
A Model-Assisted Memetic Algorithm for
Expensive Optimization Problems

Yoel Tenne

Abstract. This chapter proposes a new model-assisted memetic algorithm for ex-
pensive optimization problems. The algorithm follows successful optimization ap-
proaches such as a combined global–local, modelling and memetic optimization.
However, compared to existing studies it offers three novelties: a statistically-sound
framework for selecting optimal models during both the global and the local search,
an improved trust-region framework and a procedure for improved exploration
based on modifying previously found sites. The proposed algorithm uses a radial
basis function neural network as a global model and performs a global search on
this model. It then uses a local search with a trust-region framework to converge
to a true optimum. The local search uses Kriging models and adapts them dur-
ing the search to improve convergence. A rigorous performance analysis is given
where the proposed algorithm is benchmarked against four reference algorithms us-
ing eight well-known mathematical test functions. The individual contribution of
the components of the algorithm is also studied. Lastly, the proposed algorithm is
also applied to a real-world application of airfoil shape optimization where it is also
benchmarked against the four reference algorithms. Statistical analysis of all these
tests highlights the beneficial combination of the proposed global and local search
and shows that the proposed algorithm outperforms the reference algorithms.

1 Introduction

Modern engineering design optimization replaces expensive laboratory experiments
with computer experiments. These are computationally-intensive simulations which
accurately model real-world physics. Using computer experiments reduces the cost
and time of the design process and so they are used in diverse areas ranging from
the design of integrated circuits [105] to complete aircraft [31].

Yoel Tenne
School of Aerospace, Mechanical and Mechatronic Engineering,
The University of Sydney, Australia
e-mail: joel.tenne@aeromech.usyd.edu.au

R. Chiong (Ed.): Nature-Inspired Algorithms for Optimisation, SCI 193, pp. 133–169.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

joel.tenne@aeromech.usyd.edu.au

134 Y. Tenne

With computer experiments, the engineering design process is cast as a nonlinear
optimization problem having three distinct features:

• The objective function (or cost function) being minimized depends on the sim-
ulation outputs. However, such simulations are often legacy computer codes
available only as executables. As such there is no analytic expression relating
the simulation inputs to its outputs and so the simulation is treated as a black-
box function. This means a suitable optimization algorithm must rely only on
the observed responses and not require the function expression or derivatives.
• Each simulation run is expensive, that is it requires anywhere from minutes

to hours of computer run time [86, 88]. This means only a small number of
simulation runs can be made.
• The underlying real-world physics and possibly the numerical solution itself

often give a complicated inputs–outputs response surface, for example which
is multimodal and nonsmooth [16]. This means an elaborate optimization algo-
rithm should be used.

Due to these issues common optimization algorithms often perform poorly in
such problems. For example, nonlinear programming algorithms [23] either require
the function derivatives or approximate them by finite-differences which is too ex-
pensive. Heuristics and nature-inspired algorithms [70] use only the observed re-
sponses but they often require far too many function evaluations to converge.

These difficulties have motivated new optimization approaches and we review
two of these in the following two subsections.

1.1 Hybrid or Memetic Algorithms

One approach to improving the optimization search is by combining several algo-
rithms. For example, the chances of locating a good optimum are improved when
the search combines both a global and local search. The global search explores the
function landscape to identify promising regions. A local search then exploits local
information to identify a better solution. As such, finding a good solution requires
an exploration–exploitation balance. This approach originated in the global opti-
mization community in the mid 1970s and has been applied in various algorithms
[96, 116].

In the late 1980s researchers in the evolutionary algorithm community proposed
similar approaches. Goldberg [32, p.202–204] described hybrid schemes which
combine an evolutionary algorithm (EA) with a local search. Norman and Moscato
[77] proposed a similar approach for combinatorial optimization. Moscato [74]
termed such combined approaches as memetic algorithms following the concept
of a ‘meme’ which is a unit of imitation in cultural transmission or an abstract unit
of information [21]. In all these cases a population-based algorithm explores the
function landscape and efficiently adapts to it [49]. A local search is also used to
improve individuals (candidate solutions) by focusing on a small region.

Later studies have focused on hybridization with gradient-based algorithms such
as finite-difference quasi-Newton [37, 90, 94, 103]. Others have studied hybridization

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 135

with heuristics such as the simplex or hill-climbing algorithms [93, 122]. Some have
replaced the EA by a simulated annealing algorithm (SA) [43].

Recent studies have focused on improving the search by analyzing the
exploration–exploitation interaction [44]. If the cost of the local search is low it may
be beneficial to apply it to all individuals [55]. Another approach uses fuzzy logic
to balance exploration–exploitation [123]. It is also possible to adaptively select the
‘best’ type of local search to use [78].

Hybrid and memetic algorithms are an active research field and recent reviews
are given in [54, 81]. A book [39] and three special issues [38, 82, 83] have focused
on these algorithms which indicates their significance as an emerging research field.

1.2 Reducing the Number of Expensive Evaluations

One main difficulty in expensive optimization is the tight limit on function evalu-
ations. To illustrate the problem we consider a population-based algorithm with a
population size s and which is run for a total of g generations or iterations. The to-
tal run time of the algorithm (T) depends on the time required by the optimization
algorithm alone (ta) for actions such as sorting strings or performing mutations but
excluding function evaluations, and the time required by a function evaluation (t f) .
As such the total run time is

T = g(s× t f + ta) . (1)

In expensive problems each function evaluation is a simulation run which requires
minutes to hours of computer time. As such we can assume that the algorithm time
is negligible, that is t f � ta and so

T � g(s× t f) . (2)

To get an estimate of the required time we use the EA settings recommended in
[50], that is a population size of s = 50 and g = 1000 generations. This means the
EA requires 50,000 function evaluations for its run. If a single simulation requires
an hour (but often much longer) that is t f = 1hr then a full run of the EA would
require about 2083 days or 5.5 years. This is unacceptable in practice and shows that
population-based algorithms such as EAs cannot be directly applied to expensive
problems. As such several approaches have been studied to solve this difficulty.

In fitness inheritance only a fraction of the population is evaluated with the ex-
pensive function while the remaining candidate solutions inherit their fitness from
their ‘parents’ [95, 107]. An extension of this approach uses clustering to assign a
variable fitness to offspring [52].

A second approach uses hierarchical or variable-fidelity simulations. Here the
algorithm uses several simulations which differ by their accuracy (or fidelity) and so
by their computational cost. Promising solutions migrate from low- to high-fidelity
simulations and vice versa [27, 102]. The approach was also used with deterministic
nonlinear programming algorithms [2].

136 Y. Tenne

A third approach is that of parallelization. It does not reduce the number of
expensive evaluations but only the wall-clock time needed to obtain a solution.
Population-based algorithms such as EA and SA operate in a decentralized man-
ner and so they are easily implemented on parallel machines [80, 86].

In this study we take the approach of Modelling. Models are computationally-
cheaper approximations of the expensive black-box function. They are based on
function approximation theory, that is, they interpolate the unknown function based
on the observed responses [62, 69, 117]. Since they are cheaper to evaluate, a model-
assisted algorithm uses the model instead of the expensive function during most of
the search [4, 31, 106].

The framework of model-assisted optimization, also called design and analysis
with computer experiments [98], involves three main components [28, 99]:

• Selecting the sites where the expensive function will be evaluated (design of
experiment).
• Generating a model based on the sample and
• Assessing the model accuracy.

The early approach of Response Surface Methodology was developed for noisy
real-world experiments and used least-squares quadratic models and designs which
aim to counter the noise, such as full and fractional factorial designs [8, 76].

However computer experiments are deterministic and so are noiseless (the same
inputs repeatedly give the same outputs). Therefore more suitable methods have
been studied. Designs tailored for computer experiment are space-filling, meaning
they spread the sample sites over the search space (instead of resampling at the same
location to counter noise). These include Latin hypercube designs [67], orthogonal
arrays [84] and maximin designs [47]. Also, the lack of noise motivates using more
flexible models which interpolate more accurately than the least-squares quadratics.
Such models include neural-networks [6, 40] (also discussed in Sect. 3.3), Kriging
[20] (also discussed in Sect. 3.5.2) and radial basis functions (RBFs) [11].

Whatever model is used, it is likely to be inaccurate due to the small sample size.
It is then necessary to estimate the degree of inaccuracy since a poor model can
drive the optimization search to a false optimum, that is an optimum of the model
but not of the true function [46]. One approach to estimate the model accuracy is
with statistics of goodness-of-fit [76, p.28–36], [120]. Another is with resampling
methods which train a model using part of the available sample and test the model
using the remaining part [61, Ch.2]. Recent studies have compared various methods
for model accuracy assessment [68, 112].

1.3 Model-Assisted Algorithms

The modelling approach has proven to be efficient and effective and as such several
classes of model-assisted algorithms have emerged.

One class of algorithms uses Kriging models in a Bayesian statistics framework.
Kriging models are a statistical-oriented approach to interpolation and are discussed
in length in Sect. 3.5.2. Briefly, a Kriging model treats the black-box function as a

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 137

combination of a deterministic function and a Gaussian random process. Statistical
methods select the parameters of these functions to improve the model accuracy. Af-
ter generating the Kriging model the algorithm seeks the site which is expected to
either improve the best value found so far or to improve the overall model accuracy.
These two objectives are combined to give a merit value known as the ‘expected
improvement’ (EI). Sites already evaluated have an EI = 0 while all others have an
EI which reflects both the predicted model value and the uncertainty about this pre-
diction. At each iteration the algorithm samples the site having the highest EI value
and it updates the model, which then results in new EI values for all sites. As such
the EI approach balances between global and local search. The approach originated
in 1960s with Kushner’s univariate method [57]. Later studies extended it to mul-
tivariate functions [34, 110] and incorporated the Bayesian framework [72, 119],
including the recent paper by Jones et. al. [48].

Another class of algorithms uses quadratic interpolants as models, motivated by
a Taylor series function approximation. Quadratics both account for function curva-
ture which assists the optimization and are simple to optimize. Algorithms in this
class combine quadratics with a trust-region framework to ensure convergence to an
optimum of the true expensive function [17]. Winfield studied in 1970s an early ap-
proach of a model-assisted algorithm using quadratics [121]. Powell [89] and Conn
et. al. [14, 15] have later improved the approach based on recent advances in inter-
polation theory.

A third class is the surrogate-management framework. It uses a variant of Tor-
czon’s pattern search algorithm [115] as the search algorithm. The pattern search
seeks the optimum of the current model (termed ‘Search Step’). If it fails to find a
new optimum then the model is refined (termed ‘Poll Step’) [7]. No restriction is
made on the model type.

A fourth class is that of model-assisted memetic algorithm. The idea is to generate
a model and seek its optimum with a memetic algorithm. A number of candidate
solutions are then evaluated with the expensive function, the model is updated and
the process repeats. One algorithm combines an EA, a neural network and a local
search [30, 88]. Other algorithms combine an EA with global and local radial basis
function models [79, 80, 114, 126, 127]. An algorithm which combines an EA with
quadratic models and a local search was studied in [60, 113].

The latter class has proven to be both efficient and effective and following its suc-
cess we propose a new model-assisted memetic algorithm for expensive optimiza-
tion problems. Briefly, the algorithm first trains and selects a global model which
is an artificial neural network and seeks the optimum of this model. It then uses a
local search to improve this predicted optimum. This sequence is repeated until the
number of function evaluations reaches the prescribed limit. Compared to existing
studies the proposed algorithm contains three main novelties:

• Model selection and model management using statistical model selection:
typically there will be a family of candidate models. Due to lack of domain
knowledge the user often chooses a non-optimal model which degrades the
optimization search. To address this and to improve the search the proposed
algorithm selects all models under a unified and statistically-sound framework

138 Y. Tenne

of model selection. This yields optimal models which are adapted during
the search.
• Improved trust-region framework: to converge to a true optimum the proposed

algorithm uses a trust-region approach. We describe several improvements to
this approach, such as selecting sites to improve the model and more efficient
stopping criteria. Further, we replace the quadratic models (in the classical ap-
proach) with Kriging model and adapt the models during the search.
• Improved global exploration: a model can lead the optimization search to con-

verge repeatedly to the same optimum without promoting exploration of the
search space, a condition termed ‘model stall’. To address this we propose a
modification of sampled sites which promotes exploration and discovery of new
optima. The method is computationally-efficient and applicable to any type of
model.

Rigorous performance analysis shows the proposed algorithm outperforms several
reference algorithms.

This chapter is organized as follows: Sect. 2 reviews concepts of model selec-
tion theory relevant to the proposed algorithm. Section 3 then describes in detail the
proposed algorithm and Sect. 4 provides a rigorous performance analysis. It is fol-
lowed by Sect. 5 which summarizes this chapter.

2 Model Selection and Complexity Control

A major aspect of the proposed algorithm is the selection of optimal models. This
section briefly explains the basics of statistical model selection theory and focuses
on the approach used in the proposed algorithm.

In a model selection problem we are given a set of sites and responses generated
by an unknown function and we wish to select a model which best describes this
function [12, 61]. The model is selected from a family of candidate models. The
statistical theory of model selection uses a discrepancy (Δ), which is the mismatch
between model predictions and the true responses, to measure the goodness-of-fit of
a candidate model to the given data. The discrepancy is calculated for each candidate
model and the model chosen is the one having the smallest discrepancy.

Based on information theory we consider the Kulback-Leibler discrepancy [56].
It uses the likelihood of a candidate model given the data, that is the conditional
probability of observing the sample of sites and responses

X = {(xi , f (xi)} , i = 1 . . .n , (3)

under the model S(x) , or L(S|X) [87]. The discrepancy is then

Δ = − logL(S|X) . (4)

With the Kulback-Leibler discrepancy the optimal model is the one having the max-
imum likelihood, that is

Δmin = − logLmax(S|X) . (5)

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 139

For some models a closed-form expression exists for the likelihood and the discrep-
ancy. Otherwise, an empirical discrepancy [61, Ch.5] is used where

Δ =
1
|X|

|X|∑

i=1

(
S(x)− f (x)

)2 , (6)

which is the mean of sum of squared error between the true responses and the model
predictions over the sample. Since the likelihood is a function of the model (and
hence of the model parameters), maximizing the likelihood by solving (4) gives the
optimal model parameters [65].

The family of feasible models may contain models of different complexity, that
is the number of model parameters. More complex models may fit the sample better
than simpler ones but their prediction at new sites (or generalization) may be poor,
a condition termed over-fitting [6, Ch.9]. Often a simpler model may be a better
approximation of the true function.

This motivates the selection of models based not only on their discrepancy but
also on their complexity. As such we consider the Akaike information criterion
(AIC) for complexity control [1], [61, p.243–245]. The criterion uses the Kulback-
Leibler discrepancy but adds a penalty which increases with model complexity
where

AIC = − logL(S|X)+2m , (7)

and m is the number of model parameters. As such a more complex model is pre-
ferred over a simpler one only if it is significantly more accurate. The optimal model
is the one having the lowest AIC value.

The AIC was derived under asymptotic assumptions of a large sample. However
in expensive optimization problems the sample is small and the AIC becomes biased
[3, 59]. As such we use the corrected Akaike information criterion (AICc) which is
unbiased for small samples where

AICc = AIC+
2(m+1)(m+2)

n−m−2
, (8)

and n is the sample size [42]. The AICc has performed well against other complexity
control criteria [3, 42].

3 The Proposed Algorithm

3.1 Initialization and Main Loop

The proposed algorithm begins by generating a Latin hypercube design (LHD) con-
sisting of k = 0.2 f emax sites, where f emax is the prescribed limit of expensive evalu-
ations. As mentioned in Sect. 1.2, this design improves the accuracy of the resultant
model by spreading the sites in the search space.

140 Y. Tenne

To generate a LHD of k sites the range of each variable is split into k equally sized
intervals and one point is sampled at random in each interval. To create a LHD site
a sampled point is selected at random (without replacement) for each variable and
these samples are combined to give a site (a vector). The process is repeated until
k sites have been created. Algorithm 1 gives a pseudocode for generating a LHD
sample.

Algorithm 1. Generating a LHD sample

inputs
number of variables (d);
sample size (k);
bounds on variables;

for each variable i = 1 . . .d do
divide the variable range into k equal intervals;
sample one point (a scalar) at random in each interval;

for each LHD site x j , j = 1 . . .k do
for each variable i = 1 . . .d do

select at random and without replacement a sample point;
set ith component of site j (that is x j,i) to selected sample point;

Output: a Latin hypercube design of size k

The expensive function is then evaluated at the LHD sites. During the search the
algorithm caches all sites evaluated with the expensive function and their responses
to reuse them later in the search and to reduce new evaluations.

The main loop then begins and the algorithm generates a global model of the
objective function, as follows. It first uses a modified copy of the cache where sites
found during previous local searchs have been ‘masked’ (as described in Sect. 3.2).
It then uses this modified copy to train and select an artificial neural network
which serves as the global model (as described in Sect. 3.3). Next, it seeks the
optimum of the global model (as described in Sect. 3.4) and improves this pre-
dicted optimum with a local search (as described in Sect. 3.5). This sequence is

Algorithm 2. Main loop
generate an initial LHD;
evaluate and cache sites;
while f e � f emax do

if local searchs have been made then
create a copy of the cache and ‘mask’ sites found during local searchs;

using the (modified) cache train and select a global model;
select initial site for the local search (the model’s predicted optimum);
improve predicted optimum with a local search;

Output: best solution and response found

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 141

repeated until the number of function evaluations reaches the prescribed limit f emax
(f emax = 100 , 150 and 200 were used for performance analysis) . A pseudocode of
the main loop is given in Algorithm 2.

3.2 Modifying the Cache to Assist Exploration

The global model is trained using the cached sites and responses. Elite sites (having
a low response), which are typically found during the local searches, can ‘dominate’
the model so other minima will not be represented. To avoid this and to promote ex-
ploration such elite sites (and nearby sites) are identified and ‘masked’ by setting
their response to the mean response of all cached sites. To identify sites nearby
elites the proposed algorithm clusters the cached sites. All sites in clusters with sites
found in previous local searchs have their responses set to the mean of responses
in the cache (f̄). When the global model is trained using this modified cache it
will not be dominated by the elite sites and will promote exploration. The algo-
rithm uses the mean response to avoid adding artificial multimodality to the global
model.

For clustering the algorithm uses the k-harmonic means algorithm [124, 125]
which is efficient and has outperformed competing algorithms such as the popu-
lar k-means [35]. At each iteration the algorithm finds the location of the k cluster
centres as the harmonic mean of the distance to all sites, so all sites are accounted
for. This improves the clustering quality and differs from the popular k-means algo-
rithm where only the nearest sites to a centre are accounted for. Algorithm 3 gives a
pseudocode of the k-harmonic means algorithm.

The k-harmonic means requires the number of clusters (k) as an input and so to
find the optimal k the proposed algorithm uses a model selection approach. Following

Algorithm 3. k-harmonic means clustering
Input: sites to cluster x j , j = 1 . . .n
set t = 1 ; /* iterations counter */
initialize centres ci , i = 1 . . .k at random;
repeat

for i = 1 . . .k do scan over clusters
for j = 1 . . .n do scan over sites

di, j = ‖ci − x j‖2 ; /* distance of centre i to site j */

qi, j = di, j
3

⎛⎜⎜⎜⎜⎜⎝
∑k

p=1
1

dp, j
2

⎞⎟⎟⎟⎟⎟⎠
2

;

ci =

∑n
j=1

1
qi, j

x j
∑n

j=1
1

qi, j

; /* new centre i is harmonic mean */

t = t + 1;
until change in centres is small or max. iterations ;

142 Y. Tenne

(a) First local search (b) Second local search

Fig. 1 A 1-D example of the proposed cache modification. The objective function is f (x) =
x sin(x) . The sampled sites, objective function and model are shown. (a) shows the first local
search finds the local optimum at x = 0.75 (�). Sites are then clustered and those in the
cluster containing the found optimum have their responses modified (�). (b) shows this leads
to a model which identifies the second optimum such that the second local search now finds
to the optimum at x = 1.75

(a) First local search (b) Second local search

Fig. 2 A 2-D example of the proposed cache modification. The objective function is Branin.
(a) shows the first local search finds the local optimum at (−3.1 , 12.2) (�). Next, cached
sites are clustered and those in the cluster containing the found optimum have their responses
modified (�). (b) shows the second local search used with the model based on the modified
sites now converges to a different optimum at (3.1 , 2.2) (�)

Sect. 2, the optimal k is found by minimizing the corrected Akaike information
criterion (AICc), where the discrepancy function is the inter-cluster error

Δ =
k∑

i=1

ni∑

j=1

‖ci − x(i)
j ‖2 , (9)

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 143

where ni is the number of sites in cluster i , ci is the ith cluster centre and x(i)
j is

the jth site in cluster i . This is a univariate minimization problem of minimizing
AICc(k) . It is solved with Brent’s golden-search algorithm [9].

Figures 1 and 2 give a 1D and 2D example, respectively, of the proposed method
and Algorithm 4 gives a pseudocode of the proposed method.

Algorithm 4. Modifying the cache to assist exploration
Input: cache of sites and responses;
create a copy of cache;
find mean response in cache f̄ ;
cluster cached sites using k-harmonic means, find optimal k with AICc criterion;
for clusters containing a site found in previous local searchs set all responses to f̄ ;
Output: modified copy of the cache

3.3 Generating the Global Model

Next, the proposed algorithm uses the modified copy of the cache to train a global
model of the expensive function. Such a model can be a Lagrangian interpolant so
it interpolates exactly at all available sites, that is

S(xi) = f (xi) , i = 1 . . .n (= cache size) , (10)

where S(xi) is the model response at the ith site and f (xi) is the true response there.
However, there are two difficulties with such models:

a) they can generalize poorly due to over-fitting to the given data (as mentioned in
Sect. 2) so their prediction is likely to be poor at new sites and

b) they become computationally-expensive to handle (since they account for all
sites) and numerically unstable (due to ill-conditioning of the interpolation ma-
trix) [22, 51].

To avoid these issues the proposed algorithm uses a radial basis function network
(RBFN) for the global model which is an artificial neural network with radial basis
functions processing units. Artificial neural networks are a form of nonparametric
regression [6, 40] and can approximate a continuous function with high accuracy
(given sufficient sites) [6, Ch.4]. RBFNs have the advantage of approximating well
complicated function landscapes while their structure is simpler compared to other
networks and so they are faster to train [6, Ch.5], [10, 73].

Figure 3 shows a typical RBFN. It contains three layers: the input layer, the pro-
cessing layer containing the processing units (or neurons) and the output layer which
is a weighted sum of the units responses. The proposed algorithm uses an RBFN
with Gaussian processing units which is equivalent to approximating the objective
function by a superposition of Gaussians [69]. The response of this RBFN is

S(x) =
N∑

j=1

λ j exp

⎛⎜⎜⎜⎜⎜⎝−
‖x− t j‖22

c j
2

⎞⎟⎟⎟⎟⎟⎠ , (11)

144 Y. Tenne

where N is the number of processing units, λ j is a coefficient, t j is the centre of the
jth Gaussian and c j is the shape parameter (or hyperparameter) which determines
the width of the jth Gaussian.

Fig. 3 An RBFN with three
neurons (processing units)

)

An RBFN generalizes well and avoids over-fitting by abstracting the data. This
is achieved by using fewer processing units than sample sites (N < n) so the centres
(t j) typically do not coincide with the sample sites. Training an RBFN requires
selecting the number of processing unit (N), the centres (t j), the shape parameters
(c j) and the coefficients (λ j) . To efficiently select all these the proposed algorithm
uses the following two steps.

First, it identifies the optimal number of processing units (N). For a candidate
number of processing units the cached sites are clustered using the k-harmonic
means algorithm (described in Sect. 3.2) and the resulting centres are taken as the
Gaussians’ centres. The shape parameters (c j) are taken as the radii of the corre-
sponding clusters. The coefficients λ j are obtained from the least-squares solution
of the interpolation equations as

ΦTΦλ =ΦT f , (12)

whereΦ is the interpolation matrix such that

Φ :Φi , j = exp

⎛⎜⎜⎜⎜⎜⎝−
‖xi − t j‖22

c j
2

⎞⎟⎟⎟⎟⎟⎠ , (13)

and f is the vector of responses. This linear system is solved by the truncated singular
value decomposition method (TSVD) sinceΦmay be ill-condtioned [6, p.170–171].

All these parameters define an RBFN with N processing units. Similar to Sect. 3.2,
finding the optimal number of processing units is treated as a model selection prob-
lem and is solved using the corrected Akaike information criterion (AICc). For a
network with N units the algorithm finds the empirical discrepancy (6) calculated
over all cached sites. Each value of N defines a specific network and a correspond-
ing AICc . As such the algorithm finds the optimal N by minimizing AICc(N) using
Brent’s algorithm [9].

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 145

The proposed algorithm then optimizes the shape parameters. Taking the shape
parameters found in the previous step (c = (c1, . . .cN)) as baseline values it finds the
factor l which minimizes the discrepancy (6) of a network with shape parameters
lc . The number of centres (N) and their location (t j) are fixed to those found in
the previous step, but the coefficients λ j are recalculated for each candidate l value.
Similarly to the previous stage, each l value defines a specific network and a corre-
sponding discrepancy and so the algorithm finds the optimal l by minimizing Δ(l)
using Brent’s algorithm. Algorithm 5 gives a pseudocode of the proposed method
for generating the RBFN global model.

Algorithm 5. Generating the global model
Input: modified copy of cache;
optimize number of units (N) by minimizing AICc(N):
begin

for each candidate N cluster sites using k-harmonic means;
set Gaussian centres (t j) to cluster centres;
set Gaussian widths (c j) to cluster radii;
find coefficients (λ j) by least-squares;
find discrepancy of candidate network and its AICc;

end
set c as shape parameters for optimal N;
optimize shape parameters by minimizing the discrepancy Δ(l):
begin

for each candidate l set Gaussian widths to l c;
generate network (find coefficients by least-squares);
find discrepancy of candidate network;

end
Output: an RBFN global model with optimized parameters

3.4 Selecting the Starting Site for the Local Search

Next, the proposed algorithm seeks the global optimum of the global model. It uses
a real-coded EA [13] followed by a gradient-based finite-differences quasi-Newton
BFGS algorithm [23, Ch.5–6]. The EA uses a population size spop = 50 , linear rank-
ing, stochastic universal sampling (SUS), intermediate recombination, elitism with a
generation gap ggap = 0.9 and the breeder-genetic-algorithm mutation operator with
probability pm = 0.05 [75] . The evolutionary search is stopped when no improve-
ment is observed after gn.i. = 10 generations. The gradient-search then improves the
best site found by the EA and this gives the predicted optimum (xp) of the global
model.

The predicted optimum is then evaluated with the expensive objective function to
give the true response f (xp) . If f (xp) is better than the best value found so far then
the local search is started from xp . Otherwise, this indicates the model is inaccurate
and so the algorithm improves the model by adding a new site to it.

146 Y. Tenne

The accuracy of interpolants depends on the spread of the interpolation sites,
measured by the maximin distance [63, 100]. For a set of sites xi , i = 1 . . .k the
maximin distance is the maximum of all nearest-neighbour distances in the set. The
model accuracy improves as the maximin distance increases, that is as the sites are
more space-filling. As such, the proposed algorithm improves the global model by
seeking the site which maximizes the maximin distance for the cached sites. It finds
this site (xn) by solving the nonlinear optimization problem

xn : max
x∈F

min
xi∈X
{ ‖xi − x‖2 } (14)

whereX is the set of cached sites andF is the search space. This approach generates
sites similarly to the maximin design of experiments [47].

The new site is evaluated with the expensive function and is cached. The global
model is then updated and the process repeats until either a better optimum is found
or 10 attempts have been made. In the latter case the best cached site is taken as the
starting site for the local search. Algorithm 6 gives a pseudocode for the proposed
method for selecting the starting site.

Algorithm 6. Selecting the starting site for the local search
Input: cache and modified copy of cache;
set i = 1 ; /* number of attempts */
find best site in cache (xb);
repeat

generate global model;
seek optimum of model using an EA followed by a gradient search (SQP);
evaluate the predicted optimum (xp) with expensive function and cache;
if optimum is better then current best in cache then

set x0 = xp ; /* set starting site */
else

improve model by searching for a site (xn) using maximin distance;
evaluate xn with expensive function and cache;
i = i + 1;

if i = 10 then set x0 = xb ; /* set starting site */

until f (xp) < f (xb) or i = 10 ;
Output: initial site for local search (x0)

3.5 Improving the Optimum with the Local Search

Next, the proposed algorithm improves the starting site (x0) by using a local search.
The proposed local search has three distinct features: a) since it concentrates on a
small region, it uses local models to better model the objective function b) it uses
an improved trust-region framework to converge to a true optimum of the expensive
function but it replaces the classical quadratic models with more flexible ones to
improve the search and c) to further assist convergence it continuously adapts the
type of model used.

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 147

3.5.1 Using a Trust-Region Framework to Converge to a True Optimum

As mentioned in Sect. 1.3, due to model inaccuracy a model-assisted optimization
search can converge to a false optimum. To avoid this the proposed algorithm uses
a trust-region framework.

The classical trust-region framework generates at each iteration a quadratic model
and obtains its constrained optimum (a truncated Newton step) as a quadratic pro-
gramming problem [17]. The framework guarantees asymptotic convergence to an
optimum of the true objective function (a critical site satisfying the first order Karush-
Kuhn-Tucker optimality conditions).

For quadratic models the constrained optimum is easily found but such models
cannot model a complicated landscape well. As such, the proposed local search re-
places them with the more flexible Kriging models which are described in Sect. 3.5.2
which follows. When compared to quadratics, Kriging models can approximate the
objective function better over a larger trust-region and so convergence will be faster
and require less function evaluations.

The proposed trust-region local search begins with an initial cuboid trust-region
centred at xc = x0 (the starting site) and of size Δ = 0.1 , that is

T = {x : ‖xc− x‖∞ � Δ} . (15)

To emphasize local function behaviour all cached sites which are in T are used to
generate the local model. If the trust-region contains less than m = min{d + 1 , 10}
sites then the nearest exterior sites are also used. The algorithm selects the optimal
type of Kriging model (as described in Sect. 3.5.2) and finds its constrained optimum
in the trust-region (xm). However, this is no longer a simple quadratic programming
problem (as in the classical framework) and so to find the constrained optimum the
algorithm uses an EA followed by a gradient-search, similarly to Sect. 3.4.

Following the classical trust-region approach the objective function is evaluated
at the predicted optimum and a merit value is calculated

ρ =
f (xm)− f (xc)
S(xm)−S(xc)

, (16)

where S(x) is the current Kriging local model. A value of ρ � 1 indicates a good fit
of the model to the objective function in the trust-region.

The classical trust-region framework assumes exact derivatives are available so
a poor model fit is only due to a trust-region which is too large and so it decreases
the trust-region. However, in model-assisted search the model may be inaccurate
due to an insufficient number of interpolation sites in the trust-region. This needs
to be accounted for to avoid a quick reduction of the trust-region and premature
convergence [15].

As discussed in Sect. 3.4, the model’s accuracy depends on the maximin distance
of the interpolated sites. As such, the proposed algorithm determines if a model is
sufficiently accurate (to justify reducing the trust-region) based on the number of
space-filling sites in the trust-region. The maximum separation distance for a cuboid

148 Y. Tenne

trust-region is the diagonal length
√

d(2Δ)2 (d is the function dimension). A site is
considered space-filling if its nearest-neighbour distance is at least 5% of the diago-
nal length. The model is considered accurate when the number of space-filling sites
in the trust-region (s) is larger than a threshold value (s� = d+1). This value is based
on the number of sites required to model the gradient by well-established methods
like quasi-Newton finite-differences [15]. However, as d increases the required num-
ber of sites becomes comparable to the total number of function evaluations (f emax).
As such, the algorithm uses s� =min{d+1 , 0.1 f emax} .

Based on ρ , s and s� the algorithm performs as follows:

• if ρ > 0: then the local model is accurate since a better solution has been found.
Following the classical trust-region framework the algorithm centres the trust-
region at the new optimum (xm) and the trust-region is enlarged by a factor
δ+ .
• if ρ � 0 and s < s�: the optimum predicted by the model is a false one, but the

poor model accuracy is attributed to an insufficient number of space-filling sites
in the trust-region. As such, the algorithm improves the local model by adding
a new site xn . Similar to Sect. 3.4, this site (xn) is chosen to give the largest
maximin distance with respect to all sites in the trust-region. xn is evaluated
with the expensive function and is cached. If f (xn) < f (xc) than xn becomes the
new trust-region centre.
• if ρ � 0 and s � s�: the local model fails to predict an improvement but its poor

accuracy is attributed to the trust-region being too large (the model is considered
to be accurate). Following the classical trust-region framework the algorithm
decreases the trust-region by a factor δ− .

As such the local search uses at most two expensive evaluations at each iteration,
one for xc and possibly another for xn . All new sites evaluated with the expensive
function are cached.

Next, the local search stops if the trust-region is small enough Δ < Δmin (we use
Δmin = Δ0 · δ2−) or if the limit of expensive evaluations has been reached. Otherwise,
a new local search iteration begins. Algorithm 7 gives a pseudocode of the proposed
trust-region local search.

3.5.2 Selecting Optimal Local Models

To assist the local search the proposed algorithm selects at each iteration an opti-
mal local model. It selects models from a family of Kriging (or spatial-correlation)
models as they have performed well compared to other models [45, 58].

Kriging models originated in geostatistics with the work of Krige and Matheron
[19, 66]. Such a model has two components: a ‘drift’ function which models global
variations in the objective function and a stochastic function (a stationary Gaussian
process) which locally improves the prediction [20].

A common approach is to use a constant drift function (for example set to 1) [53]
so the Kriging model is

S(x) = β+Z(x) , (17)

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 149

Algorithm 7. A trust-region framework for the local search

inputs
X; /* cache of sites and responses */
x0; /* initial site for local search */

s� =min{d+1 , 0.1 f emax} ; /* model accuracy threshold */
xc = x0 ; /* centre trust-region at x0 */
repeat

define a cuboid trust-region centred at xc and of size Δ;
find the cached sites inside the trust-region (if insufficient use exterior sites);
select an optimal local model based on these sites;
find model optimum in trust-region (xm) with EA and gradient-search;
calculate a trust-region merit value ρ;
update trust-region:

if ρ > 0 set xc = xm, increase Δ
if ρ � 0

⋂
s < s� improve local model by adding a site xn , if better set xc = xn

if ρ � 0
⋂

s � s� decrease Δ
until Δ < Δmin or f e � f emax ;
Output: optimum found in local search

where β is the drift function coefficient and Z(x) is the stochastic function [98]. The
latter is taken as a Gaussian process with a zero mean and variance σ . The response
of the Kriging model at any site is correlated with that of other sites. The correlation
between two sites (x1 and x2) is defined by a covariance function

C(x1, x2) = σ2R(x1, x2) , (18)

where R(x1, x2) is a spatial correlation function (SCF). The model is defined by
adjusting the free coefficient (β) and the SCF parameters to fit the available data.

Different spatial correlation functions have been studied [53]. Each SCF results in
a different model and so the optimal SCF is problem dependant. In practice the SCF
is prescribed and fixed throughout the optimization search [71]. To improve this, the
proposed algorithm uses the model selection framework (described in Sect. 2) to
select the optimal SCF based on maximum likelihood. The likelihood of a Kriging
model is given by the closed-form expression [98]

L = −d
2

log(2πσ2)− 1
2

log(|R|)− 1

2σ2
(f −1β)TR−1(f −1β) , (19)

where

R : Ri , j = R(xi , x j , θ) (20)

is the correlation matrix of all sites in the sample, θ is a correlation parameter and
the spatial correlation function is given by

150 Y. Tenne

Table 1 Candidate spatial correlation functions (SCFs)

Name R(θ, lk)
Exponential exp(−θ |lk|)
Gaussian exp(−θ l2k)
linear max{0 ,1− θ |lk |}
spherical 1−1.5ξk +0.5ξ3k , ξk =min{1 , θ |lk |}

spline
ζ(ξk) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−15ξ2k +30ξ3k 0 � ξk � 0.2

1.25(1− ξk)3 0.2 < ξk < 1

0 ξk � 1

ξk = θ|lk|
lk = xi ,k − x j ,k is the difference between the kth component of two sites xi and x j [109].

(a) Iteration 5 (b) Iteration 14

Fig. 4 An example of models used during the local search with the Branin function. (a) shows
iteration 2 where the local model used a Gaussian SCF. (b) shows iteration 14 where the local
model used a spline SCF. The trust-region is also shown.

Algorithm 8. Selecting optimal local models
Input: sites and responses used for the local model
for SCF = exponential, Gaussian, linear, spherical, spline do

generate Kriging model using candidate SCF;
find the model’s maximum likelihood;

select the Kriging model having the largest maximum likelihood;
Output: optimal Kriging local model

R(xi , x j , θ) =
d∏

k=1

R(θ, lk) , lk = xi ,k − x j ,k , (21)

where the functions R(θ, lk) are defined in Table 1. The model parameters (β , σ and
θ) are found by maximizing its likelihood (19) [65]. The numerical procedures for
generating the Kriging models are given in [109].

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 151

As such, at each local search iteration the proposed algorithm builds a Krig-
ing model, one for each of the SCFs in Table 1, and it selects the one giving the
largest maximum likelihood. Complexity control is unnecessary since all models
have equal complexity, that is the three parameters σ , β and θ . This approach re-
sults in a model-adaptive local search. Figure 4 shows an example and Algorithm 8
gives a pseudocode of the proposed method.

3.6 Caching New Sites

During the optimization search new sites and responses are cached for later use. If
cached sites are nearly collocated the interpolation matrices used to generate the
global and local models will be severely ill-condtioned. To avoid this a new site
is added to the cache if it is sufficiently spaced from cached sites (a minimum l2
distance of Δmin/2, where Δmin is the prescribed minimum trust-region radius, as
described in Sect. 3.5.1). Otherwise the new site replaces the cached site nearest to
it (in the l2 norm) if the new response is better than the cached one. Algorithm 9
gives the pseudocode for caching new sites.

Algorithm 9. Caching new sites

Input: xnew, f (xnew) ; /* new site and response */
find the cached site xcac nearest to xnew;
if ‖xcac− xnew‖2 � Δmin/2 then

add xnew and f (xnew) to the cache;

else if f (xnew) < f (xcac) then
replace xcac and f (xcac) with xnew and f (xnew);

4 Performance Analysis

This section gives a detailed performance analysis of the proposed algorithm in three
parts. First, we test the proposed algorithm on eight well-known mathematical test
functions. In these tests it is also benchmarked against four reference algorithms.

Next, we study the individual contribution of the global search and of the local
search components of the proposed algorithm. This is done by comparing the full
proposed algorithm to the two cases where its global search is disabled and where
its local search is disabled.

Lastly, we apply the proposed algorithm to a real-world application of airfoil
shape optimization and we also benchmark it against the four reference algorithms.

4.1 Reference Algorithms and Test Procedure

To obtain a reference of performance we benchmarked the proposed algorithm
against four representative model-assisted EAs [91, 92]. These algorithms build a

152 Y. Tenne

Algorithm 10. Reference algorithm
generate initial sites with LHD and evaluate them;
cache sites and responses;
while f e � f emax do

generate a Kriging model based on cache;
search for model optimum with an EA for 10 generations;
evaluate candidate solutions from population with true function;
cache evaluated candidate solutions and their responses;

Output: best solution and response found

Kriging model, seek its optimum and evaluate a certain percentage of the popula-
tion with the true function. The model is then updated and the process repeats until
the limit of function evaluations is reached. Algorithm 10 gives a pseudocode of the
reference algorithms.

The four algorithms differ by their Kriging spatial correlation function (SCF) and
the percentage of elites and non-elites that they evaluate at each iteration. Table 2
compares the reference algorithms.

Table 3 gives the parameter settings used by the proposed algorithm during the
tests. Parameters which define the EA operation were identical in the proposed al-
gorithm and in the four reference algorithms.

To obtain statistically-significant results 30 runs were repeated for each test with
the proposed algorithm and the reference algorithms. For each function and each al-
gorithm we provide the statistics mean, standard deviation, median, best and worst
result. Also, to determine in a rigorous manner which algorithm performs better we
used the Mann–Whitney (or Wilcoxon) significance test [64], which is a nonpara-
metric version of the t-test [18, Ch.5], [104, p.513–576]. The Mann–Whitney test is
preferable since it is more widely applicable: it is valid for non-normal data while
applying the t-test on non-normal data can give incorrect inferences [18, Ch.2].

We used the one-tailed Mann–Whitney test which provides a test statistic U . The
null and alternative hypothesis are:

H0 : P(ri � rp) � 0.5 (22a)

H1 : P(ri > rp) < 0.5 , (22b)

where P(ri < rp) is the probability that a result of the proposed algorithm is larger
(worse) than a result of the ith reference algorithm (i = 1 . . .4). As such we test
if the proposed algorithm is more likely to give a better result than the reference
algorithms. The null hypothesis is rejected at the α = 0.05 significance level if U >
1.644 and at the α = 0.01 significance level if U > 2.326 . For each test function we
applied the Mann–Whitney test between results of the proposed algorithm and each
of the four reference algorithms and provide the resultant U statistics. As such, for
each reference algorithm if U > 1.644 or U > 2.326 we reject the null hypothesis at
the 0.05 and 0.01 significance level, respectively, and accept the proposed algorithm
outperformed the reference algorithm.

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 153

Table 2 Settings for the reference algorithms

Evaluated per generation

Number Designation SCF 1 % elites % non-elites
1 (G,10,0) Gaussian 10 0
2 (S,10,0) spline 10 0
3 (G,5,5) Gaussian 5 5
4 (S,5,5) spline 5 5

1 spatial correlation function.

Table 3 Parameter settings for the proposed algorithm

General Parameters

f emax max. (true) objective function evaluations 100 , 150 , 2001

EA Search
spop population size 50
ggap generation gap 0.9
gmax maximum generations 20
pm mutation probability 0.05
gn.i. no-improvement generations to stop 10

Trust-region Search
Δ0 initial trust-region radius 0.1
δ+ trust-region size increase factor 2
δ− trust-region size decrease factor 0.5
Δmin minimum trust-region radius Δ0 ·δ2−
Δmax maximum trust-region radius Δ0 ·δ2+

1 100 and 200 for test functions, 150 for airfoil optimization.

4.2 Mathematical Test Functions

In this section we used eight mathematical test functions which are widely used
and well-known: Branin, Hartman 3 and Hartman 6 [24], Greiwank [33], Rastrigin
[117, p.185–192], Rosenbrock [97], Schwefel 2.13 [101, p.301–302] and Weier-
strass [36]. For the Greiwank, Rastrigin, Rosenbrock, Schwefel and Weierstrass we
used the function definitions from [111] along with the supporting files available
online. The Branin, Hartman 3 and Hartman 6 have a fixed dimension (2, 3 and 6,
respectively) while those from [111] were tested in dimension 10 and 30 to evaluate
the ‘curse of dimensionality’ [5] on the algorithms performance. All functions were
tested with a limit on function evaluations (f emax = 100 for Branin, Hartman 3 and
Hartman 6 and f emax = 200 for all other functions). These are realistic settings for
expensive problems and they test the algorithms under a constraint of resources, as

154 Y. Tenne

Table 4 Mathematical test functions

Function Dimension (d) Definition Search space f (xg)1

Reference: Dixon and Szegö [24]

Branin 2 (x2−
5.1

4π2
x2

1 +
5
π

x1−6)2 +10(1− 1
8π

)cos(x1)+10 [−5,10]× [0,15] 0

Hartman 3 3
∑4

i=1 ci exp
[∑4

j=1 ai, j(xi − pi, j)2] [0,1]d −3.86

Hartman 6 6
∑4

i=1 ci exp
[∑6

j=1 ai, j(xi − pi, j)2] [0,1]d −3.32

Reference: Suganthan et. al. [111]

Griewank 10, 30
∑d

i=1

x2
i

4000
−

∏d
i=1 cos

(
xi√

i

)
+1 [−600,600]d 0

Rastrigin 10, 30
∑d

i=1

{
x2

i −10 · cos(2πxi)+10
}

[−5,5]d 0

Rosenbrock 10, 30
∑d

i=1

{
(2xi−1− x2

i)2+ (1− xi)2
}

[−2,2]d 0

Schwefel 2.13 10, 30
∑d

i=1
(∑d

j=1 ai, j sin(α j)+bi, j cos(α j)−
∑d

j=1 ai, j sin(x j)+bi, j cos(x j)
)2

[−π,π]d 0

Weierstrass 10, 30
∑d

i=1
∑20

k=0 ak cos
(
2πbk(xi +0.5)

)
[−0.5,0.5]d −d

1 Value at global optimum.

suggested in [118]. Table 4 gives the test functions’ details and Fig. 5 shows their
bivariate version (excluding Hartman 3 and Hartman 6 which are not bivariate).

Tables 5–7 provide the resultant test statistics for the comparisons with the four
reference algorithms over the eight test functions. Results for the Branin, Hartman 3
and Hartman 6 for all algorithms are similar since they all obtained a good ap-
proximation of the global optimum. This indicates that these functions were not
challenging to all five algorithms and there is no clear winner.

A significant difference in performance between the proposed algorithm and
the reference algorithms is seen with the more complicated functions (Greiwank,
Rastrigin, Rosenbrock, Schwefel and Weierstrass). The mean and median statis-
tics indicate that the proposed algorithm found a better solution than the refer-
ence algorithms. This is attributed to the combined global and local search and
the careful selection of models in these searches. Also, the standard deviation of
results for the proposed algorithm is typically lower than that of the reference algo-
rithms which indicates its performance is more stable. Overall, based on the Mann–
Whitney test in all cases we reject the null hypothesis in (22) at both significance
levels α = 0.05 and 0.01 and accept that the proposed algorithm outperformed the
four reference algorithms.

4.3 Individual Component Contribution

We also study the individual contribution of the global search and the local search
to the overall performance of the proposed algorithm. For this, we used two ref-
erence algorithms obtained from the complete proposed algorithm. One algorithm

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 155

(a) Branin (b) Greiwank

(c) Rastrigin (d) Rosenbrock

(e) Schwefel 2.13 (f) Weierstrass

Fig. 5 Bivariate versions of the mathematical test functions

uses only the proposed global search (local search is disabled) and the other uses
only the proposed local search (global search is disabled). The two reference algo-
rithms were tested with five test functions: Greiwank and Rastrigin in dimension
10 and Rosenbrock, Schwefel and Weierstrass in dimension 30. A similar analysis
to that of the Sect. 4.2 was used, that is we provide the statistics mean, standard
deviation, median, best and worst and the Mann–Whitney U statistic.

Table 8 shows test results over the five test functions. First, for the highly multi-
modal functions (Greiwank, Rastrigin, Weierstrass) the global search reference al-
gorithm performed better than the local search one. In such complicated landscapes
an extensive global search finds a better optimum while a local search converges
to an inferior optimum typically close to the starting site. An opposite trend exists
for the simpler Rosenbrock and Schwefel functions where an extensive local search

156 Y. Tenne

Table 5 Results for mathematical tests functions

finds a better optimum. Second, the Mann–Whitney statistic indicates the full pro-
posed algorithm outperformed the reference algorithms, which shows the benefit
of the proposed global–local approach. Lastly, the standard deviation of results of
the reference algorithms was typically much larger than for the proposed algorithm
which indicates their performance is much less stable. Overall, results show that
both the proposed global search and the proposed local search contribute to the
optimization search. However, individually they perform well on some functions
but worse on others. The proposed algorithm combines both approaches and so it
achieves an effective and efficient search over a wide range of functions.

4.4 Real-World Application

As a final test we have also applied the proposed algorithm to the real-world ap-
plication of airfoil shape optimization. Here we are given an aircraft’s flight condi-
tions (speed and altitude) and the goal is to find an airfoil shape which generates
the required lift force (L) with a minimum of aerodynamic friction (or drag) force
(D). In practice these requirements are not expressed as forces but as aerodynamic
coefficients:

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 157

cL =
L

1
2ρU

2
(lift coefficient) (23a)

cD =
D

1
2ρU

2
(lift coefficient) (23b)

where ρ is the air density at the prescribed flight altitude and U is the prescribed
flight speed. Figure 6 shows an example.

Table 6 Results for mathematical tests functions–10D

158 Y. Tenne

Table 7 Results for mathematical tests functions–30D

The specific problem we study is that of optimizing the airfoil of a transport
aircraft cruising at 35,000ft and at a Mach number M= 0.8 (that is 80% of the speed
of sound at this altitude) with an angle of attack α = 2◦ . The target lift coefficient
is c�L = 1 . Also, the airfoil thickness must be equal to or larger than a minimum
value (t� = 0.095, normalized by the airfoil chord) to ensure the airfoil does not
break during flight. The cruise conditions and thickness constraint are based on [29,
p.484–487], [85]. The airfoil optimization problem is then

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 159

min cD (drag coefficient)
s.t. c�L = 1 (required lift coefficient)

t� = 0.095 (min. allowed thickness at 0.2–0.8 of chord)

α = 2◦ (cruise angle of attack)

M = 0.8 (cruise Mach number)

h = 35,000ft (cruise altitude)

(24)

Table 8 Results for mathematical tests functions–Individual component contribution

160 Y. Tenne

Fig. 6 The forces operating on an aircraft at flight. The angle-of-attack (α) is the measured
approximately between the velocity and the airfoil chord.

Fig. 7 PARSEC design
variables

Accordingly, we used the objective function

f =
|cL− c�L |

max{cL,max− c�L ,c
�
L − cL,min}

+
cD

cD,max
+

max{t� − t , 0}
t�

(25)

where cL,max = 1.5 , cL,min = −0.5 are the assumed extremal values for the lift coeffi-
cient and cD,max = 0.2 is an assumed maximal drag coefficient. For cL,min , cL,max and
cD,max only rough estimates are needed since they only normalize the objectives.

To generate a candidate airfoil we used the PARSEC parameterization which uses
11 design variables [108]. Figure 7 shows an example of this. We set the bounds of
these design variables based on previous studies [41, 86] and Table 9 gives their
values. To ensure a closed airfoil shape we set the leading edge gap as ΔzTE = 0 .
Also, to avoid unrealistic shapes where the lower airfoil curve intersects the upper
curve we set the trailing edge angles to satisfy βTE � αTE (effectively βTE = αTE + θ
where θ � 0) .

To obtain the lift coefficient and drag coefficient of candidate airfoils the opti-
mization algorithm used XFoil, an analysis code for subsonic isolated airfoils based
on the panel method [26]. Each airfoil evaluation required approximately 30 seconds
on a desktop computer. We set the limit of function evaluations to f emax = 150 .

Figure 8 shows an airfoil found by the proposed algorithm and the variation of
the pressure coefficient (cP) along the upper and lower airfoil curves. The airfoil
yields a lift coefficient of cL = 1.019 and a drag coefficient cD = 0.023 and satisfies

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 161

Table 9 PARSEC design variables and their bounds

(a) Airfoil geometry (b) Pressure coefficient change

Fig. 8 An airfoil obtained by the proposed algorithm. (a) shows the airfoil geometry. (b)
shows the change of pressure coefficient along the upper and lower airfoil curves and the
airfoil is shown below for reference

the minimum thickness requirement (minimum thickness at 0.2–0.8 of chord is t =
0.097). Figure 8(b) shows the pressure coefficient change along the upper and lower
airfoil curves. A pressure jump on the upper curve around 0.7 of the chord indicates
a shockwave, which is expected due to the high subsonic cruise speed (M = 0.8).

We have also benchmarked the proposed algorithm against the four reference al-
gorithms from the Sect. 4.1 and have performed a statistical analysis as in Sects. 4.2–
4.3. Table 10 shows the test statistics from which it follows that also in this real-world
application the proposed algorithm outperformed the four reference algorithms.

162 Y. Tenne

Table 10 Results for the airfoil shape optimization

5 Summary

Modern engineering design optimization uses computer simulations and as such it is
cast as a problem of optimizing an expensive black-box function. To efficiently and
effectively solve such problems we have proposed a new model-assisted memetic
algorithm. The proposed algorithm combines several optimization approaches such
as: global–local optimization, modelling and memetic optimization. It first trains
and selects a global model which is an artificial neural network and seeks the op-
timum of this model. It then uses a local search to improve this predicted opti-
mum. This sequence is repeated until the number of function evaluations reaches
the prescribed limit. Compared to existing studies the proposed algorithm contains
three main novelties: a) it selects all models under a unified and statistically-sound
framework of model selection and complexity control, and this gives optimal models
which are adapted during the search b) it uses an improved trust-region framework
to converge to a true optimum while replacing the classical quadratic models with
Kriging models and adapting these models during the search and c) it improves
global exploration by training the global model with modified sites.

An extensive performance analysis has been provided. Results show the proposed
algorithm outperformed four model-assisted EAs on eight well-known mathemat-
ical test functions. The individual contribution of the proposed global search and
local search component was also studied. While each component performs well on
a certain class of problems it also performs poorly on another. This emphasizes the
advantage of the global–local approach used. Lastly, the proposed algorithm was
also applied to a real-world application of airfoil shape optimization where it also
performed better than the reference algorithms.

References

1. Akaike, H.: Information theory and an extension of the maximum likelihood principle.
In: Proceedings of the 2nd International Symposium on Information Theory, Akadémiai
Kiadó, Budapest, pp. 267–281 (1973)

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 163

2. Alexandrov, N.M., Lewis, R.M., Gumbert, C.R., Green, L.L., Newma, P.A.: Optimiza-
tion with variable-fidelity models applied to wing design. In: Proceedings of the 38th
Aerospace Sciences Meeting and Exhibit, American Institute for Aeronautics and As-
tronautics, Reston, Virginia (2000)

3. Anderson, D.R., Burnham, K.P., White, G.C.: Comparison of Akaike information cri-
terion and consistent Akaike information criterion for model selection and statistical
inference from capture-recapture studies. Journal of Applied Statistics 25(2), 263–282
(1998)

4. Barthelemy, J.F.M., Haftka, R.T.: Approximation concepts for optimum structural de-
sign – a review. Structural optimization 5, 129–144 (1993)

5. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press,
Princeton (1961)

6. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New
York (1995)

7. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A
rigorous framework for optimization of expensive functions by surrogates. Structural
Optimization 17(1), 1–13 (1999)

8. Box, G.E.P., Draper, N.R.: Empirical Model Building and Response Surface. John Wi-
ley and Sons, New York (1987)

9. Brent, R.P.: Algorithms for Minimization Without Derivatives, 3rd edn. Dover Publica-
tions, New York (2002)

10. Broomhead, D., Lowe, D.: Multivariate functional interpolations and adaptive net-
works. Complex Systems 2, 321–355 (1988)

11. Buhman, M.D.: Radial Basis Functions Theory and Implementations. Cambridge
Monographs on Applied and Computational Mathematics, vol. 12. Cambridge Univer-
sity Press, Cambridge (2003)

12. Burnham, K.P., Anderson, D.R.: Model selection and inference: A Practical
Information-theoretic Approach. Springer, New York (1998)

13. Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic Algorithm TOOL-
BOX For Use with MATLAB, Version 1.2. Department of Automatic Control and Sys-
tems Engineering, University of Sheffield, Sheffield (1994)

14. Conn, A.R., Scheinberg, K., Toint, P.L.: On the convergence of derivative-free methods
for unconstrained optimization. In: Iserles, A., Buhmann, M.D. (eds.) Approximation
Theory and Optimization: Tributes to M.J.D. Powell, pp. 83–108. Cambridge Univer-
sity Press, Cambridge (1997)

15. Conn, A.R., Scheinberg, K., Toint, P.L.: Recent progress in unconstrained nonlinear
optimization without derivatives. Mathematical Programming 79, 397–414 (1997)

16. Conn, A.R., Scheinberg, K., Toint, P.L.: A derivative free optimization algorithm in
practice. In: Proceedings of the Seventh AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, American Institute for Aeronautics and
Astronautics, Reston, Virginia, AIAA Paper AIAA-1998-4718 (1998)

17. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. SIAM, Philadelphia
(2000)

18. Conover, W.: Practical Nonparametric Statistics, 2nd edn. John Wiley and Sons, New
York (1980)

19. Cressie, N.A.C.: The origins of Kriging. Mathematical Geology 22(3), 239–252 (1990)
20. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)
21. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)

164 Y. Tenne

22. Demmel, J.W.: The geometry of ill-conditioning. Computer Journal 3(2), 201–229
(1987)

23. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Classics in Applied Mathematics. SIAM Publishing, Philadelphia
(1996)

24. Dixon, L.C.W., Szegö, G.P.: The global optimization problem: An introduction. In:
[25], pp. 1–15 (1978)

25. Dixon, L.C.W., Szegö, G.P. (eds.): Towards Global Optimisation 2. North-Holland Pub-
lishing Company, Amsterdam (1978)

26. Drela, M., Youngren, H.: XFOIL 6.9 User Primer. Department of Aeronautics and As-
tronautics, Massachusetts Institute of Technology, Cambridge, MA (2001)

27. Eby, D., Averill, R.C., Punch III, W.F., Goodman, E.D.: Evaluation of injection island
GA performance on flywheel design optimization. In: Proceedings of the Third Confer-
ence on Adaptive Computing in Design and Manufacturing–ACDM 1998, pp. 121–136.
Springer, London (1998)

28. Fang, K.T., Li, R., Sudjinato, A.: Design and Modeling for Computer Experiments.
Chapman and Hall, Boca Raton (2006)

29. Filippone, A.: Flight Performance of Fixed and Rotary Wing Aircraft, 1st edn. Elsevier,
Amsterdam (2006)

30. Gaspar-Cunha, A., Vieira, A.: A multi-objective evolutionary algorithm using neural
networks to approximate fitness evaluations. International Journal of Computers, Sys-
tems and Signals 6(1), 18–36 (2005)

31. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimiza-
tion methods and computational intelligence. International Review Journal Progress in
Aerospace Sciences 38(1), 43–76 (2002)

32. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

33. Griewank, A.O.: Generalized descent for global optimization. Journal of Optimization
Theory and Applications 34, 11–39 (1981)

34. Groch, A., Vidigal, L.M., Director, S.W.: A new global optimization method for elec-
tronic circuit design. IEEE Transactions on Circuit and Systems 32(2), 160–170 (1985)

35. Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better cluster-
ings. In: Munson, E.V., Furuta, R., Maletic, J.I. (eds.) Proceedings of the 2002 ACM
Symposium on Document Engineering, in conjunction with the eleventh ACM Inter-
national Conference on Information and Knowledge Management–CIKM 2002, New
York, pp. 600–607 (2002)

36. Hardy, G.H.: Weierstrass’s non-differentiable function. Transactions of the American
Mathematical Society 17, 301–325 (1916)

37. Hart, W.E., Belew, R.K.: Optimization with genetic algorithm hybrids that use local
search. In: Belew, R.K., Mitchell, M. (eds.) Adaptive Individuals in Evolving Popula-
tions: Models and Algorithms, Santa Fe Institute Studies in the Sciences of Complexity,
ch. 27, pp. 483–496. Addison-Wesley, Reading (1995)

38. Hart, W.E., Krasnogor, N., Smith, J.E.: Special issue on memetic algorithms. Evolu-
tionary Computation 12(3) (2004)

39. Hart, W.E., Krasnogor, N., Smith, J.E.: Recent Advances in Memetic Algorithms. Stud-
ies in Fuzziness and Soft Computing, vol. 166. Springer, Heidelberg (2005)

40. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall,
Upper Saddle River (1999)

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 165

41. Holst, T.L., Pulliam, T.H.: Aerodynamic shape optimization using a real-number-
encoded genetic algorithm. In: Proceedings of the 19th AIAA Applied Aerodynam-
ics Conference, American Institute for Aeronautics and Astronautics, Reston, Virginia,
AIAA Paper AIAA-2001-2473 (2001)

42. Hurvich, C.M., Tsai, C.L.: Regression and time series model selection in small samples.
Biometrika 76(2), 297–307 (1989)

43. Ingber, L.A., Rosen, B.: Genetic algorithms and very fast simulated reannealing: A
comparison. Mathematical and Computer Modelling 16(11), 87–100 (1992)

44. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search
in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE
Transactions on Evolutionary Computation 7, 204–223 (2003)

45. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodeling techniques
under multiple modeling criteria. Structural Optimization 23(1), 1–13 (2001)

46. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with
approximate fitness functions. IEEE Transactions on evolutionary computation 6(5),
481–494 (2002)

47. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs.
Journal of Statistical Planning and Inference 26(2), 131–148 (1990)

48. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13, 455–492 (1998)

49. de Jong, K.A.: Genetic algorithms are NOT function optimizers. In: Whitley, D.L. (ed.)
Foundations of Genetic Algorithms 2, pp. 5–17. Morgan Kaufmann, San Mateo (1993)

50. de Jong, K.A., Spears, W.M.: An analysis of the interacting roles of population size
and crossover in genetic algorithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990.
LNCS, vol. 496, pp. 38–47. Springer, Heidelberg (1991)

51. Kansa, E.J., Hon, Y.C.: Circumventing the ill-conditioning problem with multiquadric
radial basis functions: Applications to elliptic partial differential equations. Computers
and Mathematics with Applications 39(7), 123–137 (2000)

52. Kim, H.S., Cho, S.B.: An efficient genetic algorithm with less fitness evaluation by
clustering. In: Proceedings of 2001 IEEE Conference on Evolutionary Computation,
pp. 887–894. IEEE, Piscataway (2001)

53. Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., Rao, C.R., Krishna-
iah, P.R. (eds.) Handbook of Statistics, pp. 261–308. Elsevier, Amsterdam (1996)

54. Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: Model, taxon-
omy, and design issues. IEEE Transactions on Evolutionary Computation 9(5), 474–488
(2005)

55. Ku, K., Mak, M., Siu, W.: A study of the Lamarckian evolution of recurrent neural
networks. IEEE Transactions on Evolutionary Computation 4, 31–42 (2000)

56. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathemati-
cal Statistics 22(1), 79–86 (1951)

57. Kushner, H.J.: A versatile stochastic model of a function of unknown and time varying
form. Journal of Mathematical Analysis and Applications 5(1), 150–167 (1962)

58. Laslett, G.M.: Kriging and splines: An empirical comparison of their predictive perfor-
mance in some applications. Journal of the American Statistical Association 89(426),
391–400 (1994)

59. Leontaritis, I.J., Billings, S.A.: Model selection and validation for non-linear systems.
International Journal of Control 45(1), 311–341 (1986)

166 Y. Tenne

60. Liang, K.H., Yao, X., Newton, C.: Evolutionary search of approximated N-dimensional
landscapes. International Journal of Knowledge-Based Intelligent Engineering Sys-
tems 4(3), 172–183 (2000)

61. Linhart, H., Zucchini, W.: Model Selection. Wiley Series in Probability and Mathemat-
ical Statistics. Wiley-Interscience Publication, New York (1986)

62. Lorentz, G.G.: Approximation of Functions. Rinehart and Winston, New York (1966)
63. Madych, W.R.: Miscellaneous error bounds for multiquadric and related interpolators.

Computers and Mathematics with Applications 24(12), 121–138 (1992)
64. Mann, H.B., Whitney, D.R.: On a test whether one of two variables is stochastically

larger than the other. The Annals of Mathematical Statistics 18, 50–60 (1947)
65. Marida, K., Marshall, R.: Maximum likelihood estimation of models for residual co-

variance in spatial regression. Biometrika 71(1), 135–146 (1984)
66. Matheron, C.: Principles of geostatistics. Economic Geology 58, 1246–1266 (1963)
67. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for se-

lecting values of input variables in the analysis of output from a computer code. Tech-
nometrics 21(2), 239–245 (1979)

68. Meckesheimer, M., Booker, A.J., Barton, R.R., Simpson, T.W.: Computationally inex-
pensive metamodel assessment strategies. AIAA Journal 40(10), 2053–2060 (2002)

69. Medgyessy, P.: Decomposition of Superpositions of Distribution Functions. Akadémiai
Kiadó, Budapest (1961)

70. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin
(2004)

71. Mitchell, T.J., Morris, M.D.: Bayesian design and analysis of computer experiments:
Two examples. Statistica Sinica 2 (1992)

72. Mockus, J., Vitešis, V., Žilinskas, A.: The application of Bayesian methods for seeking
the extremum. In: [25], pp. 117–130 (1978)

73. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units.
Neural Computation 1(2), 281–294 (1989)

74. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: To-
ward memetic algorithms. Tech. Rep. 826, California Institute of Technology, Pasadena,
California (1989)

75. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic
algorithm I: Continuous parameter optimization. Evolutionary Computations 1(1), 25–
49 (1993)

76. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product
Optimization Using Designed Experiments. John Wiley and Sons, New York (1995)

77. Norman, M., Moscato, P.: A competitive-cooperative approach to complex combina-
torial search. Tech. Rep. 790, California Institute of Technology, Pasadena, California
(1989)

78. Ong, Y.S., Keane, A.J.: Meta-Lamarckian learning in memetic algorithm. IEEE Trans-
actions On Evolutionary Computation 8(2), 99–110 (2004)

79. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally ex-
pensive problems via surrogate modeling. AIAA Journal 41(4), 687–696 (2003)

80. Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary op-
timization frameworks for high-fidelity engineering design problems. In: Knowledge
Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing,
vol. 167, pp. 307–332. Springer, Berlin (2005)

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 167

81. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algo-
rithms: A comparative study. IEEE Transactions on Systems, Man, and Cybernetics–
Part B 36(1), 141–152 (2006)

82. Ong, Y.S., Krasnogor, N., Ishibuchi, H.: Special issue on memetic algorithms. IEEE
Transactions on Evolutionary Computation 37(1) (2007)

83. Ong, Y.S., Lim, M.H., Neri, F., Ishibuchi, H.: Special issue on emerging trends in soft
computing–memetic algorithms. Journal of Soft Computing (to appear)

84. Owen, A.B.: Orthogonal arrays for computer experiments, integration and visualiza-
tion. Statistica Sinica 2, 439–452 (1992)

85. Oyama, A., Obayashi, S., Nakahashi, K.: Real-coded adaptive range genetic algorithm
and its application to aerodynamic design. International Journal of the Japan Society of
Mechanical Engineering 43(2), 124–129 (2000)

86. Oyama, A., Obayashi, S., Nakahashi, T.: Real-coded adaptive range genetic algorithm
applied to transonic wing optimization. In: Schoenauer, M. (ed.) The 6th International
Conference on Parallel Problem Solving from Nature–PPSN VI, pp. 712–721. Springer,
Heidelberg (2000)

87. Pawitan, Y.: In All Likelihood: Statistical Modelling and Inference Using Likelihood.
Oxford Scientific Publishing, Oxford (2001)

88. Poloni, C., Giurgevich, A., Onseti, L., Pediroda, V.: Hybridization of a multi-objective
genetic algorithm, a neural network and a classical optimizer for a complex design
problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineer-
ing 186(2-4), 403–420 (2000)

89. Powell, M.J.D.: UOBYQA: Unconstrained optimization by quadratic approximation.
Mathematical Programming, Series B 92, 555–582 (2002)

90. Quagliarella, D., Vicini, A.: Coupling genetic algorithms and gradient based optimiza-
tion techniques. In: Quagliarella, D., Périaux, J., Poloni, C., Winter, G. (eds.) Genetic
Algorithms in Engineering and Computer Science, ch. 14, pp. 288–309. John Wiley and
Sons, Chichester (1997)

91. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness landscape
approximations. In: Eiben, A.E., Bäck, T., Schwefel, H.P. (eds.) Proceedings of the 5th
International Conference on Parallel Problem Solving from Nature–PPSN V, pp. 87–
96. Springer, Berlin (1998)

92. Ratle, A.: Optimal sampling strategies for learning a fitness model. In: The 1999 IEEE
Congress on Evolutionary Computation–CEC 1999, pp. 2078–2085. IEEE, Piscataway
(1999)

93. Renderes, J.M., Bersini, H.: Hybridizing genetic algorithms with hill-climbing meth-
ods for global optimization: Two possible ways. In: Sebald, A., Fogel, L.J. (eds.) Pro-
ceedings of the Third Annual Conference on Evolutionary Programming, pp. 312–317.
World Scientific, Singapore (1994)

94. Renderes, J.M., Flasse, S.P.: Hybrid methods using genetic algorithms for global opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics–Part B 26(2), 243–258
(1996)

95. Reyes-Sierra, M., Coelle Coello, C.A.: Dynamic fitness inheritance proportion for
multi-objective particle swarm optimization. In: Keijzer, M. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference–GECCO 2006, pp. 89–90. Associ-
ation for Computing Machinery, New York (2006)

96. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods part I:
Clustering methods. Mathematical Programming 39, 27–56 (1987)

168 Y. Tenne

97. Rosenbrock, H.H.: An automated method for finding the greatest of least value of a
function. The Computer Journal 3, 175–184 (1960)

98. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Statistical Science 4(4), 409–435 (1989)

99. Santner, T.J., Williams, B.J., Notz, W.: The Design and Analysis of Computer Experi-
ments. Springer Series in Statistics. Springer, New York (2003)

100. Schaback, R.: Multivariate interpolation and approximation by translates of a basis
function. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory VIII, pp. 491–
514. World Scientific, Singapore (1995)

101. Schwefel, H.P.: Numerical Optimization of Computer Models, Interdisciplinary Sys-
tems Research, vol. 26. John Wiley and Sons, Chichester (1981)

102. Sefrioui, M., Périaux, J.: Aerodynamic shape optimization using a hierarchical genetic
algorithm. In: European Conference on Computational Methods in Applied Sciences
and Engineering–ECCOMAS 2000, European Committee on Computational Methods
in Applied Sciences, pp. 1–18 (2000)

103. Seront, G., Bersini, H.: A new GA-local search hybrid for continuous optimization
based on multi level single linkage clustering. In: Whitley, D.L., Beyer, H., Cantu-
Paz, E., Goldberg, D.E., Parmee, I., Spector, L. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference–GECCO 2000, pp. 90–95. Morgan Kaufmann,
San Francisco (2000)

104. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th
edn. Chapman and Hall, Boca Raton (2007)

105. Simkin, J., Trowbridge, C.W.: Optimizing electromagnetic devices combining direct
search methods with simulated annealing. IEEE Transactions on Magnetics 28(2),
1545–1548 (1992)

106. Simpson, T.W., Poplinski, J.D., Koch, P.N., Allen, J.K.: Metamodels for computer-
based engineering design: Survey and recommendations. Engineering with Comput-
ers 17, 129–150 (2001)

107. Smith, R.E., Dike, B., Stegmann, S.: Fitness inheritance in genetic algorithms. In:
George, K.M. (ed.) Proceedings of the 1995 ACM Symposium on Applied Computing–
ACM 1995, pp. 345–350. Association for Computing Machinery, New York (1995)

108. Sobieckzy, H.: Parametric airfoils and wings. In: Fujii, K., Dulikravich, G.S.,
Takanashi, S. (eds.) Recent Development of Aerodynamic Design Methodologies: In-
verse Design and Optimization, Notes on Numerical Fluid Mechanics, vol. 68, pp. 71–
88. Vieweg, Braunschweig (1999)

109. Søren, L.N., Nielsen, H.B., Søndergaard, J.: DACE: A MATLAB Kriging toolbox.
Technical Report IMM-TR-2002-12, Informatik and Mathematical Modelling, Tech-
nical University of Denmark, Lingby, Copenhagen (2002)

110. Stuckman, B.E.: A global search method for optimizing nonlinear systems. IEEE Trans-
actions on Systems, Man, and Cybernetics 18(6), 965–977 (1988)

111. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.:
Problem definitions and evaluation criteria for the CEC 2005 special session on real-
parameter optimization. Technical Report KanGAL 2005005, Nanyang Technological
University, Singapore and Kanpur Genetic Algorithms Laboratory, Indian Institute of
Technology Kanpur, India (2005), http://web.mysites.ntu.edu.sg/epnsugan/
PublicSite/SharedDocuments/Forms/AllItems.aspx

112. Tenne, Y.: Metamodel accuracy assessment in evolutionary optimization. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation–CEC 2008. IEEE World
Congress on Computational Intelligence, pp. 1505–1512. IEEE, Piscataway (2008)

http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/SharedDocuments/Forms/AllItems.aspx
http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/SharedDocuments/Forms/AllItems.aspx

A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 169

113. Tenne, Y., Armfield, S.W.: A memetic algorithm using a trust-region derivative-free op-
timization with quadratic modelling for optimization of expensive and noisy black-box
functions. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic
and Uncertain Environments. Studies in Computational Intelligence, vol. 51, pp. 389–
415. Springer, Berlin (2007)

114. Tenne, Y., Armfield, S.W.: A versatile surrogate-assisted memetic algorithm for opti-
mization of computationally expensive functions and its engineering applications. In:
Yang, A., Shan, Y., Thu Bui, L. (eds.) Success in Evolutionary Computation. Studies in
Computational Intelligence, vol. 92, pp. 43–72. Springer, Heidelberg (2008)

115. Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on Opti-
mization 7(1), 1–25 (1997)

116. Törn, A.: Global optimization as a combination of global and local search. In: Proceed-
ings of Computer Simulation Versus Analytical Solutions for Business and Economic
Models, School of Business Administration, Göteborg, Göteborg, Sweden. Business
Administration Studies–BAS, vol. 17, pp. 191–206 (1973)

117. Törn, A., Žilinskas, A.: Global Optimization. LNCS, vol. 350. Springer, Heidelberg
(1989)

118. Törn, A., Ali, M.M., Viitanen, S.: Stochastic global optimization: Problems classes and
solution techniques. Journal of Global Optimization 14, 437–447 (1999)

119. Žilinskas, A.: A review of statistical models for global optimization. Journal of Global
Optimization 2, 145–153 (1992)

120. Waldorp, L.J., Raoul, P.P.P., Huizenga, H.M.: Goodness-of-fit and confidence intervals
of approximate models. Journal of Mathematical Psychology 50, 203–213 (2006)

121. Winfield, D.: Function minimization by interpolation in a data table. Journal of the
Institute of Mathematics and its Applications 12, 339–347 (1973)

122. Yen, J., Liao, J.C., Lee, B., Randolph, D.: A hybrid approach to modeling metabolic
systems using a genetic algorithm and simplex method. IEEE Transactions on Systems,
Man, and Cybernetics–Part B 28(2), 173–191 (1998)

123. Yun, Y., Gen, M., Seo, S.: Various hybrid methods based on genetic algorithm with
fuzzy logic controller. Journal of Intelligent Manufacturing 14, 401–419 (2003)

124. Zhang, B.: Generalized K-harmonic means–dynamic weighting of data in unsupervised
learning. Tech. Rep. HPL-2000-137, Hewlett-Packard Labs (2000)

125. Zhang, B., Hsu, M., Dayal, U.: K-harmonic means–a data clustering algorithm. Tech.
Rep. HPL-1999-124, Hewlett-Packard Labs, Software Technology Laboratory, HP Lab-
oratories Palo Alto (1999)

126. Zhou, Z., Ong, Y.S., Lim, M.H., Lee, B.: Memetic algorithms using multi-surrogates for
computationally expensive optimization problems. Journal of Soft Computing 11(10),
957–971 (2007)

127. Zhou, Z., Ong, Y.S., Nair, P.B., Keane, A.J., Lum, K.Y.: Combining global and local
surrogate models to accelerate evolutionary optimization. IEEE Transactions On Sys-
tems, Man and Cybernetics-Part C 37(1), 66–76 (2007)

	A Model-Assisted Memetic Algorithm for Expensive Optimization Problems
	Introduction
	{\it Hybrid or Memetic Algorithms}
	{\it Reducing the Number of Expensive Evaluations}
	{\it Model-Assisted Algorithms}

	Model Selection and Complexity Control
	The Proposed Algorithm
	{\it Initialization and Main Loop}
	{\it Modifying the Cache to Assist Exploration}
	{\it Generating the Global Model}
	{\it Selecting the Starting Site for the Local Search}
	{\it Improving the Optimum with the Local Search}
	{\it Caching New Sites}

	Performance Analysis
	{\it Reference Algorithms and Test Procedure}
	{\it Mathematical Test Functions}
	{\it Individual Component Contribution}
	{\it Real-World Application}

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

