a convex

polyhedron C (one of the polytopes Mi j
k� = P j

� ⊕ (−Pi
k)) from the origin onto S

2. We
opted for the following. An edge e of C is called a silhouette edge, if the plane π
through the origin and e is tangent to C at e. Namely, it intersects C in e only. We
assume for now that there is no tangent plane that contains a facet of C; we relax this
assumption in Section 3.5, where we provide a detailed description of the procedure.
We traverse the edges of C till we find a silhouette edge e1. One can verify that the
silhouette edges from a cycle on C. We start with e1, and search for a silhouette edge
adjacent to e1. We proceed in the same manner, till we end up discovering e1 again.
Projecting this cycle of edges onto S

2 is straightforward.
All the boundaries of the regions Qi j form an arrangement of geodesic arcs on

the sphere. We traverse the motion-space arrangement in say a breadth-first fashion.
For the first face we check which one of the regions Qi j contain it. We construct
the corresponding DBG and check it for strong connectivity. If it is not strongly
connected, we stop and announce a solution as described above. Otherwise we move
to an adjacent feature of the current face. During this move we may step out from
a set of regions Qi j, and may step into a new set of regions Qi j. We update the
current DBG according to the regions we left or entered, test the new DBG for strong
connectivity, and so on till the traversal of all the arrangement cells is complete.
Notice that it is important to visit also vertices and edges of the arrangement, since
the solution may not lie in the interior of a face. Indeed, in our Split Star example,
solutions are on vertices of the arrangement. Without careful exact constructions,
such solutions could easily be missed.
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3 Implementation Details

The implementation of the assembly-partitioning operation consists of eight phases
listed below. They all exploit arrangements of geodesic arcs embedded on the
sphere [2, 7] in various ways. The Arrangement on surface 2 package of CGAL

already supports the construction and maintenance of such arrangements, the com-
putation of union of faces of such arrangements, the construction of Gaussian
maps of polyhedra represented by such arrangements, and the computation of their
Minkowski sums. It provides the ground for efficient implementation of the remain-
ing required operations, such as central projection.

1. Convex Decomposition
2. Sub-part Gaussian map construction
3. Sub-part Gaussian map reflection
4. Pairwise sub-part Minkowski sum construction
5. Pairwise sub-part Minkowski sum projection
6. Pairwise Minkowski sum projection
7. Motion-space construction
8. Motion-space processing

The partitioning process is implemented as a free (general) function that accepts
as input an ordered list of polyhedra in R

3, which are the parts of the assembly.
Each part is represented as a polyhedral mesh in R

3. A polyhedral mesh represen-
tation consists of an array of vertices and a collection of facets, where each facet is
described by an array of indices into the vertex array. We proceed with a detailed
discussion of the implementation of each phase.

We deal below with various details that are typically ignored in reports on geo-
metric algorithms (for example, under the general-position assumption). However,
in assembly planning, or more generally in movable-separability problems in tight
scenarios, much of the difficulty shifts exactly to these technical details and in par-
ticular to handling degeneracies. This is especially emphasized in Phases 5 and 6
(Subsections 3.5 and 3.6 respectively), but prevails throughout the entire section.

3.1 Convex Decomposition

We decompose each concave part into convex polyhedra referred to as sub-parts.
The output of this phase is an ordered list of parts, where each part is an ordered
list of convex sub-parts represented as polyhedral surfaces. Each polyhedral surface
is maintained as a CGAL Polyhedron 3 [14] data-structure, which consists of ver-
tices, edges, and facets and incidence relations on them [13]. A part that is convex
to start with is simply converted into an object of type Polyhedron 3.

A new package of CGAL that supports convex decomposition of polyhedra has
been recently introduced [10], but has not become publicly available yet. As we
aim for a fully automatic process, we intend to exploit such components, once
they become available, and study their impact. For the time being we resorted to a
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Fig. 2. The six parts of the Split Star decomposed into three convex sub-parts each.

manual procedure. A simple decomposition of the Split Star parts used in the run-
ning example is illustrated in Figure 2.

3.2 Sub-part Gaussian Map Construction

The Gaussian Map G = G(P) of a compact convex polyhedron P in Euclidean three-
dimensional space R

3 is a set-valued function from P to the unit sphere S
2, which

assigns to each point p on the boundary of P the set of outward unit normals to
support planes to P at p. A vertex v of P is mapped by G to a spherical polygon
G(v) [6]. Likewise, the inverse Gaussian Map, denoted by G−1, maps the spherical
features to the polytope boundary.

We convert each sub-part represented as a polyhedral surface into a Gaussian
map, represented as an arrangement of geodesic arcs embedded on the sphere, where
each face f of the arrangement is extended with the coordinates of its associated pri-
mal vertex v = G−1( f ), resulting with a unique representation. The construction of
an arrangement from the polytope features and their accessible incident relations
provided by the Polyhedron 3 data-structure amounts to the insertion of geodesic
segments that are pairwise disjoint in their interior into the arrangements, an opera-
tion that can be carried out efficiently.

The output of this phase is an ordered list of parts, where each part is an ordered
list of the Gaussian maps of the convex sub-parts. Figure 3 depicts the Gaussian
maps of six of the 18 polytopes that comprise the set of sub-parts of our Split Star
assembly.

3.3 Sub-part Gaussian Map Reflection

We reflect each sub-part Pi
k through the origin to obtain −Pi

k. This operation can be
performed directly on of the output of the previous phase, reflecting the underlying
arrangements of geodesic arcs embedded on the sphere, which represent the Gaus-
sian maps, while handling the additional data attached to the arrangement faces. As
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R1 R2 R3 B1 B2 B3

−R1 −R2 −R3 −B1 −B2 −B3

Fig. 3. Samples of the Gaussian maps of sub-parts of the Split Star assembly. The bottom row
contains the reflections of the Gaussian maps at the top row.

a matter of fact, this phase can be reduced as part of an optimization discussed in
Section 4.

The output of this phase is an ordered list of parts, where each part is an ordered
list of Gaussian maps of the reflected convex sub-parts. Figure 3 depicts the Gaus-
sian maps of six of the 18 polytopes that comprise the set of reflected sub-parts of
the Split Star example.

3.4 Pairwise Sub-part Minkowski Sum Construction

Construct Pairwise Sub-part
Minkowski Sums

for i in {1,2, . . . ,n}
for j in {1,2, . . . ,n}

if i == j continue
for k in {1,2, . . . ,mi}

for � in {1,2, . . . ,m j}
Mi j

k� = P j
� ⊕ (−Pi

k)

We compute the Minkowski sums of the
pairwise sub-parts and reflected sub-parts.
Aiming for an efficient output-sensitive al-
gorithm, the construction of an individual
Minkowski sum from two Gaussian maps
represented as two arrangements respectively
is performed by overlaying the two arrange-
ments. When the overlay operation pro-
gresses, new vertices, edges, and faces of the

resulting arrangement are created based on features of the two operands. When a
new feature is created its attributes are updated. There are ten cases that must be
handled [5]. For example, a new face f is induced by the overlap of two faces f1

and f2 of the two summands respectively. The primal vertex associated with f is set
to be the sum of the primal vertices associated with f1 and f2 respectively.

The Arrangement on surface 2 package conveniently supports the overlay
operation allowing users to provide their own version of these ten operations. The
overlay operation is exploited below on several different variants of arrangements
of geodesic arcs embedded on the sphere. Each application requires the provision of
a different set of those ten operations.

The output of this phase is a map from ordered pairs of distinct indices into lists of
Minkowski sums represented as Gaussian maps. Each ordered pair < i, j>, i �= j is
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R1⊕ (−G1) R1⊕ (−B1) G1⊕ (−R1) G1⊕ (−B1) B1⊕ (−R1) B1⊕ (−G1)

Fig. 4. Samples of the pairwise Minkowski sums of sub-parts of the Split Star assembly. The
middle row contains six Minkowski sums. The top row contains the corresponding Gaussian
maps. The bottom row contains the corresponding central projections of the Minkowski sums
on S

2.

associated with the list of Minkowski sums {Mi j
k� |k = 1,2, . . . ,mi, � = 1,2, . . . ,m j}.

In case of our Split Star the map consists of 30 entries that correspond to all con-
figurations of ordered distinct pairs of parts. Each entry consists of a list of nine
Minkowski sums, that is, 270 Minkowski sums in total.

3.5 Pairwise Sub-part Minkowski Sum Projection

Project Pairwise Sub-part
Minkowski sums

for i in {1,2, . . . ,n}
for j in {1,2, . . . ,n}

if i == j continue
for k in {1,2, . . . ,mi}

for � in {1,2, . . . ,m j}
Qi j

k� = project(Mi j
k�)

We centrally project all pairwise sub-part
Minkowski sums computed in the previous
phase onto the sphere. Each projection is rep-
resented as an arrangement of geodesic arcs
on the sphere, where each cell c of the ar-
rangement is extended with a Boolean flag
that indicates whether all infinite rays ema-
nating from the origin in all directions d ∈ c
pierce the corresponding Minkowski sum. As

the Minkowski sums are convex, their spherical projections are spherically convex.
Given a convex Minkowski sum C, we distinguish between four different cases

as follows:

1. The origin is contained in the interior of a facet of C.
2. The origin lies in the interior of an edge of C.
3. The origin coincides with a vertex of C.
4. The origin is separated from C.
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Computing the projection of a convex polytope C can be done efficiently using dedi-
cated procedures that handle the four cases respectively. Recall that C is represented
as a Gaussian map, which is internally represented as an arrangement of geodesic
arcs embedded on the sphere. We traverse the vertices of the arrangement. For each
vertex v we extract its associated primal facet f = G−1(v). We dispatch the appro-
priate computation based on the relative position of the origin with respect to the
supporting plane to f , and the supporting plane to adjacent facets of f .

If the origin is contained in the interior of a facet f of C, the projection of the
silhouette of C is a great (full) circle that divides the sphere into two hemispheres.
The normal to the plane that contains the great circle is identical to the normal
to the supporting plane to f , easily extracted from the arrangement representing
the Gaussian map of C. The Arrangement on surface 2 package conveniently
supports the insertion of a great circle, provided by the normal to the plane that
contains it, into an arrangement of geodesic arcs embedded on the sphere.

We omit the implementation details of the succeeding two cases, and proceed to
the general case. If the origin is separated from C, we traverse all edges of C until
we find a silhouette edge characterized as follows: Let vs and vt be the source and tar-
get vertices of some edge e in the arrangement representing the Gaussian map of C,
and let fs = G−1(vs) and ft = G−1(vt) be their associated primal facets respectively.
e is a silhouette edge, if and only if, the origin is not in the negative side of the sup-
porting plane to fs and not in the positive side of the supporting plane to ft . We start
with the first silhouette edge we find, and search for an adjacent silhouette edge in

a loop, until we rediscover the first one. We project only the
target vertices of significant silhouette edges, and connect
consecutive projections using arcs of great circle. Let e and
e′ be adjacent silhouette edges. We skip e, if the projections of
e and e′ lie on the same great circle. For example, all but the
last adjacent silhouette edges incident to a facet supported by
a plane that contains the origin are redundant, as illustrated in
the figure on the left. Here we skip e0, e1, and e2, and project
the target vertex of e3.

The output of this phase is a map from ordered pairs of distinct indices into lists
of arrangements as described above. Each ordered pair < i, j >, i �= j is associated
with the list of central projections of the pairwise Minkowski sums of Pj’s sub-parts
and the reflection through the origin of Pi’s sub-parts.

3.6 Pairwise Minkowski Sum Projection

For each pair of distinct parts Pi and Pj we compute the union of projections of the
pairwise Minkowski sums of all sub-parts of part Pj and reflections of all sub-parts
of part Pi.

The output of this phase is a map from ordered pairs of distinct indices into
arrangements. Each ordered pair < i, j >, i �= j is associated with a single
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Unite Pairwise Sub-part
Minkowski sums Projections

for i in {1,2, . . . ,n}
for j in {1,2, . . . ,n}

if i == j continue
Qi j = /0
for k in {1,2, . . . ,mi}

for � in {1,2, . . . ,m j}
Qi j = Qi j ∪Qi j

k�

arrangement extended as described above,
that represents the central projection Qi j of
Mi j = Pj⊕ (−Pi).

We exploit the overlay operation in this
phase the second time throughout this pro-
cess, this time in a loop. Given two dis-
tinct parts Pi and Pj we traverse all pro-
jections in the set {Qi j

k� |k = 1,2, . . . ,mi, � =
1,2, . . . ,m j}, and accumulate the result in
the arrangement Qi j. As mentioned in Sec-

tion 3.4, when the overlay operation progresses, new vertices, edges, and faces of
the resulting arrangement are created. When a new face f is created as a result of the
overlay of a face g in some projection Qi j

k�, and a face in the accumulating arrange-
ment, the Boolean flag associated with f , which indicates whether all directions
d ∈ f pierce Mi j, is turned on, if d pierces Mi j

k�, that is, if the flag associated with the
face of g is on.

The intermediate result of this step are arrangements with potentially redundant
edges and vertices. It is desired, (but not necessary,) to remove these cells, as this
will reduce the time consumption of the succeeding operations, which is directly
related to the complexity of the arrangements. It has even a larger impact when the
optimization described in Section 4 is applied, as the optimization decreases the
number of preceding operation at the account of slightly increasing the number of
succeeding operations. We remove all edges and vertices that are in the interior of
the projection, that is all marked edges and vertices. We also remove spherically
collinear vertices on the boundary of the projection, the degree of which decreased
below three, as a result of the redundant-edge removal.

Fig. 5. Peg-in-the-hole Minkowski sum projections. (a), (b), (c), (d), and (e) are the sub-part
projection. (f) is the union of all the former.

CGAL also supports the union operation among other Boolean operations ap-
plied to general polygons.3 However, it consumes and produces regularized gen-
eral polygons. This regularization operation is harmful in the realm of assembly

planning. Therefore, we work directly on the cells of
the arrangements Qi j. Quite often the projection con-
tains isolated vertices and edges, as occurs in the ex-
ample depicted on the left, referred to as “peg-in-the-
hole”. Here the assembled product is translucently

3 The code supports point sets bounded by algebraic curves embedded on parametric sur-
faces referred to as general polygons.
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viewed from two opposite directions. The blue part is stationary and is decomposed
into five sub-parts. Figure 5 illustrates the corresponding five pairwise Minkowski
sum projections, and their union. The complement of the union consists of a single
isolated vertex.

B⊕ (−R) R⊕ (−B)

Recalling our Split Star assembly, the projection of
the Minkowski sum of the red part and the reflection
of the blue part, and its reflection, that is, the projec-
tion of the Minkowski sum of the blue part and the
reflection of the red part are depicted on the right.

3.7 Motion-Space Construction

We compute a single arrangement that represents the
motion space, where each cell c of the arrangement is
extended with a DBG. We use the adjacency-matrix
storage format provided by BOOST4 to represent each
DBG. Recall that for a graph with n vertices such as
ours, an n×n matrix is used, where each element ac

i j of a DBG associated with cell
c is a Boolean flag that indicates whether part Pi collides with part Pj when moved
along any direction d ∈ c. Handling large assemblies with sparse blocking relations
may require different representations of DBGs to reduce memory consumption.

We exploit the overlay operation in this phase the third time similar to its ap-
plication in Section 3.6. We iterate over all central projections in the set Qi j, and
accumulate the result in the final motion-space arrangement. As mentioned above
in Section 3.4, when the overlay operation progresses, new vertices, edges, and faces
of the resulting arrangement are created. When a new cell c is created as a result of
the overlay of a face g in some projection Qi j, and a cell in the accumulating arrange-
ment, the DBG associated with c is updated. That is, if the flag associated with g
is turned on, we insert an edge between vertex i and vertex j into
the DBG associated with c.

Depicted on the right is the motion-space arrangement computed
by our program for the Split Star assembly.

3.8 Motion-Space Processing

We traverse all vertices, edges, and faces of the motion-space ar-
rangement in this order, and test the DBG associated with each
cell for strong connectivity using the BOOST global function
strong components(). This function computes the strongly con-
nected components of a directed graph using Tarjan’s algorithm
based on DFS [20]. The set of constraints associated with a vertex v is a proper
subset of the constraints associated with edges incident to v. Similarly, the set of
constraints associated with an edge e is a proper subset of the constraints associated

4 http://www.boost.org
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Direction Subset
1. −1,−1,−1 GBT
2. −1,−1, 1 RBT
3. −1, 1,−1 GPT
4. −1, 1, 1 RPT
5. 1,−1,−1 GBY
6. 1,−1, 1 RBY
7. 1, 1,−1 GPY
8. 1, 1, 1 RPY

with the two faces incident to e. Therefore, if the DBGs
of all vertices are strongly connected, we terminate with
the conclusion that the assembly is interlocked. Similarly,
if we are interested in finding all solutions, and the DBGs
of all edges are strongly connected, we terminate, as no
further solutions on faces exist.

For the Split Star assembly, our program successfully
identifies all the eight partitioning directions depicted
above along with the corresponding subset of parts listed
on the right.

4 Additional Optimization

The reflection of the sub-parts through the origin as described in Section 3.3 has
been naively implemented. The computation is applied to the polyhedral-mesh rep-
resentation of each sub-part. An immediate optimization calls for an application of
the reflection operation directly on the arrangements that represent the Gaussian
map. We are planning to implementat the reflection operation, which operates on
any applicable arrangement. This operation alters incidence relations between the
arrangement features and their geometric embeddings. For each vertex, it reflects
its associated point about the origin, and inverts the order of the halfedges incident
to it. For each edge, it reflects its associated curve about the origin. For each face,
it inverts the order of the halfedges along its outer boundary. Similar to the overlay
operation (see Section 3.4), where the user can provide a set of ten functions, which
are invoked when new vertices, edges, and faces of the resulting arrangement are
created, while the overlay operation progresses, the user can provide a set of three
functions that are invoked when a new vertex, halfedge, and face are created, while
the reflection operation progresses. Extended data associated with these types, such
as a primal vertex associated with an arrangement face as in the case of an arrange-
ment representing a Gaussian map, can easily be updated with the provision of an
appropriate function.

The trivial observation that P⊕ (−Q) =−((−P)⊕Q) leads to another optimiza-
tion. Instead of reflecting all sub-parts in the set {Pi

k | i = 1,2, . . . ,n,k = 1,2, . . . ,mi},
we reflect only the sub-parts in the set {Pi

k | i = 2, . . . ,n,k = 1,2, . . . ,mi}, and com-

pute only the pairwise sub-parts Minkowski sums in the set {Mi j
k� |1≤ i < j≤ n,k =

1,2, . . . ,mi, � = 1,2, . . . ,m j}, their central projection, and the union of the appropri-
ate projections to yield the set {Qi j |1 ≤ i < j ≤ n}. Then, we apply the reflection
operation described above on each member of this set, and obtain the full set of pro-
jections {Qi j | i = 1,2, . . . ,n, j = 1,2, . . . ,n}. The Boolean flag associated with a face
of an arrangement that represents a central projection is equal to the flag associated
with its reflection. In other words, a face of Qi j consists of directions that pierce Mi j,
if and only if, its reflection in Q ji consists of directions that pierce Mji.

Phase 8 is purely topological. Thus, we do not expect the time consumption of
this phase to dominate the time consumption of the entire process for any input.
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Table 1. Time consumption (in seconds) of the execution of the eight phases (see Section 3)
using the Split Star assembly as input. A — number of convex sub-parts per part. B — number
of sub-part vertices per part. C — total number of convex sub-parts. D — total number of
Minkowski sums. E — total number of arrangements of geodesic arcs embedded on the
sphere constructed throughout the process.

A B C D E 1 2 3 4 5 6 7 8

3 16 18 270 607 NA 0.01 0.04 2.38 0.41 2.05
0.36 0.015 22 30 750 1591 NA 0.01 0.05 5.03 1.09 7.07

8 32 48 1920 3967 NA 0.01 0.06 11.12 2.41 27.99

Nevertheless, it might be possible to reduce its contribution to the total time
consumption through efficient testing for strong connectivity applied to all the
DBGs [16], exploiting the similarity between DBGs associated with incident cells.
Recall, that the set of arcs in a DBG associated with a vertex v is a subset of the
set of arcs associated with an edge incident to v. Similarly, the set of arcs in a DBG
associated with an edge e is a subset of the set of arcs associated with a face incident
to e. The proposed technique reduces the cost from O(n2) per DBG to an amortized
cost of O(n1.376), where n is the maximum number of arcs in any blocking graph.

5 Experimental Results

Our program can handle all inputs. However, due to lack of space, we limit ourselves
to a small set of test cases, where we compare the impact of different decomposi-
tions on the process time-consumption. The results listed in Table 1 were produced
by experiments conducted on a Pentium PC clocked at 1.7 GHz. In all three test
cases we use the Split Star assembly as input. Naturally, in all three cases identical
projections are obtained as the intermediate results of Phase 6, hence the identi-
cal time consumption of the succeeding last two phases. Evidently, it is desired to
decompose each part into as few as possible sub-parts with as small as possible num-
ber of features. However, an automatic decomposition operation may require large
amount of resources to arrive at optimal or near optimal decompositions. Notice
that Phases 4 and 6 dominate the time complexity. This is due to the large number
of geometric predicates that must be evaluated during the execution of the overlay
operation.
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1Université Libre de Bruxelles, Belgique
e-mail: {galoupis,secollet,slanger}@ulb.ac.be

2Villanova University, Villanova, USA
e-mail: mirela.damian@villanova.edu

3Massachusetts Institute of Technology, Cambridge, USA
e-mail: edemaine@mit.edu

4Concordia University, Montreal, Canada
e-mail: d_elkhec@cs.concordia.ca

5Siena College, Loudonville, N.Y., USA
e-mail: flatland@siena.edu

6Smith College, Northampton, USA
e-mail: orourke@cs.smith.edu

7Southern Connecticut State University, USA
e-mail: pinciu@scsu.ctstateu.edu

8Rutgers University, Camden, NJ, USA
e-mail: rsuneeta@camden.rutgers.edu
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at most unit velocity and (via expansion) can displace at most one other atom. We
require that one of the atoms can store a map of the target configuration. Our al-
gorithms involve a total of O(n2) such atom operations, which are performed in
O(n) parallel steps. This improves on previous reconfiguration algorithms, which
either use O(n2) parallel steps [8, 10, 4] or do not respect the constraints mentioned
above [1]. In fact, in the setting considered, our algorithms are optimal, in the sense
that certain reconfigurations require Ω(n) parallel steps. A further advantage of our
algorithms is that reconfiguration can take place within the union of the source and
target configurations.

1 Introduction

Crystalline and Telecube robots. In this paper, we present new algorithms for the
reconfiguration of robots composed of crystalline atoms [3, 4, 8] or telecube atoms
[9, 10], both of which have been prototyped.

The atoms of these robots are cubic in shape, and are arranged in a grid configu-
ration. Each atom is equipped with mechanisms allowing it to extend each face out
one unit and later retract it back. Furthermore, the faces can attach to or detach from
faces of adjacent atoms; at all times, the atoms should form a connected unit. The
default configuration for a Crystalline atom has expanded faces, while the default
for a Telecube atom has contracted faces.

When groups of atoms perform the four basic atom operations (expand, contract,
attach, detach) in a coordinated way, the atoms move relative to one another, result-
ing in a reconfiguration of the robot. Figure 1 shows an example of a reconfiguration.
To ensure that all reconfigurations are possible, atoms must be arranged in k× k× k
modules, where k ≥ 2 [1, 10]. In the 2D setting that we focus on, we assume that
modules consist of 2×2 atoms. Our algorithms can easily be extended to 3D.

We refer the reader to [8, 10, 1] for a more detailed and basic introduction to these
robots. Various types of self-reconfiguring robots, as well as related algorithmic
issues, are surveyed in [6, 11].

The model. The problem we solve is to reconfigure a given connected source con-
figuration of n modules to a specified, arbitrary, connected target configuration T in
O(n) parallel steps. We allow modules to be able to exert only a constant amount of
force, independent of n. In other words each module has the ability to push/pull one
other module by a unit distance (the length of one module) within a unit of time.
Simply bounding the force may still lead to arbitrarily high velocities and thus rather
unrealistic motions. On the other hand, in some situations where maximal control
is desired (e.g., treacherous conditions, dynamic obstacle environment, minimally
stable static configuration of the robot itself) it may be desirable to strictly limit

Fig. 1. Example of reconfiguring crystalline atoms.
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Fig. 2. The middle cell contains two modules. The red guest module is capable of turning
orientation. Only initial and final configurations are shown.

velocity. Thus we also bound maximum velocity (and so the momentum) by a con-
stant (module length/unit time). Our algorithms are designed for Crystalline robots.
For a discussion of the main differences for Telecube robots, see Section 5.

We restrict our descriptions to a 2D lattice. None of our techniques depend on
dimension, so it is straightforward to extend to 3D robots. Given the 2× 2 mod-
ule size, a cell of the lattice can contain up to two modules (see Fig. 2). Cells are
marked with an integer in {0,1,2}: a 0-cell corresponds to a node in T that has no
module yet, a 1-cell contains one module, and a 2-cell contains two (compressed)
modules. In a 2-cell, we sometimes distinguish between the host module and the
guest module.

Let r0 be a specialized module that has access to a map of the target configu-
ration, T . We compute a spanning tree S of the source configuration, rooted at r0,
and instruct cells to attach/detach so that the attachments model the tree connec-
tions in S. The spanning tree can be computed in linear time and constructed via
local communication. The tree structure between cells is maintained throughout the
algorithm by physical connections between host modules. These modules are also
responsible for the parent-child pointer structure of the tree. For each node u ∈ S,
let P(u) denote the parent of u in S. A child of a cell u is adjacent either on the east,
north, west, or south side of u. Let the highest priority child of u be the first child in
counterclockwise order starting with the east direction.

Related results. Algorithms for reconfiguring Crystalline and Telecube robots in
O(n2) parallel steps have been given in [8, 10, 4]. The same bound is implied in [5],
which deals with reconfigurations of a specific class of modular robots (more re-
strictive than Crystalline). A linear-time parallel algorithm for reconfiguring within
the bounding box of source and target is given in [1]. The total number of individual
moves is also linear. However, no restrictions are made concerning physical proper-
ties of the robots. For example, O(n) strength is required, since modules can carry
towers and push large masses during certain operations. An O(logn) time algorithm
for 2D robots that uses O(n logn) parallel moves and also stays within the bounding
box is given in [2] (and it seems that the algorithm can be extended to 3D). How-
ever, not only do modules have O(n) physical strength, they can also reach O(n)
velocity. An O(

√
n) time algorithm for 2D robots, using the third dimension as an

intermediate, is given in [7]. This is optimal in the model considered, which per-
mits linear velocities, but only constant acceleration. If applied within the model
used in [2], this algorithm would run in constant time. We remind the reader that,
unlike [7, 1, 2], we limit force and velocity to a constant level.
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Contributions of this paper. We present two algorithms to reconfigure Crystalline
robots in O(n) time steps, using O(n) parallel moves per time step. Our first algo-
rithm (Section 3) is slightly simpler to describe, and relatively easily adaptable to
Telecube robots. It also forms the basis of our second algorithm (Section 4), which
is exactly in-place, i.e., it uses only the cells of the union of the source and target
configurations. This is particularly interesting if there are obstacles in the environ-
ment. Both algorithms consider the given robot as a spanning tree, and push leaves
towards the root with “parallel tunneling”. No global communication is required.
This means that constant-size memory suffices for each non-root module, which
can decide how to move at each step based solely on the states of its neighbors. In
the realistic model considered in this paper, our algorithms are optimal, in the sense
that certain reconfigurations require a linear number of parallel moves.

2 Primitive Operations

Let m and q be adjacent cells. We define the following primitive operations:

1. PUSHINLEAF(m,q) – applies when q = P(m), m is a leaf, and both are uncom-
pressed. Here, m becomes empty and q becomes compressed (i.e., q takes the
module of m as a guest).

2. POPOUTLEAF(m,q) – applies when q is compressed and m is empty. This is the
inverse of the PUSHINLEAF operation.

3. TRANSFER(m,q) – applies when m is compressed and q is non-empty; if q is
compressed, the guests of both cells physically exchange positions. Otherwise,
the guest of m moves into (and becomes a guest of) q.

4. ATTACH(m,q) – host modules in m and q form a physical connection.
5. DETACH(m,q) – the inverse of ATTACH.
6. SWITCH(m) – applies when m is compressed. Its two modules physically switch

positions (and roles of host and guest).

PUSHINLEAF, POPOUTLEAF, and TRANSFER are illustrated in Fig. 3.
Note that any permutation of atoms within a module can be realized in linear

time with respect to the size of the module (i.e., O(1) time for our modules). Thus a
compressed cell may transfer or push one module to any direction, and two modules
within a cell can switch roles. Details are omitted due to space restrictions.

(a) (b)

Fig. 3. (a) PUSHINLEAF and POPOUTLEAF. (b) TRANSFER. Only initial and final configu-
rations are shown.
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In the remainder of this paper, we assume that all parallel motions are synchro-
nized. However, due to the simple hierarchical tree structure of our robots, we find
it plausible that our algorithms could be implemented so that modules may operate
asynchronously. Details remain to be verified.

Lemma 2.1. Operations PUSHINLEAF, POPOUTLEAF, SWITCH and TRANSFER

maintain the tree structure of a robot.

The proof is omitted for lack of space.
In our basic motions, modules move by one unit length per time step. The moving

modules do not carry other modules. Thus our reconfiguration algorithms place no
additional force constraints beyond those required by any reconfiguration algorithm.

3 Reconfiguration via Canonical Form

This section describes an algorithm to reconfigure S into T via an intermediate
canonical configuration. Modules follow a path directly to the root r0, and into
a canonical “storage configuration”. We focus on the construction of one type of
canonical form, a vertical line V . In fact V could be any path that avoids the source
configuration. Thus the entire reconfiguration can take place relatively close to the
bounding box of S. Reconfiguring from V to T is relatively straightforward and not
discussed here, due to space restrictions.

We first move r0 to a maximum possible y-coordinate within S: This involves
pushing in a leaf and iteratively transferring it to r0, so that r0 becomes part of a
2-cell and then is able to iteratively transfer to its target. Note that this might not
be necessary in implementations in which all modules are capable of playing the
role of r0 (for example, if all modules have a map of T , or if all are capable of
communicating to an external processor). This initial step is followed by two main
phases, during which r0 does not move.

In the first phase, we repeatedly apply procedure CLUSTERSTEP to move mod-
ules closer to r0, by compressing in at the leaves and moving up S in parallel. The
shape of S shrinks, as PUSHINLEAF operations in CLUSTERSTEP compress leaf
modules into their parent cells. It is not critical that all cells become compressed.
In fact this phase mainly helps to analyze the total number of parallel steps in our
algorithm. At the end of this phase, all non-leaf cells will become 2-cells. In this
state we refer to S as being fully compressed.

CLUSTERSTEP(S)

For all cells u in S except for that containing r0, execute the following in parallel:
If P(u) is a 1-cell

If u is the highest priority child of P(u) and
all siblings of u are leaves or 2-cells,

If u is a 1-cell leaf then PUSHINLEAF(u,P(u)).
If u is a 2-cell, then TRANSFER(u,P(u)).
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SOURCECLUSTER(S)

Repeat until S is fully compressed
CLUSTERSTEP(S).

SOURCECLUSTER is illustrated in Figure 4. The task of compressing a parent cell
P(u) falls onto its highest priority child, u. Note that P(u) first becomes compressed
only when all its subtrees are essentially compressed. That is, even if u is ready
to supply a module to P(u), it waits until all other children are also ready. This
rule could be altered, and in fact the whole process would then run slightly faster.
Here, we ensure that once the root of a subtree becomes compressed, it will supply
a steady stream of guest modules to its ancestors.
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Fig. 4. An example of SOURCECLUSTER.

In the second phase, we construct V while emptying S, one module at a time.
This is described in the second step of algorithm TREETOPATH, and is illustrated in
Figure 5.

Algorithm TREETOPATH(S,V)

1. SOURCECLUSTER(S)
2. Let d be the cell containing r0 as a host. Let V = d.

Repeat until V contains all modules:
a) For all 2-cells u in V , execute in parallel:

Let c be the cell vertically above u.
If c is empty, POPOUTLEAF(u,c);
Otherwise, TRANSFER(u,c).

b) CLUSTERSTEP(S)

Lemma 3.1. If S is a set of modules physically connected in a tree of cells, then
CLUSTERSTEP(S) returns a tree containing the same set of modules, while main-
taining connectivity. So does SOURCECLUSTER(S).
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Fig. 5. An example of TREETOPATH.

Proof. CLUSTERSTEP invokes two basic operations, PUSHINLEAF and TRANS-
FER. By Lemma 2.1, these operations maintain a tree. The claim follows immedi-
ately for SOURCECLUSTER. ��

The height of a cell in S is the height of its subtree in S.

Lemma 3.2. Let r be a cell in S with height h ≥ 2. In iteration h−1 of
SOURCECLUSTER(S), r becomes a 2-cell for the first time.

Proof. Prior to the first iteration, S contains only 1-cells. The proof is by induction
on h. For the base case when h = 2, the children of r are leaves. Therefore, in the
first iteration, during CLUSTERSTEP, the highest priority leaf compresses into r.

Now assume inductively that the lemma is true for all subtrees of height smaller
than h. Cell r must have at least one child c with height h−1. By the inductive
hypothesis, c becomes a 2-cell in iteration h−2, and all its other non-leaf children
are 2-cells by the end of iteration h−2. Therefore, at iteration h−1, for the first time
the conditions are satisfied for r to receive a module from its highest priority child
during CLUSTERSTEP. ��

Lemma 3.3. Let r be a 2-cell with height h that transfers its guest module to P(r) in
iteration i of SOURCECLUSTER. Then at the end of iteration i+1, r is either a leaf
or a 2-cell again.

Proof. First note that at the beginning of iteration i+1, r is a 1-cell and P(r) is a
2-cell. Thus if r is a leaf after iteration i, it remains so. On the other hand if r has
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children (h≥ 2), it will become a 2-cell. We prove this by assuming inductively that
our claim holds for all heights less than h. Consider the base case when h = 2. At
the end of iteration i, all children of r are leaves and thus one will compress into r
(note that r might also become a leaf in this particular case).

For h > 2, consider the iteration j < i in which r received the guest module that it
later transfers to P(r) in iteration i. At the beginning of iteration j, all of r’s children
were leaves or 2-cells, since that is a requirement for r to receive a guest. Let c be
the child that passed the module to r. If c used the PUSHINLEAF operation, then at
the end of iteration j, r has one fewer children (but at least one). The other children
remain leaves or 2-cells until iteration i+1, when r becomes a 1-cell again. Thus in
iteration i+1, conditions are set for r to receive a module.

On the other hand, if c used the TRANSFER operation, we apply the inductive
hypothesis: at the end of iteration j+1 ≤ i, c is either a leaf or a 2-cell. During
iterations j and j+1 in which r is busy receiving or transferring a module, all other
children of r (if any) remain leaves or 2-cells. Therefore in iteration j+2≤ i+1, the
conditions are set for r to receive a module. ��

Let the depth of a cell in a tree be its distance from the root. Hence, the root has
depth zero.

Lemma 3.4. SOURCECLUSTER terminates after at most 2h−1 iterations of CLUS-
TERSTEP.

Proof. We claim that at the completion of iteration h−1+d of SOURCECLUSTER,
all non-leaf modules at depth less than or equal to d in Sh−1+d are 2-cells. The proof
is by induction on d. The base case is the root of Sh−1 at depth d = 0. By Lemma 3.2,
the root becomes a 2-cell in iteration h−1. Assume inductively that our claim is true
for all values d′, where 0≤ d′ < d.

Now consider a cell p at depth d−1 that has children. By the inductive hypothe-
sis, p and all its ancestors are 2-cells by the end of iteration i = h−1+(d−1), and p
is the last of this group to become a 2-cell. Thus at the beginning of iteration i, all
children of p are either leaves or 2-cells. During iteration i, only p’s highest priority
child c changes, either by transferring a guest module into p (if c is a 2-cell), or by
pushing into p (if c is a 1-cell leaf). In the first case, by Lemma 3.3, c will be a 2-cell
or a leaf by the end of iteration i+1. In the second case, c is not part of S anymore.

Since p will not accept new guest modules after iteration i, all siblings of c remain
leaves or 2-cells during iteration i+1. Thus at the end of this iteration, our claim
holds for depth d. By setting d = h, our result follows. ��

Let a long gap consist of two adjacent 1-cells that are not leaves. A tree is root-
clustered if it has no long gaps. Observe that a fully compressed tree is a special
case of a root-clustered tree.

Lemma 3.5. Let S be a root-clustered tree. Then after one application of
CLUSTERSTEP(S), S remains root-clustered.

Proof. This follows from claims in the proof of Lemma 3.3. Specifically, consider
any 2-cell u. If CLUSTERSTEP keeps u as a 2-cell, then u is not part of a long gap.
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Otherwise, if u sends a module to P(u), none of the children of u attempt to transfer
a module to u. Now consider any 1-cell non-leaf child y of u. Since there was no
long gap in S, all children of y were either 2-cells or leaves. Thus y will become a
2-cell during this iteration of CLUSTERSTEP. Again we conclude that u cannot be
part of a long gap. ��

Theorem 3.1. Algorithm TREETOPATH terminates in linear time.

Proof. By Lemma 3.4, SOURCECLUSTER terminates in linear time. In fact by treat-
ing the final top position of V as an implicit root, our claim follows.

More specifically, however, we analyze the transition from S into V . When
SOURCECLUSTER terminates, S is fully compressed (i.e., root-clustered), and we
set r0 to be the host in cell d.

In step 2a, d sends a module to the empty position c vertically above, if c is not a
2-cell. We may treat the position c as P(d), and consider step 2a to be synchronous
to step 2b. In other words, d is the only child of c, and thus d follows the same rules
as CLUSTERSTEP. In fact, since S is fully compressed, after the first iteration of
phase 2, the tree rooted at c will be root-clustered (only c and the highest-priority
child of d will not be 2-cells). Therefore, by Lemma 3.5, in every iteration of phase
2, S remains root-clustered. Thus in every even iteration, d supplies a module to c,
and in every odd iteration d is given a module from one of its children. Informally,
when d sends a module up into V , the gap (in the sense of lack of guest module) that
is created in S travels down the highest priority path of S until it disappears at a leaf.
In general, a guest module on the priority path will never be more than two steps
away from d, following the analysis of Lemma 3.3. Within V , a stream of guest
modules, two units apart, will move upward. One module will pop up into an empty
cell, every three iterations. Thus compressed modules in V can always progress. ��

Again, we remind the reader that our first phase need not terminate before the sec-
ond commences. By compressing leaves and sending them towards the root, while
simultaneously constructing V from the root whenever it becomes compressed,
the target configuration will be constructed even sooner. Splitting into two distinct
phases simply helps for the analysis.

4 In-Place Reconfiguration

This section describes an algorithm that reconfigures S into T by restricting
the movement of all modules to the space occupied by S ∪ T , as long as they
intersect. If S and T do not intersect, then we also use the cells on the shortest path
between them. Our description assumes intersection. We call such an algorithm
in-place. If all modules were to know which direction to take in each time unit (for
example, by having an external source synchronously transmit instructions to each
module individually), then it would not be difficult to design an in-place algorithm
similar to the one in Section 3. However, in this section we impose the restriction
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that all modules are only capable of communicating locally. It is up to r0 to direct
all action.

Our algorithm consists of two phases. The first phase is identical to phase 1 of
the TREETOPATH algorithm from Section 3 (i.e., clustering around the root).

In the second phase, r0 carries out a DFS (depth-first search) walk on T , dynami-
cally constructing portions that are not already in place. Apart from modules in cells
adjacent to r0 that receive its instructions, all other modules simply try to keep up
with r0 (i.e., they follow CLUSTERSTEP). Note that if r0 is not initially inside T , it
first must travel to such a position. At any time, this “moving root” will either be
traveling through modules that belong to the partially constructed tree T , or will be
expanding T beyond the current tree structure, using compressed modules that are
tagging along close to r0.

The INPLACERECONFIGURATION algorithm maintains a dynamically changing
tree S, each of whose cells u maintains two links: a physical link corresponding to
the physical connection between u and P(u), and a logical link that could either be
NULL, or identical to the physical link. We call the tree S� induced by the logical
links the logical tree. S always contains all occupied cells. S� is the smallest tree
containing the modules that are not in their final position in T . Thus at the end of
the algorithm, S = T and S� = /0.

We now describe the heart of the algorithm, which is the operation of phase 2.

TARGETGROW(S,T )

{1. DFS Root Update }
d ← next cell in the DFS visit of T .
c ← current 2-cell in which r0 is a guest module.

Mechanical/Physical Operations
1.1 If d is a 0-cell,

POPOUTLEAF(c,d)
1.2 If d is not a 0-cell,

If c �= P(d),
ATTACH(c,d) and DETACH(d,P(d)).

TRANSFER(c,d).

Tree Structure Update
1.3 Set P(c) to be d. Set P(d) to NULL

1.4 Mark c as “visited”.
1.5 Include d in S�.

{2. Root Clustering }
Until c and d become 2-cells, repeat:

(a) Detach Leaf: For all 1-cell leaves u ∈ S�, execute in parallel:
If u is marked “visited”, remove u from S�.

(b) CLUSTERSTEP(S�)
If r0 is not the guest in c, SWITCH(c).
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The full algorithm is summarized in the following:

Algorithm INPLACERECONFIGURATION(S,T )

Phase 1. S ← SOURCECLUSTER(S).

Phase 2. Repeat until r0 reaches the final position in its DFS traversal:
S ← TARGETGROW(S,T).

In Phase 2, we start with S� = S. Throughout this phase, the logical tree is main-
tained as a subtree of the physical tree: S� ⊆ S. The host module in each cell uses a
bit to determine if the cell is also part of S�. Pointers between cells and their parents
apply for both trees.

The main idea of the target growing phase is to move r0 through the cells of T
in a DFS order. A caravan of modules will follow r0, providing a steady stream of
modules to fill in empty target cells that r0 encounters. The algorithm repeats the
following main steps:

1. DFS Root Update: r0 is the guest of 2-cell c and is ready to depart. It marks c as
“visited” (i.e., c now belongs to T ). Then r0 moves to the next cell d encountered
in a DFS walk of T . This is accomplished either by uncompressing (popping) r0

into d (see Fig. 6(a → b)), or by transferring r0 to d (see Fig. 6(e → f)). Cell d is
added to S�, if not already included.

2. Root Clustering: Modules in S� attempt to move closer to r0, to ensure that they
are readily available when r0 needs them. However, host modules in their final
target position should never be displaced from that position, so we must carefully
prevent such modules from compressing towards r0. To achieve this, we alternate
between the following two steps, until c and d both become 2-cells:

a. Logical Leaf Detach: remove any 1-cell leaf of S� that has been visited (i.e.,
is in T ). Note that a detached 1-cell may end up back in S� one more time,
during Root Update.

b. Cluster Step: this step is applied to S�. Thus, only modules that are guests or
unvisited leaves will try to move towards r0.

Fig. 6 illustrates the INPLACERECONFIGURATION algorithm with the help of
a simple example. The top row of the figure shows the source configuration S af-
ter phase 1 completes (left), and the target robot configuration (right). Links in S�,
which is shaded, are depicted as arrows.

Lemma 4.1. Algorithm INPLACERECONFIGURATION maintains a physically con-
nected tree that contains all modules.

Proof is omitted for lack of space. We just mention briefly an interesting case, in
which the root attaches to a module in a way that a cycle is created. This happens if
d is already part of S, but c �= P(d). The cycle is created because c becomes attached
to d, but is always broken by detaching d from its parent.
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Fig. 6. Reconfiguring S into T : the top row shows S (after SOURCECLUSTER) and T . Subse-
quent figures show S (with its logical subtree S� shaded) (a) after TARGETGROW, with each
intermediate step illustrated (DFS root update on the left and the subsequent 3 clustering
steps on the right); (b) after TARGETGROW, with each intermediate step illustrated; (c) after
TARGETGROW, with its two main steps (root update and root clustering) illustrated; (d,e,f,g)
show the next 4 TARGETGROW steps; (h) after the next 2 TARGETGROW steps; (i) after the
next TARGETGROW (note the rightmost 1-cell leaf getting disconnected from S�); the process
continues.

In phase 1 of INPLACERECONFIGURATION SOURCECLUSTER produces a root-
clustered tree containing r0 in a 2-cell. We now show that phase 2 maintains this
property in constant time, regardless of how r0 moves.

Lemma 4.2. TARGETGROW maintains S� as a root-clustered tree containing r0 in
a 2-cell. Furthermore, the procedure uses O(1) parallel steps.

Proof. The proof is rather similar to that of Lemma 3.5. Since S� ⊆ S , it follows
from Lemma 4.1 that S� is physically connected.
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Fig. 7. DFS Root update (a) POPOUTLEAF(c,d) (b) TRANSFER(c,d).

Let Si
� denote the root-clustered tree that is input for TARGETGROW. In step 1

(DFS root update), Si
� will be modified according to any physical operations carried

out (POPOUTLEAF and TRANSFER ). By Lemma 4.1, these changes result in a tree,
which we call Si+1

� .
Since step 1 only affects c and d, it follows that at the beginning of step 2, a long

gap in Si+1
� must contain c, which becomes a 1-cell via POPOUTLEAF (see Fig. 7a),

or via TRANSFER (see Fig. 7b).
We now show that the loop in step 2 of TARGETGROW iterates at most four times

before our claim holds. Recall that, since Si+1
� was root-clustered, children of c are

either leaves, 2-cells, or their children have that property.
Any DetachLeaf operation only trims visited 1-cell leaves from the tree and thus

does not affect the root-clustered property of the tree. There are two cases for the
number of CLUSTERSTEP applications required to terminate the loop:

1. Si+1
� was obtained via POPOUTLEAF (step 1.1): In this case c and d are 1-cells

at the beginning of step 2. If all children of c are leaves or 2-cells, then in the
first iteration of CLUSTERSTEP, c will become a 2-cell again. Otherwise, since
Si

� was root-clustered, any non-leaf 1-cell child will become a 2-cell in the first
iteration. Thus in the second iteration at the latest, c will become a 2-cell. Fur-
thermore, just as described in Lemma 3.5, the subtree rooted at any child of c
remains root-clustered after the first application of CLUSTERSTEP (in particular,
for the highest-priority child which is the only one that changes). Similarly, by
the time c becomes a 2-cell, the subtree rooted at c also becomes root-clustered.
The third CLUSTERSTEP makes d a 2-cell root of a root-clustered tree, since all
children of c must have been leaves or 2-cells to supply a module to c. The fourth
CLUSTERSTEP makes c a 2-cell, which terminates the loop.

2. Si+1
� was obtained via TRANSFER (step 1.2): In this case d is already a 2-cell

at the beginning of step 2 because of the TRANSFER operation in step 1.2. If c
remains a 2-cell during the transfer, then Si+1

� is already root-clustered and the
loop condition is satisfied. If c is a 1-cell, arguments similar to case 1 imply
that after one application of CLUSTERSTEP, Si+1

� is root-clustered. A second
application of CLUSTERSTEP makes c a 2-cell, which terminates the loop. ��

Theorem 4.1. The INPLACERECONFIGURATION algorithm can be implemented in
O(n) parallel steps.
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Proof. By Lemma 3.4, phase 1 uses O(n) steps. Step 2 of INPLACERECONFIGU-
RATION has O(n) iterations, since DFS has O(n) complexity. By Lemma 4.2, each
iteration takes constant time. ��

5 Observations

Matching lower bound: Transforming a horizontal line of modules to a vertical
line requires a linear number of parallel steps, if each module can only displace one
other and maximum velocity is constant.

3D: All of our techniques apply directly to 3D robots, once the top and bottom sides
of cells are incorporated into our highest priority rule.

Labeled robots: Our algorithms are essentially unaffected if labels are assigned
to modules. In TREETOPATH, assume that the partially constructed canonical path
is sorted. Then a new module m pushed through can bubble/tunnel to its position.
When it gets there, the tail of the path must shift over, but this is straightforward
involving propagation of one compressed unit, and does not interfere with other
modules following m. For the in-place algorithm, T can first be constructed disre-
garding labels. A similar type of bubble-sort can then be applied, within T .

Telecube robots: The natural state of a telecube robot has atom arms contracted.
There is no room to compress two modules into one cell. Thus an algorithm cannot
commence with PUSHINLEAF operations, and it is not possible to physically ex-
change modules in adjacent cells while remaining in place. However, consider our
first algorithm. We do not even need a SOURCECLUSTER phase, since all atoms
are packed together. The root can transmit an instruction to a cell at maximum y-
coordinate to act as root and immediately push out two of its atoms. For the con-
struction of V , all analysis follows. It seems that labeled atoms within a module
might become separated (for example, if the module is at a junction in a tree). Thus
an extra step is used, to collect the root atoms at the bottom of V .

Exact in-place reconfiguration is impossible for labeled telecube robots. Thus
the root cannot travel to any position within S. It might be possible to deal with
this issue by requiring larger modules and designing a “reduced module shape” for
the root (e.g., fewer atoms, using naturally expanded links). Instead, we could re-
quire that all modules have access to the map of T , which means any module can
begin to expand T by filling adjacent 0-cells. Instead of advancing through non-
empty cells of T physically, the root can just tell its neighbors to take over. Even-
tually a new root module would expand T at a different connected component of
0-cells.
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uration at the Bellairs Research Institute of McGill University for providing a stimulating
research environment.
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Kinodynamic Motion Planning by
Interior-Exterior Cell Exploration

Ioan A. Şucan and Lydia E. Kavraki

1 Introduction

Over the last two decades, motion planning [4, 15, 17] has grown from a field that
considered basic geometric problems to a field that addresses planning for complex
robots with kinematic and dynamic constraints [5]. Applications of motion planning
have also expanded to fields such as graphics and computational biology [16].

Much of the recent progress in motion planning is attributed to the development
of sampling-based algorithms [4, 17]. A sampling-based motion planning algorithm
can only be probabilistically complete [9, 12], which means if a solution exists, it
will be eventually found. One of the first successful sampling-based motion planners
was the Probabilistic Roadmap Method (PRM) [10]. This method provided a coher-
ent framework for many earlier works that used sampling and opened new directions
for research [2]. In the case of realistic robots, taking dynamic constraints into ac-
count (kinodynamic motion planning) is a necessity. Sampling-based tree planners
such as Rapidly-exploring Random Trees (RRT) [11, 19], Expansive Space Trees
(EST) [6, 7] have been successfully used to solve such problems. These planners
build a tree of motions in the state space of the robot and attempt to reach the goal
state. Many variations of these planners exist as well (e.g., [8, 18, 22]). More recent
planners have been designed specifically for planning with complex dynamic con-
straints [14, 21]. The Path-Directed Subdivision Tree (PDST) planner [13, 14] has
been used in the context of physics-based simulation as well.

This work presents a new motion planner designed specifically for handling sys-
tems with complex dynamics. This planning algorithm will be referred to as Kin-
odynamic Planning by Interior-Exterior Cell Exploration (KPIECE). While there
are other planners for systems with complex dynamics, KPIECE was designed with
additional goals in mind. One such design goal is the ease of use for systems where
only a forward propagation routine is available (that is, the simulation of the system
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can be done forward in time). Another goal is that no state sampling and no dis-
tance metric are required. These limitations make KPIECE particularly well suited
for complex systems described by physical models instead of equations of motion,
since in such cases only forward propagation is available and sampling of states is
in general expensive. Since KPIECE does not need to evaluate distance between
states, it is also well suited for systems where a distance metric is hard to define or
when the goal is not known until it is actually reached. It is typical for sampling-
based tree planners to spend more than 90% of their computation extending the
trees they build using forward propagation. Since physics simulation is consider-
ably more expensive than integration of motion models, it is essential to use as few
propagation steps as possible. This was a major motivation behind this work and
as will be shown later, KPIECE provides significant computational improvements
over previous methods (up to two orders of magnitude), which allows tackling more
complex problems that could not be previously addressed. Since motion planning is
usually a subproblem of a more complex task, it is generally desirable to have fast
methods for the computation of motion plans. To this end, KPIECE was also de-
signed with shared memory parallelism in mind and the developed implementation
can take advantage of the emerging multi-core technology. The implementation can
use a variable number of processors and shows super-linear speedup in some cases.
The combination of obtained speedup and physics-based simulation, could make
KPIECE fast and accurate enough to be applicable in real-time motion planning for
complex reactive robotic systems.

The rest of content is organized as follows: Section 2 presents the motion
planning problem in more detail, Section 3 contains a description of the proposed
algorithm, and Section 4 presents experiments using KPIECE. The parallel imple-
mentation is discussed in Section 5. Conclusions and future work are in Section 6.

2 Problem Definition

An instance of the motion planning problem addressed here can be formally defined
by the tuple S = (Q,U, I,F, f ) where Q is the state space, U is the control space,
I ⊂ Q is the set of initial states, and F ⊂ Q is the set of final states. The dynamics
are described by a forward propagation routine f : Q×U → T gQ, where TgQ is
the tangent space of Q ( f does not need to be explicit). A solution to a motion
planning problem instance consists of a sequence of controls u1, . . . ,un ∈ U and
times t1, . . . ,tn ∈ R

≥0 such that q0 ∈ I, qn ∈ F and qk,k = 1, . . . ,n, can be obtained
sequentially by integration of f .

For the purposes of this work, the function f is computed by a physics simulator.
In particular, an open source library called Open Dynamics Engine (ODE) [24], is
used. Instead of equations of motion to be integrated, a model of a robot and its
environment needs to be specified. Although simulation incurs more computational
costs than simple integration, the benefits outweigh the costs: increased accuracy is
available since physics simulators take into account more dynamic properties of the
robot (such as gravity, friction) and constructing models of systems is easier and less



Kinodynamic Motion Planning by Interior-Exterior Cell Exploration 451

error prone than deriving equations of motion. Limited numerical precision will still
be a problem regardless of how f is computed. However, as robotic systems become
more complex, physics-based simulation becomes a necessity.

It is sometimes the case that due to the high dimensionality of the state space
Q, a projection space E (Q) is used for various computations the motion planning
algorithm performs (E can be the identity transform). Finding such a projection E
is a research problem in itself. In this work it is assumed that such a projection E is
available, when needed. Section 4.1 presents simple cases of E used in this work.

3 Algorithm

A high-level description of the algorithm is provided before the details are pre-
sented. KPIECE iteratively constructs a tree of motions in the state space of the
robot. Each motion μ = (s,u,t) is identified by a state s ∈ Q, a control u ∈U and
a duration t ∈ R

≥0. The control u is applied for duration t from s to produce a
motion. It is possible to split a motion μ = (s,u, t) into μ1 = (s,u, ta) followed
by μ2 = (

∫ t0+ta
t0

f (s(τ),u)dτ,u,tb), where s(τ) identifies the state at time τ and
ta + tb = t. In this exploration process, it is important to cover as much of the state
space as possible, as quickly as possible. For this to be achieved, estimates of the
coverage of Q are needed. To this end, the discretization described in Section 3.1
is employed. When a less covered area of the state space is discovered, the tree of
motions is extended in that area. This process is iteratively executed until a stopping
condition is satisfied.

3.1 Discretization

During the course of its run, the motion planner must decide which areas of the
state space merit further exploration. As the size of the tree of motions increases,
making this decision becomes more complex. There are various strategies to tackle
this problem (e.g., [7, 14, 19, 21, 22]). The approach taken in this work is to con-
struct a discretization that allows the evaluation of the coverage of the state space.
This discretization consists of k levels L1, ...,Lk, as shown in Fig. 1. Each of these
levels is a grid where cells are polytopes of fixed size. The number of levels and cell
sizes are predefined, however, cells are instantiated only when they are needed. The
purpose of these grids is to cover the area of the space that corresponds to the area
spanned by the tree of motions. Each of the levels provides a different resolution
for evaluating the coverage. Coarser resolution (higher levels) can be used initially
to find out roughly which area is less explored. Within this area, finer resolutions
(lower levels) can then be employed to more accurately detect less explored areas.
The following is a formal definition of a k-level discretization:

• for i ∈ {1, ...,k} : Li = {pi|pi is a cell in the grid at level i}
• for i ∈ {2, ...,k} : ∀p ∈Li,Dp = {q ∈Li−1|q⊂ p}, such that

– ∀p ∈Li,Dp �= /0
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–
⋃

p∈Li
Dp = Li−1

– ∀p,q ∈Li, p �= q → Dp∩Dq = /0

The tree of motions exists in the state space Q, but since the dimension of this
space may be too large, the discretization is typically imposed on a projection of
the state space, E (Q). The use of such a projection E (Q) was also discussed in [13,
21]. An important result we show in this work is that simple projections work for
complex problems. For any motion μ , each level of discretization contains a cell
that μ is part of. A motion μ is considered to be part of a grid cell p if there exists
a state s along μ such that the projection E (s) is inside the bounding box of cell p.
If a motion spans more than one cell at the same level of discretization, it is split
into smaller motions such that no motions cross cell boundaries. This invariant is
maintained to make sure each motion is accounted for only once. For every motion
μ , there will be exactly one cell at every level of discretization that μ is part of. This
set of cells forms a tuple c = (p1, ..., pk), pi ⊂ pi+1, pi ∈Li and will be referred to
as the “cell chain” for μ . Since cells in L1 will determine whether a motion is split,
we augment the definition of the discretization:

• ∀p ∈L1,Mp = {mi|mi is a motion contained in p}
For all p ∈L1 we say p contains Mp and for all p ∈Li, i > 1 we say p contains

Dp. While the discretization spans the potentially very large projection space E (Q),
cells are instantiated only when a motion that is part of them is found, hence the grids
are not fully instantiated. This allows the motion planner to limit its use of memory
to reasonable amounts. The size of the grid cells is discussed in Section 3.4.

A distinguishing feature of KPIECE is the notion of interior and exterior cells.
A cell is considered exterior if it has less than 2n instantiated neighboring cells (di-
agonal neighboring cells are ignored) at the same level of discretization, where n
is the dimension of E (Q). Cells with 2n neighboring cells are considered interior
(there can be no more than 2n non-diagonal neighboring cells in an n-dimensional

Fig. 1. An example discretization with three levels. The line intersecting the three levels
defines a cell chain. Cell sizes at lower levels of discretization are integer multiples of the cell
sizes at the level above.
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space). As the algorithm progresses and new cells are created, some exterior cells
will become interior. When larger parts of the state space are explored, most cells
will be interior. However, for very high dimensional spaces, to avoid having only
exterior cells, the definition of interior cells can be relaxed and cells can be consid-
ered interior before all 2n neighboring cells are instantiated. For the purposes of this
work, this relaxation was not necessary.

With these notions in place, a measure of coverage of the state space can be
defined. For a cell p ∈L1, the coverage is simply the sum of the durations of the
motions in Mp. For higher levels of discretization, the coverage of a cell p∈Li, i >
1 is the number of instantiated cells in Dp.

3.2 Algorithm Execution

A run of the KPIECE algorithm proceeds as described in Algorithm 1. The tree of
motions is initialized to a motion defined by the initial state qstart , a null control and
duration 0 [line 1]. Adding this motion to the discretization will create exactly one
exterior cell for every level of discretization [lines 2,3].

At every iteration, a cell chain c = (p1, ..., pk) is sampled. This means pi ∈Li will
have to be selected, from pk to p1, as will be shown later. It is important to note here
that “samples” in the case of KPIECE are chains of cells. This can be regarded as a
natural progression (selection of “volumes”) from the selection of states (“points”)
as in the case of RRT and EST, and selection of motions (“curves”) as in the case of
PDST. Our experiments show that selecting chains of cells benefits from the better
estimates of coverage that can be maintained for cells at each level, as opposed to
estimates for single motions or states. Sampling a cell chain c = (p1, ..., pk) is a
k-step process that proceeds as follows: the decision to expand from an interior or
exterior cell is made [line 5], with a bias towards exterior cells. An instantiated cell,
either interior or exterior, is then deterministically selected from Lk, according to
the cell importance (higher importance first). The idea of deterministic selection was
inspired by [14], where it has been successfully used. The importance of a cell p,
regardless of the level of discretization it is part of, is computed as:

Importance(p) =
log(I ) ·score

S ·N ·C
where I stands for the number of the iteration at which p was created, score is
initialized to 1 but may later be updated to reflect the exploration progress achieved
when expanding from p, S is the number of times p was selected for expansion
(initialized to 1), N is the number of instantiated neighboring cells at the same
level of discretization, and C is a positive measure of coverage for p, as described
at the end of Section 3.1.

Once a cell p is selected, if p /∈ L1, it means that further levels of discretiza-
tion can be used to better identify the more important areas within p. The selection
process continues recursively: an instantiated cell from Dp is subsequently selected
using the method described above until the last level of discretization is reached and
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the sampling of the cell chain is complete. At the last level, a motion μ from Mp is
picked according to a half-normal distribution [line 6]. The half-normal distribution
is used because order is preserved when adding motions to a cell and motions added
more recently are preferred for expansion. A state s along μ is then chosen uni-
formly at random [line 7]. Expanding the tree of motions continues from s [line 9].

The controls applied from s are selected uniformly at random from U [line 8].
The random selection of controls is what is typically done if other means of control
selection are not available. This choice is not part of the proposed algorithm, and
can be replaced by other methods, if available.

If the tree expansion was successful, the newly obtained motion is added to the
tree of motions and the discretization is updated [lines 11,13]. An estimate of the
achieved progress is then computed. For every level of discretization j, the coverage
of some cells may have increased:

ΔC j = Σp∈L j Δ p, where Δ p = increase in coverage of p

Pj = α + β · (ratio of ΔC j to time spent computing simulations).
Pj is considered the progress at level j [line 16]. The values α and β are imple-
mentation specific and should be chosen such that Pj > 0, and Pj ≥ 1 implies good
progress. The offset α needs to be strictly positive since the increase in coverage
can be 0 (e.g., in case of an immediate collision). The value of Pj is also used as
a penalty if not enough progress has been made (Pj < 1): the cell at level j in the
selected cell chain has its score multiplied by Pj [line 17]. If good progress has
been made (Pj ≥ 1), the value of Pj is ignored, since we do not want to over-commit
to specific areas of the space.

Algorithm 1. KPIECE(qstart , Niterations)

1: Let μ0 be the motion of duration 0 containing solely qstart

2: Create an empty Grid data-structure G
3: G.ADDMOTION(μ0)
4: for i ← 1...Niterations do
5: Select a cell chain c from G, with a bias on exterior cells (70% - 80%)
6: Select μ from c according to a half normal distribution
7: Select s along μ
8: Sample random control u ∈U and simulation time t ∈R

+

9: Check if any motion (s,u,t◦), t◦ ∈ (0,t] is valid (forward propagation)
10: if a motion is found then
11: Construct the valid motion μ◦ = (s,u,t◦) with t◦ maximal
12: If μ◦ reaches the goal region, return path to μ◦
13: G.ADDMOTION(μ◦)
14: end if
15: for every level L j do
16: Pj = α + β · (ratio of increase in coverage of L j to simulated time)
17: Multiply the score of cell p j in c by Pj if and only if Pj < 1
18: end for
19: end for
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3.3 Implementation Details

To aid in the implementation of the KPIECE algorithm, an efficient grid data-
structure (Grid) was defined. Grid maintains the list of cells it contains, grouped
into interior and exterior, sorted according to their importance. To maintain the lists
of interior and exterior cells sorted, binary heaps are used. For every cell p, Grid
also maintains some additional data: another Grid instance (stands for Dp), for all
but the lowest level of discretization, and for the lowest level of discretization, an
array of motions (stands for Mp). Algorithm 2 shows the steps for adding motions
to Grid.

Algorithm 2. ADDMOTION(s,u,t)

1: Split (s,u,t) into motions μ1, ...,μk such that μi, i ∈ {1, ...,k} does not cross the boundary
of any cell at the lowest level of discretization

2: for μ◦ ∈ {μ1, ...,μk} do
3: Find the cell chain corresponding to μ◦
4: Instantiate cells in the chain, if needed
5: Add μ◦ to the cell at the lowest level in the chain
6: Update coverage measures and lists of interior and exterior cells, if needed
7: end for

3.4 Computing the Discretization

An important issue not discussed so far is the selection of number of levels in the
discretization and the grid cell sizes. This section presents a method to compute
these cell sizes if the discretization is assumed to consist of only L1 (a one-level
discretization).

While KPIECE is running, we can keep track of averages of how many motions
per cell there are, how many parts a motion is split into before it is added to the
discretization, and the ratio of interior to exterior cells. While we do not know how
to compute optimal values for these statistics (if they exist), there are certain ranges
that may work better than others. In particular, the authors have observed that for
good performance the following should hold:

• Less than 10% of the motions cover more than 2 cells in one simulation time-
step. This value should be in general less than 1% as the event occurs only when
the velocity of the robotic system is very high.

• At least 50% of the motions need to be 3 simulation time-steps or longer.
• Average number of parts in which a motion is split should be larger than 1 but

not higher than 4.
• As the algorithm progresses, at least some interior cells need to be created.
• The average number of samples per cell should be in the range of tens to

hundreds.

Based on collected statistics and these observations, it can be automatically de-
cided whether the cell sizes used for L1 are good, too large or too small. This
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information is reported for each dimension of the space. If the used cell size is too
small or too large in some dimension, the size in that dimension is increased or de-
creased, respectively, by a factor larger than 1 and the algorithm is restarted. This
process usually converges in 2 or 3 iterations.

These statistics do not offer any information about higher levels of discretization,
nor do they provide information about how many levels of discretization should be
used. The presented constants are implementation specific, but they seem not to vary
across the examined robotics systems.

4 Experiments

The presented algorithm was benchmarked against well-known efficient algorithms
(RRT, EST, PDST) with three different robotic systems, in different environments.
For modeling the robots, the ODE [24] physics-based simulator was used. For the
implementations of RRT [19] and EST [6], the OOPSMP framework was used [20].
A plugin for linking OOPSMP with the ODE simulator was developed by the au-
thors. The authors did their best to tune the parameters of both RRT and EST. For
RRT, a number of different metrics were tested for each robot and experiments are
presented with the metric that performed best. In addition, random controls were
selected instead of attempting to find controls that take the robotic system toward a
desired state, as this strategy seemed to provide better results. For EST, the nodes
to expand from were selected both based on their degree [7] and based on a grid
subdivision of the state space [22]. Experiments are shown for the selection strategy
that performed best. PDST and KPIECE were implemented by the authors. A pro-
jection was defined for each robot and the same projection was used for both PDST
and KPIECE. In addition to the projection, KPIECE needs a discretization to be
defined for each robot. When comparing with other algorithms, only discretizations
computed as shown in Section 3.4 were used. Separate experiments are shown when
using empirically chosen discretizations with multiple levels. Explanations on how
these multiple levels were chosen are given later in this section. No goal biasing was
used for any of the algorithms. However, separate experiments are shown for RRT
with biasing (RRTb). All implementations are in C++ and were tested on the Rice
Cray XD1 Cluster, where each machine runs at 2.2 Ghz and has 8 GB RAM. For
each system and each of its environments, each algorithm was executed 50 times.
The best two and worse two results in terms of runtime were discarded and the
results of the remaining 46 runs were averaged. The time limit was set to one hour
and the memory limit was set to 2 GB. If an execution exceeded the time or memory
limit, it was considered successful with execution time equal to the time limit.

4.1 Robots

Three different robots were used in benchmarking the planner, to show its gener-
ality: a modular robot, a car, and a blimp. These robots have been chosen to be
different in terms of the difficulties they pose to a motion planner. Details on what
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these difficulties are follow in the next paragraphs. ODE version 0.9 was used to
model the robots. The used simulation step size was 0.05s.

Modular Robot

The model for this robot was implemented in collaboration with Mark Yim, and
characterizes the CKBot modules [23]. Each CKBot module contains one motor.
An ODE model for serially linked CKBot modules has been created [5]. The task
is to compute the controls for lifting the robot from a vertical down position to
a vertical up position for varying number of modules, as shown in Fig. 2. Each
module adds one degree of freedom. The controls represent torques that are applied
by the motors inside the modules. The difficulty of the problem lies in the high
dimensionality of the control and state spaces as the number of modules increases,
and in the fact that at maximum torque, the motors in the modules are only able to
statically lift approximately 5 modules. This is why the planner has to find swinging
motions to solve the problem. The employed projection E was a 3-dimensional one,
the first two dimensions being the (x,z) coordinates of the last module (x,z is the
plane observed in Fig. 2) and the third dimension, the square root of the sum of
squares of the rotational velocities of all the modules. The environments the system
was tested in are shown in Fig. 2.

Fig. 2. Left: start and goal configurations. Right: environments used for the chain robot (7
modules). Experiments were conducted for 2 to 10 modules. In the case without obstacles,
the environments are named ch1-x where x stands for the number of modules used in the
chain. In the case with obstacles, the environments are named ch2-x.

Car Robot

A model of a car [4] was created as well. The model is fairly simple and consists of
five parts: the car body and four wheels. Since ODE does not allow for direct control
of accelerations, desired velocities are given as controls for the forward velocity and
steering velocity (as recommended by the developers of the library). These desired
velocities go together with a maximum allowed force. The end result is that the car
will not be able to achieve the desired velocities instantly, due to the limited force.
In effect, this makes the system a second order one. The employed projection E was
the (x,y) coordinates of the center of the car body. The environments the system
was tested in are shown in Fig. 3.
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Fig. 3. Environments used for the car robot (cr-1, cr-2, cr-3). Start and goal configurations are
marked by “S” and “G”.

Blimp Robot

The third robot that was tested was a blimp robot [14]. The motion in this case is
executed in a 3D environment. This robot is particularly constrained in its motion:
the blimp must always apply a positive force to move forward (slowing down is
caused by friction), it must always apply an upward force to lift itself vertically
(descending is caused by gravity) and it can turn left or right along the direction of
forward motion. Since ODE does not include air friction, a Stokes model of drag was
implemented for the blimp. The employed projection E was the (x,y,z) coordinates
of the blimp’s center. The environments the system was tested in are shown in Fig. 4.

4.2 Results

In terms of runtime, when compared to other algorithms such as RRT, EST, and
PDST, Table 1 shows significant computational gains for KPIECE. In particular, as
the dimensionality of the problem increases, KPIECE does better. For simple prob-
lems however, other algorithms can be faster (e.g., RRT for ch1-3). The presented
speedup values are consistent with the time spent performing simulations, which
serves to prove that the computational improvements are obtained by minimizing
the usage of the physics-based simulator. Since physics simulation takes up around
90% of the execution time, computational gain will be observed with purely geomet-
ric planning as well, where forward integration is replaced by collision detection.

While the results shown in Table 1 are computed with a one-level discretiza-
tion, for some problems, better results can be obtained using multiple levels of

Fig. 4. Environments used for the blimp robot (bl-1, bl-2, bl-3). Start configurations
are marked by “S”. The blimp has to pass between the walls and through the hole(s),
respectively.
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Table 1. Speedup achieved by KPIECE over other algorithms for four different problems. If
one of the other algorithms was unable to solve the problem in at least 10% of the cases, “—”
is reported. KPIECE was configured with an automatically computed one-level discretiza-
tion, as described in Section 3.4.

RRT RRTb EST PDST
ch1-2 1.1 3.5 2.2 2.5
ch1-3 0.8 2.1 1.0 3.6
ch1-4 1.5 3.9 1.8 9.6
ch1-5 4.1 3.7 14.4 15.6
ch1-6 13.4 9.6 946.8 42.5
ch1-7 58.5 196.3 — 238.1
ch1-8 — — — —

RRT RRTb EST PDST
ch2-5 18.3 23.4 — 13.0
ch2-6 35.0 255.7 — 23.0
ch2-7 45.7 124.7 — 81.3
ch2-8 — — — 5.9
ch2-9 — — — —

RRT RRTb EST PDST
cr-1 3.2 3.1 27.7 7.9
cr-2 5.0 3.5 16.1 9.7
cr-3 8.7 14.8 15.5 13.1

bl-1 1.6 2.2 3.1 3.3
bl-2 6.4 7.2 8.7 9.4
bl-3 4.5 7.3 5.7 7.5

discretization. To show this, for each robot, twelve discretizations are defined. First,
a one-level discretization (consists only of L1) is computed as discussed in Sec-
tion 3.4. Two more one-level discretizations with half and double the cell volume
of the computed discretization’s cells are then constructed (cell sides shortened and
lengthened proportionally, in each dimension). For each of these three one-level dis-
cretizations, three more two-level discretizations (consist of L1, L2) are defined:
ones that have the same L1, but L2 consists of cells with sizes of 10, 15, and 20
times the cell sizes of L1. Table 2 shows the speedup obtained when employing
the best of the nine defined two-level discretizations. As we can see, in most cases
there are benefits to using two discretization levels. Experiments with more than
two levels of discretization were conducted as well, but the performance started to
decrease and the results are not presented here. The defined discretizations can also
be used to evaluate the sensitivity of KPIECE to the defined grid sizes. As shown in
Fig. 5, the runtimes of the algorithm for the different discretizations are relatively
close to one another (within a factor of 2.3). This implies that the algorithm is not
overly sensitive to the defined discretization and thus approximating good cell sizes
is sufficient. Nevertheless, finding good discretizations remains an open problem.

4.3 Discussion of Experimental Results

In the previous section we have shown the computational benefits of using KPIECE
over other algorithms. There are a few key details that make KPIECE distinct: the

Table 2. Speedup achieved by KPIECE when using a two-level discretization relative to
the automatically computed one-level discretization. For ch1-10 and ch2-10, a solution was
found only with the two-level discretization so no speedup is reported.

ch1-2: 0.9 ch1-7: 2.2 ch2-5: 0.9 cr-1: 1.0 bl-1: 1.3
ch1-3: 1.1 ch1-8: 2.0 ch2-6: 1.1 cr-2: 1.0 bl-2: 1.1
ch1-4: 0.9 ch1-9: 1.3 ch2-7: 1.7 cr-3: 0.7 bl-3: 1.8
ch1-5: 0.7 ch2-8: 0.5
ch1-6: 2.5 ch2-9: 1.2
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Fig. 5. Logarithmic runtimes with twelve different discretizations for the ch1, ch2, cr, and bl.

sampling of a chain of cells, the grouping of cells into interior and exterior, and
the progress evaluation, based on increase in coverage. While the sampling of cell
chains is an inherent part of the algorithm, the other two features can be easily dis-
abled. This allows us to evaluate the contribution of these components individually.

Fig. 6 shows that both progress evaluation and cell distinction contribute to re-
ducing the runtime of KPIECE. While these components do not seem to help for
easier problems (bl-1), their contribution is important for harder problems (cr-3, bl-
3). In particular, the cell distinction seems to be the more important component as
the problems get harder. This is to be expected, since the distinction allows the al-
gorithm to focus exploration on the boundary of the explored space, while ignoring
the larger, already explored interior volume.

Fig. 6. Logarithmic runtime for KPIECE with various components disabled, on 2-
dimensional and 3-dimensional projections (cr and bl) with the automatically computed one-
level discretization. A = no components disabled, B = no cell distinction, C = no progress
evaluation, D = no cell distinction and no progress evaluation.
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5 Parallel Implementation

The presented algorithm was also implemented in a shared memory parallel frame-
work. While previous work has shown significant improvements with embarrass-
ingly parallel setups [1, 3], this work attempts to take the emerging multi-core tech-
nology into account and use it as an advantage. Instead of running the algorithm
multiple times and stopping when one of the active instances found a solution as
in [1, 3], KPIECE uses multiple threads to build the same tree of motions (threads
can continue expanding from cells instantiated by other threads). Synchronization
points are used to ensure correct order of execution. This execution format will be-
come more important in the next few years as the number of computing cores and
memory bandwidth increase. Since each computing thread starts from a different
random seed, the chances of all seeds being unfavourable decrease. If a single thread
finds a path through a narrow passage, the rest of the threads will immediately use
this information as well. This setup also reduces the variance in the average runtime
of the algorithm. It is important to note this proposed parallelization scheme can be
applied to other sampling-based algorithms as well.

All experiments presented in previous sections were conducted when using the
planner in single-threaded mode. Table 3 shows the speedup achieved by the mo-
tion planner when using one to four threads on a four-core machine. The achieved
speedup is super-linear in some cases, a known characteristic of sampling-based
motion planners. When comparing to the speedup obtained with an embarrassingly
parallel setup, shown in Table 4, we notice that better runtimes are obtained with
our suggested setup. In addition, total memory requirements in our suggested setup
do not increase significantly as the number of processors is increased.

Table 3. Speedup achieved by KPIECE with multiple threads for 2-dimensional and 3-
dimensional projections (cr and bl). KPIECEwas configured with an automatically computed
one-level discretization, as described in Section 3.4.

Threads cr-1 cr-2 cr-3 bl-1 bl-2 bl-3
2 1.7 2.0 2.6 2.3 1.9 1.4
3 2.8 2.7 3.0 2.9 3.0 2.2
4 3.9 3.6 4.4 3.5 3.2 3.1

Table 4. Speedup achieved by KPIECE in embarrassingly parallel mode.

Threads cr-1 cr-2 cr-3 bl-1 bl-2 bl-3
2 1.3 1.5 1.6 1.5 1.6 1.3
3 1.5 1.8 1.8 1.8 1.9 1.4
4 1.7 2.1 2.0 2.2 3.0 1.5

6 Conclusions and Future Work

We have presented KPIECE, a sampling-based motion planning algorithm designed
for complex systems where physics-based simulation is needed. This algorithm does
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not need a distance metric or a way to sample states. It does however require a pro-
jection of the state space and the specification of a discretization. At this point we
recommend that the projection is defined by the user. As shown in our experiments,
even simple intuitive projections work for complex problems. The discretization
is an additional requirement when compared to other state-of-the-art algorithms.
The algorithm’s performance is not drastically affected by the discretization and a
method to automatically compute one-level discretizations was presented. When us-
ing an automatically computed one-level discretization, KPIECE was compared to
other popular algorithms, and shown to provide significant computational speedup.
In addition, the provided shared memory parallel implementation seems to give bet-
ter results than the embarrassingly parallel setup.
KPIECE is the result of a combination of ideas. Some of these ideas are new,

some are inspired by previous work. In previous work, we have encountered state
[7, 11] and motion sampling [14]; KPIECE takes this further and uses cell chain
sampling. We have also seen progress evaluation [21], deterministic sample selec-
tion [14], use of physics-based simulation [13], and use of additional data-structures
for estimation of coverage [14, 21, 22]. KPIECE implements variants of these ideas,
combined with new ideas like distinction between interior and exterior cells, to ob-
tain an algorithm that works well in a parallel framework. The result is a more
accurate and efficient method that can solve problems previous methods could not.

It is conjectured that KPIECE is probabilistically complete: in a bounded state
space, the number of cells is finite. Since with every selection, the importance of
a cell can only decrease, every cell will be selected infinitely many times during
the course of an infinite run. Every motion in a cell has positive probability of being
selected, which makes the number of selections of each motion in the tree of motions
be infinite as well. By the completeness of PDST [13], KPIECE is likely to be
probabilistically complete. A formal proof is left for future work.

Further work is needed for better automatic computation of the employed dis-
cretization. Automatic computation of the used state space projection would be
beneficial as well, not only for KPIECE, but for other algorithms that require such
a projection. Furthermore, it would be interesting to push the limits of this method
to harder problems.
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Stochastic Methods in Planning



Control of Probabilistic Diffusion in Motion
Planning

Sébastien Dalibard and Jean-Paul Laumond

Abstract. The paper presents a method to control probabilistic diffusion in motion
planning algorithms. The principle of the method is to use on line the results of a dif-
fusion algorithm to describe the free space in which the planning takes place. Given
that description, it makes the diffusion go faster in favoured directions. That way, if
the free space appears as a small volume around a submanifold of a highly dimen-
sioned configuration space, the method overcomes the usual limitations of diffusion
algorithms and finds a solution quickly. The presented method is theoretically ana-
lyzed and experimentally compared to known motion planning algorithms.

1 Problem Statement, Related Work and Contribution

1.1 General Framework

Motion planning problems have been intensively studied in the last decades, with
applications in many diverse areas, such as robot locomotion, part disassembly prob-
lems, digital actors in computer animation, or even protein folding and drug design.
For comprehensive overviews of motion planning problems and methods, one can
refer to [10], [1] and [13].

In the past fifteen years, two kinds of configuration space (CS) search paradigms
have been investigated with success.

• The sampling approach, first introduced in [8] as probabilistic roadmaps (PRM),
consists in computing a graph, or a roadmap, whose vertices are collision free
configurations, sampled at random in the free space and whose edges reflect the
existence of a collision free elementary path between two configurations. It aims
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at capturing the topology of the free space in a learning phase in order to handle
multiple queries in a solving phase.

• The diffusion approach, introduced in both [5] and [9], which includes RRT plan-
ners, consists in solving single queries by growing a tree rooted at the start con-
figuration towards the goal configuration to be reached.

These methods have been proven to be efficient and suitable for a large class of
motion planning problems. Work has been done to analyze and validate theoretically
these algorithms. Probabilistic completeness has been studied and proved for RRT
[9], as well as for PRM [7].

1.2 Narrow Passages

In some environments, however, passing through so-called narrow passages is a dif-
ficult task for probabilistic motion planners. A lot of work has been done to evaluate
this difficulty, as well as to overcome it.

The formalism of expensive spaces was first presented in [5]. It quantifies the
complexity of a configuration space from a randomized planning point of view. This
formalism helps understanding what makes a motion planning problem difficult.
Narrow passages and the configuration space dimension are identified as the main
sources of complexity.

It is believed that probabilistic planning algorithms have an exponential com-
plexity with respect to the dimension of the configuration space, as the number of
nodes needed to describe the free space has a combinatorial explosion. The pres-
ence of narrow passages makes the search more difficult because it is unlikely to
sample configurations that lie in the passage, while passing through it could be nec-
essary to solve the planning problem. The quality of the work of Hsu and Latombe
comes from the precise quantification of these natural ideas. However, it does not
provide a way of estimating the complexity of a given configuration space, which
makes these results non effective, when one would wish to use them to accelerate
probabilistic planning. Some work deals with controlling probabilistic planning al-
gorithms.Visibility based PRM is presented in [17]. A visibility criteria is used to
improve the quality of the sampling and accelerate the algorithm. Dynamic-domain
RRTs, presented in [20], control the sampling domain of a RRT algorithm to over-
come some bias of classical RRT algorithm.

More recently, work has been done to use workspace information within CS prob-
abilistic algorithms. In [15] for instance, diffusion uses workspace hints, such as
real world obstacle directions, or decouples rotations and translations to accelerate
a RRT algorithm that diffuses through a narrow passage.

1.3 Motivations

Motivations for the work presented here come from motion planning for digital
actors. In these high-dimensioned problems - we consider whole-body motion plan-
ning, diffusion algorithms behave rather well, but can be slowed down by narrow
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Fig. 1. Three animation motion planning problems. The mannequin has to get into position
to fix the pipe. The first problem is unconstrained, we then add an obstacle for problems 2
and 3. In problem 3 the right arm is already in position and the mannequin has to find a way
to move its left arm.

passages. The existence of a narrow passage, however, does not reflect the intrinsic
difficulty of a motion planning problem.

Fig. 1 shows the example of a mannequin getting into position to fix a pipe. In
the first environment, the mannequin has to move both arms in an unconstrained
environment. This problem should be easy to solve for current motion planners. In
the second environment, the right hand has to go through a hole to get into position.
This makes the problem more difficult, since the path to find in CS goes through
a narrow passage. The third problem takes place in the same environment, but the
right hand is already in position. The difficulty of this last problem, from a human
point of view, is more or less the same as the first one: the mannequin has to find
a way to move only one of its arms in a free environment. However, the fact that
the right hand is in position forces the diffusion to take place in a small volume
around a sub-manifold of CS - the sub-manifold corresponding to a still right hand.
This slows down a RRT algorithm (we will quantify it in section 3) and motivates
our work on how to identify on line when a diffusion process takes place within
small volumes of CS. Note that we want this identification to be automatic, to keep
the generic properties of CS motion planners. This means that in the third problem
of fig. 1 we do not want an outside operator to input the information about which
degrees of freedom the mannequin should use.

1.4 Contribution

This paper presents a study on how narrow passages slow down diffusion algo-
rithms, and a new diffusion planner based on this study. Our adaptation of diffusion
algorithms analyzes the growing tree on line to estimate if it lies in a small volume
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around a submanifold of CS. If it does, the search is restrained to that volume. That
way, if the tree has to pass through a narrow passage, the algorithm does not loose
time in trying to expend in the directions orthogonal to the passage. Thanks to the
method used to describe the free space from the growing tree, the identified sub-
manifold can be of dimension more than one, while rest of the contributions dealing
with narrow passages consider tubes, i.e. small volumes around a one-dimensional
manifold. This problem is different from the one of sampling for closed kinematic
chains -presented for instance in [2], since in our case, the subspace in which the
search should take place is unknown. The new algorithm presented in this paper
only uses CS-information, which makes it more generic than algorithms that use
workspace information.

Our work uses a long known and classical statistical method: the principal com-
ponent analysis (PCA). It is used in many fields where subspace identification is
needed, and in particular in [19], in a motion planning context. The use of PCA
there is different than ours though, since it is only applied to motion description,
while we use it to control and generate motion. We found some recent mathemati-
cal publications [21] that helped us understanding some convergence properties of
PCA. They are shown and explained in this paper. Our algorithm has been tried in
various examples, and the experimental results are presented. We chose to use it on
different motion planning classes of problems: two motion planing benchmarks, an
industrial disassembly problem and the animation problems of fig. 1.

2 Preliminaries: Rapidly Exploring Random Trees (RRT)

The method presented in this article can be applied to any diffusion algorithm. To
understand what our method changes in a typical diffusion algorithm, let us remind
briefly the structure of the RRT algorithm [12],[9]. It takes as input an initial config-
uration q0 and grows a tree T in CS. At each step of diffusion, it samples a random
configuration qrand , finds the nearest configuration to qrand in T : qnear, and extends
T from qnear in the direction of qrand as far as possible. The new configuration qnew

is then added to T .
The version of RRT we consider is RRT-Connect rather than classical RRT. It

often works better and is more generic, as there is no need to tune any step parameter.

3 Analyzing Probabilistic Diffusion in Narrow Passages

3.1 Local Description of a Narrow Passage

Most motion planners encounter difficulties when solving problems containing nar-
row passages. In [5], Hsu et. al defined the notion of expansive spaces. This formal-
ism describes configuration spaces containing difficult areas, or narrow passages.
These difficulties occur when connected areas of CS f ree do not see large regions out-
side themselves. Probabilistic planners then have to sample configurations in these
small volumes to solve the problem, which make the search longer. The expansive
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space formalism describes the global difficulty of a configuration space. What we
studied here is the local properties of CS f ree that slow down a diffusing algorithm.
In other terms, how can we describe locally a narrow passage?

Configuration space probabilistic planners try to find a path between a start and
a goal configurations with as few samples as possible. Basically, this means that
one would want new edges to be as long as possible - the accurate notion is that
one would want to add nodes that expand the roadmap visibility region as much as
possible.

Let q be a configuration in CS f ree. To describe how a diffusing tree will grow from
q, one should look at its visibility region V (q). If V (q) is equally constrained in all
directions, then diffusing algorithms will behave nicely. A RRT-Connect planner
will add edges from q of length the radius of V (q), which is the best one could
expect. On the other hand, if V (q) has an elongated shape, we can say that q lies
in a narrow passage. The volume of V (q) is small because of constraints in some
directions. The tree will grow slowly, while it could expand easily in some other
directions.

Thus, a good description of the local difficulty to expand from q is the variances
and covariances of V (q) along a basis of CS. Directions accounting for most of the
volume of V (q) are the ones along which the tree could be expanded the furthest,
while directions accounting for low volume are highly constrained and slow down
a diffusing algorithm.

Some remarks should be made at this point. We use two key notions in mo-
tion planning: visibility and CS−metrics. The visibility region depends on the local
method the planner uses to connect two configurations. That local method is part of
the motion planning problem.

The metric used to compute distances in CS is a critical point in diffusion al-
gorithms, since it should capture the likeliness of configurations to be connected.
As we describe narrow passages in terms of distance, variance and covariance, our
description, as well as the algorithm we will present, are also very dependant on
the metric. However, we will not discuss the choice of the metric, which is a deep
motion planning algorithmic issue, and just assume CS has a metric well suited for
the problem.

3.2 One Step of Diffusion in a Narrow Passage

What characterizes a narrow passage is the elongated shape of a visibility region,
i.e. the region has a much higher variance along some directions than along others.
To understand how it slows down the expansion of a random tree, it is sufficient to
look at a 2D example, where one dimension is more constrained than the other.

Fig. 2 shows a 2D example of a narrow space. Here, the visibility region of q has
a rectangular shape. One of the dimension of the rectangle is fixed, and the other
approaches 0, which means the space around q gets narrower. The configuration
towards which the tree is extended is sampled at random on a circle centered in q of
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Fig. 2. One step of RRT expansion in a 2D narrow passage. L is fixed and l approaches
0. We are interested in the expected length d of the new vertex of the tree. For |θ [π]| ≤
arcsin(l/L),d(θ ) = L/2, otherwise d(θ ) = l/2sin(θ )

radius half the length of the rectangle. Thus, the diffusion from q is isotropic, and
the longest progress the tree could make starting from q is L/2.

In this example, we can compute the mean length d of the new edge returned by
one step of diffusion. The exact value of d(θ ) is indicated in 2.

d = 1
2π
∫ 2π

θ=0 d(θ )dθ
= 1

π (Larcsin(l/L)− l log(tan(arcsin(l/L)/2)))
�l→0 − l

π log(l)

As the width of the rectangle approaches 0, the mean distance the tree is extended
converges to 0, even though q sees configurations far away in one of the two dimen-
sions. This example shows how diffusion is slowed down in a narrow passage: if
some directions are more constrained than others, the diffusion process does not go
as fast as possible in the free directions. We used a 2D example to describe the effect
of one dimension getting narrower, but the result is still valid in higher dimension.
If more dimensions are constrained the diffusion gets even slower.

4 A New Planner Using Dimensional Reduction Tools

According to the previous description of narrow passages, a good way to quantify
the difficulty of a region of CS f ree in terms of probabilistic motion planning is to de-
scribe the shape of its points visibility region. Following the sampling motion plan-
ning paradigm, we do not want to describe effectively CS f ree. The only information
that we have and will use are the vertices of the random tree already obtained.

Given a node we are about to extend the tree from, we will assume its nearest
neighbours in the tree capture the local shape of the free space. We will then describe
that shape by computing its variances and covariances along the canonical basis of
CS. A statistical tool, the Principal Component Analysis, is then used to determine
directions in CS accounting for most of the variance of this region of CS f ree. Given
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that description, we change the random direction in which the tree is about to be
extended to follow the directions of the passage the node lies in.

4.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical dimensionality reduction tech-
nique. Its goal is to determine the underlying dimensionality of a set of p points in
an n−dimensional space. PCA is one of the most commonly used technique for di-
mensionality reduction. It was first proposed by Pearson [14] and further developed
by Hotelling[4]. A good description can be found in Jolliffe [6].

This method involves a mathematical procedure that, given p points, computes
an orthogonal change of basis such that the first vectors of the new basis are the
directions that account for most of the variance of the input set. The underlying
structure found by PCA is therefore linear.

The new basis and the corresponding variances are obtained by diagonaliz-
ing the covariance matrix of the input points. They correspond respectively to its
eigenvectors and eigenvalues. The PCA Algorithm takes a set of p points in an
n−dimensional space, computes its covariance matrix C and returns the matrices Λ
and U , containing respectively the eigenvalues and the eigenvectors of C.

4.2 Applying PCA to Diffusing Algorithms

The way we use PCA for diffusion algorithms does not change their structure, we
only reimplemented the extension step. At each step of diffusion, we find the p
nearest neighbours of qnear by performing a Breadth-First Search in the tree. We
then compute a PCA on those points. The random direction towards which the tree
should be extended (qrand) is changed according to the results of the PCA, in order
to favour the directions in which the variance of the growing tree is high.

More precisely, let us note λ1 > · · · > λn > 0 the eigenvalues of the covariance
matrix, and u1, . . . ,un the corresponding eigenvectors. Placing the origin on qnear,
the coordinates of the new random direction q′rand , in the eigen basis, are given by:

∀i ∈ [1,n],q′(i)rand =
λi

λ1
q(i)

rand (1)

Thus, U being the eigen change of basis matrix, we get in CS canonical basis :

q′rand = qnear +
n

∑
i=1

(
λi

λ1
(qrand−qnear).Ui

)
Ui (2)

By projecting directions with low variances, the algorithm makes the diffusion
process go faster in narrow spaces. Recalling the example of fig. 2, we can show the
difference between classical diffusion and PCA-controlled diffusion. Fig.3 shows
how an isotropic distribution around q is transformed into an ellipsoidal distribu-
tion. We indicated in red where half of the probability stands, before and after
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Fig. 3. One step of diffusion in a narrow passage. One the left, RRT isotropic diffusion and
on the right PCA-RRT diffusion, concentrated along the direction of the passage. The bold
red part shows where half of the measure is concentrated.

transforming qrand . One can see that with PCA-Extend, the measure is concentrated
on the ends of the ellipse. That way, when the space gets narrower, the expected
length of one step of diffusion does not converge to 0, but to a positive limit.

4.3 Accuracy of the PCA Description

The previous sections explained how knowledge about the local shape of CS f ree

could help improving the performance of a diffusion algorithm. However, a key
point is the accuracy of this knowledge. We said that we assume the nearest neigh-
bours of a configuration catch the shape of the free space. Two questions remain:
how true is this assumption and how many neighbours are necessary to describe
locally CS f ree?

The following result answer these questions. It is a simplified version of mathe-
matical results found in [21]. The accuracy of PCA description is expressed as the
distance δ between the high variance subspace found by PCA and the real high
variance subspace CS f ree lies around. Let D be the dimension of that subspace and
λ1 > · · ·> λn > 0 the eigen values of the local covariance matrix of CS f ree.

Theorem 4.1. For p points lying in a ball of radius r, for ξ ∈ [0,1], the following
bound holds with probability at least 1− e−ξ :

δ ≤ 4r2

√
p(λD−λD+1)

(
1 +

√
ξ
2

)

This theorem is a direct consequence of Theorem 4 in [21]. It illustrates two
points: the speed of convergence of the PCA analysis with respect to the number of
points is 1/

√
p, and the narrower the free space is - the higher (λD−λD+1) is, the

more accurate the PCA description will be.
Note that if the space is unconstrained (all the λi are close to each other), this

bound is not interesting. In that case, PCA may return imprecise results, but then
again, traditional diffusion algorithms behave properly. We will discuss in a next
section how not to suffer from PCA computation in a locally unconstrained space.
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5 Implementation Details

5.1 PCA Bias in Unconstrained Spaces

As shown earlier, the computation of PCA will give accurate results in narrow pas-
sages. However, if the free space is locally unconstrained - or equally constrained
in all directions - the description returned by PCA may not be accurate enough.
This could induce a bias in the algorithm: if the space is free, the algorithm may
favour expansion in directions that have previously been sampled at random. This is
a main drawback since the new diffusion algorithm loses one of the key properties
of the RRT algorithm: the convergence of the RRT vertices distribution towards the
sampling distribution.

To overcome this bias, our implementation of PCA-RRT uses, at each step of ex-
pansion, PCA-Extend with probability 0.5 and classical RRT Extend with probabil-
ity 0.5. That way, the tree still covers densely the free space, while the PCA-Extend
function accelerates the search in narrow passages.

5.2 Recursive PCA

Previous section presented ideas about how many points are necessary to correctly
describe the space. It depends on each region of the space, narrow passages needing
less points than free regions. As we do not want that tuning to be done by a user,
but automatically by the algorithm, we need a version of the algorithm where the
number p of nearest neighbours used to compute the PCA is no longer a parameter.
It is done by evaluating the PCA result each time we add a new neighbour. When the
dimension of the subspace identified by PCA converges, the number of neighbours
is sufficient and we can use the results of the PCA. This idea comes from a similar
method used in [11] to determine when to stop a visibility PRM algorithm: when
the size of the region visible from the milestones stops growing, we assume that the
set of milestones correctly describes the connectivity of the space.

This needs an incremental version of the PCA, in order not to recompute the diag-
onalization of the covariance matrix at each step. A good description of incremental
PCA can be found in [3]. It uses matrix perturbation theory.

6 Experimental Results

In this section, we compare our PCA-RRT algorithm with classical RRT. The al-
gorithm has been implemented in KineoWorksTM, we used its implementation of
RRT as a reference. The default expansion method used in KineoWorks is RRT-
Connect. Since our expansion method only uses CS information, it can be usefull
in any motion planing problem, as long as the configuration space contains narrow
passages that slow down classical diffusion methods. To show the range of uses
of our method, we present results in various motion planning problems: first two
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motion planning benchmarks, then an industrial disassembly problem, and finally
three computer animation problems, where a virtual character has to use a wrench.

All the experiments presented here were performed on a 2.13 GHz Inter Core 2
Duo PC with 2 GB RAM. Each method was tested ten times on each environment
and we show the average results of all test runs. The results report the time taken by
each method, the number of expansion steps and the number of nodes needed. We
have also indicated the average length of each expansion step, in an arbitrary unit,
to show the benefit of PCA-RRT in narrow passages.

6.1 Motion Planning Benchmarks

The two following environments are known motion planning benchmarks that con-
tain narrow passages. The random tree the algorithm will grow is rooted inside the
narrow passage, so the difficulty is to follow the passage rather than find the en-
trance of it. Results of OBRRT on these environments were published in [15]. We
will recall these results, even if direct comparisons are difficult. Computation times
are irrelevant since the computers on which the experiments have been made are
different. We will show the number of iterations taken by each algorithm, including
both implementations of RRT, since they seem to behave differently.

6.1.1 Flange Environment

In this environment, the robot is a free flyer tube, that should slide out of the obsta-
cle. We present the results of our algorithm on two versions of the environment, the
original one and a easier one rescaled at 0.95.

6.1.2 S-Tunnel Environment

This environment consists in an s-shaped tunnel, through which the robot should
pass. The initial configuration, where the random tree is rooted, is placed in the
middle of the passage. We tested this environment with the same three robots as
in [15].

In these two benchmarks, PCA-RRT give better results than classical RRT. How-
ever, we gain less with PCA-RRT than with OBRRT. One should notice that our
method does not need any tuning, while the results of OBRRT we indicated cor-
respond to a tuned version, adapted to each problem. Besides, the structure of our
algorithm being the same as the OBRRT one, they can be used at the same time, to
gain from both workspace hints from OBRRT and CS information from PCA-RRT.

An other important point is that PCA-RRT only uses CS information which
makes it usable in the following problems, where workspace information is not rel-
evant. Indeed, in the animations problems presented in fig. 1, decoupling rotations
and translations, or following the obstacle directions does not help since there are
only rotation degrees of freedom.
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Flange 0.95
Iterations Nodes Time Distance

RRT 6062 89.1 16.4 s 0.095
PCA-RRT 5008 97.7 15.3 s 0.11

RRT (Rodriguez et al.) 13260 109.2 328.8 s 1 -
OBRRT (tuned) 3220 479.8 143.2 s 1 -

Flange 1.0
Iterations Nodes Time Distance

RRT 222786 117.4 343.1 s 0.075
PCA-RRT 147331 357 304.9 s 0.099

RRT (Rodriguez et al.) - - - -
OBRRT (tuned) 6100 1011 227.1 s 1 -

Fig. 4. Flange environment. Start and goal configurations, solution path, amd experimental
results.

6.2 Industrial Disassembly Problem

This environment is the back of a car. The robot, the exhaust, must be disassembled.
The initial configuration is the mounted position, and the random tree must get out
of the narrow passage to the unmounted position.

6.3 Animation Problems

This algorithm was first designed to overcome the limitations of traditional motion
planing algorithms. Among others, highly dimensioned problems are hard to solve
for diffusion algorithms, as it is believed that these algorithms have an exponential
time complexity with respect to the number of degrees of freedom of the robot. The
problems presented in fig. 1 deal with a rather highly dimensioned robot: the upper
body of a virtual character. The robot can move its torso, head and both arms. These
adds up to 20 degrees of freedom. It should get into position to fix a pipe. Its left
hand holds a wrench and its right hand should hold a bolt that lies into a hole. The
difficulties in that environment come from the narrow space the right hand has to go
through, the dimension of CS and the collisions caused by the arms and wrench.

Problem 1 is an easy problem for current motion planners. There is no real need
for sophisticated techniques such as PCA-RRT here.

1 Those figures come from [15]. Notice that while number of iterations and nodes are rel-
evant for a comparison between various methods, time comparison is irrelevant because
depending on the machine.



478 S. Dalibard and J.-P. Laumond

Medium Robot
Iterations Nodes Time Distance

RRT 3380 227.8 2.1 s 0.27
PCA-RRT 1638 216.6 1.4 s 0.39

RRT (Rodriguez et al.) 3780 541.4 15.4 s 1 -
OBRRT (tuned) 197 190.9 0.8 s 1 -

Long Robot
Iterations Nodes Time Distance

RRT 4769 167.4 2.6 s 0.19
PCA-RRT 2313 193.9 1.7 s 0.23

RRT (Rodriguez et al.) 11322 1311.7 212.6 s 1 -
OBRRT (tuned) 699.3 589.1 2.8 s 1 -

Large Robot
Iterations Nodes Time Distance

RRT 16389 285 10.6 s 0.21
PCA-RRT 3320 234.8 2.5 s 0.36

RRT (Rodriguez et al.) 40513 2740.6 699.6 s 1 -
OBRRT (tuned) 331 117.6 1.0 s 1 -

Fig. 5. S-Tunnel environment with three different robots. The robots start in the middle of the
tunnel and have to get out.

In problem 2, we used a bi-RRT -i.e. one tree is rooted at the initial configuration
and an other one at the goal configuration, they are both randomly grown- since the
feature of the algorithm we want to test is the diffusion in a narrow space rather than
finding the entrance of narrow spaces.

Iterations Nodes Time Distance
RRT 38101 7693.8 1 063.0 s 33

PCA-RRT 11672 3592.6 452.8 s 53

Fig. 6. Exhaust disassembly problem. Start and goal configurations, solution path and exper-
imental results.
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Iterations Nodes Time Distance
RRT 3260 215.2 3.2 s 0.022

PCA-RRT 978 76.2 1.8 s 0.095

Fig. 7. Solution path and results for problem 1.

Iterations Nodes Time Distance
RRT 168171 657.5 526.7 s 0.21

PCA-RRT 5470 806.5 39.1 s 0.72

Fig. 8. Solution path and results for problem 2.

Iterations Nodes Time Distance
RRT 38990 212.6 109.5 s 0.017

PCA-RRT 4643 147.6 15.8 s 0.026

Fig. 9. Solution path for problem 3.

In problem 3, the right arm is already in position. The random tree is rooted inside
the narrow passage - at the goal configuration.

Those last two animation problems show the benefit of using PCA-RRT. As fore-
seen in introduction, the difficulty of problem 3 is not much higher than the one
of problem 1, thanks to PCA-RRT. The time taken by our algorithm is one order
of magnitude below the time taken by classical RRT. This comes from the speed of
diffusion within narrow passages as one can see by looking at the mean distance of
step extension.

7 Conclusion

An adaptation of randomized diffusion motion planning algorithms is proposed. The
statistical method we used, PCA, is well-known and widely used in literature, but
not yet to control motion planning algorithms. Using dimensional reduction tool in
diffusion planning, and analyzing the result of it is the contribution of this work.
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Of course it could be worth trying other dimensionality reduction technique, for
instance non-linear ones ([18],[16]). As expected, we observed that PCA could sig-
nificantly improve diffusion algorithm performances in constrained environments.
Note that it does not solve the problem of finding the entrance of a narrow passage,
but only accelerate the diffusion within the passage. Our method has been used on
several motion planning problems, coming from different domains of application,
and has shown good results.

Acknowledgements. This work is partly supported by the French ANR-RNTL project
PerfRV2.
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Stochastic Motion Planning and Applications to
Traffic

Sejoon Lim, Hari Balakrishnan, David Gifford, Samuel Madden, and Daniela Rus

Abstract. This paper presents a stochastic motion planning algorithm and its appli-
cation to traffic navigation. The algorithm copes with the uncertainty of road traffic
conditions by stochastic modeling of travel delay on road networks. The algorithm
determines paths between two points that optimize a cost function of the delay prob-
ability distribution. It can be used to find paths that maximize the probability of
reaching a destination within a particular travel deadline. For such problems, stan-
dard shortest-path algorithms don’t work because the optimal substructure prop-
erty doesn’t hold. We evaluate our algorithm using both simulations and real-world
drives, using delay data gathered from a set of taxis equipped with GPS sensors and
a wireless network. Our algorithm can be integrated into on-board navigation sys-
tems as well as route-finding Web sites, providing drivers with good paths that meet
their desired goals.

1 Introduction

This paper presents and evaluates an algorithm for planning the motion of vehicles
(autonomous or human-driven) on roadways in the face of traffic delays. Rather
than model road delays statically, as in current on-board navigation systems and
Web-based mapping services, our algorithm uses past observations of actual delays
on road segments to model these delays as probability distributions. The algorithm
minimizes a user-specified cost function of the delay distribution. We investigate a
few cost functions in detail, particularly one that is equivalent to maximizing the
likelihood of reaching a destination within a specified travel deadline.

Our work provides a planning system that can be used by robots as well as hu-
man drivers. The system is a useful addition to on-board navigation systems using
computer-aided automation to provide good paths that meet desired travel goals

Sejoon Lim, Hari Balakrishnan, David Gifford, Samuel Madden, and Daniela Rus
CSAIL, MIT
e-mail: {sjlim,hari,gifford,madden,rus}@csail.mit.edu

G.S. Chirikjian et al. (Eds.): Algorithmic Foundations of Robotics VIII, STAR 57, pp. 483–500.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

{sjlim,hari,gifford,madden,rus}@csail.mit.edu


484 S. Lim et al.

(e.g., “when should you leave, and what path should you take, to reach the air-
port by 8am with high probability?”); it is also a worthwhile addition to Web-based
mapping services. We view the incorporation of traffic-aware path computation as
an important practical addition in the rapid trend toward computer-assisted driving
and autonomous decision-making in vehicles.

Traffic congestion is clearly a serious problem: a recent survey [11] estimates that
the annual nationwide cost of traffic congestion is $78 billion, including 4.2 billion
hours in lost time and 2.9 billion gallons in wasted fuel. Drivers today have little
knowledge of historic and real-time traffic congestion on the paths they drive, and
even when they do (e.g., from “live” traffic updates), they generally don’t know how
to use that information to find good paths. As a result, they often tend to drive sub-
optimal routes and often leave well in advance when they need to make an important
deadline.

In addition to helping individual cars avoid congested roads, we believe that our
work, if deployed widely, can manage traffic flow, reduce congestion, and reduce
the fuel consumed by cars on a macroscopic basis by using the under-utilized parts
of the road network better than today (thereby reducing load on congested areas).
Using our algorithm to investigate this global traffic management question is an
area for future work. In this paper, we are concerned with finding good paths for a
single car.

The main challenge in planning paths taking traffic delay into account is that
these delays are not fixed. The delay on a road segment is best modeled as a prob-
ability distribution; in addition, this distribution typically depends on a number of
factors, such as time-of-day, whether it’s a working day or not, events such as con-
certs or sporting events, weather, etc. The shortest-distance path is often not the
best path to use if one seeks to minimize the expected travel time or maximize the
probability of reaching the destination by a certain time. Our algorithm uses his-
toric observations of travel delays on road segments at different times of day to
produce delay distributions (indexed by time-of-day). We posit that this informa-
tion, together with real-time updates of extraneous conditions (such as accidents),
is invaluable (and sufficient) to compute good paths that meet user-specified goals.
Given the probability distributions of delays on segments, finding good paths re-
quires more than a shortest-path computation, because the “optimal substructure”
property does not hold as explained in [8] (i.e., if the best path from S to T goes
through X , it does not follow that the sub-path of this path from S to X is itself the
best S-X path).

We have implemented our algorithm and evaluated it by first modeling the his-
toric delays using data from the CarTel vehicular testbed [5], a network of 28 taxis.
The data consists of travel times organized by road segment and by time-of-day,
yielding statistical profiles for all the road segments. We model the road network as
a weighted graph where the nodes represent intersections and the edges represent
road segments. An aggregation algorithm combines the road segments into groups to
coalesce the important delay characteristics without losing information about alter-
nate paths. Our algorithm has the flavor of searching and pruning the delay statistics
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on the road network data structure. We evaluate the algorithm and its assumptions
using simulation and actual test driving.

1.1 Related Work

Our work is closely related to stochastic planning and stochastic shortest-path algo-
rithms. In [3], an efficient algorithm for a dynamic shortest path with time dependent
deterministic edge cost is given. Prior work has considered stochastic shortest paths
under the assumption that the travel time follows a known probability distribution
[12, 1, 6, 13, 7, 8, 9]. In stochastic shortest path, edge costs are probability dis-
tributions rather than deterministic costs and the optimal path depends on drivers’
diverse objectives. When a driver’s objective is to minimize the expected travel time,
the problem becomes the deterministic shortest-path problem. It is well known that
Dijkstra’s algorithm is optimal and applicable for deterministic problems. However,
for some goals such as maximizing the probability of arriving within a given dead-
line, the optimal path cannot be found with the standard shortest-path algorithms
since the optimal substructure property does not hold. Nikolova et al. [9] devel-
oped an algorithm and theoretical bounds by assuming that delays are both Gaussian
and independent on different road segments. Inspired by this algorithm, we devel-
oped a method that improves performance by removing unnecessary invocations of
shortest-path searches.

There have been several approaches to acquiring traffic data. The most prevalent
one uses inductor loops installed beneath roads [14, 4]. This is adequate for counting
the number of cars that pass a specific location, but it is not suitable for measuring
travel time and measurements are possible only on instrumented roads. Recently,
GPS sensors installed in probe vehicles have been used [10, 5, 15]. The travel time
of vehicles can be measured and recorded for each route segment. In [5], the re-
searchers developed a system called CarTel Network nodes that include GPS and
wireless communication. This system was used to study routing and data delivery
from cars.

1.2 Outline

This paper is organized as follows. Section 2 gives an overview of a route planning
system for traffic. Section 3 gives the stochastic motion planning formulation, and
Section 4 presents our algorithm and gives its correctness and performance bounds.
Section 5 evaluates the algorithm in simulation and also using physical data from
the deployment of GPS sensor nodes in taxis.

2 Transportation System Context

Our research objective is to provide an effective navigation system for autonomous
or human-piloted cars that uses historical and real-time traffic data to determine
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Fig. 1. The user interface to the traffic system with highlighted paths and travel times found
by the algorithm described in this paper. Roads with traffic travel time data in our database
are also shown in the right.

optimal driving directions and traffic estimates. Our intelligent navigation system
consists of:

1. a data gathering system included in cars that move in traffic frequently;

2. a data analysis system to compile a historical database of traffic conditions;

3. an algorithm for route planning that uses both historical data and current infor-
mation;

4. a traffic information system implementation with an appropriate interface.

In [5] a system called CarTel was developed that uses GPS and wireless communi-
cation to collect position and time data from cars. CarTel nodes deployed in 28 taxis
since January 2007 collected travel data. This data was organized per road segment
to create a historical database of traffic delays.

A stochastic route planning algorithm was developed and implemented. The best
route depends on the drivers’ goals and is a combination of speed and reliability.
A Web-based interface (Fig. 1) allows users to query the system for traffic condi-
tions and for optimal paths given historical data. The rest of this paper describes the
motion planning component 3. of this intelligent traffic system.

3 Problem Formulation

3.1 Road Network Modeling

The road network is a graph (called the Geographic Map), where nodes represent
intersections and edges represent road segments. We associate a road delay distri-
bution with each road segment (Fig. 1). This per-intersection granularity road map
leads to a large graph for small road segments with related travel statistics. We com-
bine statistically related road segments into groups so that they can capture impor-
tant delay characteristics without losing information about alternate path segments.
This data structure is the Delay Statistics Map. The Geographic Map is used for



Stochastic Motion Planning and Applications to Traffic 487

matching GPS traces onto real road segments, while the Delay Statistics Map is
used for statistical delay sensitive routing. We assume that

1. the delay of each edge follows a Gaussian distribution;

2. the delay of each edge is independent of every other edge.

In Section 5, we provide evidence for these assumptions. We formulate stochastic
motion planning as a graph search problem over a graph with an origin O and a
destination D, where the travel time of each edge is an independent Gaussian random
variable. Since the sum of independent Gaussian random variables is also a Gaussian
random variable, we can denote the travel time for a path π consisting of edges e of
mean me and variance ve as follows:

tπ ∼N (mπ ,vπ), where mπ = ∑e∈π me and vπ = ∑e∈π ve.

3.2 Cost Functions

Our objective is to find a path that minimizes an expected cost when the cost func-
tion models a user’s goal. We call this the “optimal” path for the given cost function.
We consider several cost functions including:

Linear cost: Here, the cost increases linearly with the travel time. When the cost
of arriving at the destination in time t is C(t) = t and the delay PDF of a path π is
fπ(t), the expected cost of traveling through π is ECπ =

∫ ∞
−∞ t fπ(t)dt = mπ . Linear

cost models the path with minimum expected time.

Exponential cost: Exponential cost models a cost function that increases sharply as
the arrival time increases. When the cost function is C(t) = ekt , where k is the steep-
ness of the cost increase, the expected cost can be written as ECπ =

∫ ∞
−∞ ekt fπ (t)dt =

{ek(mπ+ kvπ
2 )}. This exponential cost function minimizes a linear combination of

mean and variance determined by k.

Step cost: Step cost models a cost that only penalizes the late arrival after a given
deadline. The cost function is C(t,d) = u(t− d), where u(·) is the unit step func-
tion and d is the deadline. The expected cost is ECπ(d) =

∫ ∞
−∞ u(t−d) fπ(t)dt =∫ ∞

d fπ(t)dt = {1−Φ( d−mπ√
vπ

)}, where Φ(·) is the CDF of the Standard Normal dis-
tribution. Thus, when Π is a set of all paths from O to D, the minimum expected cost
path is argmaxπ∈Π Φ( d−mπ√

vπ
), which turns out to be the path that maximizes arrival

probability. Since Φ(·) is monotonically increasing, maximizing Φ(·) is equivalent
to maximizing

ϕd(π) =
d−mπ√

vπ
. (1)

The minimum expected cost path for the linear and exponential cost cases can be
found by a deterministic shortest-path algorithm, such as Dijkstra’s or A∗ search
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algorithm since the cost of a path can be expressed as the sum of the cost of each
edge in the path. However, when the cost is a step function, these algorithms cannot
be used since the objective, (1), is nonlinear. Our goal for the rest of the paper is
to develop an efficient algorithm for finding the maximum probability path given a
deadline.

4 Stochastic Path Planning by Parametric Optimization

In [9], an algorithm for the case of normally distributed edge costs was given based
on quasi-convex maximization. It finds the path with the maximum arrival probabil-
ity by standard shortest-path runs with different edge costs corresponding to varying
parameters. We now give a graphical interpretation of the optimal path and show a
connection to a parametric optimization problem, which will ultimately lead to a
new algorithm that reduces unnecessary runs over [9].

4.1 Transforming the Cost Function into Parametric Form

Let path π be denoted by a point (mπ ,vπ) in a rectangular coordinate system, called
the m− v plane, where the horizontal axis represents the mean and the vertical
axis represents the variance. The objective of the optimization problem, (1), can
be rewritten to show the relation between mπ and vπ as

vπ =
1

ϕd(π)2 (mπ −d)2, (2)

which is a parabola in the m− v plane with apex at d, where ϕd(π) is determined
by the curvature of the parabola. Thus, the optimal path is the path that lies on the
parabola of the smallest curvature. Intuitively, the optimization problem is to find
the first path that intersects the parabola while we lift up the parabola starting from
the horizontal line (see Fig. 2 (Left)). This suggests finding the optimal path using
linear optimization with various combinations of cost coefficients.1

Consider setting the cost of an edge to be linear combinations of mean and vari-
ance, me + λ ve, for an arbitrary non-negative λ . We call the solution for this edge
cost the λ -optimal solution. This edge cost follows the optimal substructure prop-
erty and has the property described in Lemma 4.1, which was also stated in [9].

Lemma 4.1. An optimal path occurs among the extreme points of the convex hull
for all the O to D paths in the m− v plane if there exists a path that has a mean
travel time smaller than the deadline.

Proof. Let point P on the m− v plane represent the optimal path. Then, there is
no path point that has the ϕ value larger than that of P. Therefore, every other

1 Linear optimization finds a path that first intersects a straight line when the line is moved
in a direction determined by cost parameters.
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Fig. 2. (Left) Graphical interpretation of the optimal path in the m− v plane. Each square
represents a path from the origin to the destination. Equi-probability paths lie on a parabola
with an apex at (d,0) and a curvature of 1

ϕd(π)2 . The optimal path is the first point that meets

with a parabola as we increase the curvature. (Middle) The result after three executions of λ -
optimal searches with λ1 = 0, λ2 = ∞, and λ3 = −m0−m∞

v0−v∞
. Each square point represents the

λ -optimal path for each λ . The gray points represent the paths that are not found yet. The blue
regions are guaranteed to contain no path. The white triangles indicate candidate regions for
better paths. The round points are the probe points of the regions. (Right) λ -optimal search
was done only for the left candidate region. The newly found path turns out to be the new
current optimal path and the two round points are the probe points.

path point must be inside the parabola. Since the parabola is convex, P must be an
extreme point.

With Lemma 4.1 we can find the optimal solution from λ -optimal solution for a
given λ . Since λ -optimal cost satisfies the optimal substructure property, any deter-
ministic shortest-path algorithm (e.g., Dijkstra’s algorithm or A∗ search algorithm)
will find λ -optimal paths.

4.2 Exhaustive Enumeration

In [9], a method for stochastic motion planning was proposed that exhaustively enu-
merates all the extreme points of the path convex hull. A brief description of the
algorithm is as follows: First, find the λ -optimal paths for λ = 0 and λ = ∞. If they
are the same, it must be the optimal solution. Otherwise, find the λ -optimal path
using λ = −m0−m∞

v0−v∞
since this λ value will cause the algorithm to search the entire

region completely unless it finds a new path, as illustrated in Fig. 2 (Middle). If
no new path is found, the algorithm terminates with the optimal solution being the
one with the largest ϕ value. Otherwise, the newly found path divides the search
region into two parts. Then, the λ -optimal search is executed for each region using
λ values determined to search each region completely. In this approach, when the
number of extreme points is Ne, there will be Ne searches to guarantee that all the
extreme points are enumerated. In addition, Ne−1 more searches are needed to con-
clude that no other paths exist between the extreme points. Thus, the total number of
enumerations could be large. Next, we show how to reduce the number of required
λ -optimal searches.
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4.3 Examining Probe Points

If we know that a certain search region’s best possible outcome is worse than the
current optimal solution, we do not need to execute the costly λ -optimal search for
that region. In this section we formalize this point.

Definition 4.1. Let the triangular region where a better path can exist be called
a candidate region. Let the vertex in the middle of the candidate region be called
a probe point. Candidate regions are illustrated as white triangles !LiMiRi, and
probes as round points Mi in Fig. 2 (Middle).

Theorem 4.1. If the ϕ value of the probe point as defined in (1) is smaller than the
current optimal value, the candidate region does not contain the optimal path.

Proof. Suppose that a path lies at the probe point. Then, no other point in the can-
didate region can be an extreme point. The interior points cannot be an optimal
solution since the optimal solution occurs at one of the extreme points by Lemma
4.1. Suppose that a path does not lie at a probe point. Add an imaginary origin-to-
destination path that lies on the probe point. The addition of an imaginary path will
not make any difference for searching for the optimal solution since it is not better
than the current optimal path. The same argument shows that interior points cannot
be optimal solutions.

By Theorem 4.1, we can remove from consideration the candidate region if the re-
gion’s probe point satisfies the condition in Theorem 4.1. Fig. 2 (Right) illustrates
a case where the right candidate region !L2M2R2 was removed without any exe-
cution of λ -optimal search since the ϕ value of the probe point M2 is smaller than
that of the current optimal path. The left candidate region !L1M1R1 was searched
since the left probe point gives a larger ϕ value than the current optimal value, and
a new path was found as the λ -optimal path. The same procedure is applied to the
new candidate regions built by the newly found λ -optimal path until there is no
candidate region remaining.

4.4 Restricting λ by Upper and Lower Bounds

The λ values that should be searched are limited by upper and lower bounds.

Theorem 4.2. The optimal path can be found by searching only with the λ values
upper bounded by λu, the negative inverse of the tangent to the parabola at the
intersection of the 0-optimal search line and the ∞-optimal search line.

Proof. If the λ -optimal solution is the same as the λu-optimal solution for all λ >
λu, we can trivially find the same path with λu instead of λ > λu. Suppose that
there exists a certain λ > λu for which λ -optimal path (mλ ,vλ ) is different from
the λu-optimal path (mλu ,vλu). Then, we can say that mλu �= mλ and vλu �= vλ since
0 < λ < ∞. From the definition of λ -optimal path, mλu + λuvλu < mλ + λuvλ and
mλu + λ vλu > mλ + λ vλ . Rewriting these, we get
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λu(vλu− vλ ) < mλ −mλu , λ (vλu− vλ ) > mλ −mλu . (3)

From the two inequalities we get (λ −λu)(vλu−vλ ) > 0 and since λ > λu, it follows
that vλu > vλ and mλ > mλu .We get an expression for λu by taking the derivitive of

(2) and its negative inverse λu =−1/ ∂v
∂m |m=m0 = (d−m0)2

2v∞(d−m0) = d−m0
2v∞

. From this and
(3), and since d−m0 > d−mλ and vλ > v∞,

mλ −mλu

vλu− vλ
>

d−m0

2v∞
>

1
2

d−mλ
vλ

. (4)

Since mλ > mλu and d−mλ > 0, 1
mλ−mλu

d−mλ
+2

< 1
2 . From this and (4), 1

mλ−mλu
d−mλ

+2
<

mλ−mλu
vλu−vλ

vλ
d−mλ

. We can rewrite this as follows:

vλu − vλ
vλ

<
mλ −mλu

d−mλ
(

mλ −mλu

d−mλ
+ 2) → vλu

vλ
< (

mλ −mλu

d−mλ
+ 1)2

→ vλu

vλ
< (

d−mλu

d−mλ
)2 → d−mλ√

vλ
<

d−mλu√
vλu

.

Thus, for any λ > λu, the λ -optimal solution is worse than the λu-optimal solution.
Thus, there is no need to search the area with the λ that is larger than λu. Therefore,
whether λ -optimal solution is the same with the λu-optimal solution or not we can
find the optimal solution by searching with λ ≤ λu.

Theorem 4.3. The optimal path can be found by searching only with the λ values
lower bounded by λl , the negative inverse of the tangent to the current λ -optimal
parabola at the intersection of the current λ -optimal parabola and 0-optimal search
line.

Proof. Similar to the proof of Theorem 4.2.

Theorems 4.1, 4.2, and 4.3 lead to the Parametric Search algorithm (see Algorithm
1) for finding the best route that maximizes the probability of arriving at the desti-
nation within a given deadline. In lines 3 and 4, the 0-optimal and ∞-optimal paths
are searched with a shortest-path algorithm (e.g., Dijkstra’s algorithm or A∗ search
algorithm). If the two found paths are the same, the algorithm terminates. If they are
different, the first candidate region consisting of the three points denoted in line 7
is pushed into the queue. Candidate regions are evaluated for searching. The con-
ditions in lines 10, 21, and 23 come from Theorem 4.1, and those in lines 12 and
14 from Theorems 4.2 and 4.3, respectively. If the candidate region does not need
to be searched, the algorithm continues with the next region. Otherwise, the region
is searched with the λ value determined by the left and right path of the region
(line 11) and possibly modified by the upper and lower bounds (lines 13 and 15) in
line 16.
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Algorithm 1. PARAMETRIC-SEARCH

Data: Graph with mean and variance of each edge, origin, and destination
Result: The optimal path

1: bestPath ← ∅

2: Regions = [] : FIFO queue containing candidate regions.
3: path0 ← SEARCH-λ -OPTIMAL-PATH(0)
4: path∞ ← SEARCH-λ -OPTIMAL-PATH(∞)
5: if path0 == path∞ then
6: return path0
7: Regions.push(Region(l : path0, r : path∞, p : (path0.mean, path∞.var)))
8: calculate λl and λu

9: while (R ← Regions.pop()) ! = ∅ do
10: if R.probe.ϕ < bestPath.ϕ then continue
11: λ ←−R.l.mean−R.r.mean

l.var−r.var
12: if λ ≥ λu then
13: if λu was not searched then λ ← λu else continue
14: if λ ≤ λl then
15: if λl was not searched then λ ← λl else continue
16: path ←SEARCH-λ -OPTIMAL-PATH(λ )
17: if path ! = R.l and path ! = R.r then
18: if path.ϕ > bestPath.ϕ then
19: bestPath ← path, update λl
20: locate probel and prober

21: if probel .ϕ > bestPath.ϕ then
22: Regions.push(Region(l : R.l, r : path, p : probel))
23: if prober .ϕ > bestPath.ϕ then
24: Regions.push(Region(l : path, r : R.r, p : prober))
25: return bestPath

4.5 Correctness

Algorithm 1 finds the optimal solution in a finite number of λ -optimal searches. The
paths in the region we exclude from the exhaustive enumeration using the extreme
points cannot be optimal by Theorem 4.1. The paths in the region we excluded using
the upper and lower bound of λ cannot be optimal due to Theorems 4.2 and 4.3.
Since the number of required λ -optimal searches is upper bounded by 2Ne− 1 as
described in Section 4.2, the algorithm finds the optimal solution in a finite number
of searches.

4.6 Running Time

As shown by Nikolova, et al. in [9] based on [2], there are total NΘ (logN) extreme
points in the m−v plane, where N is the number of nodes in the network. Compared
to their algorithm that searches every extreme point, our algorithm does not invoke
unnecessary searches yielding an average running time of O(N2log4N), where N2

term is due to Dijkstra’s runs for each λ -optimal search.



Stochastic Motion Planning and Applications to Traffic 493

The intuition is as follows. Each new path point found with a λ -optimal search
yields two candidate regions. Our algorithm only searches the candidate region if its
probe point is outside the current optimal parabola. The parabola passing through
the newly found path point will almost always divide the two probe points causing
one of them to lie outside the parabola. The adverse case where both probe points
are outside the parabola happens rarely when the current optimal parabola meets the
current λ -optimal search line twice within the interval determined by the two probe
points. The decision to remove candidate regions without searching them depends
on the distribution of path points in the m− v plane and the deadline. Thus, the
running time of our algorithm can be described probabilistically.

Let the probability that both candidate regions are searched be p2 and the prob-
ability that neither candidate region is searched be p0. We give the running time
bound of our algorithm taking the varying p2 and p0 into account in Theorem 4.4.
We use two lemmas: the running time of our algorithm when p2 and p0 are given
(Lemma 4.2) and how p2 and p0 vary as algorithm iterations proceed (Lemma 4.3).

Lemma 4.2. Let the probability that both candidate regions are searched be p2 and
the probability that neither candidate region is searched be p0. If p2 ≤ p0, the aver-
age running time of our algorithm is O(N2log2N), where N is the number of nodes
in the graph.

Proof. We use a binary tree to represent a hierarchy of candidate regions created
by the λ -search sequence. Each node represents a candidate region and its children
nodes represent the two candidate regions created by searching the current region.
Let h be the height of the tree, and let the function num(N ) be defined as the total
number of candidate regions to search for a tree with a root node N and left and
right nodes L and R. Then, h = O(log(NlogN)) = O(log2N) and

num(N ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + num(L )+ num(R) with probability p2,

1 + num(L ) with probability1−p2−p0
2 ,

1 + num(R) with probability1−p2−p0
2 ,

1 with probability p0.

The conditional expectation of num(N ) given num(L ) and num(R) is de-
scribed as follows:

E[num(N )|num(L ),num(R)] = 1 +
1 + p2− p0

2
(num(L )+ num(R))

Then, the expectation of num(N ) can be expressed as follows, taking expectation
over num(L ) and num(R) on the above conditional expectation.

E[num(N )] = E[E[num(N )|num(L ),num(R)]]

= 1 +
1 + p2− p0

2
(E[num(L )]+ E[num(R)]) (5)
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Since the expectation of num(N ) depends only on the height of the tree, we can
define a function nume(h) as the expected number of nodes given the height h. Then,
for a node N whose height is h and whose two children are L and R, we have
E[num(N )] = nume(h) and E[num(L )] = E[num(R)] = nume(h− 1). From (5),
nume(h) can be written as:

nume(h) =

{
1 +(1 + p2− p0) nume(h−1) if h≥ 1,

0 if h = 0.

Solving the above recursive equations, noting that (1 + p2− p0)≤ 1, we get:

nume(h) = 1 +(1 + p2− p0)+ · · ·+(1 + p2− p0)h−1 ≤ h = O(log2N).

Thus, the running time is O(N2log2N) when we use Dijkstra’s algorithm for each
λ -optimal search.

Lemma 4.3. p2(i)≤ p0(i),∀i > n,n = O(log2N), where i is the index of iterations.
In other words, p0 becomes larger than p2 around log2N iterations.

Proof. First, consider how p2(i) and p0(i) vary as iterations proceed. We have three
cases: (a) two regions are left in the queue, (b) one region is left in the queue, or (c)
no region is left in the queue. Case (a) occurs only when the λ -optimal search line
is in the neighborhood of the tangent to the parabola at the point being considered.
The size of the neighborhood depends on the distance between the two probe points
(e.g., if the distance is large, even a large difference in the slopes can result in the
retention of both points.) If the distance is small, only a small difference in the
slopes will lead to the retention of both points. Since the distance gets smaller as
iterations proceed, p2(i) decreases monotonically. On the other hand, the probability
of case (c) (e.g., both candidate regions are removed) monotonically increases as the
distance between the probe points gets smaller. The optimal parabola gets flatter and
the lower bound of λ (λl) increases as a better λ -optimal path is found, which also
causes p2(i) to decrease and p0(i) to increase.

Consider the point when p2(i) becomes smaller than p0(i). When a single child
is retained at each step, it takes log2N iterations until the optimal path is found
because we have a binary tree. Thus the probability that the search algorithm retains
one child decreases fast beyond log2N iterations. This results in p0(i)’s fast increase
since its increasing rate is related to the decreasing rate of 1− p2(i)− p0(i) by
Δ p0(i)

Δ i =−Δ (1−p2(i)−p0(i))
Δ i +(−Δ p2(i)

Δ i ). Thus, p0(i) becomes larger than p2(i) around
i = log2N. Fig. 3 illustrates these behaviors of p2(i) and p0(i).

Theorem 4.4. The average running time of Algorithm 1 is O(N2log4N).

Proof. The total running time is determined by considering the computation be-
fore and after p2 ≤ p0 is satisfied separately. By Lemma 4.3 the computational cost
before p2 ≤ p0 is satisfied is O(N2log2N). Then, we have O(log2N) candidate re-
gions. In the worst case, all the remaining candidate regions should be searched.
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Fig. 3. p2 and p0 was calculated from 5000 random convex hulls with Ne extreme points.

Since the height of the sub-trees spanning from those candidate regions is bounded
by h and they all satisfy p2 ≤ p0, the computational cost after p2 ≤ p0 is satisfied is
O(N2log4N) by Lemma 4.2. Thus, the overall running time is O(N2log4N).

5 Algorithm Evaluation

We have evaluated empirically the performance of Algorithm 1 against the exhaus-
tive λ -optimal search proposed in [9] using simulation data and real data from the
taxi database.

5.1 Experimental Data

Grid Structure: The simulation data set is a square bidirectional grid structure
where each edge has a random mean and variance uniformly distributed between 0
and 1. Grid structures of size from 10× 10 to 100× 100 are used. The origin and
destination are two diagonally opposite points.

Physical Road Network: The Delay Statistics Map built using the taxi database is
used as a physical test bed. The map has about 29,000 nodes and 39,000 edges. It is
dense around the city area and more sparse in rural areas.

5.2 Running Time

The running time of Algorithm 1 is compared with the exhaustive λ -optimal
searches using the two data sets above. Fig. 4 shows the results on the simulation
data. The individual effect of each method in Sections 4.3 and 4.4 on the running
time is also shown. Algorithm 1 with both methods runs fastest. The speedup is by
at least a factor of 10 over the algorithm in [9]. The speedup is due to the reduced
number of λ -optimal searches. For the algorithm in [9], the number of λ -optimal
searches gradually increases from 17 to 119 as the number of nodes increases from
100 to 10000, whereas it increases from 5 to 7 for Algorithm 1.

The running time of Algorithm 1 on the Delay Statistics Map for a route 144km
long is 14 seconds with 5 λ -optimal searches when the deadline is 3 hours. The same
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Fig. 4. Running time measured at the square bidirectional grid structure where each edge has
a random mean and variance between 0 and 1 with a deadline of half grid size. “exhaustive”
is the exhaustive λ -optimal search, “probe” is just applying the candidate-region probing
method, “bound” is just applying the bounds of λ and “Alg. 1” is Algorithm 1.

query took 178 seconds when we used the exhaustive λ -optimal search yielding 75
λ -optimal searches.

5.3 Path Example

Fig. 1 shows different optimal paths from an origin (the arrow) to a destination (the
“D”), according to three different criteria: the minimum distance route (this is the
same route recommended by Google Maps and is indicated as the topmost route),
the minimum expected time route (the middle route), and the maximum probability
route with a deadline of 14 minutes (the bottom route). Our system estimates that
minimum distance route (which is 3.1 miles) will take 18 minutes on a Tuesday af-
ternoon. Our system’s minimum expected time route (which is 3.5 miles) takes only
11 minutes and 45 seconds. The maximum probability route (which is 4.1 miles)
takes 11 minutes and 51 seconds with 90.3% guarantee of arriving on time. The
minimum distance route and the minimum expected time route have lower proba-
bilities at 1% and 88.5%, respectively.

5.4 Overall Path Goodness

Four different routes from an origin to a destination were examined using taxi paths
and human test driving. The estimated mean of each path from 7 am to 9 pm was
872 seconds, 899 seconds, 816 seconds, and 795 seconds for route 1 (6.9 km), route
2 (7.2 km), route 3 (6.7 km), and route 4 (6.2 km) respectively. The measured mean
was 869 seconds, 895 seconds, 811 seconds, and 799 seconds. Thus, the estimated
minimum expected time path, route 4, agrees with the measurement. Fig. 5 gives
the maximum probability path. The estimated probability is similar to the measured
probability. From both estimation and measurement, for a deadline less than or equal
to 12 minutes, route 3 is the best, but for a deadline larger than 12 minutes route 4
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Fig. 5. The probability of arriving within a given deadline from an origin to a destination.
(Left) Estimation. (Right) Measurement.

is the best. We can observe that route 4, which is the minimum expected time path
is the worst path for a deadline less than 12 minutes.

5.5 Independent Gaussian Assumption

To test the independent Gaussian assumption, we identified a route with a large
number of travel samples in the taxi trajectories database. We used a path from an
origin to a destination, which is 1.12 km long and has 5 intersections and 6 road
segments. From Fig. 6 (Right), we can observe that the empirical data and the esti-
mation by independent Gaussian assumption is very close. More specifically, Fig. 7
shows that the empirical data is very similar to the Gaussian distribution, especially
in the probability interval from 0.05 to 0.95. Thus, our assumptions will hold well
for the stochastic planning for reaching the destination with the probability in this
range. The discrepancies observed over 0.95 and under 0.05 show the limitation of
our algorithms due to our assumption. For example, as shown in Fig. 7 (Bottom
left), our system will estimate that the users can reach the goal with 99% proba-
bility if they leave 230 seconds before the deadline, but the empirical data shows
that we will get only a 97% chance, and if users want a 99% guarantee they should
leave about 270 seconds before the deadline. The discrepancy over 0.95 is caused
by some unusual long delay, which might be due to unexpected events, construction

Fig. 6. (Left) Delay distribution for one segment. (Right) The comparison of mean and stan-
dard deviation between empirical measurement and estimation for various time slots.
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Fig. 7. “Empirical” indicates the travel time measurement by driving, “Gaussian” indicates
the Gaussian fit for the entire data and “Gaussian(in 270)” indicates the Gaussian fit using
only the data in 270 seconds. (Top left) Histogram of empirical travel time data and Gaus-
sian fits for any time for weekdays. (Bottom left) Probability comparison between empirical
data and Gaussian fits for any time for weekdays, where the Y axis was scaled to make the
Gaussian CDF linear (Right) Corresponding plots to the left plots for 1 ∼ 2 pm for weekdays

work, or data gathering noise such as taxi drivers’ intentional stops or slow drives.
The discrepancy below 0.05 is due to the Gaussian distribution spanning to the neg-
ative value whereas the travel time cannot be negative. We observe less discrepancy
in case of the right plots, which use only the data from 1 ∼ 2 pm whereas the left
plots are for entire hours. This result suggests that narrowing the data by conditions
that affect the traffic delays such as time of day makes the delay distribution look
more like independent Gaussian distribution. Thus, in our ongoing research, we are
investigating the proper conditions that constrain the traffic delays.

This observation provides some evidence that the independent Gaussian assump-
tion used for Algorithm 1 holds for the taxi trajectories database, but more testing on
road segments with more associated travel data is necessary. As the database grows
every day, we plan to continue this validation.

6 Conclusion and Future Work

We developed efficient stochastic shortest-path algorithms that can be used for a
practical traffic information system. We evaluated the system with actual measured
travel time for selected routes, and observed that our system’s optimal path and
travel time estimates are close to reality.

In the future, we are interested in developing path planning algorithms for
multiple users. We are also interested in improving our algorithms and system by
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considering dependencies of each road segment and by using better modeling of
delay distributions. We are currently extending the algorithms to integrate current
traffic information with historical information to make more accurate estimations
and to predict the future traffic conditions. Considering various conditions affecting
traffic like weather, construction work, and events is also part of our current plans.
Finally, we plan to integrate this planning system with autonomous vehicles.
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On Probabilistic Search Decisions under
Searcher Motion Constraints

Timothy H. Chung

Abstract. This article presents a sequential decision-theoretic formulation for con-
ducting probabilistic search for a stationary target in a search region. A general re-
cursion expression describing the evolution of the search decision (i.e., presence or
absence of the target) is derived, which relates the temporal sequence of imperfect
detections, both false positives and false negatives, to the spatial search conducted
by a search agent. This relationship enables quantification of the decision perfor-
mance – time till decision – for a given search strategy. Also, the role of searcher
motion constraints, represented by a search graph, on the time till decision is charac-
terized by the second smallest eigenvalue of the Laplacian of this graph. Numerical
studies demonstrate this relationship.

1 Introduction

As intelligent systems are increasingly endowed with greater autonomy and infor-
mation processing capabilities, the ability to make decisions is required to execute
higher level tasks. Robotic search of an environment to ascertain the presence or ab-
sence of a target provides an example of such a task. Probabilistic search can be de-
fined as the search for a target of interest by one or more search agents in a spatially
bounded search region. A general framework which incorporates the probabilistic
nature of systems and integrates imperfect observations appropriately is necessary in
many applications, and the theoretical foundation presented herein may provide both
insight and intuition in the dynamics of decision making for probabilistic search.

The theory of spatial probabilistic search first arose in the operations research
community [16]. Classic texts include [27, 23], and the most recent survey of classi-
cal search problems and techniques is presented in [2]. These works largely investi-
gate the problem of nonadaptive search, in which a search plan over the discretized
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search region is optimized at the beginning of search and executed without incorpo-
ration of new information due to observations. These earlier works do not consider
the possibility of false positive detections (a.k.a. “false alarms”) in their formula-
tions, limiting the analysis to having only false negative observations (a.k.a. “missed
detections”) as a means of enabling analytic results for the optimization. However,
realistic scenarios comprise both types of errors, and the problem of false alarms
becomes even more relevant in cases where search takes place in the presence of
clutter [15], such as the search for a person in a crowd or a hiker lost in the woods.
Recent efforts [17] begin to address both detection error types, but still rely on the
independence of cells such that detections in one cell do not affect the probability in
other cells. This lack of dependence between cells fails to capture and incorporate
dynamic search-related information into the search planning process. For example,
positive detection of the target in a given cell (albeit possibly erroneous) should
reflect that it is believed by the search agent less likely to be present in another cell.

Independently, with advances in autonomous systems and greater demand for
persistent information gathering capabilities, there has been a growth of research in
employing robotic agents to conduct search-related tasks. Methods for information-
based motion planning, where observations of the environment or situation are used
in conjunction with feedback to enable online improvement of robot trajectories,
have also been applied to the spatial search problem described above. Such algo-
rithms for robotic searchers address a diverse range of topics, such as exploration
and mapping [4], uncertain motion planning [1], visibility constraints [19] (such
as line-of-sight sensors), and robotic coverage [6]. In particular, the authors of [3]
construct probability maps for possible target locations and deploys coordinated
searchers (i.e., unmanned aerial vehicles) and employ greedy or switching algo-
rithms to optimize the probability of detecting a target. Analysis conducted in [9]
provides a polynomial-time algorithm for approximate solutions, as well as bounds
on the resulting sub-optimality of search trajectories. In addition, [25] employ ob-
stacle and evader probability maps with greedy algorithms to demonstrate a multi-
agent, hierarchical implementation. More recently, work in [18] applies elements of
classical search theory to indoor environments, where a smaller state space enables
explicit calculation of optimal paths for maximal detection probability when travel
time between rooms is considered.

This paper proposes a decision-theoretic approach for examination of the search
problem described above, by representing the search task as a decision for which
sequentially obtained information is integrated over time. In this manner, the tem-
poral evolution of the decision can be examined, with the decision performance
measured by the time till the search decision is made. The main contributions of
this paper include further theoretical and algorithmic developments of the search-
as-a-decision approach posed in [7, 8], including lower bounds on the expected
decision time found by examining the special case of perfect detections. However,
whereas this previous work considered the search strategy employed by a mobile
searcher to determine where it should search, this paper examines the influence of
different degrees of mobility, i.e., how the searcher reaches its goal, on the search de-
cision performance. Constraints on the search agent’s motions are formulated as an
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associated search graph, for which a relationship between the performance of the
decision, measured by the decision time, and the second smallest Laplacian eigen-
value, known as algebraic connectivity, of this search graph is established. Sec-
tion 2 formulates the probabilistic search problem described above in the context
of a search decision in the presence of imperfect detections. Further, the recursion
expression for the decision evolution and study of some special cases are also pre-
sented. Section 3 defines the search graph as it represents the constraints on searcher
motions, and examines the relationship between properties of this graph represen-
tation and the time until the probabilistic presence or absence of the target is de-
termined. A summary of conclusions and discussion of future work are provided in
Section 4.

2 Probabilistic Search as a Sequential Decision

The problem of probabilistic search for an object can be thought of as a binary hy-
pothesis test, which represents the uncertainty in the target’s presence or absence
in the search region. Such a formulation encapsulates two objectives in a unified
manner: localization of a target which is assumed present in the search region com-
bined with appropriate termination of the search process when the target, in fact,
is not present. The hypothesis test utilizes a binary (i.e., Bernoulli) random vari-
able, H, which takes a value of either zero or one, such that the probability that the
stationary target is present in the search region is given by P(H =1).

2.1 Search Environment

Consider a discretization of the search environment, A , into |A | cells. Use of dis-
crete cells may reflect physical structure present in the search region (such as distinct
rooms in a building) or may capture the effect of finite detection range of the sen-
sor. As an example, consider a search-and-rescue (SAR) objective for a lost hiker
in the woods using an unmanned aircraft equipped with a downward-facing camera.
Terrain features (e.g., rivers, ridgelines) may divide the area into natural discrete
sectors, or physical characteristics, such as the camera’s field-of-view and altitude,
may drive the discretization of the environment. The presented framework is inde-
pendent of the cellular decomposition approach chosen (e.g., trapezoidal, Voronoi),
and other issues (e.g., visibility, distance, resolution) can be used to determine the
exact method.

The presence or absence of the target within a specific cell c ∈ {1, . . . , |A |} in
the search region is also described by a Bernoulli random variable, Xc, such that the
probability, or the searcher’s cell belief, that the target is located in the cth cell at time

t = 0 is given by p0
c

def= P(Xc=1). Note that one can define all space not in the search

region as a virtual cell, indexed by /0, such that p0
/0

def= P(H=0) = 1−P(H=1). These
initial cell belief values form an arbitrary probability distribution and can represent
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(a) (b)

Fig. 1. (a) Example of a search region and initial belief distribution. The search region is
a square 10× 10 grid. The initial belief distribution for this example is given by a mixture
of two bivariate Gaussians, with means and covariances μ1 = (1,3),μ2 = (8,10) and σ1 =
(7,15),σ2 = (10,2), respectively, normalized to sum to B(0) = 1

2 . The target is shown present
in grid cell (7,3). (b) Illustration of an example search graph, GS , where a searcher can move
to all neighboring vertices, including diagonals, given by an augmented grid graph with hop
length one.

any prior knowledge available to the searcher before commencing the search1. In
the lost hiker example, information such as last known whereabouts and input by
subject-matter experts can be incorporated to construct this initial belief distribution.

The summation of cell beliefs over all cells within the search region composes
the aggregate belief, which is the overall cumulative probability that the target is

present somewhere in A , i.e., ∑|A |c p0
c = P(H =1) def= B(0). An illustrative example

of the search region and the initial belief distribution is depicted in Figure 1(a),
where the search region is a square grid of 10×10 cells (|A |= 100), and the height
of each discrete gray bar represents the cell belief of that cell.

As the search agent takes observations in different cells over time, the cell beliefs,
pt

c, are recursively updated, thereby changing the aggregate belief, B(t), that the
target is present. This sequential evolution of the belief depends on the sequence of
cells the search agent visits and is described in Section 2.3.

2.2 Search Agent Modeling

Consider the single searcher whose location at time t within the search region is
denoted s(t) ∈ {1, . . . , |A |}. Initially at s(0), the search agent follows a trajectory
through time t given by S (t) = {s(1), . . . ,s(t)}.

Given the decomposition of the search region, the collection of cells can be equiv-
alently represented as a set V of |A | vertices. Definition of a particular search
graph, GS = (V ,E ), of the search agent requires specification of the set of edges, E .

1 In the absence of such prior information, a noninformative prior (i.e., uniform) distribution
may be used. In this case, p0

c = 1
|A | ,∀ c ∈A .
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These edges represent the motion constraints of the searcher, in that the presence of
an edge between vertices k and l signifies that the searcher is able to move between
the two corresponding cells in the search region in a single time step at unit cost.
Figure 1(b) illustrates an example search graph where each cell is connected to all
adjacent (including diagonal) cells, termed an augmented grid graph. Note that en-
vironmental constraints such as the presence of obstacles can also be incorporated
in the search graph by exclusion of edges incident to those vertices corresponding to
obstacle locations. In the case of unmanned aircraft, a given search graph reflects the
speed and maneuverability of the aircraft to reach different destinations, subject to
requirements for high-fidelity observations (e.g., need to stabilize prior to imaging).

The search graph, GS , is completely described by its adjacency matrix, Adj(GS ),
where the (k, l)th element is one if and only if there exists an edge between cells k and
l, and zero otherwise. Note that the kth cell is assumed to be adjacent to itself (i.e., the
search agent can choose to remain at its current location in the next time step). The
search graph may represent constraints on the searcher dynamics, such as maximum
speeds, or may reflect the physical nature of the search environment, such as hallways
and doorways. Further discussion of the search graph is given in Section 3.

The search agent is endowed with target detection capabilities, which are subject
to uncertainty in the form of false positive and false negative errors [7]. This gen-
eral representation of probabilistic observations encompasses a vast class of sensing
modalities, ranging from those that can utilize a simple threshold rule (e.g., is tem-
perature above or below a specified value?) to those that require significant data
processing resources (such as machine vision methods for target feature recogni-
tion, as could be used in the lost hiker example).

Let Ys(t) be the search agent’s detection measurement of cell s(t) at time step
t, where each Ys(t) is also modeled as a Bernoulli random variable representing the
uncertainty in the detection. For a given observation in cell s(t) at time t, the random
variable Ys(t) takes on a value of one if the target is detected, and zero if no target is
detected. The detection likelihood function describes the conditional probability of
observing Ys(t) given the true presence or absence of the target in the cth cell, Xc, and
is typically prescribed by the particular choice of detector. Incorrect detections of
both types are possible in general scenarios, and are characterized by the detector’s
error probabilities (assumed independent of time and cell), defined as:

P(Yc = 1|Xc = 0) def= α (false positive)

P(Yc = 0|Xc = 1) def= β (false negative)

As a final definition, define Y (t) =
{

Ys(1), . . . ,Ys(t)
}

as the history of observations
taken by the search agent through time t.

2.3 Decision Evolution

The integration of information from sequential observations represents an evolution
of the decision in time. This evolution is a stochastic process which depends on
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both the collection of imperfect detections and the search agent’s trajectory through
the search region. The objective in active decision making is to determine a search
control strategy which improves the performance of the decision, as measured by
some metric, such as minimal time till detection [7, 8]. As with the control of any
dynamical system, the recursion expressions presented in this section show how the
decision evolution is a dynamical process itself, which can be controlled by input of
the search agent’s location.

The decision evolves as new information is combined with previous information
by use of a Bayesian update rule. First, for an observation at time t in cell s(t), define
the following functions of observation random variable Ys(t):

Φ
(
Ys(t)

) def=
(
1−Ys(t)

)
(1−α)+Ys(t) α

Ψ
(
Ys(t)

) def=
(
1−Ys(t)

)
β +Ys(t) (1−β ),

where α and β are the false alarm and missed detection probabilities, respectively.
These functions are intimately related to the marginalization of the observation:

P(Ys(t)) = Φ
(
Ys(t)

)
·
(

1− pt
s(t)

)
+Ψ

(
Ys(t)

)
· pt

s(t),

which gives the probability that this observation is either a zero or a one. This term
provides the normalization constant for the Bayesian observation updates of cell
belief probabilities, given in terms of the above functions as:

pt
c =

Θc
(
Ys(t)

)
pt−1

c

Φ
(
Ys(t)

)
+ Ω

(
Ys(t)

)
pt−1

s(t)

, (1)

where the following further definitions facilitate the analysis:

Ω
(
Ys(t)

) def= Ψ
(
Ys(t)

)
−Φ

(
Ys(t)

)
=

(
2Ys(t)−1

)
(1−α−β )

Θc
(
Ys(t)

)
=
{

Ψ
(
Ys(t)

)
, if s(t) = c

Φ
(
Ys(t)

)
, if s(t) �= c

The term, Θc
(
Ys(t)

)
, enables a general representation for when the observation is

taken in the cell where the update is conducted (i.e., c = s(t)) or when the obser-
vation occurred in some other cell (i.e., s(t) �= c). Since an observation anywhere
affects beliefs everywhere (by their inter-dependence), Equation 1 enables succinct
and straightforward computation of these updated cell beliefs.

For an iterative implementation, the expression given by Equation 1 is sufficient
for each single time step update, requiring only the belief distribution from the previ-
ous time step and the current observation information, demonstrating the usefulness
of a canonical Bayesian filtering approach. Alternatively, one may wish to consider
the entire time evolution of a given cell’s belief over the course of observations,
Y (t), and search agent motions, S (t), as a function of the initial belief distribu-
tion, p0

c,∀c:
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pt
c =

t

∏
k=1

Θc
(
Ys(k)

)
p0

c

t

∏
k=1

Φ
(
Ys(k)

)
+

t

∑
k=1

(
k−1

∏
l=1

Θs(k)
(
Ys(l)

))
Ω
(
Ys(k)

)( t

∏
m=k+1

Φ
(
Ys(m)

))
p0

s(k)

, (2)

which can be derived by recursive application of Equation 1.
Note that the cell belief of the virtual cell, pt

/0, can also be updated as above,
noting that Θ /0

(
Ys(t)

)
will always be Φ

(
Ys(t)

)
, since by construction no observation

will occur outside the search region, such that

pt
/0 =

Φ
(
Ys(t)

)
pt−1

/0

Φ
(
Ys(t)

)
+ Ω

(
Ys(t)

)
pt−1

s(t)

, (3)

with the analogous expression for Equation 2 for the virtual cell given by

pt
/0 =

t

∏
k=1

Φ
(
Ys(k)

)
p0

/0

t

∏
k=1

Φ
(
Ys(k)

)
+

t

∑
k=1

(
k−1

∏
l=1

Θs(k)
(
Ys(l)

))
Ω
(
Ys(k)

)( t

∏
m=k+1

Φ
(
Ys(m)

))
p0

s(k)

. (4)

Noting that the aggregate belief evolution is given by B(t) = 1− pt
/0, the signifi-

cance of Equation 4 is that the evolution of the aggregate belief, for an arbitrary ini-
tial belief distribution, can be explicitly examined given the search agent’s trajectory
and observation history. This expression relates the temporal aspect of the change
in belief due to imperfect observations and the spatial search trajectory, highlighting
the spatio-temporal nature of search.

A decision regarding the presence or absence of the target in the search region
can be made under two conditions. The target is deemed present if the cell belief
(and thus the aggregate belief) in any one cell exceeds an upper threshold, B, where
alternatively the target is classified as absent if the aggregate belief falls below a
lower threshold, B. Designation of these two threshold values arises from the par-
ticular confidence requirements one has for the search task. For example, setting
B = 0.97 requires that the searcher attain at least 97% certainty that the target is
present in a particular cell, and B = 0.05 implies that a negative decision (i.e., that
H = 0) is made if there is only 5% probability that the target is present. Figure 2
illustrates a sample time evolution of the aggregate belief with decision boundaries
used in the example above. Modulating the decision boundaries clearly affects the
time until either decision is made (e.g., decreasing B should speed up an affirmative
decision). Investigation of a relationship between the design of these thresholds and
the expected time till decision is subject of ongoing research.

Some special cases are of particular interest and can be examined directly from
the above expressions. In the extremal case of perfect detections, evolution of the
aggregate belief remains nontrivial if only all detections up until time t are nega-
tive detections. (Otherwise, the affirmative decision would be made upon the first
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Fig. 2. Sample trace of the evolution of the aggregate belief, starting at B(0) = 1
2 , with upper

and lower decision thresholds given by B = 0.97 and B = 0.05, respectively. In this case, the
target is deemed present in the search region with a decision time of 327 time steps.

positive detection and the search process would terminate.) In this simplified case,
Equation 4 reduces to a deterministic expression:

pt
/0 =

p0
/0

1−
t

∑
k=1

p0
k

⇒ B(t) = 1− pt
/0 =

∑
k∈U (t)

p0
k

∑
k∈U (t)

p0
k + p0

/0

,

after further assuming a cell is inspected at most once (since no informational ben-
efit is derived from re-visiting a cell due to perfect detections). The corresponding
aggregate belief expression, B(t), where all cells not yet inspected at time t are
denoted by the set, U (t) ⊆ A , demonstrates the intuitive result that the belief is
simply the ratio between the probability mass still contained in the search region
and the total remaining probability mass.

Of greater interest is the expected time until a decision is made, such that analysis
for the simplified case of perfect detections can be used to derive a lower bound on
the expected decision time. A perfect detector will make an affirmative decision
(i.e., H = 1) upon inspecting the cth cell if and only if the target is present in cell c,
which it is with probability p0

c . Uncertainty in the decision evolution is introduced
only by the randomness of the target location (as there are no errors in observations).
Then the expected time till decision, tD, can be computed as

E [tD] =
|A |

∑
k=1

ts(k) · p0
s(k) + |A | · p

0
/0, (5)

for choice of search agent trajectory, S (t) = {s(1), . . . ,s(|A |)}, where ts(k) is the
time when cell s(k) is inspected. The transit time (which is also the search path
length for unit speed) for the searcher to reach cell s(k) from s(k−1) is given by
ts(k)− ts(k−1). For example, consider a sweeping search (a.k.a. ladder search, in land
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SAR) where cells are observed in ascending label order, i.e., S (t)= {1,2, . . . , |A |},
which yields an expected decision time of E[tD] ≈ 77.4 time steps for the sample
belief distribution illustrated in Figure 1(a). Alternatively, suppose the search con-
trol strategy employed by the searcher was to inspect the cell with maximal belief at
each time step (e.g., no motion constraints), which amounts to a re-indexing of the
cells in descending order of cell belief. Again using the example distribution, the
search trajectory for such a strategy is given by S (t) = {98,21,31, . . . ,40,20,10}
(i.e., cells 98 and 10 have maximal and minimal cell beliefs, respectively), such that
E[tD]≈ 64.3 time steps for this “snapshot” or “saccadic” [7] approach. These values
serve as lower bounds on the expected decision time for their respective strategies,
and further analyses of special cases are similarly facilitated by the general expres-
sion for the aggregate belief evolution.

While in simple cases the analysis is manageable, in the imperfect sensor case,
the additional degrees of freedom of varying detection error probabilities, α and β ,
render derivation of a closed-form expression for the expected time-till-decision in-
tractable. Instead, stochastic simulation methods may be used to explore the param-
eter space [7]. Such investigations can provide insight into the constrained searcher
problem, despite the fact that determination of the optimal search trajectory, S , is
computationally challenging [24].

3 Characterization of Searcher Motion Constraints

One facet of the constrained search problem that remains to be examined is the role
of the searcher motion constraints on the performance of the probabilistic search.
Classical search theory pertains mostly to the case where motion is restricted to
only neighboring cells. However, the framework presented in this paper extends to a
larger class of search problems, enabling analysis and comparisons across a greater
variety of search agent motion capabilities. For example, an unmanned fixed-wing
aircraft with greater maximum speed can reach a greater number of cells in a sin-
gle time step than a slower unmanned helicopter, but may sacrifice sensing fidelity
(i.e., increased detection error probabilities). The influence of searcher motion ca-
pabilities on the overall decision performance is the subject of the sequel, and the
results therein can assist in determining the most appropriate search platform to best
accomplish the search objective.

One efficient strategy can simply be to inspect the cell with maximal belief prob-
ability within the set of cells reachable in the next time step. This reachability can
formally be studied by examination of the algebraic connectivity of the graph [12],
which is defined as the second smallest eigenvalue, denoted λ2, of the graph Lapla-
cian. Some well-known results for λ2 include the fact that λ2 = 0 ⇔ GS is not
connected, and that λ2 = |A | when GS is a complete graph. The graph Laplacian,
L (GS ), is computed by the difference between the degree matrix, Deg(GS ), and
the adjacency matrix, Adj(GS ), of the search graph (see, e.g., [20]):

L (GS ) = Deg(GS )−Adj(GS ).
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As mentioned in Section 2.2, the adjacency matrix allows for general representa-
tion of arbitrary search environments and situations. Consider now a class of square
augmented grid graphs (where diagonal vertices, in addition to horizontal and verti-
cal neighbors, may also be considered adjacent) [14]. Such grid graphs can represent
the discretization of rectilinear search regions. The hop length, h, is the maximum
(integral) distance for which two vertices on the graph are directly connected, i.e.,
there exists an edge in GS between vertices k and l if cell l is within h cells of cell k.
For example, the augmented grid graph illustrated in Figure 1(b) has hop length of
one, which corresponds to the constrained search motion limited to neighboring cell
search. Note that a hop length of h =

√
|A |−1 is sufficient to make GS a complete

graph. This latter case reflects the situation where the search agent has the ability to
“jump” to any cell from any other cell in the search region in a single time step, e.g.,
inspection by remote camera on a sensor network.

The relationship between hop length and the algebraic connectivity of the aug-
mented grid graph is depicted in Figure 3. This plot demonstrates the characteri-
zation of search motion constraints by quantitative spectral analysis of the search
graph, GS , and is consistent with the known result that λ2 is a non-decreasing func-
tion for graphs with the same vertex set V [12]. While this relationship is illus-
trated only for the class of augmented grid graphs, in principle, the connectivity of
the search graph ranges from minimally connected to complete in a more general
fashion. The framework presented in this paper also applies to arbitrary connected
graphs (for which λ2 lies on the curve illustrated in Figure 3) and points towards ad-
dressing directional motion limitations using directed edges (e.g., one-way streets
in a road network or nonholonomic constraints in motion capabilities).

Optimization of the search for minimizing the time till detection is provably
NP-complete [24], and as such, determination of an optimal search trajectory is
intractable. Although existing approximation methods, such as branch and bound
techniques [11] for partially-observable Markov decision processes, enable study

Fig. 3. Relationship between hop length, h, and connectivity, λ2, of the corresponding (aug-
mented grid) search graph for |A |= 100 (i.e., 10×10 grid).
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of near-optimal solutions, the search problem here is further complicated by the
possibility of false positive detections, which gives rise to a non-monotonic aggre-
gate belief evolution. Furthermore, in the context of active search, where search and
control are bound together by feedback, a search strategy which is both computa-
tionally efficient and effective (at the expense of optimality) is essential for practical
implementations.

Consider the search strategy described in Section 2.3 of seeking and observing
the maximal cell belief location, now subject to the searcher’s motion constraints.
Such a strategy is motivated by the fact that the incremental change (in absolute
value) in aggregate belief is monotonically increasing for increasing cell belief for
the observed cell, which can easily be shown by computing the one-step change in
belief found by Equation 3. This observation agrees with known results, such as for
unconstrained search [24], or for special conditions of concavity and continuity of
detection functions [23].

Once this maximal cell has been identified, the task of planning and transiting
from the search agent’s current location, s(t), to the goal cell, c�, can be constructed
as a shortest path problem on the search graph, GS , for which efficient algorithmic
solution methods can be utilized, such as Dijkstra’s method. The search agent must
transit this shortest path of length T , for which each cell visited (but uninspected) en
route to the maximal belief cell represents unit cost (i.e., one time step). Bayesian
update of the belief distribution occurs upon the searcher’s arrival and inspection
of cell s(t + T ) = c�. Note that it is assumed in this strategy that observations are
not made while in transit to the maximal belief cell. This type of limitation may
represent sensing modalities which require the search agent to be (nearly) stationary
during the observation (e.g., image stabilization). Alternatively, resource limitations
(e.g., power) or risk minimization (e.g., avoiding target lock) may require that the
detector be only turned on in specific instances. Noting that the effect of additional
information gained from taking observations during transit leads to reduced decision
times [7], the role of the initial belief distribution is more prominent as average path
lengths become a contributing factor to the decision performance. The study of these
factors for the case of “streaming” observations, rather than the “snapshot” approach
examined in this paper, is subject of ongoing research.

As done in the previous section, the special case of zero detection errors can
once again be used to derive both intuition as well as analytic results on the decision
performance (i.e., lower bounds on the search decision time) for the given search
strategy. Using the example initial belief distribution, the trajectory of the search
agent can easily be determined as a function of the algebraic connectivity (param-
eterized by the hop length) of the search graph. Figure 4 illustrates the computed
expected decision time as determined by Equation 5, where ts(k) includes the time
to transit the path as calculated by the shortest path algorithm of the given search
graph.

The expected decision time is reduced by increasing algebraic connectivity of
the search graph. Also shown in Figure 4 are the expected value traces for deci-
sion times for when the target is determined present in the search region and when
it is not. The horizontal line corresponds to the decision time for the nonadaptive
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Fig. 4. Expected decision times for the perfect detector (i.e., α = β = 0). Bounding traces
represent the expected decision time when the target is determined absent (upper) or present
(lower) in the search region. The intersecting plot (straight line) represents the expected deci-
sion time if employing the nonadaptive sweeping search strategy with zero detection errors.

sweeping search. The plot shows that for hop length h ≤ 5, the naı̈ve sweeping
search may perform, on average, better than the “snapshot” search method, due to
transit time penalties for longer average path lengths. The practical interpretation
of this insight is that when employing a slow-moving searcher (e.g., ground search
parties), a simple sweeping search is more efficient (on average) than a more tar-
geted approach to searching cells, whereas a faster unmanned aerial vehicle can
take advantage of its speed to utilize the latter search strategy.

(a) (b)

Fig. 5. Expected decision times for the imperfect detector, with false positive and false neg-
ative error probabilities α = 0.25 and β = 0.20, resp. (a) Upper and lower bounding traces
represent expected decision times for when the target is absent and present. (b) Decision time
probability histograms over 5000 simulated trials, shown for hop lengths h = 1 and h = 9.
The different peaks (corresponding trials are differentiated by color) in each histogram cor-
responds to when the target was present (lower) or absent (upper).
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Fig. 6. Decision time as a function of the initial belief distribution. The top figure illustrates a
comparison of two hop lengths (h = 1 and h = 9) over repeated simulation trials. The bottom
plot shows the sampling histogram (compared against the true initial belief distribution) of
the true target location for the simulated trials.

In the more interesting case of imperfect detections, analogous insight into the re-
lationship between time till decision and algebraic connectivity of the search graph
can be extracted from statistical studies. Figure 5 illustrates the decision time re-
sults for increasing algebraic connectivity over N = 5000 simulation trials, with the
search agent initially located in cell s(0) = 1. The initial target location is randomly
drawn according to the initial belief distribution, which includes the possibility (with
probability p0

/0 = 1
2 ) that the target is not present in the search region. Simulated

detections are subject to false positive and false negative errors of α = 0.25 and
β = 0.20, respectively.

As expected, the algebraic connectivity of the search graph plays a definite role
in the determination of the search decision time, in that greater algebraic connec-
tivity leads to better decision performance (i.e., reduced time till decision). Further,
errors in detection observations can only increase the decision time, as the deci-
sion time is influenced both by uncertainty in detections and uncertainty in target
location. Figure 5(a) shows the expected decision time traces, including upper and
lower expected value bounds corresponding to the cases where the target is absent
and present, respectively. One can clearly observe that the greatest improvement oc-
curs with only mild increases in searcher mobility with only diminishing additional
benefit thereafter. For example, doubling the maximum speed of the UAV searcher
from the nominal value (i.e., from one hop to two) decreases the decision time by
40.5% but doubling it again (to h = 4) only yields half the improvement (59.6%
overall reduction). This information can be used to balance the advantage of em-
ploying a faster search platform with other deciding factors, e.g., higher expense.
Figure 5(b) shows the decision time probability histograms of 5000 trials for the
extremal hop lengths of h = 1 and h = 9. The bi-modal nature of these histograms
highlights the distribution of the two possible outcomes of the search decision, i.e.,
H = 0 or H = 1.
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As mentioned previously, the uncertainty in the target’s true location influences
the expected time till decision. The target location for each simulation trial was
drawn according to the example initial belief distribution. Figure 6 illustrates the
relevance of the initial cell beliefs on the decision time, shown for hop lengths h = 1
and h = 9 (see upper plot). The lower plot depicts the probability histogram as
a function of cell number, i.e., the probability that the target is located in cell c,
P(Xc=1). As can be seen, the sampling of target locations over all trials is consistent
with the underlying initial belief distribution. The decision time is inversely related
to the initial cell belief. In other words, if the target is located in less likely locations,
the time necessary to find the target is greater. This effect is mitigated by increasing
the connectivity of the search graph. It merits noting that even if the search agent is
misinformed (i.e., the initial belief distribution is inaccurate), the searcher will still
successfully determine the presence (and location) or absence of the target within
the confidence levels prescribed by the upper and lower decision thresholds.

4 Conclusions and Future Work

This paper presented a framework for conducting and analyzing the probabilistic
search of a stationary target in a discretized search region. The decision-theoretic
approach of representing the search task as a sequential binary hypothesis test en-
abled the derivation of a recursive expression for the time evolution of the search
decision as a function of imperfect detections. This analysis facilitated the use of the
expected time till decision as a metric of decision performance. Further, the use of
the search graph was introduced as a general representation of the searcher’s con-
strained motion, due to dynamic or environmental constraints. A distinct relation-
ship between the algebraic connectivity, given by the second smallest eigenvalue of
the search graph’s Laplacian matrix, and the expected decision time was demon-
strated by statistical studies. Also, the dependence on searcher motion constraints
can be utilized, along with specification of detection errors and decision thresholds,
to optimize the construction of the search problem, e.g., choose better spatial de-
composition of the search environment or improve the motion capabilities of the
search agent, to reduce the search decision time.

Active decision making in autonomous systems research continues to maintain
significant interest, and there exist many avenues of future research based on the
foundation proposed in this work. The role of target motion in the context of search
theory has largely only been studied in the limited cases of independence of cells
and without false positive detections, for both nonreactive [5, 26] and adversar-
ial [13, 21] targets. However, incorporation of the decision framework may ad-
dress the aforementioned shortcomings, as well as examine the case when the target
can move in and out of the search region. Application of the discrete Chapman-
Kolmogorov equation can capture probabilistic target motion models as an exten-
sion of the proposed Bayesian filtering framework.

Further, search using multiple agents (see, e.g., [7, 22, 10]) highlights the addi-
tional challenges of communication, coordination, optimization, and data fusion for
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distributed systems. With increasingly greater emphasis on distributed architectures
of complex systems, research in such systems continues to be an active area. Also,
while a single target scenario is pertinent in many realistic situations, the class of
problems becomes richer in the case of multiple objects. The challenge (and thus its
appeal) increases especially in the case where objects must be identified in addition
to being located, combining classification with the search task [15]. Applications
of an integrated search and identification framework include tasks such as person-
tracking in crowded environments or assessment of possible threats in a scenario.
The sequential binary hypothesis framework may be extended by using composite
hypotheses to address these multivariable decisions.
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Planning with Reachable Distances

Xinyu Tang, Shawna Thomas, and Nancy M. Amato

Abstract. Motion planning for spatially constrained robots is difficult due to addi-
tional constraints placed on the robot, such as closure constraints for closed chains or
requirements on end effector placement for articulated linkages. It is usually compu-
tationally too expensive to apply sampling-based planners to these problems since
it is difficult to generate valid configurations. We overcome this challenge by re-
defining the robot’s degrees of freedom and constraints into a new set of param-
eters, called reachable distance space (RD-space), in which all configurations lie
in the set of constraint-satisfying subspaces. This enables us to directly sample the
constrained subspaces with complexity linear in the robot’s number of degrees of
freedom. In addition to supporting efficient sampling, we show that the RD-space
formulation naturally supports planning, and in particular, we design a local plan-
ner suitable for use by sampling-based planners. We demonstrate the effectiveness
and efficiency of our approach for several systems including closed chain planning
with multiple loops, restricted end effector sampling, and on-line planning for draw-
ing/sculpting. We can sample single-loop closed chain systems with 1000 links in
time comparable to open chain sampling, and we can generate samples for 1000-link
multi-loop systems of varying topology in less than a second.

1 Introduction

Spatially constrained systems are systems with constraints such as requiring certain
parts of the system to maintain contact or to maintain a particular clearance from
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(a) (b) (c)

Fig. 1. Examples of spatially constrained systems. Each must satisfy certain closure con-
straints. (a) Multiple loops: all loops must remain closed. (b) End-effector restrictions: the end
effector must remain within the specified boundary (in wireframe). (c) Drawing/sculpting:
the end effector must follow a desired drawing trajectory while remaining in contact with the
canvas.

each other. They have many applications in robotics and beyond, such as parallel
robots [18], grasping for single and multiple robots [13], reconfigurable robots [14,
20], closed molecular chains [24], and computer animation [11]. Figure 1 gives
some examples of spatially constrained systems.

Motion planning for these systems is particularly challenging due to the ad-
ditional constraints placed on the system. Since the complexity of deterministic
algorithms [23, 15] is exponential in the number of degrees of freedom (DOF)
of the robot, they are impractical for most systems of practical interest. While
sampling-based planning methods are successful for many high DOF systems, their
performance degrades for spatially constrained systems in which the set of valid
configurations occupies a small volume of configuration space (the set of all config-
urations, valid or not). In these situations, the probability of randomly sampling a
configuration that also satisfies the spatial constraints approaches zero (e.g., closed
chain systems [16]).

In this paper, we generalize the reachable distance representation we proposed for
single-loop closed chains [25] to handle other types of spatial constraints in addition
to closure constraints and to satisfy multiple constraints simultaneously. Our frame-
work handles a wide range of systems including both 2D and 3D chains, single and
multiple loops, end effector placement/trajectory requirements, and prismatic joints.
This new representation for spatially constrained systems, called reachable distance
space (RD-space), enables more efficient sampling of valid configurations. It is de-
fined by a set of reachable distances for the robot instead of, e.g., by joint angles, as
in configuration space. Instead of sampling in the configuration space, we sample in
the RD-space.

We describe our new representation, RD-space, in Section 3 and give a recur-
sive sampling algorithm with complexity linear in the system’s DOF in Section 4.
We also describe a RD-space local planning method suitable for sampling-based
planners. Then, we present applications of our approach for multiple-loop closed
chain planning (Section 5), restricted end effector sampling (Section 6), and on-line
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planning for drawing/sculpting (Section 7). We demonstrate that our method is scal-
able to thousands of DOF and show that it outperforms other randomized sampling
methods and other specialized methods for closed chains.

2 Related Work

In theory, exact motion planning algorithms can handle systems with spatial con-
straints by explicitly computing the constraint-satisfying subspaces in configuration
space (i.e., the set of all robot configurations, valid or not) [23, 15]. However, since
these algorithms are exponential in the dimension of configuration space, they are
generally impractical for systems with more than 4 or 5 DOF.

Randomized algorithms such as Probabilistic Roadmap Methods (PRMs) [12] and
Rapidly-exploring Randomized Trees (RRTs) [17] are widely used today for many
applications. These methods randomly sample the configuration space, retaining
valid configurations, and connect these samples together to form a roadmap (i.e.,
a graph or tree) that represents the connectivity of the valid configuration space.
While successful for many high DOF systems, their performance degrades for spa-
tially constrained systems as the probability of randomly sampling a configuration
satisfying the constraints approaches zero (see, e.g., [16]).

Much work has been done to optimize these sampling-based planners for closed
chain systems. Closed chain systems are a special type of spatially constrained sys-
tem where the linkage must satisfy the closure constraints at all times during plan-
ning. In the first sampling-based method for closed chains, Kavraki et al. [16, 30]
randomly sample configurations and then apply an iterative random gradient de-
scent method to push the configuration to the constraint surface. They solved planar
closed chains with up to 8 links and 2 loops in several hours with PRM [16] and
several minutes with RRT [30]. Kinematics-based PRM (KBPRM) [6] first builds a
roadmap ignoring all obstacles, then populates the environment with copies of this
kinematics roadmap, removes invalid portions, and connects copies of configura-
tions with a rigid-body local planner. This method can solve closed chain problems
with 7–9 links in under a minute. KBPRM has been extended to better handle larger
linkages [29], reduce running time [3, 2], and deal with multiple loops [1]. PRM-MC

combines PRMs and Monte Carlo simulations to guarantee closure constraints [5].
It can generate 100 samples of a 100-link closed chain and of a 2-loop system con-
taining 16 links in under a minute. Trinkle and Milgram proposed a path planning
algorithm [26] based on configuration space analysis [19] that does not consider
self-collision. Han et al. [10] proposed a set of geometric parameters for closed
chain systems such that the problem can be reformulated as a system of linear in-
equalities. They extend this work to handle multiple loops [9]. They show results for
a 1000-link closed chain and a 1000-loop system containing 3000 links. However,
they do not discuss the algorithm’s complexity or provide an experimental perfor-
mance study. Their work is similar to ours in that both methods reframe the original
joint-based problem into another set of parameters where satisfying a set of spa-
tial constraints is easier. However, our work proposes a different set of parameters
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that enables efficient sampling of configurations and naturally results in a simple
local planner to connect configurations, the two primitive operations necessary for
sampling-based planning.

In addition to closed chain systems, there has been work on other types of spa-
tially constrained systems. Garber and Lin [4] use constrained dynamics to plan
motions to ensure constraints such as joint connectivity, the spatial relationship be-
tween multiple robots, or obstacle avoidance. They show results for a 6 DOF robot
arm. Oriolo et al. plan articulated motions where the end effector must travel along
a given trajectory for fixed-base manipulators [22] and mobile manipulators [21].
They extend probabilistic planning methods for this system and present results for
up to a 6 DOF robot arm on a mobile planar base. Yao and Gupta [31] propose two
approaches, Alternate Task-space and Configuration-space Exploration (ATACE)
and randomized gradient descent, to plan paths for manipulators with general end
effector constraints; results are presented for up to a 9 DOF robot. Han et al. [8] unify
their work on serial chains [7] and closed chains [10] to provide inverse kinematic
solutions that satisfy 3D, 5D, and 6D end effector placement constraints. They can
sample a single configuration for a 1000-link arm in 19 ms.

3 Reachable Distance Framework

The reachable distance data structure (or RD-tree) is a hierarchy of reachable dis-
tances defined by recursively partitioning the original system into smaller sub-
systems. This is a generalized version of the data structure developed in our previous
work for single closed loop systems [25]. The main advantage of this representation
over the traditional joint angle representation is that it encodes spatial constraint in-
formation. For a given set of constraints, this new representation helps us quickly
determine whether the robot is able to satisfy those constraints, and if so, generate
configurations that satisfy them.

We begin with a simple example illustrating the main ideas of our approach.
Figure 2 presents a simple robot with two variable length links, a and b. Suppose
we are given a spatial constraint where the distance between the base and the end
effector needs to be c. To satisfy this constraint, the length of each link has to be
in an appropriate range to satisfy the triangle inequality: |a−b| ≤ |c| ≤ |a + b|. We
call this range the available reachable range (ARR), i.e., the set of distances/lengths
which allow the spatial constraints involved in the sub-chain to be satisfied. In this
case, the ARR of link a, for example, can be calculated from the constraint c and
the reachable range of the other link b. We can first sample a length for link a and
update the ARR of the other link b, and then sample b. Once we find valid values of
a and b, then a, b and c form a triangle and we can calculate the joint angle between
link a and link b.

In the following we show how to extend this sampling strategy to handle more
general spatially constrained systems. We note that this scheme only ensures that
the spatial constraints are satisfied — collision checking is still required. To sim-
plify the exposition, here we consider articulated robots where the distance between
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(a) a and b are of
appropriate length to
satisfy constraint c.
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(b) a and b are
too short.
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(c) a is too long
relative to b.

Fig. 2. Three configurations of an articulated system composed of 2 variable length links
a and b where the distance between the base and the end effector needs to satisfy spatial
constraint c.
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Fig. 3. (a) Articulated linkage with 8 links (labeled 0–7). Two consecutive links form a parent
vlink (dashed lines). This repeats to form a hierarchy (b) where the parents in one level
become the children in the next level.

the base and the end effector must be in a certain range. However, our reachable
distance representation is general and may be applied to other systems and other
spatial constraints including 2D and 3D chains, single and multiple loops, end ef-
fector requirements, and prismatic joints.

Articulated Linkage as a Hierarchy of Virtual Links. In an articulated link-
age, two (or more) consecutive links (called children) form a virtual link (called the
parent). The virtual link, or vlink, and its children compose a sub-chain. For exam-
ple, in Figure 3(a), vlink 8 is the parent of the two actual links 0 and 1, while vlink
12 is the parent of vlinks 8 and 9. We iteratively build higher level vlinks until we
obtain a single vlink (14) at the highest level, see Figure 3(b).

Reachable Range of a Virtual Link. For a particular configuration of a vlink,
the reachable distance of a vlink (sub-chain) is the distance between the endpoints
of the sub-chain it represents. It has different values for different configurations. We
call the range of those different values the reachable range (RR). For example, the
RR of the “root” vlink is the RR of the entire chain, while the RR of an actual link is
simply the range of its length.

The RR of a parent can be calculated from the RRs of its children. If we always
build a vlink using 0 or 2 children, RRs are computed as follows. Consider a vlink
with no children. It has only 1 link. Let lmin and lmax be the minimum and maximum
allowable values of the link’s length, respectively. (If the link is not prismatic, lmin =
lmax.) Its RR is [lmin, lmax].

Now consider the vlink l with 2 children a and b in Figure 4(a). They form
a triangle. Let [amin,amax] be the RR of the first child and [bmin,bmax] be the RR

of the second child. (If a or b is an actual link, its RR is defined by the problem,
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a

l

b

(a)
b min

x a_minl_min

(b)

a_min

xl min b min

(c)

a_max

l max

b_max

(d)

Fig. 4. (a) A sub-chain with 2 children a and b and its vlink l. (b) A configuration where l is
minimum when amin < bmin. x = bmin−amin if amax > bmin and x = amax−amin otherwise.
(c) A configuration where l is minimum when amin > bmin. x = amin− bmin if bmax > amin
and x = bmax−bmin otherwise. (d) A configuration where l is maximum.

otherwise it is a function of the RRs of its children. RRs are defined from the bottom
up, recursively.) The RR of the parent is then [lmin, lmax] where

lmin =

⎧⎨⎩
max(0,bmin−amax), amin < bmin

0, amin = bmin

max(0,amin−bmax), amin > bmin

(1)

and
lmax = amax + bmax. (2)

Note that these are not limited to computing parent link RRs. Given the RRs of any
two links in the same triangular sub-chain, these equations calculate the RR of the
remaining link to satisfy the triangle inequality.

Available Reachable Range of a Virtual Link. The ARR of a vlink is the set of
distances/lengths which allow it to satisfy the spatial constraints when only consid-
ering the other links in the same sub-chain. The ARR is a subset of the RR and is a
function of the ARRs of the other links in the same sub-chain loop. Changes in the
ARR of one link cause changes in the ARRs of the other links in the sub-chain.

Before sampling begins (i.e., no spatial constraint is imposed on the robot), the
ARR of each link is equal to its RR. However, as we sample and enforce spatial
constraints by fixing the length of a link, portions of the RRs of the other links in the
same sub-chain may no longer be available. When this happens, we update the ARRs
in the other links in the sub-chain using Equations 1 and 2. So, given a specified
value of one link we can find the ARR of the other two in the sub-chain and sample
available lengths for them. The sampling cost is discussed below in Section 4.1.

Now we have a set of lengths, one for each vlink, for a configuration that satisfies
the spatial constraints. We can then compute the joint angles between vlinks using
basic trigonometry functions. We will illustrate reachable distance sampling through
example applications in more detail in the following sections.

4 Primitives for Sampling-Based Planning

Here we describe two primitive operations that suffice to implement most sampling-
based motion planners: sampling (i.e., generating valid configurations) and local
planning (i.e., finding a valid path between two samples).
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4.1 Sampling with the RD-tree

Sampling in the RD-space involves the following steps:

1. Recursively sample vlink lengths from their ARR.
2. Sample the orientation of each sub-chain.
3. Compute appropriate joint angles from the vlink lengths and orientations.

Note that this sampling does not necessarily determine validity, i.e., it will still need
to be checked for (self) collision.

This sampling scheme samples the RD-space uniformly at random. While every
point in RD-space satisfies the spatial constraints, a set of samples in RD-space may
not have the same distribution in the subset of joint space that also satisfies the
constraints. In other words, a sampling method with a uniform distribution in RD-
space does not guarantee a uniform distribution in the spatial constraint-satisfying
subset of joint space. We describe each step in more detail below.

1) Recursively sample link lengths. Recall that we define the ARR as the subset
of the RR that satisfies the spatial constraints with respect to the rest of the sub-
chain. Once we fix the length of an ARR in a sub-chain, the other ARRs may be
restricted. Thus, we can generate a configuration by sampling reachable distances
and updating ARRs starting at the the root of the RD-tree and recursing until all sub-
chain reachable distances are sampled. Note that by sampling in this way, an ARR

may never become empty; in its most constrained case, its minimum and maximum
may become equal.

The sampling algorithm is called once for each vlink, represented by a single
internal node in the hierarchy. Because the hierarchy is constructed as a binary tree,
there are O(n) internal nodes, where n is the number of actual links in the chain.
Thus, the sampling algorithm requires O(n) time to generate a configuration.

2) Sample link orientations. Each sub-chain forms a triangle with multiple con-
figurations with the same vlink length: two in 2D (i.e., concave and convex, see
Figure 5(a)) and many in 3D depending on the dihedral angle between its triangle
and its parent’s (see Figure 5(b)). Thus, we also sample the vlink’s orientation.

3) Calculate joint angles. Consider the joint angle θ between links a and b.
Links a and b are connected to a vlink c to form a triangle. Let la, lb, and lc be the
lengths of links a, b, and c, respectively. The joint angle can be computed using the
law of cosines: θ = arccos((l2

a + l2
b− l2

c )/(2lalb)).

(a)

ρ

(b)

Fig. 5. (a) In 2D, the same vlink represents two configurations: a concave and convex triangle.
(b) In 3D, the same vlink represents many configurations with different dihedral angles ρ .
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4.2 Local Planning in RD-space

We propose a local planner for spatially-constrained systems. Given two configu-
rations, qs and qg, a local planner attempts to find a sequence {qs,q1,q2, . . . ,qg}
of valid configurations to transform qs into qg at some user-defined resolution. We
describe a simple local planner that uses a straight-line interpolation in RD-space.

To generate the sequence of intermediate configurations, this local planner inter-
polates the lengths of each vlink between qs and qg. We then determine the vlink’s
orientation sequence. In 2D, if the orientation is the same in qs and qg, we keep it
constant. Otherwise, we must “flip” the links as described below. In 3D, we sim-
ply interpolate between the dihedral angles in qs and qg. In addition to checking
collision as with other local planners, we determine the validity of the sequence by
checking that each vlink’s length is in its ARR.

Concave/convex flipping for 2D chains. Consider the two configurations in Fig-
ure 5(a) with different orientations. To flip the vlink, we need to expand (or open)
the parent’s vlink enough so its children can change orientation while remaining in
their ARR. At some point, the parent’s ARR must be large enough to accommodate
the summation of its children’s reachable distances (i.e., allow the children to be
“flat”). Such a constraint can be easily handled by first recalculating the ARR for
this minimum “flat” constraint. If available, we sample a configuration where the
vlinks are “flat” and try connecting it to both the start and goal as above.

5 Application: Closed Chain Planning with Multiple Loops

We first describe how our representation of reachable distances can be used to en-
sure the closure constraint and how to handle simultaneous constraints such as with
multiple loops. In our preliminary work [25], we demonstrated how this method ef-
ficiently samples closed configurations for single-loop closed chains with thousands
of links in just seconds and can be used in a complete motion planning framework.
Here we show results for a multiple loop system. All experiments were performed
on a 3GHz desktop computer and were compiled using gcc4 under linux. Our cur-
rent implementation supports planar joints and spherical joints.

Enforcing the closure constraint. A closure constraint can be considered as a
special type of spatial constraint where the end effector (the last link) is always con-
nected to the base (the first link). Thus, we simply require that the distance between
the first link and the last link is zero by making the root vlink length zero.

Handling multiple loops. For a closed chain system with more than one loop,
we construct a RD-tree for each loop. Then the whole system can be represented by
a set of RD-trees with some sub-trees in common. The common sub-chain between
two loops now becomes a shared node in both trees. To make both loops closed, the
common edge should satisfy the closure constraints in both trees, i.e., the ARR of a
common node should be the intersection of the ARRs of the same vlink on both trees.
Loops must be ordered such that each loop only has junctions with its predecessors
(e.g., from an ear decomposition [27, 28]).
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Fig. 6. (a) Multiple loop system and (b) corresponding set of RD-trees.

Figure 6 shows an example of a closed chain system with two loops (a) and the
corresponding set of RD-trees (b). Two trees rooted at nodes 17 and 18 correspond
to the two loops in this system. Both share the same node 12. When we update the
ARR of 12, we should consider the ARR of both 15 and 16. Given such a set of
RD-trees, we can perform the sampling and planning on each loop sequentially. As
for a single loop, we set the length of each root link to be zero and then sample the
lengths of other links.

Figure 7 shows an example of a 3-loop system with 14 links. Given only the (a)
start configuration and the (e) goal configuration, our method took only 0.01 seconds
to find this path containing 40 intermediate configurations.

(a) (b) (c) (d) (e)

Fig. 7. A path for a three-loop closed chain system from (a) to (e).

To demonstrate the efficiency and scalability of this approach, we study the time
required to generate 1000 samples for multiple loop systems. In previous work [25],
we performed a similar study with single loop closed chain systems. There we com-
pared to the original KBPRM [6] and to the extension for larger linkages [29] which
was already demonstrated to perform better than existing closed chain methods such
as Randomized Gradient Descent [16, 30]. Our method was able to scale to thou-
sands of links while the KBPRM extension, the closest competitor, was only able to
generate samples for loops up to 200 links in the 12 hour time limit. We were unable
to compare to [7, 10] because we do not have access to their Matlab implementa-
tion. They report that they can generate a single closed conformation for a 1000-link
chain in 19 ms on a “desktop PC” (processor speed not reported).

Here we look at three different multiple loop topologies, see Figure 8. The mul-
tiple loop system can be partitioned into ears (indicated by the arrows). Topology
1 arranges the ears such that the endpoints of ear ei connect to ear ei−1. Topology
2 arranges the ears such that the endpoints of ear ei connect to ears ei−1 and ei−2.
Topology 3 arranges the ears in a “honeycomb” pattern. For topologies 1 and 2,
we vary the number of loops in the system. For topology 3, we vary the number of
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Fig. 8. Multiple loop topologies studied. (a) Example with 8-link ears (indicated with arrows).
The ears are arranged such that the endpoints of ear ei connect to ear ei−1. (b) Example with
4-link ears (indicated with arrows). The ears are arranged such that the endpoints of ear ei
connect to ears ei−1 and ei−2. (c) “Honeycomb” example with 4 rings (indicated with dashed
arrows).

rings in the honeycomb pattern from 1 to 4. Figure 9 summarizes the results, aver-
aged over 10 runs. Even with 1024 links and 256 loops in topologies 1 and 2, our
method takes under 1.5 minutes to generate 100 samples. Figure 9(b) shows that our
method performance is only somewhat affected by system topology when collision
is ignored. However, different topologies require different numbers of attempts to
generate collision-free configurations because they place the links in different prox-
imities to each other. For example, topology 2 requires many more attempts with
only 30 links because the links in the inner loops must be very close together to
close, see Figure 9(c). We were unable to directly compare to [9] because we do
not have access to their Matlab implementation. They report that they can gener-
ate a constraint-satisfying configuration for a 1000 loop chain with 3 links per loop
(running time and topology not reported).

# Loop Time (s)
Loops Size T1 T2

1 1024 5.085
2 512 9.403
4 256 12.422 12.332
8 128 16.059 15.640

16 64 17.770 16.598
32 32 24.910 22.038
64 16 38.526 33.053

128 8 57.139 49.272
256 4 88.5424 80.222

(a)

Time (s)
# # No CD With CD

Links Loops T1 T2 T3 T1 T2 T3

6 1 0.009 0.014
30 7 0.324 0.321 0.320 1.595 402.378 1.611
73 19 1.137 1.140 2.707 12.670 68.097 181.678

133 37 2.623 2.415 10.167 144.879 1182.302 55067.010

(b)

(c) T2, 30 links (d)T3, 133 links

Fig. 9. Running time to generate 100 samples of multiple loop systems, averaged over 10
runs. (a) Results for topologies 1 and 2 (T1 and T2). (b) Results for all three topologies,
both with and without collision detection. Example configuration for (c) topology 2 and (d)
topology 3.
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6 Application: Restricted End Effector Sampling

Here we discuss how to apply this reachable distance framework to efficiently sam-
ple configurations of an articulated linkage when its end effector is required to re-
main within a specified boundary, such as a work area or safe zone. Consider the
robot in Figure 1(b). The fixed base manipulator end effector is restricted to remain
inside the box B. Randomly sampling such a configuration in joint space is unlikely.
Recall that the RR of this robot is [lmin, l] where l is the sum of its link lengths, and
lmin is the minimum ARR. Let the range of the robot be the distance from the base to
the end effector. Observe that all configurations with end effectors inside the bound-
ary have ranges [dmin,dmax] where dmin (dmax) is the minimum (maximum) distance
between the robot’s base and B. The range [dmin,dmax] is much smaller than the
original range [lmin, l]. We simply restrict the ARR of the end effector to [dmin,dmax].

Enforcing end effector placement. We can easily restrict the end effector dis-
tance by setting the ARR of the vlink connecting the base and the end effector to
[dmin,dmax] and calling the above sampling scheme. However, this alone does not
guarantee that the end effector will be in B. A simple way to guarantee this is to first
randomly sample a point b in B. Then we calculate the distance between the robot’s
base and b. We set the ARR of the vlink connecting the base and the end effector to
[b,b] and sample as before. Let e be the resulting end effector placement. We then
compute a rotation R to rotate e to b and apply this rotation to the robot base.

Results. Here we compare the performance of our sampling scheme in RD-space
to uniform random and RRT-style sampling [17] in joint space. (For RRT-style sam-
pling, we do not count the time to check edge validity.) All samplers use the same va-
lidity checker: first checking the end effector placement and then a collision check.

Table 1. Restricted end effector sampling comparison.

Method # Robot Links Time (s) Samples Generated Sample Attempts

Reachable 3 0.02 1000.0 1000.5
Distance 10 0.11 1000.0 1817.8

20 0.50 1000.0 4311.9
50 7.13 1000.0 24486.2

100 29.29 1000.0 51835.3

Uniform 3 13.89 1000.0 1326106.9
Random 10 142.04 1000.0 5418904.7

20 3572.60 82.1 9568969.6
50 n/a n/a n/a

100 n/a n/a n/a

RRT 3 519.11 1000.0 392073.6
10 49.67 1000.0 106202.3
20 66.11 1000.0 121840.4
50 n/a n/a n/a

100 n/a n/a n/a
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The robots have 3 to 100 links of varying length, while the sum of each robot’s link
lengths is the same.

Table 1 shows how each sampler performs. Each sampler was asked to generate
1000 valid configurations within 1 hour. Results are averaged over 10 runs. Neither
uniform random sampling or RRT were able to generate a single sample in 1 hour
for 50 and 100 links. Reachable distance sampling was not only able to generate
samples for 100 links, it could do so faster than RRT for any robot and faster than
uniform random sampling for any robot other than 3 links.

Note that RRT performs significantly slower for the 3 link robot than for the
other larger robots. The success of RRT depends on the placement of the starting
configuration. For the 3 link robot, minor changes in joint angles of the starting
configuration pull the end effector outside the restricted area. Thus, RRT spends
more time on the initial tree samples for the 3 link robot.

7 Application: Drawing/Sculpting

An interesting application is robotic drawing and sculpting. Figure 1(c) displays an
articulated linkage drawing the letter “R” on a canvas. There are many applications
in robotics where the manipulator needs to follow a trajectory. Here it is not suffi-
cient for the planner to keep the robot’s end effector in a restricted space (e.g., the
canvas); it must also follow a specific trajectory.

Enforcing the End Effector Trajectory. Again we can take advantage of the
RD-tree. We propose a two phase approach. With a local planner, we first find a
valid path between qmin and qmax where qmin (qmax) is a configuration with end
effector distance dmin (dmax) and dmin (dmax) is the minimum (maximum) distance
between the base and any point in the drawing trajectory. We then use the pre-
computed path to follow the drawing trajectory by selecting the configuration in the
path with the appropriate end effector length and rotating the configuration to align
with the drawing target for each point along the drawing trajectory. Note that if the
local planner returns a path containing configurations with end effectors outside the
range [dmin,dmax], we simply remove these portions.

Results. We applied our drawing algorithm to robots with 3, 5, 10, 20, 50, and
100 links. Figure 10 shows the planning results of an articulated robotic arm drawing

(e) (f) (g) (h)

Fig. 10. A 100-link robotic arm drawing the letter “R” on the canvas.
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Number of Links
Time (s) 3 5 10 20 50 100

Phase I 0.090 0.119 0.203 0.366 0.945 1.780
Phase II 0.006 0.006 0.009 0.014 0.027 0.052

Total 0.096 0.125 0.212 0.380 0.972 1.831
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Fig. 11. (a) Running times of different drawing robots averaged over 10 runs. (b) Running
time scalability.

the character “R” on a canvas for a 100 link robot. The target trajectory is composed
of 560 points generated from a scanned in drawing.

The table in Figure 11(a) shows the running time needed for each robot. Phase I is
the time to perform the local planning, and phase II is the time to morph the path to
the drawing trajectory. In all cases, the total time is very small and phase II planning
is short enough for on-line applications. Figure 11(b) shows how the planning time
scales with the robot’s DOF. As expected, the phase I pre-computation is linear in the
robot’s DOF and dominates the overall planning. Phase II remains nearly constant
and is thus well-suited for on-line applications. Note that other randomized planners
such as PRMs or RRT would be infeasible here since it is even more constrained than
restricted end effector sampling where they could not generate a single valid sample
for a 50 link robot in 1 hour.

8 Conclusion

We presented a new method to plan the motion of spatially constrained sys-
tems based on a hierarchical representation as a set of RD-trees. We showed
how this framework can efficiently sample and plan motions for closed chain
systems (with single and multiple loops), restricted end effector sampling, and
robotic arm drawing/sculpting. For all system types, our experimental results show
that this framework is fast and efficient in practice, making the cost of generat-
ing constraint satisfying configurations comparable to traditional sampling without
constraints.
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3D Motion Planning Algorithms for Steerable
Needles Using Inverse Kinematics

Vincent Duindam, Jijie Xu, Ron Alterovitz, Shankar Sastry, and Ken Goldberg

Abstract. Steerable needles can be used in medical applications to reach targets
behind sensitive or impenetrable areas. The kinematics of a steerable needle are
nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of cur-
vature. In 3D, the needle can be interpreted as an airplane with constant speed and
pitch rate, zero yaw, and controllable roll angle.

We present a constant-time motion planning algorithm for steerable needles
based on explicit geometric inverse kinematics similar to the classic Paden-Kahan
subproblems. Reachability and path competitivity are analyzed using analytic com-
parisons with shortest path solutions for the Dubins car (for 2D) and numerical
simulations (for 3D). We also present an algorithm for local path adaptation using
null-space results from redundant manipulator theory. The inverse kinematics algo-
rithm can be used as a fast local planner for global motion planning in environments
with obstacles, either fully autonomously or in a computer-assisted setting.

1 Introduction

Steerable needles [18] form a subclass of flexible needles that provide steerability
due to asymmetric forces acting at the needle tip, for example due to a beveled
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Fig. 1. Model setup of a steerable needle and a kinematically equivalent airplane with fixed
speed and pitch rate, zero yaw, and controllable roll rate.

surface [18] or a kink near the end of the needle [7]. By rotating the needle at the
base, the orientation of the tip can be changed and hence the trajectory of the needle
can be controlled. Steerable needles differ in this respect from symmetric flexible
needles, which can only be controlled by applying asymmetric forces at the base
[4], not at the tip. The extra mobility of steerable needles over rigid needles can be
harnessed in medical applications such as brachytherapy [2] and brain surgery [7]
to reach difficult targets behind sensitive or impenetrable areas.

Experimental studies [17] show that the motion of steerable needles can be ap-
proximated as having a constant radius of curvature that is independent of insertion
speed. The control inputs for the needle are the insertion speed and rotation (roll)
angle, although for motion planning (the topic of this paper) insertion speed is often
not important. The rotation angle is then the only real control input and trajectories
can be parameterized by insertion depth. A steerable needle is thus kinematically
equivalent to an airplane with fixed speed and pitch rate, zero yaw, and controllable
roll rate (Fig. 1b).

Motion planning for steerable needles is an important problem and has been stud-
ied in several ways in literature. Most studies focus on planar motion, for which the
control input reduces to switching between curve-left and curve-right. Alterovitz et
al. [2, 1, 3] present a roadmap-based motion planning framework that explicitly in-
corporates motion uncertainty and computes the path that is most likely to succeed.
Minhas et al. [12] show planning based on fast duty cycle spinning of the needle,
effectively removing the limitation of a fixed-radius path but requiring continuous
angular control input. Kallem et al. [10] introduce a controller that stabilizes the
needle motion to a plane, allowing practical implementation of planar methods.

The first 3D motion planning algorithm was introduced by Park et al. [14, 15] and
used diffusion of a stochastic differential equation to generate a family of solution
paths. The authors also describe several extensions to avoid obstacles. Duindam et
al. [6] presented a second 3D motion planning algorithm that uses cost function
optimization to compute feasible paths in 3D environments with obstacles.
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This paper presents a different solution to the 3D motion planning problem for
steerable needles, based on inverse kinematics. We propose a new geometry-based
algorithm inspired by the Paden-Kahan subproblems in traditional inverse kinemat-
ics algorithms [13]. Just as the Paden-Kahan subproblems, our algorithm (Sect. 3)
can be fully described in geometric terms of intersecting lines, planes, and circles,
and computing the solution simply requires a few trigonometric functions. We ana-
lyze reachability and competitivity of the solution (Sect. 4) using analytic compari-
son to the Dubins car solution and numerical simulations. We also present a method
to locally adapt needle paths using null-motions (Sect. 5).

2 Problem Statement and Modeling Assumptions

2.1 Model Parameters and Assumptions

Throughout this paper, we only consider the idealized kinematics of the needle
in a static environment. We assume that the motion of the needle is fully deter-
mined by the motion of the needle tip, that the motion of the needle tip is instanta-
neously along a perfect circle of constant radius r, and that rotations of the base are
instantly transmitted to rotations of the tip. Experimental results [17] show that nee-
dle materials can be chosen such that the needle indeed moves along an arc of ap-
proximately constant radius, but the effects of tissue inhomogeneity, friction, and
needle torsion can be significant and will require compensation [10] in practical
applications.

Under these assumptions, the motion of the needle is determined kinematically
by two control inputs: the insertion velocity, denoted v, and the tip rotation veloc-
ity, denoted ω . We present the kinematics model for general v(·) but remove this
redundant degree of freedom in the next section.

Fig. 1c illustrates the model setup. We rigidly attach a coordinate frame Ψn to
the tip of the needle, with axes aligned as in the figure, such that the z-axis is the
direction of forward motion v and needle orientation ω , and the beveled tip causes
the needle to rotate instantaneously around the line parallel to the x-axis and passing
through the point (0,−r,0).

Following standard robotics literature [13], the position and orientation of the
needle tip relative to a reference frame Ψs can be described compactly by a 4× 4
matrix gsn(t) ∈ SE(3) of the form

gsn(t) =
[

Rsn(t) psn(t)
0 1

]
(1)

with Rsn ∈ SO(3) the rotation matrix describing the relative orientation, and psn ∈
T (3) the vector describing the relative position of frames Ψs and Ψn.

The instantaneous linear and angular velocities of the needle are described by a
twist Vsn ∈ se(3) which in body coordinates Ψn takes the convenient form
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V n
sn(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0

v(t)
v(t)/r

0
ω(t)

⎤⎥⎥⎥⎥⎥⎥⎦ V̂ n
sn(t) =

⎡⎢⎢⎣
0 −ω(t) 0 0

ω(t) 0 −v(t)/r 0
0 v(t)/r 0 v(t)
0 0 0 0

⎤⎥⎥⎦ (2)

in equivalent vector and matrix notation. The twist relates to gsn as

ġsn(t) = gsn(t)V̂ n
sn(t) (3)

This kinematic model is the same as the unicycle model by Webster et al. [16]. When
the twist is constant, (3) becomes a linear ordinary differential equation (ODE) that
can be integrated as

gsn(t) = gsn(0)exp(tV̂ n
sn) (4)

for which a relatively simple analytic expression exists [13]. In the path planning
algorithms, we construct paths for which V̂ n

sn is piecewise constant and compute the
resulting transformation using this efficient analytic expression.

2.2 Problem Statement

The objective of the motion planning algorithms in this paper is to find feasible
paths between given start and goal configurations in the absence of obstacles. More
precisely, the inputs to the algorithm are an initial needle pose gstart ∈ SE(3) and a
desired needle pose ggoal ∈ SE(3). The outputs of the algorithm are control functions
v(·) and ω(·) and a finite end time 0 ≤ T < ∞, such that the solution gsn(·) of the
differential equation (3) with gsn(0) = gstart satisfies gsn(T ) = ggoal. If no feasible
path can be found, the algorithm returns failure.

The kinematics equations (2) and (3) are invariant to time scaling, in the sense
that the path traced out by the needle does not change if the control inputs v(·)
and ω(·) are scaled by the same (possibly time-varying) factor. Therefore, we can
simplify the motion planning problem by assuming without loss of generality that
v(·) ≡ 1, which is equivalent to parameterization by insertion depth [10, 6]. The
insertion time T thus represents the total path length since

∫ T
0 |v(t)|dt =

∫ T
0 dt = T .

Although motion planning is based on connecting general 3D poses (full posi-
tion and orientation), solving a difference in initial or final roll angle is trivial as this
degree of freedom is directly controlled through ω(·). So although the inputs to the
algorithm are general elements of SE(3), we often mainly focus on path planning
between given start and goal position and direction of the needle, i.e. only consid-
ering the z-axis of Ψn. Additionally required roll-rotations can be added directly at
the start and end of the path.
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3 Path Planning Using Inverse Kinematics

We present two motion planning solutions based on inverse kinematics, one for the
planar (2D) case and one for the general spatial (3D) case. The motion planning
problem is considered planar if the start position ps, start direction zs, goal position
pg, and goal direction zg are all in the same plane.

In both inverse kinematics solutions, we look for a control input function ω(·)
of a very specific form, namely a function that is zero everywhere except for a
fixed number of Dirac impulses (two in the planar case, four in the spatial case, see
Fig. 2). Geometrically, this means we look for trajectories that are concatenations
of a fixed number of circular segments with radius r: the needle moves along a
circle when ω = 0, and instantaneously changes direction at the time instants that
ω is a Dirac impulse. Furthermore, the magnitudes of the Dirac impulses in the
planar case are constrained to be exactly π , corresponding to a change in direction
between curve-left and curve-right. We also choose a spatial solution for which the
last two impulsive rotations are π , making the last three segments of the spatial path
co-planar as well.

The specific choices in the structure of ω(·) result in geometrically intuitive solu-
tions that are relatively straight-forward to compute. The simplicity of the proposed
solutions comes at the cost of not necessarily being optimal in terms of path length
or total control effort. Practical implementations should clearly not use impulsive
rotational control and constant insertion speed, but alternate between pure insertion
until the desired depth ti is reached, and pure rotation to the desired angle θi.

3.1 Inverse Kinematics in 2D

We first consider the planar path planning problem with ω(·) as in Fig. 2a. The
relative position of the start and goal are described by two displacements x and
y, their relative orientation by a single angle θ . The purpose of the path planning
algorithm is to find the three insertion depths t1, t2, t3 describing a feasible needle
path from start to goal. Note that the needle travels a distance ti = rαi when moving
along a circle of radius r for αi radians, and hence we can equivalently look for the
three angles αi in Fig. 3. These should be such that if we start at ps in the direction
zs heading left, move rα1 forward, turn π , move rα2 forward, turn π , and move rα3

Fig. 2. Structure of the solution ω(·) for the 2D and 3D motion planning problems.



540 V. Duindam et al.

Fig. 3. Two geometric solutions for the same planar inverse kinematics problem, both using
sequential bevel-left, bevel-right, bevel-left motions.

forward, we arrive exactly at the desired goal pose. The mirrored case starting with
a right turn can be computed similarly.

We can solve for the angles αi by looking at the setup in Fig. 3 and realizing that
the three centers of rotation (marked by × in the figure) form a triangle with known
edge lengths. Using the cosine rule for this triangle, we can write

cos(α2) = 1− (x + r− r cos(θ ))2 +(y− r sin(θ ))2

8r2 (5)

This equation has two solutions for α2, which correspond to the two paths shown in
Fig. 3. With α2 known, the other two angles follow uniquely as

α1 = atan2(y− r sin(θ ),x + r− r cos(θ ))− 1
2
(π−α2) (6)

α3 = θ −α1 + α2 (7)

with atan2 the inverse tangent function solved over all quadrants. Since the nee-
dle can only move forward, angles must be chosen as αi ∈ [0,2π). The required
insertion distances ti follow immediately as ti = rαi.

3.2 Inverse Kinematics in 3D

Now consider the 3D inverse kinematics problem of connecting two general poses
in SE(3) by a valid needle path. We propose one solution using eight consecutive
insert and turn motions as shown in Fig. 2b; an explicit geometric solution using
fewer motions is still an open problem.

The geometry of this solution is illustrated in Fig. 4. The problem is split into
two parts: first, the needle is turned and inserted such that its instantaneous line of
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Fig. 4. Geometric derivation of an inverse kinematic solution on SE(3).

motion (the instantaneous direction of the needle) intersects the line describing the
goal position and direction. Second, the remaining planar problem is solved using
the solution from Sect. 3.1.

More precisely, we first choose any point q on the line defined by pg and zg. This
point q will be the intersection point of the two lines defining the remaining planar
problem. With q defined, the needle is first rotated by θ1 = β1 until its (y,z)-plane
contains q. The required angle β1 satisfies

tan(β1) =−xT
s (q− ps)

yT
s (q− ps)

(8)

which has two solutions β1 that differ by π .
Second, the insertion distance t1 = rβ2 is solved such that the line through the

needle tip in the direction z2 contains the point q. If q is outside the circle describing
the needle motion along β2, two solutions exist, with z2 either pointing towards (as
in the figure) or away from q. These solutions are

β2 = atan2
(
zT

s qv,y
T
1 qv

)
± arccos

(
r
|qv|

)
(9)

with qv := q− ps + ry1. No solution exists if q is inside the circle (|qv|< r).
Third, the needle is rotated by θ2 = β3 until pg (and hence the whole line through

q and pg) is contained in the needle’s (y,z)-plane:

tan(β3) =−xT
2 (pg− p2)

yT
2 (pg− p2)

(10)
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Fig. 5. Paths generated by the 2D IK algorithm vs. optimal paths for a Dubins car.

which again gives two solutions that differ by π . The remaining angles β4,β5,β6

(corresponding to the time segments t2, t3, t4) can then be solved using the 2D plan-
ner from Sect. 3.1.

In this algorithm, we have the following degrees of freedom to choose a solution.
First is the choice of the point q: this can be anywhere on the line containing pg

and zg, which means varying q generates a one-dimensional subspace of possible
solutions. Second, we can choose one of two possible solutions βi for each of the
four angles in equations (8–10) and (5), resulting in 24 possible combinations. Not
all of these choices may give feasible paths for a given start and end pose, and it is
also not directly obvious which choice will result in the ‘best’ path between the two
poses. Still, since the inverse kinematics solution can be computed very quickly, one
can simply compute all combinations for a number of choices of q and pick the best
solution, with ‘best’ defined for example using a cost function [6].

4 Reachability and Competitivity

To evaluate the quality of the paths generated by the presented inverse kinematics
(IK) solutions, we study the set of reachable needle poses and competitivity [9, 8]
of the computed solutions. Competitivity in this case refers to the path length of the
computed solution; it has no relation to competitivity in the sense of computational
speed (the IK algorithm runs in constant time).

4.1 Reachability and Competitivity in 2D

Consider first the solution to the planar problem as described in Sect. 3.1. The algo-
rithm will clearly only find a solution if the right-hand side of (5) has norm less than
or equal to one, or geometrically, if the centers of the circles tangent to the start and
goal poses are no farther than 4r apart. This condition defines the set of reachable
relative needle poses.

To describe competitivity of the algorithm, we compare the IK solutions to the
optimal trajectory when allowing an infinite number of direction changes. In that
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case, a trajectory can be generated with an arbitrary radius of curvature larger than
or equal to r by asymmetrically switching between heading-left and heading-right
and taking the limit of this switching frequency to infinity. This means that in the
limit, the needle behaves like a Dubins car [5] with minimum radius of curvature r.

The optimal path for a Dubins car is known to consist of two circular arcs with
radius r connected by another circular arc or a straight line [5]. For a given start
and end pose, the IK solution only differs from the Dubins path if the connecting
segment for the Dubins path is a straight line; the IK solution will still contain a
(sub-optimal) circular arc. Furthermore, the Dubins path may start and end with
circular arcs in the same direction or in opposite directions (Fig. 5), whereas the IK
solution always starts and ends with a turn in the same direction. It is intuitively
clear that the largest difference in path length occurs at the border of the reachable
space where the three circles of the IK solution are aligned. In the first case (Fig. 5a),
the maximum ratio of the path lengths is

sup
‖IK path‖

‖Dubins path‖ = sup
θi≥0

rθa + rθb + 2πr
rθa + rθb + 4r

=
π
2

(11)

For the second case (Fig. 5b), we can compute the length of the straight-line segment
q− p as

‖q− p‖2 = 4r2 (2− sin(θd)− sin(θe))2 + 4r2 (cos(θd)− cos(θe))2 (12)

from which we find that the maximum path length ratio equals

sup
‖IK path‖

‖Dubins path‖ = sup
θi≥0

rθc + 2πr− rθe

rθc + 2rθd + rθe +‖q− p‖ ≈ 1.63 >
π
2

(13)

The degree of competitivity of the 2D IK solution is hence approximately 1.63. Note
that this is a bound on the competitivity that does not take into account the number
of direction changes; for medical applications, this number should be kept small to
avoid excessive tissue damage.

4.2 Reachability and Competitivity in 3D

Continuing with the 3D IK solution from Sect. 3.2, we present a reachability and
competitivity analysis based on numerical simulation. Formal geometric proofs and
bounds of the algorithm are subject of future research; at this point we do not have
a good approximation for the optimal path and simply compare the IK solutions
to the Euclidean distance between the start and goal positions. Future work could
compare the presented solution to the paths generated by the method of Park et al.
[15]. We take q = pg throughout the analysis; different choices give qualitatively
similar results.

First consider Fig. 6. This illustrates the lengths of the IK trajectories starting
at the center of the figure and ending at goal positions in the plane of the figure,
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Fig. 6. Reachability and relative path lengths obtained using the inverse kinematics algorithm.
The algorithm tries to find a path from the center of the image to each pixel in the image, with
both start and goal direction aimed to the right.

with start and goal directions equal and pointing to the right. The brightness of each
pixel indicates the length of the IK path divided by the Euclidean distance between
the start and goal locations: dark colors represent small ratios (good paths) while
light colors represent large ratios (bad paths). Fig. 6b illustrates several examples of
solution trajectories.

A set of reachable states shows up in the figure as the ‘figure-eight’ around the
start location. Points outside this shape cannot be reached for the given goal direc-
tion. The figure also shows a distinction between poses that can be reached with
reasonably short curves (darker region) and poses that require significantly longer
paths (lighter region). This distinction is sharp in the area in front of the needle
(right side of the figure) but is more diffuse for poses on the sides of the needle (top
and bottom of the figure). If we consider competitivity in an informal way, meaning
whether the algorithm can generated paths of reasonable lengths, we can say that
the algorithm is competitive in the darker region of the figure; relative poses that are
in the lighter region may be reachable, but the paths are so unwieldy that they are of
little practical use in medical applications.

Fig. 7 shows additional plots generated by varying the two remaining degrees
of freedom in placing the goal pose: the in-plane yaw angle and out-of-plane pitch
angle (the inverse kinematics solution is invariant to roll about the initial and final
needle directions).

The figure shows that as the goal direction is turned away from the straight-ahead
case (change in yaw), the set of reachable and competitive paths rotates in the same
direction while maintaining a roughly similar shape. As the goal direction is rotated
out of plane (change in pitch), the competitive paths near the starting pose disappear
until only poses at a significant distance (three to five times the radius of curvature)
are competitive.

In the three-dimensional case, it remains a difficult task to precisely characterize
the set of poses that can be reached with a reasonably short path. Comparing the
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Fig. 7. Reachability and relative path lengths as in Fig. 6 for various relative yaw and pitch
angles for the goal pose. Grid lines are 2r units apart.

solutions to the Euclidean distance provides some insight but no global bound on
the solutions: competitivity measures are unbounded when comparing to the Eu-
clidean distance, since for infinitely close but non-collinear needle orientations the
path length of the IK solution remains finite.

To use the inverse kinematics planner as a local planner in global roadmap-based
planning methods such as the Probabilistic Roadmap method [11], it is important
to characterize the set of goal poses that are reachable from a given needle pose.
Numerical simulations such as those shown in Fig. 7 can be used to construct an
approximation of the set of goal poses that can be reached with a competitive path
(with ‘competitive’ in the informal meaning of ‘reasonably short path’). This set can
be used as the definition of ‘neighborhood’, i.e. those needle poses that are likely
to be connectible and can become edges in the roadmap if they do not intersect
obstacles.

5 Path Adaptation Using Null-Motions

The presented inverse kinematics (IK) solution can be computed very quickly but is
generally not the optimal solution in the sense of avoiding obstacles or minimizing
path length or required control effort. Earlier work considered path planning as a
pure numerical optimization problem [6], but in this section we show how sub-
optimal paths such as those generated by the IK planner can be locally optimized
and adjusted using null-motions.
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Fig. 8. Representation of a needle path as a robot with eight joints, and use of its null motions
to generate a family of solution curves by pulling in different directions.

Consider an IK solution between two general 3D needle poses. By construction,
this solution describes a path from start to goal consisting of eight consecutive turn-
ing and insertion control actions. We can think of this path as a redundant serial
robot manipulator arm with eight joints (Fig. 8a). Since the relative pose of the goal
is given by six parameters, standard robotics theory [13] tells us that the robot has
a two-dimensional space of null-motions, provided it is not at a singularity. If the
joints are moved in this null-motion space, the shape of the robot (i.e. the shape of
the needle path) will change without changing the pose of the end effector (i.e. the
needle tip).

The set of null motions is described by the null space of the geometric Jacobian
J(q) ∈ R

6×8 of the robot, which relates the spatial twist V s
sn to the joint velocities

q̇ as V s
sn = J(q)q̇ [13]. Given the Jacobian, we can change the shape of the path by

changing the joint angles in such a way that q̇ ∈Null(J(q)) at all times.
Fig. 8b shows an example of how one inverse kinematics solution can be locally

transformed in this way into a family of solution curves. Intuitively, this set of curves
was generated by starting from the IK solution indicated in the figure (the dashed
line), and ‘pulling’ on the curve from several points laid out in a circle, while holding
the start and end pose of the needle fixed. More precisely, we model the robot as a
viscous system with damping in each joint that counteracts applied forces, and write
the governing equations as

q̇ = B(q)JT
i (q)Fi + B(q)JT (q)λ (14)

0 = J(q)q̇ (15)

with Fi the wrench [13] corresponding to the (known) externally applied pulling
force, Ji(q) the Jacobian of link i at which Fi is applied, λ the required constraint
wrench acting at the tip to constrain its motion, and B(q)> 0 the symmetric positive-
definite inverse damping matrix that relates the joint torques τ to the joint velocities
as q̇ = B(q)τ . The first equation relates the total torque (due to external forces Fi
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and λ ) to the change in the joint angles, the second equation describes the end point
constraint that should be satisfied. Note that these equations do not relate to any
actual physical needle motions and only represent a mathematical procedure.

Substituting (14) into (15), solving for λ , and substituting back into (14) results
in an unconstrained equation for q̇ that no longer contains λ :

q̇ =
(
I−BJT (JBJT )−1J

)
BJT

i Fi (16)

This ODE describes the evolution of q under the influence of an external wrench Fi

and tip constraint Jq̇ = 0. It has a unique solution if B is invertible and J has full
rank (no singularity). Equation (16) projects the velocity BJT

i Fi due to the wrench
Fi along the columns of BJT onto the null space of J. The matrix B(q) defines a
metric on the space of torques that can be chosen in any appropriate way, e.g. as a
function that drives the system away from configurations that are singular or contain
negative-length path segments.

For the example of Fig. 8b, we chose B diagonal with B j j(q) → 0 as q j → 0 for
all joints j describing insertion path segments, thus avoiding negative-length path
segments. We applied a linear force in the middle of the kinematic chain (link 5),
directed toward one of the dots, and integrated (16) over time to obtain the pod-
shaped family of needle paths shown in the figure.

This method of path adaptation can be used in fully automated motion planning
(e.g. to perform gradient descent on some cost function with penalty costs for ob-
stacle penetration) with changes in q constrained to be null motions. More directly,
in interactive (computer-assisted) motion planning scenarios, it can provide the user
with an intuitive path adjustment tool similar to the control points on a spline curve
that can be moved to change its local shape. Although there is no guarantee this
approach will always work, it provides the user with an additional tool to construct
suitable needle paths.

6 Conclusions and Future Work

This paper presents constant-time geometrically motivated motion planning algo-
rithms for steerable needles and airplanes with constant speed and pitch rate, zero
yaw, and controllable roll. The first algorithm uses inverse kinematics (IK) to ex-
plicitly compute feasible paths in 3D, the second uses null-motions to adapt paths
to avoid obstacles or achieve other objectives.

As briefly discussed, these algorithms can be used as components in larger
computer-assisted motion planning schemes that use limited user-input to guide au-
tomatic local planning. In future work, we also plan to use the IK algorithm as a
local planner in (autonomous) roadmap-based algorithms such as PRM [11]. Re-
cent results using Rapidly-Exploring Random Trees [19] are encouraging, although
computation requirements are several orders of magnitude larger than with direct
optimization-based algorithms [6].

Another main future direction of our research is to find a systematic way to
include uncertainty during motion planning. Our application of steerable needles
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contains several sources of uncertainty, including needle motion uncertainty, tis-
sue flexibility and friction, and sensing inaccuracies. These uncertainties should be
taken into account in the motion planning stage, as discussed and implemented for
the 2D case in previous work [3]. The presented fast local motion planning algo-
rithm can be used to quickly test connectivity and iteratively study the effect of
perturbations.

Finally, reachability and competitivity analyses were presented for the 2D and
3D inverse kinematics algorithms. In future work, we plan to extend the analysis of
the 3D algorithm to provide bounds on the competitivity compared to the optimal
shortest-path solution. A promising direction is the comparison with paths generated
by the approach of Park et al. [15].
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Modeling Structural Heterogeneity in Proteins
from X-Ray Data

Ankur Dhanik, Henry van den Bedem, Ashley Deacon, and Jean Claude Latombe

Abstract. In a crystallographic experiment, a protein is precipitated to obtain a crys-
talline sample (crystal) containing many copies of the molecule. An electron den-
sity map (EDM) is calculated from diffraction images obtained from focusing X-rays
through the sample at different angles. This involves iterative phase determination
and density calculation. The protein conformation is modeled by placing the atoms
in 3-D space to best match the electron density. In practice, the copies of a protein in
a crystal are not exactly in the same conformation. Consequently the obtained EDM,
which corresponds to the cumulative distribution of atomic positions over all con-
formations, is blurred. Existing modeling methods compute an “average” protein
conformation by maximizing its fit with the EDM and explain structural heterogene-
ity in the crystal with a harmonic distribution of the position of each atom. However,
proteins undergo coordinated conformational variations leading to substantial corre-
lated changes in atomic positions. These variations are biologically important. This
paper presents a sample-select approach to model structural heterogeneity by com-
puting an ensemble of conformations (along with occupancies) that, collectively,
provide a near-optimal explanation of the EDM. The focus is on deformable pro-
tein fragments, mainly loops and side-chains. Tests were successfully conducted on
simulated and experimental EDMs.

1 Introduction

Proteins are not rigid molecules [12, 19]. Each atom is subject to small, temperature-
dependent high-frequency vibrations about its equilibrium position. In addition, in
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its native state, a protein may also undergo coordinated lower-frequency conforma-
tional variations leading to correlated changes in atomic coordinates. Such diffusive
motions are of vital interest in the study of the protein’s biological functions [29].
Accurately capturing such low-frequency protein dynamics from X-ray crystallog-
raphy data has remained a challenge.

In a crystallographic experiment, a protein of known sequence is precipitated to
obtain a crystalline sample (hereafter called a crystal) containing many copies of
the molecule. A three-dimensional electron density map (EDM) is calculated from
a set of diffraction images, obtained from focusing X-rays through the sample at
different angles. This EDM is an array of voxels, each encoding an electron density.
The protein conformation is then modeled by placing the atoms in 3-D space to best
match the electron density [11].

In an ideal crystal, all copies of the precipitated protein would have the same
conformation. In practice, this is not the case, and corresponding atoms in different
cells of a crystal do not occupy exactly the same position. The resulting EDM corre-
sponds to the cumulative distribution of atomic positions over all conformations in
the crystal. For instance, an EDM may appear locally blurred when a fragment of the
main-chain or a side-chain adopts two or more neatly distinct conformational states
(also called conformers). To illustrate, Figure 1 shows an iso-surface of an EDM cor-
responding to a fragment (residues 104-112) of the protein with Protein Data Bank
(PDB, [3]) ID 2R4I that occurs in two conformers. Extracting conformers from a
locally disordered EDM is then akin to gleaning structure from a 3D image blurred
by motion of the articulated subject.

Uncertainty in atomic positions is usually modeled with an isotropic Gaussian
distribution. This model, further parameterized by the temperature factor, accounts
for small vibrations about each atom’s equilibrium position. Fitting an anisotropic
(trivariate) Gaussian function requires estimating 9 parameters per atom, which
for the complete model typically exceeds the amount of data in the EDM [28]. A
sparser parameterization involves partitioning the protein into rigid bodies under-
going independent equilibrium displacements [22]. Owing to their “equilibrium-
displacement” nature, these models are unable to accurately describe distinct con-
formational substates, such as those caused by the low-frequency diffusive motion
of the protein [16, 29].

The presence of distinct conformers in a crystal has been observed on many oc-
casions [4, 27, 29] and the importance of accurately representing structural het-
erogeneity by an ensemble of conformers has long been recognized [2, 13, 29].
However, while several programs are available for automatically building a struc-
tural model into an EDM to a high degree of accuracy [9, 10, 15, 20, 23], these
have been engineered towards building a single conformer at unit occupancy.
They often leave ambiguous electron density due to correlated changes in atomic
coordinates uninterpreted. Building a heterogeneous protein model then requires
substantial manual effort by skilled crystallographers using interactive graphics pro-
gram. In [7, 17, 25] single-conformer, approximate starting models are perturbed to
generate a multi-conformer ensemble. However, each one of these conformers can
be seen as a possible interpretation of the EDM. Together, they do not provide a
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collective interpretation of the EDM. Automatically building a heterogeneous model
into an EDM is a formidable challenge, and any progress could have a major impact
on the way protein models are stored in the PDB.

It is imperative to accurately represent the data from the earliest stages of model
building [7, 16]. In a crystallography experiment, the phase angle of a diffracted
beam is lost. Only magnitudes are measured on the sensitive surface of the detec-
tor [11]. Phases are estimated and improved by building and interpreting successive
EDMs using Maximum Likelihood (ML) algorithms [20, 24]. However, disregarding
structural heterogeneity in the successive EDMs or omitting fragments from a model
altogether bias the phases in this procedure. Providing an ensemble of atom coor-
dinates as initial values to ML algorithms could lead to improving the EDM more
quickly.

In this paper, we present a new approach to automatically and accurately model
heterogeneity in an EDM. Our main contribution lies in abandoning the single-
conformer model in favor of a multi-conformer model where appropriate, and pro-
viding an estimate of the relative frequency of occurrence (called occupancy) in the
crystal for each of the conformers. We focus on protein fragments, mostly loops,
which are often the most deformable substructures in a protein [7, 25, 26]. Our
method computes an occupancy-weighted ensemble of conformations that collec-
tively best represents the input EDM. To this end, an idealized protein fragment is
modeled as a kinematic linkage, with fixed groups of atoms as links and rotatable
bonds as joints. Our method is based on a sample-select protocol, which adaptively
alternates sampling and selection steps. Each sampling step generates a very large
set of {conformation, temperature factors} samples. A subsequent selection step ap-
plies an efficient linear-programming algorithm to concurrently fit this set of sam-
ples to the input EDM and compute the occupancy of each sample. Samples with
small occupancies (less than 0.1) are then discarded. As the sampled space has very
high dimensionality, the successive sampling steps consider portions of the protein
fragment of increasing lengths. The overall sampling process is guided by the results
obtained at previous selection steps. It should be emphasized that the algorithm in-
fers the ensemble size from the data; it has no prior knowledge about the number of
conformers.

This paper is divided into two main sections. In Section 2 we present and discuss
results obtained with our method on both simulated and experimental EDMs. This
section allows us to characterize more precisely the type of problem addressed in
the paper. In Section 3 we describe in detail our sample-select method to model
heterogeneity in an EDM.

2 Results and Discussion

Validation tests against simulated EDMs in Section 2.1 demonstrate that our method
extracts the correct ensemble for a variety of fragment lengths over a range of res-
olution levels, noise levels, occupancies and temperature factors. They furthermore
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show that the algorithm correctly identifies and models side-chains in multiple con-
formations.

We also tested our method against experimental EDMs. In Section 2.2, we show
results obtained with the 398-residue Flavoprotein TM0755 (PDB ID 1VME). The
main chain for residues A316-A325 is bi-modally disordered [27]. Our method
models the two conformations to within 0.6Å RMSD1. In Section 2.3 we give ad-
ditional results on experimental EDMs for side-chains in multiple conformations.

Depending on the length of the fragment to compute and the resolution of the
EDM, our partly parallelized implementation takes 2-4 hours to complete.

2.1 Algorithm Validation with Simulated Data

Given a protein structure, the simulated EDM corresponding to its distribution of
atoms can easily be calculated at different resolution levels while controlling the
temperature factors and occupancy of individual atoms. Such a simulated EDM al-
lows us to test our method, and understand the effects of experimental noise and
discrete sampling with idealized geometry.

2.1.1 Single Conformer

We first validated our algorithm on simulated data corresponding to single-conformer
fragments, computed at various resolution levels. Six fragments varying in length
from 4 to 12 residues at various temperature factors were selected from the PDB. The
algorithm consistently identified conformers in the simulated EDMwithin 0.4Å RMSD

of the true conformers (see Table 1). In each case, the returned ensemble contains
more than one conformation. However, all conformations in an ensemble are pair-
wise very close and could easily be merged in a post-processing step by a clustering
algorithm. Multiple conformations are returned due to finite resolution in our sam-
pling scheme as described in Section 3. To confirm that, we ran the same test again,
but this time we added the true conformers to the sample set. Then for each EDM,
our method returned only the true conformer.

The algorithm furthermore returns temperature factors to within a 10.0Å2 interval
of the average, true temperature factors. These temperature factors and coordinate
errors are well within the radius of convergence of standard crystallographic refine-
ment packages.

Side-chains commonly occur in multiple rotameric conformations in protein
structures determined from X-ray data. To test if the algorithm correctly models
side-chains in multiple rotameric conformations while the backbone is best repre-
sented by a single conformer, a second rotamer was added to a selected side-chain
of each main-chain at 0.5/0.5 occupancy (see the last column of Table 1). The main-
chain RMSDs differed not meaningfully from those found earlier, while all dual ro-
tamers were identified at the correct occupancy and within 0.5Å RMSD.

1 Unless otherwise noted, RMSD denotes the square root of the averaged squared distances
between corresponding N, Cα , Cβ , C, and O atoms.
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Table 1. Single conformer results from validation tests using simulated data. Each row lists
PDB ID, map resolution (Res, in Å), anchors and size of loop, average temperature factor
of loop atoms in the PDB structure (B̄obs, in Å2), RMSD of calculated conformation to PDB

conformation, and average temperature factor of calculated conformation (B̄calc, in Å2). All
calculated occupancies sum to 1.0. The final column identifies a side-chain in dual confor-
mation at 0.5/0.5 occupancy.

PDB ID Res Loop(size) B̄obs RMSD B̄calc side-chain
1AAJ 1.9 82-85(4) 7.9 0.19 0.22 12.9 GLU(84)
1BGC 2.3 40-43(4) 29.5 0.32 0.33 0.41 27.1 LYS(41)
1HFC 1.9 142-149(8) 11.7 0.29 0.31 0.37 0.42 0.44 0.71 10.1 LEU(147)
1Z8H 2.3 71-78(8) 40.9 0.35 0.39 0.56 0.61 0.69 0.69 0.77 36.0 HIS(73)
1TML 1.9 243-254(12) 11.5 0.41 0.41 0.43 0.44 0.55 0.95 12.7 THR(247)
1CTM 2.3 142-149(12) 38.8 0.36 0.44 0.44 0.52 0.68 0.68 34.8 ARG(18)

2.1.2 Dual Conformers

The 123-residue protein with PDB ID 2R4I, a NTF-3 like protein, was solved by the
Joint Center for Structural Genomics (JCSG) at a resolution of 1.6Å. The asymmetric
unit contained four, nearly identical copies of the molecule, distinguished by chain
identifiers A-D in the PDB file. In each of the four chains the fragment spanning
the residues 104-112 crystallized in slightly different conformations. We added the
atoms from residues 104-112 from chain A to the corresponding residues from chain
B (Figure 1). Indeed, the fragment can presumably adopt both of these states. The
conformers are closely intertwined, separated by only 1.4Å RMSD.

Simulated electron density data for the dual conformer was generated at different
resolutions and at various occupancies. Gaussian noise with a standard deviation
of 10% of the magnitude of the calculated data was added to simulate experimen-
tal errors. The temperature factors of the individual PDB structures were retained,
averaging 19.0Å2.

The algorithm returns an ensemble in excellent agreement with the actual confor-
mations, with a good estimate of the true occupancy values and average temperature
factors (see Table 2). Again the finite discretization of our sampling scheme results
in ensembles that contain more than two conformations. But every returned ensem-
ble contains two groups of very similar conformations that could be merged by a
clustering algorithm.

We ran the same test again, but this time we added the true conformers to the
sample set. The results presented in Table 3 show that in most cases our method
returns the true conformers. In some cases, it produced more than two conform-
ers and in all cases occupancies and temperature factors are slightly inexact. These
small discrepancies seem to be caused by the Gaussian noise added to the EDM. The
greater discrepancy in the results presented in Table 2 are, thus, manifestations of
both discretization errors and errors due to added noise.

Furthermore, coordinate error is larger for the lower occupancy conformer. It
should be noted that at an occupancy of 0.3, a Carbon atom only scatters at about
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Fig. 1. Residues 104-112 of 2R4I. Top panel: Conformations from chain A and B in the EDM

at 0.7/0.3 occupancy. At high contour levels, atoms from the chain at lower occupancy are no
longer contained within the iso-surface. Lower panel: PDB fragment from chain A (left) in
green and PDB fragment from chain B (right) in cyan together with the calculated conformers.

twice the magnitude of a Hydrogen atom. The signal of a Hydrogen atom is distin-
guished from the background level only at resolution levels better than 1.3 Å(i.e.
< 1.3 Å). At resolution levels considered here, Hydrogens are not explicitly in-
cluded in PDB files.

2.1.3 Ensemble of Conformations

Solvent exposed fragments may have only weakly preferred substates. This common
situation is often characterized by a blurring of the main-chain EDM and ambiguous
or weak side-chain density. To emulate this situation, a collection of 20 confor-
mations of the 8-residue loop 142-149 of 1HFC (Table 1) was generated along a
coordinated motion of the loop (as shown in Figure 2(a)). The start and finish con-
formations are 2.7Å apart in RMSD. A 1.9Å EDM was calculated at equal occupancy
(0.05) for the members of the collection.

The algorithm returned a 7-conformer ensemble, with occupancies ranging from
0.10 to 0.23. Since the algorithm only retains conformations with calculated oc-
cupancy greater than or equal to 0.1, it could not return the full collection of 20
conformations. Nevertheless, it successfully extracted the range of motion from the
data (see Figure 2(b)).

We furthermore applied the loop-fitting option of RESOLVE (v2.10) [23], a
widely-used crystallographic model-building algorithm, to this EDM. RESOLVE, un-
able to assign residue identities and side-chains, modeled a single poly-alanine loop
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Table 2. Details of calculated dual conformers for loop 104-112 of 2R4I. Each row lists occu-
pancies for the conformers (Occ), map resolution (Res, in Å), RMSD of calculated conform-
ers to PDB conformers, the cumulative calculated occupancies for the conformers (Calc Occ),
and average temperature factor of calculated conformers (B̄calc, in Å2). Average, observed
temperature factors are 19.0Å2.

Occ Res RMSD Calc Occ B̄calc
0.5/0.5 1.3 0.26 0.34 0.29 24.3

0.38 0.64 0.77 1.29 0.71
0.5/0.5 1.5 0.32 0.64 0.36 27.4

0.38 0.49 0.52 0.69 0.64
0.5/0.5 1.7 0.29 0.42 0.42 0.43 0.50 25.5

0.23 0.23 0.34 0.50
0.6/0.4 1.3 0.29 0.40 0.64 0.53 25.5

0.31 0.35 0.64 0.47
0.6/0.4 1.5 0.30 0.44 0.54 0.58 0.61 25.7

0.33 0.62 0.39
0.6/0.4 1.7 0.23 0.24 0.35 0.60 0.58 22.0

0.23 0.62 0.41
0.7/0.3 1.3 0.27 0.34 0.34 0.34 0.64 0.70 24.1

0.48 0.30
0.7/0.3 1.5 0.33 0.33 0.40 0.64 29.0

0.61 0.76 0.36
0.7/0.3 1.7 0.31 0.37 0.42 0.47 0.65 21.7

0.44 0.62 0.35

into the EDM, shown in yellow in Figure 2(b). Analysis of the results reveals that
occupancy-weighted main-chain EDM correlation coefficients of the ensemble range
from 0.84 to 0.96 per residue versus 0.64 to 0.87 for the single poly-alanine con-
former. Moreover, the average, occupancy-weighted temperature factor of the en-
semble (15.0Å2) is closer to the average of the 20 conformations (11.7Å2) than
the single, poly-alanine chain (35.7Å2). Thus, our 7-conformer ensemble is a sig-
nificantly improved interpretation of the data, both quantitatively and qualitatively
(range of motion), over a single, averaged conformer.

This example suggests that in general the returned ensemble of conformations
should not be treated as a true physical model of the actual heterogeneity present in
the crystal, but as a representation of uncertainty in atomic positions due (in part)
by this heterogeneity.

2.2 Experimental Data: Modeling a Dual Conformer

A structural model for TM0755 was obtained by the JCSG from data at 1.8Å res-
olution. The asymmetric unit contains a dimer, with a short main-chain fragment
around residue A320, and the same fragment around B320, bimodally disordered.
Crystallographers had initially abandoned this fragment due to difficulty interpret-
ing the EDM visually. A dual conformation for the fragment A316-A325, separated
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Table 3. Details of calculated dual conformers for loop 104-112 of 2R4I. The true conformers
were added in the sampling protocol. Each row lists occupancies for the conformers (Occ),
map resolution (Res, in Å), RMSD of calculated conformers to PDB conformers, the cumula-
tive calculated occupancies for the conformers (Calc Occ), and average temperature factor of
calculated conformers (B̄calc, in Å2). Average, observed temperature factors are 19.0Å2.

Occ Res RMSD Calc Occ B̄ calc
0.5/0.5 1.3 0.00 0.47 25.2

0.00 0.53
0.5/0.5 1.5 0.00 0.48 22.3

0.00 0.52
0.5/0.5 1.7 0.00 0.29 0.49 22.0

0.00 0.23 0.51
0.6/0.4 1.3 0.00 0.56 20.1

0.00 0.44
0.6/0.4 1.5 0.00 0.54 0.61 24.7

0.00 0.39
0.6/0.4 1.7 0.00 0.57 23.4

0.00 0.43
0.7/0.3 1.3 0.00 0.65 25.9

0.00 0.35
0.7/0.3 1.5 0.00 0.33 0.33 0.66 29.0

0.00 0.61 0.34
0.7/0.3 1.7 0.00 0.65 20.8

0.00 0.35

(a) (b)

Fig. 2. (a) A collection of 20 snapshots of an 8 residue loop while it is transitioning between
simulated start and finish conformations. (b) Ensemble of 7 conformers computed by the
algorithm (cyan), together with the start and finish conformations (grey) of the simulated
collection. A single conformer modeled by RESOLVE is displayed in yellow.

by 2.96Å, was obtained from semi-automated methods at 0.5/0.5 occupancy [27].
The average, occupancy-weighted temperature factor was 24.9Å2. The structure to-
gether with the heterogeneous fragment was refined, subjected to the JCSG’s quality
control protocol (unpublished) and ultimately deposited in the PDB.
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Fig. 3. Two conformations from the 5-conformer ensemble computed for the fragment A316-
A325 in the experimental EDM. The conformers deviate by 0.47 Å RMSD and 0.64 Å RMSD

from the conformations obtained by the JCSG. Alternate conformers are difficult if not impos-
sible to identify and model visually in ambiguous electron density. For clarity, the main-chain
is represented by a cartoon in the figure.

An experimental electron density map was calculated from diffraction im-
ages with σA-weighted 2mFo−DFc coefficients [21]. Our algorithm returned a 5-
conformer ensemble. Two conformations in the ensemble are 0.47 and 1.24 Å RMSD

away from one of the conformations obtained at JCSG with occupancies 0.15 and
0.23. The other three calculated conformers are 0.64, 0.72, and 0.82Å RMSD away
from the other conformation obtained at JCSG with occupancies 0.27, 0.23, and 0.12
respectively. The average, occupancy-weighted temperature factor of the ensemble
is 30.3Å2.

This result demonstrates that our method is also highly effective with experimen-
tal data which, in contrast to data with simulated measurement errors, may contain
substantial phase angle errors. Automatic identification of multi-conformers will
greatly enhance the structure determination process.

2.3 Experimental Data: Modeling Alternate Side Chain
Conformations

Locally, side-chains too regularly adopt alternate conformations, accommodated
by subtle changes in the main-chain [6]. At present, modeling alternate side-chains
onto a known main-chain in the final stages of the structure determination process
is time-consuming and subject to individual preferences. To assess the value of our
algorithm for a high-throughput structure determination pipeline such as the JCSG’s,
it was modified to model alternate side-chain conformations onto a known main-
chain. At a fixed position in the protein chain, trial positions for the Cβ atom are
generated, and the entire residue is repositioned by adjusting flanking dihedral an-
gles. For each trial Cβ position, neighborhoods of rotamers are sampled to obtain a
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(a) (b) (c)

Fig. 4. (a) Residue 36THR from the A chain in 2NLV. The PDB model is shown in cyan (2
conformations at 0.5/0.5 occupancy), and our model is shown in grey (3 conformations at
0.31, 0.35, and 0.36 occupancy). Note that the carbonyl oxygen shifts considerably to accom-
modate an alternate conformation. The side-chain EDM correlation coefficient improved from
0.77 to 0.81. (b) Residue 81GLU as modeled in the PDB conformation, and (c) as modeled
by our algorithm. Observe that the PDB conformation mistakingly modeled a water molecule
at full occupancy at the position of a carboxyl oxygen, a common mistake. Our alternate
side-chain is modeled at 0.33 occupancy.

large set of candidate conformations. This set is then subjected to a selection step to
obtain occupancy values. Finally, the coordinates are refined with a standard crys-
tallographic refinement suite [1].

A structural model for Xisl protein-like solved to 1.3 Å resolution (PDB ID
2NLV) was used to test the procedure. The protein is 112 residues in length, and
was deposited in the PDB with 20 residues of the A-chain in alternate conforma-
tions. The algorithm successfully identified and modeled 85% of residues with al-
ternate conformations, see Figure 4. The side-chain conformations that were not
found were outside the sample set. Additionally, 12 multi-conformer alternatives
for single-conformer residues were identified for which the data fit improved sub-
stantially, see Figure 4.

3 Method

Our goal is to compute an ensemble of conformations, the occupancy of each confor-
mation, and the temperature factor of each atom in every conformation, that together
optimally represent the data in an input EDM E of a protein fragment.

One approach – let us call it initialize-optimize – consists of formulating this
problem as an optimization problem:

1. Pick an ensemble of k initial conformations, along with their occupancies and
temperature factors.

2. Compute the simulated EDM that corresponds to this ensemble.
3. Iteratively modify the k conformations, their occupancies, and the temperature

factors to minimize the difference between the experimental and the simulated
EDMs.
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We actually tried this approach, but even on dual-conformer examples the num-
ber of parameters to optimize is huge and the optimization process (Step 3) gets
easily trapped into local minima. Monte-Carlo methods with simulated annealing
protocols were unable to handle these issues.

This led us to develop a completely different approach, which we call sample-
select. Instead of incrementally modifying conformations, we first sample a very
large set of conformations and then select the best ensemble from this set. More
precisely, our method alternates two steps, SAMPLE and SELECT:

1. SAMPLE samples a large set Q of conformations (and the temperature factors
of the atoms in each conformation) that is highly likely to contain a subset S
representing E well.

2. SELECT simultaneously identifies this subset S and computes the occupancy fac-
tor of each conformation in S.

The space sampled by SAMPLE has high dimensionality, so each run of SAMPLE

uses the conformation subset selected at the previous iteration to sample a new set
of candidate conformations, which in turn is submitted to SELECT. The core of our
method is an efficient linear-programming algorithm that is able to select pertinent
ensembles from very large sets of sampled conformations. We first describe this
algorithm.

3.1 Selection Step

SELECT is handed a large set Q = {q1, . . . ,qN} of N conformations, together with a
vector ti specifying the temperature factor of each atom in every conformation qi. It
identifies the subset S of conformations that collectively provides the best explana-
tion for the input EDM E , over all possible subsets of Q.

Let G be the grid over which E is defined. Let Ei be the simulated EDM that
corresponds to the configuration qi with the temperature factors in ti. Let E(p) and
Ei(p) denote the values of E and Ei, respectively, at point p ∈ G. The value at p
of the EDM that corresponds to Q = {q1, ...,qN} with occupancies α1, . . . ,αN is
∑i αiEi(p). SELECT minimizes the L1 difference between E and this EDM. Since
each Ei(p) is constant, this amounts to solving the following linear problem (LP):

Minimize ∑p∈G | E(p)−∑i αiEi(p) |
such that αi ≥ 0, for i = 1, . . . ,N

∑i αi = 1.

The solution is the vector of optimal values for αi, i = 1, . . . ,N. SELECT retains
only the conformations qi whose occupancies are greater than a given threshold (set
to 0.1 in our implementation). It returns the set S of retained conformations with
occupancies re-normalized to sum up to 1. We use Coin-OR libraries [14] to solve
the above LP.
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3.2 Conformation Sampling

The goal of SAMPLE is to generate a set Q = {q1, . . . ,qN} of candidate conforma-
tions, together with temperature-factor vectors t1, . . . ,tN , such that a subset S of Q
(with suitable occupancies) provides an optimal explanation of the EDM E . Each
SAMPLE step uses the outcome of the previous SELECT step and samples a distinct
subspace of reasonably small dimensionality.

Let n > 3 be the number of residues in the fragment. We fix bond lengths and
dihedral angles ω around peptide bonds to their canonical values. This leads us to
treat the fragment as a kinematic linkage [8] whose degrees of freedoms are the di-
hedral φ and ψ angles around N-Cα and Cα -C bonds, the bond angles in the main
chain, and the χ angles in the side-chains. We divide the fragment into a front and
a back half, each with p = � n

2� residues. We first incrementally build conforma-
tions of these two halves. Then, we connect them using an inverse kinematics (IK)
algorithm.

We describe the various steps in more detail below. However, it should be noted
that there are many possible variants, some of which might work equally well. The
key idea is to consider fractions of the front and back halves of increasing size, so
that the number of conformations sampled by each SAMPLE step can be handled by
the next SELECT operation.

(a) Sampling the main chains of the two halves. Let us temporarily ignore side-
chains and temperature factors. We incrementally build candidate partial conforma-
tions of the front half’s main chain by sampling one φ or ψ angle at a time, starting
from the N terminus. We sample the first φ angle at some uniform resolution ε (set
to 2 degrees in our implementation). We also sample the bond angle centered at the
N atom preceding this φ angle at the same resolution ε in the 12-degree interval
around its corresponding Engh-Huber value. We thus obtain a set of 6×2π/ε can-
didate positions for the following Cβ and C atoms, on which we run SELECT. Let
k1 be the number of partial conformations retained by SELECT. Next, we sample in
the same ways the following dihedral angle (a ψ angle) and the two following bond
angles centered at Cα and C atoms. We thus get a set of 12× 2π/ε× k1 candidate
positions for the following O, N, and Cα atoms. We run SELECT on this set and
obtain an ensemble of size k2.

At this point, we re-sample the two φ and ψ angles at a finer resolution (0.5 de-
grees) in small neighborhoods (±1 degree) of their values in the ensemble of size k2.
This re-sampling step yields an expanded set of candidate conformations to which
we apply SELECT. We proceed in the same way with the remaining p− 1 residues
in the front half’s main chain.

The same procedure is applied in reverse to the back half, starting from its C
terminus.

(b) Inserting side-chains. Immediately after a pair of consecutive φ and ψ angles
have been re-sampled, the side-chain of the residue containing those two angles is



Modeling Structural Heterogeneity in Proteins from X-Ray Data 563

inserted. We use a rotamer library [18] to obtain the values of the χ angles. Adding
the side-chain multiplies the number of partial conformations of the front half by
the number of rotamers for the side-chain. We apply SELECT to this new set. The
same procedure is applied to the back half.

(c) Assigning temperature factors. Temperature factors are assigned whenever a φ or
ψ angle is sampled or a side-chain is inserted. Their values are taken from a finite set
T input by the user. However, assigning a distinct temperature factor to every atom
would quickly lead to large sets of candidate conformations. So, we define groups of
atoms that are assigned the same temperature factors. The Cβ and C atoms following
a φ angle forms one group, so do the O, N, and Cα atoms following a ψ angle and
the atoms in a side-chain.

Consider the case where we sample a φ angle in the front half. As described in
paragraph (a), this gives a number of candidate conformations for the following Cβ
and C atoms. We pair each of these conformations with a distinct temperature factor
from T . Similarly, when we insert a side-chain, we pair each rotamer with a distinct
temperature factor from T .

(d) Connecting the front and back halves. We enumerate all pairs of conformations
of the fragment’s front and back halves computed as above. For each pair, complete
closed conformations of the fragment’s main chain are obtained by computing six
dihedral angles using an analytical IK algorithm [5]. More precisely, for each pair,
we consider every three consecutive residues such that at least one belongs to the
front half and another one to the back half, and we re-compute the φ and ψ angles
in those residues using the IK algorithm, so that the fragment’s main chain gets
perfectly closed. The side-chain conformations and temperature factors for each of
these residues are set as in either the front or back half conformation.

We collect all the closed conformations into a candidate set, on which we run
SELECT. The result is the final conformation ensemble built by our method. If de-
sired, a clustering algorithm can be run on this ensemble to merge conformations
that are pairwise very close.

The above method sometimes eliminates a pertinent partial conformation. This
is due to the fact that partial conformations are retained based on their fit with only
a subset of the EDM. So, a SELECT step might retain one conformation and discard
another based on this local fit, while the inverse result could have been obtained if
larger fractions of the fragment had been considered. Unfortunately, when a perti-
nent partial conformation has been discarded, it cannot be recovered later. So, to
reduce the risk of eliminating a pertinent partial conformation, we retain a greater
number of partial conformations at each selection step. This is done as follows. Let
m be the size of the set of conformations given to a selection step and m′ the size of
the ensemble retained by SELECT. We run SELECT again on the remaining m−m′

conformations, and we repeat this operation until a pre-specified number of confor-
mations have been obtained.
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4 Conclusion

This paper presents a new method to model structural heterogeneity in an EDM by
computing an ensemble of conformations, with occupancies and temperature fac-
tors, that collectively provide a near-optimal explanation of the EDM. Instead of
being based on an initialize-optimize approach that is classical in single-conformer
programs, our method is based on a sample-select approach that adaptively alter-
nates sampling and selection steps. We successfully tested our method on both sim-
ulated and experimental EDMs of protein fragments ranging from 4 to 12 residues
in length and side-chains.

Modeling structural heterogeneity from EDMs is of major importance and may
have a major impact on the way protein models are stored in the Protein Data Bank.
However, our work is only a step in that direction. Several issues must still be inves-
tigated.

We need to further analyze errors caused by the finite resolution and the locality
of our sampling protocol. Experiments with simulated EDMs show that if we in-
clude the correct conformations in the set of sampled conformations submitted to a
SELECT step, this step reliably returns the exact ensemble of conformers (see Table
3). This suggests that an adaptive sampling protocol could generate better results
than our current protocol.

Although is some cases the ensemble returned by our method is a physical model
of the actual heterogeneity present in the crystal, this is not always the case. The
example in Section 2.1.3 is a good counter-example. In general, we can only say
that an ensemble returned by our method is a macromolecular representation that
near-optimally fits the EDM, and thus also represents uncertainty in atomic posi-
tions. Additional physicochemical evidence is usually required to determine if this
outcome is a physical model of the conformational states present in the crystal.

Finally, to be really useful and actually used by crystallographers, our method
will have to be integrated into existing suites of modeling software.
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Minimum Resource Characterization of
Biochemical Analyses for Digital Microfluidic
Biochip Design

Lingzhi Luo and Srinivas Akella

Abstract. Digital microfluidic systems (DMFS) are a class of lab-on-a-chip sys-
tems that manipulate individual droplets of chemicals on an array of electrodes.
The biochemical analyses are performed by repeatedly moving, mixing, and split-
ting droplets on the electrodes. In this paper, we characterize the tree structure of
biochemical analyses and identify their minimum resource requirements, towards
the design of cost and space-efficient biochips. Mixers and storage units are two
primary functional resources on a DMFS biochip; mixers mix and split droplets
while storage units store droplets on the chip for subsequent processing. Additional
DMFS resources include input and output units and transportation paths. We present
an algorithm to compute, for a given number of mixers M, the minimum number
of storage units f (M) for an input analysis using its tree structure, and design a
corresponding scheduling algorithm to perform the analysis. We characterize the
variation of the M-depth of a tree (i.e., its minimum number of storage units f (M))
with M, and use it to calculate the minimum total size (the number of electrodes) of
mixers and storage units. We prove that the smallest chip for an arbitrary analysis
uses one mixer and f (1) storage units. Finally, we demonstrate our results on two
example biochemical analyses and design the smallest chip for a biochemical anal-
ysis with a complete tree structure of depth 4. These are the first results on the least
resource requirements of DMFS for biochemical analyses, and can be used for the
design and selection of chips for arbitrary biochemical analyses.

1 Introduction

Low-cost, portable lab-on-a-chip systems capable of rapid automated biochemical
analysis can impact a wide variety of applications including biological research,
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point-of-care diagnostics, and biochemical sensing [5, 18, 2, 13]. Digital microflu-
idic systems (DMFS) are an emerging class of lab-on-a-chip systems that manipulate
discrete droplets. A digital microfluidic system manipulates individual droplets of
chemicals on an array of electrodes by using electrowetting (or dielectrophoresis).
We focus on microfluidic systems that manipulate droplets by electrowetting [11].
The chemical analysis is performed by repeatedly moving, mixing, and splitting
droplets on the electrodes (Figure 1).

The ability of DMFS devices to control discrete droplets enables complex anal-
ysis operations to be performed in a flexible manner. There are several classes of
resources (i.e., functional components consisting of electrodes) in a DMFS: mixers,
storage units, input/output units, and transportation paths. Figure 2 illustrates their
functions. We focus on performing biochemical analyses in batch mode, where the
goal is to produce one droplet of the final product. We previously [10] developed al-
gorithms to compute minimum time schedules based on the tree structure of chemi-
cal analyses. Here we focus on determining minimum resources and use it to design
(or select) the smallest chip for a given analysis.

Biochip users want versatile, yet low cost systems. Hence it is important to iden-
tify the class of biochemical analyses a given chip can perform, and further, the
smallest chip that can perform a given set of analyses. In this paper, we charac-
terize the structure of different biochemical analyses and classify them according
to their least resource requirements. Since we can reduce the fabrication cost of a
DMFS chip by reducing the number of electrodes, this work is motivated by two
practical questions: For any biochemical analysis, how do we identify the (small-
est) biochip with sufficient number of resources to perform it? For a given biochip,
what kind of biochemical analyses can be performed on it? We assume that the re-
sources (e.g., mixers and storage units) are fixed at the start of the analysis and do
not change over the course of the analysis, and that once processing of a subtree
begins, it is completed before a sibling subtree is processed. First, we compute the
least resource requirements based on the tree structure of biochemical analyses and
design corresponding algorithms to perform them. Then we define the M-depth of
a tree to describe such resource requirements and characterize the variation of the
M-depth with the number of mixers M. This is the first work on DMFS to compute

Droplet Droplet

Control Electrodes

Top ViewSide View
Hydrophobic Insulation

Top Plate

Bottom Plate

Ground Electrode

Filler Fluid

Fig. 1. Droplets on an electrowetting array (side and top views). The droplets are in a medium
(usually oil or air) between two glass plates. The gray and white droplets represent the same
droplet in initial and destination positions. A droplet moves to a neighboring electrode when
that electrode is activated; the electrode is turned off when the droplet has completed its
motion. Based on [12].
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Input units Output units Mixers

Storage
units

Transportation
paths

Fig. 2. Five classes of functional resources for DMFS biochips. Transportation paths (shown
as arrows starting from diamonds) are used to move droplets from one resource to another.
Input units are used to input droplets. Mixers are used to mix two different droplets and split
their mixture to produce two new droplets. In batch mode, one of the new droplets will be
used and the other will be discarded as a waste droplet at an output unit. The new droplet may
be kept idle in a storage unit for some time, stay at the mixer, or be transported to a new mixer
for a subsequent mixing. The droplet of final product will be transported to an output unit.

the least resource requirements for biochemical analyses and it can be used to guide
the selection and design of chips for arbitrary biochemical analyses.

2 Related Work

Resource Requirements: Su and Chakrabarty presented architecture-level synthesis
and geometry synthesis of biochips[14, 15]. They used acyclic sequence graphs to
represent the reactions and developed techniques in operation scheduling, resource
binding, and module placement. In their papers resource constraints are given in ad-
vance by the size of chips or the number of mixers and storage units. However there
is no general guideline for selecting chips with proper number of mixers and stor-
age units for biochemical analyses. Griffith and Akella [7] explored the relationship
between the number of mixing units and the highest stable input rates in the system,
where increasing the number of mixing units permits the system to be stable at a
higher input rate and the effectiveness of maintaining system stability by increasing
the number of mixers decreases. A variety of modifications to the resources were
made to gauge the effects on the stability of the system [8]. The work in [7, 8] is
based on simulations while in this paper we are formally analyzing the resource
requirements for analyses based on the underlying tree structure.

Layout Design: Layout design maps the functional units such as mixers, storage
units, and routing paths to the underlying hardware. Griffith and Akella presented a
semi-automated method to generate the array layout in terms of components [7]. Su
and Chakrabarty developed an online reconfigurable technique to bypass the fault
unit cells in the microfluidic biochips [16].

Scheduling Algorithms: Scheduling algorithms optimize the system perfor-
mance by properly allocating tasks to resource. Kwok and Ahmad studied the static
scheduling of a program on a multiprocessor system to minimize program com-
pletion time in parallel processing [9]. Since the general problem is NP-complete,
they compared heuristic scheduling algorithms. In contrast to the general problem
in parallel computing, the multiple-task reactions in DMFS have certain kinds of
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precedence, which can be represented by a full binary tree. Ding et al. [4] and Su and
Chakrabarty [14] represent the DMFS reactions using data-flow directed graph and
consider scheduling using Integer Linear Programming (ILP). They solve the prob-
lem by general ILP solvers and heuristic algorithms without exploiting the structure
of DMFS reactions.

Routing: Böhringer modeled the routing problem in DMFS as a multi-robot
cooperation problem and used a prioritized A∗ search algorithm to generate the op-
timal plan for droplets [1]. Griffith and Akella presented a general-purpose DMFS
and designed routing algorithm based on Dijkstra’s algorithm [7, 8]. Su, Hwang
and Chakrabarty proposed a two-stage routing method to minimize the number of
electrodes used for droplet routing while considering the resource constraint [17].

3 Model and Problem Formulation

3.1 Full Binary Tree Model

The (biochemical) “analysis graph” provides a representation of the operations of a
DMFS. It is a directed graph, with an input node for each droplet type entering the
system, an output node for each droplet type leaving the system, and a mix node for
each mixing operation performed in the system. The nodes are connected based on
the droplet types they require and produce. A mixing operation A + B → C means
reagents A and B are mixed to produce C. The mixing operations during a DNA
PCR analysis are described as follows.

A + B → C; C + D → E; E + F → G;
H + I → J;J + K → L;L+ M → N; N + G → O.
To model the dependencies among different mixing operations, we introduce a

full binary tree structure. A full binary tree is a binary tree in which every node has
either zero or two child nodes. A complete binary tree is a full binary tree in which
all leaf nodes are at the same level. (Levels of nodes are defined in a recursive way
as follows: the level of the root node is zero; the level of any other node equals one
plus that of its parent node.) Given an analysis R, we construct a full binary tree
T as follows. Every reagent in R is represented by a node in T ; source reagents,
which can be directly fetched from the reservoirs, are represented by leaf nodes in
T , and intermediate reagents, which are produced by mixing, are represented by
parent nodes of those nodes from which they can be produced. So the analysis R is
represented by T , where the final product of R is represented by the root node of T .
The representation of the PCR analysis by a full binary tree is shown in Figure 3. In
the following sections, we will analyze biochemical reactions and design algorithms
based on the full binary tree structure.

3.2 Problem Formulation

The problems we want to solve in this paper are: Given a biochemical analysis,
what are the minimum requirements of resources (e.g., the number and size of
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A Gelatin
B:   Bovine Serum Albumin 
D:   Primer 
F: DNA

H:   KCl and MgCl2 
I:     Tris-HCL 
K:    Deoxynucleotide Triphosphate 
M:    AmpliTaq DNA Polymerase 

Fig. 3. Representation of a DNA PCR analysis by a full binary tree of depth 4.

mixers, storage units, input/output units and transportation paths) to perform it?
How can we design the scheduling algorithm so that the analysis can be performed
with the minimum resources? The number of input and output units is determined
by the given biochemical analysis. Transportation paths are constructed so that other
function units (the input units, output units, mixers and storage units) are connected.
We will first focus on the resource requirements of mixers and storage units, and
then consider the requirements of other resources as well in Section 5.

3.2.1 Pipelining

For biochemical analyses on a DMFS, the procedure of obtaining a droplet can be
divided into several operations: input source droplets, transport droplets, mix (and
split) droplets, and output waste droplets. After applying pipelining techniques [10],
different operations can be overlapped. Also, since the transportation time is neg-
ligible compared to the mixing time [3, 6], we ignore the transportation time in
subsequent scheduling. So when discussing the minimum resource requirements,
we can just focus on the mixing scheduling.

3.2.2 Mixers and Storage Units

The number of mixers limits how many mixing operations we can perform in a
time slot. The number of storage units gives a constraint for droplets that have been
produced but cannot immediately be mixed. Figure 4 shows how mixers and storage
units are used during the progress of a biochemical analysis.

3.2.3 Scheduling Representation

Each scheduling step can be regarded as the transition from one full binary tree to
another where some sibling nodes are removed (see Figure 4). So the whole sched-
ule Sch of a biochemical analysis can be represented by a series of full binary trees,
starting from the initial full binary tree and ending at the root node, and the tran-
sitions between consecutive trees correspond to removing selected sibling nodes.



572 L. Luo and S. Akella

Step 2 Step 1 

droplets produced 
in previous step 

droplets in storage units 

Fig. 4. Progress of a biochemical analysis on a chip with a single mixer. The intermediate
reagent produced in the first step is stored in a storage unit since it is not involved in the
mixing in the second step.

For a schedule Sch, let the number of mixers be M and the number of storage units
be S. We can formulate the scheduling problem as the following two questions:

Given an initial full binary tree T , (1) What is the schedule Sch in which S is min-
imized given M? (2) What is the schedule Sch in which the resource requirements
(i.e., the number of electrodes for M mixers, S storage units, input/output units and
transportation paths) are minimized?

4 Minimizing the Number of Storage Units with a Given
Number of Mixers

In our previous work [10], we analyzed two extreme cases of resource requirements:
with just one mixer and with zero storage units. In the first case, we calculated the
minimum number of storage units for a given analysis. In the second case, we com-
puted the minimum number of mixers required, and proved the conclusion below.

Lemma 4.1. [10] The sufficient and necessary condition for performing all the
mixing operations without storage units is to use maxK

i=0
Ni
2 mixers, where K is the

depth of the tree, Ni is the number of nodes at the ith level.

In this paper, we characterize the relationship between the number of mixers M
and number of storage units S required for a biochemical analysis based on its tree
structure, and present a scheduling algorithm to handle this general case.

In this section, we first compute the minimum number of storage units f (M)
and design the scheduling algorithm to perform the biochemical analysis using M
mixers and f (M) storage units; second, we define f (M) as the M-depth of the tree
structure and give an equation to compute the M-depth for complete trees; third, we
characterize the variation with M of the M-depth of the tree. So for any analysis,
we can find out whether it can be performed using M mixers and S storage units by
computing the M-depth of its tree representation. The analysis is feasible if f (M)≤
S, and infeasible otherwise. If two analyses have tree structures with the same M-
depth, we say they have the same resource requirements.
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4.1 Algorithm Design

Theorem 4.1. Algorithm 1 returns the minimum number of storage units for a reac-
tion using at most M mixers; Algorithm 2 outputs the corresponding schedule in the
order of execution.

Proof. Suppose fM(T ) is the minimum number of storage units for the analysis
tree T using at most M mixers. First we prove the first part of the theorem. Accord-
ing to Lemma 4.1, if the maximum number of nodes at the same level is greater
than 2M, at least one storage unit is required. Since the algorithm scans nodes
from bottom up, each node first satisfying this condition needs one storage unit.
(Base step.)

If T.root is not a leaf node, obviously, fM(T )≥max( fM(T.le f t), fM(T.right)).
If fM(T.le f t) �= fM(T.right), without loss of generality assume fM(T.le f t) >

fM(T.right). Schedule as follows: First, perform all mixing operations in the left
subtree, when we need fM(T.le f t) storage units. Then perform those in the right
subtree, when we need fM(T.right) storage units for the nodes in the right subtree
and one for the T.le f t node. So fM(T ) = max( fM(T.le f t), fM(T.right)).

If fM(T.le f t) = fM(T.right), we show that fM(T ) = fM(T.le f t) + 1. Sched-
ule all mixing operations in the left subtree, and then the right subtree. We need
fM(T.right)+1 storage units as discussed above, which is equal to fM(T.le f t)+1.

Algorithm 1. Min-Storage-Units-M-Mixers

Input: T , M // the binary tree and the number of mixers
Output: fM // the number of required storage units
while Scan nodes level by level from bottom up: do

for any scanned node i do
i. fM = 0 // storage units to produce i
if i.le f t. fM == 0 and i.right. fM == 0 then

// zero storage units to produce both child nodes
Scan the subtree rooted at i, set i.maxnode as the maximum number of nodes at
any level in the subtree
if i.maxnode > 2M then

i. fM = 1
end if

else
// at least one child node needs storage units
if i.le f t. fM == i.right. fM then

i. fM = i.le f t. fM +1
else

i. fM = max{i.le f t. fM, i.right. fM}
end if

end if
end for

end while
return T.root. fM
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So fM(T )≤ fM(T.le f t)+1. If fM(T ) < fM(T.le f t)+1, then two conditions should
be satisfied: First, in the time slot when fM(T.le f t) storage units are used for the left
subtree, no mixing operations in the right subtree have been performed. Second, in
the time slot when fM(T.right) storage units are used for the right subtree, no mix-
ing operations in the left subtree have been performed. Obviously, they cannot be
satisfied at the same time. By contradiction, we conclude fM(T ) = fM(T.le f t)+ 1.
The induction step is also correct. So the algorithm returns fM(T ), the optimal value.

We now show that the second part of the theorem is correct. Since Algorithm 2
outputs the mixing operations in child-node-first order, the mixing precedence rule
is satisfied. Also, the algorithm traces back through T.root. fM for all subtrees using
the recurrence in Algorithm 1, so it outputs the corresponding scheduling results. �
The complexity of both algorithms is linear in number of nodes in the tree structure.

4.2 M-Depth of Tree Structure

From the algorithm in the last section, we see that with M mixers, the minimum
number of storage units f (M) for a biochemical analysis only depends on its tree

Algorithm 2. M-Mixer-Scheduling

Input: T , i // the binary tree and the time slot index (1 for the initial tree)
Output: F // Schedule, global variable initialized as /0
if T has only a root node then

return
else

if T.root. fM = 0 then
// finish mixing operations at one level each time slot
for all levels of T from bottom up do

F = F
⋃ {Schedule all mixing operations at the same level in time slot i}

i = i+1
end for

else
// first produce the child node requiring more storage units
if T.root.le f t. fM > T.root.right. fM then

M-Mixer-Scheduling(T.le f t, i)
M-Mixer-Scheduling(T.right, i)

else
M-Mixer-Scheduling(T.right, i)
M-Mixer-Scheduling(T.le f t, i)

end if
F = F

⋃ {Schedule the mixing operation to get T.root in time slot i}
i = i+1

end if
end if
return F
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structure. Thus we can define f (M) as the M-depth of the tree structure correspond-
ing to M mixers. From Lemma 4.1, we can easily see that:

Lemma 4.2. Given an analysis tree, f (M) = 0 if and only if M ≥ T.root.maxnode
2 .

For complete trees, we derive an equation to compute M-depth as follows.

Theorem 4.2. For a complete tree with depth D, its M-depth can be computed:

f (M) = D− ("log2M#+ 1) (1)

Proof. Suppose in a tree with depth D, we define the height of a node as D minus
its level. According to Lemma 4.2, in a complete tree, any node i with i. fM = 0 must
satisfy that i.maxnode≤ 2M and thus has a height at most "log22M#. And for nodes
with height more than "log22M#, increasing height by 1 will increase i. fM by 1. So

f (M) = T.root. fM = T.root.height−"log22M#

= D−"log22M#= D− ("log2M#+ 1). �

Corollary 4.1. For a binary analysis tree with depth D, its M-depth must satisfy:

f (M) ≤ D− ("log2M#+ 1) (2)

4.3 Variation of M-Depth with M for a Tree

We first examine the non-increasing property of the M-depth, f (M). For a given bio-
chemical analysis tree, according to Lemma 4.2, if f (M) = 0, f (M + 1) = 0. There
exist nodes where i. fM > 0, but i. fM+1 = 0. Considering the same recurrence as in
Algorithm 1, for each node i, i. fM ≥ i. fM+1. So f (M) = T.root. fM ≥ T.root. fM+1 =
f (M + 1). That is, with more mixers, we may reduce the minimum number of stor-
age units required.

f (M + 1)≤ f (M) (3)

Theorem 4.3
f (M + 1)≥ f (M)−1 (4)

Proof. Use mathematical induction. Base step is trivial: for a leaf node, f (M +
1) = f (M) = 0. Now for a node i with left and right child nodes, suppose f (M) is
M-depth of the tree rooted at i, fL(M) and fR(M) are M-depths of its left subtree
and right subtree respectively. According to the induction hypothesis,

fL(M + 1)≥ fL(M)−1, fR(M + 1)≥ fR(M)−1 (5)

There are three possible cases below:

1. fL(M) �= fR(M): Without loss of generality, assume fL(M) > fR(M). f (M) =
fL(M). So f (M + 1)≥ fL(M + 1)≥ fL(M)−1 (Inequality 5)
so f (M + 1)≥ f (M)−1.
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2. fL(M) = fR(M) = 0: f (M) ≤ 1. f (M + 1)≥ 0≥ f (M)−1.
3. fL(M) = fR(M) �= 0: According to Theorem 4.1, f (M) = fL(M)+ 1

• fL(M) = fR(M)≥ 2:

fL(M + 1)≥ fL(M)−1≥ 1 , fR(M + 1)≥ fR(M)−1≥ 1 (6)

If fL(M + 1) = fR(M + 1),

f (M + 1) = fL(M + 1)+ 1 ≥ fL(M) (according to (6))

≥ f (M)−1 ( f (M) = fL(M)+ 1))

If fL(M + 1) �= fR(M + 1), assume fL(M + 1) > fR(M + 1).

fL(M + 1) > fR(M + 1) ≥ fR(M)−1 (according to (6))

fL(M + 1) > fR(M)−1. That is fL(M + 1)≥ fL(M).
So f (M + 1)≥ fL(M + 1)≥ fL(M) = f (M)−1.

• fL(M) = fR(M) = 1: f (M) = 2. From Lemma 4.2, i.le f t.maxnode > 2M and
i.right.maxnode > 2M. So i.maxnode > 2(M+1) (At least two nodes of right
(or left) subtree will be at the same level with more than 2M nodes in left
(or right) subtree). By Lemma 4.2 again, f (M + 1) > 0. So f (M + 1)≥ 1 =
f (M)−1.

So the induction step is also correct. Thus f (M + 1)≥ f (M)−1. �
Considering Inequalities 3 and 4, we see that for a full binary analysis tree, using
one additional mixer either keeps the minimum number of storage units the same or
reduces it by one. So we get the conclusion below.

Corollary 4.2. The total number of mixers and storage units F(M) = M + f (M) is
a non-decreasing function of M.

4.4 Example

We apply the above algorithms and conclusions to characterize biochemical
analyses based on resource requirements. The two trees in Figure 5 have different
structures, but share the same resource requirements, as illustrated by their identical
characteristic resource curve f (M) in Figure 6.

5 Towards Smallest Chip Design

We discussed mixers and storage units in Section 4, without considering their geom-
etry and other resources such as input/output units and transportation paths. In this
section, we will consider all resources towards designing the smallest DMFS chip
for biochemical analyses. The smaller the number of electrodes in a DMFS chip,
the easier the fabrication and the lower the cost.
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(a) D = 3 (b) D = 6

Fig. 5. Two analysis trees that have the same least resource requirements.

1 2 3 4 M

1

2

f(M)

0

Fig. 6. Characteristic resource curve of f (M) shared by the two trees in Figure 5.

5.1 Mixers and Storage Units

Mixers and storage units are the two primary functional components on a DMFS
biochip, where mixers are used to mix and split droplets while storage units are
used to store droplets on chip for future usage. They should be large enough to
prevent droplets inside them inadvertently mixing with other droplets outside them.
As shown in Figure 7, a storage unit needs only one electrode to hold one droplet,
while a mixer needs more electrodes to move the mixed droplet inside it and thus
needs more surrounding electrodes to keep the droplet inside separate from other
droplets outside. It follows that the size of one mixer Smix (the number of electrodes
in one mixer) is bigger than the size of a storage unit Sstore.

(a) (b)

Fig. 7. The sizes of a mixer and a storage unit. (a) A mixer with 3 electrodes for droplets to
move. Smix = 15. (b) A storage unit with 1 electrode for droplets to stay. Sstore = 9.
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From the above observation and Corollary 4.2, we obtain the following result for
a full binary tree whose M-depth is f (M).

Theorem 5.1. The total size of M mixers and f (M) storage units will monotonically
increase with the number of mixers.

Proof. We need to prove that M1 ·Smix + f (M1) ·Sstore < M2 ·Smix + f (M2) ·Sstore

when M1 < M2.

M1 ·Smix + f (M1) ·Sstore = (M1 + f (M1)) ·Sstore + M1 · (Smix−Sstore)
≤ (M2 + f (M2)) · Sstore + M1 · (Smix− Sstore) < (M2 + f (M2)) · Sstore + M2 · (Smix−
Sstore)
= M2 ·Smix + f (M2) ·Sstore �

5.2 Input and Output Units

Input and output units should be connected to the perimeter electrodes of the chip,
which we call connection electrodes, as shown in Figure 8(b). For the tree in Fig-
ure 8(a), we need just one mixer and zero storage units for the reaction. If we directly
connect the input units to the chip as in Figure 8(b), the number of corresponding
connection electrodes will be the number of leaf nodes of the tree in Figure 8(a).
Since the connection electrodes should be on the perimeter of the chip, the total
number of electrodes on the chip will be proportional to the square of the number
of connection electrodes, which is much bigger than the size of one mixer. (This
assumes the chip is a rectangular array of electrodes.)

An alternative approach is to connect the input and output units to a ring of elec-
trodes (as in [13]) and then connect the ring to a separate working zone of mixers
and storage units as shown in Figure 9. The size of the working zone can be selected
to have the required functionality, and the working zone can even be in the interior
of the ring if it is sufficiently small.

Fig. 8. The size of chip for an analysis tree when directly connecting the input units to the
chip. (a) A full binary tree of depth 6, where the right child of each node is a leaf node or a
null node. (b) The chip containing sufficient connection electrodes, shown bold on the chip
perimeter. (A subset of input units are shown.)
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Fig. 9. Connect the input and output units to the working zone of mixers and storage units
through a ring so that all droplets to the working zone are input from and output to one
electrode (filled in black). Here the working zone is a 3×3 mixer.

5.3 Transportation Paths

Theorem 5.2. Even considering the transportation paths, the smallest chip is con-
structed using one mixer and f (1) storage units.

Proof. Proof by contradiction. First, the smallest chip can be constructed using M
mixers and f (M) storage units since we can always convert extra storage units (if
more than f (M)) to transport electrodes without increasing the chip size. Second,
assume M > 1 in the smallest chip. The corresponding transportation paths should
connect all mixers and storage units so that they are reachable from each other. The
size of mixers and storage units is M ·Smix + f (M) ·Sstore; we assume the number of
electrodes for input/output units are determined by the analysis tree and therefore
constant. Since the size of a mixer is bigger than that of a storage unit, we can retain
one mixer and change all other mixers to be storage units. The transportation paths
can still connect all mixers and storage units, and the size of mixers and storage
units is now reduced to 1 ·Smix +(M−1 + f (M)) ·Sstore. The size of one mixer and
f (1) storage units is 1 ·Smix + f (1)·Sstore. From Corollary 4.2, M+ f (M)≥ 1+ f (1),
which implies the chip with M mixers is larger than the chip with one mixer, leading
to a contradiction. We conclude that even considering the transportation paths, the
smallest chip is constructed using one mixer and f (1) storage units. �

Input/output units

Working zone (mixers and 
storage units)

:    storage units

:   mixer

:  connection electrode

Fig. 10. The partial layout of the smallest chip for a complete tree of depth 4.
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5.4 Example

Consider a complete tree of depth 4. By Theorem 4.2, f (1) for the complete tree is 3.
Suppose that mixing and splitting droplets is performed in a mixer with 3 electrodes
for droplets to move as shown in Figure 7 (a). Since we can place the mixer and
storage units along the perimeter of the chip and overlap a subset of the surrounding
electrodes, the size of a mixer and a storage unit can be smaller than that shown in
Figure 7. Figure 10 shows the layout of the smallest chip, without showing all input
and output units.

6 Conclusion

In this paper, we focused on characterizing the resource requirements of arbitrary
biochemical analyses on DMFS biochips from their tree structure. We designed a
corresponding scheduling algorithm to perform the biochemical analyses using the
least resource requirements. We also defined the M-depth of an analysis tree to de-
scribe such resource requirements and infer the variation in the number and size of
resources as a function of M and the tree structure. We can use these results to de-
sign the smallest biochip for any biochemical analysis and also determine whether
a particular biochip can be used for a biochemical analysis. These results represent
our initial steps towards automated design of digital microfluidic biochips. In our
future work, we will use these results to explore the tradeoff between resource re-
quirements and the completion time of biochemical analyses, and combine these
results with automated layout design and routing algorithms for DMFS biochips.

Acknowledgements. This work was supported in part by the National Science Foundation
under Award Nos. IIS-0713517, IIS-0730817, and CNS-0709099.
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Path Planning for Flexible Needles Using Second
Order Error Propagation

Wooram Park, Yunfeng Wang, and Gregory S. Chirikjian

Abstract. In this paper we propose a computationally efficient method for the steer-
ing of flexible needles with a bevel tip in the presence of uncertainties for the case
when there are no obstacles in the environment. Based on the stochastic model
for the needles, we develop a new framework for path planning of a flexible nee-
dle with a bevel tip. This consists of three parts: (a) approximation of probability
density functions for the needle tip pose; (b) application of a second order error
propagation algorithm on the Euclidean motion group; and (c) application of the
path-of-probability (POP) algorithm. The probability density functions are approxi-
mated as Gaussians under the assumption that the uncertainty in the needle insertion
is fairly small. The means and the covariances for the probability density functions
are estimated using the error propagation algorithm that has second order accuracy.
The POP algorithm is adapted to the path planning for the flexible needles so as to
give the appropriate steering plan. Combining these components and considering 5
degree-of-freedom targets, the new method gives the path of the flexible needle that
hits the target point with the desired hitting direction.

1 Introduction

A number of recent works have been reported on the topic of the steerable flexi-
ble needles with bevel tips that are inserted into soft tissue for minimally invasive
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medical treatments [1, 2, 7, 12, 17]. In this problem, a flexible needle is rotated
with the angular speed ω(t) around its tangent while it is inserted with translational
speed v(t) in the tangential direction. Due to the bevel tip, the needle will not fol-
low a straight line even when ω(t) = 0 and v(t) is constant. Rather, in this case the
tip of the needle will approximately follow a circular arc with curvature κ when
the medium is very firm and the needle is very flexible. The specific value of the
constant κ depends on parameters such as the angle of the bevel, how sharp the nee-
dle is, and properties of the tissue. In practice κ is fit to experimental observations
of the needle bending in a particular medium during insertions with ω(t) = 0 and
constant v(t). Using this as a baseline, and building in arbitrary ω(t) and v(t), a
nonholonomic kinematic model then predicts the time evolution of the position and
orientation of the needle tip [12, 17].

One of the most important tasks related to this flexible needle is that we should
control the needles in order to get the desired tip position with or without the desired
final direction, because the needles are used for drug injection or biopsy at a spe-
cific location. The path obtained by planning algorithms will be used for the actual
control of the needle. In this paper, we focus on the path planning for the flexible
needle.

A stochastic model for the steering of flexible needles with bevel tips has been
developed in [12, 13]. It adopted the unicycle nonholonomic kinematic model [17].
Furthermore, it includes white noises weighted by coloring constants to capture the
nondeterministic behavior of the needle insertion. This method, which is reviewed
in detail in Section 2.2, is modified in this paper in such a way that allows for
the closed-form evaluation of probability densities. The benefit of the closed-form
method developed here is that it enables fast path planning. In order to evaluate the
parameters that serve as the input to this closed-form probability density, the kine-
matic covariance propagation method developed in [14] is used. This probability
density function is used for the path planning that was developed in [12, 13]. Like
the work by Mason and Burdick [11], this path planning algorithm is an extension of
the path-of-probability (POP) algorithm presented in [8]. Duindam et al. presented
a path planning method for 3D flexible needle steering [7]. Although they consider
3D needle steering with obstacles, only positions of the targets are aimed for in that
work. Our method gives a path that hits the goal position with the “desired direction”
in a 3D environment without obstacles.

There exist some methods for steering nonholonomic systems [10]. Since some
of them use the concept of optimal control, it is computationally intensive. Further-
more, since the needle system is not small-time locally controllable [12], the small
changes in the goal pose can lead to large changes in the optimal path. We also note
that Brockett’s theorem says that some nonholonomic systems can not be stabilized
to a desired pose using a continuous feedback. The POP algorithm used for the nee-
dle path planning in this paper has benefits compared to the existing methods based
on optimal path following or optimal control: (1) At each time step we can make
a choice about what control input to use, independent of the previous step, which
means that this control is discontinuous and the limitations imposed by Brockett’s
theorem do not apply; (2) The path that we generate is not the path of minimal
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length, or optimal, and so the solution is not as sensitive to small changes in the
desired position as methods based on optimal control. Of course, this means that
our paths may be a little bit longer, but we believe that they are also more robust to
perturbations.

2 Mathematical Methods

2.1 Review of Rigid-Body Motions

The special orthogonal group, SO(3), is the space of rotation matrices contained in
R

3×3, together with the operator of matrix multiplication. Any element of SO(3)
can be written using the Euler angles as [6]

R = Rz(α)Rx(β )Rz(γ),

where α , β and γ are the ZXZ Euler angles, 0≤ α,γ ≤ 2π , 0≤ β ≤ π and

Rz(θ ) =

⎛⎝ cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎞⎠ , Rx(θ ) =

⎛⎝1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎞⎠ .

The Euclidean motion group, SE(3), represents rigid-body motions in 3D space. It
is the semi-direct product of R

3 with SO(3). The elements of SE(3) can be written
as [6]

g =
(

R t
0T 1

)
, (1)

where R ∈ SO(3), t ∈ R
3 and 0T denotes the transpose of the 3D zero vector.

Given a time-dependent rigid-body motion g(t), the quantity

g−1ġ =
(

RT Ṙ RT ṫ
0T 0

)
∈ se(3) (2)

(where a dot represents the time derivative) is a spatial velocity as seen in the body-
fixed frame, where se(3) is the Lie algebra associated with SE(3). We identify se(3)
with R

6 in the usual way via the mappings ∨ : se(3) → R
6 and ̂ : R

6 → se(3),
given by

ξ = (g−1ġ)∨ =
(

(RT Ṙ)∨

RT ṫ

)
=
(

ω
v

)
∈R

6

and

ξ̂ =
(̂

ω
v

)
=
(

ω̂ v
0T 0

)
∈ se(3),

where
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ω̂ =

⎛̂⎝ω1

ω2

ω3

⎞⎠=

⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ .

The vector ξ contains both the angular and translational velocity of the motion g(t)
as seen in the body-fixed frame of reference.

Let ei, i = 1, . . . ,6 denote the standard basis for R
6. The basis given by a set of

matrices Ei = êi, i = 1, . . . ,6 produce elements of SE(3), when linearly combined
and exponentiated. Specifically we have [6]

E1 =

⎛⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ ; E2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞⎟⎟⎠ ; E3 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ;

E4 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ; E5 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ; E6 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ .

The element of SE(3) can be obtained by the exponential mapping as [6, 13]

g = g(x1,x2, ...,x6) = exp

(
6

∑
i=1

xiEi

)
.

Therefore the vector x = (x1 x2 ... x6)T can be obtained from g ∈ SE(3) by

x = (logg)∨.

If X ∈ se(3) is an arbitrary element of the form

X =
(

Ω v
0T 0

)
, and x = (X)∨ =

(
ω
v

)
,

then Ad(g) (the adjoint) is defined by the expression

(gXg−1)∨ = Ad(g)x, where Ad(g) =
(

R 0
T R R

)
. (3)

The matrix T is skew-symmetric, and T∨ = t, when g ∈ SE(3) is given as in (1).

2.2 Nonholonomic Stochastic Needle Model

In a reference frame attached to the needle tip with the local z axis denoting the
tangent to the “backbone curve” of the needle, and x denoting the axis orthogonal to
the direction of infinitesimal motion induced by the bevel (i.e., the needle bends in
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Fig. 1. The definition of parameters and frames in the nonholonomic needle model [12, 17].

the y− z plane), the nonholonomic kinematic model for the evolution of the frame
at the needle tip was developed in [12, 17] as:

ξ = (g−1ġ)∨ =
[

κ 0 ω(t) 0 0 v(t)
]T

, (4)

where ω(t) and v(t) are the rotation and insertion speeds, respectively. The frames
and parameters for the needle are shown in Fig. 1.

If everything were certain, and if this model were exact, then g(t) could be ob-
tained by simply integrating the ordinary differential equation in (4). However, in
practice a needle that is repeatedly inserted into a medium such as gelatin (which is
used to simulate soft tissue [17]) will demonstrate an ensemble of slightly different
trajectories.

A simple stochastic model for the needle is obtained by letting [12, 13]:

ω(t) = ω0(t)+ λ1w1(t), and v(t) = v0(t)+ λ2w2(t).

Here ω0(t) and v0(t) are what the inputs would be in the ideal case, w1(t) and w2(t)
are uncorrelated unit Gaussian white noises, and λi are constants.

Thus, a nonholonomic needle model with noise is

(g−1ġ)∨dt =
[

κ 0 ω0(t) 0 0 v0(t)
]T

dt +
[

0 0 λ1 0 0 0
0 0 0 0 0 λ2

]T [
dW1

dW2

]
(5)

where dWi = Wi(t +dt)−Wi(t) = wi(t)dt are the non-differentiable increments of a
Wiener process Wi(t). This noise model is a stochastic differential equation (SDE)
on SE(3). As shorthand, we write this as

(g−1ġ)∨dt = h(t)dt + HdW(t). (6)

Corresponding to this SDE is the Fokker-Planck equation that describes the evolu-
tion of the probability density function of the ensemble of tip positions and orienta-
tions at each value of time, t [12, 13]:

∂ρ(g;t)
∂ t

=−
d

∑
i=1

hi(t) Ẽr
i ρ(g; t)+

1
2

d

∑
i, j=1

Di jẼ
r
i Ẽr

j ρ(g;t) (7)
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where Di j = ∑m
k=1 HikHT

k j and ρ(g;0) = δ (g). In (7) the “right” Lie derivative Ẽr
i is

defined for any differentiable function f (g) as

Ẽr
i f (g) =

(
d
dt

f (g ◦ exp(tEi))
)∣∣∣∣

t=0
. (8)

For a small amount of diffusion, the solution for the Fokker-Planck equation, (7),
can be approximated by a shifted Gaussian function [13, 15]:

ρ(g(x);t) = (2π)−3|det(Σ)|−1/2 exp

(
−1

2
(x− μ(t))T Σ−1(x− μ(t))

)
, (9)

where g = exp(x̂), and μ and Σ are the mean and the covariance of the probability
density function, ρ(g;t), respectively. This approximation is based on the fact that
for small diffusion the Lie derivative is approximated as [13]

Ẽr
i f (g)≈ ∂ f

∂xi
.

Using this, the Fokker-Planck equation (7) becomes a diffusion equation in R
6.

Therefore, we have the solution for the diffusion equation as (9).

2.3 Second Order Error Propagation

If a unique value μ ∈ SE(3) exists for which∫
SE(3)

[log(μ−1(t)◦ g)]∨ρ(g; t)dg = 0,

then μ(t) is called the mean of a pdf ρ(g,t). In addition, the covariance about the
mean is defined as [16]

Σ(t) =
∫

SE(3)
log(μ−1(t)◦ g)∨[log(μ−1(t)◦ g)∨]T ρ(g;t)dg.

Suppose that for small values of t, the quantities μ(t) and Σ(t) corresponding to
ρ(g;t) can be obtained (even if ρ(g; t) is not known in closed form). Then these can
be propagated over longer times. In other words, due to the Markovian nature of the
above model, solutions can be “pasted together” using the fact that the following
convolution equalities hold:

ρ(g;t1 + t2) = ρ(g;t1)∗ρ(g;t2),

where convolution on SE(3) is defined as in [5]. Even if these convolutions are too
time-consuming to compute explicitly, the fact that these expressions hold means
that propagation formulas for the mean and covariance can be used.
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Wang and Chirikjian [16] derived the formulas for the second order propagation.
If a pdf, ρi(g) has mean μi and covariance Σi for i = 1,2, then with second order
accuracy, the mean and covariance of (ρ1 ∗ρ2)(g) are respectively [6]

μ1∗2 = μ1 ◦ μ2 and Σ1∗2 = A + B + F(A,B), (10)

where A = Ad(μ−1
2 )Σ1AdT (μ−1

2 ), B = Σ2 and F(A,B) is given in Appendix. Con-
sequently, we can obtain the mean and covariance for a relatively large t with given
mean and covariance for a small t by this propagation formulas. These can then be
substituted into (9) to obtain a closed-form estimate of the probability density that
the needle will reach any particular pose at any value of time.

3 Path Planning for Flexible Needles

For path planning, we use the algorithm that appeared in [12, 13]. This algorithm
was adapted from the path-of-probability algorithm in [8]. A similar trajectory plan-
ning method can be also found in [11].

In this algorithm, we find the whole path by serially pasting together several in-
termediate paths. Fig. 2. shows the concept of this algorithm. We aim to find a path
that starts at g0 and ends at ggoal using M intermediate steps. The homogeneous
transformation matrix, gi ∈ SE(3) (i = 1,2, ...,M), represents the position and ori-
entation of the ith frame with respect to (i−1)th frame as shown in Fig. 2. Suppose
that the (i− 1) intermediate steps (g1,g2, · · · ,gi−1 ∈ SE(3)) have been already de-
termined. The intermediate step, gi is determined to maximize the probability that
the remaining steps reach the goal. In Fig. 2, the shaded ellipses depict the probabil-
ity density function when we consider the remaining (M− i) steps. In other words,
when we consider (M− i) intermediate steps after gi, the final pose will be in the
dark area with higher probability than the bright area. Comparing the two simpli-
fied cases in Fig. 2, if the previous intermediate steps (g1,g2, · · · ,gi−1) are the same
for both cases, we should choose gi as shown in Fig. 2b, because it guarantees the
higher probability that the final pose reaches the goal pose.

The determination of the intermediate steps can be formulated as

gi = argmax
g∈S

ρ((g0 ◦ g1 · · ·gi−1 ◦ g)−1 ◦ ggoal;τi), (11)

where τi is the remaining time to hit the goal and S is the set of possible intermedi-
ate poses. Now let us adapt this to the needle insertion problem. If ttotal is the fixed
time for the insertion from g0 to ggoal and we have M intermediate steps, each in-
termediate step takes Δ t = ttotal/M. Therefore, we can define τi = (M− i)ttotal/M
in (11). Technically, this formula can not be used for determining the final interme-
diate step, gM , because there is no remaining path. The final step can be determined
to minimize the difference between the resulting final pose of the path and the goal
pose using metrics such as in [4, 9].
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g0

gi-1

gi

ggoal

gM

(a)

g0

gi-1

gi

ggoal

gM

(b)

Fig. 2. The path-of-probability algorithm at the ith step. (a) Evaluation of one candidate move,
gi, with low resulting probability of reaching goal, (b) an intermediate step, gi, resulting in
high probability of reaching the goal.

Since the flexible needle that we consider is usually controlled by rotating along
the axis tangential to the needle curve under the constant insertion speed, the above
algorithm can be modified into the following: The intermediate step, gi can be de-
termined by

θi = argmax
θ∈[02π)

ρ((g0 ◦ g1 · · ·gi−1 ◦ R̃(θ )◦ μ(Δ t))−1 ◦ ggoal;(M− i)ttotal/M), (12)

gi = R̃(θi)◦ gΔ t (13)

where

R̃(θ ) =
(

Rz(θ ) 0
0T 1

)
and gΔ t is one sample path obtained by integrating the SDE (6) up to time t = Δ t =
ttotal/M (which is our model for what a real needle would do over this period of
time), and μ(Δ t) is the sample mean of the SDE (6) at the time t = Δ t = ttotal/M.
The resulting whole path is given as g = g0 ◦g1 · · ·gM. This insertion is achieved by
repeating the twisting without insertion and the insertion without twisting.

It is important to understand why μ(Δ t) and gΔ t are used in (12) and (13), re-
spectively. When determining θi using (12), the ith insertion has not been actually
performed. In order to evaluate the probability, we need an estimate for the sim-
ple insertion after the rotation. Since our needle insertion system has the stochastic
behavior, the mean path, μ(Δ t), is the reasonable choice for the estimate. After
obtaining θi, we need to define gi carefully. The ith intermediate step, gi, is that
we twist the needle by θi and then insert it with constant insertion speed without
twisting. Since the simple insertion is the “actual” insertion, this should not be the
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Fig. 3. Results of path planning for the flexible needles. The thin arrow shows the desired
direction of the needle and the circle shows the target position. (a) Needle path for the
goal, (α,β , px, py, pz) = (0,0.1,1,−1,9.8) (b) Needle path for the goal, (α,β , px, py, pz) =
(π/4,0.1,0,−1.5,9.8)
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Fig. 4. Results of path planning for the flexible needles. (a) Needle paths for the goals,
(α,β , px, py, pz) = (0,0.1,1,−1,9.8) and (π/2,0.1,1,−1,9.8) (b) Needle paths for the goals,
(α,β , px, py, pz) = (π/4,0.1,0,−1.5,9.8) and (−π/4,0.1,0,−1.5,9.8)

mean path. Rather, one sample path obtained by integrating the SDE (6) up to time
t = Δ t = ttotal/M is more realistic choice as in (13).

In practice, μ(Δ t) can be approximated by noise-free path that can be obtained
by integrating the deterministic model (4) up to t = Δ t, if ‖DΔ t‖ is small. D was
defined in (7). In addition, the first covariance Σ(Δ t) that will be put in the propaga-
tion formula can be approximated by DΔ t, because the diffusion by the noise term in
SDE is small. Using the propagation formulas in (10) with the mean and covariance
at t = Δ t, we can compute the mean and covariance at t = 2Δ t,3Δ t, · · · ,MΔ t. Plug-
ging these means and covariances into (9), we obtained the closed-form probability
density function, ρ(g;t). We use this pdf for the POP path planning algorithm.

In the real flexible needle system, if we twist the needle without insertion after the
needle tip hits a target, the whole shape of the needle does not change. Therefore,
out of 6 degrees of freedom of the target, we can naturally specify 5 degrees of
freedom of the target pose using the desired position and direction. The remaining
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rotational DOF (twisting around the needle backbone curve) can be considered as a
free parameter which will be determined to guarantee the reacheability of the needle
insertion system.

The target pose of the needle can be written as

gtarget =
(

Rz(α)Rx(β )Rz(γ) p
0T 1

)
,

where p is a 3D position vector. First we specify the 5 degrees of freedom: α , β
and p using the desired position and direction of the needle tip. Then, for various
values of γ , we repeatedly perform the path planning algorithm until we have a
reasonable path.

Fig. 3 shows the paths obtained by the suggested method. We used the parameter
values, κ = 0.0449, λ1 = 0.08 and λ2 = 0.015. We also set ω0(t) = 0 and v0(t) = 1
in (5). We used 20 intermediate steps. Using a current PC (Intel Core Duo processor
2.66GHz, 1GB memory) the propagation (10) takes 0.33(sec) for 20 intermediate
steps. For given α , β , γ and p, the POP algorithm (12) and (13) gives a result in
0.37(sec), when we use 50 candidates for θ in (12), which are equally-spaced from
0 to 2π(rad). In the example in Fig. 3a, we tested with the 18 candidates for γ ,
equally-spaced from 0 to 2π(rad) and we could find the path with γ = 4.89(rad).
Fig. 4 shows that for the same target position, we can have different paths applying
different desired directions.

4 Conclusions and Discussions

In this work, we proposed a path planning method for the flexible needle. This
method mainly uses the path-of-probability algorithm which requires the probability
density function. Based on the stochastic model for the needle insertion, we approxi-
mated the probability density function for the needle tip pose with a shifted Gaussian
distribution and obtained the mean and covariance for the probability density func-
tion using the second order error propagation theory. Using the path-of-probability
algorithm, the needle paths that reach the goal position along the desired direction
were obtained. Since the propagation formulas need the mean and covariance for
the short length as inputs and compute the mean and covariance for the relatively
long length as outputs, we only have to sample the needle path for the short length.
Therefore we could avoid extensive sampling and long-range integration which are
time-consuming.

This new method has two advanced features. First it uses the second order prop-
agation formulas which is more accurate than the first order one that was used in
[13]. Second, it can deal with the desired final direction of the needle tip, which
was ignored in [7, 12, 13]. Using the second feature, we can generate a needle path
avoiding an obstacle in an indirect way. Fig. 4 shows the possibility of obstacle
avoidance.

We approximated the probability density function as a Gaussian assuming small
diffusion. Thus evaluation of the probability density function is less reliable in a
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distant area from the mean. This aspect eventually affects the performance of our
path planning method. Specifically, if the desired position and orientation of the
needle are away from the mean path, the path planning method does not always
guarantee to give a reasonable path. One solution would be that we should start with
a stochastic model which reflects the given target pose. In this paper, we considered
only one case where the noise-free path is a simple circular arc.1 If we consider
another noise-free path that can be obtained by changing ω0(t) and v0(t) in (5),
the path planning method will work for more various target poses. Future research
should include the method of determining ω0(t) and v0(t) which reflect the given
target pose for better performance of the path planning method.

Acknowledgements. This work was supported by NIH Grant R01EB006435 “Steering Flex-
ible Needles in Soft Tissue.”

Appendix

We review the second order propagation formulae. The entire work including deriva-
tion appears in [16].

If a pdf, ρi(g), has mean μi and covariance Σi for i = 1,2, then to second order,
the mean and covariance of (ρ1 ∗ρ2)(g) are respectively [6]

μ1∗2 = μ1 ◦ μ2 and Σ1∗2 = A + B + F(A,B),

where A = Ad(μ−1
2 )Σ1AdT (μ−1

2 ), B = Σ2. Here

F(A,B) = C(A,B)/4 +(A′′B +(A′′B)T + B′′A +(B′′A)T )/12

A′′ is computed as

A′′ =

⎛⎝ A11− tr(A11)I3 03

A12 + AT
12−2tr(A12)I3 A11− tr(A11)I3

⎞⎠ ,

where Ai j are 3×3 block matrices in

A =
(

A11 A12

AT
12 A22

)
.

B′′ is defined in the same way with B replacing A everywhere in the expression.
The blocks of C are computed as

C11 =−D11,11

1 Mathematically, the noise-free path and the mean path are not the same in the stochastic
model for the flexible needle. However, we can treat them as the same in practice when the
diffusion is small.
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C12 =−(D21,11)T −D11,12 = C21

C22 =−D22,11−D21,21− (D21,12)T −D11,22

where Di j,kl = D(Ai j,Bkl), and the matrix-valued function D(A′,B′) is defined relative to the
entries in the 3×3 blocks A′ and B′ as

d11 =−a′33b′22 +a′31b′32 +a′23b′23−a′22b′33, d12 = a′33b′21−a′32b′31−a′13b′23 +a′21b′33,

d13 =−a′23b′21 +a′22b′31 +a′13b′22−a′12b′32, d21 = a′33b′12−a′31b′32−a′21b′13 +a′21b′33,

d22 =−a′33b′11 +a′31b′31 +a′13b′13−a′11b′33, d23 = a′23b′11−a′21b′31−a′13b′12 +a′11b′32,

d31 =−a′32b′12 +a′31b′22 +a′22b′13−a′21b′23, d32 = a′32b′11−a′31b′21−a′12b′13 +a′11b′23,

d33 =−a′22b′11 +a′21b′21 +a′12b′12−a′11b′22.
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Path Planning among Movable Obstacles:
A Probabilistically Complete Approach

Jur van den Berg, Mike Stilman, James Kuffner, Ming Lin, and Dinesh Manocha

Abstract. In this paper we study the problem of path planning among movable
obstacles, in which a robot is allowed to move the obstacles if they block the robot’s
way from a start to a goal position. We make the observation that we can decouple
the computations of the robot motions and the obstacle movements, and present a
probabilistically complete algorithm, something which to date has not been achieved
for this problem. Our algorithm maintains an explicit representation of the robot’s
configuration space. We present an efficient implementation for the case of planar,
axis-aligned environments and report experimental results on challenging scenarios.

1 Introduction

In this paper we consider the problem of path planning among movable obstacles.
This involves an environment with static and movable obstacles, and the task is for
a robot to plan a path from some start position s to some goal position g, whereby
the robot can move the movable obstacles out of its way. The robot and the movable
obstacles may not collide with other obstacles.

This problem is more complex than typical robot path planning among only static
obstacles. The computational challenge is similar to games like Sokoban [6] where
it is easy to design puzzle scenarios that are difficult even for experienced human
players. Not surprisingly, the problem is known to be NP-hard [19].
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Due to the complexity of our problem, previous works have focused on heuristics
[5, 10, 15], and have given completeness results only for subclasses of the problem
[1, 13, 14, 19]. No complete algorithms are known that cover the entire problem
domain. In contrast, for other path planning problems generally applicable algo-
rithms have been proposed that rely on probabilistic completeness— a weaker form
of completeness that given infinite time guarantees to find a solution to any problem
for which a solution exists [8, 9].

In this paper, we present a probabilistically complete algorithm that covers the
entire domain of planning among movable obstacles. Our approach is based on the
observation that we can decouple the computation of the robot’s motion from the
computation of the obstacle movements, if we maintain an explicit representation of
the robot’s free configuration space and keep track of which connected component
the robot configuration resides in. We present an efficient data structure to maintain
a representation of the robot’s configuration space for the specific case in which both
the robot and obstacle geometry can be represented by translating axis-aligned rect-
angles. We implemented our algorithm and data structure and present experimental
results on challenging problem scenarios.

The rest of this paper is organized as follows. In the next section, we give an
overview of previous work. In Section 3, we formally define our path planning prob-
lem. We present our approach and prove its probabilistic completeness in Section
4. In Section 5 we describe the implementation of our algorithm and a data struc-
ture to maintain the robot’s configuration space, and discuss results in Section 6. We
conclude the paper in Section 7.

2 Related Work

Achieving completeness in planning among movable obstacles has proven ex-
tremely challenging. The problem was shown to be NP-hard by Wilfong [19] and
addressed with heuristic methods by Chen and Hwang [5]. Stilman and Kuffner [14]
introduced (resolution-) completeness to this domain by showing that a subclass of
problems called L1 could be solved within a practical amount of time. The class was
broadened to monotone problems in [15]. These approaches are particularly relevant
to practical scenarios where an efficient method is required to identify blocking ob-
stacles and restore connectivity in the robot’s free space. However, they cannot solve
movable obstacle problems outside the given subclasses.

Constructing an efficient, generally complete algorithm is difficult even for the
standard path planning problem of a single robot moving among static obstacles
[3]. Recently, probabilistic completeness has become an alternative standard for
path planning problems. Sampling-based planners such as PRM [8] and RRT [9]
have proven to be very successful in a domains ranging from single and multiple
robots [12, 17] to dynamic environments with non-holonomic constraints [7]. This
success prompted Nieuwenhuisen et. al. [10] and Stilman et. al. [16] to apply sam-
pling based planning in the movable obstacle domain. However, in both cases the
expansion of search trees for individual obstacle movements was bounded to ensure
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proper backtracking over alternative obstacle choices. In order to ensure probabilis-
tic completeness an algorithm must explore all possibilities and allow these search
trees to grow indefinitely.

We now propose an algorithm that allows indefinite exploration over all obstacle
movements. The algorithm is proven to be probabilistically complete. Not only is
this result new for the domain of planning among movable obstacles, but also for
related domains such as rearrangement planning [2, 4, 11] or manipulation planning
[1, 13] where the goal is specified in terms of goal configurations for the obstacles,
rather than for the robot. While we do not directly address this variant of the prob-
lem, the observations in this paper can be applied to the design of probabilistically
complete algorithms that span these domains as well.

3 Problem Definition

The problem we discuss in this paper is defined as follows. We are given a robot R
and a two- (or three-) dimensional workspace containing a set of static obstacles O
and a set of n (rigid) movable obstacles {M1, . . . ,Mn}. We denote the configuration
space of R, i.e. the set of all possible configurations of the robot, by CR (e.g. if R is a
“free-flying” robot in the plane, then CR = R

2× [0,2π)), and we similarly denote the
configuration space of each of the movable obstacles Mi by CMi . A movable obstacle
cannot move by itself, but can be moved by R if R first grasps the obstacle.

Given a start configuration s ∈CR and a goal configuration g ∈CR for the robot,
and initial configurations (c1, . . . ,cn) ∈ CM1 × ·· ·×CMn for the movable obstacles,
the task is to find a collision-free path for the robot R from s to g. The robot is
allowed to move the movable obstacles, but only one at a time, and only if the robot
is grasping the obstacle. During the movement of an obstacle, both the robot and
the obstacle should be collision-free with respect to other obstacles. We generally

(a) (b)

Fig. 1. (a) The initial situation of an example problem with three moving obstacles M1, M2
and M3. The dark grey disc R is the robot. (b) An alternating sequence of navigation actions
(1 and 3) and manipulation actions (2) that solves the problem.
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define that the robot can grasp (and move) a movable obstacle when it is touching
that obstacle.

The problem is thus defined as finding a sequence of actions, alternating between
navigation actions, in which a robot moves by itself from a configuration on the
boundary of one moving obstacle to a configuration on the boundary of another
moving obstacle, and manipulation actions, in which the robot rigidly attaches itself
to a movable obstacle and moves as a composite body from one position to the other.
The first and last actions of the sequence are navigation actions that begin in the
robot’s start configuration s, and end in the robot’s goal configuration g, respectively.
The navigation actions in the sequence may include regrasps of the same obstacle,
in which the robot moves to another configuration on the boundary of the moving
obstacle to grasp it there. In Fig. 1 we show a sequence of actions that solve an
example problem.

4 Approach

The problem has traditionally been approached by finding an alternating sequence
of navigation actions and manipulation actions [1, 10, 13, 14]. This formulation,
however, makes it difficult to devise a (probabilistically) complete planner. This is
because each of the navigation and manipulation actions lie in a sub-dimensional
“slice” of the composite configuration space CR×CM1 ×·· ·×CMn of the robot and
the obstacles. There is an infinite number of such slices, and each of these slices have
zero probability to receive a sample in a probabilistic planner. Previous works have
circumvented this problem by constraining the problem to a finite set of possible
obstacle positions and grasps [1], or by dealing with only one movable obstacle [13].

In this paper, we discuss the general continuous problem with any number of
movable obstacles. The key to our approach is that the problem should not be defined
in terms of finding an alternating sequence of navigation and manipulation actions,
but that one should abstract from the precise motions of the robot, and focus on the
movements of the obstacles.

In our approach we are looking for a sequence of obstacle movements. The pre-
cise robot motions that lead to such obstacle movements are not explicitly com-
puted; we only make sure that the robot is somehow able to validly execute those
movements. In order to test whether movements of the movable obstacles are exe-
cutable by the robot, we maintain an explicit representation of the free configuration
space of the robot. Each of the static and movable obstacles induce a C-obstacle in
the robot’s configuration space, consisting of robot configurations in which the robot
is in collision with that obstacle. The free configuration space is the space of config-
urations in which the robot is collision-free. This free configuration space consists
of multiple connected components, whose boundaries consists of boundaries of C-
obstacles (see Fig. 2a). If the robot is on the boundary of the C-obstacle of one of
the movable obstacles, it is touching that obstacle. As defined above, it is then able
to move that movable obstacle. So, if the robot is in a free connected component N,
it is able to move the movable obstacles whose C-obstacles are adjacent to N. When
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Fig. 2. The configuration space of the robot in the situation of Fig. 1a. The C-obstacles are
shown light gray. There are two connected components in the robot’s free configuration space.
The dashed region labeled N is the one the robot is in.

an obstacle is moved, the configuration space of the robot and the connected com-
ponent N change their shape, but as long as the C-obstacle of the movable obstacle
remains adjacent to N, the robot is able to execute that movement. So, it is neces-
sary only to keep track of which connected component the robot is in, rather than
the exact configuration of the robot. This observation is central to our approach.

The task is now to find a sequence of obstacle movements that results in a situa-
tion in which the robot’s goal configuration g is in the same connected component N
as the robot. Once we have found such a sequence, we can (relatively easily) find the
actual motions of the robot that execute these movements as a post-processing step.

In the remainder of this section, we will formalize the above observation and
introduce the state space of the problem (Section 4.1). We then present a simple
random-search algorithm (Section 4.2), and show that this algorithm is probabilis-
tically complete (Section 4.3). Note that we do not make any assumption about
the nature and dimensionality of the configuration spaces of both the robot and the
movable obstacles.

4.1 State Space

Let us denote the robot R configured at cR ∈CR by R(cR), and similarly a movable
obstacle Mi configured at ci ∈CMi by Mi(ci).

Each of the movable obstacles generates a C-obstacle in the configuration space
CR of the robot (see Fig. 2). Given a specific configuration ci ∈ CMi of a movable
obstacle Mi, its C-obstacle is given by COMi(ci) = {cR ∈ CR |Mi(ci)∩R(cR) �= /0}.
Similarly, the static obstacles generate a C-obstacle COO in CR. Now, given specific
configurations (c1, . . . ,cn) ∈CM1 ×·· ·×CMn of all movable obstacles, the free con-
figuration space of the robot, i.e. the set of all configurations of the robot for which
it is collision-free, is given by Cfree

R (c1, . . . ,cn) = CR \ (COO ∪
⋃

iCOMi(ci)). Note
that the shape of the free space of the robot changes when an obstacle is moved.
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(a) (b)

Fig. 3. Invalid obstacle movements. (a) The movement of obstacle M3 is not executable by the
robot, because at some point M3’s C-obstacle will not be adjacent to the connected component
N anymore. (b) The movement of obstacle M3 causes the connected component N of the
robot to disappear, so there does not exist a collision-free motion for the robot to execute this
movement.

At any time, the robot’s free configuration space consists of one or more connected
components (see Fig. 2), and the robot must be residing in one of them. We denote
the connected component in which the robot resides by N.

In configurations on the boundary of N, the robot is touching some static or
movable obstacle. If it is touching a movable obstacle Mi, the robot’s configuration
is on the boundary of the C-obstacle of Mi as well, and in that case the robot is able
to move Mi. This leads to the following observation.

Definition 4.1 (Manipulable obstacle). Given the configurations (c1, . . . ,cn) of the
movable obstacles and the connected component N of the robot’s free configuration
space that contains the robot, we define a movable obstacle Mi to be manipulable if
its C-obstacle is adjacent to N, i.e. ∂COMi ∩∂N �= /0, where ∂ refers to the boundary
of a set.

Lemma 4.1. Given initial configurations (c1, . . . ,cn) of the movable obstacles and
the connected component N of the robot’s free configuration space that contains the
robot, the movement of a movable obstacle Mi over a path π : [0,1] → CMi , with
π(0) = ci, is valid and can be executed by the robot if (see Fig. 3 for examples of
invalid obstacle movements):

• The movable obstacle Mi is collision-free with respect to the other obstacles at
all times during the movement, i.e. (∀t ∈ [0,1] :: Mi(π(t))∩O = /0∧ (∀ j �= i ::
Mi(π(t))∩Mj(c j) = /0)).

• The movable obstacle Mi is manipulable at all times during the movement, i.e.
(∀t ∈ [0,1] :: ∂COMi(π(t))∩∂N �= /0). (Note that the shape of N changes during
the movement of Mi over π .)

Proof. Let the robot initially be in some configuration cR ∈ N. As N shares part of
its boundary with the boundary of COMi , there exists some collision-free path within
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(a) (b)

Fig. 4. (a) A situation in which the movement of obstacle M2 splits the connected component
N. (b) Two motions of the robot executing the same movement of M2, but ending up in either
of the two connected components formed by the split.

N for the robot to arrive at a point p on the boundary of COMi . Let us rigidly attach
this point p to COMi . Now, the robot is able to move Mi along π . As Mi moves the
point p moves, so p might leave the boundary of N at some moment. At the instant
that this happens, the robot must regrasp, and find a new point p′ that is both on the
boundary of N and on the boundary of COMi . As there is a part of the boundary of
COMi that is also on the boundary of N (see the second requirement), such a point
p′ must exist. As both p and p′ are in N at that moment, there exists a free path for
the robot that arrives at p′. Now the robot can continue moving Mi, and the above
process can repeat until Mi arrives at configuration π(1). ��

As mentioned, the connected component N of the robot changes its shape during
the movement of an obstacle. In some cases the obstacle movement may lead to a
split of the connected component N into two new connected components (see Fig.
4a). In such a case, the robot may be in either of the two newly formed connected
components after the split (see Fig. 4b), so we have to choose which component the
robot will next be in.

Based on Lemma 4.1, we can define the state space our problem “lives” in. A
state x is defined as a tuple 〈c1, . . . ,cn,N〉, where c1, . . . ,cn are the configurations
of the movable obstacles, and N is the connected component of the robot’s free
configuration space in which the robot resides (note that the definition of a state
does not include any information regarding the specific configuration of the robot).
The state space X is consequently defined as the set of all states. Given the robot’s
goal configuration g, the goal region Xgoal ⊂ X is given as the set of all states x ∈ X
for which g ∈ N. The initial state xinit ∈ X is given by the initial configurations of
the movable obstacles, and the connected component containing the robot’s start
configuration s.

We define an action u as a tuple 〈Mi,π ,χ〉, in which movable obstacle Mi is
moved over path π : [0,1] →CMi , and choices as given in χ are made with respect to
the robot’s connected component in cases of component splits encountered during
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Algorithm 1. RANDOMTREE(xinit,Xgoal)

1: T ← {xinit}.
2: while true do
3: Pick a random state x ∈ T from the tree.
4: x′ ← EXPAND(x).
5: T ← T ∪{x′}.
6: if x′ ∈ Xgoal then
7: Path found! Terminate.
8: end if
9: end while

Algorithm 2. EXPAND(x) : X

1: Pick a random movable obstacle Mi that is manipulable in x.
2: Pick a random configuration c′i from Mi’s configuration space CMi .
3: return MOVEOBSTACLE(x,Mi,c′i).

Algorithm 3. MOVEOBSTACLE(x = 〈c1, . . . ,cn,N〉,Mi,c′i) : X

1: while Mi is manipulable and Mi is collision-free and Mi is not at c′i do
2: Move Mi toward c′i, and keep track of the robot’s connected component N.
3: if N splits into two components during the movement of Mi then
4: N ← a component randomly chosen among the two formed by the split.
5: end if
6: end while
7: return the resulting state x′.

Mi’s movement over π . An action is valid if the movement of Mi over π is valid
according the requirements of Lemma 4.1. Applying an action u to a state x ∈ X
results in a new state x′ ∈ X . Below, we present a simple algorithm that finds a
sequence of valid actions that when applied to the initial state xinit gives a final state
in Xgoal.

4.2 Algorithm

Our algorithm randomly builds a tree of states that are connected by actions. The
tree is rooted in the initial state xinit. In each iteration, we randomly pick a state
from the tree, and expand it by applying a randomly chosen action to that state.
The newly created state is then added to the tree. This repeats until a state has been
reached that is in Xgoal (see Algorithm 1). In the algorithm, we continuously keep
track of an explicit representation of the robot’s configuration space.

We only consider actions that move an obstacle along a straight line in the ob-
stacle’s configuration space (see Algorithm 2). The obstacle is moved toward a ran-
domly chosen configuration as long as the movement is valid, or until the picked
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configuration is reached (see Algorithm 3). We next prove that our algorithm is
probabilistically complete.

4.3 Probabilistic Completeness

In the following, a problem solution is defined as a sequence of k straight-line ac-
tions u1, . . . ,uk, where u j = 〈Mij ,π j,χ j〉 and each π j is a straight-line path, that
transform the initial state into a state in Xgoal. Notice that any sequence can be
approximated with one consisting of straight-line paths. A solution u1, . . . ,uk has
clearance ε if any alternative sequence u′1, . . . ,u

′
k —where u′j = 〈Mij ,π ′j,χ ′j〉 such

that the endpoint of each π ′j deviates no more than ε
k from the endpoint of π j (i.e.

‖π ′j(1)−π j(1)‖< ε
k for all j ∈ 1..k) and the correct choices χ ′j are made in case of

component splits— is also a solution to the problem. Applying all these alternative
sequences u′1, . . . ,u

′
k to the initial state xinit gives a sequence X0 = {xinit},X1, . . . ,Xk

of sets of states, such that Xk ⊂ Xgoal. The following establishes probabilistic com-
pleteness for the random tree planner.

Theorem 4.1. If there exists a solution with clearance ε > 0 then the the probability
that RANDOMTREE will find a solution approaches 1 as the number of states in the
tree approaches ∞.

Proof. Assume that the random tree contains state x j−1 ∈ Xj−1 after some finite
number z−1 of iterations. In the next iteration, each state in the tree has a probability
1/z to be selected for expansion (see line 3 of Algorithm 1). If x j−1 is chosen as the
state to expand, there exists a second probability greater than some q > 0 that an
action 〈Mij ,π ′j,χ ′j〉 with ‖π ′j(1)−π j(1)‖< ε

k is chosen that results in a state x j ∈ Xj

(see lines 1-2 of Algorithm 2; c′i needs to be picked such that ‖c′i− π j(1)‖ < ε
k ).

Hence, the probability of ‘success’, i.e. that the next step in the solution sequence is
constructed, in the z’th iteration is q/z.

Now, let random variable Yz denote the number of successes we have had after z
iterations. The expected value and the variance of Yz are given by:

E(Yz) =
z

∑
i=1

q
i

= q(ψ0(z+ 1)+ γ) (1)

Var(Yz) =
z

∑
i=1

[q
i
(1− q

i
)2 +(1− q

i
)(

q
i
)2
]

= E(Yz)+ q2(ψ1(z+ 1)− π2

6 ) (2)

where ψn(x) is the n’th polygamma function, and γ the Euler-Mascheroni constant
(the closed form for Var(Yz) was obtained using Maple).

To construct a solution sequence to a state xk ∈ Xk ⊂ Xgoal, we need k times suc-
cess. The expected number of successes E(Yz) approaches infinity as the number
of iterations z approaches infinity (i.e. limz→∞ E(Yz) = ∞), so E(Yz)− k is positive
for sufficiently large z. In these cases, the probability Pr(Yz < k) that after z itera-
tions a solution sequence has not been found is upper bounded by the Chebyshev
inequality:
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Pr(Yz < k) < Pr(|E(Yz)−Yz|> E(Yz)− k) ≤ Var(Yz)
(E(Yz)− k)2 (3)

Pr(Yz < k) approaches zero as the number of iterations z approaches infinity, as

lim
z→∞

Pr(Yz < k) ≤ lim
z→∞

Var(Yz)
(E(Yz)− k)2 = 0 (4)

Hence, the probability 1−Pr(Yz < k) that a solution has been found approaches 1
as the number of states in the tree approaches infinity. ��

5 Implementation

The challenging part of the above algorithm is to explicitly maintain the robot’s
configuration space, and detect events (such as connected component splits) critical
for the algorithm. Below, we present a data structure for the specific case of all
obstacles and the robot being axis-aligned rectangles that can translate in the plane.
This data structure enables us to efficiently perform the checks of lines 1 and 3
of Algorithm 3, in an exact and continuous manner, so we do not have to rely on
approximations taking small discrete steps.

5.1 Data Structure

We maintain two data structures: the workspace, in which we make sure that mov-
able obstacles will not collide with other movable or static obstacles, and the con-
figuration space of the robot, in which we keep track of the connected component
the robot is in.

As both the robot and the obstacles are axis-aligned rectangles that translate, the
C-obstacles the movable obstacles induce are also axis aligned rectangles. Now,
we look at all vertical and horizontal lines which are incident to the boundaries of
the workspace obstacles and the C-obstacles, and use these lines to form which we
call a rectangular map for the workspace and the configuration space of the robot,
respectively (see Fig. 5).

For both the workspace and the configuration space of the robot, we store two
lists of lines: one list for horizontal lines and one list for vertical lines. Both of
these lists are ordered, the vertical lines from left to right and the horizontal lines
from bottom to top. With the lines, we store their coordinate, to which obstacle it
belongs, and whether it is the bottom or top line (horizontal lines), or the left or right
line (vertical lines) of the particular obstacle.

For the configuration space of the robot, we maintain some additional informa-
tion in the data structure. The rows and columns in between the lines are overlapping
zero or more obstacles. If, for a horizontal row, the bottom line of an obstacle is be-
low the row, and the top line of the obstacle is above the row, the row contains the
particular obstacle. We store these associations with the rows and columns. In Fig.
5b, we encoded these associations using three bits, one bit for each obstacle. If first
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(a) (b)

Fig. 5. (a) The rectangular map of the workspace. The coordinate and the type (li, ri, bi and
ti mean the left, right. bottom and top line of obstacle Mi, respectively) are stored with the
horizontal and vertical lines. (b) The rectangular map of the configuration space of the robot.
Here, we additionally store with the rows and columns what obstacles they overlap (see right
and top), and for each empty cell in the map whether or not it belongs to the robot’s connected
component.

bit is 1, then the row (or column) contains the obstacle M1. If the second bit is 1, it
also contains obstacle M2, etc. Now, to determine the status of a cell in the rectan-
gular map, we can simply “and” the bits stored at the row and the column of that
particular cell. If the result is 0, the cell is free, otherwise, the bits determine by
which obstacles the cell is occupied.

In addition, we maintain in the configuration space data structure in which con-
nected component the robot is. Given the initial position of the robot, we can quickly
find in which cell of the (configuration space) map it is. Then, we “flood fill” the
empty cells of the rectangular map from the cell containing the robot’s position,
and store with each free cell a flag indicating whether or not the cell belongs to the
robot’s connected component. In the example of Fig. 5b, all free cells belong to the
robot’s connected component, as there is only one connected component.

5.2 Events

Given the initial configuration space and workspace as constructed as explained
above, we can manipulate the environment by moving the movable obstacles. While
doing so, we need to keep track of the changes made in the configuration space data
structure and the workspace data structure. We can only move an obstacle if it is ma-
nipulable. This is when in the rectangular map of the robot’s configuration space, a
cell in the connected component of the robot is adjacent to a cell occupied by the
C-obstacle of the movable obstacle. Suppose we have selected a movable obstacle
to be moved along some straight line. While moving the obstacle, the coordinates
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of the horizontal lines and the vertical lines associated with the obstacle in both the
configuration space and the workspace change. As long as the ordering of the ver-
tical and horizontal lines remains the same, we only need to update the coordinates
stored at the vertical and horizontal lines. However, at the moment two vertical lines
or two horizontal lines swap position in either the workspace or the configuration
space, we need to (1) check if that swap is allowed (does the obstacle lose its ma-
nipulability? does the obstacle collide with another obstacle?), and if so (2) update
the the data structure.

Given a proposed straight-line movement of an obstacle Mi, we can compute
using the coordinates of the lines what the first event is that will be encountered, i.e.
the first occasion in which we potentially swap two lines. Below we iterate over all
possible events the can be encountered, and show for each of them how we check
whether the event is allowed. We only discuss events that occur when Mi moves
directly to the right (all other directions can be handled symmetrically). So, each
event involves the left or the right line of obstacle Mi, and the left or the right line
of another obstacle, say Mj, in either the workspace or the configuration space (C-
space) of the robot.

• Workspace: left line of Mi, left line of Mj. The event is always allowed.
• Workspace: left line of Mi, right line of Mj. The event is always allowed.
• Workspace: right line of Mi, left line of Mj. The event potentially causes Mi to

start colliding with Mj. The event is allowed if the bottom line of Mi is above the
top line of Mj, or if the top line of Mi is below the bottom line of Mj.

• Workspace: right line of Mi, right line of Mj. The event is always allowed.
• C-space: left line of Mi, left line of Mj. The event potentially causes Mi to stop

being manipulable (similar to the situation of Fig. 3a). The event is not allowed
if all free cells of the connected component of the robot that are adjacent to the
C-obstacle of Mi are below the top line of Mj , above the bottom line of Mj, and
left of the left line of Mj.

• C-space: left line of Mi, right line of Mj . The event is always allowed.
• C-space: right line of Mi, left line of Mj. The event potentially causes the con-

nected component of of the robot to disappear (similar to the situation of Fig.
3b). The event is not allowed if all free cells of the connected component of the
robot that are adjacent to the C-obstacle of Mi are below the top line of Mj, above
the bottom line of Mj, and right of the right line of Mi. The event may also cause
a connected component split (similar to the situation of Fig. 4a); we will discuss
this below.

• C-space: right line of Mi, right line of Mj. The event is always allowed.

If the event we encountered is allowed, we need to update the data structure. If
the event happened in the workspace, we only need to swap the involved lines in
the ordered list of lines stored in the data structure, and update the coordinate of the
lines of the moved obstacle Mi.

If the event happened in the configuration space of the robot, we first swap the
involved lines in the configuration space data structure, and update the coordinate
of the lines of Mi. Second we need to update the information stored with the column
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Algorithm 4. EXPAND(x = 〈c1, . . . ,cn,N〉) : X

1: for K times do
2: Pick a random movable obstacle Mi that is manipulable in x.
3: Pick a random direction θ ∈ {0,π/2,π,3π/2}, and a random distance r.
4: x ← MOVEOBSTACLE(x,Mi,ci +(r cosθ ,r sinθ )).
5: end for
6: return x.

(or row) that is in between the two lines that have swapped. Given the bit-
representation, we simply need to “x-or” the stored value with the bits of both of
the involved obstacles Mi and Mj.

Further, we need to update the component information of the free cells; i.e. set
the flag whether or not they belong to the connected component of the robot. Only
the cells in the column between the two swapped lines may have changed sta-
tus from “occupied by a C-obstacle” to “free” or vice versa. Initially, we set the
flag of all cells in that column to 0 (i.e. not belonging to the robot’s connected
component). Then we use a flood fill from free cells flagged 1 that neighbor the
column to set all the flags of the free cells belonging to the robot’s connected
component. However, if the event involves the right line of Mi, and the left line
of Mj, the connected component of the robot may have split into two components
(which would both be flagged 1 after the above flood-fill). Whether this is the case
can be checked using another flood fill. If the connected component has indeed split,
the robot can in the new situation be in either of the newly created components. In
our algorithm, we randomly pick one, and set the flags of the cells in the other
component to 0.

After the event has been handled, we can compute what the next event is that is
encountered when moving Mi. This repeats until Mi has reached its destination, or
until an event is encountered that is not allowed.

5.3 Algorithm

We implemented the algorithm of Section 4.2 using the data structure presented
above. For each state in the tree, we store both the rectangular map of the workspace
and the rectangular map of the configuration space of the robot. As this is quite
memory-intensive —the space complexity of the data structure is O(n2)— we
slightly changed Algorithm 2 (see Algorithm 4). Instead of storing the state after
each obstacle movement, we let the state be expanded by a random sequence of K
obstacle movements, where K is a parameter of the algorithm. This does not affect
the probabilistic completeness: Theorem 4.1 also holds for a sequence of sequences
of actions. Further, also without loss of probabilistic completeness, we let the obsta-
cles only move along axis-aligned paths (see line 3 of Algorithm 4).
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A B

Fig. 6. The initial situation of two scenarios A and B we perform experiments on. The mov-
able obstacles are light gray, the static obstacles are dark gray, and the robot is even darker
gray. The robot is shown in its start configuration.

6 Results

As a proof-of-concept, we report results of experiments performed on two scenar-
ios (see Fig. 6). Scenario A only contains three movable obstacles, but is a difficult
problem mainly because of the “lock” created by obstacle M3. This problem cannot
be solved by the algorithm of [15] since it belongs to the class of non-monotone
problems. The planner of [10] does not take into account indirect obstacle interac-
tions, and therefore would not consider moving obstacle M2 before moving through
the lock of obstacle M3. Scenario B is more complex in the sense that it contains
more obstacles. It is an axis-aligned version of the problem experimented on in
[15]. The big obstacle M1 must be moved out of the way of the robot, but before this
is possible other obstacles have to be moved out of the way of M1 first.

(a) (b)

Fig. 7. (a) A narrow passage for mov-
able obstacle M formed by two static
obstacles. (b) M bumps against the ob-
stacles to find its way through the nar-
row passage.

We performed our experiments on a 1.66
GHz Intel T5500 processor with 1 GByte of
memory. Our algorithm solves scenario A in
0.01 seconds, and scenario B in 0.38 seconds.
The solutions contain 214 and 23899 obstacle
movements, respectively.

The solutions produced by our algorithm
are not optimal; they include large amounts
of unnecessary obstacle movements. This is
because of the purely random nature of our
algorithm. However, the solutions are found
very fast (although the comparison is not en-
tirely fair, [15] reports a running time of
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2.08 seconds on scenario B). This is explained by the efficiency of the rectangu-
lar map data structure, and our algorithm’s inherent advantage in handling narrow
passages: As the movable obstacles only move along axis-aligned paths, they im-
plicitly use compliance to the static obstacles (see Fig. 7). Even if the boundaries of
two (static) obstacles are collinear (Fig. 7a), there is an explicit ordering of the lines
in the rectangular map data structure, so one is above the other. This is topologically
equivalent to the situation of Fig. 7b, which the movable obstacles exploit to find
their way through narrow passages.

7 Conclusion and Future Work

In this paper, we have discussed the problem of path planning among movable ob-
stacles. We have made the observation that if we maintain an exact representation
of the configuration space of the robot and the connected component the robot is in,
we can decouple the computation of the obstacle movements, and the robot motions
that lead to these obstacle movements. This approach to the problem enabled us to
devise the first probabilistically complete algorithm for this domain.

We have presented a data structure called the rectangular map to maintain an
exact representation of the robot’s configuration space in case all obstacles and the
robot are translating axis-aligned rectangles. We have implemented the algorithm
and the data structure, and used it to solve problems that could not be solved by
previous work.

The requirement to maintain an explicit representation of the robot’s configura-
tion space limits the practical applicability of our algorithm to robots with two or
three degrees of freedom. Note, however, that the number of degrees of freedom of
the movable obstacles is not constrained. Future work includes the implementation
of a data structure to maintain the robot’s configuration space in the more general
case of polygonal and circular obstacles that can both translate and rotate. The ar-
rangement package of CGAL [18] may provide most of the functionality required.
Another possibility to address this limitation is to maintain the robot’s connected
component and its connectivity using sampling-based techniques, without sacrific-
ing probabilistic completeness. This remains subject of future study.

The fact that our algorithm is probabilistically complete shows that we have char-
acterized the problem correctly, but it does not necessarily say much about the per-
formance of the algorithm. In fact, the algorithm that we have presented performs
a rather uninformed brute force search. Enhancing the algorithm with heuristics to
focus the search, such as the ones used in [10, 14, 15], might drastically improve the
performance without losing probabilistic completeness. It may improve the quality
of the produced solutions as well.
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Multi-modal Motion Planning in Non-expansive
Spaces

Kris Hauser and Jean-Claude Latombe

Abstract. The motion planning problems encountered in manipulation and legged
locomotion have a distinctive multi-modal structure, where the space of feasible
configurations consists of overlapping submanifolds of different dimensionalities.
Such a feasible space does not possess expansiveness, a property that characterizes
whether planning queries can be solved with traditional sample-based planners. We
present a new sample-based multi-modal planning algorithm and analyze its com-
pleteness properties. In particular, it converges quickly when each mode is expansive
relative to the submanifold in which it is embedded. We also present a variant that
has the same convergence properties, but works better for problems with a large
number of modes by considering subsets that are likely to contain a solution path.
These algorithms are demonstrated in a legged locomotion planner.

1 Introduction

Probabilistic roadmap (PRM) planners (Chapter 7 of [4]) are state-of-the-art ap-
proaches for motion planning in high-dimensional configuration spaces under ge-
ometrically complex feasibility constraints. They approximate the connectivity of
the feasible set F using a network of randomly sampled configurations connected
by straight line paths. It is widely known that PRMs can be slow when F has poor
expansiveness [11], or, informally, contains “narrow passages” [9]. In certain non-
expansive spaces, where F consists of overlapping submanifolds of varying dimen-
sionality, the narrow passages are arbitrarily thin, and PRMs do not work at all.

This type of multi-modal structure happens in motion planning problems found
in manipulation and legged locomotion. Here, each submanifold in F corresponds
to a mode, a fixed set of contact points maintained between the robot and its en-
vironment. The planner must choose a discrete sequence of modes (a sequence of
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contacts to make and break), as well as continuous single-mode paths through them
(the joint space motions to achieve those changes of contacts).

In problems where each mode is low-dimensional, such as planar manipulation of
multiple objects [1, 15], the primary challenge lies in the combinatorial complexity
of mode sequencing. But in problems with high-dimensional modes, the geomet-
ric complexity of single-mode planning poses an additional challenge. Complete
single-mode planning is intractable, so PRMs are often used for such planning. This
approach has made it possible to solve several specific problems in manipulation
with grasps and regrasps [14, 16] and legged locomotion [2, 8]. But what happens
to the overall planner’s reliability when it is based on a large number of unreliable
single-mode PRM queries (thousands or more)? A PRM planner cannot report that
no path exists, so when a single-mode query fails, we cannot tell if the query is
truly infeasible, or the PRM planner just needed more time. So far, little attention
has been paid to the theoretical performance guarantees of these algorithms when
applied to general multi-modal problems.

This paper presents MULTI-MODAL-PRM, a general-purpose multi-modal plan-
ning algorithm for problems with a finite number of modes, and investigates its theo-
retical completeness properties. MULTI-MODAL-PRM builds a PRM across modes
by sampling configurations in F and in the transitions between modes. We prove
that, like classical PRM planners, MULTI-MODAL-PRM will eventually find a fea-
sible path if one exists, and convergence is fast as long as each mode is favorably
expansive when restricted to its embedded submanifold.

We also present a more practical variant, INCREMENTAL-MMPRM, which
searches for a small candidate subset of modes which are likely to contain a solution
path, and then restricts MULTI-MODAL-PRM to these modes. INCREMENTAL-
MMPRM has the same asymptotic completeness properties as MULTI-MODAL-
PRM, but is usually much faster for problems with a large number of modes (which
is common). We demonstrate the application of INCREMENTAL-MMPRM in a
legged locomotion planner [8], showing that it is indeed reliable.

2 Multi-modal Planning

This section defines multi-modal problems, describes how PRM planners can be
used to solve these problems, and outline the pitfalls that make many existing PRM-
based planners incomplete.

2.1 PRM Planners and Non-expansive Spaces

PRM planners approximate the connectivity of F , the feasible subset of a robot’s
configuration space, using a roadmap of configurations (referred to as milestones)
connected by simple paths (usually straight-lines). The concept of expansiveness
was introduced to characterize how quickly a roadmap converges to an accurate
representation [11]. So this paper can be self-contained, we review the basic algo-
rithm and its properties in the Appendix.
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F F1 F2

F3

Fig. 1. (a) A non-expansive, multi-modal feasible space F . (b) F can be decomposed into
three modes that are individually expansive.

Formally, F is expansive if there exist constants ε,α,β > 0 such that F is
(ε,α,β )-expansive (see Appendix). Otherwise, F is non-expansive. In all expan-
sive spaces, the probability that a PRM fails to solve a planning query decreases to
zero exponentially as the roadmap grows. However, the convergence rate can be-
come arbitrarily slow as ε , α , and β approach zero. An expansive space is poorly
expansive (i.e., ε , α , and β are low) if it contains narrow passages. Fortunately,
smoothed analysis shows that narrow passages are unstable with respect to small
perturbations of the input geometry, and are therefore unlikely to occur (except by
design) [3].

However, some non-expansive spaces do exist, not by chance, but rather for struc-
tural reasons. If F contains a cusp, it is non-expansive, but PRMs might still work
well everywhere away from the cusp, since removing a tiny region around the cusp
makes F expansive without changing its connectivity. But if F contains regions of
varying dimensionality, then PRMs have probability zero of answering most queries.
For example, F may consist of 2D regions connected by 1D curves (Figure 1a). In
these spaces, the PRM convergence bounds take the meaningless value of 1.

Varying dimensionality is inherent in the structure of multi-modal problems. In
these problems, the submanifolds whose union forms F can be enumerated from
the problem definition, e.g., by considering all possible combinations of contacts.
However, their number may be huge.

2.2 Multi-modal Problem Definition

The robotic system moves between a finite set of modes, Σ . Each mode σ ∈ Σ
is assigned a mode-specific feasible space Fσ , and F =

⋃
σ∈Σ Fσ (Figure 1b). The

feasibility constraints of a mode can be divided into two classes.

• Dimensionality-reducing constraints, often represented as functional equalities
Cσ (q) = 0. They define the submanifold Cσ as the set of configurations that sat-
isfy these constraints.
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C

Fσ
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Fσ ′ q′′
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Fig. 2. (a) At a mode σ , motion is constrained to a subset Fσ of a submanifold Cσ with lower
dimension than C. (b) To move from configuration q at stance σ to q′′ at an adjacent stance
σ ′, the motion must pass through a transition configuration q′.

• Volume-reducing constraints, often represented as inequalities Dσ (q) > 0. These
may cause Fσ to be empty. Otherwise, Fσ has the same dimension as Cσ but
lower volume (Figure 2a).

For example, in legged locomotion, σ is a fixed set of footfalls. F can be embedded
in a configuration space C, which consists of parameters for a free-floating robot
base and the robot’s joint angles. Enforcing contact at the footfalls imposes mul-
tiple closed-loop kinematic constraints, which in turn define Cσ (a submanifold of
uniform lower dimension, except at singularities). Collision avoidance and stability
constraints are volume-reducing, and restrict Fσ to a subset of Cσ .

2.3 Planning between Two Modes

PRMs can be used for single-mode planning restricted to Cσ . This requires adapt-
ing configuration sampling and path segment feasibility testing to the submanifold,
since the sampler must have nonzero probability of generating a configuration in Fσ ,
and a path segment on Cσ may not be a straight line. Two approaches are parame-
terizing Cσ with an atlas of charts [5], or using numerical methods to move config-
urations from the ambient space onto Cσ [13]. A PRM planner will plan quickly as
long as Fσ is expansive (with Cσ taken as the ambient space).

Suppose the robotic system is at configuration q in mode σ . To switch to a new
mode σ ′, it must plan a path in Fσ that ends in a configuration q′ in Fσ ∩Fσ ′ (Figure
2b). The region Fσ ∩Fσ ′ is called the transition between σ and σ ′, and q′ is called
a transition configuration. Transitions are at least as constrained as σ or σ ′ because
they must simultaneously satisfy the constraints of both stances. Hence, they often
have zero volume relative to Cσ or Cσ ′ . Thus, transition configurations should be
sampled explicitly from Cσ ∩Cσ ′ . Like single-mode sampling, transition sampling
can be performed using explicit parameterization or numerical techniques [6].
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The existence of q′ is a necessary condition for a single-mode path to connect
q and σ ′, and is also a good indication that a feasible path exists. Sampling q′ is
also typically faster than planning a single-mode path. These two observations are
instrumental in the implementation of INCREMENTAL-MMPRM. However the ex-
istence of q′ is not sufficient for a path to exist, because q and q′ might lie in different
connected components of Fσ .

2.4 Planning in Multiple Modes

Because PRMs usually work well for single-mode planning, multi-modal planning
is usually addressed by computing several single-mode plans and concatenating
them into a multi-modal plan. Given a finite set of modes {σ1, . . . ,σm}, a multi-
modal planner explores a mode graph G. Each vertex in G represents a mode, and
an edge connects each pair of adjacent modes. We assume we are given a cheap
computational adjacency test, which tests a necessary condition for the existence of
a path moving between any pair of modes σ and σ ′. For example, an adjacency test
in legged locomotion tests whether σ ′ adds exactly one footfall within the reach of
σ . The test is fast, but prunes out many unnecessary edges from G.

Because G tends to be extremely large, one natural strategy explores only a small
part of G. For example, a search-like algorithm incrementally builds a tree T of
configurations reachable from the start configuration of the robot. Each expansion
step picks a configuration q at mode σ in T , enumerates each adjacent mode σ ′, then
uses a PRM to plan a feasible single-mode path from q to a transition configuration
q′ in Fσ ∩Fσ ′ . If the outcome is successful, q′ is added to T . These steps are repeated
until the goal is reached.

2.5 Completeness Challenges in Multi-modal Planning

Special challenges arise when combining several single-mode PRM queries to solve
a multi-modal problem. MULTI-MODAL-PRM addresses the following issues, any
of which may cause a planner to fail to find a path.

Because any single-mode query might be infeasible, the PRM planner must be
terminated with failure after some cutoff time. Set the cutoff too low, and the planner
may miss critical paths; too high, and the planner wastes time on infeasible queries.
Some prior work tries to avoid infeasible queries [2, 6, 12], allowing the cutoff to
be set high. Another approach avoids cutoffs by interleaving computation among
queries [6, 14, 15].

Because transitions Fσ ∩Fσ ′ may have zero volume in Fσ or Fσ ′ , transition con-
figurations should be sampled explicitly from Cσ ∩Cσ ′ . Furthermore, more than
one configuration q′ may need to be sampled in each transition Fσ ∩Fσ ′ , because
a configuration may lie in a component that is disconnected in F from the start
configuration q, or one that is disconnected in F ′ from a target configuration q′′.
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3 Multi-Modal-PRM

This section presents the general MULTI-MODAL-PRM algorithm, and gives an
overview of its theoretical completeness properties.

3.1 Algorithm

MULTI-MODAL-PRM builds PRMs across all modes, connecting them at ex-
plicitly sampled transition configurations (Figure 3). Suppose there are m modes,
Σ = {σ1, . . . ,σm}. For each σi ∈ Σ maintain a roadmap Rσi of Fσi . Define the sam-
pler SAMPLE-MODE(σi) as follows. Uniformly sample a configuration q from Cσi .
If q is in Fσi , q is returned; if not, SAMPLE-MODE returns failure. Similarly, define
SAMPLE-TRANS(σi,σ j) to rejection sample from Fσi ∩Fσ j . MULTI-MODAL-PRM
is defined as follows:

MULTI-MODAL-PRM(qstart ,qgoal,N)
Add qstart and qgoal as milestones to the roadmaps corresponding to their modes
(σstart and σgoal).
Repeat N times:

1. For each mode σi, sample a configuration q using SAMPLE-MODE(σi). If it suc-
ceeds, add q to Rσi as a new milestone, and connect it to existing milestones.

2. For each pair of adjacent modes σi and σ j, sample a configuration q using
SAMPLE-TRANS(σi,σ j). If it succeeds, add q to Rσi and Rσ j , and connect it
to all visible milestones in Rσi and Rσ j .

Build an aggregate roadmap R by connecting roadmaps at matching transition con-
figurations.
If qstart and qgoal are connected by a path in R, terminate with success. Otherwise,
return failure.

(a) (b) (c) (d)

Fig. 3. Illustrating MULTI-MODAL-PRM on an abstract example problem. (a) A mode graph
with nine modes, with adjacent modes connected by lines. (b) The transition regions, with
arrows indicating how they map between modes. (c) Building roadmaps. Light dots are
milestones sampled from modes, dark ones are sampled from transitions. (d) The aggregate
roadmap. Transition configurations connected by dashed lines are identified.
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3.2 Summary of Theoretical Results

Section 4 will prove that, under certain conditions, the probability that MULTI-
MODAL-PRM incorrectly returns failure when a feasible path actually exists is less
than ce−dN , where c and d are positive constants and N is the number of iterations.
This means that as more time is spent planning, the probability of failure decreases
quickly to zero. The constants c and d do not explicitly depend on the dimension-
ality of the configuration space, or the total number of modes. Furthermore, since
a constant number of samples (m + n, where n is the number of adjacencies) are
drawn per iteration, MULTI-MODAL-PRM also converges exponentially in the to-
tal number of samples drawn.

This bound holds if the following conditions are met:

1. The set of modes Σ = {σ1, . . . ,σm} is finite.
2. If Fσi is nonempty, then it is expansive.
3. If Fσi is nonempty, SAMPLE-MODE(σi) succeeds with nonzero probability.
4. If Fσi ∩Fσ j is nonempty, SAMPLE-TRANS(σi,σ j) samples each connected com-

ponent of Fσi ∩Fσ j with nonzero probability.

4 Proof of Completeness Properties

This section proves that MULTI-MODAL-PRM is probabilistically complete and
exponentially convergent in the number of iterations. The proof shows that three
processes exponentially converge: 1) BASIC-PRM under rejection sampling; 2)
roadmaps connecting transition components; and 3) roadmaps along any sequence
of modes which contains a feasible multi-step path.

4.1 Exponential Convergence

We say a process is exponentially convergent in N if the probability of failure is
lower than ae−bN for positive constants a and b. A useful composition principle
allows us to avoid stating the coefficients a and b, which become cumbersome.
If two quantities are subject to exponentially decreasing upper bounds, their sums
and products are themselves subject to exponentially decreasing bounds. The prod-
uct is trivial, and a1e−b1N + a2e−b2N is upper bounded by ae−bN for a = (a1 + a2)
and b = minb1,b2. So if two processes are exponentially convergent in N, then the
probability that both of them succeed, or either one succeeds, also converges expo-
nentially in N.

4.2 PRMs Converge under Rejection Sampling

The first lemma states that PRMs converge exponentially, not just in the number
of milestones (as was proven in [11]), but also in the number of rejection samples
drawn. Let p be the probability that a random sample from C lies in F . From N
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configurations uniformly sampled at randomfrom C, let the milestones M be those
that are feasible.

Lemma 4.1. If F is expansive and p > 0, the probability that a roadmap R con-
structed from M connects two query configurations q1 and q2 converges to 1 expo-
nentially in N.

Proof. Since the configuration samples are independent, the size of M is binomially
distributed. Hoeffding’s inequality gives an upper bound to the probability that M
has n or fewer milestones:

Pr(|M| ≤ n)≤ exp(−2(N p−n)2/N).

If |M| ≤ n, the probability of failure is at most 1. On the other hand, if |M| > n,
the probability that R fails to connect q1 and q2 is less than ce−dn, where c and d
are the constants in Theorem 7.1 (see Appendix). Since these events are mutually
exclusive, the overall probability of failure ν is bounded as follows:

ν ≤Pr(|M| ≤ n) ·1 + Pr(|M|> n)cexp(−dn)

≤exp(−N p2/2)+ cexp(−Nd p/2)
(1)

where we have set n = pN/2. Using the composition principle, this bound is expo-
nentially decreasing in N. �

4.3 Convergence of Connecting Transition Components

Here we consider the probability of finding a path in F between arbitrary connected
subsets A and B, by building a roadmap using N rejection samples in A, B, and F .

Let M and p be defined as in Lemma 4.1. Let us rejection sample A and B re-
spectively by drawing samples uniformly from supersets A′ and B′, with probability
of success pA and pB. From N configurations sampled from A′, let MA be the set of
milestones in A. Define MB similarly.

Lemma 4.2. Assume F is expansive, and p, pA, and pB are nonzero. Let R be the
roadmap constructed from all milestones M, MA, and MB. If A and B are in the same
connected component in F, then the probability that R contains a path between A
and B converges to 1 exponentially in N.

Proof. View any pair of milestones qA in MA and qB in MB as PRM query configu-
rations. Then R contains a path between A and B when MA is nonempty (event X),
MB is nonempty (event Y ), and the roadmap formed from M connects qA and qB

(event Z).
The probability that N rejection samples from A′ fails to find a milestone in A is

at most (1− pA)N ≤ e−N pA . So event X is exponentially convergent. The same holds
for Y . Finally, event Z is exponentially convergent in N by Lemma 4.1 and since
qA and qB are in the same connected component. The lemma holds by applying the
composition principle to X , Y , and Z. �
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4.4 Convergence of Multi-Modal-PRM

Lemma 4.3. Let the assumptions at the end of Section 3 hold. Between any two
configurations, if any feasible multi-step path exists, there exists some feasible path
that makes a finite number of mode switches.

Proof. Expansiveness implies ε-goodness, which implies that each connected com-
ponent of the feasible space has volume at least ε > 0. Let ε0 be such that each
mode is ε0-good. Then, each mode can only contain 1/ε0 components, with m/ε0

components overall. �

Theorem 4.1. Let the assumptions at the end of Section 3 hold. If qs and qg can be
connected with a feasible multi-step path, then the probability that MULTI-MODAL-
PRM finds a path converges to 1 exponentially in the number of iterations N.

Proof. If qs and qg can be connected with a feasible path, there is a feasible path
with a finite number of mode switches. Suppose this path travels through mode σk,
starting at transition connected component A and ending at B. SAMPLE-MODE and
SAMPLE-TRANS have properties allowing Lemma 4.2 to be applied to roadmap
Rσk . Therefore, the probability that Rσk connects A and B exponentially converges
to 1. The theorem follows from repeating this argument for all modes along the path,
and using the composition principle a finite number of times. �

Dimensionality of and the total number of modes m do not explicitly affect the
coefficients in the convergence bound (although the total cost per iteration is at
least linear in m). The modes’ expansiveness measures and the parameters p and p′

have a straightforward effect on the convergence rate: when expansiveness or the
parameters increase, the bound moves closer to zero. The bound also moves closer
to zero if fewer modes are needed to reach the goal, or if the goal can be reached via
multiple paths.

5 An Incremental Variant

Even executing a few iterations of MULTI-MODAL-PRM is impractical if the num-
ber of modes is large. Typical legged locomotion queries have over a billion modes,
but only tens or hundreds of steps are needed to go anywhere within the range of
visual sensing. The INCREMENTAL-MMPRM variant uses heuristics to produce a
small subset of modes that are likely to contain a path to the goal. Limiting plan-
ning to these modes make planning much faster. But heuristics are not always right,
so INCREMENTAL-MMPRM is designed to gracefully degrade back to MULTI-
MODAL-PRM if necessary.

5.1 Overview

INCREMENTAL-MMPRM alternates between refinement and expansion. At each
round r, it restricts itself to building roadmaps over a candidate set of modes Σr. We
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set Σ0 to the empty set, and all single-mode roadmaps (except the start and goal) are
initially empty. The algorithm repeats the following for rounds r = 1, . . . ,Q:

1. Expansion. Add new modes to Σr−1 to produce the next candidate mode set Σr.
2. Refinement. Incrementally build roadmaps in Σr by performing nr mode and tran-

sition samples (e.g., one iteration of MULTI-MODAL-PRM).

The performance of INCREMENTAL-MMPRM depends mainly on the expan-
sion heuristic. The heuristic does not affect asymptotic convergence, as long as
the candidate mode set grows until it cannot expand any further (at which point
INCREMENTAL-MMPRM behaves exactly like MULTI-MODAL-PRM). But prac-
tically, it has a large impact on running time. The heuristic below can be applied
to any multi-modal planning problem, and improves running time by orders of
magnitude.

5.2 Expansion: Search among Feasible Transitions

In virtually all multi-modal problems we have studied, one may consider a huge
number of modes and transitions, but most of them are actually infeasible, i.e., have
empty feasible spaces. Trying to sample such spaces would cause the planner to
waste a considerable amount of time. Instead, iff the expansion step produces can-
didate modes that are likely to contain a feasible path, overall planning speed will
be improved, even if expansion incurs some additional computational expense.

Search among feasible transitions (SAFT) uses the existence of a feasible tran-
sition as a good indication that a feasible path exists as well (as in [2]). SAFT in-
crementally builds a mode graph G, but without expanding an edge until it samples
a feasible transition configuration. To avoid missing transitions with low volume,
SAFT interleaves transition sampling between modes (as in [6]). It maintains a list
A of “active” transitions. Each transition T in A has an associated priority p(T ),
which decreased as more time is spent sampling T . The full algorithm is as follows:

SAFT-INIT (performed only once at round 0)
Add the start mode σstart to G. Initialize A to contain all transitions out of σstart .

SAFT-EXPAND(r) (used on expansion round r)
Repeat the following:

1. Remove a transition T from A with maximum priority. Suppose T is a transition
from σ to σ ′. Try to sample a configuration in Fσ ∩Fσ ′ .

2. On failure, reduce the priority p(T ) and reinsert T into A.
3. On success, add σ ′ to the mode graph G. For each transitions T ′ out of σ ′, add

T ′ to A with initial priority p(T ′).

Repeat until G contains a sequence of modes (not already existing in Σr−1) connect-
ing σstart to σgoal. Add these modes to Σr−1 to produce Σr.
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Fig. 4. Three terrains for testing the locomotion planner.

As in [6], SAFT-EXPAND may find paths more quickly if the initial p(T ) esti-
mates the probability that T is nonempty. Other heuristics, such as a bias toward
easier steps, could also be incorporated into p(T ) [8].

5.3 Refinement: Strategies to Improve Connectivity

The running time of INCREMENTAL-MMPRM is also substantially affected by the
refinement strategy. First, if the sample count parameter nr is too high, the planner
might waste time on a candidate set of modes that contains no feasible path; too
low, and the planner will expand the candidate mode set unnecessarily. We set nr

proportional to the number of modes, with some minor tuning of the proportionality
constant.

Second, given a fixed nr, the planner should allocate single-mode planning com-
putations to maximize its chance of finding a feasible path. If a mode’s roadmap is
already highly connected, then more samples are unlikely to improve connectivity,
so we bias sampling toward modes with poorly connected roadmaps. Furthermore,
if the aggregate roadmap R already contains paths connecting two modes separated
by σ , additional planning in σ is unlikely to improve connectivity. Thus, we bias
sampling toward modes that could potentially connect large components of R.

Also, rather than use BASIC-PRM for single-mode planning, we use the SBL
variant, which is much faster in practice [17]. SBL grows trees rooted from transi-
tion configurations, and delays checking the feasibility of straight line paths.

6 Experiments in a Legged Locomotion Planner

We use legged locomotion as a case study to demonstrate that MULTI-MODAL-
PRM improves reliability over a prior incomplete approach. See [8] for the complete
problem specification and implementation.

Our previous studies used a two-phase algorithm, here called SINGLE-TRANS.
The first phase performs exploration of the mode graph (and is nearly identical to
SAFT). It searches the mode graph for a sequence of footsteps to take, and a single
feasible transition configuration for each step. In a second phase, single-mode paths
are planned between subsequent transition configurations. If single-mode planning
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Table 1. Locomotion planning statistics on various problems with a fixed mode sequence,
averaged over 10 runs. Standard deviations in parentheses.

Problem Method % successful Time (s)
Single trans 0% 501 (88.3)

Flat MMPRM 90% 409 (180)
I-MMPRM 100% 106 (36.6)
Single trans 0% 149 (29.5)

Hills MMPRM 100% 181 (103)
I-MMPRM 100% 99.5 (28.3)
Single trans 0% 258 (36.9)

Stair MMPRM 100% 507 (197)
I-MMPRM 100% 347 (138)

fails, it returns to exploration. SINGLE-TRANS solved many challenging problems
for a four-limbed robot [2] and a bipedal robot [7].

We attempted to apply SINGLE-TRANS to NASA’s ATHLETE robot, a six-legged
lunar vehicle with 36 revolute joints. We found that even on seemingly simple prob-
lems, the single-mode planning phase often failed, forcing the algorithm to return
often to exploration. Each exploration usually takes several minutes, leading the
overall planner to have a long running time, with high variability between runs. By
contrast, our experiments here show that MULTI-MODAL-PRM is usually able to
find a path after only one exploration phase.

We compare SINGLE-TRANS (Single Trans), MULTI-MODAL-PRM (MMPRM),
and INCREMENTAL-MMPRM (I-MMPRM) using the connection strategy outlined
in Section 5.3 on the three test terrains of Figure 4: flat ground (Flat), a smoothly
undulating terrain (Hills), and a stair step with a height of 0.5 times the diameter
of ATHLETE’s chassis (Stair). To avoid variability of running time due to the the
choice of footsteps, we restrict each planner to a single sequence of modes Σ which
is known to contain a feasible path (so in essence, the mode graph is a single string
of modes). These sequences were computed by running INCREMENTAL-MMPRM
and extracting the modes along the path. Σ ranges in size from 14 to 37 modes. Note
that our use of the restricted mode graph obscures the major benefit of I-MMPRM
(again, restricting planning to a small subset of the mode graph). It is nonetheless
necessary for comparison purposes, because MMPRM would not be able to even fit
the original mode graph in memory. We tested each method 10 times on identical
Σ but with different random seeds, and terminated the planner if no path was found
after 30,000 total samples.

Table 1 reports the results. The single-transition method fails in every case. The
methods based on MULTI-MODAL-PRM successfully find a path within the itera-
tion limit nearly every time. I-MMPRM is faster than MMPRM, especially when
the steps have varying degrees of difficulty. On flat ground, Σ contained one par-
ticularly difficult step (depicted in Figure 4), and hence I-MMPRM was over four
times faster.
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The failure of the single-transition method is consistent with the explanation that,
by accident, transition configurations were sampled in disconnected components,
which of course cannot be connected with single-mode paths. The MULTI-MODAL-
PRM-based methods succeed by sampling multiple configurations in each transition
(typically around 10 before finding a solution).

In similar experiments with a bipedal humanoid robot [7], SINGLE-TRANS

worked fairly consistently, with an 80-90% success rate. MMPRM and I-MMPRM
were again consistently successful, but needed very few configurations per transition
(typically 1 or 2 before finding a solution). This modest reliability increase came at
a moderate computational overhead; I-MMPRM averaged about twice as long as
SINGLE-TRANS at finding a feasible path.

7 Conclusion

This paper presented MULTI-MODAL-PRM, a new sample-based multi-modal
planning algorithm for problems with a finite number of modes. We proved that
MULTI-MODAL-PRM has probability of failure exponentially converging to 0 in
the number of samples drawn, if the feasible space of each mode is expansive rel-
ative to its embedded submanifold. We also presented a variant, INCREMENTAL-
MMPRM, which restricts planning to an incrementally growing set of candidate
modes, and is orders of magnitude faster than MULTI-MODAL-PRM in problems
with large numbers of modes. We demonstrated the reliability of these techniques
in experiments in a locomotion planner.

When applied to the ATHLETE six-legged robot, MULTI-MODAL-PRM dramat-
ically improves the planner’s reliability over a simpler incomplete method. When
applied to a humanoid biped, MULTI-MODAL-PRM modestly improves reliability
with moderate overhead. These results suggest that disconnected feasible spaces oc-
curred more frequently in ATHLETE than in the biped. Future work might aim to
discover the causes of this phenomenon. We suspect characteristics of ATHLETE’s
kinematics (e.g., singularities) or its larger number of legs in contact might be con-
tributing factors.

Most systems with contact are posed as having a continuous (uncountably in-
finite) number of modes, which are then discretized for planning [8, 15, 16]. The
completeness results in this paper hold only if the set of discretized modes contains
a solution path. If no such path exists, the modes may have been discretized poorly.
In future work, we hope to investigate the completeness and convergence rate of
multi-modal planners that sample modes from continuous sets of modes.

Appendix

This appendix reviews the basic PRM algorithm and its theoretical completeness
properties in expansive spaces.
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S1 S2

(a)

S1 S2

(b)

Fig. 5. A poorly expansive space. (a) The visibility set V (q) in region S2, of a point q in S1.
(b) LOOKOUTβ (S1) is the set of points that see at least a β fraction of S2.

A.1 Basic Algorithm

PRM planners address the problem of connecting two configurations qstart and qgoal

in the feasible space F , a subset of configuration space C. Though it is prohibitively
expensive to compute an exact representation of F , feasibility tests are usually
cheap. So to approximate the connectivity of F , PRM planners build a roadmap
R, a network of feasible configurations (called milestones) connected with straight-
line segments. A basic algorithm operates as follows:

BASIC-PRM(qstart ,qgoal,n)
Add qstart and qgoal to R as milestones.
Repeat n times:

1. Sample a configuration q uniformly from C, and test its feasibility. Repeat until
a feasible sample is found.

2. Add q to R as a new milestone. Connect it to nearby milestones q′ in R if the line
segment between q and q′ lies in F .

If R contains a path between qstart and qgoal, return the path.
Otherwise, return ‘failure’.

If a PRM planner produces a path successfully, the path is guaranteed to be feasible.
If it fails, then we cannot tell whether no path exists or the cutoff n was set too low.

A.2 Performance in Expansive Spaces

BASIC-PRM and several variants have been shown to be probabilistically complete,
that is, the probability of incorrectly returning failure approaches 0 as n increases.
One particularly strong completeness theorem proves that PRMs converge exponen-
tially, given that F is expansive [11].

The notion of expansiveness expresses the difficulty of constructing a roadmap
that captures the connectivity of F . The success of PRMs in high dimensional spaces
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is partially explained by the fact that expansiveness is not explicitly dependent on
the dimensionality of F . Let μ(S) measure the volume of any subset S ⊆ F (with
μ(F) finite), and let V (q) be the set of all points that can be connected to q with a
straight line in F . The lookout set of a subset S of F is defined as the subset of S
that can “see” a substantial portion of the complement of S (see Figure 5). Formally,
given a constant β ∈ (0,1] and a subset S of a connected component F ′ in F , define

LOOKOUTβ (S) = {q ∈ S | μ(V (q)\ S)≥ β μ(F ′ \ S)}

For constants ε , α , β ∈ (0,1], F is said to be (ε,α,β )-expansive if:

1. For all q ∈ F , μ(V (q))≥ εμ(F).
2. For any connected subset S, μ(LOOKOUTβ (S))≥ αμ(S).

The first property is known as ε-goodness, and states that each configuration “sees”
a significant fraction of F . The second property can be interpreted as follows. View
S as the visibility set of a single roadmap component R′. Let F ′ be the component
of feasible space in which S lies. Then, with significant probability (at least αμ(S)),
a random configuration will simultaneously connect to R′ and significantly reduce
the fraction of F ′ not visible to R′ (by at least β ).

The primary convergence result of [11] can be restated as follows:

Theorem 7.1. If F is (ε,α,β )-expansive, then the probability that a roadmap of n
uniformly, independently sampled milestones fails to connect qstart and qgoal is no
more than ce−dn for some positive constants c and d.

The constants c and d are simple functions of ε , α , and β . If F is favorably expan-
sive (ε , α , and β are high), the bound is close to zero, and BASIC-PRM will find
a path between qstart and qgoal relatively quickly. If, on the other hand, F is poorly
expansive (ε , α , and β are low), then PRM performance might be poor for cer-
tain query configurations qstart and qgoal. A complementary theorem proven in [10]
states that a PRM planner will succeed with arbitrarily low probability for any fixed
n in spaces with small α and β .
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1. Alami, R., Laumond, J.-P., Siméon, T.: Two manipulation planning algorithms. In: Gold-
berg, K., Halperin, D., Latombe, J.-C., Wilson, R. (eds.) Alg. Found. Rob., pp. 109–125.
A K Peters, Wellesley (1995)

2. Bretl, T., Lall, S., Latombe, J.-C., Rock, S.: Multi-step motion planning for free-climbing
robots. In: WAFR, Zeist, Netherlands (2004)

3. Chaudhuri, S., Koltun, V.: Smoothed analysis of probabilistic roadmaps. In: Fourth
SIAM Conf. of Analytic Algorithms and Comp. Geometry (2007)

4. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun,
S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press,
Cambridge (2005)
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Toward SLAM on Graphs

Avik De, Jusuk Lee, Nicholas Keller, and Noah J. Cowan

Abstract. We present an algorithm for SLAM on planar graphs. We assume that a
robot moves from node to node on the graph using odometry to measure the dis-
tance between consecutive landmark observations. At each node, the robot follows
a branch chosen at random, without reporting which branch it follows. A low-level
process detects (with some uncertainty) the presence of landmarks, such as corners,
branches, and bumps, but only triggers a binary flag for landmark detection (i.e.,
the robot is oblivious to the details or “appearance” of the landmark). Under un-
certainties of the robot’s odometry, landmark detection, and the current landmark
position of the robot, we present an E-M-based SLAM algorithm for two cases: (1)
known, arbitrary topology with unknown edge lengths and (2) unknown topology,
but restricted to “elementary” 1- and 2-cycle graphs. In the latter case, the algorithm
(flexibly and reversibly) closes loops and allows for dynamic environments (adding
and deleting nodes).

1 Introduction

Navigation of inexpensive mobile robots with limited computational capabilities,
imprecise sensing, and crude odometry presents a number of interesting challenges.
Here, we approach the problem of Simultaneous Localization and Mapping (SLAM,
cf. [10]) in this setting. We assume that as a robot moves through the environment,
a low level control algorithm allows the robot to follow physical structures (walls,
doorways, etc.). These physical structures are presumed to give rise to a natural
graph structure where nodes of the graph are intermittent features detected by the
robot’s sensory system, including doorways, corners, or bumps on the wall (Fig. 1).
This sensory system was inspired by an artificial antenna [17] from which the tactile
feedback received is close range, intermittent, and sparse. This means that the robot
needs only run its mapping and localization algorithm occasionally (when a feature
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Fig. 1. An illustration of how an environment with landmarks is treated purely as a graph by
the robot.

is detected), but that only “corridor-like” environments with walls are considered
in this paper. Here, the observation is simply the odometrically measured distance
traversed since the last detected node, and we allow for the possibility of missing
nodes or detecting false positives.

In short, we propose a solution to the SLAM problem given sparse sensory data
(binary and intermittent) and a low dimensional state space. The topological ap-
proach lets us abstract the application (for example an indoor environment) from
the basics of the algorithm.

Almost all existing SLAM approaches use some statistical technique due to the
inherent uncertainty in noisy robot motion and/or observation. Csorba [7] developed
the theory behind a modified Extended-Kalman-Filter (EKF) based SLAM algo-
rithm; the EKF method has been improved and used extensively such as in [12]. By
the nature of an EKF, the motion model and observation noise are independent: the
sensory noise is a function of the sensor physics, and is independent of the robot’s
motion noise. By contrast, our approach considers the motion and observation mod-
els as deeply related: the observation model is the “time to collision” for the motion
model. In this paper, we use a Wiener process motion model which gives rise to
an Inverse Gaussian sensory model; however this method can work with a variety
of movement and sensory models as long as there is a probability density function
describing the observations and an estimator, such as maximum likelihood, for its
parameters.

Monte Carlo or particle filter approaches like FastSLAM [19] were designed to
be computationally efficient, mapping up to thousands of landmarks while using the
EKF for landmark location estimation. In our framework of intermittent observa-
tions, such a huge number of landmarks would be rare.

We used an E-M (Expectation–Maximization) based mapping approach which
has been explored previously by others using various approaches. Unlike Thrun [23]
who considered a discrete brute-force minimization of a cost function over a grid-
based map, we considered our map lengths to be continuous and derive a formula
for an approximate solution. GraphSLAM [24] optimizes a specially constructed
graph with robot poses and landmarks as nodes to get the map posterior and is
meant to work “off-line.” We considered an “on-line” approach where the robot
dynamically builds the map as it receives observations. Another approach uses a
Kalman filter [22] which attempts to keep track of the full states in between nodes
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(or observations) by taking the limit of a “dummy” observation variance to infinity.
Utilizing the fact that our sensory information (edge length) is only available on
every node contact and is directly related to the motor noise, we posed the problem
to recovering the topological state of the robot; this has the added benefit of being
more robust to problems such as loop closure.

Most SLAM implementations represent the map as a metric object but several
researchers have taken a topological approach. Choset and Nagatani [6] treat the
higher dimensional robot navigation space as a topology by using a Generalized
Voronoi Graph (GVG) and perform localization using graph matching. Our simple
sensor models generate sparse data that lends itself well to graph representation,
and we attempt to simultaneously map and localize the robot on the graph using
only odometry and landmark detection without appearance information. In [20], the
authors demonstrate mapping using Bayesian methods and a prior over graphs. To
search over the space of graphs, they use Monte Carlo sampling by starting with
a random topology, proposing a modification based on a proposal distribution and
then picking the new one if it improves a pre-set cost function. Bailey [3] proposes
a graph theoretic approach to data association. A recent approach [11] performs
SLAM on graphs using “energy” of the graph as a metric for choosing the best fit-
ting topology and Extended Information Filter (EIF) for mapping. For all of these
“model selection” issues, like data association and evaluating how good a topo-
logical fit is, we use an information theoretic criterion which rationalizes selection
based on entropy considerations. A few methods [16, 18] combine both metric and
topological information, composed of local feature-based metric maps connected
by edges in a topology, using Kalman Filter or FastSLAM based methods. Our ap-
proach does not require metric mapping because we estimate lengths in the map as
edge parameters.

The main contribution made by this paper is a multi-part algorithm that solves
SLAM on planar graphs (assuming “elementary” 1- or 2-cycle topologies) including
a novel loop closure approach using a model selection criterion (Sections 3–5). We
verify our results and test applications of the algorithm through numerical experi-
ments (Section 6), and address unsolved problems and opportunity for improvement
(Section 7).

2 Preliminaries

2.1 Notation

We represent the topology of landmarks as a graph G with N nodes and M edges. We
denote the set of all nodes as X = {1, . . . ,N}. Each node i ∈X has degree κi [13]
and a landmark detection probability qi which is assumed to be known a priori (our
long-term goal is to use sensor characteristics to estimate this—see Discussion).
The edge lengths between adjacent nodes are denoted by θ = {θ1, . . . ,θM}, and the
robot’s estimates are θ̂ = {θ̂1, . . . , θ̂M}.
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As mentioned in Section 1, our SLAM algorithm runs at discrete instances k ∈ Z

where each increment in k occurs when a landmark is detected. We use xk ∈ X
to denote the node position of the robot in the graph at instance k. The robot’s
(odometry) observation yk is a variable representing the distance traveled between
the events of detecting nodes at instances k− 1 and k. The history of odometry
observations is denoted yk

1 ≡ {y1, . . . ,yk}.
Let S denote the discrete set of states the robot can be in where sk ≡ (xk,ek)∈S

and ek is the “entry” edge to node xk. Note that |S |= ∑N
i=1 κi. This choice of state

takes into account the position and orientation of the robot in G at any instance k.
We also denote the transition made by the robot at time k as tk, the corresponding
observation as yk, the start state as L(tk), and the end state as R(tk). Relating to
our existing notation, R(tk) = sk = L(tk+1). Let the number of edges included in a
transition be the “length” of the path |t|.

2.2 Odometry Measurement Error: Inverse Gaussian

When using Bayes’ rule or performing parameter estimation we need to analytically
express the posterior likelihood of an observation Pθ (y). This expression can be
thought of as the distribution over the first passage time to a fixed distance in a
random walk. This distribution is known in the literature as the Inverse Gaussian
(IG) or Wald distribution [5].

We assume the robot’s motion in between nodes to be a Wiener process with a
variance σ2 and a constant and strictly positive drift velocity v. Then the distribution
of the first passage time is a probability density function [5]:

N −1(τ; μ ,λ ) =

√
λ

2πτ3 exp
(
− λ (τ− μ)2

2μ2τ

)
, (1)

where μ = L/v, λ = L2/σ2, τ = yk/v (passage time) and L is the actual edge length
associated with the observation yk. For our purposes it makes more sense to write
the pdf as a function of yk, v and L:

Pθ (yk)∼N −1(yk;L,v,σ2) =
Lv3/2y−3/2

k√
2πσ2

exp

(
−(yk−L)2v

2σ2yk

)
. (2)

For this distribution, P(yk < 0) = 0, and as noise decreases the shape looks more
and more Gaussian.

3 Mapping with Known, Arbitrary Topology

Mapping an unknown environment along with localization make up the SLAM
problem. We treat mapping first, and then localization in Section 5.
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The “map” in our case consists of the graph G and its associated edge lengths
θ (G) = {θ1, . . . ,θM}. In this section we assume G is known (and can be a general
graph without any restrictions) and we find an estimate θ̂ (G):

θ̂(G) = argmax
θ

P(yk
1|θ ;G). (3)

In Section 4 we address the problem when G is unknown.

3.1 Perfect Data Association

When each observation can be perfectly associated to an edge length, we can do
a simple ML estimate of the parameter. For this section, let θi be the edge length
associated with the observations yk

1. Then

θ̂i = argmax
θi

(
lnP(yk

1|θi)
)

.

Using (2) and maximizing the likelihood function above gives θ̂ as a function of the
sample harmonic mean 〈y〉:

θ̂i =
1
2

(
〈y〉+

√
〈y〉2 + 4σ2〈y〉/v

)
, where

k
〈y〉 =

k

∑
i=1

1
yi

. (4)

3.2 Imperfect Data Association: E-M Approach

When data association is not deterministic (for example if the robot does not perfectly
detect nodes), the observed data yk

1 are “incomplete” and we cannot directly maximize
Pθ (yk

1). The E-M algorithm [8] introduces “hidden variables” zk
1 which are chosen

such that Pθ (yk
1,z

k
1) or the “complete data” is specifiable by some distribution.

The E step computes an expectation (and effectively averages over) the hidden
variables zk

1 and lets us maximize a likelihood Pθ (yk
1):

Q(θ ,θ ′) = EZ|Y ;θ ′
[
lnPθ (yk

1,z
k
1)
]

=
k

∑
l=1

∑
zl

(lnPθ (yl|zl)+ lnPθ (zl))Pθ ′(zl|yk
1). (5)

The natural choice of each hidden variable is zl = tl , but this raises the issue that
the space of paths t is infinite and the sum seems intractable. This problem can be
solved by breaking up the sum by the possible length of the path:

∑
t

f (t) = ∑
s∈S

∑
t:R(t)=s

f (t) = ∑
s∈S

(
∑

t:R(t)=s,
|t|=1

f (t)+ ∑
t:R(t)=s,
|t|=2

f (t)+ . . .

)
.
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The infinite sum above is suited for a breadth-first search (BFS) which is a tree
traversal technique. Any planar graph G can be expanded to an infinite tree if we
allow nodes to appear multiple times in this tree, by looking at connectivities in the
incidence matrix of G. We can make an approximation and truncate this tree at |t|max

levels deep, making the set of possible paths (denoted T ) finite and the sum above
computable.

By keeping track of detection probabilities qi of each node in the tree and the sum
of the edge lengths from the root node, the BFS can tell us P(t) and P(yl|t). Since
we only care about transitions with non-zero probability, we let |T | be the number
of paths with P(t) > 0.

E-Step. We use the “forward” and “backward” algorithms from Hidden Markov
Model (HMM) theory to compute Pθ ′(tl |yk

1) efficiently. Let

c(l)
j � Pθ ′(tl|yk

1) =
αl−1(L(tl))P(tl)P(yl|tl)βl+1(R(tl))

∑s′ αk(s′)
, (6)

where j indexes into the (finite) set of paths returned by BFS, and

αl(s) = ∑
t:R(t)=s

P(yl|t)P(t)αl−1(L(t)) (7)

βl(s) = ∑
t:L(t)=s

P(yl|t)P(t)βl+1(R(t)), (8)

with α0(s) = P(S0 = s) and βk+1(s) = 1 ∀ s ∈S .1

M-Step. We can define a M×|T |matrix D with di j =
{

1 if path j contained edge i,

0 otherwise.
Also let Lj be the length of path t j. To maximize we take the first derivative, and
that gives us

∂Q
∂θi

=
k

∑
l=1

∑
j:di j=1

c(l)
j

∂
∂θi

lnPθ (yl |t j) =
k

∑
l=1

∑
j:di j=1

c(l)
j

∂
∂Lj

lnPθ (yl|t j)

=
k

∑
l=1

∑
j:di j=1

c(l)
j

(
1
Lj

+
v

σ2 −Lj
v

σ2yl

)
, (9)

by the chain rule. For
∂Lj
∂θi

, we know Lj = ∑i:di j=1 θi where the condition di j = 1
ensures that the derivative is not zero, and we assume that each Lj passes through θi

no more than once.
Using all the θi we get M quadratic equations in M variables which are hard to

solve analytically. Gradient ascent methods may fail because the likelihood function
(5) may have local maxima as shown by Fig. 4.

1 These computations are standard in HMM literature and derivations should be easily found
in texts such as [14].
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We can get an analytical solution by making the following approximation. If we
assume that the edge lengths are large compared to the motion model noise, the first
term in the sum in (9) can be ignored.2 Then we get

∂Q
∂θi

=
v

σ2

k

∑
l=1

∑
j:di j=1

c(l)
j

(
1− Lj

yl

)
. (10)

After manipulating the sums, we get a linear system of equations; if we let Uj =

∑k
l=1 c(l)

j , Vj = ∑k
l=1

(
c(l)

j /yl

)
, A = {ai j},ai j = ∑m:dimd jm=1 Vm, b = (b1, . . . ,bM)T ,

bi = ∑m:dim=1 Um, and θ = (θ1, . . . ,θM)T , we can solve for the estimates of θ by
solving Aθ = b.

Given reasonable odometry, such as would be expected with a wheeled robot on
an office floor, we expect this approximate solution to be fairly close to the real
solution, and, when using gradient ascent, within the region of convergence of the
true solution. In future work we will establish this for our particular experimental
platform.

4 Mapping with Unknown Topology (1- or 2-Cycles)

The space of planar graphs is large, so we restrict our attention to a specific, nar-
row class of topologies, and enumerate all possible topologies from that class—
“elementary” planar graphs consisting only of one or two cycles, without leaves or
self-loops. The former is clearly defined as a “cycle graph” in literature, and the
latter is a union of two cycle graphs (at an edge chain or single vertex) which is
connected.

4.1 Model Selection Using Information Theory

To select the most parsimonious model Ĝ to fit the data yk
1 we use the Akaike Infor-

mation Criterion (AIC) [1] which is defined as

AIC = 2K −2ln(L ), (11)

where K is the number of model parameters (it is M in our case because there
are M edges in G) and L is the maximized likelihood (5) for that G. A lower AIC
indicates a better model. Now the algorithm picks Ĝ as

Ĝ = argmin
G

(
2M(G)−2lnP(yk

1|G, θ̂ (G))
)

, (12)

where θ̂(G) was found in the previous section.

2 To achieve (10), we assume σ2

vLj
& 1. In our numerical trials (Section 6.1) this ratio is in the

order of 10−3. The ratio depends on the chosen robot’s dynamics and may be determined
by performing random trials or characterizing the dynamics [4].
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4.2 1-Cycle Graphs

For simple graphs with 1 cycle we are just estimating M, and that completely spec-
ifies the graph. This is equivalent to the problem of “closing the loop,” because the
robot must make a decision about when it has re-visited the start node.

Our mapping procedure finds length estimates according to (3) for a preset range
of M (for implementation feasibility), and then uses (12) to find Ĝ.

4.3 2-Cycle Graphs

Graphs with two cycles and other more complex graphs contain branches, or nodes
with κi > 2. We use this nomenclature because if we call one edge the “entry edge,”
there are more than 1 “exit edges,” only one of which the robot will use to exit
the node.

In our simple framework, we will ignore all control input and assume that the
robot picks from the exit edges uniformly at random. This can easily be incorporated
into the BFS mentioned before in the calculation of P(t).

4.3.1 Enumerating 2-Cycle Topologies

One type of 2-cycle topology has two nodes of degree 3 which are connected by 3
edge chains. We will refer to these edge chains as superedges.

For a given total number of edges M, the problem reduces to finding the number
of edges in each superedge, or the number of ways in which M can be written as
a sum of 3 positive integers (p + 1 positive integers for a p-cycle graph) which is
the number of solutions to γ1 + γ2 + . . .+ γp+1 = M,γi > 0, which is the same as the
number of solutions to φ1 + φ2 + . . .+ φp+1 = M− (p + 1),φi = γi−1,φi ≥ 0.

This last problem is almost the same as that of finding “partitions of an integer”
which has been studied extensively such as in [2]. In the absence of a simple formula
for the number of partitions, we can provide a very conservative upper bound using
the “stars and bars” combinatorial argument which will include solutions that are
permutations of one another. The upper bound is

(M−1
p

)
solutions. To actually find

these partitions a very simple recursive function that enforces φi ≤ φi−1 or similar
to eliminate permuted solutions can be implemented as a computer program.

The other type of 2-cycle graph can be thought of being two distinct 1-cycle
graphs joined together at a degree 4 node. These can be enumerated by finding the
ways in which M can be expressed as a sum of 2 integers each greater than 1. We
disallow a superedge of length 1 because that would imply presence of a self-loop.

4.3.2 The Start State Problem

The 1-cycle graphs has a symmetry that any choice of starting position P(x0 = x) =
δ (x,x�), x� ∈X would yield a correct map up to a cycling of the edges. However,
for more general graphs, this is not true. One way to circumvent this problem is to
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Fig. 2. Eliminating symmetric start states in a 2-cycle graph. (1) Draw a plane of symmetry
between the two nodes of degree 3. (2) Discard all starting states lying on edges completely
in the lower half. (3) For edges being cut by the symmetry plane, discard one of the two
starting states on that edge. (4) If more than one superedge has the same number of edges,
ignore duplicates.

use a uniform distribution for P(s0), which is the most general and intuitive but also
less optimal for the algorithm because at the start localization results will be poor.

An alternative approach which we take is to enumerate all the possible distinct
starting states for a given topology while taking symmetries into account. The num-
ber of elements in this set is usually much smaller than |S |; a visual demonstration
of how this elimination occurs is shown in Fig. 2. A start state s0 can be represented
completely by an edge and a direction (with the edge being e0 and the direction be-
ing towards x0) and is represented by an arrow in the figure. Then we perform E-M
calculations for each of those starting states and pick the one that gives maximum
likelihood. We use a similar method as in (3) but maximize for θ and s0 together:

θ̂ (G) = argmax
θ ,s0

P(yk
1|θ ,s0;G). (13)

5 Localization

The localization problem asks to find a distribution over the current state sk given the
history of observations yk

1. If we use E-M for mapping as described in Section 3.2,
localization is performed implicitly in the E-step. After the computation of (6),

P(sk|yk
1) = ∑

t:R(t)=sk

Pθ ′(t|yk
1). (14)

6 Numerical Tests

6.1 Mapping Lengths with E-M

Figure 3 shows a simple trial run of the algorithm in Section 3.2 in which the robot
attempts to map the edge lengths and localize in a known topology with imperfect
association of observations with edges. We used a uniform distribution for P(s0),
and the initial length guesses are shown in the leftmost column of the figure. We

chose |t|max = 5 for this trial (and others in this section), and for this choice ∑ j c(l)
j

was 1 without need for renormalization.
At every “branch point” the exit edge is picked uniformly at random and node

detection is imperfect, resulting in imperfect data association. The given map has a
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Fig. 3. The first few iterations from a numerical trial of the E-M mapping algorithm for
imperfect detection. The filled circles in the “ground truth” row are the true position of the
robot and the filled bars in the localization bar plots are the peaks of the pmf P(xk). Between
observations 6 and 7, the robot failed to detect a node.
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Fig. 4. A: Contours of the likelihood function (5) showing multiple maxima. The blue star
is the true value of the parameters and the red star is the solution found using the “noise
approximation” in (10). The red star is close to the peak of the global maximum showing
that the approximation was valid. B: When the E-M algorithm finds the correct solution, the
number of E-M iterations required in total is roughly independent of the motion noise.

symmetry so that if it is, for example, “flipped” about the vertical or horizontal, we
still get the same graph. The ground truth and developed maps have been aligned
for the reader’s convenience.

It is evident that localization results are poor initially because of the developing
map and the initial uniform distribution, but it performs better after a few iterations.
After each iteration localization is performed using the current map estimate, so
the localization results may be drastically different from the previous belief after
the map is updated. We can only hope to get good localization results after the
developed map is perfect.

Figure 4A justifies the assumption made in (10) by showing that for sufficiently
small noise, the peak of the approximated likelihood function (red star) closely
matches that of the exact function (blue star) given in (9). As noise is increased,
the red star diverges from the blue star and at each E-M iteration, the maximum
obtained by solving (10) will not necessarily maximize the true likelihood function.
Since the maximization is key to convergence of E-M, we suspect that sufficiently
large noise will cause E-M to fail and degrade the performance of our algorithm.
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Fig. 5. An illustration of loop re-opening using the AIC model selection criterion. A: The
simple (but almost ambiguous) map given to the robot. B: The AIC of the hypotheses for
a 3-edge and 6-edge cycle evolving over time. C: The top three hypotheses at any period
during the same trial. D: The average convergence time to the correct hypothesis as a function
of ε/σ2.

The figure also shows the presence of local extrema in the likelihood function
making a gradient ascent method difficult. This trial was for a simple 2-edge cycle
so that the likelihood function can be visualized.

In general for E-M, no bounds can be given on the rate of convergence, but
Fig. 4B empirically shows that the total number of E-M iterations required to find
the solution is roughly independent of the motion noise, which is important from an
implementation point of view.

6.2 Loop Closure (and Re-opening)

With respect to “closing the loop,” Fig. 5 demonstrates the advantage of using the
method described in Section 4.1: the robot can modify a loop closure decision as
long as we do not discard the history of observations. In this trial the robot is per-
forming SLAM in an unknown topology with imperfect association.

The robot is given a simple cycle map of six edges with the first three edges
almost of equal length to the last three (with one of the three being perturbed by an
ε). It initially picks M = 3 as the best hypothesis after the trial starts, but after going
around more times and receiving more observations it corrects its hypothesis and
chooses M = 6 as the most parsimonious model. This behavior can be explained at
a higher level by the following argument.

When the robot does not have much information about the map, the “perturba-
tion” can be attributed to noise, so that the lower order model is sufficiently good at
predicting the observations. From the asymptotic normality of ML estimators [9],
we know that var(θ̂) falls as 1/

√
k. So as k gets bigger the lower order model gives

a much poorer fit to the data than the higher order model.
The time required for the algorithm to decide to favor the higher order (but

correct) model over the lower order model depends on the perturbation, and this
“convergence time” is plotted in part (D). The minimum number of observations to
support a M = 6 model is six, and so there is a horizontal asymptote at 6 as ε gets
larger and larger. The motion model variance was σ2 = 0.05 for these trials.
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Fig. 6. The A: “new landmark” problem where a node is added to a 2-edge cycle map and B:
“disappearing landmark” problem where a node is deleted from a 3-edge cycle, as handled
by our algorithm. In both the plots, the change in the environment occurs at iteration 7. For
the disappearing landmarks problem, one possibility is that the robot attributes the missing
landmark to imperfect detection and continues to favor the higher-order model (which helps
in case the landmark re-appears). In this trial we set detection probabilities qi ≈ 1 so that this
did not happen.

6.3 Dynamic Environment

Another problem which pertains to model selection for us is the problem of “dis-
appearing landmarks” where a previously existing landmark is taken away, and the
similar problem of “new landmarks” where a newer landmark is inserted in the en-
vironment. By comparing the AIC of hypotheses which have M close to the best
model the robot can make “soft” or modifiable decisions about the nature of its
environment (Fig. 6).

Note in Fig. 6A that the 2-edge model adjusts its length estimates to considerably
lower its AIC around iteration 12, but it still cannot match the 3-edge model. In
Fig. 6B it takes about three iterations for the 2-edge hypothesis to beat the 3-edge
hypothesis.
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Fig. 7. The robot picks the best (2-cycle) topology fit for some observations using AIC. The
true topology was “F,” i.e. the rightmost one in the second row.
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6.4 Topology Enumeration and Selection: 2-Cycle Graphs

We used the AIC again to help the robot pick the best topology according to (12).
Due to calculation costs, the robot searched only the space of 2-edge-connected
planar graphs with two cycles, having 3 ≤ M ≤ 5. The candidate topologies are
shown in the right half of Fig. 7. For each of these “edge-partition” hypotheses, there
were a number of possible starting states to be taken into account (see Section 4.3.2).
The robot assumed perfect detection for this particular trial.

7 Discussion

This paper presents an algorithm to perform SLAM on elementary graphs. We di-
vide the mapping into two parts, known and unknown topology. Our algorithm
solves the former in the most general case using E-M, and presents techniques of
finding the topology from a very small subset of planar graphs. We pick this sub-
set to be graphs with one or two cycles, but this could be easily extended to other
families of graphs as long as they can be parametrized and enumerated.

This method, while still targeting simple environments and using minimal sen-
sory information, can address some well known SLAM problems [10]. We present
numerical experiments demonstrating how the algorithm solves the “loop closure”
problem without requiring appearance information in a non-parametric way by us-
ing an information theoretic model selection criterion. We also present numerical
experiments illustrating the solution to the problem of dynamic environments by
maintaining multiple hypotheses.

To apply our framework to the real world, several issues would have to be ad-
dressed. First, we need a better way to characterize various landmarks and their
corresponding detection probabilities. Although the antenna sensor is capable of
capturing finer details of a landmark, we have chosen to use only sparse sensor in-
put (a binary flag for detection) which gives rise to problems such as “misses” and
“false positives” (Section 6.3) which correspond to the sensor signal being below or
above (resp.) a pre-set threshold. This approach would take many trials to give an
accurate detection probability and the detection probability for one landmark would
most likely be different from the rest of the landmarks. In the future, we plan to
incorporate a richer sensor model of the antenna to (a) correct “misses” or “false
positives” for cases in which the signal is close to the threshold, (b) predict qi based
on how “close” the signal magnitude is to the threshold the first time a landmark
is observed, and (c) incorporate landmark appearances in our algorithm which may
make data association simpler in more complex environments.

Second, some parts of the algorithm, such as maintaining multiple hypotheses
for a large number of possible topologies as well as enumerating to find graph struc-
tures, require large computations. Methods of graphical inference from data [15] as
well as approximate methods that take assumptions about the structure, such as the
“topology improvement algorithm” in [21], should be explored. We plan to com-
pute the complexity bounds of our algorithm and compare the performance with our
approach to other existing approaches such as EKF-SLAM in large environments.
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A natural extension to the algorithm presented here would be to devise a method
of mapping a general planar graph. Our algorithm targets indoor 1-dimensional en-
vironments (corridors), but we imagine using our algorithm with GVG’s [6] to map
higher dimensional environments; extensions to the algorithm to handle “leaves”
will naturally have to be made. Furthermore, with the framework in this paper, we
can perform SLAM on any parameter (e.g., landmark appearance) which can be as-
sociated with edges on a graph that has states as nodes, as long as we can define a
probability distribution for observations and an estimator of its parameters.
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HybridSLAM: Combining FastSLAM and
EKF-SLAM for Reliable Mapping

Alex Brooks and Tim Bailey

Abstract. This paper presents HybridSLAM: an approach to SLAM which com-
bines the strengths and avoids the weaknesses of two popular mapping strate-
gies: FastSLAM and EKF-SLAM. FastSLAM is used as a front-end, producing
local maps which are periodically fused into an EKF-SLAM back-end. The use of
FastSLAM locally avoids linearisation of the vehicle model and provides a high
level of robustness to clutter and ambiguous data association. The use of EKF-
SLAM globally allows uncertainty to be remembered over long vehicle trajecto-
ries, avoiding FastSLAM’s tendency to become over-confident. Extensive trials in
randomly-generated simulated environments show that HybridSLAM significantly
out-performs either pure approach. The advantages of HybridSLAM are most pro-
nounced in cluttered environments where either pure approach encounters serious
difficulty. In addition, the HybridSLAM algorithm is experimentally validated in a
real urban environment.

1 Introduction

The Simultaneous Localisation and Mapping (SLAM) problem has attracted im-
mense attention in the mobile robotics literature. The problem involves building a
map while computing a vehicle’s trajectory through that map, based on noisy mea-
surements of the environment and the vehicle’s odometry.

This paper specifically addresses the problem of feature-based SLAM, where the
environment is modelled as a discrete set of features, each described by a number
of continuous state variables. The standard solution is to take a Bayesian approach,
explicitly modelling the joint probability distribution over possible vehicle trajec-
tories and maps. There are currently two popular approaches to modelling this dis-
tribution. The first is to linearise and represent the joint probability with a single
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high-dimensional Gaussian. This is the approach taken by EKF-SLAM [8] and its
variants [2]. The second approach is to use a Rao-Blackwellised particle filter, rep-
resenting the vehicle’s trajectory using a set of particles and conditioning the map
on the vehicle’s trajectory. Examples of this approach include FastSLAM [16] and
others (e.g. [9]).

Both approaches have their strengths and weaknesses, and it is not difficult to
produce examples where one or the other will fail. In particular, the EKF is prone
to failure where significant vehicle uncertainty induces linearisation errors [3], or
where significant clutter induces ambiguity in data association. The latter issue is
problematic because the standard EKF formulation requires that hard data associa-
tion decisions be made, by selecting the most likely hypothesis. Once a bad associa-
tion is made it cannot be un-done and can cause the filter to fail catastrophically [2].

The probability of making a potentially-catastrophic incorrect decision can be
reduced by using batch association methods. Non-batch methods such as nearest-
neighbour association consider each observation in isolation, under the assumption
that landmarks are independent. Joint compatability (e.g. JCBB [11]) improves ro-
bustness by simultaneously considering all observations made from a single pose,
but cannot consider relations between observations made from different poses.
Sliding-window methods simultaneously consider all observations made from poses
in a small window of recent history, but can be computationally intractable without
the assumption of landmark independence for multiple observations from a single
pose [12][6].

In contrast to the EKF, FastSLAM does not suffer from linearisation problems
(because it does not linearise the vehicle pose), and is much more robust in situations
of association ambiguity. For data association, each particle is allowed to make in-
dependent decisions, hence FastSLAM can maintain a probability distribution over
all possible associations [16]. As more observations arrive, particles which made
poor association decisions in the past tend to be removed in the resampling process,
hence the majority of particles tend to converge to the correct set of associations.
For the purposes of data association, FastSLAM automatically allows information
to be integrated between observations at a single time step (as JCBB does), and be-
tween multiple time steps (as sliding-window methods do). The former occurs due
to landmarks being conditionally independent given the vehicle path, the latter due
to each particle’s memory of past associations. Furthermore, FastSLAM is simple
to implement relative to complicated batch association algorithms.

The disadvantage of FastSLAM is its inability to maintain particle diversity over
long periods of time [4]. The fundamental problem is that the particle filter operates
in a very high-dimensional space: the space of vehicle trajectories (not momentary
poses). The number of particles needed is therefore exponential in the length of
the trajectory. When a smaller number is used, the filter underestimates the total
uncertainty, and eventually becomes inconsistent. While this may still produce good
maps, problems are encountered when the full uncertainty is required, for example
when large loops need to be closed.

For remembering long-term uncertainty, the EKF is far superior. By using a con-
tinuous (Gaussian) representation, uncertainty does not degrade purely as a function
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of trajectory length. Linearisation errors are still a concern [3], but these are far less
severe than FastSLAM’s particle diversity problems.

This paper presents a hybrid mapping strategy which combines the strengths of
both approaches. We advocate the use of FastSLAM as a front-end to an EKF-
SLAM back-end. The FastSLAM front-end is used to build local maps and to dis-
ambiguate transient data association uncertainties. Before the trajectory becomes
so long that particle diversity becomes problematic, a single Gaussian is computed
from the FastSLAM posterior. This Gaussian local map is then fused into the global
map. At the point of fusion, a hard decision must be made about the associations be-
tween local map features and global map features. However, a large local map can
provide sufficient constraints to make the probability of a bad decision extremely
low. The result is a SLAM algorithm which is robust to linearisation errors and
data association ambiguities on a local scale, and can also close large loops on a
global scale.

The remainder of the paper is structured as follows. Section 2 gives a brief review
of FastSLAM and shows how a single Gaussian can be produced from a FastSLAM
posterior, under the assumption of known associations. This assumption is removed
in Section 3, which addresses the problem of producing a Gaussian posterior given
unknown associations. Section 4 describes the algorithm for fusing local sub-maps
produced by the front-end into the global map. Section 5 describes a set of experi-
ments and discusses the results, and Section 6 concludes.

2 Conversion of Factored FastSLAM Distribution to a Single
Gaussian

The aim of a SLAM algorithm is to compute the posterior

p(v0:t ,M|Z0:t ,U0:t ,v0) (1)

where v0:t = v0, . . . ,vt denotes the path of the vehicle, the map M = θ1, . . . ,θN

denotes the positions of a set of landmarks, Z0:t represents the set of all observations,
U0:t denotes the set of control inputs, and v0 denotes the initial vehicle state. The
subscript 0:t indicates a set of variables for all time steps up to and including t,
while the subscript t is used to indicate the variable at time step t. Many SLAM
algorithms (including the one described in this paper) marginalise out past poses,
estimating only

p(vt ,M|Z0:t ,U0:t ,v0) (2)

Fusion into a global EKF-SLAM back-end requires the local mapping algorithm to
produce this distribution in the form of a single multi-dimensional Gaussian. This
section shows how a distribution of this form can be extracted from FastSLAM, un-
der the restrictive assumption that the environment contains N uniquely-identifiable
landmarks, all of which have been observed at least once. This assumption will be
removed in Section 3.
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2.1 The FastSLAM Posterior as a Gaussian Mixture Model
(GMM)

The FastSLAM algorithm factors distribution 1 as follows [16]:

p(v0:t ,M|Z0:t ,U0:t ,v0) = p(v0:t |Z0:t ,U0:t ,v0)∏
n

p(θn|v0:t ,Z0:t ,U0:t) (3)

where the first factor represents the vehicle’s path and subsequent factors represent
landmark positions given the vehicle’s path. This factored distribution is represented
as a set of P samples, with the pth particle Sp

t consisting of a weight wp
t , a vehicle

pose vp
t (past poses are marginalised out), and N Gaussian landmark estimates de-

scribed by their mean μ p
n,t and covariance Σ p

n,t :

Sp
t =< wp

t ,vp
t , μ p

1,t ,Σ
p
1,t︸ ︷︷ ︸

landmark θ1

, . . . , μ p
N,t ,Σ

p
N,t︸ ︷︷ ︸

landmark θN

> (4)

While it is convenient to represent individual landmark distributions as isolated
low-dimensional Gaussians, each particle can equivalently be represented using

Sp
t =< wp

t ,xp
t ,Pp

t > (5)

where xp
t = [vp

t ,μ p
1,t , . . . ,μ p

N,t ] denotes the concatenation of the vehicle states with
all landmark states, and Pp

t denotes a block-diagonal covariance matrix constructed
from the vehicle covariance and the covariances of each landmark:

Pp
t =

⎡⎢⎢⎢⎣
Pp

vv,t
Σ p

1,t
. . .

Σ p
N,t

⎤⎥⎥⎥⎦
In this case the vehicle covariance Pp

vv,t is zero because each particle has no uncer-
tainty associated with the vehicle states.

Using this representation, the FastSLAM distribution over vehicle and map states
is a Gaussian Mixture Model (GMM): each particle is a Gaussian component with
weight, mean, and covariance given by Equation 5.

2.2 Conversion to a Single Gaussian

The parameters of a single Gaussian with mean xt and covariance Pt can be com-
puted from the GMM using a process known as moment matching [5]:

xt = ∑
p

wp
t xp

t (6)
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Pt = ∑
p

wp
t

[
Pp

t +(xp
t −xt)(x

p
t −xt)T ] (7)

In Equation 7, the first term in the square brackets is the covariance of the particle’s
individual map (due to sensor noise), while the second term is due to the variation
between particles’ maps (due to vehicle noise).

3 Conversion Using Unknown Associations

This section extends to the more realistic case where landmarks are not uniquely
identifiable. Since FastSLAM particles are free to make data association decisions
independently, both the number of landmarks and their ordering may differ be-
tween particles. However, since the particles are to be merged into a single high-
dimensional Gaussian distribution (for fusion into the global map), it is necessary to
track the correspondences between landmarks in different particles’ maps. The aim
is to produce a single common set of features from the particles’ individual sets of
features.

While the true set of landmarks is unknown, suppose each landmark in the envi-
ronment is assigned a unique index. Each particle can be augmented with a set of
correspondence variables of the form γ p

i,t , indicating the correspondences between
landmarks in the maps of individual particles and landmarks in the environment:
γ p

i,t = n indicates that the ith landmark in the pth particle’s map corresponds to the

nth landmark in the environment. Each particle is therefore of the form:

Sp
t =< wp

t ,vp
t ,μ p

1,t ,Σ
p
1,t ,γ

p
1,t︸ ︷︷ ︸

landmark θ p
1

. . . ,μ p
N p,t ,Σ

p
N p,t ,γ

p
N p,t︸ ︷︷ ︸

landmark θ p
N p

> (8)

Sections 3.1 and 3.2 describe procedures for (a) tracking these correspondence vari-
ables within a particle’s map, and (b) generating a single Gaussian given a set of
particles with non-identical correspondence variables.

3.1 Tracking Correspondences

The correspondences between features are tracked using a simple voting scheme.
Consider a single observation. Each particle can vote to either

1. ignore the observation as spurious,
2. associate the observation with a particular existing map feature, or
3. create a new map feature and associate the observation with this.

Each particle votes in proportion to its weight, and the winner takes all: a single
correspondence variable is computed based on the majority vote. All particles must
use this correspondence variable for features modified or created by this observation,
over-writing any previous correspondence variable.

This scheme forces the particles to form a consensus about the common set
of features, but allows that consensus to be overturned at a later time if future
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information alters the particle weights. In principal it is possible for particles to
disagree wildly about the number of features, but in practice a large majority tends
to form quickly, out-voting a small set of dissenting particles.

3.2 Producing a Gaussian Given Correspondences

The correspondence variable γ provides a mapping from features in each particle’s
individual map to the common set of features M. Let the function δ denote the
reverse mapping: δt(n, p) = i indicates that the nth feature in the common set is
represented by the ith feature in the pth particle’s map.

Given these variables, each particle can be represented using a weight, mean, and
covariance as in Equation 5 with the mean

xp
t = [vp

t ,μ p
δt (1,p),t, . . . ,μ p

δt (N,p),t ] (9)

and the block-diagonal covariance matrix

Pp
t =

⎡⎢⎢⎢⎣
Pp

vv,t
Σ p

δt (1,p),t
. . .

Σ p
δt (N,p),t

⎤⎥⎥⎥⎦
In other words, each particle’s individual map can be represented by a single multi-
dimensional mean and covariance, produced by arranging the individual map feature
states in the order of the common features about which they are a hypothesis. A
Gaussian distribution can then be produced using Equations 6 and 7.

This approach requires that two corner cases be addressed. Firstly, a particle’s in-
dividual map may contain multiple features referring to the same common feature.
In this case, δ simply selects one at random (another alternative would be to com-
bine the features). Secondly, a common feature may have no corresponding features
in a particular particle’s map. In this case, the particle is ignored when computing
the mean and covariance of that common feature.

In addition to computing the mean and covariance of the landmarks’ positions,
independent state estimates (such as the probability of existence of each landmark)
can be computed using weighted sums analogous to Equation 6. Maintaining an
estimate of the probability of existence of each feature means that features which are
not generally agreed upon will have a low probability of existence. These features
can be ignored when fusing the local map into the global map.

4 Sub-map Fusion

This paper uses a sub-mapping strategy similar to CLSF [17] and others [14]. Fig-
ure 1 illustrates the approach: the filter maintains both a Gaussian global map and
a Gaussian local map. The (uncertain) pose of the local map’s origin is stored in
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Local Sub−Map
Coordinate Frame

Global coordinate frame

Local
Feature

Global
Feature

Vehicle Pose

Fig. 1. An illustration of the sub-mapping strategy. In this case, the local map is converted to
a Gaussian from a FastSLAM representation, in which the local vehicle pose is represented
using particles.

the global map. The filter periodically fuses the local map into the global map to
produce a single map in the global coordinate frame. After fusion, a new local map
is started with the vehicle beginning at the local origin with no uncertainty and no
landmarks.

Map fusion requires two steps:

1. local features are initialised in the global map, and
2. features are associated and fused.

Note that the vehicle pose in the local map is considered to be just another feature,
and hence does not require any special treatment in the procedure that follows.

Let x−, x+, P−, and P+ refer to the global map mean and covariance immediately
before and after fusion, and xL and PL refer to the local map mean and covariance.
Local features (including the vehicle pose) are initialised in the global map by aug-
menting the state and covariances as follows:

x+ =
[

x−

g(v−,xL)

]

P+ =

⎡⎣ P−vv P−vm P−T
vv ∇vgT

P−T
vm P−mm P−T

vm ∇vgT

∇vgP−vv ∇vgP−vm ∇vgP−vv∇vgT + ∇zgPL∇zgT

⎤⎦
where g(v−,xL) transforms the local map into the global coordinate frame, using
v−: the vehicle’s global pose at the time of the previous fusion (now the origin of
the local sub-map).
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New features are then associated with old features, using joint compatibility [11].
Two features θ1 and θ2 are fused using a zero-noise observation z f of the difference
between features:

z f (θ1,θ2) = θ1−θ2 (10)

and setting z f = 0. This equates to observing that the two features are the same
and leaves two identical features, one of which is removed. Finally, the old global
vehicle pose estimate is replaced by the new estimate, and a new local map is started.

5 Experiments

Experiments examined the ability to operate amid clutter and to close large loops.
The following filters were compared:

1. FastSLAM v2.0 [16] (FASTSLAM),
2. The sub-mapping algorithm described in Section 4 with EKF front- and back-

ends (EKF), and
3. The same sub-mapping algorithm with a FastSLAM front-end and an EKF back-

end (HYBRID).

In all experiments, the vehicle was equipped with a range-bearing sensor subject
to false alarms and non-detections. The sensor’s reliability was specified by two
parameters:

• α: the probability of detecting a true feature, and
• β : the probability a false alarm. Simulation experiments generated false alarms

with uniformly-distributed range and bearing, with a maximum number of false
alarms equal to the number of visible true features.

In order to be able to ignore spurious features, all three filters maintain an esti-
mate of the probability of existence of each feature. Let p(ιn,t) denote the estimated
probability of existence of the nth feature at time t. This estimate can be updated as
in a traditional target-detection framework [13], using

p(ιn,t) ← p(ιn,t)
α

p(ιn,t)α +(1− p(ιn,t))β
(11)

where the denominator gives the total probability of making an observation, either
through false-alarm or true feature detection.

The two sub-mapping algorithms only fused features whose probability of exis-
tence exceeded 0.95, while FASTSLAM ran a periodic cull of old unlikely features.
Sub-maps were fused at 10-second intervals. FastSLAM implementations used 500
particles. Note that while FastSLAM is often implemented with fewer particles (e.g.
100 [10]), a larger number can be tolerated in our approach because HYBRID’s local
FastSLAM map is always very small. Both FASTSLAM and the HYBRID front-end
used Data Association Sampling (DAS) [16] for computing correspondences.
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5.1 Simulation Environment

The experimental environments consisted of 50 randomly-generated simulated two-
dimensional worlds of size 120m×120m, each containing 35 uniformly-distributed
point features, as shown in Figure 2. The vehicle moved at 1m/s and up to 100◦/s,
observing features using a 360◦ range-bearing sensor with a maximum range of
25m. The vehicle followed a path near the extremities of the environment, such that
one significant loop closure had to be executed, for a loop size of approximately
400m.

SLAM filters were run at the observation frequency of 10Hz. Vehicle linear and
rotational velocity was noisy, perturbed with standard deviations equal to 0.25ẋ and
0.35θ̇ respectively, where ẋ and θ̇ are commanded linear and rotational velocities.
Observation noise standard deviations were set to 0.05m and 1◦ in range and bearing
respectively. Identical worlds, odometry, and observations were used for all filters.

5.2 Simulation Results in Cluttered Environments

A number of trials were conducted with varying settings for the sensor’s reliability.
Each test run was considered to have failed if the true vehicle pose remained more
than 10 standard deviations from the filter’s estimate for more than 20 iterations.
The results are summarised in Table 1. They clearly show that the HYBRID filter
out-performs both FASTSLAM and EKF filters. FASTSLAM’s tendency to become
overconfident meant that it was unable to succeed in a single run (see the following
sections for more detail).

Comparing the two sub-mapping approaches, the benefits of using HYBRID ver-
sus EKF are apparent with no clutter but most pronounced in high levels of clutter.

−60 −40 −20 0 20 40 60

−50

0

50

Fig. 2. An example scenario, showing the true vehicle path and landmark positions. The
precise path and landmark locations are randomly generated.
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Table 1. Success rate for each algorithm, evaluated over 100 trials in each case, for differ-
ent values of α and β . Failure is defined as the vehicle mean being more than 10 standard
deviations from the true vehicle pose for more than 20 iterations.

α,β [p(truePositive),p(falsePositive)]
Filter 1.0, 0.00 0.7, 0.02 0.4, 0.04 0.1, 0.06
FASTSLAM 0% 0% 0% 0%
EKF 79% 76% 72% 30%
HYBRID 87% 89% 83% 63%

While the level of clutter in the extreme case is particularly high, it is also unre-
alistically easy to filter because it is truly random. Clutter in the real world is not
independent and identically distributed, but tends to be correlated, clustered around
particular (possibly moving) objects.

5.2.1 Discussion

Failures occurred for a number of reasons. The FASTSLAM failures occurred due
to over-confidence, resulting from an inability to remember uncertainty over long
trajectories [4].

The two sub-mapping algorithms have two common long-term failure modes,
specific to the EKF back-end. Firstly, when sufficient vehicle heading uncertainty
accumulates, linearisation errors can cause the filter to become over-confident [3].
Secondly, data association errors were sometimes made when closing the loop. The
latter issue is particularly problematic because the data fusion algorithm is relatively
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Fig. 3. Vehicle uncertainty over time in a scenario with no vehicle non-linearities. Uncer-
tainty is measured using the trace of the covariance matrix. In order to produce a meaningful
comparison with FASTSLAM, the sub-mapping algorithms’ estimates are based on both the
local and global maps at every iteration, even though the maps are only fused on every 100th

iteration.
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Fig. 4. Vehicle uncertainty over time in a more realistic scenario, with vehicle non-linearities.
Sub-map fusion causes small drops in uncertainty every 100 iterations. The spike after iteration
4000 is due to the vehicle passing an area devoid of landmarks before closing the loop.

simplistic, content to close a loop on a single matching feature. The back-end data-
association problem could be solved in a variety of ways, for example by running
the local mapper for longer when a loop closure is imminent. Both problems were
exacerbated as the reliability of the sensor was decreased, since the total amount of
sensor information available to the filter was reduced, increasing vehicle uncertainty.

The differences between the two sub-mapping filters occurred due to differences
in short-term mapping in the front-end. Failures in the EKF filter occurred due to
spurious observations being associated with landmarks, particularly during transient
periods of high vehicle uncertainty (i.e. during turns). This is especially problematic
when the true feature is not observed simultaneously, and therefore JCBB is unable
to resolve the ambiguity.

EKF failures also occurred due to local (front-end) linearisation errors. Local
linearisation errors are kept to a minimum because vehicle uncertainty in the local
frame of reference is generally small, since local maps begin with no uncertainty.
However local-map uncertainty can be significant, for example if the vehicle begins
a new sub-map immediately prior to making a sharp turn amid sparse landmarks.

The HYBRID filter is much more robust to both these local sources of error. The
probability of incorporating spurious observations is reduced by the front-end’s abil-
ity to integrate data association information over time. Vehicle linearisation errors
are eliminated because each particle always has zero vehicle uncertainty.

5.3 Simulation Results in the Absence of Clutter

Two additional experiments were conducted in the same simulated environment, to
examine sources of error unrelated to clutter. The effects of clutter were eliminated
by setting α to 1.0 and β to 0.0).
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Fig. 5. The Segway RMP vehicle and the environment

In the first experiment, the vehicle is provided with an accurate compass, elim-
inating vehicle linearisation errors. The observation model is still linearised, how-
ever this introduces only minor errors relative to vehicle non-linearities. Since the
Kalman Filter is the optimal estimator in the linear case, the EKF solution is close to
optimal in this case, and therefore provides a benchmark against which to compare
alternative algorithms.

In the absence of vehicle non-linearities and clutter, one would expect HYBRID
and EKF to produce very similar results. To minimise differences due to the statis-
tical noise introduced by HYBRID’s front-end, we use 5000 particles.

Figure 3 compares the vehicle uncertainty for all three filters, measured using
the trace of the vehicle pose covariance matrix. The figure shows that HYBRID can
correctly track the uncertainty while FASTSLAM quickly becomes over-confident,
even with 5000 particles.

In a second experiment, vehicle uncertainty was introduced by removing the
compass. Since the vehicle is executing many uncertain turns (including one sharp
turn near the beginning of the trajectory), non-linearity due to vehicle heading un-
certainty is problematic. Figure 4 shows the vehicle uncertainty over the entire run.

In this case, the uncertainties of both sub-mapping solutions are certainly under-
estimated, due to vehicle linearisation issues. However, since the HYBRID solution
avoids vehicle linearisation in local sub-maps, the larger uncertainties which it re-
ports are closer to the optimal solution. HYBRID is clearly an improvement on EKF
in this respect. The swift deterioration of the FASTSLAM estimate is clear in this
scenario.
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Fig. 6. A map of an urban environment produced by the HYBRID filter. Landmarks are shown
as red squares, while the smoothed vehicle path is shown as a blue line. The occupancy grid
map is overlaid for clarity.

5.4 Live Experiments

The HYBRID filter was used to generate a map in a real urban environment, using
a Segway RMP equipped with a SICK laser, as shown in Figure 5. The environ-
ment was approximately 135m×90m in size, and was mapped over a 3.75km path.
The final map consisted of 452 landmarks, including foreground points, corners,
doorways, and 46 retro-reflective strips. Data association was complicated by the
presence of difficult-to-model objects such as bushes and trees, people occasion-
ally walking through the area, and the tilting nature of the platform which caused
it to make frequent observations of the ground when accelerating. Observations of
the ground result in spurious corner features from the intersection of the ground
with walls. The final map is shown in Figure 6, with an occupancy grid overlaid
for clarity.

6 Conclusion

This paper presented a hybrid approach to SLAM which combines the strengths of
two popular existing approaches: FastSLAM and EKF-SLAM. Using EKF-SLAM
as a global mapping strategy allows uncertainty to be remembered over long vehicle
trajectories. Using FastSLAM as a local mapping strategy minimises observation-
rate linearisation errors and provides a significant level of robustness to clutter
and uncertain associations. In experiments involving a large number of randomly
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generated trials, the hybrid mapping approach was shown to be superior to either
pure approach. The approach was further validated in a live experiment.

HybridSLAM can be seen as a mixture between pure FastSLAM and pure EKF-
SLAM, with the time between map fusions as the mixing parameter. Consider the
two extremes: if map fusion occurs on every iteration, HybridSLAM is largely
equivalent to EKF-SLAM (with no sub-mapping). If map fusion never occurs, Hy-
bridSLAM is identical to FastSLAM.

While a simple heuristic for the mixing parameter was used in this work (local-
map age equal to 10 seconds), better strategies are certainly possible and likely to
increase robustness. For example, it may be prudent to delay map fusion when the
vehicle distribution is multi-modal or particularly non-Gaussian, or when there is
significant disagreement about landmark identities. Conversely, it may be of benefit
to fuse sooner if particle diversity begins to drop.

Another option is to re-use information from slightly before and after the point
of map fusion in both temporally-adjacent local maps, for the purposes of data asso-
ciation only. Since uncertainty about data association is not tracked in the back-end,
re-use of information in this way will not lead to over-confidence.

Future work will also addresss the back-end. For simplicity, this presentation
showed a monolithic EKF back-end, which is known to suffer from non-linearities
and high computation in large environments. In future work, the back end could
be replaced by more efficient Gaussian representations such as sparse information
form [15] or submap methods such as ATLAS [7] of NCFM [1]. The submap forms
also address long-term non-linearity.
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Discovering a Point Source in Unknown
Environments

Martin Burger, Yanina Landa, Nicolay M. Tanushev, and Richard Tsai

Abstract. We consider the inverse problem of discovering the location of a source
from very sparse point measurements in a bounded domain that contains impenetra-
ble (and possibly unknown) obstacles. We present an adaptive algorithm for deter-
mining the measurement locations, and ultimately, the source locations. Specifically,
we investigate source discovery for the Laplace operator, though the approach can
be applied to more general linear partial differential operators. We propose a strat-
egy for the case when the obstacles are unknown and the environment has to be
mapped out using a range sensor concurrently with source discovery.

1 Introduction

This work is motivated by robotic applications in which a robot, sent into an un-
known environment, is supposed to discover the location of a signal source and place
it under its line-of-sight in an efficient manner. The unknown environment contains
non-penetrable solid obstacles that should be avoided along the robot’s path. In this
environment, the properties of the signal, such as the signal strength, are assumed
to satisfy certain partial differential equations (PDEs) with appropriate boundary
conditions. The robot can gather measurements from two different sensors: a range
sensor that gives distance from the robot to the surrounding obstacles, and a sensor
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that measures the signal strength that is being emitted from the yet-to-be-located
source. We will refer to the information from the range sensor as the visibility of
the robot and to the information from the signal strength sensor as the signal. While
measurements can be taken anywhere, we are interested in having the robot take
very few measurements with its sensors. Our goal is to design an algorithm that de-
termines how the robot should navigate through the environment and where along
its path it should take measurements. Motion planning is a fundamental problem in
robotics. It has been an active area of research since 1980’s. A comprehensive pre-
sentation of motion planning techniques can be found in the book by Latombe [17].
In [10, 11], the authors provide a broad review of problems specific to the research
in robotics. In the most general form, motion planning consists of finding a robot’s
path from a start position to a goal position, while avoiding obstacles and satis-
fying some constraints [17]. A large class of optimal path planning problems can
be formulated as problems involving Hamilton-Jacobi equations [6, 1], and solved
efficiently [29, 24].

This work is primarily concerned with visibility-based navigation towards a tar-
get whose position is unknown. As the observer moves in space, its visibility re-
gion changes, thus modifying the information available to the observer about the
space or progress towards the goal. The visibility region is the set of points that
can be joined with a line segment to the observer’s position, without intersect-
ing the obstacle boundaries. Online motion planning strategies are considered in
[3, 7, 12, 13, 18, 21, 23, 26] among many others. In these works, the robot is in
an unknown or partially known planar environment and uses its on-board sensors
to navigate toward a target whose position is either known a priori or is recognized
upon arrival. In particular, the bug-family algorithms are considered, which have
two reactive modes of motion: moving toward the target between the obstacles and
following the obstacles’ boundaries. These two modes interact incrementally until
the target is reached or is found to be out of reach. We remark here that this paper
considers problems in which the source cannot be identified until suitable inverse
problems are solved and problems in which one does not want to reach the source
but to locate it.

Today, computational geometry and combinatorics are the primary tools to solve
the visibility-based problems [30, 9]. These techniques are mainly concerned with
defining visibility on polygons and more general planar environments with special
structure. The combinatorial approach leads to fast and elegant solutions in simpli-
fied planar polygonal environments. However, this approach becomes increasingly
complex in more realistic settings.

A recurring theme in robotics research has been the notion of minimal sens-
ing, that is, completing a given task with minimum information necessary. Minimal
sensing techniques are implemented in SLAM (simultaneous localization and map-
ping) [2] to situate a robot on a partially constructed map. The generalized Voronoi
graph is used to encode the topological map of the environment. A graph-matching
process then leads to localization of the robot. Although providing a compact rep-
resentation, the lack of metric information makes localization extremely difficult.
Furthermore, the statistical errors accumulated during the process of localization
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can grossly distort the map and therefore the robot’s ability to know its precise po-
sition. A potential field method is presented in [31]. The proposed model simulates
steady-state heat transfer with variable thermal conductivity. The optimal path prob-
lem is then the same as a heat flow with minimal thermal resistance. The thermal
resistance in the configuration space for all different orientations of the robot can
then be superimposed.

This source problem is classified as an inverse problem, however, it differs greatly
from many typical inverse problems, which assume simple domains and dense arrays
of sensors at fixed locations. In [20], Ling et al explore such a situation in which they
recover the exact locations of multiple sources in a Poisson equation, given an initial
guess for the locations and Dirichlet data collected on the boundary of the domain.
To accomplish this, they use the special form of the free space Green’s function for
the Laplacian. For inverse problems related to the heat equations with sources see
[4, 5] and for a more general discussion of partial differential equations see [6].

When the obstacles are unknown, the environment needs to be mapped out as the
robot moves so that attempts to take measurements inside the obstacles are avoided
and the robot’s path does not intersect obstacles. The previous work of [15] and
[16] on mapping of obstacles in unknown domains using visibility is useful in this
regard. In it the authors propose an algorithm to construct a high-order accurate
representation of the portions of the solid surfaces that are visible from a vantage
point and to generate the corresponding occlusion volume. Also they propose an
algorithm to construct a piecewise linear path so that any point on the solid surfaces
is seen by at least one vertex of the path and an accurate representation of the solids
is constructed from the point clouds that are collected at the vertices of the path.
In [15] a novel visibility-based algorithm is introduced to navigate toward a known
target in an unknown bounded planar environment with obstacles. Similarly to [26],
the observer navigates toward one of the visible horizons, or edges on the visibility
map. In particular, to reach the goal, the edge that is the nearest to the target is
chosen. To proceed the observer must overshoot the horizon by the amount inversely
proportional to the curvature of the obstacle near the horizon, thus no boundary-
following motion is required.

The [15] algorithm was motivated by the work of LaValle, Tovar et al. [25, 19,
26]. In [26], a single robot (observer) must be able to navigate through an unknown
simply or multiply connected piecewise-analytic planar environment. The robot is
equipped with a sensor that detects discontinuities in depth information and their
topological changes in time. As a result of exploration, the region is characterized
by the number of gaps and their relative positions. No distance or angular informa-
tion is accumulated. In contrast, the [15] algorithm maps the obstacles in Cartesian
coordinates as the observer proceeds through the environment, and utilizes the re-
covered information for further path planning. At the termination of the path all the
obstacle boundaries are reconstructed to give a complete map of the environment.
A practical implementation of this algorithm on an economical cooperative control
tank-based platform is described in [14].

From our experience, the discovery of signal sources may be very insensitive to
the presence of (or parts of) obstacles in sub-regions of the domain, possibly due
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to the decay of the signal strength. This suggests that the visibility path algorithm
in [15] and [16] should be modified adaptively according to previous measurements
and estimations of the signal source location.

To illustrate the main ideas in this paper, consider the following problem

!u(x) = δ (x− y) in DΩ ≡ D\Ω
u = 0 on Γ ,

(1)

where u denotes the signal strength, D denotes a bounded domain, Ω � D denotes
the solid obstacles in the domain, Γ = ∂DΩ , and y denotes the (unknown) source
location. One can view this PDE as giving a description of the steady state of a dif-
fusion problem. We have chosen Dirichlet boundary conditions in this example but
our methods can be adapted to other common boundary conditions such as Neu-
mann boundary conditions.

Let ψ(·;z) : D �→ R describe the visibility of the domain from an observing loca-
tion z ∈ DΩ . We require that ψ(·;z) be a signed distance function such that the set
Wz := {x ∈ D : ψ(x;z) < 0} corresponds to the region, including the interior of the
solid obstacles, that is occluded from the observing location z. This means that the
line segment connecting z and any point in Wz must intersect with the obstacles Ω .
Such visibility functions can be computed efficiently using the algorithms described
in [28, 27, 16, 15].

A first, rather simple approach, would be to use gradient descent to determine the
sample locations via the ordinary differential equation,

dX
ds

= −∇u, with X(0) = z0 . (2)

However, there are two drawbacks to this method. First, it only works in cases where
the Green’s function has a specific structure, such as in the case for the Laplace op-
erator. For problems involving the Helmholtz operator, the solutions are typically
oscillatory and this gradient approach does not apply at all. Second, even for the
Laplace operator, one can come up with a pathological configuration for the obsta-
cles where the gradient vanishes at points other then the source.

We continue with the method proposed in this paper. At an observing location z1,
we can measure the signal strength I1 = u(z1). We look at the solution to the adjoint
problem,

!v1 = δ (x− z1) in DΩ
v1 = 0 on Γ .

(3)

Now, for y �= z1 we have

v1(y) =
∫

DΩ
δ (x− y)v1dx =

∫
DΩ

v1!udx (4)

u(z1) =
∫

DΩ
δ (x− z1)udx =

∫
DΩ

u!v1dx ,



Discovering a Point Source in Unknown Environments 667

and thus, by Green’s identity, v1(y) = u(z1) = I1 . Therefore the source must lie on
the I1 level set of v1,

y ∈ {x ∈ DΩ : v1(x) = I1} . (5)

Next, based on the visibility information, we select the next observing location
z2 from the region that is not occluded to z1, that is z2 ∈ D\Wz1 . Denote the signal
strength at z2 by I2 = u(z2). The function v2 can be computed and we can narrow
down the possible locations of y,

y ∈ {v1 = I1}∩{v2 = I2} . (6)

We can repeat this procedure for more measurements.
Our proposed algorithm can handle obstacles of a rather large class, including

very complicated non-convex obstacles, see Figures 5 and 6 for an example. The
only constraint comes from the size of the underlying mesh used to obtain the solu-
tion of the PDE (3), since this grid has to resolve the features of the obstacles. The
discretization of the domain results in a simple system of linear equations that has
to be solved. We refer the reader to [8, 22] for a discussion and efficient methods for
solving PDEs.

In the case when the obstacles Ω are unknown, the visibility functions ψ(x;zk)
provide a convenient over approximation of Ω , since Ω ⊆Wzk . This can be used
in conjunction with a maximum principle for Poisson’s equation to estimate the
location of y. We will discuss this in greater detain in later sections.

2 Mathematical Formulation

In the most general setting that we will consider, the inverse source problem can be
formulated as follows. Let u(x) satisfy,

Lu = αδ (x− y) in DΩ ≡ D\Ω
Bu = 0 on Γ ,

(7)

where D is a bounded domain, Ω are the (possibly unknown) obstacles, Γ = ∂DΩ ,
L is a linear partial differential operator, B is an operator specifying the boundary
conditions, and α > 0. We will assume that at a given point z ∈ DΩ we can sample
u and the domain. That is, at a given z we can measure u(z) and its derivatives and
the visibility function ψ(x;z). The inverse source location problem is to recover the
source location y and the source strength α from a sequence of sample locations zk.

The main approach that we will use in this problem is to look at the adjoint
operator, L∗, with the appropriate boundary conditions B∗:

L∗v = Fz in DΩ
B∗v = 0 on Γ ,

(8)



668 M. Burger et al.

for some distribution Fz with support {z}. Now, using the properties of the adjoint
and assuming that z �= y, (Lu,v)− (u,L∗v) = 0 , and hence, αv(y) = Fz[u] . For
example, if we use F = δ , we get αv(y) = u(z) . Similary, for F = −∂x1δ , we get
αv(y) = ∂x1u(z) .

For unknown domains, we use the methods developed in [15] to find the visibility
function and use it determine the sequence of sample locations zk.

3 Poisson’s Equation

In this section we consider the case when L = ! in 2 dimensions with Dirichlet
boundary conditions:

!u = αδ (x− y) in DΩ
u = 0 on Γ .

(9)

We note that this operator is self-adjoint and that the following maximum principle
from PDE theory holds:

Theorem 3.1. Let DΩ be bounded and w satisfy

!w = 0 in DΩ
w ≤ 0 on Γ ,

(10)

then w≤ 0 in DΩ .

Now, supposed that we have an over-estimate for the obstacles Ω+, so that Ω ⊆Ω+

and let v and v+ satisfy (9) with obstacle sets Ω and Ω+ respectively. Then, since
the fundamental solution for the Laplacian for any domain is non-positive, v≤ 0 on
Γ + = ∂DΩ+ . Let w = v− v+, so that w satisfies the conditions of Theorem 3.1 for
DΩ+ . Thus, w = v− v+ ≤ 0 in DΩ+ . Furthermore, if we extend v+ to DΩ by 0, we
have that v+ ≥ v in DΩ . This fact will be used in the case of unknown obstacles.

3.1 Known Environment

At a sample location zk, equation (2) gives us

αvk(y) = u(zk), αwk1(y) = ∂x1 u(zk), αwk2(y) = ∂x2 u(zk) , (11)

where vk, wk1 and wk2 satisfy (8) with F equal to δ (x− zk), −∂x1δ (x− zk) and
−∂x2δ (x− zk), respectively. Since vk is non-zero except at the boundary, we can
also form,

wk1(y)
vk(y)

=
∂x1u(zk)

u(zk)
and

wk2(y)
vk(y)

=
∂x2 u(zk)

u(zk)
. (12)

Thus, y is in the intersection of the u(zk) level set of v, the ∂x1 u(zk) level set of w1

and so on. Note that in the last two equations, α does not appear. As we take more
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and more measurements zk, the intersection of all of these sets will be smaller and
smaller. Furthermore, for a pair of measurements j and k, we can form,

vk(y)
vl(y)

=
u(zk)
u(zl)

, (13)

and so on. Note that these are also independent of α .

3.2 Unknown Environment

At a sample location zk, we have the visibility function ψ(x;zk). From this function
we can obtain an over-estimate of the obstacles, Ω+

k , such that Ω ⊆ Ω+
k . After K

measurements, we let

Ω+ =
K⋂

k=1

Ω+
k , and

!v+
k = δ (x− zk) in DΩ+ ≡ D\Ω+

v+
k = 0 on Γ + ,

(14)

where Γ + = ∂DΩ+ .
The results from section 3.1 apply and for the vk defined in that section, αvk(y) =

u(zk) , but since we don’t know Ω , we cannot find vk. However, by Theorem 3.1,
vk ≤ 0 on Γ +, since Γ + ⊂ DΩ . If we consider the difference w = vk− v+

k , we see
that w satisfies (10), and Theorem 3.1 implies that w ≤ 0. This maximum principle
gives us that for α ≥ 0,

αv+
k (y)≥ αvk(y) = u(zk) .

Thus,

y ∈
K⋂

k=1

{x|αv+
k (x)≥ u(zk)} .

In the case when α is unknown, we would like to find an α independent set which
includes y. From section 3.1, for a pair of samples k and l, we have

vk(y)
vl(y)

=
u(zk)
u(zl)

and thus,
v+

k (y)
vl(y)

≥ u(zk)
u(zl)

.

Now, let Ω− be an under-estimate of the obstacles, so that Ω− ⊆ Ω . A simple
choice for Ω− is the empty set (no obstacles). Also, let v− satisfy (14) for Ω−. By
the maximum principle, vl ≥ v−. Thus,
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v+
k (y)

v−(y)
≥ u(zk)

u(zl)
,

which is independent of α as desired.

3.3 Numerical Experiments and the Proposed Algorithm

We model the δ -source as a sharply rescaled Gaussian centered at the prescribed
location. To determine the location of the source, we build a probability density as
follows. For each measurement, we let the probability density, pk(x), be constant in
the possible region (it may be a curve) and have Gaussian drop-off away from this
region. After k different measurements, we let the probability density be

p(x) = c0

k

∏
j=1

p j(x)1/k, with c0 s.t.
∫

Ω
p(x)dx = 1. (15)

Known Strength, Known Environment

For this experiment, we assume that the source has strength α = 1 and use Algo-
rithm 1. We sample u(x) at 3 locations, which results in 9 level sets if we use the
level sets given by (11). The domain and results are given in Figure 1.

Algorithm 1. Source detection in known environment.

1: u(z): solution of equation (9) that can be measured for any z.
2: k = 1
3: zk: vantage point outside the occluding objects
4: compute vk: solution of Equation (9) and any of the wk1, . . . , that are availiable
5: compute p as in Equation (15)
6: while p is not localized do
7: k = k +1
8: chose zk to be outside of the set {x : vk−1 > u(zk−1)}
9: compute vk: solution of (9) and any of the wk1, . . . , that are availiable

10: re-compute p as in Equation (15)
11: end while

Alternatively, we can use only vk along with all pairs (13). The results for 3
measurements (total of 6 level sets after the 3rd) are shown in Figure 2.

Unknown Strength, Known Environment

For this case, we assume that the strength α is unknown and use Algorithm 1. We
sample u(x) at 3 locations. Since the strength is unknown, we use equaitons (13).
After locating the source, its strength can be approximated using, α = u(zk)/vk(y).
The results are shown in Figure 3. The actual source location is (0.200,0.400) and



Discovering a Point Source in Unknown Environments 671

Fig. 1. Location of a source with known strength in a known environment for Poisson’s
equation. Location based on 3 measurements with vk, wk1 and wk2. Figures: A) The known
environment, source and sample (1, 2, 3) locations; B) p(x) after 1 measurement; C) p(x)
after 2 measurements; D) p(x) after 3 measurements. Blue is zero probability; Red is high
probability.

Fig. 2. Location of a source with known strength in a known environment for Poisson’s
equation. Location based on 3 measurements with vk and pairwise combinations. Figures: A)
The known environment, source and sample (1, 2, 3) locations; B) p(x) after 1 measurement;
C) p(x) after 2 measurements; D) p(x) after 3 measurements. Blue is zero probability; Red is
high probability.

its strength is α = 1.817547. The probability p after 3 measurements has a maxi-
mum at (0.208,0.400). The estimates for α are 1.861106, 1.837540, 1.767651, and
the average is 1.822099.

Known Strength, Unknown Environment

In order to detect a source of given strength in an unknown environment the observer
utilizes visibility information to proceed through the environment and to narrow
down the region of possible source locations. In particular, let ψ(·,zk) be the visi-
bility level set function corresponding to the vantage point zk. Then, {ψ(·;zk)≥ 0}
is the visible portion of D and {ψ(·;zk) < 0} is invisible. Let Ψk denote joint vis-
ibility along the path. In the level set framework, Ψk = max j=1,...,k{ψ(·,z j)}. The
remaining occluded set {x ∈ D : Ψk(x) < 0} may be used as an over-approximation
of the obstacles Ω+

k . Note, as the observer explores more of D, Ω+
k becomes a bet-

ter approximation Ω . Thus, the u(zk) level set of v+
k would pass closer to the source

location y.
Furthermore, let {q j}M

j=1 be the filtered out visible points on the boundaries of the
obstacles, collected along the observer’s path {z1, . . . ,zk}, see [15, 16] for details.
To construct an under-approximation of the obstacles Ω−

k , we take the union of all
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Fig. 3. Location of a source with unknown strength in a known environment for Poisson’s
equation. Location based on 3 measurements with vk pairwise combinations. Figures: A) The
known environment, source and sample (1, 2, 3) locations; B) p(x) after 2 measurements; C)
p(x) after 3 measurements. Blue is zero probability; Red is high probability. Actual parame-
ters: source location (0.200,0.400) with strength 1.817547. Location results: (0.208,0.400).
Strength estimates, 1) 1.861106, 2) 1.837540, 3) 1.767651. Averaged α = 1.822099.

ε-balls Bε(q j), touching the visible points, such that Bε(q j) ⊆ {Ψk ≤ 0}. Dirichlet
boundary conditions are enforced at the union of the boundaries of Bε(q j). Then,
using Theorem 3.1, we may “sandwich” the location of the source y ∈ {x ∈ D :
v−k (x)≤ u(zk)≤ v+

k (x)}.
As the observer proceeds through the environment, the next step along the path

is chosen in the currently visible region, so that the resulting path avoids obstacles
and is continuous and consists of a finite number of steps as in [15]. We adopt the
algorithm in [15] to navigate through the unknown environment, in which the ob-
server approaches one of the visible horizons, or edges on the piecewise-smooth
visibility map, defined in [15]. The next step zk+1 is obtained by overshooting the
horizon location by the amount inversely proportional to the curvature of the obsta-
cle’s boundary near the horizon.

To optimize the search, we choose a direction so that zk+1 ∈ {Wk ≥ 0}, if the
continuity of the path can be preserved. Otherwise, we simply proceed towards the
nearest horizon, as was proposed in [15]. The algorithm terminates when the entire
set {Wk ≥ 0} is visible from the vertices along the path. Note, that in most cases the
proposed location algorithm would terminate prior to full mapping of the environ-
ment. However, if the environment has been fully explored before the source was
located, the algorithm for the known environment may be applied.

Finally, we would like to remark that according to [15], the environment is con-
sidered to be completely explored when all the horizons detected along the path
have been cleared. The observer may return to an earlier vantage point along the
path to see other horizons. Therefore, the resulting path may branch out. The com-
plete search strategy is described in Algorithm 2 below.

Note that v+
k and v−k are the level set functions. Then, for a given k, the set {x ∈

D : v−k (x) ≤ u(zk) ≤ vk(x)+}, containing the source, is defined by another level set
function Wk, positive in the interior of the set and negative outside. Numerically,
Wk is defined in step 10 of the above algorithm. As the observer proceeds through
the environment, we take the intersection of all such sets corresponding to each
observing location. In the level set framework, this translates to min j=1,...,k{Wj},
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Algorithm 2. Source detection in unknown environment with known strength.

1: u(z): solution of equation (9) that can be measured for any z.
2: k = 1
3: zk: vantage point outside the occluding objects
4: ψ(·,zk): visibility with respect to zk
5: Ψk: joint visibility along the path
6: construct Ω+

k : over-estimate of Ω with respect to zk
7: construct Ω−

k : under-estimate of Ω with respect to zk
8: compute v+

k : solution of Equation (9) with obstacles Ω+

9: compute v−k : solution of Equation (9) with obstacles Ω−

10: set Wk(x) :=−(v+
k (x)−u(zk))(v−k (x)−u(zk)),x ∈D

11: while {Wk ≥ 0}� {Ψk ≥ 0} do
12: k = k+1
13: set Ψk = max{ψ(·,zk),Ψk−1}
14: construct Ω+

k , Ω−
k

15: compute v+
k , v−k

16: set Wk(x) := min{−(v+
k (x)−u(zk))(v−k (x)−u(zk)),Wk−1(x)},x ∈D

17: if {Wk ≥ 0}∩{ψ(·,zk) > 0} �= /0 then
18: choose zk ∈ {Wk ≥ 0}∩{ψ(·,zk) > 0}
19: else
20: choose zk ∈ {ψ(·,zk) > 0} according to the exploration algorithm in [15]
21: end if
22: end while
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Fig. 4. Unknown environment, known source strength. The source is located at (0.75,0.75).
Orange contour is boundary of Ω+

k and the magenta contour is the boundary of Ω−
k . The blue

region is Wk ≥ 0, the green contour is the u(zk) level set of v+
k and the blue contour is the

u(zk) level set of v−k .

computed in step 16. Similarly, joint visibility along the path Ψk is computed as
max j=1,...,k{ψ(·,z j)} in step 13.

Figures 4, 5, and 6 demonstrate the performance of Algorithm 2. In all these
figures, the over-approximation of the obstacles Ω+, based on joint visibility, is
depicted by the orange contour, and the under-approximation Ω−, based on ε-balls
around the visible boundary points, is depicted by the magenta contour. The u(zk)
level set of v+

k is shown in green and the u(zk) level set of v−k is shown in blue. The
blue region is the set {Wk ≥ 0}. The location of the source is marked by the red star
and the path is shown in black, with circles indicating the discrete steps.
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Fig. 5. Unknown environment, known source strength. The source is located at (0.25,−0.55).
Orange contour is boundary of Ω+

k and the magenta contour is the boundary of Ω−
k . The blue

region is Wk ≥ 0, the green contour is the u(zk) level set of v+
k and the blue contour is the

u(zk) level set of v−k .
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Fig. 6. Unknown environment, known source strength. The source is located at
(0.112,0.876). Orange contour is boundary of Ω+

k and the magenta contour is the bound-
ary of Ω−

k . The blue region is Wk ≥ 0, the green contour is the u(zk) level set of v+
k and the

blue contour is the u(zk) level set of v−k . Steps 2 through 11 are skipped since no information
regarding the source location is available.
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Figure 4 shows a simple environment with three disk-shaped obstacles. The
source is located at (0.75,0.75). The observer may not see the source from its initial
position at (−0.82,−0.91). The blue region {W1 ≥ 0} almost overlaps with the in-
visible set {ψ1 < 0}. The next vantage point is chosen to be inside the blue region.
One can see that after two steps the region {W2 ≥ 0}, containing the source, has
shrunk significantly. Finally, after three steps, u(zk) level sets of v+

k and v−k coin-
cide, and the source is located somewhere on the curve {W3 = 0}. Since this set is
entirely visible from the observer’s position, the search is complete. Note that the
environment has not been entirely explored up to this point.

Figure 5 depicts a much more complex example. Here, the environment is con-
structed from a single slice of the Grand Canyon height-map1 at a fixed elevation.
The complexity of this particular environment is in the fractal-like structure of its
boundaries, which complicates the visibility-based navigation. We further increased
the complexity of the Grand Canyon terrain by adding two disk-shaped holes to
the interior of the region. The source is concealed in a small bay with coordinates
(0.25,−0.55). At step 1 the blue region {W1 ≥ 0}, containing the source overlaps
with the invisible set {ψ1 < 0}. Therefore the observer simply approaches the near-
est edge to arrive at z2. From now on there is a preferable direction to approach.
The next observing position z3 is chosen according to step 18 of the algorithm. Now
there are two possible directions to investigate. The observer chooses the nearest
one to arrive at z4. Since there are no new horizons at z4, the observer backtracks to
z3 and explores the second choice horizon. As the observer approaches the source,
the blue region shrinks. At z5 the observer chooses the nearest of three possible
horizons. Finally, the entire set of possible source locations is visible from z6 and,
therefore, the algorithm terminates. We remark that the source has been found long
before the entire environment has been explored.

Finally, Figure 6 depicts the most complicated example. The source is concealed
in a small cave at (0.112,0.876). Steps 1 through 12 are chosen according to the
original [15] exploration algorithm, since the sets {W2 ≥ 0} and {Ψk ≥ 0} coincide
for k = 1, . . . ,12. Finally, the observer backtracks to z2 to clear previously unex-
plored horizons. At z14 the set containing the source becomes visible. In this exam-
ple, the observer must explore almost the entire region to finally locate the source.

4 Conclusion

In this paper, we have developed an algorithm that can locate a source of unknown
strength for a generic partial differential operator in a bounded domain with obsta-
cles. The algorithm relies on the solution of the adjoint problem and the reciprocity
that exists between the operator and its adjoint. We have shown examples for the
case of Poisson’s equation.

In the case of unknown obstacles, we have proposed a method for locating the
source which is based on previous unknown environment exploration methods and
relies on the maximum principle to determine a set of possible source locations. This

1 Data from: ftp.research.microsoft.com/users/hhoppe/data/gcanyon
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algorithm also works in the case of unknown source strength. Several examples for
Poisson’s equation were shown.
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