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Abstract. For obvious practical reasons, NP-complete problems are typically solved
by applying heuristic methods. In this regard, nature has inspired many heuristic
algorithms to obtain reasonable solutions to complex problems. One of these algo-
rithms is River Formation Dynamics (RFD). This heuristic optimization method is
based on imitating how water forms rivers by eroding the ground and depositing sed-
iments. After drops transform the landscape by increasing/decreasing the altitude of
places, solutions are given in the form of paths of decreasing altitudes. Decreasing
gradients are constructed, and these gradients are followed by subsequent drops to
compose new gradients and reinforce the best ones. In this chapter, we apply RFD to
solve three NP-complete problems, and we compare our results with those obtained
by using Ant Colony Optimization (ACO).

1 Introduction

NP-complete problems are (strongly) supposed to require exponential time in the
worst case to be solved. Fortunately, heuristic methods can be used to obtain sub-
optimal solutions in reasonable time. Nature has been a source of inspiration for
obtaining many interesting and useful heuristic algorithms (see e.g. [12, 13, 4,
11, 5, 10]). Among them, we would like to highlight Ant Colony Optimization
(ACO) [7, 5, 6]. This method provides algorithms based on how (natural) ants
find the shortest path from the colony to the food source. This efficient method
is well-known: (1) Ants release pheromones as they move; (2) ants tend to follow
pheromone trails; and thus, (3) paths are reinforced. In the long term, the reinforce-
ment of paths is stronger in short paths than in long paths because ants can traverse
the former paths more often per unit of time. Eventually, only a good short path
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prevails and the rest of paths vanish. A pheromone value is attached to each edge,
and ants probabilistically tend to choose those edges where the ratio ‘pheromone
trail at destination’/‘edge cost’ is the highest.

Alternatively, let us suppose that ants’ decisions were based on the gradient of
trail values instead of the trail values themselves. In particular, let us suppose that
ants probabilistically tend to choose the movement providing the highest ratio ‘dif-
ference of trails between the new place and the current place’/‘edge cost’ (for in-
stance, higher the decrease, higher the probability). Leaving aside for now the im-
portant question of how ants could iteratively create paths of decreasing pheromone
trails (which will be addressed later), what are the differences between this gradient
approach and the standard approach? First, in the standard approach ants can be led
by pheromone trails in such a way that, after some movements, it is impossible not
to repeat a node, i.e. a local cycle is followed. Let us note that following a cyclic
pheromone trail does not imply that any previous ant actually followed this cycle;
in particular, each part of the cycle could have been reinforced by an ant follow-
ing a different path. When an ant finds that it cannot avoid to repeat a node, it is
either killed or reinserted at the origin node. In both cases, the computational ef-
fort required to move it was useless. However, following a cycle is impossible in
the gradient approach because it would require an ever decreasing cycle, which is
contradictory. Second, let us note that in the standard approach, when an ant finds
a shorter path, it needs a lot of movement to convince other ants following older
well-reinforced paths to join the new path. Technically speaking, reinforcing the
new path until pheromone trails are higher than in older paths requires a lot of
subsequent steps. On the other hand, if the difference of trails is considered, then
when a shorter path is discovered, from this precise moment onwards its edges are
preferable (on average) to the edges of older paths. This is because the difference
of pheromone trails between the final destination and the origin is the same in these
paths (the origin and the destination are the same indeed), but the cost is lower in
the shorter path. So, the ratio ‘total difference of trails’/‘total cost’ is higher in the
shorter path. On the contrary, when a shorter path is found in the standard approach,
the edges of this path are not preferable yet (not even when considered as a whole)
because the amount of pheromones in its edges is still negligible.

This alternative approach provides some advantages, but the following question
arises: How can we get pheromone trails to decrease along the steps of each path?
We can find an answer to this question by giving the ant metaphor up and getting
some inspiration from another nature-based phenomenon: The river formation dy-
namics. Let us consider that a water mass is unleashed at some high point. Gravity
will make it follow a path down until it cannot go down anymore. In geological
terms, when it rains in a mountain, water tries to find its own way down to the sea.
Along the way, water erodes the ground and transforms the landscape, which even-
tually creates a riverbed. When a strong downward slope is traversed by water, it
extracts soil from the ground on the way. This soil is deposited later when the slope
is lower. Rivers affect the environment by reducing (i.e. eroding) or increasing (i.e.
depositing) the altitude of the ground. Let us note that if water is unleashed at all
points of the landscape (e.g., it rains) then the river form tends to optimize the task
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of collecting all the water and taking it to the sea, which does not imply taking the
shortest path from a given origin point to the sea. Let us remark that there are a lot
of origin points to consider (one for each point where a drop falls). In fact, a kind of
combined grouped shortest path is created in this case. The formation of tributaries
and meanders is a consequence of this. However, if water flows from a single point
and no other water source is considered, then the water tends to form an efficient
way to reduce the altitude (i.e., it tends to form a short path between the origin and
the destination).

An algorithm based on these ideas called River Formation Dynamics (RFD) was
presented in [17]. In order to apply the previous scheme, ants are substituted by
drops and pheromone trails are replaced by altitudes. Drops tend to flow down the
slope and they modify altitudes in the process. A classical benchmark NP-complete
problem, the Traveling Salesman Problem (TSP) [9, 1], was considered, which re-
quired to adapt the general scheme to this particular problem (for instance, since
the general framework implicitly instructs that drops avoid cycles, a change was
introduced to allow cycles involving all nodes). The applicability of RFD to other
NP-complete problems was studied in [18]. Given a cost-evaluated graph, let us
consider the problems of (a) finding the minimum spanning tree, and (b) finding
the minimum distances tree (that is, a tree such that the addition of distances from
each node to a given exit node is minimal). The standard forms of both problems do
not require using heuristic methods because they can be polynomially solved (e.g.,
by using Kruskal and Dijkstra algorithms, respectively). However, some generaliza-
tions of both problems are NP-complete indeed. In particular, let us consider that the
cost of taking an edge e depends on the path followed so far. That is, if we traverse
e after following a path σ then the cost of adding e to the path is ce,σ ; in general,
we have ce,σ �= ce,σ ′ for any other path σ ′. We denote these graphs as variable-cost
graphs. The problems of finding a minimum spanning tree or a minimum distances
tree for a variable-cost graph (denoted by MSV and MDV, respectively) were defined
in [18], where the capability of RFD to solve them was considered. As we will dis-
cuss later, both generalizations of the standard problems are NP-complete, and they
are applicable to some IT domains (e.g. formal testing methods and routing). How-
ever, to the best of our knowledge, they have not been considered in the literature
before.

Since TSP, MSV, and MDV consist in finding some kinds of short paths, the char-
acteristics of RFD commented before (that is, the avoidance of local cycles and the
fast reinforcement of shorter paths) make it a suitable choice. Moreover, the geolog-
ical metaphor provides another characteristic that is important in this regard. Let us
note that the erosion process provides a method to punish inefficient paths as well as
to avoid blocked paths: If a path leads to a node that is lower than any adjacent node
(i.e., it is a blind alley) then the drop will deposit its sediment, which will increase
the altitude of the node. Eventually, the altitude of this node will match the altitude
of its neighbors, which will avoid other drops falling on this node. If the ground
reaches this level, other drops will be allowed to cross this node from one adjacent
node to another. Thus, paths will not be interrupted at this point.
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In [17] and [18], the performance of RFD to solve TSP and MSV, respectively,
was analyzed by comparing the results of RFD with those given by an ACO imple-
mentation for the same problem instances. It was observed that the time required
by RFD to find good solutions is in general longer than the time required by ACO
to find equivalent solutions, though solutions provided by RFD outperformed those
given by ACO after some additional time passes. As we will explain later in higher
detail, the reasons for these differences lie in the fact that RFD develops a deeper
exploration of the graph. In this chapter we summarize our previous work on RFD
in an integrated fashion. We sketch the main ideas of the algorithm and we recall
previous experiments. In addition, we report and analyze other experiments where
RFD and ACO are compared for the same instances of the MDV problem. More-
over, we conduct new experiments to study the capability of RFD and ACO to deal
with dynamic graphs, i.e. graphs where nodes and edges can appear/disappear along
time, in the three problems. This will allow us to study the capability of drops and
ants to dynamically adapt paths found so far to environmental changes. Finally, in
order to demonstrate the difficulty of MSV and MDV, we prove the NP-completeness
of both problems. In particular, we polynomially reduce 3-SAT to each of them.

The rest of the chapter is structured as follows. Next we describe the main ideas
of the RFD algorithm. In Section 3, we formally define the problems we have con-
sidered in this chapter to analyze the performance of RFD. Next, in Section 4 we
apply RFD and ACO to solve TSP, MSV, and MDV in the case where graphs are
static (i.e., they do not change along time), and we report some results. These three
problems are revisited in Section 5, where we repeat these experiments in a context
where graphs are dynamic. We present our conclusions and lines of future work in
Section 6. We prove the NP-completeness of MSV and MDV in the appendix of this
chapter.

2 Main Ideas of RFD

In this section we introduce the basic structure of our method based on river for-
mation dynamics. The method works as follows. Instead of associating pheromone
values to edges, we associate altitude values to nodes. Drops erode the ground (they
reduce the altitude of nodes) or deposit the sediment (increase it) as they move. The
probability of the drop to take a given edge instead of others is proportional to the
gradient of the downward slope in the edge, which in turn depends on the difference
of altitudes between both nodes and the edge distance (i.e. the cost of the edge).
At the beginning, a flat environment is provided, that is, all nodes have the same
altitude. The exception is the destination node, which is a hole. Drops are unleashed
at the origin node and spread around the flat environment until some of them fall
in the destination node. This erodes adjacent nodes, which creates new downward
slopes, and in this way the erosion process is propagated. New drops are inserted
in the origin node to transform paths and reinforce the erosion of promising paths.
After some steps, good paths from the origin to the destination are found. These
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paths are given in the form of sequences of decreasing edges from the origin to the
destination.

This method provides some advantages over ACO that were briefly outlined be-
fore in the introduction. On one hand, local cycles are not created and reinforced
because they would imply an ever decreasing cycle, which is contradictory. Though
ants usually take into account their past path to avoid repeating nodes, they can-
not avoid being led by pheromone trails through some edges in such a way that
a node must be repeated in the next step. However, altitudes cannot lead drops to
these situations. Moreover, since drops do not have to worry about following cycles,
in general drops do not need to be endowed with memory of previous movements,
which releases some computational memory and reduces some execution time.1 On
the other hand, when a shorter path is found in RFD, the subsequent reinforcement
of the path is fast: Since the same origin and destination are concerned in both the
old and the new path, the difference of altitude is the same but the distance is dif-
ferent. So, the (global) gradient of the shorter path makes it preferable to any other
path connecting the same nodes. This does not necessarily imply that all individ-
ual edges in this path are immediately preferred to their respective competitors; this
only means that these edges are preferred on an average. In particular, bad-gradient
steps in the shorter path must be compensated by other good gradients in the path;
otherwise, the alternative path cannot be shorter. The erosion/sedimentation process
tends to equalize gradients in paths, so bad gradients in the shorter path tend to gain
the surplus from other good gradients in the path. In this way, all edges of this path
easily tend to be preferable to other edges. On the contrary, when a shorter path
is found in ACO, this path is not immediately preferable (not even if considered
as a whole) because pheromone trails are still negligible on this path. In particular,
the pheromone trail at each individual edge is also negligible, so all edges of this
path are still far away from being preferable compared to their respective competi-
tors. Thus, the reinforcement of shorter paths is faster in RFD than in ACO. Finally,
the erosion process provides a method to avoid inefficient solutions because sedi-
ments tend to be cumulated in blind alleys (in our case, in valleys). These nodes
are filled until eventually their altitude matches those of adjacent nodes, i.e., the
valley disappears. This differs from typical methods to reduce pheromone trails in
ACO: Usually, the trails of all edges are periodically reduced at the same rate. On
the contrary, RFD intrinsically provides a focused punishment of bad paths where,
in particular, those nodes blocking alternative paths are modified.

Let us consider the applicability of RFD to MSV and MDV (its applicability to TSP
will be considered below). These problems consist in finding a kind of combination
of short paths, in particular a tree. After executing RFD for some time, for each
node we take the edge with the highest gradient, and we discard the rest of edges.
This guarantees that selected edges form a tree: If the formed subgraph includes
two or more paths to go from A to B then, for at least one node, there are two

1 In fact, each drop still needs memory to know the amount of sediments it is carrying. This
is a single value so, for each drop, the size of the required memory is in O(1). On the
contrary, if drops were required to record the previously traversed path, then the required
memory would be in O(n), where n is the number of nodes of the graph.
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or more outgoing edges (which contradicts the fact that, for each node, only the
edge providing the highest gradient is taken). As discussed before, natural rivers
do not tend to form solutions where each drop goes to the sea through its shortest
path, but they tend to form grouped solutions. This allows RFD to implicitly deal
with path conflicts, i.e. situations where, at a given node, two drops coming from
different origins have different preferences regarding which edge should be taken
next (because costs are different for each of them; recall that, in MSV and MDV, we
are considering that costs depend on previously followed paths). In these situations,
the tendency of RFD to form grouped solutions implicitly leads to forming paths
with a suitable cost tradeoff between available choices: After some steps, the erosion
will reinforce more strongly the slopes providing the lowest overall cost. In addition,
in the minimum spanning tree problem (MSV), the tendency of drops to join each
other is very appropriate: If drops tend to join the main flow, instead of following
their respective individual shortest paths, then less edges are added to the tree and
the tree cost is reduced.

Let us note that the tendency of ACO methods to form grouped solutions is well
known, so similar arguments can be given in the case of ACO. In particular, ACO
allows to form short paths from a single node to a single destination. However,
combining some short paths departing from different points in such a way that a
tree is formed is not a natural task for ACO. Let us suppose that two paths coming
from different origins join at a given node and then continue together.2 Ants coming
from a departure node can be confused by pheromone trails and go on to the other
departure node, instead of following to the destination node. Solving this problem
requires to use some artificial methods (e.g., using different types of pheromones,
using directed pheromones, associating ants to specific areas, etc). On the contrary,
edge gradients formed by RFD are intrinsically directed, and their direction natu-
rally leads to the destination node. This eases the task of constructing trees in RFD.
Interestingly, we can adapt RFD to the minimum distances tree problem (MDV) just
by changing a parameter: If we reduce the erosion caused by high flows, then the
incentive of drops to join each other is partially reduced, and thus each drop tends
to follow its own shortest path. For instance, we can achieve this effect by changing
the erosion rules in such a way that, if n drops traverse an edge, then they make the
effect of e.g. a single drop. In this case, grouped paths are promoted by the method
only when they are required to solve path conflicts. Moreover, by considering in-
termediate erosion effects, we can construct trees partially fitting into the objectives
of both problems (i.e., a combination of minimum spanning tree and minimum dis-
tances tree). This may be a suitable choice for several optimization problems.3

Regarding the third NP-complete problem considered in this chapter, TSP, let us
note that some of the previous considerations apply to this case as well. In particular,
the mechanism of focalized punishment of inefficient paths, the avoidance of local

2 That is, the convergence area reminds the form of a ‘Y’ letter.
3 For instance, we design a subway network to carry citizens from different areas to down-

town in such a way that (a) the time spent by citizens to arrive to downtown is minimized
(i.e., we need a minimum distances tree), and (b) the expenses required to build tunnels
are minimized (i.e., we need a minimum spanning tree).
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cycles, and the fast reinforcement of shorter paths are also good for solving TSP.
However, facing this problem requires slightly modifying the general RFD scheme.
In particular, let us note that TSP requires finding a cycle in the graph, but RFD
implicitly avoids cycles. The adaptation of RFD to solve TSP will be addressed
later in Section 2.2.

2.1 Basic Algorithm

The basic scheme of the RFD algorithm follows:

initializeDrops()
initializeNodes()
while (not allDropsFollowTheSamePath()) and

(not otherEndingCondition())
moveDrops()
erodePaths()
depositSediments()
analyzePaths()

end while

This scheme shows the main ideas of the proposed algorithm. We comment on
the behavior of each step. First, drops are initialized (initializeDrops()),
i.e., all drops are put in the initial node(s). Next, all nodes of the graph are initial-
ized (initializeNodes()). This consists of two operations. On one hand, the
altitude of the destination node is fixed to 0. In terms of the river formation dynam-
ics analogy, this node represents the sea, that is, the final goal of all drops. On the
other hand, the altitude of the remaining nodes is set to some equal value.

The while loop of the algorithm is executed until either all drops find the same
solution (allDropsFollowTheSamePath()), that is, all drops departing from
the same initial nodes traverse the same sequences of nodes, or another alternative
finishing condition is satisfied (otherEndingCondition()). This condition
may be used, for example, for limiting the number of iterations or the execution
time. Another choice is to finish the loop if the best solution found so far is not
surpassed during the last n iterations.

The first step of the loop body consists of moving the drops across the nodes
of the graph (moveDrops()) in a partially random way. The following transition
rule defines the probability that a drop k at a node i chooses the node j to move next:

Pk(i, j) =

{
decreasingGradient(i, j)

∑l∈Vk(i) decreasingGradient(i,l) if j ∈Vk(i)

0 if j �∈Vk(i)
(1)

where Vk(i) is the set of nodes that are neighbors of node i that can be visited by the
drop k and have a negative value of decreasingGradient(i,j), which represents the
gradient between nodes i and j and is defined as follows:

decreasingGradient(i, j) =
altitude( j)−altitude(i)

distance(i, j)
(2)
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where altitude(x) is the altitude of the node x and distance(i,j) is the length of the
edge connecting node i and node j. Let us note that, at the beginning of the algorithm,
the altitude of all nodes is the same, so ∑l∈Vk(i) decreasingGradient(i, l) is 0. In
order to give a special treatment to flat gradients, we modify this scheme as follows:
We consider that the probability of a drop moving through an edge with 0 gradient is
set to some (non null) value. This enables drops to spread around a flat environment,
which is required, in particular, at the beginning of the algorithm.

In fact, going one step further, we also introduce this improvement: We let drops
climb increasing slopes with a low probability. This probability will be inversely
proportional to the increasing gradient, and it will be reduced during the execution
of the algorithm by using a method similar to the one followed by Simulated Anneal-
ing (see [12, 8]). This new feature improves the search of good paths. Let us note
that solutions found during the first steps tend to bias the exploration of the graph af-
terwards. This is because previously formed paths tend to be followed by subsequent
drops. Enabling drops to climb increasing slopes with some low probability allows
us to find alternative choices and enables the exploration of other paths in the graph.
This partially decouples the method from its behavior in the first steps. Actually,
the probability of climbing increasing slopes encapsulates most of the dependency
of the method on previous solutions in a single value. As usual in heuristic search
algorithms, this dependency must provide a suitable tradeoff between past solutions
and alternative choices. Let us note that allowing climbing up gradients does not in-
validate the argument that local cycles are avoided in practice in our method: After
following a sequence of downward gradients, completing a cycle requires to climb
up all the altitude lost so far, and the probability of climbing up a high gradient is
negligible.

The climbing up mechanism works as follows. Given a drop d located at node k,
we randomly decide whether d can climb upward gradients according to the follow-
ing probability:

P(d) =
1

notClimbingFactor
(3)

where notClimbingFactor is a variable that is initially set to 1 and is slightly in-
creased after each loop iteration. Every N iterations, this variable is not increased,
but decreased (this is done to emulate the tempering process used in Simulated An-
nealing). When the drop is allowed to climb up and it decides its next move, it can
also choose moving upwards – as well as moving downwards or going through a
null gradient, as the rest of drops can. In particular, the transition rule of a climbing
drop is defined as follows:

Pk(i, j) =

⎧⎪⎨
⎪⎩

decreasingGradient(i, j)
total if j ∈Vk(i)

ω/|decreasingGradient(i, j)|
total if j ∈Uk(i)

δ
total if j ∈ Fk(i)

(4)
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where

total =

(
∑

l∈Vk(i)
decreasingGradient(i, l)

)
+ ∑

l∈Uk(i)

(
ω

|decreasingGradient(i, l)|
)

+ ∑
l∈Fk(i)

δ

and Vk(i), Uk(i) and Fk(i) are the sets of nodes that are neighbors of node i that can
be visited by the drop k and are connected to k through a down, up, and flat gradient,
respectively. We consider that δ and ω are parameters of the algorithm. On the other
hand, if a drop fails to be considered as a climbing drop then it only considers taking
down or flat gradients.

In the next phase (erodePaths()) paths are eroded according to the move-
ments of drops in the previous phase. In particular, if a drop moves from node A to
node B then we erode A. The reduction of the altitude of this node depends on the
current gradient between A and B. In particular, the erosion is higher if the down-
ward gradient between A and B is high. The altitude of the eroded node A is modified
as follows:

altitude(A) := altitude(A)− erosion(A,B)

erosion(A,B) =
paramErosion

(numNodes−1) ·numDrops
·decreasingGradient(A,B)

where paramErosion is a parameter of the erosion process, numNodes is the number
of nodes of the graph, and numDrops is the number of drops used in the algorithm.
On the contrary, if the edge is flat or increasing then a small erosion is performed.
However, the altitude of the final node (i.e., the sea) is never modified and it remains
equal to 0 during the execution.

Once the erosion process finishes, the altitude of all nodes of the graph is slightly
increased (depositSediments()). The objective is to avoid, after some itera-
tions, the erosion process leading to a situation where all altitudes are close to 0,
which would make gradients negligible and would ruin all formed paths. In partic-
ular, the altitude of a node N is increased according to the following expression:

altitude(N) := altitude(N)+ (erosionProduced/(numNodes−1))

where erosionProduced is the sum of erosions introduced in all graph nodes in the
previous phase, and numNodes is the number of nodes of the graph.

We also enable individual drops to deposit sediment on nodes. This happens when
all movements available for a drop imply climbing an increasing slope and the drop
fails to climb any edge (according to the probability assigned to it). In this case, the
drop is blocked and it deposits the sediments it is transporting. This increases the
altitude of the current node in proportion to the cumulated sediment carried by the
drop, which in turn is proportional to the erosions produced by the drop in previous
movements. If a drop gets blocked at node N, then the altitude of N is increased as
follows:

altitude(N) := altitude(N)+ paramBlockedDrop · cumulatedSediment
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where paramBlockedDrop is a parameter and cumulatedSediment is the amount of
sediment carried by the drop.

Finally, the last step (analyzePaths()) studies all solutions found by drops
and stores the best solution found so far.

Some additional improvements can be introduced to this basic scheme (see [17]
for details). For instance, we can gather drops to reduce the number of individual
movements, we can consider the formation of lakes in blind alleys, etc.

2.2 Adapting RFD to TSP

Though the basic RFD scheme is suitable for solving MSV and MDV as it is, some
adaptations are required to apply RFD to TSP. We present them in this section
(further details can be found in [17]). We can define TSP as follows: Given a set of
cities and the costs of traveling from any city to any other city, compute the cheapest
round-trip route that visits each city exactly once and then returns to the starting city.
Note that, since we are looking for a cyclic tour, it is irrelevant what concrete node
is the origin of the tour: The cycle A-B-C-D-A has the same length as B-C-D-A-B
or C-D-A-B-C.

The adaptation of our method to TSP has several similarities with the way ACO is
applied to this problem. In ACO, endowing ants with the capability of remembering
all nodes traversed so far is necessary to avoid repeating nodes. Let us recall that
the use of gradients strongly minimizes these situations in RFD. In particular, only
sequences of low-probability climbing movements can lead drops to follow local
cycles.4 Thus, in RFD memories are not as useful as in ACO, and not using them is
preferable in the general case because less operations are performed (e.g., this is the
case in MSV and MDV). However, in TSP memories are actually required to identify
round-trips: Any path not including all nodes is not a round-trip, and so it should
not be reinforced. Thus, drops must be endowed with memory indeed.

Another difference with the general scheme of RFD is that altitudes are not
eroded after each individual drop movement. On the contrary, altitudes of all tra-
versed nodes are eroded all together when the drop actually completes a round-trip
(as ants actually increase pheromone trails). This is another reason to keep track of
the sequence of traversed nodes. As in ACO, when a drop finds that all adjacent
nodes have already been visited, the drop disappears (again, this is less probable in
RFD than in ACO). In RFD, there is an additional reason why a drop may disappear:
When all adjacent nodes are higher than the actual node (i.e., the node is valley) and
the drop fails to climb any up gradient, the drop is removed and it deposits the sed-
iment it carries at the current node. Let us note that in this case the computations
performed to move the drop should not be considered as lost despite the fact that it
did not find a solution. This is because the cumulation of sediments increases the
node altitude, and thus gradients coming from adjacent nodes are flattened. This
eventually avoids that other drops fall in the same blind alley.

4 This may happen e.g. at the earliest steps of the algorithm, where the environment is still
almost flat.
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Other peculiarities of the adaptation of RFD to TSP are specific to RFD and
do not appear in ACO. Our method provides an intrinsic method to avoid drops
traversing cycles, but the goal of TSP consists in finding a cycle indeed. In order
to allow drops to follow a cycle involving all nodes, the origin node (which, as we
said before, can be any fixed node) is cloned as well as all edges involving it. The
original node plays the role of origin node and the cloned node plays the role of
destination node. In this way, drops can form decreasing gradients from the origin
node to the destination node (for us, from a node to “itself”).

Finally, the adaptation of RFD to TSP requires introducing other additional nodes
for different technical reasons. Let us suppose that a solution A-B-C-D-E-A′ is found
(A′ being the clone of A playing the role of destination node). Drops create a decreas-
ing gradient along this path. In particular, the altitude of B is higher than the altitude
of C, C is higher than D, and D is higher than E . Let us also suppose that there exists
an edge from B to E . Since the difference of altitude between B and E is the addition
of the differences between B and C, C and D, and D and E , the decreasing gradient
from B to E could be so big that drops prefer to go directly from B to E . However,
in that case drops will fail in finding a solution: C, D, and E would not be included
in this path, but solutions must traverse all nodes. In order to avoid the altitude of
adjacent nodes wrongly deviating paths, an auxiliary node will be created at each
edge of the graph. These new nodes, called barrier nodes, are introduced as follows:
If there is an edge connecting (standard) nodes X and Y , this edge is replaced by an
edge connecting X and a new barrier node xy, as well as another edge connecting
xy and Y . If a drop traverses all standard nodes (i.e., it finds a solution) then barrier
nodes traversed in the path are eroded exactly as standard nodes are. For instance, let
us consider the solution A-B-C-D-E-A′ given in the previous example. This solution
actually traverses nodes A-ab-B-bc-C-cd-D-de-E-ea′-A′, ab being the barrier node
appearing between A and B, and so on. These barrier nodes will be eroded when
finding this solution. However, the barrier node between B and E , be, is not eroded
by drops following this path. In fact, if a drop moves directly from B to E and next
moves to A′, then it will not find a solution, so node be will not be eroded by this
alternative path. Thus, the altitude of node be will remain high and drops at B will
not prefer moving to be. That is, be imposes a barrier between B and E .

Let us note that barrier nodes must be taken into account in the initialization
and sedimentation phases of the algorithm. In the initialization phase, we must set
the height of barrier nodes. This height will be the same as the height of the rest
of nodes of the graph. Regarding the sedimentation phase, it will be necessary to
increase their heights in the same way as any other node.

3 Formal Definition of MSV and MDV

Though the TSP problem is well-known, a precise definition of the other two prob-
lems considered in this chapter, MSV and MDV, is required. In this section we for-
mally define them, and we briefly consider their applicability to some computational
problems. As we said in the introduction, finding a minimum spanning tree (i.e. a



344 P. Rabanal, I. Rodríguez, and F. Rubio

tree embracing all nodes where the addition of costs of all edges in the tree is min-
imal) or a minimum distances tree (i.e. a tree where the addition of distances from
each node to the exit node through edges in the tree is minimal) are polynomial
time problems, and thus heuristic methods are not necessary in this case. However,
if we assume that the cost of including an edge in the tree depends on the rest of
edges included in the tree, then these problems are not that simple. In particular, let
us consider that the cost of an edge depends on the path we have to traverse in the
tree before taking it. More technically, we assume that the cost of a path of edges
e1, . . . ,en from a given origin node o to a given destination node d depends on the
evolution of a variable through the path. Initially, a value vo is assigned to this vari-
able at node o. Then, the cost added to the path due to the inclusion of edge e1 is an
amount depending on vo. After traversing e1, the value of the variable is updated to
a new value v1. Next, the cost of adding e2 to the path depends on v1. After taking
e2, the value of the variable is updated again, and the process continues so on until
we obtain the whole cost of the path e1, . . . ,en.

Following this idea, we can define a variable-cost graph by attaching some in-
formation to a standard graph. Let us consider a set of origin nodes (in particular,
this set could include all nodes of the graph). Then, (1) we assign an initial value
to each origin node; (2) we assign a cost function to each edge. Depending on the
value of the variable just before traversing the edge, taking the edge adds a different
cost; and (3) we assign a transformation function to each edge. Given the value of
the variable before traversing the edge, it returns the new value after taking it.

Let us suppose that a variable-cost graph defined in these terms is given. On
one hand, a minimum distances tree is a tree connecting each origin node with the
destination node in such a way that the addition of costs of all paths from each
origin node to the destination is minimal. Since the returned solution is a tree, paths
departing from different origin nodes could share some edges (in particular, different
sequences of edges could share some suffixes). Let us note that, in general, the cost
of a shared edge is different for each path because the value of the variable when
the edge is reached may be different for each path. On the other hand, a minimum
spanning tree is a tree connecting all origin nodes with the destination node in such
a way that the addition of costs of all edges included in the tree is minimal. In this
case, the cost of an edge e in a tree t is computed as follows. Let us consider all the
paths of t connecting an origin node with the destination node and including edge
e. The cost of e in t is the average of the cost of e for all of these paths. Let us note
that, in both problems, trees are not required to include all nodes from the original
graph, but only those actually used to connect origin nodes to the destination node.
In particular, if all nodes are considered origin nodes then the resulting tree must
include all nodes indeed.

Definition 1. A variable-cost graph is a tuple G = (N,O,d,V,A,E) where:

• N is a finite set of nodes,
• O ⊆ N is the set of origin nodes,
• d is the destination node,
• V = {v1, . . . ,vn} is a finite set of values,
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• A : O −→ V is the initial value function, that is, a function assigning an initial
value to each origin node.

• E is the set of edges. Each edge e ∈ E is a tuple (n1,n2,C,T ) where n1,n2 ∈ N
are the origin and destination nodes, respectively, and

– C : V −→ IN is the cost function of e. Given a value in V denoting the current
value of the variable, it returns the cost of traversing e.

– T : V −→V is the transformation function of e. Given the current value of the
variable, it returns the new value assigned to the variable if e is traversed.

Paths are sequences of edges departing at an origin node and arriving to the des-
tination node. Formally, a path of G is a sequence of edges σ = (e1, . . . ,ek) with
ei = (ni,n′i,Ci,Ti) ∈ E for all 1 ≤ i ≤ k such that n1 ∈ O, n′k = d, and for all
1 ≤ i ≤ k−1 we have n′i = ni+1. The cost of σ , denoted by c(σ), is equal to

C1(A(n1))+C2(T1(A(n1)))+C3(T2(T1(A(n1))))+ . . .+Ck(Tk−1(. . .(T2(T1(A(n1)))) . . .))

The term denoting the cost of traversing ei in the previous expression, that is
Ci(Ti−1(. . . (T2(T1(A(n1)))) . . .)), will be denoted by cei(σ). In a notation abuse, we
will write e ∈ σ if e = ei for some 1 ≤ i ≤ k.

We say that G′ = (N′,O,d,V,A,E ′) with N′ ⊆ N and E ′ ⊆ E is a tree of G if for
all o ∈ O there exists a single path σ = (e1, . . . ,ek) of G′ departing from o, that is,
such that e1 = (o,n,C,T ) for some n,C,T . For each o ∈ O, we denote by σo the
unique path of G′ departing from o.

The distances cost of G′, denoted by dc(G′), is equal to ∑o∈O c(σo). The span-

ning cost of G′, denoted by sc(G′), is equal to ∑e′∈E ′ ∑{ce′ (σo)|o∈O,e′∈σo}
|{ce′ (σo)|o∈O,e′∈σo}| . �	

Now we are provided with all the needed machinery to formally define the problems
considered in this chapter. As it is usual in Complexity theory, these minimization
problems are defined in terms of their equivalent decision problems.

Definition 2. The problem of the minimum distances tree for a variable-cost graph,
denoted by MDV, is stated as follows: Given a variable-cost graph G and a natural
number K ∈ IN, is there any tree G′ of G such that dc(G′) ≤ K?

The problem of the minimum spanning tree for a variable-cost graph, denoted
by MSV, is stated as follows: Given a variable-cost graph G and a natural number
K ∈ IN, is there any tree G′ of G such that sc(G′)≤ K? �	
The previous problems generalize the classical minimum spanning tree and the min-
imum distances tree problems to the case where the cost of traversing each edge
depends on the path traversed before taking the edge. The past path is abstracted
by the value of the variable, which particularizes the cost of each edge for each
path. Let us note that, in formal terms, we do not need to consider several variables
in the problem definition because the dependence on past paths can be denoted by
using a single variable. Though several variants of the minimum spanning tree and
the minimum distances tree problems have been studied in the literature, as far as
we are concerned the variant problems proposed in this chapter have not been con-
sidered. Hence, their properties must be analyzed. A proof of the NP-completeness
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of both problems is presented in the appendix of this chapter. In fact, variants of
both problems where only graphs fulfilling N = O are considered (that is, where all
nodes are origin nodes) are NP-complete as well. These alternative problems are
also considered in the appendix.

As a matter of fact, the generalization introduced in MDV and MSV (that is, the use
of variable-cost graphs instead of fix-cost graph) increases their applicability to new
interesting scenarios. In fact, we recently came across these problems because we
were constructing some testing derivation algorithms (for an introduction to Formal
Testing Techniques, see e.g. [14, 16, 2, 15, 20]). Typically, the goal of a testing
methodology is to interact with the analyzed system so that all system states are
reached at least once. If previous system configurations can be restored then we can
explore a part of the system, then go back to a previously traversed point, and next
go on through a different way. Thus, the problem of reaching all states consists in
creating a tree embracing all states. Since the time required to go from state s to state
s′ depends on the previous activities of the system (available resources, values of
variables, etc), composing the optimal tree reaching all states at least once requires
taking past activities into account. We can use a variable-cost graph to denote how
the execution time of each activity depends on the current values of variables. Thus,
if we assume that previous configurations can be restored then finding a tree which
allows reaching all states in minimum time essentially consists of solving MSV for
this graph. There exist other related testing problems whose basic structure fits into
this problem scheme as well.

Next we consider an applicability example of MDV. Let us consider that a local
area network (LAN) is constructed on top of a given existing networking infrastruc-
ture. The transmission cost of a given connection (i.e. edge) depends on the kind
of information being transmitted (e.g., low connections are unacceptable for a real-
time video stream, but may be suitable for low priority packets). Besides, the kind
of information being transmitted depends on the kind of sender machine. Thus, a
variable-cost graph can be used to define communication costs in the existing in-
frastructure. Let us suppose that we want to design a networking tree that allows all
nodes to communicate with a central dispatcher in such a way that average com-
munication costs are minimized. Finding this tree consists of solving MDV. Other
applicability scenarios of MSV and MDV may be considered as well (for instance,
this is the case of the subway design problem we briefly sketched before).

4 Applying RFD and ACO to MDV, MSV, and TSP

In this section we describe the application of our approach to solve MDV, MSV, and
TSP, and we report some experimental results. Only static graphs will be consid-
ered in this section. Experiments where nodes and edges appear/disappear along
time will be considered in the next section. In both sections, we compare the results
obtained by using ACO methods and the solutions obtained by using our method.
All experiments were performed in an Intel Core Duo T7250 with a 2.00 GHz pro-
cessor. The basic aspect of our application interface can be seen in Figure 1 (left);
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Fig. 1 Application interface (left) and altitudes in a TSP solution (right)

the picture on the right shows the altitudes of each of the nodes after solving an
instance of TSP.

Next we introduce the values of parameters of RFD and ACO used in these exper-
iments. Parameters depend on the problem we are executing. The number of drops
and ants used to solve MDV and MSVwas detected not to be very significant; they are
set to 10 in both cases. However, we observed that these values did influence results
when TSP was solved. In this case, the number of drops is set to 50 and the num-
ber of ants is 1000. In RFD, the initial altitude of the nodes is 1000 in the case of
MDV and MSV, and 10000 in the case of TSP. Furthermore, parameters paramEro-
sion and paramBlockedDrop (see Section 2.1) are set to 1 for all problems, and δ
and ω are set to 1 and 0.1. The parameter notClimbingFactor is increased by 0.01
after every loop iteration, and after every 100 iterations it is decreased by 0.5. For
ACO, the initial amount of pheromone in edges is set to 1000 and the amount of
pheromone deposited by an ant after a movement is 100. The evaporation rate is set
to a standard value, 0.5. The α and β parameters, considered as in [7], are set to 4
and 2, respectively, when MDV and MSV are considered, and they are equal to 1 and
5 when TSP is solved.

4.1 Static MSV

Next we present the results obtained when MSV is solved by both methods. In the
case of RFD, we have directly applied the method presented in Section 2, while in
the case of ACO we have used an implementation inspired by [3]. Three randomly
generated variable-cost graphs with 100, 200, and 300 nodes were considered.5 In
these graphs, each node is connected to approximately 40% of the rest of nodes.
Variables can take up to 10 possible values. Cost functions and transformation
functions attached to edges are randomly generated. In particular, features such as

5 All graphs used in experiments in this paper can be downloaded from
http://kimba.mat.ucm.es/˜prabanal/.
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monotonicity or injectivity are not required in these functions. Figure 2 shows the
results of an experiment where the input of both algorithms was the graph with 100
nodes. The graph shows the cost of the solution found by each algorithm for each
execution time (in seconds). Analogously, Figure 3 contains the results obtained by
using the graph with 200 nodes as the input of both algorithms, while Figure 4 shows
the results for the 300 nodes graph. All figures show the evolution of the algorithms
in a single execution, but the same basic shape has been obtained for most of the ex-
ecutions. In order to report solutions that are not biased by a single execution, each
algorithm was executed thirty times for each of the graphs. Table 1 summarizes the
arithmetic mean (Avg), the variance (Var), and the best solution (Best) found by
each method among all thirty executions.

Fig. 2 MSV results for a randomly generated variable-cost graph with 100 nodes

Fig. 3 MSV results for a randomly generated variable-cost graph with 200 nodes
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Fig. 4 MSV results for a randomly generated variable-cost graph with 300 nodes

Table 1 Summary of MSV results. Static case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
100 nodes 300.20 273.30 193.73 17.33 262.75 263.03
200 nodes 538.76 577.54 160.33 365.01 506.36 542.32
300 nodes 829.22 1128.73 128.40 641.79 802.44 1069.99

The results presented in the previous table show that average solutions found by
the RFD method are better than the solutions found by ACO. Moreover, the variance
is also lower in our algorithm than in the ACO algorithm, with the only exception
of the smallest graph.

4.2 Static MDV

Next we study the application of ACO and RFD to solve MDV. Let us recall that
changing a single parameter which defines the erosion caused by drops, makes RFD
solve either MSV or MDV: If n drops traversing an edge per unit of time erode the
ground, as if the erosion effect of a single drop were multiplied by n, then con-
structed trees will approximately solve MSV. However, if n drops have the effect of
a single drop, then trees tend to solve MDV.

The comparison results obtained for the MDV problem are similar to the case of
MSV. That is, RFD again obtains better solutions (on average), but solutions pro-
vided by ACO in short times are better. Times required by RFD to surpass ACO
solutions are now a little bit longer. Figures 5, 6, and 7 show the results of exper-
iments performed with 100, 200, and 300 nodes graphs. Again, in all these cases
the figures show the evolution of the algorithms in a single execution. Following the
same methodology as in the previous example, each algorithm was executed thirty



350 P. Rabanal, I. Rodríguez, and F. Rubio

Fig. 5 MDV results for a randomly generated variable-cost graph with 100 nodes

Fig. 6 MDV results for a randomly generated variable-cost graph with 200 nodes

Table 2 Summary of MDV results. Static case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
100 nodes 613.81 711.90 60.92 4026.26 600.14 587.52
200 nodes 884.05 933.20 111.41 5275.66 854.78 771.64
300 nodes 1362.05 1414.31 244.50 8804.20 1330 1239.73

times for each of the graphs. Table 2 summarizes the same parameters as those con-
sidered before for MSV.

As in the case of MSV, the results presented in the previous table show that aver-
age solutions found by the RFD method are again slightly better than those found by
ACO. Moreover, the variance is lower again. However, now RFD needs more time
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Fig. 7 MDV results for a randomly generated variable-cost graph with 300 nodes

to surpass the quality of the solutions found by ACO. In fact, despite the fact that the
mean of solutions is better in RFD than in ACO, the best solution found in all the
thirty executions is usually found by ACO. Thus, although the results obtained by
RFD are good, the advantage over ACO is not as significant as in the case of MSV.
The main reason is that RFD intrinsically promotes the formation of grouped paths
instead of individual paths, which reduces the size of constructed trees (as required
by MSV). In particular, let us note that the incentive of drops to join the main flow
is structurally provided by the use of gradients in RFD: If a drop d moving at a
high altitude falls into a strongly eroded flow then, due to the fast reinforcement of
shorter paths in RFD, subsequent drops traversing the same area as d will quickly
tend to join this flow as well. This feature helps RFD to properly solve MSV (but it
is not that useful for solving MDV).

4.3 Static TSP

We apply RFD and ACO to solve some instances of TSP, and we report the col-
lected results. Let us recall that handling TSP by means of RFD requires taking into
account the adaptations previously sketched in Section 2.2.

Figures 8 and 9 show the results of two experiments. The first one shows the
results for a graph taken from the TSPLIB library [19]. TSPLIB is a library of sam-
ple instances for the TSP that has become a standard benchmark for this problem.
Nodes are defined by means of points in a 2D plain, and there is an edge between all
pairs of nodes. Thus, fully connected graphs are represented. The distance of each
edge is the euclidean distance between both points of the plain.

Figure 9 contains a larger case example where we consider a graph of 100 nodes.
This graph has been randomly generated assuming that each node is connected with
only a few other nodes (between 10 and 20 connections per node) as it is the most
common case in complex networks. The basic shape shown in the figures is also
obtained with other benchmark examples.
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Fig. 8 TSP results for the TSPLIB eil51 graph

Fig. 9 TSP results for a 100 nodes graph

Table 3 Summary of TSP results. Static case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
eil51 458.08 457.97 51.19 3.05 441.9 454.42

100 nodes 101.36 102.61 197 12.06 84.15 96.55

Note that the shapes shown in these figures are analogous to the case of MSV and
MDV: ACO finds solutions faster, while RFD finds better solutions after some time.
However, in this case it seems harder for RFD to surpass ACO solutions. The main
reason is that drops need memory to register the traversed path in TSP, so one of the
advantages of RFD with respect to ACO (that is, the absence of memories) is lost.

Following the same methodology as in the previous example, each algorithm
was executed thirty times for each of the graphs. Table 3 summarizes the same
parameters as in previous tables.
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4.4 Summarizing Results

We extract the following conclusions from the experimental results obtained for the
three considered problems. In all problems, we observe that ACO usually provides
good solutions earlier than RFD. However, after some additional time passes, the so-
lutions provided by RFD usually surpass the quality of those given by ACO. These
features are a consequence of the fact that the exploration of the graph is deeper
in RFD than in ACO, which in turn is due to the differences between both meth-
ods. First, let us note that the erosion-sedimentation mechanism of RFD provides a
dynamic dual mechanism to promote/punish good/bad paths or parts of paths. This
process allows not only to locally reinforce good parts of paths, but also to locally
punish bad sequences. This is an active try and fail mechanism which enables a more
exhaustive exploration of the graph. Besides, as we said before, the construction of
paths of decreasing altitudes implicitly avoids the formation of local cycles, which
in turn avoids inefficient movements of drops. Moreover, this forces drops not to be
concentrated in local areas but to spread around the graph, which allows a wider and
more homogeneous search. In addition, let us recall that the use of gradients makes
shorter paths preferable overall from the time they are discovered, which accelerates
the process of reinforcing them. This increases the competitiveness of shorter paths:
At a given time, several new shorter paths may have attractive gradients, even if
they are still young. This helps new shorter paths strongly compete with each other,
which again enables a deeper exploration of the graph.

The previous considerations are common to all three problems, though the differ-
ences of RFD and ACO is affected by an additional factor in the cases of MSV and
MDV. As we said before, when RFD solves TSP, drops keep a memory of previously
traversed nodes, though no memory is used in RFD when MSV or MDV are solved.
This contrasts with ACO, where memories are used in the three problems. The im-
plicit avoidance of cycles of RFD allows us not to provide drops with any memory
in MSV and MDV, but ants still need memories in both problems because they can
fall in cycles indeed. Though cycles are avoided by formed gradients in RFD, gra-
dients are still weak during the first steps of the algorithm. Thus, drops do follow
some cycles during these early steps. In the long term, when gradients are stronger,
drops avoid cycles without maintaining any memory structure, which boosts their
performance with respect to ACO. Thus, the absence of memory in MSV and MDV
also promotes the general characteristic we already pointed out before: Solutions
given by ACO are better in the short term, but RFD surpasses solutions given by
ACO after some time.

5 Applying RFD and ACO to MDV, MSV, and TSP in Dynamic
Graphs

In this section we reconsider the previous problems in a scenario where graphs are
dynamic, that is, nodes and edges can change along time. In particular, we are in-
terested in studying the capability of each method to adapt previous solutions to
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new configurations after each change is introduced. In these experiments, we follow
the following procedure for each of the considered problems. First, we calculate the
solution of an instance of the problem by using either ACO or RFD. Next, we intro-
duce one or more of the following changes in the graph: (a) We delete an edge that is
common to the solutions found by both methods; (b) we delete a node of the graph;
(c) we add a new node. Once the change is introduced, we calculate a solution for
this instance of the problem. Let us remark that we do not restart the algorithms,
but we keep the state of the methods (that is, the amount of pheromone at each edge
and the altitudes of the nodes, respectively) just before the change. In most cases we
observe that, after some time, the quality of the solutions of our method surpasses
the quality of the solutions provided by ACO. In fact, the time needed to surpass
ACO solutions is shorter than in the static case. Moreover, it is specially remarkable
that for some graphs ACO does not find a solution at all after changing the graph
(but, in all of these cases, RFD does).

5.1 Dynamic MSV

Let us start by considering the MSV problem. As we did in the static case, we will
compare the performance of RFD and ACO by using the same input graphs. In
particular, we consider the same graphs introduced in the static case, and in each
experiment we introduce several changes at the same time. In the case of the 100
nodes graph, we remove two nodes, we remove two edges (one of them belongs
to the solution found by ACO and another one to the solution found by RFD), and
we add other two new nodes. The results can be seen in Figure 10. In the case of
the 200 nodes graph (see Figure 11) we proceed in an analogous way: We remove
four nodes as well as four edges (where two edges belong to the solution given by
ACO and the other two edges belong to the solution provided by RFD), and we add

Fig. 10 MSV results for a dynamic randomly generated variable-cost graph with 100 nodes
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Fig. 11 MSV results for a dynamic randomly generated variable-cost graph with 200 nodes

Fig. 12 MSV results for a dynamic randomly generated variable-cost graph with 300 nodes

two new nodes. We proceed analogously in the 300 nodes graph (see Figure 12): six
nodes and six edges are removed, and next two new nodes are added.

In all cases we see that the time needed to react to the modifications is similar
both in ACO and RFD. However, the results obtained by using RFD are better than
those given by ACO in all graphs but the smallest one. Thus, the advantages of RFD
in the static case are still valid in the dynamic case, while the main disadvantage of
RFD in the static case is minimized in dynamic frameworks.

Table 4 summarizes observed results after executing each algorithm thirty times
for each graph.

Let us remark that the results are somehow similar to those obtained in the static
case. That is, ACO finds better solutions in the smallest graph, while RFD obtains
better results in the larger graphs. Moreover, the time needed to react to the changes
in both cases is very similar.
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Table 4 Summary of MSV results. Dynamic case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
100 nodes 383.53 265.08 11.72 14.23 376.45 258.68
200 nodes 559.15 602.90 3.87 172.93 556.94 578.41
300 nodes 835.10 1121.66 1.38 200.71 834.56 1058.86

5.2 Dynamic MDV

Next we analyze the performance of RFD and ACO when MDV is solved in envi-
ronments where the graph changes along time. Again, we consider the same graphs
introduced in the static case and, for each experiment, we introduce several changes
at the same time. The changes introduced are the same as in the MSV case.

The results can be seen in Figures 13, 14, and 15, where experiments with the
graphs of 100, 200, and 300 nodes, respectively, are considered. The situation now
is similar to the MSV case: (i) the time needed to react to the modifications is similar
both in ACO and in RFD; (ii) the results obtained using RFD are better than in ACO.
In fact, we can see that RFD has a bit more advantage over ACO in the dynamic case
than the static case.

Following the same methodology as in the previous case, each algorithm was ex-
ecuted thirty times for each of the graphs. Table 5 summarizes the same parameters
as in previous tables.

Notice that in the dynamic case the advantage of RFD over ACO has increased
with respect to the static case: The average results and the variance are better, and the
best results are usually found by RFD. However, the main advantage with respect to
the static case is that the time needed by RFD to surpass the quality of the solutions
found by ACO is much less than in the static case. In fact, both RFD and ACO
require similar times to react to changes.

Fig. 13 MDV results for a dynamic randomly generated variable-cost graph with 100 nodes
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Fig. 14 MDV results for a dynamic randomly generated variable-cost graph with 200 nodes

Fig. 15 MDV results for a dynamic randomly generated variable-cost graph with 300 nodes

Table 5 Summary of MDV results. Dynamic case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
100 nodes 699.49 753.35 65.53 5216.30 681.69 618.25
200 nodes 878.02 1241.58 10.47 18653.47 873.37 1012
300 nodes 1264.53 1473.34 1.18 16106.36 1263 1275

5.3 Dynamic TSP

Next we use ACO and RFD to solve TSP in the case where changes are introduced
in the graph. Figure 16 shows the results after removing one edge that was com-
mon to solutions found by both ACO and RFD, considering the 100 nodes graph.
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Fig. 16 TSP results for the 100 nodes graph, after removing an edge

Next, Figure 17 shows the results after removing one node in the same graph, and
Figure 18 considers the case where several changes (in particular, deleting two com-
mon edges, adding two new edges, adding two new nodes, and deleting other two
nodes) are introduced at the same time in the same graph. Next, Figure 19 shows the
results after introducing a new node in the TSPLIB eil51 graph. Finally, Figure 20
shows the results after introducing several changes (in particular, the same as in the
case of the 100-nodes graph) at the same time in eil51.

Let us remark that, in one of these experiments, ACO did not find any solution to
the problem after several modifications were introduced. That is, ACO did not find
a way to either integrate the modifications within its previous solution or compose a
completely new solution where the modifications were considered. However, RFD
obtains a solution. Hence, in this case the advantage of RFD over ACO is quite
relevant. Obviously, we could completely restart the computation of ACO from the
beginning. This is a good choice indeed, because the time needed by ACO to provide
reasonable solutions when executed from scratch is actually shorter. However, this

Fig. 17 TSP results for the 100 nodes graph, after removing a node
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Fig. 18 TSP results for the 100 nodes graph, after performing several modifications together

Fig. 19 TSP results for the TSPLIB eil51 graph, after adding a node

Fig. 20 TSP results for the TSPLIB eil51 graph, after performing several modifications
together
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shows that the adaptability of ACO to changing landscapes (which is the point of
considering the dynamic case) is worse than the adaptability of RFD.

Regarding the cases where ACO finds a solution after the modifications, we ob-
serve that ACO finds them faster than RFD, but RFD finds better solutions after
some time. Moreover, it is worth pointing out that, in general, the time needed by
RFD to surpass ACO is smaller after a modification is introduced than in the case
where we compute the initial solution from scratch. However, the advantage of RFD
over ACO in terms of quality of results was clearer in MSV and MDV. The reason in
that TSP is harder for RFD to solve than MSV and MDV, as now drops need to keep
memories of the path traversed so far. Anyway, it is remarkable that RFD can always
react to changes in the graph, while that is not the case for ACO.

Next we study in higher detail the case where several changes are introduced at
the same time, considering both the randomly generated graph of 100 nodes and
the eil51 graph from TSPLIB. Following the same methodology as in previous
examples, each algorithm was executed thirty times for each graph. Table 6 sum-
marizes the same parameters as in previous tables. The ’–’ symbol denotes that no
solution was found in this case. Interestingly, ACO did not find any solution for the
100 nodes graph in all the thirty executions.

Table 6 Summary of TSP results. Dynamic case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
eil51 436.40 441.76 57.39 28.63 427.68 436.35

100 nodes 149.86 - 199.49 - 123.11 -

5.4 Summarizing Results

We extract the following general conclusions from experiments where RFD and
ACO were applied to solve MSV, MDV and TSP in dynamic graphs:

(1) In both static and dynamic graphs, RFD usually obtains better solutions in the
long term;

(2) In dynamic graphs, ACO and RFD require similar time to react to changes, with
the only exception of TSP, where ACO is faster than RFD.

(3) Once RFD has found a good solution in the static case and when several changes
were introduced later in the graph, RFD works faster than in the static case
because it can exploit the slopes created before; and

(4) RFD always obtains a solution after a modification is introduced, while some-
times ACO cannot adapt the solution constructed before the graph was modified
to the new scenario (in particular TSP).

These features are again a consequence of the fact that the exploration of the
graph is deeper in RFD than in ACO, which in turn is due to the differences between
both methods.

The fact that sometimes ACO does not find a new solution for TSP after a
change is introduced deserves additional comments. First, let us note that finding
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any solution is harder for TSP than for MSV or MDV (in particular, given a graph,
there are less round-trips than spanning trees). When ACO converges to a solution,
pheromone trails not involved in the solution sequence are negligible, i.e. only the
edges included in the solution sequence have significant pheromone trails. Hence,
no information about other alternatives is available when the graph changes. In par-
ticular, resetting missing pheromone trails to some default values does not recover
this information. On the other hand, when RFD converges to a solution, all nodes are
provided with some altitude, which gives them a relative position in the graph. That
is, providing a solution does not require to completely resetting part of the graph
information. Thus, this information helps RFD react to subsequent graph changes.

6 Conclusions and Future Work

In this chapter we have studied the application of the River Formation Dynamics
approach to three NP-complete problems. One of them, TSP, is well-known and
has been extensively studied in the literature. The other problems, MSV and MDV,
are novel generalizations of other known tree-construction problems. Let us note
that RFD is conceptually related to both ACO methods and other gradient-oriented
Evolutionary Computation (EC) approaches. On one hand RFD is, in a rough sense,
a gradient-driven variant of ACO. On the other hand, the gradient orientation of RFD
reminds of methods like Hill Climbing (HC) or Genetic Algorithms (GA) which
traverse a space of solutions by seeking solutions with higher fitness. However, there
is a big difference between RFD and these methods. RFD modifies the points of a
given structure (a graph) by iteratively traversing and transforming these points.
In this way, the structure is iteratively transformed as well, and finally the formed
structure constitutes the returned solution. In HC and GA, the traversed structure is
the space of solutions itself, which is of exponential size in general. Hence, only a
small proportion of these points can be traversed. In these cases, aiming at iteratively
modifying this space is unfeasible.

Other features of RFD make it different from other EC approaches, specifically
ACO. The main ones are the mechanism of focalized punishment of inefficient
paths, the avoidance of local cycles, and the fast reinforcement of shorter paths.
These characteristics are a consequence of the natural tendency of RFD to form
paths that are intrinsically directed towards a given final destination. As commented
in previous sections, these features are specially suitable for dealing with MDV and
MSV problems. Interestingly, a simple parameter change allows RFD to solve either
of these problems. RFD’s intrinsic features also make it an interesting choice for
solving TSP, though in this case one of the advantages of RFD with respect to ACO
is lost (in particular, the possibility of not endowing drops with memory to register
the path traversed so far).

Since RFD is a young method, there is still enough room for introducing both
general improvements and purpose-specific variants. Out of a long list of choices,
we are specially interested in simulating the speed of the drops. Intuitively, when
a drop falls through a strong downward slope its speed increases. This gives the
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drop some kinetic energy allowing it to climb up slopes later. Thus, the speed can
be thought as a kind of drop credit. In this way, a second derivative mechanism
would be introduced in RFD. We are also interested in developing a hybrid RFD-
ACO system. Altitudes and pheromone trails would be simultaneously represented
and considered by drop-ant hybrids. The rate of influence of each approach could
change along time depending on the suitability of each approach for each execution
stage. In this way, we could take the best characteristics of both approaches.
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Appendix: Proving MDV, MSV ∈ NP-complete

In this appendix we prove that the novel problems considered in this chapter, MDV
and MSV, belong to the NP-complete class. This implies that exponential times
are (very probably) required to optimally solve them. Thus, sub-optimally solving
them by means of heuristic algorithms like those considered in this chapter is an
appropriate choice. The proof is structured as follows. First, we prove that both
problems belong to the NP class. Next, we prove that a well-known NP-complete
problem, 3-SAT, can be polynomially reduced to each considered problem, which
implies that they belong to the NP-complete class. At the end of this appendix,
we study variants of MDV and MSV where only graphs fulfilling N = O (that is,
graphs where all nodes are origin nodes) are considered, showing that these variants
are also NP-complete.

Lemma 1. MDV ∈ NP and MSV ∈ NP.

Proof. We consider MDV∈ NP; proving MSV∈ NP is similar. We prove that MDV can
be solved in polynomial time by a non-deterministic algorithm. Given a variable-
cost graph G and a natural number K ∈ IN, this algorithm non-deterministically
constructs a subgraph G′ of G and next deterministically checks whether (a) G′ is a
tree of G, and (b) we have dc(G′)≤K. Both operations are performed in polynomial
time with respect to the size of G and the size of K (measured in bits). Given a
subgraph G′ of G, checking whether G′ is a tree of G requires polynomial time.
Next, if G′ is a tree of G, calculating dc(G′) requires traversing all paths connecting
each origin node to the destination node and adding the costs of all of these paths.
The length of each of these paths is polynomial, so calculating the cost of a path
requires polynomial time. Since G′ is a tree, for each origin node there exists a
single path connecting it to the destination node. Thus, the number of paths to be
considered is polynomial. Hence, we can check whether the property dc(G′) ≤ K
holds or not in polynomial time. �	
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In order to prove the NP-completeness of MDV and MSV, we construct a polynomial
reduction of a known NP-complete problem to each of these problems. In particu-
lar, we consider the well-known 3-SAT problem. Next we introduce some notions
related to this problem as well as the problem itself.

Definition 3. The 3-SAT problem is stated as follows: Given a propositional logic
formula ϕ expressed in conjunctive normal form where each disjunctive clause has
at most 3 literals, is there any valuation ν satisfying ϕ?

Let ϕ ≡ (l11 ∨ l12 ∨ l13) ∧ . . . ∧ (lk1 ∨ lk2 ∨ lk3) be an input for 3-SAT. We
denote by props(ϕ) = {p1, . . . , pn} the set of propositional symbols appearing in
ϕ . We denote the i-th disjunctive clause of ϕ by ci, that is, ci ≡ li1 ∨ li2 ∨ li3.

We say that ci holds when p j is equal to x ∈ {
,⊥}, formally denoted by
h(p j,x,ci), if for all valuation ν fulfilling ν(p j) = x we have that ci evaluates to 
.
That is, h(p j,
,ci) iff lim ≡ p j for some 1 ≤ m ≤ 3, and h(p j,⊥,ci) iff lim ≡ ¬p j

for some 1 ≤ m ≤ 3. �	
Theorem 1. 3-SAT∈ NP-complete. �	
We prove MDV,MSV ∈ NP-complete as follows (next we consider MDV; the same
arguments are given in the case of MSV). Given an input ϕ of 3-SAT, we show that
we can construct an input (G,K) of MDV from ϕ in polynomial time in such a way
that the solution of 3-SAT for ϕ is yes iff the solution of MDV for the variable-cost
graph G and the natural number K is yes. By the definition of the NP-complete
class, this implies MDV ∈ NP-complete. In particular, if we were able to solve
MDV in polynomial time then we could solve the NP-complete problem 3-SAT
in polynomial time as well: We could just transform ϕ into (G,K), next call the
algorithm that solves MDV in polynomial time, and finally return the answer given
by it.

Before formally presenting the construction of (G,K) from ϕ , let us informally
introduce it. Each origin node of the constructed graph G represents a disjunctive
clause of ϕ . From each of these origin nodes, edges iteratively lead through some
nodes representing each proposition symbol appearing in ϕ . Each of these propo-
sition nodes is connected to the next proposition node through two edges. One of
them represents valuating the corresponding proposition symbol to 
, while the
other edge represents giving it the ⊥ value. Depending on the origin node where we
come from (that is, depending on the disjunctive clause we are considering), taking
the edge that evaluates the proposition symbol to true or to false adds a different cost
to the path. This cost is 1 unless the proposition valuation represented by the edge
allows to make true the disjunctive clause for the first time in the path. In this case,
the edge adds 0 to the overall path cost. In order to keep track of this information,
the value of the variable of the variable-cost graph G codifies the considered clause,
as well as whether this clause necessarily holds (according to the valuation repre-
sented by the path traversed so far). In particular, variable values follow the form
v j,w where j is an index denoting a clause and w ∈ {already
,notyet
}. A value
v j,w denotes that the current path departed at an origin node denoting the j-th clause
of ϕ , and w = already
 denotes that the j-th clause must be true regardless of the
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clause1 clausek

prop1

propn

end

ν(p1) = ⊥ν(p1) = 


ν(pn−1) = ⊥ν(pn−1) = 


ν(pn) = ⊥ν(pn) = 


Fig. 21 Structure of the variable-cost graph G

valuation of the remaining proposition symbols (because the valuation implicitly
defined by the path traversed so far necessarily makes it true). Otherwise, we con-
sider w = notyet
. After the last proposition node is traversed, the destination node
of G is reached. The structure of G is depicted in Figure 21.

Recall that MDV seeks a tree where the addition of costs from each origin node
to the destination node is minimal. On the other hand, MSV seeks a tree where the
addition of average edge costs is minimal. Let us note that, given the variable-cost
graph G, a tree of G can include only one of the edges that connect each proposition
node to the next proposition node (otherwise, it would not be a tree). Hence, given
G, trees computed by both problems represent valuations of proposition symbols.
Since MDV searches the cheapest tree connecting all origin nodes to the destination
node, MDV actually seeks a tree that allows making as many clauses true as possible.
In particular, we will prove that the cost of the cheapest tree found by MDV is under
a given threshold if and only if all clauses are true under the constructed valuation,
that is, iff ϕ holds. Moreover, due to the specific form of G, finding a tree where
the addition of costs from each origin to the destination is minimal is equivalent
to finding a tree where the addition of average costs of edges is minimal: Due to
the definition of G, for both problems the tree cost is minimized if the valuation
represented by the tree makes true as many clauses as possible. Hence, we can also
define a threshold such that the cost of the minimum tree for MSV is under it iff ϕ is
satisfiable.

Theorem 2. MDV ∈ NP-complete and MSV ∈ NP-complete.

Proof. First, we proveMDV∈NP-complete. Due to Lemma 1, if we polynomially
reduce 3-SAT to MDV then MDV ∈ NP-complete. Let ϕ denote a conjunctive
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normal form ϕ ≡ c1 ∧ . . . ∧ ck where props(ϕ) = {p1, . . . , pn}. We construct a
variable-cost graph G = (N,O,d,V,A,E) as follows:

• N = {clause1, . . . ,clausek, prop1, . . . , propn,end},
• O = {clause1, . . . ,clausek},
• d = end,
• V = {v j,w|1 ≤ j ≤ k ∧ w ∈ {already
,notyet
}}
• For all clausei ∈ O we have A(clausei) = vi,notyet
.
• E = {(clausei, prop1,C,T )|1 ≤ i ≤ k ∧ ∀ v ∈V : (C(v)=0 ∧ T (v)=v)}⋃⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

propi,
propi+1,

Cx
i ,

T x
i

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ≤ i ≤ k−1 ∧ x ∈ {
,⊥} ∧
Cx

i (v j,notyet
) =
{

0 if h(pi,x,c j)
1 otherwise

}
∧

Cx
i (v j,already
) = 1 ∧

T x
i (v j,notyet
) =

{
v j,already
 if h(pi,x,c j)
v j,notyet
 otherwise

}
∧

T x
i (v j,already
) = v j,already


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭⋃⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

propn,
end,
Cx

n,
T x

n

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ {
,⊥} ∧
Cx

n(v j,notyet
) =
{

0 if h(pn,x,c j)
1 otherwise

}
∧

Cx
n(v j,already
) = 1 ∧

T x
n (v j,notyet
) =

{
v j,already
 if h(pn,x,c j)
v j,notyet
 otherwise

}
∧

T x
n (v j,already
) = v j,already


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

We show that constructing G from ϕ requires polynomial time. This property is
a consequence of the following conditions:

(a)|N| is equal to the number of clauses of ϕ plus the number of proposition symbols
of ϕ plus 1 (the end node), which is polynomial with respect to the size of ϕ .

(b)|V | is equal to the number of disjunctive clauses of ϕ multiplied by 2. Thus,
for each edge in E , defining functions C and T by means of extensional arrays
(relating each input value with its output value) requires polynomial size and
time.

(c)|E| is equal to the number of clauses plus the number of propositions multiplied
by 2, which is polynomial with respect to the size of ϕ .

Finally, we prove that the answer of MDV for G and a given threshold is yes iff ϕ
is satisfiable. In particular, we prove that ϕ is satisfiable iff there exists a tree G′ of
G such that dc(G′) ≤ k ∗ (n−1). We consider each implication of this statement:

⇒:Let us note that a tree G′ of G must include all edges connecting each node
clausei with prop1. All of these edges have 0 cost. Besides, for each pair of
edges connecting each node propi with node propi+1, the tree G′ must include
exactly one of these edges. Let us consider a valuation ν such that for all 1≤ i≤ n
we have ν(pi) = 
 if G′ includes the edge (propi, propi+1,C


i ,T

i ) and pi = ⊥
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if G′ includes (propi, propi+1,C⊥
i ,T⊥

i ). For all clausei ∈ O, the cost of the path
from clausei to end in G′ is n− 1 if ν makes ci true, and n otherwise. This is
because if ν makes ci true then all edges in the path but one add 1 cost to this
path. The exception is the edge that makes ci true for the first time, which adds 0
cost. If ϕ is satisfiable then there exists a valuation ν ′ making all clauses ci true.
Thus, there exists a way to choose the edges connecting each propi with propi+1

in such a way that, for all clausei, the unique path from clausei to end has n−1
cost. In this case, dc(G′) = k ∗ (n−1).

⇐:Let us consider a valuation ν defined as in the previous case. If the cost of G′ is
k∗(n−1) then the cost from each clausei to end must be n−1. This implies that,
for each 1 ≤ i ≤ n, ν makes the clause ci true. Hence, ϕ is satisfiable.

We prove MSV∈ NP-complete by following very similar arguments. In partic-
ular, we can construct a polynomial reduction of 3-SAT to MSV by using the same
variable-cost graph G defined before. In this case, we argue that ϕ is satisfiable iff
there exists a tree G′ of G such that sc(G′) ≤ n− 1. Let us recall that, in MSV, the
cost of each edge e of G′ is the average cost of e for all paths traversing e. Due to

the structure of G, it is easy to check that sc(G′) = dc(G′)
k . Thus, ϕ is satisfiable iff

sc(G′) = k∗(n−1)
k = n−1. �	

It is worth pointing out that the goal of the previous construction is proving the NP-
completeness of MDV and MSV, not providing a suitable graph construction to solve
3-SAT by means of RFD or ACO. In particular, if the variable-cost graph G were
used to find solutions to 3-SAT by means of RFD, then we would need to introduce
a barrier node at each edge connecting a node propi with propi+1 (see details about
barrier nodes in [17]).

Finally, we study the relation of MSV with other NP-complete problems. Let us
note that MSV is a generalization of the Minimum Steiner Tree problem. This NP-
complete problem is stated as follows: Given a (non-variable) cost-evaluated graph
G and a subset S of its nodes, find the minimum spanning tree including (at least)
all nodes in S. MSV generalizes this problem by considering variable-cost graphs
instead of fixed-cost graphs (in particular, the set of origin nodes O in MSV corre-
sponds to the set S given in the previous problem definition). Thus, we may argue
that the NP-completeness of MSV is a consequence of the NP-completeness of the
Minimum Steiner Tree problem. However, the NP-completeness of MSV (as well
as the NP-completeness of MDV) does not lie only in the fact that a given subset of
nodes is required to be included in the tree. In fact, even if only trees including all
nodes are considered, the NP-completeness of MDV and MSV is met – though, in
this case, the Minimum Steiner Tree problem would not be NP-complete, because it
would be equivalent to the (standard) Minimum Spanning Tree problem (which can
be polynomially solved).

Let MSV′ and MDV′ be problems defined as MDV and MSV, respectively, but with
the following difference: Only graphs fulfilling N = O (that is, graphs where all
nodes are origin nodes) are considered. We prove MSV′,MDV′ ∈ NP-complete
by using very similar arguments as before. In particular, let us consider the same
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construction as in the proof of Theorem 2, but now nodes prop1, . . . , propn,end are
also included in the set of origin nodes O. A new variable value nullCost ∈ V is
assigned, as initial value, to all of these new nodes, that is, A(a) = nullCost for all
a∈ {prop1, . . . , propn,end}. If nullCost is the current variable value, then taking the
next edge is costless and the value nullCost remains after taking any edge. Formally,
for all transition (n1,n2,C,T ) ∈ E we have C(nullCost) = 0 and T (nullCost) =
nullCost. For the rest of variable values, the behavior of edges remains exactly as
defined in the proof of Theorem 2. By using the same arguments as those given in
that proof, we infer MSV′,MDV′ ∈ NP-complete. Thus, the presence of variable-
cost edges is a sufficient condition for the NP-completeness of both problems.
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