

Lecture Notes in Computer Science 5379
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kyo-Il Chung Kiwook Sohn Moti Yung (Eds.)

Information
Security Applications
9th International Workshop, WISA 2008
Jeju Island, Korea, September 23-25, 2008
Revised Selected Papers

13

Volume Editors

Kyo-Il Chung
Electronics and Telecommunications Research Institute (ETRI)
Information Security Research Division
161 Gajeong Dong, YuseongGu
Daejeon, 305-700, Korea
E-mail: kyoil@etri.re.kr

Kiwook Sohn
The Attached Institute of Electronics
and Telecommunications Research Institute (ETRI)
1 Yuseong-Post
Daejeon, 305-702, Korea
E-mail: kiwook@ensec.re.kr

Moti Yung
Google Inc.
Columbia University, Computer Science Department
1214 Amsterdam Avenue
New York, NY 10027, USA
E-mail: moti@cs.columbia.edu

Library of Congress Control Number: 2009920695

CR Subject Classification (1998): E.3, D.4.6, F.2.1, C.2, J.1, C.3, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-00305-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00305-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12612604 06/3180 5 4 3 2 1 0

Preface

The 9th International Workshop on Information Security Applications (WISA
2008) was held in Jeju Island, Korea during September 23–25, 2008. The work-
shop was sponsored by the Korea Institute of Information Security and Cryptol-
ogy (KIISC), the Electronics and Telecommunications Research Institute (ETRI)
and the Ministry of Knowledge Economy (MKE).

WISA aims at providing a forum for professionals from academia and industry
to present their work and to exchange ideas. The workshop covers all technical
aspects of security applications, including cryptographic and non-cryptographic
techniques.

We were very pleased and honored to have served as the Program Committee
Co-chairs of WISA 2008. The Program Committee received 161 papers from 18
countries, and accepted 24 papers for the full presentation track. The papers
were selected after an extensive and careful refereeing process in which each
paper was reviewed by at least three members of the Program Committee.

In addition to the contributed papers, the workshop had three special talks.
Anat Zeelim-Hovav gave an invited talk, entitled “Investing in Information Se-
curity: A Coin in a Wishing Well?” Tai-Myoung Chung and Dieter Gollmann
gave invited talks entitled “Today and Tomorrow of Security and Privacy” and
“SOA Security: Service-Oriented Access Control,” repectively.

Many people deserve our gratitude for their generous contributions to the
success of the workshop. We would like to thank all the people involved in the
technical program and in organizing the workshop. We are very grateful to the
Program Committee members and the external referees for their time and efforts
in reviewing the submissions and selecting the accepted papers. We also express
our special thanks to the Organizing Committee members for their hard work
in organizing the workshop.

Finally, on behalf of all those involved in organizing the workshop, we would
like to thank all the authors who submitted papers and the invited speakers.
Without their submissions and support, WISA could not have been a success.

November 2008 Kyo-Il Chung
Kiwook Sohn

Moti Yung

Organization

Advisory Committee

Mun Kee Choi ETRI, Korea
Hideki Imai Tokyo University, Japan
Dae-Ho Kim ETRI, Korea
Sehun Kim KAIST, Korea
Pil-Joong Lee POSTECH, Korea
Sang-Jae Moon Kyungpook National University, Korea
Kil-Hyun Nam Korea National Defense University, Korea
Bart Preneel Katholieke Universiteit Leuven, Belgium
Man-Young Rhee Kyung Hee University, Korea
Min-Sub Rhee Dankook University, Korea
Joo-Seok Song Yonsei University, Korea
Dong-Ho Won Sungkyunkwan University, Korea

General Co-chairs

Chaegyu Kim ETRI, Korea
Hong-Sub Lee KIISC, Korea

Steering Committee

Hyun-Sook Cho ETRI, Korea
Sang-Choon Kim Kangwon National University, Korea
Hyung-Woo Lee Hanshin University, Korea
Jae-Kwang Lee Hannam University, Korea
Dong-Il Seo ETRI, Korea
OkYeon Yi Kookmin University, Korea

Organization Committee

Chair Jae-Cheol Ryou Chungnam National University, Korea
Finance Seong-Gon Choi Chungbuk National University, Korea

Jintae Oh ETRI, Korea
Publication Jaehwoon Lee Dongguk University, Korea
Publicity Dong Gue Park Soonchunhyang University, Korea

Neungsoo Park Konkuk University, Korea
Registration Kilsoo Chun KISA, Korea

Dohoon Lee ETRI, Korea
Local Arrangements Khi Jung Ahn Cheju National University, Korea

Taenam Cho Woosuk University, Korea

VIII Organization

Program Committee

Co-chairs Kyo-Il Chung ETRI, Korea
Kiwook Sohn ETRI, Korea
Moti Yung Columbia University, USA

Members C. Pandu Rangan IIT Madras, India
Hyoung-Kee Choi Sungkyunkwan University, Korea
Hyun Cheol Chung BCNE Global.Co., Ltd., Korea
Debbie Cook Columbia University, USA
Pierre Alain Fouque ENS, France
JaeCheol Ha Hoseo University, Korea
Hoh Peter In Korea University, Korea
Stefan Katzenbeisser Philips Research, The Netherlands
Howon Kim Pusan National University, Korea
Hyong Shik Kim Chungnam National University, Korea
Hyung Jong Kim Seoul Women University, Korea
Seok Woo Kim Hansei University, Korea
Seung Joo Kim Sungkyunkwan University, Korea
Yongdae Kim University of Minnesota, USA
Brian King Indiana University - Purdue University

Indianapolis, USA
Chiu Yuen Koo Google Inc., USA
Hong Seung Ko Kyoto College of Graduate Studies for

Informatics, Japan
Jin Kwak Soonchunhyang University, Korea
Deok Gyu Lee ETRI, Korea
Dong Hoon Lee Korea University, Korea
Pil Joong Lee POSTECH, Korea
Chae-Hoon Lim Sejong University, Korea
Ji-Young Lim Korean Bible University, Korea
Dongdai Lin SKLIS, Chinese Academy of Sciences, China
Soohyun Oh Hoseo University, Korea
Dan Page Bristol University, UK
Susan Pancho-Festin University of the Philippines, Philippines
Namje Park ETRI, Korea
Vassilis Prevelakis Drexel University, USA
Kyung-Hyune Rhee Pukyong National University, Korea
Pankaj Rohatgi IBM Research, USA
Daehyun Ryu Hansei University, Korea
Kouichi Sakurai Kyushu University, Japan
Chang-ho Seo Kongju National University, Korea
Tsuyoshi Takagi Future University-Hakodate, Japan
Jeong Hyun Yi Soongsil University, Korea
Heung-Youl Youm Soonchunhyang University, Korea
Rui Zhang AIST, Japan
Jianying Zhou Inst. for Infocomm Research, Singapore

Table of Contents

Smart Card and Secure Hardware(1)

Using Templates to Attack Masked Montgomery Ladder
Implementations of Modular Exponentiation . 1

Christoph Herbst and Marcel Medwed

Template Attacks on ECDSA . 14
Marcel Medwed and Elisabeth Oswald

Compact ASIC Architectures for the 512-Bit Hash Function
Whirlpool . 28

Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and
Akashi Satoh

Wireless and Sensor Network Security(1)

Improved Constant Storage Self-healing Key Distribution with
Revocation in Wireless Sensor Network . 41

Qingyu Xu and Mingxing He

Advances in Ultralightweight Cryptography for Low-Cost RFID Tags:
Gossamer Protocol . 56

Pedro Peris-Lopez, Julio Cesar Hernandez-Castro,
Juan M.E. Tapiador, and Arturo Ribagorda

Securing Layer-2 Path Selection in Wireless Mesh Networks 69
Md. Shariful Islam, Md. Abdul Hamid, Byung Goo Choi, and
Choong Seon Hong

Public Key Crypto Applications

Public Key Authentication with Memory Tokens . 84
Camille Vuillaume, Katsuyuki Okeya, Erik Dahmen, and
Johannes Buchmann

Certificate-Based Signatures: New Definitions and a Generic
Construction from Certificateless Signatures . 99

Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang

Cryptanalysis of Mu et al.’s and Li et al.’s Schemes and a Provably
Secure ID-Based Broadcast Signcryption (IBBSC) Scheme 115

S. Sharmila Deva Selvi, S. Sree Vivek, Ragavendran Gopalakrishnan,
Naga Naresh Karuturi, and C. Pandu Rangan

X Table of Contents

Privacy and Anonymity

Sanitizable and Deletable Signature . 130
Tetsuya Izu, Noboru Kunihiro, Kazuo Ohta, Makoto Sano, and
Masahiko Takenaka

An Efficient Scheme of Common Secure Indices for Conjunctive
Keyword-Based Retrieval on Encrypted Data . 145

Peishun Wang, Huaxiong Wang, and Josef Pieprzyk

Extension of Secret Handshake Protocols with Multiple Groups in
Monotone Condition . 160

Yutaka Kawai, Shotaro Tanno, Takahiro Kondo, Kazuki Yoneyama,
Noboru Kunihiro, and Kazuo Ohta

N/W Security and Intrusion Detection

Pseudorandom-Function Property of the Step-Reduced Compression
Functions of SHA-256 and SHA-512 . 174

Hidenori Kuwakado and Shoichi Hirose

A Regression Method to Compare Network Data and Modeling Data
Using Generalized Additive Model . 190

Sooyoung Chae, Hosub Lee, Jaeik Cho, Manhyun Jung,
Jongin Lim, and Jongsub Moon

A Visualization Technique for Installation Evidences Containing
Malicious Executable Files Using Machine Language Sequence 201

Jun-Hyung Park, Minsoo Kim, and Bong-Nam Noh

Application Security and Trust Management

Image-Feature Based Human Identification Protocols on Limited
Display Devices . 211

Hassan Jameel, Riaz Ahmed Shaikh, Le Xuan Hung, Yuan Wei Wei,
Syed Muhammad Khaliq-ur-rehman Raazi, Ngo Trong Canh,
Sungyoung Lee, Heejo Lee, Yuseung Son, and Miguel Fernandes

Ternary Subset Difference Method and Its Quantitative Analysis 225
Kazuhide Fukushima, Shinsaku Kiyomoto, Toshiaki Tanaka, and
Kouichi Sakurai

Data Deletion with Provable Security . 240
Marek Klonowski, Micha�l Przykucki, and Tomasz Strumiński

Smart Card and Secure Hardware(2)

A Probing Attack on AES . 256
Jörn-Marc Schmidt and Chong Hee Kim

Table of Contents XI

On Avoiding ZVP-Attacks Using Isogeny Volcanoes 266
J. Miret, D. Sadornil, J. Tena, R. Tomàs, and M. Valls

Security Analysis of DRBG Using HMAC in NIST SP 800-90 278
Shoichi Hirose

Wireless and Sensor Network Security(2)

Compact Implementation of SHA-1 Hash Function for Mobile Trusted
Module . 292

Mooseop Kim, Jaecheol Ryou, and Sungik Jun

An Improved Distributed Key Management Scheme in Wireless Sensor
Networks . 305

Jun Zhou and Mingxing He

Protection Profile for Connected Interoperable DRM Framework 320
Donghyun Choi, Sungkyu Cho, Dongho Won, and Seungjoo Kim

Author Index . 333

Using Templates to Attack Masked Montgomery
Ladder Implementations of Modular

Exponentiation

Christoph Herbst and Marcel Medwed

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
{Christoph.Herbst,Marcel.Medwed}@iaik.tugraz.at

Abstract. Since side-channel attacks turned out to be a major threat
against implementations of cryptographic algorithms, many countermea-
sures have been proposed. Amongst them, multiplicative blinding is
believed to provide a reasonable amount of security for public-key al-
gorithms. In this article we show how template attacks can be used to
extract sufficient information to recover the mask. Our practical experi-
ments verify that one power trace suffices in order to remove such a blind-
ing factor. In the course of our work we attacked a protected Montgomery
Powering Ladder implementation on a widely used microcontroller. As
a result we can state that the described attack could be a serious threat
for public key algorithms implemented on devices with small word size.

Keywords: RSA, Montgomery Ladder, Base Point Blinding, Side-
Channel Attacks, Power Analysis, Template Attacks, Microcontroller,
Smart Cards.

1 Introduction

In times where huge amounts of data are processed and distributed in electronic
form, security becomes a core subject for all these applications. Cryptographic
algorithms are an essential instrument to realize reasonable security measures
to achieve privacy, authenticity and integrity for electronic data. The security of
most cryptographic algorithms relies on the fact that the used key is only known
by entitled parties. Another basic concept of cryptography is also that the result
(e.g ciphertext, signature) should contain as little information as possible about
the involved key.

In practice, these algorithms have to be implemented on physical devices such
as PCs, smart cards or embedded devices. These implementations can have weak-
nesses which were not considered by the designers of the algorithm. Attacks tak-
ing advantage of such vulnerabilities are called implementation attacks. Apart
from fault attacks ([1], [2]), a very important type of implementation attacks
are side-channel attacks. Side-channel attacks make use of the fact that crypto-
graphic devices convey physical information about the processed secret. In his

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 1–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 C. Herbst and M. Medwed

article [3] Kocher showed that timing information can be used to extract the key
of an RSA [4] implementation. Amongst side-channel attacks, power analysis
[5] has proven to be very potent. Messerges et al. [6] have been one of the first
presenting power analysis attacks on modular exponentiation. Since then, the
improvement of the attacks and the development of countermeasures to defeat
such attacks has been the topic of many scientific publications. A very power-
ful variety of such attacks are the so called template attacks, first presented by
Chari et al. [7].

In power analysis an adversary has to measure the power consumption of a
device while it performs the cryptographic algorithm using the sought secret key.
In Simple Power Analysis (SPA) an attacker tries to extract the key from one
measured power trace (e.g. by visually inspecting the waveform). However, for
Differential Power Analysis (DPA) an attacker uses multiple measured traces to
extract the key. DPA attacks predict intermediate values, which occur during
the execution of a cryptographic algorithm. With these predicted values and a
power model of the device under attack, a hypothetical power consumption is
calculated and matched to the measured traces. The best match indicates the
best prediction for the intermediate values, and therefore the bits of the key
which are included in the prediction.

Template attacks are a special case of SPA attacks. The attacker has to collect
only one measurement trace of the device under attack, but he has to have a
device which behaves similarly concerning the side-channel leakage. This device
is used to build templates for the attacked operations in the implementation. For
building the templates, several traces have to be measured for each attacked op-
eration and data value. In the template matching phase each template is matched
to the single measured trace. The attacker can derive the secret key from the
template which fits best. One of the first results about practical implementations
of template attacks have been published in [8]. In [9], a template attack on an
ECDSA implementation is given.

Besides new and better attacks, the community also worked on countermea-
sures against side-channel attacks. In principle, there are two types of coun-
termeasures, namely masking and hiding [10]. Masking tries to break the link
between the predicted intermediate values and the values processed by the de-
vice. Hiding minimizes the effect of the processed intermediate values on the
power consumption. Many different approaches of countermeasures have been
proposed for all kinds of algorithms on different levels. Algorithmic countermea-
sures for RSA have already been mentioned in [3]. Most of them either blind the
base and/or the exponent of the modular exponentiation. In [11], countermea-
sures against DPA and SPA attacks have been proposed. Also Fumaroli et al.
have developed a ”Blinded Fault Resistant Exponentiation” [12] based on the
Montgomery powering ladder.

In this article we will show how templates can be used to attack such blinded
implementations on 8-bit and 16-bit microcontrollers. As a reference, we will
show how to defeat the base blinding of the proposed algorithm by Fumaroli et
al. [12]. Nevertheless, our attack can be applied to most base blinding schemes

Using Templates to Attack Masked Montgomery Ladder 3

which are used to secure modular exponentiation against side-channel attacks.
Countermeasures based on exponent blinding do not defeat template attacks
either. This is because the result of an template attack would be a blinded
exponent which is still a valid exponent that could be used for encryption or
signing.

The rest of this paper is organized as follows. Section 2 explains the algorithm
proposed by Fumaroli et al. [12] which we later on use to demonstrate our attack.
In Section 3 we give an introduction to the basics of template attacks. The theory
of the filtering step, which is used to extract the desired mask bits, is presented
in Section 4. Section 5 describes the practical details of the attack, followed by
the results in Section 6. Finally, conclusions are drawn in Section 7.

2 Masked Montgomery Powering Ladder

Initially, the Montgomery powering ladder was developed for fast scalar multi-
plications on elliptic curves [13]. Joye et al. [14] rediscovered it and extended the
scope of the Montgomery ladder to any exponentiation in an Abelian group. In
the following, G denotes a finite multiplicative Abelian group. Contrary to classi-
cal binary algorithms used for exponentiation the Montgomery powering ladder
behaves very regularly. Thus it provides a certain degree of security against side-
channel analysis attacks. In Algorithm 1, the Montgomery ladder proposed by
Joye et al. is given. Their version includes already some protection against side-
channel analysis. This protection is achieved by avoiding conditional branches
and performing the same operations on different registers for each execution. In
[14], a brief security analysis against side-channel attacks is given. Joye et al.
state that if the writing to registers R0 and R1 can not be distinguished from
a single side-channel measurement, the Montgomery ladder can be used to im-
plement an exponentiation secure against simple side-channel analysis attacks.
Such an implementation would still be vulnerable to differential side-channel
attacks.

Algorithm 1. Montgommery ladder for calculating xk ∈ G

Require: x ∈ G, k =
∑t−1

i=0 ki2i ∈ N

Ensure: xk ∈ G

1: R0 ← 1, R1 ← x
2: for j = t − 1 down to 0 do
3: R¬kj ← R0 ∗ R1; Rkj ← (Rkj)

2

4: end for
5: return R0

In [12], Fumaroli and Vigilant proposed a blinded and fault-resistant ver-
sion of the Montgomery Ladder. They use a base blinding technique to make
the algorithm secure against side-channel analysis. Additionally they introduce
a checksum to counteract fault attacks on the key bits. In our considerations

4 C. Herbst and M. Medwed

we do not concern ourselves with the checksum calculation (init(CKS) and
update(CKS,kj)) because it does not influence our attack. Algorithm 2 shows
the proposed algorithm by Fumaroli. At the beginning of the calculation the reg-
isters R0 and R1 are multiplicatively masked by a secret random element r ∈ G.
Register R2 is initialized with r−1 ∈ G. During the calculation, the registers R0
and R1 are then masked with the value r2t−j

and R2 holds the compensation
value r−2t−j

. The multiplication of R0 by R2 removes the blinding. The security
analysis of this algorithm given in [12] remarks that there exist some elements
r ∈ G with the property that r2j

= 1 for some j ∈ N. If the registers are blinded
with such elements, the registers are permanently unmasked after j iterations.
But the authors also state that in the context of RSA the probability of choosing
such a weak mask is lower than approximately 1

2900 and therefore it will be very
unlikely that one would choose a weak mask in practice. Due to the fact that in
nearly all cases the registers R0 and R1 are masked with a random value, no dif-
ferential side-channel analysis attack can be mounted, because the intermediate
values are statistically independent from the input and the output.

Algorithm 2. Side-channel analysis and fault-attack resistant Montgomery
ladder by Fumaroli et al. [12]
Require: x ∈ G, k =

∑t−1
i=0 ki2i ∈ N

Ensure: xk ∈ G

1: Pick a random r ∈ G

2: R0 ← r; R1 ← rx; R2 ← r−1

3: init(CKS)
4: for j = t − 1 down to 0 do
5: R¬kj ← R¬kj Rkj

6: Rkj ← R2
kj

7: R2 ← R2
2

8: update(CKS,kj)
9: end for

10: R2 ← R2 ⊕ CKS ⊕ CKSref

11: return R2R0

3 Principle of Template Attacks

Template attacks are an advanced form of SPA techniques. In contrary to DPA,
only one or a few traces suffice to mount an SPA attack. The simplest case
would be a visual investigation of a square & multiply algorithm where the
two basic building blocks, namely the squaring and the multiplication, are easily
distinguishable. Such a scenario is described by Messerges et al. in [6]. They show
how an RSA private key can be extracted by just looking at the power trace.
However, since those vulnerabilities are known, they can be avoided. Hence, plain
SPA attacks are not likely to be a threat for modern implementations anymore.
Therefore, more advanced attack techniques have been developed. The most

Using Templates to Attack Masked Montgomery Ladder 5

powerful SPA attacks are represented by template attacks [7]. This is because
they extract most information out of a given power trace by characterizing the
noise.

Templates describe the statistical properties of every interesting point within
the power trace as well as their dependencies among each other. Given this in-
formation, whole algorithms, sequences of instructions, or Hamming weights of
operands can be characterized. First, the points containing most of the inter-
esting information, have to be found and extracted. For the attack described in
this paper we are interested in the Hamming weight of the words of the mask.
Hence, a DPA attack is perfectly suited to learn which points leak the processed
Hamming weight best. This is because a DPA can be seen as just another metric
for the signal to noise ratio (SNR). Given these points, their statistical properties
have to be extracted. Since it is assumed that the single points in a power trace
follow a normal distribution and that those points are dependent on each other,
a well suited probability model is the multivariate normal distribution (MVN).
Such a distribution is defined by a mean vector m and a covariance matrix C.
Given a set of N power traces, each containing M points (random variables) for
a specific operation, we use the following notation. The vectors ti denote all M
variables of the ith trace and the vectors t′j denote the N observations of the
jth random variable. Finally t̄′i denotes the expected value of the ith variable.
The mean vector and the covariance matrix can now be defined as follows:

m =
1
N

K∑
i=1

ti (1)

∀c ∈ C : ci,j =
1
N

(t′i − t̄′i)� · (t′j − t̄′j) (2)

From equation (2) it can be seen that ci,i contains the variance of the ith vari-
able whereas the other elements (ci,j for i �= j) contain the covariance between
the ith and the jth variable. If the variables are almost independent the covari-
ance matrix becomes close to singularity and we run into numerical problems.
This fact stresses the need for suitably selected points even more.

For every possible occurring operation a pair (m, C) has to be generated. In our
attack scenario we have nine possible Hamming weights and hence build (mi, Ci)
for i = 0..8. Given these pairs, the nine operations are fully characterized.

The second part of the attack is called classification phase. At that stage we
already have the templates and are given the trace to attack. First, we extract the
interesting points which we want to identify with a specific operation. Second,
those extracted points t are taken as the input for the MVN probability density
functions (PDF) described by the pairs (mi, Ci). After evaluating the functions

p(t; (mi, Ci)) = 1√
(2π)N |Ci|

e−
1
2 (t−mi)�C−1

i (t−mi) (3)

where |C| denotes the determinant of the matrix C, we get nine probabilities.
Each of them states how likely it is that the operation characterized by (mi, Ci)

6 C. Herbst and M. Medwed

was executed under the presumption that t was observed. Finally, we opt for
the operation which yields the highest probability. This is called the maximum-
likelihood (ML) decision rule.

4 Mask Filtering

The previous section described how to extract the Hamming weights of the
processed data out of a given trace. This section will show how to recover an
operand of a multiplication or a squaring, given the processed Hamming weights,
by filtering out impossible operand values. For the blinded Montgomery powering
ladder algorithm this ability suffices to unmask it. To mount the attack, we can
either focus on the squaring of the mask (line 2) or the masking itself (line 2)
in Algorithm 2. It turns out, that if the number of words is sufficiently large,
the success probability of the attack becomes almost one. Once the words of the
mask are known, the effect of the masking can be eliminated and a template
attack on the key, like in [9], can be mounted.

Looking at a multiplication algorithm for multi-precision integers like
Algorithm 3, the following observations can be made: During the execution of
the algorithm, all Hamming weights of the n input words occur exactly n times.
Furthermore there occur n2 partial products each of which consists of two words.
This is crucial as it allows a much more precise differentiation. We will use this
information to filter impossible masks. This filtering procedure will first be in-
vestigated for squarings and later for multiplications.

Algorithm 3. Multi-precision integer multiplication
Require: Multi-precision integers A, B consisting of l words
Ensure: C = A · B
1: C ← 0
2: for i from 0 to l − 1 do
3: U ← 0
4: for j from 0 to l − 1 do
5: (UV) ← C[i + j] + A[i] · B[j] + U
6: C[i + j] ← V
7: end for
8: C[i + t] ← U
9: end for

10: return C

For the basic filtering of the information gathered during a squaring operation
we will use Algorithm 4, where hw() denotes the Hamming weight function and
hb() and lb() return the high and low byte of a 16-bit value. All other filtering
approaches (e.g. for a multiplication) which we will use, work very similarly
and will not be listed explicitly. In the first part of the algorithm (line 4-4)
wrong candidates are filtered out. Since there is only one value involved in every
iteration, a wrong outcome indicates a wrong candidate with certainty. We will

Using Templates to Attack Masked Montgomery Ladder 7

Algorithm 4. Mask filtering algorithm
Require: Hamming weights of the l-word long input value A and the partial products.

The input Hamming weights are stored in IPHWi and those of the partial products
in PPHWi. The Hamming weight of the high byte of Ai times Aj is stored in
PPHW2(i∗l+j)+1 and the one of the low byte in PPHW2(i∗l+j) respectively. A
word is assumed to be 8 bit long.

Ensure: C = Value of the mask A
1: PVi,j ← 1 for i = 1..l and j = 1..256.
2: for i from 1 to l do
3: for j from 1 to 256 do
4: if hw(j) �= IPHWi then
5: PVi,j ← 0
6: end if
7: if hw(hb(j2)) �= PPHW2(j·l+j)+1 OR hw(lb(j2)) �= PPHW2(j·l+j) then
8: PVi,j ← 0
9: end if

10: end for
11: end for
12: for all ((PVi,k ≥ 1)AND(PVj,l ≥ 1)) with i �= j do
13: if hw(hb(i ·j)) == PPHW2(i∗l+j)+1 AND hw(lb(i ·j)) == PPHW2(i∗l+j) then
14: PVi,k + +, PVj,l + +
15: end if
16: end for
17: for i from 1 to l do
18: Ci ← index of max(PVi,j) with j = 1..256
19: end for
20: return C

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Size of mask in words

S
uc

ce
ss

 p
ro

ba
bi

lit
y

Sqr
Mul

Fig. 1. Success probability of the filtering algorithm depending on the operand size

refer to this as the two sieving steps. In the second part (line 4-4) this cannot be
done so easily anymore. This is because a wrong outcome only points out that
one of the involved operands is a wrong candidate, but it does not tell which
one. Hence, the only possible strategy to make use of this information is to tick

8 C. Herbst and M. Medwed

both candidates if the outcome has the correct Hamming weight. Hence we will
refer to it as the ticking step. Due to this tick approach, it can happen that the
returned mask is not the correct one. However, Figure 1 shows that this becomes
more and more unlikely with growing operand length.

The difference for a multiplication is that we know one operand completely.
Therefore, we just need one sieving step and no ticking step. It can be seen in
Figure 1, that the success probability increases much faster for a multiplication.
In the next section we will see that an attack on a multiplication also works
much better under non-optimal conditions.

4.1 Sieving with Tolerance

It is well accepted in literature that templates can extract the Hamming weight
of operands. However, for the above attack we require a 100% accuracy, which
is in fact a rather hard requirement. Therefore, we show that we can relax this
requirement, by allowing a tolerance. This tolerance is considered during the
filtering. It is assumed that the templates reveal the real Hamming weight only
with a certain probability. They are allowed to return the real Hamming weight
plus/minus a tolerance. First, we take a look at the squaring again. Figure 2
shows the success probabilities for sieving a squaring with a tolerance of one. It
becomes clear that without knowing some bits for sure, the attack fails in this
scenario. This is because too many wrong positives pass the first two sieving
steps and therefore the ticking step fails. However, if some bits are known or
even better, if whole words are known, we can decrease the input set PV for the
ticking step dramatically in a third sieving step. It turns out that eight to sixteen
bits are sufficient to raise the success probability to a reasonable value again.
For a tolerance of one and zero known bits, the attack becomes infeasible. For
one known word, the success probability falls below one percent for mask sizes
greater than ten words. However, for two known words the probability starts to

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Size of mask in words

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0 bits
8 bits
16 bits

Fig. 2. Success probability of the filtering algorithm with tolerance 1 and different
numbers of known bits

Using Templates to Attack Masked Montgomery Ladder 9

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Size of mask in words

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0
1
2
3
4

Fig. 3. Success probability filtering an 8-bit multiplication with different tolerances

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Size of mask in words

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0
1
2
3
4

Fig. 4. Success probability filtering a 16-bit multiplication with different tolerances

increase again for masks larger than ten words and already reaches 70 percent
for 512-bit operands.

For a multiplication we can relax the requirements even more. Figure 3 shows
that the attack is still feasible for a tolerance of four. In other words, for 8-bit
operands, one template covers between 50 and 100 percent of the whole spectrum
of possible Hamming weights. In Section 6, we show that a hundred percent
accuracy of the templates can be achieved on our device for such a tolerance.

Although the sieving step works best with 8-bit, it is still possible to mount
the attack on 16-bit architectures, as it can be seen in Figure 4.

5 Practical Attack

The basic idea of the attack is quite simple, if an attacker can extract the random
secret value r out of a single measurement he is able to unmask all intermediate

10 C. Herbst and M. Medwed

values and can apply a conventional DPA or template attack. The core issue is
now the extraction of this secret r from one measured trace. Within this section,
we explain how to extract the random blinding factor from a single measurement
by using a template attack.

A precondition for all kinds of template attacks is that the attacker has a
device which behaves identical as the device under attack according to the side-
channel leakage. This device is used to build the templates which are later on used
to match with one measured side-channel trace from the device under attack.
The theory of building templates and matching them is described in Section 3. In
practice, an attacker will try not to build a template for the complete instruction
sequence which is processing the attacked secret data, but he will try to extract
interesting points. These interesting points can be found by performing a DPA
attack on known data. When using a correlation attack, the result of the DPA
will show the moments in time when the highest correlation between the desired
data values and the power consumption of the device will occur. These points
in time are chosen to build the templates.

Figure 5 shows the results of a DPA attack on the squaring operation of a 4-
word operand. The black trace marks the correlation for one partial product, the
gray traces are the correlation for all other partial products. In the black trace,
one can identify two groups of correlation peaks with a value of approximately
0.7. These are the moments in time where the products of the words a0 and a1
and vice versa are calculated. In Figure 6, the correlation values for an attack
on the input values is given. The highlighted trace is the resulting correlation of
input word a0. There are seven groups of peaks with a correlation around 0.6,
which identify the moments in time where the input word a0 is involved in a
multiplication.

After identifying all important points in time an attacker can start to build
his templates. Our training set consisted of measured traces for 1,000 random
input values. For each partial product, templates for all nine possible Hamming
weights were built. To build these templates for each partial product the training

2 4 6 8 10 12

x 104

−1

−0.5

0

0.5

1

Time

C
or

re
la

tio
n

Fig. 5. Result of DPA attack on the in-
termediate values of a squaring operation
for known operands

2 4 6 8 10 12

x 104

−1

−0.5

0

0.5

1

Time

C
or

re
la

tio
n

Fig. 6. Result of DPA attack on the input
values of a squaring operation

Using Templates to Attack Masked Montgomery Ladder 11

set is partitioned according to the occurring Hamming weights at the position of
the partial product. All traces in one subset are then used to build one template.

The templates are then used to identify the Hamming weights of the partial
products in one measured trace. An attacker can either use the squaring step of
r (Line 7 of Algorithm 2) or the initial multiplication of the input value x with
the random secret blinding factor r (Line 2 of Algorithm 2). After identifying the
Hamming weights of the partial products, the sieving step explained in Section 4
is applied. If there are enough words available, the result of the sieving step is
the random secret value r used in the measured execution of the Montgomery
ladder by Fumaroli et al. If the attacker extracts the blinding factor r for each
execution, he can perform a classical DPA attack. Using only one measured
trace, the attacker can also use another template attack to extract the secret
exponent k. To do so, the attacker can use the attack shown in [9] for ECDSA
and adapt it to RSA.

6 Results

For our practical experiment we used an assembly implementation of the multi-
plication used in either the blinding step (Line 2 of Algorithm 2) or the squaring
of the blinding factor r (Line 7 of Algorithm 2). The implementation was op-
timized towards speed and not towards trace quality (e.g., by inserting NOPs,
clearing registers). The target device was an 8-bit microcontroller (AT89S8253)
from Atmel. The controller is based on the Intel 8052 architecture and features
256 byte internal RAM, 8 registers and an (8x8)-bit hardware multiplier.

We acquired 1,000 measurement traces using random input values and the
previously mentioned setup. With these measured traces we have performed a
DPA attack to extract the interesting points (See Figures 5 and 6 in Section 5).
The prediction accuracy achieved by the templates built using this information
can be seen in Table 1. It becomes evident that the accuracy for a tolerance of
0 is rather low. The needed performance of 1.0 is only achieved with a tolerance
of 4. However, as shown in Section 4 such a tolerance still results in a reasonable
success rate.

Furthermore, we investigated how the word size of the architecture influences
the feasibility of such an attack. It turned out that an increasing word size of
the architecture did not decrease the success rate. Only the filtering took longer
since its complexity depends on the word size. This means that the practical
feasibility of the attack is limited by the word size (computational power needed
for filtering) and by the operand length in words (success rate of filtering). The
largest word size we successfully attacked in our experiments was 16. We did not

Table 1. Success rate of the templates allowing different tolerances

Tolerance 0 1 2 3 4
Performance 0.3593 0.7652 0.9374 0.9874 1.0000

12 C. Herbst and M. Medwed

examine larger word sizes. However, most of the microcontroller market share
belongs to 8-bit and 16-bit controllers.

7 Conclusions

In this article we presented how templates can be used to attack blinded public-
key algorithms. We showed that a multiplicative random mask can be extracted
and removed using only a single power trace. Moreover, we could verify our
theoretical assumptions with empirical results, produced on a commonly used
microcontroller architecture. These practical experiments have shown that the
success rate is already 40% for a 512-bit RSA and increases with growing operand
length. Therefore the attack is realistic and presents a serious threat to a wide
range of RSA, ElGamal, and ECC implementations which rely on base blinding
as a side-channel attack countermeasure. To the best of our knowledge this article
is the first to deal with side-channel attacks on masked public-key algorithms.

Acknowledgements. The research described in this paper has partly been
supported by the Austrian Science Fund (FWF) under grant number P18321-
N15 (“Investigation of Side-Channel Attacks”) and by Secure Business Austria
(SBA).

References

1. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

3. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

4. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

5. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

6. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

8. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 443–457. Springer, Heidelberg (2005)

9. Medwed, M., Oswald, E.: Template Attacks on ECDSA. Cryptology ePrint Archive,
Report 2008/081 (2008), http://eprint.iacr.org/

http://eprint.iacr.org/

Using Templates to Attack Masked Montgomery Ladder 13

10. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks- Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

11. Kim, C., Ha, J., Moon, S., Yen, S.-M., Lien, W.-C., Kim, S.-H.: An Improved
and Effcient Countermeasure against Power Analysis Attacks. Cryptology ePrint
Archive, Report 2005/022 (2005), http://eprint.iacr.org/

12. Fumaroli, G., Vigilant, D.: Blinded fault resistant exponentiation. In: Breveglieri,
L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp.
62–70. Springer, Heidelberg (2006)

13. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation 48(177), 243–264 (1987)

14. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidel-
berg (2003)

http://eprint.iacr.org/

Template Attacks on ECDSA�

Marcel Medwed2,3 and Elisabeth Oswald1,2

1 University of Bristol, Computer Science Department, Merchant Venturers Building,
Woodland Road, BS8 1UB, Bristol, UK

2 Graz University of Technology, Institute for Applied Information Processing and
Communications, Inffeldgasse 16a, 8010 Graz, Austria

Elisabeth.Oswald@bristol.ac.uk
3 Secure Business Austria (SBA), Favoritenstraße 16, 1040 Vienna, Austria

Marcel.Medwed@iaik.tugraz.at

Abstract. Template attacks have been considered exclusively in the
context of implementations of symmetric cryptographic algorithms on
8-bit devices. Within these scenarios, they have proven to be the most
powerful attacks. In this article we investigate how template attacks can
be applied to implementations of an asymmetric cryptographic algorithm
on a 32-bit platform. The asymmetric cryptosystem under scrutiny is
the elliptic curve digital signature algorithm (ECDSA). ECDSA is par-
ticularly suitable for 32-bit platforms. In this article we show that even
SPA resistant implementations of ECDSA on a typical 32-bit platform
succumb to template-based SPA attacks. The only way to secure such
implementations against template-based SPA attacks is to make them
resistant against DPA attacks.

1 Introduction

Template attacks bring together statistical modelling and power analysis tech-
niques. They consist of two phases, which can happen sequentially in time (i.e.
the first phase is completed before the second phase starts) or interleaved (i.e.
there are several instances of first and second phases and they interleave each
other). In the first phase, the attacker builds templates, i.e. statistical models
for a device executing a certain sequence of instructions using fixed data. In the
second phase, the attacker matches the templates with the traces acquired from
the device under attack. The attacker chooses the templates for matching based
on key hypotheses. The hypothesis that corresponds to the correct key always
indicates the correct templates, and hence leads to the best matches. This allows
determining the key.

The study of template attacks is also practically relevant because they essen-
tially give a bound on the number of traces that are needed for a power analysis
� The work of the first author has been supported in part by the Austrian Science

Fund (FWF) under grant number P18321 and by Secure Business Austria (SBA).
The work of the second author has been supported in part by the EPSRC under
grant number EP/F039638/1.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 14–27, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Template Attacks on ECDSA 15

attack. This can serve as a measure for the resistance of a device against certain
types of power analysis attacks. Further, there is less research available on the
application of template attacks, which makes them an interesting research topic.

Research on template attacks has concentrated mainly on their application to
implementations of symmetric cryptographic algorithms. The reason for this is
that the number of templates that need to be built, and the size of the templates,
determines the practical feasibility of such attacks. Simply put, it is not obvious
how to apply template attacks, such as they were described for implementations
of symmetric cryptographic algorithms on 8-bit platforms, to implementations
of asymmetric cryptographic algorithms on more challenging platforms. We are
not aware of any article tackling this problem to the best of our knowledge.

This article provides the first results on template attacks on implementations
of asymmetric cryptographic algorithms on a 32-bit platform. To be more spe-
cific, we describe how a template-based SPA attack can be performed to break
implementations of the Elliptic Curve Digital Signature Algorithm (ECDSA).
We describe why and how our attacks work, and how ECDSA actually helps to
conduct these attacks. In addition to the theoretical description, we also show
results of a practical implementation of our attacks on a 32-bit processor.

This article is organized as follows. In Sect. 2 we review previous work on
template attacks. In Sect. 3 we discuss ECDSA and power analysis attacks. In
Sect. 4 we outline three important observations for the practical application of
template-based SPA attacks on ECDSA and we analyse different scenarios for
them. In Sect. 5 we describe the template-based SPA attack on our ECDSA
implementation in detail. We summarize this contribution in Sect. 6.

2 Template Attacks

Template attacks exploit the fact that the power consumption of a device de-
pends on the data it processes. The power consumption can be characterized by
a multivariate normal distribution. In contrast to simple and differential power
analysis (SPA and DPA), template attacks consist of two phases. In the first
phase, the attacker builds the templates, i.e. characterizes the device. In the sec-
ond phase, the templates are used for an attack. Template attacks can be used
in an SPA and in a DPA scenario, see for instance [1].

In this article, we focus on template attacks in an SPA scenario. Our definition
of SPA attacks is that they exploit key-dependent differences within a trace,
see [1, p. 102]. We call these attacks template-based SPA attacks and make the
following assumptions. During the characterization phase, the attacker has the
opportunity to characterize the device under attack. This means, the attacker
may invoke the instructions to be characterized with data of her choice. There
is no limit on the number of invocations. In other words, the attacker has full
control over the device. During the attack phase, we assume that the attacker
has only very limited access to the device. Like in a single-shot SPA attack, we
assume that the attacker only gets a single trace for an execution of ECDSA on
the attacked device.

16 M. Medwed and E. Oswald

2.1 Template Building Phase

Characterizing the device (or the power consumption of a device) means deter-
mining the probability distribution of the power consumption of certain instruc-
tions. It is common to assume that the probability distribution of the power
consumption is a multivariate normal distribution. This distribution is defined
by a covariance matrix C and a mean vector m, see (1).

f(x) =
1√

(2 · π)n · det(C)
· exp

(
−1

2
· (x−m)′ ·C−1 · (x−m)

)
(1)

The covariance matrix C contains the covariances cij = Cov(Xi, Xj) of the
(interesting) points at time indices i and j. The mean vector m lists the mean
values mi = E(Xi) for all (interesting) points in the trace. We refer to this pair
(m,C) as a template from now on.

As written before, we assume that we can determine templates for certain
sequences of instructions. This means, we execute these sequences of instruc-
tions with different data di and keys kj in order to record the resulting power
consumption. Then, we group together the traces that correspond to a pair of
(di, kj), and estimate the mean vector and the covariance matrix of the multi-
variate normal distribution. As a result, we obtain a template for every pair of
data and key (di, kj): hdi,kj = (m,C)di,kj .

In Mangard et al.[1] the notation of reduced templates has been introduced.
Reduced templates are templates for which the covariances can be neglected. In
addition there are different strategies for template building described in [1]. The
different strategies lead to rather different complexities in the template building
phase. In particular, building templates for intermediate values having already
a power model in mind makes template attacks much more feasible in practice.
We will make use of this strategy in this paper.

2.2 Template Matching Phase

During the template matching phase, we use the characterization together with
a power trace from the device under attack to determine the key. This means, we
evaluate the probability density function of the multivariate normal distribution
with (m,C)di,kj and the power trace of the device under attack, i.e. we compute
the probability:

p(t; (m,C)di,kj) =
exp

(
− 1

2 · (t−m)′ ·C−1 · (t−m)
)√

(2 · π)T · det(C)
(2)

We compute this probability for every template. As a result, we get probabil-
ities for all templates: p(t; (m,C)d1,k1), . . . , p(t; (m,C)dD ,kK). These probabili-
ties measure how well the templates fit to a given trace. The highest probability
indicates the correct template. Because each template is also associated with a
key, we can derive the key that is used in the device.

Template Attacks on ECDSA 17

2.3 Previous Work

Template attacks were introduced by Chari et al. [2]. This original work has been
investigated further by Rechberger and Oswald [3], who studied practical aspects
of template attacks on implementations of RC4 on an 8-bit microcontroller. A
result from these first two articles is that the choice and number of the so-called
interesting points (i.e. the points in the power traces that are used to build
the templates) is crucial for the success of template attacks. It turns out that
an approach that works well in practice is to choose points that lead to high
correlation values in DPA attacks as interesting points.

In later work, Agrawal et al. [4] studied how to use template attacks to attack
masking if the random number generator that produces the masks is biased during
characterization. Archambeau et al. [5] investigated how principal subspaces can
be used to make template attacks more effective. Oswald and Mangard demon-
strated different types of template attacks on masked implementations of AES on
an 8-bit smart card. They pointed out that in this particular scenario, template-
based DPA attacks on a masked implementation are as effective as the same type
of attack on an unmasked implementation. A comprehensive description of tem-
plate attacks (in SPA and DPA scenarios) is given in Mangard et al. [1].

Previous work has solely focused on the application of template attacks to
implementations of symmetric cryptographic algorithms such as AES and RC4.
There seem to be two reasons for this.

The first and probably most important reason is that templates were often
built for pairs of key and data. When considering asymmetric cryptographic
algorithms this is obviously a problem because the numbers that are used in
asymmetric cryptography are huge. For instance, in elliptic curve cryptography,
field sizes are 2160 and larger. It is simply infeasible to build templates for all
numbers in a finite field of size 2160 that can be used to represent coordinates of
elliptic curve points. In addition, it is infeasible to build templates for all points
on a given elliptic curve. In contrast, it is feasible to build templates for all 256
values that one byte of the AES state can take (the AES field size is 28).

The second reason is that previous work was all experimentally verified on
8-bit microcontrollers. This is mainly because they are easy to get and to use
for such experiments. To the best of our knowledge only Gebotys et al. [6] have
worked with 32-bit microprocessors. Their previous work shows that working
with such platforms is more challenging than 8-bit platforms. In order to study
template attacks on asymmetric cryptographic algorithms and verify attacks
experimentally, one needs to have a suitable measurement setup.

2.4 Our Contribution

In this article we have found ways to overcome problems encountered in previous
work. We are able to build templates for the intermediate points that occur in
the ECDSA signature generation. Using these templates, we can break ECDSA
implementations in different attack scenarios, which are of general interest for
template attacks on public-key cryptosystems. We have verified our attacks ex-
perimentally on a 32-bit microprocessor. The microprocessor is based on an

18 M. Medwed and E. Oswald

ARM7 architecture which is widely used in handheld computers, etc. Hence, our
verification is done on a platform that is relevant in practice. This is the first
work that successfully applies template attacks on implementations of ECDSA
on a realistic platform.

3 ECDSA and Power Analysis Attacks

In this section we explain why ECDSA is very well suited as target for template-
based SPA attacks. First, we briefly describe the ECDSA signature generation.
Then we review briefly common strategies to secure implementations of ECDSA.
Last, we spell out three observations that can be combined in order to apply
template-based SPA attacks to ECDSA implementations.

3.1 ECDSA Signature Generation

ECDSA is the elliptic curve version of the digital signature algorithm (DSA) [7].
This algorithm computes a signature, i.e. a pair of numbers (r, s), for a given
message m. It is a probabilistic algorithm because the computation of the value
r is based on an ephemeral key k. This ephemeral key changes in every signature
operation. Hence, two signature operations on the same message m lead to two
different signature values.

Essentially, the difference between ECDSA and DSA is in the calculation of
the value r in the signature (r, s). This step involves operations on the specified
elliptic curve using the ephemeral key k, see (3). The calculation of the value
s makes use of the (static) secret key d, see (4). In (3) and (4), the variable P
denotes the base point, and h(m) denotes the hash value of the message m. The
scalar multiplication that multiplies the base point P with the ephemeral key k
is denoted as [k]P .

r = x1 (mod n), (x1, y1) = [k]P (3)
s = k−1(h(m) + d× r) (mod n) (4)

Breaking a signature scheme typically means either having the ability of pro-
ducing valid signatures without knowing the secret key d, or, knowing the secret
key d. The last meaning of breaking is often referred to as a full break.

For ECDSA, when the parameters are chosen appropriately, for instance by
taking one of the recommended curves by NIST [7], theoretical breaks are com-
putationally infeasible. However, if for instance, the ephemeral key is known for
a given signature (r, s) then the secret key d can be determined easily from (3)
and (4). Even worse, it is sufficient if a small number of bits of the ephemeral key
from a couple of signatures are known, lattice attacks can reveal the entire secret
key d with low computational effort, see [8] for some theoretical background on
lattice attacks and [11] for a practical implementation of the same attacks.

This is where SPA attacks come into play. If an attacker is able to reveal by
SPA either the entire ephemeral key, or just a couple of bits of several ephemeral
keys, ECDSA implementation can be broken in practice.

Template Attacks on ECDSA 19

3.2 Security of Implementations of ECDSA

Implementations of ECDSA may allow revealing the secret key if they leak infor-
mation about the ephemeral key or the secret key itself. Hence, the computation
of r and s both need to be protected.

The computation of r makes use of the ephemeral key k. This ephemeral key
is unknown to the attacker and it changes in each signature operation. Hence,
DPA attacks are not possible on this operation, but only SPA attacks.

The computation of s makes use of the secret key d. If the attacker has
knowledge about the signature value r, DPA attacks targeting the computation
of d× r are possible.

In this article, we focus on attacks on the computation of the r. It is well known
that implementations that show visible differences between EC point doubling
and EC point addition operations are highly susceptible to SPA attacks [9].
There are abundant countermeasures against these types of SPA attacks. For in-
stance, unified point operations or Montgomery-type multiplication techniques,
see [10] for a comprehensive overview. In addition, scalar blinding has been listed
in [9] to prevent SPA attacks. However, all these countermeasures tackle visi-
ble differences (i.e. differences that can be exploited using a visual inspection of
power traces) only. According to the definition of SPA attacks that we use, any
key-dependent leakage within a trace can be exploited. Consequently, counter-
measures that only prevent operation-dependent leaks (i.e. so-called SPA leaks)
are not sufficient to prevent attacks that use data-dependent leaks (i.e. so-called
DPA leaks, see [12] for definitions).

4 Template-Based SPA Attacks on ECDSA

Countermeasures against SPA attacks might not prevent template-based SPA
attacks because they exploit not only operation dependent leakages but also
data dependent leakages. In this article we show that this is indeed possible for
realistic implementations on an 32-bit platform.

4.1 Three Observations for Practical Applications

There are several observations or facts that when combined allow template-
based SPA attacks on ECDSA implementations. The first observation, which we
mentioned in the previous section, is that knowledge of only a small number of
bits of several ephemeral keys of ECDSA signatures is sufficient to determine
the secret key via lattice attacks.

The second observation, which is crucial for the practical realization, is that
the EC operation in the computation of r in ECDSA uses a fixed base point.
This is important because it means that the first couple of bits of k that are
processed during the computation of r can only lead to a small set of points (i.e.
the multiples of P). This means that we only need to build templates for the
points in this (small) set.

20 M. Medwed and E. Oswald

The third observation, which is also crucial for the practical implementation
of template attacks, is that for software implementations of ECDSA on 32-bit
processors, it is sufficient to build templates for intermediate values taking a
suitable power model of the device into account. Especially for microprocessors
previous work has shown that busses typically leak the Hamming weight (or
sometimes the Hamming distance) of the operands. This leads to a dramatic
simplification in practice. For instance, instead of building 232 templates for a
move instruction we only need to build 33 templates when we know that the
device essentially leaks the Hamming weight.

4.2 Different Scenarios for Practical Attacks

These three observations make it clear that template-based SPA attacks are
indeed feasible in practice: in order to determine the first f bits of the ephemeral
key with a template-based SPA attack, we need to build templates to detect the
2f multiples of the base point P . It is possible to build such templates because
the set of points is rather small and because we can build templates that take
the power model of the device into account.

As mentioned in Sect. 1, an attacker might have different ways of working with
the characterization and the matching phase (characterization on beforehand or
characterization on-the-fly). In combination with the scenario of implementa-
tions of public-key algorithms, this leads to a number of different variations of
how template-based SPA attacks could be used.

Template Creation on Beforehand

Attacker has full control including secret-key operations. The most traditional
assumption for template attacks is that the attacker has full control over the
device (or one that is similar to the device under attack) at all times. For in-
stance, an attacker is able to generate secret keys (known to him) and use them
to characterize a sequence of instructions (e.g. a point addition) that is part of
the [k]P operation. Under this assumption, an attacker could generate templates
to detect all 2f multiples of the base point and use them to extract f bits of k,
as described before.

Attacker has limited control excluding secret-key operations. If an attacker can-
not invoke secret-key operations with known key material another strategy is
required. In the case of public-key cryptography, the attacker can make use of
public-key operations, if they use the same implementation as the secret-key
operations use. An attacker could be able to generate public keys and use them
to characterize a sequence of instructions (e.g. a point addition) that is part of
an EC point multiplication.

For instance, in ECDSA the signature verification requires to compute (5)-(9),
given a signature (r, s) on a message m and a public key Q.

Template Attacks on ECDSA 21

e = HASH(m) (5)
w = s−1 (mod n) (6)
u1 = e× w (mod n) (7)
u2 = r × w (mod n) (8)
X = (x1, y1) = [u1]P + [u2]Q. (9)

It is clear that (9) includes an operation (the computation of [u1]P that is
similar to the operation that uses the ephemeral key (i.e. [k]P). The attacker
only needs to select u1 appropriately in order to generate templates for the
various multiplies of the base point P . In order to generate appropriate values
of u1 the attacker can proceed as follows. The attacker chooses a message m
at random and computes e according to (5). Next, the attacker picks the value
f of the multiple of the base point, and computes s = f−1 × e (mod n). The
signature verification1 applied to a signature (r, s) (r chosen at random, s chosen
as described before), on a message m, using a public key Q will then require the
computation of [u1]P with (u1 = e× w = f) in (9). This allows the attacker to
build templates for multiples f of the base point P .

Template Creation On-the-Fly

Attacker has full control including secret-key operations. The scenario described
before can easily be adapted to a case where the attacker can interleave charac-
terization and matching and hence build templates on-the-fly. In this latter case,
the attacker simply invokes the secret-key operations that are being character-
ized with known and unknown secret-key material. For instance, suppose that
the attacker has already determined several bits of the ephemeral key k and at-
tempts to recover the next bit. In this case, only two EC points can processed in
the subsequent EC scalar multiplication algorithm. Consequently, the attacker
builds templates for the two points in question on-the-fly and checks out via
template matching which is the correct point. This gives the next bit of k.

Attacker has limited control excluding secret-key operations. Also in this case
the scenario as described in the previous section can be easily adapted to on-
the-fly characterization. As described in the previous paragraph, if the scenario
is to recover the next bit of k, the attacker only needs to build templates to
distinguish two EC points. In case the attacker has to rely on the public-key
operations, the choices of u1 can be made such that these two points can be
characterized.

5 Practical Template-Based SPA Attacks on EC Point
Multiplication

In order to demonstrate the feasibility of the attack strategies that we described
in the previous section, we have implemented ECDSA on a suitable platform.
1 The signature verification will return that the signature is invalid.

22 M. Medwed and E. Oswald

Fig. 1. Customized board with a 32-bit processor based on the ARM7 architecture

One of the most widely used 32-bit processor architectures today is the ARM7.
Hence, we have decided to use an ARM7-based platform for our practical exper-
iments. Figure 1 shows our ARM7-based platform that we use for power analysis
attacks.

Our ECDSA implementation is optimized for the P192 NIST curve. We have
taken care that the optimizations do not allow conducting SPA attacks using
visual inspection: all finite field operations have data independent running time.
We also make sure that variances that are due to microarchitectural features of
the microprocessor, such as the pipeline or the early termination in the multi-
plier, do not lead to SPA vulnerabilities. To make sure that there are no SPA
problems in the point multiplication algorithm we have implemented a typical
double-and-always-add algorithm. We have also implemented window-versions
of this algorithm. Summarizing, we have made sure that our implementation
does not allow reading off the ephemeral key by a visual inspection. Hence there
are no SPA leaks, but only DPA leaks in our implementation.

We can exploit these DPA leaks using template-based SPA attacks. In the
subsequent sections, we first explain how we built the templates, and then we
describe two scenarios to extract the ECDSA secret key by template-based SPA
attacks on the ECDSA ephemeral key. Thereafter, we discuss the effectiveness
of common countermeasures against our attacks.

5.1 Template Building Phase

In order to find the interesting points for building templates, we performed DPA
attacks on the EC point multiplication operation. This means, we executed the

Template Attacks on ECDSA 23

Fig. 2. Correlation coefficients of intermediate values of an EC operation

EC point multiplication algorithm several times with different input data and
correlated the Hamming weight of a number of intermediate values to the power
traces.

Figure 2 shows the results of several such DPA attacks. Each peak in Fig. 2
corresponds to an intermediate value that leads to a high correlation and is
therefore a candidate for selection as point of interest. In one step of this double-
and-always-add algorithm, there are about 200 intermediate values that lead to
high correlation coefficients. We have decided to select the points of interest by
following the rule-of-thumb that Rechberger and Oswald gave in [3]: for each
intermediate value that leads to a high correlation coefficient, we take the point
in the power trace that leads to the highest absolute value in the correlation
trace. This strategy helps to reduce the size of the templates because it restricts
the number of points per intermediate value.

Nevertheless, having only this restriction still would lead to rather large tem-
plates. This means that templates would consist of a large number of interesting
points which often leads to numerical problems, see [1, p. 108]. Hence we have
decided to impose one further restriction on the selection of the points of interest.
We have decided to select intermediate values that are “far away” (in terms of
their Hamming distance) from their corresponding points in another template.
Remember that we only have to build a small number of templates: if we build all
templates before we start the actual attack (such as assumed in a classical tem-
plate attack setting), we only need to build 2f templates (one for each elliptic
curve point that can occur at the beginning of the point multiplication algo-
rithm). For each of these 2f templates we have about 200 intermediate values
that we can include. Some of these intermediate values will be very close in terms
of their Hamming distance, while others will be farther away. The intermediate
values that are farther away lead to templates that can be distinguished easier,
because the mean vectors of their probability distributions are farther away.

24 M. Medwed and E. Oswald

Fig. 3. Probability of success for an increasing number of intermediate values

With these considerations in mind, we have investigated the probability of
success for the template matching for an increasing number of intermediate val-
ues. It turns out that for about 50 intermediate values (satisfying the property
described before), the template matching succeeds with almost certainty, see
Fig. 3.

5.2 Template Matching with Pre-computed Templates

In this section we describe the template matching step of a template-based SPA
attack with pre-computed templates. In the scenario of attacking ECDSA imple-
mentations, the template matching phase includes acquiring one power trace for
one ECDSA signature generation operation. The ECDSA operation is computa-
tionally expensive and hence acquiring a power trace (with reasonable quality)
for an entire EC point multiplication might be not possible in practice. For in-
stance, the memory of the data acquisition instrument might be too limited to
store the entire trace. Hence, in practice we might only get a part of the power
trace as input for a power analysis attack.

For our template-based SPA this limitation does not matter. We have pointed
out already (for instance in Sect. 2.4), that lattice attacks require only a small
number of bits of several ECDSA operations. Using template-based SPA attacks
we can extract these bits step by step. In order to extract the first bit, we match
the first two multiples of the base point with the corresponding part of the
newly acquired power trace (if we attack a window method, we match the first
2w points, where w corresponds to the window size). The template matching
results in matching probabilities, see (2). Hence the template that leads to the
highest probability indicates the correct bit of the ephemeral key. By applying
this method iteratively, we can extract f bits of the ephemeral key. From then
on we proceed with a lattice attack in order to derive the ECDSA secret key.

Template Attacks on ECDSA 25

Our practical attack using this strategy succeeds with probability close to one
because our template matching succeeds with probability close to one.

5.3 Template Matching with On-the-Fly Created Templates

In all previous work, template attacks have been considered in the symmetric
setting. As a consequence, the assumption has developed that template building
always occurs before template matching. It appears that this is due to the fact
that in the symmetric setting, it seems unlikely that the device under attack
allows access to a known (and changeable key) and an unknown key at the same
time. The asymmetric setting however is rather different. When we attack for in-
stance an ECDSA signature generation operation with an unknown secret key, it
is plausible to assume that we may invoke the ECDSA signature verification op-
eration with (different) known public key(s). We have described several different
scenarios for practical template attacks in Sect. 4.2.

This changes the situation for template building and matching. Now we can
assume that we can interleave the template building with the matching steps. For
instance, we can first use the ECDSA signature verification operation to build
a template for a pair of EC points (again assuming a double-and-always-add
algorithm, and producing a suitable value for u1 such as described in Sect. 4.2).
Then, we match the two points in order to extract one bit of the ephemeral key.
Repeating this procedure for the remaining bits allows deriving the secret key
using lattice attacks, such as in the attack that we described in the previous
section.

An advantage here is that we can use different sets of interesting points for
different pairs (assuming a double-and-always-add algorithm) of templates. Re-
member that we pointed out that we had to impose an important restriction
for the selection of interesting points: we selected those points only that were
far away (from the corresponding point in the other template) in terms of their
Hamming weights. In this scenario, we can adaptively chose interesting points
for each pair of on-the-fly generated templates.

5.4 Countermeasures

We have conducted our experiments on implementations of ECDSA that use
typical SPA-resistant point multiplication algorithms. Such algorithms do not
prevent template-based SPA attacks because they only take care of SPA leaks
(operation dependent leaks that are easy to identify using visual inspection).

However, also certain blinding techniques do not prevent our attacks. For
instance, scalar blinding (i.e. using k′ = k+ran∗ord(P), where ran is a random
number) does not prevent our attacks. This is because k′ and k are still congruent
modulo the order of the base point and hence fulfill the ECDSA signing equation.
This means, in a lattice attack only the size of the lattice grows, but the attack
can still succeed if more bits of k′ can be extracted via power analysis.

Point blinding (i.e. using P ′ = ran ∗ P) does not necessarily protect against
our attacks either. This is because the point blinding operation can be attacked

26 M. Medwed and E. Oswald

using our technique in order to determine P ′. With P ′ our original attack can
be mounted in order to extract some bits of k. Hence, the attack is still feasible,
although it requires a more effort in template building. This means, we either
build a larger set of templates before the attack, or we switch to our template
creation on-the-fly technique.

As a matter of fact, the only types of countermeasures that prevent our
template-based SPA attacks are countermeasures that provide DPA resistance
by randomizing the coordinates of the base point P .

6 Conclusion

We have described template-based SPA attacks for implementations of ECDSA.
It has turned out that such attacks can break implementations that are secure
against other types of SPA attacks. We have combined three observations in
our attacks. First, in order to determine an ECDSA secret key, only few bits of
several ECDSA ephemeral keys need to be known. Second, ECDSA uses a fixed
base point. Hence, we need to build templates only for a number of multiples
of this base point. Third, for typical software implementations of ECDSA on
microprocessors, it is sufficient to build templates for intermediate values taking
the power model of the microprocessor into account. We have also discussed
four different scenarios for building templates. These scenarios depends upon the
amount of control the attacker has over the device and whether templates are
built on beforehand or on-the-fly. It has turned out that because we are working
with public-key cryptography, the attacker can even make use of the signature
verification operation for template building. In our practical implementation of
template-based SPA attacks, we have chosen the interesting points for templates
according to criteria that increase the success probability in the matching phase.
We have aimed at reaching a success probability that is close to one. Hence, our
attacks succeed with almost certainty on our practical implementation. It turns
out that our attacks (in the presented scenario) can only be prevented by DPA
countermeasures that randomize the coordinates of the base point. This article
presents the first work on template attacks in the context of implementations of
asymmetric cryptographic algorithms.

References

1. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

3. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 443–457. Springer, Heidelberg (2005)

4. Agrawal, D., Rao, J.R., Rohatgi, P., Schramm, K.: Templates as master keys. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 15–29. Springer,
Heidelberg (2005)

Template Attacks on ECDSA 27

5. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template at-
tacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 1–14. Springer, Heidelberg (2006)

6. Gebotys, C.H., Ho, S., Tiu, C.C.: EM Analysis of Rijndael and ECC on a Wireless
Java-Based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
250–264. Springer, Heidelberg (2005)

7. National Institute of Standards and Technology (NIST): FIPS-186-2: Digital Sig-
nature Standard (DSS) (2000), http://www.itl.nist.gov/fipspubs/

8. Nguyen, P.Q., Shparlinski, I.E.: The Insecurity of the Elliptic Curve Digital Signa-
ture Algorithm with Partially Known Nonces. Design, Codes and Cryptography 30,
201–217 (2003)

9. Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

10. Joye, M.: V, Defences Against Side-Channel Analysis. In: Advances In Elliptic
Curve Cryptography. London Mathematical Society Lecture Note Series, vol. 317,
pp. 87–100. Cambridge University Press, Cambridge (2005)

11. Demuth, M.: Lattice attacks on ECDSA. Master’s thesis, Graz University of Tech-
nology (2006)

12. Jaffe, J.: Introduction to Differential Power Analysis. In: ECRYPT Summerschool
on Cryptographic Hardware, Side Channel and Fault Analysis (2006)

http://www.itl.nist.gov/fipspubs/

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 28–40, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Compact ASIC Architectures for
the 512-Bit Hash Function Whirlpool

Takeshi Sugawara1, Naofumi Homma1, Takafumi Aoki1, and Akashi Satoh2

1 Graduate School of Information Sciences, Tohoku University
{sugawara,homma}@aoki.ecei.tohoku.ac.jp, aoki@ecei.tohoku.ac.jp

2 Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology

akashi.satoh@aist.go.jp

Abstract. Compact hardware architectures are proposed for the ISO/IEC
10118-3 standard hash function Whirlpool. In order to reduce the circuit area,
the 512-bit function block ρ[k] for the main datapath is divided into smaller
sub-blocks with 256-, 128-, or 64-bit buses, and the sub-blocks are used itera-
tively. Six architectures are designed by combining the three different datapath
widths and two data scheduling techniques: interleave and pipeline. The six ar-
chitectures in conjunction with three different types of S-box were synthesized
using a 90-nm CMOS standard cell library, with two optimization options: size
and speed. A total of 18 implementations were obtained, and their performances
were compared with conventional designs using the same standard cell library.
The highest hardware efficiency (defined by throughput per gate) of 372.3
Kbps/gate was achieved by the proposed pipeline architecture with the 256-bit
datapath optimized for speed. The interleaved architecture with the 64-bit
datapath optimized for size showed the smallest size of 13.6 Kgates, which
requires only 46% of the resources of the conventional compact architecture.

Keywords: Hash function, Whirlpool, Hardware architecture, Cryptographic
hardware.

1 Introduction

Whirlpool [1, 2] is an ISO/IEC 10118-3 [3] standard 512-bit hash function based on
the Miyaguchi-Preneel scheme using the SPN-type compression function W with the
512-bit round function ρ[k] that is similar to the block cipher AES [4]. High-
performance hardware architectures for Whirlpool were proposed and their perform-
ances were evaluated using the ASIC library described in [5]. However, the 512-bit
function ρ[k] requires a large amount of hardware resources, resulting in a much lar-
ger circuit area compared to other hash functions, such as SHA-256/-512 [3, 6]. Sev-
eral compact architectures were also examined in [7, 8, 9], but these architectures are
limited to the 64- or 8-bit datapath-width on an FPGA supporting a large built-in
memory (i.e., Block RAM).

In this paper, we propose compact hardware architectures for ASIC implementations,
which partition the function block ρ[k] into sub-blocks with 256-, 128-, or 64-bit

 Compact ASIC Architectures for the 512-Bit Hash Function Whirlpool 29

datapath-widths. The proposed architectures generate round keys on the fly to eliminate
the requirement for memory resources to hold pre-calculated round keys. This feature is
especially effective in ASIC implementations in which memory is expensive. The pipe-
lining technique for the compact architectures is also investigated to achieve higher
throughput with a smaller circuit area. In total, six hardware architectures for Whirlpool
that combine two schemes (interleave and pipeline) with the three datapath-widths are
designed. The corresponding throughput and gate count are then evaluated using a 90-
nm CMOS standard cell library. Performance comparisons with the Whirlpool hardware
using a 512-bit datapath-width [5] and the SHA-256/-512 hardware [10] synthesized
using the same library are also presented.

2 The 512-Bit Hash Function Whirlpool

The Whirlpool compression function W has two datapaths, and in each path, the 512-
bit function ρ[k] is used 10 times, as shown in Fig. 1. One of the paths receives the
512-bit hash value Hi-1 that was generated from 512-bit message blocks m1~mi-1 in the
previous cycles and then outputs ten 512-bit keys K1~K10 by using ten 512-bit con-
stants c1~c10. Another path processes the current message block mi using the keys
K1~K10. No hash value is calculated before receiving the first message block m1, and
thus 0 is assigned to H0.

The function ρ[k] consists of four 512-bit sub-functions γ, π, θ, and σ[k], which are
similar to SubBytes, ShiftRows, MixColumns, and AddRoundKey, respectively, of AES.
Each sub-function treats a 512-bit block as an 8×8-byte matrix. The first function γ is a
nonlinear substitution function consisting of sixty-four 8-bit S-boxes, and the S-box is
defined as a combination of three types of 4-bit mini-boxes, namely, E, E -1, and R. The
following function π rotates each row of the matrix by 0 ~ 7 bytes. The function θ
then operates matrix multiplication using the parameters shown in Fig. 1. When
the individual input and output bytes of the multiplication are defined as aij and bij
(0 ≤ i, j ≤ 7), respectively, the eight bytes of the column j = 0 are calculated as

0 0 1 2 3 4 5 6 7(9) (2) (5) (8) (4) ,i i i i i i i i ib a a a a a a a a= ⊕ ⊗ ⊕ ⊗ ⊕ ⊗ ⊕ ⊗ ⊕ ⊕ ⊗ ⊕

where the byte multiplication is performed over a Galois field GF(28) defined by the
following primitive polynomial:

8 4 3 2
8 () 1.p x x x x x= + + + +

The last function σ[k] is a simple 512-bit XOR operation with the 512-bit value k.
In the function W[Hi-1] of Fig. 1, k is given by constants c1 ~ c10 for the right-hand 10-
round path and is given by keys K1 ~ K10 for the left-hand 10 rounds.

Two different implementations are available for the 8-bit input/output S-box of the
function γ: (I) a simple 8-bit input/output lookup table version, and (II) the mini-box
structure shown in the leftmost part of Fig. 1. The mini-boxes E, E -1, and R in (II) are
implemented using 4-bit input/output lookup tables. For the pipeline architecture
described later, the pipeline register is placed between the mini-boxes E, E -1, and the
XOR gates in (II) in order to partition the critical path of ρ[k] within the S-box.

30 T. Sugawara et al.

3 Compact Hardware Architectures

3.1 Data Manager

The data manager is a circuit component for the function π, which performs byte-wise
permutation using a series of shift registers and selectors. Reference [8] used a simple
data manager that processes one 8-byte row of the 8×8-byte matrix every cycle. In order
to increase throughput using a compact circuit, we extend the data manager to 128-bit
and 256-bit datapath widths, which have four and two pipeline stages, respectively.

Let us denote the byte permutation of the function π as shown in Fig. 2, and its
straightforward implementations are shown in Fig. 3. The function block π is imple-
mented by metal wire interconnection and no transistor device is used, although a
large number of selectors and long data buses in the feedback path have an adverse
impact on hardware performance with respect to size and speed. In order to settle this
problem, the four-stage (128-bit datapath) and two-stage (256-bit datapath) data man-
agers shown in Figs. 4 and 5, respectively, are introduced herein. In these figures, the
square boxes denote 8-bit registers. The four-stage data manager receives 16 bytes

Fig. 1. Whirlpool algorithm

 Compact ASIC Architectures for the 512-Bit Hash Function Whirlpool 31

Fig. 2. Input/output relationship of the function π

π

128

128 128 128 128

128

256 256

256

π

256

(a) 128-bit datapath (b) 256-bit datapath

Fig. 3. Straightforward implementations for data managers using 128- and 256-bit datapaths

(128 bits) corresponding to the two rows of the left-hand matrix in Fig. 2 and outputs
16 bytes for the two rows of the right-hand matrix during every cycle. For example,
the first 16 input bytes for the data manager are {0, 1, 8, 9, 16, 17, 24, 25, 32, 33, 40,
41, 48, 49, 56, 57}, and the 16 bytes {0, 1, 15, 8, 22, 23, 29, 30, 36, 37, 43, 44, 50, 51,
57, 58} are output after four clock cycles by controlling registers and selectors. The
proposed data manager uses only 12 bytes (96 bits) of two-way selectors, whereas the
straightforward implementation in Fig. 3(a) requires 96 bytes (768 bits) of equivalent
two-way selectors. By reducing the number of registers, the critical path is shortened,
and thus, the new data manager provides a smaller circuit area with a higher operating
frequency in comparison to the conventional schemes. The two-stage data manager
processes four rows of Fig. 2 simultaneously using 16-byte (128-bit) selectors, while
the straightforward implementation in Fig. 3(b) requires four times the number of
selectors.

3.2 Datapath Architectures

The compact Whirlpool hardware architectures using the new data managers are de-
scribed in this Section. The 128-bit interleave and pipeline architectures based on the
four-stage data manager are described in the following subsections. Other architec-
tures for the two- and eight-stage data managers with a 256- and 64-bit datapath-
width, respectively, are depicted in Appendix (Figs. 11~13). The structure of the
interleave architectures for the three data managers are all the same except for the size

32 T. Sugawara et al.

Fig. 4. Four-stage data manager

Fig. 5. Two-stage data manager

of operating units. In contrast, the pipeline architectures of Figs. 8, 12, and 13 have
different numbers of pipeline stages, because the number of operating cycles varies
with the datapath width.

3.2.1 Interleave Architecture
The datapath of the 128-bit interleave architecture are shown in Fig. 6. Two four-
stage data managers are used for the architecture. A 512-bit message block or a 512-
bit key are stored to a 512-bit shift register in each data manager using four clock
cycles. There is only one γθ-function block, and it is used alternatively for data ran-
domization and key scheduling every four clock cycles. In the architecture, the order
of the substitution function γ and the permutation function π of the data manager are
reversed from the original order in Fig. 1 so that the datapath and sequencer logic are
simplified. This has no effect on the operations in data randomization, but the data
manager for the key scheduling performs the function π before the key is used in σ[k],
and thus the inverse function π-1 should be applied to the key for adjustment. Fortu-
nately, the function π-1 is implemented as rewiring in an ASIC chip in the same

 Compact ASIC Architectures for the 512-Bit Hash Function Whirlpool 33

Fig. 6. 128-bit interleave architecture

Data managers

Fig. 7. Example operation of the 128-bit interleave architecture

manner as the function π and no additional selectors are required in this case. There-
fore, the function π-1 has no impact on hardware resources. Fig. 7 shows an example
operation of the architecture. The figure depicts the architecture processing two ρ[k]

34 T. Sugawara et al.

functions taking eight cycles. Therefore, four cycles are required to perform the func-
tion ρ[k], and thus eight cycles are required for each round of the compression func-
tion W. The function W uses 10 rounds to process one 512-bit message block, and an
additional four clock cycles is needed for data I/O. As a result, the interleave architec-
ture with the 128-bit datapath and the four-stage data manager requires 84 (= 4 × 2 ×
10 + 4) cycles for each message block. In a similar manner, the interleave architecture
with 256- and 64-bit datapaths (two- and eight-stage data managers) in Figs. 10
require 42 (= 2 × 2 × 10 + 2) and 168 (= 8 × 2 × 10 + 8) clock cycles, respectively.

3.2.2 Pipeline Architecture
Pipeline architecture divides the functions γ and θ by inserting pipeline registers to
shorten the critical paths and improve the operation frequency. In the 128-bit datapath
architecture, the number of pipeline stages can be increased up to five without causing
pipeline stall. The upper limits of the number of pipeline stages are three and nine for
the 256-bit and 64-bit versions, respectively. The maximum numbers of stages are
used for the performance comparison in the next section.

The datapath and operation of the 128-bit pipeline architecture are shown in Figs. 8
and 9, respectively. The functions γ and θ are partitioned into four sub-blocks as
stages 0 ~ 3, and the XOR gates for key addition σ[k] followed by selectors

Fig. 8. 128-bit pipeline architecture

 Compact ASIC Architectures for the 512-Bit Hash Function Whirlpool 35

correspond to the final stage (stage 5). The partitioned sub-blocks perform message
randomization and key scheduling simultaneously, as shown in Fig. 9. The data man-
ager is only used for the message randomization, and the key scheduler uses the 512-
bit register with a 4:1 selector. This is because the dependency between key bytes
cannot be satisfied, even when using the function π-1 as in the interleave architecture.
This 128-bit architecture performs two ρ[k] operations in eight cycles and thus re-
quires 80 cycles for the function W, which is the same as the 128-bit interleave archi-
tecture. In addition to the 80 cycles, four cycles for data I/O and other four cycles to
empty the series of pipeline registers are required. Therefore, one 512-bit message
block is compressed in 88 (= 80 + 4 + 4) cycles. Similarly, the 256- and 64-bit
versions require 44 (= 40 + 2 + 2) and 176 (= 160 + 8 + 8) cycles, respectively.

4 Performance Evaluation

The proposed Whirlpool architectures were designed in Verilog-HDL and were syn-
thesized by Synopsys Design Compiler (version Y-2006.06-SP2) with the STMicro-
electronics 90-nm CMOS standard cell library (1.2-volt version) [11], where two
optimization options, size and speed, were specified. Hardware sizes were estimated
based on a two-way NAND equivalent gate, and the speeds were evaluated under
worst-case conditions. The efficiency is defined as the throughput per gate, and thus
higher efficiency indicates better implementation. For performance comparison, the
Whirlpool circuits with 512-bit datapath architecture from [5] and the SHA-256/-512
circuits proposed in [10] were also designed and evaluated using the same library.

Fig. 9. Example operation of 128-bit pipeline architecture

36 T. Sugawara et al.

The synthesis results are shown in Table 1, where the two types of S-box described
in Section 2 are referred to as the GF(28) and GF(24) tables. Only the GF(24) table is
used for the pipeline architectures so that the pipeline register can be placed in the
middle of the S-box. The results are also displayed in Fig. 10 where the horizontal and
vertical axes are gate count and throughput. Note that the largest implementation with
179.0 Kgates is outside of this graph. In the figure, the circuit is smaller when the
corresponding dot is located in the left region, and is faster when the dot is in the
upper region. As a result, implementations plotted at the upper left region of the graph
have better efficiency.

The interleave architecture with a wider datapath including the conventional
datapath always obtained higher efficiency. This is because throughput is halved if the
datapath width is halved, whereas the hardware size cannot be halved due to the
constant size of the data registers. In contrast, the 256-bit datapath achieved higher
efficiency than 512-bit version for the pipeline architecture. In this case, the proposed

Table 1. Performance comparison in the 90-nm CMOS standard cell library

Area 36,201 266.67 3,251 89.80
Speed 64,796 568.18 6,926 106.90
Area 21,495 266.67 3,251 151.23
Speed 42,972 529.10 6,450 150.10
Area 22,527 269.54 1,643 72.93
Speed 37,865 571.43 3,483 91.98
Area 15,891 268.10 1,634 102.83
Speed 28,337 537.63 3,277 115.64
Area 16,675 268.10 817 49.00
Speed 24,029 568.18 1,732 72.06
Area 13,614 268.10 817 60.02
Speed 20,554 546.45 1,665 81.02
Area 21,395 558.66 6,501 303.84
Speed 35,520 1,136.36 13,223 372.27
Area 16,677 574.71 3,344 200.50
Speed 23,230 1,111.11 6,465 278.29
Area 14,762 564.97 1,644 111.34
Speed 19,500 1,041.67 3,030 155.40

Area 103,633 211.42 10,825 104.45
Speed 179,035 546.45 27,978 156.27
Area 43,726 210.97 10,802 247.03
Speed 103,408 523.56 26,806 259.23
Area 58,792 210.08 5,122 87.12
Speed 97,541 518.13 12,633 129.51
Area 29,577 210.08 5,122 173.18
Speed 64,549 500.00 12,190 188.86
Area 60,066 364.96 8,898 148.14
Speed 77,312 671.14 16,363 211.65
Area 31,938 363.64 8,866 277.59
Speed 40,476 564.97 13,775 340.31
Area 30,105 363.64 8,866 294.50
Speed 40,330 574.71 14,012 347.43
Area 9,764 362.32 2,576 263.88
Speed 13,624 490.20 3,486 255.86
Area 17,104 209.64 2,439 142.63
Speed 27,239 404.86 4,711 172.95

512-bit
Parallel

512-bit
Interleave

512-bit
Pipeline

(A)

512-bit
Pipeline (B)

[5]
Whirl
-pool

512

10

This
work

Whirl
-pool

512

Cycle

42

84

Area
(gates)

256-bit
Interleave

176

128-bit
Interleave

256-bit
Pipeline
128-bit
Pipeline
64-bit

Pipeline

64-bit
Interleave

GF (28)
Table

168

44

88

GF (24)
Table

GF (28)
Table

GF (24)
Table

Through-
put (Mbps)

Efficiency
(Kbps/
gate)

[10]

S-box
Datapath

architecture
Optimize

Operating
Frequency

(MHz)
Design

Algo
-rithm

Message
Block
(bits)

SHA
-256
SHA
-512

512

1024 88

GF (24)
Table

72

21

GF (28)
Table

GF (24)
Table

GF (28)
Table

GF (24)
Table

GF (28)
Table

GF (24)
Table

GF (24)
Table

GF (28)
Table

GF (24)
Table

 Compact ASIC Architectures for the 512-Bit Hash Function Whirlpool 37

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Area [Kgates]

T
hr

ou
gh

pu
t

[G
bp

s]

256-bit Interleave
128-bit Interleave
64-bit Interleave

256-bit Pipeline
128-bit Pipeline

64-bit Pipeline

Previous work [5]
SHA-256/512 [10]

Higher
efficiency

SHA

Smallest
(13.6 Kgates)

Highest efficiency
(372.3 Kbps/gate)

Fig. 10. Throughput versus area for each implementation

efficiency than 512-bit version for the pipeline architecture. In this case, the proposed
deep pipeline scheme allows a much higher operating frequency, and consequently
the high throughput with the small circuit resulted in a higher efficiency. However,
the operating frequencies of the 128-bit (five-stage) and 64-bit (nine-stage) pipeline
architectures were not improved compared with that of the 256-bit architecture, even
though the number of pipeline stages was increased. The major reason for this is the
increasing additional selectors in the critical path from the key register to the data
manager through key addition. Therefore, we must consider the hardware resources
and the signal delay time caused by additional selectors for optimizing datapath in
deep pipeline operation.

The 64-bit interleave architecture in conjunction with the GF(24) S-box and the
area optimization option achieved the smallest size of 13.6 Kgates with a throughput
of 817 Mbps. The circuits using the GF(24) S-box are smaller and have higher effi-
ciency than those using the GF(28) S-box. The GF(28) S-box leads to a large circuit
but is still suitable for high-speed implementation. Generally, the interleave architec-
ture is smaller than the pipeline architecture which requires a number of pipeline
registers. The smallest circuit based on the conventional scheme is 29.6 Kgates for the
512-bit pipeline architecture with the GF(24) S-box. Therefore, the gate count of 13.6
Kgates obtained by the proposed interleave architecture is 54% smaller than that of
the conventional scheme. The 256-bit pipeline version optimized for speed achieved
the highest efficiency of 372.3 Kbps/gate (= 13.2 Gbps/35.5 Kgates) among the
Whirlpool implementations. This means that the pipeline architecture provides the
optimal balance between speed and size.

In comparison with the SHA-256 and -512 circuits, the smallest Whirlpool circuit
is larger than the area-optimized SHA-256 circuit with 9.8 Kgates but is smaller than

38 T. Sugawara et al.

the SHA-512 circuit with 17.1 Kgates. The highest throughput of the proposed archi-
tectures (13.2 Gbps) is 2.8 times higher than that (4.7 Gbps) of the speed-optimized
SHA-512, and the highest efficiency of 372.3 Kbps/gate is 1.4 times higher than
263.8 Kbps/gate of the area-optimized SHA-256. The proposed Whirlpool architec-
tures also achieved a wide variety of size and speed performances, while the SHA-
256 and -512 circuits have only four implementations. Consequently, the proposed
Whirlpool hardware has great advantages in both performance and flexibility.

5 Conclusion

In the present paper, compact hardware architectures with interleave and pipeline
schemes were proposed for the 512-bit hash function Whirlpool, and their perform-
ances were evaluated using a 90-nm CMOS standard cell library. The fastest through-
put of 13.2 Gbps @ 35.5 Kgates, the smallest circuit area of 13.6 Kgates @ 817
Mbps, and the highest efficiency of 372.3 Kbps/gate were then obtained using the
proposed architectures. These results indicate that the proposed architectures can
provide higher performance with respect to both size and efficiency, as compared to
the conventional 512-bit architectures. In addition to the peak performance in size and
speed, the flexibility of the proposed architectures enables various design options to
meet a variety of application requirements.

Further research to reduce the overhead of additional selectors in the pipeline ar-
chitectures is currently being conducted. The method will further improve both size
and speed.

References

1. The Whirlpool Hash Function,
http://paginas.terra.com.br/informatica/paulobarreto/
WhirlpoolPage.html

2. Barreto, P., Rijmen, V.: The Whirlpool Hash Function,
http://planeta.terra.om.br/informatica/paulobarreto/
whirlpool.zip

3. ISO/IEC 10118-3:2004, "Information technology – Security techniques – Hash-functions –
Part 3: Dedicated hash-functions,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=39876

4. NIST, Advanced Encryption Standard (AES) FIPS Publication 197, (November 2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

5. Satoh, A.: ASIC Hardware Implementations for 512-Bit Hash Function Whirlpool. In:
Proceedings ISCAS 2008, pp. 2917–2920 (May 2008)

6. NIST, Secure Hash Standard (SHS), FIPS PUB 180-2 (August 2002),
http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf

7. Pramstaller, N., Rechberger, C., Rijmen, V.: A Compact FPGA Implementation of the
Hash Function Whirlpool. In: Proceedings of the 2006 ACM/SIGDA, pp. 159–166 (2006)

8. McLoone, M., McIvor, C.: High-speed & Low Area Hardware Architectures of the Whirl-
pool Hash Function. J. VLSI Signal Processing 47(1), 47–57 (2007)

 Compact ASIC Architectures for the 512-Bit Hash Function Whirlpool 39

9. Alho, T., Hämäläinen, P., Hännikäinen, M., Hämäläinen, T.: Compact Hardware Design of
Whirlpool Hashing Core. In: Proceedings of the DATE 2007, pp. 1247–1252 (April 2007)

10. Satoh, A., Inoue, T.: ASIC-hardware-focused comparison for hash functions MD5,
RIPEMD-160, and SHS. Integration, the VLSI Journal 40(1), 3–10 (2007)

11. Circuits Multi-Projets (CMP), CMOS 90 nm (CMOS090) from STMicroelectronics,
http://cmp.imag.fr/products/ic/?p=STCMOS090

Appendix

Fig. 11. 256-bit (left) and 64-bit (right) interleave architectures

Fig. 12. 256-bit pipeline architecture

40 T. Sugawara et al.

Fig. 13. 64-bit pipeline architecture

Improved Constant Storage Self-healing Key
Distribution with Revocation in Wireless Sensor

Network

Qingyu Xu and Mingxing He

School of Mathematics and Computer Engineering, Xihua University,
Chengdu, Sichuan, 610039, China

xqu1002@163.com, he mingxing64@yahoo.com.cn

Abstract. Recently, Dutta et al. [1] proposes a constant storage self-
healing key distribution with revocation in wireless sensor network. The
advantage of [1] is that it requires constant storage of personal keys for
each user. In this paper, we show that Dutta’s scheme is insecure against
the proposed attack, whereby users can access any other’s secret keys and
session keys which they should not know according to Dutta’s scheme.
Moreover, we proposed two kinds of improved schemes which are resis-
tant to this kind of attack. The first scheme is unconditional secure and
we analyze it in the security framework of [1]. The second scheme is in
the model of computational secure. In the end, we analyze the second
scheme and show that it is a self-healing key distribution scheme with
revocation and achieves both forward and backward secrecy.

Keywords: key distribution self-healing, key revocation, storage com-
plexity, unconditional secure, computational secure, wireless sensor
network.

1 Introduction

Recently, a kind of so-called “self-healing” key distribution schemes with revo-
cation capability have been proposed by Staddon et al. [2]. The schemes enable
a dynamic group of users to establish a group key over an unreliable network,
and have the ability to revoke users from and add users to the group while being
resistant to collusion attack. In these schemes users who have missed up to a
certain number of previous rekeying operations can recover the missing group
keys without requesting additional transmission from the group manager. The
only requirement is that the user must be a group member both before and after
the session.

Wireless sensor network consists of a large number of small, low cost sensor
nodes which have limited computing and energy resources. Wireless sensor net-
work have wide applications in military operations and scientific explorations,
where there is not network infrastructure to support and the adversary may in-
tercept, modify, or partially interrupt the communication. In such applications,
security becomes a critical concern. Self-healing key distribution is a potential

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 41–55, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

42 Q. Xu and M. He

candidate to establish session keys for secure communication to large groups in
wireless sensor network, where frequent membership changes may be necessary
and the ability to revoke users is desirable. Moreover, in such situations the
session keys need to be used for a short time-period or need to be updated fre-
quently. Therefore, self-healing is a good property for key distribution in wireless
sensor network.

Self-healing key distribution with revocation was first introduced by Staddon
et al. in [2]. They provided formal definitions and security notions that were later
generalized by Liu et al. [3] and Blundo et al. [4]. The constructions given in [2]
suffered from high storage and communication overhead. Liu et al. [3] introduced a
novel personal key distribution scheme by combining the key distribution scheme
with the self-healing technique in [2]. They proposed a new construction that im-
proved the storage and communication overhead greatly. [9] introduced the con-
cept of sliding window. A window determines the range (the sessions) that the
self-healing can apply to. Only the previous and subsequent sessions which are in
the window can be used to recover the lost session keys. Blundo et al. [4] proposed
a new self-healing technique different from that given in [1] under a slightly mod-
ified setting. More recently, Hong et al. [5] proposed self-healing key distribution
constructions with less storage and communication complexity. B. T and M. He [6]
designed a constant storage scheme which enabled users selecting their personal
keys by themselves instead of being distributed by group manager, and the users
could reuse their personal keys and conceal the requirement of a secure channel
in setup step. [11] have given some lower bounds on the user memory storage and
communication complexity required for implementing such schemes, and shown
that they are tight by describing simple constructions. They have also shown that
the lower bounds cannot be attained at the same time. [12] consider the appli-
cation environment that a coalition of users sponsor a user outside the group for
one session. Dutta et al. [13] apply one-way key chain to their constructions. The
schemes greatly reduce communication complexity. The schemes are scalable to
very large groups in highly mobile, volatile and hostile network. Dutta et al. [1] [7]
designed the schemes which were more efficient in the storage and the communi-
cation overhead, since the communication complexity of Dutta’s scheme was in-
dependent of the size of the group, instead that they depended on the number of
compromised group members that may collude together. Dutta’s scheme was not
restricted to m sessions in setup phase. However, we found out some weaknesses
in the two schemes of [1] and [7].

Our Contribution: First, we point out the weakness of Dutta’s scheme in [1].
Second, we slightly modify the Dutta’s scheme so that the improved scheme
is resistant to the proposed attack. The proposed scheme is also unconditional
secure. Third, we design another scheme which is more efficient in communica-
tion complexity. In the application environment requiring strong resistance to
revoker’s collusion attack or revoked users being more than the active users, the
advantage of second scheme is obvious. The second scheme is in the model of
computational secure.

Improved Constant Storage Self-healing Key Distribution 43

2 Overview of Dutta’s Scheme

The following notations are used throughout our paper.
U : set of all users in the networks;
Uactj : set of active users in j-th session;
Ui: i-th user in U ;
Uacti : i-th user in Uactj ;
Ractj , the set of all active users’ secret values in j-th session;
racti : i-th user’s secret value in Ractj ;
GM : group manager;
n: the number of users in U ;
t: the maximum number of revoked user;
aj : the number of users in Uactj ;
m: total number of sessions;
Fq: a field of order q;
Si: set of personal secrets of user Ui;
si,j : personal secret of user Ui in j-th session;
Kj: session key generated by the GM in j-th session;
Bj : broadcast message by the GM in j-th session;
H : entropy function of information theory;
Zi,j : the information learned by Ui through Bi and Si;
Lj: set of all revoked users before and in j-th session;
L: any set of some users;
J : set of users joining in;
Aj(x): access polynomial in j-th session;
Λj(x): revocation polynomial in j-th session;
φi(x): broadcast polynomial in j-th session;
ψ(x):personal secret polynomial;
f : a random one way permutation;
htd: secure one way trapdoor function;
f1: secure one way function.

2.1 Security Model of Dutta’s Scheme

Definition 1. (Session Key Distribution with b-bit privacy) Let t, i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}.
1.1) D is session key distribution scheme with b-bit privacy if

(1.1.a) For any user Ui, the session key Kj is determined by Zi,j , which in
turn is determined by Bj and Si. i.e.

H(Kj |Zi,j) = 0, H(Zi,j|Bj , Si) = 0 (1)

(1.1.b) For any L ⊆ U , |L| ≤ t, and Ui /∈ L, the uncertainty of the users in L
to determining Si is at least b bits(b > 0). i.e.

H(Si|{Sl}Ul∈L, B1, . . . , Bm) ≥ b (2)

44 Q. Xu and M. He

(1.1.c) What users U1, . . . , Un learn from Bj cannot be determined from broad-
casts or personal keys alone. i.e.

H(Zi,j|B1, . . . , Bm) = H(Zi,j) = H(Zi,j |S1, . . . , Sn) (3)

1.2) D has t-revocation capability if given any L ⊆ U , where |L| ≤ t, the group
manager GM can generate a broadcast Bj, such that for all Ui /∈ L, Ui can
recover Kj, but the revoked users cannot. i.e.

H(Kj |Bj , Si) = 0, H(Kj|Bj , {Sl}Ul∈L) = H(Kj) (4)

1.3) D is self-healing if the following is true for any j, 1 ≤ j1 < j < j2 ≤ m: For
any user Ui who is a valid member in session j1 and j2, the key Kj is determined
by the set {Zi,j1 , Zi,j2}. i.e.

H(Kj|Zi,j1 , Zi,j2) = 0 (5)

Definition 2. (t-wise forward and backward secrecy)
Let t, i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
2.1) A key distribution scheme D guarantees t-wise forward secrecy if for any
set L ⊆ U(|L| ≤ t), and all Ul ∈ L are revoked before session j, the members
in L together cannot get any information about Kj, even with the knowledge of
group keys before session j. i.e.

H(Kj|B1, . . . , Bm, {Sl}Ul∈L, K1, . . . , Kj−1) = H(Kj) (6)

2.2) A session key distribution D guarantees t-wise backward secrecy if for any
set J ⊆ U(|J | ≤ t), and all Ul ∈ J join after session j, the members in J together
cannot get any information about Kj , even with the knowledge of group keys
after session j. i.e.

H(Kj |B1, . . . , Bm, {Sl}Ul∈L, Kj+1, . . . , Km) = H(Kj) (7)

2.2 Protocol Requirements

Assume that there is a set which includes a group manager GM and n (fixed)
users U = {U1, . . . , Un}. All of the operations in the protocol take place in a
finite field Fq, where q is a large prime number (q > n). Let EK , DK denote
respectively an encryption and corresponding decryption function under key
K ∈ Fq. It also takes a random one way permutation f over Fq such that
f i(u) �= f j(u) for all positive integers i, j(i �= j) and u ∈ Fq(f i means the
permutation f is applied i times).

2.3 Self-healing Session Key Distribution

Setup: Let t be a positive integer. The group manager GM randomly chooses a t-
degree polynomial ψ(x) = a0+a1x+a2x

2+· · ·+atx
t in Fq[x] and a random initial

Improved Constant Storage Self-healing Key Distribution 45

session identifier sid0 ∈ Fq. Each user Ui, for 1 ≤ i ≤ n, stores si,0 = {ψ(i), sid0}
as its personal secret key. The personal secret key is received from the GM via
the secure communication channel between GM and user. The GM randomly
chooses a prime key K0 ∈ Fq that is kept secret to itself.

Broadcast: In the j-th session key distribution j ≥ 1, the GM computes its j-th
session identifier sidj = f(sidj−1). sid0 is stored by users. For j > 1, it replaces
the previous session identifier sidj−1 by the current value sidj . Then GM chooses
a random number βj ∈ Fq and computes the j-th session key Kj = Eβj (Kj−1).
βj is as self-healing key of session j. Let Lj = {Ul1 , . . . , Ulwj

} ⊆ U(|Lj | = wj ≤ t)
be the set of all revoked users for sessions in and before j. The GM broadcasts
the following message:

Bj = Lj ∪ {φj(x) = Λj(x)Kj + sidjψ(x)} ∪ {EKj (β1), . . . , EKj (βj)}, (8)

where Λj(x) = (x− l1)(x− l2), . . . , (x− lwl
). Here the polynomial Λj(x) is called

revocation polynomial and ψ(x) performs the role of masking polynomial. Each
user Ui ∈ U knows a single point, namely (i, ψ(i)) on the polynomial ψ(x).

Session Key and Self-healing Key Recovery: When a non-revoked user Ui

receives the j-th broadcast message Bj , it first computes the session identifier
sidj = f(sidj−1) and replaces the previous session identifier sidj−1 by the cur-
rent value sidj for j > 1(in case j = 1, sid0 is stored). Then Ui evaluates ψ(i),
φj(i) and Λj(i). Finally, Ui computes the current session key

Kj =
φj(i)− sidjψ(i)

Λj(i)
. (9)

Note that from the set Lj in the broadcast message Bj , all users Ui can construct
the polynomial Λj(x), consequently, can evaluate the value Λj(i). In particular,
for Ui ∈ Lj, Λj(i) = 0.

Once a non-revoked user Ui recovers the current session key Kj, it can recover
the self-healing keys β1, . . . , βj . These self-healing keys enables the scheme to
have self-healing capability as will be shown later.

We now explain self-healing mechanism: Let Ui be a group member that
receives session key distribution messages Bj1 and Bj2 in sessions j1 and j2
respectively, where 1 ≤ j1 ≤ j2, but not the session key distribution message Bj

for session j, where j1 < j < j2. User Ui can still recover all the lost session keys
Kj for j1 < j < j2 as follows:

(a) Ui first computes sidj1 = f j1(sid0) and φj1 (i), Λj1(i) from the broad-
cast message Bj1 in session j1. Then Ui recovers the j1-th session key Kj1 =
φj1 (i)−sidj1ψ(i)

Λj1 (i) .
(b) Ui computes sidj2 = f j2(sid0) and φj2(i), Λj2(i) from the broadcast mes-

sage Bj2 in session j2. Then Ui recovers the j2-th session key Kj2=
φj2 (i)−sidj2ψ(i)

Λj2 (i) .
(c) Ui decrypts EKj2

(β1), . . . , EKj2
(βj2) using Kj2 to obtain the self-healing

keys β1, . . . , βj1 , βj1+1 . . . βj2 .
(d) Ui then computes Kj for all j = j1+1, j1+2, . . . , j2−1 as: Kj = Eβj (Kj−1).

46 Q. Xu and M. He

3 Attack To Dutta’s Scheme

In this section, we show how to attack Dutta’s scheme and access to any other’s
secret keys and session keys which they should not know according to Dutta’s
scheme.
1) Suppose that there are two users UA and UB whose identity is A and B
respectively, the secret key of UA and UB is ψ(A) and ψ(B) respectively. User UB

is not revoked in all of sessions. User UA is not revoked until (j + 1)-th session.
So UA can access to the j-th session key Kj but can not access the (j + 1)-th
session key Kj+1 according to Dutta’s scheme. Next, we show how UA can access
to the session key Kj+1 and UB’s personal secret key ψ(B).
2) UA obtains broadcast polynomial φj and constructs revocation polynomial
Λj(x) according to the set of revoked users.
3) UA also obtains the j-th session key Kj , since he is not revoked in j-th
session. And UA can compute the value of sidj . Finally, since UA knows φj ,
Λj(x), sidj and Kj , UA can compute the polynomial

ψ(x) =
φj(x)− Λj(x)Kj

sidj
, (10)

where ψ(x) is used to compute the value of secret key.
4) Now, UA evaluates the user UB’s secret key ψ(B) by using user UB’s identity
B and ψ(x). Moreover, user UA can access to any session key Kx by ψ(B)(x
denotes any x-th session, user UB is active in any session)

Kx =
φx(B)− sidxψ(B)

Λx(B)
. (11)

In the same way, UA can compute any user’s secret key. Moreover UA can
produce new secrets key by himself according to Dutta’s scheme, because UA

knows the personal secret polynomial ψ(x). Obviously, the above attack can be
easily carried out.

To sum up, we point out that Dutta’s scheme does not satisfy the requirement
of Definition1.1.b. For any set L and set Lj ⊆ Lj+1 ⊆ U , |Lj| ≤ |Lj+1| ≤ t and
revoked user Ul ∈ Lj+1, Ul /∈ Lj , the revoked user Ul can obtain any active user
Ui’s personal secret Si = {si,j} = {ψ(i), sidj} according to the attack. Hence we
have

H(Si|{Sl}Ul∈L, B1, . . . , Bm)
= H({si,j}|{Sl}Ul∈L, B1, . . . , Bm)
= H({ψ(i), sidj}|{ψ(l)}Ul∈L, B1, . . . , Bm)
= H({ψ(i)}|{ψ(l)}Ul∈L, B1, . . . , Bm)
≤ H({ψ(i)}|{ψ(l)}Ul∈Lj+1,Ul /∈Lj

, B1, . . . , Bm) = 0

(12)

4 The Proposed Scheme 1

4.1 Security Model of the Proposed Scheme

We adopt the security model of section2.1([1]).

Improved Constant Storage Self-healing Key Distribution 47

4.2 The Proposed Scheme 1

We adopt the most of symbols which are similar to Dutta’s scheme in order to
compare with the schemes. Unlike Dutta’s scheme, we make use of access poly-
nomial [8] instead of revocation polynomial. In our setting, we use the notation
Uactj for denoting the set of active users in j-th session. Active user Uacti ∈ Uactj

can access the j-th session key. The following steps, which slightly modify the
Dutta’s scheme, construct a scheme which is resistant to the attack described in
section3. The scheme is never allowed that a revoked user to rejoin the group in
a later session.

1) Initialization: Assume that there are a group manager GM and n users
U = {U1, . . . , Un}. All of the operations take place in a finite field Fq, where q is a
sufficiently large prime number. Let EK , DK denotes respectively an encryption
and corresponding decryption function under key K ∈ Fq. f1: Fq → Fq be
cryptographically secure one-way function. htd: Fq → Fq is cryptographically
secure one-way trapdoor function where td is the trapdoor.

2) Setup: Let t be a positive integer. The GM chooses randomly a t-degree
polynomial ψ(x) = a0 + a1x + a2x

2 + · · · + atx
t in Fq[x] and a random initial

session identifier sid0 ∈ Fq. The GM also selects random secret value ri ∈ Fq and
computes the secret key ψ(ri) for user Ui. sid0 and ri should be different from
each other. Each user Ui(1 ≤ i ≤ n) stores secret value si,0 = {ri, ψ(ri), sid0} as
its personal secret received from the GM via the secure communication channel
between them. The GM chooses randomly a prime key K0 ∈ Fq that is kept
secret.

3) Broadcast: In the j-th session key distribution, j ≥ 1, the GM computes its
session identifier sidj = f1(sidj−1). Note that initial value sid0 as secret value is
stored by user all the time. For j > 1, it replaces the previous session identifier
sidj−1 by the current value sidj . The GM chooses a random number βj ∈ Fq

and computes the j-th session key Kj = hβj (Kj−1). βj is as self-healing key of
session j. Let Uactj = {Uact1, . . . , Uactaj

}, |Uactj | = aj , be the set of all active
users for j-th session, where aj is the number of active user in session j. Let
Ractj = {ract1 , . . . , ractaj

}, |Ractj | = aj , be the set of all active users’ secret
values for j-th session. The GM broadcasts the following message:

Bj = {φj(x) = Aj(x)Kj + sidjψ(x)} ∪ {EKj (β1), . . . , EKj (βj)}, (13)

where Aj(x) = (x − BVj)
∏aj

i=1(x − racti) + 1 is an access polynomial, using
aj active users’ secret value ractis. (x − BVj) is a blind value term and BVj is
different from all users’ secret value ri and randomly selected for each Aj(x).
(x − BVj) is used to make Aj(x)s different even they contain the same secret
value racti of active users. When an active user Uacti receives the j-th broad-
cast message Bj , Uacti can evaluate Aj(racti) by using its secret value racti , as
Aj(racti) = 1. However, for a revoked user Ul ∈ Lj, Aj(rl) is a random value.
Note that none of Aj(x) is sent to user and all users can not construct Aj(x).

48 Q. Xu and M. He

ψ(x) is secret key polynomial. Each user Ui knows a single point {ri, ψ(ri)} on
the curve of polynomial ψ(x).

4) Session Key and Self-healing Key Recovery: When an active user Ui

receives the j-th broadcast message Bj , it first computes the session identifier
sidj = f1(sidj−1) and replaces the previous session identifier sidj−1 by the
current value sidj for j > 1(sid0 is stored). Then Ui evaluates ψ(ri) and φj(ri).
Finally, according to equation(13), Ui can compute the current session key

Kj = φj(ri)− sidjψ(ri), (14)

where Aj(ri) = 1.
Now we describe our self-healing mechanism in this construction: Let Ui be an

active user that receives session key distribution message Bj1 and Bj2 in session
j1 and j2(1 ≤ j1 < j2) respectively. User Ui can still recover all the lost session
keys Kj for j1 < j < j2 as follows:
At first, Ui computes sidj1 = f j1

1 (sid0) and φj1(ri) from the broadcast message
Bj1 in session j1 and Ui can recover the j1-th session key Kj1 = φj1(ri) −
sidj1ψ(ri) according to equation(14). Then Ui computes sidj2 = f j2(sid0) and
φj2(ri) from the broadcast message Bj2 in session j2. Now Ui can recover the
j2-th session key Kj2 = φj2 (ri)− sidj2ψ(ri).

After that Ui decrypts EKj2
(β1), . . . , EKj2

(βj2) using Kj2 to obtain the self-
healing keys β1, . . . , βj1 , βj1+1, . . . , βj2 .
Finally, Ui can compute any session key Kj between session j1 and session j2 as
Kj = hβj (Kj−1).

5) Add New users: When the GM adds a new user Uv started from session
j, it just chooses an unique secret value rv ∈ Fq, computes the personal secret
key ψ(rv) and sidj , and gives secret value sv,j = {rv, ψ(rv), sidj} to Uv through
the secure communication channel between them.

4.3 Security Analysis of Scheme 1

In this section, we prove that our scheme is resistant to the attack described in
section3. Moreover, our scheme is a self-healing key distribution scheme with
revocation capability. More precisely, we can prove the following results.

Result 1: scheme1 is resistant to the attack in section3.

Proof: We have the same assumption as the attack in section3 that user UA is
active in session j but revoked in session j + 1 and user UB is an active user in
all of sessions. According to the proposed scheme, UA can obtain the broadcast
polynomial φj(x) and session identifier sidj . Then UA can evaluate the session
key Kj according to equation14, since UA is active in session j then UA can get
the value of polynomial Aj(x) at x = rA, i.e., Aj(rA) = 1. After that, if A wants
to compute the secret key polynomial ψ(x) according to

ψ(x) =
φj(x) −Aj(x)Kj

sidj
, (15)

Improved Constant Storage Self-healing Key Distribution 49

UA gets nothing but some random function. Since the set of active users is not
sent to users in our scheme, so user can not construct the Aj(x). Obviously, our
scheme can successfully resist to this kind of attack.

Now we show that scheme1 satisfies the security model of section2.1. More
precisely, we can prove the following results.

Result 2: The scheme1 is an unconditionally secure and self-healing session
key distribution scheme with revocation capability in the security model of
section2.1.

Proof: To prove this result is correct, we need to prove scheme2 satisfies all seven
definitions in section2.

1.1.a) Session key recovery by a user Ui is described in step 4 of the construc-
tion. Therefore we have that H(Kj |Zi,j) = 0, H(Zi,j|Bj , Si) = 0 (1).

1.1.b) For any set L ⊆ U , |L| ≤ t, t attackers Ul1 , . . . , Ult ∈ L and any active
user Ui /∈ L, if attacker want to get the secret value of any active user, they can
take the two kinds of ways.

1. The first way is that every attacker Ul1 , . . . , Ult ∈ L attacks the system in-
dividually. According to our Result1, any user can not get any other use’s secret
information. So t attackers can not successfully attack the system individually.

2. The second way is that t attackers Ul1 , . . . , Ult ∈ L collude to attack the
system. We show that the coalition of L gets nothing about the personal secret
Si of Ui(active user). For any session j, Ui’s personal secret ψ(ri) is a value over
a t-degree polynomial ψ(x). Since the coalition gets at most t values over the
t-degree polynomial ψ(x), it is impossible for coalition L to learn ψ(ri). Since
Ui’s personal secret ψ(ri) is an element of Fq and ψ(x) is picked randomly, we
have H({si,j}) = H({ψ(ri), sidj}) = H({ψ(ri)}) = log q. And the secret value
ri is a random value in Fq.

So according to (1) and (2) we have

H(Si|{Sl}Ul∈L, B1, . . . , Bm)
= H({si,j}|{Sl}Ul∈L, B1, . . . , Bm)
= H({ψ(ri), sidj}|{ψ(rl)}Ul∈L, B1, . . . , Bm)
= H({ψ(ri), sidj})
= H({ψ(ri)}) = log q.

(16)

1.1.c) Since the j-th session key Kj = Eβj(Kj−1) is independent of the personal
secret ψ(ri) for i = 1, . . . , n, and is generated by the self-healing key βj which is
a random number and the previous session key Kj−1, so the personal secret keys
alone do not give any information about any session key. Since the self-healing key
βj , blind value BVj and session key Kj is picked randomly, the set of session keys
K1, . . . , Km can not determined only by broadcast messages. So Zi,j = Kj can
not be determined by only personal key Si or broadcast message Bj . And we have
that H(Zi,j |B1, . . . , Bm) = H(Zi,j) = H(Zi,j |S1, . . . , Sn) (3).

1.2) Assume that a collection L of t revoked users collude in j-th session. It
is impossible for coalition L to learn the j-th session key Kj because knowledge
of Kj implies the knowledge of the personal secret {ψ(ri), ri} of user Ui /∈ L or
the self-healing key βj . This coalition L has no information on βj or {ψ(i), ri}

50 Q. Xu and M. He

for Ui /∈ L. L knows the points {ri, ψ(ri) : Ui ∈ L}. The size of the coalition L
is at most t. Consequently, the colluding users only have at most t-points on the
polynomial ψ(x). But degree of the polynomial ψ(x) is t. Hence the coalition
L cannot recover ψ(x). Moreover, secret value ri is picked randomly. So they
in turn make Kj appears to be randomly distributed to L. Therefore, Kj is
completely safe. Hence, we have that
H(Kj|Bj , Si) = 0, H(Kj|Bj , {Sl}Ul∈L) = H(Kj) (4).

1.3) For any Ui that is an active user in session j1 and j2 (1 ≤ j1 ≤ j2 ≤ m),
he can recover Kj2 and hence he can obtain self-healing keys β1, . . . , βj2 . And
Ui also has the session key Kj1 which is recovered in j1-th session. Hence, by
the method of step 4 in Scheme1, Ui can subsequently recover the whole missed
session keys. Hence we have that H(Kj |Zi,j1 , Zi,j2) = 0 (5).

2) We can easily prove that scheme1 satisfy Definition2 following the same
line of security analysis of [1], so scheme1 can satisfy t-wise forward and back-
ward secrecy.

In conclusion, scheme1 is an unconditionally secure and self-healing session
key distribution scheme with revocation capability.

5 The Proposed Scheme 2

In order to reduce the communication overhead, we construct the scheme2. The
scheme2 focuses on computational secure and efficient key distribution scheme
with self-healing property and revocation capability for large groups over inse-
cure wireless sensor networks. In the application that sensor nodes have limited
computing and energy resources, scheme2 is efficient in terms of communication
complexity and computational complexity.

5.1 The Construction of Scheme 2

1) Initialization: Assume that U = {U1, . . . , Un}. The operations in scheme2
take place in a finite field Fq. It is never allowed that a revoked user to rejoin the
group in a later session. Let f1: Fq → Fq be cryptographically secure one-way
function.

2) Setup: The group manager GM chooses at random a t-degree polynomial
ψ(x) = a0+a1x+a2x

2+ · · ·+atx
t in Fq[x] and a random initial session identifier

sid0 ∈ Fq. And the GM selects random secret value ri ∈ Fq and computes the
secret key ψ(ri) for each user Ui(1 ≤ i ≤ n). The GM also chooses randomly
two initial key seeds, the forward key seed SDF ∈ Fq and the backward key
seed SDB ∈ Fq. Each user Ui gets its personal key si,0 = {ri, ψ(ri), SDF , sid0}
from the GM via the secure communication channel between them. GM re-
peatedly applies (in the pre-processing time) the one-way function f1 on SDB

and computes the one-way key chain of length m: KB
j = f1(KB

j−1) = f j
1 (SDB),

KF
j = f1(KF

j−1) = f j
1 (SDF) for 1 ≤ j ≤ m. The j-th session key is computed as

Improved Constant Storage Self-healing Key Distribution 51

Kj = KF
j + KB

m−j+1(in Fq) (17)

Note that sid0, SDF and SDB are all different from each other.

3) Broadcast: In the j-th session key distribution, j ≥ 1, the GM computes user
Ui’s j-th session identifier sidj = f1(sidj−1) . Note that initial value sid0 as secret
value is stored by user all the time. For j > 1, it replaces the previous session
identifier sidj−1 by the current value sidj . Uactj = {Uact1 , . . . , Uactaj

}(|Uactj | =
aj), be the set of all active users for j-th session, where aj is the number of active
user in session j. Let Ractj = {ract1 , . . . , ractaj

}, |Ractj | = aj , be the set of all
active users’ secret values for j-th session. In the j-th session key distribution,
GM locates the backward key KB

m−j+1 in the backward key chain and constructs
the polynomial

Bj = {φj(x) = Aj(x)KB
m−j+1 + sidjψ(x)}, (18)

where Aj(x) = (x−BVj)
∏aj

i=1(x− racti) + 1 as access polynomial.

4) Session Key and Self-healing Key Recovery: At first, an active user Ui

computes the session identifier sidj = f1(sidj−1) and replaces the previous ses-
sion identifier sidj−1 by the current value sidj. After that, Ui evaluates ψ(ri) and
Aj(ri). When an active user Ui receives the session j-th key distribution mes-
sage Bj , it can evaluate Aj(ri) using its secret value ri, it can get Aj(ri) = 1.
However, for a revoked user, it is a random value. Then Ui computes the current
backward session key

KB
m−j+1 = φj(ri)− sidjψ(ri). (19)

Finally, Ui computes the j-th forward key KF
j = f1(KF

j−1) = f j−1
1 (SDF) and

evaluates the current session key Kj = KF
j + KB

m−j+1.
Now we explain our self-healing mechanism in above construction: Let Ui be

an active user that receives session key distribution message Bj1 and Bj2 in ses-
sion j1 and j2(1 ≤ j1 < j2) respectively. User Ui can recover all the lost session
keys Kj for j1 < j < j2 as follows: Ui recovers the backward key KB

m−j2+1 from
the broadcast message Bj2 in session j2, and then repeatedly apply the one-way
function f1 to compute the backward keys

KB
m−j+1 = f j2−j

1 (KB
m−j2+1) = f j2−j

1 (fm−j2+1
1 (SDB)), (20)

for all j, j1 ≤ j ≤ j2 . Then Ui can compute the forward keys

KF
j = f j−j1

1 (KF
j1) = f j−j1

1 (f j1
1 (SDF)), (21)

for all j, j1 ≤ j ≤ j2 by repeatedly applying f1 on the forward seed SDF or on
the forward key KF

j1
of the j1-th session. Finally, Ui can recover all the session

keys Kj = KF
j + KB

m−j+1, for j1 ≤ j ≤ j2.

5) Add New Users: When the GM adds a new user Uv started from session
j, it just chooses an unique secret value rv ∈ Fq, and computes the personal

52 Q. Xu and M. He

secret key ψ(rv), sidj and forward key KF
j gives sv,j = {rv, ψ(rv), KF

j , sidj} to
Uv through the secure communication channel between them.

5.2 The Security Analysis of Scheme 2

In this section, we show that our scheme2 is resistant to the attack which is
proposed in section3. Moreover, the scheme2 is a self-healing key distribution
scheme with revocation capability. More precisely, we can prove the following
results.

Result 3: The scheme2 is resistant to the attack in section 3.

Proof: we can prove Result3 successfully following the same line of proving
Result1.

Result 4: The scheme2 is secure self-healing session key distribution scheme
with revocation capability.

Proof: 1). (self-healing property) As shown in step 4 of section 5.1, user Ui that
is active user in session j1 and j2(1 ≤ j1 < j2) receives the broadcast message
Bj1 and Bj2 , can recover the session keys between j1 and j2. So scheme2 has
self-healing capability.

2). (t-revocation property) We show that scheme2 is secure against coalitions
of size at least t. Let L ⊆ U be the set of t revoked users colluding in session
j. It is impossible for coalition L to get the j-th the session key Kj . Since the
knowledge of Kj implies the knowledge of the backward key KB

m−j+1 according to
equation(17) where KF

j can be computed by revoked users. And the knowledge
of KB

m−j+1 implies the knowledge of the personal secret key ψ(ri) of user Ui /∈ L.
Then we show that colluding users can not get the personal secret key ψ(ri) of
user Ui /∈ L. The coalition L knows the values {ψ(ri) : Ui ∈ L}. And the size of
the coalition L is at most t. Consequently, the colluding users only have at most
t-points on the curve of t-degree polynomial ψ(x). Hence the coalition L can not
recover ψ(x), which in turn makes KB

m−j+1 appears random to L. Therefore,
session key Kj is secure against the coalition and has revocation capability.

Result 5: The scheme2 achieves t-wise forward secrecy and t-wise backward
secrecy.

Proof: 1). (t-wise forward secrecy) Let L ⊂ U , where |L| ≤ t and all user Ul ∈ L
are revoked before the current session j. If the revoked users want to know the
session Kj , they must know the backward key KB

m−j+1 according equation(17).
However the coalition L can not get any information about the current session
key KB

m−j+1 even with the knowledge of group keys before session j. Since in
order to know KB

m−j+1, Ul ∈ L needs to know at least t + 1 values on the poly-
nomial ψ(x). Since the size of coalition L is at most t, the coalition L has at
most t personal secret keys and gets t values on the polynomial ψ(x). But at
least t+1 values are needed on the polynomial ψ(x) to recover the current back-
ward session key KB

m−j+1 for any user Ul ∈ R. Moreover, it is computationally
infeasible to compute KB

j1 from KB
j2 for j1 < j2. The user in L might know the

Improved Constant Storage Self-healing Key Distribution 53

sequence of backward keys KB
m, . . . , KB

m−j+2, but cannot compute KB
m−j+1 and

consequently Kj from this sequence. Hence the scheme2 is t-wise forward secure.
2). (t-wise backward secrecy) Let J ⊆ U , where |J | ≤ t and all user Ul ∈ J join
after the current session j. The coalition J can not get any information about
any previous session key Kj1 for j1 < j even with the knowledge of group keys
after session j. The reason is that in order to know Kj1 , Ul ∈ J requires the
knowledge of j1-th forward key KF

j1
= f1(KF

j1−1) = f j1−1
1 (SF). Now when a new

user Uv joins the group starting from session j + 1, the GM gives Uv’s (j + 1)-th
forward key KF

j+1 instead of the initial forward key seed SF , together with the
personal secret key ψ(rv). Note that KF

j+1 = f1(KF
j). Hence it is computation-

ally infeasible for the new user Uv to compute the previous forward keys KF
j1

for
j1 ≤ j because of the one-way property of the function f1. Hence, scheme2 is
t-wise backward secure.

Remark: In scheme1 and scheme2, we does not consider the collusion between
the revoked user and the joined newly user. Hence, we will improve this weakness
as our future work.

6 Efficiency

In terms of storage complexity, scheme1 requires each user stores secret value
ri, personal secret key ψ(ri), session identifier sid0 and j-th session identifier
sidj instead of (j − 1)-th session identifier. Hence, the user’s storage size is
4 log q, which is constant storage. And scheme1’s communication complexity is
max{(t + j + 1) log q, (aj + t + 1) log q}, where t is maximum number of re-
voked users and aj is number of active users in the session j. scheme2 needs
only one more forward key SF than that of scheme1, so scheme2’s storage com-
plexity is 5 log q. In scheme2, the communication complexity in the j-th session
is max{(t + 1) log q, (aj + 1) log q}. In the application environment requiring
strong resistance to revokers’ collusion attack or revoked users being more than
the active users(t > aj), the advantage of our schemes is obvious. scheme1’s

Table 1. Comparison among different self-healing key distribution schemes in j-th
session

Schemes Storage Overhead Communication Overhead Security

scheme3 of [2] (m − j + 1)2 log q (mt2 + 2mt + m + t) log q Unconditional

scheme2 of [4] (m − j + 1) log q (2tj + j) log q Unconditional

scheme2 of [5] (m − j + 1) log q (tj + j) log q Unconditional

scheme of [8] 2 log q (2tj) log q Unconditional

scheme of [1] 3 log q (t + j + 1) log q Insecure

Our scheme1 4 log q max{(t + j + 1), (aj + j + 1)} log q Unconditional

Our scheme2 5 log q max{(t + 1), (aj + 1)} log q Computational

54 Q. Xu and M. He

communication complexity is (t + j + 1) log q and scheme2’s communication
complexity is (t + 1) log q.

Table1 compares storage overhead and communication complexity between
the proposed schemes and previous schemes.

7 Conclusion

In this paper, we analyze the weakness of Dutta’s scheme [1] and attack it suc-
cessfully. And we slightly modify the Dutta’s scheme and construct scheme1.
scheme1 adopts the access polynomial in order to resist to the proposed attack.
Moreover, scheme1 is an efficient unconditionally secure self-healing key distri-
bution scheme without sacrificing the storage and communication complexity
compared to Dutta’s scheme. Finally, we use of the one way function to design
scheme2 which is more efficient in communication complexity. And it focuses on
computational secure. In the application environment requiring strong resistance
to revoker’s collusion attack or revoked user being more than the active users,
the advantage of our schemes is obvious. They are scalable to large groups in
wireless sensor network of very bad environment, where many users need to be
revoked. In the future, we dedicate our work to overcome the weakness of the
collusion between the revoked user and the joined newly user. [14] partly solves
this problem by subset difference method. In the way of [14], we consider the
idea of binding the time at which user joined the group with its ability to recover
a previous group key in our scheme.

Acknowledgements

The work is supported by the National Natural Science Foundation of China
(Grant no. 60773035); the Key Projects Foundation of Ministry of Education of
China (Grant no. 205136); The Foundation of Science and Technology Bureau
of Sichuan Province, China (Grant no. 05JY029-131).

References

1. Ratna, D., Yongdong, W., Sourav, M.: Constant Storage Self-Healing Key Dis-
tribution with Revocation in Wireless Sensor Network. In: IEEE International
Conference on Communications, ICC 2007, pp. 1323–1328 (2007)

2. Jessica, S., Sara, M., Matt, F., Dirk, B., Michael, M., Drew, D.: Self-healing key
distribution with Revocation. In: Proceedings of IEEE Symposium on Security and
Privacy 2002, pp. 224–240 (2002)

3. Donggang, L., Peng, N., Kun, S.: Efficient Self-healing Key Distribution with Re-
vocation Capability. In: Proceedings of the 10th ACM CCS 2003, pp. 27–31 (2003)

4. Carlo, B., Paolo, D’A., Alfredo, D.S., Massimiliano, L.: Design of Self-healing Key
Distribution Schemes. Design Codes and Cryptology, 15–44 (2004)

5. Dowon, H., Jusung, K.: An Efficient Key Distribution Scheme with Self-healing
Property. In: IEEE Communication Letters 2005, vol. 9, pp. 759–761 (2005)

Improved Constant Storage Self-healing Key Distribution 55

6. Biming, T., Mingxing, H.: A Self-healing Key Distribution Scheme with Novel
Properties. International Journal of Network Security 7(1), 115–120 (2008)

7. Ratna, D., Sourav, M.: Improved Self-Healing Key Distribution with Revocation
in Wireless Sensor Network. In: IEEE Wireless Communications and Networking
Conference 2007, pp. 2965–2970 (2007)

8. Xukai, Z., Yuanshun, D.: A Robust and Stateless Self-Healing Group Key Manage-
ment Scheme. In: International Conference on Communication Technology, ICCT
2006, vol. 28, pp. 455–459 (2006)

9. Sara, M.M., Michael, M., Jessica, S., Dirk, B.: Slidinig-window Self-healing
Key Distribution with Revocation. In: ACM Workshop on Survivable and Self-
regenerative Systems 2003, pp. 82–90 (2003)

10. German, S.: On Threshold Self-healing Key Distribution Schemes. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 340–354. Springer,
Heidelberg (2005)

11. Carlo, B., Paolo, D’A., Alfredo, D.S.: On Self-Healing Key Distribution Scheme.
IEEE Transactions on Information Theory 52, 5455–5467 (2006)

12. German, S.: Self-healing key distribution schemes with sponsorization. In:
Dittmann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp.
22–31. Springer, Heidelberg (2005)

13. Ratna, D., Ee-Chien, C., Sourav, M.: Efficient self-healing key distribution with
revocation for wireless sensor networks using one way key chains. In: Katz, J.,
Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 385–400. Springer, Heidelberg
(2007)

14. Sencun, Z., Sanjeev, S., Sushil, J.: Adding Reliable and Self-healing Key Distri-
bution to the Subset Difference Group Rekeying Method for Secure Multicast.
Networked Group Communications, George Mason University Technical Report
ISETR-03-02, Munich, Germany (2003)

Advances in Ultralightweight Cryptography for
Low-Cost RFID Tags: Gossamer Protocol

Pedro Peris-Lopez, Julio Cesar Hernandez-Castro, Juan M.E. Tapiador,
and Arturo Ribagorda

Computer Science Department, Carlos III University of Madrid
{pperis,jcesar,jestevez,arturo}@inf.uc3m.es

http://www.lightweightcryptography.com

Abstract. The design of ultralightweight authentication protocols that
conform to low-cost tag requirements is imperative. This paper analyses
the most important proposals (except for those based in hard problems
such as the HB [1–3] family) in the area [4–6] and identifies the common
weaknesses that have left all of them open to various attacks [7–11]. Fi-
nally, we present Gossamer, a new protocol inspired by the recently pub-
lished SASI scheme [13], that was lately also the subject of a disclosure
attack by Hernandez-Castro et al. [14]. Specifically, this new protocol is
designed to avoid the problems of the past, and we examine in some deep
its security and performance.

1 Introduction

In a RFID system, objects are labeled with a tag. Each tag contains a microchip
with a certain amount of computational and storage capabilities, and a coupling
element. Such devices can be classified according to memory type and power
source. Another relevant parameter is tag price1, which creates a broad distinc-
tion between high-cost and low-cost RFID tags.

Each time a new protocol is defined, the tag’s class for which it is envisioned
should also be specified. We note that, depending on the class of the tag, the
maximum security level that can be supported will also be very different. For ex-
ample, the security level of a relatively high-cost tag as those used in e-passports
should be much higher than that of a low-cost tag employed in supply chain
management (i.e. tags compliant to EPC Class-1 Generation-2 specification).

In [13], Chien proposed a tag classification mainly based on which were the
operations supported on-chip. High-cost tags are divided into two classes: “full-
fledged” and “simple”. Full-fledged tags support on-board conventional cryp-
tography like symmetric encryption, cryptographic one-way functions and even
public key cryptography. Simple tags can support random number generators
and one-way hash functions. Likewise, there are two classes for low-cost RFID
tags.“Lightweight” tags are those whose chip supports a random number gen-
eration and simple functions like a Cyclic Redundancy Code (CRC) checksum,
1 The rule of thumb of gate cost says that every extra 1,000 gates increases chip price

by 1 cent [15].

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 56–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Advances in Ultralightweight Cryptography for Low-Cost RFID Tags 57

but not cryptographic hash function. “Ultralightweight” tags can only compute
simple bitwise operations like XOR, AND, OR, etc. These ultralightweight tags
represent the greatest challenge in terms of security, due to their expected wide
deployment and very limited capabilities.

2 A Family of Ultralightweight Mutual Authentication
Protocols

In 2006, Peris et al. proposed a family of Ultralightweight Mutual Authentication
Protocols (henceforth referred to as the UMAP family of protocols). Chronolog-
ically, M2AP [4] was the first proposal, followed by EMAP [5] and LMAP [6].

These protocols are based on the use of pseudonyms to guarantee tag ano-
nymity. Specifically, an index-pseudonym is used by an authorized reader to
retrieve the information associated with a tag (tag identification phase). Addi-
tionally, a key -divided in several subkeys- is shared between legitimate tags and
readers (back-end database). Both readers and tags use these subkeys to build
the messages exchanged in the mutual authentication phase.

In line with their real processing capabilities, tags only support on-board
simple operations. Indeed, these protocols are based on bitwise XOR (⊕), bitwise
OR (∨), bitwise AND (∧) and addition mod 2m. By contrast, only readers need to
generate pseudorandom numbers; tags only use them for creating fresh messages
to the protocol.

In the UMAP family of protocols, the proposed scheme consists of three stages.
First, the tag is identified by means of the index-pseudonym. Secondly, the reader
and the tag are mutually authenticated. This phase is also used to transmit the
static tag identifier (ID) securely. Finally, the index-pseudonym and keys are
updated (the reader is referred to the original papers for more details).

2.1 Security Analysis of the UMAP Protocols

Since the publication of the UMAP family of protocols, their security has been
analyzed in depth by the research community. In [7, 8] a desynchronization at-
tack and a full disclosure attack are presented. These require an active attacker
and several incomplete run executions of the protocol to disclose the secret in-
formation on the tag. Later, Chien et al. proposed -based on the same attack
model- a far more efficient full-disclosure attack [9]. Additionally, Bárász et al.
showed how a passive attacker (an attack model that may be, in certain sce-
narios, much more realistic) can find out the static identifier and on particular
secrets shared by the reader and the tag after eavesdropping on a few consecutive
protocol rounds [10, 11].

This leads us to the following conclusions: first, we must define what kind of
attack scenarios are applicable. In our opinion, ultralightweight RFID tags have
to be resistant to passive attacks but not necessarily to active attacks, because of
their severe restrictions (storage, circuitry and power consumption). Regarding
passive attacks, we can affirm the following:

58 P. Peris-Lopez et al.

– The UMAP family of protocols is based on the composition of simple opera-
tions like bitwise AND, XOR, OR and sum mod 2m. Because all of these are
triangular functions (T-functions) [16], the information does not propagate
well from left to right. In other words, the bit in position i in the output
only depends on bits j = 0,..., i of the input words.

– The use of the bitwise AND or OR operations to build public submessages
is a weakness common to all these protocols. When a bitwise AND (OR)
operation is computed even over random inputs, the probability of obtaining
a one (zero) is 3

4 . In other words, the result is strongly biased. This poor
characteristic is the basis of all the passive attacks proposed so far.

3 SASI Protocol

In 2007 Hung-Yu Chien proposed a very interesting ultralightweight authenti-
cation protocol providing Strong Authentication and Strong Integrity (SASI)
for very low-cost RFID tags [13]. We briefly describe the messages exchanged
between the reader (or back-end database) and the tag.

An index-pseudonym (IDS), the tag’s private identification (ID), and two
keys (k1/k2) are stored both on the tag and in the back-end database. Simple
bitwise XOR (⊕), bitwise AND (∧), bitwise OR (∨), addition 2m and left rotation
(Rot(x,y)) are required on the tag. Additionally, random number generation (i.e.
n1 and n2) is required on the reader. The protocol is divided into three states: tag
identification, mutual authentication and updating phase. In the identification
phase, the reader (R) sends a “hello” message to the tag (T), and the tag answers
with its IDS. The reader then finds, in the back-end database, the information
associated with the tag (ID and k1/k2), and the protocol continues to the mutual
authentication phase. In this, the reader and the tag authenticate each other,
and the index-pseudonym and keys are subsequently updated:

R→ T : A||B||C with
The reader generates nonces n1 and n2 to build the submessages as follows:
A = IDS ⊕ k1 ⊕ n1; B = (IDS ∨ k2) + n2; C = (k1 ⊕ k∗

2) + (k2 ⊕ k∗
1);

where k∗
1 = Rot(k1 ⊕ n2, k1); k∗

2 = Rot(k2 ⊕ n1, k2)

Tag. From messages A and B, the tag can obtain values n1 and n2 respectively.
Then it locally computes C′ and checks if the result is equal to the received
value. If this is the case, it sends D and updates the values of IDS, k1 and k2:
D = (k∗

2 + ID) ⊕ ((k1 ⊕ k2) ∨ k∗
1); IDSnext = (IDS + ID) ⊕ (n2 ⊕ k∗

1);
knext
1 = k∗

1 ; knext
2 = k∗

2 ;

T→ R : D with

Reader. Verifies D and, if it is equal to the result of its local computation,
updates IDS, k1 and k2 in the same way as the tag.

3.1 Vulnerability Analysis

From the analysis of the UMAP family of protocols, we conclude that it is nec-
essary to incorporate a non-triangular function in order to increase the security

Advances in Ultralightweight Cryptography for Low-Cost RFID Tags 59

of ultralightweight protocols. At first sight, the SASI protocol complies with this
requirement as it includes the left rotation operation (which is non triangular).
However, Hernandez-Castro et al. have recently showed that the protocol was
not carefully designed [14]. Indeed, a passive attacker can obtain the secret static
identifier of the tag (ID) after observing several consecutive authentication ses-
sions. We now summarize the main weaknesses of the protocol (see the original
paper for more details):

1. The second component of the IDS updating equation is dependent on the
bitwise XOR between n2 and k∗

1 . This gives rise to poor statistical properties
as k∗

1 is also function of n2.
2. The key updating equation has a kind of distributive operation that might

be employed to attack the protocol, for example: k∗
1 = Rot(k1 ⊕ n2, k1) =

Rot(k1, k1)⊕Rot(n2, k1)
3. As mentioned in Section 2.1, bitwise OR and bitwise AND should be used

with extreme care. These operations result in a strongly biased output. For
example, the nonce n2 can be approximated with very good precision by
simply computing n2 � B − 1. These operations might therefore be only
employed in the inner parts of the protocol but should be avoided in the
generation of public submessages (i.e. B and D submessages). In fact, all
the exchanged messages should resemble random values as far as possible.

4 Gossamer Protocol

As a consequence of the above observations, we have derived a new protocol,
called Gossamer2, which is inspired by the SASI scheme but hopefully devoid of
its weaknesses. Our main aim was to define a protocol with adequate security
level and which can realistically be employed in ultralightweight RFID tags.

4.1 Model Suppositions

Each tag stores a static identifier (ID), an index-pseudonym (IDS) and two
keys (k1/k2) in its memory. This information is also stored in the back-end
database. The IDS is employed as a search index to allocate, in the database,
all the information linked with each tag. These elements have a length of 96
bits, compatible with all the encoding schemes (i.e. GTIN, GRAI) defined by
EPCGlobal. Additionally, tags are given the added requirement of storing the old
and potential new values of the tuple (IDS, k1, k2), to avoid desynchronization
attacks. In spite of this, resiliency against attacks which involve tag manipulation
are not considered as these devices are not at all tamper-resistant.

For the implementation of the proposed protocol, only simple operations are
available on tags, in accordance with their restrictions: specifically, bitwise XOR
2 Gossamer: Noun describing a thin film of cobwebs floating in the air (this meaning

dates from the 14th century) and an adjective meaning light, delicate, thin enough
to let light through, nearly transparent.

60 P. Peris-Lopez et al.

(⊕), addition mod 2m (+), and left rotation (Rot(x,y)). Rotation may be per-
formed in several different ways. However, the original SASI scheme does not
clearly specify the rotation method used. Sun et al., who recently published two
desynchronization attacks on SASI, contacted the author to clarify the issue [17].
Chien asserted that Rot(x, y) is a circular shift of x, wht(y) positions to the left
where wht(y) denotes the Hamming weight of y. This is probably not optimal
from the security point of view as the argument that determines the number of
positions rotated is far from uniform. Indeed, this variable follows the following
probability distribution:

Prob(wht(B) = k) =

(96
k

)
296 (1)

In our proposed scheme Rot(x, y) is defined perform a circular shift on the value
of x, (y mod N) positions to the left for a given value of N (in our case 96).

Random number generation, required in the protocol to supply freshness, is
a costly operation, so it is performed by the reader. Moreover, random numbers
cannot be indiscriminately employed because their use increases both memory
requirements and message counts (which could be costly in certain applications).
To significantly increase security, we have also added a specially designed and
very lightweight function called MixBits. In [18], a detailed description of the
methodology used -basically, to evolve compositions of extremely light operands
by means of genetic programming, in order to obtain highly non-linear functions-
is included. MixBits has an extremely lightweight nature, as only bitwise right
shift (>>) and additions are employed. Specifically,

Z = MixBits(X,Y)

Z = X;
for(i=0; i<32; i++) {
Z = (Z>>1) + Z + Z + Y ;}

Communication has to be initiated by readers, since tags are passive. The
communication channel between the reader and the database is generally as-
sumed to be secure, but the channel between the reader and the tag can be
eavesdropped on. Attacks involving modification of the exchanged messages, the
insertion of fraudulent new messages, or message blocking (active attacks), can
be discounted.

4.2 The Protocol

The protocol comprises three stages: tag identification phase, mutual authenti-
cation phase, and updating phase. Figure 1 shows the exchanged messages.

Tag Identification. The reader first sends a “hello” message to the tag, which
answers with its potential next IDS. With it, the reader tries to find an
identical entry in the database. If this search succeeds, the mutual authenti-
cation phase starts. Otherwise the identification is retried but with the old
IDS, which is backscattered by the tag upon request.

Advances in Ultralightweight Cryptography for Low-Cost RFID Tags 61

1. Tag Identification:

1.1. “hello”

1.2. “IDS”
2. Mutual Authentication:
With IDS finds a match entry
in the database.

2.1. “A||B||C”

The tag answers with its next IDS,
and the old IDS if necessary.

A = ROT((ROT(IDS+k1+ +n1, k2)+k1, k1);
B = ROT((ROT(IDS+k2+ +n2, k1)+k2, k2);
n3= MIXBITS(n1, n2);
k1

* = ROT((ROT(n2+k1+ +n3, n2)+k2 n3, n1) n3

k2
* = ROT((ROT(n1+k2+ +n3, n1)+k1+n3, n2)+n3

n1' = MIXBITS(n3,n2);
C = ROT((ROT(n3+k1

*+ +n1', n3)+k2
* n1', n2) n1'

D’ = ROT((ROT(n2+k2
*+ID+n1',n2)+k1

*+n1', n3)+n1'
If D’ = D
3. Back-end database Updating

Extract n1 from A, and n2 from B
n3=MIXBITS(n1, n2);
k1

*=ROT((ROT(n2+k1+ +n3, n2)+k2 n3, n1) n3

k2
*=ROT((ROT(n1+k2+ +n3, n1)+k1+n3, n2)+n3

n1'=MIXBITS(n3, n2);
C’=ROT((ROT(n3+k1

*+ +n1', n3)+k2
* n1', n2) n1'

If C’ = C

D=ROT((ROT(n2+k2
*+ID+n1', n2)+k1

*+n1', n3)+n1'
3. Tag Updating

Reader Tag

3. Tag Updating:
n2' = MIXBITS(n1', n3);
IDSold = IDS; IDSnext= ROT((ROT(n1'+k1

*+IDS+n2', n1')+k2
* n2', n3) n2'

k1
old = k1; k1

next= ROT((ROT(n3+k2
*+ +n2', n3)+k1

*+n2', n1')+n2'
k2

old = k2; k2
next= ROT((ROT(IDSnext+k2

*+ +k1
next, IDSnext)+k1

*+k1
next, n2')+k1

next

3. Back-end database Updating
n2' = MIXBITS(n1', n3);
IDS = ROT((ROT(n1'+k1

*+IDS+n2', n1')+k2
* n2', n3) n2'

k1= ROT((ROT(n3+k2
*+ +n2', n3)+k1

*+n2', n1')+n2'
k2= ROT((ROT(IDS+k2

*+ +k1, IDS)+k1
*+k1, n2')+k1

2.2. “D”

† π = 0x3243F6A8885A308D313198A2 (L = 96 bits).

Fig. 1. Gossamer Protocol

Mutual Authentication. With IDS, the reader acquires the private informa-
tion linked to the tag, identified from the database. Then the reader gener-
ates nonces n1 and n2 and builds and sends to the tag A||B||C (see Figure
1). Note that the equations used in the generation of public messages, as do
those used in the computation of internal values, generally follow the scheme
below:

ni+2 = MIXBITS(ni, ni+1) (2)

Mi = ROT ((ROT (ni+1 + ki + PI + ni+2, ni+1) + ki+1 ⊕ ni+2, ni) ⊕ ni+2 (3)

Mi+1 = ROT ((ROT (ni + ki+1 + PI + ni+2, ni) + ki + ni+2, ni+1) + ni+2 (4)

From submessages A and B, the tag extracts nonces n1 and n2. Then it com-
putes n3/n′

1 and k∗
1/k∗

2 and builds a local version of submessage C′. This is
compared with the received value. If it is verified, the reader is authenticated.
Finally, the tag sends message D to the reader. On receiving D, this value
is compared with a computed local version. If comparison is successful, the
tag is authenticated; otherwise the protocol is abandoned.

Index-Pseudonym and Key Updating. After successfully completing the
mutual authentication phase between reader and tag, they locally update
IDS and keys (k1/k2) as indicated in Figure 1. As we have just seen,

62 P. Peris-Lopez et al.

submessages C/D allow reader/tag authentication, respectively. Moreover,
the use of submessages C/D results in confirmation of synchronization for
the internal secret values (n3/n′

1 and k∗
1/k∗

2) used in the updating phase,
preventing straightforward desynchronization attacks.

4.3 Security Analysis

We will now analyze the security of the proposed scheme against relevant attacks:

Data Confidentiality. All public messages are composed of at least three se-
cret values shared only by legitimate readers and genuine tags. Note that
we consider private information (ID, k1, k2), random numbers (n1, n2), and
internal values (n3, n′

1, n′
2, k∗

1 , k∗
2) as secret values. The static identifier and

the secret keys cannot, therefore, be easily obtained by an eavesdropper.
Tag anonymity. Each tag updates IDS and private keys (k1, k2) after success-

ful authentication, and this update process involves random numbers (n3, n′
1,

n′
2). When the tag is interrogated again, a fresh IDS is backscattered. Ad-

ditionally, all public submessages (A||B||C|| and D) are anonymized by the
use of random numbers (n1, n2, n3, n′

1). Tag anonymity is thus guaranteed,
and location privacy of the tag owner is not compromised.

Mutual Authentication and Data Integrity. The protocol providesmutual
authentication. Only a legitimate reader possessing keys (k1, k2), can build a
valid message A||B||C. Similarly, only a genuine tag can derive nonces n1, n2
from A||B||C, and then compute message D.

Messages C and D, which involve the internal secret values (n3, n′
1, k∗

1 , k∗
2)

and nonces (n1, n2), allow data integrity to be checked. Note that these val-
ues are included in the updating equations (potential next index-pseudonym
and keys).

Replay attacks. An eavesdropper could store all the messages exchanged in
a protocol run. To impersonate the tag, he could replay message D. How-
ever, this response would be invalid as different nonces are employed in
each session -this will frustrate this naive attack. Additionally, the attacker
could pretend that the reader has not accomplished the updating phase
in the previous session. In this scenario, the tag is identified by the old
index-pseudonym and the attacker may forward the eavesdropped values of
A||B||C. Even if this is successful, no secret information is disclosed and
the internal state is unchanged in the genuine tag, so all these attacks are
unsuccessful.

Forward Security. Forward security is the property that guarantees the secu-
rity of past communications even when a tag is compromised at a later stage.
Imagine that a tag is exposed one day, making public its secret information
(ID, k1, k2). The attacker still cannot infer any information from previ-
ous sessions as two unknown nonces (n1, n2) and five internal secret values
(n3, n′

1, n′
2, k∗

1 , k∗
2) are involved in the message creation (mutual authentica-

tion phase). Additionally, these internal values are employed in the updating
phase. Consequently, past communications cannot be easily jeopardized.

Advances in Ultralightweight Cryptography for Low-Cost RFID Tags 63

Updating Confirmation. The Gossamer protocol assumes that tags and read-
ers share certain secret values. As these values are locally updated, synchro-
nization is mandatory. Submessages C and D provide confirmation of the
internal secret values (n3, n′

1, k∗
1 , k∗

2) and nonces (n1, n2). These values are
employed in the updating stage. So the correct update of values IDS and
keys (k1, k2) is implicitly ensured by submessages C and D.

Unintentional transmission errors can happen in the received messages
since a radio link is used. This is an extremely serious issue for message D,
since it can result in a loss of synchronization. However, the tuple (IDS, k1,
k2) is stored twice in the tag memory -once with the old values, the other
with the potential next values. With this mechanism, even in the event that
message D is incorrectly received, the tag and the reader can still authenti-
cate with the old values. So the reader and the tag will be able to recover
their synchronized state.

4.4 Performance Analysis

Our proposed protocol is now examined from the point of view of computational
cost, storage requirements and communication cost. Additionally, Table 1 com-
pares the most relevant ultralightweight protocol proposals (see Section 1) from
a performance perspective.

Table 1. Performance Comparison of Ultralightweight Authentication Protocols

U-MAP family [4–6] SASI [13] Gossamer
Resistance to Desynchronization Attacks No No Yes
Resistance to Disclosure Attacks No No Yes
Privacy and Anonymity Yes Yes Yes
Mutual Authentication and Forward Security Yes Yes Yes
Total Messages for Mutual Authentication 4-5L 4L 4L
Memory Size on Tag 6L 7L 7L
Memory Size for each Tag on Database 6L 4L 4L

Operation Types on Tag ⊕, ∨, ∧, + ⊕, ∨, ∧, +, Rot2 ⊕, +, Rot3,
MixBits

1 L designates the bit length of variables used.
2 Rot(x, y) = x << wht(y), being wht(y) the Hamming weight of vector y.
3 Rot(x, y) = x << (y mod L) for a given value of L -in our case L = 96.

Computational cost. The protocol we have proposed only requires simple bit-
wise XOR, addition 2m, left rotation, and the MixBits function on tags.
These operations are very low-cost and can be efficiently implemented in
hardware.

When comparing Gossamer with the protocol SASI, we can observe that
the bitwise AND and OR operations are eliminated, and the light MixBits
operation is added for increased security. MixBits is very efficient from
a hardware perspective. The number of iterations of this function is opti-
mized to guarantee a good diffusion effect. Specifically, it consumes 32× 4×
(96/m) clock cycles, m being the word length used to implement the protocol
(i.e. m = 8, 16, 32, 64, 96). As this may have a cost impact on the temporal
requirements, we have minimized the number of MixBits calls.

64 P. Peris-Lopez et al.

Storage requirement. Each tag stores its static identifier (ID) and two
records of the tuple (IDS, k1, k2) -with old and potential new values. A
96-bit length is assumed for all elements in accordance with EPCGlobal. The
ID is a static value, thus stored in ROM. The remaining values (96×6 = 576
bits) are stored in a rewritable memory because they need to be updated.

In the protocol SASI, two temporal nonces are linked to each session.
We include an additional value derived from the previous nonces (ni+2 =
MixBits(ni, ni+1)). As these nonces are updated three times in the internal
steps of the protocol, our scheme is roughly equivalent to the use of five
fresh random numbers. So, with the relatively light penalty of storing an
extra nonce, the security level seems to be notably increased.

Communication cost. The proposed protocol performs mutual authentication
and integrity protection with only four messages, so in this sense it is similar
to the SASI scheme. In the identification phase, a “hello” and IDS mes-
sage are sent over the channel. Messages A||B||C and D are transmitted in
the authentication phase. So a total of 424 bits are sent over the channel -
considering 5 bytes for the “hello” message.

5 Conclusions
We now present some conclusions: firstly those related with RFID security in
general, then specifically related to the security of ultralightweight protocols.

5.1 General Considerations

Price and operability are the main issues whenever a new technology appears
(i.e. bluetooth, wireless, etc.), security frequently being only a side consideration.
To avoid past errors, however, the use of secure solutions should be generalized.
Otherwise, the massive deployment of RFID technology runs the risk of being
significantly delayed. Since 2003, it seems that the general awareness on the se-
curity issues of RFID systems (notably privacy) has been considerably increased,
as reflected by a steady increment in the number of research publications on the
field. However, the majority of proposals to secure RFID tags make the same
two errors:

Tag Class. The tag’s class for which the proposed protocol should be intended
is not clearly specified in most of the proposals. However, the number of avail-
able resources (memory, circuitry, power consumption, etc.) hugely varies
from one to another. In other words, not all tags will support the same
operation set. For example, public cryptography is applicable for the most
expensive RFID tags [19, 20], but it clearly exceeds the capabilities of low-
cost RFID tags.

Additionally, the same security level cannot be asked to each RFID class.
It is not sensible for a low-cost RFID tag (eg. a tagged biscuit packet) to have
the same security level as that of an e-passport.

Tag Resources. Most of the proposed schemes are not realistic with respect to
tag resources. Many lightweight cryptographic primitives have been

Advances in Ultralightweight Cryptography for Low-Cost RFID Tags 65

recently proposed, and significant progress is being made in each research
area. Clearly, there have been great improvements in the design of lightweight
stream/block ciphers [21–25], but the design of lightweight hash functions
[26, 12] and PRNGs [27] remains a pending task.

Hash functions are considered a better choice within the RFID security
community regarding implementation. As a result, most of the proposed pro-
tocols are based on the use of hash functions, and some of these also include
a PRNG. In spite of this, many authors claim that the proposed schemes
are appropriate for low-cost RFID tags (lightweight and ultralightweight).
However, standard hash functions demand more than 5.5K gates (130 nm)
[28] - 8K gates (350 nm) [29], which is over the maximum number of gates
(3K - 4K gates) that can be devoted to security functions in this tags. Note
that the additional resources, needed to support on-chip the PRNG, would
increase the total number of logic gates required.

Regarding standardization, there was previously a clear lack of harmonization,
and major RFID vendors offered proprietary systems in the earlier implemen-
tations. Fortunately, things are changing rapidly. One of the most important
standards is the EPCglobal Class-1 Generation-2 RFID specification (known as
Gen-2 for short) [30, 31]. Gen-2 specification represents a significant advance for
the widespread introduction of this technology, but its security level is extremely
low (i.e. privacy is compromised as the EPC is transmitted in clear on the chan-
nel). Some authors intending to increase its security level proposed slight modi-
fications in this specification [32–35]. Despite the fact that standards are being
increasingly adopted by many companies, other developers base the security of
their tags on proprietary solutions. However, the use of proprietary solutions is
not altogether bad if algorithms are published so they can be scrutinized by the
research community. As time has shown, the security of an algorithm cannot
reside in its obscurity. Good examples of this are Texas Instruments DST tags
[36] and Philips Mifare cards [37–39]. Companies should learn from past errors
and make their proprietary algorithms public.

5.2 Ultralightweight Protocols

In 2003, Vajda et al. published the first article proposing the use of lightweight
cryptography [42]. The following year, Juels introduced the concept of minimalist
cryptography [43]. In 2005, there was no proposal in this area, the majority of
proposals being based on the use non-lightweight hash functions. The year after,
Peris et al. proposed the UMAP family of protocols. From the aforementioned
protocols, we can infer the following considerations:

Interest. The protocols arouse interest in the design of new ultralightweight
protocols. Indeed, they have inspired the proposal of other protocols [13, 40,
41]. Additionally, as can be seen below, the security of the UMAP family of
protocols has been carefully examined by the research community.

Security Weaknesses. The security of the UMAP family of protocols has been
analyzed under different assumptions. First, security vulnerabilities were

66 P. Peris-Lopez et al.

revealed under the hypothesis of an active attacker [7–9]. Secondly, Bárász et
al. showed how a passive attacker can disclose part of the secret information
stored in the tag’s memory [10, 11].

As mentioned in Section 4.1, only attacks that do not alter or interfere
with communications are considered a real threat in most scenarios. In other
words, active attacks are discounted when designing a protocol to meet the
requirements of ultralightweight RFID tags.

Operations. Only bitwise AND, XOR, OR and sum mod 2m are required for
the implementation of the UMAP protocol family. At first sight, the choice
seems well-conceived as these operations can be efficiently implemented in
hardware. However, they are all T-functions, which have a very poor diffusion
effect; the information does not propagate well from left to right [16]. Also, as
a consequence of the use of bitwise AND and OR operations in the generation
of certain messages, the latter were highly biased. These two operands should
therefore be avoided in messages passed on the channel, but may be used in
inner parts of the protocol.

The protocol SASI was a step further towards a secure protocol compliant with
real ultralightweight tag requirements. However, it recently came under attack
when Hernandez-Castro et al. showed how a passive attacker can obtain the se-
cret ID by observing several consecutive authentications sessions. Despite this,
we consider that the protocol design shows some interesting new ideas (specifi-
cally, the inclusion of rotations). The analysis of SASI and the UMAP protocol
family has led to the proposal of Gossamer, a new protocol inspired by SASI and
examined here both from the security and performance perspective. Indeed, the
resources needed for the implementation of Gossamer are very similar to those of
SASI the scheme, but Gossamer seems to be considerably more secure because of
the use of dual rotation and the MixBits function. The price to be paid, of course,
is the throughput (number of authenticated tags per second) of the Gossamer pro-
tocol. However, preliminary estimations seem to show that the commonly required
figure of 100 responses per second is still achievable.

References

1. Weis, S.: Security parallels between people and pervasive devices. In: Proc. of
PERSEC 2005, pp. 105–109. IEEE Computer Society Press, Los Alamitos (2005)

2. Piramuthu, S.: HB and related lightweight authentication protocols for secure
RFID tag/reader authentication. In: Proc. of CollECTeR 2006 (2006)

3. Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight
authentication protocols. Computer Networks 51(9), 2262–2267 (2007)

4. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
M2AP: A minimalist mutual-authentication protocol for low-cost RFID tags. In:
Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS, vol. 4159, pp.
912–923. Springer, Heidelberg (2006)

5. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
LMAP: A real lightweight mutual authentication protocol for low-cost RFID tags.
In: Hand. of Workshop on RFID and Lightweight Crypto (2006)

Advances in Ultralightweight Cryptography for Low-Cost RFID Tags 67

6. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
EMAP: An efficient mutual authentication protocol for low-cost RFID tags. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277,
pp. 352–361. Springer, Heidelberg (2006)

7. Li, T., Deng, R.: Vulnerability analysis of EMAP - an efficient RFID mutual au-
thentication protocol. In: Proc. of AReS 2007 (2007)

8. Li, T., Wang, G.: Security analysis of two ultra-lightweight RFID authentication
protocols. In: Proc. of IFIP-SEC 2007 (2007)

9. Hung-Yu, C., Chen-Wei, H.: Security of ultra-lightweight RFID authentication pro-
tocols and its improvements. SIGOPS Oper. Syst. Rev. 41(4), 83–86 (2007)

10. Bárász, M., Boros, B., Ligeti, P., Lója, K., Nagy, D.: Breaking LMAP. In: Proc. of
RFIDSec 2007 (2007)

11. Bárász, M., Boros, B., Ligeti, P., Lója, K., Nagy, D.: Passive Attack Against the
M2AP Mutual Authentication Protocol for RFID Tags. In: Proc. of First Interna-
tional EURASIP Workshop on RFID Technology (2007)

12. Shamir, A.: SQUASH - A New MAC With Provable Security Properties for Highly
Constrained Devices Such as RFID Tags. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 144–157. Springer, Heidelberg (2008)

13. Chien, H.-Y.: SASI: A New Ultralightweight RFID Authentication Protocol Pro-
viding Strong Authentication and Strong Integrity. IEEE Transactions on Depend-
able and Secure Computing 4(4), 337–340 (2007)

14. Hernandez-Castro, J.C., Tapiador, J.M.E., Peris-Lopez, P., Quisquater, J.-J.:
Cryptanalysis of the SASI Ultralightweight RFID Authentication Protocol. IEEE
Transactions on Dependable and Secure Computing (submitted) (April 2008)

15. Weis, S.: Security and Privacy in Radio-Frequency Identification Devices. Master
Thesis, MIT (2003)

16. Klimov, A., Shamir, A.: New Applications of T-functions in Block Ciphers and
Hash Functions. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557,
pp. 18–31. Springer, Heidelberg (2005)

17. Sun, H.-M., Ting, W.-C., Wang, K.-H.: On the Security of Chien’s Ultralightweight
RFID Authentication Protocol. Cryptology ePrint Archive,
http://eprint.iacr.org/2008/083

18. Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda-Garnacho, A., Ramos-
Alvarez, B.: Wheedham: An automatically designed block cipher by means of ge-
netic programming. In: Proc. of CEC 2006, pp. 192–199 (2006)

19. Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., Verbauwhede, I.: Public-
Key Cryptography for RFID-Tags. In: Proc. of PerCom 2007, pp. 217–222 (2007)

20. Kumar, S., Paar, C.: Are standards compliant elliptic curve cryptosystems feasible
on RFID. In: Proc. of RFIDSec 2006 (2006)

21. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments, http://www.ecrypt.eu.org/stream/

22. Hell, M., Johansson, T., Meier, W.: A stream cipher proposal: Grain-128,
http://www.ecrypt.eu.org/stream/

23. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

24. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. In: Proc. on Information Security, vol. 152, pp. 13–20. IEEE Computer So-
ciety, Los Alamitos (2005)

68 P. Peris-Lopez et al.

25. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Light-Weight Crypto
Algorithms for RFID. In: Proc. of ISCAS 2007, pp. 1843–1846 (2007)

26. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
An Efficient Authentication Protocol for RFID Systems Resistant to Active At-
tacks. In: Denko, M.K., Shih, C.-s., Li, K.-C., Tsao, S.-L., Zeng, Q.-A., Park, S.H.,
Ko, Y.-B., Hung, S.-H., Park, J.-H. (eds.) EUC-WS 2007. LNCS, vol. 4809, pp.
781–794. Springer, Heidelberg (2007)

27. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
LAMED – A PRNG for EPC Class-1 Generation-2 RFID specification. Journal of
Computer Standards & Interfaces (2008), doi:10.1016/j.csi.2007.11.013

28. O’Neill, M. (McLoone): Low-Cost SHA-1 Hash Function Architecture for RFID
Tags. In: Hand. of Conference on RFID Security (2008)

29. Feldhofer, M., Rechberger, C.: A case against currently used hash functions in
RFID protocols. In: Hand. of Workshop on RFID and Lightweight Crypto (2006)

30. Class-1 Generation-2 UHF air interface protocol standard version 1.0.9: “Gen-2”
(2005), http://www.epcglobalinc.org/standards/

31. ISO/IEC 18000-6:2004/Amd:2006 (2006), http://www.iso.org/
32. Duc, D.N., Park, J., Lee, H., Kim, K.: Enhancing security of EPCglobal Gen-2

RFID tag against traceability and cloning. In: The 2006 Symposium on Cryptog-
raphy and Information Security (2006)

33. Chien, H.Y., Chen, C.H.: Mutual authentication protocol for RFID conforming
to EPC Class-1 Generation-2 standards. Computer Standards & Interfaces 29(2),
254–259 (2007)

34. Konidala, D.M., Kim, K.: RFID Tag-Reader Mutual Authentication Scheme Uti-
lizing Tag’s Access Password. Auto-ID Labs White Paper WP-HARDWARE-033
(January 2007)

35. Burmester, M., de Medewiros, B.: The Security of EPCGen2 Anonymous compliant
RFID Protocols. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.)
ACNS 2008. LNCS, vol. 5037, pp. 490–506. Springer, Heidelberg (2008)

36. Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A., Szydlo, M.: Security
analysis of a cryptographically-enabled RFID device. In: Proc. of 14th USENIX
Security Symposium, pp. 1–16 (2005)

37. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Wichers Schreur, R.: Dismantling MIFARE Classic. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283. Springer, Heidelberg (2008)

38. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A Practical Attack on the
MIFARE Classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008)

39. Karten, N., Plotz, H.: Mifare little security, despite obscurity (2007),
http://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html

40. Li, T., Wang, G.: SLMAP-A Secure ultra-Lightweight RFID Mutual Authentica-
tion Protocol. In: Proc. of Chinacrypt 2007 (2007)

41. Lo, N.-W., Shie, H.-S., Yeh, K.-H.: A Design of RFID Mutual Authentication
Protocol Using Lightweight Bitwise Operations. In: Proc. of JWIS 2008 (2008)

42. Vajda, I., Buttyán, L.: Lightweight authentication protocols for low-cost RFID
tags. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS,
vol. 2864. Springer, Heidelberg (2003)

43. Juels, A.: Minimalist cryptography for low-cost RFID tags. In: Blundo, C., Cimato,
S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 149–164. Springer, Heidelberg (2005)

Securing Layer-2 Path Selection in Wireless
Mesh Networks�

Md. Shariful Islam, Md. Abdul Hamid,
Byung Goo Choi, and Choong Seon Hong��

Department of Computer Engineering, Kyung Hee University, Republic of Korea
{sharif,hamid}@networking.khu.ac.kr,

{bgchoi,cshong}@khu.ac.kr

Abstract. The current draft standard of 802.11s has defined routing
for Wireless Mesh Networks (WMNs) in layer-2 and to differentiate from
layer-3 routing, it termed layer-2 routing as path selection. The layer-2
path selection (LPS) mechanism is fully specified in the draft of IEEE
802.11s for WMNs. However, routing with security provision is not spec-
ified in the standard. Our study identifies that the current path selection
mechanism is vulnerable to various types of routing attacks like flooding,
route re-direction, spoofing etc. In this paper, we develop a novel Se-
cure Layer-2 Path Selection (SLPS) mechanism that uses cryptographic
extensions to provide authenticity and integrity of routing messages. Par-
ticularly, the proposed SLPS prevents unauthorized manipulation of mu-
table fields in the routing messages. Results from analysis and simulation
demonstrate that SLPS protocol is robust against identified attacks and
provides higher packet delivery ratio, requires no extra communication
cost and incurs little path acquisition delay, computational and storage
overhead to accomplish secure path selection.

Keywords: Security, Merkle Tree-based Authentication, Layer-2 Rout-
ing, Wireless Mesh Networks.

1 Introduction

The area of wireless networks has gained increased importance and develop-
ment during the past decade. Wireless Mesh Networks (WMN) have emerged
as a key technology to support a numerous number of application scenarios
like broadband home networking, community and neighborhood networking, en-
terprise networking, metropolitan area networking, etc. It is a paradigm shift
from conventional 802.11 WLAN for its unique characteristics of self-configuring
capability, easy network maintenance, lower cost and robustness [1]. Wireless
mesh network’s infrastructure is, in effect, a router network minus the cabling
between nodes. It is built of peer radio devices that do not have to be cabled to
� This research was supported by the MKE under the ITRC support program super-

vised by the IITA” (IITA-2008-(C1090-0801-0016)).
�� Corresponding author.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 69–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 Md.S. Islam et al.

Fig. 1. Network architecture: Wireless Mesh Networks

a wired port like traditional WLAN access points (AP) do and such architec-
ture provides high bandwidth, spectral efficiency, and economic advantage over
the coverage area. As a result, the increased interest in WMN has demanded a
standard named IEEE 802.11s. The current draft D1.06 [2] of 802.11s is the first
to introduce the concept of embedding routing in layer-2. The main motivation
that drives incorporating routing in MAC layer is the interoperability between
devices of different vendors.

The network architecture of a 802.11s WMN is depicted in Fig. 1. A mesh
point (MP) is an IEEE 802.11s entity that can support WLAN mesh services.
A mesh access point (MAP) is an MP but can also work as an access point.
A mesh portal (MPP) is a logical point that connects the mesh network to
other networks such as a traditional 802.11 WLAN or a non-802.11 network.
The current 802.11s standard defines secure links between MPs, but it does
not provide end-to-end security [3]. Also, the security in routing or forwarding
functionality is not specified in 802.11s standard. Routing information elements
are transferred in plain text and are prone to various types of routing attacks like
flooding, route re-direction, spoofing, etc. The main reason is that intermediate
nodes need to modify mutable fields (i.e., hop count, TTL, metric, etc.) in the
routing element before forwarding and re-broadcasting them. Since other nodes
will act upon those added information, these must also be protected somehow
from being forged or modified. However, only source authentication does not
solve this problem, because the information is added or modified in intermediate
nodes. This motivates us to include hop-by-hop authentication in our proposal.
More specifically, each node that adds information in the control packet should
authenticate the added information in such a way that each other node acts
upon that information should be able to verify its authenticity.

We develop a Secure Layer-2 Path Selection (SLPS) protocol for wireless mesh
networks. SLPS takes into consideration the existing key hierarchy of 802.11s,
identifies the mutable and non-mutable fields in the routing message, protects
the non-mutable part using symmetric encryption and authenticates mutable
information using Merkle tree [4]. Particularly, the proposed SLPS prevents
unauthorized manipulation of mutable fields in the routing messages. Results
from analysis and simulation demonstrate that SLPS protocol is robust against

Securing Layer-2 Path Selection in Wireless Mesh Networks 71

Table 1. Notations and abbreviations used in this paper

Notation Description
PREQ Path request message
PREP Path reply message

PREQ/PREP − MF Path request or reply message excluding the mutable fields
RANN Root announcement message
GTK Group transient key
PTK Pairwise transient key
MAC Message authentication code

MACkroot(x) MAC created on the root of the Merkle Tree using key k
by the node x

h(v) A hash created on the mutable field v

|| Concatenation of messages
authpath(v) Authentication path for the mutable field v

the identified attacks, provides higher packet delivery ratio, requires no ex-
tra communication cost and incurs little computational and storage overhead.
Table 1 depicts the notations and abbreviations used throughout the paper.

The rest of the paper is organized as follows. Section 2 discusses related works.
Section 3 briefly introduces existing L-2 path selection (LPS) mechanism in
802.11s. Security vulnerabilities of existing path selection mechanism are identi-
fied in Section 4. We describe our proposed secure routing (SLPS) in Section 5.
Security analysis and performance evaluation are carried out in Section 6 and 7,
respectively. Finally, we conclude the paper in Section 8.

2 Related Works

Security is a critical step to deploy and manage WMNs. Since the access to any
deployed wireless mesh network is possible for any wireless enabled device, it
should be ensured that only authorized users are granted network access. As of
now, there is no state-of-the-art solution exists in the literature for securing L2
routing in 802.11s. In [5], the authors have just summarized the proposed rout-
ing from 802.11s draft. Ref [6] describes just an update of layer-2 routing in the
current draft. A framework for 802.11s and research challenges are summarized
in [3]. A hybrid centralized routing protocol is presented in [7] that incorporates
tree-based routing with a root-driven routing protocol. Apart from these, there
has been some research on securing layer-3 routing. Ariande in [8] ensures a se-
cure on-demand source routing. Authentication is done using TESLA [9], digital
signatures and standard MAC. However, as the route request is not authenti-
cated until it reaches the destination, an adversary can initiate route request
flooding attack. A variant of Ariande [8] named endairA is proposed in [10] with
the exception that instead of signing a route request, intermediate nodes sign
the route reply. However, endairA is still vulnerable to malicious route request
flooding attack. SAODV [11] is a secure variant of AODV in which operations

72 Md.S. Islam et al.

are similar to AODV, but uses cryptographic extensions to provide authenticity
and integrity of routing message. It uses hash chains in order to prevent ma-
nipulation of hop count field. However, an adversary may always increase the
hop count. Another secure on-demand distant vector protocol, ARAN (Authen-
ticated Routing for Ad hoc Networks), is presented in [12]. Just like SAODV,
ARAN uses public key cryptography to ensure integrity of routing message.
However, a major drawback of ARAN is that it requires extensive signature
generation and verification during the route request flooding which may result
in denial-of-service attack.

Our secure path selection scheme employs only symmetric cryptographic prim-
itives and does not assume the existence of pairwise shared key for source-
destination. Rather, a Merkle tree-based hop-by-hop authentication mechanism
is devised exploiting existing keying hierarchy of 802.11s standard.

3 Path Selection Mechanism in 802.11s

The layer-2 path selection (LPS) mechanism defined in 802.11s is a combination
of both reactive and proactive strategy by employing both on-demand path
selection mode and proactive tree building mode [2] [5] [6]. The mandatory
routing metric used is the airtime cost metric [2] that measures the amount of
channel resource consumed by transmitting a frame over a particular link. In LPS
mechanism, both on demand and proactive mode can be used simultaneously.
In the On-demand mode, a source MP broadcasts path request (PREQ) message
requesting a route to the destination. The PREQ is processed and forwarded by
all intermediate MPs and set up the reverse path from the destination to the
source of route discovery. The destination MP or any intermediate MP with a
path to the destination may unicast a path reply (PREP) to the source MP that
creates the forward path to the destination.

Proactive Tree Building mode builds a tree-topology network when a root in
the WMN is configured. This topology tree formation begins when the root starts
to periodically broadcast a root announcement (RANN) message which propa-
gates the metric information across the network. Upon reception of a RANN
message, an MP that wants to create or refresh a path to the root MP sends a
unicast PREQ to the root MP. The root MP then unicasts a PREP in response
to each PREQ. The unicast PREQ creates the reverse path from the root MP
to the originating MP, while the PREP creates the forward path from the MP
to the root MP. A root MP may also proactively disseminate a PREQ message
to all the MPs in the networks with the intention to establish a path. An MP,
after receiving a proactive PREQ, creates or updates its path to the root MP
by unicasting a Proactive PREP.

Path selection mechanism also allows both on-demand and proactive mode to
work simultaneously. This hybrid mode is used in situations where a root MP is
configured and a mesh point S wants to send data to another mesh point D but
has no path to D in its routing table. Instead of initiating on demand mode, S
may send data to the root MP, which in turns delivers the data to D informing

Securing Layer-2 Path Selection in Wireless Mesh Networks 73

that both S and D are in the same mesh. This will trigger an on-demand route
discovery between S and D and subsequent data will be forwarded using the
new path.

4 Possible Attacks

In this section, we show that LPS, in its normal operation, is vulnerable to the
following attacks.

4.1 Flooding Attack

It is very easy for a malicious node to flood the network with a PREQ messages
destined to an address which is not present in the network. As the destination
node is not present in the network, every intermediate node will keep forward-
ing the PREQ messages. As a result, a large number of PREQ messages in a
short period will consume the network bandwidth and can degrade the overall
throughput.

4.2 Route Re-direction Attack

A malicious node M may divert traffic to itself by advertising a route to a
destination with a destination sequence number (DSN) greater than the one it
received from the destination. For example, the malicious node M in Fig. 2a
receives a PREQ from A which was originated from S for a route to node D.
As LPS allows intermediate PREP, M may unicast a PREP to A with a higher
DSN than the value last advertised by D. So, A will re-direct all subsequent
traffic destined for D to the malicious node M .

Route re-direction attack can also be launched by modifying the mutable
metric field used in the LPS’s PREQ messages. A malicious node can modify
the mutable metric field to zero to announce a better path to a destination. As
depicted in Fig. 2b, M can decrease the metric field in the PREQ to zero and

S

M

A B

C

D

: PREQ
: Valid PREP
: Malicious PREP

(a)

S

M

B

C

D

: PREQ
: Modified PREQ
: PREP

A

(b)

Fig. 2. Route re-direction attack. (a) Increasing DSN. (b) Decreasing metric.

74 Md.S. Islam et al.

S
B

C

A

E
XM

D

S
B

C

A

E
X

M

D

S
B

C

A

E
X

M

D

(c)
(a)

(b)

Fig. 3. Routing loops formation

re-broadcasts it to the network. So, the reverse path created should go through
the malicious node M . As a result, all traffics to the destination D will be passed
through the attacker.

4.3 Routing Loops

A malicious node may create routing loops [12] in a mesh network by spoofing
MAC addresses and modifying the value of the metric field. Consider the fol-
lowing network scenarios (Fig. 3) where a path exists between the source S and
destination X that goes through node B and C. Also, there exists a path from
A to C through D.

Assume that a malicious node M , as shown in Fig. 3a, is present in the vicinity
where it can listen to the PREQ/PREP messages that pass through A, B, C and
D during route discovery process. It may create a routing loop among the nodes
A, B, C and D by impersonation combined with modification of metric field in
PREP message. First, it impersonates node A’s MAC address and moved out of
the reach of node A and closer to node B. And then it sends a PREP message
to node B indicating a better metric value then that of the value received from
C. So, node B now re-establishes its route to X that should go through A as
shown in Fig 3b. At this point, the malicious node impersonates node B and
moves closer to node C and sends a PREP to node C indicating a better metric
then the one received from E. So, node C will now choose B as the next hop for
its route to the destination X as shown in Fig 3c. Thus a loop has been formed
and the destination X is unreachable from all the four nodes.

5 Proposed Secure Layer-2 Path Selection (SLPS)
Protocol

SLPS, proposed in this section is a secure extension of LPS. As specified in [2],
LPS routing information elements have a mutable and a non-mutable part. We
exploit these existing mutable and non-mutable fields to design a secure layer-
2 path selection. Particularly, SLPS mechanism has four components: (1) key
establishment, (2) identifying the mutable and non-mutable fields, (3) showing
that the mutable fields can be authenticated in a hop-by-hop fashion using the
concept of Merkle tree, and finally (4) protection of non-mutable fields is achieved
with the use of symmetric encryption. We present our approach in details in the
following subsections.

Securing Layer-2 Path Selection in Wireless Mesh Networks 75

Supplicant
MP

Mesh
Authenticator

(MA)

Mesh Key
Distributor

(MKD)

Peer link open

Peer link confirm

EAPOL Start
EAPOL- request identity
EAPOL response identity

RADIUS request

Mutual Authentication (e.g EAP-TLS)

RADIUS accept

EAPOL success

Master
Session Key

(MSK)

Master
Session Key

(MSK)

PMK-MKDPMK-MKD

PMK-MA

PTK

GTK

PTK

GTK

Using PMK-MA and
4-way handshake

Using 4-way group
Key handshake

DerivedDerived

Derived Derived

PMK-MA PMK-MA

Fig. 4. Key distribution and authentication in 802.11s

5.1 Key Establishment

Entities in a WMN can act both as supplicant MP or mesh authenticator (MA).
Before initiating a route discovery process, all the MPs authenticate its neighbor-
ing MPs, establish pairwise transient key (PTK), and send the group transient
key (GTK) through key distribution and authentication process of 802.11s as de-
picted in Fig 4. We use this GTK for securing broadcast messages (e.g., PREQ,
RANN) and PTK for securing unicast messages (e.g., PREP, proactive PREP).

5.2 Identifying Mutable and Non-mutable Fields

The information elements in the LPS contain mutable fields that are modified
in the intermediate routers and non-mutable fields that are not modified in the
intermediate routers. The identified mutable fields in the PREQ (Fig. 5) element
are:

Hop count field: Provides information on the number of links in the path,
incremented by each intermediate node, but it is not used for routing decision.

TTL field: The time-to-live field defines the scope of the PREQ in number of
hops. TTL value is decremented by 1 at each intermediate node.

76 Md.S. Islam et al.

Octets: 1
Element

ID Length Flags Hop
Count TTL PREQ

ID
Originator
Address

Originator
Sequence
Number

Proxied
Address Lifetime Metric

Destination
Count

Per
Destination

Flag#1

Destination
Address#1

Destination
Sequence
Number#1

….
Per

Destination
Flag#N

Destination
Address#N

Destination
Sequence
Number#N

1 1 1 1 4 6 4 0 or 6 4 4

1 1 6 4 1 6 4

Fig. 5. PREQ message format

Octets: 1

ID Length Flags Hop
Count TTL Destination

Address
Destination

Proxied Address Lifetime Metric

Originator
address#1

Originator
Sequence
Number#1

….
Dependent

MP
DSN#N

1 1 1 1 6 4 0 or 6 4 4

6 4 1 6 4 6 4

Destination
Sequence
Number#1

Dependent
MP count N

Dependent
MP MAC

address#1

Dependent
MP DSN#1

Dependent
MP MAC

address#N

Fig. 6. PREP message format

Element
ID Length Flags Hop

Count TTL Originator
Address

Destination
Sequence
Number

Metric

1 1 1 1 6 4 4Octets: 1

Fig. 7. RANN message format

Metric field: Unlike AODV, LPS uses an airtime link metric instead of hop
count metric to take a decision on path selection. Whenever an intermediate
node receives a PREQ that is to be forwarded, it calculates the airtime cost in
the current path and adds the value to the existing metric field.

Per destination flag: The Destination Only (DO) and Reply and Forward
(RF) Flag determine whether the route-reply message (RREP) will be sent by
intermediate node or only by the destination. If DO flag is not set and RF flag is
set, the first intermediate node that has a path to the destination sends PREP
and forwards the PREQ by setting the DO flag to avoid all intermediate MPs
sending a PREP. In this case, per destination flag field is also a mutable field.
Fig. 6 and Fig. 7 show the format of a PREP and RANN information element.
In both the cases, the mutable fields are hop-count, TTL and metric indicated
by the shadowed boxes.

5.3 Secure Route Discovery

Securing On demand mode: This mode is used when there is no root MP
configured or a root MP is configured, but on demand mode can provide a
better path to another MP. Consider a source MP S in Fig. 8 that wants to
communicate with a destination MP X .

Securing Layer-2 Path Selection in Wireless Mesh Networks 77

GTK(D)
GTK(A)

PTK(XD)

GTK(D)
GTK(B)

PTK(AS) PTK(DA)

S

B

A

C

D

X

PREQ
Reverse path

GTK(S)

GTK(S)

Fig. 8. Secure on-demand path selection

In order to establish a secure route, source node S, destination node X and
set of intermediate nodes F1 that includes {A, B} and F2 that includes {C, D}
executes the route discovery process in the following way:

S → � : MACGTKroot(S), {vi, authpath(vi)}, {PREQ−MF}GTK (1)
F1 → � : MACGTKroot(F1), {vi, authpath(vi)}, {PREQ−MF}GTK (2)
F2 → � : MACGTKroot(F2), {vi, authpath(vi)}, {PREQ−MF}GTK (3)

X → F2 : MACX,F2
PTKroot(X), {vi, authpath(vi)}, {PREP −MF}X,F2

PTK (4)

F2 → F1 : MACF2,F1
PTK root(F2), {vi, authpath(vi)}, {PREP −MF}F2,F1

PTK (5)

F1 → S : MACF1,S
PTKroot(F1), {vi, authpath(vi)}, {PREP −MF}F1,S

PTK (6)

The key management of 802.11s ensures that node S is equipped with one
GTK that it shares with its neighbors and set of PTKs for communicating with
each neighbor individually. Before broadcasting the PREQ, it first creates a
Merkle tree with the leaves being the hash of mutable fields of PREQ message.
S then creates a MAC on the root of the Merkle tree it just created. Then, S
broadcasts message (1) which includes the MAC of the root created using the
GTK, mutable fields vi that need to be authenticated along with the values of
its authentication path authpath(vi) and encrypted PREQ message excluding
the mutable fields.

Any of the neighboring nodes of S, after receiving the PREQ, tries to authen-
ticate the mutable fields by hashing the values received in an ordered way, create
a MAC on it using the shared GTK and comparing that with the received MAC
value of the root. If the two values match, the intermediate MP is ascertain that
the values are authentic and come from the same source that created the tree.

Let us consider, for example, that B receives a PREQ from its neighboring
node S and wants to authenticate the value of the metric field M as shown in
Fig. 9. According to our protocol, B and C should receive the value M along
with the values of the authentication path of M in the Merkle tree such as
UH and UTF . B and C can now verify the authenticity of M by computing
h(h(h(M)||UH)||UTF) and a MAC on this value using the key GTK. It then

78 Md.S. Islam et al.

UMH=h(UM||UH)

UM=h(M)

UMH

UT=h(T)

UTF

Uroot

M H T F

UTF=h(UT||UF)

Uroot=h(UMH||UTF)

UH=h(H) UF=h(F)

Fig. 9. Authentication path for the metric field in a Merkle Tree

compares the received MAC value with the new one, if it found a match, then
it can assure that the value M is authentic and came from the same entity that
has created the tree and computed the MAC on the Uroot.

The intermediate nodes then update the values of the mutable fields (e.g., hop
count, metric and TTL) and create Merkle trees from the modified fields. They
also decrypt the non-mutable part of the PREQ message and re-encrypt it with
their own broadcast key and re-broadcast (as shown in (2) and (3)) the PREQ
message following the same principle. After receiving the PREQ, the destination
MP updates the mutable fields; creates its own Merkle tree and unicasts a PREP
message as in (4) using the same principle but this time it uses PTK instead of
GTK. The PREP is propagated as (5) and (6) to the source MP in the reverse
path created using PREQ and thus a secure forward path from the source to the
destination is established.

Securing Proactive Mode: To accomplish security in proactive mode, we need
to employ security in both Proactive RANN and Proactive PREQ mechanism.

In the Proactive RANN mode, the RANN message is broadcasted using the
group transient key as shown in Eq. (7) - (9) to protect the non-mutable fields and
authenticate the mutable fields (hop count, TTL and metric) using the Merkle
tree approach. As there are only three mutable fields in the RANN message, a
node requires generating a random number to construct the Merkle tree. After
receiving the RANN message an MP that needs to setup a path to the root MP
unicasts a PREQ to the root MP as per Eq. (10) - (12). Upon receiving each
PREQ, the root MP replies with a unicast PREP to that node as described in
Eq. (13) - (15).

R → � : MACGTKroot(R), {vi, authpath(vi)}, {RANN −MF}GTK (7)
F1 → � : MACGTKroot(F1), {vi, authpath(vi)}, {RANN −MF}GTK (8)
F2 → � : MACGTKroot(F2), {vi, authpath(vi)}, {RANN −MF}GTK (9)

D → F2 : MACD,F2
PTKroot(D), {vi, authpath(vi)}, {PREQ−MF}D,F2

PTK (10)

Securing Layer-2 Path Selection in Wireless Mesh Networks 79

F2 → F1 : MACF2,F1
PTK root(F2), {vi, authpath(vi)}, {PREQ−MF}F2,F1

PTK(11)

F1 → R : MACF1,R
PTKroot(F1), {vi, authpath(vi)}, {PREQ−MF}F1,R

PTK (12)

R → F1 : MACR,F1
PTKroot(R), {vi, authpath(vi)}, {PREP −MF}R,F1

PTK (13)

F1 → F2 : MACF1,F2
PTK root(F1), {vi, authpath(vi)}, {PREP −MF}F1,F2

PTK(14)

F2 → D : MACF2,D
PTKroot(F2), {vi, authpath(vi)}, {PREP −MF}F2,D

PTK (15)

Notations used in Eq. (7) - (15) are as follows. R is considered as the root MP
and D is the MP that needs to setup a path to R. F1 and F2 are the intermediate
nodes in the path. MACkroot(X) represents the MAC of the Merkle tree’s root
created by the node X using a shared key k. RANN/PREQ/PREP −MF
represents the routing information elements without the mutable fields. vi and
authpath(vi) denote the fields needed to be authenticated and the values assigned
to the authentication path from vi to the root of the tree, respectively.

Proactive PREQ mechanism is used to create paths between the root MP and
the remaining MPs in the network proactively. Only the MP that is configured
as a root MP would send proactive PREQ messages periodically. The proactive
PREQ is also needed to be broadcasted to the MPs attached to the root MP
encrypted using GTK of the root MP, the mutable fields (TTL, hop count,
metric and per destination flag) of this PREQ should be authenticated in the
intermediate MPs in the same way as discussed earlier. If an MP needs to update
its path to the root MP, it unicasts a proactive PREP to the root MP. PREP is
transmitted securely as in the case of PREP in on-demand mode.

6 Security and Overhead Analyses

In this section, we will analyze the proposed SLPS in terms of robustness against
the attacks presented in Section 4 and also the overhead required for ensuring
secure routing.

6.1 Security Analysis

Preventing Flooding Attack: In the proposed SLPS, a node can participate
in the route discovery process only if it has successfully established a GTK and
PTK through key distribution and authentication mechanism of 802.11s. Thus,
it will not be possible for a malicious node to initiate a route discovery process
with a destination address that is not in the network. Again, as the PREQ
message is encrypted during transmission, a malicious node cannot insert new
destination address.

Preventing Route Re-direction Attacks: The root cause of route
re-direction attacks are modification of mutable fields in routing messages. These
mutable fields are authenticated in each hop. If any malicious node modifies the
value of a field in transit, it will be readily detected by the next hop while
comparing the new MAC with the received one. It will find a miss-match in
comparing the MACs and modified packet will be discarded.

80 Md.S. Islam et al.

Avoiding Formation of Routing Loops: Formation of routing loops re-
quires gaining information regarding network topology, spoofing and alteration
of routing message. As all the routing information is encrypted between nodes,
an adversary will be unable to learn network topology by overhearing routing
messages. Spoofing will not benefit the adversary as it will require authentica-
tion and key establishment to transmit a message with spoofed MAC. Moreover,
fabrication of routing messages is detected by integrity check. So, the proposed
mechanism ensures that routing loops cannot be formed.

6.2 Overhead Analysis

Computational Overhead: The computational overhead of a sender and a
receiver can be given by:

〈k × h〉+ m + e (sender) (16)
〈a + 1〉h + m + d (receiver) (17)

where, k is the number of hash operations required to form a Merkle tree. Cost
of computing a hash function is defined by h, m is the cost involved in com-
puting the MAC of the root, whereas e and d are encryption and decryption
cost. To authenticate a particular value, a receiver need to compute the root
by calculating (a + 1) hash operations, where a is the number of nodes in the
authentication path.

Communication Overhead: It is defined by the number of routing messages
required to establish a secure path and given by Eq. (18), (19) and (20),

(n− 1)× broadcast + h× unicast (on-demand) (18)
n× broadcast + h× unicast (proactive PREQ) (19)
n× broadcast + 2h× unicast (proactive RANN) (20)

where, n is the number of nodes in the network, h is the number of hops in
the shortest path. The number of messages required for establishing a path in
LPS is same as our proposed one. So, our protocol does not incur any extra
communication overhead.

Storage Requirements: A node needs to store the number of fields that need
to be authenticated, hashed values of the Merkle tree and the MAC of the root
value. So, storage requirement of a node is given by Eq. (21).

Table 2. Overhead Comparison

Computation Communication Storage (bytes)
Hash MAC Enc/Dec Unicast Broadcast

LPS 0 0 0 h n 20
SLPS k 1 1 h n 47

Securing Layer-2 Path Selection in Wireless Mesh Networks 81

n∑
i=1

di + (k × l) + SM (21)

where, di is the size of a mutable field, k is the number of hashes in the Merkle
tree, l is the size of a hashed value and SM is the size of the MAC.

Table 2 summarizes the computation, communication and storage overheads
required by a particular sender/receiver for both LPS and SLPS schemes. It
shows that though the computation and storage requirements for the secure
mechanism are slightly higher than the non-secure LPS scheme, the proposed
SLPS scheme does not incur any extra communication overhead.

7 Performance Evaluation

In this section, we evaluate the performance of the proposed SLPS scheme.
We use ns-2 [13] to simulate our proposed secure path selection approach and
compare that with existing LPS. We have simulated 50 nodes in a 1500 x1500 m2

area. We use 5 to 10 distinct source destinations pairs that are selected randomly.
Traffic source are CBR (constant bit-rate). Each source sends data packets of
512 bytes at the rate of four packets per second during the simulation period of
900 seconds. The Performance metrics that considered are: i) Packet delivery
ratio: Ratio of the number of data packets received at the destinations to the
number of data packets generated by the CBR source, ii) Control overhead
(in bytes): Ratio of the control overhead to the delivered data, iii) end-to-end
delay for data packets, and iv) path acquisition delay, which is the time
requires to establish a route for a source-destination pair.

We assume that there are 10 nodes that are misbehaving and take part in
the route discovery process and drop packets that they should forward. Since, in
our secure routing approach, misbehaving nodes can not participate in the route

Fig. 10. Packet delivery ratio Fig. 11. Control packet overhead

82 Md.S. Islam et al.

Fig. 12. End-to-end delay for data Fig. 13. Path Acquisition Delay

discovery process and as a result it gives a better packet delivery ratio as shown
in Fig. 10. On the other hand, though the number of control messages required
to transmit for a route establishment is roughly the same, due to the addition of
a MAC value, control packet overhead of the proposed scheme is slightly higher
than the LPS scheme as shown in Fig. 11. But, this control overhead ensures
higher security.

Fig. 12 depicts that the average end-to-end delay of data packets for both pro-
tocols are almost equal. So, it is also evident that the effect of route acquisition
delay on average end-to-end delay is not significant. Average route acquisition
delay for the proposed SLPS scheme is much higher than that of the LPS mech-
anism as shown in Fig. 13. Because, in addition to normal routing operation
of LPS, the proposed SLPS scheme requires computing hash and MACs values
which require extra processing delay.

8 Conclusions

In this paper, we devise a secure path selection mechanism for wireless mesh
networks that is gradually maturing to a point where it cannot be ignored
when considering various wireless networking technologies for deployment. We
have proposed SLPS, a secure extension of layer-2 routing specified in
802.11s. Our proposed mechanism takes into consideration the existing key hi-
erarchy of 802.11s (so, there is no extra keying burden), identifies the muta-
ble and non-mutable fields in the routing message, protects the non-mutable
part using symmetric encryption and uses Merkle-tree approach to authenti-
cate mutable information. We have shown that our protocol is robust against
identified attacks and computationally efficient as it uses only symmetric key
operations.

Securing Layer-2 Path Selection in Wireless Mesh Networks 83

References

1. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Computer
Networks 47(4), 445–487 (2005)

2. IEEE 802.11s Task Group, Draft Amendment to Standard for Information
technology-Telecommunications and Information Exchange Between Systems–
Local and metropolitan area networks-Specific requirements - Part 11: Wireless
Lan Medium Access Control (MAC) and Physical Layer (PHY) Specifications:
Amendment IEEE p802.11s/d1.06: Mesh Networking (July 2007)

3. Wang, X., Lim, A.O.: IEEE 802.11s wireless mesh networks: Framework and chal-
lenges. Ad Hoc Networks 6, 970–984 (2008)

4. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

5. Bahr, M.: Proposed routing for IEEE 802.11s wlan mesh networks. In: WICON
2006: Proceedings of the 2nd annual international workshop on Wireless internet,
p. 5. ACM, New York (2006)

6. Bahr, M.: Update on the hybrid wireless mesh protocol of IEEE 802.11s. In: IEEE
Internatonal Conference on Mobile Adhoc and Sensor Systems, MASS 2007, pp.
1–6 (2007)

7. Lim, A.O., Wang, X., Kado, Y., Zhang, B.: A hybrid centralized routing protocol
for 802.11s wmns. Mob. Netw. Appl. 13(1), 117–131 (2008)

8. Hu, Y.C., Perrig, A., Johnson, D.B.: Ariadne: a secure on-demand routing protocol
for ad hoc networks. Wirel. Netw. 11(1-2), 21–38 (2005)

9. Perrig, A., Tygar, J.D., Song, D., Canetti, R.: Efficient authentication and signing
of multicast streams over lossy channels. In: SP 2000: Proceedings of the 2000 IEEE
Symposium on Security and Privacy, p. 56. IEEE Computer Society, Washington
(2000)

10. Ács, G., Buttyán, L., Vajda, I.: Provably secure on-demand source routing in mobile
ad hoc networks. IEEE Trans. Mob. Comput. 5(11), 1533–1546 (2006)

11. Zapata, M.G., Asokan, N.: Securing ad hoc routing protocols. In: WiSE 2002:
Proceedings of the 1st ACM workshop on Wireless security, pp. 1–10. ACM, New
York (2002)

12. Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: A secure
routing protocol for ad hoc networks. In: ICNP 2002: Proceedings of the 10th
IEEE International Conference on Network Protocols, pp. 78–89. IEEE Computer
Society, Washington (2002)

13. Information Sciences Institute: NS-2 network simulator. Software Package (2003),
http://www.isi.edu/nsnam/ns/

http://www.isi.edu/nsnam/ns/

Public Key Authentication with Memory Tokens

Camille Vuillaume1, Katsuyuki Okeya1, Erik Dahmen2,
and Johannes Buchmann2

1 Hitachi, Ltd., Systems Development Laboratory
{camille.vuillaume.ch,katsuyuki.okeya.ue}@hitachi.com

2 Technische Universität Darmstadt
{dahmen,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. We propose a very low-cost authentication scheme based on
Merkle signatures, which does not require any computation on the prover
side, but instead, has moderate memory requirements. Our technique is
particularly attractive on platforms where memory is already available,
since it can be implemented at practically no cost, without any CPU,
and with an extremely simple memory access control mechanism.

Keywords: Merkle signatures, authentication, low-cost implementation.

1 Introduction

One of the major contributions of cryptography is its potential for proving our
identity, for example during electronic transactions. Many solutions are known
to this problem: using symmetric key cryptography like HMAC, or using public
key cryptography such as the Fiat-Shamir identification scheme [1] or any dig-
ital signature, RSA for instance. All known authentication techniques share a
common characteristic: in order to issue a proof of his identity, the prover has
perform some calculations. In lightweight schemes, these calculations might be a
hash computation or a single modular multiplication, but in other cases, amount
to a costly exponentiation over a finite field. Intuitively, it seems that such com-
putation is required, because in a challenge-response protocol, the prover has to
construct the proof of his identity adaptively, according to a challenge provided
by the verifier. In this paper, we attempt to answer the following question: is it
possible to design an authentication (or better, an identification) scheme using
simple memory manipulations such as read and write accesses? This is moti-
vated by the fact that (1) the prices of memory are in free fall, (2) in many
cases, memory is available but computational resources are not. Think for ex-
ample of RFID tags, which only accommodate for memory operations, including
read, write and password-protected access [2], USB and flash memory cards, or
game cartridges based on solid state technology to cite a few. In these cases,
computational resources are at best extremely limited or even nonexistent, and
yet authentication mechanisms are highly desirable.

Our contribution in this paper is a public key authentication scheme, with all
its usual benefits, such as flexibility, scalability, decentralized architecture and

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 84–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Public Key Authentication with Memory Tokens 85

revocation mechanisms, and with the additional feature that the prover does not
perform any computation but merely data selection. As a result, the prover can
be perfectly instantiated by a simple memory token. Verification does involve the
calculation of a few hashes, but its computational cost is order of magnitudes
smaller than typical public key cryptosystems.

Our scheme is based on the observation that in some settings of the Merkle
signature scheme [3], signing boils down to data selection; to the best of our
knowledge, this fact is not mentioned in the literature, perhaps because the re-
sulting memory consumption makes the scheme less attractive than the case
where computations are actually performed. We argue that with low prices of
flash memory, things are not that clear, and further mitigate the issue of mem-
ory consumption by limiting the scope of our scheme to a challenge-response
authentication protocol, where we allow short challenges and use hash functions
with a small output size. The security assumptions are extremely weak since we
only need a secure hash function: no random oracle or number-theoretic assump-
tions are required. Collision resistance yields provable security but in practice
we suggest that second-preimage resistance alone is enough.

Unlike typical cryptographic implementations, our scheme does not need any
tamper-resistant calculation unit, and as a consequence, is naturally immune
to environmental attacks such as side-channel attacks [4]. However, tamper-
resistant memory is required for storing secret data; more precisely, security is
guaranteed as long as at most half of the secret values are revealed. Tamper-
resistance can be implemented in the shape of protective coating and a memory
controller that allows only specific memory accesses; destructive reading will
satisfy our security requirements. Unlike cryptographic engines which occupy a
large silicon area, our proposed design for the memory controller is extremely
simple. Thanks to its very low hardware cost, our scheme is especially meaningful
when memory is already available; in this case, cryptographic functionalities can
be provided for almost free.

2 Authentication Techniques

First, we describe authentication techniques and Merkle signatures, and explain
how they can be useful for authentication.

2.1 Approaches for Authentication

Symmetric Key Authentication. There exist low-cost chips capable of perform-
ing symmetric key authentication using onboard cryptographic resources such
as block ciphers, stream ciphers or hash functions. In order to decrease hard-
ware costs, these dedicated cryptographic units often use custom cryptographic
algorithms, sometimes with disastrous consequences for security [5]. In addition
to possible cryptographic flaws, the use of symmetric key primitives is inher-
ently limited in terms of system architecture. For instance, if all devices share
the same secret key, reverse-engineering one device will result in a system-wide

86 C. Vuillaume et al.

security breach. Alternatively, one might attempt to use different keys, but the
verification system still has to store all keys. Putting scalability issues aside,
again, this is a single point of failure: if one verification device is compromised,
so is the whole system.

One possible way to mitigate this problem is to store all keys in a remote
database for verification. We emphasize that the database is still a single point
of failure, and merely changing the location of the keys does not really solve the
problem. In addition, in a large system, such database should have the ability to
process a huge number of authentications in a very short time: think for example
of ticket gates in a train station, where passengers expect to go through the gates
without even slowing down their pace. As a consequence, the database should not
only be reliable, constantly available and secure, but queries should be processed
almost instantly. Naturally, one cannot expect such system to be cheap, and
perhaps not well-suited for low-cost transactions such as transportation tickets
or small retail.

Public Key Cryptography. On the other hand, with a public key-based authen-
tication scheme (or identification scheme following the taxonomy introduced by
Fiat and Shamir [1]), it is easy to have different keys for all authentication to-
kens and yet no connection to the network is necessary. More precisely, we may
assume that tokens store their private key, public key and a certificate thereof.
As a consequence, the verification system only needs to know the public key of
the certification authority; everything can be done offline. Finally, in the event
where one authentication token is compromised, its public key can be broad-
casted to all verification systems in a black list, thereby limiting the impact of
compromised systems. It is noteworthy that this scenario does not assume a
persistent network connection, but only periodic updates.

So why is it that public key cryptosystems are not used in practice for low-
cost authentication? The reason is quite simple: they are too expensive. For
instance, using advanced software engineering techniques on an ATMega128 chip
running at 8MHz, ECC scalar multiplication has been reported to take 0.8s and
RSA signatures 11s; timings are even slower on a 8051-based CPU running at
14.7456MHz [6]. It can be seen that even with a full-featured CPU that occupies
much more silicon area than a dedicated symmetric key cryptographic engine,
and therefore for a higher price, timings are still too slow for many applications
where users are not willing to wait. Therefore, the only way to have a practical
public key cryptography engine is to use a CPU with enough horsepower or
select a platform with hardware acceleration for public key operations, at the
expense of production cost.

2.2 Merkle Signatures

One-Time Signatures. Essentially, Merkle signatures transform the Lamport
one-time signature scheme [7] in a multi-time multi-signature scheme by provid-
ing an authentication path from one-time public keys to a single “master” public
key. First, we describe the Lamport one-time signature scheme in the context of

Public Key Authentication with Memory Tokens 87

x0 x1 x2i x2i+1 x2γ−2 x2γ−1

H H

0 1 2i 2i+1 2γ−2 2γ−1

m0 = 0 mi = 0 mγ−1 = 1

z1

z2 z3

z4 z5 z6 z7

z8 z9 z10 z11 z12 z13 z14 z15

..................

...

...

...
...

...

...

One-time
signature

Merkle
tree

Authentication
path

Signature
part

H H H H

H H

H

H H

H H

H

yyyyyy

y

Fig. 1. Lamport one-time signature combined with Merkle tree

a 128-bit hash function H and a message size of γ bits. The scheme has a 128-bit
public key y and 2γ secret values x0, . . . , x2γ−1 of 128 bits each. To generate the
keys, the 2γ secret values are randomly generated, and their images yi = H(xi)
are computed using the hash function H . Next, the 2γ images are concatenated
and hashed again; the resulting value is the public key y.

To sign one message bit mi, one proceeds as follows. If mi = 0, the signature
s2i, s2i+1 is x2i, y2i+1, whereas if mi = 1, the signature s2i, s2i+1 is y2i, x2i+1.
Since in any case, only one of the two secrets x2i, x2i+1 is revealed, forgeries
require inverting the hash function H in order to find the missing secret value,
or finding new secret values mapping to the same public key y. In the first case,
the one-wayness property of H is violated, and in the second case, the collision-
resistance of H is violated [8].

A signature is verified by re-constructing the one-time public key y from the
signature data. More precisely, given the signature s2i, s2i+1 of message bit mi,
one proceeds as follows. If mi = 0, the two values y′

2i, y
′
2i+1 are H(s2i), s2i+1,

whereas if mi = 1, the two values y′
2i, y

′
2i+1 are s2i, H(s2i+1). After repeating this

operation for all message bits, the obtained values are concatenated and hashed;
if the final hash value y′ matches the one-time public key y, the signature is
accepted.

Merkle Tree. Although Lamport signatures are attractive in terms of efficiency
and security because they rely on hash functions only, they have a major limita-
tion which makes them impractical: their security is guaranteed as long as one

88 C. Vuillaume et al.

keypair is used for signing one message. Merkle signatures address this problem
using an authentication tree, that is, a binary hash tree mapping a sequence of
σ one-time public keys to a single “master” public key, root of the hash tree. As
a consequence, the scheme can sign up to σ messages.

The upper part of Figure 1 illustrates how the Merkle authentication tree
works in the case where eight signatures can be signed. First, eight one-time
keypairs with respective public keys z8, z9, . . . , z15 are generated. Next, pairs
of consecutive one-time public keys are concatenated and hashed, obtaining the
four parent nodes z4, z5, z6 and z7. The same operation is repeated until only one
node remains, namely z1, root of the binary tree and public key of the system.
Note that with this numbering, the children of node zi are z2i and z2i+1.

During the verification of the third signature, using the one-time signature
scheme with public key z13, node z13 is re-calculated in the process. The role of
the Merkle authentication tree is to “connect” node z13 with the root z1. This
is realized by providing an authentication path in the signature. For example, in
the case of z13, the authentication path consists of z12, z7 and z2. Indeed, from
z12 and z13, one obtains z6 = H(z12||z13). Similarly, z6 can be combined with
the authentication node z7 in order to calculate z3 = H(z6‖z7), and finally, from
z2 and z3, the root z1 = H(z2‖z3) can be re-computed.

In terms of security, a forger against the Merkle signature scheme either forges
a one-time signature, or finds a collision in the Merkle tree for the hash function
H [8]. Again, this violates security assumptions on the hash function (preimage
resistance and collision resistance), and therefore the scheme is secure (in fact,
existentially unforgeable under adaptive chosen message attacks [8]).

Authentication with Merkle Signatures: a First Attempt. Merkle signatures could
be used for realizing a public key authentication scheme, where the prover signs
a random challenge generated by the verifier. At first sight, it appears that
such authentication scheme has the same hardware requirements as a symmetric
key authentication scheme such as HMAC. However, this is not true because the
generation of one-time signatures and the calculation of authentication paths in-
volves hundreds of hash computations and requires a relatively large workspace,
even with advanced techniques [3,9]. Therefore, in practice, Merkle signatures
suffer from the same limitations as usual public key cryptosystems when it comes
to low-cost authentication.

3 Authentication without Calculations

Next, we describe our authentication scheme based on Merkle signatures, includ-
ing its properties and advantages over existing techniques. After that, we will
discuss its security in view of cryptographic and physical attacks.

3.1 Generating Signatures without Calculations

The Lamport one-time signature scheme [7] has one property that is often ig-
nored: with adequate settings, the signing step does not involve any calculations.

Public Key Authentication with Memory Tokens 89

Recall that if mi = 0, the signature is x2i, y2i+1, and if mi = 1, the signature is
y2i, x2i+1; signing boils down to data selection. Also, the only secret data in the
Lamport scheme is the list of x0, . . . x2γ−1 since the hash values y0, . . . , y2γ−1
are all re-computed during the verification step.

From the above remarks, we proposed the following design for the Lamport
scheme. On the one hand, secret values x0, . . . , x2γ−1 are stored in tamper-
resistant memory; access to this memory area is limited as follows: only one
element in the pair x2i, x2i+1 can be accessed. For instance, a memory controller,
taking one message bit mi as input and storing a counter i, could return x2i+mi ,
increment i and erase both of x2i and x2i+1, thereby preventing illegal accesses
at later time. On the other hand, the hash values y0, . . . y2γ−1 are public and
can be freely accessed (the memory does not need to be tamper-resistant).

Of course, the same idea can be applied to the Merkle signature scheme.
In addition to the secret values and hash values, the Merkle signature scheme
requires the storage of all nodes of the binary hash tree z1, . . . , z2σ−1, which are
all public, just the like hash values yi. Therefore, for a 128-bit hash function,
γ-bit messages and a total of σ signatures, memory requirements are 128∗2γ ∗σ
bits of tamper-resistant memory with access control for secret values, 128∗2γ ∗σ
bits (of possibly insecure memory) for their hash values and 128 ∗ (2σ − 1) bits
(of possibly insecure memory) for tree values. In total, a little bit more than
128 ∗ 4 ∗ γ ∗ σ bits of memory are required for signing σ messages of γ bits each.

Signing and Verifying. As explained above, on input mi, the tamper-resistant
memory returns x2i+mi , increments the locally stored counter i and optionally,
erase both of x2i and x2i+1 in order to prevent future illegal accesses. In addition
to x2i+mi , the hash value y2i+m̄i must be sent as well; however, since hash values
are not secret, the verifier may freely access the memory area where hash values
are stored and get the required data by himself. This procedure is repeated for
all message bits m0, . . . , mγ−1.

After that, the authentication path must be provided as well. In the usual
Merkle signature scheme, the one-time public key of the signature with index j
is stored in node zk with k = σ+ j. If k is even, the first authentication node has
index k + 1, otherwise it has index k − 1. The next authentication node is the

.

. . .

Memory
(unrestricted

access)

Tamper-resistant
memory

Memory controller

x2i x2i+1

x2i+mi mi

y2i y2i+1

z1

z2

z3

z4

z5

z2σ−2

z2σ−1 swap

swap

swap

Fig. 2. Memory Units for Merkle Signatures without Calculations

90 C. Vuillaume et al.

sibling of the parent node, which has index �k/2�, and again, the index of the
sibling depends on the parity of �k/2�. This procedure is iterated until index 1
(that is, root of the tree) is reached after successive divisions by two. Although
quite simple, this algorithm can be further simplified if elements in the tree table
are swapped as depicted in Figure 2. Indeed, in a table with swapped elements,
the first authentication node is zk with k = σ + j, the next one has index �k/2�
(where the division by two is a simple right shift), and so on until k = 1. Just
like in the case of hash values, authentication nodes are not secret and can be
freely accessed by the verifier, who could be responsible for extracting the correct
node from the table. Alternatively, and especially if table elements are swapped,
a memory controller could select and send authentication nodes to the verifier.

Unlike signature generation, verification is not free since it involves (a small
number of) hash computations: γ hashes for computing the missing hash values
y2i+mi from signature blocks x2i+mi , one hash computation (over 2γ blocks) for
re-computing the one-time public key and another �log2 σ� hashes for recomput-
ing the root z1 from authentication nodes. Assuming an iterated hash function
with 128-bit block size, this corresponds to 3γ +�log2 σ� hash iterations in total.

3.2 Authentication Protocol

Compared to authentication systems based on symmetric key primitives, pub-
lic key authentication with Merkle signatures has the important advantage that
different provers may have different secret keys and yet any verifier can authen-
ticate any prover using the public key of a certificate authority. In particular,
a global database is unnecessary. In addition, the prover does not perform any
computation, and as a consequence our protocol is well-suited for low-cost and
low-power platforms such as RFID tags. The drawback of this design is that
moderate storage capacities are required.

Figure 3 illustrates the authentication protocol. The prover sends its public
key, the certificate for its public key and an index for the signature scheme
selected among indices that have not been used before. The verifier checks the
validity of the public key with the certificate and sends a random challenge. The

Prover Verifier

public key, certificate, index

random challenge

signature

verify public key
with certificate

issue signature
according to index

verify signature
with index

Fig. 3. Authentication Protocol

Public Key Authentication with Memory Tokens 91

prover generates a Merkle signature for this challenge, which is verified in the
last step using the index selected in the first step.

Attack Model. In our attack model, a successful forger may output any valid
signature, including a signature that has been queried before. The only con-
straint is that the attacker is not allowed to query a valid system in the runtime;
i.e. he can perform queries and interact with legitimate provers, but once the
authentication protocol is started, no further query is allowed. This scenario is
sound in an authentication system, where attackers can obviously authenticate
if they have access to a legitimate authentication token. For example, in anti-
counterfeiting systems, one expects the counterfeit to be sold at a lower price,
and therefore cannot include (i.e. query) the legitimate system.

Security. If the forger outputs a signature that has not been queried, this signa-
ture is an existential forgery. This case is ruled by the fact that if the underlying
hash function is secure, Merkle signatures are existentially unforgeable under
adaptive chosen message attack [8]. On the other hand, it might be that by
chance, the forger has already queried the same challenge to a legitimate sys-
tem. It remains to upper-bound the probability of this case. Since the forger can
query a particular system with a given index only once (because the one-time
signature scheme associated with the index can be used only once), for this par-
ticular index and this particular public key, the forger knows the signature of
one challenge only. The security of our scheme stems from the fact that in the
authentication protocol, the prover has to commit to the index and the public
key before knowing the challenge, and as a consequence, for a γ-bit challenge,
the probability that the forger knows the corresponding signature is 2−γ .

At this point, it is necessary to put things in their context. Although when γ is
small, say 8 or 16 bits, the probability 2−γ seems to be high from a cryptographic
perspective, the probability remains the same independently from how many
queries the attacker performs, and independently from how much computational
power he has (that is, unless the attacker can break the hash function, which
we assume to be intractable). In many practical cases, one can live with the
fact that a lucky attacker will be successful from time to time. For instance,
verifiers could run the protocol only once in a specified time frame, allow only a
certain number of failures from a given prover and black-list suspicious provers.
A similar argument was given by Fiat and Shamir, who suggest that a security
level of 2−20 (corresponding to 20-bit challenges) is enough for authentication
[1]; however, we believe that in some applications, and especially when the goal is
simply to give a hard time to cheaters, 16 or even 8 bits of security are sufficient.
Indeed, security is always about trade-offs: despite the fact that one can win at
Russian roulette with the significant probability of 5/6, no sane person would
play the game. Similarly, a short challenge size is perfectly reasonable in many
(but not all) cases. Therefore, we argue that the size of the challenge should
be chosen according to what security level is acceptable in practice, but also to
hardware requirements.

92 C. Vuillaume et al.

Hash Function Security. It has been established that a forgery of the Merkle
signature scheme implies either a collision or a preimage for the underlying
hash function [8], which means that breaking the Merkle signature scheme is
harder than finding a collision. On the one hand, several attacks against the
collision resistance property of popular hash functions have been published [10].
On the other hand, it seems unlikely that breaking the Merkle signature scheme is
exactly as hard as finding a collision, and it has been suggested (without security
proof) that second-preimage resistance is relevant to the security of the scheme
[11]. Indeed, a collision finding algorithm seems useless for forging signatures;
in fact, even a second-preimage does not seem to be sufficient, but a preimage
certainly is. Moreover, there exist alternative approaches for building provably
secure Merkle signature schemes that do not require a collision resistant hash
function, but instead, a target-collision resistant [12] or even a second-preimage
resistant hash function [13]. These are the reason why throughout this paper,
we assume a 128-bit hash function such as MD5 (for which no second-preimage
or preimage attack is known) or AES in a suitable PGV mode.

Physical Security. We previously wrote that tamper-resistant memory is required
(for storing secret values only). This is in stark contrast with other cryptosystems
where computations must be secure. In our case, there are no computations, but
access to memory must be restricted. Such tamper-resistant memory should be
easier to produce than a tamper-resistant CPU or a cryptographic engine (which
include tamper-resistant memory anyway); in particular, side-channel attacks [4]
are out of scope.

3.3 Comparison

Using our design, one can benefit from a public key authentication scheme where
no calculations are performed by the prover. Compared to the naive approach
of storing the output values of a one-way function, which has been a commonly
used method for authenticating users based on one-time passwords, Merkle sig-
natures have several important advantages. First, Merkle signatures belong to
the realm of public key cryptography, which implies that, among others, any
verifier can authenticate any prover without sharing any secret. Second, when
an authentication token stores a sequence of one-time passwords, such token
can easily cloned by querying all possible passwords, whereas this approach is
impossible with Merkle signatures: even after querying many signatures, the
probability to forge authentication remains unaffected. Alternatively, the token
may store different possible one-time passwords, reveal just one of them during
one session and delete the others. Although this approach might look similar to
ours at first sight, its storage requirements are much higher. Assume for instance
that there are 28 = 256 possible passwords of 128 bits each per session; the ver-
ifier sends a random 8-bit number to the prover, who returns the corresponding
password and delete the others. In this case, for each authentication, 16 ∗ 28 = 4
KBytes are required, but our Merkle scheme stores only 16 ∗ 4 ∗ 8 = 1 KByte of
data. More generally, the naive approach of storing passwords requires 2γ ∗ 16

Public Key Authentication with Memory Tokens 93

bytes where we need only 4 ∗ γ ∗ 16 bytes and enjoy the benefits of a public key
authentication protocol.

4 Implementation and Applications

When memory is taken into account, our approach requires a high number of
gates when implemented in hardware. However, we emphasize two important
facts. First, many platforms already have large amounts of memory but little
or no computational power; in particular all flash-based memory drives. In this
context, it is perfectly feasible to use a small part of their available memory to
implement cryptographic functions, but it is more difficult to add a large unit
dedicated to cryptography. Second, the price per megabyte of solid-state memory
has drastically dropped; for instance, the price per megabyte for flash memory is
now close to one cent. This makes a flash-based solution very attractive compared
to a pure ASIC design implementing a symmetric or asymmetric cryptographic
primitives.

4.1 Memory and Resource Requirements

Shorter challenges result in shorter signatures and decreased storage require-
ments for the prover. More precisely, the memory requirements are (64γ + 32)σ
bytes1 , where the challenge has γ bits and σ signatures can be signed. Per sig-
nature, there are 32γ bytes for secrets, 32γ bytes for images and 32 bytes for
tree data.

Table 1. Memory requirements for the prover using Lamport OTS

σ = 210 ≈ 1, 000 σ = 215 ≈ 32, 000 σ = 220 ≈ 1, 000, 000
γ = 8 bits 557 KBytes 17.8 MBytes 570 MBytes
γ = 16 bits 1.08 MByte 34.6 MBytes 1.11 GByte
γ = 64 bits 4.23 MBytes 135 MBytes 4.33 GBytes

Table 1 illustrates the memory requirements of our scheme in different set-
tings. Note that Table 1 does not include memory for storing the public key (16
bytes) and its certificate (for example 256 bytes in the case of a 2048-bit RSA
signature). If less than 1,000 signatures must be signed, and a security level of
8 bits is sufficient, only 557 KBytes are required: 256 KBytes for storing the
secret values and 301 KBytes for the rest of the data (images of the secret values
and nodes of the tree). With a 16-bit challenge, we have a scheme which offers
a reasonable security level (forgery probability of 1/65,536), and 32,000 signa-
tures is more than enough for most applications. In these settings, 35 MBytes
are sufficient for storing data. Assuming that the cost per megabyte of the cho-
sen memory type is one cent, in the first case (8-bit challenges), our signature
1 Using Merkle one-time signatures [3] instead of Lamport one-time signature, one can

slightly decrease storage requirements to 32(γ + �log2 γ	 + 1)σ.

94 C. Vuillaume et al.

Table 2. Signature size, transmission time at 9.6Kbps and verification cost

γ = 8, σ ≈ 1, 000 γ = 16, σ ≈ 32, 000 γ = 64, σ ≈ 1, 000, 000
Signature size 416 Bytes 752 Bytes 2.4 KBytes
Transmission 0.35s 0.63s 2s

Verification cost 34 hashes 63 hashes 212 hashes

scheme costs 0.5 cents, and in the second case (16-bit challenges) 35 cents. Let
us now consider the extreme case from Table 1: if the challenge has 64 bits, we
are already in the realm of cryptographic strength, and one million signatures
should satisfy all reasonable use cases (for example, the typical endurance of
commercial flash memory is about one million cycles as well). In this scenario,
about 4 GBytes are required; although this is a large amount of memory, this is
perfectly feasible on recent SSD drives.

Table 2 describes other important features of our scheme: signature size, trans-
mission time and verification cost. One drawback of the Merkle signature scheme
is its large signature size, but this drawback is largely compensated by the fact
that our scheme utilizes relatively short challenges. As a consequence, the sig-
nature size of our scheme remains reasonable, and data transmission can be
done even with a low-speed interface, for example with a bandwidth of 9600
bps as illustrated in Table 2. In fact, modern wired or wireless communication
interfaces have bandwidths orders of magnitude higher than 9600 bps. As men-
tioned earlier, signing is essentially free since there are no calculations. And even
though verifying is not free, it can be seen in Table 2 that the verification cost
is extremely low, and much lower than other public key cryptosystems including
elliptic curves and even RSA with a small public exponent.

4.2 Hardware Implementation

Nevertheless, some kind of access control is required in order to prevent attackers
from revealing secret information stored in memory. Recall that in the Merkle
scheme, the xi values only are secret; the rest of the data, including the images yi

and the tree data zi can be freely accessed by anyone. Therefore, access control
mechanisms should aim at protecting the xi values only. More precisely, given
one challenge bit mi, one and only one of the two secret values x2i and x2i+1
should be revealed.

Hardware Implementation. Figure 4 should convince the reader of the simplicity
of such access control mechanism. The memory area to read is selected using
the index of the signature and i, a counter going from 0 to γ − 1. Since there
are 2γ secrets of 128 bits (24 bytes) per signature, if they are stored sequentially
in a table, the data related to the j-th signature starts from byte 25 ∗ γ ∗ j.
In addition, there are two 128-bit elements per signature element, therefore the
i-th signature element x2i, x2i+1 starts from the 25i-th byte in the signature data
segment. Upon reading x2i, x2i+1, data is destroyed in the secret table. Note that
64 bytes are read at a time from the secret table, which is the usual data path

Public Key Authentication with Memory Tokens 95

+1+1

256

128

log2 σ

log2 σ

log2 γ

log2 γ

log2 γ

index

index0 = 0?

00000

.

challenge signature part

x2

x2

x2 +1

x2 +1 5

1

1

i

i

i

i

i

imm

Fig. 4. Hardware implementation of access control

for block transfer of flash memory. The index consists of non-volatile memory,
and should be incremented for every new signature. Challenge bits are scanned
from left to right, and the challenge is stored in a register m, which is shifted by
one bit to the right after each iteration. Thus, at iteration i, the least significant
bit m0 stores the i-th challenge bit. This challenge bit is used to select either x2i

or x2i+1, sent to the verifier as part of the signature. The task of constructing
the signature, and especially reading the appropriate images yi and tree data
zi can be left to the verifier since this data is public anyway. Alternatively, the
signature could be assembled by the prover since the corresponding circuitry is
equally simple.

Tampering with Counters. Although not secret, the values of the index and the
counter i play an important role in the security of the scheme. In particular,
they should always be incremented; if their value is tampered with, attackers
might be able to extract additional secret data, which can be used for forging
signatures. This is the reason why we suggest that after reading x2i and/or x2i+1,
both should be erased from memory. This ensures that even if the value of the
counters is tampered with, no secret data can be extracted. This “one-time”
read access makes ferroelectric RAM (FeRAM), a type of memory which is used
for some RFID tags, especially well-suited for the scheme since it has destructive
reading. Of course, usual flash memory may be used as well, provided that data
is “manually” erased after reading. In Figure 4, both of x2i and x2i+1 are read
and stored in two registers. Before starting the transmission of x2i+mi , both of
x2i and x2i+1 are erased from the main memory. Following this procedure, it is
guaranteed that attackers will recover at most one of the two secrets.

4.3 Applications

Authentication for Removable Storage. The widespread piracy of video games
or other digital contents stored on removable storage such as memory cards
is a serious problem for the industry. For example, it is known that in some
countries, the sale figures of consoles are larger than those of games, which

96 C. Vuillaume et al.

Media player

CPU RAM

AES

Firmware

Secret
data

Hash and
tree data

Digital contents

(encrypted memory)
Removable storage

Fig. 5. Authentication for removable storage

implies a widespread use of illegal copies. The usual DRM approach is to store
encrypted data with a block cipher such as AES, using a symmetric key which
can be derived from secret material stored partially on the player and partially
on the storage medium. On the one hand, this approach prevents users from
playing digital contents on unauthorized players. On the other hand, it does
not address bit-by-bit copy at all. Note that a full memory dump of digital
contents is always possible since they must be played in the first place. Even
recent commercial copy-protection mechanisms for removable storage do not
solve this problem because they use ID numbers: original, read-only media and
recordable media are assumed to have different IDs, and the player will reject
original contents stored on recordable medium. However, it is technically easy
to produce recordable media with forged IDs.

Using authentication would make bit-by-bit copy much more difficult: unlike
an ID, which is transmitted in clear to the media player, in an authentication
based on a challenge-response protocol, using responses from previous sessions
to forge authentication is doomed to fail. Although one could use a different
cryptographic scheme implemented on a tamper-resistant chip in order to achieve
more or less the same results, our method has the important advantage that little
modifications would be required to the existing architectures of storage media,
and as a consequence, their production price would be essentially unaffected.
On the other hand, the media player is usually an expensive item, and therefore
we suggest embedding a dedicated cryptographic engine, for instance AES. This
AES chip could transparently decrypt digital contents and forward decrypted
data to the main CPU, store sensitive key material and check the integrity
of the firmware when booting, but also verify authentication responses if the
underlying hash function is based on AES. Public key authentication combines
especially well with standard memory encryption, since it prevents bit-by-bit
copy (assuming that the contents of the tamper-resistant memory cannot be
obtained in a memory dump) and allows revocation mechanisms for individual
storage items. In addition, since digital contents are encrypted, if the AES chip

Public Key Authentication with Memory Tokens 97

is incapacitated in order to skip the authentication step, the decryption step
cannot be performed anymore, rendering the media player useless. Finally, we
argue that an 8-bit challenge is enough: even if an attacker collects sufficiently
many challenges and responses, after 256 trials, his probability of successfully
authenticating is only 63%.

Authentication for RFID Tickets. Next, we describe another interesting use-
case: RFID tags. Although EPCgen2-compliant tags have memory access control
mechanisms [2], they typically do not have any full-featured CPU in order to
keep prices as low as possible, let alone any onboard cryptographic engine. More
and more paper tickets are equipped with RFID tags, which makes touch-and-go
access control possible. However, the use of RFID tags does not fundamentally
improve security, which almost entirely relies on the back-end system. In fact, the
only way to provide real onboard security is to use a true authentication protocol.
Although one obvious solution is to add a cryptographic chip to the tag, this will
considerably increase the cost of an item which is often designed to be disposable.
On the other hand, for a one-time ticket, a (single) one-time signature seems
to be the perfect tool: here, the fact that the number of signatures is limited
clearly plays in favor of our proposal. In particular, unlike standard signature
schemes, it is relatively easy to identify fraudsters who are likely to re-use the
same compromised one-time signature. Using a 64-bit hash function with an 8-
bit challenge, the required memory for our scheme is only 2112 bits: 1024 bits
of secret data, 1024 bits of hash data and 64 bits for the one-time public key.
In the spirit of the EPCgen2 specifications [2], memory could be organized in
128-bit segments, where each segment has a read and kill passwords, and where
the read password for the segment storing x2i is the same as the kill password
for the segment storing x2i+1, thereby providing a mechanism for revealing only
one of the two secret values.

5 Conclusion

Our Merkle authentication scheme is the only known public key technique where
the prover does not perform any computations, since the step of signing boils
down to data selection. As a consequence, hardware requirements are extremely
low, provided that memory is already available, which is the case in many flash-
based platforms. In this scenario, public key authentication functionalities can be
implemented essentially for free. Although the verification step consists of a few
hash computations, its cost comes close to that of a symmetric key authentication
scheme. In addition, security requirements are extremely weak, since all that is
needed is a secure hash function. Finally, the fact that no computations are
performed makes tamper-resistance easier to achieve; in particular, side-channel
attacks are out of scope.

98 C. Vuillaume et al.

References

1. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

2. EPCglobal: Class 1 generation 2 UHF air interface protocol standard (EPCgen2),
http://www.epcglobalinc.com/

3. Merkle, R.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

4. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

5. Indesteege, S., Keller, N., Biham, E., Dunkelman, O., Preneel, B.: A practical
attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
1–18. Springer, Heidelberg (2008)

6. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

7. Lamport, L.: Constructing digital signatures from a one way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

8. Coronado Garćıa, L.C.: On the security and the efficiency of the Merkle signature
scheme. Cryptology ePrint Archive, Report 2005/192 (2005)

9. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg
(2004)

10. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

11. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Have they become
practical. Cryptology ePrint Archive, Report 2005/442 (2005)

12. Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet
authentication. In: Proceedings of the 6th ACM Conference on Computer and
Communications Security - CCS 1999, pp. 93–100. ACM Press, New York (1999)

13. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008)

http://www.epcglobalinc.com/

Certificate-Based Signatures: New Definitions
and a Generic Construction from Certificateless

Signatures

Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang�

Centre for Computer and Information Security Research
School of Computer Science & Software Engineering

University of Wollongong, Australia
{ww986,ymu,wsusilo,xh068}@uow.edu.au

Abstract. Certificate-based encryption was introduced in Eurocrypt’03
to solve the certificate management problem in public key encryption.
Recently, this idea has been extended to certificate-based signatures. To
date, several new schemes and security models of certificate-based signa-
tures have been proposed. In this paper, we first introduce a new security
model of certificate-based signatures. Our model is not only more elabo-
rated when compared with the existing ones, but also defines several new
types of adversaries in certificate-based signatures. We then investigate
the relationship between certificate-based signatures and certificateless
signatures, by proposing a generic construction of certificate-based sig-
natures from certificateless signatures. Our generic construction is se-
cure (in the random oracle model) under the security model defined in
this paper, assuming the underlying certificateless signatures satisfying
certain security notions.

Keywords: Certificate-based, Certificateless, Security Models, Generic
Construction.

1 Introduction

In a public-key cryptography, each user has a pair of keys: public key and private
key. The public key is always published and publicly accessible, while the private
key is kept secret by the owner. The central problem in a public key system is
to prove that a public key is genuine and authentic, and has not been tampered
with or replaced by a malicious third party. The usual approach to ensure the
authenticity of a public key is to use a certificate. A (digital) certificate is a
signature of a trusted certificate authority (CA) that binds together the identity
of an entity A, its public key PK and other information. This kind of system
is referred as public key infrastructure (traditional PKI). The traditional PKI is
generally considered to be costly to use and manage.

� Supported by National Science Foundation of China (NSFC 60673070).

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 99–114, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

100 W. Wu et al.

Shamir [16] introduced the concept of identity-based public key cryptography
(or, ID-PKC for short), whose original motivation is to ease the certificate man-
agement in the e-mail system. However, key escrow is an inherent problem in
this kind of ID-PKC (e.g., [16,5]), as the PKG knows any user’s private key. The
escrow problem could be partially solved by the introduction of multiple PKGs
and the use of threshold techniques, which requires extra communications and
infrastructures.

Al-Riyami and Paterson proposed a new paradigm called certificateless public
key cryptography [4] (or, CL-PKC for short), whose original motivation is to find
a public key system that does not require the use of certificates and does not
have the key escrow problem. Each entity in CL-PKC holds two secrets: a secret
value and a partial private key. The secret value SV is generated by the entity
itself, while a third party Key Generating Center (KGC), holding a master key,
generates the partial private key PPK from the user’s identity information1. The
entity’s actual private key is the output of some function with the input SV and
PPK. This way, KGC does not know the actual private key and the key escrow
problem is eliminated. The entity can use the actual private key to generate
the public key, which is no longer only computed from the identity. This makes
the certificateless system non-identity-based. The entity’s public key could be
available to other entities by transmitting it along with messages (for example,
in a signing application) or by placing it in a public directory (this would be
more appropriate for an encryption setting). However, there is no certificate to
ensure the authenticity of the entity’s public key in CL-PKC. Therefore, it is
necessary to assume that an adversary is able to replace the entity’s public key
with a false key of its choice, which is also known as key replacement attack. One
assumption is that KGC never mounts the key replacement attack.

In Eurocrypt 2003, Gentry [7] introduced the notion of certificate-based en-
cryption. As in the traditional PKI, each client generates its own public/private
key pair and requests a certificate from the CA. The difference is that, a certifi-
cate in the certificate-based cryptography, or, more generally, a signature from
the third party who acts not only as a certificate (as in the traditional PKI) but
also as a decryption key (as in ID-PKC and CL-PKC). The sender can encrypt a
message without obtaining explicit information other than the receiver’s public
key and the parameters of CA. To decrypt a message, a keyholder needs both
its secret key and an up-to-date certificate from its CA (or a signature from
an authority). Therefore, CA does not need to make the certificate status in-
formation available among the whole system, and instead only needs to contact
the certificate holder for revocation and update. As the sender is not required
to check the certificate of the signer’s public key, the sender could be duped to
encrypt messages with an uncertified public key. This could be due to the reason
that the receiver has not yet got his/her public key certified, or the encryption

1 In Section 5.1 of [4], the authors sketched an alternative partial private key generation
technique. In this paper, when we mention a cryptographic protocol in CL-PKC,
we mean it is a protocol with the classic private key generation technique used in
Section 4.1 of [4], which has been adopted by most researchers in CL-PKC.

Certificate-Based Signatures 101

key that the sender has is not the receiver’s authentic public key. In this sense,
certificate-based encryption works is similar to certificateless encryption, but the
difference is that there are certificates in certificate-based encryption.

1.1 Certificate-Based Signatures: Pros and Cons

Certificate-based cryptography was introduced to solve the certificate manage-
ment problem in the traditional PKI, but only in the scenario of encryption.
Later, the notion of certificate-based encryption is extended to certificate-based
signature [14,15]. However, as mentioned in [7], if we only consider signing and
verification signatures in public key system, then the certificate management
problem is not as challenging as in the scenario of encryption and decryption.
For example, the signer can send its public key and the proof of certificate sta-
tus to the verifier simultaneously with its signature, thus the verifier can obtain
the certificate without referring to a public directory or issuing a third-party
query to CA. In this section, we make a brief comparison of signature schemes
in traditional PKI, identity-based cryptography, certificateless cryptography and
certificate-based cryptography.

In public key systems like ID-PKC [16,5] and CL-PKC [4], one can directly
use the entity A’s public key to verify signatures, without checking the certifi-
cate of A’s public key. Such public key systems can eliminate the certificate
management problems in traditional PKI. However, this is achieved at the cost
of assuming certain trust on the authority, who is able to impersonate any user
in an undetectable way. For example, the PKG in ID-PKC knows any user’s
private key, and the KGC in CL-PKC is able to replace any user’s public key
and thus has the knowledge of the private key.

In certificate-based cryptography, one needs two secret information to gener-
ate valid signatures of a user with the identity information ID and public key
PK: the certificate of (ID, PK) and the secret key of PK. If one replaces PK
with PK’ and generates a valid signature under ID and PK’, she/he must have
a certificate of (ID, PK ′). This can prove that the third party CA is dishonest,
as there is only one party with the ability to generate certificates. Therefore, the
third party in certificate-based signatures has the Trust Level 3 in the definition
in [9], which is similar as CA in the traditional PKI and few constructions of
identity-based signatures [6,8]. To avoid the certificate management problem in
the traditional PKI, one must send its certificate to the verifier simultaneously
with the signature, instead of only sending the signature. Similar techniques have
also been adopted in [6,8]. It is clear to see that such techniques will require more
bandwidth for signature transmitting. On the contrary, in certificate-based cryp-
tography, one actually uses the certificate to generate signatures, and does not
need send the certificate simultaneously with signatures. The verifier can ensure
the existence of the certificate by verifying the validity of signatures. However,
certificate-based signatures could require more operation cost, as the signature
generation uses both private key and certificate, and the verification of each
signature implies the verification of the certificate.

102 W. Wu et al.

To summarize, (1) The authority in certificate-based signatures and
traditional-PKI-based signatures is at Trust Level 3 in the definition given in [9],
which is higher than the authority in the ID-PKC and the CL-PKC, and (2) To
avoid the problem of certificate management, certificate-based signatures con-
sume (in general) less bandwidth in signature transmitting but might require
more computational cost than traditional-PKI-based signatures.

1.2 Related Works about Certificate-Based Signatures

Kang, Park and Hahn [14] proposed the notion and construction of certificate-
based signature, by extending the idea of Gentry’s [7] certificate-based encryp-
tion. That is, to generate a valid signature under the public key PK, the entity
needs to know both the corresponding private key SK and the up-to-date certifi-
cate of PK. To verify a claimed signature, one only needs the signer’s public key
and the parameter of CA (particularly, no need to check the certificate of that
public key). As the verifier is not required to check the certificate about a claimed
public key, key replacement attacks also exist in certificate-based cryptogra-
phy. Key replacement attacks in certificate-based signatures were first addressed
in [14] and formally defined by Li et al. [15]. As introduced in [15], adversaries in
certificate-based signature can be roughly divided into two types: CB-AI and
CB-AII . CB-AI adversary can replace any entity’s public key PK with a new
public key PK ′ chosen by itself, and is trying to forge a valid signature under
PK ′ whose certificate is not available to CB-AI . CB-AII has the knowledge of
CA’s master key and thus can generate the certificate for any user. CB-AII is
trying to forge a valid signature under an entity’s authentic public key PK (that
is, PK is chosen by that entity), whose private key is not available to CB-AII .
In addition to the security models, a certificate-based signature scheme secure
against key replacement attacks was also proposed in [15]. Very recently, Liu et
al. proposed two new certificate-based signature schemes [12]. The first one does
not require any pairing operation and the security of their second scheme can
be proved without random oracles. Some variants of certificate-based signatures
(e.g., certificate-based proxy signature [14] and certificate-based linkable ring
signature [2]) have also been proposed.

1.3 Motivations and Contributions

As mentioned in [4], certificate-based cryptography and certificateless cryptog-
raphy is quite similar and there could be a possible method to convert a certifi-
cateless cryptographical protocol to a certificate-based cryptographical protocol.
This paper is motivated by the question how to construct a certificate-based sig-
nature scheme from a certificateless signature scheme. The contribution of this
paper also includes new security models of certificate-based signatures, which we
believe is of independent interest.

1. New Security Models of Certificate-based Signatures
A reasonable security model is necessary for constructing cryptographic protocols.
In this paper, we provide elaborated definitions of certificate-based signatures.

Certificate-Based Signatures 103

Although the security of certificate-based signatures has been investigated in
[14,15], their security definitions are not satisfactory, especially in the exact mean-
ing of key replacement attacks in certificate-based signatures. In our definition, we
further divide the potential adversaries into three types: normal adversary, strong
adversary and super adversary. The adversary is divided by the attacking power,
especially by the information that the adversary can obtain after key replacement
attacks. Based on such divisions, we provide a more reasonable and more precise
security definition of certificate-based signatures.

2. Generic Construction of Certificate-based Signatures from Certificateless
Signatures
After giving new security models of certificate-based signatures, we propose a
generic construction of certificate-based signatures which is secure in the new
proposed models. We show how to build a certificate-based signature scheme
from a certificateless signature scheme, by using a hash function as a (one-
way) bridge to connect those two primitives. Our method can be used to build
certificate-based signature schemes secure against any type of adversaries defined
in this paper, assuming that the underlying certificateless signature schemes sat-
isfy certain security notions and the hash function is viewed as the random oracle.
Prior to our work, the generic construction of certificate-based encryption from
certificateless encryption has been proposed in [3], but a recent work [13] shows
the flaw in the security proof of [3].

Organization of Our Paper
The outline of certificate-based signatures (CBS) is presented in next section. We
then redefine the security of CBS against different types of attacks in Section 3.
In Section 4, we propose a generic construction of certificate-based signatures
from certificateless signatures with formal security analysis. Finally, Section 5
concludes the paper.

2 Certificate-Based Signatures

In this section, we will first review the definitions of certificate-based signatures.
Then, we will describe oracles used in our security model.

2.1 Syntax of Certificate-Based Signatures

A certificate-based signature (CBS) scheme consists of the following five
algorithms:

1. CB-Setup(1k) → (CB-msk, CB-mpk, CB-params).
By taking as input a security parameter 1k, the certifier runs the algorithm
CB-Setup to generate the certifier’s master secret key CB-msk, master public
key CB-mpk and the system parameter CB-params. CB-params includes
the description of a string space Γ , which can be any subset of {0, 1}∗. CB-
msk will be kept as secret by the certifier, while CB-mpk and CB-params
are publicly accessible by all the users in the system.

104 W. Wu et al.

For the convenience of using the expression, in the following of the paper,
we still use ID ∈ Γ to denote a user with the identity information ID. But
actually, ID contains more information other than the identity.

2. CB-UserKeyGen(CB-mpk, CB-params, ID) → (CB-SKID, CB-PKID).
The user with the identity information ID runs the algorithm CB-UserKeyGen
to generate the user ID’s secret/public key pair (CB-SKID,CB-PKID) ∈
SKCB × PKCB, by taking as input CB-mpk and CB-params. Here, SKCB

denotes the set of valid secret key values and PKCB denotes the set of valid
public key values. The descriptions of SKCB and PKCB are included in CB-
params.

3. CB-CertGen(CB-msk, CB-mpk, CB-params, ID, CB-PKID) → CertID.
The certifier runs the algorithm CB-CertGen to generate the certificate
CertID, by taking as input CB-msk, CB-mpk, CB-params, ID and its public
key CB-PKID.

4. CB-Sign(m, CB-params, CB-mpk, ID, CertID, CB-SKID, CB-PKID) →
CB-σ.
The prospective signer runs the algorithm CB-Sign to generate the signature
CB-σ, by taking as input a message m to be signed, CB-params, CB-mpk,
the user’s identity ID, its CertID and key pair (CB-SKID,CB-PKID).

5. CB-Verify(CB-mpk, CB-params, ID, CB-PKID, (m, CB-σ)) → {true,
false}.
Anyone can run the algorithm CB-Verify to check the validity of the signature.
By taking as input a message/signature pair (m, CB-σ), ID, CB-PKID, CB-
mpk, CB-params, this algorithm outputs true if CB-σ is ID’s valid signature
on m. Otherwise, outputs false.

Remark. When a user ID requests a certificate of its public key CB-PKID, it must
prove the certifier his possession of CB-SKID. The certifier must also check other
information of the user. This can be done as the same way in traditional public
key system.

Correctness. Signatures generated by the algorithm CB-Sign can pass through
the verification in CB-Verify. That is,
CB-Verify(CB-mpk, CB-params, ID, CB-PKID, (m, CB-Sign(m, CB-params,
CB-mpk, ID, CertID, CB-SKID, CB-PKID))) → true.

2.2 Adversaries and Oracles

In this section, we will describe the oracles which will be used in the security
model of certificate-based signatures. We first give a brief description of adver-
saries in certificate-based signatures. Formal definitions of these adversaries are
given in Section 3.

The security of a certificate-based signature scheme requires that one can
generate a valid signature under the public key CB-PKID if and only if he has
both secrets CertID and CB-SKID. In other words, one cannot generate a valid
signature with only CertID or CB-SKID. As introduced in [15], adversaries in

Certificate-Based Signatures 105

certificate-based signature can be divided into two types: CB-AI and CB-AII .
Type I adversary CB-AI simulates the scenario where the adversary (anyone
except the certifier) can replace the public keys of entities at will, but is not
allowed to obtain the target user’s certificate CertID. Key replacement attacks
exist in certificate-based signatures as the verifier is not required to check the
correctness of a given public key. Type II adversary CB-AII simulates a mali-
cious certifier who can produce certificates but cannot replace the target user’s
public key. We will use the following oracles to simulate potential attacking sce-
narios. In the remainder of this paper, we write α ← β to denote the algorithmic
action of assigning the value of β to the value α.

1. OCB−UserCreate: This oracle receives an input ID ∈ Γ and outputs the public
key of user ID. This oracle maintains two lists L1PK and L2PK , which are
initially empty and used to record the information for each user ID. Both
lists L1PK and L2PK are accessible and writable (if needed) by all the
other oracles which will be defined shortly. L1PK={(ID, CB-SKID, CB-
PKID)} provides the information about user ID’s secret key and the public
key when it is created. L2PK={(ID, CB-PK ID)} provides the information
of ID’s current public key, which is denoted as CB-PK ID and might not be
the one generated by this oracle.
(a) For a fresh input ID, the oracle runs the algorithms CB-UserKeyGen to

obtain the secret key CB-SKID and public key CB-PKID. Then it adds
(ID, CB-SKID, CB-PKID) to L1PK and (ID, CB-PK ID) to L2PK where
CB-PK ID ← CB-PKID. After that, it outputs CB-PKID. In this case,
ID is said to be created. Here we assume that other oracles (which will
be defined later) only respond to the identity which has been created.

(b) Otherwise, ID has already been created. The oracle simply finds ID in
L1PK and returns CB-PKID as the output.

2. OCB−PKReplace: This oracle is employed to simulate the scenario that the
adversary can replace any user’s public key with the public key chosen by
itself.

For a public key replacement query (ID, CB-PK) ∈ Γ ×CBPK, this oracle
finds the user ID in the list L2PK , sets CB-PK ID ← CB-PK and updates
the corresponding information as (ID, CB-PK ID). Note that the adversary
is not required to provide the secret key CB-SK corresponding to CB-PK. For
a created user ID, the adversary can replace the public key repeatedly.

3. OCB−Corruption: This oracle takes as input a query ID. It browses the list L1PK

and returns the secret key CB-SKID. Note that the secret key output by this
oracle is the one corresponding to ID’s original public key CB-PKID returned
by OCB−UserCreate.

4. OCB−CertGen : For a certificate request for (ID, CB-PK) ∈ Γ×CBPK, this oracle
runs the algorithm CB-CertGen and returns the certificate CertID for (ID, CB-
PK). Again, the adversary is not required to provide the corresponding secret
key CB-SK.

5. OCB−Sign: Due to different levels of signing power the challenger has, this
oracle can be further divided into the following three types:

106 W. Wu et al.

(a) OCB−NormalSign: This oracle takes as input a query (ID, m), where m de-
notes the message to be signed. It outputs a signature CB-σ such that
true ← CB−Verify(m, CB-σ, CB-params, ID, CB-PKID, CB-mpk).
Here CB-PKID is ID’s public key in the list L1PK . That is, this ora-
cle only generates ID’s signatures which are valid under the public key
generated by the oracle OCB−UserCreate.

(b) OCB−StrongSign: This oracle takes as input a query (ID, m, coin), where m
denotes the message to be signed, and coin ∈ {1, 2}. It acts differently
according to coin:

– If coin = 1, this oracle works the same as OCB−NormalSign.
– Otherwise coin = 2, this oracle first checks the list L1PK and L2PK

to obtain ID’s original public key CB-PKID and ID’s current public
key CB-PK ID. If CB-PK ID =CB-PKID, this oracle works the same
as OCB−NormalSign. Otherwise CB-PK ID �=CB-PKID, which means
ID’s public key has been replaced by the adversary. In this case,
OCB−StrongSign will ask the adversary to supply the secret key CB-
SK ID ∈ SKCB corresponding to CB-PK ID. After that, this oracle
uses CB-SK ID and the certificate for (ID,CB-PK ID) to generate the
signature CB-σ, which will be returned as the answer.

(c) OCB−SuperSign: This oracle takes as input a query (ID, m), where m de-
notes the message to be signed. It first finds ID’s current public key
CB-PK ID in L2PK . This oracle then outputs a signature σ such that
true ← CB−Verify(m, σ, CB-params, ID, CB-PK ID, CB-mpk). Note
that OCB−SuperSign does not require the adversary to supply the secret key
CB-SK ID corresponding to the current public key CB-PK ID in L2PK .

Remark. A Type II adversary CB-AII , who simulates the malicious certificate,
is not allowed to make any requests to OCB−CertGen .

3 Security Models

In this section, we will define security models of certificate-based signatures.
Our models follow the standard methods: each security notion is defined by
the game between the adversary and the challenger, which consists of several
oracles defined in Section 2.2. For each security notion, we will first give a brief
description of the attack scenario that we are concerning about, and then provide
its formal definition. In the definition of the security models, we will use the
notation: {Q1, Q2, · · · , Qn} � {O1,O2, · · · ,On} which denotes that “No query
Q ∈ {Q1, Q2, · · · , Qn} can be submitted to any oracle O ∈ {O1,O2, · · · ,On}.
By using this notation, the security models can be described by just pointing
out its aim while hiding all details.

Inspired by the security models in certificateless signatures [11], we divide
the potential adversaries in certificate-based signatures according to their attack
power. They are Normal Adversary, Strong Adversary and Super Adversary.Com-
bined with the known type I adversary and type II adversary in certificate-based
system, we now define the security of certificate-based signatures in different
attack scenarios.

Certificate-Based Signatures 107

3.1 Security against Normal Type I Adversary

In this section, we are concerning about the Normal Type I adversary: Normal-
CB-AI . Informally, we want to capture the attack scenarios as follows:

1. AI can see some message/signature pairs (mi, CB-σi) which are generated
by the target user ID by using this ID’s secret key CB-SKID and the certifi-
cate CertID.

2. AI is not allowed to obtain the target user ID’s secret information. That is,
AI does not know CB-SKID or CertID.

3. AI can replace the target user ID’s public key with CB-PK ′
ID which is cho-

sen by himself. He can also dupe any other third party to verify user ID’s
signatures using the false CB-PK ′

ID.

The security of certificate-based signature against a Normal-CB-AI is defined
by the game described below:

Initial: The challenger runs the algorithm CB-Setup, returns CB-params and
CB-mpk to AI .

Queries: In this phase, AI can adaptively access oracles OCB−UserCreate,
OCB−PKReplace, OCB−Corruption, OCB−CertGen , OCB−NormalSign.

Output: After all the queries, AI outputs a forgery (m∗, CB-σ∗, ID∗). Let
CB-PK ID∗ be the current public key of the user ID∗ in the list L2PK .

Restrictions: We say AI wins the game if the forgery satisfies the following
requirements:
1. true ← CB−Verify(m∗, CB-σ∗, CB-params, ID∗, CB-PK ID∗ , CB-mpk);
2. (ID∗, m∗) � OCB−NormalSign; (ID∗, CB-PK ID∗) � OCB−CertGen ; ID∗

�

OCB−Corruption.

The success probability that an adaptive chosen message and chosen identity
adversary Normal-CB-AI wins the above game is defined as Succcma,cida

AI ,normal.

Definition 1. [Security against Normal Type I Adversary] We say a certificate-
based signature scheme is secure against a (t, qUC , qPKR, qC , qCG, qNS) adaptive
chosen message and chosen identity adversary Normal-CB-AI , if AI runs in
polynomial time t, makes at most qUC queries to the oracle OCB−UserCreate, qPKR

queries to the oracle OCB−PKReplace, qC queries to the oracle OCB−Corruption, qCG

queries to the oracle OCB−CertGen, qNS queries to the oracle OCB−NormalSign

and Succcma,cida
AI ,normal is negligible.

Remark: The Normal Type I adversary is similar to the one defined in [15].
However, there are two improvements. Firstly, we allow the adversary to replace
any user’s public key, while the adversary in [15] can only replace the target
user’s public key. The other improvement in our model is that the adversary can
obtain certificates of (ID,CB-PK) chosen by itself, but the adversary in [15]
can only obtain certificates of the user with original public keys generated by
the challenger.

108 W. Wu et al.

3.2 Security against Strong Type I Adversary

In this section, we upgrade the attack power of Normal Type I adversary and
define the Strong Type I adversary: Strong-CB-AI . Strong-CB-AI is more
powerful than Normal-CB-AI in the sense that Strong-CB-AI can access
the oracle OCB−StrongSign. In other words, a Strong-CB-AI can obtain a valid
signature under the public key replaced by himself, with the restriction that he
can supply the corresponding secret key. In addition, Strong-CB-AI can also
corrupt the target user ID∗’s secret key CB-SKID∗ .

Initial: The challenger runs the algorithm CB-Setup, returns CB-params and
CB-mpk to AI .

Queries: In this phase, AI can adaptively access the oracles OCB−UserCreate,
OCB−PKReplace, OCB−Corruption, OCB−CertGen , OCB−StrongSign.

Output: After all the queries, AI outputs a forgery (m∗, CB-σ∗, ID∗). Let
CB-PK ID∗ be the current public key of the user ID∗ in the list L2PK .

Restrictions: We say AI wins the game if the forgery satisfies the following
requirements:
1. true ← CB−Verify(m∗, CB-σ∗, CB-params, ID∗, CB-PK ID∗ , CB-mpk);
2. (ID∗, m∗) � OCB−StrongSign; (ID∗,CB-PK ID∗) � OCB−CertGen .

The success probability that an adaptive chosen message and chosen identity
adversary Strong-CB-AI wins the above game is defined as Succcma,cida

AI ,strong.

Definition 2 (Security against Strong Type I Adversary). We say a
certificate-based signature scheme is secure against a (t, qUC , qPKR, qC , qCG, qSS)
adaptive chosen message and chosen identity adversary Strong-CB-AI , if AI

runs in polynomial time t, makes at most qUC queries to the oracle OCB−UserCreate,
qPKR queries to the oracle OCB−PKReplace, qC queries to the oracle OCB−Corruption,
qCG queries to the oracle OCB−CertGen, qSS queries to the oracle OCB−StrongSign

and Succcma,cida
AI ,strong is negligible.

If a certificate-based signature scheme is secure against Strong Type I adversary
as defined in Def. 2, it is also secure against a Normal Type I adversary as defined
in Def. 1.

3.3 Security against Super Type I Adversary

In this section, we will define Super Type I adversary Super-CB-AI .
Super-CB-AI is more powerful than Strong-CB-AI (and hence, more pow-
erful than Normal-CB-AI) in the sense that Super-CB-AI can access the
oracle OCB−SuperSign. That is, Super-CB-AI can obtain a valid signature under
the public key chosen by himself without providing the corresponding secret key.
Obviously, Super-CB-AI is the strongest among all the adversaries.

Initial: The challenger runs the algorithm CB-Setup, returns CB-params and
CB-mpk to AI .

Certificate-Based Signatures 109

Queries: In this phase, AI can adaptively access the oracles OCB−UserCreate,
OCB−PKReplace, OCB−Corruption, OCB−CertGen , OCB−SuperSign.

Output: After all the queries, AI outputs a forgery (m∗, CB-σ∗, ID∗). Let
CB-PK ID∗ be the current public key of the user ID∗ in the list L2PK .

Restrictions: We say AI wins the game if the forgery satisfies the following
requirements:

1. true ← CB−Verify(m∗, CB-σ∗, CB-params, ID∗, CB-PK ID∗ , CB-mpk);
2. (ID∗, m∗) � OCB−SuperSign; (ID∗,CB-PK ID∗) � OCB−CertGen .

The success probability of an adaptively chosen message and chosen identity
adversary Super-CB-AI wins the above game is defined as Succcma,cida

AI ,super .

Definition 3 (Security against Super Type I Adversary). We say a
certificate-based signature scheme is secure against a (t, qUC , qPKR, qC , qCG, qSS)
adaptive chosen message and chosen identity adversary Super-CB-AI , if AI

runs in polynomial time t, makes at most qUC queries to the oracle OCB−UserCreate,
qPKR queries to the oracle OCB−PKReplace, qC queries to the oracle OCB−Corruption,
qCG queries to the oracle OCB−CertGen, qSS queries to the oracle OCB−SuperSign

and Succcma,cida
AI ,super is negligible.

If a certificate-based signature scheme is secure against Super Type I adversary
as defined in Def. 3, it is also secure against a Strong Type I adversary as defined
in Def. 2, and hence secure against a Normal Type I adversary as defined in
Def. 1.

3.4 Security against Type II Adversary

In certificate-based signatures, a type II adversary CB-AII simulates the certifier
who is equipped with the master secret key and might engage in other adversar-
ial activities, such as eavesdropping on signatures and making signing queries.
Similar to type I adversary, type II adversary CB-AII could be also divided
into Normal-CB-AII , Strong-CB-AII , Super-CB-AII , which has the ac-
cess to OCB−NormalSign, OCB−StrongSign, OCB−SuperSign, respectively. However, there
is no need to particularly define Strong-CB-AII . OCB−StrongSign can answer the
queries either by using the OCB−NormalSign (then the OCB−StrongSign is exactly the
same as OCB−NormalSign), or signing the message after getting the corresponding
secret key provided by the adversary. Note that, what the CB-AII initially has
obtained is the master secret key, namely, he can calculate any user’s certificate
by himself. If he knows the secret key as well, he can generate the signature by
himself and OCB−StrongSign becomes useless. Therefore, for a type II adversary
CB-AII , it is sufficient for us to only define two types of adversaries Normal-
CB-AII and Super-CB-AII .

Initial: The challenger runs the algorithm CB-Setup and returns the system
parameters CB-params, master secret key CB-msk and master public key
CB-mpk to AII .

110 W. Wu et al.

Queries: AII can adaptively access oracles OCB−UserCreate, OCB−PKReplace,
OCB−Corruption and OCB−Sign, where OCB−Sign ∈ {OCB−NormalSign,
OCB−SuperSign}. All these oracles are the same as defined in Section 2.2.

Output: After all the queries, AII outputs a forgery (m∗, CB-σ∗, ID∗).
Restrictions: We say AII wins the game if the forgery satisfies the require-

ments as following:
1. true ← CB−Verify(m, CB-σ∗, CB-params, ID∗, CB-PKID∗ , CB-mpk).

Here CB-PKID∗ is the original public key in the list L1PK ;
2. (ID∗, m∗) � OCB−Sign; ID∗

� OCB−Corruption.

The success probability that an adaptive chosen message and chosen identity
adversary CB-AII wins the above game is defined as Succcma,cida

AII
.

Definition 4 (Security against Type II Adversary). We say a certificate-
based signature scheme is secure against a (t, qUC , qPKR, qC , qS) adaptive chosen
message and chosen identity Type II adversary CB-AII , if AII runs in poly-
nomial time t, makes at most qUC queries to the oracle OCB−UserCreate, qPKR

queries to the oracle OCB−PKReplace, qC queries to the oracle OCB−Corruption, qS

queries to the oracle OCB−Sign and Succcma,cida
AII

is negligible.

Similarly, we can define the security against malicious-but-passive Type II ad-
versary which is first introduced to certificateless cryptography in [1].

4 Generic Construction of Certificate-Based Signatures

In this section, we will introduce a generic method to construct certificate-based
signatures. Our construction is based on certificateless signatures whose descrip-
tion is as below.

4.1 Syntax of Certificateless Signatures

A certificateless signature (CLS) scheme is defined by six algorithms: CL-Setup,
CL-PPKExtract(Partial Private Key Extract), CL-SSValue(Set Secret Value), CL-
SPKey(Set Public Key), CL-Sign and CL-Verify. To distinguish from the identity
information in the certificate-based system (which is denoted as ID), we use
the notion ID to denote the identity information in the certificateless system.
For other information, we put the prefix “CL-” to specify that this is in the
certificateless system. Details of the description is given in Appendix A.

4.2 Generic Construction: CLS-2-CBS

In this section, we show how to convert a certificateless signature scheme into a
certificate-based signature scheme. In our construction, we need a hash function
H : Γ × PKCB → IDCL where Γ is the set of identity information in the

Certificate-Based Signatures 111

certificate-based system, PKCB is public key space in certificate-based system
and IDCL denotes the set of identities in the certificateless cryptosystem2;.

Let CLS be the certificateless signature scheme defined in Section 4.1. We now
describe the generic construction CLS-2-CBS.

1. CB-Setup(1k) → (CB-msk, CB-mpk, CB-params).

(a) Run algorithm CL-Setup(1k) of CLS to obtain CL-params, CL-msk and
CL-mpk;

(b) Set CB-params by extending CL-params to include the description of
Γ ;

(c) (CB-msk, CB-mpk) ← (CL-msk, CL-mpk).
2. CB-UserCreate(CB-mpk, CB-params, ID ∈ Γ) → (CB-SKID, CB-PKID).

(a) CL-mpk ← CB-mpk;
(b) Extract CL-params from CB-params;
(c) CB-SKID← CL-SSValue(CL-mpk, CL-params);
(d) CB-PKID← CL-SPKey(CL-mpk, CL-params, CB-SKID).

3. CB-CertGen(CB-msk, CB-mpk, CB-params, ID ∈ Γ, CB-PKID)→ CertID.

(a) (CL-msk, CL-mpk)←(CB-msk, CB-mpk);
(b) Extract CL-params from CB-params;
(c) H(ID, CB-PKID)→ ID ∈ IDCL;
(d) CertID ← CL-PPKExtract(CL-msk, CL-mpk, CL-params, ID).

4. CB-Sign(m, CB-params, CB-mpk, ID, CertID, CB-SKID, CB-PKID) →
CB-σ.

(a) Extract CL-params from CB-params;
(b) CL-mpk← CB-mpk;
(c) H(ID, CB-PKID)→ ID ∈ IDCL;
(d) (CL-SV ID, CL-PKID)←(CB-SKID, CB-PKID), CL-PPKID ←

CertID;
(e) CB-σ ←CL-Sign(m, CL-params, CL-mpk, ID, CL-SV ID, CL-PKID,

CL-PPKID).
5. CB-Verify(CB-params, CB-mpk, ID, CB-PKID, (m, CB-σ)) → {true,

false}.
(a) Extract CL-params from CB-params;
(b) CL-mpk ← CB-mpk;
(c) H(ID, CB-PKID)→ ID ∈ IDCL;
(d) CL-PKID ← CB-PKID;
(e) CL-σ ← CB-σ.
(f) Output CL-Verify(CL-mpk, CL-params, ID, CL-PKID, (m, CL-σ)).

2 Here, we use the hash function H to “equal” two identities in certificate-based sig-
natures and certificateless signatures. This is different from the technique in the
generic construction of certificate-based encryption proposed in [3]. By viewing H
as the random oracle, our generic construction does not have the flaw of the security
proof of [3] shown in [13].

112 W. Wu et al.

Correctness. We show that any certificate-based signature output by CB-Sign
will pass through the check in CB-Verify.

In our construction, a certificate-based signature is the output of the algorithm
CL-Sign in the certificateless system, and algorithm CB-Verify also employs the
verification algorithm CL-Verify in the certificateless system. To show the correct-
ness of our construction, it suffices to show that under the same CL-params and
CL-mpk, a certificateless signature produced by using the secret value CL-SV ID

and the partial private key CL-PPKID will pass through the check using the
corresponding identity ID and its public key CL-PKID. This is guaranteed by
the correctness of the underlying certificateless signature scheme, that is, for any
signature CL-σ produced by CL-Sign(m, CL-params, CL-mpk, ID, CL-SV ID,
CL-PKID, CL-PPKID), CL-Verify(CL-mpk, CL-params, ID, CL-PKID, (m,
CL-σ)) will output true. Therefore, for any signature output by CB-Sign defined
in our construction, the algorithm CB-Verify will output true.

Security Analysis

Theorem 1. [Security of CLS-2-CBS] CLS-2-CBS is secure (in the random or-
acle model) against the adversaries defined in Section. 3, assuming the underling
certificateless signature scheme CLS satisfying certain security requirement.

Proof. Please refer to the full version.

5 Conclusion

The focus of this paper was on certificate-based signatures. We demonstrated
the pros and cons of the certificate-based signature, by comparing it with digital
signatures in other popular public key systems. We then defined several new
types of adversaries and gave a new security model of certificate-based signa-
tures. Our model is more elaborated compared to other existing security models
of certificate-based signatures. We proposed a generic construction of certifi-
cate based signatures from certificateless signatures. Our generic construction
is secure (in the random oracle model) under the security model proposed in
this paper, if the underlying certificateless signatures satisfying certain security
notions.

References

1. Au, M.H., Chen, J., Liu, J., Mu, Y., Wong, D., Yang, G.: Malicious KGC Attacks
in Certificateless Cryptography. In: ASIACCS 2007, pp. 302–311. ACM, New York
(2007), http://eprint.iacr.org/2006/255

2. Au, M.H., Liu, J., Susilo, W., Yuen, T.H.: Certificate Based (Linkable) Ring Signa-
ture. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92.
Springer, Heidelberg (2007)

3. Al-Riyami, S.S., Paterson, K.G.: CBE from CL-PKE: A Generic Construction and
Efficient Schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398–415.
Springer, Heidelberg (2005)

http://eprint.iacr.org/2006/255

Certificate-Based Signatures 113

4. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

5. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. SIAM J.
Comput. 32, 586–615 (2003); a Preliminary Version Appeared In: Kilian, J. (ed.):
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

7. Gentry, C.: Certificate-based Encryption and the Certificate Revocation Problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

8. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)

9. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

10. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the Security of Certificateless Sig-
nature Schemes from Asiacrypt 2003. In: Desmedt, Y.G., Wang, H., Mu, Y., Li,
Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 13–25. Springer, Heidelberg (2005)

11. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless Signature
Revisited. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 308–322. Springer, Heidelberg (2007)

12. Liu, J.K., Baek, J., Susilo, W., Zhou, J.: Certificate Based Signature Schemes
without Pairings or Random Oracles. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee,
D.-T. (eds.) ISC 2008. LNCS, vol. 5222. Springer, Heidelberg (2008),
http://eprint.iacr.org/2008/275

13. Kang, G.H., Park, J.H.: Is it possible to have CBE from CL-PKE? In: Cryptology
ePrint Archive,
http://eprint.iacr.org/2005/431

14. Kang, B.G., Park, J.H., Hahn, S.G.: A Certificate-based Signature Scheme. In:
Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 99–111. Springer, Heidel-
berg (2004)

15. Li, J., Huang, X., Mu, Y., Susilo, W., Wu, Q.: Certificate-Based Signature: Security
Model and Efficient Construction. In: López, J., Samarati, P., Ferrer, J.L. (eds.)
EuroPKI 2007. LNCS, vol. 4582, pp. 110–125. Springer, Heidelberg (2007)

16. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

17. Zhang, Z., Wong, D.S., Xu, J., Feng, D.: Certificateless public-key signature: Secu-
rity model and efficient construction. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS
2006. LNCS, vol. 3989, pp. 293–308. Springer, Heidelberg (2006)

http://eprint.iacr.org/2008/275
http://eprint.iacr.org/2005/431

114 W. Wu et al.

A Syntax of Certificateless Signature

1. CL-Setup(1k) →(CL-msk, CL-mpk, CL-params).
This algorithm takes as input a security parameter 1k and returns the mas-
ter secret key CL-msk and master public key CL-mpk. It also outputs a
parameter CL-params which is shared in the system. Here CL-params in-
cludes the identity information space IDCL, the set of the valid secret values
SCL, the set of the valid public key PKCL, and etc.

2. CL-PPKExtract(CL-msk, CL-mpk, CL-params, ID) → CL-PPKID.
This algorithm takes as input the master secret key CL-msk, the master
public key CL-mpk, system parameter CL-params and the user’s identity
information ID ∈ IDCL. The output is the partial private key CL-PPKID,
which will be secretly sent to the user.

3. CL-SSValue(CL-mpk, CL-params) → CL-SVID.
This algorithm takes as input the master public key CL-mpk and system
parameter CL-params. The user ID runs this algorithm to generate its
secret value CL-SVID ∈ SCL.

4. CL-SPKey(CL-mpk, CL-params, CL-SVID) → CL-PKID.
This algorithm takes as input the master public key CL-mpk, system pa-
rameter CL-params, the user ID’s secret value CL-SVID ∈ SCL. It outputs
the public key CL-PKID∈ PKCL.

5. CL-Sign(m, CL-params, CL-mpk, ID, CL-SVID, CL-PKID, CL-PPKID)
→ CL-σ.
This algorithm takes as input the message m to be signed, system parameter
CL-params, the master public key CL-mpk, an identity ID, this identity’s
secret value CL-SVID ∈ SCL, public key CL-PKID and partial private key
CL-PPKID. It outputs a certificateless signature CL-σ.

6. CL-Verify(CL-mpk, CL-params, ID, CL-PKID, (m, CL-σ)) → {true,
false}.
This algorithm takes as input the master public key CL-mpk, system pa-
rameter CL-params, an identity ID, this identity’s public key CL-PKID

and a message/signature pair (m, CL-σ). It outputs true if the signature is
correct, or false otherwise.

Remark. In general, KGC (Key Generation Center) performs the algorithms
CL-Setup and CL-PPKExtract, the user runs the algorithms CL-SSValue, CL-
SPKey and CL-Sign. Anyone can runs the algorithm CL-Verify to check the va-
lidity of the signature. To generate the secret value CL-SVID and the public
key CL-PKID, we assume that one does not need to use the partial private key
CL-PPK. Most of CLS schemes satisfy this requirement (e.g., [11,17]).

The correctness requires that signatures generatedby the algorithmCL-Sign can
pass through the check in CL-Verify. That is, CL-Verify(CL-mpk, CL-params, ID,
CL-PKID,(m, CL-Sign(m,CL-params, CL-mpk, ID, CL-SVID, CL-PKID, CL-
PPKID))→ true. Please refer to [11] for security definitions of CLS.

Cryptanalysis of Mu et al.’s and Li et al.’s
Schemes and a Provably Secure ID-Based
Broadcast Signcryption (IBBSC) Scheme

S. Sharmila Deva Selvi, S. Sree Vivek�, Ragavendran Gopalakrishnan,
Naga Naresh Karuturi��, and C. Pandu Rangan�

Indian Institute of Technology Madras
Theoretical Computer Science Laboratory

Department of Computer Science and Engineering
Chennai, India

{sharmila,svivek,ragav,nnaresh,prangan}@cse.iitm.ac.in

Abstract. In applications like wireless content distribution, a central
authority needs to deliver encrypted data to a large number of recipients
in such a way that only a privileged subset of users can decrypt it.
In addition, to avert junk content or spam, subscribers must have
source authentication with respect to their broadcasters. The limited
memory and computational power of mobile devices, coupled with
escalating costs of wireless bandwidth make efficiency a major concern.
Broadcast signcryption, which enables the broadcaster to simultaneously
encrypt and sign the content meant for a specific set of users in a
single logical step, provides the most efficient solution to this dual
problem of confidentiality and authentication. It is arguably most
efficiently implemented in the ID-based setting because of its well
known advantages. Only three IBBSC schemes exist in literature, one
of which has already been shown to be flawed and its security leaks
fixed. In this paper, we show that the remaining two — Mu et al.’s
scheme and Li et al.’s scheme are also flawed. Specifically, we show that
while Mu et al.’s scheme is insecure with respect to unforgeability, Li
et al.’s scheme can be totally broken (with respect to both unforge-
ability and confidentiality). Following this, we propose a new IBBSC
scheme and formally prove its security under the strongest existing
security models for broadcast signcryption (IND-CCA2 and EUF-CMA).

Keywords: Signcryption, Cryptanalysis, ID-based Cryptosystem,
Broadcast Encryption, Provable Security, Random Oracle, Bilinear
Pairing.

� Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-
cure Communication and Computation sponsored by Department of Information
Technology, Government of India.

�� Work supported by Project No. CSE/05-06/075/MICO/CPAN on Foundation
Research in Cryptography sponsored by Microsoft Research India.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 115–129, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

116 S.S.D. Selvi et al.

1 Introduction

With the advent of mobile and portable devices such as cell phones and PDAs
used in wireless networks, accessing multimedia content through these devices
in the wireless network is increasingly popular. On the other hand, a wireless
network is much easier to eavesdrop than a wired network. Therefore, the need
to securely deliver multimedia content to the user over a wireless network is be-
coming more important and critical. Furthermore, wireless communication is a
good way to broadcast messages to many users in one go. The most efficient way
to broadcast information securely is through a broadcast encryption scheme in
which a broadcaster can send secure information to dynamic selective recipients
such that no other recipients outside the set could recover the secret informa-
tion. A broadcasting news channel may face this problem, for example, when a
large number of people subscribe to a daily exclusive news feature. Normally, a
broadcast encryption scheme is used to distribute a session key to many users
and the intended users would be able to recover the session key, which is used
to decrypt encrypted multimedia content sent by a broadcaster.

In many applications, it is also desirable that the users have source authen-
tication with respect to their broadcaster, in order to eliminate spam content.
Continuing the example of the news channel, if all the users who subscribe
to the news feed receive meaningless noise or any unwanted content, then the
broadcaster is going to lose them. This results in the need for authenticated
broadcast encryption, otherwise known as broadcast signcryption. The efficiency
of a broadcast signcryption scheme is mainly measured by three parameters —
length of transmission messages, storage cost, and computational overhead at a
user device. All these parameters are extremely important to mobile devices as
they have limited memory and computational power as compared to a personal
computer, and wireless bandwidth is extremely costly. Identity-based (ID-based)
schemes are the most suited for meeting these restrictions, because of the unique
advantage that they provide — the public key of a user can be computed from
any publicly available parameter of that user that is unique to him, thereby
eliminating the complex public key infrastructure that would otherwise have to
be employed.

Related Work. The area of broadcast signcryption or authenticated broadcast
encryption is relatively new compared to its parent primitives, namely signcryp-
tion and broadcast encryption. Some of the broadcast signcryption schemes that
have been proposed in the recent past are [1,3,7]. In the ID-based setting, to
the best of our knowledge, only three such schemes exist till date. In 2004, Bo-
hio et al. [2] and Mu et al. [5] proposed two IBBSC schemes. The third scheme
was proposed by Li et al. [4] in 2008. In Bohio et al.’s scheme, a secret value
must be established apriori among the users before the protocol is initiated.
Hence, though the scheme achieves constant size ciphertexts, the set of receivers
is essentially static. This scheme cannot therefore be strictly viewed as a broad-
cast encryption scheme. Nevertheless, flaws have been discovered and fixed by
Sharmila et al. [6]. Coming to Mu et al.’s scheme, the authors have proven their

Cryptanalysis and Improvement of Two IBBSC Schemes 117

scheme secure against two types of attacks called insider attack and outsider
attack. In the former, they show that a legal user of the system cannot find
the secret key of the broadcaster and in the latter, they show that an external
adversary cannot decrypt and recover the encrypted message. As far as authen-
tication is concerned, though they claim their scheme to be unforgeable, they do
not prove it formally. Li et al. claim their scheme to be secure with respect to
authentication as well as confidentiality, but prove neither formally.

Our Contribution. We standardize the formal framework for IBBSC and the
security models for confidentiality and authentication for IBBSC (which we call
IND-IBBSC-CCA2 and EUF-IBBSC-CMA respectively). We take up two IBBSC
schemes that have been proposed — one by Mu et al.1 [5] and another by Li et
al. [4]. Though Mu et al. claim their scheme to be unforgeable, they do not prove
it formally. We demonstrate a universal forgeability attack on their scheme —
any legal user, on receiving and decrypting a valid ciphertext from a broadcaster,
can generate a valid ciphertext on any message on behalf of that broadcaster
for the same set of legal receivers to which the broadcaster signcrypted the
earlier message, without knowing any secrets. Li et al. claim that their scheme
provides message authentication and confidentiality, though they prove neither
property formally. We demonstrate that any eavesdropper or non-privileged user
can decrypt the signcrypted ciphertext of a broadcaster. Further, we show how
their scheme can be totally broken by demonstrating how a legitimate user can
recover the secret key of his broadcaster on seeing a valid signcryption. Following
this, we also propose a new IBBSC scheme as a fix to Li et al.’s faulty scheme,
which we formally prove the secure under the strongest existing security models
for broadcast signcryption (IND-CCA2 and EUF-CMA).

Organization. The rest of this paper is structured as follows. In Section 2,
we review the underlying cryptographic concepts that are involved like bilinear
pairings and the related computational problem. In Section 3, we present the
general framework for ID-based Broadcast Signcryption (IBBSC) and its formal
security models for authentication as well as confidentiality. Next, in Section
4, we review the ID-based Authenticated broadcast encryption scheme of Mu
et al. We present our insider universal forgeability attack on this scheme in
Section 5. In Section 6, we review Li et al.’s IBBSC scheme. Our attacks on
this scheme come next in Section 7. Following this, in Section 8, we lay out the
details of our new IBBSC scheme. We present the formal proof of confidentiality
of our improved scheme in Section 9. The proof of unforgeability is presented in
the full version of this paper. The proofs are presented in the strongest existing
security models for IBBSC. In Section 11, we discuss the efficiency of our scheme.
Finally, in Section 12, we conclude the discussion and pose some interesting open
problems.

1 Though they call their scheme as an authenticated broadcast encryption scheme, it
achieves the same security goals as broadcast signcryption and hence, their scheme
is also a broadcast signcryption scheme.

118 S.S.D. Selvi et al.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2
be a multiplicative cyclic group of the same order q. A bilinear pairing is a map
ê : G1 ×G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈ G1,

• ê(P + Q, R) = ê(P, R)ê(Q, R)
• ê(P, Q + R) = ê(P, Q)ê(P, R)
• ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) �= IG2 , where
IG2 is the identity element of G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for
all P, Q ∈ G1.

2.2 Computational Diffie-Hellman Problem (CDHP)

Given (P, aP, bP) ∈ G3
1 for unknown a, b ∈ Z∗

q , the CDH problem in G1 is to
compute abP .

Definition. The advantage of any probabilistic polynomial time algorithm A
in solving the CDH problem in G1 is defined as

AdvCDH
A = Pr

[
A(P, aP, bP) = abP | a, b ∈ Z

∗
q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

3 ID-Based Broadcast Signcryption (IBBSC)

In this section, we present the general framework for IBBSC along with the
formal security model that addresses the security properties of confidentiality
and authentication.

3.1 Framework of ID-Based Broadcast Signcryption (IBBSC)

A generic ID-based broadcast signcryption scheme for sending a single message
from a broadcaster to t users consists of the following probabilistic polynomial
time algorithms.

1. Setup(k). Given a security parameter k, the Private Key Generator (PKG)
generates the public parameters params and master secret key msk of the
system.

Cryptanalysis and Improvement of Two IBBSC Schemes 119

2. Keygen(IDA). Given an identity IDA, the PKG, using the public param-
eters params and the master secret key msk, computes the corresponding
private key SA and transmits it to A in a secure way.

3. Signcrypt(m, IDA,L = {ID1, ID2, . . . , IDt} , SA). To send a message m
to t users with identities (ID1, ID2, . . . , IDt), the broadcaster A with iden-
tity IDA and private key SA runs this algorithm to obtain the signcrypted
ciphertext σ.

4. Designcrypt(σ, IDA, IDi, Si). When user i with identity IDi and private
key Si receives the signcrypted ciphertext σ from his broadcaster A with
identity IDA, he runs this algorithm to obtain either the plain text m or
⊥ according as whether σ was a valid signcryption from identity IDA to
identity IDi or not.

For consistency, if σ = Signcrypt (m, IDA, {ID1, ID2, . . . , IDt}, SA), then we
require that for all 1 ≤ i ≤ t, m = Designcrypt (σ, IDA, IDi, Si).

3.2 Security Model for ID-Based Broadcast Signcryption

The two security properties that are desired out of any IBBSC scheme are mes-
sage confidentiality and unforgeability. We formally extend the existing strongest
security notions for encryption and digital signatures (IND-CCA2 and IND-CMA
respectively) to IBBSC below.

Indistinguishability under Adaptive Chosen Ciphertext Attack for
IBBSC (IND-IBBSC-CCA2). An ID-based broadcast signcryption scheme
is semantically secure against adaptive chosen ciphertext attack (IND-IBBSC-
CCA2) if no probabilistic polynomial time adversary A has a non-negligible
advantage AdvCCA2

IBBSC in the following game.

1. The adversary A submits to the challenger the set of identities of the re-
ceivers L = {ID1, ID2, . . . , IDt} on which he wishes to be challenged. The
challenger C then runs Setup(k) and sends the system public parameters
params to the adversary A.

2. In the first phase, A makes polynomially bounded number of queries to the
following oracles.
(a) Keygen Oracle — A produces an identity ID and queries for the secret

key of ID. The Keygen Oracle returns SID to A.
(b) Signcrypt Oracle — A produces a message m, broadcaster iden-

tity IDA and a list of receiver identities ID1, ID2, . . . , IDt. C returns
σ = Signcrypt (m, IDA, {ID1, ID2, . . . , IDt} , SA), the signcrypted ci-
phertext, to A, where the secret key SA is computed from Keygen(IDA).

(c) Designcrypt Oracle — A produces a broadcaster identity IDA, re-
ceiver identity IDi and a signcryption σ. The challenger C returns to A,
the result of Designcrypt (σ, IDA, IDi, Si), where the secret key Si is
computed from Keygen(IDi). The result returned is ⊥ if σ is an invalid
signcrypted ciphertext from IDA to IDi.

120 S.S.D. Selvi et al.

3. A produces two messages m0 and m1 of equal length from the message
space M and an arbitrary broadcaster identity IDA. The adversary must
not have queried any of the t receivers’ secret keys. The challenger C flips
a coin, sampling a bit b ← {0, 1} and obtains the challenge signcrypted
ciphertext by running Signcrypt (mb, IDA, {ID1, ID2, . . . , IDt} , SA), which
is returned to A.

4. A is allowed to make polynomially bounded number of new queries as in
Step 2 with the restrictions that it should not query the Designcryption
Oracle for the designcryption of σ∗ or the Keygen Oracle for the secret keys
of ID1, ID2, . . . , IDt.

5. Finally, A outputs a bit b′ and wins the game if b′ = b. The advantage of the
adversary in winning this game is given by AdvCCA2

IBBSC = |Pr[b′ = b]− 1
2 |

We mention that this model of security takes into account collusion resistance
too, because we provide the adversary with the secret keys of every user of the
system except the ones he attacks.

Existential Unforgeability under Adaptive Chosen Message Attack for
IBBSC (EUF-IBBSC-CMA). An ID-based broadcast signcryption scheme
is existentially unforgeable under adaptive chosen message attack (EUF-IBBSC-
CMA) if no probabilistic polynomial time adversary A has a non-negligible ad-
vantage AdvCMA

IBBSC in the following game.

1. The adversary A submits to the challenger, the identity of the target broad-
caster IDA whose signcryption he aims to forge (for an arbitrary message).
The challenger C then runs Setup(k) and sends the system public parameters
params to the adversary A.

2. In the first phase, A makes polynomially bounded number of queries to the
following oracles.
(a) Keygen Oracle — A produces an identity ID and queries for the secret

key of ID. The Keygen Oracle returns SID to A.
(b) Signcrypt Oracle — A produces a message m, broadcaster iden-

tity IDA and a list of receiver identities ID1, ID2, . . . , IDt. C returns
σ = Signcrypt (m, IDA, {ID1, ID2, . . . , IDt} , SA), the signcrypted ci-
phertext, to A, where the secret key SA is computed from Keygen(IDA).

(c) Designcrypt Oracle — A produces a broadcaster identity IDA, re-
ceiver identity IDi and a signcryption σ. The challenger C returns to A,
the result of Designcrypt (σ, IDA, IDi, Si), where the secret key Si is
computed from Keygen(IDi). The result returned is ⊥ if σ is an invalid
signcrypted ciphertext from IDA to IDi.

3. A produces a signcrypted ciphertext σ from the broadcaster IDA to the list
of his receivers L and wins the game if the private key of broadcaster IDA

was not queried and ⊥ is not returned by Designcrypt(σ, IDA, IDi, Si) for
any IDi ∈ L and σ is not the output of a previous query to the Signcrypt
Oracle. The advantage of the adversary in winning this game is given by
AdvCMA

IBBSC = Pr[Designcrypt(σ, IDA, IDi, Si) �= ⊥ | IDi ∈ L]

Cryptanalysis and Improvement of Two IBBSC Schemes 121

We mention that this model of security takes into account collusion resistance
too, because we allow the adversary to query for the secret keys of any entity.

4 Overview of IBBSC Scheme of Mu et al.

Mu et al.’s IBBSC scheme [5] consists of the three algorithms Keygen (which
includes Setup as well), Encrypt and Decrypt, which we describe below.

1. KeyGen(k, nb, n). Here, k is a security parameter, nb is the number of
broadcasters and n is the number of users in the system.

(a) Broadcaster Setup
i. Select master private keys si ∈ Zq for all broadcasters Bi (i =

1, . . . , nb).
ii. Select three strong public one-way hash functions H1 : {0, 1}∗ →

G1, H2 : {0, 1}∗ → {0, 1}k, H3 : {0, 1}∗ → Zq.
iii. Extract the public keys QBi ← H1(IDBi), where IDBi (i =

1, . . . , nb) are the unique identifiers of broadcasters.
iv. Compute the private keys of the broadcasters SBi ← siQBi and

S̄Bi ← siP .
(b) User Setup

i. Select xi ∈ Zq, i = 1, · · · , n and assign each of {xi} to a user. Assign
{xi}1≤i≤n to all broadcasters.

2. Signcrypt(L, IDBi , m). Here, L = {1, 2, . . . , t} where t ≤ n is the number
of privileged users to whom broadcaster Bi wishes to send a message m ∈ Zq.
Without loss of generality, we have assumed it is the first t members that
are privileged.

(a) Compute the following.

i.
t∏

j=1
(x− xj), generating a polynomial function f(x) =

t∑
	=0

c	x
	

ii. P0 ← r(c0P + S̄Bi), P1 ← c1rP, . . . , Pt ← ctrP
iii. k ← ê(P, r2SBi)
iv. y ← m⊕H3(k)
v. X ← r(r −H2(y))SBi

(b) Broadcast (y, X, IDBi , P0, . . . , Pt)

3. Designcrypt(y, X, IDBi, IDj , xj , P0, . . . , Pt). Here, (y, X, IDBi , P0, . . . , Pt)
is the ciphertext received by a member with identity IDj whose secret value
is xj .

(a) Compute D ←
t∑

	=0
x	

jP	.

(b) Compute k ← ê(P, X) · ê(D , H2(y)QBi).
(c) Compute m ← H3(k)⊕ y.

122 S.S.D. Selvi et al.

5 Attack on IBBSC Scheme of Mu et al.

Mu et al. claimed that their scheme provides both confidentiality and unforge-
ability. They prove the former rigorously, but do not give the formal proof for
unforgeability. We show in this section that their scheme is universally forge-
able which is a major attack. Once a legitimate user gets a ciphertext from the
broadcaster (intended for a set of users) and decrypts it (being a member of the
intended set), he can generate a valid ciphertext for any message m∗ as if it were
generated by the broadcaster for the same set of users. We describe how this
attack proceeds in this section.

Let Alice be a broadcaster with identity IDBi of the system and Eve be any
legitimate user. Eve has just received a ciphertext, say (y, X, IDBi , P0, · · · , Pt)
and decrypts it (we assume that Eve is present in the set L = {1, 2, . . . , t}). If
Eve wants to generate the ciphertext of any message m∗ as if it were generated
by Alice for the same list L, with identities ID1, ID2, . . . , IDt, Eve just has to
do the following.

1. As a result of decrypting the ciphertext, Eve gets the value of D = rS̄Bi .
2. Choose r∗ ∈R Z∗

q and compute the following.
(a) P ∗ = P0 −D + r∗P = rC0p + r∗P
(b) k∗ = ê(r∗P, P)
(c) y∗ = m∗ ⊕H3(k)
(d) X∗ = r∗P − r∗H2(y)QBi

3. (y∗, X∗, IDBi , P
∗
0 , P1, P2, . . . , Pt) is now a valid ciphertext of Alice for

the message m∗ generated by Eve for the list of users L with identities
{IDj}1≤j≤t

We now prove that the ciphertext generated by Eve is indeed a valid ciphertext
from Alice to the receivers in L on the message m∗.

Decrypt(y∗, X∗, IDBi , IDj , xj , P
∗
0 , . . . , Pt). A receiver with identity IDj uses

his secret value xj to decrypt the ciphertext (y∗, X∗, IDBi , P
∗
0 , P1, P2, . . . , Pt)

obtained from Eve as follows. He computes the following.

1. D∗ ←
t∑

	=0
x	

jP	 = r∗P

2. k∗ ← ê(P, X∗) · ê(D∗ , H2(y∗)QBi) = ê(r∗P, P)
3. m∗ ← H3(k)⊕ y∗

From this it is clear that Eve can succeed in generating a ciphertext for an
arbitrary message m∗ with Alice as sender and identities IDj , 1 ≤ j ≤ t as
receivers without knowing the secret key of Alice and only knowing a previous
valid ciphertext from Alice to this set of users and its decryption.

6 Overview of IBBSC Scheme of Li et al.

The IBBSC scheme of Li et al. [4] consists of the following algorithms.

Cryptanalysis and Improvement of Two IBBSC Schemes 123

1. Setup The steps in the setup phase are given below.
(a) The security parameter of the scheme is k. The trusted authority chooses

two groups G1 and G2 of prime order q, where |q| = k, a genera-
tor P of G1, a bilinear map ê : G1 × G1 → G2 and hash functions
H0 : {0, 1}k1 → G1, H1 : {0, 1}k0+k2 → Z∗

q and H2 : G2 → {0, 1}k0+k2 ,
where k0, k1 and k2 are the number of bits required to represent a G1
element, an identity and a message respectively. The master private keys
are si ∈R Z∗

q and the master public keys are P i
pub = siP , one for each

broadcaster i = 1, 2, . . . , nb. The public parameters of this scheme are
〈G1, G2, nb, n, ê, P, P 1

pub, P
2
pub, . . . , ..., P

m
pub, H0, H1, H2〉. Here, nb and n

represent the number of broadcasters and the number of users respec-
tively.

(b) The public keys of the broadcasters Bi with identities IDBi are QBi =
H0 (IDBi) and their private keys are SBi = siQBi .

(c) Select xj ∈ Z∗
q for 1 ≤ j ≤ n and assign each xj to a user. Publish

{xj}1≤j≤n to all broadcasters.

2. Signcrypt To sign a message m, broadcaster Bi does the following.
(a) Select a subset of {xj} and denote it by

{
x′

j

}
1≤j≤t

and these elements
are associated with the t users who are entitled to receive the message.

(b) Compute Πt
j=1

(
x− x′

j

)
and generate a polynomial function f(x) =

t∑
	=0

c	x
	. It is to be noted that f(x′

j) = 0 for 1 ≤ j ≤ t.

(c) Choose r ∈R Z∗
q and compute X = rQBi , P0 = r(c0P +SBi), P1 = c1rP ,

. . ., Pt = ctrP .
(d) Compute h1 = H1(X‖m) and Z = (r + h1)SBi .
(e) Compute ω = ê (rSBi , P).
(f) Compute y = H2 (ω)⊕ (Z‖m).
(g) Broadcast the signcrypted ciphertext 〈X, y, IDBi , P0, . . . , Pt〉.

3. Designcrypt The user j decrypts 〈X, y, IDBi, P0, . . . , Pt〉 by performing
the following computations.

(a) Compute D =
t∑

	=0

(
x′

j

)	
P	.

(b) Compute ω = ê(P, D).
(c) Compute Z‖m = y ⊕H2(ω).
(d) Compute h1 = H1(X‖m).
(e) Return the message m if ê(Z, P) = ê(P i

pub , X + h1QBi), else return ⊥.

7 Attacks on IBBSC Scheme of Li et al.

The ID-based broadcast signcryption scheme proposed by Li et al. in [4] claims
to resolve the problems of both authentication and confidentiality by combining
broadcast encryption and signcryption. The authors fail to prove either claim
formally. We show that this scheme actually provides neither confidentiality nor
authentication. In fact, in both properties, the worst possible attacks (complete
recovery of encrypted message and exposure of secret key) can be successfully
mounted on this scheme.

124 S.S.D. Selvi et al.

7.1 Attack on Confidentiality

Anybody who has the public parameters of the system can decrypt the message
that is sent by the broadcaster, not just the intended receiver. This is because,
in the Signcrypt algorithm, the value ω is being calculated as ω = ê (rSBi , P). Li
et al. claim that only a legitimate user can recover D = rSBi by evaluating the
summation and then use it to compute ω as ω = ê (D, P). But any adversary
who eavesdrops on the broadcasted signcryption knows the value of X = rQBi .
Also, P i

pub = siP is a public parameter. So, an adversary need not find D from

the summation to compute ω. He can simply compute ω as ω = ê
(
X, P i

pub

)
=

ê (rQBi , siP) = ê (rSBi , P), because SBi = siQBi . And once the adversary gets
ω, it is trivial to retrieve the message as Z‖m = y ⊕H2(ω).

7.2 Attack on Authentication

In this scheme the secret key of the broadcaster is exposed during designcryption
process. Once the secret key of the broadcaster is obtained, any user can forge
the signcryptions of the broadcaster. This is the worst possible attack that can
be mounted on any scheme. If a message m is broadcasted to t users under that
broadcaster, it can be shown that all the t users can compute the secret key SBi

of the broadcaster. This total break can be achieved by doing the following.
Any legitimate user Alice can get the values of D and Z during the designcryp-

tion process of a valid signcrypted ciphertext by following the normal protocol
as follows.

1. D =
t∑

	=0
(x′

Alice)
	P	 = rSBi .

2. Compute ω = ê(P, D).
3. Z‖m = y ⊕H2(ω) from which he can obtain Z.

We know that Z = (r + h1)SBi , therefore Z−D = h1SBi . Using the component
X of the ciphertext and the message m, the user computes h1 = H1(X‖m). Now
SBi = h−1

1 · (Z −D).

8 Improved ID-Based Broadcast Signcryption Scheme

In this section, we propose an improved IBBSC scheme as a fix for the faulty
scheme of Li et al. We follow the framework of a general ID-based broadcast sign-
cryption scheme that we presented in Section 3.1. The algorithms that comprise
our scheme are described below.

Setup(k) — Let k be the security parameter of the system. Let G1 and G2 be
two groups of prime order q (where |q| = k) and let P be the generator of G1 and
ê be a bilinear map defined as ê : G1×G1 → G2. Let n0, n1, n2 and n3 denote the
number of bits required to represent an identity, an element of G1, an element of
G2 and a message respectively. Consider four hash functions H0 : {0, 1}n1 → Z

∗
q ,

Cryptanalysis and Improvement of Two IBBSC Schemes 125

H1 : {0, 1}n0 → G1, H2 : {0, 1}n0+2n1+n3 → Z∗
q , H3 : {0, 1}n2 → {0, 1}n1+n3 .

The master private keys are si ∈R Z∗
q and the master public keys are P i

pub = siP ,
one for each broadcaster i = 1, 2, . . . , nb. s ∈R Z∗

q and Ppub = sP function as
a global master private and public keys. The public parameters of this scheme
are 〈G1, G2, nb, n, ê, P, Ppub, P

1
pub, P

2
pub, . . . , P

m
pub, H0, H1, H2, H3〉. Here, nb and

n represent the number of broadcasters and the number of users respectively.

Keygen(ID) — Depending on whether ID is the identity of a broadcaster or
a user, this algorithm performs the following functions.

– The public keys of the broadcasters Bi with identities IDBi are QBi =
H1 (IDBi) and their private keys are SBi = siQBi .

– The public keys of the users j with identities IDj are Qj = H1 (IDj) and
their private keys are Sj = sQj.

In addition, when a user j joins or subscribes to a broadcaster Bi, he sends his
precomputed (he would compute it the first time he subscribes to a broadcaster)
secret value xj = H0 (Sj) to that broadcaster.

Signcrypt(m, IDBi , {ID1, ID2, . . . , IDt} , SBi) — To signcrypt a message m
to t of his users with identities ID1, ID2, . . . IDt, a broadcaster Bi does the
following.

1. Compute the polynomial f(x) =
t∏

j=1
(x−xj) =

t∑
j=0

cjx
j , where xj was derived

by the user j from his secret key — xj = H0 (Sj).
2. Choose r ∈R Z∗

q and compute the following.
(a) X = rQBi

(b) P0 = rc0P + X, P1 = rc1P, . . . , Pt = rctP
(c) h2 = H2 (IDBi‖X‖P0‖m)
(d) Z = (r + h2)SBi

(e) ω = ê(X, siP)
(f) y = H3(ω)⊕ (Z‖m)

3. Broadcast the signcrypted ciphertext σ = (y, IDBi , P0, P1, . . . , Pt).

Designcrypt(σ, IDj , Sj) — A user j, where 1 ≤ j ≤ t, on receiving the sign-
crypted ciphertext σ = (y, IDBi , P0, P1, . . . , Pt), to designcrypt, he does the
following.

1. He computes the following.
(a) X ′ =

∑
 = 0tP	x

	
j , where xj = H0 (Sj).

(b) ω′ = ê (X ′, siP)
(c) Z ′‖m′ = y ⊕H3(ω′)

2. Return the message m′ if ê (Z ′, P) = ê (X ′ + H ′
2QBi , siP), where h′

2 =
H2 (IDBi‖X ′‖P0‖m′).

It is easy to see that our scheme is correct. In the next section, we prove the con-
fidentiality of our improved scheme. We prove the unforgeability of our scheme
in the full version.

126 S.S.D. Selvi et al.

9 Proof of Confidentiality of Our IBBSC Scheme

Theorem. Our improved ID-based broadcast signcryption scheme is secure
against any IND-IBBSC-CCA2 adversary A under the random oracle model if
CDHP is hard in G1.

Proof. The challenger C receives an instance (P, aP, bP) of the CDH prob-
lem. His goal is to determine the value of abP . Suppose there exists an IND-
IBBSC-CCA2 adversary A for our improved scheme. We show that C can
use A to solve the CDH problem. C will set the random oracles OH0 , OH1 ,
OH2 , OH3 , OKeyExtract, OSigncrypt and ODesigncrypt. The answers to the or-
acles OH0 , OH1 , OH2 , and OH3 are randomly selected; therefore, to maintain
consistency, C will maintain four lists L0 = 〈R, ω〉, L1 = 〈IDi, xi, x̂i, Si, Qi〉,
L2 = 〈ID, X, P0, m, h2〉, and L3 = 〈ω, h3〉. The reasons for and mean-
ings of the elements of these lists will become clear during the discus-
sion of the corresponding oracles. We assume that A will ask for H1(ID)
before ID is used in any key extraction, signcryption and designcryption
queries. First, the adversary A outputs a list L = {ID1, ID2, . . . , IDt∗}
of the members whom he proposes to attack. Let there be nb broadcast-
ers B1, B2, . . ., Bnb

. Then, the challenger C gives A the system parameters
〈G1, G2, nb, n, ê, P, Ppub, P

1
pub, P

2
pub, . . . , P

nb

pub, H0, H1, H2, H3〉, where Ppub = aP

and si ∈R Z∗
q and P i

pub = siP . The descriptions of the oracles follow.

Oracle OH0(R). This oracle scans the list L1 and does the following for every
entry of IDi.

1. Check if IDi’s entry has an Si that is equal R. If yes, then do the following.
(a) Check if IDi ∈ L and ê(R, P) = ê(aP, bP)x̂i

(b) If so, it means that the adversary is querying for the hash of the secret
key of one of the users in L. That is, R = abx̂iP . The challenger then
aborts this simulation, and returns the answer to the CDH problem as
R. x̂−1

i .
(c) If not, then return xi.

2. If not, then browse through the list L0 for any entry (R, h0). If there is
such an entry, then return h0. If there is no such entry, then select a new2

h0 ∈R Z∗
q , add the tuple (R, h0) to L0 and return h0.

Oracle OH1(ID). C checks if there exists a tuple (ID, xID, x̂ID, SID, QID) in
L1. If such a tuple exists, C answers with Qi. Otherwise, C does the following.

1. If ID is a broadcaster’s identity, say IDBi , then choose a new x̂ID ∈R Z∗
q

and x̂ID ∈R Z∗
q , and set QID = x̂IDP , SID = x̂IDsiP .

2. If ID /∈ L and is a user’s identity, choose a new xID ∈R Z∗
q and x̂ID ∈R Z∗

q ,
and set QID = x̂IDP , SID = x̂IDaP .

2 By new, we mean that the random value chosen must not have been already chosen
during an earlier execution.

Cryptanalysis and Improvement of Two IBBSC Schemes 127

3. If ID ∈ L, choose a new xID ∈R Z∗
q and x̂ID ∈R Z∗

q , and set QID = x̂IDbP ,
SID = ⊥.

4. Add (ID, xID, x̂ID, SID, QID) to the list L1 and return QID.

Oracle OH2 (ID‖X‖P0‖m). C checks if there exists a tuple (ID, X, P0, m, h2)
in L2. If such a tuple exists, C returns h2. Otherwise, C chooses a new h2 ∈R Z∗

q ,
adds the tuple (ID, X, P0, m, h2) to L2 and returns h2.

Oracle OH3 (ω). C checks if there exists a tuple (ω, h3) in L3. If such a tuple
exists, C returns h3. Otherwise, C chooses a new h3 ∈R {0, 1}n1+n3 , adds the
tuple (ω, h3) to L3 and returns h3.

Oracle OKeyExtract(ID). If L1 does not contain an entry for ID, return ⊥.
Otherwise, C recovers the tuple (ID, xID, x̂ID, SID, QID) from L1 and returns
SID.

Oracle OSigncrypt (m, IDBi , {ID1, ID2, . . . , IDt}). On receiving this query, C
checks if there is an entry for IDBi and all the IDjs in L1. If not, then C
aborts. Otherwise, C retrieves (IDBi , xBi , x̂Bi , SBi , QBi) from L1, and executes
Signcrypt(m, IDBi , {ID1, ID2, . . . , IDt} , SBi) as usual and returns what the
signcryption algorithm returns. For the signcryption algorithm, the challenger
retrieves the entries of these t users from list L1 and uses the xj values in
them.

Oracle ODesigncrypt (σBi , IDj). The challenger C, on receiving the signcryp-
tion σBi = (y, IDBi , y, P0, P1, . . . , Pt), first checks if there are entries for IDBi

and IDj in L1. If not, then C returns ⊥. Otherwise, C retrieves the entry
(IDj , xj , x̂j , Sj, Qj) from L1 and executes Designcrypt(σBi , IDj, Sj) in the
normal way and returns what the designcryption algorithm returns.

After the first query stage,A outputs two plaintext messages m0 and m1 of equal
length and provides a broadcaster’s identity IDB. Now, C chooses a random
bit b ∈ {0, 1}, retrieves (IDB, xB, x̂B , SB, QB) from L1, and executes Sign-
crypt(mb, IDB,L, SB) as usual and returns what the signcryption algorithm
returns as the challenge signcrypted ciphertext.
A can perform queries as above. However, it cannot query the designcryption

oracle with the challenge signcryption. At the end of the simulation, A outputs
a bit b′ for which he believes that the challenge signcryption is the signcryption
of mb′ from IDB to its subscribers. The only way the adversary can win the
game, other than by guessing, is by decrypting the signcrypted ciphertext using
one of the t users’ secret keys. This is because, to gain any information from the
ciphertext y, he needs to know about ω, for which he must know the xj of one
of the users. And since xj is a result of a hash function, he must know the input
to the hash function, namely the secret key of the user j. So, if the adversary
has a non-negligible advantage of winning this game, then with a non-negligible
probability, he must have queried the oracle OH0 with the secret key of one of
the t users. And, once this query is made, the challenger can get the value of
abP , as described in the description of OH0 above.

128 S.S.D. Selvi et al.

10 Proof of Unforgeability of Our IBBSC Scheme

Theorem. Our ID-based broadcast signcryption scheme is secure against any
EUF-IBBSC-CMA adversary A under the random oracle model if CDHP is hard
in G1.

Proof. The proof is presented in the full version of this paper.

11 Efficiency of Our IBBSC Scheme

In this section, we discuss the efficiency of the improved IBBSC scheme. The
major parameters involved are the computation costs for signcryption and de-
signcryption operations, the communication cost and the storage at the user’s
end. For computational cost, we consider the number of pairing computations
performed, as they are the costliest operations involved. Our improved scheme
performs one pairing computation during Signcrypt and three per user during
Designcrypt, which is the same as that of Li et al.’s scheme, and one more than
that of Mu et al.’s scheme. For the communication cost, we still have to broad-
cast O(t) group elements if the number of subscribers is t. Coming to storage
cost, we consider the storage at both the broadcaster and user. The broadcaster
has to store information about every subscriber and so the storage cost for him
is O(t). Users do not have to store anything other than their secret keys and
precomputed secrets. An added advantage of our scheme over Li et al.’s scheme
is that users have the option of registering to their preferred subscribers, whereas
in Li et al.’s scheme, the xj values of users are published to all broadcasters in the
Setup phase itself. Also, no matter how many broadcasters a user j subscribes
to, he need only maintain one precomputed secret value xj .

12 Conclusion

In this paper, we have considered the problem of secure and authenticated con-
tent distribution over large networks, especially wireless networks, which, on
one hand, are increasingly becoming popular choices for the modern civilization,
what with the advent of mobile and portable devices such as cell phones and
PDAs, and on the other hand, are much easier to eavesdrop than wired networks.
ID-based broadcast signcryption schemes provide the solution to this problem
and in the context of mobile devices being the computers at the end users, the ef-
ficiency of such schemes becomes very important — there is limited memory and
computational power that is available. First, we have demonstrated an existen-
tial forgery attack on Mu et al.’s scheme and a total break of Li et al.’s scheme.
Following this, we have proposed an improved IBBSC scheme to fix the security
leak of Li et al’s scheme and also proven its IND-CCA2 and EUF-CMA security
formally in the random oracle model. These are the strongest existing security
notions for message confidentiality and authentication respectively. Our scheme
performs no worse than Li et al.’s scheme. In fact, we enhance the flexibility of
their scheme by allowing users to join broadcasters of their choice.

Cryptanalysis and Improvement of Two IBBSC Schemes 129

Future Work. Our improved scheme suffers from the fact that the size of
the signcryption that is to be broadcasted is linear in the number of privileged
users to whom the broadcaster intends to send the content. In the context of
mobile networks, it would be a phenomenal improvement if this can be made
constant size or even logarithmic in the number of privileged users. When looking
at the number of pairing computations that are involved in the scheme, it is
worthwhile to see if the number of pairing computations can be further reduced
during designcryption, though it seems unlikely to be able to do so without
compromising the security of the system. Another drawback of this scheme is
that the coefficients of a t-degree polynomial have to be evaluated everytime a
signcryption operation is done. It would be nice to have an IBBSC scheme where
this calculation is avoided.

References

1. Aparna, R., Amberker, B.B.: Authenticated secure group communication using
broadcast encryption key computation. In: ITNG 2008: Fifth International Con-
ference on Information Technology - New Generations, pp. 348–353 (April 2008)

2. Bohio, M.J., Miri, A.: An authenticated broadcasting scheme for wireless ad hoc
network. In: 2nd Annual Conference on Communication Networks and Services Re-
search (CNSR), pp. 69–74 (2004)

3. Kanazawa, F., Ohkawa, N., Doi, H., Okamoto, T., Okamoto, E.: Broadcast encryp-
tion with sender authentication and its duality. In: International Conference on
Convergence Information Technology 2007, pp. 793–798 (November 2007)

4. Li, F., Xin, X., Hu, Y.: Indentity-based broadcast signcryption. Computer Standards
and Interfaces 30(1-2), 89–94 (2008)

5. Mu, Y., Susilo, W., Lin, Y.-X., Ruan, C.: Identity-based authenticated broadcast
encryption and distributed authenticated encryption. In: Maher, M.J. (ed.) ASIAN
2004. LNCS, vol. 3321, pp. 169–181. Springer, Heidelberg (2004)

6. Sharmila Deva Selvi, S., Sree Vivek, S., Naresh Karuturi, N., Gopalakrishnan, R.,
Pandu Rangan, C.: Cryptanalysis of bohio et al.’s id-based broadcast signcryption
scheme for wireless ad-hoc networks. In: Proceedings of Sixth Annual Conference
on Privacy, Security and Trust, PST 2008 (2008)

7. How Tan, C., Ming Teo, J.C., Amundsen, J.-A.: Authenticated broadcast encryp-
tion scheme. In: AINAW 2007: 21st International Conference Advanced Information
Networking and Applications Workshops, vol. 1, pp. 512–518 (May 2007)

Sanitizable and Deletable Signature�

Tetsuya Izu1, Noboru Kunihiro2,
Kazuo Ohta3, Makoto Sano3, and Masahiko Takenaka1

1 FUJITSU LABORATORIES Ltd.C
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan

{izu,takenaka}@labs.fujitsu.com
2 The University of Tokyo,

5-1-5, Kashiwanoha, Kashiwa, 277-8561, Japan
kunihiro@k.u-tokyo.ac.jp

3 The University of Electro-Communications,
1-5-1, Chofugaoka, Chofu, 182-8585, Japan

ota@ice.uec.ac.jp

Abstract. Recently, the sanitizable signature attracts much attention
since it allows to modify (sanitize) the document for hiding partial in-
formation without keeping the integrity of the disclosed subdocuments.
Sanitizable signatures are quite useful in governmental or military offices,
where there is a dilemma between disclosure laws for public documents
and privacy or diplomatic secrets. Since a verifier can detect whether
the document was sanitized or not, especially which subdocuments was
sanitized, the scheme does not establish the perfect hiding. In order to
solve the problem, the deletable signature was introduced in 2006. How-
ever, because these schemes are not compatible to each other, we have to
select the scheme to meet the requirement. In this paper, we propose the
sanitizable and deletable signature as a combination of the sanitizable
signature and the deletable signature. We also establish two concrete
sanitizable and deletable signatures based on the deletable signature by
Miyazaki, Hanaoka and Imai.

Keywords: Digital signature, sanitizable signature, deletable signature,
aggregate signature.

1 Introduction

Recently, governmental entities are forged to disclose documents because of the
disclosure laws. When the document has privacy or diplomatic secrets, in old
day, physical maskings were used for hiding such secrets. However, its analogy
for digital documents are not established yet. In addition, in these days, digi-
tal documents are stored with digital signatures in order to assure the integrity
of documents. Since current signature schemes can not distinguish such appro-
priate alternations on the original document from inappropriate alternations
(forgeries), a direct analogy of physical masking does not work well.
� This research was done while the first author was partially, and the second author

was fully in the University of Electro-Communications.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 130–144, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Sanitizable and Deletable Signature 131

In order to solve the problem, the sanitizable signature was introduced in
2001 [11], in which, after generating a signer’s signature on an original docu-
ment, specific entities (called sanitizers) can modify the document for hiding
partial information and generate sanitized documents. A verifier confirms the
integrity of disclosed parts of the sanitized document from the signature and
the sanitized document. In addition, the secrecy of sanitized parts is assured,
namely, no information of sanitized parts will be leaked after the sanitizations.
Sanitized signatures are so attractive that many constructions have been pro-
posed [1, 4, 5, 6, 7, 10, 11, 12]. In the sanitizable signature schemes, a verifier
can detect whether the document is sanitized or not, moreover, which subdoc-
uments are sanitized. In other words, the hiding of the sanitizable signature is
not perfect. The deletable signature, introduced in 2006 [9], is a digital signature
scheme in which a subdocument (and corresponding data) can be deleted with-
out keeping the integrity of the remaining subdocuments. Since these schemes
are not compatible to each other, we have to select the scheme to meet various
requirements. In addition, we cannot sanitize and delete on the same document
even with these schemes.

Contribution of this Paper

In this paper, we introduce the sanitizable and deletable signature as a combi-
nation of the sanitizable signature and the deletable signature, in which, after
generating a signer’s signature on an original document (an ordered set of sub-
documents), specific entities, called revisers, are allowed to sanitize or delete sub-
documents for hiding partial information. A verifier checks the integrity of the
disclosed subdocuments. In addition, the secrecy of sanitized or deleted subdoc-
uments is established. We also establish two sanitizable and deletable signatures
SDS1 and SDS2 based on the deletable signature by Miyazaki, Hanaoka and Imai
[9]. In the proposed schemes, each subdocument has a subdocument status such
as SADP (Sanitization Allowed and Deletion Prohibited) or SDA (Sanitized and
Deletion Allowed). Among possible seven subdocument status, SDS1 supports
four (SPDP, SADA, SDA and D) while SDS2 supports six (SPDP, SADP, SDP,
SADA, SDA and D).

2 Preliminaries

This section introduces some signature schemes including the general aggregate
signature by Boneh, Gentry, Lynn and Shacham [2] and the deletable signature
by Miyazaki, Hanaoka and Imai [9].

In this paper, G1, G2, GT are multiplicative cyclic groups with order p (prime)
and g1, g2 are generators of G1, G2 (namely, G1 = 〈g1〉, G2 = 〈g2〉). We assume
that the Computational Diffie-Hellman (CDH) problem in these groups are hard.
Let e be a bilinear map from G1×G2 to GT such that e(ua, vb) = e(u, v)ab for all
u ∈ G1, v ∈ G2, a, b ∈ Z (bilinearity) and e(g1, g2) �= 1 (non-degeneracy). We
also use two cryptographic hash functions H0 : {0, 1}∗ → {0, 1}	 and H : {0, 1}∗
→ G2. H0 is a standard hash function and we assume that a certain value of

132 T. Izu et al.

Algorithm 1. A description of BGLS’s aggregate signature

KeyGen (of the i-th signer)

1. Generate ski
R← Z/pZ randomly and set pki ← gski

2 .
Output: A secret and public key pair (ski, pki) ∈ Z/pZ × G2

Sign (by the i-th signer)
Input: A document Mi ∈ {0, 1}∗ and a secret key ski ∈ Z/pZ

1. Set σi ← H(Mi)ski .
Output: An individual signature σi ∈ G1

Agg
Input: Individual signatures σj1 , . . . , σjk ∈ G1, an aggregate signature σ ∈ G1

1. Set σ′ ← σ × σj1 × · · · × σjk .
Output: An aggregate signature σ′ ∈ G1

AggVerify
Input: Documents M1, . . . , Mn ∈ {0, 1}∗, an aggregate signature σ ∈ G1 and signers’
public keys pk1, . . . , pkn ∈ G2

1. Check whether e(σ, g2) =
∏n

i=1 e(H(Mi), pki) holds. If not, output invalid and
terminate, otherwise output valid and terminate.

is provided implicitly in the following. For a construction of H in the random
oracle model, see [3].

2.1 Aggregate Signature

An aggregate signature is a digital signature in which the special party, called
the aggregator, is allowed to compress n signatures generated by n signers on
n documents into a signature, called the aggregate signature, with the (almost)
same size. A concept of the aggregate signature is introduced by Boneh, Gen-
try, Lynn, and Shacham [2]. They also provided a concrete scheme from bilinear
maps in the same paper as a natural extension of the short signature by Boneh,
Lynn and Shacham [3]. Since a generation of signers’ signatures and an aggre-
gation of signatures are proceeded in separate algorithms, their scheme is called
the general aggregate signature. On the other hand, Lysyanskaya, Micali, Reyzin,
and Shacham provided another aggregate signature scheme from trap-door per-
mutations [8]. Since a generation of signers’ signatures and an aggregation are
proceeded in the same algorithm, their scheme is called the sequential aggre-
gate signature. One of the distinguishing property between the general and the
sequential schemes is that, when an aggregate signature is valid, sequential ver-
ifiers can obtain aggregate signatures output by signers while general verifiers
can not.

Algorithm 1 shows a concrete description of BGLS’s general aggregate signa-
ture, which is the main tool for our sanitizable and deletable signature. Here,
documents M1, . . . , Mn should be distinct in order to avoid the potential attack

Sanitizable and Deletable Signature 133

[2]. Since the aggregate signature σ is multiplicative, one can remove an indi-
vidual signature σi from the aggregate signature σ (in which σi is compressed):
compute σ/σi.

Define some notions for describing the security. A co-CDH problem is a prob-
lem to compute ha ∈ G2 from given g1, ga

1 ∈ G1 and h ∈ G2, while a co-DDH
problem is a decision problem to determine whether a = b or not from given
g1, ga

1 ∈ G1 and h, hb ∈ G2. These problems are generalizations of standard
CDH, DDH problems. A group pair (G1, G2) is called a co-GDH pair if co-CDH
problem is hard, but co-DDH problem is easy. A co-GDH assumption is an as-
sumption that (G1, G2) is a co-GDH pair. In fact, in BGLS’s scheme, since a
bilinear map e is defined over G1 ×G2, co-DDH problem is easily solved.

Let us consider the following game where an adversaryA attempts to forge an
aggregate signature in BGLS’s scheme: in the setup, A receives a randomly gen-
erated public key pk1 ∈ G1. Then, A requests signatures with pk1 on adaptively-
chosen messages to the signing oracle. Finally, A outputs n−1 additional public
keys pk2, . . . , pkn, messages M1, . . . , Mn and an aggregate signature σ. If σ is
valid over M1, . . . , Mn, pk1, . . . , pkn, and M1 is not trivial (namely, A did not
request a signature on M1 with pk1), we consider that the adversary wins the
game (the general aggregate chosen-key model [2]). It is proved that BGLS’s
aggregate signature is secure in the general aggregate chosen-key model under
co-GDH assumption, namely A’s advantage over coin tosses is negligible. For
further security discussions, see [2].

2.2 Sanitizable Signature

A sanitizable signature is digital signature in which, after generating a signer’s
signature on an original document (an ordered set of subdocuments), specific
entities, called sanitizers, are allowed to modify the document by replacing the
contents of subdocuments into their hash values for hiding partial information. A
verifier checks the integrity of disclosed subdocuments of the sanitized document
from the signature and the sanitized document. In addition, the secrecy of closed
subdocuments is established (no information of sanitized subdocuments will be
leaked after the sanitizations). The sanitizable signature is so attractive in many
applications that many constructions have been proposed up to the moment
[1, 4, 5, 6, 7, 9, 10, 11, 12].

These sanitizable signature schemes have a common structure: for a docu-
ment M = (M1, . . . , Mn) be a document, a signer’s signature is generated on a
concatenation h = H0(M1)|| · · · ||H0(Mn). When a sanitizer sanitizes a subdocu-
ment Mi, he replaces Mi by H0(Mi). Since a verifier can obtain all H0(Mi), the
verification will be proceeded. However, because of this structure, it was hard
to delete the subdocument Mi: the sanitizer cannot delete the corresponding
information from the signer’s signature.

2.3 Deletable Signature

The deletable signature is a digital signature in which, after generating a signer’s
signature on an original document, specific entities, called deleters, are allowed

134 T. Izu et al.

Algorithm 2. A description of MHI’s deletable signature

KeyGen

1. Generate sk R← Z/pZ randomly and set pk ← gsk
2 .

Output: A secret and public key pair (sk, pk) ∈ Z/pZ × G2

Sign
Input: A document {M1, . . . , Mn} and a secret key sk ∈ Z/pZ

1. Generate a random value ID (as a document ID) and set M̄0 ← ID, M̄i ← ID||Mi

for each subdocument M̄i (i = 1, . . . , n).
2. Generate an indivisual signature σi ← H(M̄i)sk for each padded subdocument
M̄i (i = 0, . . . , n).
3. Generate an aggregate signature σ ←

∏n
i=0 σi.

4. Set an initial value of index sets P, A ∈ {1, . . . , n} such that P ∪ A = {1, . . . , n}
and P ∩ A = φ. The index 0 should be included in P .
Output: A document {M̄0, . . . , M̄n}, indivisual signatures σ1, . . . , σn, an aggregate
signature σ ∈ G1 and index sets P, A

Delete
Input: A document {M̄0, . . . , M̄k}, indivisual signatures {σi}i∈A, an aggregate sig-
nature σ and index sets P, A

1. Determine new index sets P ′ ⊇ P, A′ ⊆ A, D′ ⊆ A such that P ′ ∪ A′ ∪ D′ =
{1, . . . , k} and P ′ ∩ A′ = A′ ∩ D′ = D′ ∩ P ′ = φ.
2. Do the following procedure for each index i:

– Deletion: if i ∈ D′, update σ ← σ/σi and delete M̄i, σi.
– Prohibition: if i ∈ P ′\P , delete σi.
– Otherwise: do nothing.

3. Renumber the indexes.
Output: A document {M̄0, . . . , M̄k′}, indivisual signatures {σi}i∈A′ , an aggregate
signature σ′ ∈ G1 and index sets P ′, A′.

Verify
Input: A document {M̄0, . . . , M̄k}, indivisual signatures {σi}i∈A, an aggregate sig-
nature σ, index sets P, A and a signer’s public key pk
1. Check whether the document identifiers in each subdocument is same. If not,
output invalid and terminate.
2. Check whether e(σ, g2) =

∏k
i=0 e(H(M̄i), pk) hold. If not, output invalid and ter-

minate.
3. Check whether e(σi, g2) = e(H(M̄i), pk) hold for subdocuments M̄i (i ∈ A). If not,
output invalid and terminate.
4. Output valid and terminate.

to delete subdocuments for hiding partial information. A verifier checks the in-
tegrity of the remaining document. In addition, the secrecy of deleted subdocu-
ments is established. However, different from the sanitizable signature, a verifier
cannot detect whether subdocuments were deleted or not.

Sanitizable and Deletable Signature 135

The only deletable signature scheme, based on BGLS’s aggregate signature,
was proposed by Miyazaki, Hanaoka and Imai [9]. Algorithm 2 shows a concrete
description of MHI’s deletable signature, where index sets P, A, D are subsets of
the set of all indexes {1, . . . , k} (k is the number of current subdocuments). Here,
the document ID is used not to copy subdocument and corresponding individual
signature in other documents generated by the same signer. In addition to the
deletable property, MHI’s deletable signature can control subdocument status
in the sense that deletion is ‘Prohibited (P)’ or ‘Allowed (A)’. If a subdocument
is in the status ‘P’, it cannot be deleted, while a subdocument in ‘A’ can. If we
regard the deleted subdocument as a status, MHI’s deletable signature controls
three status P, A and D for each subdocument.

Another distinguishing feature of MHI’s deletable signature is the target doc-
ument: a document is assumed to be a set of subdocuments (rather than an
ordered set). Thus, two documents ‘Taro and Jiro’ and ‘Jiro and Taro’ are con-
sidered the same document in the scheme, and the security is discussed and
proved for such documents. There may exist an application which uses such
documents, however, it is a fact that there exits various applications in which
these two documents are treated differently. In fact, the target documents of
previously proposed sanitizable signatures are ordered subdocuments [4, 10].

3 Proposed Schemes

In this section, we propose a concept of the sanitizable and deletable signature.
We also establish two sanitizable and deletable signatures SDS1 and SDS2.

3.1 Concept

As described in section 2, the sanitizable signature and the deletable signature
are used for hiding partial information with keeping the integrity of disclosed
parts. Since these schemes are not compatible to each other, we have to select
the scheme to meet various requirements. The sanitizable and deletable signature
is a combination of the sanitizable signature and the deletable signature. In
the scheme, after generating a signer’s signature on an original document (an
ordered set of subdocuments), specific entities, called reviser, are allowed to
sanitize or delete subdocuments for hiding partial information. A verifier checks
the integrity of the disclosed subdocuments. In addition, the secrecy of sanitized
or deleted subdocuments is established.

The sanitizable and deletable signature is consists of four algorithms
Key Generator (KeyGen), Signer (Sign), Reviser (Revise) and Verifier (Verify).
KeyGen generates a signer’s secret and public key pair. Sign publishes a signa-
ture on an original document, while Revise sanitizes or deletes subdocuments.
Multiple revisers are assumed. Finally, Verify checks the integrity of disclosed
subdocuments of the revised document.

136 T. Izu et al.

3.2 Approach
In order to construct the sanitizable and deletable signature, we choose the
deletable signature as a based algorithm, since the common structure of the
sanitizable signatures is not suitable for subdocument deletions.

There are two problems for constructing the sanitizable and deletable
signature based on MHI’s deletable signature. The first problem is that, in
MHI’s signature, the order of subdocuments are not considered. For this prob-
lem, we introduce subdocument ID for each subdocument (in addition to the
document ID): for a given subdocument Mi, a signer generates the document
ID and the subdocument IDi and sets M̄i ← ID||IDi||Mi. For a document
M = (M1, . . . , Mn), subdocuments IDs are generated increasingly (or decreas-
ingly). Since the order changes are detected by the subdocument ID, MHI’s
scheme can handle the ordered subdocuments.

The other possible problem is that, a subdocument M̄i = ID||IDi||Mi is san-
itized, it may be natural to replace it by its hash value H0(M̄i). However, since
the document ID and subdocument ID are lost, the copy from other documents
or the order change are possible (the upper figure in Figure 1). If we replace by
ID||IDi||H0(M̄i), since ID and IDi can be forged by an adversary, the integrity
of the document ID and the subdocument ID are not established. In the pro-
posed schemes, a signer publishes an individual signature on ID||IDi||H0(M̄i)
rather than ID||IDi||M̄i (namely, σi ← H(ID||IDi||H0(M̄i))sk). When a reviser
sanitizes the subdocument M̄i, he replaces it by ID||IDi||H0(M̄i). Since the in-
tegrity of ID and IDi are verified by the individual σi, above mentioned attacks
can be avoided (the lower figure in Figure 1).

Fig. 1. The document ID and the subdocument ID

Sanitizable and Deletable Signature 137

Fig. 2. Subdocument status

3.3 Subdocument Status

In addition to the sanitizable and deletable properties, our schemes control sub-
document status similar to MHI’s scheme. We have three status Prohibited,
Allowed and Sanitized (Deleted) for sanitizations and deletion, and thus there
are nine possible combinations. However, when the subdocument is deleted, sta-
tus on sanitization does not make a sense. Thus, in the sanitizable and deletable
signature, the following seven subdocument status can be defined (Figure 2):
SPDP (Sanitization Prohibited and Deletion Prohibited), SADP (Sanitization
Allowed and Deletion Prohibited), SDP (Sanitized and Deletion Prohibited),
SPDA (Sanitization Prohibited and Deletion Allowed), SADA (Sanitization Al-
lowed and Deletion Allowed), SDA (Sanitized and Deletion Allowed) and D
(Deleted).

SADA is the initial status for all subdocuments. The first scheme (SDS1)
supports four status SPDP, SADA, SDA and D (Figure 4), while the second
scheme (SDS2) supports six status SPDP, SADP, SDP, SADA, SDA and D
(Figure 6).

3.4 Proposed Scheme 1 (SDS1)

This subsection describes the first sanitizable and deletable signature (SDS1)
based on MHI’s deletable signature introduced in section 2.

As described in section 3.2, MHI’s deletable signature can be applied to a
document with ordered subdocuments, and, in addition, sanitizations can be
realized. Thus we establish the first sanitizable and deletable signature SDS1
(Figure 3). In the beginning, each subdocument is padded by a randomly gener-
ated document ID and subdocument ID. Here, subdocument IDs are increasing
sequence. Then, a signer publishes individual signatures σi and an aggregate
signature. In SDS1, revisers can sanitize or delete subdocuments by using these
data. A detailed description of SDS1 is in Algorithm 3.

138 T. Izu et al.

Fig. 3. Outline of SDS1

Fig. 4. Subdocument status of SDS1

SDS1 supports four subdocument status SPDP, SADA (initial status), SDA
and D (Figure 3). To delete a subdocument M̄i, M̄i and related data are deleted.
Especially, the aggregate signature is updated by σ ← σ/σi. To sanitize M̄i,
the subdocument is updated by M̄i ← ID||IDi||H0(ID||IDi||M̄i). Since the
individual signature σi are not deleted, a reviser can delete this subdocument
afterwards. A status transition of SDS1 is summarized in Figure 4. In SDS1,
only four transitions are possible.

Let us consider the security of SDS1. Since the proposed sanitizable and
deletable signature is a combination of the sanitizable signature and the deletable
signature, the integrity of disclosed subdocuments, the secrecy of sanitized

Sanitizable and Deletable Signature 139

Algorithm 3. A description of the 1st sanitizable and deletable signature (SDS1)

KeyGen

1. Generate sk R← Z/pZ randomly and set pk ← gsk
2 .

Output: A secret and public key pair (sk, pk) ∈ Z/pZ × G2

Sign
Input: A document (M1, . . . , Mn) and a secret key sk ∈ Z/pZ

1. Generate random values ID (as a document ID) and ID1, . . . , IDn (as subdocu-
ment IDs in increasing) and set M̄0 ← ID, M̄i ← ID||IDi||Mi for each subdocument
M̄i (i = 1, . . . , n).
2. Generate an individual signature σi ← H(ID||IDi||H0(M̄i))sk for each padded
subdocument M̄i (i = 0, . . . , n).
3. Generate an aggregate signature σ ←

∏n
i=0 σi.

4. Set SADA ← {1, . . . , n}, SPDP ← {0}, SDA ← φ as index sets.
Output: A document (M̄0, . . . , M̄n), individual signatures σ1, . . . , σn, an aggregate
signature σ ∈ G1 and index sets SADA, SPDP, SDA

Revise
Input: A document (M̄0, . . . , M̄k), individual signatures {σi}i∈SADA∪SDA, an aggre-
gate signature σ and index sets SADA, SPDP, SDA

1. Determine disjoint new index sets SPDP ′ ⊇ SPDP, SADA′ ⊆
SADA, SDA′, D′ ⊆ SADA ∪ SDA such that their union is {1, . . . , k}.
2. Do the following procedure for each index i:

– Deletion: if i ∈ D′, update σ ← σ/σi and delete M̄i, σi.
– Prohibition: if i ∈ SPDP ′\SPDP , delete σi.
– Sanitized: if i ∈ SDA′\SDA, update M̄i ← ID||IDi||H0(M̄i).
– Otherwise: do nothing.

3. Renumber the indexes.
Output: A document (M̄0, . . . , M̄k′), individual signatures {σi}i∈SADA′∪SDA′ , an
aggregate signature σ′ ∈ G1 and index sets SADA′, SPDP ′, SDA′.

Verify
Input: A document (M̄0, . . . , M̄k), individual signatures {σi}i∈SADA∪SDA, an aggre-
gate signature σ, index sets SADA, SPDP, SDA and a signer’s public key pk
1. Check whether the document ID in each subdocument is same. If not, output
invalid and terminate.
2. Check whether the subdocument ID in each subdocument is increasing. If not,
output invalid and terminate.
3. Compute hi for each subdocument such that hi ← ID||IDi||H0(M̄i) for i ∈
SPDP ∪ SADA and hi ← M̄i for i ∈ SDA. 4. Check whether e(σi, g2) = e(hi, pk)
hold for subdocuments M̄i (i ∈ SADA∪SDA). If not, output invalid and terminate.
5. Check whether e(σ, g2) =

∏k
i=0 e(hi, pk) hold. If not, output invalid and terminate.

6. Output valid and terminate.

140 T. Izu et al.

subdocuments and the secrecy of deleted subdocuments should be established.
In SDS1, the integrity of disclosed subdocuments, namely, subdocuments M̄i

such that i ∈ SADA ∪ SPDP , are checked by the aggregate signature σ. In
addition, the justification of the sanitization is also checked with the aggregate
signature. On the other hand, since the sanitized subdocument is updated by
its hash value, it is infeasible to recover the subdocument. For deleted subdocu-
ments, it entirely hard to recover the subdocument since all related information
is deleted. Thus, SDS1 established the integrity of the disclosed subdocuments
and the secrecy of closed (sanitized/deleted) subdocuments.

3.5 Proposed Scheme 2 (SDS2)

This subsection describes another sanitizable and deletable signature (SDS2)
based on MHI’s deletable signature and SDS1. Different from SDS1, SDS2 uses
two aggregate signatures σ and τ (and their corresponding individual signatures).
An outline of SDS2 is in Figure 5 and a detailed description of SDS2 is in
Algorithm 4.

One of the feature of SDS1 is that, a sanitized subdocument can be deleted. By
using two aggregate signatures, we newly support two additional subdocument
status SADP and SPD. Thus, a subdocument can be the status ‘SDP’ (Sanitized
and Deletion Prohibited). Consequently, SDS2 supports six status SPDP, SADP,
SDP, SADA, SDA and D (Figure 6).

The security discussion of SDS2 can be checked similarly to that of SDS2.
Thus, SDS2 established the integrity of the disclosed subdocuments and the
secrecy of closed (sanitized/deleted) subdocuments.

Fig. 5. Outline of SDS2

Sanitizable and Deletable Signature 141

Algorithm 4. A description of the 2nd sanitizable and deletable signature (SDS2)

KeyGen

1. Generate sk R← Z/pZ randomly and set pk ← gsk
2 .

Output: A secret and public key pair (sk, pk) ∈ Z/pZ × G2

Sign
Input: A document (M1, . . . , Mn) and a secret key sk ∈ Z/pZ

1. Generate random values ID and ID1, . . . , IDn (in increasing) and set M̄0 ←
ID, M̄i ← ID||IDi||Mi for each subdocument M̄i (i = 1, . . . , n).
2. Generate individual signatures σi ← H(ID||IDi||H0(M̄i)||0)sk and τi ←
H(ID||IDi||H0(M̄i)||1)sk for each padded subdocument M̄i (i = 0, . . . , n).
3. Generate aggregate signatures σ ←

∏n
i=0 σi and τ ←

∏n
i=0 τi.

4. Set SADA ← {1, . . . , n}, SPDP ← {0}, SDA ← φ, SADP ← φ, SDP ← φ as
index sets.
Output: A document (M̄0, . . . , M̄n), individual signatures σ1, . . . , σn, τ1, . . . , τn, ag-
gregate signatures σ, τ ∈ G1 and index sets SADA, SPDP , SDA, SDAP , SPD

Revise
Input: A document (M̄0, . . . , M̄k), individual signatures {σi}i∈SADA∪SDA∪SADP ,
{τi}i∈SADA∪SDA, aggregate signatures σ, τ and index sets SADA, SPDP , SDA,
SDAP , SPD

1. Determine disjoint new index sets SPDP ′ ⊇ SPDP, SADA′ ⊆
SADA, SDA′, D′ ⊆ SADA ∪ SDA, SADP ′, SDP ′ ⊇ SDP . such that their union
is {1, . . . , k}.
2. Do the following procedure for each index i:

– Deletion: if i ∈ D′, update σ ← σ/σi and delete M̄i, σi.
– Prohibition: if i ∈ SPDP ′ and i ∈ SADA, delete σi and τi.
– Prohibition: if i ∈ SPDP ′ and i ∈ SADP , delete σi.
– Prohibition: if i ∈ SADP ′ and i ∈ SADA, delete τi.
– Sanitization: if i ∈ SDA′ and i ∈ SADA, update M̄i ← ID||IDi||H0(M̄i).
– Sanitization: if i ∈ SDP ′ and i ∈ SADP , update M̄i ← ID||IDi||H0(M̄i) and

delete σi.
– Sanitization: if i ∈ SDP ′ and i ∈ SADA, update M̄i ← ID||IDi||H0(M̄i) and

σ ← σ/σi, and delete σi, τi.
– Sanitization: if i ∈ SDP ′ and i ∈ SDA, update σ ← σ/σi, and delete σi, τi.
– Otherwise: do nothing.

3. Renumber the indexes.
Output: A document (M̄0, . . . , M̄k′), individual signatures
{σi}i∈SADA′∪SDA′∪SADP ′, {τi}i∈SADA′∪SDA′, aggregate signatures σ, τ and
index sets SADA′, SPDP ′, SDA′, SDAP ′, SPD′

142 T. Izu et al.

Verify
Input: A document (M̄0, . . . , M̄k), individual signatures {σi}i∈SADA∪SDA∪SADP ,
{τi}i∈SADA∪SDA, aggregate signatures σ, τ , index sets SADA, SPDP , SDA,
SDAP , SPD and a signer’s public key pk
1. Check whether the document ID in each subdocument is same. If not, output
invalid and terminate.
2. Check whether the subdocument ID in each subdocument is increasing. If not,
output invalid and terminate.
3. Compute hi, h′

i for each subdocument such that hi ← ID||IDi||H0(M̄i)||0 for
i ∈ SPDP ∪SADA∪SADP , hi ← M̄i||0 for i ∈ SDA, h′

i ← ID||IDi||H0(M̄i)||1 for
i ∈ SPDP ∪SADA∪SADP and h′

i ← M̄i||1 for i ∈ SDA∪SDP . 4. Check whether
e(σi, g2) = e(hi, pk) hold for subdocuments M̄i (i ∈ SADA ∪ SDA ∪ ∪SADP). Also
check whether e(τi, g2) = e(h′

i, pk) hold for subdocuments M̄i (i ∈ SADA ∪ SDA).
If not, output invalid and terminate.
5. Check whether e(σ, g2) =

∏
i∈{0,...,k}\SDP e(hi, pk) hold. Also check whether

e(τ, g2) =
∏

i∈{0,...,k} e(h′
i, pk) hold. If not, output invalid and terminate.

6. Output valid and terminate.

Fig. 6. Subdocument status of SDS2

4 Comparison

In this section, we compare the proposed sanitizable and deletable signatures
SDS1 and SDS2 with the sanitizable signature by Miyazaki et al. [10]1, the
sanitizable signature by Suzuki et al. from bilinear maps [12], and the deletable
signature by Miyazaki, Hanaoka and Imai [9] from viewpoints of functions and
efficiency (the number of signatures). A comparison is summarized in Table 1.

Previous privacy-preserving signatures were mono-function, while the pro-
posed sanitizable and deletable signature supports multiple functions. Thus the
proposed scheme can meet various requirements for hiding partial information.
1 Functions and efficiency of other sanitizable signatures are almost same to this

scheme.

Sanitizable and Deletable Signature 143

Table 1. A comparison of privacy-preserving signatures

Function Efficiency
Sanitization Deletion SDA SADP/SDP SPDA # of signatures # of

sig. agg. sig.
[10] Yes No — — — 1 0
[12] Yes No — — — n + 1 1
[9] No Yes — — — n 1

SDS1 Yes Yes Yes No No n 1
SDS2 Yes Yes Yes Yes No 2n 2

However, as a tradeoff, the efficiency is not better than previous schemes. Espe-
cially, SDS2 requires much signatures than other schemes.

5 Concluding Remarks

This paper proposes a concept of the sanitizable and deletable signature as a
combination of the sanitizable signature and the deletable signature. In addi-
tion, we proposed two concrete schemes based on MHI’s deletable signatures. In
spite of our constructions, a subdocument status SPDA is not supported. One
of the reason may be the contradictional property of this status: Sanitization is
Prohibited, but Deletion is Allowed. Constructing a scheme in which all subdoc-
ument status (including SPDA) will be a next task. Another task is to reduce
the number of signatures in the proposed schemes.

References

1. Ateniese, G., Chou, D.H., Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
di Vimercati, S.D., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Boneh, D., Gentry, G., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

3. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

4. Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: PIATS: A partially sanitizable
signature scheme. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 72–83. Springer, Heidelberg (2005)

5. Izu, T., Kunihiro, N., Ohta, K., Takenaka, M., Yoshioka, T.: Sanitizable Signature
Schemes with Aggregation. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS,
vol. 4464, pp. 51–64. Springer, Heidelberg (2007)

6. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic Signature Scheme.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

144 T. Izu et al.

7. Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

8. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggregate Signa-
tures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

9. Miyazaki, K., Hanaoka, G., Imai, H.: Digitally Signed Document Sanitizing Scheme
Based on Bilinear Maps. In: 1st ACM Symposium on InformAtion, Computer and
Communications Security (ASIACCS 2006), pp. 343–354. ACM Press, New York
(2006)

10. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,
Imai, H.: Digitally Signed Document Sanitizing Scheme with Disclosure Condition
Control. The Institute of Electronics. Information and Communication Engineers
(IEICE) Trans. on Fundamentals E88-A(1), 239–246 (2005)

11. Steinfeld, R., Bull, L., Zheng, Y.: Content Extraction Signatures. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

12. Suzuki, M., Isshiki, T., Tanaka, K.: Sanitizable Signature with Secret Informa-
tion: Technical report, 2006 Symposium on Cryptography and Information Secu-
rity (SCIS 2006), p. 273 (2006)

An Efficient Scheme of Common Secure Indices
for Conjunctive Keyword-Based Retrieval on

Encrypted Data

Peishun Wang1, Huaxiong Wang1,2, and Josef Pieprzyk1

1 Center for Advanced Computing – Algorithms and Cryptography, Department of
Computing, Macquarie University, NSW 2109, Australia

{pwang,hwang,josef}@ics.mq.edu.au
2 Division of Mathematical Sciences, Nanyang Technological University, Singapore

Abstract. We consider the following problem: members in a dynamic
group retrieve their encrypted data from an untrusted server based on
keywords and without any loss of data confidentiality and member’s pri-
vacy. In this paper, we investigate common secure indices for conjunctive
keyword-based retrieval over encrypted data, and construct an efficient
scheme from Wang et al. dynamic accumulator, Nyberg combinatorial ac-
cumulator and Kiayias et al. public-key encryption system. The proposed
scheme is trapdoorless and keyword-field free. The security is proved un-
der the random oracle, decisional composite residuosity and extended
strong RSA assumptions.

Keywords: Common secure index, conjunctive keyword search, dynamic
accumulator.

1 Introduction

Instead of using their own servers, users often outsource their storage and backup
needs to external data warehouses. This arrangement gives users significant fi-
nancial saving but at the same time, introduces a risk to the privacy of their
data. If the server cannot be trusted with the document contents, sensitive docu-
ments should be stored in encrypted form. However, a question naturally occurs
in this scenario, that is, how the users retrieve documents based on their content.
An ideal solution would be to let the server search the encrypted documents and
return only relevant ones without leaking any information about the keywords or
document contents. There are many research works that address this problem,
some consider the single-user scenario [1,2,3,4,6,7,14], and some make searches
for groups [5,8,13,15,17,18]. In this paper, we study searchable secure indices
for a dynamic group system, and propose an efficient scheme of common secure
indices for conjunctive keyword-based retrieval over encrypted data (CSI-CKR).

Related Works. Song, Wagner, and Perrig [14] first introduced the notion of
searchable encryption for a single-user. They proposed a scheme in the symmetric
key setting, which encrypts each word (or each pattern) of a document separately.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 145–159, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

146 P. Wang, H. Wang, and J. Pieprzyk

Goh [6] presented a notion of secure index, which uses an index of keywords that
is created by a Bloom filter. Boneh et al [2] originally presented public key
schemes for keyword search, which is a mechanism for tagging messages that are
generated under the public key. The encrypted messages can be searched using
the trapdoor for any particular keyword. Golle, Staddon and Waters [7] first
constructed schemes for conjunctive keyword search over encrypted data. The
search techniques for single-users were further studied in [1,3,4].

Hwang et al. [8] designed a public key based conjunctive keyword search
scheme for a group of users from bilinear pairing. Wang et al. [17] recently
designed a scheme of threshold privacy preserving keyword searches. Unfortu-
nately, these two works are for static groups and the schemes do not support
dynamic groups.

To the best of our knowledge, there are four works on secure indices for a dy-
namic group system. Park et al. [13] proposed search schemes for groups based
on Goh’s scheme [6]. In their schemes, the secret keys, such as authentication
keys, encryption keys and index generation keys, are produced by computing
one-way hash key chain, and a set of new secret keys is generated after a mem-
ber leaves. If a leaving member reveals her group key to the server, the server
administrator can obtain all data encrypted previously, since he can compute all
previous secret keys by hashing the current group key. Additionally, the size of
a query would become larger as the number of leaving members increases. Wang
et al’s work [15] addressed the shortcomings of Park et al’s schemes, formally
introduced the notion of common secure indices for conjunctive keyword-based
retrieval over encrypted data (CSI-CKR) and proposed a new scheme. Curtmola
et al. [5] presented a searchable symmetric encryption for dynamic groups, but
their setting is different, and their scheme cannot support conjunctive keyword
searches. Note that, the above conjunctive keyword search schemes define key-
word fields in the index. This means, to make conjunctive keyword searches,
the values of positions of conjunctive keywords in a secure index have to be
given as compulsory information. Very recently Wang et al. [18] presented a new
scheme of conjunctive keyword searches on encrypted data without keyword
fields and extended it to the setting of dynamic groups. However, the size of a
query in their scheme is linear in the number of keywords contained in a secure
index.

Our Contributions. The contributions of this paper are three-fold:
(1) We construct a new CSI-CKR, and prove the security under the random

oracle, decisional composite residuosity and extended strong RSA assumptions.
(2) We analyse efficiency of the proposed scheme by comparing with Wang et

al’s scheme [15], and show that the proposed CSI-CKR is more efficient.
(3) Our scheme has three attractive properties. (a) It is trapdoorless, this

means, we do not use any public or secret keys to generate a trapdoor for a list
of keywords. (b) It is keyword field free, i.e., our scheme eliminates the need for
keyword fields in secure indices. (c) It provides the instantiation of algorithms
for encryption and decryption.

An Efficient Scheme of Common Secure Indices 147

Organization. Section 2 provides notation, models and cryptographic prelimi-
naries. In Section 3 we construct a CSI-CKR. Section 4 analyses the efficiency.
Finally Section 5 includes conclusions.

2 Preliminaries

Throughout this paper, we use the following notations. Let a
R←− A denote

that an element a is chosen uniformly at random from the set A. PPT denotes
probabilistic polynomial time, |A| stands for the cardinality of a set A, and |k|
denotes the number of bits needed to represent an integer k. For a positive
number k > 1, [k] denotes the set of integers {1, . . . , �k�}. The symmetric set
difference of two sets A and B is denoted by A�B = (A \ B) ∪ (B \ A). We
write x||y to denote the concatenation of the bit-strings x, y. We assume that
the upper bound of the number of keywords in a document is m.

2.1 Models

Wang et al. introduced a definition of CSI-CKR in [15]. We now briefly review
the model, definition and security of CSI-CKR.

The Model. CSI-CKR has three parties: a trusted group manager (GM), mem-
bers in the dynamic group and a server. First, GM setups the system and dis-
tributes an authentication code to every member. A member encrypts her data,
generates the corresponding secure indices, and stores them on the server. When
a member wants to retrieve the documents containing some keywords, she makes
the searchable information for the keywords, and sends it along with her authen-
tication code to the server. Then, for the legitimate member, the server tests all
secure indices to find the matched data, and returns them to the member. Fi-
nally, the member interacts with GM to get the plaintext data.

The Definition. CSI-CKR consists of five components: SystemSetup, AuthCod-
Gen, DataGen, DataQuery, DataDcrypt. In details, the SystemSetup instantiates
the scheme, the AuthCodGen generates members’ PIN numbers, their secure
codes and a secure test code, the DataGen builds searchable encrypted data,
the DataQuery retrieves the matched data, and the DataDcrypt decrypts the
encrypted data. Due to the limitation of space, we omit the formal definition.
For the details, refer to [15].

Security Requirement. CSI-CKR provides data privacy and member privacy.
Specifically, data privacy ensures that the server is not able to extract any infor-
mation about the data. That means, the encrypted data, common secure indices,
queries and searches do not leak anything about their contents. Also, data pri-
vacy guarantees that any leaving member is not able to search and retrieve data
after her revocation. Member privacy prevents any body (excluding the group
manager) to impersonate a legitimate member to query the data. In addition, al-
though a member interacts with the group manager, member privacy guarantees
that the group manager knows nothing about the data the member retrieves.

148 P. Wang, H. Wang, and J. Pieprzyk

To prove the security of the proposed construction, we need a security game
called Indistinguishability of Ciphertext from Ciphertext (ICC) [7,1], which cap-
tures the notion of security known as semantic security against chosen keyword-
attacks (IND-CKA) for secure indices [6].

Definition 1. ICC is a security game between an adversary A and a challenger
C. As stated in [15], the common secure index CSIR of a document R only con-
cerns the keyword list L in R, so we use CSIL instead of CSIR in the following
game.

Setup. A adaptively selects a polynomial number of keyword lists, L, and re-
quests the common secure indices, CSIL, from C.

Queries. A may query C on a keyword list L′ and receive the image IxL′ of L′.
With IxL′ , A can invoke SrhInd(IxL′ , CSIL) on a common secure index
CSIL to determine if all keywords in the list L′ are contained in L or not.

Challenge. After making a polynomial number of queries, A decides on a chal-
lenge by picking two keyword lists L0 and L1 such that A must not have asked
for the image of any word in L0�L1, and sends them to C. Then C chooses
b

R←− {0, 1}, assigns a unique identifier DIb, and invokes IndGen(R, PKg)
to obtain the common secure index CSILb

, then returns CSILb
to A. After

the challenge is issued, A is allowed again to query C with the restriction
that A may not ask for the image of any word in L0�L1.

Response. Eventually A outputs a bit bA, and is successful if bA = b. The
advantage of A in winning this game is defined as AdvA = |Pr[b = bA]−1/2|,
and the adversary is said to have an ε-advantage if AdvA > ε.

2.2 Assumptions

We briefly review two complexity assumptions called Decisional Composite
Residuosity (DCR) [12] and extended strong RSA (es-RSA) [16]

Definition 2 (DCR Assumption). There is no PPT algorithm that has ad-
vantage at least ε in distinguishing between: (i) tuples of the form (n, un mod n2)
where n is a composite RSA modulus and u

R← Z∗
n2 , and (ii) tuples of the form

(n, v) where v
R← Z∗

n2 .

Definition 3 (es-RSA Assumption). There exists no PPT algorithm that,
given a safe number n whose factors are secret and a number x ∈ Z∗

n2 , outputs
a pair of integers (s, y) such that x = ys mod n2, n2 > s > 2 and y ∈ Z∗

n2 .

3 Construction

In the view of technique, CSI-CKR consists of three processes: membership
authentication in a dynamic group, conjunctive keyword search, and data en-
cryption and decryption. To construct a CSI-CKS scheme, we need to find a
membership authentication protocol, a conjunctive keyword search scheme and

An Efficient Scheme of Common Secure Indices 149

a specific data cryptosystem for such a setting. We introduce a dynamic accumu-
lator for membership authentication in Section 3.1, a conjunctive keyword search
scheme in Section 3.2 and a data cryptosystem in Section 3.3, then integrate the
three techniques to a new CSI-CKR in Section 3.4.

3.1 Wang et al. Dynamic Accumulator

A dynamic accumulator is an algorithm, which merges a large set of elements
into a constant-size value such that for an element accumulated, there is a wit-
ness confirming that the element was included into the value, with a property
that accumulated elements can be dynamically added and deleted into/from the
original set. Wang et al. [16] presented a dynamic accumulator for batch updates
at ICICS 2007. We will use their dynamic accumulator, which we call WWP-DA,
to authenticate memberships in the proposed scheme.

First we briefly review their construction. The Wang et al. Dynamic Accu-
mulator is defined as a tuple DA=(KeyGen, ACCVal, WitGen, Verify,
AddEle, DelEle, UpdWit) of polynomial time algorithms, where KeyGen
instantiates the scheme, ACCVal computes an accumulated value, WitGen
creates the witness for every element, Verify checks if a given element is accu-
mulated in the value or is not, AddEle adds some new elements to the accu-
mulated value, DelEle deletes some elements from the accumulated value, and
UpdWit updates witnesses for the elements that have been accumulated in the
old accumulated value and also are accumulated in the new one. The detail of
construction is as follows.

KeyGen(k, M): Given a security parameter k and the upper bound M on the
number of accumulated elements, generate a suitable safe modulus n that is
k-bit long and create an empty set V . Let C = Z∗

n2\{1} and T ′ = {3, · · · , n2}.
Select adaptively a number σ ∈ Zn2 and compute β = σλ mod φ(n2) such
that β ∈ T ′, where λ is Carmichael’s function λ(n) = lcm(p − 1, q − 1),
and φ(n2) is Euler’s Totient function φ(n2) = nφ(n). Choose γ

R←− Zφ(n2)
such that γ /∈ {β, σ}. Set the public key Pu = (n, β) and the private key
Pr = (σ, λ, γ), then output the parameter P = (Pu, Pr).

AccVal(L,P): Given a set of m distinct elements L = {c1, . . . , cm} (L ⊂ C,
1 < m ≤ M) and the parameter P , choose cm+1

R←− C, and compute

xi = F (cγσ−1

i mod n2) mod n (i = 1, . . . , m + 1),

v = σ

m+1∑
i=1

xi mod n,

yi = cγβ−1

i mod n2 (i = 1, . . . , m + 1), and

ac =
m+1∏
i=1

yi mod n2.

Then output the accumulated value v and the auxiliary information ac and
Al = {y1, . . . , ym}.

150 P. Wang, H. Wang, and J. Pieprzyk

WitGen(ac, Al,P): Given the auxiliary information ac and Al, and the param-
eter P , choose randomly a set of m numbers T = {t1, . . . , tm} ⊂ T ′ \ {β, γ}
(i = 1, . . . , m), and compute

wi = acy
−ti

γ

i mod n2 (i = 1, . . . , m).

Then output the witness Wi = (wi, ti) for ci (i = 1, . . . , m).
Verify(c, W, v, Pu): Given an element c, its witness W = (w, t), the accumu-

lated value v and the public key Pu, test whether {c, w} ⊂ C, t ∈ T ′ and
F (wβct mod n2) ≡ v (mod n). If so, output Yes; otherwise, output No.

AddEle(L⊕, ac, v,P): Given a set of elements L⊕ = {c⊕1 , . . . , c⊕k } (L⊕ ⊂ C \
L, 1 ≤ k ≤ M −m) to be inserted, the auxiliary information ac, the accu-
mulated value v and the parameter P , choose c⊕k+1

R←− C and a set of k

numbers T⊕ = {t⊕1 , . . . , t⊕k }
R←− T ′ \ {T ∪ {β, γ}}, and compute

x⊕
i = F ((c⊕i)γσ−1

mod n2) mod n (i = 1, . . . , k + 1),

v′ = v + σ
k+1∑
i=1

x⊕
i mod n,

y⊕
i = (c⊕i)γβ−1

mod n2, (i = 1, . . . , k + 1),

au =
k+1∏
i=1

y⊕
i mod n2, and

w⊕
i = acau(y⊕

i)
−t

⊕
i

γ mod n2 (i = 1, . . . , k).

Set ac = acau mod n2, T = T ∪ T⊕ and V = V ∪ {au}.
Then output the new accumulated value v′ corresponding to the set L∪L⊕,
the witnesses W⊕

i = (w⊕
i , t⊕i) for the new added elements c⊕i (i = 1, . . . , k)

and the auxiliary information au and ac.
DelEle(L
, ac, v,P): Given a set of elements L
 = {c
1 , . . . , c
k } (L
 ⊂ L, 1 ≤

k < m) to be deleted, the auxiliary information ac, the accumulated value v

and the parameter P , choose c
k+1
R←− C, and compute

x

i = F ((c
i)γσ−1

mod n2) mod n (i = 1, . . . , k + 1),

v′ = v − σ

k∑
i=1

x

i + σx

k+1 mod n,

y

i = (c
i)γβ−1

mod n2 (i = 1, . . . , k + 1), and

au = y

k+1

k∏
j=1

(y

j)−1 mod n2.

Set ac = acau mod n2 and V = V ∪ {au}.
Then output the new accumulated value v′ corresponding to the set L \ L

and the auxiliary information au and ac.

An Efficient Scheme of Common Secure Indices 151

UpdWit(Wi, au, Pu): Given the witness Wi, the auxiliary information au and
the public key Pu, compute w′

i = wiau mod n2, then output the new witness
W ′

i = (w′
i, ti) for the element ci.

Batch Update. Each element in the set V created by the algorithm KeyGen
and updated by the algorithms AddEle and DelEle is related to a time when
the element was added to V , and all element are arranged chronologically. When
an element wants to use the accumulator after he missed N times update of
witness, he can contact the accumulator and tell her the time of his last update,
then the accumulator checks the set V , collects all data items {vi1 , . . . , viN } ⊂ V
that the element did not use, computes the update information au = vi1 . . . viN

mod n2, and returns au to the element. On receiving au, the element computes
w′

i = wiau mod n2 to obtain the new witness W ′ = (w′
i, ti).

3.2 Conjunctive Keyword Searches

First we reintroduce the well known definition of conjunctive keyword searches
(CKS) on encrypted data [3,7] as follows.

Definition 4. A CKS consists of the following four algorithms:

HashGen(s, m): takes as input a parameter s and the upper bound m, and
outputs a system parameter P .

BuildIndex(L, P): takes as input a keyword list L and the system parameter
P , and outputs its index IL.

MakeImage(L′, P): takes as input a keyword list L′ = {wi}i=1,...,k(k ≥ 1) and
the system parameter P , outputs the image xL′ of the list L′.

Test(xL′ , IL): takes as input the image xL′ and the index IL, outputs Yes if
the keyword list L′ ⊆ L or No otherwise.

Intuitively, CKS aims to capture the notion that an adversary should learn no
other information about a document from its index and the image of a key-
word list that was explicitly given to him except the fact whether the document
contains all keywords in the list or not.

Now we use the Nyberg combinatorial accumulator [11] to construct a scheme
of CKS as follows.

HashGen(s, m): Given a parameter s and the upper bound m, compute

l = e(ln 2)sm′ lg m′,

where m′ = m + 1, and then choose a one-way hash function

H : {0, 1}∗ → {0, 1}l,

where l = rd for some integers r, d.
Finally output the system parameter P = {H, r, d}.

152 P. Wang, H. Wang, and J. Pieprzyk

BuildIndex(R, P): For a keyword list L = {w1, . . . , wk} (m ≥ k ≥ 1) in a data
R, the member selects a distinct document identifier DI = w0, and does the
following.
Step 1. If k < m, pads the keyword list {w1, . . . , wk} into {w1, . . . , wm}

with wj = (j × w0)||w0 (j = k + 1, . . . , m). For each wi (i = 0, . . . , m),
computes: w̄i = H(wi). Since H produces a hash digest of length l = rd,
w̄i can be viewed as an r-digit number in base 2d, i.e. w̄i = (w̄1

i , . . . , w̄r
i),

where |w̄j
i | = d, j = 1, . . . , r.

Step 2. Maps w̄i to Ixi (i = 0, . . . , m) : Ixi = (Ix1
i , . . . , Ixr

i) = f(w̄i) by
applying the following assignment for j = 1, . . . , r:

Ixj
i =

{
0 if w̄j

i = 0
1 otherwise.

Step 3. Finally, computes the bitwise product (denoted with �) of Ix0,
Ix1, . . ., Ixm:

Iy = (Iy1, . . . , Iyr) = Ix0 � Ix1 . . .� Ixm,
where Iyj = Ixj

0 � Ixj
1 . . .� Ixj

m (j = 1, . . . , r);
Step 4. Outputs CSIR = Iy as the common secure index of R.

MakImg(L′, P): Given a keyword list L′ = {w1, . . . , wk′}, the member outputs
the image IxL′ of the keyword list L′. The algorithm proceeds as follows:
Step 1. For i = 1, . . . , k′, computes: w̄i = (w̄1

i , . . . , w̄r
i) = H(wi), where

|w̄j
i | = d, j = 1, . . . , r.

Step 2. Maps w̄i �−→ Ixi (i = 1, . . . , k′): Ixi = (Ix1
i , . . . , Ixr

i) = f(w̄i) by
replacing each w̄j

i with 0 if and only if w̄j
i = 0, or with 1 otherwise.

Step 3. Computes IxL′ = (Ix1
1� Ix1

2 . . .� Ix1
k′ , . . . , Ixr

1� Ixr
2 . . .� Ixr

k′) as
the image of L′.

Test(IxL′ , CSIR): For every CSIR, the server checks whether Iyi = 0 in the
CSIR if Ixi = 0 in the IxL′ for all i = 1, . . . , r. If so, output Yes; Otherwise,
No.

Notice that the above CKS scheme is trapdoorless, as we do not generate any
trapdoor for a list of keywords. In addition, it is keyword field free, since we
eliminate the need for the number of keyword fields and the values of positions
of conjunctive keywords in the keyword fields. However, keyword fields are the
compulsory information in all previous CKS schemes.

Theorem 1. The proposed CKS is semantically secure against chosen keyword
attacks under ICC.

Proof. Suppose the proposed scheme is not semantically secure against chosen
keyword-attacks, i.e., there exists an adversary A who has an ε-advantage to
win the ICC game, then we build an algorithm A′ that uses A as a subrou-
tine to determine with an ε

(2d−1)r -advantage if H is a pseudo-random function
or a random function. Let A′ query an oracle OH for the unknown function
H : {0, 1}∗ → {0, 1}l. When running the algorithms IndGen(R, PKg) and
MakImg(L′, PKg), A′ substitutes evaluations of H with queries to the oracle
OH . A′ uses A in ICC game as follows:

An Efficient Scheme of Common Secure Indices 153

Setup. A′ chooses a polynomial number of keywords from a keyword domain
uniformly at random and sends them to A. Then, A adaptively returns a
polynomial number of keyword lists. For each keyword list L, A′ assigns a
unique identifier DI, and runs the algorithm IndGen(R, PKg) to build the
common secure index CSIL. After all the indices are created, A′ gives them
with respective keyword lists to A.

Queries. A may query A′ for the image of a keyword list L′. A′ runs MakImg
(L′, PKg) to make the image IxL′ of L′ and replies. On receiving IxL′ , A
can invoke SrhInd(IxL′ , CSIL) on every common secure index CSIL to
determine if all keywords in the list L′ are contained in L or not.

Challenge. After making a polynomial number of queries, A decides on a chal-
lenge by picking two keyword lists L0 and L1 such that A must not have
asked for the image of any word in L0�L1, and sending them to A′. Then
A′ chooses b

R←− {0, 1}, assigns a unique identifier DIb to Lb, and invokes
IndGen(R, PKg) to obtain the common secure index CSILb

for Lb, then
returns it to A. After the challenge of determining b for A is issued, A is
allowed again to query A′ with the restriction that A may not ask for the
image of any word in L0�L1.

Response. Finally A outputs a bit bA, and is successful if bA = b. If bA = b,
then A′ outputs 1, indicating that it guesses that H is a pseudo-random
function. Otherwise, A′ outputs 0.

When H is a pseudo-random function. Because A has an ε-advantage to win
the ICC game, and A′ simulates the challenger C perfectly in the ICC game.

Considering the map: d bits is mapped to 1 bit and only

d︷ ︸︸ ︷
0 · · · 0 is mapped to 0,

so we have
|Pr[A′

Hk
= 1|k R←− {0, 1}l]− 1

2
| > ε

(2d − 1)r
. (1)

When H is a random function. The hash value of a keyword is treated as a
random value, it follows that each image can be viewed as a random value. For
any two different keywords, their images as two random values are independent
to each other. Considering the restriction imposed on A’s choice of queries in
ICC game: A never and ever asks for the image of any word in L0�L1, therefore,
it is infeasible for A to learn anything about the images of keywords in L0�L1
from common secure indices and images of any other keywords (not in L0�L1).
Additionally, as d bits are mapped to 1 bit in making image, it decreases further
the possibility of correlating the image of one keyword with ones of others. As a
result, we only need to consider the challenge keyword lists. Depending on the
number of keywords in L0�L1, we identify two cases:

case 1: |L0�L1| = 0.
Without loss of generality, assume that the keyword list L0 and L1 have the
same set of m keywords. Let Ix′ be the image of the keyword list L0 (the
same to L1). The two identifiers DI0 and DI1 that A′ assigns to L0 and
L1, respectively, are distinct and unrepeated, and A learns nothing about

154 P. Wang, H. Wang, and J. Pieprzyk

DI0 and DI1. So, from A’s view, the images IxDI0 of DI0 and IxDI1 of DI1
as two random values are indistinguishable. As two bit products of a value
Ix′ with other two indistinguishable numbers IxDI0 and IxDI1 , the common
secure indices CSIL0 and CSIL1 are indistinguishable to A.

case 2: |L0�L1| > 0.
Because each keyword list with less than m keywords is padded with unre-
peated numbers to the length m in the algorithm IndGen(R, PKg), without
loss of generality, we assume that the keyword list L0 and L1 have m − 1
common keywords and one distinct keyword (i.e. wL0 ∈ L0, wL1 ∈ L1, and
wL0 is different from wL1 , so, L0�L1 = {wL0 , wL1}). As in case 1, A′ as-
signs two unique identifiers DI0 and DI1 to L0 and L1, respectively, and
A learns nothing about DI0 and DI1, thus, the images IxDI0 of DI0 and
IxDI1 of DI1 as two random values are indistinguishable to A. Since A is
not allowed to query A′ for the images of wL0 and wL1 , that is, the image
IxwL0

of wL0 and the image IxwL0
of wL1 as two random values are un-

known to A, so the images IxwL0
and the image IxwL0

are indistinguishable
to A. Although A may know the image Ix′ of the keyword list L0 \ {wL0}
(identical to L1 \{wL1}), the common secure indices CSIL0 as a bit product
of Ix′ with two unknown random values IxDI0 and IxwL0

and CSIL1 as a
bit product of Ix′ with two unknown random values IxDI1 and IxwL1

are
indistinguishable to A.

Based on the above analysis, A at best guesses b correctly with probability 1/2.
Thus we have

Pr[A′
f = 1|f R←− {H : {0, 1}∗ → {0, 1}l}] = 1/2. (2)

From (1) and (2), we get
|Pr[A′

Hk
= 1|k R←− {0, 1}l]

−Pr[A′
f = 1|f R←− {H : {0, 1}∗ → {0, 1}l}]| > ε

(2d−1)r .

Therefore, we have proven the desired conclusion.

3.3 Three-Party Cryptosystem

To fulfil the security requirement for the data encryption and decryption in CSI-
CKR, we introduce a specific three-party cryptosystem (TPC), in which, there
are three parties: the server, group members, and the group manager. The group
manager generates a pair of public and private keys for the system. The members
encrypt their data with the public key and store them in the server. When a
member retrieves encrypted data, she has to decrypt the data by interacting with
the group manager. The security requires that the interaction should preserve
the confidentiality of private key held by the group manager and the data the
member wants to decrypt. It means that a member cannot get any information
about the private key the group manager holds and the group manager gets no
information about the data the member has.

An Efficient Scheme of Common Secure Indices 155

Recently Kiayias et al. proposed a public-key encryption scheme [9]. We use
their cryptosystem to construct a TPC as follows. We also adopt their notations.
For the details of the Kiayias et al. cryptosystem, refer to [9].

The TPC consists of the following five algorithms:

SetUp(τ): Given a security parameter τ ∈ Z+, output the parameters of
the KTY cryptosystem (n, g1, y, h, z), where n is an RSA modulus, g1 =
g2n mod n2 for some g

R← Z∗
n2 , z

R← [n2

4] \ {1, 2}, y = gz
1 and h = n + 1. The

public key is Puk = {n, g1, y, h}, and the private key is Prk = {z}.
Encrpt(m, Puk): Given a data d and the public key Puk, choose ra

R← [
√

n
2],

compute u = gra
1 and v = yrahd, and output the encrypted data {u, v}.

MaskDa(u): Given the first part u of an encrypted data, choose rb
R← [

√
n

2] \
{1, 2}, compute u′ = urb , and then output the masked data u′ and keep rb

as a one-time secret key.
PartDe(u′, P rk, Puk): Given the masked data u′ and the keys Prk, Puk, check

if u′ ∈ Z∗
n2 . If so, output the decrypted masked data ū = (u′)−z mod n2;

otherwise, terminate the protocol.
FullDe(ū, v, rb, Puk): Given the decrypted masked data ū, the second part of

the encrypted data v, the one-time secret key rb and the public key Puk,
compute

d′ = vrb ū− 1 mod n2, and

d = (d′ · r−1
b mod n)/n,

and output the data d.

An execution of the TPC goes as follows. First, the group manager runs the
algorithm SetUp(τ) to generate the public and private keys for the system.
Group members execute the algorithm Encrpt(m, Puk) to encrypt their data
with the public key, and store them in the server. After a member retrieves
an encrypted data, the member chooses a one-time secret key and executes
the algorithm MaskDa(u) to mask the encrypted data, then sends it to the
group manager. On receiving the masked data, the group manager runs the al-
gorithm PartDe(u′, P rk, Puk) to decrypt the masked data with the private
key, and returns it to the member. Finally, the member runs the algorithm
FullDe(ū, v, rb, Puk) with the one-time secret key to obtain the original plain-
text data.

We now turn to show the security of the TPC.

Theorem 2. The proposed TPC is secure under the DCR and es-RSA
assumptions.

Proof. First, let’s consider the member’s privacy. In algorithm MaskDa(u),
the encrypted data u is masked by a random power rb that the member chooses
secretly and the manager does not know. If the es-RSA assumption holds in Z∗

n2 ,
it is computationally impossible for the manager to compute u from u′. So, the
manager knows nothing about the data the member retrieved. In addition, rb is

156 P. Wang, H. Wang, and J. Pieprzyk

a one-time secret key, therefore, even though the member asks the manager to
decrypt the same data many times, the manager never knows that the data is
identical.

Next, we consider the security of private key z. Although the member knows
u′ and ū = (u′)−z mod n2 for some z, under the es-RSA assumption, it is
computationally impossible for the member to get the private key z.

Finally, the Kiayias et al. cryptosystem is secure under the DCR assumption,
and the proposed TPC inherits the security from the Kiayias et al.’s scheme
immediately.

3.4 New CSI-CKR

Now we apply the above WWP-DA, CKS and TPC to construct a new CSI-CKR
scheme as follows.

SystemSetup: It includes the algorithm KeyGen in the WWP-DA, the algo-
rithm HashGen in the CKS and the algorithm SetUp in the TPC.

Given a security parameter and some parameters, GM runs the three
algorithms KeyGen, HashGen, SetUp to output the system public key
and secret key, which include all the public keys and private keys in the
WWP-DA, CKS and TPC, respectively.

AuthCodGen: It includes the five algorithms AccVal, WitGen, AddEle,
DelEle and UpdWit in the WWP-DA.

For the members of the original group, GM runs the algorithms AccVal
and WitGen to generate the PIN number ti and the secure code {wi, ci}
for every member, and sends the secure test code v to the server. GM runs
the algorithms AddEle, DelEle and UpdWit to process the deletion or
addition of group members.

DataGen: It includes the algorithm BuildIndex in the CKS and the algorithm
Encrpt in the TPC.

A group member runs the algorithm BuildIndex to create the secure
index and the algorithm Encrpt to encrypt the data, and then uploads
them to the server.

DataQuery: It includes the algorithms MakImg and Test in the CKS and
the algorithm Verify in the WWP-DA.

A group member runs the algorithm MakImg to generate an image for a
keyword list, and sends it along with the member’s PIN number and secure
code to the server. On receiving the query, the server runs the algorithm
Verify to check if the query is legitimate. For a legal query, the server runs
the algorithm Test to search on all secure indices, and returns all matched
data to the member.

DataDcrypt: It includes the algorithms MaskDa, PartDe and FullDe in the
TPC cryptosystem.

The group member who receives a data from the server runs the algorithm
MaskDa to mask the data and sends the masked data to GM. GM runs the
algorithm PartDe to partly decrypt the data and returns it to the member.
Finally, the member runs the algorithm FullDe to get the plaintext.

An Efficient Scheme of Common Secure Indices 157

In above scheme, we apply the WWP-DA to manage memberships in a
straightforward way, so the scheme holds the properties of unforgeability and
confidentiality of group memberships. Plus Theorem 1 and 2, we know immedi-
ately that the proposed CSI-CKR scheme provides the security for data privacy
and member privacy. So, we have the following theorem.

Theorem 3. The proposed CSI-CKR scheme is secure.

4 Efficiency

We now discuss the computation, communication and space complexity of our
construction, and compare it to Wang et al’s scheme [15].

For the membership authentication, the RSA accumulator used in [15] is more
efficient than the WWP-DA. However, the WWP-DA has a special property of
batch updates, which makes it very efficient to activate a revoked membership.
This property is becoming much important in the e-world.

To evaluate the efficiency of conjunctive keyword searches in details, we use
the data given in [10] to evaluate the security of schemes under that the security
has to be guaranteed until the year 2020. That means, RSA modulus n is at
least 1881 bits. Furthermore, we assume that the upper bound of the number
of keywords in a list for each document is 16, and the number of keywords to
search is 4. We use the false positives rate 2−10 in [6]. Then the comparison is
as following:

Table 1. Detailed Evaluation for Wang et al’s Scheme and Ours

Scheme Wang et al’s Ours
CCBI 16× 1881-bit-Hash 17×1208-bit-Hash

+ 18 scalar multiplications in G1 + 17 bitwise multiplications of
of 302-bit strings

SI 31977 302
CCMIT 4× 1881-bit-Hash 4×1208-bit-Hash

+ 5 exponentiations in Zn2 + 4 bitwise multiplications
+ 8 multiplications in Zn2 of 302-bit strings

CCSI 1 multiplication and 1 devision, bits checked < 302
1 exponentiation in Zn2 , (the average < 76 bits)
1 subtraction
5 additions in Zn

SQ 3766 bits, 302 bits

* CCBI: computation complexity for building an index
* SI: storage for an index
* CCMIT: computation complexity for making an image or trapdoor
* CCSI: computation complexity for searching an index
* SQ: the size of a query

158 P. Wang, H. Wang, and J. Pieprzyk

From the above table, we know that our scheme is more efficient than Wang
et al’s in keyword search on the operations of building indices, storing indices,
making images or trapdoors, searching indices and the size of a query. In par-
ticular, the proposed search scheme is trapdoorless and uses the binary check to
test if a common secure index contains the keywords, which speeds up retrieval
more efficiently.

In addition, most of conjunctive keyword search schemes require the sequence
of keywords for building indices and the values of positions of the conjunctive
keywords in the keyword fields for searching on indices, but our scheme eliminates
this requirement, so it is more convenient for practical application.

In Wang et al.’s scheme, the technique of blind signature is used to mask
the encrypted data, but they did not give any detailed construction of encryp-
tion and decryption, we have no way to compare the details between these two
schemes. However, in our scheme, the instantiation of algorithms for encryption
and decryption are provided.

5 Conclusions

With Wang et al. dynamic accumulator, Nyberg combinatorial accumulator and
Kiayias et al. public-key encryption system, we constructed an efficient CSI-
CKR scheme and proved its security in the random oracle model. The proposed
CSI-CKR enjoys several special features, namely trapdoorless keyword search,
keyword field free indices and detailed data cryptosystem.

Acknowledgments

The work was in part supported by Australian Research Council Discovery grants
DP0663452, DP0558773 and DP0665035. Huaxiong Wang’s research was in part
supported by Singapore Ministry of Education grant T206B2204.

References

1. Ballard, L., Kamara, S., Monrose, F.: Achieving Efficient Conjunctive Keyword
Searches over Encrypted Data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

2. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

3. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

4. Crescenzo, G.D., Saraswat, V.: Public Key Encryption with Searchable Keywords
Based on Jacobi Symbols. In: Srinathan, K., Pandu Rangan, C., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007)

An Efficient Scheme of Common Secure Indices 159

5. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric En-
cryption: Improved Definitions and Efficient Constructions. In: ACM CCS 2006,
pp. 79–88. ACM Press, New York (2007)

6. Goh, E.-J.: Secure indexes. In: Cryptology ePrint Archive, Report, 2003/216
(February 25, 2004), http://eprint.iacr.org/2003/216/

7. Golle, P., Staddon, J., Waters, B.: Secure Conjunctive Search over Encrypted Data.
In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–
45. Springer, Heidelberg (2004)

8. Hwang, Y.H., Lee, P.J.: Public Key Encryption with Conjunctive Keyword Search
and Its Extension to a Multi-user System. In: Takagi, T., Okamoto, T., Okamoto,
E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidel-
berg (2007)

9. Kiayias, A., Tsiounis, Y., Yung, M.: Group Encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007)

10. Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. In: Imai, H.,
Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg
(2000)

11. Nyberg, K.: Fast accumulated hashing. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 83–87. Springer, Heidelberg (1996)

12. Paillier, P.: Public-Key Cryptosystems based on Composite Degree Residue
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

13. Park, H.A., Byun, J.W., Lee, D.H.: Secure Index Search for Groups. In: Katsikas,
S.K., López, J., Pernul, G. (eds.) TrustBus 2005. LNCS, vol. 3592, pp. 128–140.
Springer, Heidelberg (2005)

14. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55 (May
2000)

15. Wang, P., Wang, H., Pieprzyk, J.: Common Secure Index for Conjunctive Keyword-
Based Retrieval over Encrypted Data. In: Jonker, W., Petković, M. (eds.) SDM
2007. LNCS, vol. 4721, pp. 108–123. Springer, Heidelberg (2007)

16. Wang, P., Wang, H., Pieprzyk, J.: A New Dynamic Accumulator for Batch Updates.
In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 98–112.
Springer, Heidelberg (2007)

17. Wang, P., Wang, H., Pieprzyk, J.: Threshold Privacy Preserving Keyword Searches.
In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 646–658. Springer, Heidelberg (2008)

18. Wang, P., Wang, H., Pieprzyk, J.: Keyword Field-free Conjunctive Keyword
Searches on Encrypted Data and Extension for Dynamic Groups. In: Franklin,
M.K., Hui, L.C.K., Wang, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 178–195.
Springer, Heidelberg (2008)

http://eprint.iacr.org/2003/216/

Extension of Secret Handshake Protocols
with Multiple Groups in Monotone Condition�

Yutaka Kawai1, Shotaro Tanno1, Takahiro Kondo2, Kazuki Yoneyama1,��,
Noboru Kunihiro3, and Kazuo Ohta1

1 The University of Electro-Communications 1-5-1 Chofugaoka, Chofu-shi,
Tokyo 182-8585, Japan

{kawai,tanno,yoneyama,ota}@ice.uec.ac.jp
2 Mizuho Information Research Institute, Inc. Advanced Information Technologies

Division 5-16-6, Hakusan, Bunkyo-ku, Tokyo 112-0001 Japan
takahiro.kondo@mizuho-ir.co.jp

3 The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
kunihiro@k.u-tokyo.ac.jp

Abstract. Secret Handshake protocol allows members of the same
group to authenticate each other secretly, that is, two members who
belong to the same group can learn counterpart is in the same group,
while non-member of the group cannot determine whether the counter-
part is a member of the group or not. Yamashita and Tanaka proposed
Secret Handshake Scheme with Multiple Groups (SHSMG). They ex-
tended a single group setting to a multiple groups setting where two
members output “accept” iff both member’s affiliations of the multi-
ple groups are identical. In this paper, we first show the flaw of their
SHSMG, and we construct a new secure SHSMG. Second, we introduce
a new concept of Secret Handshake scheme, “monotone condition Secret
Handshake with Multiple Groups (mc-SHSMG)”, in order to extend the
condition of “accept”. In our new setting of handshake protocol, mem-
bers can authenticate each other in monotone condition (not only both
member’s affiliations are identical but also the affiliations are not identi-
cal). The communication costs and computational costs of our proposed
mc-SHSMG are fewer than the trivial construction of mc-SHSMG.

Keywords: Secret Handshake with Multiple Groups, Privacy preserving
authentication, Anonymity, Monotone Condition.

A Secret Handshake protocol was introduced by Balfanz et al. [2], which allows
two members of the same group to authenticate each other secretly and share
a key for the further communication. “Secretly” means, if the two members
belong to the same group, each member learns that counterpart belongs to the
same group. Otherwise he learns nothing about counterpart’s affiliation. Also, an

� This research was done while the third and fifth author were fully in the University
of Electro-Communications.

�� Supported by JSPS Research Fellowships for Young Scientists.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 160–173, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Extension of Secret Handshake Protocols 161

eavesdropper or a man in the middle learns nothing from the protocol (including
whether two members belong to the same group, or even they are members of
any single group).

For example, Secret Handshake can be used in next scenario. Assume that CIA
agent, Alice, wants to authenticate to Bob only if he is a CIA agent. Moreover,
if Bob is not a CIA agent, Bob is not be able to determine whether Alice is a
CIA agent or not.

In this subsection, we review prior researches of Secret Handshake Schemes.

– Two party Secret Handshake scheme with single group (SHS)
Balfanz et al. [2] constructed two party Secret Handshake Scheme with one
group (SHS) by using key agreement protocol. Their scheme is secure un-
der the Bilinear Diffie Hellman (BDH) assumption. Then Castelluccia et
al. [3] constructed more efficient SHS using CA-oblivious encryption (see
Fig. 5). Their scheme is secure under the Computational Diffie Hellman
(CDH) assumption, which is weaker and more standard assumption than
(BDH). Also, Ateniese et al. [1] constructed SHS by using Identity based en-
cryption (IBE). They considered the flexibility of Secret Handshake protocol
which members can specify the group of the member with whom they would
like to authenticate. They use asymmetric DDH hard groups to satisfy the
security property of SHS.

– Multi party Secret Handshake scheme with single group (MPSHS)
Tudik and Xu [5,6] extended the Secret Handshake protocol to a multi party
setting (MPSHS). They combined a Group signature scheme, a Central-
ized group key distribution scheme and a Distributed group key agreement
scheme in order to construct a MPSHS framework. In their model, any num-
ber of members can authenticate to others iff all handshake players belong
to the same group. Jarecki et al. [4] also constructed a MPSHS by combining
the scheme of [3] and a group key agreement protocol.

– Two party Secret Handshake scheme with multiple groups (SHSMG)
Yamashita and Tanaka [7] extended the Secret Handshake protocol from
a single group setting to a multiple groups setting (SHSMG) by using the
scheme of [3]. In their model, two members can authenticate each other only
iff each one’s affiliations of multiple groups are identical. Unfortunately, as
we will describe in Section 3, the SHSMG of [7] did not satisfy one of the
security property of Secret Handshake scheme, Detector Resistance (defined
in Section 2).

In this paper, we focus on the multiple group setting of Secret Handshake.
First, we show that SHSMG of [7] is not secure in the meaning of Detector
Resistance (see Section 2 for the definition of the DR) and propose a concrete
SHSMG which satisfies Detector Resistance and all the other basic security
properties of Secret Handshake protocol.

Moreover, we introduce a new concept of Secret Handshake scheme with
multiple groups, in order to extend the condition of accept. In the multiple
group setting of [7], the authentication condition might be quite restrictive

162 Y. Kawai et al.

because Secret Handshake protocol should be flexible in order to be appli-
cable to various situations. For example, Secret Handshake protocol can be
used in social networks such as online dating. Suppose Alice has a list of
requirements that partner must match and she does not want to reveal. If
we use previous SHSMG, we can find the partner only whose requirement is
equal to Alice’s requirements. This equality for an authentication condition
is inconvenient. We want to relax the authentication condition to be general.

The contributions of this paper are summarized as follows.

– The flaw of the [7] and proposal of secure SHSMG (see Section 3).
• We show that SHSMG of [7] does not satisfy Detector Resistance which

is one of the security properties of SHSMG. We describe a detector at-
tack for SHSMG against [7] specifically. Also, we repair this scheme and
propose a new secure SHSMG based on [3].

– Introduction of a new SHSMG concept (see Section 4).
• We introduce a new SHSMG concept, monotone condition Secret Hand-

shake scheme with multiple groups (mc-SHSMG) which allows members
to authenticate each other in a monotone condition. We notice that, in
this paper, the monotone condition means the authentication condition
which satisfies the “monotone property” (see Section 5).
Moreover, we propose a concrete scheme of mc-SHSMG, and give a se-
curity proof of it. Our proposed mc-SHSMG is based on SHS of [3]. We
indicate that trivial mc-SHSMG which is constructed from [3] is not effi-
cient. Here, no efficiency means that computational and communication
cost are large. Then, we propose an idea to decrease them by using notion
of “monotone property” which we applied to our proposed scheme.

In this section, we define the model and security properties of SHSMG.
In Secret Handshake system, there exists two entities in the group Gi(Gi

means group i) as follows.

member : Who belongs to groups and executes Handshake protocol. Member
obtains certificate certi from GA.

Group Authority(GA)Who creates the group. GA issues certificate to mem-
ber by executing AddMember protocol, and registers it. Denote GAi as
GA of Gi .

SHSMG consists the following four algorithms.

Setup : is the trusted algorithm which takes input as the security parameter
k, outputs the public parameters params.

CreateGroup : is the key generation algorithm executed by GAi which takes
input as params, outputs the group public key Gi and GAi’s secret key
gski.

AddMember : is the protocol executed between GAi and member U which
takes common input as params, Gi, member’s identity IDU and GAi’s pri-
vate input as gski. GAi use gski to issue the certificate certU corresponding
to IDU . The member keeps the certificate secretly.

Extension of Secret Handshake Protocols 163

Handshake : is the authentication protocol executed between member U and
V which take common inputs as IDU , IDV , params and U ’s private inputs
(GU1 , certU1),. . . ,(GUn , certUn) and V ’s private inputs (GV1 , certV1),. . . ,(G
Vm , certVm). At the end of the protocol, if U and V belong to the same
multiple groups, then output accept. Otherwise output reject. When U and
V execute Handshake protocol, we write U

Handshake←→ V .

SHSMG must satisfy following security properties: Correctness, Impersonator
Resistance and Detector Resistance.

Correctness : If honest members U and V who belong to the same (multiple)
groups ({GU1 , . . . , GUn} = {GV1 , . . . , GVm}) execute Handshake protocol,
then both member output accept.

Impersonator Resistance(IR) : Intuitively, the impersonator resistance is
violated if an honest member V , who is a member of (multiple) groups
G1, . . . , Gn, and an adversary A, who does not belong to at least one of
G1, . . . , Gn, execute Handshake protocol, then both member output accept.
We say SHSMG is IR if there is no such polynomialy bounded adversary A
who can make V output accept with non-negligible probability.

Detector Resistance(DR) : Intuitively, an adversary A violates the detector
resistance if A can decide whether some honest member V is a member of
G1, . . . , Gn, even A does not belong to at least one of G1, . . . , Gn. We say
SHSMG is DR if there is no such polynomialy bounded adversary A who
can decide whether V is a member of each group G1, . . . , Gn with probability
non-negligibly higher than 1/2.

In this section, we will point out the weakness of the scheme of Yamashita
and Tanaka [7], and show the idea of how to construct a scheme which satis-
fies Detector Resistance and all the other basic property of Secret Handshake
protocol. We show the scheme of SHSMG of [7] in Fig.1:

In this subsection, we will show the Detector Attack Game Model for SHSMG.
Overview of Detector Attack Game: The detector attack challenger (who inter-
acts the detector attacker) executes following handshake protocols, game 1 and
2, with a detector attacker.

– game1: the challenger executes the handshake protocol as honest player.
– game2: the challenger executes the handshake protocol as simulator player.

The challenger decides which game to be executed previously by the value of
j ∈ {0, 1}. So, If j = 0 the challenger executes the handshake protocol as hon-
est player at first. If j = 1, the challenger executes the handshake protocol as
simulator at first.
ADR distinguish whether a challenger is simulator or honest player. Finally,

ADR outputs j′ as j.

Behavior as honest
The behavior of challenger as honest player are as follows: The input of challenger
is IDch, (Gi, ωchi, tchi) (i = {1, .., n}) and system parameters params.

164 Y. Kawai et al.

� �
Setup: Input of the security parame-
ter k, pick prime number p, q of size
k, element g ∈ Z∗

p of order q. H1 :
{0, 1}∗ → Zq, H2 : 〈g〉 → 〈g〉 is a hash
function. It outputs system parameter
params=(p, q, g, H1, H2).
CreateGroup: GAi picks group se-
cret key xi

R← Zq, and outputs group
public key Gi := gxi . Each Gi is per-
muted in order of the dictionary.
AddMember:

1. member −→ GAi : Gi,ID

GAi picks r
R← Zq and computes

ω := gr, t := r + xiH1(ω, ID) mod
q.

2. member ←− GAi : ω, t
Member keeps (ω, t) as a certificate.

Handshake: With input of the
(IDU , (GUi , ωUi , tUi)) for i = 1, . . . , n,
(IDV , (GVi , ωVi , tVi)) for i = 1, . . . , n′,
from U and V , Handshake protocol is
executed as follows.

1. V −→ U : IDV , ωV1 , ωV2 , . . . , ωVn′

If n �= n′ then U outputs reject.
Otherwise U executes as follows.
PKVi := ωViG

H1(ωVi
,IDV)

Ui
(i =

1, . . . , n)

mU
R← 〈g〉, sU

R← Zq

U computes CU := (cU1 , cU2) s.t.
cU1 := gsU ,
cU2 := mUH2(PKsU

V1
) · · · H2(PKsU

Vn′)
2. V ←− U : IDU , ωU1 , ωU2 , . . . , ωUn , CU

If n �= n′ then V outputs reject.
Otherwise V executes as follows.
PKUi := ωUiG

H1(ωUi
,IDU)

Vi
(i =

1, . . . , n)
mV

R← 〈g〉, sV
R← Zq

V computes CV := (cV1 , cV2) s.t.
cV1 := gsV ,
cV2 := mV H2(PKsV

U1
) · · · H2(PKsV

U1
)

m′
U := cU2/(H2(c

tV1
U1

) · · · H2(c
tVn
Un

))
respV := H2(m′

U)
3. V −→ U : cV1 , cV2 , respV

U checks whether H2(mU) ?=
respV .
If equality holds, U outputs
accept. Then U computes m′

V :=
cV2/(H2(c

tU1
V1

) · · · H2(c
tUn
V1

)) and set
respU := H2(m′

V).
Otherwise U output reject.

4. V ←− U : respU

V checks whether H2(mV) ?=
respU . If equality holds, V out-
puts accept. Otherwise V outputs
reject.� �

Fig. 1. Scheme of Yamashita and Tanaka

1): Challenger sends IDch and ωchi (i = 1, ..., n), receives IDA, ωAi (i =
1, ..., n), and (cA1 , cA2).

2): Challenger computes for i = 1, . . . , n

PKAi = ωAiG
H1(ωAi

,IDA)
i , cch1 = gsch , cch2 = mch

n∏
i=1

H2(PKsch

Ai
),

m′
A =

cA2∏n
i=1 H2(c

tchi

A1
)

and respch = H2(m′
A).

Here, mch ← 〈g〉 and sch ← Zq is chosen uniformly by challenger.
3): Challenger sends cch1 , cch2 , respch, and receives respA.

Behavior as simulator player
The challenger chooses all parameters at uniformly random.

Extension of Secret Handshake Protocols 165

1): Challenger send IDch and ωchi (i = 1, ..., n), receives IDA, ωAi (i = 1, ..., n),
and (cA1 , cA2).

2): Challenger chooses cch1 , cch2 , respch
R← 〈g〉 and sends them.

3): Challenger receives respA.

We will construct the procedure ofADR as follows. The goal of detector attack
is to distinguish whether a challenger is honest player or simulator, namely ADR

breaks Detector Resistance which is basic security requirement of SHSMG.
The input of ADR is Gi (i = 1, ..., n) and params.

1): ADR receives IDch and ωchi (i = 1, ..., n). ADR chooses mA ← 〈g〉, sA ← Zq

and computes for i = 1, . . . , n as follows;

PKchi = ωchiG
H1(ωchi

,IDch)
chi

, cA1 = gsA and cA2 = mA

n∏
i=1

H2(PKsA
chi

).

2): ADR chooses IDA ←R {0, 1}∗ and ωAi ← 〈g〉 (i = 1, ..., n). ADR sends IDA,
ωAi , and (cA1 , cA2) to the challenger.

3): ADR receives respch, cch1 and cch2 . If respch = H2(mA), Ansj = 1. Other-
wise Ansj = 0. Here, (j = {0, 1}) which is chosen by the challenger.

4): After two times of handshake protocol were over, ADR behaves as follow.
• Case1: Ans0 = Ans1
ADR picks j′ ←R {0, 1} and outputs j′.

• Case2: Ans0 = 1 and Ans1 = 0
ADR outputs j′ = 0.

• Case3: Ans0 = 0 and Ans1 = 1
ADR outputs j′ = 1.

When challenger executes Handshake as the honest player, since ADR has
the public keys of the groups that honest player belongs to, ADR can generate
(cA1 , cA2) and verify the respch. So, when the challenger is the honest player,
ADR always can distinguish the honest player or the simulator. When challenger
executes Handshake as the simulator, the probability that the simulator can
generate valid respch(= H2(mA)) is 1

2q . So, only if above case,ADR fails Detector
Attack.

Then, the success probability of Detector Attack is 1 − 1
2q . This probability

is non-negligible probability.
The reason that this attack succeeded is due to construction of resp. In [7],

ADR can confirm whether respch is valid without secret information (member
certificate and secret key). So, ADR can distinguish whether challenger is simu-
lator or honest player, using only mA which is chosen by ADR.

The remediation method of this flaw is as follows. In our secure SHSMG,
respch is constructed by using mA and mch as H(mA, mch). In this way, in
order to decide whether respch is valid or not, A must decrypt given ciphertext
cch1 , cch2 to get mch. We show the modified Handshake scheme in Fig. 2.
Owing to the construction of resp, we use H3 : {0, 1}2k → {0, 1}k addition to
H1 and H2.

166 Y. Kawai et al.

� �
Handshake: With input of the
(IDU , (GUi , ωUi , tUi)) for i = 1, . . . , n,
(IDV , (GVi , ωVi , tVi)) for i = 1, . . . , n′

from U and V , Handshake protocol is
executed as follows.

1. V −→ U : IDV , ωV1 , ωV2 , . . . , ωVn′

If n �= n′ then U outputs reject.
Otherwise U executes as follows.
PKVi := ωViG

H1(ωVi
,IDV)

Ui
(i =

1, . . . , n)
PKV := Πn′

i=1PKVi

mU
R← 〈g〉, sU

R← Zq

U computes CU := (cU1 , cU2) s.t.
cU1 := gsU , cU2 := mU⊕H2(PKsU

V)
2. V ←− U : IDU , ωU1 , ωU2 , . . . , ωUn , CU

If n �= n′ then V outputs reject.
Otherwise V executes as follows.
PKUi := ωUiG

H1(ωUi
,IDU)

Vi
(i =

1, . . . , n)

PKU := Πn
i=1PKUi

mV
R← 〈g〉, sV

R← Zq

V computes CV := (cV1 , cV2) s.t.
cV1 := gsV , cV2 := mV ⊕H2(PKsV

U)
m′

U := cU2 ⊕ H2(c
tV1+···+tVn
U1

)
respV := H3(m′

U , mV)

3. V −→ U : CV , respV

m′
V := cV2 ⊕ H2(c

tU1+···+tUn
V1

)

U checks whether H3(mU , m′
V) ?=

respV . If equality holds, U out-
puts accept and computes respU :=
H3(m′

V , mU). Otherwise U outputs
reject and set respU := ∗.

4. V ←− U : respU

V checks whether H3(mV , m′
U) ?=

respU . If equality holds, V out-
puts accept. Otherwise V outputs
reject.� �

Fig. 2. Our Proposed Handshake of SHSMG

In previous Secret Handshake scheme with multiple groups (SHSMG) [7], a
member outputs accept iff U and V ’s affiliations of multiple groups are identi-
cal. Such the restriction of authentication condition might be quite restrictive,
because Secret Handshake should be flexible in order to be applicable to various
situations which we mentioned above. In this paper, we propose a scheme which
a member can authenticate in monotone condition. (without limiting the situa-
tion like all affiliation of U and V are identical). We call this scheme monotone
condition Secret Handshake scheme with multiple groups (mc-SHSMG). In this
section, we will show the definition of mc-SHSMG.

First we will define the condition of outputting accept when a member ex-
ecutes Handshake protocol, as follows. We call this condition, Authentication
Condition. This condition is decided in some way before the Handshake pro-
tocol, and given to the member before the execution of the protocol.

– Authentication Condition (AC)
Let N be the total number of the groups, and X be the set of all groups,
that is, X = {G1, . . . , GN}. Here, the power set of X is denoted as P (X) =
{Y |Y ⊆ X}. At this time, AC is a subset of P (X).

mc-SHSMG consists of four algorithms whose definitions of Setup, Create-
Group and AddMember are the same as those in SHSMG (see Section 2). We
will define the Handshake as follows.

Extension of Secret Handshake Protocols 167

Handshake : is the authentication protocol executed between member U and
V which take common inputs as AC, IDU , IDV , params and U ’s pri-
vate inputs (GU1 , certU1),. . . ,(GUn , certUn) and V ’s private inputs (GV1 ,
certV1),. . . ,(G Vm , certVm). At the end of the protocol, if U and V belongs
to the groups which satisfy the AC, then output accept.

Let us review the oracle and Handshake players utilized in the definition of
the security property of mc-SHSMG.

CG : is the CreateGroup oracle. Given Gi, set group public key Gi and
output Gi.

AddM : is the AddMember oracle. Given (Gi, ID), output certificate cert
corresponding to ID.

honesthonest member V who executes Handshake protocol. Given (param
s,AC, IDV , IDA, (G1, certV1), . . . , (GN , certVN)), V follows the Handshake
protocol as prescribed (IDA is counterpart’s ID).

SIMsimulator which simulates the Handshake protocol. Given (params,
AC, IDV , IDA), it simulates as it’s the execution of IDV .

mc-SHSMG must satisfy following security properties: Correctness, Imperson-
ator Resistance and Detector Resistance.

Correctness : If honest member U and V who belong to groups which satisfies
AC execute Handshake protocol, then both members output accept.

Impersonator Resistance(IR) : Intuitively, the Impersonator Resistance is
violated if adversaryA, who is a member of groups which do not satisfies the
AC, and an honest member V, who is a member of groups which satisfy the
AC, execute Handshake protocol, then both members output accept. We say
mc-SHSMG is IR if every polynomialy bounded adversary A has negligible
probability of winning in the following game against any string IDV .

Experiment ExpIR
A (k)

params ← Setup(k)
(Gi, gski) ← CreateGroup(params){i = 1, ..., N}
certi ← AddMember(gski,params, IDV , Gi){i = 1, ..., N}
(AC, IDA, State) ←ACG,AddM(params, IDV , G1, ..., GN)
honest(params, AC, IDV , IDA, (G1, certV1), ..., (GN , certVN))
Handshake←→ ACG,AddM(State)
If V outputs accept, then return 1. Otherwise return 0.

We say A wins if V outputs accept in above game. However, A must not
construct AC using only the groups that A gets certificates as IDA using
by AddM. Also, A cannot ask IDA and the group be included in AC to
AddM after A outputs AC. We denote the advantage of the adversary A
in breaking the IR of mc-SHSMG by

AdvIR
A (k) = Pr[ExpIR

A (k) = 1].

168 Y. Kawai et al.

Detector Resistance(DR) :
Intuitively, the detector resistance is violated if adversary A, who is a mem-
ber of group which does not satisfies AC, and an honest member V, who
is a member of groups which satisfy the AC, execute Handshake protocol,
then A can decide whether V is a member of group which satisfies AC or
not. We say mc-SHSMG is DR if every polynomialy bounded adversary A
does not have probability non-negligibly higher than 1/2 of winning in the
following game against any string IDV .

Experiment ExpDR
A (k)

params ← Setup(k)
(Gi, gski) ← CreateGroup(params){i = 1, ..., N}
certi ← AddMember(gski,params, IDV , Gi){i = 1, ..., N}
(AC, IDA, State) ←ACG,AddM(params, IDV , G1, ..., GN)
j

R← {0, 1}
playerj := honest;player1−j := SIM

player0
Handshake←→ ACG,AddM(State)

player1
Handshake←→ ACG,AddM(State)

j′ ←ACG,AddM(State)
If A outputs j′ such that j = j′, then return 1. Otherwise return 0.

We say A wins if A outputs j=j’ in above game. However, A must not
construct AC using only the groups that A gets certificates as IDA using
by AddM. Also, A cannot ask IDA and the group be included in AC to
AddM after A outputs AC. We denote the advantage of the adversary A
in breaking the DR of mc-SHSMG by

AdvDR
A (k) = | Pr[ExpDR

A (k) = 1] - 1/2|.

In this section we will show the idea for the extension and the concrete scheme
of mc-SHSMG.

In this paper we utilize logical function and truth table in order to express
the monotone condition. Also we use next notations in the rest of this paper.

– U ∈ Gi denotes that “U belongs to Gi”. Moreover U ∈ {Gi, Gi′} denotes
that “U belongs to both Gi and Gi′

”.
– Gi = 1 represents U ∈ Gi, and Gi = 0 represents U �∈ Gi.
– Z represents AC. The {Z|Z = 1} represents the conditions of outputting

accept when Handshake protocol is executed.

For example, we will show all possible cases of the total number of groups
element is 3 (N = 3) in Table 1. In this case, the number of P (X) is |P (X)|=8.

We define the AC as {Z|Z = 1} in the above table. For example, assume that
member U and V executes Handshake protocol when AC is (7) and (8)(which
means AC = {{G1, G2}, {G1, G2, G3}}). In this case, the protocol outputs accept
when U and V belong a set of group either {G1, G2} or {G1, G2, G3}.

Extension of Secret Handshake Protocols 169

Table 1. Truth table(N = 3)

group AC
G1 G2 G3 Z

(1) 0 0 0 0/1
(2) 0 0 1 0/1
(3) 0 1 0 0/1
(4) 0 1 1 0/1
(5) 1 0 0 0/1
(6) 1 0 1 0/1
(7) 1 1 0 0/1
(8) 1 1 1 0/1

In this manner, to combine {Z|Z = 1}, it is possible to execute the Hand-
shake protocol in monotone condition. Here, scheme by Yamashita and Tanaka
[7] could be considered as #{Z|Z = 1} = 1, because members output accept
only both member’s affiliation is identical, which means there is only one AC.

On the other hand, consider the case where Z = 1 is set to (1). In this case, it
outputs accept when handshake player do not belong to any group. Thus, there
is no need to execute Handshake protocol because it does not make sense.

In our setting, we consider the situation where AC satisfies the monotone
property defined as follows.

– Monotone property:
We say AC satisfies the monotone property when AC satisfies the next
expression; ∀x, y ∈ P (X); (y ∈ AC) ∧ (y ≤ x)⇒ x ∈ AC.

The reason why we consider the situation where AC satisfies the monotone
property is as follows.

Let (P (X),≤) be the ordered set, and x, y be the element of P (X). We will
show the Hasse diagram of (P (X),≤) in Fig. 3. Condition x, y such that x, y ∈
AC and y ≤ x should hold the following property.

“member U who can make V output accept in the condition x, can also V
make output accept in condition y ”.

This happens because member U keeps not only the certificate of x but also
that of y. Which is to say, if we set the AC like y ∈ AC and x �∈ AC, the member
who belongs to z(s.t. (y ≤ z) ∧ (y �= z)) can output accept even the member
does not satisfy the AC. Such a thing must not happen.

Therefore, we consider the situation where AC satisfies the monotone property
in our setting.

In this subsection, we discuss the communication costs and computational
costs of our proposed scheme.

As we mentioned in Section 5.2, we consider the situation where AC satisfies
the monotone property. Because of this, the size of AC (communication costs)
increase and also computation cost increase . Thus, we will show how to de-
crease the communication costs and computational costs, by applying the next
technique.

170 Y. Kawai et al.

Fig. 3. (a)Hasse diagram in the case of N = 3, (b)AC and minimal element

Let’s assume that AC to be AC={{G1}, {G1, G2}, {G2, G3}, {G3, G1}, {G1,
G2, G3}}. This example satisfies the monotone property. By a handshake player
verifying all the 5 conditions, mc-SHSMG requirement can be achieved. We call
this scheme as trivial scheme. Though, in the trivial scheme, a handshake player
must verify all the conditions in AC, the communication costs and computation
costs increase. But for the monotone property, all the conditions need not to
be verified. It is sufficient to verify whether other member satisfies the minimal
element of conditions or not, because member U ∈ x can verify y correctly
where y ≤ x. In this example, we could see from Fig. 3 that minimal element is
{G1} and {G2, G3}. In verifying whether member satisfies {G1}, {G2, G3} or not,
not only the member who belongs to {G1}, {G2, G3} but also the member who
belongs to {G1, G2}, {G3, G1}, {G1, G2, G3} can prove that he satisfies the AC.

We use the same algorithm and protocol (Setup,Create Group, AddMem-
ber, Recover) as it is used in the scheme of Yamashita and Tanaka [7](there is
a little different that we use H3 : {0, 1}3k → {0, 1}k to construct a secure scheme
which is mentioned in Section 3). The difference between our protocol and that
of [7] is Handshake protocol and encryption scheme. The Handshake protocol
and encryption scheme of proposed scheme is shown in Figs. 4 and 5. Member
U does the following procedure before he executes Handshake protocol.

1. U obtains minimal elements of AC : (AC1, AC2, . . . , ACl), using Hasse dia-
gram. We denote a suffix set of groups which are contained in each minimal
element ACj as AC′

j and AC′ = (AC′
1, . . . , AC′

l).
2. We denote the groups which are contained in (AC1, AC2, . . . , ACl) as GTi :=

Gi′
for i = 1, . . . , n, and the set of groups which U belongs to as GU . We

notice that, {Ti|i = 1, . . . , n} is in the ascending order, that is, T1 < T2 <
· · · < Tn. Then U will set (GUi , ωUi , tUi) for i = 1, . . . , n as follows:

(GUi , ωUi , tUi) =

⎧⎪⎪⎨
⎪⎪⎩

(GUi′′ , ωUi′′ , tUi′′) (GTi ∈ GU)
s.t.GUi′′ = GTi

(GTi , ωTi , ∗) (GTi �∈ GU)
s.t.ωTi = gr(r R← Zq).

Extension of Secret Handshake Protocols 171

� �
Handshake:

– Let the number of minimal element
of AC be l.

With input of the
(AC, IDU , (GUi , ωUi , tUi)) for i =
1, . . . , n,
(AC, IDV , (GVi , ωVi , tVi)) for i =
1, . . . , n′,
from U and V , Handshake protocol is
executed as follows.

1. V −→ U : IDV , ωV1 , ωV2 , . . . , ωVn′

If n �= n′ then U outputs reject.
Otherwise U executes as follows.
PKVi := Recover(GUi , IDV , ωVi)
(i = 1, . . . , n′)
PKVj := Πi∈AC′

j
PKVi (j =

1, . . . , l)
mU

R← {0, 1}k

CUj := EncPKVj
(mU) (j =

1, . . . , l)
2. V ←− U : IDU , ωU1 , ωU2 , . . . , ωUn ,

CU1 , . . . , CUl

If n �= n′ then V outputs reject.
Otherwise V executes as follows.

PKUi := Recover(GVi , IDU , ωUi)
(i = 1, . . . , n)
PKUj := Πi∈AC′

j
PKUi (j =

1, . . . , l)
V picks ciphertext CU correspond-
ing to tV , and executes as follows.
m′

U := DectV (CU)
mV

R← {0, 1}k

CVj := EncPKUj
(mV) (j =

1, . . . , l)
respV := H3(m′

U , mV)
3. V −→ U : CV1 , . . . , CVl , respV

U picks ciphertext CV correspond-
ing to tU , and executes as follows.
m′

V := DectU (CV)
U checks whether H3(mU , m′

V) ?=
respV . If equality holds, U out-
puts accept and computes respU :=
H3(m′

V , mU). Otherwise U outputs
reject and set respU := ∗.

4. V ←− U : respU

V checks whether H3(mV , m′
U) ?=

respU . If equality holds, V out-
puts accept. Otherwise V outputs
reject.� �

Fig. 4. Proposed Handshake of mc-SHSMG

3. Calculate tU for arbitrary ACj such that ACj ⊆ GU .

tU :=
∑

i∈AC′
j
tUi

The member V does the same as U for steps 1-3.
In this section we will provide security proof of the proposed mc-SHSMG with

respect to security requirement.
Let p, q be prime numbers. 〈g〉 denotes sub-group of Z∗

p generated by an
element g where its order is q.

Definition 1 : Computational Diffie Hellman(CDH) problem
We say that I (τ, ε)-solves the CDH problem if, given (g, gx, gy), it is pos-
sible to compute gxy whose running time is bounded by τ and its success
probability is more than ε.

We say that CDH problem is (τ, ε)-hard if there is no algorithm I which can (τ, ε)-
solve the CDH problem. We assume that there is no such algorithmI who can solve
the CDH Problem with non-negligible probability. We call this CDH assumption.

172 Y. Kawai et al.

� �
Note that G := gx, ω := gr, t := r +
xH1(ω, ID).
Recover(G, ID, ω) :
With input of the (G, ID, ω), computes
PK := ωGH1(ω,ID), and outputs en-
cryption key PK.
EncPK(m) :
PK is a encryption key. With input of
the plaintext m ∈ {0, 1}k, picks s

R← Zq

and computes c1 := gs, c2 := m ⊕
H2(PKs). Output ciphertext C such
that C := (c1, c2).
Dect(C) :
t is a decryption key. With input of
the ciphertext C, computes m′ := c2 ⊕
H2(ct

1), and outputs plaintext m′.

� �
Fig. 5. CA-Oblivious Encryption Scheme

Theorem 1 : The proposed scheme is complete.
Proof of Theorem 1 : Since it is easy to see that the scheme is complete, we

omit the proof.

Theorem 2 : If CDH problem is hard, then the proposed scheme satisfies
Impersonator Resistance.

Proof of Theorem 2 : Let A be an adversary who breaks Impersonator Resis-
tance of the proposed scheme and can impersonate a member with advantage
εA. Then we construct inverter I who uses A to solve an instance of CDH
Problem with advantage εI . I is given (g, ga, gb) and try to compute gab.

We only give the brief sketch of the proof of Theorem 2. This proof is similar
to the proof in [3].

In the simulation of Handshake protocol, V (A) sends respV ← {0, 1}k to A,
not respV := H3(m′

A, mV). This is because V does not know the value of mV .
But this is not a problem. The only way A can distinguish the real environment
(conversation with an honest) and simulated environment is to check whether
respV = H3(mA, m′

V) holds or not, where m′
V = cVj2 ⊕ H2(ctA

Vj1
). And if A is

possible to distinguish between real and simulated environment, then I can solve
the CDH problem. This is the first case of the behavior of A. The second case of
the behavior of A is to make V output accept. In this case, CAI can also solve
the CDH problem as same way as first case. Thus I breaks the CDH challenge.

Theorem 3 : If CDH problem is hard, then the propose scheme satisfies De-
tector Resistance.

This proof is similar to the proof in [3].

In this paper, we pointed out some weakness of the scheme of Yamashita
and Tanaka [7] and proposed the remediation strategy of how to construct a
scheme which satisfies all the basic security properties of the Secret Handshake
protocol. Also, we proposed mc-SHSMG which two members can authenticate in
monotone condition. Moreover, though communication costs and computational

Extension of Secret Handshake Protocols 173

costs are large in trivial scheme, by using Hasse diagram, the proposed scheme
makes member execute Handshake protocol in a less amount. It is obvious that,
due to the flexibility, communication costs and computational costs are larger
than the previous schemes.

In our scheme, if the handshake players both belong to groups which satisfy
the AC, the situation that a handshake player can decide which condition that
the counterpart satisfies, may happen. But, we unconcern this situation, because
this may happen iff handshake players both belong to groups which satisfies the
AC. What is important in the Secret Handshake protocol is, that a member
who does not belong to groups which satisfy the AC can not do anything (like
impersonate, or detect that counterpart belongs to groups which satisfies the
AC or not). We leave to straighten out this situation as an open problem.

We have succeeded in relaxing the authentication to be general at the first
step. Next we want to construct a SHSMG where member can authenticate
in arbitrary condition. We might make this scheme by changing AddMember
protocol, but it seems not to be efficient. We leave the construction of efficient
arbitrary condition SHSMG as an open problem too.

References

1. Ateniese, G., Blanton, M., Kirsch, J.: Secret Handshake with Dynamic and Fuzzy
Matching. In: Network and Distributed System Security Symposium (2007)

2. Balfanz, D., Durfee, G., Shankar, N., Smetters, D., Staddon, J., Wong, H.-C.: Secret
Handshakes from Pairing-Based Key Agreements. In: IEEE Symposium on Security
and Privacy, pp. 180–196 (2003)

3. Castelluccia, C., Jarecki, S., Tsudik, G.: Secret handshakes from CA-oblivious en-
cryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307.
Springer, Heidelberg (2004)

4. Jarecki, S., Kim, J., Tsudik, G.: Authentication for paranoids: Multi-party secret
handshakes. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989,
pp. 325–339. Springer, Heidelberg (2006)

5. Tsudik, G., Xu, S.: A Flexible Framework for Secret Handshakes (Multi-party
Anonymous and Un-observable Authentication). Cryptology ePrint Archive (2005)

6. Tsudik, G., Xu, S.: Brief announcement: A flexible framework for secret handshakes.
In: ACM Symposium on Principles of Distributed Computing (2005)

7. Yamashita, N., Tanaka, K.: Secret handshake with multiple groups. In: Lee, J.K., Yi,
O., Yung, M. (eds.) WISA 2006. LNCS, vol. 4298, pp. 339–348. Springer, Heidelberg
(2007)

Pseudorandom-Function Property of
the Step-Reduced Compression Functions of

SHA-256 and SHA-512

Hidenori Kuwakado1 and Shoichi Hirose2

1 Graduate School of Engineering, Kobe University
kuwakado@kobe-u.ac.jp

2 Graduate School of Engineering, University of Fukui
hrs shch@u-fukui.ac.jp

Abstract. Applications of an iterated hash function such as HMAC
require that the compression function of the hash function is a pseudo-
random function. However, the pseudorandom-function property of the
compression function was not analyzed up to now. This paper shows
that it is easy to distinguish between the 22 step-reduced SHA-512 com-
pression function with the key-via-IV strategy and a random function.
This is the first result on the pseudorandom-function property of the
SHA-512 compression function with the key-via-IV strategy. A similar
distinguishing attack is applicable to the SHA-256 compression function
with the key-via-IV strategy.

1 Introduction

As SHA-256 and SHA-512 (so-called SHA-2) [14] are widely used in applications,
the analysis of SHA-2 has been developed remarkably by the cryptanalysis com-
munity. For example, Mendel et al. [13] showed an 18-step collision of SHA-256
in 2006. Sanadhya and Sarkar [17] presented differential paths for 19 – 23 steps of
SHA-256 in 2008. Indesteege et al. [11] showed collision attacks on SHA-256 re-
duced to 23 and 24 steps with complexities 218 and 250 in 2008. In addition, they
also pointed out the non-random behavior of SHA-256 in the form of pseudo-near
collision for up to 31 steps [11]. Recently, Sanadhya and Sarkar [16] have shown
collision attacks against the 22-step SHA-512. Thus, previous results are related
to the security of collision-resistance or that of non-random behavior based on
the collision. We note that the collision-resistant property is important, but it
is not all.

Applications such as HMAC require that a (keyed) hash function behaves
as if it is a random function when the key is unknown. This property is called
the pseudorandom-function property, which is closely related to the security of
such applications. We notice that the security of HMAC based on the MDx
family, SHA-0, or SHA-1 has been extensively studied [5,7,19], but the attacks
are based on collision-finding attacks. Bellare [1] has shown that HMAC is a
pseudorandom function if the compression function is a pseudorandom function

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 174–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Pseudorandom-Function Property of SHA-256 and SHA-512 175

with two keying strategies. That is, the proof of HMAC does not require that the
hash function is collision-resistant. The pseudorandom-function property and the
collision-resistant property are independent in the sense that there is no general
reduction between them [18]. Indeed, the attack model on the collision-resistant
property differs from the attack model on the pseudorandom-function property.
In the attack model on the collision-resistant property, an adversary can search
collisions only by himself, without other’s help. Besides, in the attack model
on the pseudorandom-function property, an adversary cannot obtain a hashed
value without making queries to an oracle that knows a secret key. Accordingly,
it is important to study not only the collision-resistant property but also the
pseudorandom-function property.

The pseudorandom-function property of a hash function has been discussed
in the context of domain extension [2,3,9]. Specifically, under the assumption
that an underlying compression function is a pseudorandom function, methods
for constructing a hash function that behaves as if it is the pseudorandom func-
tion have been studied. Hence, since the pseudorandom-function property of
such a hash function is reduced to that of the underlying compression function,
it is worth studying the pseudorandom-function property of the compression
function.

When the compression function is the PGV mode [4,15], the security of the
compression function is related to that of the underlying block cipher. From
the viewpoint of block-cipher analysis, underlying block ciphers of SHA-1 and
SHA-256, which are called SHACAL-1 and SHACAL-2 [8], have been analyzed
[6,10,12]. In this case, the compression function with the key-via-IV strategy and
the block cipher are different in the position of key input.

In this paper, we show that the 22 step-reduced SHA-2 compression function
with the key-via-IV strategy is distinguishable from a random function. This is
the first result on the pseudorandom-function property of the SHA-2 compression
function. Our distinguishing attacks are practical in the sense that an adversary
succeeds in distinguishing them with non-negligible probability in spite of the
small number of queries and low complexity. Unlike collision-finding attacks,
the adversary who performs distinguishing attacks can know only the hashed
value, cannot know intermediate values. Hence, the adversary cannot use the
message-modification technique that is effective in collision-finding attacks. Even
though this paper represents a step forward in terms of security analysis on
the pseudorandom-function property, the results do not threaten the security of
applications using SHA-2.

This paper is organized as follows. Section 2 describes the algorithm of the
SHA-2 compression function and the key-via-IV strategy to transform a non-
keyed compression function into a keyed compression function, and defines the
prf-advantage to measure the indistinguishability. Section 3 shows an algorithm
for distinguishing between a 22 step-reduced SHA-512 compression function and
a random function. We demonstrate that the prf-advantage of this algorithm is
large. Furthermore, we show the differential path used by this algorithm and
evaluate the probability that the algorithm succeeds in distinguishing them.

176 H. Kuwakado and S. Hirose

Section 4 describes a distinguishing algorithm for the 22 step-reduced SHA-256
compression function. Since the structure of the SHA-256 compression function
is similar to that of the SHA-512 compression function, the distinguishing al-
gorithm is applicable without a major modification. Section 5 concludes this
paper.

2 Preliminaries

2.1 Pseudorandom-Function Property

Let F�,n be the set of all functions from {0, 1}� to {0, 1}n. A function f is
called a random function if f is randomly chosen from F�,n. Consider a function
φ(u, x) : {0, 1}κ × {0, 1}�→{0, 1}n. After u was fixed, φ(u, x) can be considered
as a function in F�,n. Such a function is denoted by φu(x). The function φ(u, x) is
called a pseudorandom function if it is hard for an adversary who does not know
u to distinguish between φu(x) and a random function f(x) in F�,n. Formally,
the indistinguishability is measured by the prf-advantage of an adversary A that
is defined as

Advprf
φk

(A) =
∣∣∣Pr

[
u

$← {0, 1}κ; Aφu = 1
]
− Pr

[
f

$← F�,n; Af = 1
]∣∣∣ (1)

where A has access to φu (or f) and returns a bit [2]. Notice that A knows the
description of φ(u, x), but A does not know the chosen key u.

2.2 SHA-2 Compression Function

We here describe the algorithm of the SHA-2 compression function (Fig. 1).
In the following, all variables are L bits, an operation ‘+’ denotes an addition

0 1

Message schedule

Key
or
IV

w0 w1

(aN, bN, . . . , hN)

(ai, bi, . . . , hi)
(ai−1, bi−1, . . . , hi−1)

ii− 1 i + 1

(a−1, b−1, . . . , h−1) (aN−1, bN−1, . . . , hN−1)

N − 1

wi wi+1wi−1 wN−1

m0 m1 m14 m15

+

message blocks

expanded message blocks

Fig. 1. SHA-2/N

Pseudorandom-Function Property of SHA-256 and SHA-512 177

modulo 2L, an operation ‘⊕’ denotes the bitwise exclusive-or, and N represents
the number of steps. Specifically, L = 64 and N = 80 for the full-step SHA-512
compression function, and L = 32 and N = 64 for the full-step SHA-256 one.

Prepare expanded message blocks wi for given message blocks
m0, m1, . . . , m15.

wi =
{

mi if 0 ≤ i ≤ 15,
σ1(wi−2) + wi−7 + σ0(wi−15) + wi−16 if 16 ≤ i ≤ N − 1,

(2)

σ0(x) =
{

ROTR(1, x)⊕ ROTR(8, x)⊕ SHR(7, x) for SHA-512
ROTR(7, x)⊕ ROTR(18, x)⊕ SHR(3, x) for SHA-256,

σ1(x) =
{

ROTR(19, x)⊕ ROTR(61, x)⊕ SHR(6, x) for SHA-512
ROTR(17, x)⊕ ROTR(19, x)⊕ SHR(10, x) for SHA-256,

where ROTR(n, x) is a circular shift of x by n positions to the right and
SHR(n, x) is a shift of x by n positions to the right.

Next, (a−1, b−1, . . . , h−1) are given as initial values. For step i = 0 to N − 1,
compute variables as Eq. (3) where ai, bi, . . . , hi are called chaining values, and
αi, βi are called auxiliary values.

αi = hi−1 + Σ1(ei−1) + Ch(ei−1, fi−1, gi−1) + ki + wi,
βi = Σ0(ai−1) + Maj(ai−1, bi−1, ci−1),
ai = αi + βi, bi = ai−1, ci = bi−1, di = ci−1,
ei = di−1 + αi, fi = ei−1, gi = fi−1, hi = gi−1,

(3)

where ki is a step-constant value, and Σ0, Σ1, Ch, and Maj are defined as

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z),
Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z),

Σ0(x) =
{

ROTR(28, x)⊕ ROTR(34, x)⊕ ROTR(39, x) for SHA-512,
ROTR(2, x)⊕ ROTR(13, x)⊕ ROTR(22, x) for SHA-256

Σ1(x) =
{

ROTR(14, x)⊕ ROTR(18, x)⊕ ROTR(41, x) for SHA-512,
ROTR(6, x)⊕ ROTR(11, x)⊕ ROTR(25, x) for SHA-256.

Finally, add the initial values to them.

aN = aN−1 + a−1, bN = aN−1 + b−1, cN = cN−1 + c−1,
dN = dN−1 + d−1, eN = eN−1 + e−1, fN = fN−1 + f−1,
gN = gN−1 + g−1, hN = hN−1 + h−1.

The output H of the compression function is given by their concatenation.

H = aN ‖ bN ‖ cN ‖ dN ‖ eN ‖ fN ‖ gN ‖ hN . (4)

Replacing (a−1, b−1, . . . , h−1) with a secret key allows us to use the SHA-2
compression function as a keyed compression function. The replacement is often
called the key-via-IV strategy. This paper discusses the 22 step-reduced SHA-2
compression function with the key-via-IV strategy, which is denoted by SHA-
512/22 (or SHA-256/22).

178 H. Kuwakado and S. Hirose

3 22 Step-Reduced SHA-512 Compression Function

This section shows that SHA-512/22 is distinguishable from a random function.
We first describe the algorithm for distinguishing them, and then analyze the
prf-advantage of this algorithm.

3.1 Distinguishing Algorithm

Suppose that an adversary A has access to an oracle G that is SHA-512/22 φu or
a random function f in F1024,512. The goal of A is to determine whether G is φu

or f . The outline of A is given here. The adversary prepares four messages that
are correlated with each other. After the adversary received their four hashes
from the oracle G, the adversary computes two differences from four hashes. If
two differences satisfy a condition simultaneously, then the adversary outputs
1, which implicitly means that G is guessed to be SHA-512/22, otherwise the
adversary outputs 0. Notice that A has access to G only four times. The detail
of A is described below.

A-1. Denote four messages M (j) for j = 0, 1, 2, 3 by

M (j) = m
(j)
0 ‖ m

(j)
1 ‖ m

(j)
2 ‖ m

(j)
3 ‖ · · · ‖ m

(j)
14 ‖ m

(j)
15 .

Choose message blocks m
(0)
0 , m

(0)
1 , . . . , m

(0)
11 , m

(0)
14 , m

(0)
15 independently and

randomly. Set other message blocks except for m
(j)
12 , m

(j)
13 as follows.

m
(0)
0 = m

(1)
0 = m

(2)
0 = m

(3)
0 , m

(0)
1 = m

(1)
1 = m

(2)
1 = m

(3)
1 ,

· · ·
m

(0)
10 = m

(1)
10 = m

(2)
10 = m

(3)
10 , m

(0)
11 = m

(1)
11 = m

(2)
11 = m

(3)
11 ,

m
(0)
14 = m

(1)
14 = m

(2)
14 = m

(3)
14 , m

(0)
15 = m

(1)
15 = m

(2)
15 = m

(3)
15 .

A-2. Set message blocks m
(j)
12 for j = 0, 1, 2, 3 as follows.

m
(0)
12 = 0, m

(1)
12 = m

(0)
12 + 163 = 163,

m
(2)
12 = 141, m

(3)
12 = m

(2)
12 + 163 = 163,41,

where 1t means that the tth bit is one and the others are zero. Note that
the least significant bit is the 0th bit. For example, 163 and 163,41 are

163 = 8000000000000000, 163,41 = 8000020000000000

in hexadecimal.
A-3. Set message blocks m

(j)
13 for j = 0, 1, 2, 3 as follows.

m
(0)
13 = −k13, m

(1)
13 = m

(0)
13 + (−Σ1(163)),

m
(2)
13 = −k13, m

(3)
13 = m

(2)
13 + (−Σ1(163)),

where k13 is the 13-step constant. Now, all message blocks have been
determined.

Pseudorandom-Function Property of SHA-256 and SHA-512 179

A-4. Send four messages M (0), M (1), M (2), M (3) to the oracle G, and receive
their hashes H(0), H(1), H(2), H(3). Here, we regard H(j) as the concatenation
of eight 64-bit words that corresponds to Eq. (4).

H(j) = a(j) ‖ b(j) ‖ c(j) ‖ d(j) ‖ e(j) ‖ f (j) ‖ g(j) ‖ h(j)

A-5. Compute the modular difference of h(�+1) and h(�) for � = 0, 2.

δh〈�〉 = h(�+1) − h(�) mod 264. (5)

A-6. If the following conditions are satisfied for all � = 0, 2, then A outputs 1,
otherwise A outputs 0.

δh〈�〉[k] =
{

0 for k = 0, 1, . . . , 5,
1 for k = 6,

(6)

where δh〈�〉[k] denotes the kth bit of δh〈�〉.

We here evaluate the prf-advantage of A. Suppose that G is a random function
f . Since δh〈�〉 satisfies Eq. (6) with probability 2−7 for each � independently, A
outputs 1 with probability 2−14. Denoting by RF the event that G is the random
function, we formally write the probability as

Pr
[
AG = 1|RF

]
= 2−14. (7)

Suppose that G is SHA-512/22 φu. As shown in Sect. 3.2, the probability that
A outputs 1 is

Pr
[
AG = 1|SHA

]
> 2−11.749376 (8)

where SHA denotes the event that G is SHA-512/22. Therefore, the prf-advantage
of A is given by

Advprf
φu

(A) =
∣∣∣Pr

[
u

$← {0, 1}512; Aφu = 1
]
− Pr

[
f

$← F1024,512; Af = 1
]∣∣∣

=
∣∣Pr

[
AG = 1|SHA

]
− Pr

[
AG = 1|RF

]∣∣
> 2−11.749376 − 2−14 ≈ 2−12.089694.

This prf-advantage suggests that SHA-512/22 is easily distinguishable from the
random function. The above algorithm A has access to G only four times. If
an attacker performs this algorithm repeatedly, then the attacker can improve
the probability that he succeeds in distinguishing between SHA-512/22 and the
random function.

3.2 Analysis

This subsection explains why the probability that A outputs 1 is given by Eq. (8)
when G is SHA-512/22. The algorithm in Sect. 3.1 is based on the differential
path shown in Table 1. In Table 1, the first column indicates the step number of

180 H. Kuwakado and S. Hirose

Table 1. Differential path for SHA-512/22 (� = 0, 2)

Step i ∆w
〈�〉
i ∆α

〈�〉
i ∆β

〈�〉
i ∆a

〈�〉
i ∆b

〈�〉
i ∆c

〈�〉
i ∆d

〈�〉
i ∆e

〈�〉
i ∆f

〈�〉
i ∆g

〈�〉
i ∆h

〈�〉
i

0-11 0 0 0 0 0 0 0 0 0 0 0

12 ∆w
〈�〉
12 ∆w

〈�〉
12 0 ∆w

〈�〉
12 0 0 0 ∆w

〈�〉
12 0 0 0

13 ∆w
〈�〉
13 0 ∆β

〈�〉
13 ∆a

〈�〉
13 ∆w

〈�〉
12 0 0 0 ∆w

〈�〉
12 0 0

14 0 0 ∆β
〈�〉
14 ∆a

〈�〉
14 ∆a

〈�〉
13 ∆w

〈�〉
12 0 0 0 ∆w

〈�〉
12 0

15 0 0 ∗ ∗ ∆a
〈�〉
14 ∆a

〈�〉
13 ∆w

〈�〉
12 0 0 0 ∆w

〈�〉
12

16 0 163 ∗ ∗ ∗ ∆a
〈�〉
14 ∆a

〈�〉
13 0 0 0 0

17 0 0 ∗ ∗ ∗ ∗ ∆a
〈�〉
14 ∆e

〈�〉
17 0 0 0

18 0 ∆α
〈�〉
18 ∗ ∗ ∗ ∗ ∗ ∆e

〈�〉
18 ∆e

〈�〉
17 0 0

19 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆e
〈�〉
18 ∆e

〈�〉
17 0

20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆e
〈�〉
18 ∆e

〈�〉
17

21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∆e
〈�〉
18

SHA-512/22 (ref. Fig. 1), the second column indicates the difference of expanded
message blocks given by Eq. (2), and the third column to the twelfth column
indicate the difference of values given by Eq. (3).

The difference ∆〈〉 in Table 1 is the bitwise exclusive-or difference. For ex-
ample, ∆w

〈�〉
12 is the bitwise exclusive-or difference of w

(�+1)
12 and w

(�)
12 , that is,

∆w
〈�〉
12 = w

(�+1)
12 ⊕ w

(�)
12 ,

where � = 0, 2. The symbol 0 means that the bitwise exclusive-or difference is
zero, and the symbol ∗ means an ignored difference because the difference has
no effect on our analysis.

We here explain the relationship between each item in Table 1 and steps1 of
the algorithm A. First, the difference on expanded message blocks exists only in
∆w

〈�〉
12 and ∆w

〈�〉
13 because of step A-1 to step A-3.

Second, before step 11, expanded message blocks, auxiliary values, and chain-
ing values have no difference.

w
(0)
11 = w

(1)
11 = w

(2)
11 = w

(3)
11 ,

α
(0)
11 = α

(1)
11 = α

(2)
11 = α

(3)
11 , β

(0)
11 = β

(1)
11 = β

(2)
11 = β

(3)
11 ,

a
(0)
11 = a

(1)
11 = a

(2)
11 = a

(3)
11 , b

(0)
11 = b

(1)
11 = b

(2)
11 = b

(3)
11 ,

· · ·

g
(0)
11 = g

(1)
11 = g

(2)
11 = g

(3)
11 , h

(0)
11 = h

(1)
11 = h

(2)
11 = h

(3)
11 .

1 In this article, ‘step A-?’ indicates the step of the algorithm A, and ‘step ?’ indicates
the step of SHA-512/22.

Pseudorandom-Function Property of SHA-256 and SHA-512 181

This is because step A-1 chooses message blocks in such a way that m
(0)
i =

m
(1)
i = m

(2)
i = m

(3)
i for i = 0, 1, . . . , 11.

Third, let us consider step 12. Recall that

α
(�)
12 = h

(�)
11 + Σ1(e

(�)
11) + Ch(e(�)

11 , f
(�)
11 , g

(�)
11) + k12 + w

(�)
12 ,

β
(�)
12 = Σ0(a

(�)
11) + Maj(a(�)

11 , b
(�)
11 , c

(�)
11).

Since step 11 does not produce any difference and w
(�+1)
12 = w

(�)
12 +163 for � = 0, 2,

we have α
(�+1)
12 = α

(�)
12 +163 and β

(�+1)
12 = β

(�)
12 for � = 0, 2. Since a

(j)
12 = α

(j)
12 +β

(j)
12

and e
(j)
12 = d

(j)
11 + α

(j)
12 for j = 0, 1, 2, 3, we obtain

∆a
〈�〉
12 = ∆w

〈�〉
12 = 163, ∆e

〈�〉
12 = ∆w

〈�〉
12 = 163 for � = 0, 2.

Notice that the modular addition of 163 is equivalent to the exclusive-or at
the 63rd bit position. In this paper, we often interchange these operations. In
addition, other chaining values have no difference.

Fourth, skipping step 12 to step 21, we consider the final step. As illustrated
in Fig. 1, the secret key (a−1, b−1, · · · , h−1) is added to chaining values at the
final. Since the secret key does not depend on messages, the modular difference
of Eq. (5) is transformed into

δh〈�〉 = h(�+1) − h(�) mod 264

= (h(�+1)
21 + h−1)− (h(�)

21 + h−1) mod 264

= h
(�+1)
21 − h

(�)
21 mod 264.

Since the condition of Eq. (6) focuses only on the difference of the least significant
seven bits of h(�+1) and h(�), it can be written using the bitwise exclusive-or
difference as follows.

∆h
〈�〉
21 [k] =

⎧⎨
⎩0 for k = 0, 1, . . . , 5,

1 for k = 6.

Since h
(j)
21 = e

(j)
18 for j = 0, 1, 2, 3, the above condition is equivalent to

∆e
〈�〉
18 [k] =

⎧⎨
⎩0 for k = 0, 1, . . . , 5,

1 for k = 6.
(9)

From now on, we will discuss Eq. (9) instead of Eq. (6).
Finally, to discuss the differential path from step 12 to step 18, we consider

three conditions, which are boxed in Table 1.

C1: For � = 0, 2,

∆α
〈�〉
13 = 0, ∆α

〈�〉
14 = 0, ∆α

〈�〉
15 = 0, ∆α

〈�〉
16 = 163.

182 H. Kuwakado and S. Hirose

C2: For � = 0, 2,

∆a
〈�〉
13 = 135,29,24,

where 135,29,24 means that the 35th, 29th, 24th bits are one and the others
are zero, that is, 135,29,24 = 0000000821000000 in hexadecimal.

C3: For j = 0, 1, 2, 3,

α
(j)
17 [k] = 0 for 35 ≤ ∃k ≤ 40,

where k may depend on j. Unlike other two conditions, this condition is not
on the difference.

We denote by c1 (c2, c3) the event that the condition C1 (C2, C3, resp.) is
satisfied. Using probabilities of these events, we can write the probability2 that
A outputs 1 as

Pr
[
AG = 1

]
= Pr

[
AG = 1|c1 ∧ c2 ∧ c3

]
Pr [c1 ∧ c2 ∧ c3]

+Pr
[
AG = 1|c1 ∧ c2 ∧ c3

]
Pr

[
c1 ∧ c2 ∧ c3

]
≥ Pr

[
AG = 1|c1 ∧ c2 ∧ c3

]
Pr [c1 ∧ c2 ∧ c3]

We firstly show Pr
[
AG = 1|c1 ∧ c2 ∧ c3

]
= 1. Now, since the event of AG = 1

is equivalent to Eq. (9), we consider ∆e
〈�〉
18 under the assumption that three

conditions hold. Table 1 shows that ∆e
〈�〉
18 is produced by ∆a

〈�〉
14 (= ∆d

〈�〉
17) and

∆e
〈�〉
17 for � = 0, 2. Consider a

(j)
14 that is calculated by the following equation.

a
(j)
14 = α

(j)
14 + β

(j)
14 where j = 0, 1, 2, 3.

Since ∆α
〈�〉
14 = 0 for � = 0, 2 because of C1, only ∆β

〈�〉
14 causes ∆a

〈�〉
14 . Using C2,

∆b
〈�〉
13 = 163, and ∆c

〈�〉
13 = 0, we can write β

(�)
14 and β

(�+1)
14 as

β
(�)
14 = Σ0(a

(�)
13) + Maj(a(�)

13 , b
(�)
13 , c

(�)
13),

β
(�+1)
14 = Σ0(a

(�+1)
13) + Maj(a(�+1)

13 , b
(�+1)
13 , c

(�+1)
13)

= Σ0(a
(�)
13 ⊕ 135,29,24) + Maj(a(�)

13 ⊕ 135,29,24, b
(�)
13 ⊕ 163, c

(�)
13)

= (Σ0(a
(�)
13)⊕Σ0(135,29,24)) + Maj(a(�)

13 ⊕ 135,29,24, b
(�)
13 ⊕ 163, c

(�)
13)

= (Σ0(a
(�)
13)⊕ 159,49,7) + Maj(a(�)

13 ⊕ 135,29,24, b
(�)
13 ⊕ 163, c

(�)
13).

Comparing β
(�)
14 with β

(�+1)
14 , we find that

∆β
〈�〉
14 [k] = 0 for k = 0, 1, . . . , 6.

Hence, we obtain

∆a
〈�〉
14 [k] = ∆d

〈�〉
17 [k] = 0 for k = 0, 1, . . . , 6. (10)

2 We leave out SHA from Pr
[
AG = 1|SHA

]
.

Pseudorandom-Function Property of SHA-256 and SHA-512 183

Recall that another difference that produces ∆e
〈�〉
18 is ∆e

〈�〉
17 . Here, e

(�)
17 and e

(�+1)
17

are given by

e
(�)
17 = d

(�)
16 + α

(�)
17 , e

(�+1)
17 = d

(�+1)
16 + α

(�+1)
17 .

Using the following equations and the condition C3,

d
(�)
16 = a

(�)
13

d
(�+1)
16 = a

(�+1)
13 = a

(�)
13 ⊕ 135,29,24

α
(�)
17 = h

(�)
16 + Σ1(e

(�)
16) + Ch(e(�)

16 , f
(�)
16 , g

(�)
16) + k17 + w

(�)
17

α
(�+1)
17 = h

(�+1)
16 + Σ1(e

(�+1)
16) + Ch(e(�+1)

16 , f
(�+1)
16 , g

(�+1)
16) + k17 + w

(�+1)
17

= h
(�)
16 + Σ1(e

(�)
16) + Ch(e(�)

16 , f
(�)
16 , g

(�)
16) + k17 + w

(�)
17

= α
(�)
17

we find that

∆e
〈�〉
17 [k] =

⎧⎨
⎩0 for k = 0, 1, . . . , 23, 41, 42, . . . , 63

1 for k = 24.
(11)

because the condition C3 ensures that the carry caused by ‘⊕135,29,24’ has no
effect on the 41st bit. Next, e

(�)
18 and e

(�+1)
18 are given by

e
(�)
18 = d

(�)
17 + α

(�)
18 , e

(�+1)
18 = d

(�+1)
17 + α

(�+1)
18 . (12)

From Eq. (10), d
(�)
17 and d

(�+1)
17 produce no difference on the least significant seven

bits of e
(�)
18 and e

(�+1)
18 . Accordingly, consider difference on the least significant

seven bits of α
(�)
18 and α

(�+1)
18 .

α
(�)
18 = h

(�)
17 + Σ1(e

(�)
17) + Ch(e(�)

17 , f
(�)
17 , g

(�)
17) + k18 + w

(�)
18

α
(�+1)
18 = h

(�+1)
17 + Σ1(e

(�+1)
17) + Ch(e(�+1)

17 , f
(�+1)
17 , g

(�+1)
17) + k18 + w

(�+1)
18

= h
(�)
17 + Σ1(e

(�+1)
17) + Ch(e(�+1)

17 , f
(�)
17 , g

(�)
17) + k18 + w

(�)
18

Note that Ch() does not produce any difference on the 0th to 6th bit positions
because of Eq. (11). Furthermore, Eq. (11) means that

Σ1(e
(�+1)
17)[k] = e

(�+1)
17 [k + 14]⊕ e

(�+1)
17 [k + 18]⊕ e

(�+1)
17 [k + 41]

= e
(�)
17 [k + 14]⊕ e

(�)
17 [k + 18]⊕ e

(�)
17 [k + 41]

= Σ1(e
(�)
17)[k], (13)

for k = 0, 1, . . . , 5, and

Σ1(e
(�+1)
17)[6] = e

(�+1)
17 [20]⊕ e

(�+1)
17 [24]⊕ e

(�+1)
17 [47]

= e
(�)
17 [20]⊕ (e(�)

17 [24]⊕ 1)⊕ e
(�)
17 [47]

= Σ1(e
(�)
17)[6]⊕ 1. (14)

184 H. Kuwakado and S. Hirose

Combining Eq. (13) and Eq. (14) yields

∆α
〈�〉
18 [k] =

⎧⎨
⎩0 for k = 0, 1, . . . , 5

1 for k = 6.

Substituting the above equation into Eq. (12) gives

∆e
〈�〉
18 [k] =

⎧⎨
⎩0 for k = 0, 1, . . . , 5

1 for k = 6.
(15)

We have proved that Pr
[
AG = 1|c1 ∧ c2 ∧ c3

]
= 1, that is, if three conditions

C1, C2, C3 are satisfied, then A always outputs 1. Notice that satisfying three
conditions is a sufficient condition of the event that A outputs 1, but is not its
necessary condition.

We next evaluate the probability Pr [c1 ∧ c2 ∧ c3] using the following formula.

Pr [c1 ∧ c2 ∧ c3] = Pr [c3|c2 ∧ c1] · Pr [c2|c1] · Pr [c1]

Appendix will show that

Pr [c1] > 2−6.007374, Pr [c2|c1] > 2−5.696199, Pr [c3|c2 ∧ c1] > 1− 2−5.00,

respectively. Hence, we obtain

Pr
[
AG = 1

]
≥ Pr [c1 ∧ c2 ∧ c3]

> 2−11.749376,

which was used in Eq. (8).

Remark. Our argument assumes that the non-focused part of SHA-512/22 be-
haves as if it is a random function. To support the argument, we here show
probabilities obtained by computer experiment. When G is SHA-512/22,

Pr
[
AG = 1

]
= 2−8.484797, Pr [c1 ∧ c2 ∧ c3] = 2−11.749694,

Pr [c1] = 2−6.007577, Pr [c2|c1] = 2−5.696744, Pr [c3|c2 ∧ c1] = 2−0.045373.

The probability Pr
[
AG = 1

]
is much larger than Pr [c1 ∧ c2 ∧ c3] because there

are many different paths to satisfy Eq. (9) other than the conditions C1, C2, C3.
For example, the condition C2 can relax a little.

4 22 Step-Reduced SHA-256 Compression Function

Since the structure of SHA-256 is similar to that of SHA-512, the distinguishing
algorithm described in Sect. 3.1 can be easily modified to apply to SHA-256/22.
The modified algorithm B is described below.

Pseudorandom-Function Property of SHA-256 and SHA-512 185

B-1. This step is the same as step A-1 in Sect. 3.1.
B-2. Set message blocks m

(j)
12 for j = 0, 1, 2, 3 as follows.

m
(0)
12 = 0, m

(1)
12 = m

(0)
12 + 131 = 131,

m
(2)
12 = 119, m

(3)
12 = m

(2)
12 + 131 = 131,19.

B-3. Set message blocks m
(j)
13 for j = 0, 1, 2, 3 as follows.

m
(0)
13 = −k13, m

(1)
13 = m

(0)
13 + (−Σ1(131)),

m
(2)
13 = −k13, m

(3)
13 = m

(2)
13 + (−Σ1(131)).

B-4. Send four messages M (0), M (1), M (2), M (3) to the oracle G, and receive
their hashes H(0), H(1), H(2), H(3). Here, we regard H(j) as the concatenation
of eight 32-bit words that corresponds to Eq. (4).

H(j) = a(j) ‖ b(j) ‖ c(j) ‖ d(j) ‖ e(j) ‖ f (j) ‖ g(j) ‖ h(j)

B-5. Compute the modular difference of h(�+1) and h(�) for � = 0, 2.

δh〈�〉 = h(�+1) − h(�) mod 232.

B-6. If the following conditions are satisfied for all � = 0, 2, then B outputs 1,
otherwise B outputs 0.

δh〈�〉[k] =

⎧⎨
⎩0 for k = 0, 1, 2,

1 for k = 3.
(16)

This algorithm is based on a differential path similar to Table 1. The differ-
ence 119 in step B-2 was chosen to make Pr

[
∆α

〈�〉
13 = 0

]
large. Our experiment

showed that Eq. (16) was satisfied with probability 2−5.584973. If G is a random
function in F512,256, then Eq. (16) is satisfied with probability 2−8. Hence, the
prf-advantage of B is

Advprf
φu

(B) =
∣∣∣Pr

[
u

$← {0, 1}256; Bφu = 1
]
− Pr

[
f

$← F512,256; Bf = 1
]∣∣∣

= 2−5.584973 − 2−8 ≈ 2−5.884535.

5 Concluding Remarks

The previous analysis of hash functions focused on collision-resistance of
underlying compression functions. However, applications often require that
hash functions have not only the collision-resistant property but also the
pseudorandom-function property. Except for HMAC security against collision-
finding attacks, the pseudorandom-function property of compression functions

186 H. Kuwakado and S. Hirose

has not been studied. This paper provided the first result on the pseudorandom-
function property of the SHA-2 compression function. We showed practical at-
tacks for distinguishing between the 22 step-reduced SHA-2 compression function
with the key-via-IV strategy and a random function. In the case of the 22 step-
reduced SHA-512 compression function with the key-via-IV strategy, there exists
the adversary such that the prf-advantage is larger than 2−12.089694 when the
number of queries is four. Increasing the number of queries allows the adversary
to improve the prf-advantage.

Acknowledgments

The authors wish to acknowledge valuable discussions with Dr. Yoshida and
Dr. Ideguchi at Hitachi, Ltd. and Prof. Ohta at The University of Electro-
Communications. The authors also thank anonymous reviewers for their com-
ments. This research was supported by the National Institute of Information and
Communications Technology, Japan.

References

1. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006), http://eprint.iacr.org/2006/043.pdf

2. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

3. Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A.
(eds.) ICALP 2007. LNCS, vol. 4596, pp. 399–410. Springer, Heidelberg (2007),
http://eprint.iacr.org/

4. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

5. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006), http://eprint.iacr.org/

6. Dunkelman, O., Keller, N., Kim, J.: Related-key rectangle attack on the full
SHACAL-1. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
28–44. Springer, Heidelberg (2007)

7. Fouque, P.-A., Leurent, G., Nguyenh, P.Q.: Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007),
ftp://ftp.di.ens.fr/pub/users/pnguyen/Crypto07.pdf

8. Handschuh, H., Naccache, D.: SHACAL (2000),
http://www.nessie.eu.org/nessie/

9. Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damg̊ard scheme
with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

http://eprint.iacr.org/2006/043.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
ftp://ftp.di.ens.fr/pub/users/pnguyen/Crypto07.pdf
http://www.nessie.eu.org/nessie/

Pseudorandom-Function Property of SHA-256 and SHA-512 187

10. Hong, S., Kim, J., Kim, G., Sung, J., Lee, C., Lee, S.: Impossible differential attack
on 30-round SHACAL-2. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003.
LNCS, vol. 2904, pp. 97–106. Springer, Heidelberg (2003)

11. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C., Rijmen, V.: Collisions
and other non-random properties for step-reduced SHA-256. Cryptology ePrint
Archive, Report 2008/131 (2008), http://eprint.iacr.org/

12. Kim, J., Moon, D., Lee, W., Hong, S., Lee, S., Jung, S.: Amplified boomerang
attack against reduced-round SHACAL. In: Zheng, Y. (ed.) ASIACRYPT 2002.
LNCS, vol. 2501, pp. 243–253. Springer, Heidelberg (2002)

13. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of step-reduced
SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143.
Springer, Heidelberg (2006)

14. National Institute of Standards and Technology, Secure hash standard, Federal
Information Processing Standards Publication 180-2 (August 2002),
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

15. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

16. Sanadhya, S.K., Sarkar, P.: Collision attacks against 22-step SHA-512. Cryptology
ePrint Archive, Report 2008/270 (2008), http://eprint.iacr.org/

17. Sanadhya, S.K., Sarkar, P.: Non-linear reduced round attacks against SHA-2 hash
family. Cryptology ePrint Archive, Report 2008/174 (2008),
http://eprint.iacr.org/

18. Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

19. Wang, L., Ohta, K., Kunihiro, N.: New key-recovery attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 237–253. Springer, Heidelberg (2008)

A Probability Pr [c1]

We evaluate Pr [c1] using the following formula.

Pr [c1] = Pr
[
∆α

〈�〉
13 = 0

]
· Pr

[
∆α

〈�〉
14 = 0|∆α

〈�〉
13 = 0

]
·Pr

[
∆α

〈�〉
15 = 0|∆α

〈�〉
14 = 0 ∧∆α

〈�〉
13 = 0

]
·Pr

[
∆α

〈�〉
16 = 163|∆α

〈�〉
15 = 0 ∧∆α

〈�〉
14 = 0 ∧∆α

〈�〉
13 = 0

]
This appendix provides only a part of Pr [c1] because of limitation of pages.

A.1 Probability of ∆α
〈�〉
13 = 0

Recall that

α
(0)
13 = h

(0)
12 + Σ1(e

(0)
12) + Ch(e(0)

12 , f
(0)
12 , g

(0)
12) + k13 + w

(0)
13 ,

α
(1)
13 = h

(1)
12 + Σ1(e

(1)
12) + Ch(e(1)

12 , f
(1)
12 , g

(1)
12) + k13 + w

(1)
13 ,

h
(1)
12 = h

(0)
12 , f

(1)
12 = f

(0)
12 , g

(1)
12 = g

(0)
12 ,

e
(1)
12 = e

(0)
12 + 163, w

(1)
13 = w

(0)
13 + (−Σ1(163)).

http://eprint.iacr.org/
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

188 H. Kuwakado and S. Hirose

We find that ∆α
〈0〉
13 = 0 if and only if

Σ1(e
(0)
12 + 163) = Σ1(e

(0)
12) + Σ1(163) ∧ f

(0)
12 [63] = g

(0)
12 [63].

Since Σ1(163) = 149,45,22, the above conditions are equivalent to

Σ1(e
(0)
12)[k] = 0 for k = 49, 45, 22 ∧ f

(0)
12 [63] = g

(0)
12 [63]. (17)

Suppose that other parts of SHA-512/22 behave as if it is a random function.
From Eq. (17), we obtain

Pr
[
∆α

〈0〉
13 = 0

]
= 2−4.

Supposing that ∆α
〈0〉
13 = 0, we evaluate Pr

[
∆α

〈2〉
13 = 0|∆α

〈0〉
13 = 0

]
.

α
(2)
13 = h

(2)
12 + Σ1(e

(2)
12) + Ch(e(2)

12 , f
(2)
12 , g

(2)
12) + k13 + w

(2)
13

= h
(0)
12 + Σ1(e

(0)
12 + 141) + Ch(e(0)

12 + 141, f
(0)
12 , g

(0)
12) + k13 + w

(0)
13

α
(3)
13 = h

(3)
12 + Σ1(e

(3)
12) + Ch(e(3)

12 , f
(3)
12 , g

(3)
12) + k13 + w

(3)
13

= h
(0)
12 + Σ1(e

(1)
12 + 141) + Ch(e(1)

12 + 141, f
(0)
12 , g

(0)
12) + k13 + w

(1)
13

e
(1)
12 = e

(0)
12 + 163

w
(1)
13 = w

(0)
13 + (−Σ1(163))

Since f
(0)
12 [63] = g

(0)
12 [63], we have

Ch(e(0)
12 + 141, f

(0)
12 , g

(0)
12) = Ch(e(1)

12 + 141, f
(0)
12 , g

(0)
12).

Hence, ∆α
〈2〉
13 = 0 if and only if the following equation holds.

Σ1(e
(1)
12 + 141) = Σ1(e

(0)
12 + 141) + Σ1(163)

Since Σ1(163) = 149,45,22, the above condition is equivalent to

Σ1(e
(0)
12 + 141)[k] = 0 for k = 49, 45, 22.

Since Σ1(141) = 127,23,0, the probability that the difference on the 27th bit
changes the 45th bit by the carry is 2−18, and the probability that the other
differences change the 49th bit or the 22nd bit by the carry is much small than
2−18. Hence, we have

Pr
[
∆α

〈2〉
13 = 0|∆α

〈0〉
13 = 0

]
= Pr

[
Σ1(e

(0)
12 + 141)[k] = 0 for k = 49, 45, 22

]
> 1− 2 · 2−18 = 1− 2−17.

Pseudorandom-Function Property of SHA-256 and SHA-512 189

Actually, we chose 141 as the difference to make this probability
large. This inequality is in agreement with the experimental value of
Pr

[
∆α

〈2〉
13 = 0|∆α

〈0〉
13 = 0

]
, which is 2−0.000006. As a result, we obtain

Pr
[
∆α

〈�〉
13 = 0 for � = 0, 2

]
= Pr

[
∆α

〈0〉
13 = 0 ∧∆α

〈2〉
13 = 0

]
= Pr

[
∆α

〈0〉
13 = 0

]
· Pr

[
∆α

〈2〉
13 = 0|∆α

〈0〉
13 = 0

]
> 2−4 · (1 − 2−17).

A.2 Probability of ∆α
〈�〉
14 = 0 Under ∆α

〈�〉
13 = 0

Suppose that ∆α
〈�〉
13 = 0 for � = 0, 2. It follows that ∆e

〈�〉
13 = 0 for � = 0, 2. Recall

that

α
(�)
14 = h

(�)
13 + Σ1(e

(�)
13) + Ch(e(�)

13 , f
(�)
13 , g

(�)
13) + k14 + w

(�)
14 ,

α
(�+1)
14 = h

(�+1)
13 + Σ1(e

(�+1)
13) + Ch(e(�+1)

13 , f
(�+1)
13 , g

(�+1)
13) + k14 + w

(�+1)
14 ,

= h
(�)
13 + Σ1(e

(�)
13) + Ch(e(�)

13 , f
(�)
13 + 163, g

(�)
13) + k14 + w

(�)
14 .

Hence, ∆α
〈�〉
14 = 0 if and only if e

(�)
13 [63] = 0. The probability

Pr
[
∆α

〈�〉
14 = 0 for � = 0, 2

]
is calculated as

Pr
[
∆α

〈�〉
14 = 0 for � = 0, 2

]
= Pr

[
e
(0)
13 [63] = 0

]
· Pr

[
e
(2)
13 [63] = 0|e(0)

13 [63] = 0
]
.

Supposing that other parts of SHA-512/22 behave as if it is a random function,
we have Pr

[
e
(0)
13 [63] = 0

]
= 2−1. Notice that the event of e

(0)
13 [63] = 0 and that

of e
(2)
13 [63] = 0 are not independent. Recall that

e
(0)
13 = d

(0)
12 + h

(0)
12 + Σ1(e

(0)
12) + Ch(e(0)

12 , f
(0)
12 , g

(0)
12) + k13 + w

(0)
13 ,

e
(2)
13 = d

(2)
12 + h

(2)
12 + Σ1(e

(2)
12) + Ch(e(2)

12 , f
(2)
12 , g

(2)
12) + k13 + w

(2)
13

= d
(0)
12 + h

(0)
12 + Σ1(e

(0)
12 + 141) + Ch(e(0)

12 + 141, f
(0)
12 , g

(0)
12) + k13 + w

(0)
13 .

Comparison e
(0)
13 with e

(2)
13 suggests that

Pr
[
e
(2)
13 [63] = 0|e(0)

13 [63] = 0
]

> 1− 2−19,

because the probability that ‘+141’ in Ch() changes the 63rd bit is not larger than
2−20 and the probability that ‘+141’ in Σ1() changes the 63rd bit is less than 2−20.
This inequality is supported by computer experiment, which showed that

Pr
[
e
(2)
13 [63] = 0|e(0)

13 [63] = 0
]

= 2−0.000002.

Therefore, we obtain

Pr
[
∆α

〈�〉
14 = 0 for � = 0, 2

]
= Pr

[
∆α

〈0〉
14 = 0 ∧∆α

〈2〉
14 = 0

]
> 2−1 · (1 − 2−19).

A Regression Method to Compare
Network Data and Modeling Data
Using Generalized Additive Model

Sooyoung Chae1, Hosub Lee2, Jaeik Cho2,
Manhyun Jung2, Jongin Lim2, and Jongsub Moon2

1 The Attached Institute of ETRI, Daejeon, Republic of Korea
sychae@ensec.re.kr

2 Center for Information Security Technologies (CIST),
Korea University, Seoul, Republic of Korea

{leehosub,chojaeik,manhyun4,jilim,jsmoon}@korea.ac.kr

Abstract. This paper suggests a method to check whether the real net-
work dataset and modeling dataset for real network has statistically sim-
ilar characteristics. The method we adopt in this paper is a Generalized
Additive Model. By using this method, we show how similar the MIT/LL
Dataset and the KDD CUP 99’ Dataset are regarding their character-
istics. It provided reasonable outcome for us to confirm that MIT/LL
Dataset and KDD Cup Dataset are not statistically similar.

Keywords: Statistical data analysis, Data set evaluation, Network data
comparing.

1 Introduction

There are many modeling network datasets that are being used for researches
on performance evaluation of Intrusion Detection and algorithms for Intrusion
Detection Systems. Some of those modeling network dataset research institutes
are located at MITRE [1], University of California at Davis [2], MIT Lincoln
Laboratory (MIT/LL) [3,4,5,6], Air Force Research Laboratory [7], Neohapsis
[8]. This kind of network dataset is used for performance evaluation of Intrusion
Detection systems; thus, a comparison with the real network dataset is desirable.
However, there is no known modeling network dataset that really reflects the
characteristics of the real network data. This is because there is no known method
to compare the similarities between the two network data groups.

In this paper, we suggest a method that effectively compares and contrasts
the real network data and the modeling dataset. The method suggested is the
Generalized Additive Model (GAM) [9,10,11,12,13,14,15], one of the regression
analysis models, which compares a distribution of specified features. While re-
searching with GAM, we compared the network dataset that was released by
MIT/LL and the dataset of KDD CUP 99’ [16,17].

This paper is organized as follows. In Chapter 2, we explain the Generalized
Additive Model that we suggested in comparing network data and dataset. In

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 190–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Regression Method to Compare Network Data and Modeling Data 191

Chapter 3, we explain the data we used in our experiment; we discuss and analyze
the preparation, the procedures and the test results. Finally, In Chapter 4, we
draw a conclusion from the results of the experiment and discuss the possible
research that could be done afterwards.

2 Generalized Additive Models(GAM)

In this section, we explain many characteristics of GAM and explain how to
derive GAM.

2.1 Regression Analysis

Regression analysis is a statistical model that shows a relation between y, the
dependent variable, and, x, the independent variable. This regression analysis is
commonly used for these two purposes [18].

- An estimation model that is based on the information collected in the past.
- To find out how much the dependent variable y and the independent variable

x are related.

This kind of regression analysis allows analysis of many multivariate variables such
as the binary responses and count responses. For example, we use logistic regres-
sion analysis for binary response and Poisson regression for count response [18].

Regression analysis model has the following equation (1).

y = f(x1, · · · , xp) + ε, ε ∼ N(0, σ2) (1)

The equation (1) is the regression analysis of continuous response variable
y and explanatory variable X(x1, · · · , xp). ε represents error, and it is the ran-
dom variable that fits the normal distribution [10]. Function f() represents the
regression function, and it is linear or non-linear.

Also, the linear regression function with multi-variables are the following equa-
tion (2) [10].

f(x1, · · · , xp) = β0 + β1x1 + · · ·+ βpxp (2)

The equation (3) below was derived from equation (1) using the Least Square
Method(LSM) to find the most satisfying regression equation [10].

ε2 = {y − f(x1, · · · , xp)}2 (3)

LSM is a way to find parameters which make ε2 the smallest value.
The regression analysis model that was mentioned above is not appropriate to

analyze non-linear network data because the model is linear regression. In other
words, linear regression function like the equation (2) does not allow non-linear
relations between x, the explanatory variable, and y, the response variable. This
is because the slope of the function rapidly changes when the domain of ε is big.
For this reason, the model could be different than what is expected due to the
change in slope.

192 S. Chae et al.

In this paper, that data that was used for the research is produced by many
devices and users. Therefore, the network data is mingled complicating the re-
sults in a function with complicated distribution. Therefore, we compare two
datasets to use the non-linear regression model, GAM, which fits many non-
linear functions.

2.2 Generalized Additive Model

General Explanation of GAM. GAM is a method that was suggested by
Hastie and Tibshirrani in 1990. It is a non-linear model that is explained by
the summation of smooth functions of covariance [11]. This model is an addi-
tive non-linear model which follows the response variable y of the exponential
family distribution, such as Normal distribution, Binomial distribution, Gamma
distribution, Poisson distribution, Inverse Gaussian distribution, etc. The model
is as equation (4). GAM is different from linear models in that it only allows X ,
the explanatory variable, to be applied in a closed domain. In other words, it
only allows X in a closed domain in order to allow for a better fitting in closed
intervals.

The following equation represents the GAM model [11].

η(x) = s0 +
p∑

j=1

sj(xj), Where η = g(µ), µ = E(Yi)

and Yi ∼ some exponential family distribution (4)

In the equation (4) above, Yi is the set of response variable and xj is the set of
explanatory variable. sj is a scatterplot smooth function.

How to get parameters of the GAM. The equation (5) represents penal-
ized model, which solves parameters used for equation (4). Equation (5) uses
similar method as the LSM. In other words, the purpose of equation (5) is to
acquire η(x) of equation (4). If we solve the ε with LSM, we can find the param-
eters of GAM. This function calculates and minimizes the difference between
the observed response value and estimated response value like the first term in
equation (5). However, we prevent generating a function with big changes in the
slope by using the second term as penalty. In other words, we use the penalty
term to minimize entropy because slopes with big changes are unstable [14].

ε =
n∑

i=1

(yi − η(xi))2 + λ

∫ b

a

(f ′′(t))2dt,

λ > 0, a < x1 < · · · < xn < b (5)

Penalized model makes the distribution smooth using parameter λ. As λ in-
creases, the overall distribution in GAM is made smooth and becomes a straight
line. In contrary, if λ approaches 0, the function in the graph develops a lot of
slopes [9,10,15].

A Regression Method to Compare Network Data and Modeling Data 193

3 Experiment and Results

In this section, we compare the distribution of two network datasets by using
GAM. This provides evidence to whether the dataset modeled from the network
data reflects the original network’s characteristics. In the experiment, we used
the network data of MIT/LL and KDD CUP 99’. The procedures are as the
following.

1. Extracting the frequency of protocol from two network dataset. The
frequency is per minute.

2. Normalizing the frequency of protocols using scale function.
3. Deriving GAM from the two normalized network datasets.
4. Verifying whether the two datasets are reflecting the common protocols using

GAM.

3.1 The Characteristic of Data

MIT/LL Data. MIT/LL’s research of dataset started in 1998 with the support
of Defense Advanced Research Project Agency (DARPA). The purpose of this
research was to evaluate the intrusion detection [4].

In order to generate a dataset, the experiment for collecting network data is
crucial. However, in consideration of the protection of private information and
the release of classified information, the publicized collection of network data is
impossible. For that reason, MIT/LL with the support of DARPA, collected the
network data packet of the Air Force base [6].

For this experiment, MIT/LL analyzed the network environment of the Air
Force base. In analyzing the environment, they analyzed the types of operat-
ing systems used by hosts, the number of hosts using each operating system
and other internal factors etc. They did not consider any external factors. After
analyzing the environment, they collected the real network data. In collecting
the real network data, they had two major purposes. They collected data sent
to external network from an internal network and they collected the data re-
ceived by an internal network from the external network. For military security
reasons, the MIT/LL erased and reformed each network packet’s datagram [5].
Also, MIT/LL researched on a closed network to collect intrusion network data.
They took the attack data from the network and analyzed the attack packets
and experimented the intrusion another time. In other words, they took the re-
generated network data, divided it into the normal and attack data. Then they
retrieved the normal data for experiment network and analyzed the attack data.
This allowed them to use automata which automatically attacked, simulating
the real attack. They created hundreds of host when experimenting [3].

In 1998, the network packet data included the normal network data from the
UNIX system, Stealth attack and 38 other kinds of external intrusion [3].

KDD CUP 99’ data set. In 1998, MIT/LL collected network data of an
Air Force base, deleted the datagram, and reproduced it. Later MIT/LL’s data
became a model for KDD CUP 99’ data set [17].

194 S. Chae et al.

Table 1. Partial features in KDD CUP 99’ data set [16]

Feature Description
Duration Length (number of seconds) of the connection
Protocol Type of the protocol, e.g. tcp, udp, etc.
Service Network service on the destination, e.g, http, telnet, etc.

SRC Byte Number of data bytes from source to destination
DST Byte Number of data bytes from destination to source

Flag Normal or error status of the connection
Land If connection is from/to the same host/port; 0 otherwise

Wrong Fragment Number of ”WRONG” fragment
Urgent Number of urgent packet

Each data in the KDD CUP 99’ data was originated from a set of MIT/LL
data. A sequence of the KDD CUP 99’ data was produced with 41 features over
a certain amount of time from the original MIT/LL dataset. They derived the
MIT/LL data over a 2 second interval and used the most frequently appearing
feature to represent the sequence of KDD CUP 99’ data.

Table 1 shows feature of each TCP connection from KDD CUP 99’ data set.

3.2 Experimental Method

Network Packet Data consists many characteristics such as protocol, Time to
Live (TTL), sequence number, IP address and port number [19,20,21]. In this
paper, we used protocols as a feature because protocols exist in every network
layer, regardless of environment.

We used the data produced from MIT/LL and the data from KDD CUP 99’,
which was modeled on MIT/LL’s data for experiment. The common protocols
found in the two data are ARP, ICMP, TCP and UDP.

Making Frequency tables. In order to compare the frequency of the protocols
between the two data (MIT/LL and KDD CUP 99’), we divided the data into
one minute blocks. Within each block, we counted each protocol that appeared.
Table 2 shows only a part of the result counting the number of protocols from
MIT/LL’s network packet data in each block.

Table 2. The frequency of protocols from MIT/LL’s data network

Block sequence ARP ICMP TCP UDP
1 6 14 1152 77
2 4 0 712 50
3 16 0 312 43
...

...
...

...
...

A Regression Method to Compare Network Data and Modeling Data 195

Table 3. Number of protocols found in each block of KDD CUP data set

Block sequence ARP ICMP TCP UDP
1 0 0 30 0
2 0 0 30 0
3 0 0 30 0
...

...
...

...
...

Table 2 illustrates that ARP appeared 6 times, ICMP appeared 14 times, TCP
appeared 1152 times and UDP appeared 77 times for first one minute (block 1).

With the same method, we counted the number of the protocols in KDD CUP
99’ data set, which is shown in Table 3.

As mentioned earlier, KDD CUP 99’ data set was generated by dividing
MIT/LL’s network packet data into 2 second intervals. There are 30 sequences
of data in one block of experimental data for the KDD CUP 99’.

The most frequent protocol obtained from the blocks of KDD CUP 99’ data
set was TCP protocol; ARP did not appear in any of the blocks.

There was a big gap between the numbers of protocols of MIT/LL and those
of KDD CUP 99’. Thus, we need to normalize the two tables. To do so, we used
equation (6) (shown below) and scaled the frequency tables. Scaling method is
as follows.

Normalizing the frequency tables. Table 4 shows the frequency table from
Table 2 and Table 3. The scaling process for each dij is shown as the following
equation (6) [14].

dij ′ = dij −min(di1, · · · , din)

dij ′′ =
dij ′

max(di1′, · · · , din′)
, i = 1, · · · , p, j = 1, · · · , n (6)

p is the number of features, n is the number of blocks and i is the index of
each feature and j is the index of each block. The function min() selects the
minimum value from the elements and max() selects the maximum value from
the elements. The calculated dij ′′ has a maximum 1 and a minimum 0 within
each feature, that is, a normalized value within each feature.

When two tables (frequency tables) are converted using this method, we pro-
duce tables that are normalized within each feature.

Table 4. Frequency of each feature according to the block sequence

Block sequence D1 D2 · · · Dn

1 d11 d21 . . . dp1

2 d12 d22 . . . dp2

...
...

...
. . .

...
n d1n d2n . . . dpn

196 S. Chae et al.

Table 5. Normalized table from Table 2 assuming with only first 3 blocks

Block sequence ARP ICMP TCP UDP
1 0.167 1 1 1
2 0 0 0.476 0.206
3 1 0 0 0

Table 5 is a result of normalizing Table 2 assuming that there are only 3
blocks.

Fitting Generalized Additive Models. GAM uses the normalized table
converted with equation (6). In this model, the independent variable is the block
number and the dependent variable is the normalized value of each feature.
Since the block sequence is represented per minute, response variable, y, follows
Gamma distribution [22].

g(µ) = s(protocoli)
protocoli : arpj , icmpj, tcpj , udpj

Link : Inverse (7)

Parameters in (7) are used to calculate the GAM method. The link function
adopts the ”inverse” transformation because the response variable y is assumed
to follow the Gamma distribution.

3.3 The Results of Experiments

Fig. 1., Fig. 2., Fig. 3., Fig. 4. are results after fitting the protocols of MIT/LL
and KDD CUP 99’ data sets for each protocol. The x-axis represents the normal-
ized number of a protocols and the y-axis represents the value of the smooth func-
tion on each figure. The solid line shown on each graph represents the s(protocol)

Fig. 1. s(ARP) with ARP

A Regression Method to Compare Network Data and Modeling Data 197

Fig. 2. s(ICMP) with ICMP

Fig. 3. s(TCP) with TCP

value of the MIT/LL. The dotted line in all the graphs is s(protocol) value of
the KDD CUP 99’. The gray area is confidence interval of MIT/LL data. If a
dotted line, fitted KDD CUP 99’ data set, is inside the confidence interval of
the MIT/LL network data, then we can say that the characteristics of the two
data are statistically identical. In this case, we say that the KDD CUP 99’ data
reflects the characteristics of the MIT/LL data; therefore, we can use KDD CUP
99 instead of MIT/LL.

Fig. 1. shows the result of the GAM fitting regarding ARP protocol. In the
case of KDD CUP 99’ data set, the number of ARP protocol of the entire data
is 0. So, the dotted line is horizontal over the x-axis.

Fig. 2. illustrates the results of GAM fitting with ICMP protocol. It shows
that the graph of KDD CUP 99 is deviated from the confidence interval in an
overall range.

198 S. Chae et al.

Fig. 4. s(UDP) with UDP

Table 6. Fitting Gam for MIT/LL and Data cup’99 (10−3)

0.0 0.2 0.4 0.6 0.8 1.0
GAM fitting for MIT/LL -1.03 0.618 1.239 1.463 1.823 1.994

Upper Confidence -0.95 0.833 1.525 1.98 2.927 4.496
Lower Confidence -1.1 0.403 0.952 0.986 0.719 -0.51

GAM fitting for KDD CUP’99 -0.0112 -0.0084 -0.00968 0.0404 0.0462 0.0162

Also, Fig. 3. and Fig. 4. show s(TCP) and s(UDP) respectively. It is notice-
able from the graphs that the dotted line for KDD CUP 99’ data set diverges a
lot from the confidence interval of the MIT/LL network data.

Table 6 shows numeric value of partial results from fitting TCP protocol with
GAM. Fig. 3. represents the content of the Table 6 with a graph. The result
shows that the characteristics of TCP for KDD CUP 99 data are not identical
with that of MIT/LL.

In addition, we also checked the characteristics of both ICMP and UDP pro-
tocol also deviated from that of MIT/LL.

4 Conclusions

In this paper, we suggest a generalized adaptive model to compare the charac-
teristics of two network data sets. Using this model, we can criticize whether the
two data sets are recognized as identical groups or not in statistical view. This
model may apply to another application. That is, this model can be applied to
compare a simulated data with a real data such as a simulated Denial of Service
(DoS) attack using real attack data [23,24,25].

The experimental data used in this paper is a frequency of protocols which
resides in both MIT/LL data and KDD CUP 99’ data. The results of the

A Regression Method to Compare Network Data and Modeling Data 199

experiment show the distribution graph of each protocol of the MIT/LL with a
confidence interval. Also the distribution graph of KDD CUP 99’ data is over-
lapped with the corresponding graph. Thus, we can easily verify if protocols
of the two data sets are identical or not. The experiment concludes that two
experimental data groups are not identical.

In the future, we need to research different fitting models depending on each
feature and not on GAM, because there are so many characteristics associated
with the network data. We need to come up with more appropriate models de-
pending on each feature. Therefore, we need to explore more appropriate research
methods for each feature.

Acknowledgments. This work was supported by the Korea Research Foun-
dation Grant funded by the Korean Government(MOEHRD) (KRF-2006-521-
D00461).

References

1. Aguirre, S.J., Hill, W.H.: Intrusion Detection Fly-Off: Implications for the United
States Navy, MITRE Technical Report 97W0000096 (1997)

2. Puketza, N., Chung, M., Olsson, R.A., Mukherjee, B.: A software platform for
testing intrusion detection systems. IEEE Software 14, 43–51 (1997)

3. Haines, J.W., Laboratory, L.: 1999 DARPA intrusion detection evaluation: design
and procedures, Massachusetts Institute of Technology, Lincoln Laboratory, Lex-
ington, Mass (2001)

4. Lippmann, R., Haines, J., Fried, D.J., Korba, J., Das, K.: Analysis and Results of
the 1999 DARPA Off-Line Intrusion Detection Evaluation. In: Debar, H., Mé, L.,
Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 162–182. Springer, Heidelberg
(2000)

5. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA
off-line intrusion detection evaluation. Computer Networks 34, 579–595 (2000)

6. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D.,
Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K.: Evaluating intru-
sion detection systems: the 1998 DARPA off-lineintrusion detection evaluation. In:
DARPA Information Survivability Conference and Exposition 2 (2000)

7. Durst, R., Champion, T., Witten, B., Miller, E., Spagnuolo, L.: Testing and eval-
uating computer intrusion detection systems. Communications of the ACM 42,
53–61 (1999)

8. Mueller, P., Shipley, G.: Dragon claws its way to the top. Network Computing 20,
45–67 (2001)

9. Wood, S.N.: The mgcv Package (2007),
http://cran.r-project.org/doc/packages/mgcv.pdf

10. Faraway, J.J.: Linear Models With R. CRC Press, Boca Raton (2005)
11. Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1, 297–

310 (1986)
12. Hastie, T., Tibshirani, R.: Generalized Additive Models: Some Applications. Jour-

nal of the American Statistical Association 82, 371–386 (1987)
13. Hastie, T., Tibshirani, R.: Generalized additive models. Chapman and Hall/CRC,

Boca Raton (1990)

http://cran.r-project.org/doc/packages/mgcv.pdf

200 S. Chae et al.

14. Wood, S.N.: Generalized additive models: an introduction with R. Chapman and
Hall/CRC, Boca Raton (2006)

15. Xiang, D.: Fitting Generalized Additive Models with the GAM Procedure, SAS
Institute Paper P 256 (2001)

16. Stolfo, S.: KDD-CUP-99 Task Description,
http://kdd.ics.uci.edu/databases/kddcup99/task.html

17. Elkan, C.: Results of the KDD 1999 classifier learning. ACM SIGKDD Explorations
Newsletter 1, 63–64 (2000)

18. Chatterjee, S., Hadi, A.S.: Regression Analysis by Example, 4th edn. Wiley-
Interscience, Hoboken (2006)

19. Tanenbaum, A.S.: Computer Networks. Prentice Hall PTR, Englewood Cliffs
(2002)

20. Stevens, W.R.: TCP/IP Illustrated, vol. I. Addison-Wesley Publishing Company,
Reading (1995)

21. Kurose, J.F., Ross, K.W.: Computer networking: a top-down approach featuring
the Internet. Pearson/Addison Wesley, Boston (2005)

22. Weisstein, E.W.: Gamma Distribution,WolframMathWorld (2005),
http://mathworld.wolfram.com/GammaDistribution.html

23. Jin, S., Yeung, D.S.: A covariance analysis model for DDoS attack detection. In:
2004 IEEE International Conference on Communications, vol. 4, pp. 1882–1886
(2004)

24. Seo, J., Lee, C., Shon, T., Moon, J.: SVM approach with CTNT to detect DDoS
attacks in grid computing. In: Zhuge, H., Fox, G.C. (eds.) GCC 2005. LNCS,
vol. 3795, pp. 59–70. Springer, Heidelberg (2005)

25. Chen, Z., Gao, L., Kwiat, K.: Modeling the spread of active worms. In: INFO-
COM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies, vol. 3, pp. 1890–1900. IEEE, Los Alamitos (2003)

http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://mathworld.wolfram.com/GammaDistribution.html

A Visualization Technique for Installation
Evidences Containing Malicious Executable Files

Using Machine Language Sequence

Jun-Hyung Park1, Minsoo Kim2, and Bong-Nam Noh3

1 System Security Research Center, Chonnam National University, Korea
werther@lsrc.jnu.ac.kr

2 Dept. of Information Security, Mokpo National University, Korea
phoenix@mokpo.ac.kr

3 School of Electronics and Computer Engineering,
Chonnam National University, Korea

bbong@jnu.ac.kr

Abstract. In the modern society the majority of information is stored
and preserved on the digitalized storage medium. By the way, it is dif-
ficult to recognize that there are any adding, deleting, or changing of
the records in the digitalized storage medium. In this paper, we suggest
an evidence detection technique of malicious executable file installation
on computer system using visualization of similarity between machine
language sequences. Also suggested method can not only detect original
malwares but also mutants of them. Besides, our method can help to
reassemble the data blocks containing the fragments of the malicious file
back into their proper sequences for securing legal evidences.

Keywords: Digital Forensic, Anti-Forensic, Machine language, Similar-
ity, Malware, Malicious executables, opcode visualization.

1 Introduction

Computer system uses filesystems for storing and organizing files and the data on
the data storage device such as hard disk. Also filesystem involves maintaining
the physical location of the files on the data storage devices. By the way we
cannot find the location of data blocks of files and understand the meaning of
them, if the file is deleted or the metadata of file in the filesystem get damaged.

In digital forensic investigator’s view, such kinds of problems are crucial.
Though forensic investigators try to reconstruct the events of happened cyber
crime and report to law enforcement agency, it is difficult to find traces and
collect evidences following 5w1h (when, where, who, what, why, and how). For
instance, the appearance of anti-forensic technology makes detecting malicious
executables harder [1][2].

In this paper, we explain a detection technique for installation evidences of
malicious executable files from the filesystem of computer system by comparing
sequences of machine language instructions (especially, opcode sequence) [3].

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 201–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

202 J.-H. Park, M. Kim, and B.-N. Noh

The suggested technique can help us to detect data blocks containing similar
opcode(operation code) sequence to known malicious executable files from the
entire filesystem without the metadata of files. Additionally we can reassemble
the data blocks containing the fragments of a malicious file back into their proper
sequences automatically for securing legal enforcement [4].

The technique we propose can be used to depict to the jury in the courts for
explaining the possibility by using visual graphs of similarity as evidences. Also
we believe this technique can be used to protect copyright for program developed
by individuals or industry.

The organization of this paper is as follow. In section 2, we discuss problems
of present digital forensic investigation and the necessity to analyze executable
files statically. In section 3, we explain our method to extract machine language
sequence from filesystem for estimating similarities between sequences. Section 4
contains explanation of similarity graph and the experimental results. Section 5
concludes.

2 Related Work

2.1 The Data for Forensic Analysis

From the point of view of forensic investigators, we classified the data on the
filesystem as above figure depicting. At first all data on the computer system
must be written to text format or binary format. In the case of text file, foren-
sic investigator can access directly without any specific applications because
it follows American Standard Code for Information Interchange (ASCII) for-
mat generally and use keyword searching for strings or pattern matching for
information such as internet protocol address or log data. Although text file is
human-readable, there are some files we need to know the entire information for
understanding the meaning of the data. That is why we classified text file into
2 groups as below.

The binary format data is unreadable by human and it can be an executable
file itself or data to be used by executable programs. Therefore, binary data can

Fig. 1. Data classification on the filesystem for analysis the meaning of the data

A Visualization Technique for Installation Evidences 203

Table 1. The groups and files of text file format

Group File
Structured data Script, source code for computer programs, Webpage,

XML, markup language and other web standards-based
file formats

Unstructed data User data file, System data file(setup, configuration),
Log files

Table 2. The groups and files of binary data

Group File
Structured data Archive and compressed, Computer-aided, Database,

Document, Font file, Graphics, Object code,
Executable files, Shared and dynamically-linked
libraries, Presentation, Sound and music, Video,

Financial Records

Unstructed data Fragmented data, Encrypted data

be understood and executed exactly by operating system or application programs
when it is written in appropriate format. That is why most binary data files
(except some binary data files) have a file header to state their file format and
tables to depict the structure of them. By the way, forensic investigators cannot
understand the meaning of binary data if it is encrypted or fragmented. Our
classification of binary data is as table 2.

Regardless of groups in text data, they are readable and can be analyzed
easily. In the case of binary data, on the other hand, the most difficult problem
to solve is that we must be able to understand the meaning of the data. That
is why we need various tools to support all kinds of binary data files for the
forensic investigation. Nevertheless, nowadays the capacity of data storage device
is still getting bigger, it is impossible for human to analyze them if we must use
appropriate applications for each of formats.

2.2 The Detection Mechanisms for Malicious Executable Files

Malicious code (malware) is any software developed for infiltrating or damaging a
computer system without owner’s consent [5]. Though the problem of malicious
code has a long history, the detrimental effect by malware on society is still
getting bigger. Furthermore, the protection or the evasion against malware is
even more difficult than past by the creation and the spread of mutants of
original malware through internet environment [6][7].

Moreover, the executable file that forensic investigators need to detect does
not imply traditional malicious files such as virus, and worm. Detection exe-
cutable files related to cyber crime cannot be solved by present malware

204 J.-H. Park, M. Kim, and B.-N. Noh

detection technique using signatures of file, and mass storage device consumes
much time for analyzing and detecting evidences [1].

Thereupon National Institute of Standards and Technology (NIST) started a
project for developing National Software Reference Library (NSRL), is supported
by United States Department of Justice’s National Institute of Justice [8][9][10].
The NSRL project develops the Reference Data Set (RDS) which is the set of
hash values of well-known files in the computer system. It is based on idea that
most file on the computer systems is not related to cyber crime, and those files
are used commonly and widely.

Forensic investigators can reduce the number of files to analyze by comparing
the hash values of the files on the computer system with the values of the RDS.
Though RDS is an effective method for forensic analysis, it is not sufficient to
detect files related to cyber crime. The analyzing method using hash value or
signature likes RDS has a limitation to detect specific file because hash value
changes totally by even the difference of 1byte data of a file. That is why we
need the detection technique for malicious executable files including mutants of
them by using the sequential structure of file.

3 Executable Files and Machine Language Instruction

In this section we explain the method to abstract machine language instructions
from a filesystem for detecting malicious executable files and the fragments of
them. In real digital forensic environment, suggested technique can be used for
only remaining data after the inspection with RDS of NSRL project. Also we can
reduce time remarkably for investigation when there is some speculation about
malicious code based on symptoms of victim system.

Computer system uses filesystems for storing and organizing files and the data
on the data storage device such as hard disk. Also filesystem involves maintaining
the physical location of the files on the data storage devices. By the way forensic
investigators cannot find the location of data blocks of files and understand the
meaning of them, if the file is deleted or the metadata of file in the filesystem
get damaged [3]. For those cases, our method can abstract opcodes sequence
consisting machine language instructions from the entire filesystem and data
blocks record file fragments. After abstracting opcode sequences, we estimate
the similarity between opcode sequences of abstracted sequences and suspicious
malicious executable files. In section 3.1, we explain the method to abstract op-
code sequence from the target data and the difference the frequencies of opcodes
between executable data and others.

3.1 Opcode Abstraction

The executable file includes information of header, machine language instructions
sequence for proper execution. The header section explains the file format and
some tables for structure of the file. Opcode is the portion of a machine language
instruction that specifies the operation to be performed. Though an instruction

A Visualization Technique for Installation Evidences 205

Fig. 2. The opcode frequency distribution of executable files

Fig. 3. The opcode frequency distribution of executable files

has one or more operands, they are changeable always, because operands repre-
sent the virtual address of variable.

That is why we used the order of opcodes only for calculating the similarity
between executable files. The executable files can be estimated the degree of
similarity with other executable files by using cmp section as a basic unit [3].
Below pictures show the frequencies distribution of abstracted opcodes from
executable files and other formats.

Figure 2 depicts the frequencies of opcodes in executable files, and figure 3
is for other formats except executables. The file formats we tested for detect
the frequencies of opcodes from other formats are multimedia file formats (jps,
bmp, mp3, mp4, avi), MS office file formats (excel, powerpoint, MS-word), and
system files (logs, configuration). By the way, opcodes abstracted from other
formats are false positives because file formats except executable files do not
contain machine codes. For this reason, we need to select opcodes detected from
executable files in which not from nonexecutable files.

3.2 The Quantification of the Information Contained in Opcodes

It takes long time for calculation the similarity between files when all opcodes
are used for estimation. That is why we need to select some opcodes for reducing

206 J.-H. Park, M. Kim, and B.-N. Noh

Fig. 4. The result graph of Chi-square distribution test and information entropy

complexity problem. Also there are several principles for the performance. At first
we need to reduce the number of opcodes for calculating similarity of course. Sec-
ond opcodes are detected occasionally must be eliminated from our abstraction
for reducing calculation time. Third we must not eliminate opcodes, which are
abstracted many from executable files and not from other formats.

Left side graph of below figure 4 shows the chi-square distance distributions of
opcodes from executable files and others. According to our test results, several
opcodes (add, jg, mov, and, pop) are abstracted frequently from executable files
and nonexecutable files, and those opcodes are 1byte instructions for granted. Also
those opcodes are detected more from other file formats than executable files.

Right side graph in figure 4 is the result of estimation of information entropy.
The shannon entropy or information entropy is a measure of the uncertainty
associated with a random variable. We estimated the quantification of the in-
formation to classification of file formats. In our test result, we decided the
information entropy is more useful to select opcodes among entire opcodes.

Fig. 5. The result graph of Chi-square distribution test and information entropy

A Visualization Technique for Installation Evidences 207

3.3 Decision Tree for Selection of Opcodes by C4.5

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan.
The decision trees generated by C4.5 can be used for classification, and for this
reason, C4.5 is often referred to as a statistical classifier. It uses the fact that
each attribute of the data can be used to make a decision that splits the data
into smaller subsets.

For the test, we used 1 Giga bytes of executable files and the same amount
of other files. We selected 75 opcodes from entire opcodes by C4.5. By using
selected opcodes only, the time for calculation decreased less than 35.

4 Acquisition Evidences of Malware Installation

In this section, we explain the similarity graph briefly, and then discuss about the
changes of similarity graph according to the mutants of executable file. At the
conclusion, we show the method for detect the evidences of malware installation
from filesystem.

4.1 The Similarity Graph

The graphs of figure 6 are examples of similarity graphs. The vertical axis is a
cmp sections sequence of the source file, such as malware and the horizontal axis
is for the target file, such as filesystem. Also the brightness of each dot in the
picture is showing the degree of the similarity of each cmp sections (between each
of cmp sections of source file and target file) and it is getting darker, depending
on the highness of the similarity.

In case of left side picture in figure 6, source file and target file are exactly
same executable files. That is why we can find a diagonal line in the picture,
which is the most important thing from our investigation. On the other side, the
right side picture is the result of two different files, and there is not any diagonal
line in the picture. Also we can find dark horizontal lines and dark vertical lines
in the graphs. These lines are false positives because the lengths of the cmp
sections of the dots are short.

Fig. 6. The difference of similarity graphs between two files

208 J.-H. Park, M. Kim, and B.-N. Noh

Fig. 7. The graph of similarity between version 1.6 and 1.7.02 of John the ripper

4.2 The Similarity Graphs between Diverse Versions of Executable
File

We estimated similarities between several versions of malwares to know how the
line is depicted in the similarity graphs. Figure 7 shows a form of similarity
graph between version 1.6 and 1.7.02 of john the ripper which is a kind of well-
know malware. John the ripper is a free password cracking software tool. It is
one of the most popular password testing or breaking programs as it combines
a number of password crackers into one package.

From this test results, we could infer above picture that there were several
insertions and deletions. If there were some insertions in the original file, we can
find some cutoff in the diagonal line and the line is moved to the right side. Also
there must be some cutoffs and the line is moved to the down side if there were
some deletion to the original file.

4.3 Reassembling Data Blocks in Order

Below figure 8 shows the test result for detection the data blocks containing
malware from the entire filesystem. A malware was divided into 4 small fragments

A Visualization Technique for Installation Evidences 209

Fig. 8. The distribution of malware in the filesystem

and stored separately. By suggested detection test, we could find all of those
fragments from filesystem and the result is as below picture.

In the former sections, we explained a detection technique for installation evi-
dences of malicious executable files and mutants of them from filesystem. Below
pseudo code shows the method for acquisition forensic evidences by reassembling
data blocks containing malicious code in order.

Input : opcode sequence profiles of malware and filesystem
Similar data blocks detection
While(read next data block)
while(read ith cmp[++i] on the data block)

while(read jth cmp[++j] on a malware)
If(similarity[i][j] is higher than critical value){
write sim[i][j]
if(there exist continuous section diagonally){
detect current block as a candidate
go to read next data block

}
}

Reassembling data blocks
While(find candidate, which is similar with former section
of malware)
if(there are candidate for same section of malware)

find the longest one
end.

At first, we detected data blocks containing similar opcode sequence with the
malicious code sequence more than critical proportion from filesystem as candi-
date evidences. Next we reassembled the data blocks of candidate evidences by
the order of malicious code. We selected the longest one with highest similarity
as fragment of malware, if there are several data blocks of candidate evidences

210 J.-H. Park, M. Kim, and B.-N. Noh

for same section of the malicious code. At last, we made as decision by comparing
reassembled data blocks with the malicious code.

5 Conclusion and Future Work

In this paper, we presented a method to estimate similarity between files by
visual similarity matrix. Also we suggested a detection technique for malware
installation evidences from entire filesystem. Our method could be used for copy-
right protection by visualization the degree of similarity between two executable
files. Besides, suggested technique can help to detect not only mutants of mal-
ware but also fragments of them. Lastly we can reassemble detected fragments
in order for producing forensic evidences.

For future work, we will reduce the computational time for the similarity
calculation. Also we have research plan for encrypted file by hooking machine
language instructions for the execution. Besides we are interested in research for
comparison between original file and the file embedded it.

Acknowledgments. This work was supported by the Korea Research Foun-
dation Grant funded by the Korean Government(MOEHRD). (KRF-2005-214-
D00359).

References

1. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, Oakland, CA (2005)

2. Chrisodorescu, M., Jha, S.: Static Analysis of Executables to Detect Malicious
Patterns. In: Proceedings of the 12th USENIX Security Symposium (2003)

3. Park, J.-H., Kim, M., Noh, B.-N., Joshi, J.B.D.: A Similarity based Technique for
Detection Malicious Executable files for Computer Forensics. In: IEEE Interna-
tional Conference on Information Reuse and Integration (2006)

4. Buskrik, E.V., Liu, V.T.: Digital Evidence: Challenging the Presumption of Reli-
ability. Journal of Digital Forensic Practice 1, 19–26 (2006)

5. McGraw, G., Morrisett, G.: Attacking malicious code: report to the Infosec research
council. IEEE Software 17(5), 33–41 (2000)

6. Garfinkel, S.: Anti-Forensics: Techniques, Detection and Countermeasure. In: Pro-
ceedings of the 2nd International Conference on i-Warefare and Security (ICIW),
pp. 8–9 (2007)

7. McLaughlin, L.: Bot software spreads, causes new worries. IEEE Distributed Sys-
tems Online 5(6) (2004)

8. National Institute of Standards and Technology (NIST), National Software Refer-
ence Library (NSRL) Project, http://www.nsrl.nist.gov

9. Mead, S.: Unique File Identification in the National Software Reference Library.
Digital Investigation (2006)

10. White, D., Ogata, M.: Identification of known files on computer systems. National
Institute for Standards and Technology. Presented at American Academy of Foren-
sic Sciences (2005)

http://www.nsrl.nist.gov

Image-Feature Based Human Identification
Protocols on Limited Display Devices�

Hassan Jameel1, Riaz Ahmed Shaikh1, Le Xuan Hung1, Yuan Wei Wei1,
Syed Muhammad Khaliq-ur-rehman Raazi1, Ngo Trong Canh1,

Sungyoung Lee1, Heejo Lee2, Yuseung Son3, and Miguel Fernandes3

1 Department of Computer Engineering, Kyung Hee University,
449-701 Suwon, South Korea

{hassan,riaz,lxhung,weiwei,raazi,ntcanh,sylee}@oslab.khu.ac.kr
2 Department of Computer Science and Engineering, Korea University Anam-dong,

Seongbuk-gu, Seoul 136-701, South Korea
heejo@korea.ac.kr

3 Institute for Graphic Interfaces, Ehwa Womans University,
Seoul 120-750, South Korea

{yssohn,mfernandes}@igi.re.kr

Abstract. We present variations and modifications of the image-feature
based human identification protocol proposed by Jameel et al with ap-
plication to user authentication on mobile devices with limited display
capabilities. The protocols introduced are essentially reduced versions
of the original protocol with a minor tradeoff between security and us-
ability. However, the proposed protocols are not aimed for computation
and memory restrained devices. A brief user survey highlights the us-
ability. By employing realistic assumptions pertaining to mobile devices,
we show that the protocols are secure under the conjectured difficulty
of extracting the secret feature from the observation of images and their
binary answers. The adversary considered is strictly passive.

1 Introduction

Secure user authentication (identification) protocols, in which a human user se-
curely authenticates himself/herself to a remote server, are of utmost importance
in today’s increasingly connected world. Presently, the most prevailing form of
user authentication is password based authentication. Alternative forms of au-
thentication have been proposed but are not commonly deployed, generally due
to their relative difficulty of use. Matsumoto [2], proposed a threat model in
the user authentication scenario in which the adversary has more powers than
conventional threat models for authentication. The adversary not only has pas-
sive and active access to the communication channel between the user and the
server, but has also access to the computer terminal being used by the user and
� This work was supported by the IT R&D program of MIC (Ministry of Information

and Communication)/IITA (Institute of Information Technology Assessment). [2005-
S-604-02, Realistic Virtual Engineering Technology Development].

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 211–224, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

212 H. Jameel et al.

the alphanumerics being entered by the user. Furthermore, the user does not
have access to any additional trusted hardware. Obviously, under such circum-
stances, traditional authentication protocols fail miserably. In accordance with
the terminology used in [2], we will call user authentication protocols in which an
unassisted human user authenticates to a remote server as Human Identification
Protocols.

Human identification protocols secure under Matsumoto’s threat model have
been proposed in literature but are too impractical for humans due to high
memory requirements and difficulty of use. One such protocol was proposed by
Jameel et al in [1]. Their protocol is built on the diversity of things (features) an
image describes. One of these features as a secret shared between the user and the
server and the user has to answer ‘1’ if a given picture contains that feature and
answer ‘0’ otherwise. On an authentication session, a series of pictures are shown
to the user who constructs a binary answer string according to a predefined secret
order. The protocol, as it is, cannot be used on mobile devices with small display
units. In this paper, we present significant variations of the protocol in [1], so as
to make it practical on mobile devices. The protocols presented are secure under
the conjectured difficulty of the problem of finding the secret feature among a
given set of images, which is different from the one presented in [1]. We present
arguments in support of this difference and also illustrate general weaknesses and
shortcomings in the original protocol as well as argue its specific inadequacies
if applied to mobile devices in its original form. Our additional contribution is
a comprehensive description of the threat model in [2] and a small-scale user
survey based on an implementation of one of the proposed protocols which aims
at demonstrating its usability.

Related Work. The first attempt at constructing a secure human identifica-
tion protocol dates back to Matsumoto [2]. After this scheme was broken in [4],
Matsumoto proposed another scheme in [5]. A variation of this scheme whose
security is based on a mathematically hard problem was proposed by Hopper
and Blum in [7], which is commonly known as the HB protocol. But HB protocol
is impractical for human users as is acknowledged by the authors themselves.
Other attempts, which loosely resemble this category of protocols are proposed
in [4], [6] and [8]. However, the tradeoff between security and usability remains
intact. Weinshall [12] proposed a slightly different protocol in which the user has
to remember images instead of alphanumeric secrets. The protocol was cryptan-
alyzed and broken in [13]. Usage of images as memory aids is also employed in
other graphical authentication schemes such as DeJa Vu [9], Passface [10], Point
& Click [11] and [3]. They require little or no numerical computation whatso-
ever. As an example, the basic theme of [10] is to present the user a series of
images, a subset of which is the set of secret images. The user is authenticated
if his/her selection of secret images among the given set of images is correct. On
the other hand, in [11], the user is authenticated if he/she clicks on the correct
secret location in the given picture. [3] works similarly by letting the user draw
the secret symbol or figure on a display device. Evidently, these purely graphical

Image-Feature Based Human Identification Protocols 213

schemes are not secure against shoulder-surfing also known as “peeping” attacks
[8]. An observer noting the actions of the user can know the secret readily. For
a comprehensive survey of all these protocols, see [8]. Jameel et al [1] proposed
a slightly different concept in which the internal properties of images are used
as secrets. After a secret has been chosen, pictures which satisfy the properties
are presented randomly with pictures which do not. The user has to answer the
pictures according to the secret property. It is conjectured that finding out the
secret property is a hard problem for adversaries. This concept is employed in
this paper with new protocols different from the one proposed in [1].

2 Matsumoto’s Threat Model

Matsumoto proposed a threat model in [2] and attempted to devise a human
identification protocol secure in this model. Figure 1 shows this threat model pic-
torially. We have a human user H who wants to authenticate to a remote server
C. H is equipped with a malicious computing device. H and C are connected
via an insecure communication channel. The adversary A enjoys the following
capabilities:

P-Channel : Passive access to the communication channel.
A-Channel : Active access to the communication channel.
P-Device : Passive access to the software and hardware of the computing device.
A-Device : Active access to the software and hardware of the computing device.
P-Display : Passive observation of the visual display unit of the computing

device.
P-User : Passive observation of users’ inputs and actions.

Notice that the adversary has all these capabilities during an authentication
session. We shall call this model, Full-MTM. A real world example of this model
can be visualized as a user attempting to authenticate to a remote server using a
computer in a public internet cafe. The computer can potentially be infected by
trojan horses and key-loggers. There can be an added risk of shoulder-surfers [8]
peeping at the user’s input. Hidden cameras, network snoops and spoof websites
can complete a real world realization of the Full-MTM.

An interesting line of research is to find human identification protocols se-
cure in relaxed versions of Full-MTM. As an example, consider a variant of the
Full-MTM in which A has only two capabilities: P-Display and P-User. A user
entering his/her PIN number on an Automated Teller Machine is a perfect can-
didate for this threat model. Needless to say, the traditional PIN number protocol
succumbs completely in the said threat model. Indeed, this protocol is only secure
when the adversary has just the P-Display capability. The variation of Full-MTM
considered in this paper assumes the adversary to possess all but two capabili-
ties: A-Channel and A-Device. We call this variant P-MTM, to acknowledge that
the adversary is strictly passive.

214 H. Jameel et al.

Fig. 1. Matsumoto’s Threat Model

3 Human Identification Protocol Based on Images and
their Features

Jameel et al [1] proposed a human identification protocol in which H and C share
a common secret feature (question) which has a binary answer when applied to
any image. An example secret feature can be ‘an arrow’. So, by looking at the
picture in Figure 1, H has to answer the following question: ‘Does the image
contain an arrow?’. During an authentication session, C sends a group of im-
ages such that with probability 1/2 each image satisfies the secret feature. H’s
response consists of a binary string which is constructed according to a secret
permutation, also shared between H and C. As an example, let the secret per-
mutation be ∗ ∗ 2 ∗ ∗1345∗. The ∗’s represent the don’t care positions. C sends a
group of 10 images labeled from 0 to 9. H replies by constructing a binary string
of length 10 by placing random bits in the positions of ∗’s and answering the
images in the order specified by the secret permutation and in accordance with
the secret question. Here, ‘1’ means that the image satisfies the secret feature
and ‘0’ means that it does not.

The job of the adversary is to extract the secret feature. It is conjectured in
[1], that since the answer string contains shuffled answers and random bits, it
is “very hard” to extract the secret feature, although no concrete value for the
hardness of this problem is given. The security of the protocol is reduced from
the conjectured security of the said hard problem. Although the authors discuss
the resiliency of the scheme against a couple of active attacks, they do not give
a reductionist argument [14] against active adversaries. Therefore, we can only
safely assume that the protocol in [1] is secure under P-MTM.

We notice the following weak points and deficiencies in the above mentioned
protocol:

– The permutation string, if long, can be hard to remember for most of the
people. Even with the length ‘10’, as used in [2], remembering the location
of the don’t care positions is difficult.

Image-Feature Based Human Identification Protocols 215

– It is not known how a human user can generate random bits. Most users
would just put all 0’s or all 1’s in the don’t care positions of the answer
string. This is also acknowledged by the authors in [1]. It is also not evident
whether the inclusion of random bits adds to the security of the protocol or
not.

– Two users with the same secret feature might differ when answering the
same image. Thus, a feature/image pair is subject to H’s interpretation
which might differ from C’s interpretation. As a result, we should allow for
user error in the protocol.

– The suggested parameters in [2] are not suitable for mobile devices. Present-
ing 10 pictures at a time is very bothersome on the user even if he or she
can scroll around all the images using a mobile device.

– In [2], whenever C presents an image to H, it discards it from the repository
and never uses it again. We can argue that if the repository of images for a
given feature is large, the probability of the same picture being presented in
succession is very small. We can thus get rid of this impractical requirement.

– The conjectured difficulty of extracting the secret features from images is
justified due to the presence of the secret permutation. However, the un-
derlying mechanism of shuffling the answer bits and employing random bits
is very basic and can be cracked once the secret feature is found [15]. The
adversary at least has the knowledge that on the average half of the images
will contain the secret feature. We can similarly conjecture that the problem
is hard even with out the presence of random bits and shuffled answers, al-
though intuitively the hardness assumption will be stronger than in [1]. On
the brighter side, this can allow us to construct more practical protocols on
mobile devices.

In what follows, we will assume H to possess a mobile device and the goal is to
authenticateH to C under P-MTM. We begin by rigorously defining the modified
version of the conjecture presented in [1].

4 Preliminaries: Definitions and Conjectures

Denote the three parties by H, C and A as in the previous section. C has a set
of Images I and a set of features Q, whose contents are kept secret. Define the
function: f : Q× I → {0, 1} that takes as argument a q ∈ Q and an i ∈ I and
maps the pair to 0 or 1. This function is implemented by C. For all q ∈ Q and
i ∈ I, b ← H (q, i) represents H returning an answer bit b after taking as input
q and i.

Conjecture 1. Let q
R←Q and i

R← I. Then,

Pr [b ← H (q, i) ; b = f (q, i)] ≥ 1− e ≥ 1
2

Here 0 ≤ e ≤ 1
2 is the average error probability. For the adversary A we have

the following conjecture:

216 H. Jameel et al.

Conjecture 2. Let q
R←Q and b1b2 · · · br

R← {0, 1}r. Let i1, . . . , ir be sampled from

I, such that: f (q, i1) || · · · ||f (q, ir) = b1 · · · br. Let b
R← {0, 1} and i ← I such that

f (q, i) = b and i �= it for 1 ≤ t ≤ r . Then,

1
2
≤ Pr [b′ ← A (i, (b1, i1) , . . . , (br, ir)) ; b′ = b] ≤ 1

2
+ δ (r)

Here 0 ≤ δ (r) ≤ 1
2 is a non-decreasing function of r. Notice that the adversary

is shown corresponding pairs of images and their binary answers, except for the
last image.

Notes. We have not defined H and A as turing machines as they could be either
humans or a combination of human or machine in the case of the adversary.
Conjecture 2 differs from the one presented in [2], in that we do not attribute
the hardness of the problem to the extraction of the secret feature. Instead, we
have related it to guessing the correct answer of an image after observing a few
pairs of images and their binary answers. Furthermore, we do not involve the
time consumed by A in conjecturing the hardness of the problem. The reason
being that if A is a computer program, it is very hard to construct a program
that will be able to solve the problem at hand. Instead, A needs a great deal of
human assistance. We cannot say for certain that the longer the human adversary
spends time in contemplating the images the better the result will be, since the
time is not being used to do numerical computations.

We define the concept of human identification protocol on the basis of the
definition of an identification protocol given in [7]. Define the result of the in-
teraction between H and C with inputs x and y respectively, by 〈H (x) , C (y)〉.
For the sake of identification protocols, 〈H (x) , C (y)〉 would be either accept or
reject.

Definition 1. A human identification protocol is an interactive protocol be-
tween a human H and a probabilistic program C, both having auxiliary inputs,
such that:

Pr [〈H (z) , C (z)〉 = accept] ≥ p
Pr [〈H (z′) , C (z)〉 = reject] < 1− p

where z′ �= z.

For a human identification protocol to be useful, the probability p in Definition 1
should be high. We will say that a candidate protocol is logically complete if it
satisfies the above definition. Of course, we need another definition for the human
usability of such protocols. We take this definition from [7] again, as a reference:

Definition 2. A human identification protocol is (α, β, τ)-human executable, if
at least α proportion of the human population can perform the protocol computa-
tions unaided and correctly with probability greater than β and with an average
time τ .

Image-Feature Based Human Identification Protocols 217

5 Proposed Protocols

We begin with the first protocol1 which is a direct consequence of the main idea.
From here onwards, we assume the sets I and Q to be large enough so that the
same image is not presented again in quick succession.

5.1 Protocol P1

Setup. C samples q
R← Q. C and H share q as a secret.

Protocol.

– C initializes j ← 0.
– Repeat k times

• C samples a bit b
R← {0, 1}. Randomly picks an image i from I such that

f (q, i) = b. C sends i to H.
• H sends the response bit a to C, where a ← H (q, i).
• If a = b, C updates j ← j + 1.

– If j ≥ s, C outputs accept. Else C outputs reject.

Logical Completeness. We see that the protocol is logically complete if Con-
jectures 1 and 2 hold.

Claim 1. If Conjectures 1 and 2 hold, Protocol P1 is logically complete with
probability p, subject to the following conditions:

p ≤
∑k

j=s

(
k
j

)
(1− e)j

ek−j

1− p >
∑k

j=s

(
k
j

)(
1
2

+ δ (k)
)j (1

2
+ δ (k)

)k−j

Proof. We see that if 〈H (q) , C (q)〉 = accept, then H (q, i) should be equal to
f (q, i) at least s times. From Conjecture 1, the probability that H (q, i) equals
f (q, i) is ≥ 1 − e. The sum of the probabilities of s or more successes, can be
found through the binomial probability distribution. Thus for a given probability
p of the event 〈H (q) , C (q)〉 = accept, the sum of the probabilities of s or more
successes should be greater than or equal to p.
The event 〈H (q′) , C (q)〉 = accept can happen with probability:

∑k

j=s

(
k
j

)(
1
2

+ δ (0)
)j (1

2
− δ (0)

)k−j

≤
∑k

j=s

(
k
j

)(
1
2

+ δ (k)
)j (1

2
− δ (k)

)k−j

Thus this probability has to be less than 1− p, for Protocol P1 to be logically
complete. "#
Table 2 in Appendix A shows the values of s against different values of p, e
and k.
1 A similar protocol is described in an unpublished technical report [15].

218 H. Jameel et al.

5.2 Protocol P2

Denote by σ[m], the set of all permutations from {0, 1, . . . , m} to itself. Let
σ ∈ σ[m] be a generic permutation. σ (j) denotes the jth element of σ. Let Grid
be a data structure that holds an ordered sequence of m images. The operation
‘+’ means the append operation when applied to Grid.
Setup. C samples q

R← Q and σ
R←σ[m]. C and H share q and σ as a secret.

Protocol.

– C initializes j ← 0.
– Repeat k′ times

• C initializes Grid ← φ. C samples b1b2 · · · bm
R← {0, 1}m.

• For 1 ≤ t ≤ m:
∗ C randomly picks an image iσ(t) from I such that f

(
q, iσ(t)

)
= bt. C

updates Grid ← Grid + iσ(t).
• C sends Grid to H.
• H initializes the answer string a ← null.
• For 1 ≤ t ≤ m:

∗ H updates a ← a||H
(
q, iσ(t)

)
.

• H sends a to C.
• For 1 ≤ t ≤ m, if a (t) = b (t), C updates j ← j + 1.

– If j ≥ s, C outputs accept. Else C outputs reject.

Logical Completeness

Claim 2. If Conjectures 1 and 2 hold, Protocol P2 is logically complete with
probability p, subject to the following conditions:

p ≤
∑mk′

j=s

(
mk′

j

)
(1− e)j

emk′−j

1− p >
∑mk′

j=s

(
mk′

j

)(
1
2

+ δ (mk′)
)j (1

2
+ δ (mk′)

)mk′−j

Proof. The first part of the proof is similar to the first part of the last claim
with k replaced by mk′. For the second part, we see that the probability of the
event 〈H (q′) , C (q)〉 = accept would be less than or equal to the corresponding
probability of the same event in Protocol P1, since now the introduction of the
permutation σ adds extra error probability for someone without the knowledge
of q and σ. The result follows immediately by once again replacing k by mk′. "#

For the allowable values of s, see Table 2 in Appendix A.

Image-Feature Based Human Identification Protocols 219

6 Security of the Protocols

Let A be an adversary in P-MTM. Let A′ be another adversary with only the
P-Channel capability. Informally speaking, in order to demonstrate the security
of the protocols, we will first show that adversary A has no real advantage over
adversary A′. After that, we will attempt to reduce the security of the protocols
to Conjecture 2. Once that is accomplished, we will say that the protocol is
secure under P-MTM with an associated probability. Let T (H (.) , C (.)) denote
the transcript of messages sent between H and C in a single run. In other words,
it represents one challenge-response pair.

Definition 3. We say that the adversary A is λ (r)-almost equivalent to the
adversary A′ for the human identification protocol (H, C), if:

Pr [〈A (T r (H (q) , C (q))) , C (q)〉 = accept]
≤ Pr [〈A′ (T r (H (q) , C (q))) , C (q)〉 = accept] + λ (r)

Definition 4. A human identification protocol (H, C) is (p′, r) secure against
the adversary A′, if:

Pr [〈A′ (T r (H (q) , C (q))) , C (q)〉 = accept] ≤ p′

Definition 4 is taken from [7]. We can now relate the security of the protocol
to Conjecture 2 in a straightforward manner. Notice that these proofs are not
reductionist arguments in the formal sense, as we have not defined the adversary
as being a turing machine.

Claim 3. Protocol P1 is (p′, r) secure under P-MTM, where:

p′ =
∑r

j=s

(
r
j

)(
1
2

+ δ (r)
)j (1

2
− δ (r)

)r−j

Proof. See Appendix B.1.

Claim 4. Protocol P2 is (p′′, r) secure under P-MTM, where p′′ ≤ p′+δ (r) and:

p′ =
∑r

j=s

(
r
j

)(
1
2

+ δ (r)
)j (1

2
− δ (r)

)r−j

Proof. See Appendix B.2.

220 H. Jameel et al.

7 Implementation

We implemented the protocols by employing a small set of test images and fea-
tures. The server side maintained a database of features which contained a record
of features, the corresponding question and the number of images pertaining to
the features. The server also maintained an archive of images related to the fea-
tures. The images used were scaled down to be more feasible for use on a mobile
device using wireless communication. An example feature used was: “cartoon”.
The corresponding question was: “Does the picture contain a cartoon?”. The
image archive contained two disjoint sets of images for the feature “cartoon”.
The images which satisfied the feature were labeled yes-images and the ones
that did not were labeled as no-images. The administrator had the privilege to
add, remove or update features and/or images in the feature database and the
image archive.

The client side was implemented on a PDA. A small prototype for Protocol P2
was made, with m = 4, but was not used for subsequent study. Instead Protocol
P1 was fully implemented and a user survey was made. Each pass of the protocol
implemented, consisted of an image displayed on the PDA showing two buttons
at the bottom, labeled “yes” or “no”, as shown in Figure 2. The values k = 10
and s = 8 were chosen, which meant that the user would be accepted if he or
she answers correctly at least 8 times. A user was registered by first assigning a
unique ID to the user after which he or she was given the secret feature. Once
registration was done, the users could freely test the identification protocol.

The users used in the survey were all graduate school students. They were
asked to attempt Protocol P1 3 times. The average time taken by the user as well
as the number of errors was noted down. The number of times the users failed
to authenticate was recorded. After the experiment, the users were asked to
describe their experience of using the protocol in terms of the difficulty of usage

Fig. 2. One pass of Protocol P1 as implemented on the PDA

Image-Feature Based Human Identification Protocols 221

Table 1. User Statistics and Experience

Success Percentage and Average Time
Users Attempts Successes Success % e Avg. Time

5 15 12 80 0.113 25.6 sec

Difficulty of Usage
Total Easy Normal Difficult

5 4 1 0

Lengthiness
Total Normal Little Long Too Long

5 1 4 0

and lengthiness. Both these characteristics were divided into three qualitative
categories as shown in Table 1.

The average time taken by the users came out to be 25.6 seconds, with the
best time being 21 seconds and the worst being 38 seconds. The maximum
number of errors in an authentication session was 4. It should be noted that
since the number of images were small, some images were repeated a small
number of times. A user erring in one of the images would err again with the
same image. This will certainly not be the case if the set of images is large.
The average time of 25.6 seconds meant that the user on average spent 2.56
seconds per image. Since 80 percent of the users described executing the protocol
as easy, we can roughly associate the probability 0.80 with the variable α in
Definition 2. Also, the total successful attempts were 12 out of 15 which allows
us to loosely associate a probability 0.80 with the parameter β. Thus we can
state that Protocol P1 is (0.80, 0.80, 2.56k)-human executable, where k is the
protocol’s security parameter. We do acknowledge the extremely low number
of test subjects due to resource limitations. Such a small portion might not be
a complete representative of the human population. Nevertheless we can get a
rough idea about the usability of the protocol. Finally it should be noted that
most users described the protocol as a little lengthy. This opinion is sure to
change into very lengthy if the value of k is chosen to be somewhere around 20.
We acknowledge this as a drawback of the protocol.

8 Conclusion

While secure human identification protocols have been proposed in the literature
for normal desktop computers, it is an interesting line of research to construct
protocols that can be used on mobile devices. Mobile devices among other con-
straints have a smaller display unit. We have proposed variations of the protocol
proposed in [1] that are practical for devices with smaller display units. However,
these protocols are inherently heavy on devices with limited memory and com-
putational power. Overcoming this limitation remains an open problem as most

222 H. Jameel et al.

of the human identification protocols are graphics-based which inherently makes
them unsuitable for resource constraint devices. The proposed protocols are se-
cure under a slightly different conjecture from the original one. The protocols are
usable if used sparingly, as the number of rounds in one authentication session
is required to be high for strong security. Furthermore, it is not evident how
the protocols will be secure under an active adversary without compromising
the usability. It is therefore desirable to propose human identification protocols
secure against active and passive adversaries alike as well as being practical on
resource limited devices. The proposed protocols in this paper are a small step
in that direction.

References

1. Jameel, H., Shaikh, R.A., Lee, H., Lee, S.: Human identification through im-
age evaluation using secret predicates. In: Abe, M. (ed.) CT-RSA 2007. LNCS,
vol. 4377, pp. 67–84. Springer, Heidelberg (2006)

2. Matsumoto, T., Imai, H.: Human Identification through Insecure Channel. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 409–421. Springer,
Heidelberg (1991)

3. Jermyn, I., Mayer, A., Monrose, F., Reiter, M., Rubin, A.: The design and analysis
of graphical passwords. In: 8th USENIX Security Symposium (1999)

4. Wang, C.H., Hwang, T., Tsai, J.J.: On the Matsumoto and Imai’s Human Iden-
tification Scheme. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 382–392. Springer, Heidelberg (1995)

5. Matsumoto, T.: Human-computer cryptography: An attempt. In: 3rd ACM Con-
ference on Computer and Communications Security, pp. 68–75. ACM Press, New
York (1996)

6. Li, X.-Y., Teng, S.-H.: Practical Human-Machine Identification over Insecure Chan-
nels. Journal of Combinatorial Optimization 3, 347–361 (1999)

7. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

8. Li, S., Shum, H.-Y.: Secure Human-computer Identification against Peeping At-
tacks (SecHCI): A Survey. Unpublished report, available at Elsevier’s Computer
Science Preprint Server (2002)

9. Dhamija, R., Perrig, A.: Deja Vu: A User Study using Images for Authentication.
In: Proc. of the 9th USENIX Security Symposium, pp. 45–58 (2000)

10. Passfaces Corporation: White Paper. The Science behind Passfaces (2005),
http://www.passfaces.com

11. Sorensen, V.: PassPic - Visual Password Management (2002),
http://www.authord.com

12. Weinshall, D.: Cognitive Authentication Schemes Safe Against Spyware (Short
Paper). In: IEEE Symposium on Security and Privacy, pp. 295–300 (2006)

13. Golle, P., Wagner, D.: Cryptanalysis of a Cognitive Authentication Scheme. Cryp-
tology ePrint Archive, Report 2006/258,
http://eprint.iacr.org/

14. Bellare, M.: Practice-Oriented Provable-Security. In: Okamoto, E. (ed.) ISW 1997.
LNCS, vol. 1396, pp. 221–231. Springer, Heidelberg (1998)

15. Jameel, H., Lee, H., Lee, S.: Using Image Attributes for Human Identification
Protocols. Technical Report, CoRR abs/0704.2295 (2007),
http://arxiv.org/abs/0704.2295

http://www.passfaces.com
http://www.authord.com
http://eprint.iacr.org/
http://arxiv.org/abs/0704.2295

Image-Feature Based Human Identification Protocols 223

A Numerical Values of Parameters in Protocol P1 and P2

Table 2 illustrates different allowable values for the parameters in Protocol P1
and P22. So, for instance, if p ≥ 0.90 and k = 10 is desired, s should be equal
to 8, with the error e being less than or equal to 0.1 and the adversary’s ad-
vantage δ (10) ≤ 0.05. The ‘∞’ symbol indicates that δ (k) is undefined for the
corresponding choice of parameters. In other words, adversary’s probability of
success will always be higher than 1 − p for these choices. Hence Protocols P1
and P2 are not logically complete under these parameter values.

Table 2. Numerical Values of the Parameters

p e k s δ (k) p e k s δ (k) p e k s δ (k)
0.90 0.10 10 8 ≤0.05 0.80 0.10 10 8 ≤0.11 0.70 0.10 10 9 ≤0.27

15 12 ≤0.10 15 13 ≤0.23 15 13 ≤0.27
20 16 ≤0.13 20 17 ≤0.24 20 17 ≤0.27
25 21 ≤0.20 25 21 ≤0.24 25 22 ≤0.31

0.20 10 6 ∞ 0.20 10 7 ∞ 0.20 10 7 ≤0.0655
15 10 ∞ 15 11 ≤0.0923 15 11 ≤0.1322
20 14 ≤0.0327 20 15 ≤0.1335 20 15 ≤0.1675
25 17 ≤0.0327 25 18 ≤0.1176 25 19 ≤0.1895

0.30 10 5 ∞ 0.30 10 6 ∞ 0.30 10 6 ∞
15 8 ∞ 15 9 ∞ 15 10 ≤0.0648
20 11 ∞ 20 12 ∞ 20 13 ≤0.0658
25 15 ∞ 25 16 ≤0.0358 25 16 ≤0.0672

B Security of the Protocols

B.1 Proof of Claim 3

There is no computation done byH or the computing device except for displaying
the image. Now, if the display unit is large enough to display the whole image,
then A has no advantage overA′ whatsoever. Therefore,A is 0-almost equivalent
to A′, where λ (r) = 0 is the constant function. Let us assume that A′ defeats
the protocol with probability > p′. We construct an adversary B that uses A′

to violate Conjecture 2. In the training phase, B simply provides A′ the images
being given to it and with probability 1 − e it provides the correct answers to
these images to A′. When A′ completes the training phase, B provides the image
i to A′ whose answer B has to guess. Whenever, B gets an answer it outputs the
answer and halts. Since:

p′ =
∑r

j=s

(
r
j

)(
1
2

+ δ (r)
)j (1

2
− δ (r)

)r−j

2 Notice that for Protocol P2, k = mk′.

224 H. Jameel et al.

This means that the probability that B’s guess is correct is > 1
2 + δ (r), where

r is the number of runs the adversary A′ needs in the training phase. This
contradicts Conjecture 2 and the result follows. "#

B.2 Proof of Claim 4

The computing device has to display images in the correct order which is also
visible to A′. H just needs to recall σ and hence does not have to do any com-
putation. If the display unit is large enough to display all m images at the same
time then adversary A has no advantage over A′ in this regard as well. However,
if the computing device has a smaller display unit (a mobile device), then H has
to scroll left and right to answer the images in the order specified by σ. Thus
A has an advantage over A′, but which cannot be more than δ (r), or else it
will violate Conjecture 2. Therefore, A is δ (r)-almost equivalent to A′, where
λ (r) = δ (r). Suppose now that A′ defeats the protocol with probability > p′.
We can construct an adversary B which uses A′ in the same way as in the proof
of Claim 3 except now it samples a random σ

R←σ [m] and feeds A′ with the
images and their answers in accordance with σ. By an argument similar to the
previous section we can show that the probability that B’s guess is correct is
> 1

2 + δ (r), where r ≡ 0 mod m is the number of images or answers shown to
A′ in the training phase. Since this contradicts Conjecture 2, we can say that
Protocol P2 is (p′, r) secure against the adversary A′ and (p′′, r) secure under
P-MTM, where p′′ ≤ p′ + δ (r). "#

Ternary Subset Difference Method and Its
Quantitative Analysis

Kazuhide Fukushima1, Shinsaku Kiyomoto1, Toshiaki Tanaka1,
and Kouichi Sakurai2,3

1 KDDI R&D Laboratories Inc.
2 Faculty of Information Science and Electrical Engineering, Kyushu University

3 Institute of Systems, Information Technologies and Nanotechnologies

Abstract. This paper proposes a ternary subset difference method (SD
method) that is resistant to coalition attacks. In order to realize a se-
cure ternary SD method, we design a new cover-finding algorithm, label
assignment algorithm, and encryption algorithm. These algorithms are
required to revoke one or two subtrees simultaneously while maintaining
resistance against coalition attacks. We realize this two-way revocation
mechanism by creatively using labels and hashed labels. Then, we eval-
uate the efficiency and security of the ternary SD method. We show
that the upper bound of the average message length in the ternary SD
method is smaller by about 12.2 percent than that of the conventional
SD method, and the number of labels on each client device can be re-
duced by about 20.4 percent. On the other hand, the computational cost
imposed on a client device stays within O(log n). Finally, we prove that
the ternary SD method is secure against coalition attacks.

Keywords: Broadcast Encryption, Subset Difference Method, Ternary
Tree.

1 Introduction

1.1 Background

Recently, high-speed Internet has been expanded to include 3G mobile services.
Mobile content delivery services using broadcasting technology have become ma-
jor services in the market, and pay broadcasting is expected to become a new
service of particular importance in the near future. However, copyright protec-
tion is a serious issue for these services. As copies of digital content can be made
easily with little effort, illegal content circulates widely. Thus, content must be
encrypted for copyright protection in digital content distribution services so that
the following two properties are satisfied: 1) only valid client devices can decrypt
the content, 2) if the keys stored in a client device are revealed, the client de-
vice should be revoked so that it can no longer decrypt the content. A broadcast
encryption scheme realizes these important requirements, and it is an essential
technique for ensuring the security of broadcasting services. Naor et al. proposed

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 225–239, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

226 K. Fukushima et al.

the subset difference method (the SD method) [1]. Thereafter, many improved
versions of the SD method have been proposed. However, no feasible broadcast
encryption schemes that reduce both the average message length and storage
have been proposed. An efficient broadcast scheme is desired in order to reduce
the cost and load for key-management in broadcasting services.

Motivation: This paper proposes an SD method with a ternary tree that can
reduce both message and storage size compared to the conventional SD method
while imposing a feasible computational cost: O(log n) on client devices.

1.2 Previous Work

A broadcast encryption scheme was first proposed by Berkovits [2]. Fiat et al. [3]
formalized the basic definition of a broadcast encryption scheme. Naor et al. [1]
proposed the complete subtree method (the CS method). The scheme uses an
a-array tree, and client devices are assigned to the leaf nodes of the tree. Valid
client devices are covered by complete subtrees, and a key to encrypt the session
key is assigned to each subtree. There is one problem associated with the CS
method in that the message length increases in proportion to the number of
revoked client devices. The average message length in the CS method is given by
O(r loga(n/r)) for the number of total client devices n, the number of revoked
client devices r and the degree of the tree a. Naor et al. [1] also proposed the
subset difference method (the SD method). The SD method uses a logical binary
tree to assign labels to client devices. A valid client device can derive the key
to decrypt the message using its labels. The valid client devices are covered by
subtrees that contain a complete subtree covering revoked client devices. A key
to encrypt the session key is assigned to each subtree. The message length in the
average and worst case scenarios is given by 2 log 2 · r and 2r − 1, respectively.
Furthermore, each client device stores (log2 n/2 + log n/2 + 1) labels.

Many improved versions of the SD method have been proposed. Halevy et
al. [4], Goodrich et al. [5], Jho et al. [6], Hwang et al. [7] and Attrapadung et
al. [8] proposed schemes based on a pseudo-random number generator. Asano [9],
Attrapadung et al. [10] and Gentry et al. [11] proposed a scheme based on the
RSA cryptosystem. Jho et al.’s scheme reduces the message length to r/c but
increases the storage size, i.e., the number of keys/labels each client must store,
to O(nc) where c is constant. Other schemes reduce the storage size to less than
O(log2 n) but increase the average message length to greater than 2 log 2 · r.
Boneh et al. [12] proposed a scheme based on Pairing in which the message
length and storage size do not depend on r; however, this scheme imposes a
heavy computational cost: O(n) on client devices.

Challenge: The schemes based on an RSA cryptosystem and pseudo-random
number generator involve a tradeoff between message length and storage size.
Computational cost is heavy in the scheme based on pairing. Therefore, a broad-
cast encryption scheme with a smaller message and storage size, and a feasible
computational cost is desired.

Ternary Subset Difference Method and Its Quantitative Analysis 227

1.3 Our Contribution

This paper proposes a coalition resistant ternary SD method, which is based on
the subset difference method with a logical ternary tree. In order to achieve a
secure ternary array SD method, we design a new cover-finding algorithm, label
assignment algorithm, and encryption algorithm. These algorithms are required
to revoke one or two subsets simultaneously while maintaining resistance against
coalition attacks. We realize this two-way revocation mechanism by creatively
using labels and hashed labels. Next, we evaluate the efficiency and security of
the ternary array SD method. We evaluate the upper bound of message length in
the average and worst case scenarios based on a theoretical analysis of the cover-
finding algorithms. Additionally, we evaluate the storage size and computational
cost imposed on client devices based on analysis of the label assignment algo-
rithm and decryption algorithm. Finally, we prove that the ternary SD method
is secure against coalition attacks.

Results of the Efficiency Analysis: The message length in the ternary SD method
is bounded by n/3 and 2r − 1 in the worst case scenario and 3 log(3/2) · r in
the average case scenario. n denotes the total number of client devices, and r
denotes the number of revoked client devices. The storage size, i.e., the number
of labels and hashed labels, on client devices is given by log2

3 n + log3 n + 1. The
computational cost imposed on client devices to derive the session key is O(log n).

Result of the Security Analysis: The ternary SD method is a collusion resistant
broadcast encryption scheme.

Comparison with Conventional SD Method: The ternary SD method can be
implemented using the same primitives as the conventional SD method. The
upper bound of message length in the ternary SD method n/3 is lower than that
in the conventional SD method, n/2, while the upper bound 2r − 1 in terms
of r coincides. In the average case scenario, the upper bound of message length
in the ternary SD method is smaller by about 12.2 percent than that of the
conventional SD method. The storage size imposed on each client device can be
reduced by about 20.4 percent using the ternary SD method. Finally, the level of
protection against coalition attacks provided by the ternary SD method is equal
to that provided by the conventional SD method.

2 Preliminary

Let N be the set of all the client devices, |N | = n, and R(⊂ N) be the set
of client devices, |R| = r, whose decryption privileges are revoked. The goal of
a broadcast encryption scheme is to transmit message M to all client devices
such that any device in N\R can decrypt the message correctly but none of the
coalition of client devices in R can decrypt it. N\R denotes the set difference of
N and R, or formally, N\R = {x|x ∈ N and x /∈ R}.

228 K. Fukushima et al.

A broadcast encryption scheme consists of a label assignment algorithm, en-
cryption algorithm, and decryption algorithm.
Label Assignment Algorithm (by the center)

Assign labels to each client device.
Encryption Algorithm (by the center)

Set a family of disjoint subsets {S1, . . . , Sw} such that ∪w
t=1St = N\R using a

cover-finding algorithm. Next, assign keys L1, . . . , Lw to each subset. Then,
encrypt message M with session key K and encrypt K with keys L1, . . . ,
Lw.

Decryption Algorithm (by each client device d ∈ N\R)
Find subset St to which d belongs. Then, derive key Lt to decrypt K and
obtain M .

The proposed method uses a logical ternary tree to assign labels to client
devices. Each leaf node of the tree corresponds to each client device. Di denotes
the set of client devices assigned to leaf nodes in the complete subtree rooted
at i. Labels and hashed labels are assigned to each client device using the label
assignment algorithm in Sect. 5.1 and they are never updated. A client device in
N\R can obtain the key to decrypt the message using these labels and hashed
labels. Additionally, the proposed method uses the following primitives:
– An encryption function FK : {0, 1}∗ → {0, 1}∗ to encrypt message M .
– An encryption function EL : {0, 1}λ → {0, 1}λ to encrypt session key K.
– Cryptographic hash functions h, hl, hc, hr, and hkg : {0, 1}λ → {0, 1}λ. These

hash functions must be independent. hl , hc, hr , and h are used to derive label
l(u, w) from label l(u, v) or hashed label h(l(u, v)) where node w is a child of
node v. For example, l(u, w) = hl(h(l(u, v))) holds for any u, v and w such
that w is the left child of v. The same holds for hc or hr if w is the center
or right child of v, respectively. hkg is used to derive a key from a label.

3 Trivial Expansion of the Conventional SD Method

We consider a straightforward expansion of the conventional SD method. In the
SD method, a client device is assigned to a leaf node of the binary tree and
given labels in the form of l(i, j) defined by two node i and j. i is a node on
the path from the root node to the node where the client device is assigned
and j is a descendant node of i just hanging on this path. We can apply this
label assignment algorithm to an a-array tree with a ≥ 3. However, this label
assignment algorithm has a drawback in that it cannot protect against coalition
attacks.

We provide the following example. Figure 1 shows the label assignment for
the ternary tree. Note that all the labels client device d3 has, i.e., l(1, 3), l(1, 4),
l(1, 5), l(1, 6), l(2, 5), l(2, 6), and l(all), can be collected from the labels that
client devices d1 and d2 have. Even if client devices d1 and d2 are revoked, a
coalition of these devices can still obtain subsequent session keys by pretending to
be a legitimate client device d3. Thus, we need a new label assignment algorithm
to protect against coalition attacks.

Ternary Subset Difference Method and Its Quantitative Analysis 229

Fig. 1. Label assignment in the trivial ternary SD method

Fig. 2. Subsets in the ternary SD method

4 Subsets in the Ternary SD Method

We define the subset description method and cover-finding algorithm in our
proposed method.

4.1 Subset Description

In the ternary SD method, all valid client devices, i.e., client devices in N\R,
are covered by the collection of disjoint subsets S1, . . . , Sw. Each subset St is
in the form of Di\Dj1 or Di\(Dj1 ∪Dj2). The former subset is also used in the
conventional SD method and we denote it Di,j1 . The latter subset is a newly
introduced subset and we denote it Di,j1⊕j2 . In this subset, all the client devices
in Dj1 and Dj2 are revoked. The nodes j1 and j2 must be siblings and the
descendants of i. Figure 2 shows these two subsets.

230 K. Fukushima et al.

Input: The set of revoked client devices R
Output: The collection of disjoint subsets {S1, . . . , Sw} such that ∪w

t=1St = N\R

T ← ST (R); C ← φ;
repeat do

Find leaf nodes j1, . . . , jk whose sibling(s) are all leaf nodes;
if k = 3 then

Remove the nodes j1, j2, and j3 from T ;
else then /* if k = 1 or k = 2 */

Find the lowest ancestor node i of j1,. . . jk that has sibling(s);
if not found then i ← root; end if
if k = 1 then

C ← C ∪ {Di,j1};
else then

C ← C ∪ {Di,j1⊕j2}; /* if k = 2 */
end if
Remove all the descendant nodes of i from T ;

end if
until T = {root}
return C;

Fig. 3. The cover-finding algorithm

4.2 Cover-Finding Algorithm

Figure 3 shows the cover-finding algorithm in the ternary SD method. This
algorithm takes as input the set of revoked client devices R, and outputs the
collection of disjoint subsets {S1, . . . , Sw} that partitions N\R. Let ST (R) be
the tree that consists of leaf nodes that correspond to revoked client devices
and their ancestor nodes, and φ be the empty set. This algorithm is used in the
encryption algorithm in Sect. 5.2.

5 Proposed Method

Here we present a detailed description of the ternary SD method. The ternary
SD method consists of 1) label assignment algorithm, 2) encryption algorithm,
and 3) decryption algorithm.

5.1 Label Assignment Algorithm

This algorithm is executed in the center:

1. Construct a ternary tree to manage client devices. These client devices are
assigned to leaf nodes of the tree.

2. Generates initial labels with λ bits for all the nodes with the exception of
the leaf nodes in the tree. Let the initial label for node u be l(u, u). All of the
other labels required in this scheme can be derived from these initial labels
using hash functions hl, hc, hr, and h according to the rule:

l(u, w) = hl(h(l(u, v))), hc(h(l(u, v))), or hr(h(l(u, v)))

where w is the left, center, or right child of v, respectively.

Ternary Subset Difference Method and Its Quantitative Analysis 231

3. Assign labels and hashed labels to client devices. The set Label(u) that the
client device at the node u has is given by:

Label(u) ={h(l(u, v))|u ∈ Pathu, v ∈ LeftHangu}
∪ {l(u, v)|u ∈ Pathu, v ∈ RightHangu}
∪ {l(all)}.

Pathu is the set of nodes that are on the path from the root node to u.
LeftHangu denotes the set of nodes that hang on the left of the Pathu. If
Pathu contains the leftmost node, the rightmost sibling is in LeftHangu.
RightHangu denotes the set of nodes that hang on the right of the Pathu. If
Pathu contains that rightmost node, the leftmost sibling is in RightHangu.
Furthermore, l(all) is a special label that is used when there are no revoked
client devices.

5.2 Encryption Algorithm

The encryption algorithm is executed in the center on a message M :

1. Choose session key K and encrypt M .
2. Partition all the valid client devices into disjoint subsets S1, . . . , Sw using the

cover-finding algorithm in Sect. 4.2. Let L1, . . . , Lw be the keys associated
with these subsets. The key for subset Di,j1 is given by:

hkg(h(l(i, j1))),

and the key for subset Di,j1⊕j2 where j2 = right j1
1, is given by:

hkg(l(i, j1)).

3. Encrypt session key K with keys L1, . . . , Lw and send broadcast message

〈[S1, . . . , Sw, EL1(K), . . . , ELw(K)], FK(M)〉

to all the client devices.

5.3 Decryption Algorithm

The decryption algorithm is executed in a client device on a received broadcast
message

〈[S1, . . . , Sw, EL1(K), . . . , ELw(K)], FK(M)〉 :

1. Find St to which the client device belongs. The result is null when this client
device is revoked.

2. Derive the corresponding key Lt using the labels and hashed labels assigned
to the client device.

3. Decrypt ELt(K) using the key Lt to obtain K.
4. Decrypt FK(M) using the key K to obtain and output M .
1 rightu denotes the immediate right sibling of u. If u is the rightmost node, it means

the leftmost sibling. Any two sibling nodes in a ternary tree can be described as “u
and rightu”.

232 K. Fukushima et al.

6 Analysis

We analyze the efficiency and security of the ternary SD method.

6.1 Efficiency Analysis

We evaluate the ternary SD method from three perspectives:

1. Message length, i.e., the length of the header that is attached to FK(M),
which can be evaluated by the number of subsets in the cover.

2. Storage size, which can be evaluated by the number of labels and hashed
labels that a client device needs to store.

3. Computational cost, which is imposed on client devices to derive the session
key that is used to decrypt a broadcast message.

The message length depends on the location to which revoked client devices are
assigned, while the storage size and the computational cost is not dependent
on location. Therefore, we present an analysis of the worst and average case
scenarios.

Message Length. We evaluate the message length in the worst and average
case scenarios.

Worst Case Analysis. We evaluate the maximum message length in the ternary
SD method.

A trivial upper bound of the number of subsets is given by n/3, in the case
where all the client devices are covered by ternary trees with height 1.

An upper bound in terms of r can be evaluated by the number of chains in the
alternative description of the cover-finding algorithm in Naor et al.’s paper [1]
(in Sect. 3.2, pp. 12). This alternative description is used to construct chains
of nodes in ST (R). In the conventional SD method, each chain is in the form
[u1, . . . , ul] and satisfies the following condition.

1. u1, . . . , ul−1 have out-degree 1.
2. ul is either a leaf node or a node with out-degree 3.
3. The parent of u1 is either a node with an out-degree 2 or 3, or the root node.

Subset Di,j1 corresponds to chain [i, . . . , j]. In the ternary SD method, each chain
is in the form [u1, . . . , u

(1)
l] or [u1, . . . , ul−1, u

(1)
l ; u(2)

l] and satisfies the following
conditions:

1. u1, . . . , ul−2 have out-degree 1, and ul−1 has out-degree 1 or 2.
2. u

(1)
l and u

(2)
l are leaf nodes or nodes with out-degree 3.

3. The parent of u1 is a node with an out-degree 2 or 3, or the root node.

Subset Di,j1 corresponds to chain [i, . . . , j1] and subset Di,j1⊕j2 corresponds to
chain [i, . . . , j1; j2].

Ternary Subset Difference Method and Its Quantitative Analysis 233

The head vertex of a chain must be the root node or a child of a node with an
out-degree greater than 1. Thus, a branch node (with an out-degree smaller than
3) of ST (R) is a parent node of the head vertices. Let the out-degree of the branch
node be b. Then, the number of branch nodes is given by r/b + r/b2 + · · ·+ 1 =
(r − 1)/(b − 1), and, the number of chains is given by b(r − 1)/(b − 1) + 1 (the
root node is the additional head vertex), which takes the maximum value 2r− 1
when b = 2.

Therefore, the size of the broadcast messages is bounded by n/3 and 2r − 1.

Average Case Analysis. Naor et al. showed the upper bound of the average
message length in the SD method. Their argument is also based on the alternative
description of the cover-finding algorithm. They evaluated the expected number
of subsets by counting the number of chains with an out-degree of 1 that are not
empty (i.e., contain multiple vertices). Note that no subsets are added to the
cover when a chain is empty. Consider a chain on which t client devices hang.
Then, the probability that the chain is not empty is at most 2−(t−1). For any
1 ≤ t ≤ r, there are at most r/t chains on which t client devices hang since each
chain contains distinct t devices. Therefore the expected number of non-empty
chains is bounded by:

r∑
t=1

r

t
· 1
2t−1 = 2r

r∑
t=1

1
t2t

≤ 2r

∞∑
t=1

1
t2t

= 2 ln 2 · r.

By the same logic, the average message length in the ternary SD method is
bounded by:

r∑
t=1

r

t
· 1
3t−1 = 3r

r∑
t=1

1
t3t

≤ 3r
∞∑

t=1

1
t3t

= 3 ln
3
2
· r. (1)

Note that the probability that a chain is not empty is replaced by 3−(t−1).

Storage Size. There are dT − d labels of l(u, ∗) and dT − d hashed labels of
h(l(u, ∗)) (∗ denotes don’t-care) for a node u at depth d, where dT ∼ log3 N is
the height of the tree. Additionally, the label l(all) is needed. The number of
labels and hashed labels stored in client devices is given by:

log3 n∑
d=0

2(log3 n− d) + 1 = log2
3 n + log3 N + 1 ∼ ln2 n/ ln2 3. (2)

Table 1. Comparison between conventional SD method and ternary SD method

Method Msg. Size (Max.) Msg. Size (Ave.) Stor. Size Comp. Cost
The SD method n/2, 2r − 1 2 ln 2 · r ln2 n/2 ln2 2 O(log n)

The ternary SD method n/3, 2r − 1 3 ln(3/2) · r ln2 n/ ln2 3 O(log n)

234 K. Fukushima et al.

Computational Cost. We evaluate the computational cost imposed on client
devices to derive the session key. First, a client device finds the subset to which
the device belongs. The subset can be found in O(log log n) using the techniques
for finding table structures in the CS method. Then, the client device derives the
key. In this process, the device uses a hash function at most 2 log3 n − 1 times.
Thus, the total computational cost is bounded by:

O(log log n) + 2(log3 n− 1) = O(log n).

6.2 Security Analysis

We analyze the security of the ternary SD method.

Theorem 1. The ternary SD method is secure against coalition attacks

Proof. We show that for each subset St, any coalition of client devices that do
not belong to this subset cannot obtain the corresponding key Lt. In the ternary
SD method, a subset St may be Di,j1 with the revoked subtree rooted at j1 or
Di,j1⊕j2 with the two revoked subtrees rooted at j1 and j2 as defined in Sect. 4.1.

The case where St is Di,j1 . In this case, the corresponding key is Lt = hkg
(h(l(i, j1))), which can be derived by using label l(i, j1) or hashed label h(l(i, j1)).
We must show that none of the coalitions of client devices in N\Di and Dj1 can
obtain the label h(l(i, j1)) or hashed label h(l(i, j1)).

First, no coalition of devices in N\Di can obtain the key. The label l(i, ∗)
can be derived only from the initial label l(i, i) that is generated randomly and
independently of other initial labels. Thus, a coalition of these client devices in
N\Di cannot obtain labels or hashed labels in the form of l(i, ∗) and h(l(i, ∗)).
Therefore, we have to consider only client devices in Dj1 .

Next, no coalition of client devices in Dj1 can obtain the key. No client device
in Dj1 has labels or hashed labels in the form of l(i, j1), h(l(i, j1)), l(i, u), and
h(l(i, u)) where u is an ancestor node of j1. On the other hand, the coalition
of all the client devices in Dj1 can collect all the labels in the form of l(i, v)
where v is a descendant of j1. However, this coalition cannot derive l(i, j1) from
these labels since it is computationally infeasible to find the inverse of the hash
functions.

The case where St is Di,j1⊕j2 . In this case, the corresponding key is Lt =
hkg(l(i, j1)), which can be derived by using label l(i, j1). We must show that
none of the coalitions of client devices in N\Di, Dj1 , and Dj2 can obtain label
l(i, j1).

First, no coalition of devices in N\Di can obtain the key since none of the
coalitions has any labels or hashed labels in the form of l(i, ∗) and h(l(i, ∗)).
Therefore, we have to consider only client devices in Dj1 and Dj2 .

Next, no coalition of client devices in Dj1 and Dj2 can obtain the key. No
client device in Dj1 has labels or hashed labels in the form of l(i, j1), l(i, u), and
h(l(i, u)) where u is an ancestor node of j1. Note that client devices in Dj2 have

Ternary Subset Difference Method and Its Quantitative Analysis 235

the label h(l(i, j1)); however, it is computationally infeasible to derive l(i, j1)
from h(l(i, j1)).

On the other hand, a coalition of all the client devices in Dj1 and Dj2 can
collect all the labels in the form of l(i, v) where v is a descendant of j1. However,
this coalition cannot derive l(i, j1) from these labels since it is computationally
infeasible to find the inverse of the hash functions. "#

7 Discussion

7.1 Comparison with Conventional SD Method

Efficiency. The upper bound of message length in the ternary SD method, n/3,
is lower than that in the SD method, n/2, while the upper bounds in terms of
r coincide. The upper bound of the average message length in the ternary SD
method is given by 3 ln(3/2) ·r, which is smaller by about 12.2 percent than that
in the conventional SD method, given by 2 ln 2 · r.

In the ternary SD method, the storage size on client devices is approximated
by ln2 n/ ln2 3, which is smaller by about 20.4 percent than that in the SD
method, approximated by ln2 n/2 ln2 2.

On the other hand, the ternary SD method imposes O(log n) computational
cost on a client device, which is identical to the cost of the SD method.

We summarize the above discussion in Table 1.

Primitives and Algorithms. The ternary SD method can be implemented
using the same primitives, encryption functions, and hash functions, as the con-
ventional SD method.

However, the cover-finding algorithm, label assignment algorithm, and encryp-
tion algorithm in the SD method cannot be applied to the ternary SD method.
The cover assignment algorithm in the SD method uses specific operations on the
binary tree and it cannot be applied to the ternary SD method in a straightfor-
ward way. Thus, we proposed the new cover-finding algorithm that finds subsets
of valid client devices by traversing the tree in post-order. The new label as-
signment algorithm and the encryption algorithm are required to revoke one
or two subsets simultaneously while maintaining resistance against coalition at-
tacks. We realize this two-way revocation mechanism by creatively using labels
and hashed labels which are assigned to client devices with the label assignment
algorithm.

7.2 Extension to Coalition Resistant a-Array SD Method

In the ternary tree, any one or two nodes are consecutive. Note that we assume
that the leftmost node is adjacent to the rightmost sibling. Our label assignment
algorithm based on a hash chain technique works in this situation. The key
derived from a hashed label can revoke a single subtree, i.e., the client devices in
the other two subtrees can obtain this key. The client devices in another subtree

236 K. Fukushima et al.

Fig. 4. Two inconsecutive nodes in the quaternary tree

can derive the key using the hashed label. Next, the client devices in the other
subtree can derive the key using the label and hash function h. The key derived
from a label can revoke two consecutive subtrees. The client devices in the other
subtree can only derive the key using this label.

However, in a general a-array tree with a ≥ 4, there exists sets of nodes that
are inconsecutive. Figure 4 shows an example. Our hash chain approach fails
with regard to these inconsecutive points.

Thus, the construction of a coalition resistant a-array SD method with rea-
sonable communication, computation, and storage overhead is an open issue.

8 Conclusion

In this paper, we proposed a coalition resistant ternary SD method. The ternary
SD method has the following properties: 1) it can be implemented using the
same primitives as the conventional SD method, 2) both the average message
length and storage size imposed are lower than those in the SD method, 3)
the computational cost imposed on client devices to derive the session key is
O(log n), 4) it is a coalition resistant broadcast encryption scheme. We presented
quantitative analyses of efficiency and security of the ternary SD method; then,
we compared our proposed method with the conventional SD method.

References

1. Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

2. Berkovits, S.: How to Broadcast a Secret. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

3. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

4. Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–161. Springer, Heidelberg (2002)

5. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in
Groups of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 511–527. Springer, Heidelberg (2004)

Ternary Subset Difference Method and Its Quantitative Analysis 237

6. Jho, N.S., Hwang, J.Y., Cheon, J.H., Kim, M.H., Lee, D.H., Yoo, E.S.: One-Way
Chain Based Broadcast Encryption Schemes. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 559–574. Springer, Heidelberg (2005)

7. Hwang, J.Y., Lee, D.H., Lim, J.: Generic Transformation for Scalable Broadcast
Encryption Schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
276–292. Springer, Heidelberg (2005)

8. Attrapadung, N., Imai, H.: Practical Broadcast Encryption from Graph-Theoretic
Techniques and Subset-Incremental-Chain Structure. IEICE Transaction on Fun-
damentalof Electronics, Communications and Computer Sciences, Special Section
on Cryptography and Information Security E90-A(1), 187–203 (2007)

9. Asano, T.: A Revocation Scheme with Minimal Storage at Receivers. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 433–450. Springer, Heidelberg
(2002)

10. Attrapadung, N., Kobara, K., Imai, H.: Sequential Key Derivation Patterns for
Broadcast Encryption and Key Predistribution Schemes. In: Laih, C.-S. (ed.) ASI-
ACRYPT 2003. LNCS, vol. 2894, pp. 374–391. Springer, Heidelberg (2003)

11. Gentry, C., Ramzan, Z.: RSA Accumulator Based Broadcast Encryption. In:
Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 73–86. Springer, Hei-
delberg (2004)

12. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption With
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

A Toy Examples

This section show examples where the number of client devices is N = 9. Client
devices d1, d2, . . . , d9 are assigned to the leaf nodes 5, 6, . . . , 13. Then, the client
devices are given the labels and hashed labels as shown in Fig. 5.

We consider the case where client devices d3, d4 and d6 are revoked. The
collection of subsets {D2,7, D3,10⊕8, D1,2⊕3} shown in Fig. 6 can be found using
the cover-finding algorithm in Sect. 4.2. The center encrypts session key K with
keys L2,7, L3,10⊕8, and L1,2⊕3. The center sends the broadcast message

〈[(2, 7), (3, 10⊕ 8),(1, 2⊕ 3),
EL2,7(K), EL3,10⊕8(K), EL1,2⊕3(K)], FK(M)〉

to all the client devices. Client devices d1 and d2 can derive key L2,7 as:

L2,7 = hkg(h(l(2, 7)))

since they have l(2, 7) or h(l(2, 7)). d5 can derive L3,10⊕8 as:

L3,10⊕8 = hkg(l(3, 10)).

d7, d8, and d9 can derive key L1,2⊕3 as:

L1,2⊕3 = hkg(l(1, 2)).

238 K. Fukushima et al.

Fig. 5. Assignment of the labels in the ternary SD method

Fig. 6. The disjoint subsets in the first example

On the other hand, the coalition of d3, d4, and d6 cannot derive L2,7, L3,10⊕8, or
L1,2⊕3 since neither h(l(2, 7)), l(3, 10), nor l(1, 2) can be derived from all the labels
and hashed labels they have, which are h(l(1, 2)), l(1, 3), l(1, 4), l(1, 5), h(l(1, 6)),
l(1, 8), l(1, 9), h(l(1, 10)), l(2, 5), h(l(2, 6)), l(3, 8), l(3, 9), h(l(3, 10)), and l(all).

Then, we consider the case where d7 and d9 are revoked. The collection of
subsets {D1,13⊕11}, shown in Fig. 7, can be found using the cover-finding algo-
rithm in Sect. 4.2. The center encrypts session key K with keys L1,13⊕11. The
center sends the broadcast message

〈[(1, 13⊕ 11), EL1,13⊕11(K)], FK(M)〉

Ternary Subset Difference Method and Its Quantitative Analysis 239

Fig. 7. The subset in the second example

to all the client devices. Client devices d1, d2, . . . , d6 can derive key L1,13⊕11
using l(1, 4) or h(l(1, 4)) as:

L1,13⊕11 = hkg(l(1, 13)) = hkg(hr(h(l(1, 4)))).

d8 also can derive L1,13⊕11 as:

L1,13⊕11 = hkg(l(1, 13)).

On the other hand, the coalition of d7 and d9 cannot derive L1,13⊕11 since neither
h(l(1, 4)) nor l(1, 13) can be derived from all the labels and hashed labels they
have, which are l(1, 2), h(l(1, 3)), l(1, 11), l(1, 12), h(l(1, 13)), l(4, 11), l(4, 12),
h(l(4, 13)), and l(all).

Data Deletion with Provable Security�

Marek Klonowski, Micha�l Przykucki, and Tomasz Strumiński

Institute of Mathematics and Computer Science,
Wroc�law University of Technology, Poland

ul. Wybrzeże Wyspiańskiego 50-370 Wroc�law
{Marek.Klonowski,Michal.Przykucki,Tomasz.Struminski}@pwr.wroc.pl

Abstract. In many systems one of the most important and essential
functionalities necessary for secure data processing is the permanent and
irreversible deletion of stored bits. According to recent results, it is pos-
sible to retrieve data from numerous (especially magnetic) data storage
devices, even if some erasing techniques like wiping have been applied.
In fact, in many cases a powerful adversary is able to read information
that has been many times overwritten.

In our paper we present a new approach to data storage for which
a provably secure data deletion seems to be possible. The core idea is
based on a particular way of data coding and is generally independent
on physical features of the data storage device, so this approach is not
limited to magnetic drives. Furthermore, it does not require any special-
purpose “secure” device. The usage of a software drivers or installation
of modified firmware is sufficient.

We provide rigid mathematical analysis of security of the proposed
scheme for some scenarios even in the presence of an extremely powerful
adversary. Our approach offers all of this for the price of speed and stor-
age overhead. However, even under pessimistic assumptions this scheme
remains fairly practical.

Keywords: Secure data deletion, provable security, cryptographic key
storage.

1 Introduction

One of the most important security concerns is reliable erasing of stored data.
This issue is being seemingly solved by using techniques such as wiping. It is
commonly believed that data overwritten many times is permanently lost and
cannot be derived from the data storage device [11]. However, this is not true
generally. In many cases it is possible to derive at least some bits of the “erased”
data. For instance, some recent studies show that for magnetic media (such as
hard drives) even arbitrarily large number of data overwrites may not guarantee
safety [2,4,7]. In fact, in some cases the adversary equipped with very sensitive
devices is able to retrieve from a hard drive bits overwritten even many dozens

� The research was partially supported by MNiSW grant N N206 1842 33.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 240–255, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Data Deletion with Provable Security 241

Fig. 1. Symbolical view of a magnetized track on a hard drive

of times. The secret information can be revealed because the new bit is not
written to the same physical location as the previous one – the physical mark
representing a particular bit can be slightly moved from its expected position
whenever we overwrite an old bit. The overview of this situation is presented in
figure 1. This enables the adversary to get the former overwritten bit if only he
has got an access to a very sensitive device.

For this reason it is believed that there is no chance to completely remove
data stored for example on a magnetic drive by simply overwriting it, especially
when only limited number of overwrites is possible. Moreover, in many situations
even partial physical destruction of a hard disk is not sufficient.

In our paper we present a new approach to data erasing that can be applied for
many kinds of data storage devices and which is based on a special coding of data.
As an example we analyze a case of magnetic disks, however this approach can
be also applied for some other kinds of devices. Proposed approach provides very
high level of security and immunity against an even extremely powerful adversary
for the price of time and speed overhead. Even though, proposed scheme seems
to be fairly practical, especially if we assume that we need to hide relatively short
(but crucial for the security) bit-strings, for instance cryptographic material like
private keys or seeds for pseudo-random generators.

1.1 Related Work

Erasing of data has been a common and popular subject of many papers and
publications so far [4,5,10]. One of the most known is Gutmann’s work, where
author presents the problem of data deletion from a variety of media types taking
magnetic drives under special consideration. Author describes some methods of
recovering erased data and indicates a sequence of bit patterns for overwrite
operations which according to him guarantees secure data deletion. Physical
aspects of writing data on a magnetic media are covered in [2,7,9].

In some sense, spirit of the approach to erasing problem proposed by us is in
some sense similar to paper [8] due to Rivest and Shamir. In that paper authors
showed how to write several times on a “write-once” memory. It turned out
to be possible by using a special representation of data that by-passes physical
restrictions (of course in a very limited manner). Similarly, in our paper we

242 M. Klonowski, M. Przykucki, and T. Strumiński

suggest a special way of coding data on a magnetic drive. By using it, we make
the retrival of large and consistent piece of previously stored data extremely
problematic even for the powerful adversary.

1.2 Organization of This Paper

In section 2 we briefly outline the physical aspects of storing and deleting data
from magnetic drives. We also present a mathematical and physical model of a
special data encoding, which allows us to develop a new scheme for erasing data.
Section 3 is devoted to the mathematical analysis of security of the proposed
scheme. We start with security investigation of a single bit of a cryptographic
key in section 3.3 and then, in section 3.4, we extend achieved results to longer
bit-strings. Data wiping algorithms for proposed coding scheme are described
in section 3.5. The promising ideas and concepts for future work are shortly
presented in section 4. We conclude in section 5.

2 Secure Erasing via Special Coding

In this section we describe a new way of encoding data that allows us to remove
almost perfectly data that we want to erase even in the presence of an extremely
powerful adversary. We describe the idea in case of magnetic hard drives. How-
ever this approach can be also applied for other kinds of storage devices under
the condition that some requirements are fulfilled.

2.1 Physical Data Representation on Magnetic Hard Drives and Its
Weaknesses

On magnetic hard drives all data is arranged in concentric circles called tracks.
Symbolic view of standard tracks on a hard drive is presented in figure 2. For
modern hard drives the track pitch is about 200 nanometers wide and guard-
bands (the space between tracks needed to provide margins in case of head
misalignments) are less than 20 nanometers wide. Including the fact that the

Fig. 2. Standard organization of data on a magnetic drive

Data Deletion with Provable Security 243

head must be placed over the right track in an extremely short time there is no
surprise that some inaccuracy of head placement appear (figure 1). This obser-
vation can make a successful data retrieval possible.

Techniques Used in Retrieving Old Data. Magnetic force microscopy
(MFM) is a well known technique for imaging magnetization patterns with a
high resolution. It uses a sharp magnetic tip placed close to the analyzed mag-
netic surface. A magnetization image is created by moving the tip across the
surface and measuring the magnetic force as a function of position.

It has been proved [2,9] that MFM is a technique accurate enough to read
erased data from hard drives, even if the desired data has been overwritten. De-
spite of the fact that magnetic force microscopy has got some serious limitations
(low rate of image acquisition and special requirements for samples preparation),
more powerful techniques such as spin-stand imaging are being developed [7].
This gives a chance to have a look at someone’s erased files and therefore it
became the motivation for our work.

In practice we need to assume that the equipped with special device adversary
may be able to retrieve even several layers of overwritten bits. Moreover, remark-
able is that the regular user is not able to find out if its device is exposed to
such an attack without special diagnostic devices. In fact, it depends on the ad-
versary’s diagnostic devices sensitiveness and head misalignments which appears
during the write operations.

We need to take into account that if one bit of previously stored (overwritten)
information can be read, then there is a great chance that also other bits from
its physical proximity have been written with the same track misalignment.
We should presume that the adversary is usually able to get some amount of
consecutive bits of data instead of independent bits spread all over the disk. This
helps of course the adversary to retrieve a meaningful information.

2.2 Our Scheme for Data Coding

The coding is based on a following idea – the physical space of a magnetic
disk is divided into rectangle-like areas that we call “boxes”. Depending on the
implementation, each box may contain from several to several dozens of regular
bits. In our coding each box represents a single bit. Each box is divided into two
subspaces – the first, inner one, represents the value of the box (which is 0 or 1)
and the outer, surrounding the inner one, plays the role of a border and always
consist 0-bits. This idea is depicted in the figure 3.

A box that in our coding is represented by 1, has got 1s in the inner part.
Analogically a box representing 0 has 0s in the inner part. Since outer part of
box has always got only 0s, then box representing 0 contains only 0s. To avoid
ambiguity of notation we shall call a box that represent 0 a 0-box and a box
representing 1 a 1-box.

Writing Data. The boxes in our system play a role of single-bit registers.

244 M. Klonowski, M. Przykucki, and T. Strumiński

Fig. 3. Isolating bits on a magnetic drive

Preliminaries. At the beginning the whole space is divided (logically) into
boxes and is written with 0s. At this moment whole data storage device
contains some number of 0-boxes.

Putting new value in the box. If we need to get a particular value i (i ∈
{0, 1}) in a particular box, we first check this box by reading bits in its inner
part. If it is (1− i)-box we transform it into i-box by overwriting the inner
part of this box. Otherwise, if it is already an i-box, we leave it as it is.

Thanks to this approach values in all boxes are independent. It is possible
because we used outer parts surrounding the inner parts containing the true
value. So we can assume that even significant track misalignment in one of the
box does not give any information about the value in other boxes.

As previously assumed, the adversary equipped with sensitive devices can po-
tentiall retrive all layers from a particular box. However, thanks to wide boarders
of 0s, he does not learn any information about the history of one box from the
history of other boxes.

2.3 From Physical to Mathematical Model

To be able to analyze this approach formally we need to transform physical
representation of the proposed coding into a realistic but formal mathematical
model. To achive it, firstly need to investigate what is the knowledge of the
adversary as well as the knowledge of the regular user.

The Adversary’s Perspective. An extremely powerful adversary introduced
in our approach, can read layers of a stored data – i.e. given particular box, he is
able to say what exactly was written in this box from the very beginning. Account
for our special way of coding, he observes consecutive 0’s and 1’s beginning with
0 and with 0 or 1 at the end, depending on the last bit written in a particular
box. In the example the adversary can observe the exact structure presented
in the table. The adversary’s perspective for n boxes can be represented as a
vector (d1, d2, . . . , dn) where di represents the number of changes of the i-th box’s
values. In our example, the illustration of adversary’s perspective is presented
in the table.

Data Deletion with Provable Security 245

The Regular User’s Perspective. The regular user can see in each box only
the last written bit. This is because he can use only the techniques offered by a
regular storage device that allows to read the last bit (bolded in our example).
Therefore, we can say that the attacker is much stronger than the user.

In this model we can assume that all the adversary knows is (d1, . . . , dn) and
nothing more. In the following sections we show that this way of coding in some
scenarios will with significant probability not reveal any important information
about the stored data to the adversary.

Example. Let us illustrate the described model. Assuming that we have only
8 boxes of information on a data storage device. At the beginning it is filled
with 0’s and then the following data is stored: 11010110, 01101101, 11010111,
00101111, 11001111, 00011001.

0
1 1
0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 bit 8

In the worst case, the powerful adversary can retrieve the whole table depicted
above from user’s hard drive. However, thanks to our new coding scheme, there
is no information leak about consecutive bits caused by head misalignments.

2.4 Analysis of Efficiency of Proposed Scheme

One of the most important issues of our solution is the overhead of time and
storage derived by the usage of our coding scheme. If we decide to substitute one
single bit with an m× n box then it is obvious that the storage overhead would
be of the m ·n order. On the other hand usage of our scheme might significantly
reduce the number of bits needed to preserve the consistency of the stored data.
According to [10], even 15% of the storage space might be spend on this purpose
in modern hard disks. Therefore, the storage overhead might be significantly
smaller.

It is more difficult to answer the question concerning the time overhead. We
have to take under consideration that before writing we read the data from the
disk first and then write only over those boxes, which are of a different value
than expected. Still, it is quite intuitive, that if we decide that the inner part of
our boxes should consist of m× n, then the time overhead would be also of the
m · n order.

Appropriate dimensions of our boxes are a crucial matter. They should derive
from experiments aimed at minimizing both inner and outer dimensions with

246 M. Klonowski, M. Przykucki, and T. Strumiński

respect to keeping the correlation between neighbouring bits near to 0. Unfor-
tunately, these experiments require a highly skilled personel in electronics and
physics and very sophisticated measuring devices, thus are beyond the scope of
this work.

We should also mention the fact, that just a small part of the storage device
often contains a secret data and the rest is meant for everyday use. Taking it into
account we could divide the storage device into two parts. One of them, very
small, containing highly valuable and fragile data and another one for casual
data. Then we could introduce our scheme of coding only for the hyper-secure
part, reaching in this way a very good efficiency/security trade off.

3 Case of Erasing Cryptographic Material

In this section we investigate data deletion problem formally in the case when
pseudo-random bit-strings are stored on the magnetic drive according to rules
introduced in section 2.2. This covers a very important from practical point
of view case when we need to store periodically-changed cryptographic material
like private keys or seeds of pseudo-random generators. From mathematical point
of view this case seems to be the simplest one (except for some trivial cases),
since each bit of information we may treat as a 0 − 1 random variable X such
that Pr(X = 1) = 1

2 . What is even more important such random variables
representing different bits are stochastically independent.

Notation. Let us recall some standard notation. By B(i) we denote the i-th bit of
a bit-string B. We assume also that the binomial coefficient

(
n
m

)
= 0 for m > n

and m < 0. By #A we understand the number of elements of a finite set A.

Definition 1. For a bit-string s = s1s2 . . . sl ∈ {0, 1}l let us define

index(s) = #{0 < i < l|si �= si+1}

i.e. the number of bit flips in the bit-string.

Let us formalize considered scenario.

3.1 Formal Description of Considered Scenario

Writing data. We assume that the user has a register of n boxes and stores
there keys (i.e. bit-strings) of the length n. The key is periodically changed
D − 1 times. According to the description included in section 2.2 at the
beginning n zeros are placed in the register. At step t, key of the form

Xt = X
(1)
t X

(2)
t . . . X

(n)
t

is placed in the register according to the described rules – i.e. some of the
bits are flipped.

Data Deletion with Provable Security 247

Moreover, as assumed Pr(X(i)
t = 1) = Pr(X(i)

t = 0) = 1
2 for each t > 0 and

i. For the convenience of notation we introduce also

X(i) = X
(i)
1 X

(i)
1 X

(i)
2 . . . X

(i)
D .

I.e. X(i) is a sequence of bits stored in the i-th box of the register in consec-
utive steps

Wiping procedure. In order to hide some information about stored data in
the past, the user may perform some additional operations.

Inspection of data storage device by the adversary. The adversary takes
the control over the device and he is allowed to observe the state of the data
storage device using even very sophisticated methods. Since the special way
of coding was used, the adversary is given for each i
– di = index(X(i)),
– number of written keys D.

Let us note that for each i, the value di is a random variable with the values
from the set {1, . . . , D}.

3.2 Knowledge of the Adversary

The adversary’s aim is to retrieve the keys stored in the register using gained
knowledge – i.e. parameters di for 1 ≤ i ≤ n and D.

Definition 2. We define advantage of the adversary for the t − th key with
respect to the string b1 . . . bn ∈ {0, 1}n as

Advt(b1 . . . bn) = Pr[Xt = b1 . . . bn|d1, . . . , dn, D].

If Advt(b1 . . . bn) is significant, it would mean that b1 . . . bn was used as a t-th key
with significant probability. Intuitively, data remains secure if Advt(b1 . . . bn) is
small for any t and for any b1 . . . bn. In the ideal (from user’s point of view) case
advantage of the adversary is always 2−n i.e.:

(
∀b1...bn∈{0,1}n

) (
Advt(b1 . . . bn) = Pr[Xt = b1 . . . bn|d1, . . . , dn, D] =

1
2n

)
.

That would mean that the information gained by the adversary during physi-
cal inspection of the device does not give any information about the key. However
from the practical point of view it would be enough to have Adv(b1 . . . bn) < ε
for a small ε and for any b1 . . . bn ∈ {0, 1}n. This means that there are no strings
that are specially likely to have been used as t-th key.

Let us also note that our scheme can provide it only with high probability,
since parameters d1, . . . , dn are random variables.

3.3 Single Bit Analysis

Since we assumed that stored data bits are independent, then our analysis boils
down to analysis of a single bit. Let us concentrate on a single (say, the first)

248 M. Klonowski, M. Przykucki, and T. Strumiński

bit’s analysis. To make notation more clear we skip some indices – i.e we use
X, d instead of X(1) and d1, respectively.

Now we need to find

Pt = Pr[Xt = 0|d, D],

the probability that the first bit of the t-th key was 0, conditioned on the facts
that D keys were stored and the bit was changed d times.

Definition 3. We define the set of trajectories coherent D − 1 overwrite oper-
ations with d bit flips as

SD,d = {s ∈ {0, 1}D|index(s) = d ∧ s(1) = 0}.

This set can be intuitively understood as the set of “records” of a single box –
consecutive bits represent values which are kept there.

Lemma 1. For any natural D, d

#SD,d =
(

D − 1
d

)
.

Proof. This is a trivial fact, since we just need to choose d positions out of D − 1,
where bits are flipped from 0 to 1 or from 1 to 0 in the string of consecutive bits. "#

Definition 4. The set of trajectories coherent D − 1 overwrite operations with
d bit flips with 0 on the t-th position we define as

St
D,d = {s ∈ {0, 1}D|index(s) = d ∧ s(1) = 0 ∧ s(t) = 0}.

The set St
D,d represents “records” of the first box, such that the first bit of the

t-th key was 0. Of course St
D,d ⊂ SD,d.

Lemma 2. For any natural D, t and any natural even d

#St
D,d =

(d+2)/2∑
j=1

(
t− 1

2(j − 1)

)(
D − t

d− 2(j − 1)

)
.

Proof. Notice, that we are counting the trajectories of length D with 0 on the
t-th position such that the total number of bits flips is d. Let us assume that
there are j bit flips to t-th position included and d−j flips after the t-th position.
Each of such a trajectory can be seen as a following concatenation l||r such that

l ∈ Lk
t = {l ∈ {0, 1}t|index(l) = k ∧ l(1) = 0 ∧ l(t) = 0}

and
r ∈ Rd−k

D−t = {r ∈ {0, 1}D−t|index(0||r) = d− k}.

An example trajectory is presented in a figure below.

Data Deletion with Provable Security 249

000 1 11 0 0 1 1111 0 000 1

t
↓

0︸ ︷︷ ︸
l∈L

2(j−1)
t

00 1 0 0000 1 1 0 00 1 11 0 1 111︸ ︷︷ ︸
r∈R

d−2(j−1)
D−t

Fig. 4. An example trajectory of length 40 with 13 bit flips and its splitting into
subtrajectories l ∈ L

2(j−1)
t and r ∈ R

d−2(j−1)
D−t

Since we are interested in the strings with 0 on the t-th position and we have
started with 0 then

#St
D,d =

(d+2)/2∑
j=1

(
#L

2(j−1)
t

)(
#R

d−(2(j−1))
D−t

)
. (�)

Note that every element with even index is included in the sum. It is because
of the restrictions that the number of flips up to the t-th bit is even.

Claim 1

#L
2(j−1)
t =

(
t− 1

2(j − 1)

)

Proof. All subtrajectories L
2(j−1)
t are just bit-strings of length t with 2(j − 1)

bit flips, which start and finish with 0. They can be described, using notation
from formal languages, as 0+(1+0+)j−1. To compute #L

2(j−1)
t we must simply

evaluate the number of such bit-strings of length i.
Let A(j) = ({w : w = 0+(1+0+)j−1}, | · |) be a combinatorial class, where |w|

is a length of bit-string w. Let {An}n≥0, An = #{a ∈ {w : w = 0+(1+0+)j−1} :
|a| = n} denote the counting sequence of a combinatorial class A. The ordinary
generating function of sequence {An}, after [1], is

A(z) =
z

1− z

((
z

1− z

)2
)j−1

=
(

z

1− z

)2j−1

which we got from composition of simple combinatorial class and its sequences.
By definition, the number we are interested in is just a coefficient near zi. After
applying some elementary transformation, which are described in [3], we finally
get

A(z) =
(

z

1− z

)2j−1

=
∞∑

i=0

(
i + 2j − 2

i

)
z2j−1+i.

Thus, the number of elements of L
2(j−1)
t is

L
2(j−1)
t = [zt]A(z) =

(
t− 1

t− 2j + 1

)
=

(
t− 1

2(j − 1)

)
. "#

250 M. Klonowski, M. Przykucki, and T. Strumiński

Notice, that above result is very intuitive. Here is how we can achieve it in
another way: the bit-string has a length of t and it must contain 2(j − 1) bit
flips. Notice, that the first bit must be 0 and cannot be the place where bit flip
occurs. Thus, the number of possible bit-strings of this form is exactly

(
t−1

2(j−1)

)
.

By analogy, we can easily prove that

Claim 2

#R
d−2(j−1)
D−t =

(
D − t

d− 2(j − 1)

)
.

Substituting these claims from the facts above into the formula (�) finishes
proof of the lemma 2. "#

Lemma 3. For any natural D, t and any natural odd d

#St
D,d =

(d+1)/2∑
j=1

(
t− 1

2(j − 1)

)(
D − t

d− 2(j − 1)

)
.

Proof. Proof of the above lemma is entirely analogous to proof of lemma 2.

Let us prove following lemma:

Lemma 4. From the adversary’s point of view, every sequence of bits from SD,d

is equally probable as a sequence of bits in consecutive keys if parameters D and
d were observed.

Proof. For any s ∈ SD,d

Pr[X1 = s(1), . . . , XD = s(D)|index(X) = d] =

=
Pr[X1 = s(1), . . . , XD = s(D), index(X) = d]

Pr[index(X) = d]
=

(1
2)D−1(

D−1
d

)
(1
2)D−1

=
1(

D−1
d

) .

"#

From this lemma we get immediately following corollary

Corollary 1. For every t

Pt =
#St

D,d

#SD,d
≤

(d+2)/2∑
j=1

(
t− 1

2(j − 1)

)(
D − t

d− 2(j − 1)

)
(

D − 1
d

) =
1
2

+ ∆(D, d, t).

Data Deletion with Provable Security 251

Remark. We can consider a series aj =
(
t−1

j

)(
D−t
d−j

)
. One can note that

0 � a1 � . . . � aQ � aQ+1 � . . . � ad for some 0 ≤ Q ≤ d, so in particular we
have

|∆(D, d, t)| � aQ

SD,d
= max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
t− 1

d

)
(

D − 1
d

) ,

(
D − t

d

)
(

D − 1
d

) ,

(
t− 1⌊

dt+t−D−1
D+1

⌋
+ 1

)(
D − t

d−
⌊

dt+t−D−1
D+1

⌋
− 1

)
(

D − 1
d

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

It is easy to see that the problem occurs when we are dealing with very small
or very big (i.e. close to D−1) values of d, but let us note that di – i.e. the number
of flips of the content of the i-th box – has binomial distribution B(D − 1, 1

2).
Then, using one of the Chernoff bounds [6] we can prove:

Pr(0.25(D − 1) ≤ di ≤ 0.75(D− 1)) > 1− 2 exp
(
−D − 1

16

)
,

so for big D with high probability we have 0 % d% D−1. The value of ∆(D, d, t)
is also significant when we have t close to 0 or to D−1. This is a serious issue as
the last stored keys are usually the most valuable ones and retrieving them by
the adversary could cause much trouble to the owner’s data. We shall consider
these problems in the following sections.

Notice that above inequality provides only a rough estimation of ∆(D, d, t)
value. The exact values of ∆(D, d, t) are often significantly smaller. To illustrate
it, the sample computation had been done and its results are shown in figure 5.
Moreover, ∆(D, d, t) can be expressed precisely using complex hypergeometric
series, but in this form it is hardly practical.

3.4 Analysis of a String of Random Data

Considerations from previous subsection combined with the fact that by the
assumption on stored data all bits are independent we can formulate following
theorem.

Theorem 1. For any bit-string b1 . . . bn ∈ {0, 1}n and any t

Advt(b1 . . . bn) ≤
n∏

i=1

(
1
2

+ |∆(D, di, t)|
)

The value ∆(D, di, t) from the above theorem is defined as in the Corollary 1
in the previous section.

Further analysis (and therefore also the user’s strategies) strongly depend
on the key’s length and the value of the parameter D. For large D with high
probability all the values di will lie in the interval [D

4 , 3D
4].

252 M. Klonowski, M. Przykucki, and T. Strumiński

Fig. 5. The exact values of ∆(D, d, t) for D = 50, d = 5, 15, 25, 45 and t ∈ {1, . . . , 50}

On the other hand, when the value D is relatively small, using Chernoff’s
inequality we can say, that in about k = �(1− 2 exp

(
−D−1

16

)
)n� boxes the value

di is close to D
2 and for those i the value ∆(D, di, t) is small. Formally speaking

Advt(b1 . . . bn) ≤
(

1
2

+ |∆|
)k

,

where |∆| is the largest absolute value among the k distinguishedvalues∆(D, di, t).

0 10 20 30 40 50
t

-0.4

-0.2

0

0.2

0.4

�
�
5
0
,
5
,
t
�

0 10 20 30 40 50
t

-0.005

0

0.005

0.01

�
�
5
0
,
5
,
t
�

0 10 20 30 40 50
t

-0.4

-0.2

0

0.2

0.4

�
�
5
0
,
1
5
,
t
�

0 10 20 30 40 50
t

-0.0005

0

0.0005

0.001

�
�
5
0
,
1
5
,
t
�

0 10 20 30 40 50
t

-0.4

-0.2

0

0.2

0.4

�
�
5
0
,
2
5
,
t
�

0 10 20 30 40 50
t

-0.0005

0

0.0005

0.001

�
�
5
0
,
2
5
,
t
�

0 10 20 30 40 50
t

-0.4

-0.2

0

0.2

0.4

�
�
5
0
,
4
5
,
t
�

0 10 20 30 40 50
t

-0.005

0

0.005

0.01

�
�
5
0
,
4
5
,
t
�

Data Deletion with Provable Security 253

3.5 Data Wiping Algorithms

Observations and computations from the previous section lead us to following
conclusions:

– for small t the advantage of the adversary is relatively high, therefore using
one of t-th first keys are potentially exposed to be retrived by the adversary,

– for t close to D the situation is similar because |∆(D, di, t)| is big and the
adversary’s advantage is once again high. What is more, the adversary’s
knowledge about the D-th key is full. It is of course natural – the last key is
explicit written on a disk.

In order to ensure security for our storage scheme and to prevent key leaking
in situations mentioned above, we propose to

Step 1. Write some (lets say tbefore) pseudo-random bit-strings before any
keys are stored on a magnetic drive (this can be done even by the disk
manufacturer).

Step 2. When deletion is to be proceeded, one should overwrite data with par-
ticular (lets say tafter) number of pseudo-random bit-strings.

Notice that the particular values of parameters tbefore and tafter can be com-
puted with formulas from the previous sections. Although we assume that the
regular user does not know the values di we can also assume that the value D
is known to him (it is known to the adversary so keeping it stored in memory
does not cause any additional leak of information). Therefore using Chernoff’s
inequality the user can estimate the values of di and use them to estimate ∆.
With such knowledge user can calculate suitable value of tafter .

After choosing values of tbefore and tafter the given security level can be
achieved. It is possible, that for a very high security level, a significant number
of data overwriting operations is necessary at the second step. Therefore, time
and space overhead could be remarkable when data larger than cryptographic
keys are to be protected by our scheme.

4 Future Work

In our paper we provided the solution of provably secure data deletion from hard
drives in a limited domain. The natural extensions of this approach, which are
worth taking into consideration are:

– Extended model with assumed a priori adversary’s knowledge. In this model
bits as well as consecutive layers of data do not have to be independent as
in the case of cryptographic keys.

– In our analysis we have assumed that the adversary knows the number of
layers of written data (parameter D). However it seems we could relax this
assumption in real world scenarios. The adversary does not have to know
anything except for the number of changed bits in a particular position. This
may lead to stronger results and more effective solutions.

254 M. Klonowski, M. Przykucki, and T. Strumiński

– It seems to be interesting to delete huge space in very short time by flipping
minimal number of bits. This is a common problem – in many cases we need
to delete data very fast in case of danger. Intuitively it can be applied when
the system is based on the scheme proposed above.

– Other data wiping strategies could be examined in order to find one which
would provide appropriate security level as well as fast data deletion.

5 Conclusions

When the data deletion is to be proceeded, there appear numerous questions
about its security as well as its time complexity. For the model presented in our
article, the security of erasing one bit of information can be computed using
exact values. If we assume in addition the independence of consecutive bits, the
exact result for one bit easily extends to larger data sets. This assumption is
very realistic – such situation appears when cryptographic keys are to be stored.
We have showed that secure deletion of crucial cryptographic data can be done
in such a model, despite of the presence of a very powerful adversary.

Presented in our paper the idea of special data coding for secure data deletion
presented in our paper seems to be fairly practical. Nevertheless, particular re-
sults are highly dependent on a probabilistic nature of data stored on magnetic
drives.

To sum up, planning the possibility of a secure data deletion seems to be a
good idea when developing new kinds (or versions) of storage devices. That can
be done either at a very low level (hardware, physical persistence of data) as well
as at a higher level when the firmware is used in order to encode bit streams. Of
course, it would add a cost in the matter of time and space (a constant cost),
but we strongly believe that the advantage of having a reliable storage device
that enables us to delete data with a given security parameters is worth all of
the efforts.

References

1. Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press,
Cambridge (2008)

2. Gomez, R.D., Burke, E.R., Adly, A.A., Mayergoyz, I.D., Gorczyca, J.A., Kry-
der, M.H.: Microscopic investigations of overwritten data. Journal of Applied
Physics 73(10) (1993)

3. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. A
Foundation for Computer Science (1994)

4. Gutmann, P.: Secure Deletion of Data from Magnetic and Solid-State Memory. In:
The Sixth USENIX Security Symposium (1996)

5. James, D.G.: Forensically unrecoverable hard drive data destruction Whitepaper
(2006), http://infosecwriters.com

6. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. John Wiley & Sons, Chich-
ester (2001)

http://infosecwriters.com

Data Deletion with Provable Security 255

7. Mayergoyz, I.D., Tse, C., Krafft, C., Gomez, R.D.: Spin-stand imaging of overwrit-
ten data and its comparsion with magnetic force microscopy. Journal of Applied
Physics 89(11) (2001)

8. Rivest, R.L., Shamir, A.: How to reuse a “write-once” memory, Information and
Control, vol. 55, Belgium (1982)

9. Rugar, D., Mamin, H.J., Guethner, P., Lambert, S.E., Stern, J.E., McFadyen, I.,
Yogi, T.: Magnetic force microscopy: General principles and application to longi-
tudinal recording media. Journal of Applied Physics 68(3) (1990)

10. Sobey, C.H.: Recovering unrecoverable data, A ChannelScience White Paper (2004)
11. US Department of Defense: National Industrial Security Program Operating Man-

ual, disk sanitization, DoD 5220.22-M

A Probing Attack on AES

Jörn-Marc Schmidt1,3 and Chong Hee Kim2,�

1 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

joern-marc.schmidt@iaik.at
2 UCL Crypto Group, Université Catholique de Louvain, Belgium,

Place du Levant, 3, Louvain-la-Neuve, 1348, Belgium
chong-hee.kim@uclouvain.be

3 Secure Business Austria (SBA),
Favoritenstraße 16, 1040 Vienna, Austria

Abstract. The Advanced Encryption Standard (AES) defines the most
popular block cipher. It is commonly used and often implemented on
smart cards. In this paper, we show how a 128-bit AES key can be
retrieved by microprobing. Thereby, a probe is placed onto the chip to
spy on inner values. Watching one arbitrary bit of the AES State during
the first two rounds of about 210 encryptions is enough to reveal the
whole key. For special positions of the probe, this number can be reduced
to 168. The paper demonstrates that even few information is sufficient
for a successful attack on AES.

Keywords: Probing Attack, AES, Smart Card.

1 Introduction

In order to provide security on a smart card or an embedded system, several
different threats have to be taken into account. Besides traditional cryptanalyt-
ical methods, which attack the algorithm itself and treat the device as a black
box, implementation attacks try to benefit from examining the device and its
behavior. These attacks became more and more popular during the last decade.

Implementation attacks can be passive or active. Passive attacks collect infor-
mation to undermine the security of a device. Such information can be the time a
computation takes [1], the power it needs [2] or its electromagnetic emissions [3].
This information can be sufficient for a successful attack, if it correlates with the
secret data used within the computations. In contrast to passive attacks, active
ones try to influence the behavior of a device and determine sensitive information
by examining the effects of a successful manipulation. As long as no modification
of the device is needed, attacks are called non-invasive. Inserting peaks into the
clock signal is a well known example for an active non-invasive attack. These
peaks may corrupt data transferred between registers and memory [4]. It is also
possible to apply semi-invasive and invasive attacks [5]. These attacks require
� Supported by Walloon Region, Belgium / E.USER project.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 256–265, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Probing Attack on AES 257

a decapsulation procedure to have access to the chip surface. In this way, it is
possible to modify the behavior of a computation in a more precise way.

Another serious threat to smart cards is microprobing [4]. Thereby, probes are
used to spy on inner values of the device. Possible targets of such an attack can
be the internal bus, registers or static memory. Probing is a passive but invasive
attack, as direct electrical contact to the chip surface has to be established but
no change of the behavior is intended. The idea of using probing to attack an
algorithm was presented by Helena Hanschuh et al. [6]. They showed how to
attack RSA and DES if an adversary can probe the value of a few RAM or
address bus bits.

In order to perform such an attack, a probe has to be placed on the chip
surface. Therefore, preparations are necessary. Before a needle can be placed
onto the chip, the passivation from the position of interest has to be removed.
For probing small structures, a test pad may be necessary. Such a pad can
be placed by a focused ion beam. This procedure is time consuming and costly.
Thus, it is favorable to minimize the number of pads on the chip. As the position
of the secret data in the memory is usually unknown, not only a small number
of needed, but also a wide range of possible positions for a successful attack is
desired.

Our Contribution. In this paper, we present an attack that needs one probe that
spies on an arbitrary bit within the 128-bit AES State. We show that observing
the bit throughout the first two rounds of 210 encryptions of chosen plaintexts
is enough to determine the whole key. For special positions of the probe this
can be reduced down to a number of 168. In the case of known plaintext, three
precisely-placed probes and 25 encryptions are sufficient.

The paper is organized as follows. After introducing notations and briefly
summarize the AES algorithm in Section 2, the attack model is described in
Section 3. In Section 4, the attack on AES for an arbitrary probed bit of the
State is presented. Section 5 shows how the attack can be optimized under special
conditions and briefly considers the known plaintext case. Conclusion is drawn
in Section 6.

2 Preliminaries

2.1 Notations

Let Si denote the intermediate State after the ith operation. This is depicted in
Figure 1. Hence, S0 equals the input. The round key of the ith round is called
Ki. As the AES encryption processes the input in blocks of 4 times 4 bytes, the
bytes of the ith round key and of the intermediate State i are written as Ki

l,m

and Si
l,m; l, m ∈ {0, . . . , 3}. The eth bit of a byte is denoted by [·]e.

2.2 AES

The Advanced Encryption Standard (AES) defines a symmetric block cipher. It
uses a block size of 128 bit and includes key sizes of 128, 192 and 256 bit. This

258 J.-M. Schmidt and C.H. Kim

Sub bytes MixColShift rows

0 round

1 round

2 round

S0 S1

S1 S2 S3 S4 S5

S5 S6 S7 S8

K0

K1

K2

Sub bytes MixColShift rows

Fig. 1. AES process

paper uses the AES with a key size of 128 bit, denoted AES-128, which is briefly
described here. A complete specification of the algorithm can be found in [7].
One encryption performs ten rounds. The first nine rounds consist of four oper-
ations in the following order:

– SubBytes: Applies a non-linear byte substitution to every byte of the block.
This is denoted by Sk+1

i,j = Sbox(Sk
i,j).

– ShiftRows: Shifts the rows 1, 2, and 3 of the State cyclically 1, 2, and 3
bytes to the left.

– MixColumns: Applies a linear operation on each column of the State. This
can be written as a matrix multiplication for each column i ∈ {0, . . . , 3} of
the State Sk: ⎛

⎜⎜⎜⎝
Sk+1

0,i

Sk+1
1,i

Sk+1
2,i

Sk+1
3,i

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

Sk
0,i

Sk
1,i

Sk
2,i

Sk
3,i

⎞
⎟⎟⎠

– AddRoundKey: Xors the block with a 128-bit round key, which is derived from
the initial key by a key expansion algorithm.

A Probing Attack on AES 259

Three operations are performed in the tenth and last round: SubBytes,
ShiftRows and AddRoundKey. MixColumns is skipped. At the beginning of an
encryption an AddRoundKey operation is applied.

3 Attack Model

Our attack model is motivated by the possibilities of probing an internal data
bus or a memory cell. Thereby, a probe is placed onto the chip and retrieves
the value of the bus or the cell during all following operations until the probe
is removed. Thus, the attack model assumes that an adversary can gain one
bit e of the static memory of a device within the AES State throughout the
whole computation, either by spying directly on it or by observing it on the bus.
However, the knowledge of the bits for the first two rounds is sufficient for the
attack. Inputs are chosen by the adversary. In the previous introduced notation,
the adversary chooses different S0 and learns {[Si

lp,mp
]e|, i ∈ {0, . . . , 40}} for a

fixed position ((lp, mp), e), lp, mp ∈ {0, . . . , 3}, e ∈ {0, . . . , 7}.

4 Probing AES

In order to present the attack in a comprehensible way, we assume throughout
this section that an adversary can probe the first byte of the AES State at the
eth position. Nevertheless, the method can be applied for every probe position
within the State in the same way.

As the input is loaded into the memory during the initialization phase, an
adversary can easily determine the position of the probe within the AES State
by varying this input. Hence, an adversary knows the position of the probe.

For performing an attack, the four steps described in this section can be used.
All steps were successfully simulated for numerous different keys and all possible
positions of the probe. The given estimations of needed encryptions are based
on these simulations. For showing the effort of each step, the needed encryptions
are given separately. Nevertheless, the inputs can be chosen in a way that the
results can be used for several steps, which reduces the needed ciphertexts as
shown in Section 5.

In the considered case, the first step derives K0,0, the second one K0
1,1, K0

2,2
and K0

3,3. Afterwards, step three is performed three times. Thereby, the key
bytes K0

1,3, K0
2,1 and K0

3,0 are disclosed. Three executions of the fourth step
finally reveal the remaining bytes of the secret key.

Main Idea. The attack uses the only non-linear part of the AES algorithm: the
Sbox. For known bytes A and C, the relation C = Sbox(A⊕B) defines B, which
can be easily found by exhaustive search over all possible 256 bytes. If only one
bit of C is known, 128 possibilities for B are left using one equation. Thus, on
average nine pairs of a known A and one bit of C will lead to a unique B. This
technique is applied on different stages. However, the main principle is always

260 J.-M. Schmidt and C.H. Kim

changing the values the SubBytes operation is applied to and examining, which
key byte can cause the observed bits. Due to the diffusion properties of the AES
algorithm, every byte influences the probed bit somehow after the second round.

Step 1. First, the byte of the initial round key, corresponding to the probed byte,
is calculated. One bit of the key is directly visible after the first AddRoundKey
operation, because it is probed xor the input. After the first SubBytes operation,
the probed bit [S2

0,0]e fulfills

[S2
0,0]e = [Sbox (K0

0,0 ⊕ S0
0,0)]e. (1)

Using on average 9 different inputs, only one possibility for the key byte K0
0,0 is

left.

Algorithm 1

1. Set up a list L containing all 28 candidates for K0
0,0.

2. Choose a random input S0, encrypt it and remove all candidates from L
contradicting (1).

3. While L contains more than one candidate, repeat line 2.

Step 2. Next, the situation after the first MixColumns operation is considered.
For the probed bit [S4

0,0]e holds

[S4
0,0]e = [02 · S3

0,0 ⊕ 03 · S3
1,0 ⊕ 01 · S3

2,0 ⊕ 01 · S3
3,0]e (2)

S3
i,0 = Sbox (S1

i,i) = Sbox (S0
i,i ⊕K0

i,i) i ∈ {0, . . . , 3}.

Varying only the input byte S0
i,i, leaving the rest of S0 untouched, results in

a change of S3
i,0 in (2), while all other values are constant. Thus, two different

inputs S0 and S̃0, which differ only in S0
i,i, deliver

[S4
0,0 ⊕ S̃4

0,0]e = [ci · (S3
i,0 ⊕ S̃3

i,0)]e

= [ci · (Sbox (S0
i,i ⊕K0

i,i)⊕ Sbox (S̃0
i,i ⊕K0

i,i))]e, (3)

where ci ∈ {01, 02, 03} denotes the appropriate MixColumns constant. For every
pair (S0, S̃0) the equation (3) excludes wrong key bytes. Using about 10 inputs
provide the right key byte. With this technique the key bytes K0

1,1, K0
2,2 and

K0
3,3 are determined. The following algorithm exemplary shows how to retrieve

K0
1,1.

Algorithm 2

1. Choose a random plaintext S0.
2. Set up a list L containing all 28 candidates for K0

1,1; M is an empty list.
3. Set S0

1,3 to a random value, encrypt the new S0 and add (S0
1,3, [S

4
0,0]e) to M.

4. For each pair [(S0
1,3, [S

4
0,0]e), (S̃

0
1,3, [S̃

4
0,0]e)] in M remove all candidates of L

contradicting (3) with ci = 03.
5. If L contains more than one candidate, go back to to line 3.

A Probing Attack on AES 261

Step 3. With step three it is possible to determine an arbitrary key byte.
However, the method requires a lot of different encryptions. Thus, it is only
applied for a few bytes. The remaining bytes are revealed by step four to reduce
effort and encryptions needed.

In order to demonstrate the method in an comprehensible way, it is assumed
that the key byte K0

1,3 should be determined. For retrieving another byte, the
MixColumns constants have to be adjusted.

First, all input bytes except the byte S0
1,3 are fixed. Let E = 01 · S3

0,2 ⊕ 02 ·
S3

2,2⊕ 03 ·S3
3,2⊕K1

2,2 and C = 02 ·S7
0,0⊕ 03 ·S7

1,0⊕ 01 ·S7
3,0 denote the constant

parts in the computation. Thus, for the probed bit [S8
0,0]e holds

[S8
0,0]e = [02 · S7

0,0 ⊕ 03 · S7
1,0 ⊕ 01 · S7

2,0 ⊕ 01 · S7
3,0]e

= [C ⊕ 01 · S6
2,2]e

= [C ⊕ 01 · Sbox (S4
2,2 ⊕K1

2,2)]e
= [C ⊕ 01 · Sbox (01 · S3

0,2 ⊕ 01 · S3
1,2 ⊕ 02 · S3

2,2 ⊕ 03 · S3
3,2 ⊕K1

2,2)]e
= [C ⊕ 01 · Sbox (01 · S3

1,2 ⊕ E)]e
= [C ⊕ 01 · Sbox (01 · Sbox (S0

1,3 ⊕K0
1,3)⊕ E)]e. (4)

As one bit is probed, only one bit of C has to be guessed. After about 22 different
encryptions the probed bits form a pattern, which fits only to the right key byte
K0

1,3 and the right guess for E.

Algorithm 3

1. Choose a random input S0.
2. Set up a list L containing all possible pairs (K0

1,3, E, [C]e) for E,
K0

1,3 ∈ {0, . . . , 255} and [C]e ∈ {0, 1}.
3. Set S0

1,3 to a random value, encrypt the new S0 and remove all pairs contra-
dicting (4) from L.

4. While L contains more than one pair, repeat line 3.

Step 4. After the application of the last step, the byte K0
1,3 is known. In order

to improve the comprehensibility of the applied method, the explanation of step
four is presented for retrieving K0

0,2. However, with the key byte K0
1,3 a whole

column and with the bytes revealed by step three, all remaining key bytes are
disclosed.

Therefore, the byte after the second MixColumns operation is reconsidered.
The constant parts are denoted by E and C as in the previous step:

[S8
0,0]e = [01 · Sbox (E ⊕ 01 · Sbox (S0

1,3 ⊕K0
1,3))⊕ C]e.

Varying the input byte S0
1,3 to S̃0

1,3 influences S2
1,3. As K0

1,3 is known, the new
value of S2

1,3, called S̃2
1,3, is known. This results in a change of S4

2,2, which is

262 J.-M. Schmidt and C.H. Kim

denoted by F = S4
2,2 ⊕ S̃4

2,2. Thus, for the probed bit of the old value S8
0,0 and

the new one S̃8
0,0 holds

[S8
0,0 ⊕ S̄8

0,0]e = [01 · {Sbox (01 · Sbox (S0
1,3 ⊕K0

1,3)⊕ E)

⊕ Sbox (01 · Sbox (S̃0
1,3 ⊕K0

1,3)⊕ E)}]e
= [01 · {Sbox (01 · Sbox (S0

1,3 ⊕K0
1,3)⊕ E)

⊕ Sbox (01 · Sbox (S0
1,3 ⊕K0

1,3)⊕ E ⊕ F)}]e. (5)

All values in (5) except E are known. The value of E is determined using on
average 8 encryptions by considering all possible combinations of values F and
the corresponding probed bits.

Using the knowledge of E, the key bytes of the column are retrieved. For
determining K0

0,2, the corresponding input byte S0
0,2 is changed to S̃0

0,2 and the
corresponding Ẽ is determined. For E and Ẽ holds:

E ⊕ Ẽ = 01 · {S3
0,2 ⊕ S̃3

0,2}
= [01 · {Sbox (S0

0,2 ⊕K0
0,2)⊕ Sbox (S̃0

0,2 ⊕K0
0,2)}]e. (6)

On average, three different constants will disclose the right key byte. In this way,
the three key bytes of a column, remaining unknown after the third step, are
calculated with 7 different values E. As one value E has been determined in step
three, about 48 encryptions are needed for the whole column.

Algorithm 4

1. Chose a random input S0.
2. Set up a list L containing all 28 candidates for K0

0,2; M is an empty list.
3. Set up a list E containing all 28 candidates for E; F is an empty list.

(a) Set S0
1,3 to a random value, encrypt the new S0 and add (S0

1,3, [S4
0,0]e)

to F .
(b) For each pair in [(S0

1,3, [S4
0,0]e), (S̃0

1,3, [S̃4
0,0]e)] F remove all candidates

from E contradicting (5).
(c) If E contains more than one candidate, go back to to line 3a.

4. Add the remaining value of E together with the first S0
1,3 of F to M.

5. For each pair (S0
1,3, [S

4
0,0]e)and (S̃0

1,3, [S̃
4
0,0]e) in M remove all candidates in

L contradicting (6).
6. If L contains more than one candidate, go back to to line 3.

Summarization. Summing up all four steps, probing one bit of 250 encryptions
on average is sufficient to determine a whole 128-bit AES key. Our simulation
results showed that this neither depends on the probed byte within the State
nor on the bit of the byte which is probed. A simple possibility to reduce the
number of needed encryptions is to choose the plaintexts in a way, that they can
be used by several steps. The messages used for step one can be reused in step

A Probing Attack on AES 263

two, if the whole column is changed. The difference in S3
0,0 does not influenced

step two, as K0
0,0 and therefore S3

0,0 is known from the previous step. As S4
0,0 is

known after step two, K1
0,0 can be determined using the same method as in step

one in the second round. Again, the probed bits from previous encryptions can
be used. Now, S7

0,0 can be calculated. Thus, the inputs can be chosen in a way
that they can be used for step one, two, and three at the same time. Hence, 210
encryptions are sufficient in this way.

5 Variants

Depending on the probed byte, optimizations are possible. The following two
methods allow reducing key bytes that have to be determined by step three.
Therefore, the computational effort is reduced. In addition, the number of needed
encryptions is decreased. It is also possible to attack AES successfully in the
known plaintext scenario as shown by the third method.

5.1 Probing Si
0,0

By probing Si
0,0, step three can be skipped. Hence, step four must determine an

additional E value for each column. Thus, the number of encryptions is reduced
by (22− 8) ∗ 3 = 42, resulting in 168 required encryptions, as the inputs for step
one and two can also be used for the fourth.

In order to omit step three, the key schedule is used. After the second step,
the whole column S3

i,0, i ∈ {0 . . . 3} and thus S4
i,0 is disclosed. As this includes

S4
0,0, the first step is applied to the second round. This determines K1

0,0, using
the values for S6

0,0, gained during the previous encryptions. In combination with
K0

0,0, another key byte of the first round is calculated using the key schedule,
while 1 is its round constant rcon, see [7]:

K1
0,0 = K0

0,0 ⊕ Sbox (K0
1,3)⊕ 1

⇒ K0
1,3 = Sbox −1((K0

0,0 ⊕K1
0,0 ⊕ 1)).

After determining the column S3
i,2, i ∈ {0, . . . , 3} using K0

1,3 in step four, the
values of S4

i,2, i ∈ {0, . . . , 3} are known. Together with E = S4
2,2 ⊕K1

2,2, gained
in the fourth step, this leads to K1

2,2. Thus, K0
2,1 is calculated:

K1
2,1 = K0

2,2 ⊕K1
2,2

K1
2,0 = Sbox (K0

3,3)⊕K0
2,0

K0
2,1 = K1

2,1 ⊕K1
2,0. (7)

Repeating step four using K0
2,1, followed by a similar use of the key schedule as in

(7), leads to another 4 key bytes, including K0
0,3. Thus, applying step four again

will determine the last 3 key bytes. Summing up, 168 encryptions are necessary
on average.

264 J.-M. Schmidt and C.H. Kim

5.2 Probing Bytes of Rows 1-3

The ShiftRows operation can be used to improve the attack. If the ShiftRows
operation is implicitly implemented by choosing the appropriate positions as
input for the MixColumns operation, the result of ShiftRows is not explicitly
written into the memory. Thus, it is not possible to probe a new value from S3

and step two has to be applied for all four bytes in the column.
Otherwise, if the result of the ShiftRows operation is written into memory,

step one is applied to State S3 and determines the key byte of the value shifted
to the position of the probe. Consider probing S1,0, for example. Using step
one, the key byte K0

1,0 is revealed. After the first ShiftRows operation, a S2
1,1

is probed. Thus, applying

[S3
1,0]e = [Sbox (K0

1,1 ⊕ S0
1,1)]e

on the ciphertexts of the first step will deliver two key bytes at the same time.
Hence, one application of step three can be omitted which reduces the needed
effort by 22 ciphertexts.

5.3 Known Plaintext Scenario

If the input cannot be chosen, three bits information about the State of the
first round is necessary. Therefor, the probes are placed in a way that each of
them can determine five different key bytes. This is fulfilled by the positions
(S1,i, S2,i+1 mod 4, S3,i+2 mod 4), i ∈ {0 . . .3}. The first step can be applied to
the probed bytes as in the chosen plaintext scenario.

As parts of the plaintext cannot be chosen, it is necessary to guess more than
one byte at the same time in step two. The whole input and hence the column
j ∈ {0, . . . , 3}: S3

i,j i ∈ {1, . . . , 3} is varied in most cases. We illustrate the
method for a probe at position S1,1. Modifying (2), three bytes can be guessed
at the same time:

[S4
1,1]e = [01 · S3

0,1 ⊕ 02 · S3
2,1 ⊕ 03 · S3

2,1 ⊕ 01 · S3
3,1]e

S3
i,j = Sbox (S1

i,l) = Sbox (S0
i,l ⊕K0

i,l); k = j + i mod 4, i ∈ {0, . . . , 3}.

As the key bytes K0
1,1 and K0

1,2 were determined, as described in the previous
subsection, using the first step and the ShiftRows operation, S3

1,1 is known.
Hence, 224 combinations for the key bytes of the column are left. Using about
26 encryptions, the right bytes can be revealed. Applying this procedure for all
probes leaves only K1

0,i+3 mod 4
unknown, which can be easily guessed.

Concluding, for the known plaintext case, probing three positions of about 26
encryptions is necessary.

6 Conclusion

In this paper, we presented a probing attack on AES. For the attack, probing
an arbitrary bit of the AES State is sufficient. As demonstrated, a 128-bit key

A Probing Attack on AES 265

can be determined by spying on the first two rounds of about 210 encryptions
of chosen plaintexts. The number of encryptions can be reduced, by applying
optimizations that depend on the probed byte, down to 168. We also considered
the known plaintext scenario and showed that three probes and 26 ciphertexts
are sufficient in this case.

Acknowledgements

The authors like to thank Stefan Tillich for helpful discussions. The information
in this document reflects only the authors views, is provided as is and no guar-
antee or warranty is given that the information is fit for any particular purpose.
The user thereof uses the information at its sole risk and liability.

References

1. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

3. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

4. Kömmerling, O., Kuhn, M.G.: Design Principles for Tamper-Resistant Smartcard
Processors. In: USENIX Workshop on Smartcard Technology (Smartcard 1999), pp.
9–20 (May 1999)

5. Skorobogatov, S.P.: Semi-invasive attacks - A new approach to hardware secu-
rity analysis. PhD thesis, University of Cambridge - Computer Laboratory (2005),
http://www.cl.cam.ac.uk/TechReports/

6. Handschuh, H., Paillier, P., Stern, J.: Probing Attacks on Tamper-Resistant Devices.
In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 303–315. Springer,
Heidelberg (1999)

7. National Institute of Standards and Technology (NIST): FIPS-197: Advanced En-
cryption Standard (November 2001), http://www.itl.nist.gov/fipspubs/

http://www.cl.cam.ac.uk/TechReports/
http://www.itl.nist.gov/fipspubs/

On Avoiding ZVP-Attacks Using Isogeny
Volcanoes�

J. Miret1, D. Sadornil2, J. Tena3, R. Tomàs1, and M. Valls1

1 Dept. de Matemàtica, Universitat de Lleida
{miret,rosana,magda}@eps.udl.es

2 Dept. de Matemáticas, Estad́ıstica y Computación, Universidad de Cantabria
sadornild@unican.es

3 Dept. de Álgebra, Geometŕıa y Topoloǵıa, Universidad de Valladolid
tena@agt.uva.es

Abstract. The usage of elliptic curve cryptography in smart cards has
been shown to be efficient although, when considering curves, one should
take care about their vulnerability against the Zero-Value Point Attacks
(ZVP). In this paper, we present a new procedure to find elliptic curves
which are resistant against these attacks. This algorithm finds, in an
efficient way, a secure curve by means of volcanoes of isogenies. More-
over, we can deal with one more security condition than Akishita-Takagi
method with our search.

1 Introduction

Smart card technologies are nowadays present in many activities in daily life,
such as mobile communications, credit cards, identification systems, etc. Conse-
quently, the usage of cryptographic techniques in smart cards has been a widely
studied area of research during the last decade. Smart cards are devices which can
basically execute commands and store data. This stored data can be protected
using cryptographic algorithms, which must fit the memory and computational
restrictions of these cards. Hence, the usage of elliptic curve cryptography turns
out to be a good alternative, since it can offer the same security as conventional
cryptosystems while using significantly shorter keys.

Apart from attacks to the cryptosystems, smart cards are also vulnerable
under the so–called Side Channel Attacks (SCA) [9,11]. The attacker listens
to the card while it is encrypting (for instance, using an oscilloscope). From
its behavior, information about the performed computations can be obtained,
from which the secret keys may be obtained. There are several proposals in the
literature presenting methods to prevent these attacks.

In 2003, Goubin [8] detected an SCA for elliptic curve cryptography. It was
shown there could be some points in an elliptic curve that, when used, could pro-
vide sensitive information to obtain the secret key of smart card. Goubin proved
� Partially supported by grants MTM2007-66842-C02-01, MTM2007-66842-C02-02

and TIN2006-15662-C02-02 from Spanish MCyT.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 266–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Avoiding ZVP-Attacks Using Isogeny Volcanoes 267

that, in order to avoid the existence of such points, the curve should fulfill some
conditions. In the case a curve could not fulfill them, a new curve should be taken
into account, while maintaining the same security levels (namely, same cardinal).

A first approach would consist of taking isomorphic curves [5,10]. But it can be
shown that Goubin’s conditions would not be fulfilled either. Later, Smart [18]
introduced another countermeasure: the usage of isogenies of a given elliptic
curve. The same cardinal would also be preserved, as well as some isogenous
curve could fit Goubin’s restrictions.

Akishita and Takagi [1,2] extended Goubin’s work, considering that there
were more points in the curve that could be exploited by an attacker (Zero-
Value Point Attack, ZVP). Hence, they provided more conditions to be fulfilled
by the curve. In their paper, they also look for curves isogenous to the ones
proposed by SECG [17], and such that satisfy some of the restrictions (some
others are not considered, since they seem difficult to be treated).

Both Smart’s and Akishita-Takagi’s procedures analyze if one of the adjacent
–isogenies of the original curve fits the restrictions. Otherwise, the prime is
incremented and a new curve is searched for. The more conditions we require to
be satisfied, the higher is the value of . Since the computational cost increases
rapidly when is high, these procedures turn out to be costly.

In this work, we present an alternative procedure which consists of analyzing
more than one isogeny (in fact, as many as possible) before incrementing the
value of . Consequently, this algorithm presents a lower computational cost and
obtains results in less time. Besides, one more Akishita-Takagi’s condition can
be evaluated, so the curves obtained are more resistant to ZVP-attacks.

The rest of this paper is organized as follows. In Section 2, we review pre-
liminary concepts on elliptic curve cryptography and isogenies of a given elliptic
curve. Section 3 summarizes several results on SCA and ZVP attacks. Section 4
presents the new algorithm, analyzes its results and compares them to previous
proposals. Finally, conclusions are exposed in Section 4.

2 Preliminaries on Elliptic Curves

Let E be an elliptic curve over a finite field Fp, where p is a prime greater than
3, defined by a Weierstraß form:

E/Fp : y2 = x3 + ax + b, (1)

where a, b ∈ Fp and 4a3 + 27b2 �= 0. We denote by E(Fp) the group of points
P = (x, y), x, y ∈ Fp, that satisfy this equation, including the point at infinity,
denoted as OE .

A point P = (x, y) ∈ F2
p can be represented by means of Jacobian coordinates,

(X : Y : Z), where x = X/Z2 and y = Y/Z3. Using such a system of coordinates,
(X : Y : Z) and (X ′ : Y ′ : Z ′) represent the same point if there is an element
r ∈ F∗

p such that X ′ = r2 · X , Y ′ = r3 · Y and Z ′ = r · Z. Therefore, the
Weierstraß equation (1) becomes:

E/Fp : Y 2 = X3 + aXZ4 + bZ6. (2)

268 J. Miret et al.

In elliptic curve cryptography it is usual to multiply a point P ∈ E(Fp) by
a scalar d ∈ Fp to obtain the point dP . To compute this multiplication in an
efficient way the standard methods involve two basic operations: adding and
doubling points.

On the one hand, given a point P = (X1 : Y1 : Z1) of E(Fp), the coordinates
of 2P = (X2 : Y2 : Z2) can be expressed as follows:

X2 = T, Y2 = −8Y 4
1 + M(S − T), Z2 = 2Y1Z1, (3)

where S = 4X1Y
2
1 , M = 3X2

1 + aZ4
1 and T = −2S + M2. On the other hand,

given two points P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) of E(Fp), the
coordinates of P1 + P2 = (X3 : Y3 : Z3) can be expressed as:

X3 = −H3 − 2U1H
2 + R2, Y3 = −S1H

3 + R(U1H
2 −X3), Z3 = Z1Z2H, (4)

where U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , H = U2 − U1 and

R = S2 − S1.

2.1 Isogenies

Given a subgroup G ⊆ E(Fp), for instance the cyclic subgroup 〈P 〉 generated
by a point P ∈ E(Fp), a rational map I can be constructed from the curve E
with kernel G. Then the quotient E/G is a new elliptic curve E′, which is called
isogenous curve of E under isogeny I. In general, given two elliptic curves, E
and E′, it is said that they are isogenous curves if there exists a rational map I
between them that sends the point at infinity of E to this one of E′. Besides, the
degree d of the isogeny I is the degree of the corresponding extension of function
fields. If this extension is separable the degree d coincides with the cardinal of
the subgroup kerI. Then, we can say that the isogeny I is an isogeny of degree
d or a d–isogeny. In the case that d is not a prime number and its prime factors
are 1,...,n, the isogeny I can be expressed as a composition of n isogenies of
degrees i.

More precisely, given an elliptic curve of equation

E/Fp : y2 = x3 + ax + b, (5)

the coefficients of its isogenous curve of kernel G

E′/Fp : y2 = x3 + a′x + b′, (6)

can be straightforwardly obtained by means of Vélu formulae [19]:

a′ = a− 5t, b′ = b − 7w,

with
t =

∑
T∈SG

t(T), w =
∑

T∈SG

(u(T) + x(T)t(T)) ,

On Avoiding ZVP-Attacks Using Isogeny Volcanoes 269

being SG a system of representatives of the orbits of G under the action of the
subgroup {−1, 1}, x(T) is the abscissa of the point T and

t(T) =

{
3x(T)2 + a, if T ∈ G ∩E[2]
6x(T)2 + 2a, if T ∈ G \E[2]

u(T) = 4x(T)3 + 4ax(T) + 4b.

It is well known that, for a prime integer , the number of –isogenies that an
elliptic curve E/Fp can have is 0, 1, 2 or + 1 [3].

2.2 Isogeny Volcanoes and Cordilleras

Given an ordinary elliptic curve E/Fp and an –isogeny I : E −→ E′, Kohel [12]
introduced the notion of direction of the isogeny, according to the relation be-
tween the endomorphism rings O and O′ of the curves. Actually, Kohel shows
that [O : O′] = 1, or 1/, and depending on each case, it is said that the isogeny
I is horizontal, descending or ascending, respectively. This notion of direction
can be exploited to represent isogenous curves by means of graph structures.

An –volcano (see [6]) is a directed graph whose nodes are isomorphism classes
of elliptic curves and whose edges represent –isogenies among them. These
graphs consist of a unique cycle at the top level, called crater, and from each
node of the cycle hang − 1 trees which are –ary complete, except in the case
where the volcano is reduced to the crater. The leaves of these trees are located
at the same level, which form what is called the floor of the –volcano, while
the remaining nodes of each tree constitute the volcano side. Each node of the
–volcano (except the leaves) has + 1 edges. More precisely, nodes in the vol-
cano side have one ascending isogeny and descending ones, while nodes on the
crater have two horizontal isogenies and − 1 descending ones. The structure of
an –volcano for = 3 is given in Figure 1.

Given an elliptic curve E/Fp, its volcano of –isogenies will be denoted by
V	(E/Fp). Then , for a given prime , the elliptic curves over a finite field Fp

with the same cardinal can be distributed in several –volcanoes, the set of all
these connex components will be named –cordillera.

Fig. 1. Structure of a 3–volcano

270 J. Miret et al.

The height of the volcano V	(E/Fp) can be obtained considering the conductor
f of the order Z[π], being π the endomorphism of Frobenius of E/Fp. More
precisely, it can be deduced that the height of the volcano of E/Fp coincides with
the –adic valuation of the integer f , that is h(V	(E/Fp)) = v	(f). Nevertheless,
there are efficient algorithms to determine the height of a volcano which do not
need to obtain f (see [6,15]).

Concerning the study of the connex components of an –cordillera, we can
take advantage of the following result [16]:

i) All connex components of an –cordillera of elliptic curves have the same
height.

ii) Elliptic curves which are in different levels of an –volcano must belong to
different connex components of any ′–cordillera, when ′ �= .

3 Side Channel Attacks in Smart Cards

Cryptographic techniques used in smart cards to protect its secret information
have several vulnerabilities. One of them is due to the leak of information during
the execution of the cryptosystem, which could be used to recover the secret key.
This kind of attacks are known as Side Channel Attacks (SCA) [9].

In other words, cryptanalytic attacks look at the plaintext and the ciphertext
and attempt to recover the key or some piece of information. Moreover, SCA also
pretend to use some extra knowledge, such as the power consumption changes
while the smart card is working. To be successful, an SCA–attacker requires
considerable technical knowledge of the internal operations of the system on
which the cryptography is implemented.

There are three main side channels to be exploited in these attacks: power con-
sumption, timing consumption and radiation emissions, which are known as Power
Analysis Attacks, Timing Attacks and Electromagnetic Attacks, respectively.

Power Analysis Attacks use information leaked by the power consumption of
the smart card. This type of attack can be divided into two subtypes: Simple
Power Analysis (SPA) and Differential Power Analysis (DPA). On one hand,
SPA extract secret keys and compromise the security of smart cards and other
cryptographic devices by analyzing their power consumption. While these kind
of attacks do not require statistical analysis, DPA uses statistical techniques to
separate signal from noise. Timing Attacks are based upon the principle of de-
pendence between the execution time of the cryptosystems and the value of the
secret data. By measuring and analyzing small differences in processing time,
an attacker can inffer secret data. Finally, Electromagnetic Attacks use the in-
formation leaked in the electromagnetic emanations from the card while it is
running.

3.1 Zero–Value Point Attacks

The use of elliptic curves cryptography in smart cards revealed a new type of
vulnerability not exploitable since that moment. Goubin [8] proposed a method

On Avoiding ZVP-Attacks Using Isogeny Volcanoes 271

to take advantage of this vulnerability: he showed that an attacker might gen-
erate points on the curve so that, after several calculations, a new point was
obtained with some coordinate being zero. In that case, Goubin proved that the
attacker would obtain information from the secret key of the card, and after
several executions, all bits of the key could be obtained. These points with some
null coordinate were called special points. It can be seen that a curve (2) where
b is not a quadratic residue has no points with zero–valued abscissa. Whereas,
curves with no points of order 2 have no zero–valued ordinate points. In this
context, as a countermeasure, Smart [18] proposed to avoid these special points
by searching for isogenous curves with these conditions.

Later, Akishita and Takagi [1,2] showed that this kind of attacks could be
extended in the case that the doubling or adding processes involved some ex-
pressions equal to zero. This attack is known as Zero–Value Point Attack (ZVP
attack). Akishita and Takagi deduced some extra conditions. These conditions
include the ones given by Goubin and all of them are deduced from the expres-
sions which appear when doubling (3) and adding (4) points.

A point P = (x, y) on an elliptic curve E/Fp would be a ZVP with respect to
the doubling process if some of these conditions is satisfied [1]:

ED1: 3x2 + a = 0;
ED2: 5x4 + 2ax2 − 4bx + a2 = 0;
ED3: The order of P is equal to 3;
ED4: x(P) = 0 or x(2P) = 0, i. e., b is a quadratic residue;
ED5: y(P) = 0 or y(2P) = 0, i. e., the order of P is equal to 2.

Hence Akishita and Takagi look for isogenous curves where none of these con-
ditions are satisfied (using the same idea as Smart’s countermeasure). In fact,
they focus on conditions ED1 and ED4 (Goubin’s condition): curves whose pa-
rameter b is not a quadratic residue and such that −a/3 is not a quadratic residue
or there are no points whose abscissa is

√
−a/3. In particular, they performed

experimental computations [2] searching for the minimal isogeny degree needed
to find a good curve of the SECG curves [17].

Notice that conditions ED3 and ED5 do not vary when taking isogenies.
Moreover, in their paper, Akishita and Takagi do not deal with condition ED2
neither conditions coming from the addition process.

4 Isogenies–Route over Cordilleras

In this section, we describe the proposed algorithm to find a resistant curve
against ZVP attacks. It exploits the structure of isogeny cordilleras to travel
across them until a good curve is found. Several results are then collected and
compared with previous methods.

4.1 Algorithm

Smart and Akishita–Takagi used isogenies as a countermeasure against ZVP
attacks. Their method to find a ZVP–resistant curve consists in finding a suitable

272 J. Miret et al.

–isogeny of a given curve E/Fp. More in detail, let 1 < 2 < ... < n be prime
numbers so that there exist i–isogenies of E/Fp, 1 ≤ i ≤ n. Firstly, the 1–
isogenies of E/Fp are obtained and it is also verified if these new curves are
ZVP–resistant. If they are not, one proceeds similarly with 2, until a suitable
curve is found. In these methods, the first level of adjacent isogenous curves in
the volcano is the only one evaluated before increasing the value of . However,
increasing this value, makes the computational cost rise sharply.

In this new proposal, the fact that the rest of curves in the volcano, and
cordillera, also have the same cardinal is exploited. Hence, given an elliptic curve
E/Fp, its 1–volcano of isogenies is completely analyzed. If a suitable curve is
not found, we then move to the 2–volcano of E/Fp and compute a new curve of
it. For each curve which was not previously studied, we move to its 1–volcano,
before going on with the 2–volcano. The goal is to analyze firstly the less costly
volcanoes. If a good curve is not found in this volcano, the 2–volcano is explored
again. When this volcano is completely explored, as well as the 1–volcanoes of
its curves, we move to the 3–volcano, and proceed similarly. This algorithm
follows similar ideas as the one presented in [16].

The details of the algorithm are sketched below.

Isogeny–route over cordilleras
Input: An elliptic curve E over a field Fp; IsogenyDegrees: a

list of n prime integers for which exist isogenies of E
Output: An isogenous curve E′ ZVP–resistant
IF ZVP–resistant(E)

RETURN E
FOR i = 0 to n− 1

Pendant[i]← E
WHILE ∃j, j = 0 to n− 1, s. t. Pendant[j]�= ∅

 = IsogenyDegrees[j]
Eact =FirstElement(Pendant[j])
Treat[j]← Eact

Delete(Eact, Pendant[j])
Enext = –isogeny(Eact)
IF ZVP–resistant(Enext)
RETURN Enext

ELSE ZVP–resistant(Enext)
FOR i = 0 to n− 1 s. t. i �= j
Pendant[i]← Enext

where the functions called by the algorithm are the following:

– Pendant[i]: List of elliptic curves such that non i–isogeny is already calcu-
lated. The algorithm could deal with them hereinafter.

– IsogenyDegrees[i]: List of prime integers 1 < 2 < ... < n corresponding to
possible isogeny degrees of E.

On Avoiding ZVP-Attacks Using Isogeny Volcanoes 273

– Treat[i]: Stores a list of treated elliptic curves found to be vulnerable to ZVP
attacks.

– ZVP–resistant(E): Verifies if E fulfill the given conditions.

Notice, this algorithm must be executed in advance. Indeed, when implement-
ing the smart card, it will already have precalculated the best isogeny–degree for
its curve. Hence, the computational cost for the smart card will only compute
such an isogeny.

4.2 Implementation and Complexity

Let us show some computational results of the proposed algorithm, compared
with the experimental results obtained by Smart and Akishita-Takagi, respec-
tively. The test of their algorithm is performed over the set of curves listed in the
SECG’s document [17], which is considered a standard in elliptic curve cryptog-
raphy. In particular, we also focus on several SECG curves, and MAGMA [13]
is used for all implementations. The method to compute the isogenies of a given
curve is to use division polynomials.

As we have seen, Smart and Akishita-Takagi method consists of increasing
until finding a resistant –isogenous curve. The method proposed in this paper
(isogeny–route) uses the concatenation of –isogenies, without increasing value,
until obtaining a good curve, and in the case that all curves of this –volcano of
a given curve E have been treated then the value increments. The reason why
this method needs less time to obtain a resistant curve is because the cost of an
–isogeny increases sharply when value grows and it makes this last method
faster than the other.

We assume that the behavior of the curves is independent of the degree of the
isogenies to compute them, i.e., there is the same probability to find a curve that
fulfills some conditions using isogenies of a small degree compared to using a large
one. Considering that the cost of computing an –isogeny in Fp is O(2(ln p)) [7],
it is preferable that the degree of the isogeny is the lowest possible. In this way,
the isogeny–route algorithm gives us better results.

Let us see the probability that an elliptic curve fulfills the different conditions.
In this paper we will focus on conditions ED1, ED2 and ED4. We can compute
the probabilities of these conditions being satisfied (assuming all the conditions
being independent). In the case of ED4, the probability of a curve failing for
this condition is the probability that the parameter b of the equation of the
elliptic curve is a quadratic residue, i.e. 1/2. The probability of a curve failing
for condition ED1, 3x2 +a = 0, is 1/4, because there is a probability of 1/2 that
exists an x fulfilling the equation and another probability of 1/2 that this value
of x corresponds to a valid abscissa of the elliptic curve.

Since the treated condition in Smart’s case is ED4, the probability of finding a
resistant elliptic curve is 1/2. In the case of Akishita and Takagi, the conditions
that they treat are ED1 and ED4, i.e., 1/4·1/2 = 1/8. And finally, the probability
of finding a curve that does not succumb to conditions ED1, ED2 and ED4 is,
approximately, 3/40. This value comes from the probability to find an elliptic

274 J. Miret et al.

curve satisfying neither ED1 nor ED4 (which is 1/8) and from the probability
to obtain a curve which does not fulfill ED2 (which is, approximately, 3/5).
Indeed, this last one coincides with the probability of a degree four polynomial
not having linear factors or, if it has, that none of its roots corresponds to a
valid abscissa of the curve.

Using these probabilities and the cost to compute an –isogeny, if we try
to find a resistant curve with the two initial methods, the values and the
computational cost increase sharply. Nevertheless, if we try to do the same with
the isogeny–route algorithm, these prime numbers and this cost remain stable.
For this reason, searching for curves that fulfill ED1, ED2 and ED4 is fast and
affordable using isogeny–route algorithm.

5 Experimental Results

In Table 1 we collect results obtained by Smart together with results obtained
using our algorithm. In the second and fourth column we present the minimal and
preferred isogeny degree (std and pfr) with respect to condition ED4 given by
Smart, while the third and the fifth columns contain the degrees of the isogeny–
route given by our algorithm in each case. More precisely, these degrees can be
defined as:

– std: the minimal isogeny degree for condition ED4;
– prf: the minimal isogeny degree for condition ED4 and condition a = −3;

The integers std–route and prf–route correspond to the minimal and pre-
ferred isogeny degree obtained as a set of isogeny degrees using our algorithm.
Thus, concerning curve secp192r1 from SECG the preferred isogeny degree is
prf = 73, while prf–route = 5− 13− 23, which means the composition of three
isogenies of degrees 5, 13 and 23. Notice that the cost of computing this compo-
sition is less than computing an isogeny of degree 73 (Table 2).

Table 2 provides the computing and searching time to find the suitable isogeny
degrees of several SECG curves (those for which the time needed by Smart’s al-
gorithm and isogeny–route’s algorithm are different). Notice that we distinguish

Table 1. Minimal isogeny degrees with respect to ED4 for SECG curves

ED4 �std �std–route �prf �prf–route
secp112r1 1 1 1 1
secp128r1 7 7 7 7
secp160r1 13 13 13 13
secp160r2 19 19 41 19-19
secp192r1 23 5-13 73 5-13-23
secp224r1 1 1 1 1
secp256r1 3 3 11 3-5
secp384r1 19 19 19 19
secp521r1 5 5 5 5

On Avoiding ZVP-Attacks Using Isogeny Volcanoes 275

Table 2. Time for computing minimal isogeny degrees with respect to ED4

Calculation / Search (sec.) �std �std–route �prf �prf–route
secp160r2 18.61 / 18.61 18.61 / 18.61 267.63 / 547.01 41.8 /46.78
secp192r1 44.30 / 51.24 6.01 / 6.99 3474.7 / 4788.15 50.31 / 59.22
secp256r1 0.012 / 0.012 0.012 / 0.012 5.93 / 6.43 0.035 / 0.043

Table 3. Minimal isogeny degrees with respect to ED1+ED4 for SECG curves

ED1+ED4 �std �std–route �prf �prf–route
secp112r1 7 7 - -
secp128r1 7 7 7 7
secp160r1 13 13 13 13
secp160r2 19 19 41 19-23-23
secp192r1 23 13-13 - -
secp224r1 1 1 1 1
secp256r1 3 3 23 5-11
secp384r1 31 31 - -
secp521r1 5 5 5 5

between search time and calculation time, that is, the time necessary to get the
degree of a good isogeny and the time to calculate the isogenous curve when its
degree or its minimal route are known, respectively.

As can be seen in Table 2, we obtain better calculation and search times with
isogeny–route algorithm, specially when searching for a preferred curve. The
obtained speedup even surpasses the value 80 in the search of a preferred and
resistant isogeny of secp192r1.

Moreover, in Table 3 we compare results obtained by Akishta–Takagi concern-
ing isogenous curves and conditions ED1 and ED4 with results obtained using
the isogeny–route algorithm.

As we can see in Table 4, isogeny–route algorithm returns ZVP–resistant
curves with less computational cost. For instance, for the curve secp160r2, Ak-
ishita and Takagi method computes a 41–isogenous curve, whereas the algorithm
proposed computes three isogenies of degrees 19–23–23. Therefore, the time of
calculation, using isogeny–route algorithm, will never be higher than the time
needed using another method, in the worst of cases the results will be equal.

Another advantage of using isogeny–route algorithm is the fact that this algo-
rithm obtains more curves in less time than other methods, and it allows us to do
more restrictive searches without raising the calculation time. In that manner,
we can approach another condition given by Akishita and Takagi, concretely
ED2, without incrementing excessively the degree of the isogenies that we will
need to compute. Using isogeny–route it is possible to treat this condition be-
cause the values keep relatively small, whereas using other method the values
increase until high values.

276 J. Miret et al.

Table 4. Time for computing minimal isogeny degrees with respect to ED1+ED4

Calculation / Search (sec.) � �–route
secp160r2 267.63 / 547.01 91.8 / 146.78
secp192r1 44.30 / 51.24 11.92 / 16.35
secp256r1 97.11 / 145.87 6.07 / 6.45

Table 5. Route and time for computing minimal isogeny degrees with respect to
ED1+ED2+ED4

ED1+ED2+ED4 �std–route time–route
secp112r1 7 0.22
secp128r1 7 0.332
secp160r1 13 4.93
secp160r2 19 16.58
secp192r1 13-13 13.44
secp224r1 3-3 0.06
secp256r1 3 0.02
secp384r1 19-19-19-19 327.93
secp521r1 7-7 8.38

Table 5 contains results to find isogeny curves of given ones by SECG’s list
that fulfill ED1, ED2 and ED4.

The equations of the isogenous curves of these examples have been computed us-
ing -division polynomials [3]. They could also be computed using modular polyno-
mialsΦ	(x, y), which in MAGMA [13] are storeduntil a certain value of [4]. In that
case, the obtained times are quite smaller. Nevertheless, the results of these tables,
comparing the Smart and Akishita-Takagi method with isogeny–route method and
using modular polynomials, maintain the same ratio of efficiency.

6 Conclusions

The use of elliptic curve cryptography in smart cards is not free of Side Channel At-
tacks’ vulnerabilities. To avoid them, Smart gives resistant elliptic curves against
such attacks by taking isogenous curves. Both Smart and Akishita–Takagi [18,2]
use –isogenies to find a curve with same cardinal that does not succumb to ZVP
attack, but they only deal with the isogenies of the initial curve, they do not look
for compositions of isogenies. These curves have the same properties as the initial
one and they are easier to find, because it uses minor ’s.

Due to the use of the algorithm proposed, we can obtain more curves with less
effort and, working with a more extensive pool of elliptic curves, we have more
possibilities of finding a resistant curve in less time. Because of this, we could
deal with all the conditions with respect to the doubling process of a point. This
is possible because proposed algorithm gives us more curves without increasing
degrees of isogenies. Thus, we obtain more secure curves against ZVP attacks.

On Avoiding ZVP-Attacks Using Isogeny Volcanoes 277

References

1. Akishita, T., Takagi, T.: Zero-Value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

2. Akishita, T., Takagi, T.: On the optimal parameter choice for elliptic curve cryp-
tosystems using isogeny. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 346–359. Springer, Heidelberg (2004)

3. Blake, F., Seroussi, G., Smart, N.: Elliptic Curves un Criptography. London Math-
ematical Society Lecture Notes, vol. 256. Cambridge University Press, Cambridge
(1999)

4. Charles, D., Lauter, K.: Computing modular polynomials. Journal of Computation
and Mathematics. London Mathematical Society 8, 195–204 (2005)

5. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

6. Fouquet, M., Morain, F.: Isogeny volcanoes and the SEA algorithm. In: Fieker, C.,
Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 276–291. Springer, Heidelberg
(2002)

7. Galbraith, S.: Constructing isogenies between elliptic curves over finite fields. Jour-
nal of Computational Mathematics 2, 118–138 (1999)

8. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–211. Springer, Heidelberg
(2002)

9. Joye, M.: Elliptic curves and side-channel analysis. ST Journal of System Re-
search 4(1), 283–306 (2003)

10. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography - An algebraic approach. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.)
CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

12. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. PhD thesis,
University of California, Berkeley (1996)

13. Bosma, W., Canon, J.: Handbook of Magma functions. MAGMA Group. Sydney
(2003), http://magam.maths.usyd.edu.au/

14. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

15. Miret, J., Moreno, R., Sadornil, D., Tena, J., Valls, M.: Computing the height of
volcanoes of �–isogenies of elliptic curves over finite fields. Applied Mathematics
and Computation 196(1), 67–76 (2008)

16. Miret, J., Sadornil, D., Tena, J., Tomàs, R., Valls, M.: Isogeny cordillera algorithm
to obtain cryptographically good elliptic curves. In: Australasian Information Se-
curity Workshop: Privacy Enhancing Tecnologies (AISW), CRPIT, vol. 68, pp.
127–131 (2007)

17. Standard for Efficient Cryptography (SECG). SEC2: Recommended Elliptic Curve
Domain Parameters, Version 1.0 (2000), http://www.secg.org/secg docs.htm

18. Smart, N.: An analysis of Goubin’s refined power analysis attack. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 281–290. Springer,
Heidelberg (2003)

19. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris, Ser. I Math.,
Serie A 273, 238–241 (1971)

http://magam.maths.usyd.edu.au/
http://www.secg.org/secg_docs.htm

Security Analysis of DRBG Using HMAC in
NIST SP 800-90

Shoichi Hirose

Graduate School of Engineering, University of Fukui
hrs shch@u-fukui.ac.jp

Abstract. HMAC DRBG is a deterministic random bit generator us-
ing HMAC specified in NIST SP 800-90. The document claims that
HMAC DRBG is a pseudorandom bit generator if HMAC is a pseudoran-
dom function. However, no proof is given in the document. This article
provides a security analysis of HMAC DRBG and confirms the claim.

Keywords: NIST SP 800-90, pseudorandom bit generator, HMAC, pseu-
dorandom function.

1 Introduction

Background. Random bits are indispensable to every cryptographic application.
However, it is not easy to prepare sufficient amount of truly random bits in
general. Thus, most applications use a cryptographic mechanism that is called
a pseudorandom bit generator (PRBG). It stretches a short sequence of random
bits to a long sequence of bits that are indistinguishable from truly random bits
in practice.

HMAC DRBG is a deterministic random bit generator (DRBG) specified in
NIST SP 800-90 [3]. It is claimed in NIST SP 800-90 that HMAC DRBG is a
PRBG if HMAC is a pseudorandom function (PRF). However, no proof is made
public as far as the authors know.

Contribution. This article presents a security analysis of HMAC DRBG. The
result supports the claim in NIST SP 800-90 mentioned above. This article does
not provide new techniques and just uses well-known ones in the analysis. In spite
of this fact, the contribution of this paper is still important since HMAC DRBG
is expected to be widely used in practice.

HMAC DRBG consists of three algorithms. They are instantiate, reseed and
generate algorithms. The instantiate/reseed algorithm is used to produce/refresh
a secret key. The generate algorithm produces a binary sequence from a secret
key given by the instantiate or reseed algorithms. This article gives a proof for the
pseudorandomness of HMAC DRBG on the assumption that the instantiate and
reseed algorithms are ideal. Namely, a secret key given to the generate algorithm
is selected uniformly at random by each of them.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 278–291, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Security Analysis of DRBG Using HMAC in NIST SP 800-90 279

Related Work. NIST SP 800-90 specifies four DRBG mechanisms: Hash DRBG,
HMAC DRBG, CTR DRBG and Dual EC DRBG. Hash DRBG and HMAC DRBG
are based on hash functions. CTR DRBG uses a block cipher in the counter
mode. Dual EC DRBG is based on the elliptic curve discrete logarithm problem.
A security analysis of these DRBGs was presented in [9]. However, the discussion
was quite informal. A security analysis of CTR DRBG was also presented in [7].
Brown and Gjøsteen [6] provided a detailed security analysis of Dual EC DRBG.

There also exist some other approved DRBGs in ANSI X.9.31 [2], ANSI
X.9.62-1998 [1] and FIPS PUB 186-2 [11]. The security of these algorithms was
discussed in [8] and [10].

HMAC was proposed by Bellare, Canetti and Krawczyk [5]. It was proved to
be a PRF on the assumption that the compression function of the underlying
iterated hash function is a PRF with two keying strategies[4]. Actually, HMAC
is used as a PRF in many cryptographic schemes.

Organization. This article is organized as follows. Definitions of a pseudoran-
dom bit generator and a pseudorandom function are given in Sect. 2. A de-
scription of HMAC DRBG is presented in Sect. 3. Results on security analysis of
HMAC DRBG are shown in Sect. 4. Concluding remarks are given in Sect. 5.

2 Preliminaries

Let a
$← A represent that an element a is selected uniformly at random from a

set A.

2.1 A Pseudorandom Bit Generator

Let G be a function such that G : {0, 1}n → {0, 1}l. Let D be a probabilistic
algorithm which outputs 0 or 1 for a given input in {0, 1}l. The goal of D is
to tell whether a given input is G(k) for k selected uniformly at random or it
is selected uniformly at random. The advantage of D against G is defined as
follows:

Advprbg
G (D) =

∣∣∣Pr[D(G(k)) = 1 | k $← {0, 1}n]− Pr[D(s) = 1 | s $← {0, 1}l]
∣∣∣ ,

where the probabilities are taken over the coin tosses by D and the uniform
distributions on {0, 1}n or {0, 1}l. G is called a pseudorandom bit generator
(PRBG) if l > n and Advprbg

G (D) is negligible for any efficient D.

2.2 A Pseudorandom Function

Let H be a keyed function such that H : K×D → R, where K is a key space, D is
a domain, and R is a range. H(k, ·) is denoted by Hk(·). Let A be a probabilistic
algorithm which has oracle access to a function from D to R. The goal of A is
to tell whether the oracle is Hk for k selected uniformly at random or it is a

280 S. Hirose

function selected uniformly at random. A first asks elements in D and obtains
the corresponding elements in R with respect to the function, and then outputs
0 or 1. A makes the queries adaptively: A makes a new query after receiving an
answer to the current query.

Let F be the set of all functions from D to R. The advantage of A for H is
defined as follows:

Advprf
H (A) =

∣∣∣Pr[AHk = 1 | k $← K]− Pr[Aρ = 1 | ρ $← F]
∣∣∣ ,

where the probabilities are taken over the coin tosses by A and the uniform dis-
tributions on K or F . H is called a pseudorandom function (PRF) if Advprf

H (A)
is negligible for any efficient A.

3 HMAC DRBG

HMAC DRBG is a DRBG using HMAC in NIST SP 800-90 [3]. It consists of
three algorithms: an instantiate algorithm, a reseed algorithm and a generate
algorithm. The instantiate algorithm is used to produce a secret key. The reseed
algorithm is used to refresh it. These algorithms are out of the scope of the
article. They also use HMAC to produce the secret keys. However, the security
of the outputs is not based on the secrecy and randomness of the keys given to
HMAC but the data given to HMAC via message input. From this viewpoint,
we may say that they abuse HMAC.

We only assume that the keys produced by the instantiate and reseed algo-
rithms are ideal. Namely, we assume that a secret key given to the generate
algorithm is selected uniformly at random.

The generate algorithm produces a binary sequence for a given secret key. A
description of this algorithm is given in the following part. The instantiate and
reseed algorithms are given in Appendix A for reference.

Notation. HMAC is simply denoted by H . Let n denote the output length of H .
Let null denote an empty sequence. Concatenation of binary sequences x and y
is denoted by x‖y. The symbol ‖ is sometimes omitted.

3.1 Internal State

The internal state of HMAC DRBG includes K ∈ {0, 1}n, V ∈ {0, 1}n, and a
reseed counter d ≥ 1. K and V are assumed to be secret. The reseed counter d
is an integer variable indicating the number of requests for pseudorandom bits
since instantiation or reseeding.

3.2 The Function Update

The function Update is used in the generate algorithm to produce a secret key
(K, V) for the next invocation of the generate algorithm. It is described as
follows.

Security Analysis of DRBG Using HMAC in NIST SP 800-90 281

V K

0x00

K

V

H

H

(a) If adin is an empty sequence

V K

0x00 adin

0x01 adin

K

V

H

H

H

H

(b) If adin is not an empty sequence

Fig. 1. The function Update

Update(K, V , adin):
1. K = H(K, V ‖0x00‖adin)
2. V = H(K, V)
3. If adin = null, then return (K, V)
4. K = H(K, V ‖0x01‖adin)
5. V = H(K, V)
6. Return (K, V)

adin is an optional additional input. Update is shown in Fig. 1.

3.3 The Algorithm Generate

The generate algorithm Generate produces a binary sequence s for given secret
(K, V) and an optional additional input adin. It is described as follows.

Generate(K, V , adin):
1. If d > w, then return an indication that a reseed is required.
2. (K, V) = Update(K, V, adin) if adin �= null
3. tmp = null
4. While |tmp| < do:

(a) V = H(K, V)
(b) tmp = tmp‖V

5. s = the leftmost bits of tmp

282 S. Hirose

V

K

Update
V

K

null

s

H H H

(a) If adin is not given or not supported

V

K

Update
V

K

Update

adin

s

H H H

(b) If adin is given

Fig. 2. The algorithm Generate. The update of the reseed counter d is omitted.

Table 1. The maximum sizes of parameters

parameter maximum size

|adin| 235 bits
� 219 bits

w 248

6. (K, V) = Update(K, V, adin)
7. d = d + 1
8. Return s and (K, V)

The maximum sizes of parameters are given in Table 1. w is called a reseed in-
terval. It represents the total number of requests for pseudorandom bits between
reseeding. If adin is not supported, then the step 6 is executed with adin = null.
Generate is given in Fig. 2.

4 Security Analysis

For simplicity, we assume that is a multiple of n. Thus, the output length of
Generate is +2n. We analyze the security of a generator G : {0, 1}2n → {0, 1}w	

defined as follows:

Security Analysis of DRBG Using HMAC in NIST SP 800-90 283

G(K, V):
1. (K0, V0) = (K, V)
2. s = null
3. for i = 1 to w do

(a) (si, Ki, Vi) = Generate(Ki−1, Vi−1, adini−1)
(b) s = s‖si

(c) Return s

We make adini implicit in the notation of G(K, V), because the analysis given
in the remaining parts does not depend on the value of adini. It depends only
on whether adini = null or not.

4.1 If adin = null

First, notice that we cannot prove the pseudorandomness of G directly from
that of Generate. Generate is not a PRBG if adin = null. Let q = /n and
Generate(K, V) = s1‖s2‖ · · · ‖sq‖K ′‖V ′, where sj ∈ {0, 1}n for 1 ≤ j ≤ q. Then,
V ′ = HK′(sq). Thus, it is easy to distinguish s1‖s2‖ · · · ‖sq‖K ′‖V ′ from a truly
random sequence of length + 2n.

We introduce two generators G01 and G02. G01 : {0, 1}2n → {0, 1}	+2n is
described as follows:

G01(K, V):
1. s = V
2. tmp = null
3. While |tmp| < do:

(a) V = H(K, V)
(b) tmp = tmp‖V

4. s = s‖tmp
5. K = H(K, V ‖0x00)
6. s = s‖K
7. Return s

G02 : {0, 1}2n → {0, 1}	+3n is described as follows:

G02(K, V) :
1. s = V
2. V = H(K, V)
3. s = s‖G01(K, V)
4. Return s

The only difference between G01 and G02 is that G02 calls HMAC more than
G01 by one time.

Let G0 : {0, 1}2n → {0, 1}w(+n)+n be a generator which, for a given (K, V),
produces a sequence{

s1
0s

1
1 · · · s1

q+1 if w = 1
s1
0s

1
1 · · · s1

q−1‖s2
−1s

2
0 · · · s2

q−1‖ · · · ‖sw−1
−1 sw−1

0 · · · sw−1
q−1 ‖sw

−1s
w
0 · · · sw

q+1 if w ≥ 2,

284 S. Hirose

c c
V

K

G01 G02 G02 G02

.
V

K

H H H H

H

H

H

Fig. 3. A diagram of the generator G0. c represents the concatenation with 0x00. The
Update functions are surrounded by dashed rectangles.

where

1. si
j ∈ {0, 1}n,

2. s1
0s

1
1 · · · s1

q+1 = G01(K, V), and
3. si

−1s
i
0s

i
1 · · · si

q+1 = G02(si−1
q+1, s

i−1
q) for 2 ≤ i ≤ w.

A diagram of G0 is given in Fig. 3. Notice that G(K, V) is a part of G0(K, V).
It is obvious if w = 1. For w ≥ 2,

G(K, V)
= s1

1s
1
2 · · · s1

q−1‖s2
−1s

2
1s

2
2 · · · s2

q−1‖ · · · ‖sw−1
−1 sw−1

1 sw−1
2 · · · sw−1

q−1 ‖sw
−1s

w
1 sw

2 · · · sw
q

= s1
1s

1
2 · · · s1

q‖s2
1s

2
2 · · · s2

q‖ · · · ‖sw−1
1 sw−1

2 · · · sw−1
q ‖sw

1 sw
2 · · · sw

q ,

where si+1
−1 = si

q for 1 ≤ i ≤ w − 1. Thus, G is a PRBG if G0 is a PRBG. We
will discuss the security of G0 in the remaining part.

We first show that both G01 and G02 are PRBGs if HMAC is a PRF. For an
algorithm A, let tA be the running time of A.

Lemma 1. Let D be a distinguisher for G01 which runs in tD. Then, there exists
an adversary A for HMAC such that

Advprbg
G01

(D) ≤ Advprf
HMAC(A) +

q(q − 1)
2n+1 .

A runs in tD + O() and asks at most q + 1 queries.

Proof. Let F∗,n be the set of all functions from {0, 1}∗ to {0, 1}n. Let Ĝ01(ρ, ·)
be a generator obtained from G01 by replacing HMAC with a function ρ ∈ F∗,n.
Let

P0 = Pr[D(s) = 1 | (K, V) $← {0, 1}2n ∧ s ← G01(K, V)],

P1 = Pr[D(s) = 1 | ρ $← F∗,n ∧ V
$← {0, 1}n ∧ s ← Ĝ01(ρ, V)],

P2 = Pr[D(s) = 1 | s $← {0, 1}	+2n].

Security Analysis of DRBG Using HMAC in NIST SP 800-90 285

Then,
Advprbg

G (D) = |P0 − P2| ≤ |P0 − P1|+ |P1 − P2| .

Let Ĝ01(ρ, V) = ŝ0ŝ1 · · · ŝq+1, where ŝj ∈ {0, 1}n for 0 ≤ j ≤ q + 1. If

ρ
$← F∗,n, then Ĝ01(ρ, V) and a random sequence of length + 2 n is completely

indistinguishable as far as ŝj1 �= ŝj2 for every j1 and j2 such that 0 ≤ j1 < j2 ≤
q − 1. Notice that ŝj �= ŝq‖0x00 for every 0 ≤ j ≤ q − 1. Thus,

|P1 − P2| ≤
q(q − 1)

2n+1 .

On the other hand, for |P0 − P1|, it is easy to see that we can construct an
adversary A for HMAC, using D as a subroutine, such that

Advprf
HMAC(A) ≥ |P0 − P1|,

where A runs in tD + O() and asks at most q + 1 queries. "#

Lemma 2. Let D be a distinguisher for G02 which runs in tD. Then, there exists
an adversary A such that

Advprbg
G02

(D) ≤ Advprf
HMAC(A) +

q(q + 1)
2n+1 .

A runs in tD + O() and asks at most q + 2 queries.

Proof. The proof is similar to that of Lemma 1. "#

For w ≥ 2, let G
(w−1)
02 be a generator which calls G02 (w− 1) times successively.

Namely,

G
(w−1)
02 (s1

q+1, s
1
q) = s2

−1s
2
0 · · · s2

q−1‖ · · · ‖sw−1
−1 sw−1

0 · · · sw−1
q−1 ‖sw

−1s
w
0 · · · sw

q+1.

Lemma 3. Let D be a distinguisher for G
(w−1)
02 which runs in tD. Then, there

exists a distinguisher D′ of G02 such that

Advprbg
G

(w−1)
02

(D) ≤ (w − 1)Advprbg
G02

(D′).

D′ runs in tD + (w − 2) tG02 + O(w).

Proof. For a given input s ∈ {0, 1}	+3n, the distinguisher D′ behaves as follows:

1. Select 2 ≤ r ≤ w uniformly at random.
2. If r ≥ 3, then select s2−1s

2
0 · · · s2

q−1, . . . , s
r−1
−1 sr−1

0 · · · sr−1
q−1 uniformly at ran-

dom.
3. Let sr−1s

r
0 · · · sr

q+1 = s.
4. If r < w, si−1s

i
0 · · · si

q+1 = G02(si−1
q+1, s

i−1
q) for r + 1 ≤ i ≤ w.

5. Call D with
s = s2−1s

2
0 · · · s2

q−1‖ · · · ‖sw−1
−1 sw−1

0 · · · sw−1
q−1 ‖sw−1s

w
0 · · · sw

q+1.
6. Output D’s output.

286 S. Hirose

Then,

Advprbg
G02

(D′)

=
∣∣∣Pr[D′(G02(K, V)) = 1 | (K, V) $← {0, 1}2n]− Pr[D′(s) = 1 | s $← {0, 1}	+3n]

∣∣∣
=

∣∣∣Pr[D(s) = 1 | (K, V) $← {0, 1}2n ∧ s ← G02(K, V)]
− Pr[D(s) = 1 | s $← {0, 1}	+3n]

∣∣∣ .
Pr[D(s) = 1 | (K, V) $← {0, 1}2n ∧ s ← G02(K, V)]

=
w∑

u=2

Pr[r = u ∧ D(s) = 1 | (K, V) $← {0, 1}2n ∧ s ← G02(K, V)]

=
w∑

u=2

Pr[D(s) = 1 | (K, V) $← {0, 1}2n ∧ s ← G02(K, V) ∧ r = u]
w − 1

=
Pr[D(s) = 1 | (K, V) $← {0, 1}2n ∧ s ← G

(w−1)
02 (K, V)]

w − 1
+

w∑
u=3

Pr[D(s) = 1 | (K, V) $← {0, 1}2n ∧ s ← G02(K, V) ∧ r = u]
w − 1

.

Pr[D(s) = 1 | s $← {0, 1}	+3n] =
w−1∑
u=2

Pr[D(s) = 1 | s $← {0, 1}	+3n ∧ r = u]
w − 1

+
Pr[D(s) = 1 | s $← {0, 1}(w−1)(+n)+2n]

w − 1
.

There may exist a better distinguisher for G02 than D′ with the same running
time. Thus, we have

Advprbg
G02

(D′) ≥ 1
w − 1

Advprbg
G

(w−1)
02

(D).

The running time of D′ is at most tD + (w − 2) tG02 + O(w). "#

Lemma 4. Let D be a distinguisher for G0 which runs in tD. Then, there exist
distinguishers D′ for G01 and D′′ for G

(w−1)
02 such that

Advprbg
G0

(D) ≤ Advprbg
G01

(D′) + Advprbg
G

(w−1)
02

(D′′).

D′ runs in tD + t
G

(w−1)
02

+ O(w), and D′′ runs in tD + O(w).

Proof. Let

P0 = Pr[D(s) = 1 | (K, V) $← {0, 1}2n ∧ s ← G0(K, V)],

P1 = Pr[D(s) = 1 | s1
0 · · · s1

q+1
$← {0, 1}	+2n ∧ s ← s1

0 · · · s1
q−1‖G

(w−1)
02 (s1

q+1, s
1
q)],

P2 = Pr[D(s) = 1 | s $← {0, 1}w(+n)+n].

Security Analysis of DRBG Using HMAC in NIST SP 800-90 287

Then, there exist D′ and D′′ such that

Advprbg
G0

(D) = |P0 − P2| ≤ |P0 − P1|+ |P1 − P2|
≤ Advprbg

G01
(D′) + Advprbg

G
(w−1)
02

(D′′).

The running time of D′ is tD + t
G

(w−1)
02

+ O(w). The running time of D′′ is
tD + O(w). "#

The following theorem directly follows from Lemmas 1, 2, 3 and 4. It implies
that G0 is a PRBG if HMAC is a PRF.

Theorem 1. Let D be a distinguisher for G0 which runs in tD. Then, there
exists an adversary A for HMAC such that

Advprbg
G0

(D) ≤ w Advprf
HMAC(A) +

wq(q + 1)
2n+1 .

A runs in tD + w(q + 2) tHMAC + O(w) and asks at most q + 2 queries, where
the length of each query is at most n + 8.

Remark 1. Suppose that SHA-1 is the underlying hash function of HMAC. Then,
n = 160. Suppose that w = 248 and = 211 × 160 (≤ 219). Then,

Advprbg
G0

(D) ≤ 248 Advprf
HMAC(A) +

1
290 ,

where A runs in time tD +260 tHMAC +O(266.3) and makes at most 2050 queries.
The big-O notation is abused here. O(266.3) is upper bounded by c × 266.3 for
some positive constant c.

Remark 2. Suppose that SHA-256 is the underlying hash function of HMAC.
Then, n = 256. Suppose that w = 248 and = 219. Then,

Advprbg
G0

(D) ≤ 248 Advprf
HMAC(A) +

1
2186 ,

where A runs in time tD + 260tHMAC + O(267) and makes at most 2050 queries.

4.2 If adin �= null

If adin �= null, then the analysis is similar but tedious. We first define several
generators.

Let g10 : {0, 1}2n → {0, 1}2n be a generator such that

g10(K, V) = V ‖H(K, V ‖0x00‖adin).

Let g11 : {0, 1}2n → {0, 1}3n be a generator such that g11(K, V) = s, where s is
obtained as follows:

288 S. Hirose

c0

H

H

H

Hc1 c0 H

g10 g11 g12

Fig. 4. A diagram of the generators g10, g11 and g12. The Update functions are sur-
rounded by dashed rectangles. c0 represents the concatenation with 0x00‖adin, and c1
represents the concatenation with 0x01‖adin.

1. V1 = H(K, V)
2. V2 = H(K, V1‖0x01‖adin)
3. s = V ‖V1‖V2

Let g12 : {0, 1}2n → {0, 1}3n be a generator such that g12(K, V) = s, where s is
obtained as follows:

1. V1 = H(K, V)
2. V2 = H(K, V1‖0x00‖adin)
3. s = V ‖V1‖V2

The generators g10, g11 and g12 are depicted in Fig. 4.
Let G10 : {0, 1}2n → {0, 1}	+3n be a generator equivalent to G02 defined in

the previous subsection.
Using the generators defined above, we further define two generators G11

and G12. G11 : {0, 1}2n → {0, 1}	+4n is described as follows: G11(K, V) =
s−2s−1 · · · sq+1, where

1. V1K1 = g10(K, V)
2. s−2V2K2 = g11(K1, V1)
3. s−1s0 · · · sqsq+1 = G10(K2, V2)

G12 : {0, 1}2n → {0, 1}	+6n is described as follows: G12(K, V) = s−4s−3 · · · sq+1,
where

1. s−4V1K1 = g11(K, V)
2. s−3V2K2 = g12(K1, V1)
3. s−2V3K3 = g11(K2, V2)
4. s−1s0 · · · sqsq+1 = G10(K3, V3)

Now, we are ready to discuss the pseudorandomness of G(K, V). Let G1 :
{0, 1}2n → {0, 1}w(+4n) be a generator which, for a given (K, V), produces a
sequence

{
s1
−2s

1
−1 · · · s1

q+1 if w = 1
s1
−2s

1
−1 · · · s1

q−1‖s2
−4 · · · s2

q−1‖ · · · ‖sw−1
−4 · · · sw−1

q−1 ‖sw
−4 · · · sw

q+1 if w ≥ 2,

Security Analysis of DRBG Using HMAC in NIST SP 800-90 289

where

1. si
j ∈ {0, 1}n,

2. s1
−2s

1
−1 · · · s1

q+1 = G11(K, V), and
3. si−4 · · · si

q+1 = G12(si−1
q+1, s

i−1
q) for 2 ≤ i ≤ w.

Notice that G(K, V) is a part of G1(K, V). It is easy to see if w = 1. For w ≥ 2,

G(K, V)
= s1

1s
1
2 · · · s1

q−1‖s2
−4s

2
1s

2
2 · · · s2

q−1‖ · · · ‖sw−1
−4 sw−1

1 sw−1
2 · · · sw−1

q−1 ‖sw
−4s

w
1 sw

2 · · · sw
q+1

= s1
1s

1
2 · · · s1

q‖s2
1s

2
2 · · · s2

q‖ · · · ‖sw−1
1 sw−1

2 · · · sw−1
q ‖sw

1 sw
2 · · · sw

q ,

where si+1
−4 = si

q for 1 ≤ i ≤ w−1. Thus, we discuss the pseudorandomness of G1
in the remaining part. We only present the results since the proofs are similar.

Lemma 5. Let D be a distinguisher for g10 which runs in tD. Then, there exists
an adversary A for HMAC such that

Advprbg
g10

(D) ≤ Advprf
HMAC(A).

A runs in tD + O(n) and asks 1 query.

Lemma 6. Let g be g11 or g12. Let D be a distinguisher for g which runs in tD.
Then, there exists an adversary A for HMAC such that

Advprbg
g (D) ≤ Advprf

HMAC(A).

A runs in tD + O(n) and asks at most 2 queries.

Lemma 7. Let D be a distinguisher for G11 which runs in tD. Then, there exist
D0, D1 and D′ such that

Advprbg
G11

(D) ≤ Advprbg
g10

(D0) + Advprbg
g11

(D1) + Advprbg
G10

(D′).

D0 runs in tD + tg11 + tG10 + O(n). D1 runs in tD + tG10 + O(n). D′ runs in
tD + O(n).

Lemma 8. Let D be a distinguisher for G12 which runs in tD. Then, there exist
D1, D2 and D′ such that

Advprbg
G12

(D) ≤ 2 Advprbg
g11

(D1) + Advprbg
g12

(D2) + Advprbg
G10

(D′).

D1 runs in tD + tg11 + tg12 + tG10 + O(n). D2 runs in tD + tg11 + tG10 + O(n).
D′ runs in tD + O(n).

The following theorem directly follows from Lemmas 5, 6, 7 and 8. It implies
that G1 is a PRBG if HMAC is a pseudorandom function.

Theorem 2. Let D be a distinguisher for G1 which runs in tD. Then, there
exist adversaries A1 and A2 such that

Advprbg
G1

(D) ≤ w Advprf
HMAC(A1) + 3 w Advprf

HMAC(A2) +
wq(q − 1)

2n+1 .

A1 runs in tD + w(q + 8) tHMAC + O(w) and asks at most q + 1 queries, and
A2 runs in tD + (w + 1)(q + 8) tHMAC + O(w) and asks at most 2 queries.

290 S. Hirose

5 Conclusion

We have shown that the binary sequence generation algorithm of HMAC DRBG
is a PRBG if HMAC is a PRF. Future work includes analysis of the instantiate
and reseed algorithms of HMAC DRBG.

Acknowledgements

The author would like to thank anonymous reviewers for their valuable com-
ments. This research was supported in part by the National Institute of Infor-
mation and Communications Technology, Japan.

References

1. American National Standards Institute. Public key cryptography for the financial
services industry: The elliptic curve digital signature algorithm (ECDSA). ANSI
X9.62-1998 (1998)

2. American National Standards Institute. Digital signatures using reversible public
key cryptography for the financial services industry (rDSA). ANSI X9.31-1998
(1998)

3. Barker, E., Kelsey, J.: Recommendation for random number generation using deter-
ministic random bit generators (revised). NIST Special Publication 800-90 (2007)

4. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006),
http://eprint.iacr.org/

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

6. Brown, D.R., Gjøsteen, K.: A security analysis of the NIST SP 800-90 elliptic curve
random number generator. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 466–481. Springer, Heidelberg (2007)

7. Campagna, M.J.: Security bounds for the NIST codebook-based deterministic ran-
dom bit generator. Cryptology ePrint Archive: Report 2006/379,
http://eprint.iacr.org/

8. Desai, A., Hevia, A., Yin, Y.L.: A practice-oriented treatment of pseudorandom
number generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 368–383. Springer, Heidelberg (2002)

9. Kan, W.: Analysis of underlying assumptions in NIST DRBGs. Cryptology ePrint
Archive: Report 2007/345, http://eprint.iacr.org/

10. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Cryptanalytic attacks on pseudoran-
dom number generators. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp.
168–188. Springer, Heidelberg (1998)

11. U.S. Department of Commerce/National Institute of Standards and Technology.
Digital signature standard (DSS). Federal Information Processing Standards Pub-
lication 186-2 (+Change Notice) (2000)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Security Analysis of DRBG Using HMAC in NIST SP 800-90 291

A The Instantiate and Reseed Algorithms of
HMAC DRBG

The internal state of HMAC DRBG includes K ∈ {0, 1}n, V ∈ {0, 1}n, and
a reseed counter d. data is the entropy source. adin is an optional additional
input.

The Instantiate Algorithm. The instantiate algorithm Instantiate is described as
follows:

Instantiate(data, nonce, adin):
1. seed = data‖nonce‖adin
2. K = 0x0000 · · ·00
3. V = 0x0101 · · ·01
4. (K, V) = Update(seed, K, V)
5. d = 1
6. Return (K, V) and d.

If adin is not supported, then the first step of the procedure is replaced by

seed = data‖nonce.

The Reseed Algorithm. The reseed algorithm Reseed is described as follows:

Reseed(K, V, d, data, adin):
1. seed = data‖adin
2. (K, V) = Update(seed, K, V)
3. d = 1
4. Return (K, V) and d.

The input (K, V) to Reseed is given by the latest Generate. If adin is not sup-
ported, then the first step of the procedure is replaced by

seed = data.

Compact Implementation of SHA-1 Hash
Function for Mobile Trusted Module

Mooseop Kim1, Jaecheol Ryou2, and Sungik Jun1

1 Electronics and Telecommunications Research Institute (ETRI)
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, South Korea

gomskim@etri.re.kr
2 Division of Electrical and Computer Engineering, Chungnam National University

220 Gung-dong, Yuseong-gu, Daejeon, 305-764, South Korea
jcryou@home.cnu.ac.kr

Abstract. We present a compact SHA-1 hardware architecture suitable
for the Mobile Trusted Module (MTM) that requires low-area and low-
power characteristics. The built-in SHA-1 engine in MTM is one of the
most important circuit blocks and contributes the performance of the
whole platform because it is used as key primitives supporting platform
integrity and command authentication. Unlike personal computers, mo-
bile platform have very stringent limitations with respect to available
power, physical circuit area, and cost. Therefore special architecture and
design methods for a compact SHA-1 hardware module are required. Our
SHA-1 hardware can compute 512-bit data block using 6,812 gates on a
0.25µm CMOS process. The highest operation frequency and throughput
of the proposed architecture are 114MHz and 164Mbps, which satisfies
processing requirement for the mobile application.

1 Introduction

Mobile Trusted Module (MTM) [1] guarantees the integrity of the mobile plat-
form and is a new requirement in the process where the mobile device changes
into the open platform and value-based application technology. TMP improves
the reliability and security of a device using Trusted Platform Module (TPM),
which ensures that the device is running authorized software and hardware. The
TPM is a microcontroller-based on an industry standard specification issued
by the Trusted Computing Group (TCG). It provides cryptographic functions
and is able to store environmental hash values securely in so called Platform
Configuration Registers (PCRs).

The built-in SHA-1 engine in MTM is used as a key primitive supporting in-
tegrity verification and used in the most of commands for authentication in the
MTM. Most mobile devices do not require a very high data processing speed.
For example, when cellular wireless network technology migrates from 2.5G to
3G, only the data rate is increased from 144kbps to 2Mbps. Also, data rate
of Bluetooth, which is one of the wireless Personal Area Network(PAN), is only

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 292–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Compact Implementation of SHA-1 Hash Function for MTM 293

10Mbps maximum. However, when security function is added, considerable com-
puting power is demanded to the microprocessor of a handheld device. For ex-
ample, the processing requirements for SHA-1 at 10Mbps are 115.4 MIPS [2]. In
comparison, a state-of-the art handset processors, such as MPC860 and ARM7
are capable of delivering up to 106MIPS and 130MIPS, respectively [3, 4]. The
above data indicates a clear disparity between security processing requirements
and available processor capabilities, even when assuming that the handset pro-
cessor is fully dedicated to security processing. In reality, the handset processor
also needs to execute the operating system, and application software, which by
themselves represent a significant processing workload.

Unlike personal computers, mobile devices have strict environment in power
consumption, in battery life and in available circuit area. Among these limita-
tions, the power consumption is the major issue in the design of cryptographic
circuits for mobile platforms. For battery-powered systems, the energy drawn
from the battery directly influences the systems battery life, and, consequently,
the duration and extent of its mobility, and its overall utility. In general, battery-
driven systems operate under stringent constraint especially in limited power.
The power limitation is more worsen when the mobile device is subject to the
demand of security operations. By the estimates of [5], running security appli-
cations on a battery-powered device can decrease battery life by as much as half
or more.

Therefore, design methodologies at different abstraction levels, such as sys-
tems, architectures, logic design, basic cells, as well as layout, must take into
account to design of a low-cost SHA-1 module for trusted mobile platform.

In this paper, we introduce an efficient hardware architecture of low-cost
SHA-1 algorithm for trusted mobile platforms. As a result, a compact SHA-1
hardware implementation capable of supporting the integrity check and com-
mand authentication of trusted mobile platforms was developed and evaluated.

The rest of this paper is constructed as follows. Section 2 describes a brief
overview of SHA-1 algorithm and a short summary of some previous works.
Section 3 describes the architecture of our SHA-1 circuits and corresponding im-
plementation options. The implementation result is summarized and compared
with other SHA-1 implementation in section 4. Finally, in section 5, we conclude
this work.

2 SHA-1 Algorithm and Previous Works

2.1 SHA-1 Algorithm

SHA-1 is a technical revision of the Secure Hash Algorithm (SHA), and issued
by NIST as FIPS PUB 180-1 in 1995. The SHA-1 algorithm [6] takes a message
of length less than 264 bits and produces a final message digest of 160 bits. The
message digest is dependent of the input message, composed by multiple blocks
of 512 bits each. The data block is fed to the 80 rounds of the SHA-1 Hash
function in words of 32 bits, denoted by Wt.

294 M. Kim, J. Ryou, and S. Jun

Fig. 1. Block Diagram of the SHA-1 algorithm

The first operation of SHA-1 computation is a message padding. The purpose
of the message padding is to make the total length of a padded message congruent
to 448 modulo 512 (length = 448 mod 512). Padding is always added, even if
the message is already of the desired length. Thus, the number of padding bits
should be in the range of 1 to 512. Padding consists of a single 1-bit followed by
the necessary number of 0-bits. A 64 bits binary representation of the length of
the original message is appended to the end of the message.

A 160-bit buffer is used to store intermediate and final results of the message
digest for SHA-1 function. The buffer can be represented as five 32-bit registers
(A, B, C, D and E).

The heart of the SHA-1 algorithm is a module that consists of four rounds
of processing of 20 steps each. As shown in Fig. 1, four rounds have a similar
structure, but each uses a different primitive logical function, which we refer to
as f1, f2, f3, and f4.

Each round takes as input the current 512-bit message block being processed
and the 160-bit buffer value (A, B, C, D and E), and then updates the contents of
the buffer. Each round also makes use of an additive constant Kt represents the
32-bit constant that also depends on the round. The output of the fourth round
(eightieth step) is added to the input of the first round to produce a new 160-bit
buffer value for the next 512-bit block calculation. After all 512-bit blocks have
been processed, the output of the last block is the 160-bit message digest.

2.2 Previous Works

After the ratification of SHA-1 in 1995, numerous ASIC [7,8,9] and FPGA [10,11,
12, 13, 14, 15, 16] implementations of SHA-1 algorithm were previously proposed
and evaluated. Major design differences among them lie in the trade-off between
area and speed. Most of these implementations feature high speeds and high
costs suitable for high-performance usages such as WTLS, IPSec and so on.

Early SHA-1 design were mostly straightforward implementations of vari-
ous loop rolling architectures with limited number of architectural optimization.
S.Dominikus [8] used loop rolling technique in order to reduce area requirement.

Compact Implementation of SHA-1 Hash Function for MTM 295

He proposed an architecture uses only 4 operation blocks, one for each round.
Using a temporal register and a counter, each operation block is reused for 20
iterations. G.Selimis [12] applied the reuse technique of [8] to the non-linear
function of SHA-1 algorithm. He modified the operation block to include the
four non-linear functions. These architecture use a feedback structure where the
data are iteratively transformed by the round functions.

Another architecture of the SHA-1 implementation is based on the use of
four pipeline stages [16]. This method exploits the characteristics of the SHA-1
algorithm that requires a different non-linear function for each round. The main
advantage of this architecture is that it increases the parallelism of SHA-1 algo-
rithm, which should have a positive effect on throughput. But this approach re-
quires large area, since this method duplicates hardware for implementing each
round.

Unfortunately, most of these implementations have been designed aiming only
at large message and high speed operation, with no power consumption taken
into considerations.

3 Architecture Design of SHA-1 Algorithm

For our SHA-1 implementation, we assume that one 512-bit data block of pre-
processed by microprocessor is stored in memory and available to our SHA-1
circuit for reading and writing. The first step for our low power circuit design
was to find a minimal architecture. Fig. 2 shows main components and their
interactions in our SHA-1 design: interface block, message schedule, message
compression and controller.

The IO Interface block in Fig. 2 is responsible for converting 8-bit data applied
to an input into 32-bit ones and vice versa when it outputs the result. It also

Message
Schedule

Controller

Message
Compression

Shift registers

Adder & Logics

SHA-1 CORE

I/O Interface

System Bus

System writes and reads
data through system bus

SHA CORE
reads data

SHA CORE
writes final results

Memory

Fig. 2. Outline of SHA-1 circuit block

296 M. Kim, J. Ryou, and S. Jun

performs padding operation about the transformed data to generate the padded
512-bit block required by the algorithm. We use 32-bit data bus for efficient
design of our SHA-1 circuit. It is not a good idea to make the bus width smaller
than 32-bits, because all operation of SHA-1 algorithm and variables need 32
bits of data at one time. A smaller bus may requires less registers, but it uses
more data selectors and resource sharing is hindered, resulting in an inefficient
implementation.

The controller is used to generate signal sequences to check an input signal
sequence or to control datapath parts. The basic structure of controller is state
register and two logic blocks. The input logic block computes the next state as
a function of current state and of the new sets of input signals. The output logic
block generates the control signals for datapath using the function signals of the
current states. The power can be consumed in the logic blocks or in the clock
distribution to the flip-flops of the state register.

The efficiency of the SHA-1 hardware in terms of circuit area, power consump-
tion and throughput is mainly determined by the structure of message schedule
and message compression blocks. For a compact architecture, we use a folded
architecture to design the message schedule and message compression blocks.
The folded architecture, based on a rolling architecture, executes one round over
several clocks to reduce hardware resource. The most important advantage of
folded architecture over previous works is that it can dramatically reduce the
number of adder in message compression block and the number of register in
message schedule block.

Our architecture needs just one adder to compute the round operation of the
SHA-1 algorithm. Adders are the most spacious part of a message compression
block. We use only one 32-bit register for computation of message schedule, while
previous woks require 16 32-bit registers. The number of adders and registers
determines the overall size of a SHA-1 hardware circuit. Thus, using an efficient
approach for implementing both message compression and message schedule are
crucial for SHA-1 hardware.

In the following paragraphs, the method presented by this paper to reduce
the area of message compression and message schedule is explained in detail.

3.1 Design of Message Compression

The message compression block performs actual hashing. In each step, it pro-
cesses a 32-bit data Wt, which is generated by the message schedule block.

SHA-1 algorithm uses five 32-bit variables (A, B, C, D, and E) to store new
values in each round operation. It can be easily seen from [6] that four out of the
five values are shifted by one position down in each round and only determining
the new value for A requires computation. As shown in Fig. 1, the computation
for A requires two circular right shifting and four operand addition modulo 232

where the operands depend on all input values, the round constant Kt, and
current message value Wt.

Fig. 3 shows in detail the architecture of message compression presented by
this paper. Our architecture’s characteristics are as follows. First, we use a five

Compact Implementation of SHA-1 Hash Function for MTM 297

Wt

A B
C D

M
X

3

<<30

MX2

E

Ft

MX1

KH

<<5

adder

Fig. 3. Proposed architecture of message compression block

stage 32-bit shift registers because four out of the five values(B, C, D, and E)
are shifted by one position down in each round.

Second, the number of adder used in the message compression is one for all
the round computation. For iterative computation of value A, register E is used
for the saving of the temporary addition values. Therefore, four clock cycles are
required to compute one round operation as summarized follows:

– Step 1: Execute addition of register E and Kt; write result to the register E
– Step 2: Execute addition of register E and ROTLEFT5(A);

write result to the register E
– Step 3: Execute addition of register E and Wt; write result to the register E
– Step 4: Execute addition of register E and F (B, C, D);

write result to the register A;
shift down by one position of A, B, C and D;

At first, all registers are initialized and multiplexers choose path zero to load
initialization constant(H0 ∼ H4) stored in KH. Five clock cycles are required to
load initial values to each register. For optimized power consumption, we applied
gated clock to all registers in data compression.

The F-function(Ft) in Fig. 3 is a sequence of logical functions. For t-th round,
Ft operates on three 32-bit data (B, C, and D) and produces a 32-bit output
word. The operation of F-function is shown in equation 1.

F (B, C, D) =

⎧⎪⎪⎨
⎪⎪⎩

(B ∧ C)⊕ (B̄ ∧D) 0 ≤ t ≤ 19
B ⊕ C ⊕D 20 ≤ t ≤ 39
(B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 40 ≤ t ≤ 59
B ⊕ C ⊕D 60 ≤ t ≤ 79

(1)

298 M. Kim, J. Ryou, and S. Jun

During the final round operation, the values of the working variables have to
be added to the digest of the previous message block, or specific initial values
for the first message block. This can be done very efficiently with an additional
multiplexer and the five stage shift registers for working variables.

KH in Fig. 3 stores initial values Hi and round constant Kt. It also stores
updated Hi values, which is used as the initial values for next 512-bit data block
computing. Computing the final hash value for one input message block takes
five clock cycles.

3.2 Design of Message Schedule

Another important part of SHA-1 data path is a message schedule block. This
block generates message dependant words, Wt, for each round of the message com-
pression. The message schedule block is the most expensive part of SHA-1 in terms
of hardware resources. Therefore, its implementation is a critical part in the de-
sign of a compact design of SHA-1 circuit. As shown in Fig.1, conventional mes-
sage schedule block is usually implemented using 16 stage 32-bit shift registers for
512-bit data block processing. However, this method is inefficient to use in mobile
platforms because it requires a significant amount of circuit area. This method also
reduces the energy efficiency significantly.

Our message schedule block performs the function of the equation 2, where ⊕
means bitwise XOR and M

(i)
t denotes the first sixteen 32-bit data of i-th data

block.

Wt =
{

M
(i)
t 0 ≤ t ≤ 15

ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) 16 ≤ t ≤ 79
(2)

It can be easily seen from equation 2 that the input message stored in the
memory is used just the first 16 round computations. In this methods, the mem-
ory is not used any more after 16 round calculations. From the viewpoint of
resource efficiency, this method is inefficient and wastes too many hardware
resource.

For a compact design, we propose an optimized architecture of message sched-
ule, which enhances the resource sharing of the memory. Our approach uses only
one 32-bit register(reg w) and data selector to implement message schedule in
the SAH-1 circuit. The reg w is used to store temporary values during compu-
tation of the new Wt. The detailed structure and functional steps of proposed
message schedule are shown in Fig. 4 and table 1 respectively.

The iterative functional steps of logic units for the proposed message schedule
block are summarized in table 1. Four values of memory data have to be read for
the calculation of Wt and the result is written back to memory in each round.
This job takes 4 clock cycles. Message schedule could be calculated simultane-
ously during message compression, which consumes 4 clock cycles. Therefore,
no additional clock cycle is required for the computation of Wt in the message
schedule. The result of the new Wt, completed on the 4th clock, is used for
current round of message compression and is stored in memory for following

Compact Implementation of SHA-1 Hash Function for MTM 299

M
X

1

Wt

<<1

reg_w

M
X

2

Mem

Mi

din

Fig. 4. Proposed architecture of message schedule block

Table 1. Functional steps for message schedule block

Operation of circuit blocks
Round(i) Step mem.out mx1.out reg w.out mx2.out
0 ∼ 15 1 Mi x x Mi

16 ∼ 79

s1 Mi−16 Mi−16 Mi−16 x
s2 Mi−14 reg w ⊕Mi−14 Mi−16 ⊕ Mi−14 x
s3 Mi−8 reg w ⊕Mi−8 Mi−16 ⊕ Mi−14 ⊕ Mi−8 x
s4 Mi−3 reg w ⊕Mi−3 Mi−16 ⊕ Mi−14 ⊕ Mi−8 ⊕ Mi−3 � 1(reg w)

round calculation of Wt. Dedicated hard wired logic is used for computation of
necessary address.

The memory in Fig. 4 is register-based and single port 512-bit memory that
is installed by using standard logic cells. In order to minimize the power con-
sumption, the internal registers of memory are disabled when they are not being
used, thus reducing the amount of unwanted switching activity. Additional mul-
tiplexer is used to select input data between initial input message and new word
data Wt.

3.3 Design of Software Interface

The software interface of the SHA-1 hardware module is composed of the hard-
ware interface, device driver and application program.

The hardware interface provides the communication between the application
and device driver. It delivers the requirement generated in an application to
the device driver. The application interface receives the requirements of an ap-
plication. The device driver receives an allocation about DMA and Memory
Mapped I/O and registers the drivers on the kernel for data transmission with
applications.

If an interrupt informing the data arrival is generated at hardware, device
driver accesses the register of the designated hardware and saves the data in the
session buffer. Then, application access the session buffer and reads correspond-
ing data.

300 M. Kim, J. Ryou, and S. Jun

4 Implementation Results and Comparison

4.1 Synthesis Results

The described architectures in our design were first described in VHDL, and ver-
ified through functional simulation using Active HDL, from Aldec Inc. In order
to evaluate the proposed SHA-1 design, we used the Synopsys synthesize flows on
a Sun Solaris platform. The target technology library is the Samsung Electronics
STD110, featuring 0.25µm CMOS standard process and 2.5V core voltage. Af-
ter synthesis, Synopsys Power Compiler was used to calculate the overall power
dissipation of our design. Although the maximum operating frequency obtained
using timing analysis is 114 MHz, we use 25 MHz as the operating frequency to
evaluate the consuming power of our circuit because the system clock of most
mobile phones is about 20 MHz.

The activity of the netlist was estimated for various test messages so that it
could be considered as reasonable values. We would like to emphasize that our
design is on the algorithmic and architectural level. Implementing our designs
using an low power ASIC library or a full custom design will enable higher power
savings.

Table 2 shows the circuit area and power estimation quantities of our design
based on the logic blocks. The proposed SHA-1 design(including interface and
memory) consumes an area of 6,812 gates and needs 355 clock cycles(includes
data input and output cycles) to compute the hash of 512 bits of data. The total
power consumption at 25 MHz is about 2.96 mW.

We present the comparison of the proposed design with some previous works
for SHA-1 implementation in table 3. It can easily be seen from table 3 that our
implementation uses minimum hardware resources than the design of [7, 8, 9,
13]. Also, our architecture satisfies the processing speed requirement for general
handheld devices.

Table 2. Logic blocks, complexity, and power consumptions from Samsung 0.25 µm
CMOS process

Logic block
Circuit area Power consumption

gates percentage mW@25MHz percentage
Interface 468 6.8 0.054 1.8
memory 3,434 50.4 0.895 30.2
message schedule 314 4.6 0.17 5.7
controller 350 5.1 0.228 7.7
reg a∼e 876 12.9 0.336 11.3
adder 200 3 0.514 17.4
message compression 1,170 17.2 0.764 25.9

Total 6,812 100% 2.961 100%

Compact Implementation of SHA-1 Hash Function for MTM 301

Table 3. Comparison with previous works of SHA-1 implementation

Reference Platform Hardware Frequency clock Throughput
size (MHz) cycles (Mbps)

This work 0.25µm ASIC 6,812 gates 114 355 164
xc2v3000 735 slices 65.3 94.6

[7] 0.25µm ASIC 20,536 gates 143 893

[8]
0.6µm ASIC 10,900 + RAM 59

255
119

xcv300E 2,008 slices 42.9 86
[9] 0.18µm ASIC 20,000 gates 166 81 1,000
[13] xc2v3000 1,550 slices 38.6 22 899.8

4.2 System Level Test

There exist several commercial TPM chips implementing SHA-1 algorithm [18,
19]. It is difficult to directly compare these chips with our architecture because
those commercial chips dose not open the system level computing time.

To evaluate actual performance of our design, we designed evaluation system
shown in Fig. 5. We used two Xilinx’s Virtex2-pro xc2vp20 FPGA chips(FPGA1
& FPGA2) for fast development and easy test. FPGA1 contains microproces-
sor, dedicated program memory, and dedicated RAM. As a microprocessor, we
used EISC3208H core module from ADchip Corp. The user program and test

EISC

Processor
Memory

0x30000DF8

0x30000D50

0x30000D8C

0x30000D90

control

data_0

data_1
5

out_0

0x30000DA0 out_4User Program

using SHA-1

Device Driver for

catching crypto module events

I/O Bus

Bridge

AHB Bus

I/O Bus Interface

SHA-1 Module

I/O Buffer

FPGA2

FPGA1

ESFP

EISC
Studio

Memory Mapped I/O

Fig. 5. Evaluating system block diagram

302 M. Kim, J. Ryou, and S. Jun

Table 4. Comparison with commercial TPM chip based on system level SHA-1 com-
putations

Reference Operating Freq. data length Computing time
software only 20MHz 1M-bits <3.02 sec
SSX35A [18] 33MHz 1M-bits <258 ms
This work 20MHz 1M-bits <106 ms

code are developed in the EISC Studio at the desktop and downloaded to the
microprocessor through EISC Serial Flash Programmer (ESFP).

FPGA2 is used for dedicated cryptographic modules. The developed SHA-1
module is downloaded into FPGA2 and connected to an AHB slave bus system.
Polling was used to ensure reliable communications between microprocessor and
SHA-1 core. The microprocessor signals the SHA-1 core to start after it fills the
input message and polls the FPGA2 to find out that the corresponding operation
is finished. Then, the microprocessor fills the message into the memory of SHA-1
core again.

Table 4 presents the comparison result of our design with the most repre-
sentative TPM chip [18] having the same functionality. Although the operating
frequency of the proposed implementation is lower than that of [18], the com-
puting time of 1M-bit message by the proposed SHA-1 circuit on the system level
is faster than that of commercial TPM chip [18] designed for desktop computers.

5 Conclusions

This paper presents a compact architecture for low-cost SHA-1 hardware. The
presented architecture is a highly effective architecture that can implement the
message compression and message schedule in SHA-1 algorithm with a minimum
resource usage. The presented architecture has a chip area of 6,812 gates and
has a current consumption of 2.96mW at a frequency of 25MHz. The proposed
design requires less than 355 clock cycles to compute the message digest of 512
bits of data.

Compared to the other academic implementations and some commercial TPM
chips supporting SHA-1 hardware module, the proposed design demonstrated the
smallest area in terms of logic gates. Furthermore, according to the implemen-
tation result of system level test, the computation speed of the proposed design
is at least 270% faster than that of commercial TPM chip supporting SHA-1
circuit, while using lower operating frequency.

The results of power consumption, throughput, and functionality make our
SHA-1 cryptographic hardware suitable for trusted mobile computing and other
low-end embedded systems that urge for high-performance and small-sized
solutions.

Compact Implementation of SHA-1 Hash Function for MTM 303

Acknowledgements

This work was supported by the IT R&D program of the Ministry of Knowl-
edge Economy, Korea. [2006-S-041-02, “Development of a common security core
module for supporting secure and trusted service in the next generation mobile
terminals”]

The second author of this research was supported by the Ministry of Knowl-
edge Economy, Korea, under the ITRC(Information Technology Research Cen-
ter) support program supervised by the IITA(Institute of Information Technol-
ogy Advancement) (IITA-2008-C1090-0801-0016) .

References

1. Trusted Mobile Platform NTT DoCoMo, IBM, Intel, Trusted Mobile Platform:
Hardware Architecture Description Rev1.0, Trusted Computing Group (2004)

2. Ravi, S., Raghunathan, A., Porlapally, N.: Securing wireless data: system archi-
tecture challenges. In: Proccedings of the 15th International Symposium on System
Synthesis, pp. 195–200 (2002)

3. MPC860 Product Summary,
http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=MPC860

4. ARM7 Product Summary,
http://www.arm.com/products/CPUs/families/ARM7family.html

5. Raghunathan, A., Ravi, S., Hattangady, S., Quisquater, J.: Securing Mobile Ap-
pliances: New Challenges for the System Designer. In: Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, DATE 2003 (2003)

6. NIST: Secure Hash Standard FIPS-Pub 180-1, National Institute of Standard and
Technology (1995)

7. Ming-yan, Y., Tong, Z., Jin-xiang, W., Yi-zheng, Y.: An Efficient ASIC Implemen-
tation of SHA-1 Engine for TPM. In: IEEE Asian-Pacific Conference on Circuits
and Systems, pp. 873–876 (2004)

8. Dominikus, S.: A Hardware Implementation of MD4-Family Hash Algorithms. In:
IEEE International Conference on Electronic Circuits and Systems, vol. 3, pp.
1143–1146 (2002)

9. Helion IP Core Products, Helion Technology,
http://www.heliontech.com/core.htm/

10. Zibin, D., Ning, Z.: FPGA Implementation of SHA-1 Algorithm. In: 5th IEEE
International conference on ASIC, pp. 1321–1324 (2003)

11. Michail, M.K., Kakarountas, A.P., Milidonis, A., Goutis, C.E.: Efficient Implemen-
tation of the Keyed-Hash Message Authentication Code (HMAC) using the SHA-1
Hash Function. In: 11th IEEE International Conference on Electronics, Circuits
and Systems, pp. 567–570 (2004)

12. Selimis, G., Sklavos, N., Koufopavlou, O.: VLSI Implementation of the Keyed-
HASH Message Authentication Code for the Wireless Application Protocol. In:
10th IEEE International Conference on Electronics, Circuits and Systems, pp. 24–
27 (2003)

13. Diez, J.M., et al.: HASH Algorithms for Cryptographic Protocols: FPGA Imple-
mentations. In: 10th Telecommunication Forum, TELEFOR 2002 (2002)

14. Kang, Y.-k., et al.: An Efficient Implementation of Hash Function processor for
IPSec. In: IEEE Asia-Pacific Conference on ASIC, pp. 93–96 (2002)

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC860
http://www.arm.com/products/CPUs/families/ARM7family.html
http://www.heliontech.com/core.htm/

304 M. Kim, J. Ryou, and S. Jun

15. Michail, H.E., Kakarountas, A.P., Selimis, G.N., Goutis, C.E.: Optimiizing SHA-1
Hash Function for High Throughput with a Partial Unrolling Study. In: Paliouras,
V., Vounckx, J., Verkest, D. (eds.) PATMOS 2005. LNCS, vol. 3728, pp. 591–600.
Springer, Heidelberg (2005)

16. Sklavos, N., Dimitroulakos, G., Koufopavlou, O.: An Ultra High Speed Architecture
for VLSI Implementation of Hash Functions. In: Proc. Of ICECS, pp. 990–993
(2003)

17. Huang, A.L., Penzhorn, W.T.: Cryptographic Hash Functions and Low-Power
Techniques for Embedded Hardware. In: IEEE ISIE 2005, pp. 1789–1794 (2005)

18. SSX35A, Sinosun (2005),
https://www.trustedcomputinggroup.org/ShowcaseApp/sh catalog files//
SSX35%20Mar.05.pdf#search=%22SSX35A

19. AT97SC3203 Advance Information Summary, Atmel corp. (2005),
http://www.atmel.com/dyn/products/product card.asp?part id=3736

https://www.trustedcomputinggroup.org/ShowcaseApp/sh_catalog_files//SSX35%20Mar.05.pdf#search=%22SSX35A
https://www.trustedcomputinggroup.org/ShowcaseApp/sh_catalog_files//SSX35%20Mar.05.pdf#search=%22SSX35A
 http://www.atmel.com/dyn/products/product_card.asp?part_id=3736

An Improved Distributed Key Management
Scheme in Wireless Sensor Networks

Jun Zhou and Mingxing He

School of Mathematics and Computer Engineering, Xihua University,
Chengdu, China, 610039

xxyyxw@hotmail.com, he mingxing64@yahoo.com.cn

Abstract. A distributed key management scheme and the robust conti-
nuity of group key establishment are realized in this paper. This scheme
derives the concept of seed members who are responsible for the manage-
ment of users’ joining and revocation operations by using secret sharing
techniques and Modified Blom’s symmetric key establishment mecha-
nism. Besides, a novel seed member alternation mechanism which can
efficiently resist of node capture attacks and revocation attacks leaves
the resources much more balanced among the sensor nodes to prolong
the lifetime of WSNs. Finally, The key continuity enables all the sensors
to establish and update both of the pair-wise key and group key with the
same key pre-distribution information, which significantly decreases the
resource consuming of key management in distributed sensor networks.
By comparison, this scheme outperforms most of the existing schemes in
terms of network security, key connectivity and complexity of storage as
well as communication.

Keywords: Key management, Distributed wireless sensor networks,
Secret sharing, Continuity.

1 Introduction

Wireless sensor networks is widely used in fields of education, military, medicine,
transportation and environment monitoring. In order to provide the secure com-
munication in wireless sensor networks, key management is significantly essential.
However, several conventional key management technologies cannot be applied
directly because of the limitation of resources possessed by the sensor nodes such
as storage, communication and computation. Consequently it has attracted a se-
ries of attention and research all over the world[1][2]. Key management in WSNs
can be classified into pair-wise key management and group key management. In
pair-wise key management schemes[4− 8], each pair of communication nodes is
able to establish a secure link by encrypting and decrypting the messages us-
ing the shared pair-wise key. While group key management schemes[14][15] can
also be further classified into central topology adaptive schemes and the dis-
tributed topology adaptive ones. In the former, each legitimate node can use the
pre-distributed information combined with what they acquired in the broadcast

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 305–319, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

306 J. Zhou and M. He

messages transmitted by the group manager to calculate the same group key.
While in the latter, peer nodes can take advantage of the contributory informa-
tion transmitted among themselves to negotiate a shared group key.

Based on the characteristics of WSNs, a reliable key management scheme
is also responsible for discovering and revoking the compromised nodes timely.
Recently, the key updating scheme with the assistance of TTP proposed by Es-
chenauer in 2002[6] and the distributed key updating scheme proposed by Chan
et al.[11] in 2003 are both able to revoke the compromised nodes from the net-
work, but leaving the key connectivity significantly decreased. The reason is that
both of them adopted the random key pre-distributed method, causing that a
certain number of pair-wise keys exposed to the adversary are the same as the
ones used by the innocent nodes. In 2007, a reliable key updating protocol based
on central-topology was proposed by Mi Wen and Kefei Chen[3]. It also realizes
the key continuity between pair-wise and group key management. However, due
to randomness, an large area of deployment and the unique capacity of revok-
ing compromised nodes belonging to the group manager, it is not likely for the
group manager to manage all the revoking tasks timely. In other words, some
wiser adversaries would have captured even more nodes and other private infor-
mation during the time period when the group manager forwards the revoking
messages through such a large area. Last but not least, the group manager will
also become the Achilles’ heel, attracting the most powerful attacks initiated by
the adversaries.

The main contribution of this paper is proposing a novel pair-wise key man-
agement scheme in the distributed WSNs and realizing the continuity of the
group key establishment.

Firstly, it takes advantage of the efficient monitoring mechanism realized by
the cooperation of the neighbor nodes of the compromised nodes. These neighbor
nodes are named legitimate appealing nodes in this paper to fulfill the task of
distributed revocation. This scheme is based on the new concept of seed mem-
bers responsible for the pair-wise key establishment and updating. A certain
number of legitimate appealing nodes can use the Modified Blom’s pair-wise
key establishment scheme and secret sharing scheme to revoke the compromised
nodes efficiently and timely. The previous seed members can be replaced by
other nodes to balance the energy consuming of the network, preventing the
sub-networks from isolation.

Secondly, in order to prevent the private key information of legitimate appeal-
ing nodes and the left innocent nodes from exposure, a novel concept of private
shadow matrix is also proposed. They can be used to efficiently mask the original
key information of the sensor nodes, making the distributed revocation mecha-
nism come true without any exposure.

Finally, the continuity of pair-wise key and group key is also applied to this
scheme to realize the establishment of both of them without decreasing the key
connectivity and consuming additional resources simultaneously, prolonging the
lifetime of the WSNs.

An Improved Distributed Key Management Scheme 307

The rest of this paper is organized as follows. The network model and the
attack model of this scheme are described in section 2. A novel distributed pair-
wise key management scheme is proposed in section 3 and the characteristic
of continuity applied to the group key management is presented in section 4.
Security and performance are analyzed in section 5 and conclusions are presented
in section 6.

2 Network and Attack Models

It is assumed that a distributed topology with dynamic nodes is applied to WSNs
in this paper, which is different from the central topology consisting of base sta-
tions, cluster heads and sensor nodes. Each pair of nodes establishes pair-wise keys
by using modified Blom’s key establishment scheme[5]. All of the sensor nodes pos-
sess of nearly the same capacity of calculation, storage and communication.

The attack model can be described as follows.
(1) The adversary has whole-network communication capacity, namely, the

adversary can transmit and receive all the messages whenever and wherever
she/he wants.

(2) λ-attack limitations. It is assumed that each adversary individually or
the collaboration of the adversaries can compromise at most λ sensor nodes.
Once a sensor node is compromised, all the key establishment information and
routing information stored in the node can be acquired by the adversaries. They
can be used to initiate further attacks even revocation attacks[4] in which an
adversary can use the distributed node revocation protocol to selectively revoke
uncompromised nodes from the network.

(3) It is assumed that the compromised nodes can selectively drop packets
which they have received, but the adversary cannot jam or delay local communi-
cations in the network whose sources and destinations are both uncompromised
sensor nodes. The adversary can not block or delay multi-hop broadcast mes-
sages, either neighborhood wide or network wide. The adversary is also unable
to partition the network via node capture attacks. Therefore, all the transmis-
sions of key establishment and updating information can not be hampered by
this kind of attacks.

3 Pair-Wise Key Management Scheme

In this section, a novel and reliable pair-wise key management scheme is pro-
posed based on the Modified Blom’s pair-wise key establishment mechanism[5]
and PRKU pair-wise key updating scheme[3]. In a network situation without
the existence of TTP, this scheme realizes the dynamically joining and leaving
of sensor nodes efficiently. The alternation of controlling authorities by the co-
operation of λ+1 member nodes can update the seed members reliably. λ is the
trapdoor of Modified Blom’s mechanism[5]. The seed members are defined as
λ + 1 members who are responsible for the generation of λ + 1 different seeds of
λ+1 hash functions included in the initial private symmetric matrix respectively.

308 J. Zhou and M. He

Table 1. Notation for Our Scheme

Notation Description

D0 (λ + 1, λ + 1) initial private symmetric matrix, used for pre-distribution
for initial N0 sensor nodes

N0 The initial number of sensor nodes
L0 (λ + 1 λ + 1) private symmetric shadow matrix, generated by the system

in the key pre-distribution phrase
G0 (λ + 1, N0) public matrix, each column of which represents the identity

information of initial members
U0 equals to (D0 × G0)T , a (N0, λ + 1) private matrix, each row of which is

separately stored in initial members
U

′
0 equals to (L0 × G0)T , a (N0, λ + 1) private matrix, used for masking ori-

ginal key information of legitimate appealing nodes in distributed
revocation and stored in each node in initialization

R0 equals to U0 + U
′
0, revocation information transmitted among legitimate

appealing nodes
H(·) An hash function
MAC(·) An data integration verifying function without a secret key

By doing this, this scheme can adapt itself to the distributed character and resist
to node capture attacks better, outperforming the previous schemes[6][8][11] in
whatever respective of storage, calculation or communication.

All the notations that will be used in this scheme are illustrated in Table 1.
Notations such as Dt, Nt, Lt, Gt, Ut, U

′

t , Rt denote the same meanings as ex-
plained in Table 1 but during the time period T = t. The introduction of Mod-
ified Blom’s symmetric key establishment scheme is illustrated as follows. Each
element in matrixes D0, L0, G0 is selected over a finite field GF (q) where q is a
prime number and q < N0. λ + 1 prime seeds s0

i (i = 1, 2, · · · , λ + 1) over GF (q)
are generated by the system and only known to the system itself. Then the sys-
tem creates a random (λ + 1)× (λ + 1) matrix D0 over GF (q). Each row of D0
is composed of hash values of the prime seeds. The elements of the matrix D0
are generated as follows.

d0ij = Hi(sj) (i, j ∈ {1, 2, · · · , λ + 1} and i > j)
d0ij = Hj(si) (i, j ∈ {1, 2, · · · , λ + 1} and i ≤ j) (1)

Where d0ij represents the element in D0. As an example of the initial private
symmetric matrix, D0 with size 3× 3 can be demonstrated as follows:

D0(3×3)=

⎛
⎝H1(s1) H2(s1) H3(s1)

H2(s1) H2(s2) H3(s2)
H3(s1) H3(s2) H3(s3)

⎞
⎠

Finally, the pair-wise key establishment based on Blom symmetric key con-
struction mechanism [5] can be described as follows. It is assumed that K0 is
the pair-wise key matrix generated ultimately.

An Improved Distributed Key Management Scheme 309

K0 = (D0G0)T G0 = GT
0 DT

0 G0 = GT
0 D0G0 = (U0G0)T = KT

0 (2)

Thus K0 is also a symmetric matrix and kij = kji, where kij is the element of K0
at i-th row and j-th column. We take kij or kji as the pair-wise key established
between node i and node j.

The pair-wise key management scheme includes the following steps:
(1) Off-line Initialization: Each node SNi is pre-distributed with a row U0li

(1 ≤ li ≤ N0) from the initial original matrix U0. In order to achieve stronger
security, it is not necessary for the nodes to store the rows corresponding to their
own identities, eg. li is equal to the identity of the node SNi , only presenting
the row of private key information stored in the node SNi by the notation U0li

.
The corresponding row U

′

0li
(1 ≤ l

′

i ≤ N0 and l
′

i = li) from the private shadow

matrix U
′

0 is also stored in the node SNi.
(2) Pair-wise Key Establishment: The initial N0 nodes establish pair-wise keys

by using modified Blom’s pair-wise key establishment mechanism illustrated in
section 3.

(3) Pair-wise Key Updating: It is necessary to update the established pair-wise
keys every time period T , taking t = m for example.

(3.a)λ + 1 seed members choose λ + 1 different seeds of λ + 1 hash functions
sm
1 , sm

2 , · · · , sm
λ+1, calculate the private hash values Hj(sm

j)(j = 1, 2, · · · , λ + 1)
and broadcast the hash values Hj+1(sm

j)(j = 1, 2, · · · , λ + 1).
(3.b)After receiving other λ broadcast messages, each seed member SNj firstly

checks whether some seed members have selected the same seed of hash functions
as its own by comparing the received broadcasted messages with Hj+1(sm

j). If
they are not equal to each other and all the seeds of λ + 1 hash functions are
assured to be different, SNj calculates the hash values she/he needs according
to the initial private symmetric matrix D0 generating algorithm described in
section 3 combined with its own private value Hj(sm

j). Then she/he can recover
the j-th row in the new private symmetric matrix Dm. Finally, SNj generates
all the elements in each row of Um for other nodes.

Um(i, j) =
λ+1∑
k=1

Dm(j, k)×Gm(k, i)(i = 1, 2, · · · , j − 1, j + 1, · · · , Nm) (3)

(3.c)Each seed member transmits partial key information encrypted by the
established pair-wise keys at time t = m− 1 to other nodes respectively.

SNj → SNi : EKm
j,i
{Um(i, j), j, MAC(Um(i, j), j)}

(i = 1, 2, · · · , j − 1, j + 1, · · · , Nm)
(4)

(3.d)After receiving λ + 1 pieces of encrypted partial key information, each
node decrypts them and recovers its own key information by rearranging all
the λ + 1 pieces of partial key information according to the order j which is
included in the message it has received from SNj. By doing this, the new private
matrix Um has been updated and all the Nm nodes can reestablish the new

310 J. Zhou and M. He

pair-wise keys accordingly. From then on, two pieces of private key information
have been stored in each sensor node SNi. One is the current key information
Umli

(1 ≤ li ≤ Nm) varying from time to time and the other is the initial key
information U0li

(1 ≤ li ≤ N0) used to generate the pair-wise keys for encrypting
the partial key information transmitted to the joining nodes at t = n because
the newly joining nodes can only be pre-distributed with the initial off-line key
information in U0 before deployment.

(4) Member Join: It is assumed that SNn wants to join the network at time t =
n. The new member node has been pre-distributed with a row U

′

nli
(li = Nn +1)

from the private shadow matrix U
′

n before its deployment and the identity of
the joining member is arranged as the (Nn + 1)-th column in the public matrix
Gn. Other steps are the same as the ones in the stage of off-line initialization.
After deployment, the steps are described as follows.

(4.a)SNn accomplishes the initial pair-wise key establishment with the existed
nodes according to the modified Blom’s pair-wise key establishment mechanism
illustrated in section 3 by using the initial key information in U0 pre-stored in
it. The initial pair-wise keys are notated as K0

j,n(j = 1, 2, · · · , λ+1) and used to
encrypt and decrypt the current pair-wise key establishment materials in steps
4.c and 4.d.

(4.b) All the λ + 1 current seed nodes generate the additional λ + 1 elements
Un(Nn +1, j)(i = 1, 2, · · · , λ+1) for the joining node SNn respectively. The j-th
seed node is responsible for generating the j-th element in the (Nn + 1)-th row
in Un. The algorithm is as follows.

Un(Nn + 1, j) =
λ+1∑
k=1

Dn(j, k)×Gn(k, Nn + 1)(i = 1, 2, · · · , λ + 1) (5)

(4.c) Each seed node transmits the partial key information to the joining node
in the form of encryption respectively.

SNj → SNn : EK0
j,n
{Un(Nn + 1, j), j, MAC(Un(Nn + 1, j), j)} (6)

(4.d) After receiving the λ + 1 pieces of partial key information, the joining
node SNn decrypts them and recovers its own private key information in Un

according to the element order j included in the transmitted message in step
(4.c). Therefore, the joining node SNn can establish the current pair-wise keys
shared with the existed members.

(5) Member Revocation: It is assumed that no less than λ + 1 legitimate
neighbor nodes of SNi vote to appeal SNi cooperatively at time t = t′ . As a
result, they will successfully revoke the compromised node SNi from the network.
We named the no less than λ + 1 legitimate neighbor nodes of SNi as a group
of legitimate appealing nodes SNs(eg. s ∈ {i, i + 1, · · · , i + λ · · ·}). In order to
prevent the original key information of other appealing nodes and left innocent
nodes from being exposed in the process of distributed revocation, a private
shadow matrix U

′

t′ is introduced, the meaning of which has been illustrated in
Table 1. The steps of distributed revocation are described as follows.

An Improved Distributed Key Management Scheme 311

(5.a) Once a legitimate appealing node SNs discovers a compromised node
SNi, she/he will ask SNi to broadcast its check value

V t
′

i = H(Rt
′
i0
‖ Rt

′
i1
‖ · · · ‖ Rt

′
iλ

) (7)

all over the network. If SNi refuses to submit its check value during a certain
period of time, all the nodes in the network will consider it as an authentic
compromised node and delete all the established pair-wise keys between SNi

and themselves. On the other hand, if the check value has been broadcasted
by SNi, each legitimate appealing node SNs calculates its own masked key
information

Rt′
s

= Ut′
s
+ U

′

t′
s

(8)

respectively and transmits the following encrypted message to the other appeal-
ing nodes SNk(k ∈ S and k �= s).

SNs → SNk : E
Kt

′
s,k

{IDs, IDi, Rt′ (s), MAC(IDs, IDi, Rt′ (s))} (9)

(5.b) After receiving at least λ messages from other legitimate appealing
nodes, each member of SNs firstly decrypts them. If there are no less than
λ messages appealing the same node SNi, she/he calculates Rt

′
s

′
(s

′ ∈ I =

{1, 2, · · · , Nt′} \ S) with at least λ + 1 pieces of information Rt′
s
(s ∈ S =

{i, i+1, · · · , i+λ · · ·}) according to modified Blom’s symmetric key construction
mechanism illustrated in section 3. Then, each member of SNs calculates

k
′t

′

ss′ = Rt
′
s

′
× IDs (10)

and
k

′t
′

si = U
′

t′
s
× IDi (11)

Besides, each member of SNs makes such subtraction as blindness removing

kct
′

ss′ = k
′t

′

ss′ − k
′t

′

si (12)

and compares all the values kct
′

ss′ with the pair-wise key established between SNi

and itself until a pair of equal values is found. The corresponding row Rt
′
i

in

Rt
′
s

′
(s

′ ∈ I = {1, 2, · · · , Nt′ } \ S) used to calculate the pair of equal values is

just the masked key information of the compromised node SNi. Finally, each
member of SNs calculates

V st
′

i = H(Rs
t′) = H(Rs

t
′
i0
‖ Rs

t
′
i1
‖ · · · ‖ Rs

t
′
iλ

)(s ∈ S) (13)

and broadcasts (IDs, IDi, H(Rs
t
′
i

))(s ∈ S).

(5.c) All the sensor nodes in the network compare the received check value
V st

′

i (s ∈ S) in step (5.b) with the check value V t
′

i submitted by the compromised

312 J. Zhou and M. He

node itself in step (5.a). They are able to judge that SNi has been legitimately
revoked from the network and delete all the established pair-wise keys between
SNi and themselves if and only if at least one of the following two cases exists.
(5.c.1) Each sensor node has received at least λ + 1 check values V st

′

i (s ∈ S)
from λ + 1 different legitimate appealing nodes, each of which is the same as
the submitted check value V t

′

i . (5.c.2) Although the λ + 1 received check values
V st

′

i (s ∈ S) are not equal to V t
′

i , they are equal to each other in-between them.
(5.d)If the revoked node SNi belongs to the current group of λ+1 seed nodes

SNp(p ∈ P = {u, u+1, · · · , u+λ}) , all the left seed nodes SNp′ (p
′ ∈ P \{i}) will

negotiate to determine a successive node SNi′ to replace SNi by the technique
of secret sharing. Meanwhile, reserved resources, locations and other security-
relevant characteristics of the sensor nodes will also be taken into consideration
together in the cooperative selection. The process resembles the one of member
revocation. After a new seed node is selected and verified correctly, all the key
information and pair-wise keys will be updated as follows.

(5.d.1) The new seed node SNi′ generates a new seed st
′

i′ for the hash func-

tions, calculates a private hash value Hi(st
′

i′) and broadcasts Hi+1(st
′

i′).
(5.d.2)SNl(l ∈ Nnew

t′) updates key information. A new group of λ + 1 seed
nodes calculates the hash values she/he needs according to the initial private
symmetric matrix D0 generating algorithm described in RPKU scheme[3] com-
bined with the remained hash values to recover the j-th row of Dnew

t′ and updates
the key information for SNl(l ∈ Nnew

t′) as follows.

Unew
t′ = Ut′ (l, j)(j < i) (14)

Unew
t′ = Ut′ (l, j) +

λ+1∑
k=i

(Hk(si′)−Hk(si))×Gnew
t′ (k, l)(j = i) (15)

Unew
t′ = Ut′ (l, j) + (Hj(si′)−Hj(si))×Gnew

t′ (i, l)(j > i) (16)

After that, all the nodes SNl(l ∈ Nnew
t′) can take advantage of the updated

key information to reestablish pair-wise keys.

4 Group Key Management Scheme

(1) Group Key Establishment: It is assumed that SN = {SN1, SN2, · · · , SNn}
are n peer-to-peer nodes intended to negotiate a group session key in the dis-
tributed sensor networks. SIDj is denoted as the session number of the j-th
session. Group key is established as follows.

Each member node SNi(1 ≤ i ≤ n) is pre-distributed with a row in U0 at
the stage of off-line initialization. After deploying, SNi calculates the pair-wise
keys K0

i,i−1 and K0
i,i+1 between two neighbor nodes and itself. Then she/he also

calculates the value

An Improved Distributed Key Management Scheme 313

K0
i,i =

λ+1∑
ε=1

u0iεg0εi (17)

where u0 and g0 represent the elements in the initial private matrix U0 and
initial public member matrix G0 respectively. Finally, each member node SNi

transmits K0
i,i encrypted by established pair-wise keys to its neighbor nodes

respectively and uses BD protocol[13] to accomplish the following steps of group
key establishment.

(2) Group Key Updating: Group key management in the distributed WSNs is
not only required to provide an efficient group key establishment mechanism, but
also should be responsible for considering the case of dynamic management of
the group key. The basic security requirements are as follows. (a)secrecy of group
key (b)forward security and(c)backward security. Consequently, it is necessary
to update the group key in case that there are nodes revoked from the network
for energy-exhausting, being compromised by adversaries and joining the group.
After successful join or revocation, other innocent nodes can update their key
information respectively using the updating algorithm illustrated in Section 3,
transmit the updated contributory key information K

′

i,i to its neighbor nodes in
the encrypted form and have the session number SIDj updated. The steps of
group key updating resemble the process of group key establishment.

By the above analysis, we have seen that our protocol has robust continuity
between the pair-wise key and group key management. Even if there are a variety
of node addition and eviction in the network, our scheme can also maintain the
robust continuity over time.

5 Analysis

We analyze the proposed distributed pair-wise key management scheme to verify
that our scheme is a reliable one against dynamic topology changes through such
three evaluation metrics of the experiments as network security, key connectivity
and scalability. Then, we illustrate that the proposed scheme is resilient to revo-
cation attack and the continuity enables the nodes to establish and update both
of the pair-wise key and group key with the same pre-distributed secrets. Finally,
we analyze the communication and computation overhead for our scheme.

5.1 Security Analysis

Network Security is measured by the resilience to node capture attack and re-
quires that it is not possible for the adversary to acquire information of the
innocent sensor nodes and any other links of the rest WSNs even though a cer-
tain number of nodes have been captured. The higher resilience exists, the lower
number of compromised links is exposed[12].

In this section, we study the resilience by calculating the probability of the
exposure of established pair-wise keys between the innocent nodes under node
capture attacks. Figure 1 shows that the key connectivity of our scheme at

314 J. Zhou and M. He

Fig. 1. The probability of key connectivity at deployment v.s. size of key rings in each
node (S=s=P=170,q=2)

Fig. 2. Comparison of the resilience to compromise attack (q=2,m=20,S=170,
k=2000,P=105 ,s

′
=4,s=55,t=12,λ=40)

deployment remains 100% no matter of the size of the key rings, while the key
connectivity of other random key pre-distribution schemes[6][8][11] is much lower
than ours because it is not destined for each pair intended to establish a pair-
wise key to share a common key in their key rings during initialization. Figure 2
shows the resilience against node capture attacks of the basic probabilistic
scheme[6], the q-composite scheme[11], the symmetric bi-polynomial based ran-
dom key pre-distribution scheme[8]and our scheme. The figure apparently shows
that as the number of compromised nodes increases until it reaches the trapdoor
of the scheme taking λ=4000 for example in Fig.2, the probability of the ex-
posure of the established pair-wise keys between innocent sensor nodes remains

An Improved Distributed Key Management Scheme 315

zero. The reason is that each established pair-wise key is independent, which
means the information the adversary acquired from the private matrix Ut and
the private shadow matrix U

′

t corresponding to the compromised node is merely
relevant to the pair-wise key establishment of the compromised node itself rather
than others. This kind of uniqueness can be realized because all the seeds of λ+1
hash functions selected by λ+1 seed member nodes in (3.a) are assured to be dif-
ferent from each other and then all the elements generated in the initial private
symmetric matrix are different according the the collision resistance property of
hash functions. In addition, the assumption of λ-attack ability of the adversary
also prevents the adversary from calculating all the private key information of
the innocent nodes. Finally, any seed nodes’ compromise triggers a key infor-
mation updating process and consequently, the knowledge of the compromised
seed node gives the adversary no priority in deriving the key information of
the innocent nodes. By comparison, it is apparent that our scheme outperforms
the others. In the probabilistic schemes[6][11], once the number of compromised
nodes increases, the fraction of the affected communication links in the rest of
the network increases quickly. The reason is that in probabilistic schemes the
same key may be pre-distributed in the key rings of a certain number of sen-
sor nodes and be used by several different pairs of sensors. As a result, some
sensor nodes’ compromise may made the pair-wise keys established between the
innocent nodes exposed. For the hybrid schemes[8], there are no key updating
approaches. Thus, when the number of compromised nodes is more than their
thresholds, all pair-wise keys of the entire network will be compromised.

Revocation attack is defined as an attack where an adversary uses the dis-
tributed node revocation protocol to selectively revoke uncompromised nodes
from the network. In our scheme, there are two methods designed against this
kind of attack. On one hand, it is assumed that a certain number of neighbor
nodes of a fixed node are selectively compromised by the adversaries who will
ally to pretend to be these compromised nodes as legitimate appealing mem-
bers. In the revocation attack, it is probable for these pseudo appealing nodes
to broadcast the check value H(Rt′ (i”)) of the uncompromised node SNi” to
other nodes who will mistake SNi” for the compromised node. However, in our
scheme only λ adversaries are assumed to have the ability of initiating this kind
of cooperation at most, as a result, it will fail when the left nodes judge whether
SNi” is the objected revoked members according to the two metrics (5.c.1) and
(5.c.2) described above. Because in either metric, at least λ + 1 same check val-
ues received are required. On the other hand, in the last stage of the distributed
revocation we are able to adopt the same algorithm described in (5.d.2) to select
λ + 1 new seed nodes from the left Nnew

t′ − λ − 1 nodes to replace the current
ones, making the key information acquired in the compromised nodes in vain in
computing the pair-wise keys established afterwards.

The proposed pair-wise key establishment scheme also retains the property of
forward security and backward security. According to the dynamically joining,
revoking and updating algorithm, when each of the λ + 1 seed nodes SNj gen-
erates the corresponding j-th row in the private symmetric matrix Dt, it is only

316 J. Zhou and M. He

required to receive the broadcast messages in the following form Hk(sj′)(j
′
< j

and k = j > j
′
). Consequently, for each seed generator, it is computationally

impossible for the nodes SNj to compute the seeds sj′ (j
′ �= j) and the corre-

sponding values Hj
′
(sj′)(j

′ �= j) not belonging to themselves according to the
non-reversed property of hash functions. In this way, all the updating informa-
tion can be remained private among seed nodes and can not be acquired by the
adversary limited with the λ -attack ability. As a conclusion, both the forward
and backward security are reserved.

5.2 Performance Analysis

(1) Key Connectivity
Key connectivity is measured by the probability to establish a shared key

during the dynamic topology changes. After the key-updating phase following
the compromised node revocation, a pair of innocent nodes in the rest network
needs to reestablish a direct or indirect key when the current pair-wise key is
compromised. In our scheme, since each pair of two communicating parties has
a unique pair-wise key, any sensor node’s compromise cannot compromise the
secure communication between innocent nodes. Furthermore, the key updating
triggered by the compromise detection mechanism disables the compromise of
the links composed of innocent nodes. Thus, any two innocent nodes can also
establish a secret pair-wise key between them with the probability of 100%.

However, the revocation of a captured node’s key ring in the probabilistic
schemes[6][11] ensures a certain number of keys pre-distributed on that ring are
removed from the whole network. It not only disables all connectivity of the
compromised node, but also affects a few innocent nodes and a part of their key
rings, thus the probability of shared key among the rest sensor nodes reduces.
The symmetric bi-polynomial based random key pre-distribution scheme[8] has
no obvious key revocation mechanism, but we can also compute the reestab-
lishing probability by assuming the compromised links are in vain. Assuming
that each node has available storage equivalent to C=360 keys, contacts d=40
neighbor nodes and N=26 000, Figure 3 illustrates the relationship between the
probability of reestablishing a pair-wise key for innocent nodes and the number
of compromised nodes in the network. It shows that our scheme has the highest
probability to reestablish a pair-wise key in the rest of WSNs.

(2) Storage, Computation and Communication Overhead
Our distributed pair-wise key management scheme proposed based on Modi-

fied Blom’s pair-wise key establishment mechanism[5] has the r-revocation abil-
ity which is defined as the capability of revocation of r compromised nodes
at the same time without much more especially linearly increasing additional
overhead in whatever respective of storage, computation and communication.
The reason is that in our scheme, once a compromised node is detected by
at least λ + 1 neighbor legitimate appealing nodes, the masked key informa-
tion Rt′ (s)(s ∈ S = {i, i + 1, · · · , i + λ · · ·}) transmitted among the legitimate

An Improved Distributed Key Management Scheme 317

Fig. 3. The probability to reestablish a pair-wise key v.s. number of compromised
nodes (q=2,m=20,S=170,k=2000,P=105 ,s

′
=4,s=55,t=12,λ=40)

Table 2. Comparison between Distributed Revocation Schemes in WSNs

Schemes Storage Communication Computation

Chan’s scheme[4] O(rm log m) O(rt log m) O(t)
Our scheme O(λ) O(λ2) O(λ)

appealing nodes is qualified for each of them to calculate all the Rt
′
s

′
(s

′ ∈ I =

{1, 2, · · · , Nt′} \ S). Therefore, if the appealing nodes discover at most r com-
promised nodes at one time, all their masked key information has been included
in Rt

′
s

′
which was attained when the first compromised node appeared. While

in the distributed revocation scheme[4] proposed by Haowen Chan, if r com-
promised nodes are required to be revoked simultaneously, it is necessary for
each neighbor legitimate appealing node to repeat the protocol, broadcast the
revocation votes along with Merkle authentication values that verify the votes
and reconstruct different t-degree polynomials by secret sharing for r times in-
dependently. Besides, it will also be required for r times larger storage memory
size because r distinct point pairs {QB(xs), xs} and authentication values are
stored in each sensor node in the pre-distribution phrase. Consequently, the stor-
age, computation and communication overhead of Chan’s scheme[4] are all much
lager than ours. Table 2 illustrates the storage, computation and communication
overhead of Chan’s scheme[4] and ours respectively when r compromised nodes
are required to be revoked at the same time. It shows that our scheme has much
less overhead and is much more adaptive to the situation where collaboration of
adversaries is sponsored.

318 J. Zhou and M. He

6 Conclusions

A novel distributed key management scheme is proposed in this paper. It re-
alizes the pair-wise key establishment and updating scheme based on modified
Blom’s symmetric key construction mechanism. Further, it not only addresses
the robust continuity in the key establishment of the pair-wise key and group
key, but also addresses the robust continuity in the key updating of them. In a
word, this scheme has the following characteristics: (1)By the introduction of the
concept of seed members, it is able to refresh the real-time key information and
update the pair-wise key and group key timely when the distributed network
topology changes such as dynamically joining and leaving. (2)By the novel seed
member alternation mechanism combined with the technique of secret sharing,
this scheme can efficiently resist to node capture attacks and revocation attacks,
leaving the key connectivity of the innocent links remaining 100% after the re-
vocation of compromised nodes. Further, the adversaries cannot take advantage
of the distributed node revocation protocol to selectively revoke uncompromised
nodes from the network afterwards. Finally, the resources are much more bal-
anced among the sensor nodes network-wide, which is beneficial to prolonging
the lifetime of WSNs. (3)By comparison, the continuity between the pair-wise
key and group key simplifies the key management scheme[4] significantly and
outperforms other similar protocols in whatever respective of storage, computa-
tion and communication overhead. Finally, how to make our schemes resilient to
other more attack models and realize more efficient key management mechanism
in WSNs is in the scope of our further research.

Acknowledgements

The work is supported by the National Natural Science Foundation of China
(Grant no.60773035); the Key Projects Foundation of Ministry of Education of
China (Grant no.205136); The Foundation of Science and Technology Bureau of
Sichuan Province, China (Grant no. 05JY029-131).

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine 8, 393–422 (2002)

2. Zhong, S., Chuang, L., Fujun, F., Fengyuan, R.: Key Management Schemes and
Protocols for Wireless Sensor Networks. Journal of Software 18, 1218–1231 (2007)

3. Mi, W., Kefei, C., Yan-fei, Z., Hui, L.: A Reliable Pairwise Key-Updating Scheme
for Sensor Networks. Journal of Software 18, 1232–1245 (2007)

4. Chan, H., Gligor, V.D., Perrig, A., Muralidharan, G.: On the Distribution and
Revocation of Cryptographic Keys in Sensor Networks. IEEE Transanctions on
Dependable and Secure Computing 2, 233–247 (2005)

5. Blom, R.: An Optimal Class of Symmetric Key Generation Systems. In: Beth, T.,
Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338.
Springer, Heidelberg (1985)

An Improved Distributed Key Management Scheme 319

6. Eschenauer, L., Gligor, V.: A key management scheme for distributed sensor net-
works. In: Proc. of the 9th ACM Conf. on Computer and Communications Security,
pp. 41–47. ACM Press, New York (2002)

7. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A pairwise key pre-distribution
scheme for wireless sensor networks. In: Proc. of the 10th ACM Conf. on Com-
puter and Communications Security, pp. 42–51. ACM Press, New York (2003)

8. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In:
Proc. of the 10th ACM Conf. on Computer and Communications Security, pp.
52–61. ACM Press, New York (2003)

9. Liu, D., Ning, P.: Location-Based pairwise key establishments for static sensor
networks. In: Proc. of the 1st ACM Workshop on Security of Ad Hoc and Sensor
Networks, pp. 72–82. ACM Press, New York (2003)

10. Du, W., Deng, J., Han, Y.S., Chen, S., Varshney, P.K.: A key management scheme
for wireless sensor networks using deployment knowledge. In: Proc. of the IEEE
INFOCOM, pp. 586–597. IEEE Press, Piscataway (2004)

11. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: IEEE Symposium on Security and Privacy, pp. 197–213 (2003)

12. Camtepe, S.A., Yener, B.: Key distribution mechanisms for wireless sensor net-
works: A Survey. Technical Report, TR-05-07, Rensselaer Polytechnic Institute
(2005)

13. Burmester, M., Desmedt, Y.: A secure and scalable group key exchange system.
Information Processing Letters 94, 137–143 (2005)

14. Raazi, S.M.K., Khan, A.M., Khan, F.I., Lee, S.Y., Song, Y.J., Lee, Y.K.:
MUQAMI: A locally distributed key management scheme for clustered sensor
networks. IFIP International Federation for Information Processing 238, 333–348
(2007)

15. Das, A.K., Sengupta, I.: A key establishment scheme for large-scale mobile wire-
less sensor networks. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2007. LNCS,
vol. 4882, pp. 79–88. Springer, Heidelberg (2007)

Protection Profile for Connected Interoperable
DRM Framework�

Donghyun Choi, Sungkyu Cho, Dongho Won, and Seungjoo Kim��

Information Security Group, School of Information and Communication Engineering,
Sungkyunkwan University,

Suwon-si, Gyeonggi-do, 440-746, Korea
{dhchoi,skcho,dhwon,skim}@security.re.kr

Abstract. Nowadays, interoperability of DRM is an issue in market. It
can be achieved by three different approaches: full-format, configuration-
driven and connected interoperability. In particular, the connected inter-
operability refers to devices that contact an online translation service.
When the consumers want to transfer content to a different device, they
access the online translation server and rely upon online services. The
connected interoperability does not need defining one standard and has
the ability to monitor. Therefore, the connected interoperability is used
more than others in market. However, in the connected interoperabil-
ity, even though two distinct DRM systems want to share the content,
they cannot share the content if the online translation server does not
guarantee reliability. In this paper, we propose a protection profile for
connected interoperable DRM framework to solve the problem. This PP
can be used to establish trust between the DRM provider and the on-
line translation server for interoperability. If that happens, the connected
interoperable DRM market will be more active than before.

1 Introduction

Nowadays, we could manufacture high quality digital contents and easily trade
the digital contents because of the increasing availability of computer networks
and the improvement in computer technology. However, this has also caused
illegal reproduction of the digital contents because such content can be easily
redistributed and copied. This is threatening the digital content market. So,
companies have developed the DRM (Digital Rights Management) technology.
The DRM system protects the value of digital content by the license. Some
examples of existing DRM systems include Apple iTunes’ Fairplay[13], Windows
media DRM[15], the OMA(Open Mobile Alliance)’s DRM scheme[14], etc.
� This research was supported by the MKE(Ministry of Knowledge Economy), Ko-

rea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology Advancement)(IITA-
2008-C1090-0801-0016 and IITA-2008-C1090-0801-0028).

�� Corresponding author.

K.-I. Chung, K. Sohn, and M. Yung (Eds.): WISA 2008, LNCS 5379, pp. 320–332, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Protection Profile for Connected Interoperable DRM Framework 321

However, most DRM systems are neither standardized nor interoperable. From
the consumers’ point of view, it harms the consumers’ rights of use of the content
obtained legally, because they cannot render the digital content they have pur-
chased on the device. A recent survey by INDICARE showed that consumers are
willing to pay a higher price for more usage rights and device interoperability[12].
In other words, interoperability of DRM is an issue in market.

The interoperability of DRM can be achieved by three different approaches:
full-format, configuration-driven and connected interoperability[6]. The full-
format interoperability needs a global standard. So, all participants use the same
data representation, encoding, protection scheme, etc. The configuration-driven
interoperability needs a appropriate tools that can locally translate the content
and the license. The tools can be downloaded from the content provider. The
connected interoperability needs an online translation service. When the con-
sumers want to transfer content to a different device, they access the online
translation server and rely upon online services.

However, the full-format interoperability needs defining one standard for all ap-
plications and different business models and the configuration-driven interoper-
ability has some problems that DRM providers do not have the ability to monitor
how the user controls the content and the appropriate tools are hard to implement
[5]. On the other hand, the connected interoperability does not need defining one
standard and has the ability to monitor. Therefore, the connected interoperability
is used more than others in market. There are lots of the connected interoperability
approaches such as NEMO[6] (Networked Environment for Media Orchestration)
which is used as a building block by both the Coral Consortium[17] and the Marlin
Initiative[16], Import/Export in DRM[7], and OPERA[11].

However, in the connected interoperability, even though two distinct DRM
systems want to share the content, they cannot share the content if the on-
line translation server does not guarantee reliability. To address the problem,
we apply the CC (Common Criteria) to the connected interoperability DRM
framework, because the CC provides assurance that the process of specifica-
tion, implementation and evaluation of a IT product with well-defined security
evaluation criteria. Moreover, a protection profile that considers connected in-
teroperability DRM framework is not proposed yet. In this paper, we propose
a protection profile for connected interoperable DRM framework. This PP can
be used to establish trust between the DRM provider and the online translation
server for interoperability. If that happens, the connected interoperable DRM
market will be more active than before.

The rest of the paper is organized as follows: In Section 2, we review related
works. In Section 3, we propose the protection profile for connected Interoperable
DRM framework. In Section 4, we present our conclusions.

2 Related Works

2.1 Common Criteria and Protection Profile
Common Criteria. The Common Criteria philosophy is to provide assurance
based upon an evaluation of the IT product or system that is to be trusted[2].

322 D. Choi et al.

The CC does so by providing a common set of requirements for the security
functionality of IT products and for assurance measures applied to these IT
products during a security evaluation[2]. This security evaluation includes the
testing and an analysis of the IT products.

The evaluation process establishes a level of confidence that the security func-
tionality of these IT products and the assurance measures applied to these IT
products meet these requirements[2]. The evaluation results may help consumers
to determine whether these IT products fulfil their security needs[2].

The CC is presented as a set of distinct but related parts as identified below.

– Part 1: The part 1 is the introduction to the CC. It defines the general
concepts and principles of IT security evaluation and presents a general
model of evaluation[2].

– Part 2: The part 2 establishes a set of security functional components that
serve as standard templates upon which to base functional requirements
for TOEs[3]. CC Part 2 catalogues the set of functional components and
organizes them in families and classes[3].

– Part 3: The part3 establishes a set of security assurance components that
serve as standard templates upon which to base assurance requirements for
TOEs[4]. CC Part 3 catalogues the set of assurance components and orga-
nizes them into families and classes[4]. Furthermore, CC Part 3 describes
seven assurance package and evaluation criteria for PPs and STs.

Protection Profile. The Protection Profile (PP) is a document that expresses
an implementation independent set of IT security requirements for IT product
or system. Such TOEs (Target Of Evaluation) are intended to meet common
consumer needs for IT security. Therefore, consumers can construct or cite a PP
to express their IT security needs without reference to any specific TOE[1].

The purpose of a PP is to state a security problem rigorously for given IT
products or systems and to specify security requirements to address that problem
without dictating how these requirements will be implemented[1]. Whereas an
ST always describes a specific TOE, a PP is intended to describe a TOE type[2].
For this reason, a PP is implementation independent. Fig. 1 shows contents of
protection profile.

2.2 Interoperable DRM

The goal of interoperable DRM is to offer consumers fully rights for the content
downloaded or purchased. In other words, interoperable DRM is a technology
that can, on the one hand, let rights holders receive a just remuneration for
their efforts and, on the other, let end-users fully render the content on the
devices in a domain. It can be achieved by three different approaches: full-format,
configuration-driven and connected interoperability[6].

The full-format interoperability refers to a global standard that all parties
adhere to[5]. In other words, the full-format interoperability needs defining one
standard for all applications and different business models. However, developing
industry standards is a long process.

Protection Profile for Connected Interoperable DRM Framework 323

Fig. 1. Contents of Protection Profile

The configuration-driven interoperability needs a appropriate tools that can
locally translate the content and the license. The tools can be downloaded from
the content provider. This allows consumer systems to effectively “acquire” func-
tionality on demand in order to accommodate new formats, protocols, and so
on[6]. However, DRM providers do not have the ability to monitor how the user
controls the content and the appropriate tools are hard to implement.

The connected interoperability refers to devices that contact an online transla-
tion service[5]. When the consumers want to transfer content to a different device,
they access the online translation server and rely upon online services. While dif-
ferent parties may do things in different ways, translations or bridges exist between
the ways different parties perform DRM functions, and that mutually trusted par-
ties can perform these translations transparently, as long as device are connected
at least some of the time[6]. This approach does not need defining one standard
and has the ability to monitor how the user controls the content. Therefore, the
connected interoperability is used more than others in market.

3 Protection Profile

In this section, we propose the protection profile for connected interoperable
DRM framework.

3.1 Introduction of Protection Profile

Overview of TOE. In this paper, the TOE is the connected interoperable DRM
framework. The TOE translates the neutral license and the neutral content into
format of importing DRM system online. The TOE can be a framework consists
of software, hardware and firmware. Fig. 2 represents the TOE.

324 D. Choi et al.

Client
Device A

(DRM System A)

Client
Device B

(DRM System B)

Domain

Domain
Manager

DRM System A
Distribution
Center

DRM System B
Distribution

Center

TOE

Converting
Interface

Converting
Interface

Control

Module

Identification and Authentication

Security Management

Security Audit

Cryptographic Operation

Neutral Module

Neutral
Database

Information Flow Control

Request

Query Membership

Fulfillment Fulfillment

Query License
and content

Transmission of Neutral License
and Contents

Transmission of
Neutral License

and Contents

Fig. 2. The TOE

The TOE comprises control module, converting interface and neutral module.
A description of each module is as follows:

– Control Module (CM): CM certifies and manages the DRM systems that
want to participate the connected interoperable DRM framework. This mod-
ule controls the other modules and the flow of information on the TOE.
When there is a query for content, CM coordinates the required services in
order to fulfill the request, search, matching, update, rights exchange, and
notification services.

– Neutral Module (NM): This module has the neutral formatted version of
the license and the content. If neutral module receives the request from the
CM, this module sends the neutral formatted version of the license and the
content to importing DRM systems’ converting interface.

– Converting Interface: To adopt the neutral formatted version of the license
and the content, the procedure of adaptation is needed. Converting inter-
face is located in importing DRM systems’ distribution center. This module
translates the neutral license and content into format of importing DRM
system.

Modules in the TOE interact in a peer-to-peer fashion. Two peers interact by
making service invocation requests and receiving response.

The process of TOE is as follows:

1. Device B requests a rights transfer to CM.
2. Through the domain manager, CM verifies that the device B is in fact

registered in the domain.

Protection Profile for Connected Interoperable DRM Framework 325

Table 1. The Threats

Name Threat Definition

T1.ACCESS Unauthorized access to the TOE

T2.ATTACK_DATA Threat agent enforces the cryptanalysis attack on the packaged content

T3.DOMAIN An attacker may impersonate a user who is under certain domain

T4.IMPERSONATE
An unauthorized DRM system may impersonate an authorized DRM
system of the TOE and thereby gain access to TOE data, keys, and
operations

T5.INFORMATION_LEAK
An attacker may exploit information that is leaked from the TOE during
normal usage

T6.MODIFICATION
An attacker may utilize unauthorized device and manipulating of the
TOE to modify security-critical data so that the TOE can be used
fraudulently

T7.REPLACEMENT An attacker may physically or logically replace a part of the TOE

T8.TAMPERING
Threat agent may tamper TOE security functional data in order to avoid
trail or cause misusage

T9.UPDATE
If importing DRM's client are not up to date versions of their
corresponding software and firmware, attackers gets direct access to
the digital content with vulnerabilities of certain implementations

3. If device B is a member of the domain, CM contacts the NM to request the
neutral license and content.

4. The neutral license and content is delivered to the converting interface of
DRM system B by the NM.

5. The device B acquires a native DRM license and content using the native
mechanisms from the distribution center.

6. The device B renders the content in its native format, using its native
DRM(DRM system B).

3.2 Security Problem Definition

This section defines the security problem. The security problem definition con-
sists of three subsections, threats, organizational security policies and assump-
tions. The process of deriving the security problem definition falls outside the
scope of the CC[2].

Table 2. The Organizational Security Policies

Name Policy Definition

P1.AUDIT
A policy shall be implemented to ensure that the audit logs are
examined regularly and frequently for accountability, and appropriate
action taken over any irregularities discovered

P2.CRYPTOGRAPHY
When TOE uses a cryptographic function, approved and validated
cryptographic algorithm is required

P3.SECURE_MANAGE An authorized administrator shall manage the TOE in a secure manner

326 D. Choi et al.

Table 3. The Assumptions

Name Assumption Definition

A1.DOMAIN_MANAGER Devices in a certain domain are authorized by Domain Manager

A2.ADMINISTRATOR
Administrators are non-hostile, appropriately trained and follow all
administrator guidance

A3.PHYSICAL It is assumed that the TOE is maintained in a physically secure location

Table 4. The Security Objectives for the TOE

Name TOE Security Objectives

O1.AUDIT
The TOE will provide the capability to detect and create records of
security-relevant events

O2.BRUTE_FORCE
The TOE security functions shall protect from the brute-force
attack which is to find security information

O3.CRYPTOGRAPHY The TOE shall use approved and validated cryptographic services

O4.DISCLOSURE
The protection of the data against unauthorized access within the
IT system, as well as the transfer is enforced by the use of
encryption procedures

O5.DATA_PROTECTION1)
Licenses and contents which is in TOE shall be encrypted and
stored securely

O6.DATA_PROTECTION(2)
The TOE shall protect the stored data from the unauthorized
exposure, modification, and deletion

O7.I&A
The TOE must be able to identify and authenticate users prior to a
llowing access to TOE user data and TSF data

O8.INFORMATION_FLOW
The TOE controls information flows according to the specified TOE
security policy

O9.INTEGRITY
The TOE shall provide appropriate integrity protection for user dat
a and software

O.10.MANAGE

The TOE will provide all the functions and facilities necessary to
support the administrators in their management of the security of
the TOE, and restrict these functions and facilities from
unauthorized use.

O11.RESIDUAL_INFORMATION
The TOE will ensure that any information contained in a protected
resource is not released when the resource is reallocated or
system log off

O12.SELF_PROTECTION
The TSF will maintain a domain for its own execution that protects
itself and its resources from external interference, tampering, or un
authorized disclosure through its own interfaces

O13.UPDATE(1) The TOE shall be updated periodically

O14.UPDATE(2)
If TOE makes the malfunction such as system failure, TOE shall be
detected, re-installed, and updated

Protection Profile for Connected Interoperable DRM Framework 327

Threats. This subsection of the security problem definition shows the threats
that are to be countered by the TOE. A threat consist of a threat agent, an
asset and an adverse action of that threat agent on that asset[2].

The specification of threats should include all threats detected up to now, if
it is not done the TOE may provide inadequate protection. In other words,
if the specification of threats is insufficiency, the assets may be exposed to
an unacceptable level of risk. So we reviewed most related papers and reports
([5,6,7,8,9,10,11,12,16,17]). In the result, we derive the threats in table 1, below.

Organizational Security Policies. The organizational security policies define
rules and policies of organization, supporting the TOE security, which operates the
TOE. The organizational security policies for this paper are described in Table 2.

Assumptions. The assumptions are “givens” regarding secure usage of the
TOE and necessary conditions in order to guarantee completeness of the TOE se-
curity, because the TOE cannot support all security functions. Furthermore, the
assumptions are needed to reinforce physical and personal security requirements
those are not managed by common criteria. In other words, the assumptions can
be regarded as axiomatic for the TOE evaluation.

Table 5. The Security Objectives for the Operational Environment

Name TOE Security Objectives

OE1.DOMAIN_MANAGER The environment provides a reliable domain manager

OE2.ADMINISTRATOR
The authorized administrators shall be carefully selected and trained
for proper operation of the system

OE3.PHYSICAL
The environment provides physical security commensurate with the
value of the TOE and the data it contains

Table 6. The Security Objective Rationale

Security objectives
Security objectives
for the operational

environment

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 OE1 OE2 OE3

T1 X X X X

T2 X X X X X

T3 X

T4 X

T5 X X X

T6 X X

T7 X

T8 X X X X

T9 X X X

A1 X

A2 X

A3 X

P1 X

P2 X

P3 X X

328 D. Choi et al.

These assumptions should be minimized for security. So we reviewed most
related papers and reports([5,6,7,8,9,10,11,12,16,17]). In the result, we derive
the minimum assumptions for this protection profile in Table 3.

Table 7. The Security Functional Requirements

Security Functional Class Security Functional Components

Security Audit

FAU_GEN.1 Audit data generation

FAU_GEN.2 User identity association

FAU_SAR.1 Audit review

FAU_SAR.2 Restricted audit review

FAU_STG.2 Guarantees of audit data availability

FAU_STG.4 Prevention of audit data loss

Cryptographic Support

FCS_CKM.1 Cryptographic key generation

FCS_CKM.2 Cryptographic key distribution

FCS_CKM.3 Cryptographic key access

FCS_CKM.4 Cryptographic key destruction

FCS_COP.1 Cryptographic operation

User Data Protection

FDP_ACC.2 Complete access control

FDP_ACF.1 Security attribute based access control

FDP_ETC.2
Export of user data with security
attributes

FDP_IFC.2 Complete information flow control

FDP_IFF.1 Simple security attributes

FDP_ITC.1
Import of user data without security
attributes

FDP_ITT.1 Basic internal transfer protection

FDP_RIP.2 Full residual information protection

FDP_UCT.1 Basic data exchange confidentiality

Identification and
Authentication

FIA_AFL.1 Authentication failure handling

FIA_SOS.1 Verification of secrets

FIA_UAU.1 Timing of authentication

FIA_UAU.6 Re-authenticating

FIA_UID.1 Timing of identification

Protection Profile for Connected Interoperable DRM Framework 329

3.3 Security Objectives

The security objectives derived from the security environment in section 3.2 and
describe abstract security functions which reinforce all assumptions, threats, and
organizational security policies. Each element of the security environment must
be mapped to one or more security objectives. If not, it is hard to ensure that
entire system includes the TOE is completely secure. The security objectives for
this paper are described in Table 4 and 5.

Security Objectives Rationale. The Rationale proves that the requirements
are specified completely. Generally, the rationale is described in formal table.
According to the rationale, it is possible to determine that security requirements
are correct, complete and both protection profile author and potential developer
can verify security of the proposed TOE. Table 6 describes the rationale.

3.4 Security Requirement

Security Functional Requirements. The Security functional requirements
substantiate the security objectives. Each security functional requirement must
be related to one or more security objectives. These requirements are defined
in CC part 2, and protection profile author just chooses and uses appropriate
requirements. In addition, if the requirements defined in CC part 2 are not
sufficient to demonstrate the security objectives, then, the protection profile
author can refine and reinforce conditions in detail to established requirements.
The security functional requirements for this paper are described in Table 7
and 8.

Table 8. The Security Functional Requirements

Security Functional Class Security Functional Components

User Data Protection

FDP_ACC.2 Complete access control

FDP_ACF.1 Security attribute based access control

FDP_ETC.2
Export of user data with security
attributes

FDP_IFC.2 Complete information flow control

FDP_IFF.1 Simple security attributes

FDP_ITC.1
Import of user data without security
attributes

FDP_ITT.1 Basic internal transfer protection

FDP_RIP.2 Full residual information protection

FDP_UCT.1 Basic data exchange confidentiality

330 D. Choi et al.

Table 9. The Security Assurance Requirements

Security Assurance Class Security Assurance Components

Development

ADV_ARC.1 Security architecture description

ADV_FSP.4 Complete functional specification

ADV_IMP.1 Implementation of the TSF

ADV_TDS.3 Basic modular design

Guidance Document
AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

Life-cycle Support

ALC_CMC.4
Production supports, acceptance procedures
and automation

ALC_CMS.4 Problem tracking CM coverage

ALC_DEL.1 Delivery procedures

ALC_DVS.1 Identification of security measures

ALC_LCD.1 Developer define life-cycle model

ALC_TAT.1 Well-defined development tools

Security Target Evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

Tests

ATE_COV.2 Analysis of coverage

ATE_DPT.3 Testing : modular design

ATE_FUN.2 Functional testing

ATE_IND.2 Independent testing – sample

Vulnerability assessment AVA_VAN.4 Methodical vulnerability analysis

Security Assurance Requirements. Our protection profile adopts EAL4+(
methodically designed, tested, and reviewed) level in common criteria, because
it is difficult to restore spilled asset to its former condition and result of at-
tack has heavy damage. The security assurance requirements for the TOE are
described in table 9. Because the role of TOE is carried out between hetero-
geneous DRM systems to control entire information flow, we extend security
assurance requirements to confirm structurally about entire information control
and functional operation. Extended requirements are ATE FUN.2, ATE DPT.3,
and AVA VAN.4.

Security Requirements Rationale. Table 10 and 11 describe the rationale
between security objectives and security functional requirements. Because each
security objective and threat are mapped to one or more security requirements
and objective, it is ensured that the TOE can prevent known threats and is kept
secure in operation.

Protection Profile for Connected Interoperable DRM Framework 331

Table 10. The Security Requirements Rationale

O

1

O

2

O

3

O

4

O

5

O

6

O

7

O

8

O

9

O

10

O

11

O

12

O

13

O

14

FAU_GEN.1 X

FAU_GEN.2 X

FAU_SAR.1 X

FAU_SAR.2 X

FAU_STG.2 X

FAU_STG.4 X

FCS_CKM.1 X

FCS_CKM.2 X

FCS_CKM.3 X

FCS_CKM.4 X

FCS_COP.1 X X

FDP_ACC.2 X X

FDP_ACF.1 X X

FDP_ETC.2 X

FDP_IFC.2 X

FDP_IFF.1 X

FDP_ITC.1 X

FDP_ITT.1 X

FDP_RIP.2 X

FDP_UCT.1 X X

Table 11. The Security Requirements Rationale

O

1

O

2

O

3

O

4

O

5

O

6

O

7

O

8

O

9

O

10

O

11

O

12

O

13

O

14

FIA_AFL.1 X

FIA_SOS.1 X

FIA_UAU.1 X

FIA_UAU.6 X

FIA_UID.1 X

FMT_MOF.1 X

FMT_MSA.1 X

FMT_MSA.2 X

FMT_MSA.3 X

FMT_MTD.2 X

FMT_SMF.1 X

FMT_SMR.1 X

FPT_AMT.1 X X

FPT_ITC.1 X

FPT_ITI.1 X

FPT_ITT.1 X

FPT_PHP.2

FPT_PHP.3 X

FTP_ITC.1 x

4 Conclusions

Nowadays, the connected interoperability is used more than others in market.
However, the connected interoperable DRM market is not buoyant, because many

332 D. Choi et al.

of content providers cannot trust the online translation server. To address the
problem, we proposed a protection profile for connected interoperable DRM
framework. This PP can be used to establish trust between the DRM provider and
the online translation server for interoperability. If that happens, the connected
interoperable DRM market will be more active than before.

References

1. Lee, S., Shin, M.: Protection Profile for Software Development Site. In: Gervasi, O.,
Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K.
(eds.) ICCSA 2005. LNCS, vol. 3481, pp. 499–507. Springer, Heidelberg (2005)

2. Common Criteria, Common Criteria for Information Technology Security Evalua-
tion; part 1: Introduction and general model, Version 3.1 R1, CCMB-2006-09-001
(September 2006)

3. Common Criteria, Common Criteria for Inofrmation Technology Security Evalua-
tion; part 2: Security functional components, Version 3.1 R2, CCMB-2007-09-002
(September 2007)

4. Common Criteria, Common Criteria for Information Technology Security Evalua-
tion; part 3: Security assurance components, Version 3.1 R2, CCMB-2007-09-003
(September 2007)

5. Taban, G., Cardenas, A.A., Gligor, c.d.: Towards a Secure and Interoperable DRM
Architecture. In: ACM Workshop On Digital Rights Management, pp. 69–78 (Oc-
tober 2006)

6. Koenen, R.H., Lacy, J., Mackey, M., Mitchell, S.: The Long March to Interoperable
Digital Rights Management. Proceedings of the IEEE 92(6), 883–897 (2004)

7. Safavi-Naini, R., Sheppard, N.P., Uehara, T.: Import/Export in Digital Rights
Management. In: Proceedings of the 4th ACM workshop on Digital rights manage-
ment, pp. 99–110 (2004)

8. Schmidt,A.U.,Tafreschi,O.,Wolf,R.: InteroperabilityChallenges forDRMSystems.
In: Second InternationalWorkshop on Virtual Goods, Ilmenau,Germany (May 2004)

9. Michiels, S., Verslype, K., Joosen, W., De Decker, B.: Towards a Software Architec-
ture for DRM. In: Proceedings of the ACM Digital Rights Management workshop
DRM 2005, pp. 65–74 (2005)

10. Kravitz, D.W., Messerges, T.S.: Achieving Media Portability through Local Con-
tent Translation and End-to-End Rights Management. In: Proceedings of the ACM
Digital Rights Management workshop DRM 2005, pp. 27–36 (2005)

11. Wegner, S.: Prototype Description of an Open DRM Architecture, OPERA-
Interoperability of Digital Rights Management Technologies. EURESCOM project
report (December 2003)

12. The Informed Dialogue about Consumer Acceptability of DRM Solutions in Eu-
rope. Consumer Survey on Digital Music and DRM (May 2005)

13. iTunes FairPlay,
http://www.apple.com/lu/support/itunes/authorization.html

14. Open Mobile Alliance, http://www.openmobilealliance.org/
15. Microsoft Windows Media Rights Manager,

http://www.microsoft.com/windows/windowsmedia/howto/articles/
drmarchitecture.aspx

16. Intertrust’s Coral and Marlin,
http://www.intertrust.com/main/research/initiatives.html

17. Coral Consortium, http://www.coral-interop.org/

http://www.apple.com/lu/support/itunes/authorization.html
http://www.openmobilealliance.org/
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx
http://www.intertrust.com/main/research/initiatives.html
http://www.coral-interop.org/

Author Index

Aoki, Takafumi 28

Buchmann, Johannes 84

Canh, Ngo Trong 211
Chae, Sooyoung 190
Cho, Jaeik 190
Cho, Sungkyu 320
Choi, Byung Goo 69
Choi, Donghyun 320

Dahmen, Erik 84

Fernandes, Miguel 211
Fukushima, Kazuhide 225

Gopalakrishnan, Ragavendran 115

Hamid, Md. Abdul 69
He, Mingxing 41, 305
Herbst, Christoph 1
Hernandez-Castro, Julio Cesar 56
Hirose, Shoichi 174, 278
Homma, Naofumi 28
Hong, Choong Seon 69
Huang, Xinyi 99
Hung, Le Xuan 211

Islam, Md. Shariful 69
Izu, Tetsuya 130

Jameel, Hassan 211
Jun, Sungik 292
Jung, Manhyun 190

Karuturi, Naga Naresh 115
Kawai, Yutaka 160
Kim, Chong Hee 256
Kim, Minsoo 201
Kim, Mooseop 292
Kim, Seungjoo 320
Kiyomoto, Shinsaku 225
Klonowski, Marek 240
Kondo, Takahiro 160

Kunihiro, Noboru 130, 160
Kuwakado, Hidenori 174

Lee, Heejo 211
Lee, Hosub 190
Lee, Sungyoung 211
Lim, Jongin 190

Medwed, Marcel 1, 14
Miret, J. 266
Moon, Jongsub 190
Mu, Yi 99

Noh, Bong-Nam 201

Ohta, Kazuo 130, 160
Okeya, Katsuyuki 84
Oswald, Elisabeth 14

Park, Jun-Hyung 201
Peris-Lopez, Pedro 56
Pieprzyk, Josef 145
Przykucki, Micha�l 240

Raazi, Syed Muhammad
Khaliq-ur-rehman 211

Rangan, C. Pandu 115
Ribagorda, Arturo 56
Ryou, Jaecheol 292

Sadornil, D. 266
Sakurai, Kouichi 225
Sano, Makoto 130
Satoh, Akashi 28
Schmidt, Jörn-Marc 256
Selvi, S. Sharmila Deva 115
Shaikh, Riaz Ahmed 211
Son, Yuseung 211
Strumiński, Tomasz 240
Sugawara, Takeshi 28
Susilo, Willy 99

Takenaka, Masahiko 130
Tanaka, Toshiaki 225
Tanno, Shotaro 160
Tapiador, Juan M.E. 56

334 Author Index

Tena, J. 266
Tomàs, R. 266

Valls, M. 266
Vivek, S. Sree 115
Vuillaume, Camille 84

Wang, Huaxiong 145
Wang, Peishun 145

Wei, Yuan Wei 211
Won, Dongho 320
Wu, Wei 99

Xu, Qingyu 41

Yoneyama, Kazuki 160

Zhou, Jun 305

	Title Page
	Preface
	Organization
	Table of Contents
	Smart Card and Secure Hardware(1)
	Using Templates to Attack Masked Montgomery Ladder Implementations of Modular Exponentiation
	Introduction
	Masked Montgomery Powering Ladder
	Principle of Template Attacks
	Mask Filtering
	Sieving with Tolerance

	Practical Attack
	Results
	Conclusions
	References

	Template Attacks on ECDSA
	Introduction
	Template Attacks
	Template Building Phase
	Template Matching Phase
	Previous Work
	Our Contribution

	ECDSA and Power Analysis Attacks
	ECDSA Signature Generation
	Security of Implementations of ECDSA

	Template-Based SPA Attacks on ECDSA
	Three Observations for Practical Applications
	Different Scenarios for Practical Attacks

	Practical Template-Based SPA Attacks on EC Point Multiplication
	Template Building Phase
	Template Matching with Pre-computed Templates
	Template Matching with On-the-Fly Created Templates
	Countermeasures

	Conclusion
	References

	Compact ASIC Architectures for the 512-Bit Hash Function Whirlpool
	Introduction
	The 512-Bit Hash Function Whirlpool
	Compact Hardware Architectures
	Data Manager
	Datapath Architectures

	Performance Evaluation
	Conclusion
	References

	Wireless and Sensor Network Security(1)
	Improved Constant Storage Self-healing Key Distribution with Revocation in Wireless Sensor Network
	Introduction
	Overview of Dutta’s Scheme
	Security Model of Dutta’s Scheme
	Protocol Requirements
	Self-healing Session Key Distribution

	Attack To Dutta’s Scheme
	The Proposed Scheme 1
	Security Model of the Proposed Scheme
	The Proposed Scheme 1
	Security Analysis of Scheme 1

	The Proposed Scheme 2
	The Construction of Scheme 2
	The Security Analysis of Scheme 2

	Efficiency
	Conclusion
	References

	Advances in Ultralightweight Cryptography for Low-Cost RFID Tags: Gossamer Protocol
	Introduction
	A Family of Ultralightweight Mutual Authentication Protocols
	Security Analysis of the UMAP Protocols

	SASIProtocol
	Vulnerability Analysis

	Gossamer Protocol
	Model Suppositions
	The Protocol
	Security Analysis
	Performance Analysis

	Conclusions
	General Considerations
	Ultralightweight Protocols

	References

	Securing Layer-2 Path Selection in Wireless Mesh Networks
	Introduction
	Related Works
	Path Selection Mechanism in 802.11s
	Possible Attacks
	Flooding Attack
	Route Re-direction Attack
	Routing Loops

	Proposed Secure Layer-2 Path Selection (SLPS) Protocol
	Key Establishment
	Identifying Mutable and Non-mutable Fields
	Secure Route Discovery

	Security and Overhead Analyses
	Security Analysis
	Overhead Analysis

	Performance Evaluation
	Conclusions
	References

	Public Key Crypto Applications
	Public Key Authentication with Memory Tokens
	Introduction
	Authentication Techniques
	Approaches for Authentication
	Merkle Signatures

	Authentication without Calculations
	Generating Signatures without Calculations
	Authentication Protocol
	Comparison

	Implementation and Applications
	Memory and Resource Requirements
	Hardware Implementation
	Applications

	Conclusion
	References

	Certificate-Based Signatures: New Definitions and a Generic Construction from Certificateless Signatures
	Introduction
	Certificate-Based Signatures: Pros and Cons
	Related Works about Certificate-Based Signatures
	Motivations and Contributions

	Certificate-Based Signatures
	Syntax of Certificate-Based Signatures
	Adversaries and Oracles

	Security Models
	Security against Normal Type I Adversary
	Security against Strong Type I Adversary
	Security against Super Type I Adversary
	Security against Type II Adversary

	Generic Construction of Certificate-Based Signatures
	Syntax of Certificateless Signatures
	Generic Construction: {\sf CLS-2-CBS}

	Conclusion
	References

	Cryptanalysis of Mu et al.’s and Li et al.’s Schemes and a Provably Secure ID-Based Broadcast Signcryption (IBBSC) Scheme
	Introduction
	Preliminaries
	Bilinear Pairing
	Computational Diffie-Hellman Problem (CDHP)

	ID-Based Broadcast Signcryption (IBBSC)
	Framework of ID-Based Broadcast Signcryption (IBBSC)
	Security Model for ID-Based Broadcast Signcryption

	Overview of IBBSC Scheme of Mu et al.
	Attack on IBBSC Scheme of Mu et al.
	Overview of IBBSC Scheme of Li et al.
	Attacks on IBBSC Scheme of Li et al.
	Attack on Confidentiality
	Attack on Authentication

	Improved ID-Based Broadcast Signcryption Scheme
	Proof of Confidentiality of Our IBBSC Scheme
	Proof of Unforgeability of Our IBBSC Scheme
	Efficiency of Our IBBSC Scheme
	Conclusion
	References

	Privacy and Anonymity
	Sanitizable and Deletable Signature
	Introduction
	Preliminaries
	Aggregate Signature
	Sanitizable Signature
	Deletable Signature

	Proposed Schemes
	Concept
	Approach
	Subdocument Status
	Proposed Scheme 1 (SDS1)
	Proposed Scheme 2 (SDS2)

	Comparison
	Concluding Remarks
	References

	An Efficient Scheme of Common Secure Indices for Conjunctive Keyword-Based Retrieval on Encrypted Data
	Introduction
	Preliminaries
	Models
	Assumptions

	Construction
	Wang {\it et al.} Dynamic Accumulator
	Conjunctive Keyword Searches
	Three-Party Cryptosystem
	New CSI-CKR

	Efficiency
	Conclusions
	References

	Extension of Secret Handshake Protocols with Multiple Groups in Monotone Condition
	References

	N/W Security and Intrusion Detection
	Pseudorandom-Function Property of the Step-Reduced Compression Functions of SHA-256 and SHA-512
	Introduction
	Preliminaries
	Pseudorandom-Function Property
	SHA-2 Compression Function

	22 Step-Reduced SHA-512 Compression Function
	Distinguishing Algorithm
	Analysis

	22 Step-Reduced SHA-256 Compression Function
	Concluding Remarks
	References

	A Regression Method to Compare Network Data and Modeling Data Using Generalized Additive Model
	Introduction
	Generalized Additive Models(GAM)
	Regression Analysis
	Generalized Additive Model

	Experiment and Results
	The Characteristic of Data
	Experimental Method
	The Results of Experiments

	Conclusions
	References

	A Visualization Technique for Installation Evidences Containing Malicious Executable Files Using Machine Language Sequence
	Introduction
	Related Work
	The Data for Forensic Analysis
	The Detection Mechanisms for Malicious Executable Files

	Executable Files and Machine Language Instruction
	Opcode Abstraction
	The Quantification of the Information Contained in Opcodes
	Decision Tree for Selection of Opcodes by C4.5

	Acquisition Evidences of Malware Installation
	The Similarity Graph
	The Similarity Graphs between Diverse Versions of Executable File
	Reassembling Data Blocks in Order

	Conclusion and Future Work
	References

	Application Security and Trust Management
	Image-Feature Based Human Identification Protocols on Limited Display Devices
	Introduction
	Matsumoto’s Threat Model
	Human Identification Protocol Based on Images and their Features
	Preliminaries: Definitions and Conjectures
	Proposed Protocols
	Protocol {\sf P1}
	Protocol {\sf P2}

	Security of the Protocols
	Implementation
	Conclusion
	References

	Ternary Subset Difference Method and Its Quantitative Analysis
	Introduction
	Background
	Previous Work
	Our Contribution

	Preliminary
	Trivial Expansion of the Conventional SD Method
	Subsets in the Ternary SD Method
	Subset Description
	Cover-Finding Algorithm

	Proposed Method
	Label Assignment Algorithm
	Encryption Algorithm
	Decryption Algorithm

	Analysis
	Efficiency Analysis
	Security Analysis

	Discussion
	Comparison with Conventional SD Method
	Extension to Coalition Resistant a-Array SD Method

	Conclusion
	References

	Data Deletion with Provable Security
	Introduction
	Related Work
	Organization of This Paper

	Secure Erasing via Special Coding
	Physical Data Representation on Magnetic Hard Drives and Its Weaknesses
	Our Scheme for Data Coding
	From Physical to Mathematical Model
	Analysis of Efficiency of Proposed Scheme

	Case of Erasing Cryptographic Material
	Formal Description of Considered Scenario
	Knowledge of the Adversary
	Single Bit Analysis
	Analysis of a String of Random Data
	Data Wiping Algorithms

	Future Work
	Conclusions
	References

	Smart Card and Secure Hardware(2)
	A Probing Attack on AES
	Introduction
	Preliminaries
	Notations
	AES

	Attack Model
	Probing AES
	Variants
	Probing $S^{i}_{0,0}$
	Probing Bytes of Rows 1-3
	Known Plaintext Scenario

	Conclusion
	References

	On Avoiding ZVP-Attacks Using Isogeny Volcanoes
	Introduction
	Preliminaries on Elliptic Curves
	Isogenies
	Isogeny Volcanoes and Cordilleras

	$Side Channel Attacks$ in Smart Cards
	Zero–Value Point Attacks

	Isogenies–Route over Cordilleras
	Algorithm
	Implementation and Complexity

	Experimental Results
	Conclusions
	References

	Security Analysis of DRBG Using HMAC in NIST SP 800-90
	Introduction
	Preliminaries
	A Pseudorandom Bit Generator
	A Pseudorandom Function

	$\bf{HMAC_DRBG}$
	Internal State
	The Function \bf{Update}
	The Algorithm $\bf{Generate}$

	Security Analysis
	If $adin$ = null
	If $adin$ \neq null

	Conclusion
	References

	Wireless and Sensor Network Security(2)
	Compact Implementation of SHA-1 Hash Function for Mobile Trusted Module
	Introduction
	SHA-1 Algorithm and Previous Works
	SHA-1 Algorithm
	Previous Works

	Architecture Design of SHA-1 Algorithm
	Design of Message Compression
	Design of Message Schedule
	Design of Software Interface

	Implementation Results and Comparison
	Synthesis Results
	System Level Test

	Conclusions
	References

	An Improved Distributed Key Management Scheme in Wireless Sensor Networks
	Introduction
	Network and Attack Models
	Pair-Wise Key Management Scheme
	Group Key Management Scheme
	Analysis
	Security Analysis
	Performance Analysis

	Conclusions
	References

	Protection Profile for Connected Interoperable DRM Framework
	Introduction
	Related Works
	Common Criteria and Protection Profile
	Interoperable DRM

	Protection Profile
	Introduction of Protection Profile
	Security Problem Definition
	Security Objectives
	Security Requirement

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

