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Abstract. This chapter presents a study about the behavior of Particle Swarm Op-
timization (PSO) in constrained search spaces. A comparison of four well-known
PSO variants used to solve a set of test problems is presented. Based on the informa-
tion obtained, the most competitive PSO variant is detected. From this preliminary
analysis, the performance of this variant is improved with two simple modifica-
tions related with the dynamic control of some parameters and a variation in the
constraint-handling technique. These changes keep the simplicity of PSO i.e. no ex-
tra parameters, mechanisms controlled by the user or combination of PSO variants
are added. This Improved PSO (IPSO) is extensively compared against the original
PSO variants, based on the quality and consistency of the final results and also on
two performance measures and convergence graphs to analyze their on-line beha-
vior. Finally, IPSO is compared against some state-of-the-art PSO-based approaches
for constrained optimization. Statistical tests are used in the experiments in order to
add support to the findings and conclusions established.

1 Introduction

Nowadays, it is common to find complex problems to be solved in diverse areas
of human life. Optimization problems can be considered among them. Different
sources of difficulty can be associated in their resolution e.g. a very high number of
possible solutions (very large search spaces), hard-to-satisfy constraints and a high
nonlinearity. Mathematical Programming (MP) offers a set of techniques to solve
different type of problems like numerical, discrete or combinatorial optimization
problems. This chapter focuses only on numerical (continuous) optimization pro-
blems. MP techniques are always the first option to solve optimization problems. In
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fact, they provide, under some specific conditions to be accomplished by the pro-
blem, convergence to the global optimum solution. However, for some real-world
problems, MP techniques are either difficult to apply (i.e. a problem transforma-
tion may be required), they cannot be applied or they get trapped in local optimum
solutions. Based on the aforementioned, the use of heuristics to solve optimiza-
tion problems has become very popular in different areas. Tabu Search [11], Simu-
lated Annealing [16] and Scatter Search [12] are examples of successful heuristics
commonly used by interested practitioners and researchers to solve difficult search
problems. There is also a set of nature-inspired heuristics designed for optimiza-
tion problem-solving and they comprise the area of Bio-inspired optimization. Two
main groups of algorithms can be distinguished: (1) Evolutionary algorithms (EAs)
[7] and (2) Swarm Intelligence algorithms (SIAs) [9]. EAs are based on the theory
of evolution and the survival of the fittest. A set of complete solutions of a problem
are represented and evolved by means of variation operators and selection and re-
placement processes. There are three main paradigms in this area: (1) Evolutionary
Programming [10], Evolution Strategies [37] and Genetic Algorithms [14]. There
are other important EAs proposed such as Genetic Programming [17] where solu-
tions are represented by means of nonlinear structures like trees and its aim is ori-
ented to symbolic optimization and Differential Evolution [34], designed to solve
numerical optimization problems by using vector differences as search directions
coupled with an EA framework.

On the other hand, SIAs emulate different social and cooperative behaviors found
in animals or insects. The two original paradigms are the following: (1) Particle
Swarm Optimization (PSO) [15] and (2) Ant Colony Optimization (ACO) [6]. PSO
is based on the cooperative behavior of bird flocks, whereas ACO models social
behaviors of ants e.g. the foraging behavior as to solve mainly combinatorial opti-
mization problems.

These Bio-Inspired Algorithms (BIAs), such as genetic algorithms, evolutionary
programming, evolution strategies, differential evolution and particle swarm opti-
mization, share some features. They work with a set of complete solutions for the
problem (usually generated at random). These solutions are evaluated in order to
obtain a quality measure, i.e. fitness value, for each one of them. A selection me-
chanism is then implemented as to select those solutions with a better fitness value.
These best solutions will be utilized to generate new solutions by using variation
operators. Finally, a replacement process occurs, where the size of the population
(which was increased) is trimmed as to always maintain a fixed population size.

In their original versions, BIAs are designed to solve unconstrained optimization
problems. Then, there is a considerable amount of research dedicated to designing
constraint-handling techniques to be added to BIAs. There are some classifications
for constraint-handling techniques based on the way they incorporate feasibility in-
formation in the quality of a given solution [4, 30]. For the purpose of this chapter,
a simple taxonomy is proposed, because the main goal of the current study is not
to design a novel constraint-handling mechanism. Instead, the aim is to propose the
analysis of the behavior of a BIA (PSO in this case) as a first step in designing a com-
petitive approach to solve Constrained Numerical Optimization Problems (CNOPs).
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As a result, the simplicity of PSO is maintained i.e. no additional mechanisms and/or
parameters controlled by the user are considered.

This chapter is organized as follows: Section 2 contains the statement of the
problem of interest and some useful optimization concepts. Section 3 introduces
PSO in more detail, considering its main elements and variants. A brief introduc-
tion to constraint-handling techniques is summarized in Section 4. In Section 5, the
approaches which use PSO to solve CNOPs are detailed and discussed. Section 6
presents the empirical comparison of PSO variants and a discussion of results. After
that, Section 7 details the modifications made to the most competitive PSO variant
obtained from the previous study, all of them in order to improve its performance
when solving CNOPs. An in-depth study of the behavior of this novel PSO and a
comparison against state-of-the-art PSO-based approaches to solve CNOPs are pre-
sented in Section 8. The chapter ends with a conclusion and a discussion of future
work in Section 9.

2 Constrained Optimization Problems

The optimization process consists of finding the best solution for a given problem
under certain conditions. As it was mentioned before, this chapter will only con-
sider numerical optimization problems in presence of constraints. Without loss of
generality a CNOP can be defined as to:

Find x which minimizes
f (x) (1)

subject to
gi(x) ≤ 0, i = 1, . . . ,m (2)

h j(x) = 0, j = 1, . . . , p (3)

where x ∈ IRn is the vector of solutions x = [x1,x2, . . . ,xn]T and each xi, i = 1, ...,n
is bounded by lower and upper limits Li ≤ xi ≤Ui which define the search space S ,
Fcomprises the set of all solutions which satisfy the constraints of the problems
and it is called the feasible region; m is the number of inequality constraints and
p is the number of equality constraints (in both cases, constraints could be linear
or nonlinear). Equality constraints are transformed into inequalities constraints as
follows:

∣
∣h j(x)

∣
∣− ε ≤ 0, where ε is the tolerance allowed (a very small value).

As multiobjective concepts will be used later in the chapter, the multiobjective
optimization problem will be also introduced. Without loss of generality, a Multi-
objective Optimization Problem (MOP) is defined as:

Find x which minimizes

f (x) = [ f1(x), f2(x), ..., fk(x)]T (4)

subject to
gi(x) ≤ 0, i = 1, ..,m (5)

h j(x) = 0, j = 1, ..., p (6)
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where x ∈ IRn is the vector of solutions x = [x1,x2, ...,xn]T and each xi, i = 1, ...,n
is bounded by lower and upper limits Li ≤ xi ≤Ui which define the search space S ,
F is the feasible region; m is the number of inequality constraints and p is the num-
ber of equality constraints (in both cases, constraints could be linear or nonlinear).

A vector u= (u1, ...,uk) is said to dominate another vector v = (v1, ...,vk) (denoted
by u � v) if and only if u is partially less than v, i.e. ∀i ∈ {1, ...,k}, ui ≤ vi ∧∃i ∈
{1, ...k} : ui < vi.

3 Particle Swarm Optimization

Kennedy and Eberhart [15] proposed PSO, which is based on the social behavior of
bird flocks. Each individual “i”, called particle, represents a solution to the optimiza-
tion problem i.e. a vector of decision variables xi. The particle with the best fitness
value is considered the leader of the swarm (population of particles), and guides the
other members to promising areas of the search space. Each particle is influenced on
its search direction by cognitive (i.e. its own best position found so far, called xpbesti)
and social (i.e. the position of the leader of the swarm named xgBest) information. At
each iteration (generation) of the process, the leader of the swarm is updated. These
two elements: xpbesti and xgBest , besides the current position of particle “i” xi, are
used to calculate its new velocity vi(t +1) based on its current velocity vi(t) (search
direction) as follows:

vi(t + 1) = vi(t)+ c1r1(xpbesti −xi)+ c2r2(xgBest −xi). (7)

where c1 and c2 are acceleration constants to control the influence of the cognitive
and social information respectively and r1, r2 are random real numbers between 0
and 1 generated with an uniform distribution.

After each particle updates its corresponding velocity, the flight formula is used
to update its position:

xi(t + 1) = xi (t)+ vi(t + 1). (8)

where xi(t) is the current position of the particle, xi(t +1)is the new position of this
particle and vi(t + 1) is its recently updated velocity (search direction).

Based on Equation 7, two main different approaches have been proposed to up-
date the velocity of a particle. The aim is to improve the usefulness of the search di-
rection generated and to avoid premature convergence: (1) PSO with inertia weight
and (2) PSO with constriction factor.

3.1 PSO with Inertia Weight

Proposed by Shi and Eberhart [38], the inertia weight was added to the velocity
update formula (Equation 7) as a mechanism to control PSO’s exploration and
exploitation capabilities. Its goal is to control the influence of the previous velocity
of a given particle. The inertia weight is represented by w and scales the value of the
current velocity vi(t) of particle “i”. A small inertia weight value promotes local ex-
ploration, whereas a high value promotes global exploration. Shi and Eberhart [38]
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suggested w=0.8 when using PSO to solve unconstrained optimization problems.
The modified formula to update the velocity of a particle by using the inertia weight
value is the following:

vi(t + 1) = wvi(t)+ c1r1(xpbesti −xi)+ c2r2(xgBest −xi) (9)

3.2 PSO with Constriction Factor

With the aim of eliminating velocity clamping and encouraging convergence, Clerc
and Kennedy [3] proposed, instead of a inertia weight value, a constriction coe-
fficient. This constriction factor is represented by k. Unlike the inertia weight, the
constriction factor affects all values involved in the velocity update as follows:

vi(t + 1) = k[vi(t)+ c1r1(xpbesti −xi)+ c2r2(xgBest −xi)] (10)

3.3 Social Network Structures

There are two basic PSO variants depending of the social network structure used
[9]: (1) global best and (2) local best PSO. In the global best variant the star so-
cial structure allows each particle to communicate with all the remaining particles
in the swarm, whereas in the local best PSO, the ring social structure allows each
particle to communicate only with those particles in its neighborhood. Therefore,
in the global best PSO, there is a unique leader of the swarm. On the other hand,
in local best PSO, there is a leader for each neighborhood. There are differences
expected in the behavior of these two PSO variants due to the way particles commu-
nicate among themselves. In global best PSO a faster convergence is promoted as
the probability of being trapped in local optima is increased. However, in local best

Begin
GEN = 0
Generate a swarm of random solutions (xi), i = 1,2, ...,SWARM SIZE.
Initialize for each particle, xpbesti = xi , and vi(t) = 0.
Evaluate the fitness of each particle in the swarm.
Do

Select the leader (xgBest) of the swarm.
For each particle, update its velocity with (7).
For each particle, update its position with (8).
Evaluate the fitness of the new position for each particle.
Update the xpbesti (memory) value for each particle.
GEN=GEN+1

Until GEN = Gmax
End

Fig. 1 Global best PSO pseudocode



304 E. Mezura-Montes and J.I. Flores-Mendoza

PSO, a slower convergence usually occurs while a better exploration of the search
space is encouraged.

A pseudocode for the global best PSO is presented in Figure 1.
A pseudocode for the local best PSO is presented in Figure 2.

Begin
GEN = 0
Generate a swarm of random solutions (xi) i = 1,2, ...,SWARM SIZE.
Divide the swarm in n neighborhoods.
Assign equal number of particles to each neighborhood.
Initialize for each particle, xpbesti = xi, and vi(t) = 0.
Do

Evaluate the fitness of the particle in each neighborhood.
Select the leader (xlBesti ) of each neighborhood.
For each particle, update its velocity with (7).

by using the corresponding leader of each neighborhood xlBesti
For each particle, update its position with (8).
Evaluate the fitness of the new position for each particle.
Update the xpbesti (memory) value for each particle.
GEN=GEN+1

Until GEN= Gmax
End

Fig. 2 Local best PSO pseudocode

4 Constraint-Handling

As it was mentioned in the introduction to the chapter, EAs and SIAs were origi-
nally designed to solve unconstrained optimization problems. Constraint-handling
techniques are required to add feasibility information in the fitness calculation of
a solution [4, 30]. Roughly, constraint-handling techniques can be divided in two
groups:

1. Those based on the fitness penalization of a solution i.e. a combination of the ob-
jective function value (Equation 1) and the sum of constraint violation (Equations
2 and 3) .

2. Those based on the separated use of the objective function value (Equation 1)
and the sum of constraint violation (Equations 2 and 3) in the fitness value of a
solution.

In the first group penalty functions are considered, which is in fact the most
popular constraint-handling mechanism. They transform a constrained problem into
an unconstrained problem by punishing, i.e. decreasing, the fitness value of in-
feasible solutions in such a way that feasible solutions are preferred in the selec-
tion/replacement processes. However, an important drawback is the definition of
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penalty factor values, which determine the severity of the penalization. If the penalty
is too low, the feasible region may never be reached. On the other hand, if the penalty
is too high, the feasible region will be reached so fast, mostly at random and the
probability of getting trapped in local optimum might be very high [4].

The second group includes constraint-handling techniques based on Deb’s feasi-
bility rules [5], Stochastic Ranking [35], multiobjective concepts [28], lexicographic
ordering [36], the α-constrained method [40], Superiority of Feasible points [33]
among others.

Different search engines have been used on the above mentioned approaches:
Genetic Algorithms [5, 28], Evolution Strategies [35], Differential Evolution [40].
However, to the best of the authors’ knowledge, the research usually focuses on
adapting a constraint-handling mechanism to a given search engine, but the studies
to analyze the performance of a search engine in constrained search spaces are
scarce [29].

5 Related Work

This section presents PSO-based approaches proposed to solve CNOPs. Toscano
and Coello [42] proposed a global best PSO with inertia weight coupled with a
turbulence (mutation) operator, which affects the velocity vector of a particle as
follows: vi = vΦ

j (t)+ r3, where vi is the current velocity of particle i, vΦ
j (t) is the

current velocity of its nearest neighbor and r3 is a random value. The use of this
turbulence operator is calculated with a dynamic adaptation approach. The idea is
to use more of the turbulence operator in the first part of the search. The constraint-
handling technique used was a group-2 approach [5].

Parsopoulos and Vrahatis [32] used their Unified Particle Swarm Optimization
(UPSO) to solve CNOPs. The UPSO combines the exploration and exploitation
abilities of two basic PSO variants (local best and global best together, both with
constriction factor). The scheme of UPSO is the following: A weighted sum of
the two velocity values (from the local and global variants) is computed, where a
parameter (0 ≤ u ≤ 1) represents the unification factor and controls the influence of
each variant in the final search direction. Finally a typical flight formula with this
unified velocity is used to update the position of a particle. A group-1 constraint-
handling technique i.e. static penalty function, was used in this approach where the
number of violated constraints as well as the amount of constraint violation were
taken into account.

Liang and Suganthan [23] proposed a PSO-based approach to solve CNOPs by
using dynamic multi-swarms (DMS-PSO). The DMS-PSO was implemented using
a local best PSO with inertia weight, where the size and particles of the sub-swarms
change periodically. Two concepts are modified from the original PSO in DMS-
PSO: (1) Instead of just keeping the best position found so far, all the best positions
reached for a particle are recorded to improve the global search and (2) a local
search mechanism, i.e. sequential quadratic programming method, was added. The
constraints of the problems are dynamically assigned, based on the difficulty to be
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satisfied for each sub-swarm. Moreover, one sub-swarm will optimize the objective
function. As the function and constraints are handled separately, they use a group-2
constraint-handling. The sequential quadratic programming method is applied to the
pbest values (not to the current positions of the particles) as to improve them.

Li, Tian and Kong [21] solved CNOPs by coupling an inertia weight local best
PSO with a mutation strategy. Their constraint-handling mechanism belongs to
group 2 and was based on the superiority of feasible points [33]. The mutation stra-
tegy used a diversity metric for population diversity control and for convergence im-
provement. When the population diversity was low (based on a defined value), the
swarm is expanded through the mutation strategy. This mutation strategy consisted
of a random perturbation applied to the particles in the swarm. Li, Tian and Min
[22] used a similar constraint-handling mechanism, but without mutation strategy
and using instead a global best PSO variant to solve Bilevel Programming Problem
(BLPP).

Lu and Chen [25] implemented a group-2 constraint-handling technique by using
a global best PSO with inertia weight and velocity restriction. The original problem
(CNOP) is transformed into a bi-objective problem using a Dynamic-Objective Stra-
tegy (DOM). DOM consists of the following: if a particle is infeasible, its unique
objective is to enter the feasible region. On the other hand, if the particle is feasible
its unique objective is now to optimize the original objective function. This process
is dynamically adjusted according to the feasibility of the particle. The bi-objective
problem is defined as: minimize F(x) = (φ(x), f (x)). φ(x) is the sum of constraint
violations and f (x) is the original function objective. Based on the feasibility of
xgBest and xpbesti , the values of important parameters like c1 and c2 are defined to
promote feasible particles to remain feasible. The formula to update the velocity is
modified in such a way that the positions of the pbest and gbest are mixed in the
search direction defined.

Cagnina, Esquivel and Coello [2] used a group-2 constraint-handling technique,
Deb’s rules [5], in a combination of global-local best PSO particle swarm opti-
mizer to solve CNOPs. The velocity update formula and also the flight formula are
changed as to include information of the global and local best leaders and to use a
Gaussian distribution to get the new position for the particle, respectively. Further-
more, a dynamic mutation operator is added for diversity promotion in the swarm.

Wei and Wang [43] presented a global best PSO with inertia weight which trans-
formed the problem, as in [25], into a bi-objective problem (group-2 constraint-
handling). The original objective function was the second objective and the first
one was the degree of constraint violation: min(δ (x), f (x)). Deb’s feasibility rules
were used as selection criteria. A new three-parent crossover operator (TPCO) is
also added to the PSO. Finally, a dynamic adaptation for the inertia weight value
was included to encourage a correct balance between global and local search.

Krohling and dos Santos Coelho [18] proposed a global best PSO with constriction
factor and a co-evolutionary approach to solve CNOPs. This problem is transformed
into a min-max problem. The Lagrange-based method (group-1 constraint-handling)
is used to formulate the problem in terms of a min-max problem. Two swarms are
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used: The first one moves in the space defined by the variables of the problem, whereas
the second swarm optimizes the Lagrange multipliers.

He, Prempain and Wu [13] proposed a ‘fly-back’ mechanism added to a global
best PSO with inertia weight to solve CNOPs. In their approach, the authors also
solved mixed (i.e. continuous-discrete) optimization problems. Discrete variables
were handled by a truncation mechanism. The initial swarm must be always located
in the feasible region of the search space, which may be a disadvantage when dealing
with problems with a very small feasible region. The ‘fly-back’ mechanism keeps
particles from flying out of the feasible region by discarding those flights which
generate infeasible solutions. Then, the velocity value is reduced and a new flight is
computed.

Based on the related work, some interesting modifications were found regarding
PSO for solving CNOPs: (1) Mutation, crossover operators or even local search are
added to PSO to promote diversity in the swarm [2, 21, 23, 42, 43], (2) there is a
tendency to mix global and local best PSO variants into a single one [2, 32], (3)
the original CNOP is transformed into a multiobjective problem [23, 25, 43], and
finally, (4) the original velocity update and flight formulas are modified [2, 25].

6 Motivation and Empirical Comparison

Unlike the previous research, the motivation of this work is two-fold: (1) to acquire
more knowledge about the behavior of PSO in its original variants when solving
CNOPs and (2) after considering this knowledge as a first step of design, to propose
simple modifications to PSO in order to get a competitive approach to solve CNOPs
by maintaining PSO’s simplicity.

In this section, two original PSO variants (inertia weight and constriction factor)
combined with two social network structures (star and ring) are compared. In the
remaining of this chapter, each combination of variant-social network will be called
as variant. They are selected based on the following criteria:

• They are the most used in the approaches reported in the specialized literature on
numerical constrained optimization (Section 5).

• As mentioned in the beginning of this Section, the motivation of this work is to
acquire knowledge about the behavior of PSO in its original variants i.e. variants
without additional mechanisms.

The four variants are: (1) global best PSO with inertia weight, (2) global best PSO
with constriction factor, (3) local best PSO with inertia weight and (4) local best
PSO with constriction factor.

In order to promote a fair analysis of the four PSO variants and not add extra
parameters to be fine-tuned, a group-2 (objective function and constraints handled
separately) parameter-free constraint-handling technique is chosen for all the vari-
ants. This technique consists of a set of three feasibility rules proposed by Deb [5].
They are the following: (1) If two solutions are feasible, the one with the best value
of the objective function is preferred, (2) if one solution is feasible and the other one
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is infeasible, the feasible one is preferred and (3) if two solutions are infeasible, the
one with the lowest normalized sum of constraint violation is preferred.

24 test problems (all minimization problems) were taken from the specialized
literature [24] and used to test the performance of the four PSO variants. These
problems are an extension of the well-known benchmark used to test BIAs in cons-
trained search spaces. In fact, these problems were used to evaluate state-of-the-art
approaches in the IEEE Congress on Evolutionary Computation (CEC 2006). De-
tails of the problems can be found in [24]. A summary of their features can be found
in Table 1.

As can be noted, the problems have different characteristics such as
dimensionality, type of objective function, type and number of constraints and ac-
tive constraints at the optimum (i.e. the solution lies in the boundaries between the

Table 1 Details of the 24 test problems. “n” is the number of decision variables, ρ = |F |/ |S|
is the estimated ratio between the feasible region and the search space, LI is the number of
linear inequality constraints, NI the number of nonlinear inequality constraints, LE is the
number of linear equality constraints and NE is the number of nonlinear equality constraints.
a is the number of active constraints at the optimum.

Prob. n Type of function ρ LI NI LE NE a

g01 13 quadratic 0.0111% 9 0 0 0 6
g02 20 nonlinear 99.9971% 0 2 0 0 1
g03 10 polynomial 0.0000% 0 0 0 1 1
g04 5 quadratic 52.1230% 0 6 0 0 2
g05 4 cubic 0.0000% 2 0 0 3 3
g06 2 cubic 0.0066% 0 2 0 0 2
g07 10 quadratic 0.0003% 3 5 0 0 6
g08 2 nonlinear 0.8560% 0 2 0 0 0
g09 7 polynomial 0.5121% 0 4 0 0 2
g10 8 linear 0.0010% 3 3 0 0 6
g11 2 quadratic 0.0000% 0 0 0 1 1
g12 3 quadratic 4.7713% 0 1 0 0 0
g13 5 nonlinear 0.0000% 0 0 0 3 3
g14 10 nonlinear 0.0000% 0 0 3 0 3
g15 3 quadratic 0.0000% 0 0 1 1 2
g16 5 nonlinear 0.0204% 4 34 0 0 4
g17 6 nonlinear 0.0000% 0 0 0 4 4
g18 9 quadratic 0.0000% 0 12 0 0 6
g19 15 nonlinear 33.4761% 0 5 0 0 0
g20 24 linear 0.0000% 0 6 2 12 16
g21 7 linear 0.0000% 0 1 0 5 6
g22 22 linear 0.0000% 0 1 8 11 19
g23 9 linear 0.0000% 0 2 3 1 6
g24 2 linear 79.6556% 0 2 0 0 2
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feasible and infeasible regions). Therefore, they present different challenges to the
algorithms tested.

This first experiment is designed as follows: 30 independent runs were computed
per PSO variant per test problem. Statistical results (best, mean and standard devia-
tion) were calculated from the final results. They are presented, for the first twelve
problems in Table 2 and for the last twelve in Table 3. The parameters used in
this experiment are the following: 80 particles and 2000 generations (160,000 to-
tal evaluations), c1 = 2.7 and c2 = 2.5 for all PSO variants. For the two local best
variants 8 neighborhoods were used, w = 0.7 for both inertia weight variants and
k = 0.729 [3] for both constriction factor variants. The tolerance for equality cons-
traints was set to ε =0.0001 for all variants.

These parameter values were defined by a trial and error process. The population
size was varied from low values (40) to higher values (120), however no improve-
ment was reported. c1 and c2 values required unusually higher values to provide
competitive results. w and k values were taken as recommended in previous research
[39, 38, 3] where the performance was the most consistent. In fact, PSO presented
a high sensitivity to w and k values. Higher or lower values for these parameters
decreased the performance of the variants, which, at times, were unable to reach the
feasible region of the search space in some problems, despite slightly improving the
results in other test functions.

Lower Li and upper Ui limits for each decision variable i are handled in the flight
formula (Equation 8) as follows: After the flight, if the new value xi(t +1) is outside
the limits, the velocity value vi(t + 1) is halved until the new position is within the
valid limits. In this way, the search direction is maintained.

The results will be discussed based on quality and consistency. Quality is mea-
sured by the best solution found from the set of 30 independent runs. Consistency
is measured by the mean and standard deviation values, i.e. a mean value closer to
the best known solution and a standard deviation value close to zero indicate a more
consistent performance of the approach.

In order to have more statistical support, nonparametric statistical tests were
applied to the samples presented in Tables 2 and 3. Kruskal-Wallis test was applied
to pair of samples with the same size (30 runs) and Mann-Whitney test was applied
to samples with different sizes (<30 runs) as to verify if the differences shown in
the samples are indeed significant. Test problems where no feasible solutions were
found for all the algorithms e.g. g20 and g22, or when just the one variant found
feasible results e.g. g13 and g17 are not considered in these tests. The results ob-
tained confirmed the differences shown in Tables 2 and 3, except in the following
cases, where the performance of the compared approaches is considered similar in
problems g03 and g11 for the global best PSO with inertia weight and the local best
PSO with constriction factor, in problem g11 for the local best PSO with inertia
weight and the local best PSO with constriction factor and in problems g02, g03,
g08 and g24 for both (global and local) constriction factor variants.

The results in Tables 2 and 3 suggest that the local best PSO with constriction
factor (last column in Tables 2 and 3) provides the best performance overall. With
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Table 2 Statistical results of 30 independent runs on the first 12 test problems for the four
PSO variants compared.“(n)” means that in only “n” runs feasible solutions were found.
Boldface remarks the best result per function. “-” means that no feasible solutions were found
in any single run.

STATISTICS FROM 30 INDEPENDENT RUNS FOR THE PSO VARIANTS

Problem & global best global best local best local best
best-known (w=0.7) (k=0.729) (w=0.7) (k=0.729)

solution
g01 Best -14.961 -14.951 -14.999 -15.000

-15.000 Mean -11.217 -11.947 -12.100 -13.363
St. Dev. 2.48E+00 1.81E+00 3.05E+00 1.39E+00

g02 Best -0.655973 -0.634737 -0.614785 -0.790982
-0.803619 Mean -0.606774 -0.559591 -0.543933 -0.707470

St. Dev. 2.64E-02 3.03E-02 2.00E-02 5.92E-02
g03 Best -0.080 -0.019 -0.045 -0.126

-1.000 Mean -9.72E-03 -1.72E-03 -1.00E-02 -1.70 E-02
St. Dev. 1.60E-02 4.64E-03 1.20E-02 2.70E-02

g04 Best -30655.331 -30665.439 -30665.539 -30665.539
-30665.539 Mean -30664.613 -30664.606 -30665.539 -30665.539

St. Dev. 5.70E-01 5.40E-01 7.40E-012 7.40E-012
g05 Best - - 5126.646 (18) 5126.496

5126.498 Mean - - 6057.259 5140.060
St. Dev. - - 232.25E+00 15.52E+00

g06 Best -6959.517 -6959.926 -6958.704 -6961.814
-6961.814 Mean -6948.937 -6948.121 -6941.207 -6961.814

St. Dev. 6.31E+00 6.41E+00 9.05E+00 2.67E-04
g07 Best 43.731 38.916 41.747 24.444

24.306 Mean 68.394 64.186 59.077 25.188
St. Dev. 40.69E+00 17.15E+00 7.65E+00 5.9E-01

g08 Best -0.095825 -0.095825 -0.095825 -0.095825
-0.095825 Mean -0.095824 -0.095825 -0.095825 -0.095825

St. Dev. 1.75E-07 7.25E-08 4.23E-17 4.23E-17
g09 Best 692.852 693.878 696.947 680.637

680.630 Mean 713.650 708.274 728.730 680.671
St. Dev. 12.96E+00 10.15E+00 15.80E+00 2.10E-02

g10 Best 8024.273 8769.477 8947.646 7097.001
7049.248 Mean 8931.263 9243.752 9247.134 7641.849

St. Dev. 39.0.6E+01 22.94E+01 18.4.7E+01 36.14E+01
g11 Best 0.749 0.749 0.750 0.749

0.749 Mean 0.752 0.755 0.799 0.749
St. Dev. 9.27E-03 1.40E-02 5.70E-02 1.99E-03

g12 Best -0.999 -0.999 -0.999 -1.000
-1.000 Mean -0.999 -0.999 -0.999 -1.000

St. Dev. 6.96E-07 5.13E-07 2.59E-05 0.00E+00
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Table 3 Statistical results of 30 independent runs on the last 12 test problems for the four
PSO variants compared.“(n)” means that in only “n” runs feasible solutions were found.
Boldface remarks the best result per function. “-” means that no feasible solutions were found
in any single run.

STATISTICS FROM 30 INDEPENDENT RUNS FOR THE PSO VARIANTS

Problem & global best global best local best local best
best-known (w=0.7) (k=0.729) (w=0.7) (k=0.729)

solution
g13 Best - - - 8.10E-02

0.053949 Mean - - - 0.45
St. Dev. - - - 2.50E-01

g14 Best - - -41.400 (9) -41.496 (3)
-47.764 Mean - - -38.181 -40.074

St. Dev. - - 2.18E+00 1.45E+00
g15 Best - - 967.519 (5) 961.715

961.715 Mean - - 970.395 961.989
St. Dev. - - 2.62E+00 3.9E-01

g16 Best -1.904 -1.903 -1.904 -1.905
-1.905 Mean -1.901 -1.901 -1.904 -1.905

St. Dev. 1.46E-03 1.37E-03 1.51E-04 5.28E-11
g17 Best - - - 8877.634

8876.981 Mean - - - 8932.536
St. Dev. - - - 29.28E+00

g18 Best - - -0.450967 (3) -0.866023
-0.865735 Mean - - -0.287266 -0.865383

St. Dev. - - 1.40E-01 8.65E-04
g19 Best 36.610 36.631 36.158 33.264

32.656 Mean 42.583 43.033 39.725 39.074
St. Dev. 7.05E+00 4.30E+00 2.30E+00 6.01E+00

g20 Best - - - -
0.188446 Mean - - - -

St. Dev. - - - -
g21 Best - - 800.275 (3) 193.778

193.778 Mean - - 878.722 237.353
St. Dev. - - 10.64E+01 35.29E+00

g22 Best - - - -
382.902 Mean - - - -

St. Dev. - - - -
g23 Best -3.00E-02 (5) -228.338 (20) -335.387 (20) -98.033 (16)

-400.003 Mean 107.882 -20.159 159.312 134.154
St. Dev. 14.03E+01 13.23E+01 25.47E+01 17.99E+01

g24 Best -5.507 -5.507 -5.508 -5.508
-5.508 Mean -5.507 -5.507 -5.508 -5.508

St. Dev. 2.87E-04 1.87E-04 9.03E-16 9.03E-16
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respect to the global best PSO with inertia weight, the local best PSO with constric-
tion factor obtains results with better quality and consistency in twenty test problems
(g01, g02, g04, g05, g06, g07, g08, g09, g10, g12, g13, g14, g15, g16, g17, g18, g19,
g21, g23 and g24). With respect to the local best PSO with inertia weight, the local
best PSO with constriction factor provides better quality and consistency results in
sixteen problems (g01, g02, g05, g06, g07, g09, g10, g12, g13, g14, g15, g16, g17,
g18, g19 and g21). Finally, with respect to the global best PSO with constriction
factor, the local best PSO with constriction factor presents better quality and con-
sistency results in seventeen problems (g01, g04, g05, g06, g07, g09, g10, g11, g12,
g13, g14, g15, g16, g17, g18, g19 and g21).

Table 4 Comparison of results provided by two state-of-the-art PSO-based approaches and
the two local best PSO variants. “(n)” means that in only “n” runs feasible solutions were
found. Boldface remarks the best result per function. “-” means that no feasible solutions
were found in any single run.

PSO VARIANTS AND STATE-OF-THE-ART ALGORITHMS

Problem & local best local best Toscano Lu Cagnina
best-known (w = 07) (k = 0.729) & Coello & Chen et al.

solution [42] [25] [2]

g01 Best -14.999 -15.000 -15.000 -15.000 -15.000
-15.000 Mean -12.100 -13.363 -15.000 -14.418 -15.000

g02 Best -0.614785 -0.790982 -0.803432 -0.664 -0.801
-0.803619 Mean -0.543933 -0.707470 -0.790406 -0.413 0.765

g03 Best -0.045 -0.126 -1.004 -1.005 -1.000
-1.000 Mean -1.00E-02 -1.70 E-02 -1.003 -1.002 -1.000

g04 Best -30665.539 -30665.539 -30665.500 -30665.659 -30665.659
-30665.539 Mean -30665.539 -30665.539 -30665.500 -30665.539 -30665.656

g05 Best 5126.646 (18) 5126.496 5126.640 5126.484 5126.497
5126.498 Mean 6057.259 5140.060 5461.081 5241.054 5327.956

g06 Best -6958.704 -6961.814 -6961.810 -6961.813 -6961.825
-6961.814 Mean -6941.207 -6961.814 -6961.810 -6961.813 -6859.075

g07 Best 41.747 24.444 24.351 24.306 24.400
24.306 Mean 59.077 25.188 25.355 24.317 31.485

g08 Best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
-0.095825 Mean -0.095825 -0.095825 -0.095825 -0.095825 -0.095800

g09 Best 696.947 680.637 680.638 680.630 680.636
680.630 Mean 728.730 680.671 680.852 680.630 682.397

g10 Best 8947.646 7097.001 7057.900 7049.248 7052.852
7049.248 Mean 9247.134 7641.849 7560.047 7049.271 8533.699

g11 Best 0.750 0.749 0.749 0.749 0.749
0.749 Mean 0.799 0.749 0.750 0.749 0.750
g12 Best -0.999 -1.000 -1.000 -1.000 -1.000

-1.000 Mean -0.999 -1.000 -1.000 -1.000 -1.000
g13 Best - 8.10E-02 0.068 0.053 0.054

0.053949 Mean - 0.45 1.716 0.681 0.967
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The local best PSO with inertia weight provides the “best” quality result in one
problem (g23).

The global best PSO with constriction factor obtains more consistent results in
one problem (g23). Problems g20 and g22 could not be solved by any PSO variant;
these problems have several equality constraints and are the most difficult to solve
[23].

Comparing the global best variants (third and fourth columns in Tables 2 and 3)
with respect to those local best PSOs (fifth and sixth columns in Tables 2 and 3) the
results suggest that the last ones perform better in this sample of constrained search
spaces i.e. the global best variants have problems finding the feasible region in some
problems where the local best variants indeed find it (g05, g14, g15, g18 and g21).
Finally, when comparing inertia weight variants (third and fifth columns in Tables
2 and 3) with respect to constriction factor variants (fourth and sixth columns in
Tables 2 and 3), there is no clear superiority. However, both variants (inertia weight
and constriction factor) perform better coupled with local best PSO (ring social
network).

The overall results from this first experiment suggest that the local best PSO with
constriction factor is the most competitive approach (based on quality and consis-
tency) in this set of test CNOPs. Besides, some important information regarding the
behavior of PSO in constrained search spaces was obtained and discussed.

As an interesting comparison, in Table 4 the two most competitive PSO variants
from this experiment (local best PSO with constriction factor and inertia weight) are
compared with three state-of-the-art PSO-based approaches. The results show that
these two variants are competitive in some test problems (g04, g08, g11 and g12).
However, they are far from providing a performance like those presented by the
state-of-the-art algorithms. Therefore, the most competitive PSO variant (local best
PSO with constriction factor) will be improved in the next Section of this chapter.

7 Simple Modifications to the Original PSO

Besides the results presented, the experiment in the previous Section provided valua-
ble information regarding two issues related to PSO for constrained search spaces.
(1) The local best PSO with constriction factor presents a lower tendency to con-
verge prematurely when solving CNOPs and (2) all PSO variants compared have
problems dealing with test functions with equality constraints. Therefore, two sim-
ple modifications are proposed to this most competitive variant to improve its per-
formance. This new version will be called Improved PSO (IPSO).

7.1 Dynamic Adaptation

Based on the velocity update formula (Eq. 10) two parameters were detected as the
most influential in this calculation: (1) k, which affects the entire value of the velo-
city and (2) c2, which has more influence in the calculation because, most of the
time, the pbest value is the same as the current position of the particle i.e. this term
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in Eq. 10 may be eliminated, whereas the gbest value is different from the position
of the particle in all the search process (except for the leader). Moreover, PSO has
a tendency to prematurely converge [9]. Then, a dynamic (deterministic) adaptation
mechanism [8] for these two parameters k and c2 is proposed to start with low velo-
city values for some particles and to increase these values during the search process
as follows: A dynamic value for k and c2, based on the generation number will be
used for a (also variable) percentage of particles in the swarm. The remaining parti-
cles in the swarm will use the fixed values for these two parameters. It is important
to note that, at each generation, the particles which will use the dynamic values will
be different e.g. a given particle may use the fixed values at generation “t” and the
dynamic values at generation “t + 1”. The aim is to let, at each generation, some
particles (those which use the dynamic values) to move at a slower velocity with
respect to the remaining ones. The expected behavior is to slow down convergence
and, as a result, better performance i.e. better quality and consistent results.

Based on the strong tendency of PSO to converge fast, a dynamic variation was
chosen in such a way that in the first part of the process (half of total genera-
tions) k and c2 values would remain low, and in the second half of the process they
would increase faster. Then, the following function was chosen: f (y) = y4, where
y = GEN/Gmax. This function is presented in Figure 3, where it is noted that very
low values are generated before 0.5 in the x-axis i.e. in the first half of the search
process. This means that the values for the adapted parameters will be also low.
However, in the second part of the search (0.5 to 1.0) the parameter values increase
faster to reach their original values.

The expressions to update both parameter values at each generation “t + 1” are
defined as follows: kt+1 = k · f (y) and ct+1

2 = c2 · f (y), where k and c2 are the static
values for these parameters. The initial values are small values close to zero e.g.

Fig. 3 Function used to dynamically adapt k and c2 parameters. In the first half of the search
low values are generated, while in the second half the values increase very fast.
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Fig. 4 Oscillatory percentage of particles that will use the fixed values for k and c2. The
remaining particles will use the dynamic values.

4E-13, and the values at the last generation will be exactly the fixed values (k =
0.729 and c2 = 2.5).

As it was mentioned before, the number of particles which will use these dynamic
values is also dynamic. In this case, based on observations considering the best
performance, an oscillatory percentage of particles was the most suited. Therefore, a
probability value is computed as to decide if a given particle will use either the static
or the dynamic values: p = k+ (sin(4πy))

10.3 , where k is the fixed value for this parameter
(k = 0.729) and y = GEN/Gmax. The constant value 10.3 defines the maximum and
minimum values p can take (p∈ [0.62,0.82]). A higher constant value decreases this
range and a lower value increases it. The value suggested (10.3) worked well in all
the experiments performed. The percentage of particles which will use the fixed
parameters is modified as shown in Figure 4.

The main advantage of the dynamic mechanism proposed in this chapter over
the addition of extra parameters (e.g. mutation operators), the combination of PSO
variants or the modification of the original problem, all of them to keep PSO from
converging prematurely (as shown on previous approaches in Section 5), is that the
user does not need to fine-tune additional parameter values i.e. this work is done
in IPSO by the own PSO. Even though the dynamic approach seems to be more
complicated with respect to the addition of a parameter, this additional mechanism
maintains the simplicity of PSO from the user’s point of view.

7.2 Modified Constraint-Handling

The third feasibility rule proposed by Deb [5] selects, from two infeasible solutions,
the one with the lowest sum of normalized constraint violation:
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s =
m

∑
i=1

max(0,g(x))+
p

∑
j=1

max(0,(|h(x)|− ε)) (11)

As can be noted from Equation 11, the information of the violation of inequa-
lity and equality constraints are merged into one single value s. Besides, in the
specialized literature there is empirical evidence that equality constraints are more
difficult to satisfy than inequality constraints [27, 40, 31].

Based on the way s is computed, some undesired situations may occur when
two infeasible solutions a and b are compared e.g. the s value from one of them
(called sa) can be lower than the the other one (sb), but the violation sum for equality
constraints can be higher in sa. Therefore, it may be more convenient to handle
these sums separately as to provide the search with more detailed information in the
selection process:

s1 =
m

∑
i=1

max(0,g(x)) (12)

s2 =
p

∑
j=1

max(0,(|h(x)|− ε)) (13)

After that, a dominance criterion (as defined in Section 2) is used to select the
best solution by using the vector [s1,s2] for both solutions to be compared. The
solution which dominates the other is chosen. If both solutions are nondominated
between them, the age of the solution is considered i.e for the leader selection and
for the pbest update there will be always a current solution and a new solution to be
compared, if both solutions do not dominate each other, the older solution is kept.
In this way, the solutions will be chosen/updated only if one amount of violation
is decreased without increasing the other or if both amounts are decreased. The
expected effect is detailed in Figure 5, where the current solution (white circle)
must be replaced by a new one. Three candidate solutions are available: P1, P2

Fig. 5 Expected behavior on the modified constraint-handling mechanism
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and P3 (all black circles). P1 is discarded because it decreases the violation of the
equality constraint but also increases the violation of the inequality constraint. P2 is
also discarded because it decreases the violation amount of the inequality constraint
but also increases the violation of the equality constraint. P3 is chosen because both
violation amounts are decreased i.e. P3 dominates P1 and P2.

IPSO is then based on the local best PSO with constriction factor as a search en-
gine, coupled with the dynamic adaptation mechanism for k and c2 parameters and
the modification to the third rule of the constraint-handling technique. No additional
operators, parameters, local search, problem re-definition, PSO variants mixtures
nor original velocity or flight formulas modifications were considered on IPSO,
whose details are found in Figure 6 (modifications are remarked) and its behavior
and performance is analyzed in the next Section. The same mechanism explained in
Section 6 to generate values within the allowed boundaries for the variables of the
problem is also used in IPSO.

Begin
GEN = 0
Generate a swarm of random solutions (xi) i = 1,2, ...,SWARM SIZE.
Divide the swarm in n neighborhoods.
Assign equal number of particles to each neighborhood.
Initialize for each particle, xpbesti = xi, and vi(t) = 0.
Evaluate the fitness of the particle in each neighborhood.
Do

Select the leader (xlBesti ) of each neighborhood.
by using the modified feasibility rules

For each particle, update its velocity with (10).
by using the corresponding leader of each neighborhood xlBesti
Depending of the p value use the fixed values for k and c2
Otherwise use the dynamic values for these parameters

For each particle, update its position with (8).
Evaluate the fitness of the new position for each particle.
Update the xpbesti (memory) value for each particle.

by using the modified feasibility rules
GEN=GEN+1

Until GEN = Gmax
End

Fig. 6 Improved PSO pseudocode. Modifications are underlined

8 Experiments and Results

In this Section, four aspects of IPSO are analyzed: (1) The quality and consistency
of its final results, (2) its online behavior by using two performance measures found
in the specialized literature [27], (3) its convergence behavior by analyzing conver-
gence graphs and (4) its performance compared to those provided by state-of-the-art
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PSO-based approaches to solve CNOPs. The same 24 test problems used in the pre-
liminary experiment are considered in this Section.

8.1 Quality and Consistency Analysis

A similar experimental design to that used in the comparison of PSO variants is
considered here. IPSO is compared against two PSO original variants: global best
and local best PSO, both with constriction factor, as to analyze the convenience
of the two modifications proposed. The parameter values are the same used in the
previous experiment. 30 independent runs were performed and the statistical results
are summarized in Tables 5 and 6 for the 24 test problems.

Like in the previous experiment, the nonparametric statistical tests were applied
to the samples summarized in Tables 5 and 6. For the following problems, no sig-
nificant differences were found among the results provided by the three algorithms:
g04, g08 and g24. Besides, no significant difference in performance is found in pro-
blems g05, g13 and g17 when the local best PSO with constriction factor and IPSO
are compared, and in problem g23 when the global and local best PSOs, both with
constriction factor, are also compared. In all the remaining comparisons, the differ-
ences are significant. IPSO provides better quality and more consistent results in
five problems (g03, g07, g10, g14 and g21), better quality results in two problems
(g02 and g18) and it also obtains more consistent results in six problems (g01, g06,
g09, g11, g19 and g23), all with respect to the local best PSO with constriction fac-
tor, which is the variant in which IPSO is based. The original PSO with constriction
factor presents the best performance in problems g15. Also, it is more consistent in
problems g02 and g18 and it finds the “best” quality result in problems g09 and g23.
The global best PSO with constriction factor is not better in any single problem.

The overall analysis of this experiment indicates that the two simple modifica-
tions made to a competitive PSO variant lead to an improvement in the quality and
mostly in the consistency of the final results e.g. in problems with a combination
of equality and inequality constraints such as g21 and g23, IPSO provided a very
consistent and good performance. The exception was g05, where, despite the better
results in the samples for IPSO, the statistical test considered the differences as not
significant.

8.2 On-Line Behavior Analysis

Two performance measures will be used to compare the two PSO variants and IPSO
to know: (1) how fast the feasible region is reached and (2) the ability of each PSO
to move inside the feasible region (difficult for most BIAs as analyzed in [27]).

1. Evals: Proposed by Lampinen [19]. It counts the number of evaluations (objective
function and constraints) required to generate the first feasible solution. Then, a
lower value is preferred because it indicates a faster approach to the feasible
region of the search space.
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Table 5 Statistical results of 30 independent runs on the first 12 test problems for IPSO and
the two PSO variants with constriction factor compared. “(n)” means that in only “n” runs
feasible solutions were found. Boldface remarks the best result per function.

STATISTICS FROM 30 INDEPENDENT RUNS

Problem &
best-known global best (k) local best (k) IPSO

solution
g01 Best -15.000 -15.000 -15.000

-15.000 Mean -10.715 -13.815 -15.000
St. Dev. 2.54E+00 1.58E+00 0.00E+00

g02 Best -0.612932 -0.777758 -0.802629
-0.803619 Mean -0.549707 -0.717471 -0.713879

St. Dev. 2.39E-02 4.32 E-02 4.62 E-02
g03 Best -0.157 -0.426 -0.641

-1.000 Mean -0.020 -0.037 -0.154
St. Dev. 3.00E-02 9.20E-02 1.70 E-01

g04 Best -30665.539 -30665.539 -30665.539
-30665.539 Mean -30665.539 -30665.539 -30665.539

St. Dev. 7.40E-12 7.40E-12 7.40E-12
g05 Best 6083.449 (12) 5126.502 5126.498

5126.498 Mean 6108.013 5135.700 5135.521
St. Dev. 9.78E+00 9.63E+00 1.23E+01

g06 Best -6957.915 -6961.814 -6961.814
-6961.814 Mean -6943.444 -6961.813 -6961.814

St. Dev. 9.45E+00 4.66E-04 2.81E-05
g07 Best 45.633 24.463 24.366

24.306 Mean 60.682 25.045 24.691
St. Dev. 7.50E+00 5.10E-01 2.20E-01

g08 Best -0.095825 -0.095825 -0.095825
-0.095825 Mean -0.095825 -0.095825 -0.095825

St. Dev. 4.23E-17 4.23E-17 4.23E-17
g09 Best 705.362 680.635 680.638

680.630 Mean 736.532 680.675 680.674
St. Dev. 1.58E+01 2.90E-02 3.00E-02

g10 Best 8673.098 7124.709 7053.963
7049.248 Mean 9140.877 7611.759 7306.466

St. Dev. 2.36E+02 3.22E+02 2.22E+02
g11 Best 0.749 0.749 0.749

0.749 Mean 0.794 0.753 0.753
St. Dev. 5.90E-02 1.00E-02 6.53E-03

g12 Best -0.999 -1.000 -1.000
-1.000 Mean -0.999 -1.000 -1.000

St. Dev. 2.77E-05 0.00E+00 0.00E+00
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Table 6 Statistical results of 30 independent runs on the last 12 test problems for IPSO and
the two PSO variants with constriction factor compared. “(n)” means that in only “n” runs
feasible solutions were found. Boldface remarks the best result per function. “-” means that
no feasible solutions were found in any single run.

STATISTICS FROM 30 INDEPENDENT RUNS

Problem &
best-known global best (k) local best (k) IPSO

solution
g13 Best - 0.127872 0.066845

0.053949 Mean - 0.520039 0.430408
St. Dev. - 2.30E+00 2.30E+00

g14 Best -47.394 (7) -45.062 (4) -47.449
-47.764 Mean -38.619 -43.427 -44.572

St. Dev. 4.95E+00 1.59E+00 1.58E+00
g15 Best 967.519 (5) 961.715 961.715

961.715 Mean 969.437 961.963 962.242
St. Dev. 2.62E+00 3.20E-01 6.20E-01

g16 Best -1.904 -1.905 -1.905
-1.905 Mean -1.904 -1.905 -1.905

St. Dev. 1.46E-04 5.28E-11 2.42E-12
g17 Best - 8853.721 8863.293

8876.981 Mean - 8917.155 8911.738
St. Dev. - 3.17E+01 2.73E+01

g18 Best -0.295425 (5) -0.865989 -0.865994
-0.865735 Mean -0.191064 -0.864966 -0.862842

St. Dev. 1.20E-01 1.38E-03 4.41E-03
g19 Best 37.568 33.939 33.967

32.656 Mean 40.250 38.789 37.927
St. Dev. 3.97E+00 3.97E+00 3.20E+00

g20 Best - - -
0.188446 Mean - - -

St. Dev. - - -
g21 Best 666.081 (7) 193.768 193.758

193.778 Mean 896.690 237.604 217.356
St. Dev. 1.21E+02 3.60E+01 2.65E+01

g22 Best - - -
382.902 Mean - - -

St. Dev. - - -
g23 Best -98.033 (16) -264.445 -250.707

-400.003 Mean 134.154 70.930 -99.598
St. Dev. 1.79E+02 2.58E+02 1.20E+02

g24 Best -5.508 -5.508 -5.508
-5.508 Mean -5.508 -5.508 -5.508

St. Dev. 9.03E-16 9.03E-16 9.03E-16
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2. Progress Ratio: Proposed by Mezura-Montes & Coello [27], it is a modification
of Bäck’s original proposal for unconstrained optimization [1]. It measures the
improvement inside the feasible region by using the objective function values of
the first feasible solution and the best feasible solution reached at the end of the

process. The formula is the following: Pr =

∣
∣
∣
∣
∣
ln

√

fmin(Gf f )
fmin(T )

∣
∣
∣
∣
∣
, where fmin

(

G f f
)

is

the objective function value of the first feasible solution found and fmin (T ) is the
objective function value of the best feasible solution found in all the search so
far. A higher value means a better improvement inside the feasible region.

30 independent runs for each PSO variant, for each test problem, for each perfor-
mance measure were computed. Statistical results are calculated and summarized in
Tables 7 and 8 for the Evals performance measure and in Tables 9 and 10 for the
Progress Ratio. The parameter values for the three PSOs are the same utilized in the
previous experiment.

Regarding the Evals measure, some test problems are not considered in the dis-
cussion because feasible solutions were found in the initial swarm generated ran-
domly. This was due to the size of the feasible region with respect to the whole
search space (Table 1, fourth column). These problems are g02, g04, g08, g09, g12,
g19 and g24. Problems g20 and g22 are also excluded because none of the algo-
rithms could find a single feasible solution.The nonparametric tests applied to the
samples of the remaining problems confirmed the significance of differences for
all of them, with the exception of problem g11 for the three algorithms and in the
comparison between the global best PSO and IPSO in problem g23.

The global best PSO with constriction factor is the fastest and also the most
consistent variant to reach the feasible region in four problems (g01, g06, g07, g10).
It is also the fastest (but not the most consistent) in problem g03 and it is the most
consistent in problem g16. However, it failed to find a single feasible solution in
problems g13 and g17 and it is able to find feasible solutions in just some runs (out
of 30) in problems g05 (12/30), g14 (17/30), g15 (5/30), g18 (5/30), g21 (7/30) and
g23 (16/30). The local best PSO with constriction factor provides the fastest and
more consistent approach to the feasible region in problem g23 and it is the fastest
(but not the most consistent) in problems g16, g18 and g21. Finally, IPSO presents
the fastest and more consistent approach to the feasible region in four problems
(g05, g13, g15 and g17) and it is the most consistent in four problems (g03, g14,
g18 and g21).

The overall results for the Evals performance measure show that the global best
PSO with constriction factor, based on its fast convergence, presents a very irregular
approach to the feasible region, being the fastest in some problems, but failing to
find feasible solutions in others. The local best PSO with constriction factor is not
very competitive at all, whereas IPSO provides a very consistent performance, while
not the fastest. However, IPSO has a good performance in problems g05 and g21,
both with a combination of equality and inequality constraints. The exception in this
regard is problem g23.
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Table 7 Statistical results for the EVALS performance measure based on 30 independent
runs in the first 12 test problems for IPSO and the two PSO variants with constriction factor.
“(n)” means that in only “n” runs feasible solutions were found. Boldface remarks the best
result per function.

EVALS

Problem global best (k) local best (k) IPSO
g01 Best 162 246 252

Mean 306 368 419
St. Dev. 6.40E+01 5.41E+01 7.77E+01

g02 Best 0 0 0
Mean 0 0 0

St. Dev. 0.00E+00 0.00E+00 0.00E+00
g03 Best 189 366 457

Mean 3568 2118 1891
St. Dev. 3.50E+03 1.35E+03 9.82E+02

g04 Best 0 0 0
Mean 4 2 2

St. Dev. 5.14E+00 3.11E+00 2.92E+00
g05 Best 33459 (12) 16845 13087

Mean 86809 23776 17037
St. Dev. 4.53E+04 3.68E+03 2.21E+03

g06 Best 180 256 254
Mean 440 513 562

St. Dev. 2.73E+02 2.58E+02 1.86E+02
g07 Best 178 484 812

Mean 873 1164 1316
St. Dev. 7.11E+02 4.01E+02 2.52E+02

g08 Best 4 0 3
Mean 56 78 76

St. Dev. 3.97E+01 5.21E+01 5.79E+01
g09 Best 5 8 17

Mean 88 94 107
St. Dev. 5.01E+01 4.81E+01 6.91E+01

g10 Best 242 579 522
Mean 861 972 1202

St. Dev. 3.29E+02 2.69E+02 4.56E+02
g11 Best 85 249 364

Mean 1662 1152 1009
St. Dev. 2.10E+03 8.32E+02 5.72E+02

g12 Best 2 0 1
Mean 19 15 25

St. Dev. 1.60E+01 1.77E+01 2.17E+01
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Table 8 Statistical results for the EVALS performance measure based on 30 independent
runs in the last 12 test problems for IPSO and the two PSO variants with constriction factor.
“(n)” means that in only “n” runs feasible solutions were found. Boldface remarks the best
result per function. “-” means that no feasible solutions were found in any single run.

EVALS

Problem global best (k) local best (k) IPSO

g13 Best - 11497 8402
Mean - 1.75E+04 1.28E+04

St. Dev. - 2.82E+03 1.82E+03
g14 Best 7820 (17) 9481 (4) 8353

Mean 33686 13485 12564
St. Dev. 2.47E+03 3.13E+03 3.07E+03

g15 Best 24712 (5) 7299 5228
Mean 68444 11805 8911

St. Dev. 4.16E+04 2.43E+03 1.72E+03
g16 Best 164 32 106

Mean 309 442 493
St. Dev. 1.28E+02 2.26E+02 2.23E+02

g17 Best - 21971 16489
Mean - 29458 22166

St. Dev. - 5.07E+03 2.73E+03
g18 Best 110395 (5) 2593 2614

Mean 125303 5211 4479
St. Dev. 2.31E+04 1.04E+03 8.87E+02

g19 Best 0 0 0
Mean 2 2 2

St. Dev. 2.15E+00 2.13E+00 2.90E+00
g20 Best - - -

Mean - - -
St. Dev. - - -

g21 Best 43574 (7) 11617 13403
Mean 82594 27978 19652

St. Dev. 3.45E+04 7.11E+03 3.51E+03
g22 Best - - -

Mean - - -
St. Dev. - - -

g23 Best 8499 (16) 2081 18304
Mean 32661 17797 28764

St. Dev. 2.58E+04 1.35E+04 5.34E+03
g24 Best 0 0 0

Mean 1 1 2
St. Dev. 1.95E+00 1.88E+00 2.36 E+00



324 E. Mezura-Montes and J.I. Flores-Mendoza

Table 9 Statistical results for the PROGRESS RATIO performance measure based on 30
independent runs in the first 12 test problems for IPSO and the two PSO variants with cons-
triction factor. “(n)” means that in only “n” runs feasible solutions were found. Boldface
remarks the best result per function.

PROGRESS RATIO

Problem global best (k) local best (k) IPSO

g01 Best 0.302 0.346 0.368
Mean 0.196 0.266 0.295

St. Dev. 5.90E-02 5.00E-02 3.80E-02
g02 Best 1.388 1.373 1.218

Mean 0.884 1.015 1.013
St. Dev. 1.20E-01 1.00E-01 9.00E-02

g03 Best 0.346 0.346 0.334
Mean 0.037 0.026 0.067

St. Dev. 6.50E-02 7.25E-01 8.10E-02
g04 Best 0.110 0.120 0.124

Mean 0.070 0.080 0.071
St. Dev. 2.30E-02 2.30E-02 2.50-02

g05 Best 4.273E-07 (12) 0.087 0.087
Mean 1.250E-07 0.056 0.036

St. Dev. 1.64E-07 3.70E-02 3.20E-02
g06 Best 0.799 0.807 0.772

Mean 0.306 0.348 0.296
St. Dev. 2.00E-01 1.80E-01 1.90E-01

g07 Best 2.117 2.504 2.499
Mean 1.656 1.919 1.963

St. Dev. 3.60E-01 3.60E-01 3.50E-01
g08 Best 0.494 0.451 0.556

Mean 0.317 0.304 0.356
St. Dev. 9.10E-02 9.20E-02 7.20E-02

g09 Best 4.685 4.394 4.768
Mean 2.622 2.209 2.510

St. Dev. 1.29E+00 1.12E+00 1.24E+00
g10 Best 0.598 0.665 0.678

Mean 0.360 0.482 0.468
St. Dev. 1.30E-01 1.00E-01 1.10E-01

g11 Best 0.143 0.143 0.143
Mean 0.088 0.113 0.101

St. Dev. 4.70E-02 4.90E-02 5.20E-02
g12 Best 0.342 0.281 0.285

Mean 0.136 0.119 0.096
St. Dev. 7.20E-02 6.70E-02 7.40E-02
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Table 10 Statistical results for the PROGRESS RATIO performance measure based on 30
independent runs in the last 12 test problems for IPSO and the two PSO variants with cons-
triction factor. “(n)” means that in only “n” runs feasible solutions were found. Boldface
remarks the best result per function. “-” means that no feasible solutions were found in any
single run.

PROGRESS RATIO

Problem global best (k) local best (k) IPSO
g13 Best - 1.165 2.327

Mean - 0.410 0.549
St. Dev. - 3.40E-01 5.70E-01

g14 Best 7.564E-04 (7) 0.077 (4) 0.167
Mean 3.253E-04 0.028 0.061

St. Dev. 2.78E-04 3.50-02 3.90E-02
g15 Best 1.520E-06 (5) 5.460E-03 5.419E-03

Mean 6.866E-07 2.805E-03 2.571E-03
St. Dev. 5.79E-07 1.82E-03 1.67E-03

g16 Best 0.379 0.509 0.412
Mean 0.224 0.217 0.246

St. Dev. 7.20E-02 9.20E-02 8.90E-02
g17 Best - 0.023 0.022

Mean - 8.342E-03 6.015E-03
St. Dev. - 7.17E-03 6.50E-03

g18 Best 0.660 (5) 1.540 1.297
Mean 0.348 0.883 0.690

St. Dev. 2.70E-01 3.30E-01 2.90E+00
g19 Best 3.463 3.470 3.580

Mean 2.975 3.062 3.050
St. Dev. 2.70E-01 1.80E-01 3.2E-01

g20 Best - - -
Mean - - -

St. Dev. - - -
g21 Best 7.252E-03 (7) 0.819 0.819

Mean 1.036E-03 0.628 0.646
St. Dev. 2.74E-03 1.60E-01 1.40E-01

g22 Best - - -
Mean - - -

St. Dev. - - -
g23 Best 2.697E-03 (16) 0.691 0.847

Mean 3.835E-04 0.139 0.240
St. Dev. 6.19E-04 1.90E-01 2.10E-01

g24 Best 1.498 1.211 1.062
Mean 0.486 0.443 0.481

St. Dev. 3.50E-01 2.60E-01 2.40E-01
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The behavior, regarding Evals, presented by IPSO is somehow expected, because
the approach to the feasible region might be slower because some particles will
use lower parameter values in the velocity update, mostly in the first half of the
search.

The nonparametric tests applied to the samples of results for the Progress Ratio
showed no significant differences for the three algorithms in problems g04, g08,
g12, g16 and g24 and in the comparison of the local best PSO with constriction
factor and IPSO in problems g13 and g17. Problems g20 and g22 were discarded
because no feasible solutions were found. In the remaining problems, the differences
are significant.

Despite being very fast in reaching the feasible region, the global best PSO ob-
tains the “best” improvement within the feasible region only in problem g02 and it
is the most consistent in problem g09. The local best PSO obtains the “best” quality
and most consistent results in problems g05, g06, g15, g17 and g18. Also, it presents
the best result in problem g07 and the most consistent improvement in the feasible
region in problems g10, and g19. IPSO is the best approach, based on quality and
consistency in problems g01, g13, g14, g21 and g23. Besides, it presents the “best”
quality results in problems g10 and g19 and it is the most consistent approach in
problem g07.

As a conclusion for the Progress Ratio measure, IPSO does not significantly im-
prove PSO’s ability of moving inside the feasible region. However, IPSO is very
competitive in problems with a combination of equality and inequality constraints
(g21 and g23), but it is surpassed by the local best PSO with constriction fac-
tor in problem g05 as well as in other problems. A last finding to remark is the
poor results obtained for the global best PSO with constriction factor. It seems that
its fast approach to the feasible region leads to an inability to improve solutions
inside it.

8.3 Convergence Behavior

The convergence behavior of the two original PSO variants and IPSO is graphically
compared by plotting the run located in the mean value from a set of 30 indepen-
dent runs. Problems where the behavior is very similar are omitted. The graphs are
grouped in Figure 7. Based on the behavior found in those graphs, IPSO is able to
converge faster than the two PSO variants in problems g01, g02 and g10, even local
best PSO with constriction factor achieves similar results but in more generations.
Global best PSO with constriction factor is trapped in a local optimum solution. In
problem g03, the local best PSO provides the best convergence while IPSO and the
global best PSO with constriction factor are trapped in local optima solutions. Fi-
nally, IPSO clearly shows a better convergence in problems g14, g17, g21 and g23.
It is worth reminding that problems g21 and g23 have a combination of equality and
inequality constraints. Therefore, the graphs suggest that the modified constraint-
handling mechanism helps PSO in this kind of problems.
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Fig. 7 Representative convergence graphs for the two compared PSO variants and IPSO

8.4 Comparison with State-Of-The-Art PSO-Based Approaches

As a final comparison, IPSO’s final results are compared with respect to those re-
ported by four state-of-the-art PSO-based approaches. The approaches are the PSO
algorithms proposed by Toscano and Coello [42], Li et al. [20], Lu and Chen [25]
and Cagnina et al. [2]. These approaches are selected because they were tested
against the same set of test problems. Statistical results (best, mean and worst val-
ues) are shown in Table 11. Test problems g14 to g24 are omitted because no results
are reported by the compared approaches.
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Table 11 Comparison of results with respect to state-of-the-art PSO-based approaches. ( |)
indicates that the results for this function were not available.

Comparison with state-of-the-art PSO-based approaches.

Problem & Toscano Li, Tian Lu Cagnina
best-known & Coello & Kong & Chen et al. IPSO

solution [42] [20] [25] [2]

g01 Best -15.000 -15.000 -15.000 -15.000 -15.000
-15.000 Mean -15.000 -15.000 -14.418 -15.000 -15.000

Worst -15.000 -15.000 -12.453 -134.219 -15.000
g02 Best -0.803432 | -0.664 -0.801 -0.802629

-0.803619 Mean -0.790406 | -0.413 0.765 -0.713879
Worst -0.750393 | -0.259 0.091 -0.600415

g03 Best -1.004 | -1.005 -1.000 -0.641
-1.000 Mean -1.003 | -1.002 -1.000 -0.154

Worst -1.002 | -0.934 -1.000 -3.747E-03
g04 Best -30665.500 -30665.600 -30665.539 -30665.659 -30665.539

-30665.539 Mean -30665.500 -30665.594 -30665.539 -30665.656 -30665.539
Worst -30665.500 -30665.500 -30665.539 -25555.626 -30665.539

g05 Best 5126.640 5126.495 5126.484 5126.497 5126.498
5126.498 Mean 5461.081 5129.298 5241.054 5327.956 5135.521

Worst 6104.750 5178.696 5708.225 2300.5443 5169.191
g06 Best -6961.810 -6961.837 -6961.813 -6961.825 -6961.814

-6961.814 Mean -6961.810 -6961.814 -6961.813 -6859.075 -6961.814
Worst -6961.810 -6961.644 -6961.813 64827.544 -6961.814

g07 Best 24.351 | 24.306 24.400 24.366
24.306 Mean 25.355 | 24.317 31.485 24.691

Worst 27.316 | 24.385 4063.525 25.15
g08 Best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825

-0.095825 Mean -0.095825 -0.095825 -0.095825 -0.095800 -0.095825
Worst -0.095825 -0.095825 -0.095825 -0.000600 -0.095825

g09 Best 680.638 680.630 680.630 680.636 680.638
680.630 Mean 680.852 680.654 680.630 682.397 680.674

Worst 681.553 680.908 680.630 18484.759 680.782
g10 Best 7057.900 | 7049.248 7052.852 7053.963

7049.248 Mean 7560.047 | 7049.271 8533.699 7306.466
Worst 8104.310 | 7049.596 13123.465 7825.478

g11 Best 0.749 0.749 0.749 0.749 0.749
0.749 Mean 0.750 0.749 0.749 0.750 0.753

Worst 0.752 0.749 0.749 0.446 0.776
g12 Best -1.000 | -1.000 -1.000 -1.000

-1.000 Mean -1.000 | -1.000 -1.000 -1.000
Worst -1.000 | -1.000 9386 -1.000

g13 Best 0.068 | 0.053 0.054 0.066
0.053949 Mean 1.716 | 0.681 0.967 0.430

Worst 13.669 | 2.042 1.413 0.948



Improved Particle Swarm Optimization in Constrained Numerical Search Spaces 329

The statistical results show that IPSO provides the most consistent results in
problems g05 (with a combination of equality and inequality constraints), g06 and
g13. IPSO also has a similar performance with respect to the PSOs compared in
problems g01, g04, g08, g11 and g12. Moreover, IPSO obtains the second best per-
formance in problems g02, g07, g09 and g10. In problem g03 IPSO is not competi-
tive at all. Regarding the computational cost of the compared approaches, Toscano
and Coello [42] and Cagnina et al. [2] use 340,000 evaluations, Li et al. [20] do
not report the number of evaluations required and Lu and Chen [25] report 50,000
evaluations. However, Lu and Chens’ approach requires the definition of an extra pa-
rameter called ω and the original problem is also modified. IPSO requires 160,000
evaluations and does not add any extra operator or complex mechanism to the orig-
inal PSO, keeping its simplicity.

9 Conclusions and Future Work

This chapter presented a novel PSO-based approach to solve CNOPs. Unlike tradi-
tional design steps to generate an algorithm to deal with constrained search spaces,
which in fact may produce a more complex technique, in this work a preliminary
analysis of the behavior of the most known PSO variants was performed as to get
an adequate search engine. Furthermore, empirical evidence about the convenience
of using PSO local best variants in constrained search spaces was found (constric-
tion factor was better than inertia weight). From this first experiment, the local best
PSO with constriction factor was the most competitive variant and two simple mod-
ifications were added to it: (1) a dynamic adaptation mechanism to control k and
c2 parameters, these to be used for a dynamically adapted percentage of particles
in the swarm and (2) the use of a dominance criterion to compare infeasible solu-
tions in such a way that new solutions are accepted only if both, the sums of ine-
quality and equality constraint violations (handled separately) are decreased. This
Improved PSO (IPSO) was compared against original PSO variants based on their
final results and also based on their on-line behavior. IPSO’s final results were sig-
nificantly improved with respect to the original variants. On the other hand, IPSO
was not the fastest to reach the feasible region and it did not improve considerably
the ability to move inside the feasible region. In other words, the way the original
PSO works in constrained search spaces was modified in such a way that a slower
approach to the feasible region allowed IPSO to enter it from a more promising
area. However, this issue requires a more in-depth analysis. The convergence be-
havior shown by IPSO suggest that their mechanisms promote a better exploration
of the search space to avoid local optimum solutions in most of the test problems.
Finally IPSO, which does not add further complexity to PSO, provided competitive
and even better results, with a moderate computational cost, when compared with
four state-of-the-art PSO-based approaches. A final conclusion of this work is that,
regarding PSO to solve CNOPs, the previous knowledge about the heuristic used as
a search engine led to a less complex but competitive approach. Part of the future
work is to improve the dynamic adaptation proposed in this chapter i.e. adaptive
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mechanism, testing more recent PSO variants such as the Fully Informed PSO [26],
to test PSO variants with other constraint-handling mechanisms such as adaptive
penalty functions [41] and to use IPSO in real-world problems.
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