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Abstract. Large scale global optimization (LSGO), which is highly needed for
many scientific and engineering applications, is a very important and very difficult
task in optimization domain. Various algorithms have been proposed to tackle this
challenging problem, but the use of estimation of distribution algorithms (EDAs) to
it is rare. This chapter aims at investigating the behavior and performances of uni-
variate EDAs mixed with different kernel probability densities via fitness landscape
analysis. Based on the analysis, a self-adaptive uni-variate EDA with mixed ker-
nels (MUEDA) is proposed. To assess the effectiveness and efficiency of MUEDA,
function optimization tasks with dimension scaling from 30 to 1500 are adopted.
Compared to the recently published LSGO algorithms, MUEDA shows excellent
convergence speed, final solution quality and dimensional scalability.

1 Introduction

Considered as a kind of classical yet extremely difficult task, large scale global
optimization (LSGO) has attracted more and more research interest in recent years
[21, 31]. LSGO problems have numerous scientific and engineering applications,
such as designing large scale electronic systems, scheduling problems with large
number of resources, vehicle routing in large scale traffic networks, gene detection
in bioinformatics, etc. Therefore, effective LSGO algorithms are in high demand.

Inherently, the nonlinear characteristics of the practical applications usually in-
clude discontinuous prohibited zones, ramp rate limits, and nonsmooth or convex
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cost functions. Historically, a number of algorithms, including both mathemati-
cal and evolutionary algorithms, have been proposed to handle LSGO problems
[5, 10, 15, 17, 23, 26, 32, 33, 36, 37, 38, 42, 43]. Various evolutionary algorithms
(EAs) have been developed, in which significant progress has been observed [20]
compared to the mathematical algorithms. The major advantages of these EAs over
other classical methods can be summarized as: 1) prior knowledge of the search
problem is not necessary for EAs, while for mathematical approaches the highly
nonlinear characteristic of the problem must be approximated beforehand; 2) they
work with a population of candidate solutions and can handle LSGO problems
automatically through a single run. However, almost all of these approaches in-
evitably suffer from the “curse of dimensionality”, which means poor performances
on LSGO problems.

Without loss of generality, LSGO problems considered in this chapter can be
stated as follows:

minimize F(x) = f (x1,x2, ...,xD)
subject to x ∈ X ,

(1)

where X ⊂ RD denotes the decision space with D dimensions; x = {x1,x2, ...,xD} ∈
RD is the decision variable vector; f : X → R stands for a real-valued continuous
objective function for mapping from D dimensional space to 1 dimensional fitness
value F(x). The dimensions of LSGO problems considered in this chapter are more
than 100. Hence, the purpose of the approaches is to search for the minimized solu-
tion in such a large dimensional space. If X is a closed and connected region in RD,
we call eq. (1) continuous LSGO.

In the previous works on LSGO, developing more effective operators for EAs has
attracted much research attention. The successful implementations consist of self-
adapting strategies for parameter setting, modification of the classical EA operators,
etc. The reason of making these modifications is that the classical operators are
usually developed for low-dimensional task and they lose their efficiency for high-
dimensional tasks. Their performances on LSGO problems cannot be measured ef-
fectively [31]. Recently, this field has attracted increased research attention and the
typical approaches include population reduction for differential evolution (DE) [5],
Dynamic multi-swarm PSO [43], and estimation of distribution algorithm (EDA)
with mixed sampling operator [33]. For these approaches, the LSGO problems are
optimized as an entire body, which means no divide-and-conquer methods are used.
Actually, the implementation of specific operators is attributed to strengthening the
algorithm’s capability for higher dimensional tasks.

The classical EDAs have been proven to be effective on most classical test func-
tions with less than 100 dimensions [11]. However, EDAs also suffer from the “curse
of dimensionality”, which implies that their performances deteriorate quickly as the
search space increases in dimensions [33]. In this chapter, the difficulties associated
with EDAs in solving LSGO problems will be discussed. Then, a heavy tail distribu-
tion based sampling (also called mutation in the evolutionary computation domain)
operator will be analyzed, and introduced into a Gaussian based EDA to improve its
performance. Compared to classical Gaussian distribution based operators, the heavy
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tail distribution based operators have demonstrated better exploration and faster con-
vergence speed on most test problems. Some typical examples include fast evolu-
tionary programming (FEP) [40], fast evolution strategy (FES) [41], fast simulated
annealing (FSA) [30], evolutionary programming using Lévy mutation (LEP) [13]
and estimation of distribution algorithm with heavy tail distribution based sampling
(LSEDA-gl) [33]. Due to the success of the above algorithms, the heavy tail distribu-
tion based sampling operator is regarded as a promising EA technique to tackle some
difficult problems. In this chapter, the evovabilities of different sampling operators
are investigated via a technique called fitness landscape portrait (FLP). Based on
this analysis, a self-adaptive mixed model uni-variate EDA (MUEDA) is proposed.
In order to evaluate the performance of MUEDA, it is tested on typical function op-
timization problems with dimensionality scaling from 30 to 1500.

The rest of this chapter is organized as follows: In section 2, the principle and
a brief review of EDAs are provided. The mathematical characteristics of Gaussian
and heavy tail distributions are analyzed. Then, the main contributions of this work
are presented. In section 3, a general FLP analysis is carried out to investigate the
evolvability of different sampling operators in the low-dimension problems. After
that, a self-adaptive uni-variate EDA with mixed kernels is proposed. In section 4,
discussion of the experimental studies with dimensions ranging from 30 to 1500 is
presented. Following which, the scalability and efficiency of MUEDA are presented.
In section 5, several general conclusions are drawn and emphasized. In section 6,
the future research directions of this area are outlined.

2 Related Work

2.1 Estimation of Distribution Algorithms

The notion of modeling the search space was first proposed in the statistics and ma-
chine learning domain. Recently, many works within the Evolutionary Computation
community have employed probabilistic models to describe the solution space [11].
These methods have come to be known as EDAs. It has been reported in various
works that EDAs have been applied with significant success to many numerical and
combination optimization problems in the past few years. Optimization by EDAs
can be summarized into two major steps:

• Model the promising area of solution space of the optimization problem by learn-
ing from the superior solutions found thus far;

• Generate the population (i.e., offspring) for the next generation by sampling
based on the estimated probabilistic model and then, replace the old population
(i.e., parents) partially or fully.

These two steps can be regarded as a population-based version of the classical
generate-and-test method [39]. As is shown in Fig. 1, there are no classical crossover
or mutation operators in EDAs in contrast to traditional GA. The main operators
of EDAs are as follows: selection involves selecting good solutions from the entire
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Fig. 1 A general flowchart
of EDA

population by truncation or league strategy; modeling involves building the proba-
bilistic model to simulate the landscape of the problem; and generation is to sample
the new population based on the probabilistic model. The evolution dynamics of
EDAs depend on the distribution of the population directly. Therefore, the major
advantage of EDAs is that they can explicitly extract useful structural information
to efficiently generate new individuals, which results in faster convergence speed
compared to GA [33].

In the EDA domain, modeling the structure of the optimization problem accu-
rately has recently been an area of great concern. To overcome the disadvantages
of limited learning ability of uni-variate EDAs, such as population-based incremen-
tal learning algorithm (PBIL) [25], stochastic hill climbing by vectors of normal
distributions (SHCLVND) [24] and continuous uni-variate marginal distribution al-
gorithm (UMDAc) [12], EDAs whose dependencies are considered in terms of pair-
wire or multiwire when building probabilistic model have been proposed. Some of
the more successful approaches are mutual information maximizing input clustering
(MIMIC) [12], estimation of Gaussian networks algorithm by edge exclusion (EG-
NAee) [12], estimation of Gaussian networks algorithm by BGe metric (EGNABGe),
clustering and estimation of Gaussian distribution algorithm (CEGDA) [16], etc.
The learning ability of the EDAs is always considered as the major indicator of the
performance for the above-mentioned algorithms. However, the fundamental task
of EDAs is to search for the global optimum of the given optimization problem,
rather than to simply model the structure of the optimization accurately. Further-
more, the computational cost of constructing a complex model is too expensive for
LSGO problems, whose dimensions are usually more than 100. For example, the
computational cost of generating the covariance matrix for iterated density estima-
tion algorithm (IDEA) [1, 2, 4, 7] increases exponentially. The reported studies on
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extending EDAs to LSGO domain are scarce so far. The emphasis of heavy tail
based EDA in this work is therefore on extending EDAs to the LSGO domain.

2.2 Mathematical Characteristics of Heavy Tail Distribution

In the above reviewed EDA works, Gaussian probabilistic distribution has been
widely adopted in continuous optimization. In this work, a low proportion of heavy
tail stable distribution is incorporated in order to strengthen the search ability of
EDAs for LSGO problems.

Definition: Consider a process represented by a set Yi of identically distributed
random variables. If the sum of these random variables has the same proba-
bility distribution as individual random variables, then this process is called
stable [13].

The Gaussian process is a typical example of a stable process with finite sec-
ond moment, which would lead to a characteristic scale and the Gaussian behavior
for the probability density through the central limit theorem [13]. The probability
density of Gaussian distribution with mean 0 and variance σ is defined as follows:

N(0,σ) =
1

σ
√

2π
e
− x2

2σ2 (2)

Different to Gaussian probability distribution whose variance can be denoted as
a finite scalar, a class of probability distributions with an infinite second moment
that also yields a stable process were discovered by P. Lévy in the 1930s [14]. The
formal representation for such a class of probability can be expressed as follows
[6, 14]:

Łα ,γ y =
1
π

∫ ∞

0
e−γqα

cos(qy)dq y ∈ R, (3)

where γ is the scaling factor satisfying γ > 0, and α controls the shape of the dis-
tribution, requiring 0 < α < 2. More analytic details about the Lévy distribution are
available in [6, 13, 14]. Although the analytic form of the integral is still unknown
for general α , the shapes generated by Lévy distributions with different α values
are known: the length of the tail is inversely proportional to the value of α . The
Cauchy probability distribution adopted in FEP, is a special case of the Lévy prob-
ability distribution with α = 1. For the limit of α = 2, the distribution is reduced to
the classical Gaussian distribution which is not included in Lévy probability distri-
bution class. The Cauchy density with median 0 and upper quartile τ can be denoted
as follows:

C(0,τ) =
1
π

τ2

x2 + τ2 (4)
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Fig. 2 Comparison among Gaussian, Cauchy and Mixed distributions in terms of the density
function (up left) and the distributions of 10000 sampled points

The comparison between Gaussian and Cauchy probability density is shown in
Fig. 2. It is apparent that the characteristic of infinite second moment in Cauchy
probability provides a much wider distribution.

Since it is rather difficult to generate random numbers under different Lévy prob-
ability distributions except Cauchy distribution [13], several works adopt a mixed
distribution, which combines the Gaussian distribution with Cauchy distribution by
a suitable proportion to simulate the desired distribution. Some successful examples
are [27] and [33]. These special mixed sampling density functions can be expressed
as:

fM = (1−η)
1√
2π

e−
x2
2 + η

1
π

1
x2 + 1

(5)

where η stands for the mixed proportion that can be tuned to any scalar be-
tween 0 and 1. In this chapter, η = 0.1 is used for analysis without statement.
After investigating the mixed distribution in [13, 27, 33], it was observed that
η = 0.1 favors more problems than any other value of η . For heavy distribution
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based sampling operator, the sampling distribution in classical uni-variate EDA
(N(μ ,σ) = μ + σN(0,1)) is replaced by:

NM(μ ,σ) = μ + σ(1−η)N(0,1)+ σηC(0,1) (6)

The density of 10000 sampled points by Gaussian, Cauchy and Mixed probability
distribution are compared in Fig. 2. In contrast to the widest distribution sampled by
Cauchy, it can be observed that the shape of a 2-D Gaussian distribution is like that
of a sphere with the density increasing from the periphery towards the core. Similar
observation can be made for mixed distribution but the sampling region is much
wider. The mixed distribution is expected to achieve a more reasonable balance
between exploration and exploitation theoretically.

2.3 Analysis of Heavy Tail Distribution in Evolutionary
Computation

2.3.1 Fast Evolutionary Programming

In 1996, Yao X [40] proposed an important EP version named FEP, which replaces
the Gaussian mutation in classical EP (CEP) with the Cauchy mutation. This change
leads the individuals to make a much longer jump, which results in a significantly
faster convergence speed when the global optima is far from the initial point. It was
shown that the FEP outperforms CEP in terms of convergence speed in most test
functions and the accuracy of the result in the multimodal functions [40].

Due to the excellent performance of FEP, [35] and [40] investigated the differ-
ences of expected length between Cauchy mutation and Gaussian mutation. The
existing analysis methods of different probability operators focus on the properties
of the operators themselves (i.e., properties related to the operators closely only).
The expected length of Gaussian mutation jump with σ = 1 is calculated as fol-
lows:

EG(x) = 2
∫ +∞

0
x

1√
2π

e−
x2
2 dx =

2√
2π

= 0.80, (7)

and the expected length of Cauchy mutation jump is calculated as:

EC(x) = 2
∫ +∞

0
x

1
π

1
x2 + 1

dx = +∞ (8)

Under the 1-D space, it is obvious that the Cauchy probability operator extends
the expected sampling region to an infinite area. Therefore, a general conclusion has
been made in [40]: Gaussian mutation is much more localized than Cauchy muta-
tion. However, benefiting from the proportion of Cauchy probability incorporated
into it, the mixed operator (EM(x) = +∞) also exhibits the ability of sampling pop-
ulation widely. There is no remarkable difference between mixed sampling operator
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and Cauchy sampling operator in expected sampling length theoretically. Thus, in
the following section, a much more effective analysis tool FLP is adopted to distin-
guish the differences between different operators.

2.3.2 Heavy Tail Distribution Analysis

An important work which tries to answer the question: when do the important tail
distributions help? is presented in [9]. The most important contributions of this
work come from two hypotheses and their proofs, which can be summarized as:
although the heavy tail distributions have stronger ability of maintaining diversity,
they inevitably get lost in huge dimensional space, which will be proven to be worth
discussing in the following section. The experimental analysis in [9] was carried
out to study the behaviors of ES on Rastrigin function optimization with different
distributions based mutation operators. Obviously, the viewpoint of the first hypoth-
esis that heavy tail distributions are good at maintaining diversity is absolutely true.
In our work, however, the heavy tail distributions are also proven to work in large
dimension problems empirically, which is remarkably inconsistent to the second
hypothesis.

2.4 Major Contribution

Based on the above review and discussion, the contributions and differences of this
chapter compared to the previous work are summarized as follows:

• The tool fitness landscape portrait (FLP) [28] was proposed over over 5 years
ago. Besides the random search, it has not attracted much interest in analyzing
the specific EA operators, such as crossover, mutation, etc. In our work, this
effective analysis tool is implemented to analyze the expected behaviors of dif-
ferent kernel distribution sampling operators in low dimensional spaces. Based
on the analysis, some valuable suggestions on designing appropriate sampling
operator are presented theoretically.

• LSGO problems are considered as a difficult task in the optimization domain. In
this work, an effective algorithm called the self-adaptive MUEDA is proposed
for the large scale and complex optimization problems.

3 Fitness Landscape Analysis and Self-adaptive Mixed
Probability Distribution Based Uni-Variate Estimation of
Distribution Algorithm

In this section, the evolvability analysis of different kernel probability distributions
is presented in terms of fitness landscape analysis on low dimensional landscapes.
Based on the theoretical analysis, an effective self-adaptive heavy tail based sam-
pling operator is proposed to strengthen the search ability of uni-variate EDAs.
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3.1 Fitness Landscape Analysis

In fitness landscape analysis, the optimization problems can be expressed as a set
of landscapes containing one or more optima [29, 34]. Based on the number of the
optima, we also classify the landscapes into smooth or rugged problems. Evolution
can thus be viewed as the movement of the population, represented by a set of points
(genotypes), towards lower (fitter) areas of the landscape [28]. In order to explore the
evolvability of different probability based operators, we adopt partial FLP technique
to test the ability of sampling population on more promising regions by different
operators on two typical landscapes.

FLP that was derived from comprehensive local view for sampling is adopted as
an effective tool to analyze the evolvability of given operator on special landscapes.
The metric selected for describing the evolvability of different operators is defined
as follows:

f lag(x) =
{

1, i f f (x) ≤ f (xg)
0, otherwise.

(9)

Eev(xg) =
∫ +∞
−∞ fope(x) · f lag(x)dx∫ +∞

−∞ fope(x)dx
, (10)

where evolvability Eev(xg) of solution xg with fitness fope(xg) for the EA operator
ope is directly tied to the probability of solution xg not generating offspring of lower
fitness.

Since the difficulty of searching global optimum related to the structure of the
fitness landscape closely is now clear, two typical fitness landscapes (i.e. sphere
landscape and rugged landscape), which include most of the existing landscapes,
are chosen to evaluate the evolvability of Gaussian, Cauchy and mixed probability
sampling operators.

3.1.1 Smooth Landscape

The evolvability of sampling operators with σ = 1 is tested on the region intercepted
by [−10,10] for the sphere landscape shown in Fig. 3 (left). The evolvability metric
curve line which is generated for each mean value moving from -10 to 10 by eq.(10)
is shown in Fig. 3 (right). The sphere landscape is especially adopted to evaluate the
evolvability of different sampling operators on smooth problems.

It can be observed from the evolvability curve that the Gaussian sampling opera-
tor provides the best evolvability for the whole region. Accordingly, the evolvability
of Cauchy sampling operator decreases sharply while the global optimum is still far
away, and this delays the convergence speed significantly. This may be the reason
for the unsolved question in [9, 35] that Gaussian leads to a faster convergence speed
than Cauchy for Sphere problem. Benefiting from the property of Gaussian distri-
bution, the mixed sampling operator is equipped with similar evolvability as Gaus-
sian sampling operator, which is remarkably better than Cauchy sampling operator
by itself.
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Fig. 3 Sphere landscape on the left and evolvability curve line graph on the right

3.1.2 Nonsmooth Landscape

It has been known that evolvability on rugged landscape mainly depends on the
capability of escaping from the local optima. Consider the rugged landscape ( f (x) =
cos(x)− x

20 ) shown in Fig. 4 (left). We intercept one local optimal basin [0, 2π] for
analysis. Curve lines of evolvability generated by different sampling operators with
mean value moving from 0 to 2π are also generated by eq. (10).

It is apparent that the evolvability of Gaussian sampling operator worsens sharply
near the local optimum, which means that its evolvability shrinks quickly towards
the local optimum. By comparison, Cauchy sampling operator demonstrates the best
ability of escaping from the local optima. Therefore, the incorporation of low pro-
portional Cauchy distribution highly improves the evolvability of mixed sampling
operator. Therefore, the mixed sampling operator keeps a steady high probability of
escaping from the local optima and thus, maintains the evolvability effectively.
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Based on the above fitness landscape analysis, the mixed operator shows supe-
rior ability in both moving quickly towards the global optimum on smooth landscape
and maintaining evolvability on rugged landscape globally. Compared to the classi-
cal Gaussian sampling operator, the sampling area of the mixed sampling operator
exceeds the Gaussian model. In such case, the balance between learning and opti-
mization is well handled. Therefore, it seems to be a promising way to develop more
robust EDA by using mixed sampling operator.

3.2 Algorithm

Compared with the mutation operators of GA, ES and EP that mutate the individu-
als, the sampling operator of EDA mutates the distribution of the whole population
in each generation. To strengthen the global search ability, a mixed Gaussian and
Lévy distribution is adopted here, which is similar to [33].

Based on the above analysis, a new self-adaptive uni-variate EDA is proposed
here. In order to reduce the complexity of conducting the probabilistic model, the
uni-variate EDA whose variables are considered independently is adopted in our
algorithm. Similar to UMDAc [12], the joint probabilistic distribution over a set of
random variables x = {xi} where i = 1, 2... D for D dimensional space is defined as
follows:

P(x) =
D

∏
i=1

P(xi). (11)

The probability distribution used to model each variable P(xi) is a single mixed
Gaussian and Cauchy distribution. In contrast to iterated density estimation algo-
rithm (IDEA) [1] developed by Bosman which requires computing all elements of
covariance matrix to adapt an arbitrary Gaussian, MUEDA abandons adapting the
non-diagonal elements in covariance matrix, which remarkably reduces the compu-
tational cost for LSGO problems. The updated rule for P(x) is defined as follows:

Pt+1(x) = (1−θ ) ·Pt(x)+ θ ·P′
t (x) (12)

where P′
t (x) is exactly the estimated joint probability distribution for the superior

solutions of τ generation under the classical Gaussian distribution and θ stands for
the learning intensity coefficient. Hence, the candidates for the t + 1 generation are
produced based on Pt(x). Similar to UMDAc, the model for UMDAc is built by the
current population only, which means that the learning coefficient θ is 1.

The details of mixed distribution and the strategy for generating each candidate
are shown as:

randnum = rand;

Pm =
10 · randnum

D

NL =
{

0.9 ·N(0,1)+ 0.1 ·C, i f D < 100
(1−Pm) ·N(0,1)+ Pm ·C, otherwise,

(13)
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Xji = Xi +
√

δi ·NL, (14)

In eq.(13), N(0,1) stands for the Gaussian distribution with mean 0 and standard
deviation 1; C denotes the Cauchy distribution with t = 1; D is the dimensional
size of the problem; randnum is generated randomly based on uniform distribution
between (0,1). The probability distribution for creating each offspring on different
dimensional size is self-adapted as shown in eq.(13): a smaller mixed probability Pm

is adopted for a larger dimensional size. In eq.(14), the ith element of jth individual
is sampled under mixed Gaussian and Lévy distribution model NL, where Xi stands
for the ith element of the mean vector. Compared with UMDAc, whose sampling
operator is denoted as Xji = Xi +

√
δi ·N(0,1), the standard Gaussian probability

N(0,1) is replaced with the mixed Gaussian and Lévy distribution NL.
The flow of MUEDA is described as follows:

Input:

• LSGO problem;
• a termination condition;

Output: The solution with best fitness value.
Flow of MUEDA:
Step 0) Initialization:

• Step 0.0) Set population size NP = (log(D) − 3) × 50, selection size N =
(log(D)−3.5)×15 and weight vector W .

• Step 0.1) Randomly initialize the population X0.
• Step 0.2) Set t = 0.

Step 1) Reproduction and update:

• Step 1.0) Reproduction: Sample the new candidates by specific EA operator.
• Step 1.1) Set t = t + 1.
• Step 1.2) Selection: Select N best individuals by truncation strategy.
• Step 1.3) Update: Update the model with the selected individuals (eq.(6)).

Step 2) Standard Deviation Control Strategy (STDC) Then, if termination con-
dition is met, go to step 3, else go to step 1.
Step 3) Terminate and output the GO.

It has been observed that one crucial problem that prevents uni-variate Gaussian
based EDAs from biasing the search population towards a better region is that the
standard deviation of some variables often shrinks to zero quickly while the global
optimum is still far away [33]. In step 2, we introduce the standard deviation control
strategy (STDC) to improve the exploration ability of uni-variate Gaussian based
EDA. The main idea of STDC is to estimate a common threshold of standard de-
viations for all variables during the optimization process to control their shrinking
speeds and therefore, to control the decreasing level of diversity dynamically. In
more detail, the variables with lower standard deviation values than the correspond-
ing thresholds will be forced to set their standard deviations to the corresponding
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thresholds. The weighted mean of the standard deviations of all variables is used as
the threshold here. The details of STDC are shown as follows:

Pseudo code of STDC

begin STDC

for j=1:D

if δ ( j) < W ( j)×δ
δ ( j) = W ( j)×δ
/* δ is the mean of variances */

/* W is a weight vector */

end if

end for

end

After analyzing a great deal of W values for each dimensionality setting, we
calculate the value of W in an adaptive way shown as in eq. (15) for problems of
different Ds:

W (i) = 0.55− e
lg( D

105 ) (15)

for i = 1,2, ...,D

The metric W is determined by D only, which means a larger W is adopted for
problems with lower D. It is observed that lower W value is adopted for larger D.
Eq. (15) is used because the metric W is generally hard for the inexperienced users
to choose.

Some existing works on standard deviation based triggering of variance scaling
have been reported, such as adaptive variance scaling [8] and standard deviation
ratio [3]. In these approaches, the scaling of standard deviation is determined by
the performance of the latest generation. In contrast, the STDC strategy only en-
larges the standard deviations of some variables under an adaptive threshold vector.
Therefore, STDC is much simpler.

4 Experimental Study

4.1 Classical Function Optimization with Low Dimensionality

The purpose of this experiment is to compare mixed distribution based sampling
operator of MUEDA with the Gaussian distribution based classical UMDAc. More-
over, the existing heavy tail distribution based algorithms, including FEP and FES,
are adopted to provide the comparison results. The formal definitions of the test
functions are summarized in Table 1. Function 1-6 are unimodal problems. Func-
tion 7-12 are multimodal problems, whose landscapes are full of local optima. In
this chapter, the initialized population are randomly generated within the bounds
for all experiments.
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Table 1 Classical benchmark problems to be minimized

Num Problems Bounds Objective function Global location GO

fun1 Sphere [-100,100] f1(x) = ∑n
i=1 x2

i xi = 0 0

fun2 [-10,10] f2(x) = ∑n
i=1 |xi|+∏n

i=1 |xi| xi = 0 0

fun3 Schwefel [-100,100] f3(x) = ∑n
i=1(∑i

j=1 x2
j ) xi = 0 0

fun4 [-100,100] f4(x) = max |xi| xi = 0 0

fun5 Rochenbrock [-100,100] f5(y) = ∑D
i=1(100(x2

i − xi+1)2 +(xi −1)2) xi = 1 0

fun6 Step [-30,30] f6(x) = ∑n
i=1 | xi +0.5 |2 xi = −0.5 0

fun7 Noise [-1.28,1.28] f7(x) = ∑n
i=1 ix4

i + random[0,1) xi = 0 0

fun8 Rastrigin [-5.12, 5.12] f8(x) = ∑n
i=1(x2

i )−10cos(2πxi)+10 xi = 0 0

fun9 Ackley [-32,32] f9(x) = −20 · exp(−0.2
√

1
n ∑n

i=1 x2
i ) xi = 0 0

+e− exp( 1
n ∑n

i=1 cos(2πxi))+20

fun10 Griewangk [-600,600] f10(x) = 1
4000 ∑n

i=1 x2
i +1−∏n

i=1 cos( xi√
i
) xi = 0 0

fun11 Penalized [-50, 50] see appendix xi = 1 0

fun12 Penalized [-50, 50] see appendix xi = 1 0

Table 2 Experimental results for classical function optimization

function MUEDA UMDAc FES FEP CEP

fun1 2.8E-160 ± 1.5E-159 2.0E-03 ± 4.9E-03 2.5E-04 ± 6.8E-05 5.7E-04 ± 1.3E-04 2.2E-04 ± 5.9E-04

fun2 1.3E-124 ± 3.0E-124 2.2E-01 ± 8.9E-01 6.0E-02 ± 9.6E-03 8.1E-03 ± 7.7E-04 2.6E-03 ± 1.7E-04

fun3 0.0E+00 ± 0.0E+00 1.3E+01 ± 4.6E+01 1.4E-03 ± 5.3E-04 1.6E-02 ± 1.4E-02 5.0E-02 ± 6.6E-02

fun4 4.2E-72 ± 2.9E-71 1.3E-03 ± 3.8E-03 5.5E-03 ± 6.5E-04 3.0E-01 ± 5.0E-01 2.0E+00 ± 1.2E+00

fun5 9.0E-05 ± 2.2E-04 1.7E+01 ± 5.5E+00 3.3E+01 ± 4.3E+01 5.1E+00 ± 5.9E+00 6.2E+00 ± 1.4E+01

fun6 0.0E+00 ± 0.0E+00 0.0E+00 ± 0.0E+00 0.0E+00 ± 0.0E+00 0.0E+00 ± 0.0E+00 5.8E+02 ± 1.1E+03

fun7 3.0E-03 ± 5.8E-03 1.1E-02 ± 1.8E-03 1.2E-02 ± 5.8E-03 7.6E-03 ± 2.6E-03 1.8E-03 ± 6.4E-03

fun8 2.1E+01 ± 4.7E+00 1.9E+00 ± 8.7E-03 1.6E-01 ± 3.3E-01 4.6E-02 ± 1.2E-02 8.9E+01 ± 2.3E+01

fun9 4.4E-15 ± 0.0E+00 1.9E-04 ± 9.6E-03 1.2E-02 ± 1.8E-03 1.8E-02 ± 2.1E-03 9.2E+00 ± 2.8E+00

fun10 0.0E+00 ± 0.0E+00 4.7E-03 ± 5.9E-03 3.7E-02 ± 5.0E-02 1.6E-02 ± 2.2E-02 8.6E-02 ± 1.2E-01

fun11 1.6E-32 ± 0.0E+00 1.9E-06 ± 3.2E-06 2.8E-06 ± 8.1E-07 9.2E-06 ± 3.6E-06 1.8E+00 ± 2.4E+00

fun12 1.3E-32 ± 0.0E+00 4.0E-05 ± 7.0E-05 4.7E-05 ± 1.5E-05 1.6E-04 ± 7.3E-05 1.4E+00 ± 3.7E+00

Statistical experimental results of 50 runs

For fair comparison, we set the parameters as in [40]. The following parameters
are used in this experiment: 1) population size 100 for all algorithms; 2) maximum
number of generations: 1500 for function 1, function 6, function 9, function 11
and function 12; 2000 for function 2 and function 10; 3000 for function 7, 5000
for function 3, function 4 and function 8. The statistical experimental results of 50
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Fig. 5 Evolutionary curves of unimodal problems

independent runs are summarized in Table 2. Fig. 5 and 6 show the optimization
curves for the unimodal problems and multimodal problems respectively.

Compared to UMDAc, it is apparent that MUEDA provides significantly better
performance in terms of both convergence speed and accuracy of the final result
for almost all of the test functions with 30 D. For the unimodal problems functions
1-6, MUEDA always provides the fastest convergence speed. It should be noted that,
for function 5, a well-known hard test problem, the MUEDA approaches the true
global optimum within the fixed number of generations, while the other algorithms
are still struck at local optima after the final generation. The global search ability
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Fig. 6 Evolutionary curves of multimodal problems

of MUEDA is proven via experiments on multimodal test functions (function 7 -
function 12). The accurate results (i.e. the error is lower than 10−8) are achieved in
all runs on function 9 - function 12. For the problem with noise incorporated function
7, MUEDA also outperforms the other approaches. For function 8, MUEDA cannot
achieve satisfactory result, the reason for which will be discussed in the following
section. Through this experiment, the advantages of MUEDA on both exploration
and exploitation have been clearly demostrated.

4.2 Experiments on LSGO Problems

The benchmark set selected for this experiment consists of 6 test functions de-
fined in [31]. Functions 1 - 3 are unimodal functions and Functions 4 - 6 are
multimodal functions. To prevent exploitation of symmetry of the search space
and of the typical zero value associated with the global optimum, the local op-
tima of classical functions are shifted to a value different than zero and the func-
tion values of the global optima are non-zero. Without loss of generality, max-
imum fitness evaluation size (MFES) 500 × D is adopted for function 1, 3, 5
and 6 and 5000× D for function 2 and 4. The details of standard benchmarks
are defined in Table 3. The source codes for these functions are available from
http://nical.ustc.edu.cn/cec08ss.php and http://www3.ntu.
edu.sg/home/EPNSugan/.

http://nical.ustc.edu.cn/cec08ss.php
http://www3.ntu.edu.sg/home/EPNSugan/
http://www3.ntu.edu.sg/home/EPNSugan/
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Table 3 Standard benchmark problems of CEC08 to be minimized

Num Problems Bounds Objective function GO location GO

funcec1 Sphere [-100,100] f1(y) = ∑D
i=1 y2

i + fbias1 yi = 0 fbias1 = −450

funcec2 Schwefel [-100,100] f2(y) = max(|yi|)+ fbias2 yi = 0 fbias2 = −450

funcec3 Rochenbrock [-100,100] f3(y) = ∑D
i=1(100(y2

i − yi+1)2 +(yi −1)2)+ fbias3 yi = 1 fbias3 = 390

funcec4 Rastrigin [-5, 5] f4(y) = ∑n
i=1(y2

i )−10cos(2πyi)+10+ fbias4 yi = 0 fbias4 = −330

funcec5 Griewangk [-600,600] f5(y) = 1
4000 ∑D

i=1 y2
i +1−∏D

i=1 cos( yi√
i
)+ fbias5 yi = 0 fbias5 = −180

funcec6 Ackley [-32,32] f6(x) = −20 · exp(−0.2
√

1
D ∑D

i=1 y2
i ) yi = 0 fbias6 = −140

+e− exp( 1
D ∑D

i=1 cos(2πyi))+20+ fbias6

4.2.1 Comparison among Different Cauchy Proportions Based Algorithm

In order to illustrate the impacts of different heavy tail distributions, four Cauchy
proportion are adopted for comparison: η = 0 (UMDAc), η = 0.1 (constant Cauchy),
η = 1 (only Cauchy), and adaptive η (eq. (13) for MUEDA). For fair comparison,
we choose parameters as consistently as possible. For external parameters, we set
NP = (| log(D)−3|×50) and N = (| log(D)−3.5|×15). The statistical experimen-
tal results of over 50 runs are summarized in Table 4, in which the best result for
each function is in boldface.

Table 4 Experimental results for 100 D cec08 function optimization

Algorithm Metric funcec1 funcec2 funcec3 funcec4 funcec5 funcec6

UMDAc mean 3.81E+02 2.18E+01 2.96E+05 2.20E+01 3.24E+00 3.80E+00

η = 0 std 2.26E+02 3.08E+00 3.33E+05 4.34E+00 1.67E+00 1.14E+00

Mixed mean 7.85E-01 1.72E+01 1.28E+07 8.03E+02 1.00E+00 3.52E+00

η = 0.1 std 5.53E-01 1.43E+00 2.01E+06 1.89E+01 6.04E-02 2.14E-01

Cauchy mean 3.68E+05 1.52E+02 3.05E+11 1.91E+03 3.28E+03 2.13E+01

η = 1 std 2.13E+04 2.79E+00 3.75E+10 4.24E+01 1.70E+02 3.49E-02

MUEDA mean 6.82E-14 2.21E-13 2.89E+03 1.04E+02 1.28E-03 6.57E-12

adaptive η std 2.32E-14 2.50E-14 3.69E+03 2.49E+01 3.63E-03 2.14E-11

Statistical experimental results of 25 runs

It is apparent that Cauchy only (η = 1) distribution based algorithm fails in all
problems. Therefore, excessive exploitation is not always beneficial for high dimen-
sional problems. Generally speaking, MUEDA outperforms the other algorithms
remarkably in most problems and is followed by UMDAc. For the hard task funcec
2, it is interesting to note that the result provided by MUEDA is very accurate while
all of the other algorithms fail to get close to the global optima. The performances
of all algorithms for Rochenbrock problem deteriorate sharply.
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Fig. 7 Rastrigin problem: landscape on the left and convergence process comparison on the
right

The 2-D landscape of Rastrigin problem and variance change process comparison
are shown in Fig. 7. It is obvious that the landscape is full of local optima. The
above experimental results have shown that UMDAc provides the best result for
Rastrigin problem. However, the change curve of variance shows that the population
of classical UMDAc just shrinks into a local optimum after a small fitness evaluation
size. For this reason, the Gaussian distribution exhibits low evolvability and the
final result is no longer reasonable. For the heavy tail distribution based operators,
there is a high variance level throughout the search (which appears as a random
search). Therefore, heavy tail distribution based operators seem more robust in these
landscapes, although the final accuracy is unsatisfactory.

4.2.2 Comparison with other LSGO Evolutionary Algorithms

To benchmark MUEDA further, the comparison on larger dimensional (1000 D)
problems is carried out. In some recent studies, some algorithms have reported the
regular experimental results for the funcec functions. We only take the EA based
algorithms into account. The algorithms are listed as follows:

• Efficient Population Utilization Strategy for Particle Swarm Optimizer (EPUS-
PSO) [10]

• Unbiased Evolutionary Programming (UEP) [17]
• Self-Adaptive Differential Evolution algorithm (jDEdynNP-F) [5]
• Dynamic multi-swarm particle swarm optimizer (DMS-PSO) [43]
• Multilevel cooperative coevolution (MLCC) [38]
• Differential Evolution with Self-Adaptive cooperative co-evolution (DEwSAcc)

[42]

The statistical analysis is shown in Table 5. In Table 6, the t-test results regard-
ing algorithm1 vs algorithm2 are shown as ‘+’, ‘-’, ‘s+’ and ‘s-’ when algorithm1
is insignificantly better than, insignificantly worse than, significantly better than,
and significantly worse than algorithm2 respectively. For unimodal problems, it is
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Table 5 Experimental results for 1000 D cec08 function optimization

Algorithm Metric funcec1 funcec2 funcec3 funcec4 funcec5 funcec6

MLCC mean 6.15E-01 1.09E+02 7.91E+03 1.37E-10 2.98E-02 2.02E-01

std 6.58E-01 4.75E+00 1.12E+03 3.37E-10 2.26E-02 3.14E-01

EPUS-PSO mean 3.46E+05 4.66E+01 3.77E+10 7.58E+03 3.09E+03 2.10E+01

std 1.48E+04 4.00E-01 3.30E+09 1.51E+02 1.30E+02 1.62E-02

jDEdynNP-F mean 2.92E+05 1.95E+01 7.10E+10 2.17E-04 2.53E+03 1.81E+01

std 1.22E+04 2.25E+00 5.99E+09 4.06E-04 1.66E+02 1.81E-01

UEP mean 7.78E+04 1.05E+02 4.43E+09 1.03E+04 7.93E+02 1.99E+01

std 4.54E+03 7.07E+00 4.54E+08 9.94E+02 5.29E+01 1.19E-02

DEwSAcc mean 5.68E+05 1.26E+02 2.16E+11 9.46E+03 5.19E+03 2.00E+01

std 1.06E+05 4.48E+00 2.16E+11 7.15E+01 6.33E+02 3.33E-01

DMS-PSO mean 0.00E+00 9.15E+01 2.94E+11 3.84E+03 0.00E+00 1.92E+01

std 0.00E+00 7.14E-01 1.69E+11 1.71E+02 0.00E+00 4.06E-02

MUEDA mean 3.30E-13 II 9.45E-05 1.99E+03 5.00E+03 IV 1.71E-13 II 5.92E-08

std 2.54E-14 II 9.66E-06 2.35E+02 1.26E+02 IV 2.01E-14 II 8.10E-08

Statistical experimental results of 25 runs

Table 6 The t-test results of comparing MUEDA with the other algorithms

funcec1 funcec2 funcec3 funcec4 funcec5 funcec6

MUEDA vs MLCC s+ s+ s+ s− s+ s+

MUEDA vs EPUS-PSO s+ s+ s+ + s+ s+

MUEDA vs jDEdynNP-F s+ s+ s+ s− s+ s+

MUEDA vs UEP s+ s+ s+ s+ s+ s+

MUEDA vs DEwSAcc s+ s+ s+ + s+ s+

MUEDA vs DMS-PSO s− s+ s+ − s− s+

observed that MUEDA provides accurate results. For 1000 D funcec 1, DMS-PSO
outperforms MUEDA in terms of accuracy. For the other algorithms, high-quality
results cannot be generated due to the low computational cost. Funcec 2 with high
D is an extremely hard task because the variables are non-separable. Although the
fitness landscape is very smooth, the fact that only one variable with largest absolute
value contributes to fitness value makes it almost impossible to be solved by classi-
cal approaches. It is evident that only MUEDA succeeds in converging to a solution
with accuracy lower than 100 to the true global optimum. For the other algorithms,
especially cooperative coevolution based ones, the search is stuck badly, which im-
plies that they are not effective enough to deal with the non-separate LSGO prob-
lem. These results are not surprising, because only MUEDA considers modelling
the rough structure of the search space. Furthermore, the implementation of mixed
distribution makes breaking the common restriction possible.
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The multimodal problems become much harder as the dimensionality increases
to 1000. Funcec 3, whose variables are linked to a neighboring one (i.e. Rocenbrock
problem), is the hardest task. For this problem, all algorithms fail in all runs. Another
difficulty of this problem is that the valley towards the global optimum is very narrow
and none of the algorithms could adaptively control the shrinking speed to suit this
nonseparate problem. Amongst the compared algorithms, MUEDA demonstrates the
most superior performance. For funcec 4, most of the algorithms fail to obtain GO
except MLCC. Funcec 5 and 6 can be solved completely by MUEDA. The dominant
convergence ability of MUEDA is strongly indicated by all these results.

4.2.3 Scalability Study

In order to study the scalability of MUEDA, we compare it with cooperative co-
evolution based LSGO approach Cooperative coevolution differential evolution II
(DECC-II) on the 1500 dimensional problems. The reasons of selecting DECC-II in
this experiment are as follows: 1) the cooperative coevolution appears to be a very
promising method and has becomes very popular in LSGO domain [31]; 2) Com-
pared with the classical cooperative coevolution based algorithms FEPCC [15] and
CCGA [23], DECC-II has performed better on most problems [36]. In DECC-II, the
variables selected for optimization in one iteration are chosen randomly with con-
stant size 100. The other parameters chosen for experiment are the same as [36]. The
comparison of evolution process between MUEDA and DECC-II on 1500 dimen-
sional function optimization is shown in Fig. 8, and the comparison of final error
between the best solution and true global optimum is shown in Table 7.

It is apparent that for unimodal function 1 and function 2, the proposed algo-
rithm outperforms DECC-II not only in convergence speed, but also in the accuracy
of results obtained. This is especially true for function 2 whose variables are linked.
Similar conclusion can be drawn for multimodal functions globally, although the
results achieved by DECC-II and proposed algorithm on function 4 (i.e. shift Ras-
trigin) are comparable. The reasons for this result have been analyzed in the first
experiment. It is observed that the proposed algorithm works well on function 5 and
6 within such low computational cost even for 1500 D. In summary, the proposed
algorithm provides a steady and accurate performance even for problems scaling to
1500 dimensions.

4.2.4 Efficiency Study

In the traditional analysis of [18, 19], the efficiency of the search method is tested
on the problems with different dimensionality setting. Efficiency is defined on num-
ber of function evaluations needed to solve the problem [18]. In order to evaluate
the efficiency of MUEDA, the results for multimodal problems - Ackley function
(function 9 in Table 1) and Giewangk function (function 10 in Table 1) are pre-
sented in Table 8, 9 and Fig. 9. Moreover, the effective algorithms DE and PSO are
also implemented in order to provide comparison results. For fair comparison, we
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Fig. 8 Evolutionary curves of 1500 D problems

choose the same population size 200 for all algorithms and the most commonly used
extensive parameters for respective algorithms.

It is apparent that the computational cost of MUEDA tends to increase linearly
as the dimensionality arises. For DE and PSO, the efficiencies are much less. This is
especially true when D is very large. It is evident that handling large scale optimiza-
tion problems is a difficult task for evolutionary algorithms. Compared to breeder
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Table 7 Experimental results for 1500 D cec08 function optimization

Algorithm Metric funcec1 funcec2 funcec3 funcec4 funcec5 funcec6

MUEDA mean 1.83E-09 8.72E-05 5.83E+03 4.76E+03 1.71E-13 2.74E-05

std 2.51E-09 2.37E-05 2.66E+03 1.41E+02 2.01E-14 2.01E-05

DECC-II mean 2.24E+04 5.13E+01 1.44E+09 6.73E+03 7.46E+01 9.02E+00

std 2.66E+03 3.01E+00 4.46E+08 8.60E+01 5.15E+00 3.80E-01

Statistical experimental results of 25 runs

Table 8 Efficiency test on Ackley function

Dimesionality MUEDA 166D+23000 28D ln(D) DE PSO

100 40625 39600 128945 218802 282723

200 65076 56200 148353 fail 532617

300 86008 72800 159706 fail 761572

400 100458 89400 167761 fail fail

500 113592 106000 174009 fail fail

600 129110 122600 179114 fail fail

700 141982 139200 183430 fail fail

800 159629 155800 187169 fail fail

900 174234 172400 190467 fail fail

1000 189410 189000 193417 fail fail

Termination criterion is 10−3.

Table 9 Efficiency test on Giewangk function

Dimesionality MUEDA 156D+24000 26D ln(D) DE PSO

100 40170 39600 119734 179030 249316

200 67432 55200 137756 fail 472276

300 92017 70800 148298 fail fail

400 105875 86400 155778 fail fail

500 119864 102000 161580 fail fail

600 133825 117600 166320 fail fail

700 142888 133200 170328 fail fail

800 153660 148800 173800 fail fail

900 166801 164400 176862 fail fail

1000 180451 180000 179602 fail fail

Termination criterion is 10−3.
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Fig. 9 Efficiency test on Ackley function on the left and Giewangk function on the right

GA scaling like D ln(D), MUEDA shows excellent efficiency, which scales linearly.
Thus, the advantages of MUEDA on LSGO problems are easily observable.

5 Concluding Remarks

In this chapter, there are two major works, which can be summarized as:

• Via fitness landscape analysis, the expected behaviors and evolvability of Uni-
variate EDAs with different kernel probability distributions based sampling op-
erators are studied in low dimensional spaces. The evolvability change curve
analysis reveals that mixing Gaussian with Cauchy distribution may be a promis-
ing way to strengthen the search ability.

• Based on the above analysis, a self-adaptive mixed distribution based uni-variate
EDA named MUEDA is proposed for both LSGO problems. For the low di-
mensional problems, MUEDA provides excellent performance. Experimental ev-
idence of large scale global function optimization is demonstrated to illustrate the
merits and demerits of the proposed algorithm. Moreover, some scalability study
is also carried out to evaluate MUEDA further.

In summary, this work aims at providing both expected and experimental anal-
ysis on improving the performances of uni-variate EDAs by designing a more ef-
fective sampling operator. As to the experimental results, MUEDA improves the
performance of the uni-variate EDA significantly, and the proposed algorithm is
good at both exploration and exploitation simultaneously. Particularly, the adaptive
mixed distribution based sampling strategy could be simply incorporated into exist-
ing EDAs to accelerate the convergence speed and escape from the local optima.

6 Future Research Direction

There are still many issues that need to be urgently analyzed , of which the major
ones are summarized as follows:
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• Although many attempts have been carried out to analyze the characteristics of
heavy tail distributions, the comprehensive mathematical properties of the heavy
tail probability distributions are subject to suggestion.

• Even though the algorithm performed remarkably better than the classical algo-
rithms, there are still some problems that cannot be completely solved by the
proposed algorithm.

• In this chapter, the heavy tail distribution based sampling operator has shown
good efficiency based not only on theoretical analysis, but also on the experi-
mental analysis. More attempts are needed to prove the efficiency to the adaptive
mixed strategy, such as incorporating the strategy to EP or ES.
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Appendix

Classical test function 11 and 12
u and yi are defined as follows:

u(xi,a,k,m) =

⎧⎨
⎩

k(xi −a)m, i f xi > a,
0, −a ≤ xi ≤ a,
k(−xi −a)m, i f xi < −a,

yi = 1 +
1
4
(xi + 1).

f11 Generalized Penalized Functions

f11 =
π
30

{10sin2 +
2

∑
i=1

9(yi −1)2 · [1+

10sin2(πyi+1 +(yn −1)2)]+
30

∑
i=1

u(xi,10,100,4)}

f12 Generalized Penalized Functions

f12 = 0.1{sin2(π3x1)+
2

∑
i=1

9(xi −1)2 · [1+

sin2(3πxi+1)]+ (xn −1)2[1 + sin2(2πx30)]}+
30

∑
i=1

u(xi,5,100,4)



A Self-adaptive Mixed Distribution Based Uni-variate Estimation 195

A List of Terms and Definition

Heavy tail probability distribution - Different from Gaussian probability distribu-
tion whose variance can be denoted as a finite scalar, heavy tail probability distri-
bution stands for a class of probability distributions with an infinite second moment
that also yields a stable process.

Estimation of distribution algorithms (EDAs) - The methods that make use of the
notion of modeling process as applied in statistics and machine learning domain to

Table 10 Abbreviations used in this chapter

abbreviation full name

EDA estimation of distribution algorithm

LSGO large scale global optimization

MUEDA mixed distribution based uni-variate EDA

EA evolutionary algorithm

DE differential evolution

PSO particle swarm optimization

FEP fast evolutionary programming

FES fast evolution strategy

FSA fast simulated annealing

LEP Lévy mutation

LSEDA-gl EDA with mixed Gaussian and Cauchy distribution for LSGO

FLP fitness landscape portrait

GA genetic algorithm

PBIL population-based incremental learning algorithm

SHCLVND Stochastic hill climbing by vectors of normal distributions

UMDAc uni-variate marginal distribution algorithm

MIMIC mutual information maximizing input clustering

EGNAee estimation of Gaussian networks algorithm by edge exclusion

CEGDA clustering and estimation of Gaussian distribution algorithm

IDEA iterated density estimation algorithm

EP evolutionary programming

CEP classical EP

ES evolution strategy

STDC Standard Deviation Control Strategy

MFES maximum fitness evaluation size
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extract the important information to effectively build the space structure belong to
EDAs.

Fitness landscape analysis - Fitness landscape analysis considers optimization
problems as a set of landscapes containing one or more optima. Evolution can thus
be viewed as the movement of the population, represented by a set of points (geno-
types), towards lower (fitter) areas of the landscape.

Large scale global optimization - Large scale global optimization defines a suit of
global optimization problems with more than 100 variables to be optimized.

Kernel probability distribution - Consider a probability with mean 0, symmetrical
probability distribution and monotonously increasing; then this probability can be
used as Kernel probability distribution for EDA.
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