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Abstract. This chapter proposes the integration of fitness diversity adapta-
tion techniques within the parameter setting of Differential Evolution (DE).
The scale factor and crossover rate are encoded within each genotype and
self-adaptively updated during the evolution by means of a probabilistic cri-
terion which takes into account the diversity properties of the entire popu-
lation. The population size is also adaptively controlled by means of a novel
technique based on a measurement of the fitness diversity. An extensive ex-
perimental setup has been implemented by including multivariate problems
and hard to solve fitness landscapes. A comparison of the performance has
been conducted by considering both standard DE and modern DE based
algorithms, recently proposed in the literature. Available numerical results
show that the proposed approach seems to be very promising for some fit-
ness landscapes and still competitive with modern algorithms in other cases.
In most cases analyzed the proposed self-adaptation is beneficial in terms of
algorithmic performance and can be considered a useful tool for enhancing
the performance of a DE scheme.

1 Introduction

Differential Evolution (DE, see [33], [29], and [6]) is a reliable and versatile
function optimizer. DE, like most popular Evolutionary Algorithms (EAs),
is a population based tool. DE, unlike other EAs, generates offspring by
perturbing the solutions with a scaled difference of two randomly selected
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population vectors, instead of recombining the solutions by means of a prob-
ability function. In addition, DE employs a steady state logic which allows
replacement of an individual only if the offspring outperforms its correspond-
ing parent. Due to its algorithmic structure, over the optimization process
DE generates a super-fit individual which leads the search until an individ-
ual with better performance is generated. Therefore, as highlighted in [16], a
DE population can be subject to stagnation in such cases where no offspring
individuals outperform the corresponding parents for a large number of gen-
erations. In order to avoid this undesired effect a proper parameter setting
(two parameters in particular) is crucial.

Some empirical studies carried out in the literature, for example [28] and
[16], give some hints as to how to perform such settings. A more advanced
criterion based on the fitness values is given in [1]. Paper [36] proposed a
dynamic population sizing strategy based on self-adaptation, and [19] pro-
posed the employment of a fuzzy controller in order to perform setting of
the parameters. In order to avoid execution of the parameter setting, in [30]
an adaptive system based on the combined use of two learning strategies
has been proposed. Paper [2] proposed a simple probabilistic scheme with a
self-adaptive logic for updating parameter values during the evolution. Al-
though the algorithm updates the parameters only by periodically refreshing
them by means of random values, the self-adaptive logic carried out seems
very robust and shows good performance under various fitness landscapes.
This algorithmic philosophy has also been extended in the case of constrained
optimization [3] and multi-objective problems [43]. Some hybrid approaches
(also known as Memetic Algorithms) consisting of a DE framework and local
search components have been proposed in the literature in order to avoid
stagnation problems and, more generally, enhance the performance of the
DE. Paper [35] proposed a hybrid algorithm based on a combination of DE
and an estimation of distribution algorithm. This technique uses a proba-
bility model to detect promising areas and then focuses the search process
on those regions. Recently, [26] proposed a Memetic Algorithm which inte-
grates the local search hill-climber within variation operators of the DE; [31]
proposed a heuristic technique, namely, opposition-based learning (OBL) for
population initialization and also for generation jumping. In [42] a complex
self-adaptation is proposed in order to significantly enhance the performance
of a DE framework. Papers [7] and [8] propose the integration of a neighbor-
hood logic within a DE scheme and the employment of multiple scale factors
in the mutation operator. Papers [37] and [38] proposed a Memetic Differ-
ential Evolution (MDE) composed of a DE framework and two local search
algorithms integrated within the framework and coordinated by a fitness di-
versity logic.

Fitness diversity adaptation has recently been applied with success in the
context of Memetic Algorithms for performing coordination of local search
algorithms and parameter setting. Several control parameters have been
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designed on the basis of the evolutionary framework and optimization prob-
lems under analysis (see [4], [23], [21], [24], and [22]). A measurement of the
fitness diversity as the difference in performance between the fittest individ-
ual and other members of the population has been recently introduced for a
MDE scheme [5].

This chapter aims to employ the fitness diversity logic and integrate it
within each genotype of a DE population in order to enhance the algorithmic
performance. The algorithm proposed in this chapter is composed of a DE
structure employing a self-adaptation similar to the one proposed in [2], with
a modified probabilistic criterion which is based on a novel measurement of
the fitness diversity. In addition, the proposed algorithm contains an adaptive
population size determined by variations in the fitness diversity.

Section 2 presents the state-of-the-art regarding DE and five recently pub-
lished DE based algorithms. Section 3 describes the concept of fitness diver-
sity and the reason for its employment in algorithmic adaptation. Section
4 gives a description of the proposed algorithm, namely Fitness Diversity
Self-Adaptive Differential Evolution. Section 5 shows the numerical results.
Finally, Section 6 gives the conclusion to this chapter.

2 Background: Differential Evolution Based Algorithms

This section describes the DE and five DE based algorithms recently pro-
posed. In order to clarify the notation used throughout this chapter we refer
to the minimization problem of an objective function f (x), where x is a
vector of n design variables in a decision space D.

2.1 Differential Evolution

According to its original definition given in [33], the DE consists of the fol-
lowing steps. An initial sampling of Spop individuals is performed pseudo-
randomly with a uniform distribution function within the decision space D.
At each generation, for each individual xi of the Spop, three individuals xr ,
xs and xt are pseudo-randomly extracted from the population. According to
DE logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+[ is a scale factor which controls the length of the exploration
vector (xr − xs) and thus determines how far from point xi the offspring
should be generated. The mutation scheme shown in eq. (1) is also known
as DE/rand/1. Other variants of the mutation rule have been subsequently
proposed in literature, see [30]:

� DE/best/1: x′off = xbest + F (xs − xt)
� DE/cur-to-best/1: x′off = xi + F (xbest − xi) + F (xs − xt)
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� DE/best/2: x′off = xbest + F (xs − xt) + F (xu − xv)
� DE/rand/2: x′off = xr + F (xs − xt) + F (xu − xv)

where xbest is the solution with the best performance among the individuals
of the population, xu and xv are two additional pseudo-randomly selected
individuals.

Then, to increase exploration, each gene of the new individual x′off is
switched with the corresponding gene of xi with a uniform probability and
the final offspring xoff is generated:

xoff,j =
{

xi,j if rand (0, 1) < CR
x′off,j otherwise

(2)

where rand (0, 1) is a random number between 0 and 1; j is the index of the
gene under examination.

The resulting offspring xoff is evaluated and, according to a one-to-one
spawning strategy, it replaces xi if and only if f(xoff ) < f(xi); otherwise
no replacement occurs. For sake of clarity, the pseudo-code highlighting the
working principles of the DE is shown in Fig. 1.

generate Spop individuals of the initial population pseudo-randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
for i = 1 : Spop

**mutation**
select three individuals xr, xs, and xt;
compute x′

off = xt + F (xr − xs);
**crossover**
xoff = x′

off ;
for j = 1 : n

generate rand(0, 1);
if rand(0, 1) < CR

xoff,j = xi,j ;
end-if

end-for
**selection**
if f (xoff ) < f (xi)

xi = xoff ;
end-if

end-for
end-while

Fig. 1 DE pseudocode
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2.2 Parameter Setting in Differential Evolution

As highlighted in [16], due to its inner structure, the DE is subject to stagna-
tion problems. Stagnation is that undesired effect which occurs when a pop-
ulation based algorithm does not converge to a solution (even suboptimal)
and the population diversity is still high. In the case of the DE, stagnation
occurs when the algorithm does not manage to improve upon any solution of
its population for a prolonged amount of generations.

In order to avoid this undesired effect, the moving operators of the DE must
be properly set. In other words, for successful functioning of the DE, a proper
setting of the population size and parameters F and CR (see equations (1)and
(2)) must be performed. The population size, analogous to the other Evolution-
ary Algorithms (EAs), if too small could cause premature convergence and if
too large could cause stagnation (see [11]). A good value can be found by con-
sidering the dimensionality of the problem similar to what is commonly per-
formed for the other EAs. A guideline is given in [34] where a setting of Spop

equal to ten times the dimensionality of the problem is proposed.
On the other hand, the setting of F and CR is neither an intuitive nor

a straightforward task but is unfortunately crucial for guaranteeing the al-
gorithmic functioning. Several studies have thus been proposed in literature.
The study reported in [16] arrives at the conclusion, after an empirical analy-
sis, that usage of F = 1 is not recommended, since according to a conjecture
of the authors it leads to a significant decrease in explorative power. Anal-
ogously, the setting CR = 1 is also discouraged since it would dramatically
decrease the amount of possible offspring solutions. In [34] and [17] the set-
tings F ∈ [0.5, 1] and CR ∈ [0.8, 1] are recommended. In [17] the setting
F = CR = 0.9 is chosen on the basis of discussion in [28]. The empirical
analysis reported in [44] shows that in many cases the setting of F ≥ 0.6 and
CR ≥ 0.6 leads to results having better performance.

Several studies, e.g., [13] and [18], highlight that an efficient parameter
setting is very prone to problems (e.g., F = 0.2 could be a very efficient
setting for a certain fitness landscape and completely inadequate for another
problem). This result can be seen as a confirmation of the validity of the No
Free Lunch Theorem [40] with reference to the DE schemes. In [1], a modified
version of DE has been proposed. A system with two evolving populations
has been proposed. The crossover rate CR has been set equal to 0.5 after
an empirical study. Unlike CR, the value of F is adaptively updated at each
generation by means of the following scheme:

F =

⎧⎨
⎩

max
{
lmin, 1 −

∣∣∣ fmax
fmin

∣∣∣} if
∣∣∣ fmax

fmin

∣∣∣ < 1

max
{
lmin, 1 −

∣∣∣ fmin
fmax

∣∣∣} otherwise
(3)

where lm = 0.4 is the lower bound of F , fmin and fmax are the minimum
and maximum fitness values over the individuals of the populations.



204 V. Tirronen and F. Neri

2.3 Self-adapting Control Parameters in Differential
Evolution

In order to avoid the manual parameter setting of F and CR a simple and
effective strategy has been proposed in [2]. This strategy is named Self-
Adapting Control Parameters in Differential Evolution. The DE algorithm
employing this strategy here is called Self-Adaptive Control Parameter Dif-
ferential Evolution (SACPDE) and consists of the following.

With reference to Fig. 1, when the initial population is generated, two
extra values between 0 and 1 are also generated per each individual. These
values represent F and CR related to the individual under analysis. Each
individual is thus composed (in a self-adaptive logic) of its genotype and its
control parameters:

xi = 〈xi,1, xi,2, ..., xi,j , ...xi,n, Fi, CRi〉 .

In accordance with a self-adaptive logic, see e.g., [32], the variation opera-
tions are preceded by the parameter update. More specifically when, at each
generation, the ith individual xi is taken into account and three other individ-
uals are extracted pseudo-randomly, its parameters Fi and CRi are updated
according to the following scheme:

Fi =
{
Fl + Furand1, if rand2 < τ1

Fi, otherwise (4)

CRi =
{
rand3, if rand4 < τ2
CRi, otherwise (5)

where randj , j ∈ {1, 2, 3, 4}, are uniform pseudo-random values between 0
and 1; τ1 and τ2 are constant values which represent the probabilities that
parameters are updated, Fl and Fu are constant values which represent the
minimum value that F could take and the maximum variable contribution to
F , respectively. The newly calculated values of Fi and CRi are then used for
generating the offspring. The variation operators and selection scheme are
identical to that of a standard DE (see section 2.1).

For sake of clarity, the pseudo-code highlighting the working principle of
the SACPDE is given in Fig. 2.

2.4 Differential Evolution with Adaptive Crossover
Local Search

In order to enhance performance of the DE, in [26] a memetic approach,
called Differential Evolution with Adaptive Hill Climbing Simplex Crossover
(DEahcSPX), has been proposed. The main idea is that a proper balance of
the exploration abilities of the DE and the exploitation abilities of a Local
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Searcher (LS) can lead to an algorithm with high performance. The pro-
posed algorithm hybridizes the DE described in section 2.1 as an evolutionary
framework and a LS is deterministically applied to the individual of the DE
population with the best performance (in terms of fitness value).

The LS proposed for this hybridization is Simplex Crossover (SPX) [39].
More specifically, at each generation, that individual having the best fitness
value, indicated here with xb, is extracted and the LS described in Fig. 3
is applied. If the SPX succeeds in improving upon the starting solution, a
replacement occurs according to a meta-Lamarckian logic [27].

It should be remarked that ε in Fig. 3 is a control parameter of the SPX
which has been set equal to 1 in [26]. Finally, the DE framework employed is
the standard DE described in Fig. 1.

generate Spop individuals of the initial population with related
parameters pseudo-randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
for i = 1 : Spop

**Fi update**
generate rand1 and rand2;

Fi =

{
Fl + Furand1, if rand2 < τ1

Fi, otherwise
;

**mutation**
select three individuals xr, xs, and xt;
compute x′

off = xt + Fi(xr − xs);
**CRi update**
generate rand3 and rand4;

CRi =

{
rand3, if rand4 < τ2

CRi, otherwise
**crossover**
xoff = x′

off ;
for j = 1 : n

generate rand(0, 1);
if rand(0, 1) < CRi

xoff,j = xi,j ;
end-if

end-for
**selection**
if f (xoff ) < f (xi)

xi = xoff ;
end-if

end-for
end-while

Fig. 2 SACPDE pseudocode
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while budget condition OR f(C) ≥ f(xb)
select pseudo-randomly np − 1 individuals from the DE population
compute the center of mass (including xb):

O = 1
np

np∑
i=1

xi;

for i = 1 : np − 1

ri = rand(0, 1)
1

i+1 ;
end-for
for i = 1 : np

yi = O + ε(xi − O);
end-for
C1 = 0;
for i = 2 : np

Ci = ri−1 (yi−1 − yi + Ci−1);
end-for
C = Cnp + ynp ;
end-while

Fig. 3 SPX pseudocode

2.5 Opposition Based Differential Evolution

The Opposition Based Differential Evolution (OBDE), proposed in [31], em-
ploys logic of the opposition points in order to enhance exploration properties
of the DE and test a wide portion of the decision space.

For a given point xi = 〈xi,1, xi,2, ..., xi,j , ..., xi,n〉 belonging to a set D =
[a1, b1]× [a2, b2]× ...× [aj, bj ]× ...× [an, bn] its opposition point is defined as:
x̃i = 〈a1 + b1 − xi,1, a2 + b2 − xi,2, ..., aj + bj − xi,j , ..., an + bn − xi,n〉. The
OBDE consists of a DE framework and two opposition based components:
the first after the initial sampling and the second after the survivor selec-
tion scheme. While the first opposition based component is always applied
after initialization, the second is activated by means of the probability jr
(jump rate). These opposition based components process a set of candi-
date solutions and generate their opposition points. They then merge the
two sets of points (original and opposition) and select those points which
have the best performance (as many as there are candidate solutions in the
original set).

More specifically, when the initial sampling is pseudo-randomly performed,
opposition points of the initial population are calculated and then half of these
points (having the best fitness values) are selected to begin the optimization
process. Analogously, at the end of each DE generation, when the population
has been selected for the subsequent generation, the opposition based com-
ponent is applied.
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For sake of clarity the pseudo-code describing the functioning of the OBDE
is shown in Fig. 4.

generate Spop individuals of the initial population pseudo-randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
**opposition based component**
for i = 1 : Spop

for j = 1 : n
compute x̃i,j = aj + bj − xi,j ;

end-for
compute f (x̃i);

end-for
merge original population and opposition based points;
select the Spop solutions which have the best performance;
for i = 1 : Spop

**mutation**
select three individuals xr, xs, and xt;
compute x′

off = xt + F (xr − xs);
**crossover**
xoff = x′

off ;
for j = 1 : n

generate rand(0, 1);
if rand(0, 1) < CR

xoff,j = xi,j ;
end-if

end-for
**selection**
if f (xoff ) < f (xi)

xi = xoff ;
end-if

end-for
generate rand(0, 1);
if rand(0, 1) < jr

**opposition based component**
for i = 1 : Spop

for j = 1 : n
compute x̃i,j = aj + bj − xi,j ;

end-for
compute f (x̃i);

end-for
merge original population and opposition based points;
select the Spop solutions which have the best performance;

end-if
end-while

Fig. 4 OBDE pseudocode
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2.6 Differential Evolution with Global and Local
Neighborhoods

The Differential Evolution with Global and Local Neighborhoods (DEGL)
modifies the mutation operation in the DE, explained in Subsection 2.1, by
defining a neighborhood as a portion of the population identified by a radius
k, see [7] and [8]. More specifically, individuals of the population are pseudo-
randomly sorted and each individual is characterized by a position index
i. The neighborhood of the ith individual xi is given by those individuals
xi−k, ..., xi, ..., xi+k.

The concept of neighborhood is used during the mutation operation since
the provisional offspring x′off is acquired through the combination of two
contributions, the first contribution is given by the neighborhood individu-
als and the second by the whole population. Thus, in order to perform the
mutation, for an individual xi, the local contribution is calculated as:

Li = xi + α (xn−best − xi) + β (xp − xq) (6)

where xbest is the individual having best performance in the neighborhood, xp

and xq and two individuals pseudo-randomly selected from the neighborhood.
Values α and β are two constant which have a similar role to that of the scale
factor F , see eq. (1). The global contribution is given by:

Gi = xi + α (xp−best − xi) + β (xr − xs) (7)

where xpbest is that individual with the best performance out of the entire
population, xr and xs are two individuals pseudo-randomly selected from the
population. The two contributions are then combined by means of:

x′off = wGi + (1 − w)Li (8)

where wi is a weight factor to be set between 0 and 1.
Regarding the parameter setting, as suggested in [7], it has been set α = β

equal to constant value. Also the neighborhood radius k has been set as a
constant. On the contrary, the weight factor w is updated according to:

w = wmin + (wmax − wmin)
g

gmax
(9)

where wmin and wmax are the lower and upper bounds of the weight factor,
respectively. The indexes g and gmax denote the current generation index
and the maximum amount of generations, respectively. In other words, at
the beginning of the optimization process (g = 0) the weight factor is set
equal to wmin and subsequently linearly varies over time. At the end of the
optimization process, the weight factor takes the value wmax. The crossover
and replacement occur as with a plain DE, see Subsection 2.1.
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2.7 Self-adaptive Differential Evolution with
Neighborhood Search

TheSelf-AdaptiveDifferential EvolutionwithNeighborhoodSearch (SaNSDE)
[42] is a combination of two different algorithms: Differential Evolution with
Neighborhood Search introduced in [41] and Self-Adaptive Differential Evolu-
tion (SADE) introduced in [30].

The SaNSDE modifies the DE in the following way. When the mutation is
performed, the SaNSDE alternates, with a probabilistic scheme, two mutation
strategies. The first strategy is the so called DE/rand/1 shown in eq. (1) while
the second one is the DE/current to best/2 characterized by the formula:

x′off = xi + F (xp−best − xi) + F (xr − xs) , (10)

where xpbest is the individual displaying best performance in the population,
xr and xs are two individuals pseudo-randomly selected.

The probability of selecting the mutation strategy DE/rand/1 is initially
0.5 and subsequently updated (every 50 generations) by:

ρ =
s1(s2 + f2)

s2(s1 + f1) + s1(s2 + f2)
, (11)

where s1, s2, f1, f2 are respectively the number of successful and unsuc-
cessful attempts at generating offspring by the two mutation strategy under
investigation. More specifically, s1 is the number of times the DE/rand/1 led
to an offspring outperforming the corresponding parent, s2 is the number of
times the DE/current to best/2 led to an offspring outperforming the cor-
responding parent, f1 is the number of unsuccessful attempts at generating
an offspring by DE/rand/1 and f2 is the number of unsuccessful attempts at
generating an offspring by DE/current to best/2. The probability of selecting
the mutation strategy DE/current to best/2 is given by 1 − ρ.

A self adaptation of the scale factor F is also performed. For each indi-
vidual a scale factor Fi is associated. Each scale factor is updated according
to:

Fi =
{
Ni (0.5, 0.3) if rand < Fρ

δi otherwise (12)

where Ni (0.5, 0.3) is a number sampled normal distribution with mean value
of 0.5 and standard deviation equal to 0.3, rand is a pseudo-random num-
ber sampled from a uniform distribution, δi is a random sample from the
Cauchy distribution with a scale parameter equal to 1, Fρ is a probability con-
structed with the same logic as eq. (11) but related to the success of the scale
factor.

In order to perform the crossover, the SaNSDE employs the weighted
crossover rate self-adaptation. With each individual a crossover rate CRi
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is associated. Every five generations new CRi values for each individual are
generated for the new population by means of the following equation:

CRi = N (CRm, 0.1) . (13)

The value CRm is initially set equal to 0.5 and then updated every 25 gen-
erations according to:

CRm =
|CRrec|∑

k=1

wkCRrec (k) (14)

where CRrec is a vector containing the CRi values which contributed to the
generation of a successful offspring (individual which outperform its parent
xi). Each weight factor wk is calculated as:

wk =
Δfrec (k)

|Δfrec |∑
k=1

Δfrec (k)

(15)

where Δfrec (k) is the enhancement in that fitness value corresponding to the
application of CRrec (k).

All remaining operations are performed as shown in Subsection 2.1.

3 Fitness Diversity Adaptation in Evolutionary
Algorithms

As mentioned in [10] Exploration and Exploitation are two cornerstones in
EAs and a proper balance of these properties seems to be the basic princi-
ple for algorithmic success. Unfortunately, every optimization problem has
its own features, and thus, this balance must be designed taking into ac-
count the class of fitness landscapes which should be handled. In addition, as
highlighted in [11], an EA is implicitly dynamic. Thus, in order to design a
highly efficient algorithm, the explorative/exploitative pressure should vary
over time and adapt to the demands of the optimization process while the
search is performed.

A properly designed optimization algorithm should, in principle, be able
to explore the decision space and detect the optimal basin of attraction, even-
tually converging to the global optimum. Unfortunately, the location of the
global optimum and optimal basin of attraction is in general unknown a priori
and it is impossible to even know during the optimization process whether
one candidate solution has fallen within the optimal basin of attraction.

Nevertheless, the behavior of the algorithm (on a fitness landscape) can be
observed and indirectly measured: if the population contains a high variety
of genotypes (highly diverse), the algorithm explores the decision space and
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hopefully detects new promising solutions; if the population contains a low va-
riety of genotypes, the algorithm exploits a search direction and converges to
a solution. The concept of diversity can then be used to monitor algorithmic
behavior and prevent undesired stagnation and premature convergence sit-
uations. By means of a parameter adjustment, the algorithm can increase
exploitation if the algorithm seems to be too explorative (checking a huge
amount of solutions without improving upon the current best) or conversely
increase exploration if the algorithm tends to lose the diversity and converge
to a suboptimal solution (see for example [14], [11], and [9]). This logic has
been implemented in various ways during the latest decades and has been
widely used for local search coordination in Memetic Algorithms since their
early definition in [20].

A not so trivial problem is how to efficiently measure the population di-
versity and how to make use of this information for actually obtaining an
algorithm which adequately responds to variations. Measurement of the geno-
typical diversity presents the problem that a comparison among vectors of
numbers is somehow required (e.g., distance between pairs of vectors) and a
table expressing this comparison is generated; this operation can be compu-
tationally very expensive if the fitness is highly multi-variate.

An indirect way to measure the population diversity is through its fitness
values. Measurement of the fitness diversity requires handling of only one
vector of numbers which is composed of the fitness values of each individual
of the population. On the other hand, the presence of plateaus and saddle
points can give an inaccurate estimation of the distribution of points in the
decision space. Fortunately, this limitation of the fitness diversity schemes
is not very severe when this diversity is used for making an adaptive choice
on the explorative/ exploitative countermeasures. If fitness diversity is high,
the solutions are somehow spread out in the decision space, the algorithm is
exploring new search directions and a higher exploitative pressure can help
in choosing the most promising search direction; if the fitness diversity is low,
either the algorithm is converging towards a solution or the entire population
is contained in a plateau or a saddle; in both cases an increase in exploration
is required in order to detect new promising solutions outside the current
basin of attraction or plateau (or saddle).

The fitness diversity can thus be efficiently employed to measure the state
of the algorithm and apply proper countermeasures to avoid stagnation and
premature convergence, resulting in a high performance algorithm. In order
to use information related to the fitness diversity, an index which estimates
the diversity must be defined. In literature, several proposals have been made.
Indicating with fbest, favg and fworst respectively the best, average and worst
fitness over the individuals of the population, in [4] and [23] the following
index has been proposed:

ξ = min
{∣∣∣∣fbest − favg

fbest

∣∣∣∣ , 1
}

(16)
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In [22] and [24] the following parameter is given:

ψ = 1 −
∣∣∣∣ favg − fbest

fworst − fbest

∣∣∣∣ (17)

In [37] the fitness diversity has been measured by means of the following
index:

ν = min
{

σf

|favg| , 1
}
, (18)

where σf is the standard deviation over the fitness values of individuals of
the population.

In [5] the following parameter is used:

χ =
|fbest − favg|

max |fbest − favg|k
(19)

where fbest and favg are the fitness values of, respectively, the best and av-
erage individuals of the population. max |fbest − favg|k is the maximum dif-
ference observed (e.g., at the kth generation), beginning from the start of the
optimization process.

It must be noted that the four control parameters shown above can take
values in the interval [0, 1]. These limit conditions 0 and 1 mean no fitness
diversity and high fitness diversity respectively. Although all the above men-
tioned parameters measure fitness diversity of the population, the way this
diversity is measured and scored differ much according to the index employed.

Although an in depth analysis of the structure of fitness diversity indexes
is beyond the scope of this chapter, it is interesting to note that these pa-
rameters can be seen as an answer to four distinct questions related to the
algorithms’ state during the run. More specifically, ξ can be seen as the an-
swer to the question “How close is the average fitness to the best one?”; ψ
is the answer to the question “If we sort all fitness values over a line, which
position is occupied by the average fitness?”; ν is the answer to the question
“How sparse are the fitness values within the population?”; χ is the answer to
the question “How much better is the best individual than the average fitness
of the population with respect to the history of the optimization process?”.

4 Fitness Diversity Self-adaptive Differential Evolution

This chapter aims to propose an efficient modification of DE which includes
within its structure the fitness diversity logic in order to control explo-
rative/exploitative pressure and thus improve upon the DE performance.
The proposed algorithm, namely Fitness Diversity Self-Adaptive Differential
Evolution (FDSADE) consists of the following steps.
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4.1 Initial Sampling and Encoding of the Solutions

An initial sampling of Spop individuals is executed pseudo-randomly with a
uniform distribution function. As for the algorithm in [2], each individual
xi is composed of its genotype over the decision space D and its control
parameters Fi and CRi pseudo-randomly sampled between 0 and 1:

xi = 〈xi,1, xi,2, ..., xi,j , ...xi,n, Fi, CRi〉 .

The fitness of each individual is calculated and the solutions are sorted ac-
cording to their fitness values from best to worst.

4.2 Fitness Diversity Self-adaptation

At each generation the following fitness diversity index is calculated:

φ =
σf

|fworst − fbest| (20)

where σf is the standard deviation of fitness values over individuals of the
populations, fworst and fbest are the worst and best fitness values, respec-
tively, of the population individuals.

Analogous to the other fitness diversity indexes listed in section 3, φ varies
between 0 and 1. When the fitness diversity is high, φ ≈ 1; on the contrary
when the fitness diversity is low, φ ≈ 0. The index φ can be seen as a com-
bination of ν in formula (18) and ψ in formula (17) because it represents the
distribution of fitness values over individuals of the population with respect
to its range of variability. In other words, φ is the answer to the question
”How sparse are the fitness values with respect to the range of fitness vari-
ability at the current generation?”. Employment of the standard deviation in
the numerator in formula (20) is due to the fact that a DE framework tends
to generate an individual with performance significantly above the average
(see [37] and [5]) and efficiently continues optimization for several genera-
tions. In this sense, an estimation of the fitness diversity of a DE population
by means of the difference between best and average fitness values can return
a misleading result and each value must be taken into account. Regarding
the denominator in formula (20), a normalization to the range of variability
of the current population makes the index co-domain invariant (unlike ν in
formula (18) ) and its estimation is not affected, for example by adding an
offset to the fitness function. Thus, the index φ can be successfully employed,
within a DE framework, on problems of various kinds.

The control parameter Fi is then updated according to the scheme:

Fi =
{
Fl + Furand1, if rand2 < K (1 − φ)

Fi, otherwise (21)
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where rand1 and rand2 are pseudo-random numbers generated by means of
the uniform distribution, Fl and Fu are the same constant values shown in
formula (4) for the SACPDE.

Analogously, the control parameter CRi is updated according to the
scheme:

CRi =
{
rand3, if rand4 < K (1 − φ)
CRi, otherwise (22)

where rand3 and rand4 are pseudo-random numbers generated by means of
the uniform distribution. For both equations (21) and (22), the constant value
K represents the maximum update probability of the parameters.

In other words, the proposed algorithm hybridizes the self-adaptive scheme
proposed in [2] with the fitness diversity logic in order to obtain a high perfor-
mance DE algorithm. The main idea behind the proposed self-adaptation is
that in high diversity conditions (φ ≈ 1), the solutions xi should tend to keep
the control parameters Fi and CRi unvaried and thus exploit the current po-
tential search. On the contrary, when the diversity condition is low (φ ≈ 0),
the algorithm should try to better explore the decision space by frequently
changing intensity of the mutation move Fi and updating the recombination
rate CRi. The proposed logic is thus similar to the fitness diversity based
activation of a local search in a MA (see e.g., [22]): if the algorithms need
to exploit the genotype no changes to the evolutionary framework are nec-
essary, if the algorithm has poor diversity a change in the exploratory logic
and exploration of new search perspectives are recommended (see [15]).

4.3 Recombination Operators

Recombination operations, i.e., mutation and crossover, occur in the FD-
SADE, similar to operations performed in the standard DE. For each solution
xi, three individuals xr, xs and xt are pseudo-randomly extracted from the
population and a provisional offspring x′off is generated by mutation:

x′off = xt + Fi(xr − xs) (23)

where Fi is the scale factor corresponding to solution xi. Each gene of the new
individual x′off is then switched with the corresponding gene of xi with the cor-
responding uniform probability CRi and the final offspring xoff is generated:

xoff,j =
{

xi,j if rand (0, 1) < CRi

x′off,j otherwise
(24)

4.4 Adaptive Population Size and Selection

When Spop offspring individuals are generated, the offspring xoff is evaluated
and, according to standard DE logic, replaces xi if and only if f(xoff ) <
f(xi); otherwise no replacement occurs.
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generate Spop individuals of the initial population with related
parameters pseudo-randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
sort the population;
compute φ =

σf

|fworst−fbest| ;
for i = 1 : Spop

**Fi update**
generate rand1 and rand2;

Fi =

{
Fl + Furand1, if rand2 < K(1 − φ)

Fi, otherwise
;

**mutation**
select three individuals xr, xs, and xt;
compute x′

off = xt + Fi(xr − xs);
**CRi update**
generate rand3 and rand4;

CRi =

{
rand3, if rand4 < K(1 − φ)
CRi, otherwise

**crossover**
xoff = x′

off ;
for j = 1 : n

generate rand(0, 1);
if rand(0, 1) < CRi

xoff,j = xi,j ;
end-if

end-for
**selection**
if f (xoff ) < f (xi)

xi = xoff ;
end-if

end-for
**population size adjustment**
compute φ =

σf

|fworst−fbest| ;
Sold

pop = Spop;
compute Spop = Sf

pop + Sv
pop (1 − φ);

if Spop < Sold
pop

select the Spop individuals with the best performance;

else duplicate in the population Spop − Sold
pop

solutions with the best performance;
end-if ;

end-while

Fig. 5 FDSADE pseudocode
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The parameter φ is then calculated as shown in formula (20) and popula-
tion size is adjusted for the subsequent generation according to the equation:

Spop = Sf
pop + Sv

pop (1 − φ) (25)

where Sf
pop stands for fixed population size and is the minimum value of the

population size, Sv
pop stands for variable population size and is the maximum

value of the variable contribution of the population size. The new value of Spop

is then employed for the subsequent generation: if population size is reduced,
only those Spop individuals having the best performance are considered for
the next steps; if the population is expanded, the best solutions are duplicated
in order to have a population composed of Spop individuals.

The meaning of this variable population size is that in high diversity con-
ditions the algorithm should shrink the population and exploit the available
genotypes, in low diversity conditions the algorithm should enlarge the pop-
ulation and through the recombination mechanism focus on detecting new
promising search directions. In this way the algorithm should be able to
adapt to necessities of the fitness landscape and dynamically balance the ex-
plorative/exploitative necessities. Similar approaches have been proposed in
the literature, e.g., [4], [23], [21] and [24].

For sake of clarity the pseudo-code illustrating the working principles of
the FDSADE is given in Fig. 5.

5 Numerical Results

The FDSADE has been tested on a set of various test problems and compared
with a plain DE [33], SACPDE [2], DEahcSPX [26], OBDE [31], the DEGL
[8], and SaNSDE [42].

� The DE has been run with F = 0.7 and CR = 0.7 in accordance to the
suggestions given in [44].

� The SACPDE has been run, with reference to the formulas (4) and (5),
with Fl = 0.1, Fu = 0.9, τ1 = 0.1, and τ2 = 0.1 as shown in [2].

� The DEahcSPX has been run with F = 0.7 and CR = 0.7 (in accordance
with [44]) and, with reference to Fig. 3, np = 10.

� The DEGL has been run, with reference to formulas (6), (7), (8), and (9),
with k = 5, α = β = 0.8, wmin = 0.4, wmax = 0.8, and CR = 0.7

� The SaNSDE has been run as explained in Subsection 2.7
� The FDSADE has been run with reference to formulas (21) and (22),
Fl = 0.1, Fu = 0.9 as suggested in [2] and K = 0.3.

Regarding the population size, the FDSADE has been run with Sf
pop = 10,

Sv
pop = 40 (see formula (25) ) while all the other algorithms have been run

with Spop = 30. Each algorithm has been run for 30 independent runs, 50000
fitness evaluations each run.
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The choice of K = 0.3 has been empirically performed after having carried
out an analysis of the algorithmic behavior with dependance on K. The main
result of our analysis is that the FDSADE has a high algorithmic performance
for chosen K values in the interval [0.1, 0.7] and performance of the FDSADE
is not very sensitive to the chosen K value within this interval. Nevertheless,
it has been observed that the best performance is obtained in correspondence
to K = 0.3. Fig. 6 shows an example of the FDSADE average performance
(over 30 runs) with dependence on various values of K. Fig. 6 refers to the
Michalewicz function in 30 dimensions.

Fig. 6 Algorithmic performance in dependance on K

The test problems under investigation are listed in Table 1. It should be
remarked that some rotated problems have been added to our benchmark
set. The rotated problems are obtained by means of multiplication of the
vector of variables to a randomly generated orthogonal rotation matrix. The
test problem indicated with ”Tirronen” is generated by means of a novel
test function proposed in this chapter. This test function has been included
in order to obtain a highly multi-modal landscape which contains a global
minimum in an asymmetrical position and a pattern that changes towards
the minimum (unlike Rastrigin or Ackley, whose pattern is orthogonal to the
axes throughout the entire landscape). Fig. 7 shows the Tirronen function in
two dimensions.

Table 2 shows the average final results (after 50000 fitness evaluations)
and the related standard deviation, calculated over the 30 available runs.
The best results are highlighted in bold face.

It can be noted that only for the Easom and Camelback functions do all
algorithms converge to the same value. For the other eighteen test problems,
one of the algorithms outperforms all others in terms of final value. Table 2
shows that the DEGL seems to be a very competitive algorithm since it
produced the best performance in ten cases; the proposed FDSADE reached
the best final value in seven cases out of twenty under analysis, the DE
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Table 1 Test Problems

Test Problem n Function Decision Space

Ackley 30 −20 + e + exp
(
− 0.2

n

√∑n
i=1 x2

i

)
[−1, 1]n

− exp
( 1

n

∑n
i=1 cos(2π · xi)xi

)

Alpine 30
∑n

i=1 |xi sin xi + 0.1xi| [−10, 10]n

Camelback 2 4x2
1 − 2.1x2

1 +
x6
1
3 + x1x2 − 4x2

2 + 4x4
2

DeJong 30 ||x||2 [−5.12, 5.12]n

DropWave 30 − 1+cos
(
12
√

||x||2
)

1
2 ||x||2+2

[−5.12, 5.12]n

Easom 2 cos x1 cos x2 exp
(−(x1 − π)2 − (x2 − π)2

)
[−100, 100]n

Griewangk 30 ||x||2
4000 −∏n

i=0 cos
xi√

i
+ 1 [−600, 600]n

Michalewicz 30 −∑n
i=1 sin xi

(
sin

(
i·x2

i
π

))
[0, π]n

Pathological 30 ∑n−1
i=1

(
0.5 +

sin2
(√

100x2
i
+x2

i+1−0.5
)

1+0.001∗
(

x2
i
−2xixi+1+x2

i+1

)2
)

[−100, 100]n

Rosenbrock 30
∑n−1

i=0

((
xn+1 − x2

i

)2
+ (1 − x)2

)
[−2.048, 2.048]n

Rastrigin 30 10n +
∑n

i=0

(
x2

i − 10 cos(2πxi)
)

[−5.12, 5.12]n

Schwefel 30
∑n

i=1 xi sin
(√ |xi|

)
[−500, 500]n

Sum of powers 30
∑n

i=1 |xi|i+1 [−1, 1]n

Tirronen 30
3 exp

(
− ||x||2

10n

)
− 10 exp

(−8||x||2) [−10, 5]n

+ 2.5
n

∑n
i=1 cos (5(xi+(1+i mod 2))cos(||x||)))

Whitley 30 ∑n
i=1

∑n
j=1

(
y2

i,j
4000 − cos (yi,j) + 1

)
,

[−100, 100]n

where yi,j =
(
100(xj − xi)

2 + (1 − xi)
2)2

Zakharov 30 ||x||2 +
(∑n

i=1
ix1
2

)2
+
(∑n

i=1
ix1
2 xi

)4 [−5, 10]n

reached the best final value in five cases, the SaNSDE and the SACPDE
reached the best final values for four test problems and the DEahcSPX only
with the Easom and Camelback functions. In addition, it can be seen that
when the FDSADE does not reach the best value, it will in any case often
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Fig. 7 Tirronen function

return a solution with a high performance (see e.g., the values in De Jong or
Rotated Rastrigin). Finally, it must be highlighted that the FDSADE never
obtained the worst results over the twenty test problems under analysis and
in most cases offers a competitive performance in terms of final solution.

In order to prove statistical significance of the results, the Student’s t-test
has been applied according to the description given in [25] for a confidence level
of 0.95. The final values obtained by the FDSADE have been compared to the
final value returned by each algorithm used as a benchmark. Table 3 shows re-
sults of the test. Indicated with ”+” is the case when the FDSADE statistically
outperforms, for the corresponding test problem, the algorithm mentioned in
the column; indicated with ”=” is the case when pairwise comparison leads to
success of the t-test i.e., the two algorithms have the same performance; indi-
cated with ”-” is the case when the FDSADE is outperformed.

Table 2 and Table 3 show that DEGL performs the best, in terms of final
values, among all the algorithms considered here. However, it must be noticed
from Table 3 that the FDSADE is outperformed in only eighteen cases out of
the hundred-twenty pairwise comparisons considered, the FDSADE has the
same algorithmic performance as the other algorithms in twenty-six cases and
outperforms the other algorithms in fifty-six cases. It can thus be concluded
that the FDSADE is outperformed in only 15% of the cases and outperforms
the other algorithms in 56% of the cases. Therefore, the FDSADE, in a sta-
tistical sense, offers good performance in detecting a final solution with high
quality and is competitive with modern DE based algorithms. Considering
that the experimental setup is composed of a very diverse set of test prob-
lems (e.g., some functions are uni-modal, others are highly multi-modal),
the FDSADE seems to have a high performance with various kinds of prob-
lems. Finally, attention must be paid in observing the comparison between
FDSADE and SACPDE since the FDSADE has the same self-adaptive struc-
ture of the SACPDE and the same update logic of the control parameters.
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Table 3 Results of the Student’s t-test

Test Problem DE SACPDE DEahcSPX DEGL SaNSDE

Ackley + = + = +

Alpine + = + − =

Camelback = = = = =

De Jong = = + = =

Dropwave − = + − +

Easom = = = = =

Griewangk − + + − +

Rot. Griewangk = + + = +

Michalewicz + + + + +

Rot. Michalewicz + + + + +

Pathological + + + − −
Rastrigin − = + + +

Rot. Rastrigin + − + + −
Rosenbrock − + + − −
Schwefel = + + + +

Rot. Schwefel + + + + +

Sum of powers − + + − −
Tirronen + + + + +

Whitely − = = − −
Zakharov + = + − +

As shown in Section 4, the FDSADE integrates, in addition to the SACPDE,
the fitness diversity philosophy and fitness diversity based variable population
size. Integration of the fitness diversity seems to be very promising because,
as shown in Table 3, it leads to an improvement of performance in ten cases,
the same performance in nine cases and a worse performance in only one
case. This analysis confirms that the fitness diversity adaptation can be an
efficient instrument in enhancing the effectiveness of an algorithm.

In order to carry out a numerical comparison of the convergence speed
performance, for each test problem the average final fitness value returned
by the best performing algorithm G has been considered. Subsequently, the
average fitness value at the beginning of the optimization process J has also
been computed. The threshold value THR = J − 0.95(G− J) has then been
calculated. The value THR represents 95% of the decay in the fitness value
in the best performing algorithms fitness value. If an algorithm succeeds
during a certain run to reach the value THR, the run is said to be successful.
For each test problem the average amount of fitness evaluations n̄e required
for each algorithm to reach THR has been computed. Subsequently, the Q-
test (Q stands for Quality) described in [12] has been applied. For each test
problem and each algorithm, the Q measure is computed as Q = n̄e

R where
the robustness R is the percentage of successful runs. It is clear that for
each test problem the smallest value means the best performance in terms of
convergence speed. The value inf means that R = 0, i.e. the algorithm never
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reached the THR. Table 4 shows the Q values in 30 dimensions. The best
results are highlighted in bold face.

Figures 8 show the average performance trend (over 30 independent runs)
of the six algorithms under analysis over some of the test problems listed in
Table 1.

It can be observed that the FDSADE fails in detecting the optimum, with
respect to the others, only in the case of the Dropwave and Whitley functions.
In all other cases the FDSADE displays a high performance; the proposed
algorithm is either competitive with another algorithm of the benchmark (see
e.g., Rotated Griewangk, Michalewicz, Pathological, and Rotated Rastrigin)
or has extraordinarily high performance as shown with Rotated Michalewicz,
Schwefel, and Rotated Schwefel. Performance in terms of convergence speed
is also competitive with the other algorithms in most of the cases analyzed.

Numerical results in Table 4 show that although the FDSADE does not al-
ways have the best performance in terms of convergence velocity, it is in most
cases very competitive with the algorithm that has the best performance. In
other words, the other algorithms seem to have a high convergence velocity
performance with some test problems and a poor performance with others.
On the contrary, the FDSADE demonstrates a performance close to the best
in almost all test problems. In addition, it must be remarked that the FD-
SADE does not reach THR in only two cases (Dropwave and Pathological

Table 4 Results of the Q-test

Test Problem DE SACPDE DEahcSPX DEGL SaNSDE FDSADE

Ackley 6.0e+01 2.8e+01 6.4e+01 2.3e+01 3.4e+01 3.4e+01

Alpine 2.3e+02 5.0e+01 2.4e+02 4.1e+01 2.7e+01 6.4e+01

Camelback 2.5e+00 2.5e+00 1.5e+01 2.4e+00 1.6e+00 2.6e+00

De Jong 8.0e+00 5.3e+00 7.0e+00 1.6e+01 2.6e+01 6.7e+00

Dropwave inf inf inf 1.3e+02 inf inf

Easom 1.7e+01 9.8e+00 8.6e+01 1.5e+01 5.9e+00 1.4e+01

Griewangk 3.5e+01 1.6e+01 1.4e+01 1.3e+01 1.7e+01 2.0e+01

Rotated Griewangk 3.4e+01 1.6e+01 1.4e+01 1.3e+01 1.5e+01 2.0e+01

Michalewicz 3.1e+02 1.1e+02 inf inf inf 1.4e+02

Rotated Michalewicz inf 2.1e+03 inf inf inf 5.2e+02

Pathological inf inf inf 4.0e-01 4.0e-01 inf

Rastrigin 2.8e+02 5.7e+01 inf inf inf 6.5e+01

Rotated Rastrigin inf 2.5e+02 inf inf 5.1e+01 2.3e+02

Tirronen inf 7.4e+02 inf 6.4e+03 1.7e+02 4.9e+02

Rosenbrock 5.3e+01 2.6e+01 9.6e+01 1.9e+01 2.8e+01 3.1e+01

Schwefel 2.2e+02 1.3e+02 inf 1.8e+03 inf 8.2e+01

Rotated Schwefel inf inf inf inf inf 2.5e+02

Sum of powers 2.1e+01 7.0e+00 5.2e+00 4.4e+00 4.2e+00 7.3e+00

Whitely 2.7e+01 8.1e+00 5.7e+00 3.6e+00 3.2e+00 9.7e+00

Zakharov 1.2e+00 5.7e+00 1.5e+01 4.0e-01 4.0e-01 1.5e+00
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(a)

(b)

(c)

Fig. 8 Algorithmic performance over selected test problems
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(d)

(e)

(f)

Fig. 8 (continued)
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(g)

(h)

(i)

Fig. 8 (continued)
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functions); in all other cases it reaches the threshold in at least one case. This
result confirms that the FDSADE has a robust behavior over a set of various
test problems. It can be seen that, in this sense, the FDSADE is the best
algorithm (it is the algorithm with the fewest number of inf values) among
the six under examination.

5.1 Numerical Results for (Relatively) Large Scale
Problems

The previous six algorithms have also been run in order to minimize ten of
the functions in Table 1 for n = 100. The algorithms have been run with
the same parameter setting mentioned above except population size. The
FDSADE has been run with Sf

pop = 30, Sv
pop = 120 while all the other

algorithms with Spop = 100. For each algorithm, 30 independent runs have
been performed for 50000 fitness evaluations. Table 5 shows the average final
results (after 50000 fitness evaluation) and the related standard deviation,
calculated over the 30 available runs.

It must be observed that the algorithmic performance is dramatically dif-
ferent with respect to the numerical results in 30 dimensions. An important
fact is that, in accordance with the No Free Lunch Theorem [40], the al-
gorithmic performance in high dimensions is very problem-dependant, i.e.,
none of the algorithms examined seems to be, in general, clearly superior to
the others. The performance comparison reported here is valid only for the
parameter settings used in this chapter. The effect of variation of parameters
has not been investigated.

However, it can be noticed that the DE and SACPDE never have the
best performance in terms of quality of the final solution. Performance of the
DEGL is not so promising as the one displayed in the low dimensional case.
On the contrary, the SaNSDE seems to be rather promising for large scale
optimization problems. The FDSADE is competitive with the SaNSDE and
reaches quite good results in all the test problems considered.

Table 6 shows results of the Student’s t-test in 100 dimensions.
The t-test in Table 6 shows that the FDSADE is outperformed nine times

and has the same performance in only two cases out of the fifty pairwise
comparisons considered. Thus, the FDSADE is outperformed in only 18% of
the cases and outperforms the other algorithms in 78% of the cases. Finally,
it must be observed that in 100 dimensions, the FDSADE either obtained
results similar to the SACPDE or succeeded in improving upon the SACPDE
performance, thus confirming the efficiency of the approach proposed.

Table 7 shows the Q-test results for the 100 dimension case.
Regarding convergence speed and robustness of the algorithms, since in

the high dimensional space the various algorithms tend to reach very different
values, for each test problem that algorithm which reaches final values with
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Table 6 Results of the Student’s t-test in 100 dimensions

TestProblem DE SACPDE DEahcSPX DEGL SaNSDE

Rotated alpine + + − − +

Dropwave + + − − +

Michalewicz + + + + −
Rotated Michalewicz + + + + −
Rastrigin + = + + +

Rotated Rastrigin + + + + −
Rosenbrock + + − − +

Schwefel + + + + +

Rotated Schwefel + + + + −
Zakharov + = + + +

Table 7 Results of the Q-test in 100 dimensions

Test Problem DE SACPDE DEahcSPX DEGL SaNSDE FDSADE

Rotated alpine inf 4.4e+02 3.1e+02 5.1e+02 inf 7.1e+02

Dropwave inf inf 4.6e+03 inf inf inf

Michalewicz inf inf inf inf 4.2e+02 inf

Rotated Michalewicz inf inf inf inf 1.0e+03 inf

Rastrigin inf 3.4e+02 inf inf inf 3.4e+02

Rotated Rastrigin inf 2.4e+03 inf inf 3.3e+02 1.4e+03

Rosenbrock inf 1.9e+02 1.4e+02 1.2e+02 1.7e+02 1.9e+02

Schwefel inf 1.4e+04 inf inf inf 3.9e+02

Rotated Schwefel inf inf inf inf 3.3e+02 inf

Zakharov 5.1e+00 5.5e+01 2.9e+01 3.6e+00 2.0e+00 5.2e+00

a best performance is usually the one which has the best performance in terms
of Q measures. In this sense, numerical results in Table 7 confirm the findings
in Table 5 and Table 6, i.e., the SaNSDE has very good performance in highly
dimensional problems and the FDSADE is, in any case, quite competitive.
On the other hand, behavior of the algorithms in terms of robustness is
worthwhile commenting on. As shown in Table 7, the DE succeeds in reaching
a competitive value (reaches the threshold value) for only one test problem,
the DEGL in three cases, the DEahcSPX in four cases, SACPDE, SaNSDE
and FDSADE in six cases out of ten test problems considered. This fact means
there is not an algorithm which has an extraordinarily high performance
in terms of robustness among the ones considered. However the FDSADE
maintains the good robustness performance of the SACPDE and tends to
improve upon this in late stages of the optimization process.

For the sake of completeness, some performance trends are shown in Fig-
ures 9.
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(a)

(b)

(c)

Fig. 9 Algorithmic performance over selected test problems in 100 dimensions
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(d)

(e)

Fig. 9 (continued)

6 Conclusion

This chapter proposes integration of fitness diversity logic within the DE
frameworks in order to self-adaptively affect the control parameter update
and adaptively perform a dynamic population sizing. This integration is pur-
sued by the definition of a novel index that measures the fitness diversity of
a DE population and a novel algorithmic implementation.

The proposed algorithm has been tested on a set of twenty test problems
and compared with a standard DE and four recently proposed DE based
algorithms. Numerical results show that the proposed algorithm is very effi-
cient in detecting solutions having high performance and that it has a robust
behavior over a various set of test problems. The performance in convergence
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speed is also competitive with those algorithms that represent the state-of-
the-art in DE based implementation.

The fitness diversity logic is thus very efficient at monitoring the state of
the algorithm during the optimization process and dynamically foreseeing
algorithmic necessities. It is important to remark that the fitness diversity
(self-)adaptation must aim at coordinating the exporative/exploitative pres-
sure by increasing exploration when the diversity is low and exploitation when
diversity is high. This mechanism tends to prevent the undesired effects of
premature convergence and stagnation, therefore efficiently performing the
optimization towards high quality solutions (as numerical results confirm).
This aim is, in this chapter, pursued by frequently updating the scale factor
and crossover rate and enlarging the population size in low diversity condi-
tions; these operations give the algorithm a better chance of testing unex-
plored areas of the decision space and of, hopefully, detecting new promising
solutions. Conversely, in high diversity conditions the population is shrunk
and the control parameters kept constant; in this way the available genotypes
and potential search directions (e.g., by means of the scale factor values) are
exploited until the diversity decreases.

A remaining issue is that a proper fitness diversity index must be designed
on the basis of the algorithmic structure (i.e., variation operators and se-
lection mechanisms). The index proposed in this chapter seems to be very
efficient in monitoring the state of the population of a DE, regardless of the
optimization problem under examination. Therefore, we suggest its employ-
ment for designing (self-)adaptation within a DE framework.
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