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Abstract. Previously we proposed a strategy for translating control law
diagrams into Circus. Combining elements from Z, CSP, and a refinement
calculus, Circus captures functional and dynamic aspects of a diagram,
and allows us to formally verify implementations. The main contribu-
tions of this paper are first to discuss a generalisation of the existing
translation strategy, motivated by its mechanisation and application to
sizable examples. Secondly, we present a tool, the Circus Producer, which
automates the translation, and describe how its architecture facilitates
subsequent development of further verification tools.
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1 Introduction

Control law diagrams are commonly used by engineers in the specification and
design of control systems. They describe a system as a directed graph of blocks
carrying out elementary functions, and interconnecting wires transmitting data
values between the outputs and inputs of the blocks. The diagrams can be struc-
tured in that (subsystem) blocks at a higher level can be defined in terms of
subordinate diagrams at a lower level. The outputs of a diagram are repetitively
computed in cycles of execution where inputs are taken and outputs calculated.

Where control law diagrams are used in the context of safety-critical systems,
methods for analysis and validation are vital. Simulink [19] is a de facto standard
for specifying control law diagrams and offers support for static analysis and
simulation. Approaches based on model-checking have also been successfully
used to verify properties of discrete-time and hybrid systems [18,10,11].

Most existing work indeed focuses on validating properties of diagrams; com-
plementary to this, our concern is to verify the correctness of implementations.
For this purpose, the ClawZ suite of tools [2,1] has been developed and success-
fully used in industry. ClawZ verifies implementations by constructing a func-
tional Z model of the diagram, and deriving a refinement conjecture for a given
implementation. The implementation is typically written in a subset of Ada.
Discharging the refinement conjecture is achieved in ProofPower-Z, a mechani-
cal theorem prover for the Z language; it is performed mostly automatically.

A restriction of ClawZ is that it ignores the potential parallelism between the
blocks of a diagram. In principle, the computations they define can be performed
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in parallel, with order imposed only by the way in which they are wired. Paral-
lelism also surfaces when independent flows of execution within subsystems give
rise to the possibility of outputs being produced before all inputs are received.
Even some basic blocks, such as the UnitDelay, which delays a signal by one
cycle, may produce their output prior to receiving their input.

To capture this aspect of control laws, we proposed an alternative technique
based on Circus [6], a language for refinement that incorporates elements of Z,
CSP, Dijkstra’s Guarded Command Language and Morgan’s refinement calcu-
lus [20,7]. It is suitable for development of state-rich, reactive systems [14,15].
In our Circus model of Simulink diagrams, we enrich the Z model produced by
ClawZ to capture parallelism. The success of ClawZ in the avionics sector to
reduce the cost of verification [1] strengthens our claim that a similar approach
with equal benefit can be realised using Circus as a formal description language.

Due to the complexity and size of diagrams in real applications, tool support
is indispensable to effectively generate the models that we propose. The main
contribution of this paper is to report on a tool that mechanises the translation
of discrete-time1 single-rate Simulink diagrams into Circus specifications.

A further contribution is a generalisation of the translation strategy as pre-
sented in [6]. We obtain (a) more flexibility in defining the structure of the Circus
models to match that of the proposed implementations and thereby facilitate the
verification, (b) cover more sophisticated wiring, that is, those in which diagram
outputs may refer to the same wire; and (c) simplify the interplay between Z
and Circus to minimise the risk of introducing errors in the Z model.

In Section 2 we present ClawZ and give an overview of Circus and its verifica-
tion technique for control systems; we also discuss how our tool integrates with
the ClawZ framework. In Section 3 we explain the extensions that we propose to
the translation strategy. Section 4 then describes the use of our translation tool,
the Circus Producer, and Section 5 addresses some design and implementation
issues. Finally, in Section 6 we draw our conclusions and address future work.

2 ClawZ and Circus

The verification process supported by ClawZ, and its major components are
depicted in Fig. 1. First, the Simulink model is submitted to the Z Producer
which generates the Z model encoded in the notation of ProofPower-Z. Each
block or subsystem is defined by a schema introducing variables for the inputs,
outputs and state components of the block. The set of bindings of the schema
specifies the behaviour of the block. The schemas for subsystems are dynamically
constructed upon translation, but those for primitive blocks are inferred from a
predefined library that may be extended by the user.

From the Z specification and the Ada implementation the RSG tool (Re-
finement Script Generator) constructs a compliance argument: a series of re-
finement conjectures which, if proved valid, establish the correctness of the

1 Discrete time is a requirement for diagrams to be implementable in software.
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Fig. 1. ClawZ tools framework and integration of the Circus Producer

implementation. Using ProofPower-Z and specialised proof tactics, these conjec-
tures are proved almost entirely automatically — even for large real systems.

In our approach and tool, we reuse elements of ClawZ to reduce the devel-
opment effort, and take advantage of validated tools and Z models. We directly
incorporate the schemas generated by the Z Producer into our Circus model. In
Fig. 1, the dotted line indicates the components that we added to the ClawZ
toolset to cater for Circus models. An additional element of supplied information
is the ClaSP block library. It contains essential information regarding the con-
current behaviour of primitive blocks. Like with the ClawZ library, we anticipate
that for particular diagrams the ClaSP library may have to be extended. The
mechanised Circus semantics [16] enables us to translate the Circus model into
a ProofPower-Z encoding, and like in the ClawZ verification process we will use
specialised high-level tactics to automate the refinement proof.

Circus adopts elements from sequential programming as well as process al-
gebra. The fundamental constructs are channels, processes and actions [20,7].
Channels are introduced through channel declarations and are required for com-
munication and synchronisation as in CSP. Processes can be defined either explic-
itly or in terms of process operators. An explicitly defined process is a sequence
of paragraphs that specify its state, auxiliary actions, which use or change the
state information, and a main action that defines the behaviour of the process.
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process Debounce Process =̂ (
Debounce LogicalOperator Process

{| Flag ,Debounce LogicalOperator out , end cycle |}
‖

Debounce DataTypeConversion1 Process
{| Debounce LogicalOperator out ,
Debounce DataTypeConversion1 out , end cycle |}

‖
. . .

Debounce Terminator Process
{| Debounce SzRFlipzFlop out2, end cycle |}) \

(Debounce LogicalOperator out ,
Debounce DataTypeConversion1 out ,
Debounce DataTypeConversion2 out , . . . )

Fig. 2. Circus translation of the Debounce diagram presented in Fig. 3

Fig. 5 provides an example of an explicitly defined process and some prior
channel declarations. In the process, we first introduce a state paragraph that de-
clares two components, namely, Debounce Counter64Hz1 UnitDelay1 state
and Debounce Counter64Hz1 UnitDelay2 state; the set U represents a uni-
versal type in ProofPower-Z. Actions are defined by schemas, like in the case
of Calculate Debounce Counter64Hz1, or by a mixture of sequential and CSP
constructs, like in the case of Execute Time. CSP operators such as guarding,
parallelism, interleaving and hiding can also be used. In Execute Time, for ex-
ample, we moreover use variable declarations and assignments.

Circus also provides operators to combine processes. In the models of control
law diagrams, we only require parallelism, channel renaming and hiding. Fig. 2
exemplifies the n-way alphabetised parallel operator where each process is asso-
ciated with a set of channels on which it is required to synchronise. Renaming
changes the names of channels within a process. Finally, hiding, also used in
Fig. 2, internalises communication events over given channels.

To perform the translation from Simulink to Circus we further require a graph
model of the diagram. It records the number of inputs and outputs, and indepen-
dent flows of execution of each block. It additionally includes details of whether
flows depend on enabling signals, or the order of arrival of their inputs.

The Circus model of a diagram defines channels to represent each of its in-
puts, outputs and internal wires, and a basic explicitly defined process for each
block. In addition, the diagram itself is modelled by a parallel composition that
combines the processes defining the blocks. For example, Fig. 2 sketches the
translation of the Debounce diagram given in Fig. 3.

Each of the parallel processes results from the translation of one block in
the diagram. The synchronisation sets include their interface, that is, input and
output signals, as well as end cycle. While the synchronisation on interface
channels corresponds to the passing of signals between blocks, synchronisation
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on end cycle ensures that a new cycle is commenced only after all blocks have
finished their computation for the current cycle. The channels that correspond
to internal wires are hidden to reflect the view of the diagram as a ‘black box’.

The blocks are each translated to a centralised, explicitly defined process
that lifts the functional Z specification produced by ClawZ; Fig. 5 gives an ex-
ample: the translation of Counter64Hz1. We maintain the functional behaviour
defined by ClawZ, but also accommodate the intrinsic parallelism. The rôle of
the Flow action is to specify, through interleaving, the independent signal flows
inside the block; in our example, though, there is only one flow. For blocks
with state, the Circus process introduces a state paragraph. The purpose of the
StateUpdate action is then to update the state; it is based on the ClawZ schema.
In Fig. 5, for conciseness, we omit the ClawZ schema Debounce Counter64Hz1.

In the next section we explain the modifications and extensions to this strategy
that have been suggested by its mechanisation.

3 Extended Translation Strategy

The experience we gained from implementing and applying our tool has given
rise to three extensions to the translation strategy, which we discuss in the sequel.

Structure of Models. The translation strategy outlined above distinguishes
the translation of the top-level diagram from that of its blocks. The diagram
is represented by a parallel composition of block models, which are centralised,
explicitly defined processes. This is appropriate if parallelism in the implemen-
tation is only at the level of procedures implementing block functionality.

If, on the other hand, subsystem blocks in the top-level diagram, or any other
level of the diagram structure, are implemented by parallel procedures, represent-
ing them as parallel processes is more appropriate. This renders the architecture
of the specification closely aligned to that of the implementation, and greatly
reduces the effort in deriving and discharging the refinement conjecture.

Centralised Circus processes which are implemented by parallel procedures
have to be decomposed during refinement. The strategy that can accomplish
this is not as easily automated, as it requires the definition of coupling invariants
relating the state of the centralised and the decomposed processes.

We propose that each subsystem block of the diagram may be selectively trans-
lated into either an explicitly defined, centralised process, or a parallel process.
The decision can be governed by the architecture of a prospective implementa-
tion. The choices have an impact only on the automation of the verification; the
models that are produced as the result of the different choices are semantically
equivalent, and as a consequence they both capture the intrinsic parallelism in
the diagram. This can be easily proved using laws of Circus.

To illustrate this point, we consider the Debounce control law given in Fig. 3.
(This control system filters out a potential succession of quick oscillations upon
toggling the state of a mechanical sensor or switch.) In the existing transla-
tion strategy, each element of the Debounce diagram would be translated into a
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Fig. 4. Simulink diagram of the Counter64Hz1 subsystem

centralised Circus process. Taking, for example, the Counter64Hz1 subsystem
block, included in Fig. 4, the corresponding translation would read as shown in
Fig. 5.

A possible implementation may choose to first compute the Time output sig-
nal, and then proceed by concurrently updating the state of the two UnitDelay
blocks. Clearly, this parallelism is not directly reflected in the StateUpdate action
of the centralised Circus model in Fig. 5. Using our extended translation strat-
egy, we may decide to translate this subsystem in a parallel manner. It adopts
the same mode of translation we already used for the top-level diagram in the
existing strategy (Fig. 2), but applies it to a subsystem. The process parallelism
between the block translations exactly reflects our intention, for example, of
implementing the UnitDelay1 and UnitDelay2 blocks by individual procedures.
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channel Enable,Time : U

process Debounce Counter64Hz1 Process =̂ begin

state Debounce Counter64Hz1 State ==
[Debounce Counter64Hz1 UnitDelay1 state : U] ∧
[Debounce Counter64Hz1 UnitDelay2 state : U]

Init
Debounce Counter64Hz1 State ′

(∃ b : Debounce Counter64Hz1 UnitDelay1 •
Debounce Counter64Hz1 UnitDelay1 state ′ = b.initial state) ∧

(∃ b : Debounce Counter64Hz1 UnitDelay2 •
Debounce Counter64Hz1 UnitDelay2 state ′ = b.initial state)

Calculate Debounce Counter64Hz1
In1? : U

Out1! : U

(∃ b : Debounce Counter64Hz1 •
In1? = b.In1? ∧ Out1! = b.Out1! ∧
Debounce Counter64Hz1 UnitDelay1 state = b.UnitDelay1.state ∧
Debounce Counter64Hz1 UnitDelay1 state ′ = b.UnitDelay1.state ′ ∧
Debounce Counter64Hz1 UnitDelay2 state = b.UnitDelay2.state ∧
Debounce Counter64Hz1 UnitDelay2 state ′ = b.UnitDelay2.state ′)

Calculate Time ==
Calculate Debounce Counter64Hz1 \ (

Debounce Counter64Hz1 UnitDelay1 state ′,
Debounce Counter64Hz1 UnitDelay2 state ′) ∧

ΞDebounce Counter64Hz1 State

Execute Time =̂
var In1 : U • Enable ?x → In1 := x ;

var Out1 : U • Calculate Time ;Time !Out1 → Skip

Flows =̂ Execute Time

Calculate Debounce Counter64Hz1 State ==
Calculate Debounce Counter64Hz1 \ (Out1!)

StateUpdate =̂
var In1 : U • Enable ?x → In1 := x ;

Calculate Debounce Counter64Hz1 State

• Init ;
μX • Flows |[ ∅ | {| Enable |} | {

Debounce Counter64Hz1 UnitDelay1 state,
Debounce Counter64Hz1 UnitDelay2 state} ]| StateUpdate ;

end cycle → X
end

Fig. 5. Centralised translation of the Counter64Hz1 subsystem
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Fig. 6. Diagram causing problems for generating signal names

Naming of Signals. Internal signals of a diagram are named according to the
source block they connect. Clearly, there can only be one such block for each wire,
although blocks can have multiple outputs. For blocks with only one output, the
corresponding signal name is obtained by appending the suffix ‘ out’; for blocks
with more than one output, the suffixes ‘ out1’, ‘ out2’, etc. are used.

An exception to the above rule are signals that connect input and output
ports of the diagram. These are always named according to the respective port
they connect in the model, i.e. A, B and C in Fig. 6. For input signals this proves
not to be an issue, since there can only be one input port acting as the source.

For output signals, Fig. 6 depicts a scenario in which the signal name for the
wire connecting Complex to Real-Imag, B and C cannot be uniquely derived as
there exist two output ports potentially determining the name. To solve the
problem, signal names are now always determined by their source location. In
the example above, the name of the signal connecting the two output ports is
SignalNamingIssue ComplextoRealzImag out1. We still, however, need to
introduce signals for the outputs of the subsystem, through which it communi-
cates with other blocks when instantiated in some diagram context. Hence there
will be three channel declarations for our example.

channel SignalNamingIssue ComplextoRealzImag out1,B ,C : U

To communicate values to the output ports we take a view of them as blocks
that simply pass on their input signal. This results in additional processes being
created for each output port in the Circus translation, but the approach yields a
very uniform treatment compatible with the fact that output ports are indeed
represented as (Outport) blocks in the Simulink diagram.

Global Inclusion of the ClawZ Schemas. Finally, we avoid the inclusion of
the ClawZ schemas in the local scope of the explicitly defined Circus processes.
Initially this ensured that the Z schemas were only available in the scope in which
they were used. It was an appropriate use of the modularity afforded by pro-
cesses, but, for automatically generated models, it is not much of an advantage,
and breaks the traceability between the Circus model and the ClawZ output.
The actual inclusion of the ClawZ schemas takes place at a later stage when the
Circus processes are semantically encoded into ProofPower-Z (see Fig. 1). Here,
we directly incorporate the Z schemas from the respective ProofPower database
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generated by ClawZ upon model construction. This removes the need for repars-
ing the ClawZ-generated schemas when producing the Circus model and thereby
erases the possibility of introducing errors in combining the Z and Circus models.

4 The Circus Producer

In this section we describe the main features of the Circus Producer — our tool
for translating Simulink diagrams into Circus. We focus on the usage of the tool;
its design and implementation are discussed in the next section.

User Interface. The graphical interface of the Circus Producer is shown in Fig. 7.
The structure of the given Simulink diagram is rendered as a tree where each
internal node corresponds to a subsystem, and each leaf to a primitive block.
The textual description for each node gives the name of the respective element
in the diagram, and in parentheses its block type. The user may double-click
on internal nodes to expand or collapse them. The functions Expand All and
Collapse All expand or collapse all descending nodes of the current selection.

Fig. 7. Screen shot of the Circus Producer application

An important feature of the graphical interface is that translation of the
Simulink model is affected by the configuration of nodes in the tree control : sub-
system nodes that are expanded are translated in a parallel manner, and those
collapsed are translated into centralised processes.

The context menu function Show LaTeX performs the translation of the
(sub)diagram implied by the currently selected node; as a result, a LATEX file
is produced. The LATEX directives used in the encoding are those of the Circus
extension of the Community Z Tools (CZT).
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By using LATEX as the encoding language, viewable documents are easily gen-
erated for the produced processes. In fact, the Show DVI context menu function
performs the translation as before, and additionally converts the generated LATEX
file into a DVI document and immediately displays it. The Circus process given
in Fig. 5 was indeed automatically generated applying the Circus Producer to
the subdiagram Counter64Hz1 of the Debounce model (Fig. 3, 4).

The ClaSP Library. Part of the translation algorithm constructs a graph model
of the diagram. Signal flows for subsystem blocks are calculated dynamically. For
primitive blocks, however, we need to specify the number of input and output
ports, and signal flows. This information is included in the ClaSP block library.

To encode the library we use an XML-based format. The advantages of XML
are, beyond standardisation and interchangeability, that the encoded file can be
validated against the XML schema that defines its exact structure.

In general, the user only needs to make additions to the ClaSP library when
blocks are encountered which the Circus Producer cannot translate. To help with
their identification for a particular model, the Circus Producer generates warning
messages each time a block is found that is not present in the ClaSP library.

To give an example of the format of library entries, Fig. 8 includes the ClaSP
block specification of the UnitDelayWithPreviewResettable block. This block acts
as a resettable unit delay with two outputs: one for the value of the input signal
in the previous cycle, and an additional one for its current value. As the delayed
output does not depend on the current input, the block has two flows.

The <BlockType>...</BlockType> pair of tags introduces the new type of
block. The compulsory name attribute has to match the respective BlockType
field in the Simulink encoding of the block. The optional boolean state attribute
determines whether the block has state or not.

The aggregated <BlockWiring>...</BlockWiring> tags contain information
about the inputs, outputs and flows of the block. The <inps>...</inps> and
<outs>...</outs> tags specify the number of input and output ports. They can
have a value varlength, if the block has a variable number of inputs, or outputs.
In this case, the actual number of ports is inferred upon instantiation of the block
in the model. The <flows>...</flows> tags include all independent signal flows
of the block as an instance of <flow>...</flow>. In the example, there are two
flows: one depends on both inputs, and the other on none.

The elements for each <flow>...</flow> instance correspond to our charac-
terisation of the ClaSP model as formalised in [6]. Thus <enabled> specifies
whether execution of the flow depends on enabling signals, <order>...</order>
states whether the order of arrival of inputs is significant, <rinps>...</rinps>
determine the set of input ports, and <pouts>...</pouts> the output ports of
the flow. They can be given as individual ports (<port>1</port>), port lists
(<portList>1 2 3</portList>), or ranges (<portRange from="1" to="3">).

Circus Model Simplification. Simplification is an optional feature of the trans-
lation which may be enabled or disabled by checking or unchecking an Enable
Simplification check-box. This function only has an effect on the translation of



Mechanised Translation of Control Law Diagrams into Circus 161

<ClaSP>
<BlockLibrary>
...
<!-- Unit Delay with Preview Resettable (Additional Math & Discrete) -->
<BlockType name="UnitDelayWithPreviewResettable" state="true">

<BlockWiring>
<inps>2</inps>
<outs>2</outs>
<flows>

<flow>
<enabled always="true"/>
<ordered>false</ordered>
<rinps>

<portList>1 2</portList>
</rinps>
<pouts>

<port>1</port>
</pouts>

</flow>
<flow>
<enabled always="true"/>
<ordered>false</ordered>
<rinps/>
<pouts>

<port>2</port>
</pouts>

</flow>
</flows>

</BlockWiring>
</BlockType>
...

</BlockLibrary>
</ClaSP>

Fig. 8. ClaSP Library extract for the UnitDelayWithPreviewResettable block

primitive blocks which do not possess state. In such cases, the strict application
of the translation procedure results in introducing vacuous state paragraphs,
actions and schemas for performing the state update. Enabling simplification
avoids the generation of these redundant parts of the process. The simplifica-
tions performed do not have an impact on the semantics of the translation; they
merely aid readability and ease subsequent mechanical formal analysis.

5 Design and Implementation

We now discuss a few of the underlying design decisions and implementation
issues encountered during the development of our tool.

Integration with CZT. An important decision in the design of the Circus Producer
was to integrate with CZT, the Community Z Tools, for the purpose of encoding
and internally representing Circus specifications. CZT has been initially devel-
oped to provide a component library to facilitate development of Z tools [12].
Its open architecture, however, led to various extensions, including support for
Circus [13,9]. The integration with CZT, most importantly, avoids the need for
a new design and implementation of a data model for Circus processes, since we
can readily employ CZT’s Annotated Syntax Trees (ASTs).
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To process ASTs of Circus specifications, CZT’s implementation of the Visitor
design pattern endows us with a powerful and flexible mechanism to traverse and
transform syntax trees. This will be especially useful for generating a semantic
representation of Circus specifications in ProofPower, as required in further stages
of our work. An additional benefit of integrating with the CZT component library
is that we have the option to take advantage of existing or future CZT tools,
such as the Circus type checker and model checker. This opens up opportunities
for follow-up research using alternative approaches to reason about control laws
in Circus, while exploiting the development effort we have already invested.

Architectural Considerations. For the development of the Circus Producer appli-
cation, we built a transparent library of well-designed, reusable data structures
and components. This makes it easier to perform modifications and extensions to
existing components, and, importantly, simplifies the development of new tools.

The tool has been structured into Java packages that deal separately with
various aspects of data encapsulation, parsing, analysis and processing of data
objects. The central data structures reside in the three sub-packages Simulink,
Diagram and ClaSP of the enclosing package Data of the root application pack-
age. The classes in these packages are used to represent the Simulink file, the
underlying Simulink diagram, and the ClaSP model, respectively.

The design objective was to make handling of the data objects as easy as
possible for typical tasks, so that high-level functionality can be implemented
with little effort. This is achieved by a tight linkage between data objects; for
example, signals in flows are aware of the wire in the diagram they refer to, wires
are aware of the blocks they connect, and so on. This allows information, such
as signal names or the ClaSP wiring of blocks, to be computed dynamically, and
reduces the data that has to be effectively managed by the application. To coun-
teract a loss in efficiency resulting from dynamic computation, we integrated an
annotation API similar to the one of CZT to cache information once computed.

Other packages provide tool components for parsing Simulink files, ClawZ
library-meta files, generate Simulink diagram object representations from parsed
files, and perform high-level operations on Simulink diagrams and, as we antici-
pate in subsequent versions, on Circus models. The modular architecture of these
components allows for the quick prototyping and development of new tools; this,
in particular, lead to the development of a collection of Java-based supplemen-
tary tools for ClawZ extending it and facilitating its use.

Representation of Blocks. Each block in a diagram is represented by an object of
a particular class. This means that developers of additional tools can introduce
extra methods and fields specific to certain types of Simulink blocks, if needed.
For example, the Inport and Outport classes representing the input and output
ports of a diagram provide methods to obtain the port number of the blocks.

A potential complication is that upon extending the ClaSP library, classes
must be created for each new block. This is a task that in practice should not be
negotiated to the user. Therefore, such classes are generated automatically by a
utility during compilation. The instantiation of block classes through a factory



Mechanised Translation of Control Law Diagrams into Circus 163

makes it possible for the developer to derive from the automatically generated
classes in order to attach custom functionality if required.

Generation of the Circus Translation. The various elements of the Circus pro-
cesses resulting from the translation are described using the string template en-
gine developed by Parr [17]. Templates are text files which contain place-holders
to be ‘filled in’ when the template is instantiated. This isolates the static pattern
of the translation from dynamic data that has to be provided to generate the
concrete results such as names of processes, actions, signals, and so on.

The meta-language of the template engine defines constructs to address com-
mon cases such as generating lists within templates, conditional inclusion of text
fragments, and the instantiation of one template from inside another.

We defined 22 templates to specify the translation rules. The use of string
templates has so far proved very beneficial in terms of compacting the program
code and facilitating changes and adjustments to the details of the translation,
in particular since recompilation is not required when altering them.

6 Conclusions

In this paper we have extended the work in [6], where we describe a strategy
to translate Simulink diagrams into Circus models, and presented tool support
for mechanical translation. The extensions allow us to align the structure of the
Circus specification with that of a given implementation, with the objective of
simplifying the proof of refinement. The extended strategy also covers a wider
range of wiring configurations, since it allows block outputs to be shared as
diagram outputs. Finally, it simplifies the structure of the Circus model, and
avoids the potential to introduce errors in the Z model which it aggregates.

Case Studies. The Circus Producer has been employed on a number of case
studies of reasonable size which have served the purpose of validating the tool
and evaluating its use. The examples have been provided to us by collabora-
tors in the avionics industry, namely, EMBRAER and QinetiQ. The diagrams
exhibit subsystem structure of up to 4 nesting levels, and the most complex
of them contains a total of 155 elementary blocks and 14 subsystems making
the construction of the Circus model by hand practically infeasible. Initially,
applying the tool to these diagrams yielded only a partial translations due to
incompleteness of the ClaSP library. At this stage, warning messages produced
by the tool helped to identify the missing blocks, and subsequent consultation
of the Simulink documentation to determine their behaviour in terms of flows.

The produced Circus models have been validated by inspection and compar-
ison with the translation strategy in [6], and besides were tested for syntactic
errors using the Circus parser of CZT. A further degree of validation will take
place when future work semantically encodes these models in ProofPower-Z and
applies the refinement strategy. We have compared the translation of the same
diagram in different configurations, in particular to verify that parallelism is cor-
rectly represented in the sequential translation of subsystems. Notably, QinetiQ
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provided us with an example in which parallelism that surfaced at the top-most
level of a digram revealed certain assumptions made about the environment by
an implementation that were not explicit in the model.

As with ClawZ, the process of generating the Circus specification for control
law diagrams can be largely automated, requiring a minimal amount of user
interaction: the extension of the ClaSP library and the configuration of the
translation of subsystem blocks as centralised or parallel processes. For both
no knowledge of the underlying semantic details of the Circus representation is
needed. This is very important as we would like most aspects of the verification to
be driven by engineers without in-depth knowledge of the underlying verification
strategy, let alone its formal justification. The Circus Producer, including its
source code, is openly available for download from http://www.cs.york.ac.uk/
circus/cld/tools.html.

Related Work. In [3], an algorithm and tool is presented to translate Simulink
diagrams into formal descriptions understood by the NuSVM model checker.
Models are specified as finite state machines, hence the technique only applies
to diagrams with finitary state spaces. The focus of this work is on automated
verification of properties about the diagram; in comparison, we are concerned
with proving conformity between diagrams and their implementations.

A formal semantics and tool support to reason about functional and timing
aspects of Simulink diagrams is described in [8]. This work is based on the Timed
Interval Calculus (TIC); tool support is provided for mechanical translation of
TIC specifications generated from Simulink diagrams into corresponding speci-
fications to be processed by the PVS theorem prover. This is again to validate
properties of the diagram rather than to verify implementations. We currently
do not characterise timing properties in our semantics; future work will consider
the use of the timed extension of Circus for this purpose.

A Lustre model of Simulink diagrams is the object of the work in [4], which
reports on the development of a strategy and translator utility. This can also
be regarded as a formalisation of Simulink since Lustre, like Circus, is equipped
with a formal semantics, including strong typing. The potential of this approach
to produce implementations adhering to a high standard of reliability is, for
example, in the use of certified code generators for specific target languages.

Future Work. At present, the automatic translation does not yet account for
enabling signals which govern enabled, trigger or action subsystems. In [6] we
already described how they should be handled, however work to extend ClawZ
and the Circus Producer to accommodate these rules is still pending.

Another line of future work is the translation of StateFlow blocks, which
permit the specification of subsystems using a notation based on State Charts.
In [5], we described how Circus can be used to define models of StateFlow dia-
grams that can be used as components of a model of a Simulink diagram which
includes them; automation is our next step.

The next phase of our work aims to translate the tool-generated Circus spec-
ifications into corresponding ProofPower-Z specifications using our semantic

http://www.cs.york.ac.uk/circus/cld/tools.html
http://www.cs.york.ac.uk/circus/cld/tools.html
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embedding of Circus proposed in [16]. We are then able to mechanically reason,
within ProofPower, about the Circus specification, and apply our refinement
strategy to show the validity of implementations. Automating the translation
into ProofPower-Z shall only pose a problem of minor difficulty, however the
mechanised proof of the refinement conjecture sets a substantial challenge.

Acknowledgements. We benefitted from discussions with Phil Clayton, Leo Fre-
itas and Daniel Bolton. We also acknowledge EPSRC for funding this work under
the Programming from Control Laws research grant EP/E025366/1.
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