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Abstract. The design of ultralightweight authentication protocols that
conform to low-cost tag requirements is imperative. This paper analyses
the most important proposals (except for those based in hard problems
such as the HB [1–3] family) in the area [4–6] and identifies the common
weaknesses that have left all of them open to various attacks [7–11]. Fi-
nally, we present Gossamer, a new protocol inspired by the recently pub-
lished SASI scheme [13], that was lately also the subject of a disclosure
attack by Hernandez-Castro et al. [14]. Specifically, this new protocol is
designed to avoid the problems of the past, and we examine in some deep
its security and performance.

1 Introduction

In a RFID system, objects are labeled with a tag. Each tag contains a microchip
with a certain amount of computational and storage capabilities, and a coupling
element. Such devices can be classified according to memory type and power
source. Another relevant parameter is tag price1, which creates a broad distinc-
tion between high-cost and low-cost RFID tags.

Each time a new protocol is defined, the tag’s class for which it is envisioned
should also be specified. We note that, depending on the class of the tag, the
maximum security level that can be supported will also be very different. For ex-
ample, the security level of a relatively high-cost tag as those used in e-passports
should be much higher than that of a low-cost tag employed in supply chain
management (i.e. tags compliant to EPC Class-1 Generation-2 specification).

In [13], Chien proposed a tag classification mainly based on which were the
operations supported on-chip. High-cost tags are divided into two classes: “full-
fledged” and “simple”. Full-fledged tags support on-board conventional cryp-
tography like symmetric encryption, cryptographic one-way functions and even
public key cryptography. Simple tags can support random number generators
and one-way hash functions. Likewise, there are two classes for low-cost RFID
tags.“Lightweight” tags are those whose chip supports a random number gen-
eration and simple functions like a Cyclic Redundancy Code (CRC) checksum,
1 The rule of thumb of gate cost says that every extra 1,000 gates increases chip price

by 1 cent [15].
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but not cryptographic hash function. “Ultralightweight” tags can only compute
simple bitwise operations like XOR, AND, OR, etc. These ultralightweight tags
represent the greatest challenge in terms of security, due to their expected wide
deployment and very limited capabilities.

2 A Family of Ultralightweight Mutual Authentication
Protocols

In 2006, Peris et al. proposed a family of Ultralightweight Mutual Authentication
Protocols (henceforth referred to as the UMAP family of protocols). Chronolog-
ically, M2AP [4] was the first proposal, followed by EMAP [5] and LMAP [6].

These protocols are based on the use of pseudonyms to guarantee tag ano-
nymity. Specifically, an index-pseudonym is used by an authorized reader to
retrieve the information associated with a tag (tag identification phase). Addi-
tionally, a key -divided in several subkeys- is shared between legitimate tags and
readers (back-end database). Both readers and tags use these subkeys to build
the messages exchanged in the mutual authentication phase.

In line with their real processing capabilities, tags only support on-board
simple operations. Indeed, these protocols are based on bitwise XOR (⊕), bitwise
OR (∨), bitwise AND (∧) and addition mod 2m. By contrast, only readers need to
generate pseudorandom numbers; tags only use them for creating fresh messages
to the protocol.

In the UMAP family of protocols, the proposed scheme consists of three stages.
First, the tag is identified by means of the index-pseudonym. Secondly, the reader
and the tag are mutually authenticated. This phase is also used to transmit the
static tag identifier (ID) securely. Finally, the index-pseudonym and keys are
updated (the reader is referred to the original papers for more details).

2.1 Security Analysis of the UMAP Protocols

Since the publication of the UMAP family of protocols, their security has been
analyzed in depth by the research community. In [7, 8] a desynchronization at-
tack and a full disclosure attack are presented. These require an active attacker
and several incomplete run executions of the protocol to disclose the secret in-
formation on the tag. Later, Chien et al. proposed -based on the same attack
model- a far more efficient full-disclosure attack [9]. Additionally, Bárász et al.
showed how a passive attacker (an attack model that may be, in certain sce-
narios, much more realistic) can find out the static identifier and on particular
secrets shared by the reader and the tag after eavesdropping on a few consecutive
protocol rounds [10, 11].

This leads us to the following conclusions: first, we must define what kind of
attack scenarios are applicable. In our opinion, ultralightweight RFID tags have
to be resistant to passive attacks but not necessarily to active attacks, because of
their severe restrictions (storage, circuitry and power consumption). Regarding
passive attacks, we can affirm the following:
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– The UMAP family of protocols is based on the composition of simple opera-
tions like bitwise AND, XOR, OR and sum mod 2m. Because all of these are
triangular functions (T-functions) [16], the information does not propagate
well from left to right. In other words, the bit in position i in the output
only depends on bits j = 0,..., i of the input words.

– The use of the bitwise AND or OR operations to build public submessages
is a weakness common to all these protocols. When a bitwise AND (OR)
operation is computed even over random inputs, the probability of obtaining
a one (zero) is 3

4 . In other words, the result is strongly biased. This poor
characteristic is the basis of all the passive attacks proposed so far.

3 SASI Protocol

In 2007 Hung-Yu Chien proposed a very interesting ultralightweight authenti-
cation protocol providing Strong Authentication and Strong Integrity (SASI)
for very low-cost RFID tags [13]. We briefly describe the messages exchanged
between the reader (or back-end database) and the tag.

An index-pseudonym (IDS), the tag’s private identification (ID), and two
keys (k1/k2) are stored both on the tag and in the back-end database. Simple
bitwise XOR (⊕), bitwise AND (∧), bitwise OR (∨), addition 2m and left rotation
(Rot(x,y)) are required on the tag. Additionally, random number generation (i.e.
n1 and n2) is required on the reader. The protocol is divided into three states: tag
identification, mutual authentication and updating phase. In the identification
phase, the reader (R) sends a “hello” message to the tag (T ), and the tag answers
with its IDS. The reader then finds, in the back-end database, the information
associated with the tag (ID and k1/k2), and the protocol continues to the mutual
authentication phase. In this, the reader and the tag authenticate each other,
and the index-pseudonym and keys are subsequently updated:

R → T : A||B||C with
The reader generates nonces n1 and n2 to build the submessages as follows:
A = IDS ⊕ k1 ⊕ n1; B = (IDS ∨ k2) + n2; C = (k1 ⊕ k∗

2) + (k2 ⊕ k∗
1);

where k∗
1 = Rot(k1 ⊕ n2, k1); k∗

2 = Rot(k2 ⊕ n1, k2)

Tag. From messages A and B, the tag can obtain values n1 and n2 respectively.
Then it locally computes C′ and checks if the result is equal to the received
value. If this is the case, it sends D and updates the values of IDS, k1 and k2:
D = (k∗

2 + ID) ⊕ ((k1 ⊕ k2) ∨ k∗
1); IDSnext = (IDS + ID) ⊕ (n2 ⊕ k∗

1);
knext
1 = k∗

1 ; knext
2 = k∗

2 ;

T → R : D with

Reader. Verifies D and, if it is equal to the result of its local computation,
updates IDS, k1 and k2 in the same way as the tag.

3.1 Vulnerability Analysis

From the analysis of the UMAP family of protocols, we conclude that it is nec-
essary to incorporate a non-triangular function in order to increase the security
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of ultralightweight protocols. At first sight, the SASI protocol complies with this
requirement as it includes the left rotation operation (which is non triangular).
However, Hernandez-Castro et al. have recently showed that the protocol was
not carefully designed [14]. Indeed, a passive attacker can obtain the secret static
identifier of the tag (ID) after observing several consecutive authentication ses-
sions. We now summarize the main weaknesses of the protocol (see the original
paper for more details):

1. The second component of the IDS updating equation is dependent on the
bitwise XOR between n2 and k∗

1 . This gives rise to poor statistical properties
as k∗

1 is also function of n2.
2. The key updating equation has a kind of distributive operation that might

be employed to attack the protocol, for example: k∗
1 = Rot(k1 ⊕ n2, k1) =

Rot(k1, k1) ⊕ Rot(n2, k1)
3. As mentioned in Section 2.1, bitwise OR and bitwise AND should be used

with extreme care. These operations result in a strongly biased output. For
example, the nonce n2 can be approximated with very good precision by
simply computing n2 � B − 1. These operations might therefore be only
employed in the inner parts of the protocol but should be avoided in the
generation of public submessages (i.e. B and D submessages). In fact, all
the exchanged messages should resemble random values as far as possible.

4 Gossamer Protocol

As a consequence of the above observations, we have derived a new protocol,
called Gossamer2, which is inspired by the SASI scheme but hopefully devoid of
its weaknesses. Our main aim was to define a protocol with adequate security
level and which can realistically be employed in ultralightweight RFID tags.

4.1 Model Suppositions

Each tag stores a static identifier (ID), an index-pseudonym (IDS) and two
keys (k1/k2) in its memory. This information is also stored in the back-end
database. The IDS is employed as a search index to allocate, in the database,
all the information linked with each tag. These elements have a length of 96
bits, compatible with all the encoding schemes (i.e. GTIN, GRAI) defined by
EPCGlobal. Additionally, tags are given the added requirement of storing the old
and potential new values of the tuple (IDS, k1, k2), to avoid desynchronization
attacks. In spite of this, resiliency against attacks which involve tag manipulation
are not considered as these devices are not at all tamper-resistant.

For the implementation of the proposed protocol, only simple operations are
available on tags, in accordance with their restrictions: specifically, bitwise XOR
2 Gossamer: Noun describing a thin film of cobwebs floating in the air (this meaning

dates from the 14th century) and an adjective meaning light, delicate, thin enough
to let light through, nearly transparent.



60 P. Peris-Lopez et al.

(⊕), addition mod 2m (+), and left rotation (Rot(x,y)). Rotation may be per-
formed in several different ways. However, the original SASI scheme does not
clearly specify the rotation method used. Sun et al., who recently published two
desynchronization attacks on SASI, contacted the author to clarify the issue [17].
Chien asserted that Rot(x, y) is a circular shift of x, wht(y) positions to the left
where wht(y) denotes the Hamming weight of y. This is probably not optimal
from the security point of view as the argument that determines the number of
positions rotated is far from uniform. Indeed, this variable follows the following
probability distribution:

Prob(wht(B) = k) =

(96
k

)

296 (1)

In our proposed scheme Rot(x, y) is defined perform a circular shift on the value
of x, (y mod N) positions to the left for a given value of N (in our case 96).

Random number generation, required in the protocol to supply freshness, is
a costly operation, so it is performed by the reader. Moreover, random numbers
cannot be indiscriminately employed because their use increases both memory
requirements and message counts (which could be costly in certain applications).
To significantly increase security, we have also added a specially designed and
very lightweight function called MixBits. In [18], a detailed description of the
methodology used -basically, to evolve compositions of extremely light operands
by means of genetic programming, in order to obtain highly non-linear functions-
is included. MixBits has an extremely lightweight nature, as only bitwise right
shift (>>) and additions are employed. Specifically,

Z = MixBits(X,Y)
----------------------------
Z = X;
for(i=0; i<32; i++) {
Z = (Z>>1) + Z + Z + Y ;}
----------------------------

Communication has to be initiated by readers, since tags are passive. The
communication channel between the reader and the database is generally as-
sumed to be secure, but the channel between the reader and the tag can be
eavesdropped on. Attacks involving modification of the exchanged messages, the
insertion of fraudulent new messages, or message blocking (active attacks), can
be discounted.

4.2 The Protocol

The protocol comprises three stages: tag identification phase, mutual authenti-
cation phase, and updating phase. Figure 1 shows the exchanged messages.

Tag Identification. The reader first sends a “hello” message to the tag, which
answers with its potential next IDS. With it, the reader tries to find an
identical entry in the database. If this search succeeds, the mutual authenti-
cation phase starts. Otherwise the identification is retried but with the old
IDS, which is backscattered by the tag upon request.
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Fig. 1. Gossamer Protocol

Mutual Authentication. With IDS, the reader acquires the private informa-
tion linked to the tag, identified from the database. Then the reader gener-
ates nonces n1 and n2 and builds and sends to the tag A||B||C (see Figure
1). Note that the equations used in the generation of public messages, as do
those used in the computation of internal values, generally follow the scheme
below:

ni+2 = MIXBITS(ni, ni+1) (2)

Mi = ROT ((ROT (ni+1 + ki + PI + ni+2, ni+1) + ki+1 ⊕ ni+2, ni) ⊕ ni+2 (3)

Mi+1 = ROT ((ROT (ni + ki+1 + PI + ni+2, ni) + ki + ni+2, ni+1) + ni+2 (4)

From submessages A and B, the tag extracts nonces n1 and n2. Then it com-
putes n3/n′

1 and k∗
1/k∗

2 and builds a local version of submessage C′. This is
compared with the received value. If it is verified, the reader is authenticated.
Finally, the tag sends message D to the reader. On receiving D, this value
is compared with a computed local version. If comparison is successful, the
tag is authenticated; otherwise the protocol is abandoned.

Index-Pseudonym and Key Updating. After successfully completing the
mutual authentication phase between reader and tag, they locally update
IDS and keys (k1/k2) as indicated in Figure 1. As we have just seen,
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submessages C/D allow reader/tag authentication, respectively. Moreover,
the use of submessages C/D results in confirmation of synchronization for
the internal secret values (n3/n′

1 and k∗
1/k∗

2) used in the updating phase,
preventing straightforward desynchronization attacks.

4.3 Security Analysis

We will now analyze the security of the proposed scheme against relevant attacks:

Data Confidentiality. All public messages are composed of at least three se-
cret values shared only by legitimate readers and genuine tags. Note that
we consider private information (ID, k1, k2), random numbers (n1, n2), and
internal values (n3, n′

1, n′
2, k∗

1 , k∗
2) as secret values. The static identifier and

the secret keys cannot, therefore, be easily obtained by an eavesdropper.
Tag anonymity. Each tag updates IDS and private keys (k1, k2) after success-

ful authentication, and this update process involves random numbers (n3, n′
1,

n′
2). When the tag is interrogated again, a fresh IDS is backscattered. Ad-

ditionally, all public submessages (A||B||C|| and D) are anonymized by the
use of random numbers (n1, n2, n3, n′

1). Tag anonymity is thus guaranteed,
and location privacy of the tag owner is not compromised.

Mutual Authentication and Data Integrity. The protocol providesmutual
authentication. Only a legitimate reader possessing keys (k1, k2), can build a
valid message A||B||C. Similarly, only a genuine tag can derive nonces n1, n2
from A||B||C, and then compute message D.

Messages C and D, which involve the internal secret values (n3, n′
1, k∗

1 , k∗
2)

and nonces (n1, n2), allow data integrity to be checked. Note that these val-
ues are included in the updating equations (potential next index-pseudonym
and keys).

Replay attacks. An eavesdropper could store all the messages exchanged in
a protocol run. To impersonate the tag, he could replay message D. How-
ever, this response would be invalid as different nonces are employed in
each session -this will frustrate this naive attack. Additionally, the attacker
could pretend that the reader has not accomplished the updating phase
in the previous session. In this scenario, the tag is identified by the old
index-pseudonym and the attacker may forward the eavesdropped values of
A||B||C. Even if this is successful, no secret information is disclosed and
the internal state is unchanged in the genuine tag, so all these attacks are
unsuccessful.

Forward Security. Forward security is the property that guarantees the secu-
rity of past communications even when a tag is compromised at a later stage.
Imagine that a tag is exposed one day, making public its secret information
(ID, k1, k2). The attacker still cannot infer any information from previ-
ous sessions as two unknown nonces (n1, n2) and five internal secret values
(n3, n′

1, n′
2, k∗

1 , k∗
2) are involved in the message creation (mutual authentica-

tion phase). Additionally, these internal values are employed in the updating
phase. Consequently, past communications cannot be easily jeopardized.
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Updating Confirmation. The Gossamer protocol assumes that tags and read-
ers share certain secret values. As these values are locally updated, synchro-
nization is mandatory. Submessages C and D provide confirmation of the
internal secret values (n3, n′

1, k∗
1 , k∗

2) and nonces (n1, n2). These values are
employed in the updating stage. So the correct update of values IDS and
keys (k1, k2) is implicitly ensured by submessages C and D.

Unintentional transmission errors can happen in the received messages
since a radio link is used. This is an extremely serious issue for message D,
since it can result in a loss of synchronization. However, the tuple (IDS, k1,
k2) is stored twice in the tag memory -once with the old values, the other
with the potential next values. With this mechanism, even in the event that
message D is incorrectly received, the tag and the reader can still authenti-
cate with the old values. So the reader and the tag will be able to recover
their synchronized state.

4.4 Performance Analysis

Our proposed protocol is now examined from the point of view of computational
cost, storage requirements and communication cost. Additionally, Table 1 com-
pares the most relevant ultralightweight protocol proposals (see Section 1) from
a performance perspective.

Table 1. Performance Comparison of Ultralightweight Authentication Protocols

U-MAP family [4–6] SASI [13] Gossamer
Resistance to Desynchronization Attacks No No Yes
Resistance to Disclosure Attacks No No Yes
Privacy and Anonymity Yes Yes Yes
Mutual Authentication and Forward Security Yes Yes Yes
Total Messages for Mutual Authentication 4-5L 4L 4L
Memory Size on Tag 6L 7L 7L
Memory Size for each Tag on Database 6L 4L 4L

Operation Types on Tag ⊕, ∨, ∧, + ⊕, ∨, ∧, +, Rot2 ⊕, +, Rot3,
MixBits

1 L designates the bit length of variables used.
2 Rot(x, y) = x << wht(y), being wht(y) the Hamming weight of vector y.
3 Rot(x, y) = x << (y mod L) for a given value of L -in our case L = 96.

Computational cost. The protocol we have proposed only requires simple bit-
wise XOR, addition 2m, left rotation, and the MixBits function on tags.
These operations are very low-cost and can be efficiently implemented in
hardware.

When comparing Gossamer with the protocol SASI, we can observe that
the bitwise AND and OR operations are eliminated, and the light MixBits
operation is added for increased security. MixBits is very efficient from
a hardware perspective. The number of iterations of this function is opti-
mized to guarantee a good diffusion effect. Specifically, it consumes 32× 4×
(96/m) clock cycles, m being the word length used to implement the protocol
(i.e. m = 8, 16, 32, 64, 96). As this may have a cost impact on the temporal
requirements, we have minimized the number of MixBits calls.
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Storage requirement. Each tag stores its static identifier (ID) and two
records of the tuple (IDS, k1, k2) -with old and potential new values. A
96-bit length is assumed for all elements in accordance with EPCGlobal. The
ID is a static value, thus stored in ROM. The remaining values (96×6 = 576
bits) are stored in a rewritable memory because they need to be updated.

In the protocol SASI, two temporal nonces are linked to each session.
We include an additional value derived from the previous nonces (ni+2 =
MixBits(ni, ni+1)). As these nonces are updated three times in the internal
steps of the protocol, our scheme is roughly equivalent to the use of five
fresh random numbers. So, with the relatively light penalty of storing an
extra nonce, the security level seems to be notably increased.

Communication cost. The proposed protocol performs mutual authentication
and integrity protection with only four messages, so in this sense it is similar
to the SASI scheme. In the identification phase, a “hello” and IDS mes-
sage are sent over the channel. Messages A||B||C and D are transmitted in
the authentication phase. So a total of 424 bits are sent over the channel -
considering 5 bytes for the “hello” message.

5 Conclusions
We now present some conclusions: firstly those related with RFID security in
general, then specifically related to the security of ultralightweight protocols.

5.1 General Considerations

Price and operability are the main issues whenever a new technology appears
(i.e. bluetooth, wireless, etc.), security frequently being only a side consideration.
To avoid past errors, however, the use of secure solutions should be generalized.
Otherwise, the massive deployment of RFID technology runs the risk of being
significantly delayed. Since 2003, it seems that the general awareness on the se-
curity issues of RFID systems (notably privacy) has been considerably increased,
as reflected by a steady increment in the number of research publications on the
field. However, the majority of proposals to secure RFID tags make the same
two errors:

Tag Class. The tag’s class for which the proposed protocol should be intended
is not clearly specified in most of the proposals. However, the number of avail-
able resources (memory, circuitry, power consumption, etc.) hugely varies
from one to another. In other words, not all tags will support the same
operation set. For example, public cryptography is applicable for the most
expensive RFID tags [19, 20], but it clearly exceeds the capabilities of low-
cost RFID tags.

Additionally, the same security level cannot be asked to each RFID class.
It is not sensible for a low-cost RFID tag (eg. a tagged biscuit packet) to have
the same security level as that of an e-passport.

Tag Resources. Most of the proposed schemes are not realistic with respect to
tag resources. Many lightweight cryptographic primitives have been
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recently proposed, and significant progress is being made in each research
area. Clearly, there have been great improvements in the design of lightweight
stream/block ciphers [21–25], but the design of lightweight hash functions
[26, 12] and PRNGs [27] remains a pending task.

Hash functions are considered a better choice within the RFID security
community regarding implementation. As a result, most of the proposed pro-
tocols are based on the use of hash functions, and some of these also include
a PRNG. In spite of this, many authors claim that the proposed schemes
are appropriate for low-cost RFID tags (lightweight and ultralightweight).
However, standard hash functions demand more than 5.5K gates (130 nm)
[28] - 8K gates (350 nm) [29], which is over the maximum number of gates
(3K - 4K gates) that can be devoted to security functions in this tags. Note
that the additional resources, needed to support on-chip the PRNG, would
increase the total number of logic gates required.

Regarding standardization, there was previously a clear lack of harmonization,
and major RFID vendors offered proprietary systems in the earlier implemen-
tations. Fortunately, things are changing rapidly. One of the most important
standards is the EPCglobal Class-1 Generation-2 RFID specification (known as
Gen-2 for short) [30, 31]. Gen-2 specification represents a significant advance for
the widespread introduction of this technology, but its security level is extremely
low (i.e. privacy is compromised as the EPC is transmitted in clear on the chan-
nel). Some authors intending to increase its security level proposed slight modi-
fications in this specification [32–35]. Despite the fact that standards are being
increasingly adopted by many companies, other developers base the security of
their tags on proprietary solutions. However, the use of proprietary solutions is
not altogether bad if algorithms are published so they can be scrutinized by the
research community. As time has shown, the security of an algorithm cannot
reside in its obscurity. Good examples of this are Texas Instruments DST tags
[36] and Philips Mifare cards [37–39]. Companies should learn from past errors
and make their proprietary algorithms public.

5.2 Ultralightweight Protocols

In 2003, Vajda et al. published the first article proposing the use of lightweight
cryptography [42]. The following year, Juels introduced the concept of minimalist
cryptography [43]. In 2005, there was no proposal in this area, the majority of
proposals being based on the use non-lightweight hash functions. The year after,
Peris et al. proposed the UMAP family of protocols. From the aforementioned
protocols, we can infer the following considerations:

Interest. The protocols arouse interest in the design of new ultralightweight
protocols. Indeed, they have inspired the proposal of other protocols [13, 40,
41]. Additionally, as can be seen below, the security of the UMAP family of
protocols has been carefully examined by the research community.

Security Weaknesses. The security of the UMAP family of protocols has been
analyzed under different assumptions. First, security vulnerabilities were
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revealed under the hypothesis of an active attacker [7–9]. Secondly, Bárász et
al. showed how a passive attacker can disclose part of the secret information
stored in the tag’s memory [10, 11].

As mentioned in Section 4.1, only attacks that do not alter or interfere
with communications are considered a real threat in most scenarios. In other
words, active attacks are discounted when designing a protocol to meet the
requirements of ultralightweight RFID tags.

Operations. Only bitwise AND, XOR, OR and sum mod 2m are required for
the implementation of the UMAP protocol family. At first sight, the choice
seems well-conceived as these operations can be efficiently implemented in
hardware. However, they are all T-functions, which have a very poor diffusion
effect; the information does not propagate well from left to right [16]. Also, as
a consequence of the use of bitwise AND and OR operations in the generation
of certain messages, the latter were highly biased. These two operands should
therefore be avoided in messages passed on the channel, but may be used in
inner parts of the protocol.

The protocol SASI was a step further towards a secure protocol compliant with
real ultralightweight tag requirements. However, it recently came under attack
when Hernandez-Castro et al. showed how a passive attacker can obtain the se-
cret ID by observing several consecutive authentications sessions. Despite this,
we consider that the protocol design shows some interesting new ideas (specifi-
cally, the inclusion of rotations). The analysis of SASI and the UMAP protocol
family has led to the proposal of Gossamer, a new protocol inspired by SASI and
examined here both from the security and performance perspective. Indeed, the
resources needed for the implementation of Gossamer are very similar to those of
SASI the scheme, but Gossamer seems to be considerably more secure because of
the use of dual rotation and the MixBits function. The price to be paid, of course,
is the throughput (number of authenticated tags per second) of the Gossamer pro-
tocol. However, preliminary estimations seem to show that the commonly required
figure of 100 responses per second is still achievable.
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