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I. Introduction

Cyclic peptides and depsipeptides are widely
distributed in nature. They are found in plants
(Gournelis et al. 1998; Tan and Zhou 2006),
sponges and other lower sea animals (Bertram
and Pattenden 2007), cyanobacteria (Welker and
von Döhren 2006), bacteria and fungi alike and
their bioactivities range from antimicrobial,
insecticidal, nematicidal, antiviral, hepatotoxic,
cytotoxic/cytostatic to immunosuppressive and
other pharmacological properties (Kleinkauf and
von Döhren 1997; Pomilio et al. 2006).

Some of the peptides and depsipeptides
produced by fungi have gained entrance into
the pharmaceutical market, like cyclosporins
(Kürnsteiner et al. 2002), ergopeptides (Keller and
Tudzynski 2002), penicillins (Demain and Elander
1999) and cephalosporins (Schmidt 2002), or are
currently undergoing clinical trials, like the can-

dines, promising antifungal drugs against aspergil-
losis and candidiasis (Denning 2002; Johnson and
Perfect 2003; Pasqualotto and Denning 2008).
Caspofungin derived from pneumocandin and
micafungin derived from FR901379 are examples
of those novel drugs targeting fungal cell wall syn-
thesis, e.g. biosynthesis of 1,3-b-glucan (Odds et al.
2003; Butler 2004). For a recent review, see
Hashimoto (2009). Emodepsin, a semi-synthetic
depsipeptide, is used in veterinarymedicine against
helminths (von Samson-Himmelstjerna et al. 2005).
The drug is derived from PF1022A, a metabolite of
an endophytic fungus from Camellia japonica
(Sasaki et al. 1992; Scherkenbeck et al. 2002). As
these groups of compounds are well covered in the
literature, they are not addressed here in detail.

The biosynthesis of cyclic peptides and depsi-
peptides has attracted the interest of biochemists
since the mid1960s (Gevers et al. 1968). Today, the
focus has shifted from enzymology to genetics,
e.g. the biosynthetic genes and their regulation.
Therefore Chap. 15 is dedicated to this topic, to
which the reader is referred.

A special group of cyclopeptides are the dike-
topiperazines, which consist of two amino acids
linked by two peptide bonds. In the related epipo-
lythiodioxopiperazines the 6-ring is bridged by
one to four sulfur atoms. The structural diversity
of diketopiperazines (more than 100 different
compounds are known from fungi; Buckingham
2008) is matched by their biological activities.
Recently published reviews are available (Cole
and Schweikert 2003; Gardiner et al. 2005). Inter-
estingly, functions in the producing organisms
have been detected for some of these compounds,
e.g. gliotoxin and related compounds play a role
as virulence factors in invasive aspergillosis
(Sugui et al. 2007) and coprogens in host invasion
of plant-pathogenic fungi (Oide et al. 2006;
Hof et al. 2007). The reported biological activities
of gliotoxin are very broad and diverse. Anti-
bacterial, antifungal, antiviral, amoebicidal and
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immunosuppressive properties have been de-
scribed (see below). Most of these activities are
based on interactions with essential thiol groups
in proteins (Waring and Beaver 1996). Iron che-
lators like dimerumic acid, rhodotorulic acid,
coprogen and its derivatives are involved in iron
uptake (Winkelmann and Drechsler 1997;
Renshaw et al. 2002; Antelo et al. 2006), while
other siderophores, e.g. the hexapeptides ferri-
chrome or ferricrocin, in addition to iron trans-
port or storage functions act as virulence factors
in some human and plant pathogens similar to
coprogens (Howard 1999; Haas et al. 2008).

The group of peptaibiotics, a constantly
growing family of linear a-aminobutyric acid
(Aib)-containing linear peptides has been
enlarged by a small group of cyclic peptides also
containing Aib, now called cyclopeptaibiotics.
Whereas the linear group comprises more than
800 compounds, only nine cyclic compounds
have been reported to date. These are seven tetra-
peptides structurally related to chlamydocin
(Degenkolb et al. 2008) and the scytalidamides,
two heptapeptides containing Aib residues (Tan
et al. 2003).

II. Occurrence of Cyclic Peptides and
Depsipeptides Within the Kingdom
Eumycota (True Fungi)

A. Siderophores

The occurrence and distribution of siderophores
among the taxonomic groups of fungi is very well
covered by the reviews of Renshaw et al. (2002)
and Haas et al. (2008). Zygomycetes very rarely
produce cyclic peptide or depsipeptide sidero-
phores. Up to now the hexapeptide ferrichrysin
seems to be the only example. It is produced by
Cunninghamella blakesleeana (Patil et al. 1995).
The production of diketopiperazine and hexapep-
tide siderophores is common among asco- and
basidiomycetes (Renshaw et al. 2002). The fact
that members of some orders have not yet been
reported to produce siderophores reflects a lack of
investigation rather than presence. There are a
few fungi, however, which do not produce
siderophores: the ascomycetous yeasts Saccharo-
myces cerevisiae and Candida albicans or
Geotrichum candidum and the basidiomycete

Cryptococcus neoformans (teleomorph Filobasi-
diella; Howard 1999; Haas et al. 2008). The inves-
tigation of basidiomycetes is difficult because
iron-free media, which upregulate the biosynthe-
sis of siderophores, often hardly support mycelial
growth, requiring incubation times of eight to ten
weeks (Welzel et al. 2005). In contrast, modern
analytical techniques like HPLC-MSn are sensitive
enough to allow the detection and characteriza-
tion of very small amounts (mg/l of culture). In
addition, as more fungal genomes and NRPS
genes and products become available, it is clear
that siderophores and iron metabolism are impor-
tant virulence determinants (Eichhorn et al. 2006;
Oide et al. 2006; Haas et al. 2008).

It is remarkable that extracellular and intra-
cellular siderophores are not identical and that the
synthesis of intracellular siderophores is often not
iron-dependent.

As an example, most Trichoderma species excrete copro-
gen-type siderophores and ferricrocin for the capture
and transport of iron and use palmitoylcoprogen located
within the mycelia as storage compound. In T. pseudo-
koningii and T. longibrachiatum however, palmitoylco-
progen was not detected, but these two species excrete
fusigen-type siderophores in addition to coprogen and
fericrocin (Anke et al. 1991). Magnaporthe grisea uses
intracellular ferricrocin for iron storage and under iron
deprivation excretes four coprogen derivatives (Hof et al.
2007). In other plant-pathogenic fungi like Fusarium
graminearum, F. culmorum, F. pseudograminearum,
Cochliobolus heterostrophus and Gibberella zeae ferricro-
cin has also been reported as intracellular siderophore
(Oide et al. 2007; Tobiasen et al. 2007). The situation in
the human pathogen Aspergillus fumigatus is similar.
Ferricrocin is located in the mycelia, a hydroxylated
derivative in the conidia and triacetylfusigen is excreted
(Schrettl et al. 2007).

The structures of several iron-free siderophores,
e.g. rhodotorulic acid, 2-N-methylcoprogen, pal-
mitoylcoprogen, ferricrocin and ferrichrome are
given in Fig. 13.1.

B. Diketopiperazines

Simple diketopiperazines may be detected in fer-
mentations of many fungi. Sometimes it is diffi-
cult to decide whether these are degradation
products of proteins and peptides or synthesized
de novo (Prasad 1995). In the future, this problem
might be solved by molecular genetics, since the
presence of the relevant biosynthetic genes can be
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proof of de novo synthesis (Chap. 15). The recently
demonstrated behavioral effects and occurrence in
humans of cyclo(His-Pro) stimulated research on
such compounds which are easily accessible by
chemical synthesis. However, cyclo(His-Pro) has
not yet been reported from fungi. This may be due
to the fact that its bioactivities, e.g. inhibition of
food intake and inhibition of prolactin secretion
or modulation of pain perception (Prasad 1995)
are not suited for a screening of microbial cul-
tures. Usually these compounds are detected dur-
ing the isolation of other metabolites and
described as side-products. A recent example is
L-alanyl-L-tryptophan anhydride isolated together
with golmaenone, a radical scavenger compound,

and neoechinulin from an marine Aspergillus
species (Li et al. 2004). As in many other cases,
the simple alkaloid is the biogenetic precursor of
the other two compounds. With antimicrobial,
cytotoxic, phytotoxic, insecticidal and other test
systems which have been extensively used in
screenings for bioactive natural products, simple
diketopierazines are less frequently detected. One
example is the fungistatic mactanamide from a
marine Aspergillus species (Lorenz et al. 1998).
Simple diketopiperazines have been described
from hetero- and homobasidiomycetes, for
example Ustilago cynodontis, Entoloma haastii
and Stereum hirsutum (Turner and Aldridge
1983), ascomycetes like Rosellinia necatrix,
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Claviceps species, Eurotium and Emericella spe-
cies, Leptosphaeria species including their ana-
morphs, Aspergillus, Phoma and Coniothyrium
species (Turner and Aldridge 1983; Cole and
Schweikert 2003; Blunt et al. 2006).

Aspergillus and Penicillium species are very prolific pro-
ducers of cyclic dipeptide-derived mycotoxins like fumi-
tremorgins, verruculogens or roquefortine C, while
sporidesmins, mycotoxins that cause facial eczema in
grazing sheep, are produced by Pithomyces chartarum
(Betina 1989). From several Penicillium species, mycelia-
namide, one of the very “old” diketopiperazines, has been
known since 1931. This compound was detected during
early screenings after the discovery of penicillin G. The

recently described sulfur-containing gliovictin was
obtained from an endophytic Penicillium janczewskii
(Gunatilaka 2006) and diketopiperazine-derived rostra-
tins from a marine Exserohilium rostratum (Tan et al.
2004). To the long list of Penicillium species producing
diketopiperazines, P. dipodomyis, P. nalgiovense, P. fell-
utanum and P. simplicissimum were recently added
(Lewis 2002).

Examples for structures of simple and complex
diketopiperazines are found in Fig. 13.2.

From cultures of a number of fungi produc-
ing cyclic depsipeptides, e.g. Beauveria bassiana,
dipeptides composed of the amino acids
occurring in the depsipeptides have been
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isolated. Other insect pathogens like Verticillium
species and Metarhizium anisopliae as well as
plant-pathogenic fungi, e.g. Colletotrichum
gloeosporioides, Exserohilum holmi, Gliocladium
deliquenscens, Alternaria and Trichoderma pro-
duce dipeptides. An unidentified endophyte from
mangrove leaf produces two cyclic depsipeptides
and three diketopiperazines (Huang et al. 2007).
The role of the compounds, dipeptides and
depsipeptides, in insect and plant-pathogenicity
has not yet been completely elucidated. As mo-
lecular tools become more easily available,
this question might be addressed or even an-
swered in the near future, especially since the
elucidation of the ecological function of second-
ary metabolites for the producers becomes more
interesting (see below).

Epipolythiopiperazines with more than 60
members, gliotoxin being the most prominent,
are widely distributed in nature. Their pro-
ducers are mainly found among the ascomycete
genera Aspergillus, Penicillium, Gliocladium, Ver-
ticillium, Chaetominum, Emericella, Acrostalag-
mus (syn. Verticillium), Pithomyces, Bionectria,
Leptosphaeria, Hyalodendron, Trichoderma, Siro-
desmium (syn. Coniosporium), Epicoccum, Ara-
chniotus and Pseudallescheria (Turner and
Aldridge 1983; Betina 1989; Takahashi et al.
1994; Gardiner at al. 2005; Li et al. 2006; Zheng
et al. 2007). There is one report on the occurrence
of an epipolythiopiperazine in lichens, e.g.
Xanthoparmelia scabrosa (Ernst-Russell et al.
1999). As is true for many lichen metabolites,
it may be also in this case the ascomycetous fungal
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partner which is responsible for the production
of scabrosin. The production of epicorazine C by
Stereum hirsutum, a basidiomycete, seems a bit
questionable since related epicorazines are pro-
duced by Epicoccum nigrum and E. purpurascens
(Kleinwachter et al. 2001). Overlaps between
metabolites from basidiomycetes and ascomy-
cetes are fairly rare but do occur occasionally.
Other examples may be beauvericin and
chlamydocin (see below). The structures of glio-
toxin, epicorazines, scabrosin, vertihemiptellide A
and other epipolythiopiperazines are given in
Fig. 13.3.

C. Cyclic Peptides

Cyclic peptides are mainly produced by ascomy-
cetes and their anamorphs. Among cyclic pep-
tides, the immunomodulating cyclosporins
constitute the largest group with 46 members.
The producing organisms are found mainly in
the ascomycetous families Hypocreaceae and
Clavivipitaceae and their anamorphs Tolypocla-
dium inflatum, T. tundrense and T. terricola. In
addition, three soil-borne insect pathogens, Neo-
cosmospora vasinfecta, Acremonium luzulae, a
Cyclindrotrichum species, Stachybotrys chartarum,
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Trichoderma viride, a Leptostroma anamorph of

Hypoderma eucalyptii, Chaunopycnis alba and an

unidentified mycelium sterilium have been

reported to produce cyclosporins (Matha et al.

1992; Traber and Dreyfuss 1996). The structure of

cyclosporin A is found in Fig. 13.4C. Figure. 13.4A

shows examples of simpler cyclospeptides.

The malformins, a group of nine phytotoxic compounds,
are only found within the Aspergillus niger group (Kobbe
et al. 1977). Some authors classify the compounds as

mycotoxins even so they are rarely found in food or feed
stuff.

The antifungal echinocandins comprising differ-
ent compounds (aculeacin A, echinocandin B,
pneumocandins, mulundocandins, FR901379,
WF11899A, B, C, FR227673, FR190293, etc.) have
been reported from several Aspergilli, Coleo-
phoma empetri, C. crateriformis, Chalara species,
Tolypocladium parasiticum and Zalerion arbori-
cola (Iwamoto et al. 1994b; Anke and Erkel 2002;
Denning 2002; Kanasaki et al. 2006a, b, c,).
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The Zalerion strain producing echinocandin B was later
reclassified as Glarea lozoyensis, a new anamorph genus
and species within the Leotiales (Bills et al. 1999). The
fungus producing arborcandins (Ohyama et al. 2000), has
not been identified.

The structures of some of these compounds can
be found in Fig. 13.5.

Producers of various cyclic peptides are found
in many other families and genera, for example
Diheterospora, Gliocladium, Cylindrocarpon,
Clonostachys, Cochliobolus and Fusarium (Lewis
2002; Adachi et al. 2005; Weber et al. 2006;
Degenkolb et al. 2008).

As endophytic fungi have recently come
into focus as producers of bioactive natural com-
pounds, it is not astonishing that also novel cyclic
peptides have been reported from these fungi.

A pentapeptidewas isolated fromanunidentified endophyte

from the seed of Avicinnia marina (Gunatilaka 2006), other

cyclopeptides from endophytic Fusarium species (Shiono

et al. 2007), Epichloe typhina (Seto et al. 2007) or endophyte

“2221” from Castaniopsis fissa (Yin et al. 2005). More than
450 cyclic peptides are known from plants (Tan and Zhou
2006); some of these actuallymay be produced by endophyt-
ic fungi in planta.

In recent years, marine habitats have drawn much
interest as ecological niches for producers of novel bioac-
tive metabolites. The unguisins were isolated from a ma-
rine-derived strain of Emericella unguis (Malstrom 2002).
Among cyclic peptides from obligate marine ascomycetes
are the highly cytotoxic trapoxin A produced by Corollos-
pora intermedia (Daferner 2000) or scytalidamides from a
Scytalidium species from a marine alga (Tan et al. 2003).
JM47, structurally related to HC-toxins and trapoxin, was
isolated together with enniatin from a marine-derived
Fusarium species (Jiang et al. 2002). Trapoxins are also
known from terrestrial fungi, e.g. Helicoma ambiens, the
anamorph of Thaxteriella pezicula (Itazaki et al. 1990)
and structurally related metabolites have been described
from the phytopathogenic Cyclindrocladium scorparium
(teleomorph Calonectria morganii) and Cochliobolus car-
bonum (Degenkolb et al. 2008).

For structures see Fig. 13.6.
The only cyclopeptides, besides the sidero-

phores, known from submerged cultures of basi-
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diomycetes are the omphalotins from Omphalotus
olearius (Büchel et al. 1998a,b), amanitins from
Amanita exitialis (Zhang et al. 2005) and chlamy-
docins from a Peniophora strain isolated from
soil (Tani et al. 2001). The chlamydocins are
tetrapeptides with Aib and an unusual amino
acid. Most of these are produced by ascomycetes,
e.g. Diheterospora chlamyydosporia (Closse and

Huguenin 1974) and V. coccosporum (Gupta
et al. 1994). Interestingly, the omphalotins
produced by a monokaryotic strain differ from
those found in the dikaryotic parental strain (Lier-
mann et al. 2009). However, all O. olearius strains
irrespective of their geographical origin produce
omphalotin derivatives (Anke et al., unpublished
data). In fruiting bodies omphalotins could not
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be detected, contrary to Amanita exitialis
carpophores which contained tenfold more a-
and b-amanitin as compared to the slow growing
mycelial cultures (Zhang et al. 2005). For recent
surveys of Amanita toxins from fruiting bodies
see Li and Oberlies (2005), Liu (2005) and Pomilio
et al. (2006). Figure 13.4B shows the structures of
omphalotins and a-amanitin.

D. Cyclic Depsipeptides

Most depsipeptides are metabolites from ascomy-
cetes and their anamorphs. They are widespread
in phytopathogens (e.g. Cochliobolus with

anamorphs Helminthosporium and Bipolaris,
Calonectria and its anamorph Cyclindrocladium,
as well as Fusarium and Alternaria), insect patho-
gens (Aschersonia, Beauveria, Cordyceps, Diheter-
ospora, Fusarium, Hirsutella, Isaria,Metharizium,
Paecilomyces, Verticillium) and others (Zimmer-
mann 2007a, b; Buckingham 2008). For a compi-
lation of beauvericins and enniatins produced by
Cordyceps species and their anamorphs as well as
other insect pathogens see Isaka et al. (2005a, b).
Figure 13.7 gives the structures of some cyclodep-
sipeptides.

Up to now the pteratides (Fig. 13.7C) are
the only depsipeptides reported from basidio-
mycetes, namely from the fruiting bodies of a
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Pterula species (Chen et al. 2006). From zygomy-
cetes none have been described. One report on
the production of beauvericin by Laetiporus sul-
fureus (Badan et al. 1978) could not be confirmed
by other groups. In our cultures from L. sulfureus
from different locations we could only detect
laetiporic acid and its derivatives (Davoli et al.
2005).

Since the review of Anke and Sterner (2002),
additional producers of bioactive depsipeptides
have been reported, for example marine-derived

strains of Beauveria fellina (Lira et al. 2006),
Verticillium sp. FKI-1033 (Monma et al. 2006),
Aspergillus carneus (Capon et al. 2003),
Torrubiella luteorostrata and its anamorph Paeci-
lomyces cinnamomeus (both isolated from a scale
insect; Isaka et al. 2007), Verticillium hemipteri-
genum (Supothina et al. 2004), an Aureobasidium
species from the tropical rain forest (Boros et al.
2006), an unidentified endophytic fungus (Huang
et al. 2007) and a soil-borne Phoma species
(Aoyagi et al. 2007). Pseudodestruxins have been
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reported from Nigrosabulum globosum (Che et al.
2001) and reviews on destruxins and the produc-
ing organisms have been published by (Pedras
et al. 2002) and Zimmermann (2007b).

The endophyte-producing PF1022A (and
related anthelmintic cyclooctadepsipeptides) iso-
lated from leaves of a camellia has been identified
based on its 18S rRNA gene sequence as a mem-
ber of the Xylariaceae close to Xylaria polymorpha
and Rosellinia necatrix (Miyado et al. 2000).

One of the few aquatic fungi investigated
for secondary metabolite production is Clavar-
iopsis aquatica from which the antifungal cla-
variopsins A and B were isolated (Kaida et al.
2001).

Analogues of the lipopeptides with 1,3-b-glu-
can synthase inhibitory activity are the lipodepsi-
peptides FR901469 or LL15G256g (see Fig. 13.5).
The former is produced by an unidentified fungus,
the latter (identical to arthrichitin fromArthrinum
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spaeospermum) by Hypoxylon oceanicum (Abba-
nat et al. 1998; Fujie et al. 2000).

III. Chemical and Biological Diversity
of Cyclic Peptides and Depsipeptides

A. Diversity of Building Blocks

Cyclic peptides and depsipeptides constitute a
class of natural compounds with an enormous

structural diversity. This diversity is brought
upon by the different building blocks in the ring:
proteinogenic amino acids including their D-iso-
mers, nonproteinogenic amino acids, branched or
unbranched lipoamino acids and hydroxylated
short-, medium- and long-chain fatty acids. The
diversity of the building blocks can be deduced
from Tables 13.1–13.3, which give a compilation
of unusual building blocks (Table 13.1 unusual
amino acids, Table 13.2 unusual fatty acids) and
various modifications (Table 13.3).
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B. Diversity of Structures

Additional variations are due to the different
numbers of building blocks, their arrangement
(e.g. sequence in the ring) and their linkage (e.g.
amide and ester bonds). Some depsipetides like
the enniatins, beauvericins, bassianolide or verti-
cilide show a symmetric arrangement in the ring.
The majority however are asymmetric, like the
destruxins, beauverolides, isariins or Alternaria
toxins (Fig. 13.7A,C).

Cyclic peptides including the cyclosporins are
asymmetric, as are the echinocandins. The num-
ber of building blocks in cyclic peptides varies
from two in the diketopiperazines, some of
which are symmetric if composed of two residues
of the same amino acid, to 12 in the omphalotins,
which are at present the largest cyclopeptides
known from fungi. In addition, the omphalotins
are an example of modifications after ring closure.
Omphalotins B, C and D are derived from ompha-
lotin A by hydroxylation followed by acylation to

Table 13.1. Diversity of amino acid building blocks in cyclic peptides and depsipeptides

Amino acid Example Figure Reference

a-Aminoadipic acid Argadin 13.4B Arai et al. (2000)
Prolyl-homoserine Argadin 13.4B Arai et al. (2000)
b-Keto tryptophan LL15G256g 13.5 Abbanat et al. (1996)
Propylleucine Pestahivin 13.7B Hommel et al. (1996)
Dehydroalanine AM-toxin I 13.7A Ueno et al. (1975)
a-Amino-p-methoxyphenylvaleric acid AM-toxin I 13.7A Ueno et al. (1975)
N5-Hydroxyornithine Siderophores 13.1 Renshaw et al. (2002)
4-Methylproline FR-235222 13.6 Mori et al. (2003)
2-Butenyl-4-methylthreonine Cyclosporin A 13.4C Rüegger et al. (1975)
a-Aminobutyric acid Cyclosporin A 13.4C Rüegger et al. (1975)
3-Hydroxyhomotyrosine WF-11899C 13.5 Iwamoto et al. (1994b)
5-Hydroxyornithine WF-11899C 13.5 Iwamoto et al. (1994b)
Dichloro-proline Cyclochlorotine 13.4B Yoshioka et al. (1973)
b-Phenyl-b-aminopropionic acid Cyclochlorotine 13.4B Yoshioka et al. (1973)
b-Alanine Destruxin A 13.7A Rees et al. (1996)
b-Aspartic acid Argifin 13.4C Arai et al. (2000)
a-Aminoisobutyric acid Chlamydocin 13.6 Closse and Huguenin (1974)
Isovaline FR-235222 13.6 Mori et al. (2003)
1-Aminocyclopropane-1-carboxylic acid Serinocyclin A 13.4C Krasnoff et al. (2007)
Pipecolinic acid Trapoxin A 13.6 Itazaki et al. (1990)
Anthranilic acid Psychrophilin D 13.4C Dalsgaard et al. (2005)
2-Amino-8-oxo-9-hydroxydecanoic acid JM47 13.6 Jiang et al. (2002)
2-Amino-9,10-epoxy-8-oxodecanoic acid HC-toxin I 13.6 Gross et al. (1982)

Table 13.2. Diversity of hydroxyacid building blocks in cyclic depsipeptides

Acid Example Figure Reference

2-Hydroxyisovaleric acid Clavariopsin A 13.7C Kaida et al. (2001)
3,4-Dihydroxy-4-methylhexadecanoic acid Glomosporin 13.7C Ishiyama et al. (2000)
2-Hydroxy-3-methylpentanoic acid Enniatin I 13.7A Nilanonta et al. (2003)
2-Hydroxyheptanoic acid Verticilide 13.7C Monma et al. (2006)
2-Hydroxy-4-metylpentanoic acid Sansalvamide A 13.7B Belofsky et al. (1999)
Phenyllactic acid PF1022A 13.7B Sasaki et al. (1992)
Lactic acid PF1022A 13.7B Sasaki et al. (1992)
3-Hydroxydodecanoic acid Isariin A 13.7A Wolstenholme and Vining (1966)
3-Hydroxy-4-methyldecanoic acid Beauverolide II 13.7A Mochizuki et al. (1993)
3-Hydroxydecanoic acid Icosalide A1 13.7A Boros et al. (2006)
3,5-Dihydroxy-2,4-dimethylstearic acid Stevastelin B 13.7C Morino et al. (1994)
2-Hydroxy-4-cyanobutyric acid Pestahivin 13.7B Hommel et al. (1996)
2-Hydroxy-4-enoylpentanoic acid Destruxin A 13.7A Rees et al. (1996)
2,4-Dimethyl-3-hydroxydodecanoic acid LL15G256g 13.5 Abbanat et al. (1996)

286 Heidrun Anke and Luis Antelo



the corresponding esters and formation of addi-
tional ring structures (Büchel et al. 1998).

Novel omphalotins were recently isolated from a mono-
karyotic strain. The elucidation of their structures was
greatly hampered by their instability (Liermann et al.
2009). These omphalotins bear additional hydroxyl
groups, thus bringing the number of known cyclic pep-
tides from O. olearius to 11. A second hydroxylation at the
tryptophan leads to a novel ring system (Fig. 13.4B).
HPLC-MS spectra of enriched extracts indicate the pres-
ence of additional members of the group. The psychrophi-
lins are nitropeptides with unusual structures (Fig. 13.4A).
The compounds are produced by several psychrotolerant
Penicillium species (Dalsgaard et al. 2004a, b; 2005).
Cyclochlorotine, a mycotoxin from P. islandicum contains
a dichloroprolyl residue (Betina 1989).

The depsipeptides start with four building blocks
(angolide, beauverolides) up to 12 in the antibiotic
FR901469 (a member of the 1,3-b-glucan synthase
inhibitors; Fujie et al. 2001) and 13 in petriellin A
(Lee et al. 1995). The latter contains b-phenyllactic
acid, a building block not often found in cyclopep-
tides and -depsipeptides. Further modifications
of cyclic peptides and depsipeptides include
N-methylation, hydroxylations, acylation, isopre-
nylation and the introduction of sulfate-, nitro-
chloro- or cyano- groups. These modifications
can occur at the beginning of biosynthesis, like
N-methylations, or after cyclization, e.g. C- and

N-hydroxylations followed by an acylation
(Glinski et al. 2001; Chap. 15). In many cases how-
ever it is not clear at which step the modifications
occur. The low substrate specificity of the NRPS
enzymes allows the incorporation of modified ring
components. In fact, Zocher and his group have
made use of this to produce novel enniatin deriva-
tives in vitro (Feifel et al. 2007).

C. Diversity of Biological Activities

The structural diversity of diketopiperazines,
cyclopeptides and -depsipeptides is matched by
the diversity of their biological activities. To list
all activities and compounds would be beyond of
the scope of this chapter. An overview on
biological activities of diketopiperazines is given
by Martins and Carvalho (2007), cyclic depsipep-
tides and their biological activities are reviewed
by (Sarabia et al. 2004), while insecticidal and
other biological activities of destruxins, isariins,
enniatins, and beauverolides are reviewed by
Anke and Sterner (2002) and by Zimmermann
(2007a, b). Some of the compounds exhibit rath-
er selective activities like the antifungal, 1,3-b-
glucan synthesis inhibitors (see below) whereas
others like gliotoxin show a broad spectrum of
activities. While the former (due to fewer side-

Table 13.3. Modifications in cyclic peptide and depsipeptides

Modification/substitution Example Figure Reference

O-Methyl Clavariopsin A 13.7C Kaida et al. (2001)
N-Methyl Omphalotin A 13.4B Sterner et al. (1997)
Methoxy Pestahivin 13.7B Hommel et al. (1996)
Acetyl Omphalotin C 13.4B Büchel et al. (1998a)
3-Hydroxy-methylbutanoyl Omphalotin C 13.4B Büchel et al. (1998a)
Palmitic acid WF-11899C 13.5 Iwamoto et al. (1994b)
3-Hydroxypalmitic acid FR 901469 13.5 Fujie et al. (2000)
Linoleic acid Echinocandin B 13.5 Keller-Juslen et al. (1976)
Sulfate WF-11899C 13.5 Iwamoto et al. (1994b)
Nitro Psychrophilin A 13.4C Dalsgaard et al. (2005)
Halogenation Sporidesmin A 13.3 Fridrichsons and Mathieson (1962)
Isoprenyl Roquefortine C 13.2 Scott et al. (1979)
Prenyl Fumitremorgin A 13.2 Eickman et al. (1975)
Geranyl Mycelianamide 13.2 Birch et al. (1956)
N-Methylcarbamoyl Argifin 13.4C Arai et al. (2000)
Hydroxylation
3-Hydroxyvaline Omphalotin C 13.4B Büchel et al. (1998a)
4,5-Dihydroxyornithine Echinocandin B 13.5 Keller-Juslen et al. (1976)
3,4-Dihydroxyhomotyrosine Echinocandin B 13.5 Keller-Juslen et al. (1976)
2,6-Dihydroxyphenylalanine Mactanamide 13.2 Lorenz et al. (1998)
3,4-Dihydroxyproline Pneumocandin D0 13.5 Morris et al. (1994)
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effects) generally have a higher potential to be
developed into drugs or pesticides, the latter
might be of interest as biochemical tools or
chemical building blocks. In the following, we
attempt to give an overview on the different
biological activities exhibited by fungal cyclopep-
tides and -depsipeptides.

Gliotoxin, already isolated in 1932, recently
regained interest not only due to its immunosup-
pressive and apoptosis-inducing activities (Waring
et al. 1988) but moreover due to its occurrence in
the blood of aspergillosis patients and its effects on
various human cells among them an inhibition of
cell adherence inmacrophages (Amitani et al. 1995;
Kamei and Watanabe 2005). The plethora of
biological activities is evident from the number of
papers published on gliotoxin and related epipo-
lythiodioxopiperazines (Waring and Beaver 1996;
Hume et al. 2002; Gardiner et al. 2005).

The vertihemiptellides A and B and their S-methylated
monomers exhibit antimycobacterial and cytotoxic effects
(Isaka et al. 2005b). Sirodesmin PL produced by Lepto-
sphaeria maculans has phytotoxic, antibacterial and insec-
ticidal properties (Rouxel et al. 1988; Boudart 1989) and
the leptosins inhibited the proliferation of P388 lympho-
cytic leukemia cells with an ED50 of 1.1–1.3 mg/ml (Taka-
hashi et al. 1994).

The HC-toxins, host-specific toxins from Coch-
liobolus carbonum (anamorph Helminthosporium
carbonum), are cyto- and phytotoxic and inhibitors
of histone deacetylase (Taunton et al. 1996).

Structurally related tetrapeptides (Fig. 13.6) like apicidin
from a Fusarium species (Darkin-Rattray et al. 1996; Singh
et al. 2002), JM47 from a marine Fusarium species (Jiang
et al. 2002), FR235222 from an Acremonium species (Mori
et al. 2003) or the chlamydocins from Diheterospora chla-
mydosporia (Closse and Huguenin 1974) and Peniophora
sp. (Tani et al. 2001) have been reported to exhibit anti-
protozoal activity, to induce apoptosis, to have immuno-
suppressive effects or to retard plant growth (de Schepper
et al. 2003).

Due to their toxic effects in animal and humans and
their occurrence in food and feedstuff, fumitremorgins,
verruculogens, roquefortins C and D, sporidesmins, chae-
tocin, cyclochlorotine and malformins were classified as
mycotoxins (Betina 1989). For their different biological
activities the reader is referred to the vast online literature
on this group of fungal products.

Malformin C (Fig. 13.4), despite its antibacterial,
plant-deforming and fibrinolytic activities, recently
aroused some interest due to its inhibitory effects

on bleomycin-induced G2 arrest, thus potentiat-
ing its DNA-damaging action, a mode of action
that might be useful for the treatment of cancer
(Hagimori et al. 2007).

Cyclosporins are not the only immunomodu-
lating fungal metabolites. Many epipolythiodiox-
opiperazines, in addition to other biological
activities, are immunosuppressants.

Sevastelins, cyclodepsipeptides with a lipophilic
side-chain, from a Penicillium species blocked human T
cell activation in vitro and showed low acute toxicity in
mice (Morino et al. 1994). HUN-7293 acts as inhibitor of
cytokine-induced expression of vascular cell adhesion
molecule-1 on human endothelial cells (Hommel et al.
1996). It is structurally identical to pestahivin.

The depsipeptide aureobasidin A has an interest-
ing mode of action, the inositol phosphoceramide
synthase (IPS). The fungal enzyme is considered to
be an attractive target for novel fungicides. Further
development of aureobasidin A was hampered by
its inhibitory effects on ABC transporters in yeasts
and humans (Fostel and Lartey 2000). The pleo-
fungins from a Phoma species showed antifungal
activity towards Candida albicans, Cryptococcus
neoformans and A. fumigatus with minimal inhib-
itory concentrations in the range of 1 mg/ml or
lower (Yano et al. 2007). The compounds inhibited
the A. fumigatus IPS with IC50 values of 1 ng/ml
(Aoyagi et al. 2007).

Neoechinulin A has protective activity in
PC12 cells against lethal effects of peroxynitrite
and against 1-methyl-4-phenylpyridine, a neuro-
toxin capable of inducing neurodegeneration in
humans (Kajimura et al. 2008). The cyclic tetra-
peptide CJ-15,208 is a kappa opinoid receptor
antagonist (Saito et al. 2002) and four depsipep-
tides were reported to be selective and competitive
human tachykinin receptor antagonsits (Hedge
et al. 2001).

Among nine beauverolides tested for acyl-CoA:
cholesterol acyltransferase (ACAT) inhibitory ac-
tivity in CHO-cells expressing ACAT1 or ACAT2,
beauverolides I and III inhibited ACAT1 rather
selectively, no antimicrobial or cytotoxic activities
were detected and beauvericin was cytotoxic (Mat-
suda et al. 2004; Ohshiro et al. 2007). ACAT is
discussed as a target for new antiatherosclerotic
agents (Roth 1998; Namatame et al. 2004).

The outstanding anthelmintic activity of
PF1022A combined with its mode of action, e.g.
binding to the latrophilin-like receptor of
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Haemonchus contortus (Conder et al. 1995; Saeger
et al. 2001) and low toxicity led to the develop-
ment of emodepsin, a novel drug used in animal
health.

Antiparasitic properties have been reported
for cycloaspeptides A and D (Dalsgaard et al.
2004b). Verticilide, a cyclic depsipeptide isolated
from the culture broth of Verticillium sp. FKI-
1033, inhibits the binding of ryanodine to the
receptor (RyR) and has insecticidal activity
(Monma et al. 2006). Serinocyclin A isolated
from M. anisopliae condia produced a sublethal
locomotory defect in mosquito larvae (Krasnoff
et al. 2007). Argifin and argadin, two cyclopenta-
peptides from a Gliocladium and a Clonostachys
species, are potent inhibitors of chitinase B from
Serratia marcescens (Houston et al. 2002). When
injected into cockroach larvae, the moult was
arrested. Besides cyclopeptides and -depsipep-
tides fungi also produce other peptides with
insecticidal activities, recent examples are the
neofrapeptins from Geotrichum candidum
(Fredenhagen et al. 2006). Selective nematicidal
properties have been reported only for the
omphalotins with high inhibitory activity towards
Meloidogyne incognita and low activity towards
Caenorhabditis elegans (Mayer et al. 1997, 1999;
Sterner et al. 1997). The nematicidal properties of
the hydroxylated omphalotins are higher than
those of the parent compound, but unfortunately
they are not stable (Büchel et al. 1998a, Liermann
et al. 2009).

Antiviral properties have been reported for
sansalvamide A, a cyclodepsipeptide from a ma-
rine Fusarium, which inhibits viral topoisomer-
ase-catalyzed DNA relaxation (Hwang et al. 1999).

The clavariopsins, cyclic depsipetides from
Clavariopsis aquatica, show selective antifungal
activity, bacteria are not affected and mice tolerate
100 mg/kg of clavariopsin A. As mode of action,
an inhibition of cell components was proposed
(Kaida et al. 2001). Glomosporin from a Glomos-
pora species is a lipophilic depsipeptide with
antifungal activity (Sato et al. 2000). Whether
this compound also inhibits cell wall synthesis
was not reported. Antifungal and cytotoxic activ-
ities were reported for petriellin A (Lee et al.
1995). Cytotoxic activities are exhibited by many
cyclopeptides and -depesipeptides. The destrux-
ins have been intensively investigated (Vey et al.
2002; Skrobek and Butt 2005). Psychrophilin
D is weakly cytotoxic towards P388 mouse

leukaemia cells with an IC50 value of 10 mg/ml
(Dalsgaard et al. 2005), while the icosalides inhibit
the replication of MDCK cells with LD50 of 5–10
mg/ml (Boros et al. 2006). The aspergillicins are
weakly cytotoxic with LD99 of 25–50 mg/ml (Capon
et al. 2003).

As inhibitors of 1,3-b-glucan synthesis have
high potential as antimycotic drugs (Fostel and
Lartey 2000), fungi have been intensively screened
for the production of inhibitors of cell wall syn-
thesis and cyclic peptides as well as cyclic depsi-
peptides have been found.

The antimycotic drugs already on the market
(caspofungin, micafungin, anidulafungin) are
derived from lipopeptides (Butler 2004; Morrison
2006). Their spectrum of activity is mainly re-
stricted to Candida and Aspergillus species. Cryp-
tococcus neoformans, Trichosporon and Fusarium
species or Zygomycetes are not affected (Denning
2003), although the glucan synthase from C. neo-
formans is sensitive to echinocandins (Maligie
and Selitrennikoff 2005).

IV. Ecological Role of Cyclic Peptides
and Depsipeptides

Many secondary metabolites play a crucial role for
fungi in their natural habitats. Endophytic fungi
of grasses belonging to the genera Neotyphodium/
Epichloe confer protection from mammalian and
insect herbivores, or enhanced resistance against
nematodes and phytopathogenic fungi (Schardl
et al. 2004; Panaccione et al. 2006). Some of these
beneficial effects are due to NRPS products. Ergo-
valine has been identified among the fungal meta-
bolites in the plant host. Malformins have been
detected in onion scales after infection with
A. niger (Curtis et al. 1974).

The role of siderophores in plant and human
pathogens is currently elucidated by many re-
search groups (for a review see Haas et al. 2008).
Additional functions of siderophores for the pro-
ducing organism are acquisition and storage of
iron as well as regulation of asexual and sexual
development and protection against oxidative
stress (Einsendle et al. 2006; Hof et al. 2009).
Nonproducing organisms like Saccharomyces cer-
evisiae are able to use, e.g. transport iron-side-
rophore complexes, thus the compounds might
also play a role in fungus–fungus interactions.
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In plant-pathogenic fungi cyclic peptides like
HC-toxins in Cochliobolus carbonum, AM toxins in
Alternaria alternata, sirodesmin PL in Lepto-
sphaeria maculans (anamorph Phoma lingam) or
enniatins in Fusarium species act as putative viru-
lence factors. In some cases this has already
been proven, when gene deletions result in apatho-
genic strains or strains with reduced virulence
(Ahn and Walton 1998; Pedley and Walton 2001;
Elliott et al. 2007). Likewise the insecticidal depsi-
petides of insect pathogens have the same function.
Investigation on the role of destruxins in the path-
ogenicity of Metarhizium anisopliae against three
species of insects revealed a direct relationship
between the titer of destruxins produced by the
strains in vitro and their destructive action (Ker-
shaw et al. 1999). In the plant-pathogenic Alter-
naria brassicae, destruxin B is a host-specific
toxin. In three Brassica species the degree of their
sensitivity to destruxin B positively correlated with
their degree of susceptibility (Pedras et al. 2002).

The function of shearamide A, an insecticidal
cyclopeptide isolated from the ascostromata of
Eupenicillium shearii (Belofsky et al. 1998) may
be in protecting the fungus against insects, similar
to ergopeptides in the sklerotia of Claviceps spe-
cies (Chap. 9).

V. Conclusions

The capability to produce secondary metabolites
derived from amino acids by NRPS is widespread
among the higher fungi and not dependent on the
ecological niches inhabited by them. There are no
special habitats from which highly prolific sec-
ondary metabolite producers are isolated.

Cyclic peptides and -depsipeptides constitute
an interesting class of secondary metabolites with
great potential not only in medicine but also in
agriculture. This can easily be grasped from the
wide array of biological activities exhibited by
these compounds. Their chemical diversity is
enhanced by the possibility of producing an
array of related compounds by precursor-supple-
mented fermentations of the correspondent
fungus. This readily facilitates investigations on
structure–activity relationships.

In agriculture, fungally derived pesticides
offer ecological advantages and strains with en-
hanced production of bioactive compounds might

be developed as biopesticides. For both agriculture
and pharmacology bioactive natural compounds
may lead to novel targets and serve as lead
structures.
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Kleinkauf H, von Döhren H (eds) Products of second-
ary metabolism. Biotechnology, vol 7. VCH, Wein-
heim, pp 277–322

Kleinwachter P, Dahse HM, Luhmann U, Schlegel B,
Dornberger K (2001) Epicorazine C, an antimicrobial
metabolite from Stereum hirsutum HKI 0195. J Anti-
biot 54:521–525

Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME,
Donzelli BGG, Vhurchill ACL, Gibson DM (2007)
Serinocyclins A and B, cyclic heptapeptides from
Metarhizium anisopliae. J Nat Prod 70:1919–1924

Kobbe B, Cushman M, Wogan GN, Demain AL (1977)
Production and antibacterial activity of malformin
C, a toxic metabolite of Aspergillus niger. Appl Envi-
ron Microbiol 33:996–997

Kürnsteiner H, Zinner M, Kück U (2002) Immuno-
suppressants. In: Osiewacz HD (ed) Industrial
applications. Mycota X. Springer, Heidelberg,
pp 129–155

Lee KK, Gloer JB Scott JA, Malloch D (1995) Petriellin A:
a novel antifungal depsipeptide from the coprophi-
lous fungus Petriella sordida. J Org Chem
60:5384–5385

Lewis JR (2002) Amaryllidaceae, Sceletium, imidazole,
oxazole, thiazole, peptide and miscellaneous alka-
loids. Nat Prod Rep 19:223–258

Li C, Oberlies NH (2005) The most widely recognized
mushroom: chemistry of the genus Amanita. Life
Sci 78:532–538

Li X, Kim S-K, Nam KW, Kang JS, Choi HD, Son BW
(2006) A new antibacterial dioxopiperazine alkaloid
related to gliotoxin from a marine isolate of the fun-
gus Pseudallescheria. J Antibiot 59:248–250

Li Y, Li X, Kim S-K, Kang JS, Choi HD, Rho JR, Son BW
(2004) Golmaenone, a new diketopiperazine alkaloid
from the marine-derived fungus Aspergillus sp. Chem
Pharm Bull 52:375–376

Liermann JC, Kolshorn H, Antelo L, Hof C, Anke H, Opatz
T (2009) Omphalotins E-I, oxidatively modified
nematicidal cyclopeptides from Omphalotus olearius.
Eur J Org Chem 2009:1256–1262

Lira SP, Vita-Marques AM, Seleghim MHR, Bugni TS,
LaBarbera DV, Sette LD, Sponchiado SRP, Ireland
CM, Berlinck RGS (2006) New destruxins from the
marine-derived fungus Beauveria felina. J Antibiot
59:553–563

Liu J-K (2005) N-containing compounds of macromycetes.
Chem Rev 105:2723–2744

Lorenz P, Jensen PR, Fenical W (1998) Mactanamide, a
new fungistatic diketopiperazine produced by a ma-
rine Aspergillus sp. Nat Prod Lett 12:55–60

Maligie MA, Selitrennikoff CP (2005) Cryptococcus neofor-
mans resistance to echinocandins: (1,3) b-glucan

Cyclic Peptides and Depsipeptides from Fungi 293



synthase activity is senitive to echinocandins. Anti-
microb Agents Chemother 49:2851–2856

Malmstrom J, Ryager A, Anthoni U, Nielsen PH (2002)
Unguisin C, a GABA-containing cyclic peptide from
the fungus Emericella unguis. Phytochemistry
60:869–887

Martins MB, Carvalho I (2007) Diketopiperazines: biologi-
cal activity and synthesis. Tetrahedron 64:9923–9932

Matha V, Jegorov A, Weiser J, Pillai JS (1992) The mosqui-
tocidal activity of conidia of Tolypocladium tun-
drense and Tolypocladium terricola. Cytobios
69:163–170

Matsuda D, Namatame I, Tomoda H, Kobayashi S, Zocher
R, Kleinkauf H, Omura S (2004) New beauverolides
produced by amino acid-supplemented fermentation
of Beauveria sp. FO-6979. J Antibiot 57:1–9

Mayer A, Sterner O, Anke H (1997) Omphalotin, a new
cyclic peptide with potent nematicidal activity from
Omphalotus olearius. 1. Fermentation and biological
activity. Nat Prod Lett 10:25–33

Mayer A, Kilian M, Hoster B, Sterner O, Anke H (1999) In
vitro and in vivo nematicidal activities of
the cyclic dodecapeptide omphalotin A. Pest Sci
55:27–30

Miyado S, Kawasaki H, Aoyagi K, Yaguchi T, Okada T,
Sugiyama J (2000) Taxonomic position of the fungus
producing the anthelmintic PF1022 based on the 18S
rRNA gene base sequence. Nippon Kinzoku Gakkai
Kaiho 41:183–188

Mochizuki K, Ohmori K, Tamura H, Shizuri Y, Nishiyama
S, Miyoshi E, Yamamura S (1993) The structures of
bioactive cyclodepsipeptides, beauveriolides I and II,
metabolites of entomopathogenic fungi Beauveria sp.
Bull Chem Soc Jpn 66:3041–3046

Monma S, Sunazuka T, Nagai K, Arai T, Shiomi K, Matsui
R, Mura S (2006) Verticilide: elucidation of absolute
configuration and total synthesis. Org Lett 8:5601–
5604

Mori H, Urano Y, Abe F, Furukawa S, Tsurumi Y, Saka-
moto K, Hashimoto M, Takase S, Hino M, Fujii T
(2003) FR235222, a fungal metabolite, is a novel
immunosuppressant that inhibits mammalian
histone deacetylase (HDAC) 1. Taxonomy, fermenta-
tion, isolation, and biological activities. J Antibiot
56:72–79

Morino T, Masuda A, Yamada M, Nishimoto Y, Nishikiori
T, Saito S, Shimada (1994) Stevastelins, novel immu-
nosuppresssants produced by Penicillium. J Antibiot
47:1341–1343

Morris SA, Schwartz RE, Sesin DF, Masurekar P, Hallada
TC, Schmatz DM, Bartizal K, Hensens OD, Zink DL
(1994) Pneumocandin D0, a new antifungal agent and
potent inhibitor of Pneumocystis carinii. J Antibiot
47:755–764

Morrison VA (2006) Echinocandin antifungals: review and
update. Expert Rev Anti Infect Ther 4:325–342

Namatame I, Zomoda H, Ishibashi S, Omura S (2004)
Antiatherogenic activity of fungal beauverolides,
inhibitors of lipid droplet accumulation in macro-
phages. Proc Natl Acad Sci USA 101:737–742

Nilanonta C, Isaka M, Chanphen R, Thong-orn N,
Tanticharoen M, Thebtaranonth Y (2003) Unusual

enniatins produced by the insect pathogenic fungus
Verticillium hemipterigenum: isolation and studies
on precursor-directed biosynthesis. Tetrahedron
59:1015–1020

Odds FC, Brown AJ, Gow NA (2003) Antifungal agents:
mechanisms of action. Trends Microbiol 11:272–279

Oide S, Moeder W, Krasnoff S, Gibson D, Haas H,
Yoshioka K, Turgeon BG (2006) NPS6, encoding a
nonribosomal peptide synthetase involved in sidero-
phore-mediated iron metabolism, is a conserved vir-
ulence determinant of plant pathogenic ascomycetes.
Plant Cell 18:2836–2853

Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007)
Intracellular siderophores are essential for ascomy-
cete sexual development in heterothallic Cochliobolus
heterostrophus and homothallic Gibberella zeae.
Eukaryot Cell 6:1339–1353

Ohshiro T, Rudel LL, Omura S, TomodaH (2007) Selectivity
of microbial acyl-CoA:cholesterol acyltransferase inhi-
bitors towards isoenzymes. J Antibiot 60:43–51

Ohyama T, Kurihara Y, Ono Y, Ishikawa T, Miyakoshi S,
Hamano K, Arai M, Suzuki T, Igari H, Suzuki Y,
Inukai M (2000) Arborcandins A, B, C, D, E, and F,
novel 1,3-beta-glucan synthase inhibitors: production
and biological activities. J Antibiot 53:1108–1116

Panaccione DC, Cipoletti JR, Sedlock AB, Blemings KP,
Schradl CL, Machado C, Seidel GE (2006) Effects of
ergot alkaloids on food preference and satiety in
rabbits, as assessed with gene-knockout endophytes
in perennial ryegrass (Lolium perenne). J. Agric Food
Chem 54:4582–4587

Pasqualotto AC, Denning DW (2008) New and emerging
treatments for fungal infections. J Antimicrob Che-
mother 61[Suppl 1]:i19–i30

Patil BB, Wakharkar RD, Chincholkar SB (1995) Sidero-
phores of Cunninghamella blakesleeana NCIM 687.
World J Microbiol Biotechnol 15:265–268

Pedley KF, Walton JD (2001) Regulation of cyclic peptide
biosynthesis in a plant pathogenic fungus by a novel
transcription factor. Proc Natl Acad Sci USA
98:14174–14179

Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins:
synthesis, biosynthesis, biotransformation, and
biological activity. Phytochemistry 59:579–596

Pomilio AB, Battista ME, Vitale AA (2006) Naturally-oc-
curring cycopeptides: structures and bioactivity. Curr
Org Chem 10:2075–2121

Prasad C (1995) Bioactive cyclic peptides. Peptides 16:151–
164

Rees NH, Penfold DJ, Rowe ME, Chowdhry BZ, Cole SCJ,
Samuels RI, Turner DL (1996) NMR studies of the
conformation of destruxin A in water and in acetoni-
trile. Magn Reson Chem 34:237–241

Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens
FR, Collison DC, Taylor RJ (2002) Fungal sidero-
phores: structures, functions and applications.
Mycol Res 106:1123–1142

Roth BD (1998) ACAT inhibitors: evolution from choles-
terol-absorption inhibitors to antiatherosclerotic
agents. Drug Discov Today 3:19–25

Rouxel T, Chupeau Y, Fritz R, Kollmann A, Bousquet
J-F (1988) Biological effects of sirodesmin PL, a

294 Heidrun Anke and Luis Antelo



phytotoxin produced by Leptosphaeria maculans.
Plant Sci 57:45–53
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