
On the Effect of Applying a Steady-State
Selection Scheme in the Multi-Objective Genetic
Algorithm NSGA-II

Antonio J. Nebro and Juan J. Durillo

Abstract. Genetic Algorithms (GAs) are among the most popular techniques to
solve multi-objective optimization problems, with NSGA-II being the most well-
known algorithm in the field. Although most of multi-objective GAs (MOGAs) use
a generational scheme, in the last few years some proposals using a steady-state
scheme have been developed. However, studies about the influence of using those
selection strategies in MOGAs are scarce. In this chapter we implement a steady-
state version of NSGA-II, which is a generational MOGA, and we compare the two
versions with a set of four state-of-the-art multi-objective metaheuristics (SPEA2,
OMOPSO, AbYSS, and MOCell) attending to two criteria: the quality of the result-
ing approximation sets to the Pareto front and the convergence speed of the algo-
rithms. The obtained results show that search capabilities of the steady-state version
of NSGA-II significantly improves the original version, providing very competitive
results in terms of the quality of the obtained Pareto front approximations and the
convergence speed.

1 Introduction

Genetic Algorithms (GAs) have been widely applied for solving optimization prob-
lems in many areas. Since the appearance of the first multi-objective genetic algo-
rithm (MOGA), the Multiple Objective Optimization with Vector Evaluated Genetic
Algorithm (VEGA) [21], there has been a growing interest in these kinds of algo-
rithms for problems with two or more objectives. GAs are very popular in multi-
objective optimization in part because they can obtain a front of solutions in one
single run. Thus, the most well-known algorithms in this field are GAs: NSGA-
II [3] and SPEA2 [26]. GAs belong to a family of nature-inspired techniques, the

Antonio J. Nebro · Juan J. Durillo
Dept. Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga,
Campus de Teatinos, 29071 Málaga, Spain
e-mail: antonio@lcc.uma.es,durillo@lcc.uma.es

R. Chiong (Ed.): Nature-Inspired Algorithms for Optimisation, SCI 193, pp. 435–456.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

antonio@lcc.uma.es, durillo@lcc.uma.es

436 Antonio J. Nebro and Juan J. Durillo

evolutionary algorithms, which form part of a broader set of approximation tech-
niques known as metaheuristics [11]. Other metaheuristic techniques include parti-
cle swarm optimization, ant colony optimization, scatter search, etc.

Based on their selection scheme, there exist two main models of GAs: genera-
tional and steady-state. In the generational model, the algorithm creates a population
of individuals from an old population using the typical genetic operators (selec-
tion, crossover, and mutation); this new population becomes the population of the
next generation. On the other hand, a steady-state GA creates typically only one
new member which is tested for insertion into the population at each step of the
algorithm.

In this chapter our purpose is, taking as starting point a steady-state version of
NSGA-II, to study the search enhancements of that scheme over the generational
approach of NSGA-II in the context of a comparison against four state-of-the-art
multi-objective metaheuristics, namely, SPEA2 [26] (GA), AbYSS [18] (scatter
search), MOCell [16] (cellular GA), and OMOPSO [19] (particle swarm optimiza-
tion). For a broader comparison of these algorithms, we have evaluated them by
using test functions from three different benchmarks (ZDT [25], DTLZ [6], and
WFG [12]) and we have considered two different criteria. First, we have assessed
the quality of the Pareto fronts obtained by those algorithms by applying the additive
unary epsilon (I1

ε +) [14], spread (Δ) [3], and hypervolume (HV) [24] quality indica-
tors. Second, we have studied their convergence speed, i.e., the number of function
evaluations required by the algorithms to converge towards the optimal Pareto front.

The remainder of this chapter is structured as follows. The next section provides
background information about multi-objective optimization. In Section 3 we review
previous works in the literature. Section 4 describes the NSGA-II algorithm and its
steady-state version. The algorithms used in the comparative study are described in
Section 5. The next two sections are devoted to the experimentation and analysis of
the obtained results. Finally, Section 8 draws some conclusions and lines of future
work.

2 Multi-Objective Optimization Background

In this section, we provide some background on multiobjective optimization. First,
we define basic concepts such as Pareto optimality, Pareto dominance, Pareto opti-
mal set, and Pareto front. In these definitions we assume, without loss of generality,
the minimization of all the objectives.

A general multiobjective optimization problem (MOP) can be formally defined
as follows:

Definition 1 (MOP). Find a vector x∗ = [x∗1,x
∗
2, . . . ,x

∗
n] which satisfies the m in-

equality constraints gi (x) ≥ 0, i = 1,2, . . . ,m, the p equality constraints hi (x) =
0, i = 1,2, . . . , p, and minimizes the vector function f(x) = [f1(x), f2(x), . . . , fk(x)]T ,
where x = [x1,x2, . . . ,xn]

T is the vector of decision variables.

On the Effect of Applying a Steady-State Selection Scheme 437

The set of all the values satisfying the constraints defines the feasible region Ω and
any point x ∈ Ω is a feasible solution. As mentioned before, we seek for the Pareto
optima. Its formal definition is provided next:

Definition 2 (Pareto Optimality). A point x∗ ∈ Ω is Pareto Optimal if for every
x ∈ Ω and I = {1,2, . . . ,k} either ∀i∈I (fi (x) = fi(x∗)) or there is at least one i ∈ I
such that fi (x) > fi (x∗).

This definition states that x∗ is Pareto optimal if no feasible vector x exists which
would improve some criteria without causing a simultaneous worsening in at least
one other criterion. Other important definitions associated with Pareto optimality
are the following:

Definition 3 (Pareto Dominance). A vector u = (u1, . . . ,uk) is said to dominate
v=(v1, . . . ,vk) (denoted by u � v) if and only if u is partially less than v, i.e.,
∀i ∈ {1, . . . ,k} , ui ≤ vi ∧ ∃i ∈ {1, . . . ,k} : ui < vi.

Definition 4 (Pareto Optimal Set). For a given MOP f(x), the Pareto optimal set is
defined as P∗ = {x ∈ Ω |¬∃x′ ∈ Ω , f(x′) � f(x)}.

Definition 5 (Pareto Front). For a given MOP f(x) and its Pareto optimal set P∗,
the Pareto front is defined as PF ∗ = {f(x)|x ∈ P∗}.

Pareto dominance relates two solutions and it can be used as a binary operator. Thus,
the application of this operator to two solutions in the objective space returns either
one solution that dominates another or that the solutions do not dominate each other
(i.e., they are non-dominated solutions). The Pareto optimal set is composed of all
those solutions which are non-dominated, and the Pareto front is the correspondence
of the Pareto optimal set in the objective space.

Obtaining the Pareto front of a MOP is the main goal of multiobjective optimiza-
tion. When stochastic techniques such as metaheuristics are applied, the goal is to
obtain a finite set of solutions having two properties: convergence to the true Pareto
front and homogeneous diversity. The first property ensures that we are dealing with
optimal solutions, while the second one, which refers to obtaining a uniform-spaced
set of solutions, indicates that we have carried out an adequate exploration of the
search space, so we are not losing valuable information.

3 Related Work

In this section we analyze previous works in the literature which make use of a
steady-state scheme in multi-objective GAs. Many MOGAs using such scheme have
been proposed in the last few years; here, we focus on the most salient proposals.

One of the first steady-state multi-objective algorithms described in the litera-
ture was the Pareto Converging Genetic Algorithm (PCGA) [15]. PCGA used a
(μ + 2) scheme and a novel mechanism based on histograms of ranks for assess-
ing convergence to the Pareto front. It was found to produce diverse sampling of

438 Antonio J. Nebro and Juan J. Durillo

the Pareto front without niching and with significantly less computing effort than
NSGA, the previous version of NSGA-II. Nevertheless, the algorithms were evalu-
ated using only three test problems and no comparisons with PCGA using a gener-
ational scheme were reported.

The Simple Evolutionary Algorithm for Multi-Objective Optimization (SEAMO)
was proposed in [23]. It was a simple steady-state approach following a (μ + 1)
scheme that used only one population and depended entirely on the replacement pol-
icy used: no rankings, subpopulations, niches or auxiliary approach were required.
Due to the fact that a generational version of SEAMO may not make sense, it was
only compared with NSGA-II and SPEA2 using as benchmark the multiple knap-
sack problem.

Deb et al. proposed in [4] a ε-Domination Based Steady State MOEA, which
was also evaluated in [5]. This algorithm used a (μ + 1) scheme and was composed
of a population and an archive, which used a ε-Domination mechanism. In each
generation, one parent from the population and one from the archive were selected
to create new offsprings, which were then tested for insertion in both the population
and the archive using different strategies. It was compared with several state-of-the-
art MOEAS using both bi-objective and three-objective optimization problems. No
comparisons with the same algorithm using a generational scheme were reported.

Two multi-objective steady-state algorithms were presented in [1]: the Objec-
tive Exchanging Genetic Algorithm for Design Optimization (OEGADO), and the
Objective Switching Genetic Algorithm for Design Optimization (OSGADO). The
former proposal consists of several steady-state single-objective optimization GAs
which periodically exchange information about the objectives; the second algorithm
is also composed of multiple single-objective optimization algorithms, but in this
case these algorithms periodically switch the objective they optimize. Both algo-
rithms were compared with NSGA-II using four benchmark academic problems
and two engineering problems. In this work, neither OSGADO and OEGADO were
evaluated using generational single-objective GAs.

Emmerich et al. presented in [10] the so-called S metric selection EMOA (SMS-
EMOA), which is a hypervolume based steady-state GA. It has a (μ + 1) scheme
as well. The paper included a theoretical analysis in which the advantages of using
a steady-state scheme in terms of the complexity of this kind of algorithms were
proofed. The algorithm was evaluated using the ZDT benchmark, and it was com-
pared with NSGA-II, SPEA2, and the above described ε-MOEA. No comparisons
using a generational scheme were reported.

Srinivasan et al. proposed in [22] a new version of the NSGA-II algorithm. This
algorithm uses a (μ + λ) scheme, like the original NSGA-II. The main difference
was that once all the individuals have been generated, they are considered to update
the population in a steady-state model. The new proposal was evaluated using nine
benchmark problems and compared with the original NSGA-II algorithm.

Igel et al. studied in [13] the effect of two different steady-state schemes, a (μ +1)
and a (μ< + 1), for the Multi-objective covariance matrix adaption evolution strat-
egy (MO-CMA-ES). The latter steady-state scheme did not consider all the popu-
lation for selecting the parents. These different approaches were compared with a

On the Effect of Applying a Steady-State Selection Scheme 439

Crowding distance assignmentNon-dominated sorting

Discarded solutions

Next populationP

Q

F
1

F
2

F
3

P: Parent population

Q: Offspring population

F
i
: Subpopulation of rank i

Fig. 1 The NSGA-II procedure, which follows a generational selection scheme

generational scheme, NSGA-II and SPEA2 using a benchmark composed of con-
strained and unconstrained test functions.

In [9] Durillo et al. proposed a steady-state version of the NSGA-II algorithm
with a (μ +1) scheme and they compared it to the original one. Results showed that
by using such a scheme, the algorithm was able to outperform the original one in
terms of convergence towards the optimal Pareto front and spread of the resulting
fronts of solutions.

Summarizing this section, many of the works in the literature only present new
steady-state algorithms and compare them against the state-of-the-art MOGAs;
comparisons with the same algorithm using a generational scheme are scarce. Fur-
thermore, many of these proposals are only evaluated using a benchmark composed
of small number of problems, and they take into account only the quality of the fi-
nal front obtained without paying attention to other issues such as the convergence
speed of the algorithms.

4 Steady-State NSGA-II

In this section we present the steady-state version of NSGA-II. First, we describe the
original (generational) algorithm, and then we go into details related to the steady-
state proposal.

The NSGA-II algorithm was proposed by Deb et al. [3]. It is based on a ranking
procedure, consisting of extracting the non-dominated solutions from a population
and assigning them a rank of 1; these solutions are removed and the next group of
non-dominated solutions have a rank of 2, and so on. NSGA-II is a generational
MOGA, in which a current population is used to create an auxiliary one, the off-
spring population (see Fig. 1); after that, both populations are combined to obtain-
ing the new current population. The procedure is as follows: the two populations are
sorted according to their rank, and the best solutions are chosen to create the new
population; in the case of selection between some individuals with the same rank,

440 Antonio J. Nebro and Juan J. Durillo

Crowding distance assignmentNon-dominated sorting

Discarded solutions

Next populationP

Q

F1

F2

F

P: Parent population
Q: Offspring population

3

Fig. 2 The NSGA-IIss algorithm. Only one offspring is generated and tested to be inserted at
each step.

a density estimation based on the crowding distance to the surrounding individuals
of the same rank is used to get the most promising solutions. Typically, both the
current and the auxiliary populations have the same size.

A steady-state version of NSGA-II can be easily implemented by using an off-
spring population of size 1. In this way, the newly generated individual is imme-
diately incorporated into the evolutionary cycle. However, this also means that the
ranking and crowding procedures have to be applied each time a new individual is
created, so the time required by the algorithm increases notably. The procedure of
this version is shown in Fig. 2. In the rest of this work we will refer to the steady-
state version as NSGA-IIss, and to the original one as NSGA-IIgen.

5 Description of the Evaluated Algorithms

In this section we briefly describe the four algorithms that we have considered
for comparison with the two versions of NSGA-II. We have included SPEA2 be-
cause it is, along with NSGA-II, the most popular MOGAs. The other three tech-
niques, OMOPSO, MOCell, and AbYSS are more recent algorithms, and they have
been proven to be more effective than NSGA-II and SPEA2 in previous works
[17][16][18][20].

The main features of these techniques are described next:

• SPEA2 was proposed by Zitler et al. in [26]. In this algorithm, each individual
has a fitness value that is the sum of its strength raw fitness plus a density es-
timation. The algorithm applies the selection, crossover, and mutation operators
to fill an archive of individuals; then, the non-dominated individuals of both the
original population and the archive are copied into a new population. If the num-
ber of non-dominated individuals is greater than the population size, a truncation
operator based on the distances to the k-th nearest neighbor is used. This way,
the individuals having the minimum distance to any other individual are chosen
to be discarded.

On the Effect of Applying a Steady-State Selection Scheme 441

• OMOPSO (Optimized MOPSO, Coello et al. [19]) is a multi-objective particle
swarm optimization algorithm. Its main features include the use of an external
archive based on the crowding distance of NSGA-II to filter out leader solutions
and the use of mutation operators to accelerate the convergence of the swarm.
OMOPSO also has an archive to store the best solutions found during the search.
This archive makes use of the concept of ε-dominance to limit the number of
solutions stored. Here, we consider the population containing the leaders as the
final approximation set.

• AbYSS is an adaptation of the scatter search metaheuristic to the multi-objective
domain proposed by Nebro et al. in [18]. This algorithm uses an external archive
similar to the one employed by OMOPSO. AbYSS incorporates operators of the
evolutionary algorithms domain, including polynomial mutation and simulated
binary (SBX) crossover in the improvement and solution combination methods,
respectively.

• MOCell (Nebro et al. [16]) is a cellular GA. As OMOPSO and AbYSS, it in-
cludes an external archive to store the non-dominated solutions found so far.
This archive makes use of the crowding distance of NSGA-II to maintain di-
versity. MOCell incorporates a feedback procedure: after each interation some
random solutions in the current population are replaced by solutions contained
in the archive. Here, we have used an asynchronous version of MOCell, called
aMOCell4 in [16]. Furthermore, in this version the feedback procedure takes
place through the selection operator: one parent is selected from the neighbor-
hood of the current solution, and the other parent is selected randomly from the
archive.

We have used the implementation of these algorithms provided by jMetal [8], a
Java-based framework aimed at multi-objective optimization problem solving.

6 Experimentation

In this section we explain the benchmark problems used to evaluate the algorithms,
the quality indicators used to assess their performance, the criterion used to measure
the convergence speed, the parameter settings used, the followed methodology, and
the statistical tests carried out.

6.1 Benchmark Problems

Here, we describe the different sets of problems addressed in this work. These prob-
lems are well-known, and they have been used in many studies in this area.

The problems families are the following:

• Zitzler-Deb-Thiele (ZDT): This benchmark is composed of five bi-objective
problems [25]: ZDT1 (convex), ZDT2 (nonconvex), ZDT3 (nonconvex, dis-
connected), ZDT4 (convex, multimodal), and ZDT6 (nonconvex, nonuniformly

442 Antonio J. Nebro and Juan J. Durillo

spaced). These problems are scalable according to the number of decision vari-
ables.

• Deb-Thiele-Laumanns-Zitzler (DTLZ): The problems of this family are scal-
able both in the number of variables and objectives [6]. It is composed of the
following seven problems: DTLZ1 (linear), DTLZ2-4 (nonconvex), DTLZ5-6
(degenerate), and DTLZ7 (disconnected).

• Walking-Fish-Group (WFG): This set is composed of nine problems, WFG1 -
WFG9, that have been constructed using the WFG toolkit [12]. The properties of
these problems are detailed in Table 1. They all are scalable both in the number
of variables and the number of objectives.

Table 1 Properties of the MOPs created using the WFG toolkit

Problem Separability Modality Bias Geometry
WFG1 separable uni polynomial, flat convex, mixed
WFG2 non-separable f1 uni, f2 multi no bias convex, disconnected
WFG3 non-separable uni no bias linear, degenerate
WFG4 non-separable multi no bias concave
WFG5 separable deceptive no bias concave
WFG6 non-separable uni no bias concave
WFG7 separable uni parameter dependent concave
WFG8 non-separable uni parameter dependent concave
WFG9 non-separable multi, deceptive parameter dependent concave

In this work we have used the bi-objective formulation of the DTLZ and WFG
problem families. A total of 21 MOPs are used to evaluate the six metaheuristics.

6.2 Quality Indicators

To assess the search capabilities of algorithms on the test problems, two different
issues are normally taken into account: the distance between the generated solu-
tion set by the proposed algorithm to the optimal Pareto front should be minimized
(convergence) and the spread of found solutions should be maximized in order to
obtain as smooth and uniform a distribution of solutions as possible (diversity). To
measure these two criteria it is necessary to know the exact location of the opti-
mal Pareto front; the benchmark problems used in this work have known Pareto
fronts.

The quality indicators can be classified into three categories depending on
whether they evaluate the closeness to the Pareto front, the diversity in the solu-
tions obtained, or both [2]. We have adopted one indicator of each type.

• Unary Epsilon Indicator (I1
ε+). This indicator was proposed by Zitzler et al.

[27] and makes direct use of the principle of Pareto-dominance. Given an ap-
proximation set of a problem, A, the I1

ε+ indicator is a measure of the smallest
distance one would need to translate every point in A so that it dominates the

On the Effect of Applying a Steady-State Selection Scheme 443

Fig. 3 Calculating the
Spread quality indicator

F1

F0

Spread

df

d1

d2

d3
d4

dl

Obtained Solutions

Extreme Solutions

Optimal Pareto Front

optimal Pareto front of the problem. More formally, given z1 = (z1
1, ...,z

1
n) and

z2 = (z2
1, ...,z

2
n), where n is the number of objectives:

I1
ε+(A) = in fε∈R

{
∀z2 ∈ Pareto Optimal Front ∃z1 ∈ A : z1 ≺ε z2

}
(1)

where, z1 ≺ε z2 if and only if ∀1 ≤ i ≤ n : z1
i < ε + z2

i .
• Spread (Δ). The diversity Spread indicator [3] measures the extent of spread

achieved among the obtained solutions. This indicator (illustrated in Fig. 3) is
defined as:

Δ =
d f + dl + ∑N−1

i=1

∣∣di − d̄
∣∣

d f + dl +(N −1)d̄
, (2)

where di is the Euclidean distance between consecutive solutions, d̄ is the mean
of these distances, and d f and dl are the Euclidean distances to the extreme
(bounding) solutions of the optimal Pareto front in the objective space (see [3]
for the details). Δ takes a value of zero for an ideal distribution, pointing out a
perfect spread out of the solutions in the Pareto front. We apply this indicator
after a normalization of the objective function values.

• Hypervolume (HV). The HV indicator calculates the volume, in the objective
space, covered by members of a non-dominated set of solutions Q for problems
where all objectives are to be minimized [24]. In the example depicted in Fig. 4,
the HV is the region enclosed within the discontinuous line, where Q = {A,B,C}
(in the figure, the grey area represents the objective space that has been explored).
Mathematically, for each solution i ∈ Q, a hypercube vi is constructed with a ref-
erence point W and the solution i as the diagonal corners of the hypercube. The
reference point can be found simply by constructing a vector of worst objective
function values. Thereafter, a union of all hypercubes is found and its hypervol-
ume (HV) is calculated:

444 Antonio J. Nebro and Juan J. Durillo

HV = volume

⎛
⎝

|Q|⋃
i=1

vi

⎞
⎠ . (3)

Algorithms with larger HV values are desirable. Since this indicator is not free
from arbitrary scaling of objectives, we have evaluated the metric by using nor-
malized objective function values.

Fig. 4 The hypervolume
enclosed by the non-
dominated solutions

f1

f2

Pareto-optimal front

W

A

B

C

6.3 Convergence Speed Criterion

Since one of our main interests is to analyze the convergence speed of the analyzed
algorithms, it is important to define, first, what we mean by convergence, and to
ensure that such definition allows us to measure it in a quantitative and meaningful
way. We have studied and defined in [17], a stopping condition based on the high

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

ZDT1

True front
HV = 60.32%
HV = 75.45%
HV = 96.82%
HV = 98.26%

Fig. 5 Fronts with different HV values obtained for problem ZDT1

On the Effect of Applying a Steady-State Selection Scheme 445

Table 2 Parameterization (L = individual length)

Parameterization used in NSGA-II [3]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in SPEA2 [26]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in AbYSS [18]
Population Size 20 individuals
Reference Set Size 10 + 10
Recombination simulated binary, pc = 1.0
Mutation (local search) polynomial, pm = 1.0/L
Archive Size 100 individuals

Parameterization used in MOCell [16]
Population Size 100 individuals (10×10)
Neighborhood 1-hop neighbours (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L
Archive Size 100 individuals

Parameterization used in OMOPSO [19]
Swarm size 100 particles
Mutation uniform + non-uniform
Leaders Size 100

quality of the approximation of the Pareto front found. We have used the HV quality
indicator for that purpose.

In Fig. 5 we show different approximations to the Pareto front for the problem
ZDT1 with different percentages of HV . We can observe that a front with a hyper-
volume of 98.26% represents a reasonable approximation to the optimal Pareto front
in terms of convergence and diversity of solutions. So, we have taken 98% of the
hypervolume of the optimal Pareto front as a criterion to decide that a problem has
been successfully solved. In this way, we mean by convergence speed the number
of function evaluations required to achieve this termination condition. Those algo-
rithms requiring fewer function evaluations can be considered to be more efficient
or faster.

6.4 Parameter Settings

We have chosen a set of parameter settings to guarantee a fair comparison among the
algorithms. All GAs (NSGA-II, SPEA2, and MOCell) use an internal population of

446 Antonio J. Nebro and Juan J. Durillo

size equal to 100; the size of the archive is also 100 in SPEA2, OMOPSO, AbYSS,
and MOCell. OMOPSO has been configured with 100 particles. For AbYSS, both
the population and the reference set have a size of 20 solutions. The two versions of
NSGA-II share the same parameterization.

In the GAs we have used SBX and polynomial mutation [2] as operators for
crossover and mutation operators, respectively. The distribution indices for both op-
erators are ηc = 20 and ηm = 20, respectively. The crossover probability is pc = 0.9
and the mutation probability is pm = 1/L, where L is the number of decision vari-
ables. AbYSS uses polynomial mutation in the improvement method and SBX in
the solution combination method. OMOPSO applies a combination of uniform and
non-uniform mutation. A summary of the parameter settings is included in Table 2.

6.5 Methodology

The stopping criterion is to reach 25,000 function evaluations in the experiments
performed for assessing the quality of the obtained solution sets. The quality indi-
cators are computed after the algorithms have finished their executions.

In the experiments carried out to study the convergence speed, the stopping cri-
terion is to reach either 1,000,000 function evaluations or a front with 98% HV
of the optimal Pareto front. If an algorithm stops according to the first condition,
we consider that it has failed to solve the problem. In these experiments, the HV is
measured at every 100 function evaluations.

6.6 Statistical Tests

Since we are dealing with stochastic algorithms we have made 100 independent
runs of each experiment, and we show the median, x̃, and interquartile range, IQR,
as measures of location (or central tendency) and statistical dispersion, respectively.
The following statistical analysis has been performed throughout this work [7].
Firstly, a Kolmogorov-Smirnov test was performed in order to check whether the
values of the results follow a normal (gaussian) distribution or not. If the distri-
bution is normal, the Levene test checks for the homogeneity of the variances. If
samples have equal variance (positive Levene test), an ANOVA test is done; other-
wise a Welch test is performed. For non-gaussian distributions, the non-parametric
Kruskal-Wallis test is used to compare the medians of the algorithms. Fig. 6 sum-
marizes the statistical analysis.

We always consider in this work a confidence level of 95% (i.e., significance level
of 5% or p-value under 0.05) in the statistical tests, which means that the differences
are unlikely to have occurred by chance with a probability of 95%. Successful tests
are marked with ‘+’ symbols in the last column in all the tables containing the
results; conversely, ‘-’ means that no statistical confidence was found (p-value >
0.05). For the sake of better understanding, the best result for each problem has a
gray colored background and the second best one has a clearer gray background.

On the Effect of Applying a Steady-State Selection Scheme 447

Fig. 6 Statistical analysis
performed in this work

Normality

(Kolmogorov-Smirnov)

Variance Homogeneity

(Levene)

Kruskal-Wallis Welch ANOVA

No Yes

YesNo

7 Results

This section is devoted to presenting and discussing the results of the experiments.
We start with the analysis of the obtained values of the I1

ε+, Δ , and HV quality
indicators; after that, we focus on the convergence speed.

7.1 Quality Assessment

The results after applying the I1
ε+ indicator are provided in Table 3. Our main in-

terest is to focus on the two versions of NSGA-II, not to determine the best algo-
rithm in the comparisons. We can observe that NSGA-IIgen only achieves the best
(lower) values in two out of the 21 problems composing the whole benchmark,
while NSGA-IIss gets four best and eleven second best results. With the exceptions
of problems WFG1 and WFG8, it is clear that the steady-state scheme in NSGA-II
allows to improve the convergence of the obtained fronts.

If we make a ranking of the algorithms according to the convergence indicator,
considering the best and second best values, it would be headed by MOCell followed
by NSGA-IIss; after them, OMOPSO, NSGA-IIgen, AbYSS, and SPEA2. In Fig. 7

Table 3 Median and interquartile range of the I1
ε+ quality indicator

NSGA-IIgen NSGA-IIss SPEA2 AbYSS MOCell OMOPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 1.37e−023.0e−03 5.81e−036.3e−04 8.69e−031.1e−03 7.72e−031.8e−03 6.23e−034.1e−04 5.77e−033.8e−04 +
ZDT2 1.28e−022.3e−03 5.79e−035.5e−04 8.73e−031.4e−03 7.10e−031.6e−03 5.57e−033.0e−04 5.64e−033.0e−04 +
ZDT3 8.13e−031.9e−03 5.24e−035.4e−04 9.72e−031.9e−03 6.10e−033.1e−01 5.66e−037.5e−04 6.16e−031.2e−03 +
ZDT4 1.49e−023.0e−03 9.78e−032.6e−03 3.42e−027.9e−02 1.14e−024.2e−03 8.17e−032.3e−03 7.40e+004.5e+00 +
ZDT6 1.47e−022.8e−03 7.02e−037.6e−04 2.42e−025.2e−03 5.06e−033.9e−04 6.53e−035.6e−04 4.67e−033.3e−04 +
DTLZ1 7.13e−031.6e−03 4.62e−031.9e−03 5.89e−032.8e−03 5.85e−035.5e−03 4.02e−031.5e−03 1.54e+011.4e+01 +
DTLZ2 1.11e−022.7e−03 5.13e−033.6e−04 7.34e−031.1e−03 5.39e−034.6e−04 5.09e−032.8e−04 5.23e−032.9e−04 +
DTLZ3 1.04e+001.2e+00 9.63e−011.4e+00 2.28e+001.9e+00 1.66e+001.6e+00 7.91e−011.0e+00 7.87e+017.5e+01 +
DTLZ4 1.13e−029.9e−01 5.24e−039.9e−01 7.66e−039.9e−01 5.39e−033.0e−04 5.74e−039.9e−01 5.55e−034.5e−04 +
DTLZ5 1.05e−022.5e−03 5.14e−033.4e−04 7.47e−031.2e−03 5.36e−035.2e−04 5.08e−033.2e−04 5.27e−032.8e−04 +
DTLZ6 4.39e−023.4e−02 3.07e−022.5e−02 3.03e−015.3e−02 9.50e−024.7e−02 4.16e−023.8e−02 5.18e−034.1e−04 +
DTLZ7 1.04e−022.8e−03 5.13e−034.1e−04 9.09e−031.4e−03 5.51e−039.6e−04 5.19e−031.0e−03 5.39e−034.8e−04 +
WFG1 3.52e−014.6e−01 4.98e−015.3e−01 9.92e−012.1e−01 1.05e+005.1e−01 4.49e−015.0e−01 1.13e+002.1e−01 +
WFG2 7.10e−017.0e−01 7.10e−017.0e−01 7.10e−016.9e−01 7.11e−011.6e−03 7.10e−013.7e−04 9.51e−039.0e−04 +
WFG3 2.00e+005.8e−04 2.00e+004.3e−04 2.00e+001.1e−03 2.00e+001.6e−03 2.00e+005.2e−04 2.00e+002.0e−05 +
WFG4 3.26e−026.7e−03 1.52e−021.5e−03 2.52e−024.0e−03 1.49e−027.7e−04 1.51e−027.3e−04 4.33e−025.6e−03 +
WFG5 8.41e−028.3e−03 6.41e−021.5e−03 7.27e−022.9e−03 6.39e−027.5e−04 6.35e−026.5e−04 6.36e−026.6e−04 +
WFG6 4.14e−021.6e−02 2.50e−022.8e−02 3.11e−021.4e−02 7.84e−025.9e−02 3.65e−025.4e−02 1.43e−026.7e−04 +
WFG7 3.47e−028.1e−03 1.51e−021.5e−03 2.54e−023.0e−03 1.55e−021.1e−03 1.49e−027.5e−04 1.52e−027.6e−04 +
WFG8 3.38e−012.3e−01 5.08e−012.2e−01 5.11e−011.9e−01 5.13e−017.4e−02 5.08e−015.3e−02 5.09e−012.0e−03 +
WFG9 3.73e−027.5e−03 1.80e−023.7e−03 2.92e−025.9e−03 2.21e−026.0e−03 1.94e−023.6e−03 2.55e−022.7e−03 +

448 Antonio J. Nebro and Juan J. Durillo

ZDT DTLZ WFG

Epsilon Indicator

NSGA-IIgen NSGA-IIss

Fig. 7 Positions of NSGA-IIgen (left columns) and NSGA-IIss (right columns) in the ranking
of the I1

ε+ indicator

we include the positions of each NSGA-II version if we rank the six compared
algorithms per individual problem. We can observe clearly that while NSGA-IIgen

is in the sixth position in many problems, NSGA-IIss is ranked in the first or second
positions in all but six instances.

The values of the Δ indicator are included in Table 4. From the table we can
see that the steady-state version of NSGA-II yields better (lower) values than its
generational counterpart in all the 21 benchmark problems. However, it is unable to

Table 4 Median and interquartile range of the Δ quality indicator

NSGA-IIgen NSGA-IIss SPEA2 AbYSS MOCell OMOPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 3.70e−014.2e−02 7.52e−021.5e−02 1.52e−012.2e−02 1.05e−012.0e−02 7.64e−021.3e−02 7.34e−021.7e−02 +
ZDT2 3.81e−014.7e−02 7.80e−021.3e−02 1.55e−012.7e−02 1.07e−011.8e−02 7.67e−021.4e−02 7.29e−021.5e−02 +
ZDT3 7.47e−011.8e−02 7.03e−013.5e−03 7.10e−017.5e−03 7.09e−019.7e−03 7.04e−016.2e−03 7.08e−016.4e−03 +
ZDT4 4.02e−015.8e−02 1.27e−012.9e−02 2.72e−011.6e−01 1.27e−013.5e−02 1.10e−012.8e−02 8.85e−014.6e−02 +
ZDT6 3.56e−013.6e−02 1.05e−011.5e−02 2.28e−012.5e−02 8.99e−021.4e−02 9.33e−021.3e−02 2.95e−011.1e+00 +
DTLZ1 4.03e−016.1e−02 1.18e−014.0e−02 1.81e−019.8e−02 1.40e−011.7e−01 1.05e−013.6e−02 7.74e−011.3e−01 +
DTLZ2 3.84e−013.8e−02 1.10e−011.6e−02 1.48e−011.6e−02 1.09e−011.9e−02 1.08e−011.7e−02 1.27e−012.0e−02 +
DTLZ3 9.53e−011.6e−01 9.52e−013.4e−01 1.07e+001.6e−01 7.55e−014.5e−01 7.45e−015.5e−01 7.68e−019.3e−02 +
DTLZ4 3.95e−016.4e−01 1.13e−019.0e−01 1.48e−018.6e−01 1.08e−011.8e−02 1.23e−019.0e−01 1.23e−011.9e−02 +
DTLZ5 3.79e−014.0e−02 1.11e−011.6e−02 1.50e−011.9e−02 1.10e−012.0e−02 1.09e−011.7e−02 1.25e−011.9e−02 +
DTLZ6 8.64e−013.0e−01 1.81e−015.3e−02 8.25e−019.3e−02 2.31e−016.3e−02 1.50e−014.3e−02 1.03e−012.1e−02 +
DTLZ7 6.23e−012.5e−02 5.19e−011.9e−03 5.44e−011.3e−02 5.19e−011.3e−03 5.19e−012.9e−02 5.20e−013.7e−03 +
WFG1 7.18e−015.4e−02 5.81e−015.8e−02 6.51e−014.8e−02 6.66e−015.8e−02 5.81e−019.4e−02 1.15e+001.2e−01 +
WFG2 7.93e−011.7e−02 7.47e−011.0e−02 7.53e−011.3e−02 7.46e−014.3e−03 7.47e−012.2e−03 7.60e−012.7e−03 +
WFG3 6.12e−013.6e−02 3.71e−017.2e−03 4.39e−011.2e−02 3.73e−018.7e−03 3.64e−016.3e−03 3.65e−016.9e−03 +
WFG4 3.79e−013.9e−02 1.40e−012.0e−02 2.72e−012.5e−02 1.36e−012.1e−02 1.36e−012.2e−02 3.94e−015.2e−02 +
WFG5 4.13e−015.1e−02 1.38e−011.5e−02 2.79e−012.3e−02 1.31e−012.1e−02 1.32e−012.2e−02 1.36e−012.0e−02 +
WFG6 3.90e−014.2e−02 1.23e−013.2e−02 2.49e−013.1e−02 1.45e−014.3e−02 1.27e−014.0e−02 1.19e−011.9e−02 +
WFG7 3.79e−014.6e−02 1.11e−011.9e−02 2.47e−011.8e−02 1.17e−013.0e−02 1.07e−011.8e−02 1.29e−011.7e−02 +
WFG8 6.45e−015.5e−02 5.63e−015.7e−02 6.17e−018.1e−02 5.86e−017.1e−02 5.57e−014.2e−02 5.42e−013.6e−02 +
WFG9 3.96e−014.1e−02 1.52e−012.1e−02 2.92e−012.0e−02 1.50e−012.2e−02 1.44e−011.7e−02 2.03e−012.0e−02 +

On the Effect of Applying a Steady-State Selection Scheme 449

ZDT DTLZ WFG

Spread

NSGA-IIgen NSGA-IIss

Fig. 8 Positions of NSGA-IIgen (left columns) and NSGA-IIss (right columns) in the ranking
of the Δ indicator

outperform MOCell and AbYSS, the two best algorithms taking into account this
indicator except for the two problems ZDT3 and WFG1.

As before, we include in Fig. 8 the positions of the two versions when ranking the
six compared algorithms per problem. The improvements of the steady-state version
over the generational one are evident: the latter occupies the last rank position in
most of the problems, while the former has two fourth positions as its worst results.

To illustrate the differences between the two versions of NSGA-II, we include
in Fig. 9 the approximation sets to the Pareto front obtained by them when solving
problem ZDT3. This problem is characterized by having a discontinuos Pareto front.
We can observe how the steady-state version produces a front having a uniform
spread of the solutions (Fig. 9 - bottom), while the generational one generates a
not-so-uniform front.

The results of the HV quality indicator are included in Table 5. Those cells con-
taing the symbol “–” mean that the HV has a value of 0, meaning that the obtained
solution sets are out of the limits of the optimal Pareto front. We observe, first, that
NSGA-IIss yield better (higher) values than NSGA-IIgen in 18 out the 21 problems.
Second, a ranking of the algorithms considering the number of best and second best
values would be led by NSGA-IIss, because although OMOPSO yields six best val-
ues (five in the case of NSGA-IIss), it has only a single second best result, while
NSGA-IIss has eight. The ranking per problem is included in Fig. 10, which shows
that NSGA-IIss has a ranking greater than three in only three problems.

As the HV measures both convergence and diversity, and considering the other
two indicators, we can conclude that NSGA-IIss not only outperforms NSGA-IIgen,
but it is also a competitive technique based on the convergence of the produced
Pareto fronts of all the evaluated algorithms.

450 Antonio J. Nebro and Juan J. Durillo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f
1

f 2

Optimal Pareto Front
NSGA−IIgen

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f
1

f 2

Optimal Pareto Front
NSGA−IIss

Fig. 9 Pareto fronts obtained by NSGA-IIgen (top) and NSGA-IIss (bottom) when solving
problem ZDT3

To conclude this section we would like to remark, first, that the obtained results
in the experiments carried out have statistical significance, as it can be observed in
the ‘+’ symbols in the last column in the three tables. Second, it has to be pointed out
that the use of the steady-states scheme has a computational cost that has to be taken
into account. Specifically, we have measured the running times of the two versions
of NSGA-II when solving all the problems, and NSGA-IIss is about 10 times slower
than the generational algorithm: the mean time is about 1.2 seconds per execution, in
the case of the original NSGA-II, and roughly 12.5 seconds the steady-state version.
We have used the profiling tool provided by the Java IDE Netbeans 6.1 to analyze the
execution of the two algorithms when solving the ZDT1 problem. The profiling re-
port has shown that the computing time required to evaluate the problem is less than
1% of the total execution time. So, although the diferences between the two algo-
rithms are important in the context of our study, we must note that in a real scenario
the computing time of the algorithms can become negligible. As an example, if eval-
uating the objective functions of a problem requires 1 second, as we carry out 25,000
evaluations, the total time would be 25,000 seconds (6,94 hours), so it is obvious that
the running times of the algorithms would not be relevant in this situation.

On the Effect of Applying a Steady-State Selection Scheme 451

Table 5 Median and interquartile range of the HV quality indicator

NSGA-IIgen NSGA-IIss SPEA2 AbYSS MOCell OMOPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 6.59e−014.4e−04 6.62e−011.4e−04 6.60e−013.9e−04 6.61e−013.2e−04 6.61e−012.5e−04 6.61e−013.2e−04 +
ZDT2 3.26e−014.3e−04 3.28e−011.6e−04 3.26e−018.1e−04 3.28e−012.8e−04 3.28e−014.3e−04 3.28e−012.4e−04 +
ZDT3 5.15e−012.3e−04 5.16e−018.0e−05 5.14e−013.6e−04 5.16e−013.5e−03 5.15e−013.1e−04 5.15e−018.8e−04 +
ZDT4 6.56e−014.5e−03 6.57e−014.0e−03 6.51e−011.2e−02 6.55e−016.0e−03 6.59e−013.0e−03 – +
ZDT6 3.88e−012.3e−03 3.96e−011.1e−03 3.79e−013.6e−03 4.00e−011.9e−04 3.97e−011.1e−03 4.01e−017.1e−05 +

DTLZ1 4.88e−015.5e−03 4.89e−016.5e−03 4.89e−016.2e−03 4.86e−011.7e−02 4.91e−013.8e−03 – +
DTLZ2 2.11e−013.1e−04 2.12e−014.3e−05 2.12e−011.7e−04 2.12e−016.5e−05 2.12e−014.5e−05 2.12e−012.8e−04 +
DTLZ3 – – – – – – +
DTLZ4 2.09e−012.1e−01 2.11e−012.1e−01 2.10e−012.1e−01 2.11e−015.9e−05 2.11e−012.1e−01 2.10e−014.0e−04 +
DTLZ5 2.11e−013.5e−04 2.12e−013.7e−05 2.12e−011.7e−04 2.12e−016.8e−05 2.12e−013.1e−05 2.12e−013.0e−04 +
DTLZ6 1.75e−013.6e−02 1.73e−012.8e−02 9.02e−031.4e−02 1.11e−014.1e−02 1.61e−014.2e−02 2.12e−015.0e−05 +
DTLZ7 3.33e−012.1e−04 3.34e−013.9e−05 3.34e−012.2e−04 3.34e−017.8e−05 3.34e−019.5e−05 3.34e−012.2e−04 +
WFG1 5.23e−011.3e−01 4.90e−011.9e−01 3.85e−011.1e−01 2.27e−011.3e−01 4.95e−011.7e−01 1.60e−019.0e−02 +
WFG2 5.61e−012.8e−03 5.62e−012.6e−03 5.62e−012.8e−03 5.61e−011.1e−03 5.62e−012.9e−04 5.64e−016.8e−05 +
WFG3 4.41e−013.2e−04 4.42e−011.8e−04 4.42e−012.0e−04 4.42e−015.9e−04 4.42e−011.9e−04 4.42e−012.2e−05 +
WFG4 2.17e−014.9e−04 2.19e−012.4e−04 2.18e−013.0e−04 2.19e−012.0e−04 2.19e−012.3e−04 2.06e−011.7e−03 +
WFG5 1.95e−013.6e−04 1.96e−016.7e−05 1.96e−011.8e−04 1.96e−016.3e−05 1.96e−016.9e−05 1.96e−016.3e−05 +
WFG6 2.03e−019.0e−03 2.03e−011.9e−02 2.04e−018.6e−03 1.71e−013.3e−02 1.95e−013.4e−02 2.10e−011.1e−04 +
WFG7 2.09e−013.3e−04 2.11e−011.4e−04 2.10e−012.4e−04 2.11e−011.7e−04 2.11e−011.3e−04 2.10e−011.0e−04 +
WFG8 1.47e−012.1e−03 1.48e−011.6e−03 1.47e−012.2e−03 1.44e−013.2e−03 1.47e−012.2e−03 1.46e−011.1e−03 +
WFG9 2.37e−011.7e−03 2.40e−011.9e−03 2.39e−012.3e−03 2.38e−013.6e−03 2.39e−012.6e−03 2.37e−015.8e−04 +

7.2 Convergence Speed

In the previous section we have shown that the steady-state version of NSGA-II
performed better than the original algorithm in most of the tested problems. In this
section we analyze the obtained results when measuring the convergence speed.

Table 6 contains the number of evaluations required by the algorithms to reach
a Pareto front with 98% of the HV of the optimal Pareto front. There are cases

ZDT DTLZ WFG

Hypervolume

NSGA-IIgen NSGA-IIss

Fig. 10 Positions of NSGA-IIgen (left columns) and NSGA-IIss (right columns) in the rank-
ing of the HV indicator

452 Antonio J. Nebro and Juan J. Durillo

Table 6 Median and IQR of the number of evaluations computed by the algorithms

NSGA-IIgen NSGA-IIss SPEA2 AbYSS MOCell OMOPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 1.430e+04 8.0e+02 1.160e+04 9.0e+02 1.600e+04 1.1e+03 1.370e+04 1.6e+03 1.300e+04 1.2e+03 6.800e+03 2.0e+03 +
ZDT2 2.460e+04 1.6e+03 1.770e+04 1.3e+03 2.480e+04 1.9e+03 1.710e+04 2.8e+03 1.170e+04 4.0e+03 8.900e+03 3.6e+03 +
ZDT3 1.280e+04 8.5e+02 1.095e+04 1.0e+03 1.520e+04 1.0e+03 1.270e+04 2.0e+03 1.300e+04 1.3e+03 9.850e+03 2.7e+03 +
ZDT4 2.245e+04 5.9e+03 1.985e+04 5.4e+03 2.520e+04 6.0e+03 2.285e+04 1.1e+04 1.635e+04 5.0e+03 – +
ZDT6 2.930e+04 1.4e+03 2.280e+04 1.2e+03 3.335e+04 1.0e+03 1.560e+04 1.2e+03 2.090e+04 1.3e+03 2.800e+03 1.5e+03 +

DTLZ1 2.495e+04 8.4e+03 2.225e+04 8.6e+03 2.400e+04 7.5e+03 2.375e+04 1.2e+04 2.015e+04 7.7e+03 1.000e+06 4.7e+04 +
DTLZ2 8.150e+03 1.2e+03 5.300e+03 7.0e+02 7.400e+03 8.0e+02 4.700e+03 9.0e+02 5.600e+03 9.0e+02 8.200e+03 3.1e+03 +
DTLZ3 1.127e+05 5.3e+04 8.270e+04 3.5e+04 1.000e+05 3.0e+04 1.194e+05 7.5e+04 6.735e+04 2.3e+04 – +
DTLZ4 8.650e+03 1.3e+03 5.500e+03 7.0e+02 7.800e+03 5.0e+05 4.800e+03 7.5e+02 1.000e+06 9.9e+05 1.255e+04 3.8e+03 +
DTLZ5 8.300e+03 1.4e+03 5.150e+03 6.0e+02 7.500e+03 7.0e+02 4.650e+03 8.0e+02 5.800e+03 8.5e+02 8.450e+03 2.9e+03 +
DTLZ6 1.000e+06 9.7e+05 – 1.000e+06 9.7e+05 – – 4.100e+03 1.5e+03 +
DTLZ7 1.360e+04 9.0e+02 1.060e+04 9.0e+02 1.585e+04 1.1e+03 1.060e+04 1.7e+03 1.110e+04 1.6e+05 6.150e+03 2.6e+03 +
WFG1 4.315e+04 5.4e+04 3.715e+04 1.5e+04 1.096e+05 7.7e+05 – 4.160e+04 1.7e+04 – +
WFG2 1.700e+03 4.0e+02 1.400e+03 5.0e+02 2.000e+03 7.0e+02 1.850e+03 2.4e+03 1.400e+03 8.0e+02 1.800e+03 4.0e+02 +
WFG3 – – – – – – -
WFG4 2.050e+04 8.8e+03 8.200e+03 2.9e+03 1.280e+04 4.6e+03 6.750e+03 2.4e+03 1.050e+04 3.1e+03 2.233e+05 1.3e+05 +
WFG5 – – – – – – -
WFG6 – 1.000e+06 9.8e+05 1.000e+06 4.8e+04 – 1.000e+06 5.5e+05 7.300e+03 1.2e+03 +
WFG7 1.686e+05 2.5e+05 1.035e+04 2.6e+03 1.775e+04 5.4e+03 9.600e+03 3.4e+03 1.215e+04 3.4e+03 1.495e+04 2.6e+03 +
WFG8 – – – – – – +
WFG9 – 1.000e+06 9.4e+05 – – – 8.935e+04 4.9e+04 +

in which a “–” is reported when the algorithms have computed 1,000,000 function
evaluations without producing a solution set with the desired HV value.

The results show that NSGA-IIss requires a fewer number of evaluations than
NSGA-IIgen in all the problems but DTLZ6, which means that the steady-approach
makes NSGA-II converge faster. If we consider all the problems, we see that NSGA-
IIss is the fastest only in two out of the 21 problems, but it is the second fastest in 10
problems. This can be clearly observed in the ranking per problem in Fig. 11, which

ZDT DTLZ WFG

Number of Evaluations

NSGA-IIgen NSGA-IIss

Fig. 11 Positions of NSGA-IIgen (left columns) and NSGA-IIss (right columns) in the rank-
ing of the convergence speed

On the Effect of Applying a Steady-State Selection Scheme 453

0 5000 10000 15000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Evaluations

H
V

 v
al

ue

ZDT1: Evolution of the HV

NSGA−IIgen
NSGA−IIss
SPEA2
AbYSS
MOCell
OMOPSO

0 5000 10000 15000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Evaluations

H
V

 v
al

ue

DTLZ7: Evolution of the HV

NSGA−IIgen
NSGA−IIss
SPEA2
AbYSS
MOCell
OMOPSO

Fig. 12 Evolution of the HV value during the different generations carried out in the problem
ZDT1 (top) and DTLZ7 (bottom)

allows us to conclude that the steady-state approach makes NSGA-II improve from
being the second slowest algorithm in the comparison (fifth position in most of the
problems) to be second one in terms of convergence speed.

We include in Fig. 12 a trace of the evolution of the value of the HV when solving
problems ZDT1 and DTLZ7 in a single run. The values have been recorded at each
100 function evaluations. Focusing on ZDT1, Fig. 12 - top shows that NSGA-IIss is
the second algorithm in achieving the desired HV value after OMOPSO, the fastest
metaheuristic on this problem. The trace of the DTLZ7 problem (Fig. 12 - bottom)
reveals that NSGA-IIss has been the fourth fastest algorithm in the monitored exe-
cution. In both cases, we can observe that the NSGA-IIss converges faster than the
original algorithm.

8 Conclusions and Future Work

In this chapter we have studied the effect of applying a steady-state selection scheme
to NSGA-II, the reference algorithm in multi-objective optimization. Both the

454 Antonio J. Nebro and Juan J. Durillo

original and the steady-state versions have been evaluated using a benchmark com-
posed of 21 bi-objective problems for comparing the performance of the algo-
rithms in terms of the quality of the obtained solutions sets and their converging
speed towards the optimal Pareto front. We have compared the two versions with
a set of four state-of-the-art multi-objective optimizers (SPEA2, AbYSS, MOCell,
and OMOPSO) to have an insight on the search improvements of the steady-state
scheme in NSGA-II.

The obtained results have shown that, in the context of the problems, with the
quality indicators and the parameter settings considered, the use of a steady-state
scheme has improved the results obtained by the generational NSGA-II in most of
the problems. Furthermore, it has also shown to be very competitive taking account
of the quality of the obtained approximation sets and the convergence speed of the
other state-of-the-art algorithms.

Some future research topics along this line are related to the study and application
of steady-state scheme to other multi-objective algorithms and to solve benchmarks
composed of rotated problems and with more than two objectives.

Acknowledgements. Authors acknowledge funds from the “Consejerı́a de Innovación,
Ciencia y Empresa”, Junta de Andalucı́a under contract P07-TIC-03044 DIRICOM project,
http://diricom.lcc.uma.es.

Juan J. Durillo is supported by grant AP-2006-003349 from the Spanish Ministry of Edu-
cation and Science.

References

1. Chafekar, D., Xuan, J., Rasheed, K.: Constrained Multi-objective Optimization Using
Steady State Genetic Algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS,
vol. 2723, pp. 813–824. Springer, Heidelberg (2003)

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &
Sons, Chichester (2001)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

4. Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread Pareto-
Optimal Solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)

5. Deb, K., Mohan, M., Mishar, S.: Evaluating the ε-Domination Based Multi-Objective
Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. Evolu-
tionary Computation 13(4), 501–525 (2005)

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary
Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolution-
ary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145.
Springer, Heidelberg (2005)

7. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

On the Effect of Applying a Steady-State Selection Scheme 455

8. Durillo, J.J., Nebro, A.J., Luna, F., Dorronsoro, B., Alba, E.: jMetal: A Java Framework
for Developing Multi-Objective Optimization Metaheuristics. Tech. Rep. ITI-2006-10,
Dept. de Lenguajes y Ciencias de la Computación, University of Málaga (2006)

9. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A Study of Master-Slave Approaches to
Parallelize NSGA-II. In: IEEE Iinternational Symposium on Parallel and Distributed
Processing - IPDPS 2008, pp. 1–8 (2008)

10. Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hypervolume
Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler,
E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

11. Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics. Kluwer Academic Pub-
lishers, Dordrecht (2003)

12. Huband, S., Hingston, P., Barone, L., While, R.L.: A review of multiobjective test prob-
lems and a scalable test problem toolkit. IEEE Trans Evolutionary Computation 10(5),
477–506 (2006)

13. Igel, C., Suttorp, T., Hansen, N.: Steady-state Selection and Efficient Covariance Matrix
Update in the Multi-objective CMA-ES. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu,
T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 171–185. Springer, Heidelberg
(2007)

14. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. Tech. Rep. 214, Computer Engineering and Net-
works Laboratory (TIK), ETH Zurich (2006)

15. Kumar, R., Rockett, P.: Improved Sampling of the Pareto-Front in Multiobjective Ge-
netic Optimizations by Steady-State evolution: A Pareto Converging Genetic Algorithm.
Evolutionary Computation 10(3), 283–314 (2002)

16. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: Design issues in a mul-
tiobjective cellular genetic algorithm. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu,
T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 126–140. Springer, Heidelberg
(2007)

17. Nebro, A.J., Durillo, J.J., Coello Coello, C.A., Luna, F., Alba, E.: A Study of Conver-
gence Speed in Multi-objective Metaheuristics. In: Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 171–185. Springer, Hei-
delberg (2008)

18. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: Adapt-
ing Scatter Search to Multiobjective Optimization. IEEE Transactions on Evolutionary
Computation 12(4), 439–457 (2008)

19. Reyes-Sierra, M., Coello Coello, C.A.: Improving PSO-based multi-objective optimiza-
tion using crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 509–519. Springer, Hei-
delberg (2005)

20. Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Particle Swarm Optimizers: A
Survey of the State-of-the-Art. International Journal of Computational Intelligence Re-
search 2(3), 287–308 (2006)

21. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algo-
rithms. In: Grefenstette, J.J. (ed.) Proceedings of the 1st International Conference on
Genetic Algorithms, pp. 93–100 (1985)

22. Srinivasan, D., Rachmawati, L.: An Efficient Multi-objective Evolutionary Algorithm
with Steady-State Replacement Model. In: Genetic and Evolutionary Computation -
GECCO 2006, pp. 715–722 (2006)

456 Antonio J. Nebro and Juan J. Durillo

23. Valenzuela, C.L.: A Simple Evolutionary Algorithm for Multi-Objective Optimization
(SEAMO). In: IEEE Congress on Evolutionary Computation - CEC 2002, pp. 717–722
(2002)

24. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computa-
tion 3(4), 257–271 (1999)

25. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms:
Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

26. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolution-
ary Algorithm. Tech. Rep. 103, Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)

27. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.G.: Performance as-
sessment of multiobjective optimizers: An analysis and review. IEEE Transactions on
Evolutionary Computation 7, 117–132 (2003)

	On the Effect of Applying a Steady-State Selection Scheme in the Multi-Objective Genetic Algorithm NSGA-II
	Introduction
	Multi-Objective Optimization Background
	Related Work
	Steady-State NSGA-II
	Description of the Evaluated Algorithms
	Experimentation
	{\it Benchmark Problems}
	{\it Quality Indicators}
	{\it Convergence Speed Criterion}
	{\it Parameter Settings}
	{\it Methodology}
	{\it Statistical Tests}

	Results
	{\it Quality Assessment}
	{\it Convergence Speed}

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

