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Abstract. Capturing the metaphor of evolutionary transitions in biological complex-
ity, the Evolutionary Transition Algorithm (ETA) evolves solutions of increasing
structural and functional complexity from the symbiotic interaction of partial ones.
In this chapter we show that the ETA indeed captures this idea and we illustrate this
on instances of the Binary Constraint Satisfaction problem. The results make the
ETA a promising optimization approach that requires more extensive investigation
from both a theoretical and optimization perspective. We analyze here, in depth,
some of the design choices that are made for the algorithm. The analysis of these
choices provides insight on the plasticity of the algorithm toward alternative choices
and other kinds of problems.

1 Introduction

In biology, evolutionary transitions theory [14, 15] provides a generalized explana-
tion of how organisms of increasing complexity may have emerged from the interac-
tion of simpler life forms. The Evolutionary Transition Algorithm (ETA), presented
here, captures this metaphor to create structurally and functionally more complex
solutions from the combination (interactions) of simpler ones (solutions that solve
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a smaller part of the problem, for example). As such, the goal of this chapter is
to show how a particular biological metaphor was transformed into an algorithm
with definite potential. Future investigations will attempt to show its relevance for
real-world applications.

Apart from its general contribution to the development of nature-inspired algo-
rithms, this new evolutionary algorithm was introduced to address some limitations
of the standard genetic algorithm (GA). One of these limitations follows from the
dependencies between the variables in the solution representation. In the standard
GA, new genotypes are produced by the recombination of existing ones. To avoid
the disruption of good building blocks, one needs to ensure that correlated parts of a
solution are close to one another in the genotype . For many problems, determining
the internal structure of the genotype is a problem on its own since the interdepen-
dencies between the variables of the problem are not known. The compositional
mechanism implicit to the ETA provides a way to discover the closely related vari-
ables of the problem during the evolutionary process while at the same time looking
for the solution to the complete problem. An additional motivation follows from the
difficulty of scaling the GA to evolve larger solutions for more extensive problems.
By taking the compositional approach the evolutionary process can first focus on
solving parts of the problem, which can be combined later just like the modular
watch constructed by Simon’s watchmaker [22].

We show here, using the Binary Constraint Satisfaction problem (BINCSP) as
an illustration, that the ETA evolves increasingly complex solutions from the in-
teractions of simpler evolving solutions. The results for BINCSP confirm that the
ETA is promising approach that requires more extensive investigation from both a
theoretical and practical optimization perspective. Especially decision problems in
general [11] and BINCSPs in particular seem to be very well suited for this new evo-
lutionary algorithm. We provide an in depth analysis of the design choices that are
made for the algorithm: choices related to the configuration of the initial population,
the introduction of a decomposition operator which breaks down more complex so-
lutions into simpler components and the impact of the transition condition on the
performance of the algorithm.

This chapter is partitioned as follows. Before discussing the algorithm, which
will be explained using BINCSP, a non-exhaustive overview of related work is pro-
vided. Afterwards, a set of BINCSP simulations and their results are shown and
explained. Apart from a brief overview of earlier results, we provide new results
on particular design choices that can be made for the ETA. Finally, a summary is
provided and some conclusions are drawn concerning the usefulness and the future
of this algorithm.

2 Related Work

There are two ideas behind the compositional search approach: the first idea con-
cerns the use of symbiotic relations to identify good collaborations, and the second
idea is concerned with the aggregation of complex solutions from the interaction
of partial ones. The related work listed here falls under either one or both of these
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categories. It is necessary to note that what we are going to provide is not a full list but
a rough picture of the major research work related to the topic. Consequently, certain
publications which are very similar to those mentioned here might be missing.

The very first GA-related reference that can be found on the evolution of com-
plete solutions from the combination of partial ones is the work on the messy GA
[5, 6, 7]. The messy GA has the structure of a classical GA. When two partial solu-
tions are selected for reproduction in the messy GA, their combined genetic material
creates a bigger solution that is defined at a higher level of complexity. Messy GAs
therefore have the idea of combining partial solutions. However, this approach dif-
fers from the one we propose here: fitness effects caused by the interactions of the
partial solutions are not taken into account. Partial solutions are evaluated and se-
lected on their own as in the classical GA. It is during the process of reproduction
that combination occurs. Messy GAs therefore lack the idea of a transition that op-
erates on the behavior of good symbionts.

Other approaches focus on the collaboration between partial solutions to con-
struct a full solution for a particular problem. In the Parisian Approach [17, 18]
for example, the algorithm intends not to evolve a full solution to a problem but
rather a collection of partial solutions that together solve the entire problem. This
approach takes an additional step into the direction of compositional evolutionary
search. However, the Parisian approach lacks a transition step that merges the set of
partial solutions into a full solution. In this respect, the Parisian approach is more
related to previous work on multilevel selection [13].

Other approaches introduce an evolutionary “divide and conquer” mechanism
like the cooperative co-evolutionary GA [16, 30]. In this algorithm, the problem
consists of a collection of sub-problems that can be solved in isolation. Afterwards
these partial solutions can be recombined into a full solution for the global problem.
The major difference with the ETA resides in the explicit divide and conquer frame-
work. In the cooperative co-evolutionary GA, the process divides the problem into
collaborating sub-problems; for each sub-problem, the algorithm evolves solutions
that collaborate with one another in order to address the entire problem. The way to
divide the problem can become an issue when the problem structure to learn is not
trivial or cannot be easily identified.

Finally, a truly compositional approach that uses both the concept of symbiosis
and transitions is the Symbiogenetic Model (SEAM) [27, 28, 29]. This model con-
siders a population of partial solutions that interact with one another through the
mechanism of symbiosis. In this population, the good symbiotic relations are iden-
tified and produce a new partial solution through a transition. This model initially
appears very similar to ETA. There is, however, a major difference between SEAM
and ETA: SEAM does not generate a succession of populations by reproducing the
parent population through the mechanism of fitness proportional selection. It ran-
domly selects pairs of individuals and places them into a symbiotic relation. It then
replaces the symbiotic relation by a new individual when it performs better than the
parents in isolation. The condition under which this transition occurs also differs
from ETA: it uses the concept of pareto optimality with respect to an evolutionary
context to define whether a symbiosis performs better or worse than the parents
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alone. The result of this approach requires the model to include features about the
structure of the problem that needs to be solved like for instance the degree of mod-
ularity of the problem. Furthermore, in order to work, it requires the problem to
be fully hierarchically decomposable, which covers only a subset of the structured
problem class.

Finally, the Hierarchical Genetic Algorithm (HGA) [23] is an algorithm very
similar to SEAM. The major difference resides in the fact that the HGA introduces,
in its implementation, explicit information concerning the hierarchical nature of the
problem that needs to be solved (by hard coding the hierarchical search in the pro-
cess and therefore disclosing the emergent aspect present in SEAM) and optimizes
the sampling approach so that only the best samples are present for evaluation at all
time, considerably speeding up the search process.

3 BINCSP: The Illustrating Test Case

Before we explain the algorithm we briefly define the problem that is used to illus-
trate the technique.

Constraint Satisfaction Problems (CSP) [24] are NP-complete problems that are
defined by a set of variables X associated with possible domain values D and a set
of constraints C defined on this set of variables that specify which combinations of
assignments can or cannot occur. The problem consists of finding an assignment to
the whole set of variables from the associated domain values so that all constraints
are satisfied. This makes the problem a decision problem [11]. If an assignment
is impossible then the corresponding problem is said to be unsolvable. A variant
of this problem is the BINCSP, where each constraint is defined on at most two
variables. This introduces no restriction on the general form of CSP as every CSP
can be rewritten into a BINCSP and vice versa [19].

Let us take as an illustration the following BINCSP: consider a set of six vari-
ables: X = {x1,x2,x3,x4,x5,x6} all taking values in D = {1,2,3}. We consider the
following set of constraints:

C = {(x1 �= x2),(x2 �= x3),(x3 �= x1),
(x4 �= x5),(x5 �= x6),(x6 �= x4),
(x1 = x4),(x2 = x5),(x3 = x6)}

(1)

This constraints setup consists of 9 binary constraints. Each binary constraints de-
fines a relation on 2 variables. For each pair of variables, only one binary constraint
may be defined.

The problem consists of finding the right assignment for the variables so that all
these constraints are satisfied. We denote the assignment of one variable xi ∈ X with
value d ∈ D by 〈i,d〉 where i is the index of the variable we consider. Using this
notation, we represent the simultaneous assignments of variables x1, x2 and x4 with
respective values v1, v2 and v4 as

(〈1,v1〉,〈2,v2〉,〈4,v4〉)
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4 General Description of the ETA

As can be seen in Figure 1, the ETA follows a classical evaluate-select-reproduce
evolutionary loop. As a GA it works with a limited fixed size population which is
evaluated and reproduced at each iteration. Before the evaluation phase, all (free)
individuals are paired up. This grouping can be performed in different ways. Here
we opted for the most simple form, i.e. random pairing. Once each individual has a
partner, a fitness score is assigned based on their own properties and the properties
they obtain from the interaction with the other individual. The combination of both
properties is referred to as the induced phenotype, which will be explained in more
detail later. The fitness score will guide the selection process as in the GA and
selected individuals can reproduce in three different ways:

1. They can just reproduce their own genetic information, as in the GA.
2. To maintain interesting links, we also provide the possibility that both individuals

and their interaction are reproduced.

Fig. 1 Schematic overview of the ETA. The algorithm consists of three phases: 1) the pairing
up of partial solutions, 2) the evaluations of the interacting solutions and 3) the reproduction
of the solutions. Every iteration of these three steps produces a new population.
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3. Good symbionts which solve the partial problem completely are reproduced as
individuals at a higher level of complexity, meaning that their genetic information
is combined into a new individual.

Repeated iterations of this process produce individuals of increasing complexity
that solve an increasing proportion of the problem.

The following sections explain each part of the ETA in detail.

4.1 Representation of Basic Elements and Partial Solutions

A partial solution for BINCSP is a compound label which is not defined on all
variables of the variable set X . A compound label on, for instance, variable x1,x3

and x7 where each variable is instantiated with values d1, d3 and d7 respectively is
denoted by

(〈1,d1〉,〈3,d3〉,〈7,d7〉).
In the current description of ETA, we make a distinction between a partial solution
and a solution: A partial solution for the BINCSP is a compound label which does
not assign all variables of the variable set defined by the BINCSP. When all vari-
ables are assigned, we obtain a solution to the problem. The underlying idea behind
this distinction is that a solution defining a full genotype is the achievement of the
compositional search algorithm. We therefore speak of partial solution as long as
the algorithm is still in the process of evolving complexity, meaning it is still trying
various combinations of partial solutions with the hope of obtaining a full solution
to the problem. The representation of a (partial) solution is also called the genotype.

In its most basic form, a partial solution should correspond to the assignment
of exactly one variable. However, such solutions are meaningless by themselves as
each constraint is defined on exactly two variables. As a consequence, they need to
be evaluated during their interaction with other individuals.

The fact that basic elements of length 1 have a zero fitness has consequences
when considering a fitness-proportional selection model. Indeed, initializing the
population with length 1 partial solutions means that none of them can expect a pos-
itive fitness, i.e. be selected, without interacting with others. This lead us to think
that the most basic units of selection are not of length 1 but rather of at least length
2. In our simulations, we evaluated both scenarios (see simulations section for more
details) and observed that the length of the initial partial solutions has little impact
on the evolutionary process itself.

4.2 Interactions and the Induced Phenotype

In the ETA, pairs of (partial) solutions are bound by symbiotic relations. When
bound the two solutions exchange information. The result of this exchange is cap-
tured in the induced phenotype of the solution which can alter positively or nega-
tively the fitness of each of the solutions. We explicitly make the distinction between
phenotype and induced phenotype to stress that the latter is phenotype produced
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from both the genetic information of an individual and the effect of external factors,
like other population members and the environment, on the final phenotype.

Since the induced phenotype of an individual is constructed by combining the
information contained in its own genotype with the information contained in the
genotype of the other members of the symbiotic relation, conflicts in this informa-
tion may occur. In case of a conflict (i.e. two different values are assigned by the
partial solutions to the same variable), a conflict mediation strategy is applied here
that randomly chooses one of the possible values from the set of conflicting values.

As explained earlier, interactions are pairwise and created randomly using the
population of solutions, i.e. the solution can be linked to any other solution in the
population. Alternative strategies, based on multilevel selection [13] are currently
under investigation.

Let us briefly illustrate the process by which the induced phenotype is constructed
in the context of the BINCSP example. Suppose we have a partial solution s that
interacts with another partial solution sp. Both partial solutions are represented
through the following genotypes:

s = 〈1,α1〉,〈2,α2〉,〈9,α9〉
sp = 〈2,β2〉,〈4,β4〉,〈9,α9〉

In these two solutions, we observe that s is well defined for the variables 1, 2 and
9 and sp for the variables 2, 4 and 9. The value assigned to variable 9 is the same
for both partial solutions. However, the values assigned to variable 2 are not the
same, meaning that the solutions have a conflict to solve for this variable: we need
to choose between value α2 or β2. The conflict mediation strategy randomly chooses
between one of the conflicting values yielding in our specific example two possible
induced phenotypes:

ϕ(s,sp) = 〈1,α1〉,
〈

2,

(
α2

β2

)〉
,〈4,β4〉,〈9,α9〉

where α2 or β2 is chosen randomly with equal probability.
After conflict resolution, the resulting phenotype assigns exactly one value for

each variable that was assigned in s or sp. This phenotype is then used by the fitness
function to evaluate the partial solution. The details concerning the fitness function
and the way the partial solutions are evaluated in the context of BINCSP is provided
in the following section. Note first that the induced phenotypes of the members of
the symbiotic relation do not have to be the same for both partners since the process
decides randomly which value to use for each member independently. Thus both s
and sp can select α2, β2 or make different choices (s takes β2 and sp takes α2 or
vice versa).

4.3 Evaluation Functions

We consider two evaluation functions for BINCSP. The first function evaluates the
quality of the solution’s phenotype with respect to the entire constraints set. The
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second function is restricted only to the constraints that are defined on the variables
that are present in the partial solution.

Definition 1. The classical fitness evaluation for the ETA on BINCSP of a solution
s, fet (s) which interacts with a symbiotic partner sp and for which the induced phe-
notype of the interaction for s with sp is denoted by ϕ(s,sp) is given by following
equation:

fet(s) =
1
|C| ∑

c∈C

eval(ϕ(s,sp),c) (2)

where evalc(ϕ ,c) checks whether the compound label ϕ satisfies the constraint c or
not.

We have slightly adapted the notion of constraint satisfaction as we also need to
address partial solutions that have no assignment or incomplete assignment defini-
tions for a given constraint. We therefore suppose that a compound label satisfies a
constraint c if:

• it covers the constraints, i.e. there are assignments for all the variables comprised
in c in the compound label of the partial solution.

• the assignments do not violate the constraints.

This is summarized in the following equation:

eval(ϕ ,c) =
{

1 if (ϕ covers c) and (satis f ies(ϕ ,c))
0 otherwise

(3)

This fitness value gives an estimation of how the partial solution scores with respect
to the entire set of constraints. This means that small partial solutions, even if they
are made of good genetic material, cannot receive a high reward value in compar-
ison with larger partial solutions which, by assigning more variables increase their
chance of improving their score, even if some of these variables are incorrectly as-
signed. To obtain an objective value of how a partial solution scores with respect to
the sub-problem of constraints that are covered by the partial solution, we therefore
also consider a restricted version of this fitness function which limits the evaluation
to the covering set of constraints for this partial solution.

Definition 2. The covering set of constraints for a given genotype γ on the con-
straints set C is denoted by Ccov(γ) and consists of all the constraints of C which are
covered by γ:

Ccov(γ) = {c ∈C | γ covers c}.
With this covering set, we can now define the covering fitness function.

Definition 3. The covering fitness function of a solution s interacting with sp is
denoted fcov and is given by the following equation:

fcov(s) =
1

|Ccov(ϕ(s,sp))| ∑
c∈Ccov(ϕ(s,sp))

eval(ϕ(s,sp),c) (4)
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We typically use the first evaluation function to guide the evolutionary process, that
is, for selecting the best solutions for reproduction, while the second measure is used
as an observation measure for deciding whether the interacting partial solutions are
merged into one new solution.

The motivation for the use of two different fitness measures is the following: the
classical fitness function fet will tend to favor cooperation as bigger partial solutions
are more likely to receive a greater fitness than smaller partial solutions and we wish
the system to evolve a complete solution to the problem and therefore to favor in-
crease in the length of the solution genotype. The covering fitness does not capture
information with respect to the entire problem since partial solutions of any size
(bigger than 2) can have maximum fitness, which is 1. This function prevents the
system from evolving larger solutions as they will not perform better than smaller
partial solutions. This is the reason why we choose the classical fitness for the se-
lection process. However, when it comes to evaluating the quality of a symbiotic
relation, the covering fitness contains much more information than the classical fit-
ness. By limiting the evaluation to the problem actually covered by the symbiotic
relation, we obtain a measure of how well the relation performs with respect to the
sub-problem it addresses. The covering fitness therefore allows us to assess whether
a symbiotic relation should be preserved for future generations through the mecha-
nism of transitions.

4.4 Replication and Transitions

When selected for reproduction, a partial solution will have three possible options
(examples are based in BINCSP problem defined in Section 3:

1. Simple replication: In this case, one solution is replicated, that is, its genotype
is copied and passed on to its offspring (with possible mutations: the value of
variable 1 changed from 1 to 2 in the example below). It occurs when the solu-
tion scored sufficiently high to survive one more generation but did not perform
good enough within its symbiotic relation to see this relation survive or preserved
through a transition.

s = 〈1,1〉,〈2,2〉,〈3,2〉 −→ s′ = 〈1,2〉,〈2,2〉,〈3,2〉

2. Inherit symbiotic link: In this situation, the solution not only replicates itself but
also trigger the replication of its symbiotic partner. The symbiotic link that binds
both parents is also inherited by their offspring. This reproduction mode is a
step toward a transition; it is, however, a reversible step since both individuals
still exist independently. In the situation of BINCSP, we did not implement any
special condition for this mode to occur and it can therefore occur randomly at
each generation.

{
s = 〈1,1〉,〈2,2〉,〈3,2〉
sp = 〈2,1〉,〈5,1〉,〈6,3〉

}
−→

{
s′ = 〈1,1〉,〈2,2〉,〈3,3〉
sp′ = 〈2,1〉,〈5,1〉,〈6,3〉

}
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In the example, the covering fitness of the induced phenotype of both individuals
(s and sp) is less than 1. As a consequence, no transition occurs. Yet we can
replicate both partners and their link to check if we can improve it by choosing,
for instance, another value for variable 2. Again, mutation might occur when the
individuals are reproduced, as is the case here for variable 3 in individual s.

3. Transitions: This case occurs when the induced phenotype of an individual actu-
ally solves the sub-part of the problem completely, i.e. when the covering fitness
is equal to 1.0. In this case, the outcome of the symbiotic relation is replicated
instead of the original genotype of the solution. This means that the induced phe-
notype becomes the genotype of the offspring.

{
s = 〈1,1〉,〈2,2〉,〈3,3〉
sp = 〈2,1〉,〈5,2〉,〈6,3〉

}
−→ s′ = 〈1,1〉,〈2,2〉,〈3,2〉,〈5,2〉,〈6,3〉

In this example, the induced phenotype of s can be for instance:

ϕ(s,sp) = 〈1,1〉,〈2,2〉,〈3,2〉,〈5,2〉,〈6,3〉

The covering fitness of ϕ(s,sp) is 1. As a consequence a transition occurs, mak-
ing the genotype of s′ the same as the induced phenotype produced by the inter-
action of s and sp.

The second reproduction mode might look like an unnecessary step in the entire
process as it occurs randomly without any relation to the transition itself. Neverthe-
less, this mode may be very important for various reasons:

1. Even though this event occurs randomly, it is performed on individuals selected
according to some fitness proportionate selection scheme. In this way, only indi-
viduals which are potentially better get the chance to reproduce their symbiotic
partner. Consequently, it provides the conflict mediation strategy more chances
of finding a good combination.

2. It is a way to keep potentially good genetic material in the population as the
symbiotic partner might possess the genetic information that actually causes this
solution to be selected. In other words, their high fitness is a result of the combi-
nation of both partners. Therefore, we need to explore their relationship further.

3. Through a possible error during copying, a nearly good combination may become
the right combination. See the examples above.

Further evaluation is required for this part of the algorithm.
The third reproduction mode, the transition, creates solutions of higher complex-

ity: Small genotypes aggregate into larger genotypes that in turn, through interac-
tions with other genotypes, can aggregate into more complex genotypes until a full
solution emerges.

5 Evaluation of the ETA on Concrete BINCSP Instances

The objective of the current simulations is to demonstrate that ETA succeeds in
building complex solutions that can actually solve BINCSP problems. Since we
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will evaluate BINCSP instances of different complexities we may derive the subset
of problems on which the ETA performs well. Moreover, we examine here how
the ETA behaves when we change certain operations or conditions inherent to the
algorithm.

5.1 Simulation Setup

Each simulation has an almost similar setup and uses the same set of BINCSP in-
stances. These instances are randomly generated using RandomCSP package pro-
vided by [26] and produce instances with common statistical properties as the one
used in [25]. This allows us to compare the ETA with other coevolutionary ap-
proaches that were tested on this set (see [2]).

The complexity of the instances created by the tool can be tuned by two param-
eters p1 and p̄2. We let p1 and p̄2 vary from 0.1 up to 0.9 with a step size of 0.2.
In Table 1 these instances are classified according to their problem complexity into
either the easy or difficult class. For each combination of p1 and p̄2, 25 different
random problem instances for a BINCSP of 15 variables, each taking values in a
domain of size 15, were generated.

For each of the 25 problem instances, we perform 10 runs (each run using a
different random seed). The maximum amount of generations is set to 100000.
This means that for each setup of p1 and p̄2, 250 runs are performed in total.
This amount of runs for each problem instance should be sufficient to evaluate the
algorithm.

The initial population is created such that it contains all partial solutions of length
1, i.e. every variable-value combination is present once. We refer to this population
as a sound population.

During replication, the genotype may mutate with probability 0.001, i.e. the value
of a variable may be altered to some random value in the domain of the variable.
Transitions are performed when the covering fitness is 1.0.

The speed of the algorithm is determined as follows: Let e be the number of
evaluations in the run r where the optimal solution was found and emax the maximum
number of evaluations in the simulation run. We wish to evaluate the speed of the
algorithm on a scale of [0,1] where higher values mean that the algorithm needed
less evaluations to find a solution than lower values and the value 0 corresponds to

Table 1 Identification of easy and difficult BINCSP instances

Tightness ( p̄2)
0.1 0.3 0.5 0.7 0.9

D
en

si
ty

(p
1
) 0.1 easy easy easy easy difficult

0.3 easy easy easy difficult unsolvable
0.5 easy easy difficult unsolvable unsolvable
0.7 easy easy difficult unsolvable unsolvable
0.9 easy difficult unsolvable unsolvable unsolvable
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the situation where no solution was found in the given time. We have therefore the
following equation for the speed of the run r:

speed(r) =
{

0 if no solution found during r
emax−e

emax
if the optimum is found in e evaluations (5)

5.2 Observations

We collected different types of data over all the runs:

• The size of the solutions over time: We monitor the maximum and minimum
size of the solutions over time, together with the amount of overlap between the
symbiotic partners.

• The fitness of the solutions over time: We trace the best fitness, the average fit-
ness, the worst fitness in the population and the fitness of the largest individual
(i.e. the individual that achieved the highest level of complexity). We collect the
values of the classical fitness as provided by Equation 2 for these observations.

• Success ratio: This gives the ratio of successful runs over the total amount of
runs.

• Average number of generations required to reach a complete solution for all
BINCSP instances of a particular complexity: Since the population is evaluated
exactly once in each generation, this number is strongly correlated to the speed
of the algorithm (see Section 5.1).

5.3 Previous Results

In this section, we summarize the results of the simulations of the ETA on BINCSP
discussed in [3, 4], for reasons of comparison.

Table 2 shows the success ratio, average number of generations to find a solution
and standard deviation in this number for each BINCSP setup. The plots in Figures
2 and 3 show the evolution of fitness and genotype complexity over time for 4 easy
and 4 difficult BINCSP instances (see Table 1).

From these simulations the following conclusions were drawn. The results in
Figure 2 show that the transition model succeeds in finding a solution for the easy
BINCSP as the fitness converges rapidly to 1.0. They also show that, for difficult
BINCSP (after over 2000 generations), the algorithm converges to a population that
contains a combination of partial solutions that solve over 90% of the constraints
but are unable to resolve the conflicts between the interacting partial solutions in
order to solve the entire set of constraints.

We observe in Figure 3 that for easy BINCSP, the intersection (reflecting the
number of variables that are in common between the two solutions) is small
while exploring, which corresponds to a high complementarity. Indeed for the easy
BINCSP (left column of Figure 3) we see that initially the intersection between
the two solutions is rather small. Once the algorithm begins to converge toward a
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Easy BINCSP Difficult BINCSP

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
 0  2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

fi
tn

es
s

Generations

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

fi
tn

es
s

Generations

p1 = 0.1, p̄2 = 0.1 p1 = 0.1, p̄2 = 0.9

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

fi
tn

es
s

Generations

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

fi
tn

es
s

Generations

p1 = 0.3, p̄2 = 0.5 p1 = 0.3, p̄2 = 0.7

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

fi
tn

es
s

Generations

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

fi
tn

es
s

Generations

p1 = 0.7, p̄2 = 0.1 p1 = 0.5, p̄2 = 0.5

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

fi
tn

es
s

Generations

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

fi
tn

es
s

Generations

p1 = 0.7, p̄2 = 0.3 p1 = 0.7, p̄2 = 0.5

Fig. 2 Evolutionary dynamics of the ETA. All plots show the evolution of the best fitness.



116 T. Lenaerts, A. Defaweux, and J. van Hemert

Easy BINCSP Difficult BINCSP

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

Generations

maximum size
minimum size

intersection
conflicts

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

Generations

maximum size
minimum size

intersection
conflicts

p1 = 0.1, p̄2 = 0.1 p1 = 0.1, p̄2 = 0.9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

Generations

maximum size
minimum size

intersection
conflicts

 0

 2

 4

 6

 8

 10

 12

 14

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

Generations

maximum size
minimum size

intersection
conflicts

p1 = 0.3, p̄2 = 0.5 p1 = 0.3, p̄2 = 0.7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

Generations

maximum size
minimum size

intersection
conflicts

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

Generations

maximum size
minimum size

intersection
conflicts

p1 = 0.7, p̄2 = 0.1 p1 = 0.5, p̄2 = 0.5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

Generations

maximum size
minimum size

intersection
conflicts

 0

 2

 4

 6

 8

 10

 12

 14

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

Generations

maximum size
minimum size

intersection
conflicts

p1 = 0.7, p̄2 = 0.3 p1 = 0.7, p̄2 = 0.5

Fig. 3 Evolutionary dynamics of the ETA: All plots show the evolution of the genotype
complexity. Each plot contains the maximum and minimum size of the individuals in the
population, the average number of variables in common (intersection) and the average number
of remaining conflicts (conflicts).
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Table 2 Results of the simulations. Each square contains the success ratio, average number
of generations, standard deviation and average number of evaluation (between braces).

Density Tightness
p1 0.1 0.3 0.5 0.7 0.9

0.1 1.0 1.0 1.0 1.0 0.992
(4) (5) (7) (13) (3627)
[0] [0] [1] [3] [1224]
{900} {1125} {1575} {2925} {816075}

0.3 1.0 1.0 1.0 0.28 -
(5) (12) (43) (11758) -
[0] [3] [25] [-] -
{1125} {2700} {9675} {2645550} -

0.5 1.0 1.0 0.54 - -
(6) (25) (11409) - -
[1] [8] [-] - -
{1350} {5625} {2567025} - -

0.7 1.0 1.0 0.29 - -
(8) (61) (8673) - -
[1] [29] [-] - -
{1800} {13725} {1951425} - -

0.9 1.0 0.972 - - -
(11) (2335) - - -
[2] [4902] - - -
{2475} {525375} - - -

solution, this complementarity decreases and the number of conflicts in the intersec-
tion stabilizes. The positive number of the conflicts in this intersection for certain
easy BINCSP setups reflects a low but existing variation in the genotype popula-
tion throughout the evolutionary process. One can also see in the left column that
when the population converges completely, all conflicts disappear. In contrast, when
p1 = 0.3 and p̄2 = 0.5 (and also p1 = 0.7 and p̄2 = 0.3), there are still alternatives
present in the population even though an optimal solution is found.

When we look at difficult BINCSP in the same figure, we observe quite a sim-
ilar evolution (right column of Figure 3). However, in these cases, the individual
size and the intersection (almost) never reaches the maximum number of variables.
Since the maximum size is not reached, each genotype needs a symbiotic partner
to cover the entire variable set, implying some complementarity to achieve the final
solution. Yet the problem is that for these difficult problems it is not sufficient to
glue together complementary solutions (see three last plots in the right column of
Figure 3). In those cases, the number of variables that are common between the part-
ners in the symbiotic relation is even less than the minimum size of the individuals
in the population. This shows that partial solutions seem to agree on certain aspects
of the solution yet are divided over the other variables and their assignments that
are required to reach the complete solution. So here we have an exploration issue
that needs to be solved. The low number of conflicts shows that the ETA evolves
complementary partial solutions that specialize in solving two different sub-sets of
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the constraints set too. However, the difficulty of solving the entire problem makes
it impossible to resolve certain conflicts among these variables - the results show
that the evolutionary process is stuck in some local optimum, which may require
other mechanisms to resolve the issue.

The results in Table 2 were compared to other co-evolutionary BINCSP ap-
proaches in [4]. The ETA performs relatively well compared to problem-specific
EA techniques and outperforms them in one specific case: those instances where
the constraint network has some kind of modular structure due to the sparseness
of the connection between the constraints. Even when the constraints to learn are
difficult (high p̄2), the ETA conquers these constraints by solving the subproblems
separately and aggregating them once they are solved.

In [3] we analyzed the effect of initial population composition on the results
of the ETA. We compared a randomly generated population of partial solutions of
size two and a sound population (as used here). The results showed that the initial
population has little overall effect on the chance of success, which is interesting as it
indicates that our algorithm performs well with a small initial population and hence
does not need a large and complete population to achieve good results. We illustrated
that these differences are indeed not significant when comparing the speed (using
Equation 5) of the algorithm.

5.4 Introducing Decomposition in the ETA

The ETA, as described so far, only creates more and more complex solutions. This
might result in a dead-end, possibly explaining why a higher success score on the
difficult BINCSP instances was not achieved. It could then be useful to decompose
these bad solutions back into smaller individuals so alternative composition paths
may be followed. The motivation for not including this from the beginning stems
from the description of the biological metaphor. Evolutionary transitions are con-
sidered as a one-way process [15]. Once a transition occurs, the components of the
new individual are forced to collaborate with one another. Defection leads irremedi-
ably to the death of the organism together with all its components. So, biologically,
individuals cannot decompose back into lower level units and such a situation, when
it happens, leads to the extinction of the individual and all its components. In an op-
timization context however, we are not limited by this restriction.

To introduce decomposition in the evolutionary process, we slightly adapted the
ETA described at the beginning of this chapter so that, at each generation, a certain
fraction of the population has the possibility of being decomposed into smaller units.
These smaller units of selection can then recombine with other units and evolve a
new solution which is defined at a higher level of complexity. The deconstruction
(decomposition) therefore introduces a new exploration mechanism that tries other
combinations of building blocks that had been identified as potentially good units in
former symbiotic relations.

This notion of decomposition is, in a certain sense, related to the backtracking
process implicit to depth-first and related search methods [8, 20]. Indeed, these de-
terministic approaches decompose invalid solutions to reconstruct them afterwards
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with valid assignments. In the evolutionary approach, the process is no more deter-
ministic but stochastic [11]. However, the idea of decomposing solutions which lead
to a dead-end in the optimization process remains.

In this simulation setup, we observe whether the introduction of decomposition,
i.e. deconstruction operation, can affect the quality of the results. We first describe
the adaptation of the existing algorithm with the introduction of a decomposition
mechanism and then we present the simulation setup and results.

5.4.1 Evolutionary Transition Algorithm with Decomposition

ETA with decomposition introduces two new features to the existing framework of
the algorithm: the decomposition condition and the decomposition operator. The
decomposition condition determines when a given solution should decompose into
elementary solutions. This condition may trivially be implemented as a random pro-
cess but may also relate to observations of the evolutionary process (for example the
process is stuck in a local optimum, the solution has lasted many generation with-
out resolving its conflicts with the symbiotic partners) or even to problem-specific
aspects. The decomposition operator may be implemented in different ways to in-
duce different dynamics in the search process. For example, it can decompose one
solution all the way back to its elementary units. Such an operator, ensures the pres-
ence of elementary solution units during the entire run. Another possibility consists
of decomposing one solution back into 2 (or more) partial solutions, reducing the
complexity of the given solution by a factor 2 (or more) but without asking the
process to rebuild a complex solution with these partial units from scratch.

Given the operator and the condition, the ETA can now be extended. During
the replication process, the selected solutions are passed one by one through the
reproduction operator. This operator, as before, verifies if the transition condition
is met, that is, if the symbiotic relation performs well enough to emerge a new
individual at a higher level of complexity. This part of the replication process is
unchanged with respect to the classical implementation of ETA. If the transition
condition is not met, which means that the selected solution will self-replicate and
will possibly replicate its symbiotic relation, the replication process will first check
whether the decomposition condition is met before proceeding with self-replication
as before. If the decomposition condition is met, then the solution decomposes to a
lower level of complexity.

For the simulations, we consider random decomposition. Each selected solution
which does not perform a transition may be decomposed with a certain probability.
The choice for random decomposition instead of a more problem-or-process related
condition is motivated by the idea that we are mainly concerned with the evaluation
of the decomposition process. We want to see if decomposition brings something to
the system. Random decomposition, not being problem related, offers an objective
view of the induced dynamics of the decomposition process.

When the decomposition condition is met, the selected solution will not replicate
as a whole but split itself into two or more parts according to the decomposition
operator. In our implementation of ETA with decomposition for this set of simula-
tions, we implement a simple decomposition operator where the solution is divided
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decompose(solution)
for pos := 1 to solution.size step 1 do

allele := solution[pos]
prob := 0.5
if offspring1.size > offspring2.size

then
prob := prob× (1− offspring1.size

solution.size )

else
prob := prob× (1+ offspring2.size

solution.size )

if random(prob)
then

offspring1.add(allele)

else
offspring2.add(allele)

Fig. 4 Pseudo-code for the decomposition operation

into two parts of approximatively the same size. This strategy means that we do
not really backtrack to the former situation consisting of the two partial solutions
that were merged into this parent solution. We obtain, however, a decomposition in
terms of complexity as the solution goes back to a former level of complexity with
respect to this parent solution. The way the two offspring solutions are generated
in corresponds to a random process where, on average, each allele of the parent so-
lution is passed on to one of the two offspring solutions with the same probability.
The pseudo-code of the decomposition of a solution is given in Figure 4. The two
offsprings that are created are then added to the offspring population.

5.4.2 Simulation Setup

The problem setup is the same as before. The goal here is to compare the transition
model without decomposition (see Table 2) with a transition model using decompo-
sition. Both models will use initial sound populations as described in the previous
simulation. They also share exactly the same parameters setup, not considering the
additional decomposition probability. To explore the impact of this parameter on the
behavior of the process, we consider 3 possible values for this parameter:

• Small probability for decomposition: the value of the decomposition probability
scales from 0.001 to 0.05 which means that, at each generation, a very small part
of the population will be decomposed.

• Medium probability for decomposition: the value of the decomposition proba-
bility scales from 0.15 to 0.35. In this situation, at each generation, a larger part
of the population will be decomposed. However, decomposition remains a rare
event as the solutions have more chance to remain unchanged than to undergo a
decomposition operation.

• High probability for decomposition: the value of the decomposition is set to 0.5
and above. In this situation, at each generation, the population will perform at
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least as much decomposition operations as self-replication operations. This situ-
ation corresponds to a situation where exploration is preferred over exploitation.

For each setup of the BINCSP and the decomposition probability, we perform 10
runs each with a different seed on the 25 problem instances that were randomly
generated. We collect the same information as for the previous simulation.

5.4.3 Simulation Results

In Table 3, we gather results concerning the success ratio and average number of
generations to reach a solution for the 5 difficult test cases identified in Table 1. For

Table 3 Comparison of success ratio between different decomposition setups. Each entry
consists of three values: 1) the success ratio, 2) the average number of generations and 3)
the standard deviation. The upper row corresponds to the situation of a generic transition
model operating with initial sound population and no decomposition, the other rows gives the
results for different decomposition probabilities (DP). Results better than the generic model
are shown in bold.

p1: 0.9 0.7 0.5 0.3 0.1
p̄2: 0.3 0.5 0.5 0.7 0.9

DP:

N
o Generic

0.972 0.29 0.54 0.28 0.992
(2335) (8673) (11409) (11758) (3627)
[4902] [-] [-] [-] [1224]

L
ow

0.001
0.976 0.276 0.54 0.236 0.992
(3106) (4654) (7955) (10534) (2803)
[5077] [1546] [8128] [33000] [2220]

0.01
0.992 0.308 0.604 0.236 1.0
(2476) (8507) (12993) (8230) (2835)
[2956] [9492] [10729] [8053] [4201]

0.05
0.984 0.36 0.58 0.3 1.0
(2922) (13705) (11879) (9248) (1457)
[3869] [14214] [7222] [5126] [2407]

M
ed

iu
m

0.15
0.736 0.232 0.3 0.172 0.884
(7869) (13168) (13542) (19029) (3003.5)
[2166] [11514] [1246] [16504] [4857.5]

0.25
0.648 0.26 0.248 0.156 0.856
(9492) (15437) (12890) (10436) (3471)
[1191] [12867] [3104] [12701] [6290]

0.35
0.736 0.1 0.26 0.096 0.892
(8774) (12836) (17794) (18952) (4223)
[6220] [9810] [13272] [12820] [7425]

H
ig

h

0.5
0.38 0.08 0.076 0.048 0.604
(18237) (9509) ( 25637) (25561) (13627.5)
[13186] [3147] [20368] [23721] [9136]

0.65
0.004 0.0 0.0 0.0 0.02
(46) (-) (-) (-) (39)
[0] [-] [-] [-] [14]



122 T. Lenaerts, A. Defaweux, and J. van Hemert

each test case, runs were performed for different decomposition probabilities scaling
from low to high. The success ratios that are printed bold in the table represent the
best results achieved for the corresponding problem setup.

We observe that decomposition influences the results of the ETA. It is not a sur-
prise to see that high values for the decomposition probability yield the worst results.
Indeed, high decomposition probabilities result in an almost systematic decomposi-
tion of solutions. As a consequence, partial solutions do not have the necessary time
to perform conflict mediation or produce new levels of complexity. Medium values
do not perform well either. We had expected that the significant increase in explo-
ration provided by medium levels of decomposition would have helped the process
in finding the good solutions. However, even the medium range values for probabil-
ity did not score well. Actually, only low values for the probability, that scale from
0.01 to 0.05 have a positive impact on the simulation results. In this situation, the
ETA with decomposition is able to match and even outperform the results of the
generic ETA. This leads to the conclusion that, if the decomposition does influence
the search process, it should remain a rare event like the standard mutation operator.

To conclude this comparison of the generic ETA with the ETA with decompo-
sition, we performed the Wilcoxon rank-test between the speeds (defined in Equa-
tion 5) of the generic ETA and the best performing ETA with decomposition on each
test case. These tests which are summarized in Table 4 compare the speed of each
run to find an optimum between a generic ETA and the best performing ETA with
decomposition. It evaluates whether the difference in success ratio we observed in
Table 3 between both algorithms is significant or not in the global optimization pro-
cess. The null hypothesis of these tests is that the average speeds of both algorithms
are equivalent. The speed is computed the same way as in Equation 5 (see page 114)
and captures the average speed of each run in a measure between 0 and 1 where 0
means that the run did not find any optimum value in the given time while 1 means
that the solution was found from the very first generation. Higher values for the
speed mean that the run was able to find a solution faster than others.

In Table 4 we see that the null hypothesis cannot be rejected under the classical
5% confidence interval except for the test case p1 = 0.9, p̄2 = 0.3. We can conclude
from this that, in general, the differences in performance we observed between the
generic ETA and the best scoring ETA with decomposition in Table 3 are not signif-
icant. So, introducing a small fraction of decomposition at each generation during
the evolutionary process may increase the expected chance of success, although this

Table 4 Wilcoxon-Rank Test between the Generic ETA and the ETA with Decomposition
(for the decomposition probability DP that scored best)

BINCSP problem DP p-value
p1 = 0.9, p̄2 = 0.3 0.01 0.01826
p1 = 0.7, p̄2 = 0.5 0.05 0.2406
p1 = 0.5, p̄2 = 0.5 0.01 0.08414
p1 = 0.3, p̄2 = 0.7 0.05 0.7706
p1 = 0.1, p̄2 = 0.9 0.05 0.955
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Fig. 5 Comparing size dynamics between generic ETA and ETA with Decomposition
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increase is not significant with respect to the dynamics one obtains with a generic
ETA without decomposition.

In Figure 5, we illustrate that the ETA with decomposition techniques has a rela-
tively equivalent dynamics for the sizes when compared to a generic ETA. However,
decomposition guarantees the survival of smaller building blocks as we can observe
that the average minimum size of the ETA with decomposition remains below 3
during the evolutionary process, meaning that the smallest unit of selection is on av-
erage of length 2 while for generic ETA the minimum size increases slowly during
the process and tends to converge toward the maximum size. This capacity to keep
lower level building blocks during the process enforces exploration through combi-
nation of these units during the entire process and therefore, through the mechanism
of conflict mediation, yields better results as it provides the system with a mecha-
nism to escape local peaks.

5.5 The Relevance of a Good Transition Condition

All the simulation results discussed so far used the covering fitness to determine
whether a transition occurred or not. This problem-specific approach will now
be compared to a process of random transitions. The motivation for this study is
twofold. First of all, problem-specific transition conditions may be difficult to de-
termine. This issue is not new: in the context of learning classifier systems (LCS)
[12, 10], the problem of finding a good mechanism to evaluate partial solutions is
known as the credit assignment problem [9]. It is clear that given the problems on
which one wants to apply the ETA, one will spend some time in determining how
to decide on the quality of a partial solution. The difference with the assignment
problem in LCS is that we do not need to address how the success of a bunch of
classifiers has to be distributed over all classifiers since two partial solutions are
merged as soon as they are considered to be adequate, which means they are no
longer independent partial solutions.

If random transitions show good performance, a broader class of problems could
be addressed with evolutionary transitions as well. Our second motivation is to
compare the behavior of both setups and observe how significant the impact of a
problem-specific transition condition is on the overall dynamics and success ratio.
The random results form a baseline against which we can compare the results of
problem-specific transition functions.

5.5.1 Simulations Setup

Our simulation uses the same setup as before. It uses a sound population and per-
forms a total of 250 runs (10 seeds, 25 instances) on different types of BINCSP. In
the case of a random transition condition, each selected solution will perform a tran-
sition with a certain probability (the Transition Probability T P) whose distribution
law is uniform. We consider three possible setups for this:
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1. A low transition rate (0.2): this means that each selected solution makes its sym-
biotic relation permanent with a relatively low probability. At each generation,
approximatively 20 % of the population will perform a transition.

2. A medium transition rate (0.5): approximatively 1 solution out of 2 will increase
in complexity.

3. A High transition rate (0.8): only 20 % of the population does not perform a
transition at each time step.

The random transition condition does not require the symbiotic relation to be suc-
cessful to see an increase in the genotype complexity. Therefore, all of these rates
are more likely to induce a relatively fast emergence of maximum size genotypes in
the population. This means that after several generations, the evolution toward the
solution only occurs through recombination of existing solutions by means of sym-
biosis1. In these simulations, we wish to observe whether the observed transitions
perform significantly better than random based transitions.

5.5.2 Simulation Results

In Table 5, we show the results obtained for a set of difficult BINCSP instances.
The results show that the choice of transition condition has quite a significant im-
pact on the performance of the algorithm. It is not surprising that the generic ETA
outperforms the random transition ETA. The performance of the generic ETA in
comparison to the random transition ETA is, however, particularly dominant. Ta-
ble 6 illustrates that this difference is significant for all test cases and setups of T P.
Random transitions produce a fully defined genotype too quickly. As a consequence,
the ETA can only evolve a solution through the recombination operation provided by

Table 5 Comparison of the success ratio between an ETA that uses a problem-specific tran-
sition condition and ETAs that perform transition on a randomly (with the Transition Proba-
bility T P)

p1: 0.9 0.7 0.5 0.3 0.1
p̄2: 0.3 0.5 0.5 0.7 0.9

TP:

Generic
0.972 0.29 0.54 0.28 0.992
(2335) (8673) (11409) (11758) (3627)
[4902] [-] [-] [-] [1224]

L
ow 0.2

0.464 0.064 0.136 0.036 0.804
(6936) (10431) (12624) (2011) (3917)
[7774] [5725] [11080] [2310] [3484]

M
ed

.

0.5
0.612 0.08 0.196 0.072 0.868
(7248) (2546) (6256) (20503) (4244)
[8446] [4169] [5708] [26279] [4529]

H
ig

h

0.8
0.0 0.0 0.0 0.0 0.0
(-) (-) (-) (-) (-)
[-] [-] [-] [-] [-]

1 Although similar to uniform cross-over in GAs, this recombination mechanism differs in
the sense that recombination occurs prior to selection while GAs perform recombination
after selection.
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Table 6 Comparisons tests between the different random based transition and the generic
ETA. The values in each column correspond to the p-value of the Wilcoxon-Mann-Whitney
ranking test.

0.2 0.5 0.8
p1 = 0.9, p̄2 = 0.3 < 0.0001 < 0.0001 -
p1 = 0.7, p̄2 = 0.5 < 0.0001 < 0.0001 -
p1 = 0.5, p̄2 = 0.5 < 0.0001 < 0.0001 -
p1 = 0.3, p̄2 = 0.7 < 0.0001 < 0.0001 -
p1 = 0.1, p̄2 = 0.9 < 0.0001 < 0.0001 -

the symbiotic relation. It ignores one important step of compositional search: First
conquer the lower level of complexity before tackling higher levels of complexity.

Figures 6, 7, 8 and 9 show the evolution of the fitness, maximum size, minimum
size and conflicts of each algorithm on the difficult test cases.

The same observation can be made for each test case; High values of T P lead
to the situation where the worst average fitness is obtained. This means that the
high probability of transition prevents selection from performing its task well (i.e.
distinguishing the good symbiotic relations from the bad ones). This observation is
confirmed by the conflicts’ curves in the figures. We observe that the highest value of
T P yields the highest number of conflicts at the beginning of the evolutionary pro-
cess (which results from premature transitions). Furthermore, this number of con-
flicts soon tends to become zero. This means that the evolutionary process converges
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Fig. 6 Comparison between random base transition and observed transition (generic ETA).
p1 = 0.9, p̄2 = 0.3.
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Fig. 7 Comparison between random base transition and observed transition (generic ETA).
p1 = 0.7, p̄2 = 0.5.
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Fig. 8 Comparison between random base transition and observed transition (generic ETA).
p1 = 0.5, p̄2 = 0.5.
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Fig. 9 Comparison between random base transition and observed transition (generic ETA).
p1 = 0.3, p̄2 = 0.7.

toward a sub-optimal solution and is lacking of the necessary exploration to evolve
a solution to the problem. The other T P values (0.2 and 0.5) perform much better,
achieving similar average fitness levels as the generic ETA. The conflicts’ curves
with scores above the generic case imply that the population is able to main-
tain sufficient diversity and therefore, some exploration is still active. However, a
brief look at the evolution of the maximum and minimum sizes reveals that for all
the random based transition instances, full genotypes are produced from the very
beginning of the process (in less than 100 generations) and the population soon con-
tains only fully defined genotypes (as the minimum size also converges to a fully
defined genotype). Conversely, in the generic ETA, we observe that the maximum
and minimum sizes remain at lower complexity levels and that different levels of
complexity are present in the population (as the maximum size differs from the
minimum size). This means that random-based transitions lose the efficiency inher-
ent in the compositional approach and that these processes have to, relatively early
in the evolutionary process, rely only on recombination of fully defined genotypes
to evolve a solution.

6 Conclusion

In this chapter, we introduced an algorithm that mimics evolutionary transitions
from biology and tackles evolutionary compositional search. We applied the ETA
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on a test case which has many practical applications [20, 21]: the Binary Constraints
Satisfaction Problems. We wished to evaluate how ETA performs on a challenging
test case and simulated the ETA on randomly generated problem instances for var-
ious setups of the BINCSP. These instances scale from easy to difficult depending
on the parameters p1 and p̄2 [25]. We extensively analyzed the relevance of cer-
tain design decisions that were made for the ETA. From the simulation results, the
following conclusions can be drawn.

First of all, ETA succeeds in compositionally building complex solutions by ag-
gregating partial solutions through the mechanism of symbiotic relations and tran-
sitions. In the case where the system fails to evolve a fully defined genotype for
the given problem instances, it is able to evolve two different partial genotypes that
together through, their symbiotic relation, yield a full representation for a solution.
Yet, this fully defined solution is sub-optimal. A possible reason explaining why
ETA failed to evolve complete solutions for the difficult problem instances may
reside in the random nature of the instances themselves. These instances are ran-
domly generated, which means that the constraints network is, most likely, totally
unstructured and that the resulting epistasis (correlation between the variables) is
high. ETA, by its compositional nature, is more likely to work fine on structured
instances where modularity in the problem is more apparent. This requirement for
structured problem instances is confirmed when we observe the performance of ETA
with other co-evolutionary approaches on BINCSP [1]. The fact that the ETA per-
forms well on structured problems makes it promising for real-world applications,
since most of them tend to be structured in some way. The study of the impact of the
initial population setup on the outcome of ETA demonstrated little differences in the
results [3]. This means that modeling the initial population setup is not necessarily
an issue and can be kept relatively simple (for example, an initial small population
of random assignments).

Concerning the impact of the introduction of decomposition techniques to the
ETA, we showed that the outcome of the algorithm is positively influenced when
decomposition is a rare event (only a very small fraction of the population should
see the solutions being decomposed). Even though it may improve the success ratio,
a statistical comparison of the best performing decomposition ETA with the generic
ETA showed that, in general, there are no significant differences in terms of speed.

To analyze the quantitative relevance of a problem-specific transition condi-
tion, we re-examined all previous BINCSP results using a random (performance-
independent) transition condition. We conclude that the choice to perform a
transition on a symbiotic relation should be considered thoroughly and should be
related to the nature of the problem to be solved as we observed that the ETA with
problem-specific transition condition significantly outperformed any setup of the
ETA with random condition.

Regarding the evaluation of the performance of ETA on structured problems, the
ETA will be evaluated on hierarchically structured problems like the Hierarchical if-
and-only-if function [27]. Moreover, we are currently investigating the performance
of the ETA on combinatorial optimization problems where one does not only need
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to find an assignment of values to variables but also find the optimal assignment.
These new studies should provide additional understanding on the applicability of
the ETA for real-world applications.
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