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Abstract. Real world problems are packed with complex issues often hard to be
computed. Searching for parameters or candidate solutions is frequently associated
with these complexities. The reason for that is chiefly related to the large dimension-
alities of some search spaces. In general, problems involving large search spaces
use traditional computer intensive methods that are, quite often, expensive (i.e. re-
source consuming). Nature-inspired algorithms, on the other hand, are able to deal
reasonably well with the abovementioned difficulties. In this chapter, we provide an
overview of a novel approach for searching in high-dimensional spaces based on the
behaviors of fish schools. As any other intelligent technique based on population,
Fish School Search (FSS) greatly benefits from the collective emerging behavior
that increases mutual survivability. Broadly speaking, FSS is composed of operators
that can be grouped in the following categories: feeding, swimming and breeding.
Together, these operators provide computing behavior such as: (i) high-dimensional
search ability, (ii) automatic selection between exploration and exploitation, and
(iii) self-adaptable guidance towards sought solutions. This chapter seeks to explain
the main ideas behind FSS to researchers and practitioners. In addition, we include
examples and simulations aimed at clarifying the simplicity and potentials of FSS.

1 Introduction

Several oceanic fish species, as with other animals, present social behavior. This
phenomenon’s main purpose is to increase mutual survivability and may be viewed
in two ways: (i) for mutual protection and (ii) for synergistic achievement of other
collective tasks. By protection we mean reducing the chances of being caught by
predators; and by synergy, we refer to an active means of achieving collective goals
such as finding food.
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Apart from debating whether the emergent behavior of a fish school is due to
learning or genetic reasons, it is important to note that some fish species live their
entire lives in schools. This reduces individual freedom in terms of swimming move-
ments and increases competition in regions with scarce food. However, fish aggre-
gation is a fact and the benefits largely outweigh the drawbacks. This chapter aims at
presenting a novel computational intelligent search technique inspired by the above-
mentioned behavior.

Along with the development of this technique we have taken great care not to
depart from the original inspiration source, but FSS contains a few abstractions and
simplifications that have been introduced to afford efficiency and usability to the
algorithm. The main characteristics derived from real fish schools and incorporated
into the core of our approach are sound. They are grouped into two observable cat-
egories of behaviors as follows:

e Feeding: inspired by the natural instinct of individuals (fish) to find food in order
to grow strong and to be able to breed. Notice that food here is a metaphor for the
evaluation of candidate solutions in the search process. We have considered that
an individual fish can lose as well as obtain weight, depending on the regions it
swims in;

e Swimming: the most elaborate observable behavior utilized in our approach. It
aims at mimicking the coordinated and the only apparent collective movement
produced by all the fish in the school. Swimming is primarily driven by feeding
needs and, in the algorithm, it is a metaphor for the search process itself.

2 Background

2.1 Search Problems and Algorithms

Although there are several approaches for searching, there is, unfortunately, no gen-
eral optimal search strategy [1]. Thus, solving search problems is sometimes more
of an art form than an engineering practice. Although custom-made algorithms are
valuable options for specific problems, a more generalized automatic search engine
would be a great bonus for tackling problems of high dimensionality.

Search problems can be highly varied. For example, they can be classified into
two groups with regard to the structure of their search-space: structured or unstruc-
tured. For the former, there are many traditional techniques that are, on average,
quite efficient. The same observation does not apply to the latter, that is, there is no
overall good approach for search spaces on which there is no prior information.

We think that FSS might be a valuable option for searching in high dimensional
and unstructured spaces.

2.2 Population-Based Algorithm (PBA)

Many nature-inspired algorithms such as genetic algorithms (GA) [2, 3], artificial
immune systems (AIS) [4], ant colony optimization (ACO) [5l 6] and particle
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swarm optimization (PSO) [7, 18, 9] are based on the concept of populations. In all
these approaches, the computing discrimination power and memorization ability of
past experiences are distributed among the individuals of the population in varying
degrees.

Distributed representation and computation are interesting features to incorpo-
rate into search algorithms because of the parallelization they provide. The obvious
trade-off is the cost of control (i.e. communication among individuals), as opposed
to the lower costs associated with centralized control.

In recent years, PSO has produced good results for search problems with high
dimensionality. It is an intelligent computational technique proposed by Kennedy
and Eberhart in 1995 [7]. This technique is commonly used to solve optimization
problems of nonlinear functions. It is inspired by the social behavior of bird flocks.
The idea behind PSO is to create particles that simulate the movements of birds to
achieve a specific goal within the search space. It explores the social behavior of
an organized group of individuals and the group’s communication capacity. Each
particle represents a solution in a high-dimensional space. The entire swarm uses
a specific communication mechanism. The candidate solutions emerge by flocking
behavior around more successful individuals. Particles in PSO utilize the notion of
adjustable speed according to the degree of success achieved. In the most common
PSO implementations, particles move through the search space using a combination
of the attraction to the best solution that they have found individually, and the attrac-
tion to the best solution that any particle in the neighborhood has found. A neighbor-
hood is the part of the swarm which a particle is able to communicate with. Bratton
et al. [9] proposed a standard for performance comparison of PSO implementa-
tions. Many velocity equations and communication mechanisms were proposed in
recent years [10, (11} 12} [13| [14]. However, the PSO technique struggles in some
multimodal problems.

3 Fish-School Search (FSS)

3.1 FSS Computational Principles

The search process in FSS is carried out by a population of limited-memory indi-
viduals — the fish. Each fish represents a possible solution to the problem. Similar
to PSO or GA, search guidance in FSS is driven by the success of some individual
members of the population.

The main feature of the FSS paradigm is that all fish contain an innate memory
of their successes — their weights. In comparison to PSO, this information is highly
relevant because it can obviate the need to keep a log of the best positions visited by
all individuals, their velocities and other competitive global variables.

Another major feature of FSS is the idea of evolution through a combination of
some collective swimming, i.e. “operators” that select among different modes of
operation during the search process, on the basis of instantaneous results.
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As for dealing with the high dimensionality and lack of structure of the search
space, the authors believe that FSS should at least incorporate principles such as the
following:

(i) Simple computation in all individuals;
(i) Various means of storing distributed memory of past computation;
(iii)) Local computation (preferably within small radiuses);
(iv) Low communication between neighboring individuals;
(v) Minimum centralized control (preferably none); and
(vi) Some diversity among individuals.

A brief rationale for the above-mentioned principles is given, respectively: (i)
this reduces the overall computation cost of the search; (ii) this allows for adaptive
learning; (iii), (iv) and (v) these keep computation costs low as well as allowing
some local knowledge to be shared, thereby speeding up convergence; and finally,
(vi) this might also speed up the search due to the differentiation/specialization of
individuals. These principles incorporated in FSS lead the authors to believe that
FSS can deal with multimodal problems better than the PSO approaches.

3.2 Overview of the New Approach

The inspiration mentioned in Section I, together with the principles just stated
above, are incorporated in our approach in the form of two operators that comprise
the main routines of the FSS algorithm. To understand the operators, a number of
concepts need to be defined.

The concept of food is related to the function to be optimized in the process.
For example, in a minimization problem the amount of food in a region is inversely
proportional to the function evaluation in this region. The “aquarium” is defined by
the delimited region in the search space where the fish can be positioned.

The operators are grouped in the same manner in which they were observed when
drawn from the fish school. They are as follows:

e Feeding: food is a metaphor for indicating to the fish the regions of the aquarium
that are likely to be good spots for the search process;

e Swimming: a collection of operators that are responsible for guiding the search
effort globally towards subspaces of the aquarium that are collectively sensed by
all individual fish as more promising with regard to the search process.

3.3 FSS Operators

3.3.1 The Feeding Operator

As in real situations, the fish of FSS are attracted to food scattered in the aquar-
ium in various concentrations. In order to find greater amounts of food, the fish in
the school can move independently (see individual movements in the next section).
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As a result, each fish can grow or diminish in weight, depending on its success or
failure in obtaining food. We propose that fish’s weight variation be proportional to
the normalized difference between the evaluation of fitness function of previous and
current fish position with regard to food concentration of these spots. The assess-
ment of ‘food’ concentration considers all problem dimensions, as shown in[I]

St +1)] = flxi(r)]
max{| f[x;(t +1)] = flxi(t)]]}

where W;(¢) is the weight of the fish i, x;(¢) is the position of the fish i and f[x;(7)]
evaluates the fitness function (i.e. amount of food) in x;(r).

A few additional measures were included to ensure rapid convergence toward
rich areas of the aquarium, namely:

Wit +1) =Wi(t) + ey

e Fish weight variation is evaluated once at every FSS cycle;

e An additional parameter, named weight scale (Wy.,.) was created to limit the
weight of a fish. The fish weight can vary between 1" and W,

e All the fish are born with weight equal to WSE“” .

3.3.2 The Swimming Operators

A basic animal instinct is to react to environmental stimulation (or sometimes, the
lack of it). In our approach swimming is considered to be an elaborate form of
reaction regarding survivability. In FSS, the swimming patterns of the fish school
are the result of a combination of three different causes (i.e. movements).

For fish, swimming is directly related to all the important individual and collec-
tive behaviors such as feeding, breeding, escaping from predators, moving to more
livable regions of the aquarium or, simply being gregarious.

This panoply of motivations to swim away inspired us to group causes of swim-
ming into three classes: (i) individual, (ii) collective-instinct and (iii) collective-
volition. Below we provide further explanations on how computations are performed
on each of them.

3.3.2.1 Individual Movement

Individual movement occurs for each fish in the aquarium at every cycle of the FSS
algorithm. The swim direction is randomly chosen. Provided the candidate destina-
tion point lies within the aquarium boundaries, the fish assesses whether the food
density there seems to be better than at its current location. If this is not the case or
if the step-size is not possible (i.e. it lies outside the aquarium or is blocked by, say,
reefs), the individual movement of the fish does not occur. Soon after each individual
movement, feeding occurs, as detailed above.

For this movement, we define a parameter to determine the fish displacement in
the aquarium called individual step (step;,q). Each fish moves step;,, if the new
position has more food than the previous position. Actually, to include more ran-
domness in the search process we multiply the individual step by a random number
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generated by a uniform distribution in the interval [0,1]. In our simulation we de-
crease the individual step linearly in order to provide exploitation abilities in later
iterations.

Fig.[Mlshows an illustrative example of this swimming operator. One can note that
just the fish that found spots with more food had moved.
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Fig. 1 Individual movement is illustrated here before and after its occurrence; circular dots
are fish positions after and triangular dots are the same fish before individual movement

3.3.2.2 Collective-Instinctive Movement

After all fish have moved individually, a weighted average of individual movements
based on the instantaneous success of all fish of the school is computed. This means
that fish that had successful individual movements influence the resulting direction
of movement more than the unsuccessful ones. When the overall direction is com-
puted, each fish is repositioned. This movement is based on the fitness evaluation
enhancement achieved, as shown in

Sy Axiai { [Tt +1)] = flxi(0)]}
P {4+ )] = fla()]}
where AX;,4; is the displacement of the fish i due to the individual movement in the
FSS cycle.
Fig. 2l shows the influence of the collective-instinctive movement in the example

presented in Fig. [Il One can note that in this case all the fish had their positions
adjusted.

xi(t+1)=x;(t) + (2)



Fish School Search 267

an ]

ok -
[t} 5 10 1% 20 25 30 35 40 45 50 55 G0 BS YO0 785 B8O 8BS 00D OG5 100 105

| B Search Space Boundaries @ Positions After ~ Positions Befare ‘

Fig. 2 Collective-instinctive movement is illustrated here before and after its occurrence;
circular dots are fish positions after and triangular dots are the same fish before collective-
instinctive movement

3.3.2.3 Collective-Volitive Movement

After individual and collective-instinctive movements are performed, one additional
positional adjustment is still necessary for all fish in the school: the collective-
volitive movement. This movement is devised as an overall success/failure evalu-
ation based on the incremental weight variation of the whole fish school. In other
words, this last movement will be based on the overall performance of the fish
school.

The rationale is as follows: if the fish school is putting on weight (meaning the
search has been successful), the radius of the school should contract; if not, it should
dilate. This operator is deemed to help greatly in enhancing the exploration abilities
in FSS. This phenomenon might also occur in real swarms, but the reasons are as
yet unknown.

The fish-school dilation or contraction is applied as a small step drift to every
fish position with regard to the school’s barycenter. The fish-school’s barycenter is
obtained by considering all fish positions and their weights, as shown in 3

Collective-volitive movement will be inwards or outwards (in relation to the fish-
school’s barycenter), according to whether the previously recorded overall weight of
the school has increased or decreased in relation to the new overall weight observed
at the end of the current FSS cycle.
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X xi () Wi (1)

Bari(t) = N:lWi(f)

3)

For this movement, we also define a parameter called volitive step (step,,;). We
evaluate the new position as in[dlif the overall weight of the school increases in the
FSS cycle; if the overall weight decreases, we use

x;(t + 1) = x;(¢) — stepyo.rand. [x;(t) — Bari(r)], (@)

x;(t+ 1) =x;(t) + stepyor.rand. [x;(t) — Bari(t)], 3)

where rand is a random number uniformly generated in the interval [0,1]. We also
decreased the linear step,,; along the iterations.

Fig.[Bshows the influence of the collective-volitive movement in the example pre-
sented in Fig. [ after individual and collective-instintive movements. In this case, as
the overall weight of the school had increased, the radius of the school diminished.
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Fig. 3 Collective-volitive movement is illustrated here before and after its occurrence; circu-
lar dots are fish positions after and triangular dots are the same fish before collective-volitive
movement

3.4 FSS Cycle and Stop Conditions

The FSS algorithm starts by randomly generating a fish school according to param-
eters that control fish sizes and their initial positions.
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Regarding dynamics, the central idea of FSS is that all bio-inspired operators
perform independently of each other across the three conceived classes.

The search process (i.e. FSS at work) is enclosed in a loop, where invocations of
the previously presented operators will occur until at least one stop condition is met.

As of now, stop conditions conceived for FSS are as follows: limitation of
the number of cycles (the stopping condition of all experiments in this chapter),
time limit, maximum school radius, minimum school weight and maximum fish
number.

We present below the pseudo-code for the Fish School Search Algorithm. In the
initialization step, each fish in the swarm has its weight initialized with the value
WJ’E‘”“ and its position in each dimension initialized randomly in the search space.

Algorithm Fish School Search

1. Initialize fish in the swarm
2. While maximum iterations or stop criteria is not attained do
3. for each fish i in the swarm do

a. update position applying the individual operator

AX;(t+ 1) = stepina() - 2 - rand - direction

femp; = x;(t) + Ax;(t + 1)

calculate fish fitness f;(femp;)
if f(temp;) < f(xi(t))

x;(t+ 1) =temp;

FI = fi(rempy)

1

else
X,'(l‘ + 1) = Xi(t)

f;f‘*'l) _ fl(’)

b. apply feeding operator
update fish weight according to 1

c. apply collective-instinctive movement
update fish position according to 2

d. apply collective-volitive movement
if overall weight of the school increases in the cycle
update fish position using 4
elseif overall weight of the school decreases in the cycle
update fish position using 5

end for decrease the individual and volitive steps linearly

end while



270 C.J.A. Bastos Filho et al.

4 TIllustrative Example

This section presents an illustrative example aimed at better understanding how FSS
can be used and, ultimately, how it works. The selected example considers a small
school and a very simple problem that is three fish are set to find the global optimum
of the sphere function in two dimensions. The sphere function is presented in 6l and
its parameters are: (i) feasible space [-10,10], (ii) number of iterations equal to 10,
(iil) wyeare= 10, (iv) initial step;,q = 1, (v) final step;,s = 0.1, (vi) initial step,,;
= 0.5, (vii) final step,,; = 0.05. Table [I] includes initial values associated with the
experimental fish school; Fig. dh presents start-up loci of all fish.

n—1

Fsphere (x) = z (xi)za (6)

i=1

Table 1 Initial conditions for the three fish in the sphere example

Fish Initial conditions

weight position fitness
#1 5 9,7) 130
#2 5 (5,6) 61
#3 5 8.4 80

After initialization, all fish are free to check for new candidate positions that are
generated by the individual movement operator. Lets assume that these positions are
x; = (9.6,6.2), x, = (4.6,4.4) and x3 = (6.2,4.2), and the associated fitnesses are
f(x1) =130.6, f(x2) =40.52 and f (x3) = 56.08. One should notice that fish #2
and fish #3 found best positions, whereas fish #1 did not move. The positions after
the individual movement are then x; = (9,7), x, = (4.6,4.4) and x3 = (6.2,4.2).
Fig. @b illustrates the individual movement of the three fish in search space for the
sphere problem.

According to our model, the next operator to be computed is feeding. As fish
#1 remained in the same position, it will not change its weight. The weight of fish
#2 and fish #3 will change according to [Il The weight variation depends on the
maximum fitness change. The maximum fitness variation in this case was achieved
by fish #3 and is equal to 23.92. As a result, fish #3 increased its weight by 1 unit
and its new weight became 6. The fitness variation of fish #2 was 20.48. Dividing
the fitness variation of fish #2 by maximum fitness change, we conclude that the
weight variation of fish #2 is 0.86. The new weight of fish #2 is then 5.86.

Following our model, the third operator to be computed is the collective-
instinctive one. This operator evaluates the collective displacement of the fish school
considering the individual fitness variations and the individual movement according
to[2l As fish #1 stayed in the same position, it will not influence the overall calcula-
tion. Considering the values obtained in this iteration, the displacement is (-1.2,-0.6).
This vector is applied to all the fish (including fish #1), so the new positions, after
third operator computations, are x; = (7.8,6.4), x, = (3.4,3.8) and x3 = (5,3.6).
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Then, the fitnesses regarding new positions recalculations are 101.8, 26 and 37.96
for fish #1, #2 and #3, respectively. The individual displacement of all fish due to
collective-instinctive operator is presented in Fig. Bk. Reader may find it interesting
to compare Fig.db and Fig. 4.

The last operator to be considered in this example is the collective-volitive one.
For that, one has to obtain the instantaneous value of the barycenter of the fish school
according to[3l In this case, the barycenter is (4.96,4.25). Notice that the weight of
whole school has increased, therefore a contraction instead of a dilatation is the im-
plicit decision of the school (i.e. collective-volitive). By means of using [l the new
positionsarex; = (5.81,4.89),x, = (4.02,3.98) and x3 = (4.98,3.92). The barycen-
ter and the collective-volitive movement for this step are presented in Fig. [d.

At this point the algorithm tests if valid stop-conditions are met. Obviously it is
not the case yet, thus a new cycle begins as explained above. If one compares the
initial and final positions illustrated in Fig.[d] after this first iteration, the reader can
observe that all fish are closer to the optimum point (0,0).

Of course the optimum point is unknown to the algorithm. However, in a very
peculiar manner the FSS model assures fast convergence towards it (i.e. the goal for
the search process) because of the above mentioned natural principles instantiated
in the FSS algorithm.
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Fig. 4 Example with three fish in the sphere example: (a) Initial position, (b) individual
movement, (¢) instinctive collective movement and (d) volitive collective movement
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Fig. 5 Fish school evolution after iteration (a) 1, (b) 50, (c) 100, (d) 200, (e) 300, (f) 400, (g)
500, (h) 750 e (i) 1000 for sphere function with 30 fish

In order to illustrate the convergence behavior of the fish school along the itera-
tions, we present the simulation results for the sphere function. In these simulations
we used 30 fish, [-100,100] in the two dimensions, initialization range [0,100] in the
two dimensions, w.q.= 500, initial step;,; = 10, final step;,q = 0.1, initial step,,; =
5, final step,,; = 0.5. Fig.[3l shows the fish positions after iteration (a) 1, (b) 50, (c)
100, (d) 200, (e) 300, (f) 400, (g) 500, (h) 750 e (i) 1000, respectively. One can note
that the school was attracted to the optimum point (0,0).

5 Comparative Examples

5.1 Experimental Setup

Five benchmark functions were used to carry out simulations and are described
in[7[8 and [Tl Table 2 shows the search space, the initialization range, and
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the optimum for each function. All searches were carried out in 30 dimensions. All
five functions are used for minimization problems. Two of these functions namely,
Rosenbrock and Schwefel 1.2, represent simple unimodal problems; the other three,
Rastrigin, Griewank, and Ackley, are highly complex multimodal functions that
contain many local optima. Considered functions in comparisons are:

n—1
2
FRosenbrock(x) = 2 |:100 (XH»] _x,‘z) + (1 _xi)z] s (7
i=1
Frastrigin(x) = 10n+ Y [x} — 10cos (27x;)] , (8)
i=1
Forionani®) =113 5 Teos( ©)
Griewank - = 4000 o \/l )

1 & 1 &
Fickley(x) = —20exp (—0.2\/ . Zx%) —exp (n Y cos (27rx,-)> +20+e, (10)
i=1 i=1

Table 2 Function parameters

Function Parame.te‘:rs‘ i X
Search space Initialization Optima
Rosenbrock 30 < xi < 30 15 < xi < 30 1.0D
Rastrigin 512<xi<5.12 2.56 < xi < 5.12 0.0D
Griewank —600 < xi < 600 300 < xi < 600 0.0b
Ackley 32 <xi<32 16 <xi <32 0.0D
Schwefel 1.2 0.0D

—100 <xi <100 50 <xi <100
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. 2
(2xj> ) (11
=1 \j=1

and

Fochwefenn 2(x) = Y.

A factorial planning of experiments was performed to find suitable parametric
combination of individual and volitive steps at both initial and final limits (i.e.
StePind initial» Stepind.,final’ Stepyol initial Stepvol,final)- We have associated the indi-
vidual and volitive steps as percentages of the actual search space. Percentage val-
ues considered for initial and final limits were, respectively, as follows: 10; 1; 0.1
and 0.1; 0.01; 0.001; 0.0001. Wy, was set as 5000; this is half of the number of
considered iterations.

All FSS simulations were performed using 30 fish and 10,000 iterations. Only
after 30 trials the mean and the standard deviation were recorded. All the fish were
randomly initialized in areas of the aquarium that are far from the optimal solu-
tion regarding every dimension. This initialization process is carried out in order to
measure the ability of the fish school in locating the optimum solution outside the
initialization space.

We compared our results with PSO simulation results presented in an earlier land-
mark paper [9]. Three PSO approaches were considered for comparisons: original
PSO with the Gy, topology, constriction PSO with the Gy, topology and con-
striction PSO with the L, topology. All the PSO simulations included 30 trials,
each of which performed 300,000 evaluations, and simulations that considered 30
dimensions and used 30 particles. Thus, we considered that a fair convergence anal-
ysis between the FSS and PSO approaches could be made.

5.2 Simulation Results

Tables Bl [ Bl [@ and [7] show the best simulation results for function Rosenbrock,
Rastrigin, Griewank, Ackley and Schwefel 1.2, respectively. Only the best six re-
sults sorted by the fitness average for each function are presented here. The high-
lighted values are indications of success for all search performed by FSS.

Table [8] presents the comparison between the FSS and PSO approaches. It con-
tains the best results achieved for the five benchmark functions used to evaluate the
performance of the four algorithms.

Table 3 Simulation Results for the Rosenbrock Function — Fitness (average and standard
deviation) for 30 trials

StepPind,initial StePind, final StePyol initial StePyol, final fit”ess(average) filness(stddev)
0.1 0.001 1 0.01 16.1183 0.729559
0.1 0.0001 1 0.01 16.4036 0.853030
0.1 0.0001 1 0.001 16.4470 0.770458
0.1 0.001 1 0.001 16.4629 0.797471
10 0.01 1 0.001 44.7585 7.785530
10 0.1 0.1 0.001 46.4926 5.676689
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Table 4 Simulation Results for the Rastringin Function — Fitness (average and standard de-
viation) for 30 trials

StePind.initial
10
10
10
10
10
10

StePind. final
0.01

0.1

0.1

0.01

0.01

0.01

Stepyol initial
10
10
10
10
0.1
0.1

sze[’vol,f’inal
0.1

0.01

0.1

0.01

0.0001
0.001

fitness ayerage) JiNESS(stdder)

13.3868
13.7376
14.1285
14.5193
200.225
200.652

4.005888
2.889882
3.680864
2.780258
22.09435
19.42133

Table S Simulation Results for the Griewank Function — Fitness (average and standard devi-
ation) for 30 trials

StePind.initial
1

0.1

1

0.1

0.1

0.1

StePind. final
0.001
0.0001
0.001

0.001
0.0001
0.001

Stepyol initial
1

1

10

szepvohfinal
0.01

0.001

0.01

0.001

0.01

0.01

fitness ayerage) fitness(siader)

0.00270
0.00373
0.00377
0.00445
0.00499
0.00603

0.002291
0.004015
0.002375
0.003982
0.004313
0.004149

Table 6 Simulation Results for the Ackley Function — Fitness (average and standard devia-
tion) for 30 trials

StePind.initial
10
10
10
10
10
10

StePind. final
0.01

0.01

0.01

0.01

0.1

0.1

Stepyol initial
10

10

1

1

10

10

sze[’vol,f’inal
0.1

0.01

0.01

0.001

0.1

0.01

0.020568
0.041568
0.032344
0.031565
0.038461
0.039025

fitness ayerage)  JNESS(stdder)
0.04004
0.08393
0.15836
0.16337
0.18650
0.20383

Table 7 Simulation Results for the Schwefel 1.2 Function — Fitness (average and standard
deviation) for 30 trials

StePind initial

—_ e = = e

StePind, final
0.001

0.001

0.01

0.01

0.001

0.001

Stepyol initial
1

1

1

1

0.1

10

Stepyol, final
0.01

0.001
0.001
0.01
0.001
0.01

0.022414
0.032054
0.031902
0.026483
0.264715
0.139308

fitneSS(a‘,gmge) fil"ess(stddev)
0.08085
0.09159
0.09478
0.09720
0.37266
0.61065

Notice that the FSS algorithm outperforms the original PSO in all the cases.
Moreover, FSS achieved excellent results for notoriously hard multimodal functions
such as the Rastrigin, Griewank, and Ackley.
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Table 8 Overall comparison of results between algorithms — Fitness (average and standard
deviation) for 30 trials

Function Fitness (average and standard deviation)

Orig. PSO Constricted Constricted FSS
PSO (Gpest) PSO (Lpest)

Rosenbrock 54.6867 8.1579 12.6648 16.118
(2.8570) (2.7835) (1.2304) (0.729)

Rastrigin 400.7194 140.4876 144.8155 13.386
(4.2981) (4.8538) (4.4066) (4.005)

Griewank 1.0111 0.0308 0.0009 0.0027
(0.0031) (0.0063) (0.0005) (0.002)

Ackley 20.2769 17.6628 17.5891 0.0400
(0.0082) (1.0232) (1.0264) (0.020)

Schefel 1.2 5.4572 0.0 0.1259 0.0808
(0.1429) 0.0) (0.0178) (0.022)

6 Discussion and Conclusions

In this chapter, we have detailed the general ideas and principles embedded in FSS.
This novel search algorithm is quite promising as a search tool for dealing with
multimodal high dimensional problems, as it may be concluded from the examples
provided in previous sections.

The performance of FSS on some multimodal functions was surprisingly good,
especially when compared to monomodal ones.

Although previous works [15} [16, [17] have similar titles and motivations, our
approach is quite different as it considers bio-inspired operators to directly guide
the search process. Additionally, FSS presents an interesting balance between ex-
ploration and exploitation abilities, self-adapts quite swiftly out of local minima
(towards sought solutions), and self-regulates the search granularity.

We foresee that FSS will most likely receive a great number of extensions in the
near future, namely, sea currents, springs, predators, reefs, corals and other barriers
to the school progression; all of them, situations to be avoided or taken advantage of.
Altogether, these extensions may allow FSS to deal with noise, attractors, repulsors
and no-go regions. Finally, breeding is another bio-inspired feature that ought to be
considered further in the near future.
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