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Abstract. The process algebra CSP is designed for specifying interac-
tions between concurrent systems. In CSP, and related languages, con-
current processes synchronise on common events, while the internal
operations of the individual processes are treated abstractly. In some con-
texts, however, such as when modelling systems of systems, it is desirable
to model both interprocess communications as well as the internal opera-
tions of individual processes. At the implementation level, shared state is
often the method of communication between processes, and tests and up-
dates of local state are used to implement internal operations. In this paper
we propose an extension of the CSP language which maintains CSP’s core
elegance in specifying process synchronisation, while also allowing state-
based behaviour. State is treated hierarchically, allowing (nested) declara-
tions of local and shared variables. The state can be accessed and modified
using a refinement calculus-style specification command, which may be op-
tionally paired with event synchronisation. The semantics of the extended
language, preserves the original CSP rules. The approach we present is
novel in that state is part of the process, rather than a meta-level construct
appearing only in the rules.

1 Introduction

The process algebra CSP [7] is a language designed for specifying concurrent
systems in which processes interact by synchronising and exchanging informa-
tion through a set of common events. Because the focus is on interactions, the
internal operations of a process are treated abstractly. In this paper we give
an extension of CSP to include a construct for declaring state, and a general
construct for testing and updating the state. The state can be declared local
to a single sequential process, or shared between concurrent processes. The in-
tegration of state-based constructs with CSP enables the internal operations
of a process to be specified in a familiar, imperative programming style, and
modelling of shared-state systems. The extension is designed so that CSP’s core
elegance in specifying interprocess communication is maintained, and therefore
obeys the following constraints: it is “lightweight”, in that it includes only a
few straightforward language extensions which do not affect existing constructs
(syntactic preservation), and therefore remains faithful to the original style of
CSP; all existing CSP operational laws remain valid (semantic preservation); it
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allows both local state as well as shared state in a hierarchical way; and it allows
combining state operations with a single synchronisation.

In Sect. 2 we review CSP and present the operational semantics of a subset
of the language. In Sect. 3 we extend CSP with a construct for declaring state,
and commands for testing and updating state. In Sect. 4 we generalise tests and
updates to any relationship between pre- and post-states, and allow them to be
combined with event synchronisation in a single atomic action. Related work is
discussed in Sect. 5 and we conclude in Sect. 6.

2 Review of CSP

2.1 Syntax

CSP is a process algebra which allows concurrent processes to communicate
synchronously via shared events. We base our understanding of CSP on the
book by Hoare [7], and present its meaning via an operational semantics in the
style of Roscoe [11] and Schneider [12].

Processes interact via a set of events, Event . In addition, there are two special
events, τ , representing an internal (unobservable) event, and �, representing
successful termination. A subset of the syntax of a process in CSP is summarised
below.

P ::= (a →P) | (P1 � P2) | (P1 [] P2) | (P1 ‖ P2) | (P\A) | (P1 ; P2) |
SKIPA | STOPA

(1)

An event prefix process a →P , where a ∈ Event , is one that synchronises on
event a before behaving as process P . An internal choice between P and Q ,
written P � Q , nondeterministically chooses between P and Q , without refer-
ence to a particular event. An external choice between processes P and Q is
given by P []Q . Whichever process is the first to perform a synchronisation event
with the environment becomes active. Concurrency is written by P ‖ Q , which
states that the two processes operate in parallel, synchronising on shared events
and interleaving non-shared events. A set of events A ⊆ Event within P may be
“hidden”, written P\A, so that any events in A are not visible externally to P
(these become internal steps of P\A). A sequential composition P ;Q behaves as
P until P terminates, after which it behaves as Q . The process SKIPA has only
one possible behaviour, which is to terminate successfully and take no further
action. The process STOPA has no behaviour – it may never synchronise or take
any other action. Both SKIPA and STOPA are parameterised by a set of events
A, which forms their alphabet, described below. In general, processes may also
be parameterised by values, examples of which are given below.

Events can contain values, e.g., c.v , where c is a channel name and v is a
value. Channels are used for passing information from one process to another.
By convention, the sending process c.v →P is written c!v →P , and the receiving
process is written c?x : T →P(x ), which represents a process that engages in
any event c.v for v ∈ T , then behaves as P(x ) (a process dependent on x ). In
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this paper, to avoid distractions associated with type systems, we assume all
values are of a universal type Val , and hence will omit the type qualifier T .

CSP includes a range of other operators, but for the purposes of this paper
we take the above subset as core. As an example, consider the specification of a
queue in CSP.

Qu(〈〉) =̂ enq?x →Qu(〈x 〉)
Qu(〈y〉 � q) =̂ (enq?x →Qu(〈y〉 � q � 〈x 〉)) [] (deq!y →Qu(q))

(2)

The state of the queue is maintained as a parameter to the process. Values are
enqueued via channel enq and dequeued on deq. We have followed Schneider’s
[12] style of separating the empty and non-empty cases of the queue parameter.
This is required because the deq channel is not available if the queue is empty.

The set of events a process P may engage in is given by its alphabet, α(P) ⊆
Event ∪ {�}. The alphabet of a process must satisfy the equations below.

α(a →P) = α(P) where a ∈ α(P)
α(P � Q) = α(P) = α(Q)
α(P [] Q) = α(P) = α(Q)
α(P ‖ Q) = α(P) ∪ α(Q)

α(P\A) = α(P) \ A
α(P ; Q) = α(P) ∪ α(Q)

α(SKIPA) = A ∪ {�}
α(STOPA) = A

(3)

Unless otherwise specified, we assume the alphabet of a process is the minimum
required to satisfy the above rules. For instance, a non-empty queue can engage
in all enq and deq events, while an empty queue can immediately engage in
enq events, followed by all events in the alphabet of a non-empty queue. Define
c.Val =̂ {v : Val • c.v}, i.e., c.Val is the set of events formed from channel
c and a value. Then for any sequence of values, q, the definition α(Qu(q)) =
enq.Val ∪ deq.Val is valid because it satisfies the equations given in (3).

As a more complex process example, consider a system which is formed from
two processes, S and R, which communicate via a buffer implemented as a queue
(process Qu). S generates values for the queue and R reads those values and
performs some actions on them. Assume the existence of a process Produce which
generates a value x . Process S repeatedly starts process Produce(x ) and puts x
on the queue. Process R reads value y from the queue and then performs some
actions via process Consume(y). The whole system, Sys , is formed by running
S and R in parallel with Qu(〈〉), and hiding the communication events.

S =̂ (Produce(x ) ; (enq!x →S ))
R =̂ deq?y →(Consume(y) ; R)

Sys =̂ (S ‖ R ‖ Qu(〈〉))\(enq.Val ∪ deq.Val)
(4)

Process Sys hides all communication on channels enq and deq. Processes external
to Sys will not see any of the events associated with enq or deq – all internal
communication will appear as a step in τ . (Sys is not a recursive process and
hence may declare the hiding internally.)
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(a →P)
a−→P (5)

(P � Q)
τ−→P

and similarly for Q .
(6)

P
a−→P ′ Q

a−→Q ′

P ‖ Q
a−→P ′ ‖ Q ′

(7)

P
μ−→P ′ μ �∈ α(Q)

P ‖ Q
μ−→P ′ ‖ Q

and similarly for Q .

(8)

SKIPA
�−→ STOPA (9)

P
τ−→P ′

P [] Q
τ−→P ′ [] Q

P
a−→P ′

P [] Q
a−→P ′

and similarly for Q .

(10)

P
a−→P ′ a ∈ A

P\A τ−→ P ′\A
P

μ−→P ′ μ �∈ A

P\A μ−→P ′\A
(11)

P
μ−→P ′ μ �= �

P ; Q
μ−→P ′ ; Q

P
�−→ P ′

P ; Q
τ−→ Q

(12)

Fig. 1. Rules for CSP

2.2 Operational Semantics

The operational semantics for CSP operators is given in Fig. 1, and follows
the style of Schneider [12]. Internal transitions are labelled with the internal
event τ , and unless otherwise stated, transitions labelled with a are valid for
a ∈ Event ∪ {�}. Transitions labelled with μ apply for μ ∈ Event ∪ {�, τ}.

Rule (5) states that a prefixed process a →P may take a step in a then
behave as P . (Recall that a prefix a is a member of Event , i.e., cannot be τ
or �.) Rule (6) states that an internal choice between P and Q may evolve to
either process, without any visible action. Rule (7) states that P and Q may
synchronise on event a if both are able to do so. Rule (8) states that P may evolve
by interleaving an event μ that is not in the alphabet of Q . Rule (9) states that
the special process SKIPA transitions in the � event and then takes no further
action. There are no rules for STOPA – it cannot engage in any actions. We
follow the convention of omitting the alphabet subscript on SKIPA and STOPA

when it is clear from context. Rule (10) states that P in an external choice may
take an internal step without affecting the choice itself. Alternatively, if P may
take a step with event a then the choice may be made in P ’s favour. Symmetric
rules holds for Q . Rule (11) states that if P may take a step in a and a is hidden,
then P\A may take an internal step. Alternatively, P\A may take a step in a if
a is not hidden. Rule (12) states that until P terminates, P ; Q behaves as P ,
after which it behaves as Q .

As an example, an initially empty Qu process can take the following steps.

Qu(〈〉) enq.v−→ Qu(〈v〉) enq.w−→ Qu(〈v ,w〉) deq.v−→ Qu(〈w〉) deq.w−→ Qu(〈〉)

These steps are justified by Rules (5) and (10). If channels enq and deq were
hidden, each transition label above would be τ (Rule (11)). Without the hiding,
the queue process could synchronise and exchange values with a concurrent pro-
cess which is listening to the enq and deq events via Rule (7), such as processes
S and R in (4).
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3 CSP Extended with State

We extend the CSP language with operators for testing and updating state,
and call the new language CSPσ. We assume the existence of a set of variable
identifiers, Var , a set of values of variables, Val , and define a state as a partial
mapping from variables to values, state =̂ Var 
→ Val . We use σ to denote such
partial states; on occasion we refer to a state which is total on Var , and we
denote such states by Σ.

3.1 Syntax

Three new operators are added to the language, as shown below, where σ is a
state, g is a predicate, x is a variable, and E is an expression1.

P ::= (st σ • P) | ([g]→P) | ((x :=E )→P) | . . . (13)

where ‘. . .’ includes the operators for CSP from (1). Guards and updates do not
appear in process event alphabets.

A local state process (st σ • P) defines the variables in the domain of σ to be
local to P , with their value in σ giving their initial value. Updates to and accesses
of variables in the domain of σ are hidden from external observers, and hence, the
local state hides variables in the same way that events in A are hidden by P\A.
Local states may be declared hierarchically (nested), e.g., (st σ1 • (st σ2 • P)),
where expressions in P may contain free variables which are in the domain of σ1

or σ2. If a variable x appears in both σ1 and σ2, the value for x in σ2 overrides
the value in σ1. We call the combination of all local states for some process its
context.

A guard prefix process [g]→P is blocked from proceeding until predicate g is
evaluated to true in the current context, after which it behaves as P . An update
prefix process (x := E )→P updates the variable x to the expression E evaluated
in the current context, then behaves as P . We use the term action to cover
everything that may appear on the left-hand side of a prefix, i.e., events, guards
and updates.

As an example, consider the (at this stage flawed) specification of a queue in
CSPσ. We define a process Q which handles messages along channels enq and
deq as before, explicitly updating queue variable q. The variable q is declared
locally to process Qu.

Qu =̂ (st {q 
→ 〈〉} • Q)

Q =̂ enq?x →(q := q � 〈x 〉)→Q
[] [q �= 〈〉]→ deq!head(q)→(q := tail(q))→Q

(14)

After an enq?x event, q is explicitly updated and the process repeats. If q is
nonempty Q may participate in deq events. However, once the second branch is
chosen, Q will refuse enq events, which may lead to deadlock if the environment
1 To avoid distractions we assume all expressions are well defined.



CSP with Hierarchical State 123

is not offering deq. The desired behaviour is that the event deq may occur, and
the second branch selected, only if q �= 〈〉. To achieve this we must be able to
atomically combine guards with events; this will be explored in Sect. 4. Processes
S , R and Sys from (4) may be defined similarly in CSPσ, except the Qu process
does not need a parameter.

Computation sequences can be specified in CSPσ, as shown by the following
process Sum(X ) which calculates the sum of the natural numbers up to X using
local variables s and i , and then writes the result to non-local variable x .

Sum(X ) =̂ (st {i 
→ 1, s 
→ 0} • S (X ))

S (X ) =̂ [i ≤ X ]→(s := s + i)→(i := i + 1)→S (X )
[] [i > X ]→(x := s)→SKIP

(15)

To an external observer, all of the steps prior to the final copy to x are internal
since they test and update only the local variables i and s .

3.2 Operational Semantics

Our novel approach to defining the operational semantics of guards and up-
dates is to introduce them as transition labels which are “hidden” by the closest
declaring state, in the same way that events may be hidden in CSP. However,
because states may only hide some of the free variables referenced by a guard or
update, such states only partially hide those transitions. For example, consider
the following transitions of process P prefixed by a guard, within a state which
maps i to 1. The local state {i 
→ 1} ‘hides’ i from external observers.

(st {i 
→ 1} • [i ≤ 5]→P) �−→ (st {i 
→ 1} • P) (16)

(st {i 
→ 1} • [i ≤ x ]→P)
[1≤x ]−→ (st {i 
→ 1} • P) (17)

(st {i 
→ 1} • [y ≤ x ]→P)
[y≤x ]−→ (st {i 
→ 1} • P) (18)

In (16) the transition label is , which plays a similar role to τ . The guard triv-
ially evaluates to true in the local state, so to an external observer some internal
step is taken. In (17) the guard accesses non-local variable x . The externally
observable behaviour of this process is that it will evolve to P if x ≥ 1. The
predicate has been partially instantiated according to the local state. In (18)
the local state has no effect on the guard: its progress is dependent on non-local
variables and hence is externally visible (via the transition label). A process
(st {i 
→ 1} • [i > 5]→P) cannot transition at all since the guard does not hold
in the local context.

Now consider the following transitions of process P prefixed by an update of
variable s .

(st {i 
→ 1} • s := 0→P) s := 0−→ (st {i 
→ 1} • P) (19)

(st {s 
→ 1} • s := 0→P) �−→ (st {s 
→ 0} • P) (20)

(st {i 
→ 1} • s := i →P) s := 1−→ (st {i 
→ 1} • P) (21)
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Transition (19) describes an update to a non-local variable, in which the update
expression is independent of the local state. Transition (20) describes an update
of a local variable. The process evolves to P with s updated locally to 0. This is
an internal transition and hence labelled with . In (21) the local context does
not include s , but does include a variable in the update expression. Since i is
mapped to 1 locally, to an external observer the process appears as an update
of s to 1. We consider more complex update examples below.

Before giving the formal rules for state-based constructs we define some nota-
tion. For an expression E and state σ, E [σ] represents E with its free variables
that are in the domain of σ replaced by their value in σ. For instance, if E is the
boolean expression (x = y + 1) and σ is {x 
→ 5}, E [σ] is (5 = y + 1). If E is a
predicate, as in the above example, then [[E ]] is true if and only if E holds for all
values of all its free variables, i.e., (∀Σ • E [Σ]). (Recall that Σ is a state total
on Var .) We write sat([g]) if g is satisfiable for some values of its free variables,
i.e., (∃Σ • g[Σ]). Note that sat([g]) = ¬[[¬g]].

As foreshadowed, we extend the set of possible transition labels to include

SCmd , which contains guards and updates. A transition P
[g]−→ P ′ says that

P can evolve to P ′ if the predicate g is true, and a transition P x :=E−→ P ′ says
that P evolves P ′ and has the effect of updating x to E . The transition 
is a member of SCmd : it represents a transition in guard [g] where [[g]]. It is
the state-based equivalent of τ , but note that  ∈ SCmd , whereas τ �∈ Event .
This makes the definition of the rules more compact, since a transition which
is allowable in every state () is just a special case. By abuse of notation we
treat  as a single entity, although it in fact represents a set of transitions (e.g.,
[true], [1 > 0], [x = x ], etc.).

If we allow μ to also range over SCmd actions, then all of the rules in Fig. 1
still hold. The only construct from (1) which needs an additional rule to handle
SCmd transitions is external choice – see Rule (23), which is the state-based
equivalent of Rule (10).

Fig. 2 contains transition rules for the extended set of constructs and transi-
tion labels. Rule (22) defines the transitions for guards and updates in a similar
manner to event prefixing (Rule (5)). Rule (24) states that (st σ • P) transitions
in τ, � or event a if P does. We allow event a to reference state variables (if
a represents the passing of information along a channel), therefore a must be
(partially) instantiated by the local state. For instance,

(st {x 
→ 1} • c!x →P) c.1−→ (st {x 
→ 1} • P)

Rule (25) states that (st σ • P) may transition in guard [g[σ]] if P may take
a transition in [g], and [g[σ]] is satisfiable. This proviso ensures that guards
that cannot evaluate to true cannot transition. The rule may be compared to
Rule (11), in the sense that variables that occur in the domain of σ are replaced
in g by their local value in σ. If g only contains free variables that occur in
the domain of σ, then g[σ] may be evaluated locally: it will either evaluate to
true ([[g[σ]]] = true), in which case the transition can always occur, or it will
evaluate to false, and no transition is possible (since sat([g[σ]]) will not hold).
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([g ]→P)
[g]−→ P ((x := E )→P)

x := E−→ P (22)

P
�−→ P ′

P [] Q
�−→ P ′ [] Q

P
s−→P ′ s ∈ SCmd \ {�}

P [] Q
s−→P ′

and similarly for Q .

(23)

P
μ−→ P ′

(st σ • P)
μ[σ]−→ (st σ • P ′)

(24)

P
[g]−→ P ′ sat([g [σ]])

(st σ • P)
[g[σ]]−→ (st σ • P ′)

(25)

P
x :=E−→ P ′ x �∈ dom σ

(st σ • P)
x :=E [σ]−→ (st σ • P ′)

(26)

P
x := E−→ P ′ x ∈ dom σ v ∈ Val sat([E [σ] = v ])

(st σ • P)
[E [σ]=v]−→ (st σ ⊕ {x 	→ v} • P ′)

(27)

Fig. 2. Rules for guards and updates

The example transitions (16)–(18) may all be justified by applying Rule (25)
and Rule (22).

Rule (26) states (st σ • P) may transition in “x :=E [σ]” if P may transition
in “x :=E” and x is not local to σ. In this case, the expression E is partially
instantiated with respect to σ, and the local state is not affected. Examples of
this were given in (19) and (21).

Rule (27) captures the case where the updated variable x is local to P . This
case is complicated by the possibility that the value of E may not be determined
solely by σ, that is, when E contains variables not in the domain of σ. The rule
therefore describes many possible transitions, one for each possible value of v
such that (E [σ] = v) is satisfiable. In each such transition, the local state is
updated so that x is mapped to v . Importantly, the transition label [E [σ] = v ]
below the line is a guard, whereas above the line the label x :=E is an update.
The labelling ensures that the value v chosen for x is consistent with the context.
The updated state is described notationally by σ⊕{x 
→ v}; more generally, for
functions f and g, f overridden by g, f ⊕ g, is a function which returns g(x ) for
elements in the domain of g, and f (x ) otherwise.

Transition (20) given earlier is a simple example of the application of (27)
where we make the obvious choice of 0 for v , since E [σ] evaluates to 0, and
therefore [E [σ] = v ] = [0 = 0] = . Given below is a set of transitions for the
more complex case where the updated variable is local but the expression E is
not.

(st {s 
→ 1} • s := s + i →P)
[i=0]−→ (st {s 
→ 1} • P) (28)

(st {s 
→ 1} • s := s + i →P)
[i=1]−→ (st {s 
→ 2} • P) (29)

(st {s 
→ 1} • s := s + i →P)
[i=2]−→ (st {s 
→ 3} • P) (30)
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In these cases we cannot locally determine the value to which s must be updated,
since the update expression accesses non-local variable i . Locally, therefore, there
are many possible transitions, one for each v ∈ Val to which s can be updated
(we have shown only the transitions for v = 1, v = 2, v = 3). However, in
practice, only one transition will be possible for a given context. In this case,
that will be the transition in which v has the value of 1 + i in context.

For instance, the process can evolve to P with s = 2 in the local state only if
i = 1 in the context (29). Hence, consider an outer context of P in which i has
the value 1.

(st {i 
→ 1} • (st {s 
→ 1} • s := s + i →P)) �−→
(st {i 
→ 1} • (st {s 
→ 2} • P))

The assignment s := s + i is completely determined by the context provided by
the outer state {i 
→ 1}, and hence always transitions (in ). The effect is to
update the value of s within the inner state. By Rule (25), transitions (28) and
(30) are not possible when the outer context determines i = 1, since, for example,
sat([(i = 0)[{i 
→ 1}]]) does not hold.

Below is the execution of program Sum(2) from (15).

(st {i 
→ 1, s 
→ 0} • S (2))
�−→ (st {i 
→ 1, s 
→ 0} •

(s := s + i)→(i := i + 1)→S (2)) Rules (22), (23), (25)

�−→ (st {i 
→ 1, s 
→ 1} • (i := i + 1)→S (2)) Rules (22), (27)
�−→ (st {i 
→ 2, s 
→ 1} • S (2)) Rules (22), (27)
�−→ (st {i 
→ 2, s 
→ 1} •

(s := s + i)→(i := i + 1)→S (2)) Rules (22), (23), (25)

�=⇒ (st {i 
→ 3, s 
→ 3} • S (2)) Rules (22), (27) (×2)
�−→ (st {i 
→ 3, s 
→ 3} • x := s →SKIP) Rules (22), (23), (25)

x :=3−→ (st {i 
→ 3, s 
→ 3} • SKIP) Rules (22), (26)

It is a series of unobservable steps (in ) until the final observable transition
which updates x to 3. No more transitions are possible. (We have used �=⇒ to

indicate a sequence of more than one �−→ transitions.) The steps in  may be
interleaved with other processes operating in parallel by Rule (8). The process
avoids internal “divergence” by eventually updating a non-local variable.

4 Combining Synchronisation and State-Based Actions

We have so far given a relatively small and straightforward extension to CSP
to allow state-based behaviour. However the language is limited in that one
cannot combine guards, updates and events in one atomic action. To this end we
generalise guards and updates to specification commands (Sect. 4.1), which allow
arbitrary relationships between pre- and post- states, and allow specification
commands to be paired with events (Sect. 4.2).
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4.1 Specification Commands

A specification command is of the form x : [R], where x is a set of variables and
R is a two-state predicate. This construct is based on Morgan’s specification
command [9], except he uses x0 and x for pre- and post-state variables, where
we use x and x ′, respectively. The frame of the command is the set x , i.e.,
frame(x : [R]) = x , and it is the set of variables which may be modified by the
specification command. R defines the relationship between the values of pre-
and post variables. Variables in the post-state are primed versions, and only
variables in the frame x may appear primed in R. For example, a specification
command which increments i is written as i : [i ′ = i + 1]. A guard as described
in the previous section is a special case of a specification command where x is
empty and R (therefore) does not refer to the post-state, that is, [g] is now an
abbreviation for ∅ : [g], as in [9]. Similarly, an update x := E is an abbreviation
for x : [x ′ = E ]. The syntax of processes is extended to allow a specification
command as a prefix, which, given these abbreviations, subsumes prefixing by
guards and assignments.

P ::= (st σ • P) | (x : [R]→P) | . . . (31)

where ‘. . .’ includes the operators for CSP from (1). We require α(x : [R]→P) =
α(P).

As in the previous extension, we define the set of state-based actions, SCmd , to
contain all specification commands (and allow guard and update abbreviations to
appear in transition labels). In keeping with the guard abbreviation, we define 
as any command ∅ : [g] where [[g]] = true. The following rule subsumes Rule (22).

(x : [R]→P)
x : [R]−→ P (32)

Given a two-state predicate R and states σ and σ′, the substitution of σ in
the pre-state of R and σ′ in the post-state of R is written R[σ, σ′]. For instance,
if σ = {i 
→ 0} and σ′ = {i 
→ 1}, then (i ′ = i + 1)[σ, σ′] is (1 = 0 + 1).
A specification command x : [R] is satisfiable when there exists some state σ
and values for the frame variables x such that R holds for the pre-state σ and
post-state formed from σ updated with the new values for the variables in x .

sat(x : [R]) =̂ (∃Σ • (∃V : (x → Val) • R[Σ, Σ ⊕ V ]))

The rule for a specification command transition in a local state is given below.

P
x : [R]−→ P ′ y = x ∩ dom σ z = x \ dom σ V ∈ (y → Val)

σ′ = σ ⊕ V sat(z : [R[σ, σ′]])

(st σ • P)
z : [R[σ,σ′]]−→ (st σ′ • P ′)

(33)

A process (st σ • P) may take a transition labelled by a specification com-
mand z : [R[σ, σ′]] under the following conditions. P transitions in specification
command x : [R] to P ′. Set y is the subset of variables of x that are in the local
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state σ; z is the remaining variables. Choose some new values for the variables in
y and call this state V . Then the new state σ′ is the same as σ with variables in
y updated according to V . Finally, the specification command z : [R[σ, σ′]] must
be satisfiable. Then the conclusion of the rule states that (st σ • P) transitions
to (st σ′ • P ′) with label z : [R[σ, σ′]], i.e., the visible behaviour is an update
of non-local variables z such that R holds, after variables in the local state σ
are replaced by their local values in the pre- and post-states. If z is empty and
[[R[σ, σ′]]], the label is ∅ : [true], i.e., .

For example, consider a specification command which swaps the values of two
variables, i and j , if both are greater than 0, but blocks otherwise.

i , j : [R] where R =̂ i > 0 ∧ j > 0 ∧ i ′ = j ∧ j ′ = i

Consider the execution of (i , j : [R]→Q) in a context which maps i to 5 and j
to 10. The guard is satisfied since both i and j are non-zero, and the result is to
swap their values. The following transition is justified by Rules (33) and (32).

(st {i 
→ 5, j 
→ 10} • i , j : [R]→Q) �−→ (st {i 
→ 10, j 
→ 5} • Q)

The instantiations of the rule meta-variables are y = {i , j}, z = ∅,V = {i 
→
10, j 
→ 5} = σ′. Substituting σ and σ′ into R gives true, and hence R[σ, σ′] is
trivially satisfiable. No other choice for V would give a valid transition, since
the satisfiability constraint would not hold.

All rules in Figs. 1 and 2 remain valid. In particular, Rule (33) specialises
to Rule (25) with the following instantiations: x = y = z = {}; hence V = {}
and σ′ = σ. Rule (33) specialises to Rule (26) for x �∈ dom σ by replacing the
abbreviation x :=E by x : [x ′ = E ], with the following instantiations: y = ∅, z =
{x}, and hence V = ∅ and σ′ = σ. We assume that E does not contain any
primed variables, and therefore sat(x : [x ′ = E [σ]]) holds because it simplifies
to (∃Σ • (∃w : Val • w = E [Σ])) which is true by the one-point law. Rule (33)
specialises to Rule (27) for x ∈ dom σ, by replacing the abbreviation x :=E by
x : [x ′ = E ], with the following instantiations: y = {x}, z = ∅, and hence, for
some v , V = {x 
→ v} and σ′ = σ ⊕ {x 
→ v}. We assume that E does not
contain any primed variables, and therefore z : [R[σ, σ′]] is ∅ : [v = E [σ]].

4.2 Combining State and Synchronisations

To allow more generality, we now allow each action in the language to be a
specification command/event pair, written (c, μ). This pair subsumes both spec-
ification command prefix and event prefix. If c is  we abbreviate (c, μ) to μ,
and if μ is τ we abbreviate (c, μ) to c. We allow τ as an abbreviation for (, τ).
We require

α((c, μ)→P) = α(P) where μ ∈ Event ⇒ μ ∈ α(P)

The intuition is that an action (c, a) can synchronise on an event a if the guard
for c holds, and will update the variables in the frame according to c. For
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instance, to correct the problem with possible refusals of enq events associated
with process (14), the bottom line can be written as

([q �= 〈〉], deq!head(q))→(q := tail(q))→Q

This ensures that the synchronisation on channel deq will occur only when q is
nonempty, without precluding the choice to enqueue a value.

For syntactic convenience in specifying a sequence of state-based actions to be
executed atomically, we allow action pairs to be composed. Such a composition
is well-formed only if at most one of the commands has an event a. That is,
two events cannot be composed. We use the symbol ‘◦’ to denote composition of
action pairs, and overload it to also denote relational composition of specification
commands.

(c1, τ) ◦ (c2, τ) = (c1 ◦ c2, τ) (34)
(c1, a) ◦ (c2, τ) = (c1 ◦ c2, a) = (c1, τ) ◦ (c2, a) (35)

The relational composition of two specification commands, c1 ◦ c2, which have
the same frame x , is defined by matching the post-state of c1 to the pre-state of
c2 via intermediate variables x ′′.

x : [R1] ◦ x : [R2] = x : [∃ x ′′ • R1[
x ′′

x ′ ] ∧ R2[
x ′′

x
]] (36)

The expression R1[ x
′′

x ′ ] is R1 with a syntactic replacement of variables x ′ with
x ′′. Note that this is a different type of substitution to that involving states. For
the purposes of defining relational composition when the frames do not match,
their frames may be widened according to the rule below.

x : [R] = x ∪ y : [R ∧ y ′ = y] for x ∩ y = ∅ (37)

For example, the dequeuing of an element can be merged with the test of non-
emptiness and an event on channel deq into a single atomic action as follows.

([q �= 〈〉], deq!head(q)) ◦ (q := tail(q), τ)
= ([q �= 〈〉] ◦ q := tail(q), deq!head(q)) from (35)
= (q : [q �= 〈〉 ∧ q ′ = q] ◦ q : [q ′ = tail(q)], deq!head(q)) from (37)
= (q : [∃ q ′′ • q �= 〈〉 ∧ q ′′ = q ∧ q ′ = tail(q ′′)], deq!head(q)) from (36)
= (q : [q �= 〈〉 ∧ q ′ = tail(q)], deq!head(q)) one-point rule

In addition to allowing paired actions, we now require transition labels to be
pairs of commands and events. As above, a transition with command c and event

μ is written P
c,μ−→ P ′. Both fields are mandatory for every transition, however,

if the command is  or the event is τ , we omit them, with the minimum label
being τ . As an example of a non-trivial label, by the above calculation:

[q �= 〈〉] ◦ deq!head(q) ◦ q := tail(q)→P
q : [q �=〈〉∧q′=tail(q)],deq!head(q)−→ P
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((c, μ)→P)
c,μ−→P (38)

P
c,a−→P ′ a �∈ α(Q)

P ‖ Q
c,a−→P ′ ‖ Q

and similarly for Q .

(39)

P
c,μ−→ P ′ μ �= �

P ; Q
c,μ−→ P ′ ; Q

P
�−→ P ′

P ; Q
τ−→ Q

(40)

P
c,a−→P ′ a ∈ A

P\A c,τ−→ P ′\A
P

c,μ−→P ′ μ �∈ A

P\A c,μ−→P ′\A
(41)

P
τ−→P ′

P [] Q
τ−→P ′ [] Q

P
c,μ−→P ′ (c, μ) �= (�, τ )

P [] Q
c,μ−→P ′

and similarly for Q .

(42)

P
x1 : [R1],a−→ P ′ Q

x2 : [R2],a−→ Q ′ x1 ∩ x2 = ∅

P ‖ Q
(x1∪x2):[R1∧R2],a−→ P ′ ‖ Q ′

(43)

P
x : [R],μ−→ P ′ y = x ∩ dom σ z = x \ dom σ V ∈ (y → Val)

σ′ = σ ⊕ V sat(z : [R[σ, σ′]])

(st σ • P)
z :[R[σ,σ′]],μ[σ]−→ (st σ′ • P ′)

(44)

Fig. 3. Rules for specification command/event pairs

We must now define the rules for paired specification command/event tran-
sition labels. This is just a matter of combining the rules from Figs. 1 and 2;
the result is given in Fig. 3. Rules (6) and (9) do not change. Rule (44) is a
combination of Rules (24) and (33). Note that when c is , the rules collapse to
those for CSP given in Fig. 1, and when μ is τ and c is a guard or update, the
rules collapse to those in Fig. 2. Rule (43) allows two specification commands to
be conjoined if their frames are disjoint. Recall that to be well-formed a specifi-
cation command cannot alter variables outside its frame. This allows concurrent
(and atomic) updates of distinct variables in separate threads.

4.3 Example

Recall the processes S , R and Sys from (4) and Qu from (14). So that CSPσ

may be compared more readily with CSP, these processes have been defined using
communication over channels. We now rewrite these processes using state vari-
ables to communicate data. We assume that Sys interacts with its environment
by receiving information on channel ci and passing information on co. Firstly, we
assume x is the only non-local variable that process Produce in S visibly alters,
and therefore Produce does not need to be parameterised. An implementation
of Produce may be a process which reads some value from the environment on
channel ci then finds the sum to that number, i.e.,

Produce =̂ ci?X →Sum(X )

where Sum(X ) is defined in (15). Process Consume(y) used in R in (4) may
perform some actions that manipulate non-local variable y (possibly involving
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local variables), and then output the result to the environment on channel co.
For the purposes of this example we define Consume minimally as a process
which outputs y on channel co, i.e., Consume(y) =̂ co!y →SKIP .

The next transformation we make is to replace communication with the Qu
thread by direct operations on the variable q. In addition, we introduce the scope
of x and y to contain S and R, respectively. These states are external to S and
R because these processes are recursively defined, and would otherwise result in
a series of redundant nested states.

S =̂ Produce ; (q := q � 〈x 〉→S )
R =̂ y, q : [q = 〈y〉 � q ′]→(Consume(y) ; R)

Sys =̂ (st {q 
→ 〈〉} • (st {x 
→ 0} • S ) ‖ (st {y 
→ 0} • R))
(45)

Process S involves three layers of state. Within Produce are the local variables of
Sum, i and s , which are not visible. Variable x is external to Sum and Produce
but local to S ; while q is external to S but local to Sys . The variables i and s
are local variables, while q is a shared variable, however, the semantics makes
no distinction.

A trace of Sys will appear as a sequence of communications on channels ci and
co, interspersed with steps in τ . We build such a trace below. For space reasons
we write a process (st {x 
→ 0} • P) as Px=0, and write P s=⇒ Q to represent
a transition formed from multiple steps, in which the only externally visible
transitions are those in s . Trace (46) represents possible executions of processes
S and R. Process S receives the value 2 on channel ci from the environment,
the sum to 2 is evaluated and stored in x , and q is updated to contain the value
in x . Process R takes y from the queue and outputs it on channel co. Trace
(47) is a trace formed from S and R in parallel, observed externally to the local
variables x and y. Note that the values of those variables change within the
state, and that references to them are replaced in the transition labels. Trace
(48) represents a trace of the process Sys viewed externally; only communication
with the environment is visible, with the updates to q reflected in the local state.

S
ci.2/x := 3/q := q�〈x〉

=⇒ S R
y,q : [q=〈y〉�q′]/co.y−→ R (46)

(S x=0 ‖ Ry=0)
ci.2/q := q�〈3〉

=⇒ (S x=3 ‖ Ry=0)
q : [q �=〈〉∧q′=tail(q)]/co.3

=⇒ (S x=3 ‖ Ry=3)
(47)

(S x=0 ‖ Ry=0)
q=〈〉 ci.2=⇒ (S x=3 ‖ Ry=0)

q=〈3〉 co.3=⇒ (S x=3 ‖ Ry=3)
q=〈〉

(48)

5 Related Work

5.1 Comparison with CSP

We first note that (P ‖ P) = P does not hold if P accesses non-local variables,
even in the absence of internal choice (demonic nondeterminism). Intuitively,
this is as expected because successive updates of the same variable could result
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in a different final value. Technically, this is because specification commands are
interleaved by Rule (39) (and an SCmd does not appear in the alphabet of any
process), unless accompanied by a synchronisation event (Rule (43)).

The language extensions and semantics we have introduced in this paper pro-
vide a notational convenience for specifying state-based process behaviour. How-
ever, any process written in CSPσ can be transformed into a process in CSP if
state values are kept as parameters to processes and channels are used to ex-
change information instead of shared variables. To transform a process in CSPσ

to CSP, any accesses of a variable that is shared among multiple parallel pro-
cesses must become encapsulated by a separate process. For instance, the queue
is represented by a variable in (45), while in (4) it must be represented by a
separate process, in this case, Qu(〈〉).

The CSP process in (2) gives an encapsulated data type Qu, which in some
contexts is desirable, but can become cumbersome in others. Consider an ex-
tension of the CSP process Sys (4) that contains n instances of process R. We
add a parameter to R, indicated by a subscript i ∈ 1..n, and must distinguish
the deq channels so that pairs Ri and Rj do not synchronise with each other,
but only with Qu. We also parameterise Consume in a similar manner, so that
interactions with the environment do not need to synchronise between Ris. The
Qu(q) process must also be updated to listen on multiple channels. The relevant
definitions are given below.

Ri =̂ deqi?y →(Consumei(y) ; Ri)

Qu(〈y〉 � q) =̂ enq?x →Qu(〈y〉 � q � 〈x 〉)
[] ([]ideqi !y →Qu(q))

(49)

We have used a generalised external choice to specify that the deq channel can
output (synchronise) for any i ∈ 1..n.

Consider a further modification such that each Ri consumes two successive
elements of the queue. However Ri =̂ deqi?y → deqi?z →(Consumei(y, z ) ;Ri). is
insufficient as it does not ensure y and z were successively enqueued, since other
deqj events may interleave between. One solution is to define another event,
e.g., deq2i?(y, z ) which will atomically dequeue two elements. The definition is
trivial, but requires a third process definition to be added to (49) (we assume
that capability to dequeue a single element is still required). The Sys process is
also updated to hide the new event and include n instances of R, for which we
assume a generalised parallel composition operator.

Queue2(〈〉) =̂ . . . Queue2(〈y〉) =̂ . . .

Queue2(〈y, z 〉 � q) =̂
enq?x → . . .

[] ([]ideqi !y →Queue2(〈z 〉 � q))
[] ([]ideq2i !(y, z )→Queue2(q))

S =̂ (Produce(x ) ; (enq!x →S ))
Ri =̂ deq2i?(y, z )→(Consumei(y, z ) ; Ri)
Sys =̂ (S ‖ (‖i Ri) ‖ Queue2)\(enq.Val ∪ (

⋃

i deq2i .V ))

(50)
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The approach of adding new operations does not scale for complex data types
which require arbitrary, atomic combinations of operations. It is more convenient
to specify this behaviour directly in a state-based style. Recall from (45) that
there is no need for a queue process, as the queue operations may be merged
into S and R directly. Similarly, we are able to define the operation of removing
two adjacent elements in one atomic action. The Sys process, with n instances
of R and double-dequeue is shown below.

S =̂ Produce ; ((q := q � 〈x 〉)→S )
Ri =̂ y, z , q : [q = 〈y, z 〉 � q ′]→(Consumei(y, z ) ; Ri)

Sys =̂ (st {q 
→ 〈〉} • S x=0 ‖ (‖i Ri
y=0,z=0))

(51)

Note that there are n declarations of the local variables y and z , but we do not
need to subscript them to distinguish the different instances. All references to y
or z in Rj will properly reference the correct version.

Given that a new process Queue2 does not need to be defined and internal
messages do not need to be hidden, (51) is a more compact specification than
that given by (50). It is also flexible enough if other operations on the queue are
required. In CSP, all shared data must have an opaque type, however, as demon-
strated above, in CSPσ shared data may have their types exposed. Of course, it
is a separate question as to whether process algebras such as CSP should be used
for defining programs like Sys . Hoare gives laws for assignment and state vari-
ables, but concludes that the laws are not mathematically convenient, and that
“... there are adequate grounds for introducing the assignable program variable
as a new primitive concept” [7, Sect. 5.5.3]. We intend CSPσ to be in keeping
with the spirit of this statement, and the specification style of CSP in general.

5.2 Other Work

CSP has been integrated with state-based languages, for instance, with Z by
Woodcock & Cavalcanti (Circus) [14], with Object-Z by Smith and Fischer &
Wehrheim (CSP-OZ) [13,5], with Action Systems by Butler [2], and with B
by Butler & Leuschel [1]. In comparison with these approaches to combining
state-based specification with CSP, we have taken a “lightweight” approach,
integrating only a single construct for defining state manipulation, and with little
change to the underlying syntax and semantics of CSP. Of course, the addition
of state tests and updates does not provide the same richness of specification as
afforded by a full incorporation of Z , etc., but may provide a useful stepping
stone between event- and state-based specifications.

Plotkin’s seminal paper on operational semantics [10] defines transition rules
for imperative languages with state. There are also many other examples of such
semantics in the literature, in particular, the semantics of Hoare and He Jifeng
[8], and the semantics for the programming language Occam [6]. Our approach
is different in that the state is treated as part of the process, and guards and
updates are treated as labels to the transition relation. This allows state accesses
to be (perhaps partially) hidden by an outer context which defines the values
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of the local state. The traditional operational semantics approach defines the
transition relation on program/state pairs, and the state is updated in the rule
for each construct (e.g., update). This approach does not so easily support the
hierarchical construction of the state as in our approach, with local variables
in the traditional style being captured as global variables with syntactic restric-
tions. In the approach adopted here, by treating state access as transition labels,
the state-based reasoning is ‘quarantined’ to a single, general rule (Rule (44)),
allowing the construct rules, e.g., Rule (22) and Rule (32), to be defined con-
cisely, and without explicit reference to a particular state. This extends to more
complex constructs, for instance, the transition rules for conditional can be given
without reference to state (see Rule (52)).

(if b then P else Q)
[b]−→ P (if b then P else Q)

[¬b]−→ Q (52)

6 Conclusions

In this paper we have given an extension to the CSP language which allows
state-based constructs to be integrated with inter-process synchronisation and
other CSP constructs. The extension is given an operational semantics, defined
so that it is also an extension of the CSP operational semantics: all existing
transitions are preserved. The approach taken to defining the transition rules
is novel in that the state is maintained as part of the process, instead of a
meta-level construct in the rules, and that, therefore, transitions are labelled by
specification commands. This enables a more compact presentation and naturally
leads to hierarchical definition of states.

The work was motivated when developing a semantics for Behavior Trees [3],
a notation used for capturing natural language requirements of large systems.
Such requirement documents often mix styles and levels of specification, e.g., a
system of systems will specify both the interactions and the internal operations
of the processes involved. In future work we will extend CSPσ to handle the
full range of Behavior Tree constructs. In preparation for developing code from
CSPσ, we will define a trace-based semantics for refinement of CSPσ.

Because the extension builds on existing constructs and semantics, the state-
based rules should fit with existing tool support for CSP, such as FDR [4].
However, state-space explosion will become an issue with unrestricted types,
and evaluation strategies must be devised to avoid efficiency issues with checking
satisfiability in Rule (44).
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