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Abstract. Several problems in the area of financial optimization can be naturally
dealt with optimization techniques under multiobjective approaches, followed by
a decision-making procedure on the resulting efficient solutions. The problem of
portfolio optimization is one of them. This chapter studies the use of evolutionary
multiobjective techniques to solve such problems, focusing on Venezuelan market
mutual funds between years 1994 and 2002. We perform a comparison of different
evolutionary multiobjective approaches, namely NSGA-II, SPEA2, and IBEA, and
show how these algorithms provide different optimization profiles. The subsequent
step of solution selection is done using Sharpe’s index as a measure of risk premium.
We firstly show that NSGA-II provides similar results to SPEA2 on mixed and fixed
funds, and better (according to Sharpe’s index) solutions than SPEA2 on variable
funds, indicating that NSGA-II provides a better coverage of the region contain-
ing interesting solutions for Sharpe’s index. Furthermore, IBEA outperforms both
NSGA-II and SPEA?2 in terms of index value attained. Finally, we also show that
this procedure results in a more profitable solution than an indexed portfolio by the
Caracas Stock Exchange.

1 Introduction

Finance is a branch of Economics that studies the flow of money and other assets,
their acquisition and management by a company, individual or state, and the markets
in which they are traded. In other words, it comprises studies concerning the collec-
tion and management of money and other valuables such as securities, bonds, etc.
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One of the main challenges for the administration of financial resources is to main-
tain the profitability and liquidity at times in which the simple act of leaving the
money deposited in a bank makes it lose value.

This work focuses on the study of the components that promote an acceptable
(above inflation) economic return, as well as the need to obtain better risk diver-
sification as determined by the degree of abhorrence of each investor [13]. Plainly
speaking, diversifying amounts using a mechanism by which all eggs are not put in
one basket, that is, investing in a range of financial sectors whose economic activi-
ties result in some benefit and whose economic cycles behave differently from each
other. In this context, the risk diversification is achieved by creating a portfolio of
investments in several of these financial instruments or sectors.

The area of financial management encompasses a number of theoretical elements
and field studies regarding the risk/performance relationship. There is no static op-
timal solution, and the best portfolio always depends on market evolution. In very
general terms, this implies that simultaneous risk minimization and performance
maximization are the obvious desired goals. Needless to say, these goals are par-
tially opposed to each other. Several proposals can be found in the literature in this
regard. For example, Markowitz’s model [[18] has become an essential theoretical
reference for portfolio selection. However, its practical application has not been as
broad as it could, mostly due to the complexity of the method: on one hand, being
a quadratic parameterized model its resolution is not trivial; on the other hand, the
number of variables involved is high.

The topic addressed by Markowitz relates to the selection of investments, namely
the problem of allocating resources among the various options available for that
purpose. Prior to the popularization of Markowitz’s approach, investment selection
involved a costly process of collecting and processing a wide range of informa-
tion about the companies issuing the assets (primarily shares). This information
included, among other things, balance sheets and financial statements, status of the
company within the industry and within the market as a whole, the quality of com-
pany management, dividend policy, and so on. Markowitz’s approach significantly
simplified the selection problem by considering asset performance as a stochastic
process, focusing solely on the historical log of returns of the issuing companies,
and more precisely on three statistical measures of these data: mean, variance and
covariance of return rates.

Markowitz developed the model based on the rational behavior of the investor. In
other words, the investor wants to maximize her profit and rejects the risk. There-
fore, a portfolio will be efficient for her if it provides the highest possible return
for a given risk, or equivalently, if it presents the least possible risk for a given
level of profitability. The collection of portfolios offering such a combination of
risk/profitability is termed the efficient frontier, and once known the investor can
select her optimal portfolio according to her preferences.

If no additional considerations are made and a specific risk/profitability profile is
known, the optimization problem can be solved using quadratic programming. How-
ever, this is not usually the case. On one hand, several constraints such as cardinality
constraints (i.e., a limit on the number of different investments in the portfolio) or
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minimum transaction lots can be considered, thus making quadratic programming
or other exact techniques infeasible. On the other hand, if no profitability target is
fixed a priori (or if a more general investment strategy is sought) the task of finding
(or approximating as much as possible) the whole efficient frontier in an efficient
way requires the use of powerful optimization techniques. In this scenario the use of
metaheuristic techniques is the general norm [3]. These techniques cannot provide
optimality proofs for the solutions they obtain, but if adequately crafted, they will
likely provide optimal or near-optimal solutions to a wide range of continuous and
combinatorial optimization problems.

We consider the particular case of nature-inspired metaheuristics, or more pre-
cisely, evolutionary algorithms. Not only do these techniques hold an impressive
successive-record on different hard optimization tasks; they have also been shown
to be extremely effective in solving multiobjective optimization problems. As such,
they are quite appropriate to deal with the combined risk/performance optimization.
We consider several state-of-the-art second generation approaches for evolutionary
multiobjective optimization, and compare them on the basis of sound performance
metrics defined in the literature. We also address the subsequent selection step: once
the efficient frontier has been identified, there remains the problem of selecting one
particular solution according to the risk profile determined by the investor. This lat-
ter approach is considered here, and as it will be shown, using Sharpe’s index as a
guiding measure we are able to identify solutions better than those currently used
in indexed portfolios by the Caracas Stock Exchange, a Latin American exchange
operating in Venezuela.

2 Background

The work presented in this chapter deals with real investments that are conditioned
by two main parameters: (i) profitability, i.e., the returns on the investment, and
(ii) risk, i.e., the chances of low (or even negative) returns. Obviously, profitability
is a positive element for the investor whereas risk is a negative one. This means
that an investor wishes to maximize profitability and minimize risk [. This will be
formalized within Markowitz’s model in Section Before that, a brief overview
of mutual funds will be provided first in Section 2.1l

2.1 Mutual Funds

Mutual funds are instruments that combine the money invested by a group of per-
sons. They are handled by a management office specializing in the administration
of investment portfolios, which takes decisions on the purchase of shares, bonds,
and other instruments of the market. By combining the money of several investors,

! Other parameters such as liquidity or political control of a company might be considered
as well.
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mutual funds allow them to participate in larger portfolios than those they could buy
individually. There are several types of mutual funds:

1. Fixed revenue: The aim of these funds is to invest in state bonds, private bonds,
and other instruments that offer a predictable performance if they are maintained
up to their expiration. Fixed funds are a way of adjusting to different investment
horizons, e.g., they tend to specialize in investments on assets that operate in
either a short term, a middle term, or a long term basis. Purchasing assets that
participate in fixed funds has diverse advantages such as risk diversification, pro-
fessional administration, (management), and accessibility (i.e., small investors
have access to high investments).

2. Variable revenue: These funds try to maximize the profit by investing in shares
of companies that quote in the Stock exchange. Because of the very nature of the
assets in which they are invested in, these funds have the highest risk associated
with them. From a conceptual point of view, the investments in shares, if correctly
chosen, is the most profitable in the longer term. However, this also implies a
higher volatility of the investments (i.e., increased risk).

3. Mixed revenue: These funds represent a combination of fixed revenue and vari-
able revenue. They aim to diversify the investment in stocks of both fixed and
variable revenue. Their composition is thus a combination of the different types
of assets, and their risk / profitability ratio is intermediate between that of fixed
funds and variable funds. The risk obviously depends on the proportion of the
investment made on the different mutual funds.

Whichever type of fund considered, the investor and/or manager is faced with an
optimization problem regarding the composition of the portfolio. One of the most
widely used and conspicuous method of addressing this problem is Markowitz’s
model, described in next section.

2.2 Markowitz’s Model and Sharpe’s Index

Markowitz’s model [18] is a pioneering model in the selection of assets to construct
an ideal portfolio. It assumes that the future performance a specific investment can
offer can be determined from both experience and investigation. This model is thus
applied with the aim of obtaining an optimal portfolio selection. The basic idea is
that by analyzing the expected profitabilities of the individual financial assets one
can make a correct portfolio selection. Two main components have to be taken into
account: profitability and the risk to be assumed by the investor. The investor needs
to know the risk level, that is to say, the degree of profitability variation which is
measured by the variance defined as:

ey
t=1

where R = {R;}, 1 <i<n, 1 <t<T,isamatrix containing the profitability of
each asset at each time interval 7, E(R;) is the mean profitability of the i-th asset,
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and T is the number of intervals in the time horizon. The overall risk of the portfolio
is then defined as a weighted quadratic combination of the covariances of the assets
included in it, i.e.,

SRW) = Y Z wiw;oi;(R @)
i=1j=
where W = {w;}, 1 <i < n,is a vector comprising the fraction of the budget allo-

cated to each asset (w; 2 O) and o; J( ) is the covariance of the performance of the
i-th asset and the j-th asset, defined as:

L [Ri —E(R)][Rj: — E(R))]

, 3)

Similar to the risk, the profitability E(R|W) of a portfolio is defined as the
weighted average of the assets involved, i.e.,

E(R|W) = ZW, Ri) 4)

Generally speaking, the investor looks for the curve of utility with E(R|W) = oo
and 6*(R|W) = 0, but this not a realistic option as this curve is limited by the
existing assets that never have this nature. We note that for the assets without risk
(i.e., those with null profit-variance), the utility is equal to the expected profitability
because there is no penalization due to the risk.

To evaluate the quality of a portfolio we have to define a measure that accounts
for both the profitability and the risk of the assets involved. Such a measure can also
allow the comparison between different portfolios. To this end, we have considered
Sharpe’s index [25], that determines the performance according to the ratio of excess
profitability and risk. More precisely,

E(R|W) — Ry

SRIWI= " 5 riw)

&)

where Ry is the performance of a portfolio without risk. E(R|W) — Ry is therefore
the excess performance (that is, the extra profit obtained by taking some risks),
which is divided by the risk of the portfolio (measured as the standard deviation
of returns). Basically, the index indicates how much performance is expected with
respect to the risk. The higher the value returned is, the higher the success of the
fund management is.

2.3 Related Work

An early reference on portfolio optimization with MOEAs is the work of Verada-
jan et al. [29]. They describe the use of NSGA (non-dominated sorting genetic
algorithm) [26] to optimize investment portfolios, as an alternative to quadratic
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programming techniques. In addition to the typical objectives of increasing perfor-
mance and decreasing risk, a third objective involving the costs of the transactions is
also considered. Several variants of the problem involving the presence of additional
constraints can be also found in the literature. For example, Chang et al. 3] consider
limits on the number of assets and their proportion within the portfolio, and use dif-
ferent metaheuristics (tabu search, genetic algorithms, and simulated annealing) to
solve the problem. Busetti [4] also consider tabu search and genetic algorithms, in
this case for solving the problem with cardinality constraints and transaction costs.
Streichert et al. [27] deal with a cardinality constrained portfolio selection problem
too, using NSGA and evolution strategies. They actually compare different repre-
sentations of solutions (pure binary, gray binary, and real-valued). Fieldsend et al.
[L1] also deal with this variation of the problem, and more specifically with the
case in which the analyst does not know a priori how many instruments should be
included in the portfolio, or the degree of risk-performance that can be accepted.
They also propose the addition of the cardinality constraints as a third objective to
be minimized. Lin et al. [17] consider a variant of the problem with fixed transac-
tion costs and minimum transaction lots. They demonstrated that in this case, the
selection of the portfolios becomes more complicated because the problem model
has to manage mixed integer variables and nonlinear objectives.

From a more general point of view, Mukerjee et al. [20] utilize NSGA-II to im-
plement a decision-making multicriteria model used in the risk/performance nego-
tiation by a bank loan manager. Two models with respect to this negotiation were
considered. Also in a bank context, Schlottmann and Seese [23] present a survey
of different financial applications that can be handled via MOEAs, and encourage
the use of specific problem knowledge and hybridization techniques to obtain better
algorithms. A more recent perspective on multiobjective evolutionary optimization
of portfolios can be found in [21]].

3 Material and Methods

Once the problem scenario has been presented, this section is devoted to providing a
more precise formulation of the optimization task. Subsequently, the data used in the
experiments (corresponding to real market data from a Latin American exchange),
as well as the algorithms considered will be described.

3.1 Problem Setting

As stated before, Markowitz’s model is based on the assumption that the investor ab-
hors risk, which can be represented as the variability of returns for a certain invest-
ment. At the same time, she wants to maximize her profits. Hence, we can consider
a portfolio as efficient if it achieves the profit sought by the investor at the mini-
mum risk. The set of efficient portfolios can be calculated by solving the following
parametric nonlinear equation:
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min o> (RIW) = ZZW,WJGU (6)
i=1j=1

subject to:

E(R|W) = ZW, R)=V @)

Zw,-:l (8)

Note that by varying the parameter V* the optimal solution in each case min-
imizes the risk of the portfolio for a given target profit. This consideration leads
naturally to a multiobjective scenario in which the whole efficient frontier is sought
rather than just solving the above equations for different target profits. This efficient
frontier comprises Pareto-optimal portfolios, i.e., portfolios whose profitability can-
not be increased without increasing the risk as well (and vice versa, the risk cannot
be reduced without decreasing the expected return). This bi-objective problem is
thus formulated as

min o> (RIW) = ZZW,WJGU 9)
i=1j=1
max E(R|W) = ZWI R;) (10)
subject to:
n
Zwi =1 (11)

This basic model corresponds to unconstrained portfolios, in which the investor
can allocate any number of investments she desires, and these can be as large or
small as wanted. Additional constraints can at any rate be posed on the composition
of the portfolio, e.g., cardinality constraints (at most K assets can be included in
the portfolio), or size constraints (the fraction of the portfolio allocated to an asset
is bounded @). We are interested in analyzing carefully the performance of different
multiobjective optimizers on the problem, in particular with respect to finding highly
desirable solutions according to Sharpe’s index. For this reason, we will focus ini-
tially on the case of unconstrained portfolios since they provide a more unbiased
arena for performance evaluation, and will pave the way for subsequent experimen-
tation with other variants of the problem.

2 Michaud [19] considers that the use of historical data to estimate risk and expected returns
introduces an important bias: efficient portfolios can be composed of few, largely uncorre-
lated assets. Such a portfolio can be unattractive for some investors. However, this problem
can be solved by considering constraints on the maximum percentage of the portfolio that
a certain asset can represent.
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3.2 Data: Venezuelan Mutual Funds

The data used in the experiments is taken from the Caracas Stock Exchange (Bolsa
de Valores de Caracas - BVC), the only securities exchange operating in Venezuela.
More precisely, we have considered data corresponding to the last five years. This
time interval is large enough to be representative of the evolution of shares, and
not too large to include irrelevant —for prediction purposes- data (the status of funds
can fluctuate in the long term, commonly making old data useless for forecasting the
future evolution of shares). According to this, our sample — ~ 35, 000 daily prices of
different mutual funds: fixed, variable, and mixed— comprises those funds no older
than five years and still available in the BVC [1]]. To be precise, we have used weekly
market data from year 1994 to year 2002, corresponding to 26 Venezuelan mutual
funds: 12 fixed funds, 7 variable funds, and 7 mixed funds. Data up to year 2001 is
used for training purposes, whereas data corresponding to the year 2002 will be used
for testing the obtained portfolios with respect to an investment portfolio indexed
in the BVC. The relative ratio of share values in successive weeks is calculated
to compute the profitability of each fund. This is done for each week in the year,
and subsequently averaged to yield the annual weekly mean and thus obtain the
annual profit percentage. The covariance matrix of these profitability values is also
computed, as a part of Markowitz’s model.

3.3 Evolutionary Multiobjective Approaches

The multiobjective portfolio optimization problem posed in this section will be
solved via multiobjective evolutionary algorithms (MOEAs). Indeed, multiobjective
evolutionary optimization nowadays provides powerful tools for dealing with this
kind of problems. A detailed survey of this field is beyond the scope of this work. We
refer the reader to [6,17, 18,19, 12,130, 36] among other works for more comprehen-
sive information about this topic. Let us anyway note for the sake of completeness
that MOEA approaches can be classically categorized under three major types [36]:
(i) aggregation/scalarization, (ii) criterion-based, and (iii) Pareto-dominance based.
A fourth class has been defined more recently, namely indicator-based, and will be
discussed later. Firstly, let us describe the basis of the three classical approaches.
Aggregation approaches are based on constructing a single scalar value using
some function that takes the multiple objective values as input. This is typically
done using a linear combination, and the method exhibits several drawbacks, e.g.,
the difficulty in determining the relative weight of each objective, and the inadequate
coverage of the set of efficient solutions, among others. As to the criterion-based ap-
proaches, they try to switch priorities between the objectives during different stages
of the search (Schaffer’s VEGA approach [22] pioneered this line of attack, using
each objective to select a fraction of solutions for breeding). This does not consti-
tute a full solution to the problem of approximating the whole efficient front though.
Such a solution can be nevertheless obtained via Pareto-based approaches. These are
based on the notion of Pareto-dominance. Let f;, 1 <i < n, represent each of the n
objective functions, and let f;(x) < fi(y) denote that x is better than y according to
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the i-th objective value. Then, abusing of the notation we use x <y to denote that x
dominates y when

x=<ye[(Fi: filx) < fi) A @iz fi(y) < fi(x))] (12)

The Pareto front (i.e., the efficient front) is therefore the set of non-dominated so-
lutions, i.e., P = {x | iz : z < x}. Pareto-based MOEAs use the notion of Pareto-
dominance for determining the solutions that will breed and/or the solutions that
will be replaced.

In this work we consider three state-of-the-art MOEAs, namely NSGA-II (Non-
dominated Sorting Genetic Algorithm II) [[10], SPEA?2 (Strength Pareto Evolution-
ary Algorithm 2) [34] and IBEA (Indicator-Based Evolutionary Algorithm) [31]].
The first two fall within the Pareto-based class, and are the second-generation ver-
sion of two previous algorithms —-NSGA [26], and SPEA [33] respectively. As such,
they rely on the use of elitism (an external archive of non-dominated solutions in
the case of SPEA2, and a plus-replacement strategy —keeping the best solutions
from the union of parents and offspring— in the case of NSGA-II). More precisely,
the central theme in these algorithms is assigning fitness to individuals according
to some kind of non-dominated sorting, and preserving diversity among solutions
in the non-dominated front. NSGA-II does this by sorting the population in non-
domination levels. First of all, the set of non-dominated solutions is extracted from
the current population £2; let this set be termed .%1, and let £, = &2\ .%#]. Subse-
quently, while there exist solutions in &7, i > 1, a new front .%; | is extracted, and
the procedure repeated. This way, each solution is assigned a rank, depending on
the front it belongs to (the lower, the better). Such a rank is used for selection. To be
precise, a binary tournament is conducted according to the domination level, and a
crowding distance is utilized to break domination ties (thus spreading the front).

As to SPEA2, it uses an external archive of solutions that is used to calculate the
“strength” of each individual i (the number of solutions dominated by or equal to
i, divided by the population size plus one). Selection tries to minimize —via binary
tournaments— the combined strength of all individuals not dominated by competing
parents. This fitness calculation is coarse-grained, and may not always be capable
of providing adequate guidance information. For this reason, a fine-grained fitness
assignment is used, (i) taking into account both the external archive and the cur-
rent population, and (ii) incorporating a nearest-neighbor density estimation tech-
nique (to spread the front). As a final addition with respect to SPEA, a sophisticated
archive update strategy is used to preserve boundary conditions (see [34]).

The third algorithm considered is IBEA, which as its name indicates falls within
the indicator-based class. Algorithms in this class approach multiobjective optimiza-
tion as a procedure aimed at maximizing (or minimizing) some performance indica-
tor. Many such indicators are based on the notion of Pareto-dominance and hence,
this class of algorithms is in many respects related to these Pareto-based approaches.
Nevertheless, it is necessary to note that they deserve separate treatment due to the
philosophy behind them. Actually, in some sense, indicator-based algorithms can be
regarded as a collective approach, where selective pressure is exerted to maximize
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the performance of the whole population. Consider, for example, an IBEA approach
based on the hypervolume indicator. This indicator provides information on the hy-
pervolume of the fitness space that is dominated by a certain set of solutions. This
definition includes singletons (sets of a single solution), and therefore can be used to
compare two individuals. This way, it can be used for selection purposes. However
when it comes to replacement, a global perspective is used: the solution whose sub-
stitution results in the best value of the indicator for the whole population is taken
out. In this work, we have considered an IBEA based on the €-indicator [35].

In all the algorithms considered, solutions, i.e., a vector of rational values in
the [0,1] range indicating the fraction of the portfolio devoted to each fund, are
represented as binary strings. Each fund is assigned 10 bits, yielding a raw weight
W;. These weights are subsequently normalized as w; = w;/ > ;W to obtain the actual
composition of the portfolio. Evaluation is done by computing the risk and return of
the portfolio using the formulation depicted before. As to reproduction, we consider
standard operators such as two-point crossover and bit-flip mutation.

4 Results

The experiments were conducted with the three algorithms described earlier, namely
NSGA-II, SPEA2 and IBEA. We have utilized the PISA library (A Platform and
Programming Language Independent Interface for Search Algorithms) [2], which
provides an implementation of these two algorithms. The crossover rate is P, = 0.8,
the mutation rate is P, = 1/¢, and the population size is 2¢, where ¢ is the total
number of bits in a solution. The algorithms run for a maximum number of 100
generations. The number of runs per data set is 30.

4.1 Front Analysis

The first part of the experimentation deals with the analysis of the Pareto fronts ob-
tained. The results obtained are graphically depicted in Figs.[IH3l As can be seen,
the grand fronts generated by either algorithm seem to be very similar, although the
grand front found by IBEA appears to be slightly more spread for fixed funds. To
analyze the extent of the significant difference in the performance more carefully
we have considered two well-known performance indicators: the hypervolume indi-
cator [32] and the R; indicator [13]. As mentioned before, the first one provides an
indication of the region in the fitness space that is dominated by the front (and hence
the larger, the better). As to the second indicator, it estimates the extent to which a
certain front approximates another one (the true Pareto-optimal front if known, or a
reference front otherwise). We have considered the unary version of this indicator,
taking the combined NSGA-II/SPEA2/IBEA Pareto front as a reference set. Being
a measure of distance to the reference set, the lower a R, value, the better.

Figs. [ and[8lshow the distribution of these two indicators for the experiments re-
alized. Let us first consider the hypervolume distribution. SPEA?2 appears to provide
slightly worse values of this indicator with respect to NSGA-IL. Actually, NSGA-II
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is better (with statistical significance at the standard 0.05 level, according to a
Wilcoxon ranksum test [[16]) on fixed and mixed funds, and provides a negligible
difference on variable funds. On the other hand, IBEA exhibits an interesting be-
havioral pattern with notably better results than both NSGA-II and SPEA2 on fixed
funds, no difference on mixed funds, and clearly worse results on variable funds
(in all cases, with statistical significance as before). A similar pattern is observed
when the R, indicator is considered. NSGA-II compares favorably to SPEA?2 in all
the three types of funds, and IBEA varies from providing the best results on fixed



500

Fig. 3 Comparison of the

F. Colomine Duran, C. Cotta, and A.J. Fernandez

variable funds

Pareto fronts found by 045 —
NSGA-II, SPEA2 and IBEA . SPEA2
. 0.4 IBEA ml
on variable funds
0.351 .
0.3 T
Z 025 |
£
8
£
a 02 T
0.151 .
0.1 1
0.05 .
0 ; ; ; ; ; ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
risk
fixed x107 mixed variable
_ - N
L ] | _ T
0.024 % 25) _ lo2stst ‘ 1
) T -
|
- 0231 B
£
—_ L 4 |
0.0235} ‘ { 24 |
| : 0.2305} B 1
: | |
[0} € |
5 | 248f ‘ 1 1 oz23f ,
S o0023r | ] |
g € |
z | 0.2295 1
247} o 1
T
0.0225 1 0229 1
| 2461 1
| 0.2285 1
| |
| |
0.0221 \ 1 0.228] L
1 2451 4 b 1
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
NSGA-Il SPEA2  IBEA NSGA-Il SPEA2  IBEA NSGA-Il SPEA2  IBEA

Fig. 4 Boxplot of the hypervolume indicator for NSGA-II, SPEA2 and IBEA

funds to the worst ones on variable funds. Notice that all differences are statistically
significant, except SPEA2 vs IBEA on variable funds.

Among the three types of funds, it is clear that the front corresponding to variable
funds is the longest one, spreading from very low risk/low profit solutions to high
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Fig. 5 Boxplot of the R, indicator for NSGA-II, SPEA2 and IBEA

risk/high profit portfolios. On the contrary, the front generated for mixed funds is
much more focused on a regime than can be described as low risk/moderate profit.
As to fixed funds, they cover a risk spectrum similar to that of variable funds, but the
extreme points of attainable profit are well within the range of profit values found
for variable funds. A more precise perspective of the particular risk/profit tradeoffs
attained by each of the algorithms on the different types of funds will be provided
in next section via the use of Sharpe’s index.

4.2 Use of Sharpe’s Index

Sharpe’s index has been used for decision-making purposes, enabling the selection
of a single solution out of the whole efficient front. Recall that this index measures
how much excess profit per risk unit is attained by a certain portfolio. Depending
on the particular shape of the observed front (which depends on the assets that can
be potentially included in the portfolio), this solution can correspond to different
risk/profit combinations.

This is illustrated in Figs. [6H8] where the best final solution (according to its
Sharpe’s index) provided by each algorithm on each of the 30 runs is shown for
each type of fund. Best solutions tend to be arranged close to a line whose slope
is the optimal value of Sharpe’s index. Moreover, solutions are generally clustered
in a relatively small range of risk/profit combinations. This indicates all algorithms
typically provide solutions with a stable risk/profit profile. Indeed, the composition
of portfolios tends to be stable as well, as shown in Figs. OHI0F NSGA-II, SPEA2
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Fig. 6 Best solution (fixed
funds) in each run (accord-
ing to Sharpe’s index) found
by NSGA-II, SPEA2 and
IBEA

Fig. 7 Best solution (mixed
funds) in each run (accord-
ing to Sharpe’s index) found
by NSGA-II, SPEA2 and
IBEA
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and IBEA agree on which funds should be included in the portfolio in each situation,
and the variability of percentages (viz. the vertical size of boxes in the boxplot) is
small, particularly in variable funds (where investments are mainly concentrated
in fund #4, Mercantil) and mixed funds (where investments are stably distributed
among three funds, Ceiba, Mercantil, and Provincial). In the case of fixed funds
there seems to be a higher variability in the percentages of two funds (Exterior RF
and Primus RF) due to their similar profiles.
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Fig. 9 Portfolio distribution (fixed funds) in solutions selected according to Sharpe’s index.
(Top) NSGA-II (middle) SPEA?2 (bottom) IBEA.

Another interesting aspect concerns the distribution of Sharpe’s index values ob-
tained in each run. Fig.[12] shows a boxplot of Sharpe’s index values for the 30 runs
of each algorithm on each type of fund. NSGA-II and SPEA2 perform similarly
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Fig. 12 Boxplots of Sharpe’s index values attained by NSGA-II, SPEA2 and IBEA on fixed
funds (right), mixed funds (middle) and variable funds (left)

Table 1 Comparison of the best solutions (according to Sharpe’s index) found by NSGA-II,
SPEA?2 and IBEA

Fixed Funds Mixed Funds Variable Funds
NSGA-II SPEA2 IBEA NSGA-II SPEA2 IBEA NSGA-I SPEA2 IBEA
E(R|W) 2775 2821 2881 1697 1690 .1697 4128 .4099 4172

o2 (R|W) .0227 .0240 .0255 .0090 .0087 .0089 .8359 .8232 .8523
Sharpe’sindex 1.034 1.036 1.041 .5067 .5060 .5084 .3183 .3175 .3200
Er02 (R|W) 2367 2457 2365 2455 2468 2453 5392 5342 5432

except on variable funds, where NSGA-II is clearly better. However, IBEA outper-
forms both NSGA-II and SPEA?2 on all types of funds (clear from visual inspection,
and further verified by a Wilcoxon ranksum test).

Finally, the best overall solutions found by each of the algorithms are compared
to an indexed portfolio in the Caracas Stock Exchange. To this end, we consider
data for the year 2002, which was not seen during the optimization process. Table[T]
displays the objective values for the best evolved portfolios, and the profit projection
for 2002. As a reference, the mentioned indexed portfolio (IBC) achieves a profit of
.1988 for 2002. It can thus be seen that the evolved portfolios are notoriously better
that this latter portfolio.
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5 Conclusions

Portfolio optimization is a natural arena for multiobjective optimizers. In particu-
lar, MOEAs have both the power and the flexibility required to successfully deal
with this kind of problems. In this sense, this work has analyzed the performance
of three state-of-the-art MOEAs, namely NSGA-II, SPEA2, and IBEA on portfolio
optimization, using real-world mutual funds data taken from the Caracas Stock Ex-
change. Although the algorithms performed similarly from high level —with the ex-
ception of fixed funds, where IBEA provides a wider and deeper front— a closer look
indicates that they offer different optimization profiles for this problem. NSGA-II
is capable of advancing deeper towards some regions of the Pareto front (with sta-
tistical significance at the standard 0.05 level in the case of fixed funds and mixed
funds), and IBEA lags behind the other two algorithms on variable funds.

Quite interestingly, when the subsequent decision-making step is approached and
a single solution is selected from the Pareto front, the comparison turns out to be fa-
vorable to IBEA in all the cases. Furthermore, NSGA-II is better than SPEA2 on
the problem scenario —variable funds— on which it did not achieve better quality in-
dicators than the latter. More precisely, using Sharpe’s index —based on a profit/risk
ratio— to identify the best solution from the Pareto front provides significantly bet-
ter values when using NSGA-II than SPEA2 on variable funds. This indicates a
much better coverage of the region where such solutions lie. There is no statistically
significant difference in the case of fixed and mixed funds. Likewise, IBEA pro-
vides much better solutions in this latter case, even when the quality indicators were
worse than those of NSGA-II and SPEA2. This fact illustrates a recurrent theme in
multiobjective optimization, i.e., the extent of the usefulness of approximating the
whole Pareto front in practical problem scenarios. The fact that a deeper, wider, and
more complete the Pareto front returned by an algorithm is better for any problem is
based on a reasonable premise: providing the best set of solutions for the decision-
maker to make the final selection. However, in some situations the details of how
this decision-maker makes the decision cannot be ignored when evaluating the mul-
tiobjective optimizer. In other words, the best set of solutions is not necessarily the
largest or the most diverse set, but the set that achieves a better coverage of the
region in the search space that the decision-maker prefers. Portfolio optimization
under Markowitz’s model using Sharpe’s index for selection is a good example of
this situation.

Future work will be directed at analyzing other variants of the problem where ad-
ditional constraints are introduced, e.g., cardinality constraints, minimum/maximum
percentage of assets, etc. This analysis will pave the way for the development of ad
hoc MOEAs, where we plan to integrate specific knowledge on the problem and
on the subsequent decision-making procedure. Another line of future research con-
cerns the measure of risk. While we have focused on variance here, this is by no
means the unique available option. As an alternative, we may for example consider
value at risk, i.e., the maximum loss that can take place at a certain confidence level.
A related measure is the conditional value at risk, namely the expected shortfall in
the worst g% of cases, where ¢ is a parameter. Other possible measures are Jensen
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index [14]], Treynor index [28], or models emanating from capital asset pricing the-
ory (CAPM) [24], among others. An analysis of these alternatives is underway.
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