


Lecture Notes in Computer Science 5423
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Michael Leuschel Heike Wehrheim (Eds.)

Integrated
Formal Methods
7th International Conference, IFM 2009
Düsseldorf, Germany, February 16-19, 2009
Proceedings

13



Volume Editors

Michael Leuschel
Heinrich-Heine-Universität Düsseldorf, Institut für Informatik
Universitätsstraße 1, 40225 Düsseldorf, Germany
E-mail: leuschel@cs.uni-duesseldorf.de

Heike Wehrheim
Universität Paderborn
Fakultät für Elektrotechnik, Informatik und Mathematik
Warburger Straße 100, 33098 Paderborn, Germany
E-mail: wehrheim@uni-paderborn.de

Library of Congress Control Number: 2009920467

CR Subject Classification (1998): F.3, D.3, D.2, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-00254-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00254-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12618477 06/3180 5 4 3 2 1 0



Preface

This volume contains the papers presented at the International Conference on in-
tegrated Formal Methods, iFM 2009, held on 16–19 February 2009 in Düsseldorf,
Germany. The conference was the seventh in a series of conferences on integrated
formal methods, with previous editions in York, Dagstuhl, Turku, Canterbury,
Eindhoven and Oxford. The iFM conference series seeks to further research into
the combination of different formal methods, both for modelling and analysis,
covering all aspects from language design over verification techniques to tools
and their integration into software engineering practice.

iFM 2009 received 55 submissions. Each submission was reviewed by at least
three programme committee members. The submissions covered the whole spec-
trum of integrated formal methods, ranging from formal and semiformal mod-
elling notations, semantics, verification, refinement and model transformations
to type systems, logics, tools and case studies. The committee decided to accept
21 papers. The programme also included invited talks by David Basin, Michael
Butler and Byron Cook. Collocated with the conference were two workshops
(on “Integration of Model-based Methods and Tools” and “Formal Methods for
SOA and Internet of the Future”) and one tutorial (on “Contract Specification
and Checking: Application to .NET and C”) given by Shuvendru Lahiri and
Francesco Logozzo (both from Microsoft Research).

We are grateful to all those involved in organizing the conference, producing
the proceedings, reviewing the papers, and to the speakers and the attendees
of iFM 2009. We also appreciate the support of EasyChair for managing the
submission process.

December 2008 Michael Leuschel
Heike Wehrheim



Conference Organization

Programme Chairs

Michael Leuschel University of Düsseldorf, Germany
Heike Wehrheim University of Paderborn, Germany

Programme Committee

Eerke Boiten University of Kent, UK
Einar Broch Johnsen University of Oslo, Norway
Ana Cavalcanti University of York, UK
Frédéric Dadeau University of Besançon, France
Jim Davies University of Oxford, UK
John Derrick University of Sheffield, UK
Jin Song Dong University of Singapore, Singapore
Neil Evans AWE, UK
Martin Fränzle University of Oldenburg, Germany
Andy Galloway University of York, UK
Stefan Hallerstede ETH Zürich, Switzerland
John Hatcliff Kansas State University, USA
Marta Kwiatkowska University of Oxford, UK
Frederic Lang INRIA Rhône-Alpes, France
Michael Leuschel University of Düsseldorf, Germany
Dominique Méry LORIA Nancy, France
Stephan Merz LORIA Nancy, France
Thomas Santen Microsoft EMIC, Germany
Augusto Sampaio University of Pernambuco, Brazil
Wolfram Schulte Microsoft Research, USA
Graeme Smith University of Queensland, Australia
Kenji Taguchi NII, Japan
Helen Treharne University of Surrey, UK
Ragnhild van der Straeten University of Brussels, Belgium
Marina Waldén Åbo Akademie University, Finland
Heike Wehrheim University of Paderborn, Germany

Local Organization

Claudia Kiometzis
Michael Leuschel
Nadine Elbeshausen
Jens Bendisposto
Daniel Plagge



VIII Organization

External Reviewers

Cyrille Artho
Nazim Benaissa
Jens Bendisposto
Joakim Bjørk
Pontus Boström
Robert Colvin
Fredrik Degerlund
Henning Dierks
Johan Dovland
Matthew Dwyer
Fred Freitas
Rodolfo Gomez
Gregor Goessler
Pierre-Cyrille Heam
Maritta Heisel
Holger Hermanns
Martin Hirsch
Jochen Hoenicke
Hardi Hungar
Michael Jastram
Jacques Julliand
Olga Kouchnarenko
Soon-Kyeong Kim
Marcel Kyas
Dominique Larchey-Wendling
Yang Liu
Francesco Logozzo
Leonardo Lucena
Radu Mateescu
Stefan Maus

Tim McComb
Larissa Meinicke
Björn Metzler
Alexander Metzner
Roland Meyer
Alexandre Mota
Gethin Norman
Richard Paige
Paritosh Pandya
Frederic Peschanski
Luigia Petre
David Pichardie
Daniel Plagge
Rodrigo Ramos
Joris Rehm
Gerardo Schneider
Wendelin Serwe
Axel Simon
Neeraj Singh
Martin Steffen
Jun Sun
Yasuyuki Tahara
Tino Teige
Regis Tissot
Ashutosh Trivedi
Edward Turner
Kirsten Winter
Georg Weissenbacher
James Welch
Xian Zhang



Table of Contents

Invited Talks

Developing Topology Discovery in Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Thai Son Hoang, Hironobu Kuruma, David Basin, and
Jean-Raymond Abrial

Decomposition Structures for Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Michael Butler

Taming the Unbounded for Hardware Synthesis . . . . . . . . . . . . . . . . . . . . . . 39
Byron Cook

Contributed Papers

Verifying UML/OCL Operation Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Jordi Cabot, Robert Clarisó, and Daniel Riera

Property Specifications for Workflow Modelling . . . . . . . . . . . . . . . . . . . . . . 56
Peter Y.H. Wong and Jeremy Gibbons

Formal Verification Based on Guided Random Walks . . . . . . . . . . . . . . . . . 72
Thang H. Bui and Albert Nymeyer

Parallel Processes with Real-Time and Data: The ATLANTIF
Intermediate Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Jan Stöcker, Frédéric Lang, and Hubert Garavel

Changing System Interfaces Consistently: A New Refinement Strategy
for CSP‖B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Steve Schneider and Helen Treharne

CSP with Hierarchical State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Robert Colvin and Ian J. Hayes

Predicate Abstraction in a Program Logic Calculus . . . . . . . . . . . . . . . . . . . 136
Benjamin Weiß

Mechanised Translation of Control Law Diagrams into Circus . . . . . . . . . . 151
Frank Zeyda and Ana Cavalcanti

Realizability of Choreographies Using Process Algebra Encodings . . . . . . 167
Gwen Salaün and Tevfik Bultan

Modelling Divergence in Relational Concurrent Refinement . . . . . . . . . . . . 183
Eerke Boiten and John Derrick



X Table of Contents

SAL-Based Symbolic Scheduling in Time-Triggered Networks . . . . . . . . . . 200
Sebastian Voss, Maria Sorea, and Klaus Echtle

Incremental Reasoning for Multiple Inheritance . . . . . . . . . . . . . . . . . . . . . . 215
Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Model Checking LTL Formulae in RAISE with FDR . . . . . . . . . . . . . . . . . . 231
Abigail Parisaca Vargas, Ana G. Garis, S. Lizeth Tapia Tarifa, and
Chris George

An Introduction to Grammar Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Ralf Lämmel and Vadim Zaytsev

Application of Graph Transformation in Verification of Dynamic
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Zarrin Langari and Richard Trefler

Formal Probabilistic Analysis of Stuck-at Faults in Reconfigurable
Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Osman Hasan, Naeem Abbasi, and Sofiène Tahar

Challenges in the Specification of Full Contracts . . . . . . . . . . . . . . . . . . . . . 292
Gordon J. Pace and Gerardo Schneider

Partial Order Reduction for State/Event LTL . . . . . . . . . . . . . . . . . . . . . . . 307
Nikola Beneš, Lubos Brim, Ivana Černá, Jiri Sochor,
Pavlina Vařeková, and Barbora Zimmerova

Dynamic Path Reduction for Software Model Checking . . . . . . . . . . . . . . . 322
Zijiang Yang, Bashar Al-Rawi, Karem Sakallah, Xiaowan Huang,
Scott Smolka, and Radu Grosu

Automatic Generation of Error Messages for the Symbolic Execution of
EB3 Process Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Jérémy Milhau, Benôıt Fraikin, and Marc Frappier

Decompositional Petri Net Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Astrid Rakow

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367



Developing Topology Discovery in Event-B�

Thai Son Hoang1, Hironobu Kuruma2, David Basin1, and Jean-Raymond Abrial1

1 Department of Computer Science, ETH Zurich
2 Hitachi Systems Development Laboratory, Yokohama, Japan

Abstract. We present a formal development in Event-B of a distributed topol-
ogy discovery algorithm. Distributed topology discovery is at the core of several
routing algorithms and is the problem of each node in a network discovering and
maintaining information on the network topology. One of the key challenges is
specifying the problem itself. Our specification includes both safety properties,
formalizing invariants that should hold in all system states, and liveness proper-
ties that characterize when the system reaches stable states. We establish these by
appropriately combining proofs of invariant preservation, event refinement, event
convergence, and deadlock freedom. The combination of these features is novel
and should be useful for formalizing and developing other kinds of semi-reactive
systems, which are systems that react to, but do not modify, their environment.

1 Introduction

We report here on a case study in critical system development using refinement. In
our case study, we use the Event-B formalism [1] to specify and formally develop an
algorithm for topology discovery, which is a problem arising in network routing. We
proceed by constructing a series of models, where the initial models specify the system
requirements and the final model describes the resulting system. We use the Rodin tool
for Event-B [2] to prove that each successive model refines the previous one, whereby
the resulting system is correct by construction.

The problem we examine is interesting for several reasons. First, it is a significant case
study in specifying and developing distributed graph and routing algorithms. In routing
protocols such as link-state routing [16], which is the basis for protocols such as OSPF
[13,12] and OLSR [14], every router in the network must build a graph representing the
network topology. In this graph, the vertices represent routing nodes and there is an edge
from node a to node b if a can directly transmit data to b. Each node uses this graph to
determine the shortest path to all other nodes, from which it constructs its routing table,
which describes the best next hop to each destination. The main challenge in topology
discovery is to ensure that the distributed construction of these graphs, as well as their
updates after network changes, proceeds correctly. While there has been some work on
using model checkers and theorem provers to verify properties of routing protocols (e.g.,
[6]), there have been relatively few case studies (e.g., [1,3,15]) in using formal methods
to develop such protocols. Our work provides some insights on how this can be done.

� An extended version of this paper is [10] and a proof archive can be found at deploy-
eprints.ecs.soton.ac.uk/31. Part of this research was carried out within the European Com-
mission ICT project 214158 DEPLOY, www.deploy-project.eu/index.html. We thank Daniel
Fischer, Matthias Schmalz, and Christoph Sprenger for their comments on drafts of this paper.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 1–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 T.S. Hoang et al.

Second, as we will see, the problem of topology discovery is surprisingly nontriv-
ial. The complexity is both in specifying the protocol’s desired properties (what does
it mean to “proceed correctly?”) and in carrying out the development and proofs. This
complexity comes from the fact that the protocol should function in dynamically chang-
ing environments. If we do not place constraints on the environment a priori (which we
do not) then the actual topology may change faster than the nodes can propagate in-
formation about the changes they discover. For example, two nodes may be connected
and not know it, but by the time they receive link information on this, they may be
no longer connected. To address this, we present a novel approach to specifying and
developing algorithms whose properties depend on the environment’s dynamics. Our
approach combines the use of convergent events in refinement (these are events that
cannot take control of the system for ever) with a specification of deadlock freeness to
specify the system’s properties in stable system states.

Finally, our case study is representative of an important class of systems, which we
call (distributed) semi-reactive systems. These are distributed systems where the envi-
ronment is dynamically changing and, although the system cannot alter the environ-
ment, it must monitor and appropriately react to the changes in the environment. This
includes, for example, distributed monitoring algorithms where the nodes must reach
some kind of agreement about the environment’s properties. Our approach suggests one
way of developing systems in this general class.

2 Background on Event-B

Here we briefly describe the Event-B formalism; see [1,4] for further details. A develop-
ment is a set of models described by contexts and machines. Contexts specify a model’s
static part, in terms of sets, constants, and axioms, whereas machines specify the dy-
namic part and correspond semantically to transition systems. A machine has variables,
defining its state, and an initial state. The possible states are constrained by invariants.
State transitions are described by events, which are guarded commands, each consist-
ing of a guard and an action. The guard is a conjunction of predicates formalizing the
necessary condition under which an event may occur, and the action describes how the
state variables change when the event occurs. Semantically, an event denotes a relation
(v, v′) between the pre-state v (before the event) and the post-state v′ after the event.
We will later refer to the pairs v �→ v′ as instances of an event.

Machine refinement provides a means to introduce details about the dynamic proper-
ties of a model. Event-B’s theory of refinement is closely related to that of Action Sys-
tems [5]. In particular, a concrete machine can refine another abstract machine, whereby
their states are related by a (simulation) relation called a gluing invariant. Refinement is
used to develop systems that are correct by construction. One specifies a series of ma-
chines M0, M1, . . . , Mn, where each Mi+1 refines Mi, the initial machines formalize
the system’s requirements, and the final machines formalize the system itself.

We have used the Rodin Tool [2] to create and analyze Event-B models. This tool
generates proof obligations that ensure the correctness of the systems developed. These
include: invariant preservation for establishing that invariants always hold; refinement
between machines; and the convergence (termination) of sets of events (i.e., that the
events in the set do not collectively diverge). Note that the convergence of some events



Developing Topology Discovery in Event-B 3

if DetectChange(x,v) then
UpdateLSDB(x,v)
UpdateSPFTree(LSDB)
LSA← CreateLSA(x,v)
Broadcast(LSA)

end if

if Receive(LSA) then
if IsFresh(LSA) then

UpdateLSDB(LSA)
UpdateSPFTree(LSDB)
Broadcast(LSA)

else
Drop(LSA)

end if
end if

Broadcast(LSDB)� �

Fig. 1. Link-state algorithm for node v (loop body)

cannot always be shown immediately and is then delayed to later refinements. In this
case, the convergence of these events is anticipated.

3 Topology Discovery

In this section, we describe our requirements on the system and our assumptions on the
environment for topology discovery. We begin by describing the problem and algorithm
informally, in the context of link-state routing, which is one of its main applications.

3.1 Informal Description

Routing is the process of selecting paths through a network for sending data from a
source to a destination. A path may require the data to travel over multiple hops, each
hop being an intermediate router. At each router, data is forwarded using routing tables
to select the next hop (the appropriate output port) based on the packet’s destination
address. It is the routing algorithm’s task to build these routing tables. In link-state
routing, this is done using several auxiliary data structures. In particular, each router
maintains a link-state database (LSDB) that encodes its view of the topology of the
communication network, i.e., the set of routers and the links between them. From its
LSDB, a router computes a shortest path first (SPF) tree, using Dijkstra’s algorithm [9].
The SPF tree is used to create the routing table: the next hop to some destination is
simply the neighbor that constitutes the first link in the shortest path to that destination.
Examples of routing algorithms that proceed this way include the Open Shortest Path
First protocol (OSPF) [12,13] and (optimized) link-state routing [7,8].

In our case study, we focus on the important subproblem of topology discovery: dis-
covering and maintaining local information about the network topology. This requires a
distributed algorithm (protocol) since each node must construct its own local copy of the
network topology. To do this, each node discovers changes in its own local communica-
tion environment and communicates them to other nodes. The nodes each individually
build their own graphs, representing their local view of the global network topology.

To show how topology discovery is used in routing, Figure 1 presents a simplified
view of link-state routing. The algorithm consists of an infinite loop, which runs on
each node v. The loop’s body nondeterministically chooses (represented by �) between
three parts. From left-to-right these are: (1) detect and propagate changes; (2) receive
and process changes; and (3) send information to neighboring nodes.



4 T.S. Hoang et al.

The first part describes how a node processes and propagates changes. Suppose a
node v detects a change in the status of a link that joins some node x to v. The node v
then adjusts its own link-state database (LSDB), which stores all topology graph nodes
and edges. Afterwards, it updates its shortest path first (SPF) tree from the LSDB using
Dijkstra’s algorithm. Finally, it creates a link-state advertisement (LSA) describing the
status (up or down) of the link from x to v, and starts flooding the network by broadcast-
ing this to all of its neighbors. The second part describes a node’s actions after receiving
a link-state advertisement. If the LSA is fresh, then again the SPF tree is updated and
the flooding is continued by sending the LSA to all neighbors. The third part states
that a node v can, at anytime, start flooding the network by broadcasting information
about its current link-state database. This can be implemented by v broadcasting an
LSA describing the status of the link from x to y, for each pair of distinct nodes x and
y. Alternatively, one message can be broadcast, describing the entire state of v’s LSDB.
In this case, the second part must be modified to also handle the reception of LSDBs.

These three parts implement basic link-state routing. If we are interested in pure
topology discovery, it suffices to simply delete the two UpdateSPFTree statements. The
resulting algorithm corresponds closely to what we will develop in Section 4.

A key point is the need for the third part, which initiates flooding even when no
changes are present. This is required for two reasons. The first is to handle the possi-
bility that LSAs are lost during communication, which can occur if a link goes down
during message transit. The second reason is to handle the special case where discon-
nected parts of a network are reconnected. Suppose, for example, that the network is
disconnected into two subnetworks S1 and S2, which each undergo changes and at
some later time point become connected due to a link l coming up (i.e., l connects a
node in S1 with one in S2). Just flooding both subnetworks with an LSA describing l
being up is not enough for the nodes in S1 to learn the topology of S2 and vice versa.
In actual link-state routing protocols, this third part, periodic flooding, occurs at fixed,
relatively infrequent intervals. For example, in OSPF it takes place every 30 minutes.

Observe that the above algorithm description is still abstract and omits critical de-
tails. For example, nodes receive and propagate information at different times and hence
a node may receive old LSAs containing invalid information about the network topol-
ogy. How this is handled (e.g., using sequence numbers) and information is updated is
not specified above. We must address precisely such details in our case study.

3.2 Requirements for Topology Discovery

As previously mentioned, it is surprisingly difficult to formulate the requirements for
topology discovery. The protocol must operate in an environment where the status of
links may change at any time. Moreover, the environment’s behavior is out of the control
of the protocol and not influenced by it (this is the notion of semi-reactive system,
previously mentioned at the end of Section 1). If the environment changes sufficiently
rapidly, then links reported as down may actually be up and vice versa. Hence the local
LSDBs may bear little relationship to the actual network topology.

To tackle this problem, we focus on the limiting, and most important, case of the
algorithm’s behavior: its behavior when the environment is sufficiently quiescent. In this
case, we expect that the local LSDBs will eventually converge (also called “stabilize”



Developing Topology Discovery in Event-B 5

in the routing literature) to images of the actual global topology. Some care must be
taken in precisely formalizing this, in particular to handle the previously mentioned
problem that the network may not always be connected. In general, a node n can only
learn about a link from a node a to its neighbor b when there is a path through the graph
(representing the topology) from b to n.

Recall from basic graph theory that any graph can be decomposed into a collection
of strongly-connected components. Our main system requirement is therefore:

System Requirement 1. If the environment is inactive for a sufficiently long time then
for each strongly-connected component M , the local view (LSDB) of every node
in M is in agreement with the actual topology, restricted to M .

Hence, when information about the system gained from link sensing (detecting com-
munication neighbors) and communication stabilizes, each node has the correct view of
the links between all nodes in its connected subnetwork.

We state one further requirement, which limits the possible local views of nodes
during the protocol.

System Requirement 2. The local views of the nodes must be consistent with the past:
a link listed as up is either up or was previously up.

This requirement rules out the case that a node concludes that a link is up that never
was. So errors in the local topologies must effectively come from communication delays
concerning status changes.

3.3 Environment Assumptions

Before developing a topology discovery algorithm, we must also be clear about our
assumptions on the environment. We list them below.

Environment Assumption 1: There are only finitely many nodes.

Without this assumption, any notion of stability based on a hop-by-hop propagation of
information would be unachievable.

Environment Assumption 2: There are directed, one-way links between some pairs
of distinct nodes. Links may come up or go down at any time.

These links represent the ability to carry out directed (one-way) communication be-
tween two nodes. Links may be wired or wireless.

Environment Assumption 3: When there is a new link from node a to node b, then b
is made aware of this. Likewise, when a link from a to b exists and is broken, b is
also made aware of this.

We will refer to a link from a to b as either an outward link from a or an inward link to
b. Assumption 3 reflects the ability to carry out “link sensing”, whereby each node can
sense its inward links. In practice, this must be realized by some kind of protocol, e.g., a
must periodically announce its presence to b, or, in the bidirectional case, a handshake
protocol initiated by b may be used. Note, as a result, that this assumption does not
require that the receiver b immediately becomes aware of changes, but only eventually.



6 T.S. Hoang et al.

Environment Assumption 4: When a link goes down, any messages sent on it and not
yet received are lost.

This reflects that communication is asynchronous. There is a delay (of unbounded
length) between message transmission and reception, and messages can be lost during
this time interval.
Environment Assumption 5: Nodes communicate by broadcasting whereby a may

send a message to all b for which there exists a link from a to b.

Note that broadcasting is sufficient for topology discovery and is used during flooding.
For other protocols, one might alternatively use point-to-point communication.

In the next section, we shall see how each of these requirements is formalized in the
context of our Event-B development.

4 Formal Development

We now describe our development of topology discovery. We developed seven models.
The initial models formalize our environmental assumptions and system requirements,
whereas the subsequent models introduce design decisions for the resulting system.

Initial model: Specifies the protocol environment.
Refinement 1: Introduces the observer event for observing stable states and adds sys-

tem events to model how nodes update their link information.
Refinement 2: Provides more details about link updates. Namely, a node updates infor-

mation about its direct links or receives information about links from its neighbors.
Refinement 3: Introduces sequence numbers for tracking fresh link-state information.
Refinement 4: Uses message passing to transmit information about the status of links.
Refinement 5: Separates the events into two sets: the set of events that update link-

state information and those events that discard it as being redundant. The idea is to
prove the convergence of the events that update the link-state information.

Refinements 6: Introduces a variant for proving the convergence of some events.

Due to lack of space, we present below only selected parts of our formalization and
omit proof details.

4.1 The Context and Initial Model

We begin by defining an Event-B context. In the context, we define the carrier set
NODES of all network nodes and we axiomatize that it is finite. This formalizes Envi-
ronment Assumption 1. Additionally, we define a (function) constant closure that,
together with axioms, formalizes the transitive closure of binary relations between
NODES. Note that “;” denotes forward relational composition.

axioms:
axm0 1 finite(NODES)
axm0 2 closure ∈ (NODES ↔ NODES) → (NODES ↔ NODES)
axm0 3 ∀r · r ⊆ closure(r)
axm0 4 ∀r · closure(r); r ⊆ closure(r)
axm0 5 ∀r, s · r ⊆ s ∧ s; r ⊆ s ⇒ closure(r) ⊆ s



Developing Topology Discovery in Event-B 7

In our initial model, we formalize the behavior of the environment, where links (rep-
resented as pairs of nodes) may go up or down at any time. The variable RLinks (R
for real, i.e., actual links) represents the set of links that are currently up, whereas the
variable DLinks represents the set of links that have previously been up, but are now
down. These sets are disjoint (inv0 3) since a link cannot be simultaneously both up and
down. Note, however that we do not require that their union is the set of all links. This
may be because two nodes are simply not communication neighbors or because their
status has not yet been fixed. This set of “unknown” links is simply the complement of
the set RLinks ∪ DLinks.

Besides initializing RLinks and DLinks both to the empty set, there are two events:
AddLink and RemoveLink. The former models that an arbitrary link comes up. This
link is then added to the set of RLinks and removed from the set of DLinks (if it is
already there). The latter event handles the symmetric case. Note from the guards that
if a link is in either set (i.e., its status is not unknown), then it has been up, at least once
in the past.

These events formalize Environment Assumption 2. Communication links are di-
rected as the relations RLinks and DLinks are not necessarily symmetric.

4.2 The First Refinement

In our first refinement, we start to model the details of the protocol, although still very
abstractly. In particular, we state that the link information stored at each nodes gets
updated, although without yet specifying how.

We introduce two variables rlinks and dlinks with the following invariants. These
two variables represent the current link-state information stored by each node.



8 T.S. Hoang et al.

The first two invariants formalize that each node stores its own local information (a
binary relation between NODES) about the status of links. Moreover, if a node has some
information about a link, then this link must be either currently up or down (i.e., not
unknown). This is represented by the invariants inv1 3 and inv1 4. The last invariant,
inv1 5, states that a node cannot store contradictory information about the same link.
Of course, different nodes can have different information about the same link.

Note that, together with the events AddLink and RemoveLink from the initial model,
these invariants establish System Requirement 2. We have that a link can be in DLinks
iff it is removed with RemoveLink iff it was previously added to RLinks with AddLink
(since no other events change the state of RLinks and DLinks) and therefore was
previously up. Hence a link is only in RLinks ∪ DLinks if it is up (left disjunct) or
was previously up (right disjunct).

One of the key aspects of our development strategy is to specify a so-called observer
event. This event has no effect on this system state itself as its action is skip. Rather, its
guard is used to define the notion of a stable state of the system.

The first two guards require that every node y knows the correct status of all its inward
links, i.e., y has detected all environment changes with respect to its inward links. The
last guard requires that if there is a path from a node m to n, then n has the same
(up/down) information as m for all inward links to m. Hence, the observer event fires
in those states where nodes know the correct status of their neighbors and this status
has already been propagated through the network along all outward links. Intuitively,
in stable states, all nodes have the maximum knowledge of the environment that can be
acquired from link sensing and communication. We say that the system is in a stable
state when the observer event can fire.1

A central property that we proved is the following.

Theorem 1 (Stability implies correct local view). If the system is stable, then for
any strongly-connected component M in the network and any node n in M , n has the
correct view of the status (up/down) of all links in M .

We formulate this theorem in Event-B as follows, where grdStabilize refers to the
guard of the observer event.

1 This notion of system stability is an instance of the general notion of a stable system property
(see e.g., [11]), which is a property P of system states whereby if P is true of any reachable
state s then P is true of all states reachable from s.



Developing Topology Discovery in Event-B 9

Here, a set of nodes M defines a strongly-connected component of the graph whose
edge relation is defined by RLinks, when for every distinct pair of nodes f and l in
M , then f �→ l ∈ closure(RLinks). The operators � and � respectively restrict the
domain and the range of a relation to a set (here M , the strongly-connected component).

We proved this theorem using the Rodin tool. The theorem itself constitutes part of
the proof of System Requirement 1. Namely, in a stable state, each node has the correct
view of all links in its strongly-connected component. It still remains to be proved that
this stable state will be reached whenever the environment is inactive for a sufficient
long time period. We prove this in Section 4.8.

In this model, we also introduce two new events, addlink and removelink, which
modify the link-state information of some node.

The event addlink abstractly models a node receiving information on a link directly
from the topology. Specifically, the event nondeterministically selects a node n and a
link link with a known status. It then updates n’s local information about link, ensur-
ing that it is added to the set of real (up) links and removed from the set of down links.
Perhaps counterintuitively, the event may add a link to rlinks(n) that is actually down,
i.e., that belongs to DLinks. This reflects a key aspect of our distributed algorithm:
the information nodes receive about the environment may be out-dated. As noted pre-
viously, being in RLinks ∪ DLinks simply means the node has been up in the past.
But by the time n receives information that link is up, the link may actually be down.
The second event removelink is analogous. At this level of refinement, addlink and
removelink are anticipated. That is, we delay the proof that these events converge to
subsequent refinements.

From now on, we concentrate on the refinement of addlink. The refinement of re-
movelink can be found in our on-line development archive.

4.3 The Second Refinement

In this refinement, we specify more concretely how link information is updated in each
node. There are two cases. The first case models a direct update by the hello event. The
second case models an indirect update by the transfer rlink event.



10 T.S. Hoang et al.

The event hello models a node n discovering information (e.g., by receiving a “hello”
message) from a node m with an outward link to n. This event refines the abstract event
addlink, where the abstract parameter link is represented by the mapping m �→ n.
The event transfer rlink models a node n receiving information about a link x �→ y
from some node m, which is not necessarily a neighbor. The guard n �= y indicates
that this is an indirect update, that is, x �→ y is not an inward link of n. This refines the
abstract event addlink, where the abstract parameter link is represented by the mapping
x �→ y.

The link-state information for down links is modeled analogously by the events
goodbye and transfer dlink, which are omitted here. Together, hello and goodbye
formalize Environment Assumption 3.

At this stage, we also prove the convergence of the hello and goodbye events and
we will prove the convergence of the transfer rlink and transfer dlink events in the
next refinement, that is, they are anticipated at this point. By decomposing the conver-
gence proof into different refinements we can simplify the proof by decomposing the
events into two different subsets and then considering these subsets individually. Note
that when proving the convergence, we still have the obligation of proving that the an-
ticipated events do not increase the new variant. Taken together, these steps imply that
the events reduce a composite variant, built from the lexicographic combination of the
variants used in the two proofs.

We prove convergence by showing that these two events always decrease a variant,
which is a set-valued expression. In this case the variant is

{m �→ n | m �→ n ∈ RLinks \ rlinks(n)} ∪
{m �→ n | m �→ n ∈ DLinks \ dlinks(n)} .

This is the set of inward links to n, where n has incorrect information. Informally, since
the hello and goodbye events both provide correct information about one inward link
of a node, they decrease the variant. Since the set of NODES is finite, this variant is also
finite and thus well-founded.

4.4 The Third Refinement

In the next two refinement steps, we model communication between nodes. This is in
contrast to the last step where nodes update their link information directly using the link
information of other nodes, which is of course not realizable in a distributed system.



Developing Topology Discovery in Event-B 11

Before modeling communication, we first model how nodes track which information
is fresh, i.e., whether the link information received is new or old. Namely, we introduce
a new variable, seqNum ∈ NODES → (NODES × NODES → N) representing the
sequence number stored at each node for each link. We omit listing here the invariants
for seqNum. Moreover, to reason about the convergence of transfer rlink and trans-
fer dlink, we introduce an auxiliary variable msg that “measures” the convergence of
the event. This variable will not be used in the guards of the event, that is, it will not
affect the execution of the events, hence we can safely remove this variable in the sub-
sequent refinement.

In the initialization event, the sequence number for all links is set to 0 and msg is
empty. The sequence number for a particular node and link first takes on a positive value
after a direct update (e.g. in the hello event).

The only difference with the abstract version is the last two assignments, which incre-
ment the sequence number (�− denotes relation overriding) and update msg. Since the
event’s guard is unchanged and the additional assignment modifies only a new variable,
this clearly refines the corresponding abstract hello event. Once new information is de-
tected by n, this information must be propagated to all the other nodes in the network.

For indirect updates, the sequence number for a particular link is not updated, but
simply passed from one node to another.



12 T.S. Hoang et al.

Compared to the abstract version of the event, there is an additional parameter, sn, for
the sequence number associated with the link-state information. This sequence number
sn is no more than the sequence number that m has for the same link. The reason is that
the original message came from m and sequence numbers are never decreased.2 The
sequence number sn is (strictly) greater than n’s sequence number for the same link,
that is, n only updates its local state with new information. The last guard states that for
any node k with the same sequence number for the same link x �→ y, that link is in the
set of up links for k. This ensures that there will be no conflicting information in the
network. Note that this guard cheats in the sense that it cannot be directly implemented.
This cheating will be eliminated in a subsequent refinement. The additional assignments
in the event’s action, with respect to the abstract version, update n’s sequence number
for the link x �→ y and remove this information from the set msg.

We also proved the convergence of the transfer rlink and transfer dlink events. The
variant is just msg. This, together with the convergence proof from the last refinement,
shows that the events hello, goodbye, transfer rlink, transfer dlink decrease a com-
bined lexicographic variant.

The guard of the observer event stabilize (from the first refinement) is also refined
using information about sequence numbers. It becomes:

The first two guards are unchanged. What is new is the last guard, which states that for
any pair of nodes n1 and n2, and link link, if n1 has a direct communication link to
n2, then n2’s information about link is not older than n1’s.

4.5 The Fourth Refinement

We now model communication. We first remove the auxiliary variable msg. We also re-
move the assignments that modify msg from the events hello and goodbye. We then in-
troduce three variables: SChan of type (NODES×NODES)→((NODES×NODES)→
N) and RChan and DChan, both of type (NODES×NODES)→(NODES↔NODES).
For each pair of nodes, the link-state information is a relation between NODES, formal-
izing the set of pairs of nodes on the communication channel. For all nodes m and n,
RChan(m �→ n) (respectively, DChan(m �→ n)) is the set of up (down) link informa-
tion that is transferred from m to n. The channel SChan associates sequence numbers
to the links in the link-state channels. Thus SChan(m �→ n) stores information about
the sequence numbers that are in transit from m to n.

2 However, sn can differ from m’s sequence number, since during the time for the message to
reach n, m can in the meantime update its sequence number for the same link.



Developing Topology Discovery in Event-B 13

Communication between nodes uses the above channels, so the abstract events for
transferring link information (namely, transfer rlink and transfer dlink) must each be
split into a pair of events for sending and receiving information. The following diagram
illustrates what happens. First, the node m sends the information to the channels and
afterwards the node n receives information from the channels. In our development, each
transfer event is refined by a receive event and we add a new send event, which therefore
refines skip. In our diagram, the top part is the abstraction (skip and transfer) and the
bottom part is the refinement (i.e., send and receive).

m�������� n��������

m�������� n��������channels

skip �� transfer ��

send �� receive ��

Below is the description of the new event for sending information about an up link
from m to n.

For a node to send information about certain link, this event requires that the infor-
mation about the same link from the last send has been received. This is formalized
by the guard stating that the corresponding sequence number in the channel is 0. The
information is then sent by placing it on the outward links from m to n. The guard
m �→ n ∈ RLinks (i.e. the link from m to n is currently up) formalizes Environment
Assumption 5.

The abstract transfer rlink is refined to specify the following event receive rlink.



14 T.S. Hoang et al.

The link-state information is retrieved from the channels from m to n. Here, the abstract
parameter sn is refined as SChan(m �→ n)(x �→ y). The refinement of transfer dlink
to receive dlink is analogous.

Note that the event receive rlink receives only genuinely new messages. Hence it is
necessary to introduce a complement event that discards obsolete information, both for
up and down links. Another reason for introducing discard events is that, without them,
we would not be able to prove the deadlock freeness property in the next refinement
level. Below is the event for discarding information about an up link (the new event
discard dlink is analogous).

The link-state information is obsolete since the node has already received more recent
information about link in the channel. Hence, the information is simply discarded from
the channel. This new event refines skip since the actions only effect the new variables,
SChan and RChan.

Now that we have explicitly introduced communication, we refine the environment
event RemoveLink to account for Environment Assumption 4. That is, when a link
goes down, any messages sent on it and not yet received are lost.

This trivially refines the abstract RemoveLink event since the guard is unchanged and
the new assignments only modify new variables.

Note that at this point all the events can be straightforwardly implemented in a dis-
tributed system. That is, the events no longer “cheat” and perform tests or actions that
would not be algorithmically realizable.



Developing Topology Discovery in Event-B 15

4.6 The Fifth Refinement

Our machine in the fourth refinement constitutes a (high-level) protocol implementa-
tion. However, we have not yet established the convergence of the events send rlink
and discard rlink (and correspondingly for dlink). There is a good reason for this:
these events do not converge and should not converge. As we saw in Figure 1 (third
part), each node periodically broadcasts information about its LSDB and its neighbors
repeatedly receive this information, even when it is not new. What we prove then is that
the system eventually does reach a stable state (assuming that the environment does not
change), despite continually broadcasting and receiving redundant information.

To prove this, we shall partition these four non-convergent events each into two parts:
a convergent and divergent part. We accomplish this by defining a restricted local notion
of stability, called neighbor stability, and showing that the neighbor-stable parts diverge
and, conversely, the neighbor-unstable parts converge.

Given a link link and a link from m to n, we say the information about link is
neighbor stable from m to n if n’s sequence number for link is at least as large as
m’s. This means that the information about link in m does not need to propagate to
n and therefore further information coming from m about link will not change this
neighbor-stable status. Using this notion, we can restate the third guard of the observe
event stabilize (from Section 4.4) as follows: Any link is neighbor-stable for any up
link from m to n.

We now partition the events by adding either the guard seqNum(m)(link) ≤
seqNum(n)(link) or its complement. For example, we partition send rlink into the
two events send rlink stable and send rlink unstable. For send rlink stable we add
the above guard and for send rlink unstable we add the complement as a guard. We
partition the other three events discard rlink, send dlink, and discard dlink similarly.
Note that we must partition the discard events as information must also be discarded
in neighbor-unstable states. The reason for this is that communication is asynchronous
and therefore information may be sent in a stable state but received in an unstable state.

Given this partition, we prove the convergence of the events send rlink unstable
and send dlink unstable using the variant

{m �→ n �→ link | SChan(m �→ n)(link) ≤ seqNum(n)(link)} .

This denotes the set of old messages on all channels. We will prove the convergence of
discard rlink unstable and discard dlink unstable in the next refinement level and
hence they act as anticipated events here.

In this refinement step, we also proved the following theorem about the deadlock
freeness of a set of events. Namely, the guard of the event stabilize is equivalent to the
negation of the disjunction of the guards of the following eight events: hello, goodbye,
send rlink unstable, send dlink unstable, receive rlink, discard rlink unstable,
receive dlink, and discard dlink unstable. Hence, if none of these eight events is
enabled, then stabilize is enabled and the system is therefore in a stable state.

Moreover, we also proved theorems stating that the four events send rlink stable,
send dlink stable, discard rlink stable, and discard dlink stable maintain the sys-
tem’s stable state, that is, if we assume that the state before the event execution is stable,
we have to prove that the state after the event execution is also stable. However, stable



16 T.S. Hoang et al.

refers to RLinks, DLinks,rlinks, dlinks, and seqNum only, whereas our events
(send rlink stable, send dlink stable, discard rlink stable, and discard dlink
stable) only modify the information in the channels, i.e., SChan, RChan, and
DChan, so the above events will maintain the stable state.

4.7 Sixth Refinement

In this refinement step, we prove the convergence of the discard rlink unstable and
discard dlink unstable using the variant

{m �→ n �→ link | SChan(m �→ n)(link) �= 0} ∩
{m �→ n �→ link | seqNum(n)(link) < seqNum(m)(link)} .

4.8 Partial Convergence Implies Stability

In contrast to the development of terminating programs, we now only prove the conver-
gence of a subset of the events. Nevertheless, we show that this is adequate to establish
System Requirement 1. Namely, if the environment is inactive for a sufficiently long
time, then for each strongly-connected component M , the local view of every node in
M is in agreement with the actual topology, restricted to M .

First, we introduce the notion of a run of Event-B together with a strong-fairness
assumption. A run of an Event-B model is an infinite sequence of states obtained from
an initial state by executing events of the model. We call a run strongly fair with respect
to a set of events E if it respects the following strong-fairness assumption with respect
to E: if an event from E is enabled infinitely often, then it will be taken infinitely often.
This assumption will hold for any reasonable implementation of topology discovery.

At the last refinement, the set of events can be divided into the following groups.

1. A set of environment events Env = {Env1, . . ., Envl}. In our case, there are just
the two events AddLink and RemoveLink.

2. An observer event Obs. This observer event has skip as its action and its guard
specified that the system is in stable state. Hence it is of the form:

when stable then skip end

In our development, this is the stabilize event.
3. A set of convergent events CE = {CE1, . . ., CEm }. In our development, the con-

vergent events are hello, goodbye, send rlink unstable, send dlink unstable, re-
ceive rlink, discard rlink unstable, receive dlink, and discard dlink unstable.

4. A set of divergent events DE = {DE1, . . ., DEn}. These events are send rlink
stable, send dlink stable, discard rlink stable, and discard dlink stable.

We will now prove the following theorem:

Theorem 2 (System Stabilizes). Assume that the following propositions hold:

i) Deadlock-freedom for the observer event Obs and convergent events CE. In par-
ticular,

stable ⇔¬(Grd(CE1) ∨ · · · ∨ Grd(CEm)) .



Developing Topology Discovery in Event-B 17

ii) The events in CE converge using a well-founded variant V .
iii) The events in DE do not increase V .
iv) The events in DE preserve stable. By this we mean that none of the DE events

disable the guard of Obs.
v) The events in CE are strongly fair.

Then if the environment is eventually quiescent (i.e., at some point no environment
events Env1, . . ., Envl from the first group occur) then the system will eventually reach
a stable state and remain in this state.

In our case, we are assuming Proposition (v), and the other propositions have already
been previously proved.3 Our proof of Theorem 2 is by contradiction and proceeds as
follows. Assume that there is a strongly fair run R with a quiescent suffix, but which
never reaches a stable state. Then there must be infinitely many i such that R(i) does
not satisfy “stable”. Let r be a quiescent suffix of R. By Proposition (i), there are in-
finitely many states such that some event in CE is enabled. By the fairness assumption,
Proposition (v), the events in CE must be taken infinitely often on r. Since there are
no environment events and by Proposition (ii) all events in CE decrease the variant,
whereas by Proposition (iii), other system events (i.e., Obs and DE) do not increase
the variant V , the variant V decrease infinitely often in r. This contradicts the well-
foundedness of V . Therefore, all strongly fair runs with a quiescent suffix eventually
reach a stable state. Moreover, once in a stable state, all the events in CE are disabled
and, by Proposition (iv), the events in DE preserve the stable state. Together with the
fact that event Obs does not change the state (its action is skip), it follows that the
system stays in the stable state. This concludes our proof. Note that this proof is a tra-
ditional “paper and pencil proof”, rather than a proof using the Rodin tool.

The system referred to in the theorem statement is the machine M5 given by the 5th
refinement, rather than the machine M4 from the 4th refinement, which is our imple-
mentation. However, M5 simply partitions four of M4’s events. Therefore the proof of
Theorem 2 just given for M5 can be naturally mapped to M4. Namely, the partition
of M4’s events into stable and unstable events in M5 gives rise to a partition of their
instances. Therefore Theorem 2 also holds for M4 if we restate the fairness assumption
in Theorem 2 as follows: “If an instance of event is enabled infinitely often, then it will
be taken infinitely often.”

Finally, recall Theorem 1, proved in Section 4.2, which states that in a stable state,
each node has the correct view of all links in its strongly-connected component. It fol-
lows from this and Theorem 2 that the system M4 satisfies System Requirement 1.

4.9 Summary — Proof Statistics

In Table 1 we give proof statistics of the development in the Rodin Tool. These statistics
measure the size of the model, the proof obligations generated and discharged by the
Rodin Platform, and those interactively proved. Note that there are many proof obliga-
tions in the 4th refinement due to the introduction of three different channels. In order to

3 We proved Propositions (i) and (iv) in the 5th refinement and proved Propositions (ii) and (iii)
in the 2nd, 3rd, 5th, and 6th refinements.



18 T.S. Hoang et al.

guarantee the correctness using these channels, various invariants must be established.
Moreover, our formal model of these channels uses high-order functions. Given the cur-
rent state of the Rodin platform, this results in a high number of interactive (manual)
proofs. Also, most of the proofs in the 5th and the 6th refinements are interactively dis-
charged. The main reason for this is the lack of appropriate automatic support in the
tool for reasoning about set comprehension, disjunctions, and strict subsets.

Table 1. Proof statistics

Model Number of Automatically Interactively
Proof Obligations Discharged Discharged

Context 3 0(0%) 3(100%)
Initial Model 9 9(100%) 0(0%)
1st Refinement 31 26(84%) 5(16%)
2nd Refinement 30 23(77%) 7(23%)
3rd Refinement 74 37(50%) 37(50%
4th Refinement 159 79(50%) 80(50%)
5th Refinement 44 7(16%) 37(84%)
6th Refinement 8 0(0%) 8(100%)
Total 358 181(51%) 177(49%)

5 Conclusions

We have presented a case study in formally developing a distributed topology discovery
algorithm in Event-B. Our approach to formalizing and reasoning about stable states
should be applicable to other semi-reactive systems, including other routing algorithms.
Our approach is novel in how it combines refinement with arguments about convergence
and disjointness of events to specify liveness properties about the system eventually
stabilizing and properties of the resulting stable state.

We have presented a single development of topology discovery. In actuality, we for-
malized several different developments, each highlighting a different aspect of the prob-
lem, making different assumptions about the environment, and establishing different
properties. For example, we first considered the case where the environment is static
and we developed a terminating algorithm satisfying a strong post-condition. We also
considered the case where the environment is dynamic and not necessarily stabilizing.
There we had the idea of augmenting the environment with some history (DLinks)
and using this to establish interesting, although weak invariants, e.g., corresponding to
our second requirement. The current development arose from different attempts to com-
bine these developments and exploit the standard notions of convergence and deadlock-
freeness as a way to express properties holding only in stable states.

Our different developments reflect not only the many facets of the problem, but also
that there was a learning process involved in understanding the problem and its solution.
The observation that this process is often nontrivial and requires iteration to converge on
a good solution (and there may be many) is certainly not a new. But it is an observation
worth repeating and such iteration fits well a development process where one alternates
between specification and proving at different levels of abstraction.



Developing Topology Discovery in Event-B 19

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Design. Cambridge University
Press, Cambridge (to appear, 2008)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for
Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer,
Heidelberg (2006)

3. Abrial, J.-R., Cansell, D., Méry, D.: A mechanically proved and incremental development of
IEEE 1394 tree identify protocol. Formal Asp. Comput. 14(3), 215–227 (2003)

4. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete mod-
els: Application to Event-B. Fundamenta Informaticae, XXI (2006)

5. Back, R.-J., Kurki-Suonio, R.: Decentralization of process nets with centralized control. Dis-
tributed Computing 3(2), 73–87 (1989)

6. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for distance
vector routing protocols. J. ACM 49(4), 538–576 (2002)

7. Clausen, T., Hansen, G., Christensen, L., Behrmann, G.: The Optimized Link State Routing
Protocol, Evaluation through Experiments and Simulation. In: IEEE Symposium on Wireless
Personal Mobile Communications (September 2001)

8. Clausen, T., Jacquet, P., Laouiti, A., et al.: Optimized Link State Routing Protocol. Request
for Comments, 3626 (2003)

9. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

10. Hoang, T.S., Kuruma, H., Basin, D., Abrial, J.-R.: Developing topology discovery in Event-
B. Technical Report 611, ETH Zurich, 11/2008

11. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
12. Moy, J.T.: OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley Professional,

Reading (1998)
13. Moy, J.T., et al.: OSPF Version 2 (1994)
14. Rfc3626: Optimized link state routing protocol (OLSR) (October 2003)
15. Udaya Shankar, A., Lam, S.S.: A stepwise refinement heuristic for protocol construction.

ACM Transactions on Programming Languages and Systems 14(3), 417–461 (1992)
16. Tanenbaum, A.: Computer Networks. Prentice Hall Professional Technical Reference (2002)



Decomposition Structures for Event-B

Michael Butler

School of Electronics and Computer Science
University of Southampton, UK

mjb@ecs.soton.ac.uk

Abstract. Event-B provides a flexible approach to modelling and re-
finement of systems. In this paper we outline two important ways in
which Event-B refinement can be augmented with additional structuring
to support further the management of complex refinements. Firstly we
show how event refinement diagrams can be used to structure refinement
steps involving decomposition of atomicity. Secondly we outline a tech-
nique for decomposing models into sub-models to allow for independent
refinement. We show how these two structuring techniques can be used
together.

1 Introduction

An Event-B machine consists of a collection of variables, invariants on those
variables and a collection of guarded events that may update the machine vari-
ables. An Event-B devlopment consists of a collection of machines linked by
refinement.

Event-B [2] provides a more flexible approach to refinement than found in
Classical B [1] and in related languages such as Z [10] and VDM [9]. One impor-
tant feature is the ability to introduce new events in a refinement step. These new
events correspond to stuttering steps that are not visible at an abstract level. A
very common pattern of Event-B refinement for many types of system, including
sequential, concurrent and distributed systems, is to represent a desired outcome
as an abstract atomic event and then decompose that into smaller (sub-)atomic
steps in refinement. While the Event-B refinement rules are quite comprehensive
and allow for decomposition of event atomicity, they are more general than that.
By identify a pattern and providing additional structure to represent the pat-
tern, we hope to make the application of the standard refinement rules clearer
and more manageable. In this paper we will see how a diagrammatic notation
inspired by the structure diagrams of Jackson System Development (JSD) [8]
can help to structure refinements involving atomicity decomposition.

Another critical structuring mechanism for refinement is the ability to de-
compose machines into sub-machines. Typically these sub-models will represent
separate archtectural components. We will present a technique for syntactically
partitioning an Event-B machine into several sub-machines. This technique has
a sound semantic basis that corresponds to the synchronous parallel composition
of processes as found in process algebra such as CSP [7]. An important property

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 20–38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Decomposition Structures for Event-B 21

of the decomposition technique is that the resulting sub-models can be refined
independently of each other.

2 Decomposing Atomicity

In this section we will look at how coarse-grained atomicity can be refined to more
fine-grained atomicity. The approach we take is to treat most of the sub-atomic
events of a decomposed abstract event as hidden events which are required to
refine skip. The new events introduced in a refinement step can be viewed as
hidden events not visible to the environment of a system and are thus outside
the control of the environment. In Event-B, requiring a new event to refine skip
corresponds to the process algebraic principle that the effect of an event is not
observable. Any number of executions of an internal action may occur in between
each execution of a visible action.

Assume we are refining a machine M1 by a machine M2. In Event-B, each
event A of M2 either refines some event R(A) of M1 or it is a new event refining
skip. The proof obligations defined for Event-B refinement are based on the
following proof rule that makes use of a gluing invariant J :

– Each M2.A (data) refines M1.R(A) under J , if R(A) is defined
– Each M2.A refines skip under J , if A is a new event

The machine L of Fig. 1 has a single event Out that simply outputs N and then
disables itself. The machine contains a single variable for modelling the control
of execution of the Out event: Out ∈ BOOL is true when the output event has
occurred. The Out event can occur provided Out has not occured (grd1). The
parameter v! represents the output value produced by the Out event. Its value
is N (grd2).

We wish to refine this machine by a machine modelling a concurrent program
that accumulates a value in a variable x before outputting it. The refinement

Fig. 1. Abstraction of model of simple outputting machine



22 M. Butler

models N parallel subprocesses each of which increments the variable x exactly
once. When all N subprocesses have incremented x, the value of x is output.
We view the refined model as breaking the atomicity of the output event by
introducing an Inc event that models the behavior of the parallel sub-processes.
The decomposition of the atomicity of the simple concurrent program is modelled
as an event refinement diagram in Fig. 2. This diagrammatic notation is based
on JSD structure diagrams by Jackson [8]. The event refinement diagram of
Fig. 2 is a tree structure with root Out(N) representing the abstract output
event. The diagram shows how the root is decomposed into an initialisation,
the parallel composition of multiple parallel instances of Inc(p) and a refined
output event Out(x). The oval with the keyword par represents a quantifier that
replicates the tree below it. In this case it replicates Inc(p) by quantifying over
sub-process identifiers p. An important feature of event refinement diagrams, in
common with JSD structure diagrams, is that the subtrees are read from left
to right and indicate sequential control from left to right. This means that our
diagram indicates that the abstract Out(N) event is realised in the refinement
by firstly executing the initialisation, then executing the Inc(p) events in parallel
(in an interleaved fashion) and then executing Out(x).

Another important feature of event refinement diagrams is the solid and
dashed lines linking children to their parent. The Init and Inc(p) events are
linked by a dashed line which means it must be proven that they refine skip.
The abstract and refined Out events are linked by a solid line which indicates a
refinement relation. That is, it must be proven that Out(x) refines Out(N).

Fig. 2. Event refinement diagram illustrating atomicity decomposition

The refined machine is shown in Fig. 3. It uses a type PROC representing
the set of sub-process identifiers with the assumption that card(PROC) = N .
In addition to the variable x, machine M contains two variables for modelling
the control of execution of events. Variable Inc ⊆ PROC represents the set of
processes for which the increment event has occurred. Variable Out ∈ BOOL
is true when the output event has occurred. In this case the initialisation of
the program is modelled by the standard initialisation clause of the machine M
so we do not need a control variable for the initialisation. The Inc event can
occur for process p provided Inc has not already occurred for process p. This
constraint is modelled by guard grd1 of Inc. The action act1 of the Inc event



Decomposition Structures for Event-B 23

Fig. 3. Event-B refinement of a simple output machine

adds the value p to the set Inc which prevents the event occurring for that value
of p again. The Out event can occur provided Inc has occurred for all processes
(grd1) and Out has not occured (grd2).

Instead of outputting N the refined Out event outputs the value of x (grd3).
The proof of the correctness of this refinement relies on the following invari-
ant stating that the value of x is equal to the number of processes that have
completed their task:

x = card(Inc)

Therefore when all N processes have completed, x will have the value N and
the correct value will be output. This illustrates how control variables (such as
Inc) are useful in gluing invariants, allowing for values of data variables (such
as x) to be related to values of control variables.

Consider the case where we have two subprocesses so that PROC = {p1, p2}
and N = 2. The event traces of the model are as follows:

〈 Inc.p1, Inc.p2, Out.2 〉 〈 Inc.p2, Inc.p1, Out.2 〉

Each event trace represents a record of a possible execution trace of the model.
Here we are ignoring the initialisation event since it always occurs exactly once at
the beginning of a trace. The parallel execution of the subprocesses is modelled
by interleavings of the atomic steps of the processes. Here the two possible



24 M. Butler

interleavings of Inc.p1 and Inc.p2, represented by the two events traces, model
their concurrent execution. It is instructive to relate the event traces of the
machine L with those of machine M . L has just a single event trace that outputs
N and nothing else. In the case that N = 2, the single event trace of L is

〈 Out.2 〉

If we remove the Inc events from the traces of M we get the trace of L:

〈 Inc.p1, Inc.p2, Out.2 〉 \ Inc = 〈 Out.2 〉
〈 Inc.p2, Inc.p1, Out.2 〉 \ Inc = 〈 Out.2 〉

Removing events from a trace is the standard way of giving a semantics to hidden
or stuttering events and is used, for example, in CSP. By treating the Inc events
as a hidden, traces of M look like traces of L. This illustrates a semantics of
refinement of Event-B models. Machine M is a refinement of machine L since
any trace of M in which the Inc events are hidden is also a trace of L. This is
treated more precisely in [5].

3 Decomposing File Write

We will study a further example of atomicity refinement which involves more
event interleaving than the simple concurrent program. This is an event for
writing a file to a disk. At the abstract level the entire contents of the file is
written in one atomic step as in the following machine:

Machine File1
Variables file, dsk
Invariants file ⊆ FILE, dsk ∈ file→ CONT

Event Write =̂
any f, c where

grd1 : f ∈ file
grd2 : c ∈ CONT

then
act1 : dsk(f) := c

end

Here the contents of the disk are represented by the variable dsk which maps file
identifiers to their contents. The Write event has two parameters, the identity
of the file to be written f and the contents to be written c. Other events such
as creating a file and reading a file are not shown.

We assume that file contents are structured as a set of pages of data so that
the type CONT is defined as follows:

CONT = PAGE �→ DATA



Decomposition Structures for Event-B 25

Fig. 4. Decomposition of the atomiticy of file write

The event refinement diagram of Fig. 4 illustrates the decomposition of the Write
event into sub-events to model the writing of individual pages. In the refinement,
the writing of individual pages will be modelled atomically by the PageWrite
event and the writing of the entire file is no longer atomic. The writing of a file is
initiated by the StartWrite event and ended by the EndWrite event. We will al-
low multiple file writes to be taking place simultaneously in an interleaved fashion.
This is indicated by the top level parallel quantification over f (par(f)). We also
assume that the pages of an individual file f can be written in parallel hence the in-
ner parallel quantification over p (par(p)). Occurrence of event PageWrite(f, p)
models writing of page p of file f .

In order to model the event sequencing implied by Fig. 4, we introduce vari-
ables corresponding to the StartWrite and PageWrite events as follows:

Invariants
inv1 : StartWrite ⊆ FILE
inv2 : PageWrite ⊆ FILE × PAGE
inv3 : dom(PageWrite) ⊆ StartWrite

The types of these variables are determined by the parallel quantification in
Fig. 4. StartWrite is a subset of FILE because it is bound by the quantification
over files f (inv1). PageWrite is a subset of FILE×PAGE because it is bound
by the quantification over files f and pages p (inv2). If a page has been written
for a file, then StartWrite will already have occurred for that file (inv3).

When the writing of a file is complete, we will allow the file to be written
to again. Therefore we do not need any variable to model the occurrence of
the EndWrite event for a file, since all the control information for a file will
be cleared when the file write is complete in order to allow the file to be writ-
ten to again later if required. Now, for example, the control behaviour of the
StartWrite and PageWrite events is as follows:

Event StartWrite =̂
any f where

grd1 : f ∈ file
grd2 : f �∈ StartWrite



26 M. Butler

then
act1 : StartWrite := StartWrite ∪ {f}

end
Event PageWrite =̂

any f, p where
grd1 : f ∈ StartWrite
grd2 : f �→ p /∈ PageWrite

then
act1 : PageWrite := PageWrite ∪ {f �→ p}

end

This control behaviour on its own is not enough. The pages and their contents
for a particular file need to be determined before we start the process of writing
to a file. We introduce a variable writebuf to act as a buffer for the content to
be written to disk. Rather than writing directly to the abstract variable dsk,
the PageWrite event will write the contents of an indivdual page to a shadow
disk while the writing is in progress. When the writing is complete, the contents
of the shadow disk is transferred to the disk at the end of the writing process.
These variables are defined as follows:

inv4 : writebuf ∈ StartWrite → CONT
inv5 : sdsk ∈ StartWrite → CONT

Note that both are defined on files that are currently being written, i.e., files in
the set StartWrite.

Now, as well as initialising the control for the writing process, the StartWrite
event sets the contents to be written to disk in the write buffer for that file (act2)
and sets the shadow disk for that file to be empty (act3):

Event StartWrite =̂
any f, c where

grd1 : f ∈ file
grd2 : f �∈ StartWrite
grd3 : c ∈ CONT

then
act1 : StartWrite := StartWrite ∪ {f}
act2 : writebuf(f) := c
act3 : sdsk(f) := ∅

end

The PageWrite event selects a page of a file that has yet to be written (grd2)
and is in the write buffer (grd3). The parameter d represents the data associated
with the page being written to the shadow disk (sdsk):

Event PageWrite =̂
any f, p, d where

grd1 : f ∈ StartWrite
grd2 : f �→ p /∈ PageWrite
grd3 : p �→ d ∈ writebuf(f)



Decomposition Structures for Event-B 27

then
act1 : PageWrite := PageWrite ∪ {f �→ p}
act2 : sdsk(f) := sdsk(f) �− {p �→ d}

end

The StartWrite and PageWrite events both refine skip while the EndWrite
event refines the abstract Write event (see the dashed and solid lines in Fig. 4).
The EndWrite event occurs once all pages of a file have been written, a condition
that is captured by grd2 below. The effect of the event is to copy the shadow
disk to the disk (act1). The event also clears all the control, buffer and shadow
information for the file to enable the write process to commence all over again
(act2 to act5).

Event EndWrite Refines Write =̂
any f, c where

grd1 : f ∈ StartWrite
grd2 : PageWrite[{f}] = dom(writebuf(f))
grd3 : c = sdsk(f)

then
act1 : dsk(f) := sdsk(f)
act2 : StartWrite := StartWrite \ {f}
act3 : PageWrite := {f} �− PageWrite
act4 : writebuf := {f} �− writebuf
act5 : sdsk := {f} �− sdsk

end

It may seem like we have not really achieved much decomposition of atomicity
since the shadow disk is copied to the actual disk in one atomic step (act1 of
EndWrite). However our intention is that the disk and the shadow together are
both realised on the real hard disk and that the effect of act1 would be achieved
by an update to the page table for the disk (in later refinements). We assume
that updating the page table can reasonably be treated as atomic. Having the
PageWrite event write the individual pages to a shadow disk also allows us to
model fault tolerance quite easily. We add an AbortWrite event that clears all
the control and shadow information for a file write but does not update the disk:

Event AbortWrite =̂
any f where

grd1 : f ∈ StartWrite

then
act1 : StartWrite := StartWrite \ {f}
act2 : writebuf := {f} �− writebuf
act3 : sdsk := {f} �− sdsk
act4 : PageWrite := {f} �− PageWrite

end



28 M. Butler

This event refines skip since it does not modify the dsk variable that appears
in the abstract model. Thus the effect of an abort, which can happen after any
number of pages are written, is to leave the disk in the state it was in before the
file write process started (for the file f).

It is instructive to compare an event trace of the abstract file model with a
corresponding trace of the refinement file model. The following trace represents
a behaviour in which the contents c2 is written to file f2 and then the contents
c1 is written to file f1:

〈 Write.f2.c2, Write.f1.c1 〉

Each of these high-level events is realised by several new events (StartWrite,
PageWrite etc). The sub-events of one high-level write may interleave with
those of the other high-level event. For example, the following event trace of the
refined model illustrates this (the events that directly refine an abstract event
are highlighted in bold):

〈 StartWrite.f1.c1, PageWrite.f1.p1.c1(p1),
StartWrite.f2.c2, PageWrite.f1.p2.c1(p2),
PageWrite.f2.p1.c2(p1), PageWrite.f2.p2.c2(p2),
EndWrite.f2.c2, PageWrite.f1.p3.c1(p3), EndWrite.f1.c1 〉

This illustrates a scenario in which writing to file f1 is started before writing to
f2 is started but writing of file f2 finishes before writing of file f1.

To recap, we have decomposed the atomicity of the abstract Write event by
introducing the new events StartWrite, PageWrite and AbortWrite and by
refining the Write event with the EndWrite event. Formally, the new events
have no connection to the abstract Write event, only the EndWrite has a for-
mal connection. However, the event refinement diagram of Fig. 4 describes the
intended purpose of the new events which is to represent the intermediate steps
of the file write process that lead to a state where the EndWrite is enabled.
The diagram also plays another role in that it defines the control behaviour of
all the events constituting the write process and this was encoded in Event-B
in a systematic way, i.e., introducing the StartWrite and PageWrite control
variables. The additional modelling elements provided, writebuf and sdsk, were
required in order to model abstractly the effect of the various events and their
introduction was based on modelling judgement.

4 Decomposing Machines

In this section, we describe a parallel composition operator for machines. The
parallel composition of machines M and N is written M ‖ N . Machines M
and N must not have any common state variables. Instead they interact by
synchronising over shared events (i.e., events with common names). They may
also pass values on synchronisation. We look first at basic parallel composition
and later look at parallel composition with shared parameters. We show how the



Decomposition Structures for Event-B 29

composition operator may be applied in reverse in order to decompose system
models into subsystem models.

In general, an event has the form

any x where G then S end

where x is a list of event parameters, G is a list of guards (implicitly conjoined)
and S is a list of actions on the machine variables (implicitly simultaneous). We
write G ∧ H to join two lists of guards and S ‖ T to join two lists of actions.

To achieve the synchronisation effect between machines, shared events from
M and N are ‘fused’ using a parallel operator for events. Assume that m (resp.
n) represents the state variables of machine M (resp. N). Variables m and n are
disjoint. The parallel operator for events is defined as follows:

ev1 = any y where G(y, m) then S(y, m) end

ev2 = any z where H(z, n) then T (z, n) end

ev1 ‖ ev2 =̂ any y, z where
G(y, m) ∧ H(z, n)

then
S(y, m) ‖ T (z, n)

end

The parallel operator models simultaneous execution of the actions of the events
and the composite event is enabled exactly when both component events are
enabled. This models synchronisation: the composite system engages in a joint
event when both systems are willing to engage in that event. The parallel com-
position of machines M and N is a machine constructed by fusing shared events
of M and N and leaving independent events independent. The state variables
of the composite system M ‖ N are simply the union of the variables of M
and N .

As an illustration of this, consider machines V 1 and W1 of Fig. 5. The ma-
chines work on independent variables v and w respectively. Both machines have
an event labelled B and to compose these machines we fuse their respective B
events. The composition of both machines is shown in Fig. 6. The A event and
C event of V W1 come directly from V 1 and W1 respectively as they are not
joint events rather they are independent events. The B event is a joint event and
is defined as the fusion of the B-events of V 1 and W2. The initialisations of V 1
and W1 are also combined to form the initialisation of V W1. The joint B event
simultaneously decreases v while increasing w, provided v > 0 and w < N .

We have presented V W1 as having been formed from the composition of V 1
and W1. We can view the relationship between these machines in another way.
Let us suppose we had started with V W1 and decided that we wish to decompose



30 M. Butler

Fig. 5. Machines to be composed in parallel

it into subsystems. The diagram in Fig. 7(a) illustrates the dependencies be-
tween events and variables in the machine V W1. For example, the line from the
box indicating event A to the oval indicating variable v represents the fact that
event A depends on v, i.e., it may read from and assign to v. The diagram shows
that B is the only event that depends on both v and w suggesting that B needs
to be a shared event if we are to partition v and w into separate subsystems.
This decomposition is illustrated in Fig. 7(b) where variables v and w of V W1
are partitioned into subsystems V 1 and W1 respectively, A is an event of sub-
system V 1, C is an event of subsystem W1 and B is an event shared by both
subsystems.

The B event of system V W1 is partitioned into two parts, one of which will
belong in W1 and the other in W1. The B event has an important characteristic
that allows it to be partitioned in this way. The guards and actions depend either
on v or on w but not both. So, guard grd1 and action act1 both depend on v
only, while guard grd2 and action act2 both depend on w. This localisation of
variable dependency allows us to easily partition the guards and actions of the
B event of V W1 into the separate B events of V 1 and W1 respectively.

We extend the fusion operator to deal with shared event parameters. Events to
be fused must depend on disjoint machine variables but they may have common
parameters and these common parameters are treated as joint parameters in the
fused event. In the following, x represents parameters that are joint across events
and y and z are local to their respective events:

ev1 = any x, y where G(x, y, m) then S(x, y, m) end

ev2 = any x, z where H(x, z, n) then T (x, z, n) end



Decomposition Structures for Event-B 31

Fig. 6. Composition of V 1 and V 2

ev1 ‖ ev2 =̂ any x, y, z where
G(x, y, m) ∧ H(x, z, n)

then
S(x, y, m) ‖ T (x, z, n)

end

We illustrate the use of shared parameters by extending the V W1 machine
slightly. Assume that instead of increasing v and decreasing w by 1 in the
B event, we modify both v and w by a value i. To do this we give the B event
a parameter i which is used to modify the variables as follows:

Event B =̂
any i where

grd1 : 0 ≤ i ≤ v
grd2 : w < N

then
act1 : v := v − i
act2 : w := w + i

end



32 M. Butler

(a) Variable access by events in V W

(b) Split events and variables

Fig. 7. Illustration of decomposition a machine

Now we partition the guards and events of B into those that depend on v and
those that depend on w giving the following events:

Event B =̂
any i where

grd1 : 0 ≤ i ≤ v
then

act1 : v := v − i
end

Event B =̂
any i where

grd1 : i ∈ Z

grd2 : w < N
then

act1 : w := w + i
end

The shared parameter i means that both of these events will agree on the
amount by which v and w are respectively decreased and increased. In the left
hand sub-event, the guard grd1 constraints the value of the parameter based in
the state variable v. In the right-hand sub-event, the value of i is not constrained
other than a typing guard (i ∈ Z). This means that the left-hand sub-event can
be viewed as outputting the value i while the right-hand sub-event accepts the
value i as an input.

When we decompose a system into parallel subsystems, the subsystems may
be refined and further decomposed independently. This is a major methodolog-
ical benefit, helping to modularise the design and proof effort. The semantic
justification for this is outlined in [5].

5 Incremental Development of a Distributed File Transfer

In this section we outline an incremental development of a simple system for
copying a file from one location to another. The development makes use of event



Decomposition Structures for Event-B 33

Fig. 8. Decomposition with asynchronous middleware

decomposition and machine decomposition. We start with an abstract model in
which the file copy occurs in one atomic step. We then refine this by a model in
which the contents of the file is copied one page at a time. The refined model
is then decomposed into subsystems. Instead of decomposing into two subsys-
tems that synchronise with each other, we decompose into three subsystems as
illustrated in Fig. 8. In this decomposition the two agents do not synchronise
directly with each other. Instead they interact indirectly through a middleware
subsystem. Each agent synchronises directly and separately with the middleware
and this will be used to model asynchronous communication between the agents.
This form of asynchronous communication via middleware can be used to model
many distributed systems that are based on message passing. In order to be able
to decompose in this way, we will need to apply refinement steps that enable the
agents to be decomposed into asynchronous subsystems.

5.1 Abstract Model

The model makes use of the types PAGE and DATA respectively. A file is mod-
elled as a partial function from pages to data. Machine F1 defines the abstract
behaviour of the file transfer system. It contains two variables fileA, represent-
ing the contents of the file at the sending side, and fileB representing the value
of the file at the receiving side:

Machine F1
Variables fileA , fileB
Invariants

inv1 : fileA ∈ PAGE �→ DATA
inv2 : fileB ∈ PAGE �→ DATA

The abstract machine has one event that simply copies the contents of fileA to
fileB in one atomic step:

Event CopyFile =̂
begin

act1 : fileB := fileA

end



34 M. Butler

Fig. 9. Refining atomicity of the CopyF ile event

5.2 Breaking Atomicity

The atomicity of the CopyF ile event is decomposed in the same way in which
the atomicity of the Write event was decomposed in Section 2. This is illustrated
in Fig. 9. We introduce control variables based on this diagram as well as a buffer
buf in which pages are written one at a time by the CopyPage event. Further
details of this refinement may be found in [5].

5.3 Split Events to A Side and B Side

Before decomposing the file transfer system into three subsystems, we must first
split some events into an A-part, representing behaviour on the sending side,
and a B-part, representing behaviour on the receiving side. This is illustrated
by the diagram in Fig. 10 which shows that the Start event is decomposed
into StartA and StartB. The StartA event represents the sending side deciding
to commence the transfer while the subsequent StartB event represents the
receiving side recognising that the transfer has commenced. The StartA event
will set a flag StartA to TRUE while the StartB event will set a flag StartB
to TRUE provided StartA is true. The CopyPage event is decomposed into
separate A and B parts in a similar way. We assume that the sending side will
send the size of the file at the start so that the receiving side can know when all
the pages have been received. This means that the sending side does not need
to send a finish message so we need a Finish event on the receiving side only.

The event refinement diagram in Fig. 10 provides a hierarchical overview of
the major refinement steps involved in this development so far. The top level
corresponds to the abstract atomic event, the intermediate level corresponds to
the first refinement where the atomicity of the copy is decomposed and the third
level of the hierarchy shows how events are split into two parts for sender and
receiver.

5.4 Introduce Message Variables

Now consider again the StartB event just outlined. Our intention is that this
is an event of the receiving side so we wish to make it an event of the receiver
subsystem. This means it should not refer to variables of the sending side directly
since we are aiming at an asynchronous decomposition. However the StartB



Decomposition Structures for Event-B 35

Fig. 10. Splitting events into sender and receiver parts

event does refer to variables of the sending side: for example it refers to the
StartA control variable.

To break this dependency on variables of the sending side in events of the
receiving side, we introduce variables that duplicate the variables of the sending
side, e.g., StartM and CopyPageM . These duplicate variables will be sepa-
rated into a middleware machine (Fig. 8) and become abstract representations
of messages in transit in the middleware.

5.5 Separate Machines

The previous model is decomposed into three separate machines representing
three subsystems as illustrated in Fig. 8. The three machines are:

– machine mA1 representing a model of the sending agent
– machine mB1 representing a model of the receiving agent
– machine mM1 representing a model of the middleware through which the

sender and receiver interact.

The variables of the previous model are partitioned amongst the three machines.
The sender interacts with the middleware through synchronisation over actions
(StartA and CopyPageA). Similarly, the receiver interacts with the middleware
through synchronisation over actions (StartB and CopyPageB). There is no
direct interaction between the sender and receiver - all communication is via the
middleware machine.

Fig. 11 provides an architectural overview of the decomposition illustrating
how the variables and events are distributed amongst the subsystems. The vari-
ables allocated to each subsystem are listed in italic in the relevant box for that
subsystem, e.g., the sender subsystem contains the variables fileA, StartA etc.
The smaller labelled boxes indicate the synchronised shared events. For example,
the StartA event is shared between the sender and the middleware representing
a synchronised interaction between these subsystems.

See [5] for further details of how the event specifications are decomposed into
the separate syntactic components in order to decompose the model. [5] also



36 M. Butler

Fig. 11. Architectural illustration of decomposition

outlines how the abstract model of the middleware may be refined further so
that more explicit datatypes representing messages are introduced reflecting the
usual interface to a communications middleware.

6 More about Event Refinement Diagrams

In the event refinement diagrams shown so far, the refining event is always the
final step of an event decomposition. For example, in Fig. 2, the refined Out(N)
event is the final step in the decomposition of the abstract Out(N) event. It is
not a requirement that the refining event always be the final event of a decompo-
sition. Fig. 12 shows an event refinement diagram for an update of a replicated
database in which the refining event is followed by further new events. This
diagram is based on the structure of a refinement presented in [11] (although
event refinement diagrams are not used in [11]). The outline of this development
is as follows. The abstract machine models a single database. The refined ma-
chine models a set of sites each of which holds its own copy of the database.
In the abstract machine, an update of the database is a simple atomic event.
The refinement uses a two-phase commit protocol (with precommit then commit
phases) to ensure a consistent distributed update transaction. The phasing is
represented in Fig. 12. Once an update transaction t is started, each site s inde-
pendently precommits to the transaction (which locks all the database objects
involved in the transaction). Once all sites have precommitted, the transaction
is globally committed by a coordinator. The GlobalCommit refines the abstract
Update since a global decision has been made to update all copies of the database.
After the global commit, each site s locally commits its copy of the database
independently (and releases any objects locked by its precommit).

In this paper we have avoided providing a systematic definition of event re-
finement diagrams and their translation to Event-B. The reason for this is simply
that the concepts are not fully mature at the time of writing. It may be that
a complete set of translation rules is not appropriate and that instead a com-
mon set of patterns can be identified and translations provided for those. The
diagrams seem to be a promising way of representing reusable patterns of event



Decomposition Structures for Event-B 37

Fig. 12. Event refinement diagram for replicated database update

decomposition. They are abstract and visual and humans are good are recog-
nising visual patterns. This is one reason why we have avoided cluttering the
diagrams too much with, for example, event guard. Too much clutter may make
patterns appear less general.

Our initial exploration of JSD structure diagrams as a means of representing
the structure of atomicity decomposition was influenced by the work of Ball [4]
on the use of KAOS [6] goal diagrams for a similar purpose. Our event refinement
diagrams are different in construction to the refinement diagrams developed by
Back [3]. Back’s diagrams expose the containment and refinement relationships
between general components and subcomponents. In Back’s diagrams, enclosing
components may be replicated in order to simultaneously illustrate refinements
between subcomponents and between enclosing components. In our diagrams
the higher level events can be viewed as enclosing components and these only
appear once at the top level. Back’s diagrams are neutral with respect to the
operator used to compose components. In our diagrams the operators (sequential
and parallel) are built in.

7 Concluding

We have outlined techniques for atomicity decomposition and machine decom-
position. The atomicity decomposition technique uses the standard Event-B re-
finement rule together with event refinement diagrams to provide an explicit
representation of the the sequencing of sub-events and the refinement relation-
ships involved. These diagrams provide a systematic means of introducing control
structure in an incremental manner through diagram hierarchy. They provide a
useful hierarchical overview of multiple refinement steps. They provide a conve-
nient mechanism for exploring several levels of event decomposition in advance
of construction of the appropriate Event-B refinements. They also appear to pro-
vide a convenient way of representing reusable patterns of event refinements. The
machine decomposition technique is based on synchronisation between machines
over shared events with asynchronous decomposition as a special case involv-
ing an explicit representation of an asynchronous communications medium. The



38 M. Butler

decomposition approach supports independent refinement and decomposition of
sub-machines. Together, the event decomposition and machine decomposition
techniques augment Event-B by making the application of refinement more sys-
tematic and scalable then the standard refinement rules on their own.

Acknowledgements. The work described here is part of the EU research
project ICT 214158 DEPLOY (Industrial deployment of system engineering
methods providing high dependability and productivity) www.deploy-project.eu.

References

1. Abrial, J.-R.: The B-Book: Assigning programs to meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2008)

3. Back, R.-J.: Refinement diagrams. In: Morris, J.M., Shaw, R.C. (eds.) Proceedings
of the 4th Refinement Workshop, Cambridge, UK, Jan 1991, pp. 125–137. Springer,
Heidelberg (1991)

4. Ball, E.: An Incremental Process for the Development of Multi-agent Systems in
Event-B, PhD thesis, University of Southampton (August 2008),
http://eprints.ecs.soton.ac.uk/16575/

5. Butler, M.: Incremental design of distributed systems with Event-B. Marktoberdorf
Summer School 2008 Lecture Notes (November 2008)

6. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1-2), 3–50 (1993)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

8. Jackson, M.A.: System Development. Prentice-Hall, Englewood Cliffs (1983)
9. Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Prentice Hall

International, Englewood Cliffs (1990)
10. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall Inter-

national Series in Computer Science (1992)
11. Yadav, D.S., Butler, M.J.: Formal development of fault tolerant transactions for a

replicated database using ordered broadcasts. In: Methods, Models and Tools for
Fault Tolerance (MeMoT 2007), May 2007, pp. 33–42 (2007)

http://eprints.ecs.soton.ac.uk/16575/


Taming the Unbounded for Hardware Synthesis

Byron Cook

Microsoft Research Cambridge

Abstract. The difficulty with compiling software to hardware is one of
finding a priori bounds on the potentially unbounded resources used by
programs: memory and time. New approaches now allow us to synthesize
bounds on these resources, leading to new high-level hardware synthesis
tools.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, p. 39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Verifying UML/OCL Operation Contracts

Jordi Cabot�, Robert Clarisó, and Daniel Riera

Universitat Oberta de Catalunya, Spain
{jcabot,rclariso,drierat}@uoc.edu

Abstract. In current model-driven development approaches, software
models are the primary artifacts of the development process. Therefore,
assessment of their correctness is a key issue to ensure the quality of the
final application. Research on model consistency has focused mostly on
the models’ static aspects. Instead, this paper addresses the verification
of their dynamic aspects, expressed as a set of operations defined by
means of pre/postcondition contracts.

This paper presents an automatic method based on Constraint Pro-
gramming to verify UML models extended with OCL constraints and
operation contracts. In our approach, both static and dynamic aspects
are translated into a Constraint Satisfaction Problem. Then, compliance
of the operations with respect to several correctness properties such as
operation executability or determinism are formally verified.

1 Introduction

In recent years, Model Driven Development (MDD) is gaining attention due
to its promise to increase productivity in developing, documenting, and main-
taining software systems. MDD emphasizes the use of models during the whole
development process and thus the correctness of a model becomes a major issue:
model defects will directly become implementation defects in the final software
system due to the application of code-generation techniques. Unfortunately, pop-
ular modeling notations (UML [5] being the most widely used) are not formal
enough to directly prove the correctness of the software models. Therefore, a set
of model-level verification techniques are needed to ensure the quality of soft-
ware model specifications. Each technique can address a variety of correctness
properties and goals depending on which type of models it is analyzing.

In particular, this paper presents a new method for the verification of the
behavioural aspects of software models defined using the design by contract ap-
proach [20], where each operation is defined by means of a contract consisting
of a precondition (set of conditions on the operation input) and a postcondition
(conditions to be satisfied at the end of the operation). In conceptual modeling,
this is also known as the declarative specification of an operation, in contrast
to imperative specifications where the set of updates produced by the operation
on the system state is explicitly defined. Our goal will be detecting defects in
� Work partly supported by the Ministerio de Educación y Ciencia, FEDER under

project TIN208-00444/TIN, Grupo Consolidado and UOC-IN3 research grant.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 40–55, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Verifying UML/OCL Operation Contracts 41

Fig. 1. Overall picture of the process

the definition of the operation (e.g. potential inconsistent interactions with in-
tegrity constraints) rather than checking whether an implementation fulfills the
pre/postconditions. This is an extension of our previous work [9, 19] which fo-
cused only on reasoning on integrity constraints without considering operations.

The goal of this paper is twofold. First, we present a set of “reasonable”
correctness criteria that any operation should fulfill. For example, we will try to
check if a precondition is so strong that it cannot be satisfied by any state that
fulfills the integrity constraints (e.g. a precondition “a ≥ 5” when the model
includes the constraint “a ≤ 3” is clearly unsatisfiable). Designers can select
their preferred set of criteria among the predefined set of properties we propose.

Second, we provide a method for verifying these properties on UML/OCL
models. Without loss of generality, we will assume that our input model is a UML
class diagram, annotated with integrity constraints, and pre/postconditions writ-
ten in the Object Constraint Language (OCL) [15]. Our choice is based on the
wide adoption of the UML and it high-level modeling constructs, although many
concepts of this work are applicable to other modeling languages as well.

The verification will be driven by the discovery of examples/counterexamples.
First, the designer selects the criteria to be checked. The model, the integrity
constraints, the correctness criteria and the pre/postconditions will be trans-
formed into a Constraint Satisfaction Problem (CSP) [2, 14] that can be solved
by current Constraint Programming solvers. The solution of the CSP, if there is
one, will be an example or counterexample that proves the criteria being ana-
lyzed. The example is given to the designer as a valuable feedback in the form of
an object diagram (so that he/she can understand it). Our UMLtoCSP tool [19]
will be used to automate the process (see Figure 1).

The rest of the paper is structured as follows. Section 2 introduces OCL
concepts. Section 3 presents our correctness properties and Section 4 their veri-
fication with constraint programming. Tool support is commented in section 5.
Section 6 discusses related work and Section 7 draws some conclusions.

2 Declarative Operations in OCL: Basic Concepts

OCL is a formal high-level language used to describe properties on UML models.
It admits several powerful constructs like quantified iterators (forAll, exists) and
operations over collections of objects (union, select, includes, . . . ). The pattern
for specifying a declarative operation op in OCL is the following:



42 J. Cabot, R. Clarisó, and D. Riera

context TypeName::op(p1: Type1, . . . , pN: TypeN): ResultType
pre: Boolean expression (the precondition)
post: Boolean expression (the postcondition)

Operations are always defined in the context of a specific type of the model.
The pre and post clauses are used to express the preconditions and postcon-
ditions of the operation contract. In the boolean expressions, the implicit pa-
rameter self refers to the instance of the TypeName on which the operation is
applied. Another predefined parameter, result, denotes the return value of the
operation if there is one. The dot notation is used to access the attributes of
an object or to navigate from that object to the associated objects in a related
type. The value of an accessed attribute or role in a postcondition is the value
upon completion of the operation. To refer to the value of that property at the
start of the operation, one has to postfix the property name with the keyword
@pre.

As an example consider the diagram of Fig. 2 aimed at representing a set
of web portals for selling the products of a company to a group of registered
customers, some of them classified as gold customers. The model includes two

context Product inv minStock: self.stock ≥ 5

context GoldCustomer inv salesAmount:
self.sale −>select(s | s.paid).cost −>sum() ≥ 100000

context Customer::newCustomer(name:String, p: Portal): Customer
post: result.oclIsNew() and result.name=name and result.portal=p

context Sale::addSaleLine(p: Product, quantity: Integer): SaleLine
pre: p.stock > 0
post: result.oclIsNew() and result.sale=self and result.product=p and

result.quantity=quantity and p.stock=p.stock@pre-quantity and
self.amount=self.amount@pre + quantity*p.price

context Portal::removeGoldCategory(c: Customer)
pre: c.oclIsTypeOf(GoldCustomer) and c.sale−>isEmpty()
post: not c.oclIsTypeOf(GoldCustomer)

Fig. 2. Running example: class diagram, OCL constraints and operations



Verifying UML/OCL Operation Contracts 43

textual integrity constraints and three operations. The invariant minStock en-
sures that all products have a stock of at least five units, while salesAmount
imposes that gold customers must have paid a minimum amount of 100000 eu-
ros in sales. Regarding the operations, newCustomer and addSaleLine create a
new customer and a new sale line in a sale, respectively. In OCL, the creation
of an object is indicated with the operation oclIsNew. Operation addSaleLine
also updates the stock of the product and the total amount of the sale. The
operator @pre in p.stock=p.stock@pre - quantity indicates that the stock of the
product has been decreased by quantity units with respect to the previous value.
RemoveGoldCustomer converts a gold customer with no sales into a plain one.

3 List of Correctness Properties

Pre and postconditions of declarative operations must be defined accurately,
taking into account the possible interactions with the integrity constraints. For
instance, preconditions which are too strong may prohibit the execution of an
operation altogether (since none of the valid states of the system can satisfy the
precondition). This section presents a list of properties to determine whether pre
and postconditions are correctly defined.

In the definition of the correctness properties, we will use the following nota-
tion. Given a model M , let S denote a snapshot of M , i.e. a possible instantiation
of the types defined in M . A snapshot S will be called legal, denoted as Inv[S], if
it satisfies all integrity constraints of M , including all textual OCL constraints.

Given a declarative operation op, Preop[o, P, S] denotes that the precondition
of op holds when it is invoked over an object o of an snapshot S using the values
in P as argument values for the list of parameters of op. For the sake of clarity,
we will assume that o is passed as an additional parameter in P , e.g. the first
one, expressing then the preconditions simply as: Preop[P, S]. S and P will be
referred collectively as the input of the operation.

To evaluate the postcondition, we also need to consider the return value and
the snapshot after executing the operation (considering new/deleted objects and
links, updated attribute values, etc.). The final snapshot and the return value
will be referred as the output of the operation. Then, Postop[P, S � S′, R] will
denote that the postcondition of operation op holds when S is the snapshot
before executing the operation, S′ is the snapshot after executing it, P is the
list of parameters and R is the return value.

According to this notation, the list of properties is defined as follows:

– Applicability: An operation op is applicable if the precondition is satisfi-
able, i.e. if there is an input where the precondition evaluates to true.

∃S : ∃P : Inv[S] ∧ Preop[P, S]

– Redundant precondition: The precondition of an operation op is redun-
dant if it is true for any legal input.

(∃S : Inv[S]) ∧ (∀S : ∀P : Inv[S] → Preop[P, S])



44 J. Cabot, R. Clarisó, and D. Riera

– Weak executability: An operation op is weakly executable if the postcondi-
tion is satisfiable, that is, if there is a legal input satisfying the precondition
for which we can find a legal output satisfying the postcondition.

∃S, S′ : ∃P : ∃R : Inv[S] ∧ Inv[S′] ∧ Preop[P, S] ∧ Postop[P, S � S′, R]

– Strong executability: An operation op is strongly executable if, for every
legal input satisfying the precondition, there is a legal output that satisfies
the postcondition.

∀S : ∀P : ∃S′ : ∃R : (Inv[S] ∧ Preop[P, S]) → (Inv[S′] ∧ Postop[P, S �S′, R])

– Correctness preserving: An operation op is correctness preserving if,
given a legal input, each possible output satisfying the postcondition is also
legal.

∀S, S′ : ∀P : ∀R : (Inv[S] ∧ Preop[P, S]) → (Postop[P, S �S′, R] → Inv[S′])

– Immutability: An operation op is immutable if, for some input, it is possible
to execute the operation without modifying the initial snapshot.

∃S : ∃P : ∃R : Inv[S] ∧ Preop[P, S] ∧ Postop[P, S � S, R]

– Determinism: An operation op is non-deterministic if there is a legal input
that can produce two different legal outputs, e.g. different result values or
different final snapshots.

∃S, S′
1, S

′
2 : ∃P : ∃R1, R2 : Inv[S] ∧ Inv[S′

1] ∧ Inv[S′
2] ∧ Preop[P, S] ∧

Postop[P, S � S′
1, R1] ∧ Postop[P, S � S′

2, R2] ∧
( (S′

1 �= S′
2) ∨ (R1 �= R2) )

Studying these properties in the running example, we have, for instance, that
the precondition of addSaleLine is redundant since it is subsumed by the integrity
constraint minStock. Also, addSaleLine is weakly executable but not strongly ex-
ecutable: for those states where p.stock-quantity<5 the final state will violate
the invariant minStock. The precondition of removeGoldCategory is not appli-
cable since constraint salesAmount forces all gold customers to be related to
at least a sale. Finally, newCustomer is strongly executable but not correctness
preserving as it might create a gold customer (instead of a plain one) with no
sales, violating salesAmount.

It is important to remark that, in general, designers define underspecified
postconditions [20]. This means that, given an operation contract, there are
usually several final states that satisfy its postcondition. Therefore, most oper-
ation contracts will be flagged by our analysis as non-deterministic. To improve
the accuracy of the results, designers may want to provide postconditions which
are precise enough to characterize the exact set of desired final states. For ba-
sic postcondition expressions, an educated guess of the designer’s intention can
be inferred by analyzing the initial ambiguous postcondition [6,8], and thus, it
would be possible to automatically generate a set of additional conditions to
define more precisely the desired final state. This is left as further work.



Verifying UML/OCL Operation Contracts 45

4 Verifying Operations with Constraint Programming

This section presents a systematic and automatic procedure to verify correctness
properties of operation contracts using the constraint programming paradigm.

Constraint programming [2, 14] is a declarative approach for describing and
solving problems. A problem in constraint programming, called constraint sat-
isfaction problem (CSP), is defined as a finite set of variables, domains (one
per variable) and constraints over the variables. A solution to a CSP is an as-
signment of values to variables that satisfies all constraints, with each value
within the domain of the variable. Constraint programming solvers use efficient
backtracking-based techniques to automatically explore the search space and
find solutions to the CSP. To ensure termination, the search space must be fi-
nite, thus, all variable domains must be finite.

The key idea of our approach is to translate the model, together with its
integrity constraints, the desired correctness property and the operation to verify,
into a CSP such that by checking whether the generated CSP has a solution
we can determine if the operation satisfies the property. Both the translation
procedure and the search of a solution for the CSP (performed using existing
CSP solvers) are completely automatic and, therefore, all the verification process
is transparent to the designer.

In short, with our translation procedure, the set of variables in the generated
CSP characterize a possible snapshot of the model, i.e. the variable values rep-
resent the objects of the snapshot, their attributes values, their relations, etc.
Its constraints ensure that the variable values (i.e. the snapshot) are consistent
with the implicit structural UML constraints (e.g. all objects in a subtype must
be also instance of its supertype), graphical constraints (e.g. multiplicities) and
textual OCL constraints. Pre and postconditions of operations and correctness
properties are translated as additional constraints.

Given this set of variables, domains and constraints, the final CSP is orga-
nized as a sequence of subproblems to be solved by the constraint solver in order
to find a solution for the CSP, and thus, prove the desired correctness property.
The exact combination of these subproblems in the CSP depends on the chosen
property. For properties regarding the operation precondition, the resolution of
the CSP first searches for a legal snapshot which satisfies the operation precon-
dition (this, for instance, proves the applicability of the operation). If no solution

Fig. 3. Analysis of the weak executabiliy property



46 J. Cabot, R. Clarisó, and D. Riera

is found, the solver concludes that the property is not satisfied. For properties
involving postconditions, once we have a legal instance that satisfies the pre-
condition, the solver must search for a second legal snapshot that satisfies the
postcondition (see Figure 3). As we will see, for some properties we will search
for solutions that falsify the pre/postcondition expressions instead.

The following subsections explain the encoding of the UML class diagram, the
OCL constraints and the operations’ pre and postconditions in the CSP and how
they are combined, depending on the selected correctness property, to generate
the final CSP that will be used to prove the property. The first two steps are a
short summary of our previous work [9].

Without loss of generality, in our presentation we use the Prolog-based CSP
formalism used by the constraint solver ECLiPSe [2]. Due to space limitations,
only some translation excerpts can be shown. The full translation for our running
example can be found in [19].

4.1 Translation of the UML Class Diagram

A class diagram consists of a set of classes, associations and generalisation sets.
Each element must be translated into a corresponding set of variables, domains
and constraints in the CSP. Appropriate domains for each variable can be provided
by the designer as part of the translation process or default values can be used.

For each class C, our translation creates a SizeC variable to record the number
of instances of C in the snapshot, a list variable InstancesC to hold the C
instances, where each element in the list is of type struct(C) = (oid, f1, . . . , fn),
where: oid represents the explicit object identifier for each object and each field
fi corresponds to an attribute of C.

Similarly, for each association As the translation creates a SizeAS variable to
record the number of links (i.e. association instances) in As and a list variable
InstancesAs to store the links, where each element is of type struct(As) =
(p1, . . . , pn), where p1 . . . pn are the role names of the participant classes. Each
concrete participant is identified by its oid.

Generalizations do not imply the definition of new variables but of new con-
straints among the classes involved in the generalisation set. Additional con-
straints to control the cardinality constraints or the uniqueness of oid values,
among others, are also defined in the CSP.

4.2 Translation of OCL Invariants

Each OCL integrity constraint (invariants in the UML terminology) results in
a new constraint in the CSP that restricts the possible assignment of values to
the CSP variables, i.e. it limits the possible set of legal snapshots of the model.

OCL invariants are boolean OCL expressions defined in the context of a spe-
cific type of the model and that must be satisfied by all instances of that type,
in other words, the invariant is universally quantified over the objects of the
type. Therefore, the translation must ensure that the boolean condition of the
invariant (its body) is satisfied by each individual object, i.e. by each possible



Verifying UML/OCL Operation Contracts 47

invariantMinStock(Snapshot) : −
% Get the list of Objects in Snapshot of type Product

getObjects(Snapshot, ‘‘Product’’, Objects),

( foreach(Object, Objects) do % Iterate over all objects

% Evaluate the invariant expression using this object as ‘‘self’’

evalRootMinStock(Snapshot, [Object], Result),

% The invariant must evaluate to true

Result #=1).

evalRootMinStock( Snapshot, Vars, Result ) :-

attribStock( Snapshot, Vars, X ), % X = attrib value

const5( Snapshot, Vars, Y ), % Y = constant

#>=(X, Y, Result). % Result = X >= Y

const5( , , Result ):- Result #= 5.

Fig. 4. Translation of the invariant minStock (top) and some subexpressions (bottom)

value of the self variable. For instance, the invariant minStock (context Prod-
uct inv minStock: self.stock ≥ 5) would be translated1 into the rule depicted
in Figure 4. This rule fails when the given snapshot contains a product with a
too low stock. An auxiliary rule, evalRootMinStock, is responsible for checking
this condition body on each object. The failure of the rule determines that the
snapshot is not legal, and thus, forces the solver to backtrack and try a different
combination of variable assignments.

The translation of the body conditions proceeds as follows. The OCL body
expression is analyzed using a metamodel-based representation of the expres-
sion where each element (operator, variable, constant, method call, . . . ) is au-
tomatically defined as instance of the appropriate class in the OCL metamodel.
Intuitively, an instance of the OCL metamodel for an OCL expression is the
equivalent of an annotated syntax tree for the expression. Internal nodes corre-
spond to operators, while the leaves of the tree are constants and variables. The
information annotated on each node depends on its type as, for instance, the
specific OCL operator, the value of the constant or the identifier of a variable.

The transformation of an OCL expression tree into an ECLiPSe CSP is per-
formed by traversing the tree in postorder and translating each visited node into
one Prolog rule with an unique name. For instance, in the invariant minStock,
evalRootMinStock refers to the rule created for the topmost node of the minStock
invariant body expression. Therefore, the transformation can be fully character-
ized by describing the Prolog rule that corresponds to each type of node in the
OCL metamodel.
1 To favour the readability of the rules some technical details are omitted.



48 J. Cabot, R. Clarisó, and D. Riera

Prolog rules for OCL expressions follow the pattern:

rule-name( Snapshot, Variables, Result ) :- rule-body.

where rule-name is the unique name of the rule, Snapshot and Variables
are the input arguments and Result stores the output of the expression. Intu-
itively, Snapshot is the snapshot of the model where the expression is evaluated.
Variables is the list of variables visible in the scope of the expression, e.g. the
self variable and variables introduced by previous quantifiers due to iterator
expressions like forAll. In the rule-body we specify the sequence of predicates
that describe the relationship between the inputs and the output. A typical body
evaluates the subexpressions (using their Prolog rule) and computes the output
from those intermediate results.

As an example, let us consider the body of the invariant minStock (self.stock
≥ 5), which contains four subexpressions: a variable (self), an attribute access
(stock), a constant (5) and a relational operator (≥). The rules for the last two
expressions are depicted in Figure 4 (see [9, 19] for more examples). For more
complex OCL operators and iterator expressions we have already implemented a
parametrized library of Prolog rules (available in [19]) that maps the semantics
of each predefined OCL construct.

4.3 Translation of OCL Operation Contracts

Operations introduce new challenges in this translation: the list of parameters
of the operation, the result value, and the complexity of studying two snapshots
at once when analyzing postconditions.

Translation of preconditions. The boolean OCL expression of a precondi-
tion is basically translated following the same procedure explained above for
the translation of invariant bodies. However, there are two differences regarding
how and when the precondition expression is evaluated: the parameters and the
quantification.

In the analysis of a precondition, it is necessary to consider the possible
value of the operation parameters. For parameters of a basic type (integer, float,
boolean, string) designers must define their possible finite domain, for instance
defining a lower and upper bound. Parameters whose type is one of the classes
of the model (as the self parameter) can only refer to an object existing in
the snapshot, so their value is already constrained by the valid instances of the
snapshot where the operation is invoked. When evaluating a precondition, pa-
rameters become additional variables of the CSP, and their values are discovered
by the solver as a part of the search for a solution to the CSP. For instance, when
checking the applicability of an operation, the solver will automatically try sev-
eral possible combinations of parameter values until it finds a combination (if
any) that satisfies the Prolog rule generated for the precondition.

Contrary to invariants, properties on preconditions only require to find a sin-
gle combination of a valid state and a possible assignment for the operation



Verifying UML/OCL Operation Contracts 49

parameters that satisfy the precondition. Therefore, preconditions will be trans-
lated into a rule which simply evaluates the precondition body, invoking the rule
for the topmost operator. To ensure that the rules for the precondition body
have access to all parameter values during the rule evaluation, the list of visible
variables for these rules (second argument of the Prolog rule) is initialized with
the list of parameter values. In this way, accessing a parameter within the ex-
pression is equivalent to accessing any other variable: the rule only needs to be
aware of the position of each parameter in the variables list. As an example, the
precondition rule for addSaleLine will be defined as follows:

preconditionAddSaleLine(Snapshot, Parameters, Result) : −
% Result = truth value of evaluating the precondition

evalRootExpr(Snapshot, Parameters, Result).

where evalRootExpr represents the rule for the root node of the precondi-
tion expression. The output Result value, reporting whether the given input
(i.e. the self object plus the other parameters) satisfies the precondition, will
be used later on to determine the satisfaction of correctness properties for the
operation.

Translation of postconditions. Two new factors in the translation of post-
conditions are the return value and the relationship between the two snapshots
representing the initial and final states.

In our translation, the return value will simply become another variable in the
list of visible variables, just like self or the other parameters in the precondition.

Relationships between the initial and the final state are expressed by means
of the oclIsNew and, specially, the @pre OCL operators. OclIsNew highlights
that an object should exist in the final state but not in the initial one; and
@pre is used to retrieve the value of a subexpression in the initial state. Thus,
the Prolog implementation of these two operators needs to receive an additional
argument: the snapshot for the initial state. To avoid changing the general rule
pattern due to this extra argument, this initial state is stored in the global
variable initialstate. This variable will be conveniently accessed within the
subrules for these two operators. Translation of all other OCL operators in the
postcondition expression is not changed from previous translations steps. They
are just evaluated on the particular snapshot given as argument to their Prolog
rule, it does not matter if it represents the initial or the final state.

To sum up, the definition of the rule for the postcondition of the operation
addSaleLine is shown in Figure 5. The initialstate variable will then be used
in the rules evaluating oclIsNew and @pre nodes appearing in postcondition
expressions. We provide the rule for oclIsNew as an example in Figure 6. It
determines if the object with the Oid value given as an argument is an object
that did not exist before executing the operation.



50 J. Cabot, R. Clarisó, and D. Riera

:- local reference(initialstate).

postconditionAddSaleLine(InitialState, FinalState,

Parameters, RetValue, Result) : −
% Add the return value and parameters to the list of visible vars

append([RetValue], Parameters, Variables),

% Store the initial state, needed in oclIsNew and @pre nodes

setval(initialstate, InitialState),

% Result = truth value of evaluating the postcondition

evalRootExpr(FinalState, Variables, Result).

Fig. 5. Translation of the OCL postcondition of operation addSaleLine

ocl isNew(FinalState, Oid, TypeName, Result) :-

% Recover the initial state from the global variable

getval(initialstate, InitState),

% Get the list of objects before and after the operation

getObjects(InitState, TypeName, ObjectsBefore),

getObjects(FinalState, TypeName, ObjectsAfter),

% Check if Oid exists before/after the operation

existsObjectWithOid(ObjectsBefore, Oid, ExistsBefore),

existsObjectWithOid(ObjectsAfter, Oid, ExistsAfter),

% Result = ExistsAfter and not ExistsBefore

and( ExistsAfter, neg ExistsBefore, Result).

Fig. 6. Translation of the OCL operator oclIsNew

4.4 Translation of Correctness Properties

As a last step, each correctness property (or its negation) is translated as a new
CSP constraint restricting the result values returned by the pre and postcon-
dition rules such that finding a solution to the CSP with this new constraint
suffices to prove the property.

Whether to use the property or its negation depends on the quantification
used in the property formalization, existential or universal (see Section 3). Ex-
istentially quantified properties can be proved by finding an example, i.e. a case
where the property is satisfied. For example, applicability can be proved by find-
ing a legal input that satisfies the precondition. Universally quantified properties
can be disproved by finding a counterexample. For instance, redundancy can be
disproved by finding a legal snapshot that does not satisfy the precondition
Similarly, the lack of (counter)examples can be used to (dis)prove the property.



Verifying UML/OCL Operation Contracts 51

weakExecutabilityAddSaleLine(Example) :-

Example = [InitState, FinalState, Parameters, RetValue],

findInitialState(InitState, Parameters),

findFinalState(InitState, FinalState, Parameters, RetValue).

findInitialState(InitState, Parameters) :-

% Definition of variables, domains, graphical integrity constraints

% Textual integrity constraints

invariantMinStock(InitState), invariantSalesAmount(InitState),

% Precondition

preconditionAddSaleLine(InitState, Parameters, ResultOfPre),

ResultOfPre #= 1, % Weak executability

% Now find a solution satisfying all these constraints

labeling([InitState, Parameters]).

findFinalState(InitState, FinalState, Parameters, RetValue) :-

% Definition of variables, domains, graphical integrity constraints

% Textual integrity constraints

invariantMinStock(FinalState), invariantSalesAmount(FinalState),

% Postcondition

postconditionAddSaleLine(InitState, FinalState, Parameters,

RetValue, ResultOfPost),

ResultOfPost #= 1, % Weak executability

% Now find a solution satisfying all these constraints

labeling([FinalState, RetValue]).

Fig. 7. CSP generated for checking weak satisfiability of addSaleLine. The labeling
operator is a possible backtracking implementation offered by the constraint solver
that attempts to assign values to the given list of input variables. If the assignment
does not satisfy all the stated CSP constraints preceding the labeling, a new assignment
is tried until the solver finds a solution or determines that no solution exists.

The selected property also influences how the final CSP is organized as a com-
bination of the rule excerpts generated during the previuos translation steps. For
properties on preconditions, postcondition rules are not included. For properties
on postconditions, the CSP is split up into two subproblems (see Figure 3). The
first one (findInitialState) tries to find a legal snapshot that satisfies the pre-
condition rule. This initial snapshot is then given as an argument to the second
subproblem (findFinalState), in charge of finding a second legal snapshot satis-
fying (or not) the postcondition to prove the property. As an example, Figure 7
sketches the final CSP to determine whether addSaleLine is weakly executable.
Other properties imply adding new constraints/subproblems to the CSP. For
instance, immutability requires a new constraint imposing the equality between
the initial and final states.



52 J. Cabot, R. Clarisó, and D. Riera

5 Tool Support

The verification method presented in this paper is being implemented as an
extension of our UMLtoCSP tool [19]. Given an UML/OCL model and a cor-
rectness property P, the tool determines whether the model satisfies P and
shows graphically example snapshots that prove/disprove it. For instance, Fig. 8
shows the counterexample provided by UMLtoCSP when analyzing whether
addSaleLine is correctness preserving: there is a legal input (the snapshot on
the left satisfies the invariants and precondition) with an illegal output (the
snapshot on the right satisfies the postcondition but not the invariant min-
Stock as there are only 4 items of Product1). The translation from the model to
the CSP, the search of the counterexample snapshots and the graphical depic-
tion are performed automatically by UMLtoCSP. See [19] for more details and
examples.

Parameters: [Self=Sale1, Quantity=1, P=Product1], Return value = SaleLine2

Fig. 8. Counterexample proving that addSaleLine is not correctness preserving: initial
state (left), final state (right), parameter values and return value (top). The final state
violate the invariant minStock.

6 Related Work

Typically, approaches devoted to the verification of UML/OCL models (as [1,4,
7, 10, 13, 16, 17] or our own approach among others) transform the diagram into
a formalism where efficient solvers or theorem provers are available. However,
there are complexity and decidability issues to be considered. Reasoning on UML
class diagrams is EXPTIME-complete [3], and, when general OCL constraints
and/or operations are allowed, it becomes undecidable.



Verifying UML/OCL Operation Contracts 53

By choosing a particular formalism, each method commits to a different trade-
off (expressivity vs termination vs automation vs completeness) for the verifi-
cation process. In what follows we compare the features of methods supporting
the verification of declarative operations, a small subset of the ones listed above,
with this paper.

HOL-OCL [7] embeds OCL into the higher-order logic (HOL) instance of the
interactive theorem prover Isabelle. It supports the full OCL expressivity but it
requires user-interaction to complete proofs, and thus, it is not automatic.

The UMLtoAlloy tool [1] proposes an automatic translation of UML/OCL to
Alloy [12]. Alloy is a mature tool for the automated analysis of software spec-
ifications that works by transforming the entire problem, including operation
specifications, into an instance of SAT (satisfiability of a boolean formula in
conjunctive normal form). However, the translation in [1] is only partial and
Alloy itself presents some limitations, such as the need explicitly identify which
model elements are modified by an operation or limited support for arithmetic
operations. Thus, the usefulness of Alloy for verifying high-level UML/OCL spec-
ifications is somewhat limited.

Recent results [11] have extended the description logics formalism (in short, a
decidable subset of first-order logic) to define and reason on operation contracts.
However, these approaches need to restrict the constructs that may appear in
the model to keep the reasoning decidable. Thus, most OCL operations cannot
be translated into this formalism.

Previous approaches based on constraint programming like [10, 13] did not
admit any kind of OCL expressions. Our previous work in [9, 19] was limited to
OCL invariants and did not support the analysis of declarative operations.

In contrast, the new approach presented in this paper is fully automatic,
expressive and decidable. We believe that these three characteristics are key fea-
tures in order to extend the adoption of formal methods among the modeling
community. As a trade-off, our method is not complete: results are only conclu-
sive if a solution to the CSP (the example/counterexample) is found. However,
the absence of solutions within a finite search space cannot be used as a proof:
a solution may still exist outside that search space.

Although this may limit the applicability of our method, we believe an effi-
cient decidable procedure provides more useful information than a semidecidable
procedure, even if the answer is not conclusive. Moreover, when checking the
correctness of a model, most errors can be found even if we bound the search
space of the verification process. This “small scope” hypothesis, i.e. that it is
possible to prove interesting properties about models by focusing only on small
instantiations, is shared by other bounded methods [12]. Moreover, if desired,
it is still possible to use our method on infinite domains [2] resulting in a com-
plete but semidecidable method (for properties that can be satisfied by finite
instances).

Our approach can be complemented with other verification approaches ad-
dressing other kinds of behavioural UML diagrams (as state machines [18]) in
order to provide more global results.



54 J. Cabot, R. Clarisó, and D. Riera

7 Conclusions and Further Work

We have presented a new automatic method for the formal verification of declar-
ative operations in UML/OCL models. We believe our approach can be used to
leverage current UML/OCL verification approaches, more focused on the verifi-
cation of the static parts of the model.

Regarding efficiency, the search space for examples/counterexamples depends
on the size of the model, so scalability quickly becomes an issue even when using
sofisticated constraint solvers. As a further work, we plan to improve the search
process in several ways. First, we would like to refine our translation process by
considering implicit semantics in the initial contract specification (as the nothing
else changes assumption). Also, we plan to work on the automatic inference
of variable domains, discovered by a static analysis of the OCL constraints to
tune the solving process. Furthermore, we are considering the abstraction of
information from the model which is not relevant to the operation being verified
and the relevant subset of integrity constraints.

We also plan to explore the verification of dynamic aspects of the model when
specified in combination with other constructs or UML diagrams like sequence
diagrams or state machines and the benefits of porting these techniques to other
design by contract languages as JML, Eiffel or Spec#.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

2. Apt, K.R., Wallace, M.G.: Constraint Logic Programming using ECLiPSe. Cam-
bridge University Press, Cambridge (2007)

3. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg
(2007)

4. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams.
Artificial Intelligence 168, 70–118 (2005)

5. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1998)

6. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Trans. Software Eng. 21(10), 785–798 (1995)

7. Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH Zurich
(2006)

8. Cabot, J.: From declarative to imperative UML/OCL operation specifications. In:
Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 198–213. Springer, Heidelberg (2007)

9. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: IEEE International Conference on Software Testing
Verification and Validation Workshop, ICSTW 2008, pp. 73–80 (2008)



Verifying UML/OCL Operation Contracts 55

10. Cadoli, M., Calvanese, D., Giacomo, G.D., Mancini, T.: Finite satisfiability of
UML class diagrams by Constraint Programming. In: DL 2004. CEUR Workshop
Proceedings, vol. 104, CEUR-WS.org (2004)

11. Drescher, C., Thielscher, M.: Integrating action calculi and description logics. In:
Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667, pp. 68–83.
Springer, Heidelberg (2007)

12. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology 11(2), 256–290 (2002)

13. Malgouyres, H., Motet, G.: A UML model consistency verification approach based
on meta-modeling formalization. In: Biham, E., Youssef, A.M. (eds.) SAC 2006.
LNCS, vol. 4356, pp. 1804–1809. Springer, Heidelberg (2007)

14. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. MIT
Press, Cambridge (1998)

15. Object Management Group. UML 2.0 OCL Specification (2003)
16. Queralt, A., Teniente, E.: Reasoning on UML class diagrams with OCL constraints.

In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 497–512.
Springer, Heidelberg (2006)

17. Straeten, R.V.D., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to
maintain consistency between UML models. In: Stevens, P., Whittle, J., Booch, G.
(eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003)

18. Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic generation of CSP
B skeletons from xuml models. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H.
(eds.) ICTAC 2008. LNCS, vol. 5160, pp. 364–379. Springer, Heidelberg (2008)

19. UMLtoCSP. A tool for the formal verification of UML/OCL models based on
Constraint Programming, http://gres.uoc.edu/UMLtoCSP

20. Wieringa, R.: A survey of structured and object-oriented software specification
methods and techniques. ACM Comput. Surv. 30(4), 459–527 (1998)

http://gres.uoc.edu/UMLtoCSP


Property Specifications for Workflow Modelling

Peter Y.H. Wong and Jeremy Gibbons

Computing Laboratory, University of Oxford, United Kingdom
{peter.wong,jeremy.gibbons}@comlab.ox.ac.uk

Abstract. Previously we provided two formal behavioural semantics
for Business Process Modelling Notation (BPMN) in the process algebra
CSP. By exploiting CSP’s refinement orderings, developers may formally
compare their BPMN models. However, BPMN is not a specification lan-
guage, and it is difficult and sometimes impossible to use it to construct
behavioural properties against which BPMN models may be verified.
This paper considers a pattern-based approach to expressing behavioural
properties. We describe a property specification language PL for captur-
ing a generalisation of Dwyer et al.’s Property Specification Patterns,
and present a translation from PL into a bounded, positive fragment of
linear temporal logic, which can then be automatically translated into
CSP for simple refinement checking. We demonstrate its application via
a simple example.

1 Introduction

Formal developments in workflow languages allow developers to describe their
workflow systems precisely, and permit the application of model checking to auto-
matically verify models of their systems against formal specifications. One of these
workflow languages is the Business Process Modelling Notation (BPMN) [6], for
which we previously provided two formal semantic models [8,9] in the process al-
gebra CSP [7]. Both models leverage the refinement orderings that underlie CSP’s
denotational semantics, allowing BPMN to be used for specification as well as
modelling of workflow processes. However, due to the fact that the expressiveness
of BPMN is strictly less than that of CSP, some behavioural properties, against
which developers might be interested to verify their workflow processes, might not
be easy or even possible at all to capture in BPMN.

As a running example for this paper, consider the BPMN diagram describing
a travel agent shown in Figure 1. The main purpose of the travel agent is to me-
diate interactions between the traveller who wants to buy airline tickets and the
airline who supplies them. Specifically, once the travel agent receives an initial or-
der from the traveller (Receive Order), he needs to verify with the airline if the
seats are available for the desired trip (Check Seats). In order to cater for the
possibility of the traveller making changes to her itinerary, for every change of her
itinerary (Change Itin TA), the travel agent verifies with the airline the availabil-
ity of the seats (Check Seats 2). Once the traveller has agreed upon a particular
itinerary (Receive Reservation), the travel agent reserves the seats for the trav-
eller (Reserve Seats). During the reservation period, modelled by the Reservation

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 56–71, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Property Specifications for Workflow Modelling 57

Fig. 1. Travel Agent

subprocess state, the traveller may cancel her itinerary, thereby “unreserving” the
seats; this is modelled as a message exception flow (Imessage) of the Reservation
subprocess. Once the reservation has been completed, the travel agent may re-
ceive a confirmation notice from the traveller (Receive Confirm), in which case
he receives the credit card information from the the traveller (Book Ticket TA)
and proceeds with the booking (Book Seat). The travel agent may also receive
cancellation of the reservation (Cancel Reserve), in which case he will request a
cancellation from the airline (Request Cancel), wait for a notification confirm-
ing the cancellation from the airline (Receive Notify), and send it to the trav-
eller (Send Notify). During the booking phase, either an error (e.g. incorrect card
information) or a time out (Reserve Timeout) may occur; in both cases, corre-
sponding notification confirming the cancellation will be sent to the traveller. Oth-
erwise, a corresponding invoice on the booking will be sent to the traveller for
billing (Send Invoice).

One of the properties this travel agent description must satisfy is that the
agent must not allow any kind of cancellation after the traveller has booked her
tickets, if invoice is to be sent to the traveller. Assuming process Agent mod-
els the semantics of the travel agent diagram, one might attempt to draw a
BPMN diagram like the one shown in Figure 2(a) to express the negation of
the property, and prove the satisfiability of Agent by showing this diagram does
not failures-refine the process Agent \ N where N is the set of CSP events that
are not associated with tasks Book Seat , Request Cancel , Request Timeout and
Send Invoice. However, while this behavioural property should also permit other
behaviours such as task Request Cancel being performed before task Book Seat ,
it could be difficult to specify all these behaviours in the same BPMN diagram.
Since BPMN is a modelling notation for describing the performance of behaviour,
in general it is difficult to use it to specify liveness properties about the refusal
of some behaviour within a context while asserting the availability of it outside
the context. We therefore need a different approach which will allow domain spe-
cialists to express property specifications for verification of workflow processes.



58 P.Y.H. Wong and J. Gibbons

Fig. 2. (a) A BPMN diagram capturing requirement and (b) Parallel execution

1.1 Property Specification Patterns

This paper proposes the application of Dwyer et al’s Property Specification Pat-
terns [1] to assist domain specialists to specify behavioural properties for BPMN
processes1. Specification patterns are generalised specifications of properties for
finite-state verification. They are intended to describe the essential structure
of commonly occurring requirements on the permissible patterns of behaviours
in a finite state model of a system. There exist two major groups – order and
occurrence. Each pattern has a scope, the context in which the property must
hold. For example, the property “task A cannot happen after task B and before
task C” will fall into the absence pattern, which states that a given state/event
does not occur within a scope. In this case, the property may be expressed as
the absence of task A in the scope after task B until task C . The different types
of scope are Global, Before Q, After Q, Between Q and R and After Q until R,
where Q and R are states.

Currently, property patterns have been expressed in a range of formalisms
such as linear temporal logic (LTL) [4] and computation tree logic; however, be-
havioural verifications of CSP processes are carried out by proving a refinement
between the specification and the implementation processes. This means CSP is
also a specification language, and to the best of our knowledge there is currently
no formalisation of property patterns in CSP.

1.2 Nondeterministic Interleaving

While the property patterns cover a comprehensive set of behavioural require-
ments, it is possible to generalise patterns in a process-algebraic setting by con-
sidering patterns of behaviour rather than an individual state or event within a
scope. For example, we may like to express the property “the parallel execution
of task A and either task D or task E cannot happen after task B and before
task C”. Here the pattern of behaviours is “the parallel execution of task A and
either task D or task E”. While CSP is equipped with nondeterministic choice
as one of its standard operators, there is no nondeterministic version of parallel
composition; this means that while assertion (1) holds under failures refinement,
assertion (2) does not.

1 We assume readers have basic knowledge of CSP and that they are not required to
have knowledge of BPMN.



Property Specifications for Workflow Modelling 59

a → Skip � b → Skip �F a → Skip (1)
a → Skip ||| b → Skip �F a → b → Skip (2)

This is because the parallel operators in CSP may be defined using the deter-
ministic choice � operator; here we show the interleaving of two processes and
its equivalent sequential counterpart.

a → Skip ||| b → Skip ≡ a → b → Skip � b → a → Skip

A nondeterministic version of the parallel operators, particularly interleaving,
may be very useful for specifying behavioural properties for workflow processes.
For example, Figure 2(b) shows part of a BPMN diagram executing tasks A and
B in parallel. With our timed semantics for BPMN [9] it is possible to specify
timing constraints for these tasks, and the diagram may then be interpreted over
the timed model. It is easy to see the possibility of one asserting a behavioural
property about tasks A and B within a wider scope without considering the
ordering of their execution due to their timing constraints.

1.3 Our Approach

Our objective is to provide a CSP formalisation of the set of generalised property
specification patterns, in which we consider admissible sequences of patterns of
behaviours, rather than individual events, within a scope. The construction of
the CSP model for each of the patterns proceeds in two stages:

– we first define a small property specification language PL, based on the
generalised patterns, for describing behavioural properties, and then provide
a function that returns a linear temporal logic (LTL) expression that specifies
the behaviour properties;

– we then translate the given LTL expression into its corresponding CSP pro-
cess based on Lowe’s interpretation of LTL [3]; using this, one may check
whether a workflow system behaves according to a property specification.

Specifically we provide a function which translates each of the property patterns
into the bounded, positive fragment of LTL [3], denoted by BTL, defined by the
following grammar.

φ ∈ BTL ::= φ ∧ φ | φ ∨ φ | ©φ | �φ | φRφ | a | ¬a | where a ∈ Σ
availablea | true | false | live | deadlocked

where operators ¬, ∧ and ∨ are standard logical operators, and ©, � and R
are standard temporal operators for next, always and release. This fragment
also extends the original logic with atomic formulae for specifying availability
of events as well as their performance. Here we describe briefly their intended
meaning:

– a – the event a is available to be performed initially, and no other events
may be performed;



60 P.Y.H. Wong and J. Gibbons

– availablea – the event a must not be refused initially, and other events
may be performed;

– live and deadlock – the system is live (equivalent to
∨

a∈Σ a) or deadlocked
(equivalent to

∧
a∈Σ ¬a), respectively;

– true and false – logical formulae with their normal meanings.

Usually when checking whether a (workflow) system, modelled as a CSP pro-
cess, satisfies a certain behavioural property, which is also modelled as a CSP
process, one would check to see the former refines the latter under the stable
failures semantics [7], since this model captures both safety and liveness proper-
ties. However, Lowe [3] has shown that the stable failures model is not sufficient
to capture temporal logic specifications, and that a finer model known as the re-
fusal traces model (RT ) [5] is required. Furthermore, Lowe has also shown that
it is impossible to capture the eventually (�) and until (U) temporal operators
as well as the negation operator (¬) in general. This is because the eventual op-
erator deals with infinite traces, which are not suitable in general in finite-state
checking, and since � φ = trueU φ, it is also not possible, in general, to capture
the until operator. Also � φ = ¬(�¬φ) and it is possible to capture the always
operator, therefore it is not possible, in general to capture negation, unless only
over atomic formulae as given by the grammar above. Our function reflects this
by translating a given generalised pattern into a corresponding expression BTL.
We say a system modelled by the CSP process P satisfies a behavioural prop-
erty, written as P |= ψ where ψ is the temporal logic expression, if and only if
Spec(ψ) �RT P where Spec(ψ) is the CSP specification for ψ.

1.4 Assumptions and Structure of the Paper

In the rest of this paper we assume the behaviour of the system we are interested
in is modelled by some non-divergent process P . We assume the alphabet of
the specification process of the property, that is the set of all possible events
the process may perform, only falls under the context of the property. This is
possible because in CSP, one may always construct some partial specification
X and prove some system Y satisfies it by checking the refinement assertion
X � Y \ (αY \ αX ) where αP is the alphabet of P , assuming αX ⊆ αY .

The structure of the remainder of this paper is as follows. Section 2 gives
a brief overview of the refusal traces model. In Section 3 we introduce SPL, a
sub-language of our property specification language, for specifying nondetermin-
istic patterns of behaviours; we define function pattern, which takes a nondeter-
ministic system specified in SPL and returns its corresponding temporal logic
expression in BTL. We provide justification for the translation over the refusal
traces model. In Section 4 we present the complete language PL for specifying
behavioural properties based on generalised property patterns. We then define
a function makeTL, which takes a property specification in PL and returns its
corresponding temporal logic expression in BTL, and finally we revisit the travel
agent running example and demonstrate how to specify the behavioural property
in PL.



Property Specifications for Workflow Modelling 61

2 Refusal Traces Model

CSP [7] is equipped with three standard behavioural models: traces, stable fail-
ures and failures-divergences, in order of increasing precision. However, Lowe [3]
has demonstrated that these models are inadequate for capturing temporal logic
of the form described in previous section. The solution is to use the refusal traces
model (RT ) [5].

In the refusal traces model, each CSP process may be denoted as a set of
refusal traces; each refusal trace is an alternating sequence of refusal information
and events. More precisely, a refusal trace takes the form 〈X1, a1,X2, a2, . .,Xn ,
an , Σ〉, where each Xi is a refusal set, and each ai is an event. This test represents
that the process can refuse X1, perform a1, refuse X2, perform a2, etc. In this
particular example the refusal trace finishes by refusing Σ (the set of all possible
events), i.e. deadlocking.

Here we write RT [[P ]] for the refusal traces of CSP process P . We now present
the refusal traces semantics for some of the CSP operators,

RT [[Stop]] = { 〈〉, 〈Σ〉 }
RT [[a → P ]] = { 〈〉 } ∪ { 〈X , a〉 � tr | a /∈ X ∧ tr ∈ RT [[P ]] }
RT [[P � Q ]] = RT [[P ]] ∪RT [[Q ]]
RT [[P � Q ]] = { 〈〉} ∪ (if 〈Σ〉 ∈ RT [[P ]] ∩RT [[Q ]] then { 〈Σ〉 } else ∅) ∪

{ 〈X , a〉 � tr | 〈X , a〉 � tr ∈ RT [[P ]] ∧ Q ref X ∨
〈X , a〉 � tr ∈ RT [[Q ]] ∧ P ref X }

where Q ref X means that Q can refuse X initially.
Refinement in the refusal traces model is then defined as follows:

Spec �RT P ⇔ RT [[Spec]] ⊇ RT [[P ]]

Currently the CSP model checker, FDR [2], is being extended to include the
checking of refinement in this model.

3 Patterns of Behaviour

Here we present a sub-language of our property specification language PL, de-
noted as SPL, for assisting developers to construct BPMN-based patterns of
behaviour:

P ∈ SPL ::= P � P | P ��P | a → P | End where a ∈ Atom

Atom ::= t | available t | live where t ∈ Task

where the basic type Task represents the set of names that identify task states in
a BPMN diagram, and the type Atom describes the performance or the availabil-
ity of some task t . The behaviour t → P hence enacts task t and then behaves
like P . The atomic term live describes the performance of any task state of



62 P.Y.H. Wong and J. Gibbons

the BPMN diagram in question. An user interface for this language could be
implemented to assist BPMN developers to construct specifications.

The language is equipped with operators focusing on specifying nondetermin-
istic concurrent systems that are suitable as process-based specifications. Specif-
ically it contains a subset of standard CSP operators, that is nondeterministic
choice (�) and prefix (→), as well as a new nondeterministic interleaving opera-
tor (��). Informally the process P ��Q communicates events from both P and
Q , but unlike CSP’s interleaving, our operator chooses them nondeterministi-
cally. Here we present the step law governing the operator in the form of CSP’s
algebraic laws [7]: if P = p → P ′ and Q = q → Q ′ then

P ��Q = (p → (P ′��Q)) � (q → (P ��Q ′)) [��-step]

and we present the laws of this operator over end :

End ��Q = Q [��-End]

The operator �� is both commutative and associative and is defined in terms
of nondeterministic choice � and prefix →. This operator allows developers to
construct patterns of behaviour representing parallel executions of task states
without needing to know more refined detail such as timing information which
may restrict possible orders of enactments of states.

Now we present the function pattern, which takes a pattern of behaviour
described in SPL and returns the corresponding formula in BTL∗. Here BTL∗

denotes BTL augmented with the atomic formula ∗, which has the empty set of
refusal traces. We write event(t) to denote an event associated with task t . For
all a ∈ Atom, t ∈ Task and P ,Q ∈ SPL,

pattern(End) = ∗
pattern(a → P) = atom(a) ∧ ©(pattern P)
pattern(P � Q) = pattern(P) ∨ pattern(Q)
pattern(P ��Q) = pattern(npar(P ,Q))

where npar will be defined shortly and the function atom is defined as follows:

atom(available t) = available (event(t))
atom(live) = live
atom(t) = event(t)

Due to this translation End has an empty semantics.
To convert formulae in BTL∗ back to BTL, we simply remove ∗ according to

the following equivalences: φ ∨ ∗ ≡ φ, ∗ ∧ φ ≡ φ and φ ∧ © ∗ ≡ φ; note both
the conjunctive and disjunctive operators are commutative.

We map each of the operators other than �� directly into their corresponding
temporal logic expression. Here we show that the semantics of the prefix operator
→ is preserved by the translation. First we give the semantic definition of →
over SPL in the refusal traces model RT where RT denotes all (finite) refusal
traces. For all a ∈ Σ, X ∈ P Σ and tr ∈ RT :



Property Specifications for Workflow Modelling 63

RT SPL[[ ∗ ]] = ∅
RT SPL[[t → P ]] =

{ 〈〉 } ∪ { 〈X , a〉 � tr | a = event(t) ∧ a /∈ X ∧ tr ∈ RT SPL[[P ]] }

We write 〈〉 for the empty sequence, 〈a, b〉 for a sequence of a followed by b and
s � t for the concatenation of the sequences s and t . Similarly we present Lowe’s
semantic definition [3] for the operators ©, ∧ over BTL and the atomic formula
a in RT , where IRT denotes the set of all infinite refusal traces. For all a ∈ Σ,
X ∈ P Σ and tr ∈ RT ∪ IRT :

RT BTL[[a]] = { 〈〉 } ∪ { 〈X , a〉 � tr | a /∈ X }
RT BTL[[©φ]] = { 〈〉, 〈Σ〉 } ∪ { 〈X , a〉 � tr | a /∈ X ∧ tr ∈ RT BTL[[φ]] }
RT BTL[[ψ ∧ φ]] = RT BTL[[ψ]] ∩RT BTL[[φ]]

According to our translation function pattern t → P = event(t) ∧ ©(pattern P),
it is easy to show that

RT BTL[[event(t) ∧ ©(pattern P)]]
= RT BTL[[event(t)]] ∩RT BTL[[©(pattern P)]] [def of ∧]
= { 〈〉 } ∪ { 〈X , a〉 � tr | a = event(t) ∧ a /∈ X ∧ tr ∈ RT BTL }

∩ RT BTL[[©(pattern P)]] [def of event(t)]
= { 〈〉 } ∪ { 〈X , a〉 � tr | a = event(t) ∧ a /∈ X ∧ tr ∈ RT BTL } [def of ©]

∩ { 〈X , a〉 � tr | a /∈ X ∧ tr ∈ RT BTL[[pattern(P)]] } ∪ { 〈〉, 〈Σ〉 }
= { 〈X , a〉 � tr | a = event(t) ∧ a /∈ X ∧ tr ∈ RT BTL[[pattern(P)]] }

∪ { 〈〉 } [def of ∩]
⊃ RT SPL[[t → P ]]

Since this sub-language is used to describe behaviour inside a property specifi-
cation and hence we only need to concentrate on finite refusal traces of the same
length, subset inclusion will suffice.

The nondeterministic interleaving operator �� is sequentialised by the func-
tion npar before being mapped into its CSP’s equivalent. This function essen-
tially implements the step law of �� above via the function initials below and
is defined as follows, where P ,Q ∈ SPL.

npar(End ,End) = End
npar(End ,Q) = Q
npar(P ,End) = P
npar(P ,Q) = (�(a,X ) : initials(P) • a → npar(X ,Q))

� (�(a,X ) : initials(Q) • a → npar(X ,P))

Similar to CSP [7], we write � i : I • P(i) to denote the nondeterministic choice
of a set of indexed terms P(i) where i ranges over I . The function initials takes
a SPL model and returns a set of pairs, each pair contains a possible initial



64 P.Y.H. Wong and J. Gibbons

task enactment and the model after enacting that task. For example hp takes
a → A � b → B and returns the set { (a,A), (b,B) }.

initials(P � Q) = initials(P) ∪ initials(Q)
initials(P ��Q) = initials(npar(P ,Q))
initials(a → P) = { (a,P) }
initials(End) = ∅

Going back to the example in Figure 2(b), we are now able to specify the pattern
of behaviour (a → End)��(b → End)) which states that tasks A and B are
executed in parallel without needing to know their timing constraints. Here the
BTL formula φ describes this pattern of behaviour:

φ = (a ∧ ©b) ∨ (b ∧ ©a)

and Spec is the corresponding CSP process of φ. We use event a to associate
with some task A.

Spec = let
Spec0 = b → Spec2 Spec1 = a → Spec3
Spec2 = a → Spec4 Spec3 = b → Spec4
Spec4 = Stop � (� x : Σ • x → Spec4)

in Spec0 � Spec1

This allows us to make the following kinds of refinement assertions under the
refusal traces semantics, where the implementation process may represent the
behaviour under the timed model and the untimed model respectively.

Spec �RT a → b → Stop Spec �RT a → Stop ||| b → Stop

4 Property Patterns

To assist the specification of behavioural properties in terms of the generalised
property patterns, we define a property specification language PL by the follow-
ing grammar:

x , y ∈ PL ::= Abs(p, s) | Un(p, s) | Ex(p,n, s) | BEx(p, b, s) |
x ∨ y | x ∧ y where p ∈ SPL; n ∈ N; b ∈ BL; s ∈ SL

BL ::= ≤ n | = n | ≥ n where n ∈ N

SL ::= always | before (p,n) | afterp | where p ∈ SPL; n ∈ N

betweenp and (q,n) | fromp until (q,n)

where each term in PL represents a behavioural property with respect to the prop-
erty pattern, each term specifies the behavioural constraints over some bounded,
nondeterministic behaviours specified by the sub-language SL. Throughout this
section we use the term state in the sense of a transition system of a CSP process
describing a BPMN diagram: a graph showing the states it can go through and
actions, each denoted by a single CSP event, that it takes to get from one to an-
other. Algebraically this is where each transition between states is an application
of a step law. We describe each term in PL briefly as follows:



Property Specifications for Workflow Modelling 65

– Abs(p, s) (Absence) states that the pattern of behaviour p must be refused
throughout the scope s ;

– Un(p, s) (Universality) states that the pattern of behaviour p must occur
throughout the scope s ;

– Ex(p,n, s) (Existence) states that the pattern of behaviour p must occur at
least once during the scope s . In LTL one might model this property using
the eventually operator; however as discussed earlier, it is not possible to
model unbounded eventually specification, therefore we restrict this pattern
with a bound and instead state that p must occur at least once within the
subsequent n states from the start of scope s ;

– BEx(p, b, s) (Bounded Existence) states that the pattern of behaviour p must
occur a specified number of times, defined by the bound b, throughout the
scope s . A bound may either be exactly (= n), at least (≥ n) or at most
(≤ n);

Each property may be specified within one of the five different types of scope,
which are captured by our sub-language SL. Here we describe each one briefly.

– always (Global) states that the property in question must hold throughout
all possible execution. For example Abs(a ∨ b, always) states that both
events a and b must be refused in all possible executions;

– before (p,n) (Before p) states that if there exists the pattern of behaviour
p in the subsequent n states, the property in question must hold before p for
all possible executions. For example Un(availablea, before (b,n)) states
that a must not be refused before an occurrence of b in the subsequent n
states.

– afterp (After p) states that if there exists the pattern of behaviour p
in any one of the subsequent states from the start of the execution, then
the property in question must hold precisely after that state. For example
BEx(a ∨ b,≤ m, after c) states that a sequence of at most m as and bs
must occur after the occurrence of the event c.

– betweenp and (q,n) (Between p and q) states that if there exists an occur-
rence of some pattern of behaviour p that is succeeded by some other pattern
of behaviour q in n subsequent states after p, then the property in question
must hold after p and before q.

– fromp until (q,n) (After p until q) states that if there exists an occurrence
of some pattern of behaviour p then the property in question must hold
after p or if there exists an occurrence some pattern of behaviour q in the
subsequent n states after p then the property in question must hold between
p and q. Note that q does not ever have to occur.

Note PL’s grammar does not include the patterns such as Precedence or Re-
sponse [1]; we do not see this as a shortcoming, as these patterns, belonging the
set of order patterns, may be expressed in terms of generalised existence patterns
where each property is over a set of patterns of behaviours. For convenience we
define the function next such that nextφψ returns ψ composed with n next op-
erators where n is the largest number of subsequent states about which φ make



66 P.Y.H. Wong and J. Gibbons

an assertion. For example the furthest state of the expression a ∨ b is 1; for both
expressions ©b and a ∧ © availablec it is 2. It is not difficult to calculate the
number of states a pattern of behaviour spans, as SPL is characterised by ∨, ∧
and © operators over atomic formulae in BTL. The function next is defined as
the functional composition (nexts ◦ states) where states(φ) returns one minus
the furthest state the expression φ, translated from some pattern of behaviour in
SPL, specifies. The function nexts is defined such that nextsnφ returns a compo-
sition of φ with n next operators, assuming nexts0φ = φ. We write the predicate
single such that some BTL expression µ satisfies it, denoted as single(µ), if and
only if µ specifies behaviours for only a single state; we say such expressions are
single state specifications.

Also, we extend the grammar of BTL, denoted as BTLδ, with the two derived
temporal operators �� and Ũ to express bounded eventuality and bounded until.
Since ��n φ = true Ũn φ, we only define the semantics of Ũ as follows:

P |= ψ Ũn φ ≡ ∀ tr : RT [[P ]] • ∃ i : 0 . . n • ∀ j : 0 . . (i − 1) •
tr i ∈ RT BLT [[φ]] ∧ tr j ∈ RT BLT [[ψ]]

where 1 ≤ n < #tr and we write tr i for refusal trace tr with the first i events and
i refusals removed for i ranging over the length of tr . We write P |= ψ if every
execution of process P satisfies the formula ψ. The following is the derivation of
Ũ using operators in BTL:

ψ Ũn φ = (
∧

i∈{ 0..n−2 }
nextsi∗states(ψ)(φ ∨ ψ)) ∧ nexts(n−1)∗states(ψ)φ (3)

For example the formula ��2 (a ∨ b) states that either task a or b must be
performed at least once in the next two subsequent states; the corresponding
formula in BTL is (a ∨ b) ∨ (true ∧ ©(a ∨ b)). We write φ ⇒ ψ as a shorthand
for ¬φ ∨ (φ ∧ ψ) where φ and ψ are expressions in BTLδ and φ does not include
operators � and R.

To assist our translation we define the partial function negate such that
negate(φ) negates the formula φ by distributing the negation operator over tem-
poral operators except the always (�) and the release (R) operators. This is
sufficient as the function is only applied to patterns of behaviour described in
SPL, and we have shown in Section 3 that SPL can be completely characterised
by ∧ and © operators over atomic formulae in BTL. Here we only provide the
partial definition of negate, where φ, ψ ∈ BTLδ and n ∈ N, omitting the more
trivial part of the definition.

negate(φ ⇒ ψ) = φ ∧ (negate(φ) ∨ negate(ψ))
negate(��n φ) = (negate ◦ derive)(��n φ)
negate(ψ Ũn φ) = (negate ◦ derive)(ψ Ũn φ)
negate(©φ) = ©(negate(φ))

The function derive converts an expression in BTLδ back to BTL according
to the definition given in equation 3. The full definition may be found in the
technical report version of this paper [10].



Property Specifications for Workflow Modelling 67

We define a translation function makeTL to be the functional composition
(derive ◦ tl ′) that takes a property specification in PL and returns its corre-
sponding temporal logic expression in BTL. The definition of tl ′ is as follows:

tl ′(σ ∧ ρ) = tl ′(σ) ∧ tl ′(ρ) tl ′(σ ∨ ρ) = tl ′(σ) ∨ tl ′(ρ)
tl ′(Abs(µ, s)) = absence(µ, s) tl ′(Ex(µ,n, s)) = exist(µ,n, s)
tl ′(BEx(µ, b, s)) = boundexist(µ, b, s) tl ′(Un(µ, s)) = universal(µ, s)

where n ∈ N, µ, ν ∈ SPL, b ∈ Bound , s ∈ SL, and σ, ρ ∈ PL. Table 1 shows BTLδ

mappings of functions absence, exist , universal and boundexist . We assume p is
the BTL expression of the pattern of behaviour µ, which we are interested in, and
both q = pattern(ν) and r = pattern(υ). As a shorthand we write ¬p for some
patterns of behaviour of p to represent the negation of p by distributing ¬ as
described by the function negate. For reasons of space we have chosen to describe
only the formalisation of the bounded existence pattern and its corresponding
function boundexist . Explanations for other patterns may be found in the longer
technical report version of this paper [10].

4.1 Bounded Existence

The function boundexist takes a pattern of behaviour µ, a bound b and a scope s
and returns the corresponding expression in BTLδ stating µ must occur for the
number of times specified by b within s and other behaviours may also within
s . For reasons of space we assume every possible sequence of events defined by
µ covers the same number of states, that is the maximum number of states.
The longer technical report version of this paper [10] gives a complete formal
treatment where this assumption is relaxed. Our definition also reflects the im-
possibility of expressing the unbounded eventually operator under the refusal
traces model. We first define the function bound such that bound(p, q, b) returns
the corresponding expression in BTLδ stating a bounded existence of behaviour
p with no scope. Table 1 lists BTLδ mappings for bound . Here we describe the
formalisation for each type of bounds.

The expressions to model exactly n (= n) occurrences of behaviour p may be
written as

∧
i∈{ 0..n−1 }(nextsi∗states(p) p) ∧ nextsn∗states(p) (q R¬p). Note since

it is not possible to model unbounded eventually, and hence unbounded until
operator, we restrict this pattern with all the occurrences of p occurring con-
secutively. This is not a problem as it is always possible to conceal all the other
behaviours within the diagram in question via the CSP hiding operator. The
condition q R¬p is to ensure that p may not occur until some other behaviour
q occurs, signifying the start of the pattern’s scope. It is false if the scope is
global. The expression to model at least n (≥ n) occurrences of behaviour p may
be written as

∧
i∈{ 0..n−1 }(nextsi∗states(p) p). Since the bound is greater than or

equal, the condition q R¬p is not required. The expressions to model at most
n (≤ n) occurrences of behaviour p may be written as nextsn∗states(p) (q R¬p).
This expression states that any of the n instances of p may or may not occur
and after which behaviour p may not occur until some other behaviour q occurs.



68 P.Y.H. Wong and J. Gibbons

We now provide a description of our formalisation similar to the format when
describing the absence pattern, assuming p = pattern(µ), q = pattern(ν) and
r = pattern(υ). We write getbound(b) for some bound b to denote the number
part of the value.

– The global existence µ with bound b is modelled trivially as bound(p, false,
b);

– The existence of µ with bound b before some behaviour ν is modelled as

��n q ⇒ ¬q Ũn−getbound(b)∗states(p) bound(p, q, b)

which states that if ν occurs in one of the subsequent n states, then ν may
only occur after the bounded number of µ occurs within the subsequent
n − getbound(b) ∗ states(p) states;

– The existence of µ with bound b after some behaviour ν is modelled as
�(q ⇒ nextq(bound(p, q, b))), which states that if ν occurs at all then the
bounded number of µ occurs immediately after ν;

– The existence of µ with bound b between behaviour ν and υ is modelled as

�(q ⇒ (nextq ��n r ⇒(bound(p, r , b) ∧ bound(p, r , b)R¬r ∧ r R¬q)))

which states if the behaviour ν occurs and there exists some behaviour υ
in the n subsequent states after ν has occurred, then υ cannot occur until
a bounded number of instances of µ occur after ν occurs. Here n must be
strictly larger than getbound(b) ∗ states(p), and we restrict this pattern so ν
may only occur again after υ has occurred;

– The existence of µ after behaviour ν until υ is modelled as

�(q ⇒ (nextq¬r Ũ1 bound(p, r ∨ q, b)))

which states if the behaviour ν occurs then either the bounded number of
instances of µ must occur immediately after ν occurs. While the behaviour υ
may not occur before the instances of µ have occurred, υ could occur after.

For example we could use the pattern “The bounded existence of µ after ν” to
describe the property that either task A or C has to occur followed by either
one of them again after Task B has occurred. This may be expressed in PL as
BEx(a → End � c → End , = 2, afterb → End), where a,b and c correspond to
tasks A, B and C . The following is the CSP specification translated from the
corresponding BTL expression,

Spec = let
Spec0 = Proceed({ b },Spec0 � Spec1)
Spec1 = b → (Spec2 � Spec3) Spec2 = c → (Spec4 � Spec5)
Spec3 = a → (Spec4 � Spec5) Spec4 = c → (Spec7 � Spec6)
Spec5 = a → (Spec7 � Spec6) Spec6 = b → (Spec2 � Spec3)
Spec7 = Proceed({ a, b, c },Spec7 � Spec6)

in Spec0 � Spec1

where the parameterised process Proceed is defined as follows:

Proceed(X ,P) = Stop � Skip � (� x : Σ \ X • x → P)



Property Specifications for Workflow Modelling 69

4.2 Revisiting the Example

Going back to our running example, we may use the absence pattern “the ab-
sence of µ between some behaviours ν and υ” to specify the property of the
travel agent. We denote task Book Seat by event bookseat , and similarly for
Request Cancel , Request Timeout and Send Invoice; the following is the corre-
sponding PL expression specifying this property.

Abs(Cancel , betweenbookseat → End and(sendinvoice → End , 2))

where the behaviour Cancel is defined as follows:

Cancel = requestcancel → End � reservetimeout → End

Here is the corresponding CSP process.

Spec = let
Spec0 = Proceed({ bookseat },Spec0 � Spec1)
Spec1 = bookseat → (Spec2 � Spec3 � Spec4 � Spec5 � Spec6)
Spec2 = Proceed({ bookseat , sendinvoice },Spec7 � Spec1)
Spec3 = sendinvoice → (Spec0 � Spec1)
Spec4 = bookseat → (Spec2 � Spec4 � Spec8 � Spec9)
Spec5 = Proceed({ bookseat , requestcancel , reservetimeout },Spec3)
Spec6 = bookseat → (Spec3)
Spec7 = Proceed({ bookseat , sendinvoice },Spec0 � Spec1)
Spec8 = let poss ={bookseat , requestcancel , reservetimeout , sendinvoice}

in Proceed(poss ,Spec3)
Spec9 = bookseat → (Spec3)

in Spec0 � Spec1

Now it is possible to see if the travel agent diagram satisfies this property by
checking the following refusal traces refinement assertion using the FDR tool.

Spec�RT Agent \ Σ \ {bookseat , requestcancel , reservetimeout , sendinvoice}

5 Conclusion

In this paper we considered the application of Dwyer et al.’s Property Spec-
ification Patterns for constructing behavioural properties, against which CSP
models of BPMN diagrams may be verified. We proposed a property specifica-
tion language PL for capturing the generalisation of the property patterns in
which constraints are specified over patterns of behaviours rather than individ-
ual events. We then describe the translation from PL into a bounded, positive
fragment of LTL, which can then be translated automatically into its corre-
sponding CSP specification for simple refinement checks. We have demonstrated
the application of our specification language via a couple of small examples. We
have implemented a Haskell prototype of the translation2, using Lowe’s imple-
mentation. Our intention is to implement tool support allowing developers to
build property specifications without the knowledge of PL, LTL or CSP .
2 http://www.comlab.ox.ac.uk/peter.wong/observation

http://www.comlab.ox.ac.uk/peter.wong/observation


70 P.Y.H. Wong and J. Gibbons

Acknowledgements

This work is supported by a grant from Microsoft Research. The authors would
like to thank the anonymous referees for useful suggestions and comments.

References

1. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for
Finite-State Verification. In: Proceedings of the 21st International Conference on
Software Engineering (1999)

2. Formal Systems (Europe) Ltd. Failures-Divergences Refinement, FDR2 User Man-
ual (1998), http://www.fsel.com

3. Lowe, G.: Specification of communicating processes: temporal logic versus refusals-
based refinement. Formal Aspects of Computing 20(3) (2008)

4. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, Heidelberg (1992)

5. Mukarram, A.: A Refusal Testing Model for CSP. D.Phil thesis, University of Ox-
ford (1992)

6. Object Management Group. BPMN Specification (February 2006),
http://www.bpmn.org

7. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1998)

8. Wong, P.Y.H., Gibbons, J.: A Process Semantics for BPMN. In: Liu, S., Maibaum,
T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidel-
berg (2008), http://www.comlab.ox.ac.uk/peter.wong/pub/bpmnsem.pdf

9. Wong, P.Y.H., Gibbons, J.: A Relative-Timed Semantics for BPMN. In: Proceed-
ings of 7th International Workshop on the Foundations of Coordination Languages
and Software Architectures, July 2008. ENTCS (2008); Invited for special issue in
Science of Computer Programming,
http://www.comlab.ox.ac.uk/peter.wong/pub/foclasa08.pdf

10. Wong, P.Y.H., Gibbons, J.: Property Specifications for Workflow Modelling. Tech-
nical Report, University of Oxford (2008),
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/psp.pdf

http://www.fsel.com
http://www.bpmn.org
http://www.comlab.ox.ac.uk/peter.wong/pub/bpmnsem.pdf
http://www.comlab.ox.ac.uk/peter.wong/pub/foclasa08.pdf
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/psp.pdf


Property Specifications for Workflow Modelling 71

T
a
b
le

1
.
B
T

L
δ

m
ap

pi
ng

of
fu

nc
ti
on

s
a
bs

en
ce

,
ex

is
t,

u
n
iv

er
sa

l,
bo

u
n
d
ex

is
t

an
d

bo
u
n
d

A
b
se

n
ce

(a
bs

en
ce

)
�
¬p

(�
¬q

)
∨

(¬
p
Ũ n

q
)

�
(q

⇒
(n

ex
t q

(�
¬p

))
)

�
(q

⇒
(n

ex
t q

(�
�

n
r
⇒

(¬
p
Ũ n

r
))

))

�
(q

⇒
(n

ex
t q

(�
¬p

∨
(¬

p
Ũ n

r
))

))

E
x
is

te
n
ce

(e
xi

st
)

�
�

n
p

�
�

n
q
⇒

(¬
q
Ũ m

p
)

�
(q

⇒
(n

ex
t q

(�
�

m
p
))

)

�
(q

⇒
n
ex

t q
(�

�
n

r
⇒

(¬
r
Ũ m

p
))

)

�
(q

⇒
n
ex

t q
(¬

r
Ũ m

p
))

U
n
iv

er
sa

l
(u

n
iv

er
sa

l)
�

p

(�
¬q

)
∨

(p
Ũ n

q
)

o
r

(�
¬q

)
∨

(p
∧

n
ex

ts
n
(q

))

�
(q

⇒
(n

ex
t q

(�
p
))

)
o
r

�
(q

⇒
(n

ex
t q

p
))

�
(q

⇒
n
ex

t q
(�

�
n

r
⇒

(p
Ũ n

r
))

)
o
r

�
(q

⇒
n
ex

t q
(�

�
n

r
⇒

(p
∧

n
ex

ts
n
r
))

)

�
(q

⇒
(n

ex
t q

(�
p
∨

(p
Ũ n

r
))

))
o
r

�
(q

⇒
(n

ex
t q

(p
∨

n
ex

ts
n
r
))

)

B
o
u
n
d
ed

E
x
is

te
n
ce

(b
o
u
n
d
ex

is
t)

bo
u
n
d
(p

,f
a
l
s
e
,b

)

�
�

n
q
⇒

¬q
Ũ n

−
g
e
tb

o
u
n
d
(b

)∗
st

a
te

s
(p

)
bo

u
n
d
(p

,q
,b

)

�
(q

⇒
n
ex

t q
(b

o
u
n
d
(p

,q
,b

))
)

�
(q

⇒
(n

ex
t q

(�
�

n
r
⇒

(b
o
u
n
d
(p

,r
,b

)
∧

bo
u
n
d
(p

,r
,b

)
R

¬r
∧

r
R

¬q
))

))

�
(q

⇒
(n

ex
t q

(¬
r
Ũ 1

bo
u
n
d
(p

,r
∨

q
,b

))
))

B
T

L
δ

m
a
p
p
in

g
s

o
f
bo

u
n
d

∧ i∈
{0

..
n
−

1
}(

n
ex

ts
i∗

st
a
te

s
(p

)
p
)
∧

n
ex

ts
n
∗s

ta
te

s
(p

)
(q

R
¬p

)
∧ i∈

{0
..
n
−

1
}(

n
ex

ts
i∗

st
a
te

s
(p

)
p
)

n
ex

ts
n
∗s

ta
te

s
(p

)
(q

R
¬p

)

a
l
w
a
y
s

b
e
f
o
r
e
(ν

,n
)

a
f
t
e
r
ν

b
e
t
w
e
e
n

ν
a
n
d

(υ
,n

)

f
r
o
m

ν
u
n
t
i
l

(υ
,n

)

a
l
w
a
y
s

b
e
f
o
r
e
(ν

,n
)

a
f
t
e
r
ν

b
e
t
w
e
e
n

ν
a
n
d

(υ
,n

)

f
r
o
m

ν
u
n
t
i
l

(υ
,n

)

ex
a
ct

ly
n

o
f
p

(=
n
)

a
t

le
a
st

n
o
f
p

(≥
n
)

a
t

m
o
st

n
o
f
p

(≤
n
)



Formal Verification Based on Guided Random
Walks

Thang H. Bui and Albert Nymeyer

School of Computer Science and Engineering,
The University of New South Wales, Australia

{buih,anymeyer}@cse.unsw.edu.au

Abstract. In software development, formal verification and simulation
are seen as complimentary paradigms: the former can guarantee the cor-
rectness of systems with respect to properties, but does not scale; the
latter does scale but cannot guarantee the absent of errors. In the au-
thors’ previous work, a mechanism of statically analysing a model has
been used to build an abstraction of the original model, which in turn is
used to guide a heuristic search in a guided model checker. We extend
that work and apply the same technique to build a heuristically-driven,
or guided, random-walk model checker. This work sits at the intersection
of a number of research areas: model checking, random walks, heuristic
search and simulation. Novel here is the use of a heuristic mechanism
to guide the random walk towards states of the model that possibly vi-
olate user-defined properties, and the use of an automatic abstraction
scheme to build the heuristic. In a series of experiments, we compare the
performance of our guided, random-walk based tool to standard model-
checking tools. A new metric that we call Process Error Participation
(PEP) has also been devised to classify model behaviour.

1 Introduction

Verification, particularily model checking, is a technique used to guarantee the
correctness of a model of a system with respect to a given desired property. In
contrast, simulation is a technique that only partially verifies correctness. Being
only partial, simulation is really just confidence building because in general no
amount of simulation will guarantee correctness. Simulation in the form of test-
ing dominates industrial development of both hardware and software. A reason
for this is that no matter how large and complex a system is, it is always possi-
ble to carry out a simulation, unlike model checking, where users are inevitably
confronted by time/space limitations and intractability. This comparison is sim-
plistic however because it ignores a crucial task in system development, and that
is the search to find errors. Verifiers are commonly used by system engineers to
find errors even though their strength is to guarantee the absence of errors, un-
like simulators, which are used to find errors and cannot guarantee their absence.
The research outlined here seeks to bridge the gap between verification and sim-
ulation, and potentially provide a framework that will allow a system engineer
to use the right tool at the right time: namely a tool to first debug a system

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 72–87, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Formal Verification Based on Guided Random Walks 73

and a related tool to verify its correctness, and do so seemlessly using the same
model description and property specification.

A central concept in this research is guided search. Conventional model check-
ers such as spin [1] and nusmv [2] use ‘blind’ (or fixed) search algorithms to
traverse the state space and verify that each state satisfies some property. In
recent years, a number of guided versions of conventional model checkers have
been developed: for example Edelkamp et al. [3] who developed hsf-spin; Qian
and Nymeyer [4,5] who developed golfer; Groce and Visser [6] who developed
jpf and Kupferschmid et al. [7] who extended uppaal. Research in guided model
checking is generally experimental because studying the effects of heuristics is
necessarily empirical. In the worst case, a guided model checker will perform like
a conventional model checker if the heuristic that acts as a guide has no effect.
One method of adding guidance to a model checker is to use a search algorithm
based on A∗. Earlier work by the authors using this technique has resulted in
golfer [8] and forms the backdrop to this research. golfer uses a heuristic
generated by doing a static analysis of the model. The static analysis produces
a data abstraction of the system, which is used to compute heuristic costs for
each state of the system. The static analysis is based on the cone of influence
abstraction technique [9]. The technique involves building an abstract model
by computing the data dependencies in the concrete model and then removing
‘weak’ variables [4]. If the abstraction is well-informed, then the speed-up over
conventional model checking can be dramatic [10].

Simulation has been used in model checking from the early days. Even today,
model checkers like spin can be used as simulators. Simulation does not play
any role in formal verification, although it will check assertions. Model-checking
simulators based on random walks have also been the subject of recent research.
The most notable and successful has been Owen et al. [11] who implemented a
randomized search algorithm in a tool called lurch. In trials, lurch found 90%
of the errors of spin and nusmv, in orders of magnitude less time and space.
Two basic problems beset users of random-walk based algorithms: when do you
terminate a random walk if it does not terminate naturally, and when do you
terminate a random-walk algorithm given complete coverage of the state space
is generally not feasible? We address (but certainly do not solve) these problems
in this research.

Seminal work in the area of random-walk based methods has been carried
out by Grosu and Smolka [12] who were the first to present a formal Monte
Carlo algorithm applied to model checking linear temporal logic (LTL). In that
research, a property violation occurs if a so-called lasso (which is a random walk
that ends in a cycle) containing an accept state is found in the Büchi automaton
B = BS × B¬ϕ, where S is the system model and ϕ is the property. If no such
lasso is found, Grosu and Smolka determine probabilistically how many random
walks are required to achieve a level of certainty that the model satisfies the
property. Note however, that it is not clear how practical or effective or even
appropriate the probability argument is in limiting the search.

In this work, we extend earlier research [10,8,13,4,5] on symbolic guided model
checking and add the capability of (guided) random-walk based search. The new



74 T.H. Bui and A. Nymeyer

algorithm uses the same symbolic heuristic to bias the random walks towards
particular states that potentially violate user-defined properties. We also char-
acterise models in terms of the number of processes that must ‘participate’ in
an interaction that results in a state that violates a given property. We call this
characterisation the Process Error Participation (PEP) factor. A low PEP factor
means that few processes in the model are involved; a high PEP factor means
that most or all are involved. PEP depends on both the user-defined property
and the model: a deadlock may be caused by just two processes claiming a re-
source, or it may require all processes to claim the resource and halt progress. In
seemingly related work [6], Groce and Visser study the so-called ‘Thread Prefer-
ence Heuristic’. However, their work is used to find heuristics for multi-threaded
Java programs. Our heuristics are built by model abstractions, and the PEP
factor is used to predict when substantial performance gains can be expected
from particular model-checking approaches.

We will describe the relevant technical background in Sect. 2. Our algorithmic
contribution is described in Sect. 3, where we define random trails, which form a
subset of random walks. We present an algorithm to compute random trails and
additionally, modify the algorithm to allow walks and trails to be guided. The
experimental work is described in Sect. 4, including the comparison of various
random-walk and random-trail based algorithms, both guided and unguided.
Our conclusions and suggestions for future research are given in the last section.

2 Technical Background

2.1 Symbolic Abstraction-Guided Model Checking

Qian and Nymeyer [10,8,13,4,5] present a symbolic, guided model checking frame-
work. The framework is implemented in a system called golfer, which in turn
is based on nusmv. Here we extract that portion of the underlying theory that is
relevant to this research.

Definition 1 (Transition systems). A finite state transition system is a tuple
M = (S, T, S0, G), where S is a finite set of states, T ⊆ S × S is a transition
relation, S0 ⊆ S is a set of initial states and G ⊆ S is a set of goal states.

In that work, a goal state is a state in which the checking properties are violated.
The set of states of a transition system can be described by a non-empty set of
state variables X = (x0, x1, . . . , xn), where each variable xi ranges over a finite
domain Di. A homomorphic abstraction of a transition system is denoted by a
set of surjections H = (h1, h2, . . . , hn), where each hi maps a finite domain Di to
another domain D̂i with |D̂i| ≤ |Di|. If we apply H to all states of a transition
system, we generate an abstract version of the original, concrete system.

A homomorphic abstraction is a kind of relaxation of the concrete transi-
tion system in which certain groups of states are merged. Clarke et al. [14]
show that a homomorphic abstraction preserves a class of temporal properties
(namely ACTL∗). In [4], the authors presented Abstraction-Guided Model Check-
ing (AGMC), which uses the abstraction as a guide, or heuristic, in the model



Formal Verification Based on Guided Random Walks 75

checker. The abstraction is used to calculate the shortest distance between each
abstract state and the abstract goal state. It is proved in [8] that the distance be-
tween any state ŝ and goal state ĝ in the abstract system is a lower bound to the
distance between its corresponding concrete states s and g. The abstract states
and their corresponding distances are stored in a so-called pattern database,
which provides a cost function to guide an A∗-based search algorithm towards
the concrete goal state. If the search algorithm finds the goal state then the path
it has found is guaranteed to be optimal.

The AGMC scheme in golfer is symbolic. In symbolic model checking, sets
of states can be encoded as binary decision diagrams (BDDs). So for example,
we represent the sets of abstract states that are equi-distant from the abstract
goal state by a single BDD, denoted bi, where i is the distance. In fact, abstract
states and concrete states are encoded using the same set of state variables, with
the difference that particular state variables in the abstract model are relaxed by
giving them don’t care status. No decoding is therefore required between abstract
and concrete states. For comparison purposes, the AGMC algorithm described
in [8] has been slightly modified, and renamed sgmc here. It is shown in Fig. 1.
In particular we have removed those constructs in the AGMC algorithm that
concern the symbolic implementation. We do this in all the symbolic algorithms
shown in this work.

The sgmc algorithm maintains a set of current states ss called the openSet
from which the algorithm must choose optimally. For each state in this set, the
algorithm records the exact cost of reaching that state and the predicted cost h
of reaching the goal from that state, also called the heuristic value. The getMin
function, which extracts a set of states that has a minimum cost (cost +h) from
the input open set, is called each iteration. If it reaches a goal, the algorithm will
return a path from an initial state to a goal state, which is called a goal path.

sgmc algorithm
Input: transition system M = (S,T, S0, G), abstractDB adb
Output: goal path | not found
1: openSet = {(S0, 0, 0)}
2: visitedStates = ∅
3: while (openSet �= ∅)
4: (ss , cost , h) = getMin(openSet)
5: visitedStates = visitedStates ∪ ss
6: return buildPath(G, visitedStates) when (ss ∩G �= ∅)
7: ss′ = {s′ | s ∈ ss , (s, s′) ∈ T} − visitedStates
8: for all bi ∈ adb
9: ss′′ = bi ∩ ss′

10: openSet = openSet ∪ {(ss′′, cost + 1, i)} unless (ss′′ == ∅)
11: return not found

Fig. 1. A Symbolic Abstraction-Guided Model Checking algorithm



76 T.H. Bui and A. Nymeyer

The function buildPath extracts the goal path from visitedStates , starting at the
goal states and working backwards to an initial state. The set of successor states
ss′ is computed in line 7. Those states in ss′ that have already been visited are
also removed. The set is then partitioned (line 8 to 10). Each partition is a set
of states that are equi-distant from the goal, as given by the abstract pattern
database, adb. The cost of a successor state is set to the cost of the parent state
plus 1, and the state is added to openSet . Remembering that the algorithm is
symbolic, the reader should note that an element in openSet is a tuple that
consists of a BDD that encodes a set of states that are equi-distant from the
goal state, together with the corresponding current and heuristic costs.

2.2 Random-Walk Based Model Checking

The simulation tool that we develop is based on the concept of random walks.

Definition 2 (Random walk). A random walk in a transition system M =
(S, T, S0, G) is a path ρ = s0s1 . . . sisi+1 . . . sn in which the initial state s0 ∈ S0,
si ∈ S for 1 ≤ i ≤ n, and the state si+1 is chosen uniform randomly from the
set of successors of si denoted Img(si) = {s | (si, s) ∈ T }. A random walk is
accepted if sk ∈ G, where 0 ≤ k ≤ n.

A random-walk algorithm traverses the state space of a system using random
walks, starting at an initial state. A random walk is accepted if it reaches the
goal state, in which case the walk is a goal path. There are two important issues
that need to be addressed: when do we terminate each random walk, and when
do we terminate the algorithm? We refer to the former as the end-walk condition,
and to the latter as the termination condition.

End-walk condition: A random walk may never end, so given finite time and
memory, we need to determine some condition to end walks prematurely. In the
research of Grosu and Smolka [12], the end of a walk occurs at the first loop.
In other research [15,11], the maximum length of a walk is bound arbitrarily. In
our research we consider random-walk algorithms that are bound and unbound.

Termination condition: Even if walks all end, we also need to consider how
many walks will need to be carried out in the search for the goal state. In the
research of Owen et al. [11], the maximum number of random walks is set ar-
bitrarily. Another method involves tracking how many ‘new’ states are being
visited relative to ‘old’ states and terminating when some saturation point is
reached. Yet another method determines a termination condition probabilisti-
cally. It is used by Grosu and Smolka [12] in a tool called mc

2. Their work
involved modelling the system S and (LTL) property ϕ as a Büchi automaton
B = BS × B¬ϕ and checking whether the language of this automaton L(B) is
empty. Given input parameters δ and ε, mc

2 takes N = ln(δ)/ln(1 − ε) random
samples (which are random walks ending in a cycle, called lassos) from B to
decide if L(B) = ∅. Should a sample discover an accepting lasso l, mc

2 returns
false with l as a witness. Otherwise, it returns true. If we assume that the ex-
pectation of an accepting lasso is greater than ε, then upon further sampling



Formal Verification Based on Guided Random Walks 77

(after N unsuccessful samples), the probability of finding a lasso is less than δ.
This probabilistic termination condition can be applied only if the search space
covers the probability space.

3 Random-Walk and Abstraction-Guided Algorithms

In this section we develop the random-walk and abstraction-guided algorithms
that form the basis of this work. A random walk is defined too generally because
of the presence of loops. We define a subset of random walks called random trails.

Definition 3 (Random trail). A random trail in a transition system M =
(S, T, S0, G) is a random walk θ = s0s1 . . . sn in which ∀ 0 ≤ i �= j ≤ n, si �= sj.
A random trail is accepted if sk ∈ G, 0 ≤ k ≤ n. The probability of a trail
Pr[θ] is defined as: Pr[s0] = |S0|−1 and Pr[s0s1 . . . sn−1sn] = Pr[s0s1 . . . sn−1]∗
|Img(sn−1) − {s0, s1, . . . , sn−1}|−1.

Theorem 1. A maximal random trail is a random trail that ends at a leaf state
or a state in which all of its children have already been visited. Given a transition
system M = (S, T, S0, G) and suppose that all states in S are reachable from
some state in S0, the set of all maximal random trails in S: (1) covers the entire
state space; and (2) together with their probabilities, covers the probability space.

Point (1) is trivial to prove; point (2) can be proved by induction on the number
of states. Given input parameters δ and ε, and by considering maximal random
trails only, we can terminate the random-search algorithm after executing N =
ln(δ)/ln(1 − ε) random trails if no goal is found.

Some care is needed in the random-trail algorithm to record visited states
because a trail is not allowed to revisit a state. In this research, states that
have been visited in a trail are represented by a BDD, which is used to reduce
(using BDD set operations) the set of potential successor states of the current
state, which of course is also represented by a BDD. The actual successor state
is (randomly) chosen from this set of states. Alternatively, in an explicit-state
environment, a hash table is used to store and retrieve visited states (as in spin).

In a guided random walk, each state is assigned its minimum heuristic cost
(i.e. distance) to a goal state. In this work, we use an abstraction of the sys-
tem as a heuristic to assign a cost to each state, and use this cost to guide the
supposedly random walk towards a possible goal. During a walk, states with
smaller costs are chosen more often than states with larger costs. This abstrac-
tion heuristic mechanism is precisely the same approach used in AGMC [4].
In Fig. 2, we show the new symbolic abstraction-guided random-walk model-
checking algorithm sgrmc. Remember, as in sgmc, the algorithm is actually
symbolic, and the details of the BDD data structures and operations have been
left out. The algorithm handles both walks and trails and both guided and un-
guided random walks. If the variable guided is false, the algorithm is a “pure”
(i.e. unguided) random-walk algorithm, which for experimental purposes we call
srmc. Otherwise the algorithm will be guided, and is referred to as sgrmc.



78 T.H. Bui and A. Nymeyer

sgrmc algorithm
Input: transition system M = (S,T, S0, G), abstractDB adb,

boolean guided , boolean randTrail
Output: goal path | not found
1: while (! terminationCond)
2: s = random(S0)
3: visitedStates = ∅
4: while (! endCond(s))
5: visitedStates = visitedStates ∪ {s}
6: return getPath(visitedStates) when (s ∈ G)
7: ss = {s′ | (s, s′) ∈ T}
8: ss = ss − visitedStates when (randTrail)
9: if (guided)

10: costSet p = ∅
11: for all bi ∈ adb
12: ss′′ = bi ∩ ss
13: p = p ∪ {(ss′′, i)} unless (ss′′ == ∅)
14: ss = guidedRandom(p, |adb|)
15: s = random(ss)
16: return not found

Fig. 2. A Symbolic Abstraction-Guided Random-Walk Model Checking algorithm

The algorithm sgrmc randomly and repeatedly traverses the state space of
the given system until terminationCond is satisfied. Each traversal is restricted
in length by endCond . In each traversal, all visited states are recorded (line 5)
in visitedStates . The algorithm will return the goal path if a goal is located
(lines 6). Otherwise, the algorithm will return not found when the termination
condition is satisfied. The function getPath examines the times the states were
visited and extracts the goal path. The set of successor states ss of a state s is
generated in line 7. The input Boolean variable randTrail enables us to carry out
random walks or random trails. If randTrail is true then we remove the visited
states whenever they occur in the set of successor states (lines 8). The function
random chooses a next state, uniformly and randomly, from ss (lines 2 and 15).

Like the sgmc algorithm, the algorithm divides ss into partitions, which are
stored in a variable p that has type costSet (line 10 to 13). Each partition
is assigned a cost i, where i is the abstract distance to the goals of all the
states in that partition (line 13). A guided random-selection function, called
guidedRandom , is called to compute the set of successor states ss (line 14).
This function takes as input p = {(ss0, i0), . . . , (ssn, in)} and the size of the
input abstract database |adb|, and selects one of the sets ssk from p in a biased
fashion. The smaller the cost ik, the greater the probability that ssk will be
selected. To achieve this, each instance ssk is repeated |adb|− ik times, and then
a set is selected randomly. The set of successor states is then restricted to that
partition only. Thereafter, a successor state is selected uniformly and randomly
from the (restricted) set of successor states (line 15).



Formal Verification Based on Guided Random Walks 79

4 Experimentation

In this section, we apply the four algorithms srmc, sgrmc, sgmc and nusmv

to four well-known problems: the dining-philosophers problem, leader-election
protocol, send/receive protocol and mutual-exclusion protocol1. Precisely the
same (abstraction-based) heuristic is used in both guided algorithms sgmc and
sgrmc. As we are interested in finding bugs, ‘error’ versions of each of the
protocols that violate particular properties are used in this research.

Note that the user-defined properties are important in determining the PEP
factor. It is easy to see that in the dining-philosophers problem, all processes
need to ‘work together’ to result in deadlock, so its PEP factor is high. The
leader-election protocol also has a high PEP factor because, during an elec-
tion, all processes need to pass a token around the ring. In this research, our
‘buggy’ version allows two processes erroneously claiming a single resource. In
the send/receive protocol that we use, a send process has a time-out (error) if a
receive process does not send an acknowledgement on time, so just two processes
are involved in an error. The PEP factor of this protocol is hence low. Similarly,
in the mutual-exclusion protocol, we need just two processes to be in the critical
section at the same time for an error to occur, so it also has a low PEP factor.

We note again that the PEP factor is dependent on the property that the user
defines. So, for example, if the property in the mutual-exclusion protocol is that
all processes cannot be pair-wise in the critical section at the same time, then
the model is high PEP. We add that there is no relationship between the PEP
factor and the tightness/looseness of the process coupling in the model.

In all experiment results in this section, each data point in the random-walk
experiments is the average of executing the algorithm 50 times, where each exe-
cution uses a different seed in the random-number generator. All the experiments
were performed on a Pentium IV 3.0GHz with 1GB RAM running a Linux op-
erating system called Ubuntu 6.06.

4.1 Which Is the ‘Fastest’ Random-Walk Based Algorithm?

In this first series of experiments, we compare the ‘unguided’ random-walk
srmcw, ‘unguided’ random-trail algorithm srmct, and guided random-walk al-
gorithm sgrmcw, guided random-trail algorithm sgrmct.

4.1.1 Unbounded Random Walks and Trails
We first carry out the experiments with no bound on the length of the random
walks and trails, and in the next section repeat the experiments with a bound.

Dining Philosophers Problem: In Fig. 3, we compare the experimental re-
sults of all algorithms for the dining-philosophers problem. In the table we show
the number of philosophers ph., execution time (in seconds), standard deviation
of the time std, number of traversals to reach the goal N and length of the goal

1 The first two of these problems can be found at http://anna.fi.muni.cz/benchmark.



80 T.H. Bui and A. Nymeyer

time std N len time std N len time std N len time std N len
10 0.32 0.3 1 361.6 0.30 0.3 1.12 285.2 0.19 0.1 1 215.7 0.17 0.1 1.06 155.1
12 0.89 0.7 1 602.8 0.83 0.5 1.04 531.3 0.66 0.4 1 467.0 0.43 0.3 1.02 284.9
14 1.98 1.6 1 968.8 1.65 1.2 1.06 783.5 0.96 0.7 1 471.7 0.92 0.7 1.06 375.3
16 5.78 5.0 1 2080.9 4.66 3.7 1.08 1532.6 2.75 1.9 1 975.6 2.02 1.5 1.16 564.4
18 12.34 12.0 1 3298.7 16.26 14.6 1.12 3870.6 6.20 4.8 1 1528.6 3.42 2.7 1.04 753.3

SGRMC w SGRMC tph.
SRMC w SRMC t

 Dining-philosophers problem

0

5

10

15

20

10 12 14 16 18ph.

sec(s)

SRMC w
SRMC t
SGRMC w
SGRMC t

Fig. 3. Performance of unbounded random walks on the dining-philosophers problem

Dining-philosophers problem (16 ph.)

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500seed

sec(s)

SRMC t

Dining-philosophers problem (16 ph.)

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500seed

sec(s)

SGRMC t

Fig. 4. Distributions of time for 16 dining philosophers using srmct and sgrmct

time std N len time std N len time std N len time std N len
3 0.92 0.9 1 1584.3 0.81 0.7 1 936.8 0.42 0.4 1 685.2 0.33 0.3 1 333.9
4 4.67 4.1 1 4644.7 2.91 2.4 1 1566.7 3.02 2.8 1 3068.2 2.32 1.9 1 1206.1
5 29.85 31.0 1 19246.0 16.07 13.9 1 5262.1 13.61 13.2 1 8915.7 10.05 9.6 1 3025.8
6 176.94 217.1 1 69492.8 89.30 81.6 1 16664.5 106.75 96.6 1 42177.5 33.31 35.0 1 6126.3

SGRMC w SGRMC tpr.
SRMC w SRMC t

Leader-election protocol

0

50

100

150

200

3 4 5 6pr.

sec(s)

SRMC w
SRMC t
SGRMC w
SGRMC t

Fig. 5. Random walks for the leader-election protocol

path len. On the right of the table we plot the times. There are a number of
observations that can be made: 1) The ‘walk’ algorithms reach the goal in just
1 traversal, while the ‘trail’ algorithms may need more than one. The reason is
that trails must restart if all the successors of a state have been visited before.
2) The length of the goal path is much greater than optimal (note the minimum
length is twice the number of philosophers). 3) On average, the fastest algorithm
is the guided trail algorithm, sgrmct, which appears to scale well.

We also looked at the distribution of the data, and noting that the guided
data had a lower standard deviation than the unguided data, found that the
guided data was better behaved. In Fig. 4 we show for example the time taken
to find the deadlock for 16 dining philosophers using srmct and using sgrmct.

Leader-Election Protocol: The other high PEP factor system is the leader-
election protocol., whose results are shown in Fig. 5. The column pr. indicates
the number of processes. The rest of the columns have the same meaning as
before. We note the following: 1) The behaviour of the standard deviation of the



Formal Verification Based on Guided Random Walks 81

time std N len time std N len time std N len time std N len
3 56.84 65.2 1 95589.4 32.55 42.4 3.7 7070.1 0.06 0.01 1 124.9 0.07 0.02 1 119.9
4 119.51 139.1 1 89829.8 43.67 61.9 1.1 25032.2 0.12 0.03 1 132.4 0.13 0.03 1 125.5
5 244.79 338.1 1 105878.6 124.81 130.7 1.0 46591.5 0.15 0.06 1 125.0 0.15 0.05 1 121.7
6 343.32 413.2 1 104177.0 250.56 270.7 1.0 68416.9 0.20 0.07 1 120.3 0.21 0.06 1 119.4

SGRMC w SGRMC tpr. SRMC w SRMC t

Send/Receive protocol

0

100

200

300

400

3 4 5 6pr.

sec(s)

SRMC w
SRMC t
SGRMC w
SGRMC t

Fig. 6. Random walks for the send/receive protocol

time std N len time std N len time std N len time std N len
16 0.22 0.21 1 111.9 0.20 0.16 1 107.6 0.12 0.06 1 41.3 0.13 0.06 1 41.3
20 0.29 0.26 1 93.9 0.31 0.29 1 97.5 0.20 0.09 1 42.8 0.20 0.08 1 42.0
24 0.55 0.46 1 123.0 0.53 0.42 1 114.7 0.23 0.11 1 30.3 0.24 0.12 1 30.3
28 0.54 0.42 1 82.5 0.55 0.44 1 85.2 0.34 0.20 1 35.5 0.34 0.20 1 35.5

SGRMC w SGRMC tpr.
SRMC w SRMC t

Mutual-exclusion protocol

0.0

0.2

0.4

0.6

0.8

16 20 24 28pr.

sec(s)

SRMC w
SRMC t
SGRMC w
SGRMC t

Fig. 7. Random walks for the mutual-exclusion protocol

time, and the number of traversals required have similar behaviour to the dining-
philosophers problem. 2) The use of trails seems more effective than walks. 3)
The guided trail algorithm sgrmct was fastest and scaled the best.

Send/Receive Protocol: Unlike the previous two protocols, this protocol has
a low PEP factor. The experimental results are shown in Fig. 6. The main ob-
servation here is that the guided walk and guided trail algorithms show similar
behaviour, and are both much faster than the unguided algorithms. The conjec-
ture is that the guide is more effective in a low PEP system because the costs of
states associated with processes that play a role in the violation of the property
are significantly lower than other costs of other states, so it is easier to generate
a guide that is informed, and hence effective.

Mutual Exclusion Protocol: The results for this other low PEP factor system
is presented in Fig. 7. The main observation here is that all algorithms perform
well, although the guided algorithms perform better taking approximately half
the time of the unguided algorithms. The reason for this is that there are many
paths that lead to an error state and the error state is close by, so all search
algorithms, guided or not, can quickly find the error state.

4.1.2 Bounded Random Walks and Trails
It is easy to speculate that an unbounded random walk through a state space
(as all the experiments above are) can waste time ‘going in the wrong direction’.
In such cases, terminating the walk prematurely, and restarting it, may improve
its chances of finding the error. However, the downside to this strategy is that if
the bound is too short, we may never walk far enough to find the error (it may



82 T.H. Bui and A. Nymeyer

(a)

ph. SRMC w SRMC t SGRMC w SGRMC t

10 0% 0% 0% 0%
12 -2% -1% 2% 2%
14 7% 0% 6% 0%
16 22% 26% 14% 7%
18 41% 6% -1% 4% (b)

pr. SRMC w SRMC t SGRMC w SGRMC t

3 39% 28% 0% -15%
4 186% 44% 96% 28%
5 640% 100% 522% 72%
6 182% 140% 623% 173%

(c)

pr. SRMC w SRMC t SGRMC w SGRMC t

3 -91% -82% 0% 0%
4 -90% -77% -17% -15%
5 -92% -84% 13% 13%
6 -92% -88% 5% 5% (d)

pr. SRMC w SRMC t SGRMC w SGRMC t

16 0% 5% 0% -8%
20 0% -3% 0% 0%
24 0% 0% 0% -4%
28 0% 0% 0% 0%

Fig. 8. Percentage change in execution time in the bounded (a) dining-philosophers
problem, (b) leader-election protocol, (c) send/receive protocol, and (d) mutual-
exclusion protocol

always stop short). There is hence a trade-off between the length and number of
walks. To understand this trade-off better, we arbitrarily apply a bound to the
length of all random walks. This bound is 100 times the number of concurrent
processes in the system. The experiments are repeated with this bound.

In Fig. 8(a), we show the execution time for the dining-philosophers prob-
lem, expressed as a percentage change of the previous time. For example, con-
sider the case with 18 philosophers and the unguided algorithm srmc. The bound
is set to 1800 steps, with the result that (on average) the search is 41% slower
than the unbounded case. The main conclusion one can draw from these results
is that arbitrarily bounding the walk/trail generally results in a worse execution
time, but that the guided algorithms are less affected than unguided algorithms.

In Fig. 8(b) we see in the results for the leader-election protocol that
the degradation in performance is even more pronounced, but that the trail
algorithms are less affected. In the results for the send/receive protocol shown
in Fig. 8(c), we see that the unguided walk algorithm’s performance improves
approximately 90% when we bound the walk (so e.g. the execution time for
bound srmc is approximately 27 seconds, which we note is still 100 times slower
than sgrmc). Remembering from the unbounded experiment that the goal is
only a short distance from the initial state, it is intuitively obvious that bounding
the unguided algorithms is desirable to avoid long walks ‘getting lost’. The guided
algorithm already efficiently finds the error, so it gains little by being bound.

Finally we have the results for the mutual-exclusion protocol shown in
Fig. 8(d). In this figure we see that bounding the walks and trails has virtually
no effect on the time. What is important to note here is that, while this protocol
and the send/receive protocol both have error states at only a short distance
from the initial state, the number of processes in this protocol is much higher
than the send/receive protocol (28 versus 6). This means that the bound for
this protocol is much larger (remember that the bound is set to 100 times the
number of processes), and a large bound is in effect no bound.

Discussion: These experiments suggest that unguided algorithms are faster
with a bound than without if the bound is appropriate (i.e. not too long). Clearly,
the bound should not be a function of just the number of processes but should



Formal Verification Based on Guided Random Walks 83

take into account the structure of the state space and closeness of the error. In
certain circumstances it is advantageous to apply a bound to random search (e.g.
if the error is ‘close’ and the guiding abstraction is weak). However, any bound
carries a risk of preventing the search from finding errors that are ‘too far away’.

Overall, the guided algorithms are significantly faster for high PEP systems,
and orders of magnitude faster for low PEP systems. In particular, the guided
trail algorithm sgrmc is almost always the fastest, and it finds the shortest path
to the error state (but this path may still be longer than the optimal path, as
we shall see in the next section). Comparing the unguided and guided random
trail algorithms, we see that the guided random trail algorithm always results
in a shorter path, which suggests that the guide is having a significant effect. It
would be interesting to study the relationship between the size of this effect and
the ‘quality’ of the heuristic. There did not seem to be any relationship between
the size of the effect and the PEP factor.

4.2 How Much Faster Is (Guided) Simulation Than Verification?

In a second series of experiments, we compare the fastest simulation algorithm
(sgrmct) with two verifiers: the symbolic model checker nusmv and the symbolic
abstraction-guided model checker sgmc. For the purposes of comparison, we
consider just the unbounded version of sgrmct.

In Fig. 9, we show the comparison for the dining-philosophers problem.
The table on the left of this figure shows the execution time (in seconds), the
amount of memory used mem (in Megabytes) and the length of the goal path
len for each algorithm. We also include the standard deviation std in the case
of sgrmct. The chart on the right plots the execution times for up to 12 philoso-
phers. While non-optimal, the results show that sgrmct is orders of magnitude
faster. This is somewhat a surprising result as it is well known that the ‘patho-
logical’ high level of symmetry in the dining-philosophers problem is problematic
for guided verification. This does not extend to guided simulation, even though
it uses precisely the same heuristic. The reader may remember that even the
unguided random-walk algorithm srmc did very well on this model, so clearly
simulation is a better approach than verification in this case.

time mem len time mem len time std mem len
4 0.01 0.76 8 0.01 0.87 8 0.01 0.00 0.88 31.80
6 0.06 1.70 12 0.12 2.47 12 0.03 0.01 1.25 68.60
8 0.56 8.82 16 1.78 11.46 16 0.07 0.02 1.82 91.90

10 11.91 11.41 20 54.26 15.15 20 0.17 0.07 3.29 155.10
12 106.75 40.58 24 168.50 37.49 24 0.43 0.27 6.65 284.90
14 882.94 203.69 28 15704.50 337.47 28 0.92 0.72 9.51 375.30
16 8693.00 886.83 32 > 10h 2.02 1.50 11.20 564.40
18 > 10h > 10h 3.42 2.66 11.51 753.30
20 > 10h > 10h 7.11 5.35 12.24 1038.10

ph. NuSMV SGMC SGRMC t Dining-philosophers problem

0

50

100

150

200

4 6 8 10 12ph.

sec(s)

NuSMV
SGMC
SGRMC t

Fig. 9. Comparing simulation and verification for the dining-philosophers problem



84 T.H. Bui and A. Nymeyer

time mem len time mem len time std mem len
3 0.74 10.00 18 0.48 6.86 18 0.33 0.30 4.36 333.86
4 20.37 22.93 19 12.56 11.58 19 2.32 1.87 10.16 1206.08
5 237.30 145.30 21 164.87 33.58 21 10.05 9.58 11.40 3025.82
6 2108.62 645.14 23 755.19 121.39 23 33.31 35.01 13.25 6126.34

pr. NuSMV SGMC SGRMC t

Leader-election protocol

0

500

1000

1500

2000

2500

3 4 5 6pr.

sec(s)

NuSMV
SGMC
SGRMC t

Fig. 10. Comparing simulation and verification for the leader-election protocol

time mem len time mem len time std mem len
5 2.60 11.46 13 0.07 2.08 13 0.04 0.05 3.47 121.70

10 26.93 24.54 13 0.16 3.79 13 0.60 0.20 9.17 124.36
15 72.47 49.01 13 0.27 5.11 13 1.49 0.60 9.49 140.44
20 150.97 105.51 13 0.55 8.44 13 2.69 0.96 9.69 136.12
25 273.65 152.72 13 1.08 9.73 13 4.63 2.25 10.20 132.16
30 421.76 225.04 13 1.35 8.34 13 8.25 5.49 11.06 158.26

pr. NuSMV SGMC SGRMC t

Send/Receive protocol

0

100

200

300

400

500

3 5 7 9 11 13 15 25pr.

sec(s)

NuSMV
SGMC
SGRMC t

Fig. 11. Comparing simulation and verification for the send/receive protocol

The poor performance of guided verification (sgmc) is well-known and caused
by the symmetry in the model that makes it difficult to find a useful heuristic.
In effect, in this model sgmc works breadth-first like nusmv, but has extra
overhead due to ‘expensive’ BDD (partitioning) operations that it must perform
(and nusmv does not). Also interesting is the efficient memory utilisation of
sgrmct, remembering this algorithm is based on BDDs.

The graph of the performance of the other high PEP factor model, the leader-
election protocol, is shown in Fig. 10. The guided random-trail algorithm
sgrmct is again faster, and uses less memory, than the verification algorithms.
However, comparing the verification algorithms, sgmc performed better than
nusmv. The reason for this is the system does not have as high a PEP factor
as the dining-philosophers problem. While all processes in this system need to
be involved in passing a message around the ring, in our system, a process may
unilaterally claim leadership. Because other processes will be unaware of this,
an error can result. This lower PEP-factor behaviour allows the heuristic to be
a more effective guide, resulting in significantly better performance.

In the random-walk experiments we saw that both the guided random-walk
and random-trail algorithms were particularly effective in low PEP factor sys-
tems. In Fig. 11 we compare verification and simulation for the send/receive
protocol. The graph on the left in this figure shows that both guided verifi-
cation and simulation are very fast compared to nusmv, and both require far
less memory. It is conjectured that the asymmetry in the search space caused by
the relatively few processes play a role in the error state makes guiding effective.
Interestingly, guided verification has better performance than guided simulation;



Formal Verification Based on Guided Random Walks 85

time mem len time mem len time std mem len
16 5.13 18.66 8 0.08 2.33 8 0.13 0.06 2.96 41.32
20 17.23 50.61 8 0.14 3.24 8 0.20 0.08 4.13 42.04
24 43.80 102.67 8 0.21 4.32 8 0.24 0.12 4.70 30.26
28 98.25 173.90 8 0.27 5.52 8 0.34 0.20 6.22 35.50
30 162.51 206.83 8 0.33 6.48 8 0.43 0.23 7.44 39.52
40 > 1hr 0.60 10.32 8 0.64 0.32 8.84 28.62
50 > 1hr 1.03 9.71 8 1.28 0.57 8.96 39.18
60 > 1hr 1.33 10.21 8 2.22 1.08 10.13 44.42
70 > 1hr 2.14 12.20 8 3.19 1.47 10.46 40.88

pr. NuSMV SGMC SGRMC t
Mutual-exclusion protocol

0

50

100

150

200

16 20 24 28 30 40 50 60 70pr.

sec(s)

NuSMV
SGMC
SGRMC t

Fig. 12. Comparing simulation and verification for the mutual exclusion protocol

not only in execution time but also in memory usage. Contributing to the worse
performance of simulation is undoubtedly the long path it takes to reach the
error state. As expected, both nusmv and sgmc generate optimal goal path
lengths of course, while sgrmct does not by an order of magnitude.

The experimental results for the other low PEP factor system, the mutual-
exclusion protocol, are shown in Fig. 12. The same general behaviour de-
scribed above is seen here: the guided algorithms sgmc and sgrmct are both
many orders of magnitude faster than (unguided) nusmv, and require far less
memory. However, the memory requirements of both algorithms are similar this
time. As before, the verification algorithms are optimal, simulation is not.

Discussion: As expected, the guided random simulator sgrmct is many orders
of magnitude faster and uses less memory than the conventional verifier nusmv

in the series of experiments carried out here. In fact, sgrmct can find errors in
models that are intractable for nusmv.

A comparison with the other verifier, sgmc, is quite different. Surprisingly,
for low PEP factor systems, guided verification (i.e. sgmc) is faster than guided
simulation (sgrmc). The reason for this is that, although precisely the same
heuristic is used in guided verification and simulation, it plays a different role
in each. In the former, there is no randomness. In the latter, the walk is still
predominately random.

Of course, if successful, the guided verifier sgrmc generates an optimal goal
path, and guided simulation does not. So, while a random-trail algorithm can find
an error state very quickly, the path to the error may be long and circuitous, and
one would assume unhelpful to the user unless the user had a tool, for example,
that could prune the path.

5 Future Work and Conclusions

In this work we have developed symbolic, guided random-walk and random-trail
model checking algorithms, applied these algorithms to four well-known prob-
lems, investigated the effect of bounding the length of walks and trails, and
compared the fastest of these algorithms with conventional and guided sym-
bolic model checking algorithms. We will not repeat the discussions here of the



86 T.H. Bui and A. Nymeyer

experimental results from Sect. 4.1 and 4.2, except to say that the guided
random-trail algorithm sgrmct is generally the best at locating errors, and when
it is not, the guided model checker sgmc is the best. Each of the protocols stud-
ied in this work contained an error, and the error was always found. We did not
consider what conclusions can be drawn if no error was found.

Noting that the guided random-walk approach uses precisely the same ab-
stract model as heuristic as the guided model checker, a tool that allows the
verification engineer to alternately and seamlessly carry out property-based sim-
ulation and verification is possible. What is necessary here is a ‘feedback’ loop
that would integrate the two technologies and allow the verifier to benefit from
the information obtained by the simulator.

Pelánek [16] has shown the structure, or shape, of state spaces for many spec-
ifications. The PEP characterisation that we have used is an attempt to relate
these structures and properties. A low PEP factor can be viewed as indicating
asymmetry in the state space. The more ‘skew’ the structure is w.r.t. the prop-
erty, the easier it is to create an abstract model that will act as an effective
heuristic. However, there is much work that needs to be done to understand the
PEP factor. Can it be formalised for example?

Another aspect that needs to be considered in the method used to generate
the abstract model. Currently this is done by using a ‘crude’ static analysis of
the specification. While it ranks variables in terms of their dependencies, it does
not, for example, rank variables with respect to the property under investigation,
which could be important. Also not addressed in this work is the symbolic aspect.
While all algorithms have been implemented using BDDs, the benefits (if any)
of this approach have not been considered. A symbolic approach can be effective
in model verification. It may or may not be in model simulation.

Finally, only small protocols have been studied in this work. The application
of guided random walks to more realistic industrial case studies has yet to be
carried out. The expectation however is that in real life, heuristics can be very
effective because small but identifiable parts of the specification considered with
respect to the property under investigation generally dominate the behaviour
and lead to states that violate the property.

References

1. SPIN: on-the-fly, LTL model checking, http://spinroot.com/spin/
2. NuSMV: a new symbolic model checker, http://nusmv.irst.itc.it/
3. Edelkamp, S., Lluch Lafuente, A., Leue, S.: Directed explicit model checking with

HSF-SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer,
Heidelberg (2001)

4. Qian, K., Nymeyer, A., Susanto, S.: Abstraction-guided model checking using
symbolic IDA∗ and heuristic synthesis. In: Wang, F. (ed.) FORTE 2005. LNCS,
vol. 3731, pp. 275–289. Springer, Heidelberg (2005)

5. Qian, K., Nymeyer, A., Susanto, S.: Experiments with multiple abstraction heuris-
tics in symbolic verification. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS
(LNAI), vol. 3607, pp. 290–304. Springer, Heidelberg (2005)

http://spinroot.com/spin/
http://nusmv.irst.itc.it/


Formal Verification Based on Guided Random Walks 87

6. Groce, A., Visser, W.: Heuristics for model checking Java programs. Int. Journal
on Software Tools for Technology Transfer (STTT) 6(4), 260–276 (2004)

7. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podelski,
A., Behrmann, G.: Uppaal/DMC - abstraction-based heuristics for directed model
checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
679–682. Springer, Heidelberg (2007)

8. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction
and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)

9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

10. Nymeyer, A., Qian, K.: Heuristic search algorithm based on symbolic data struc-
tures. In: Gedeon, T(T.) D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903,
pp. 966–979. Springer, Heidelberg (2003)

11. Owen, D., Menzies, T., Heimdahl, M., Gao, J.: On the advantages of approximate
vs. complete verification: Bigger models, faster, less memory, usually accurate. In:
Proc. of IEEE/NASA Softw. Eng. Workshop, SEW 2003, pp. 75–81 (2003)

12. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg
(2005)

13. Qian, K., Nymeyer, A.: Abstraction-based model checking using heuristical refine-
ment. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 165–178. Springer,
Heidelberg (2004)

14. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans-
actions on Programming Languages and Systems 16(5), 1512–1542 (1994)

15. Haslum, P.: Model checking by random walk. In: Proc. of ECSEL Workshop (1999)
16. Pelánek, R., Hanžl, T., Černá, I., Brim, L.: Enhancing random walk state space

exploration. In: Proc. of Formal Methods for Industrial Critical Systems, FMICS
2005, pp. 98–105. ACM Press, New York (2005)



Parallel Processes with Real-Time and Data:
The ATLANTIF Intermediate Format

Jan Stöcker, Frédéric Lang, and Hubert Garavel

Vasy project-team, Inria Grenoble – Rhône-Alpes/Lig, Montbonnot, France
{Jan.Stoecker,Frederic.Lang,Hubert.Garavel}@inria.fr

Abstract. To model real-life critical systems, one needs“high-level” lan-
guages to express three important concepts: complex data structures,
concurrency, and real-time. So far, the verification of timed systems has
been successfully applied to “low-level” models, such as timed extensions
of automata or of Petri nets. To bridge the gap between high-level lan-
guages, which allow a concise modeling of systems, and low-level models,
for which efficient algorithms and tools have been designed, intermediate
models are needed. In this paper, we propose the Atlantif intermediate
model, an extension with real-time and concurrency of the Ntif (New
Technology Intermediate Format) intermediate model. We define the for-
mal semantics of Atlantif and present a translator from Atlantif to
timed automata (for verification using Uppaal), and to time Petri nets
(for verification using Tina).

1 Introduction

In many cases, asynchronous real-time systems can be modeled as a set of pro-
cesses that run in parallel, communicate, synchronize mutually, and are subject
to quantitative time constraints. The description and verification of asyn-
chronous real-time systems has been a very active research subject, which has led
to numerous theoretical results established upon various low-level models, such
as timed automata [1, 11], timed extensions of Petri nets [32, 16], and timed
process algebras [17, 31, 10, 18, 9, 40, 3, 34, 35, 28]. These models have been at
the basis of successful verification tools, such as AltaRica [15], Kronos [41],
Red [39], Romeo [26], Rtl [17], Tina [5], Uppaal [30], etc.

However, although appropriate for verification, these models are often too
low-level for describing complex systems concisely. Higher-level models are thus
needed. Such models should allow the expression of three aspects formally and
simultaneously:

1. The first aspect is data, ranging from simple types (such as booleans, integers
and enumerated types) to structured types (such a arrays, lists, unions, and
trees). This also includes functions, either predefined or user defined.

2. The second aspect is control, such as communication, synchronization be-
tween processes, and the ability for processes to activate and/or deactivate
each others.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 88–102, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



The ATLANTIF Intermediate Format 89

3. The third aspect is real-time, such as delays (inaction of a process during a
predefined time), constraints on the time instants when a process can com-
municate, urgency (indicating that a communication must not be delayed),
and latency [17] (indicating that some time can elapse before a communica-
tion becomes urgent).

This scientific goal has been addressed since the late 80’s, with the defini-
tion of high-level formal models that combine the strong theoretical foundations
of process algebras with language features suitable for a wider industrial dis-
semination of formal methods [36, 31], converging into the E-Lotos language
standardized by Iso [28]. On the other hand, several semi-formal industrial mod-
els based on model-driven tool development are emerging, such as Aadl [20],
SysML [27] and Uml/Marte [19]. However, in both cases, verification tools
are still lacking for this models. This could be adressed by translators from these
high-level models to the low-level models accepted by existing verification tools.
Suitable intermediate models are thus needed to enable a better integration of
timed verification in industrial tool chains.

Related Work. Ntif (New Technology Intermediate Form) [22] is a minimal in-
termediate model for processes with sequential control and complex data. An
Ntif process is an automaton that consists of a set of control states, to each of
which is associated a statement called a multibranch transition and defined using
high-level standard control structures (deterministic and nondeterministic vari-
able assignments, if-then-else and case conditionals, nondeterministic choice,
while loops, etc.) and communication events. This allows a representation of
processes that is more compact than condition/action models such as If [14],
Bip [4], and Lpes [37] and that can be easily translated into such models.

More recently, Ntif found industrial applications in the framework of the
Topcased

1 project led by Airbus. The concepts of Ntif served as a basis for
Fiacre (Format Intermédiaire pour les Architectures de Composants Répartis
Embarqués) [6], an intermediate model between industrial models and verifica-
tion tools. Transformations from Aadl and Sdl into Fiacre have been specified,
and Fiacre has been connected to two model checkers: Cadp [24] and Tina [8].

Contribution. As a basis to design the future revisions of Fiacre, we propose in
this paper an enhanced version of Ntif named Atlantif, which provides more
general concurrency and real-time constructs. As regards control, Atlantif pro-
vides a mechanism to synchronize processes, based on a generalization of synchro-
nization vectors. As regards real-time, it associates delays and time constraints to
communications, following the line of prior work that led to the definition of real-
time process algebras, such as ET-Lotos [31], RT-Lotos [17], and E-Lotos.
Atlantif has a formal semantics that is intended to allow semantic-preserving
translations from high-level languages into low-level models, and that satisfies
suitable properties such as time additivity (every sequence of timed transitions
can be collapsed into a single timed transition), time determinism (elapsing of a
1 http://www.topcased.org



90 J. Stöcker, F. Lang, and H. Garavel

certain amount of time leads to a unique state) and maximal progress of urgent
actions (time cannot elapse if an urgent action is possible) [33].

In order to assess our choices, we also present a prototype translator tool
from Atlantif to lower-level models, thus enhancing the cooperation between
different methods. It targets timed automata, suitable as input for the Uppaal

model checker and time Petri nets, suitable as input for the Tina model checker.
We illustrate the benefits of Atlantif and its translators on four examples
borrowed from the literature of real-time models.

Paper outline. In Section 2, we present the syntax and formal semantics of
Atlantif. In Section 3, we show how subsets of Atlantif can be translated
into Uppaal’s timed automata and Tina’s time Petri nets, we present a tool,
and we give examples. In Section 4, we give some concluding remarks.

2 Overview of ATLANTIF

2.1 Syntax

The syntax of Atlantif, given in Fig. 1, is described in Ebnf (Extended Backus-
Naur Form), where parts between square brackets are optional and vertical bars
denote alternatives. Atlantif is a strict superset of Ntif; shading is used to
highlight these extensions, which will be detailed in Sections 2.2 and 2.3.

For conciseness, we will not detail type definitions (including complex data
types, such as records, lists, etc.), type constructors, and function definitions.
There are also Atlantif constructs (mechanisms to start and stop processes,
to share variables between processes, and to perform synchronizations that do
not induce discrete transitions) that will not be detailed in this paper.

2.2 Sequential Processes in ATLANTIF

An Atlantif sequential process, called a unit , contains variable declarations
and a list of discrete states, the first of which is taken to be the initial state. To
each discrete state s we associate a multibranch transition of the form“from s A”,
where A is an action, noted act(s). Contrary to usual models, in which actions
are simply “condition/assignment”pairs, Atlantif actions are built using high-
level language constructs combining atomic actions. A particular action is gate
communication, which allows data exchange in the form of offers, each of which
represents either the emission (“!E”) of some value expression E or the reception
(“?P”) of some value that is decomposed against a pattern P using pattern-
matching.

As regards real-time, Atlantif supports either discrete time (corresponding
to a time domain isomorphic to IN) or dense time (corresponding to IR≥0), as well
as untimed behaviour. This timing option is given in the header of a specification
(by the keywords “no time”, “discrete time”, or “dense time”) and taken to
be “no time” if unspecified. Atlantif also has a “wait” action allowing a given
amount of time to elapse (borrowed from process algebras such as Tcsp [36]),
and the following optional additions to gate communication:



The ATLANTIF Intermediate Format 91

X ::= module M is
[(no | discrete | dense) time] (timing options)
type T1 is D1 . . . type Tn is Dn (type declarations)
function F1 is Y1 . . . function Fl is Yl (function declarations)
R1 . . . Rm (synchronizers, defined below)
U0 . . . Ul (unit definitions, defined below)
end module

U ::= unit u is
[variables V0 : T0 [:= E0], . . . , Vn : Tn [:= En]] (local variables)
from s0 A0 . . . from sm Am (list of transitions)
end unit

A ::= V0, . . . , Vn := E0, . . . , En (deterministic assignment)
| V0, . . . , Vn := any T0, . . . , Tn [where E] (nondeterministic assignment)
| reset V0, . . . , Vn (variable reset)
| wait E (delay)
| G O1 . . . On [[must | may] in W ] (gate communication)
| to s′ (jump to state)
| A1; A2 (sequential composition)
| if E then A1 else A2 end [if] (conditional)
| case E is P0→ A0 | ... | Pn→ An end [case] (deterministic choice)
| select A0 [] ... [] An end [select] (nondeterministic choice)
| while E do A0 end [while] (loop)
| null (inaction)

O ::= !E (value emission) E ::= V (variable)
| ?P (value reception) | F (E1, . . . , En) (function)

| C(E1, . . . , En) (constructor)
P ::= any T (anonymous variable) | P0 where E (condition) | (P0)

| V (variable) | C(E1, . . . , En) (constructor) |
W ::= [E1,E2] | ]E1,E2] | [E1,E2[ | ]E1,E2[ (bounded interval)

| [E1, ...[ | ]E1, ...[ (unbounded interval)
| W1 or W2 | W1 and W2 | (W0) (combined intervals)

R ::= sync G [: B] is K end sync (synchronizer declaration)
K ::= u (single unit) N ::= n (natural integer)

| K1 and K2 (synchronization) | N1 or N2 (choice)
| K1 or K2 (alternative) B ::= visible (default value)
| N among (K1, . . . , Km) | hidden
| (K0) | urgent

where terminal and non terminal symbols mean the following:
A : action M : module identifier u : unit identifier
B : visibility specifier N : cardinality list U : unit
C : constructor identifier O : communication offer V : variable identifier
D : type definition P : pattern W : time window
E : expression Q : semantic modality X : module (axiom)
F : function identifier R : synchronizer Y : function definition
G : gate identifier s : state identifier
K: synchronization formula T : type identifier

Fig. 1. Atlantif syntax (shading indicates additions w.r.t. Ntif)



92 J. Stöcker, F. Lang, and H. Garavel

– A time window W that consists of intersections (“and”) and unions (“or”) of
open or closed intervals, where “...” represents infinity. The communication
may happen when the time elapsed since the communication action has been
reached belongs to the time window. If W is unspecified, it is taken to be
“[0, ...[”. The time window thus has the role of a life reducer , similar to that
found in different timed process algebras such as ET-Lotos [31].

– A modality Q among “must” or “may”, “must” indicating that the commu-
nication must occur before the end of the time window (which is called the
deadline), and “may” indicating that time can elapse indefinitely. If unspec-
ified, Q is taken to be “may”. In the classification of [13], “may” corresponds
to weak timed semantics, whereas “must” corresponds to strong timed se-
mantics. Time Petri nets and Fiacre only allow strong timed semantics,
whereas timed automata and most timed extensions of Lotos allow a com-
bination of both, which justifies our choice in Atlantif.

Static semantics. As regards static semantics, Atlantif inherits the same rules
as Ntif [22], namely well-typedness, proper initialization of variables before
use, and restriction of at most one communication on each possible path of a
multibranch transition. We add the constraints that no “wait” action is allowed
in any path following a communication in a multibranch transition, and that the
time window of every“must”communication is either unbounded or right-closed.

Dynamic semantics – definitions. As regards dynamic semantics, we need the
following definitions inherited from Ntif. We assume a set Val of values , written
v, v′, v0, v1, etc. We note V the set of variables. Partial functions on V → Val ,
called stores , are written ρ, ρ′, ρ0, ρ1, etc. We note dom(ρ) the domain of ρ.
The update operator � and the restriction operator � are defined on stores
as follows:

ρ � ρ′
def= ρ′′ where ρ′′(V ) = if V ∈ dom(ρ′) then ρ′(V ) else ρ(V )

ρ � {V1, . . . , Vn} def= ρ′′ where dom(ρ′′) = dom(ρ) \ {V1, . . . , Vn}
and (∀V ∈ dom(ρ′′)) ρ′′(V ) = ρ(V )

The semantics of expressions is given by a predicate eval(E, ρ, v) that is true
iff the evaluation of expression E in store ρ yields a value v. The semantics
of patterns is given by a pattern-matching function match(v, ρ, P ) that returns
either “fail” if v does not match P , or else a new store ρ′ corresponding to ρ
in which the variables of P have been assigned by the matching sub-terms of v.
The semantics of offers is given by a function accept(v, ρ, O), defined by:

accept(v, ρ, !E) def= if eval (E, ρ, v) then ρ else fail

accept(v, ρ, ?P ) def= match(v, ρ, P )

We note S the set of state identifiers assumed to contain a special element δ,
reserved for semantics, which represents an auxiliary discrete state that denotes
the termination of an action, thus enabling the execution of subsequent actions.



The ATLANTIF Intermediate Format 93

The following definitions are also required. We note D the time domain,
t, t′, t0, t1, etc. its elements, and L1

def= {G v1 . . . vn | G ∈ G, v1, . . . , vn ∈
Val} ∪ {ε} the set of labels, where G denotes the set of gates and ε repre-
sents transitions without communication actions. The binary operator “+” is
partially defined on L1 × L1 → L1 by l + ε

def= l, ε + l
def= l, and is undefined

if both its operands are different from ε. We note U the set of unit identifiers
and U ,U ′,U0,U1, etc. its subsets. The semantics of time windows is given by a
predicate win eval(W, ρ, D) that is true iff the evaluation of W in store ρ yields
a set of time instants D. We also define a boolean function up lim(Q, W, ρ, t)
returning true iff Q = must and the set D defined by win eval(W, ρ, D) has a
maximum equal to t.

Dynamic semantics – sequential constructs. In Ntif, the semantics of actions
was defined by a relation of the form (A, ρ) l=⇒ (s, ρ′), where A is an action, ρ, ρ′

are stores, s ∈ S is a discrete state, and l ∈ L1 is a label [22]. Atlantif extends
this to a relation to the form (A, d, ρ) l=⇒ (s, d′, ρ′), where d, d′ have the form
(t, µ), with t a time value (intuitively representing the time that may elapse in
the current unit until the next communication), and µ a boolean (called blocking
condition), that is equal to true iff time is not allowed to elapse after t. This
means that the action A in the context d and ρ evolves to the local state (s, d′, ρ′)
(local states are also written σ, σ′, σ0, σ1, etc.), producing a transition labeled l.
These rules are detailed below, where shading indicates additions w.r.t. Ntif.

(null)
(null, d, ρ) ε=⇒ (δ, d, ρ)

(wait)
eval(E, ρ, v) ∧ t ≥ v

(wait E, (t, µ), ρ) ε=⇒ (δ, (t− v, µ), ρ)

(assignd)
eval(E0, ρ, v0) ∧ . . . ∧ eval(En, ρ, vn)

(V0, . . . , Vn := E0, . . . En, d, ρ) ε=⇒ (δ, d, ρ
 [V0 �→ v0, . . . , Vn �→ vn])

(assignn)
v0 ∈ T0, . . . , vn ∈ Tn ∧ ρ′ = ρ
[V0 �→ v0, . . . , Vn �→ vn] ∧ eval(E,ρ′, true)

(V0, . . . , Vn := any T0, . . . , Tn where E, d, ρ) ε=⇒ (δ, d, ρ′)

(reset)
(reset V0, . . . , Vn, d, ρ) ε=⇒ (δ, d, ρ� {V0, . . . , Vn})

(to)
(to s, d, ρ) ε=⇒ (s, d,ρ)

(comm)
(∀j ∈ 1..n) accept(vj , ρj , Oj) = ρj+1 �= fail∧win eval(W, ρn+1, D) ∧ t ∈ D

(G O1 . . . On Q in W, (t, µ), ρ1)
G v1...vn=⇒ (δ, (t, up lim(Q, W,ρn+1, t)), ρn+1)

(seq1)
(A1, d, ρ)

l1=⇒ (δ, d′, ρ′) ∧ (A2, d
′, ρ′)

l2=⇒ σ

(A1; A2, d, ρ) l1+l2=⇒ σ
(seq2)

(A1, d, ρ) l=⇒ (s, d′, ρ′) ∧ s �= δ

(A1; A2, d, ρ) l=⇒ (s, d′, ρ′)

(select)
k ∈ 0..n ∧ (Ak, d, ρ) l=⇒ σ

(select A0 [] . . . [] An end, d, ρ) l=⇒ σ

(case)

eval(E,ρ, v) ∧ (∀j < k) match(v, ρ, Pj) = fail

∧ match(v, ρ, Pk) = ρk ∧ (Ak, d, ρk) l=⇒ σ

(case E is P0 → A0 | . . . | Pn → An end, d, ρ) l=⇒ σ



94 J. Stöcker, F. Lang, and H. Garavel

(while1)
eval(E, ρ, true) ∧ (A;while E do A end, d, ρ) l=⇒ σ

(while E do A end, d, ρ) l=⇒ σ

(while2)
eval(E, ρ, false)

(while E do A end, d, ρ) ε=⇒ (δ, d, ρ)

(ε-elim)
(A, d, ρ) ε=⇒ (s, d′, ρ′) ∧ s �= δ ∧ (act(s), d′, ρ′) l=⇒ (s′, d′′, ρ′′)

(A, d, ρ) l=⇒ (s′, d′′, ρ′′)

Fig. 2 gives an example of a system composed of a user and a lamp. The user,
modeled by the User unit, pushes repeatedly a button using gate Push. Between
two pushes, the user may wait indefinitely, but must wait at least one time unit.
The lamp, modeled by the Lamp unit, has three levels of brightness, modeled by
the three discrete states Off , Low , and Bright . When the lamp is off (state Off ),
pushing the button switches it on with low brightness (state Low). If the next
push happens within less than 5 time units then the lamp gets brighter (state
Bright). If it happens after 5 time units then the lamp is switched off.

module Light is dense time from Low
sync Push is User and Lamp end sync select Push in [0, 5[;
init User , Lamp (∗ initially started units ∗) to Bright
unit User is [] Push in [5, ...[;

from Rdy to Off
wait 1; Push ; to Rdy end select

end unit from Bright
unit Lamp is Push; to Off

from Off end unit
Push ; to Low end module

Fig. 2. Atlantif program describing a light switch

2.3 Concurrency in ATLANTIF

In Atlantif, a specification contains several units synchronized with respect
to synchronizers (Fig. 1), which are a generalization of synchronization vectors
[2, 12]. A synchronizer is invoked every time a unit reaches a communication
action i.e., every time it wants to propose a rendezvous to its environment.
Precisely, a synchronizer has the form “sync G : B is K end sync”, where:

– G is a gate that triggers the synchronizer.
– B is an optional tag attached to G, noted tag(G), which may take one out

of three different values: “visible” induces a transition labeled by G and
the offers exchanged on G; “hidden” induces an internal transition called
τ -transition; and“urgent”behaves like the latter, but also blocks time when
a synchronization is possible. If no tag is specified, the synchronizer is visible.

– K is a formula consisting of unit identifiers and boolean operators, which
denotes combinations of units that must synchronize, each such combination
being called a“synchronization set”. The set of synchronization sets attached
to G, noted sync(G), is defined as follows:



The ATLANTIF Intermediate Format 95

sync(u) = {{u}}
sync(K1 and K2) = {S1 ∪ S2 | S1 ∈ sync(K1) ∧ S2 ∈ sync(K2)}
sync(K1 or K2) = sync(K1) ∪ sync(K2)
sync(n among (K1, . . . , Km)) = sync(K ′

1 or . . .or K ′
k), where

{K ′
1, . . . , K

′
k} = {(Ki1 and . . .and Kin) | 1 ≤ i1 < . . . < in ≤ m}

sync(n1 or . . .or nl among (K1, . . . , Km)) =
sync(n1 among (K1, . . . , Km) or . . .or nl among (K1, . . . , Km))

To express concurrency, other intermediate models (such as Cæsar net-
works [21] or communicating state machines [29]) combine communications of
processes into Petri net-like transitions. A drawback of this approach is that the
number of transitions in the resulting model can be the product of the numbers
of transitions in each process. Synchronizers provide a more symbolic approach
that avoids these problems, while being general enough to express the following:

– Competition between synchronizing processes can be expressed by synchro-
nizers denoting several synchronization sets e.g., in “u1 and (u2 or u3)”, u2
and u3 compete to synchronize with u1.

– Multiway synchronization can be expressed by synchronization sets contain-
ing more than two units e.g., in “u1 and u2 and u3”, the three units u1, u2
and u3 must synchronize altogether.

– The generalized parallel composition operators of [25] can also be expressed.
For instance, “par G#2, G#3 in u1||u2||u3 end par”, which means that
either two or three processes among u1, u2, and u3 synchronize on G, can
be expressed by “sync G is 2 or 3 among (u1, u2, u3) end sync”.

Dynamic semantics – concurrency and real-time. Contrary to Ntif, which had
no parallel semantics as it was limited to sequential processes, Atlantif sup-
ports a second layer of semantics for concurrency and real-time. It is given by a
Tlts (Timed Labeled Transition System) of the form (S, T, S0), where:

– S is a set of global states (as opposed the local states) of the form (π, θ, ρ)
(written S, S′, S0, S1, etc.), where π : U → S is a function, called state
distribution, that maps each unit to its current discrete state, θ : U →
(D×Bool) is a function, called time distribution, that maps each unit to its
current time value and blocking condition, and ρ is a store.

– T is a set of transitions defined as a relation in S × L2 × S, where L2
def=

L1∪{τ}∪(D\{0}). Transitions labeled in D\{0} are called timed transitions,
whereas the other transitions are called discrete transitions.

– S0 ∈ S is the initial state, which is defined by S0
def= (π0, θ0, ρ0), where π0 is

a function that maps each unit to its initial discrete state (defined implicitly
as the first discrete state in the corresponding unit), θ0 : U �→ (D×Bool) is
the function that constantly returns (0, false), and ρ0 is the store that maps
each variable to its initial value, if any.



96 J. Stöcker, F. Lang, and H. Garavel

We define the following predicates:

– The predicate enabled(S, l, µ, S′), defined on S × (L1 \ {ε}) × Bool × S, is
true iff (1) a transition labeled l may occur in global state S and leads to
global state S′ and (2) the disjunction of the blocking conditions in the local
states reached via this transition equals µ. Formally:

enabled((π, θ, ρ), G v1 . . . vn, µ, (π′, θ′, ρ′)) def= (∃{u1, . . . , um} ∈ sync(G))
(∀i ∈ 1..m) (act(π(ui)), θ(ui), ρ) G v1...vn=⇒ (si, (ti, µi), ρi) ∧ si �= δ ∧
µ =

∨
i=1..m µi ∧ π′ = π � [ui �→ si | i ∈ 1..m] ∧

θ′ = θ � [ui �→ (0, false) | i ∈ 1..m] ∧ ρ′ = ρ � ρ1 � . . . � ρm

– Time cannot elapse in a global state if an urgent communication is enabled
i.e., a communication on a gate whose synchronizer is tagged urgent or a
communication of the form “G O1 . . . On must in W” when the deadline of
W has been reached. The predicate relaxed(S), defined on S, is true iff time
can elapse in S. Formally:

relaxed(S) def= (∀ G v1 . . . vn, µ, S′)
enabled(S, G v1 . . . vn, µ, S′) ⇒ (¬µ ∧ tag(G) �= urgent)

Discrete transitions are defined by rule (rdv) as follows:

(rdv )
enabled((π, θ, ρ), G v1 . . . vn, µ, (π′, θ′, ρ′))

(π, θ, ρ)
label(G v1...vn)−−−−−−−−−−→ (π′, θ′, ρ′)

where function label transforms a non-ε label of L1 into a discrete label of L2:

label(G v1 . . . vn) def= if tag(G) = visible then G v1 . . . vn else τ

Timed transitions are defined by rule (time), which allows t units of time to
elapse as long as no urgent communication is enabled. The new state is calculated
by increasing all relative times by t, using “+” defined by (∀u) (θ + t)(u) def=
(tu + t, µu) where θ(u) = (tu, µu).

(time)
t > 0 ∧ (∀ t′ < t) relaxed((π, θ + t′, ρ))

(π, θ, ρ) t−→ (π, θ + t, ρ)

We illustrate the semantics by deriving two Tlts transitions for the light
switch example shown in Fig. 2, page 94. We show that when User is in state Rdy
and Lamp in state Low , 3 time units may elapse before the button is pushed.
Formally: (π, θ, ∅) 3−→ (π, θ + 3, ∅) Push−−−→ (π, θ � [Lamp �→ Bright ], ∅), where
π

def= [User �→ Rdy ,Lamp �→ Low ], and θ
def= [User �→ (0, f),Lamp �→ (0, f)]

(where f is a shorthand for false).
First, (π, θ, ∅) 3−→ (π, θ + 3, ∅) comes from the following derivation:

3 > 0 ∧ (∀t′ < 3)relaxed ((π, θ + t′, ∅))

(π, θ, ∅) 3−→ (π, θ + 3, ∅)
(time)



The ATLANTIF Intermediate Format 97

Second, (π, θ + 3, ∅) Push−−−→ (π, θ � [Lamp �→ Bright ], ∅) comes from:

{User , Lamp} ∈ sync(Push) ∧ (act(Rdy), (3, f), ∅) Push=⇒ (Rdy , (2, f), ∅) ∧
(act(Low), (3, f), ∅) Push=⇒ (Bright , (3, f), ∅)

(π, θ + 3, ∅) Push−−−→ (π 
 [Lamp �→ Bright ], θ, ∅)
(rdv)

The premiss (act(Rdy), (3, f), ∅) Push=⇒ (Rdy , (2, f), ∅) comes from the following,
recalling that act(Rdy) = “wait 1; Push; to Rdy”:

eval(1, ∅, f) ∧ 3 ≥ 1

(wait 1, (3, f), ∅) ε=⇒ (δ, (2, f), ∅)
(wait)

(Push; to Rdy, (2, f), ∅) Push=⇒ (Rdy, (2, f), ∅)

(act(Rdy), (3, f), ∅) Push=⇒ (Rdy, (2, f), ∅)
(seq1)

At last, the premiss (Push; to Rdy , (2, f), ∅) Push=⇒ (Rdy, (2, f), ∅) comes from:

(Push, (2, f), ∅) Push=⇒ (δ, (2, f), ∅)
(comm)

(to Rdy, (2, f), ∅) ε=⇒ (Rdy, (2, f), ∅)
(to)

(Push; to Rdy, (2, f), ∅) Push=⇒ (Rdy, (2, f), ∅)
(seq1)

The premiss (act(Low ), (3, f), ∅) Push=⇒ (Bright , (3, f), ∅) is derived similarly by
the rules (comm), (to), (seq1), and (select).

With this semantic approach, we respect the standard property that time must
elapse at the same speed in all units. Furthermore, the following proposition
shows that this semantics has the suitable properties mentioned in Section 1.

Proposition. The Tlts corresponding to the semantics of an Atlantif spec-
ification satisfies the properties of (i) time additivity (two successive delays are
equal to their sum), (ii) time determinism (no state allows two different succes-
sors after the same delay) and (iii) maximal progress of urgent actions (no delay
is possible in states where an urgent action is possible).

Proof.
(i) Let S, S′ be global states. We must show that ∀ t1, t2 ∈ (D \ {0}):

S
t1+t2−−−→ S′ iff (∃ S′′) S

t1−→ S′′ and S′′ t2−→ S′

We define S
def= (π, θ, ρ). We note that time can only elapse using the (time)

rule, which does not modify π and ρ and increases θ by some delay. Therefore,
the above statement can be rephrased as:

(π, θ, ρ) t1+t2−−−→ (π, θ + (t1 + t2), ρ)
iff (π, θ, ρ) t1−→ (π, θ + t1, ρ) and (π, θ + t1, ρ) t2−→ (π, (θ + t1) + t2, ρ)

Given the definition of +, it is obvious that θ + (t1 + t2) = (θ + t1) + t2. From
the premiss of rule (time), we can reduce the above goal to the obvious following
statement:

(∀ t′ < t1 + t2) relaxed((π, θ + t′, ρ))
iff (∀ t′ < t1) relaxed((π, θ + t′, ρ)) and (∀ t′ < t2) relaxed((π, θ + (t1 + t′), ρ))

(ii) Again, we note that time can only elapse using rule (time), which for given
global state S and time t defines a unique successor state.



98 J. Stöcker, F. Lang, and H. Garavel

(iii) Let S be a global state allowing an urgent action, i.e. ¬relaxed(S). Then the
premiss of rule (time) cannot be satisfied in S i.e., time cannot elapse in S. ��

3 Automated Translations to Verification Tools

We developed a prototype translator tool, which maps Atlantif models to
either the TA (timed automata) used by the tool Uppaal [30] or the TPN (time
Petri nets) used by Tina [8]. Outlines of these mappings are given in this section.
We assume the reader is familiar with Uppaal’s TA and Tina’s TPN.

Common restrictions. Some concepts of Atlantif cannot be mapped to neither
Uppaal’s TA nor Tina’s TPN. Concretely, Atlantif models must use dense
time; expressions in wait actions and time windows must be integer constants;
nondeterministic assignments are not supported; patterns must be made up of
either variables or constants exclusively. In addition, while loops are not yet
supported in the translation to TA, although the translation would be feasible.

Translation to UPPAAL. Each Atlantif unit is mapped to a TA. Each discrete
state s is mapped to a TA location (also named s) and an invariant is synthesized
from the must constraints of multibranch transitions originating from s. The
action act(s) is decomposed into one TA transition for each branch of control. If
a gate communication admits several synchronization sets containing the current
unit, then it is split into one transition for each such synchronization set. Since
TA do not allow communication offers, data exchanges are emulated using TA
shared variables.

A key issue is that Uppaal’s TA synchronizations involve at most two au-
tomata2, whereas Atlantif allows multiway synchronizations involving n > 2
units. The solution requires that exactly one unit sends data (i.e., all offers are
emissions), whereas the (n − 1) other units receive data (i.e., all offers are re-
ceptions): the gate communication in the sender unit is split into a sequence of
(n − 1) communications, each of which synchronizes with a receiver.

Translation to TINA. Each Atlantif unit is mapped to a TPN. Each discrete
state s is mapped to a TPN place (also named s) and the corresponding action
act(s) is decomposed into several TPN transitions, each TPN transition being
labeled by a gate. As regards time constraints, we only consider time intervals
and we implement a solution inspired from [7], that requires additional auxiliary
places and transitions. Given a communication on a gate G, which corresponds
to a Petri net transition T , we calculate the sum m of all delays that occur in
“wait” actions preceding the communication. We remove these wait actions and
we increase the bounds of the time window by m. The resulting time window is
then implemented in the form of zero, one, or two new transitions as follows:

– If the lower bound of the time window is n > 0, then we add an unlabeled
transition with time constraint “[n, ω[” (or “]n, ω[”, if the bound is strict), no

2
Uppaal also allows a broadcast communication, which is inapt for our purpose,
because Uppaal’s broadcast is not blocking.



The ATLANTIF Intermediate Format 99

out-place and a new in-place s1. We add s1 both to the inhibitor places of T ,
and to the out-places of every transition for which s is already an out-place.

– If the modality of the communication is may and the time window has an up-
per bound n, then we add an unlabeled transition with time constraint“]n, ω[”
(or“[n, ω[”, if the bound is strict), no out-place and a new in-place s2. We add
s2 to the in-places of T and the new transition is given priority over T .

– If the modality of the communication is must and the time window has an
upper bound n, then we add an unlabeled transition with time constraint
“[n, n]”, no out-place and a new in-place s3. We add s3 to the in-places of T
and all transitions except those created for other must constraints are given
priority over this new unlabeled transition.

The TPNs corresponding to each unit are combined into a single one by
merging synchronizing transitions, using the method described in [7].

Tool implementation. Our prototype translator was implemented using the
method proposed in [23] and consists of 538 lines of C code, 2, 193 lines of
Syntax code, and 13, 146 lines of Lotos NT code. The tool architecture is
schematized in Fig. 3.

Fig. 3. The Atlantif to Uppaal / Tina translation tool

We applied this translator to four examples, namely the light switch presented
in Fig. 2 (page 94), the CSMA/CD protocol, which is a common benchmark
specification [41], a stop-and-wait protocol, implemented with one sender, one
receiver and two transmission channels, and a train gate controller. The trans-
lations into TA and TPN of the light switch example are shown in Fig. 4 and 5
respectively.

Ready

(CLOCK_User>=1)
Button_1?

CLOCK_User = 0 Off Low
Bright

Button_1!
CLOCK_Lamp = 0

(CLOCK_Lamp>=5)
Button_1!

CLOCK_Lamp = 0

(CLOCK_Lamp<5)
Button_1!
CLOCK_Lamp = 0

Button_1!
CLOCK_Lamp = 0

Fig. 4. The two automatically generated Uppaal TA for the light switch example

Fig. 6 compares the size of Atlantif programs with the size of the corre-
sponding TA and TPN. It shows that Atlantif enables shorter descriptions, in
particular due to its concise syntax for time and its ability to define multiway



100 J. Stöcker, F. Lang, and H. Garavel

Fig. 5. The automatically generated Tina time Petri net for the light switch example

Atlantif Uppaal-TA Tina-TPN
disc. states trans. locations trans. places trans.

Light switch 4 4 4 5 6 6
CSMA/CD (3 Stations) 12 12 14 42 40 142
Stop-and-wait 10 10 10 12 29 56
Train Gate Controller 12 12 18 18 23 18

Fig. 6. Size comparison: Atlantif vs. generated Uppaal vs. generated Tina

synchronizations. Note that the number of locations of the TA generated for the
CSMA/CD is the same as in a handwritten specification available on the web3.

These results suggest that the TA translation is efficient for programs with
multiple occurrences of simple synchronizers (i.e., synchronizers involving at
most two units), whereas the TPN translation is efficient for limited occurrences
of more complex synchronizers.

4 Conclusion

This paper proposes Atlantif, a simple and elegant extension of the intermedi-
ate model Ntif [22] with concurrency and real-time, intended for a better inte-
gration of formal verification tools in industrial environments. Thus, Atlantif

supports the three main concepts needed to model complex asynchronous real-
time systems: elaborate data types, concurrency, and quantitative time.

Atlantif has a simple timed semantics, where time elapsing is concentrated
in a single rule, which satisfies time additivity, time determinism, and maximal
progress. This goal is not obvious to achieve: for example, complex syntactic
restrictions had to be brought to E-Lotos to ensure those properties; as another
example, RT-Lotos does not satisfy time additivity.

We also presented a translator mapping Atlantif to two advanced verifica-
tion tools, Uppaal [30] and Tina [8].

As regards future work, we plan to extend our translator with new features
and to use it on larger industrial examples. Atlantif could also be a basis to
enhance the Fiacre intermediate model [6] used in the Topcased project.

3 http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#CSMA



The ATLANTIF Intermediate Format 101

References

[1] Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

[2] Arnold, A.: MEC: A System for Constructing and Analysing Transition Systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407. Springer, Heidelberg (1990)

[3] Baeten, J., Middelburg, C.: Real time and discrete time. In: Process Algebra with
Timing. North-Holland, Amsterdam (2001)

[4] Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: Proc. of SEFM. IEEE Computer Society Press, Los Alamitos (2006)

[5] Berthomieu, B., Diaz, M.: Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Transactions on Software Engineering 17(3), 259–
273 (1991)

[6] Berthomieu, B., Garavel, H., Lang, F., Vernadat, F.: Verifying Dynamic Properties
of Industrial Critical Systems Using TOPCASED/FIACRE. ERCIM News 75, 32–
33 (2008)

[7] Berthomieu, B., Peres, F., Vernadat, F.: Bridging the Gap Between Timed Au-
tomata and Bounded Time Petri Nets. In: Asarin, E., Bouyer, P. (eds.) FORMATS
2006. LNCS, vol. 4202, pp. 82–97. Springer, Heidelberg (2006)

[8] Berthomieu, B., Vernadat, F.: Time Petri Nets Analysis with TINA. In: Proc. of
QEST (2006)

[9] Blom, S., Ioustinova, N., Sidorova, N.: Timed Verification with µCR. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 178–192. Springer, Heidelberg
(2004)

[10] Bolognesi, T., Lucidi, F.: LOTOS-like Process Algebras with Urgent or Timed
Interactions. In: Proc. of FORTE 1991. North-Holland, Amsterdam (1991)

[11] Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: de
Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
p. 103. Springer, Heidelberg (1998)

[12] Bouali, A., Ressouche, A., Roy, V., de Simone, R.: The Fc2Tools set: a Toolset
for the Verification of Concurrent Systems. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

[13] Boyer, M., Roux, O.H.: Comparison of the Expressiveness of Arc, Place and Tran-
sition Time Petri Nets. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS,
vol. 4546, pp. 63–82. Springer, Heidelberg (2007)

[14] Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: Tools and Applications II: The
IF Toolset. In: Proc. of SFM (2004)

[15] Cassez, F., Pagetti, C., Roux, O.: A timed extension for AltaRica. Fundamenta
Informaticæ 62(3-4), 291–332 (2004)

[16] Cerone, A., Maggiolo-Schettini, A.: Time-based expressivity of Time Petri Nets
for system specification. Theoretical Computer Science 216(1), 1–54 (1999)

[17] Courtiat, J.-P., Cruz de Oliveira, R.: On RT-LOTOS and its Application to the
Formal Design of Multimedia Protocols. Annals of Telecommunications 50(11-12),
888–906 (1995)

[18] Davies, J.W., Schneider, S.A.: A Brief History of Timed CSP. Theoretical Com-
puter Science 138(2), 243–271 (1995)

[19] Faugère,M.,Bourbeau,T., de Simone,R.,Gérard, S.:MARTE:Also anUMLProfile
for Modeling AADL Applications. In: Proc. of ICECCS. IEEE, Los Alamitos (2007)

[20] Feiler, P., Gluch, D., Hudak, J.: The Architecture Analysis & Design Language
(AADL): An Introduction. Technical note, Carnegie Mellon (2006)

[21] Garavel, H.: Compilation et vérification de programmes LOTOS. PhD thesis,
Université Joseph Fourier, Grenoble (1989)



102 J. Stöcker, F. Lang, and H. Garavel

[22] Garavel, H., Lang, F.: NTIF: A General Symbolic Model for Communicating Se-
quential Processes with Data. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002.
LNCS, vol. 2529. Springer, Heidelberg (2002); Full version available as INRIA
Research Report RR-4666

[23] Garavel, H., Lang, F., Mateescu, R.: Compiler Construction Using LOTOS NT. In:
Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, p. 9. Springer, Heidelberg (2002)

[24] Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. H. Garavel, F. Lang, R. Mateescu, and W. Serwe, vol. 4590,
pp. 158–163. Springer, Heidelberg (2007)

[25] Garavel, H., Sighireanu, M.: A Graphical Parallel Composition Operator for Pro-
cess Algebras. In: Proc. of FORTE/PSTV. Kluwer, Dordrecht (1999)

[26] Gardey, G., Lime, D., Magnin, M., Roux, O.: Romeo: A Tool for Analyzing Time
Petri Nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005)

[27] Hause, M.: The SysML Modelling Language. In: Fifteenth European Systems
Engineering Conference (2006)

[28] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization (September 2001)

[29] Karjoth, G.: Implementing LOTOS Specifications by Communicating State Ma-
chines. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630. Springer,
Heidelberg (1992)

[30] Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on Soft-
ware Tools for Technology Transfer 1(1-2), 134–152 (1997)

[31] Léonard, L., Leduc, G.: A Formal Definition of Time in LOTOS. In: Formal As-
pects of Computing, pp. 28–96 (1998)

[32] Merlin, P.M.: A study of the recoverability of computing systems. PhD thesis,
Univ. of California, Irvine (1974)

[33] Nicollin, X., Sifakis, J.: An Overview and Synthesis on Timed Process Algebras.
In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1992. LNCS,
vol. 666. Springer, Heidelberg (1993)

[34] Nicollin, X., Sifakis, J.: The Algebra of Timed Processes ATP: Theory and Ap-
plication. Information and Computation 114(1), 131–178 (1994)

[35] Ouaknine, J., Worrell, J.: Timed CSP = closed timed ε-automata. Nordic Journal
of Computing 10(2), 99–133 (2003)

[36] Reed, G.M., Roscoe, A.W.: A Timed Model for Communicating Sequential Pro-
cesses. Theoretical Computer Science 58, 249–261 (1988)

[37] Reniers, M.A., Usenko, Y.S.: Analysis of Timed Processes with Data Using Alge-
braic Transformations. In: Proc. of TIME. IEEE, Los Alamitos (2005)

[38] Sadani, T., Boyer, M., de Saqui-Sannes, P., Courtiat, J.-P.: Effective representa-
tion of RT-LOTOS terms by finite time petri nets. In: Najm, E., Pradat-Peyre,
J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 404–419.
Springer, Heidelberg (2006)

[39] Wang, F.: Symbolic Simulation-Checking of Dense-Time Automata. In: Raskin,
J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 352–368.
Springer, Heidelberg (2007)

[40] Yi, W.: CCS + Time = An Interleaving Model for Real Time Systems. In: Leach
Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510.
Springer, Heidelberg (1991)

[41] Yovine, S.: Kronos: A verification tool for real-time systems. International Journal
of Software Tools for Technology Transfer 1(1/2), 123–133 (1997)



Changing System Interfaces Consistently:
A New Refinement Strategy for CSP‖B

Steve Schneider and Helen Treharne

Department of Computing, University of Surrey

Abstract. This paper introduces action refinement in the context of
CSP‖B. Our motivation to include this notion of refinement within the
CSP‖B framework is the desire to increase flexibility in the refinement
process. We introduce the ability to change the events of a CSP process
and the B machines when refining a system. Notions of refinement based
on traces and on traces/divergences are introduced in which abstract
events are refined by sequences of concrete events. A complementary
notion of refinement between B machines is also introduced, yielding
compositionality results for refinement of CSP‖B controlled components.
The paper also introduces a notion of I/O refinement into our action
refinement framework.

1 Introduction

This paper introduces an approach to event refinement in the context of CSP‖B.
Event refinement (or action refinement) is concerned with developing a finer
level of granularity in specifications, by expanding atomic events within the
description into more detailed structures. One motivation for our attention to
this issue within the CSP‖B framework [14] is the desire to increase our range
of options when refining processes and operations. We have recently found it
useful in the setting of an industrial CSP‖B case study [13] to change the level
of granularity of the description during the refinement process.

The challenge of how best to do this has been an issue within process algebra
since at least the late 1980’s, and a broad survey of the work can be found in [4,
Chapter 16]. However, the integration of data refinement with action refinement
has received limited attention to date. An early paper in this area is [7], which
takes a state-based (Z) approach to refining atomic operations by sequences
of operations. In this paper we aim to provide a framework for this notion of
refinement in the context of the CSP‖B combined formal method, using the CSP
aspect to capture the action refinements in a more natural way. We introduce
the ability to change the events of a CSP process and hence the B machines
during a refinement of a system. An important feature of the new refinement
framework is that it does not compromise the existing CSP‖B theory and does
not change the notations of CSP or classical B.

The CSP‖B approach favours separation between behavioural patterns and
state descriptions. However, behavioural patterns and state may need to be

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 103–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



104 S. Schneider and H. Treharne

changed during a refinement. For example, a communication protocol may re-
ceive a message and subsequently perform some computation. At an abstract
level it would be appropriate to denote the type of the message as a deferred
set but in a refinement the message may be split into several smaller, more de-
tailed, messages of a concrete type. Furthermore, the subsequent computation
could also be segmented. The paper explores what it means to split events in a
refinement, and whether the inputs and outputs of operations (and their types)
can be changed in a refinement, or distributed across several operations.

The main contribution of the paper is a framework for event refinement: a
collection of definitions of how such a notion of refinement may be naturally
expressed, together with some theorems that establish that these definitions
are collectively consistent. These culminate in Theorem 4, where we see the
conditions given in the various definitions support a compositionality result:
that refinement of components separately ensures refinement of their parallel
combination. Conjecture 1 gives the corresponding result for operations with
input and output.

2 CSP‖B Overview

A CSP controlled component consists of a CSP process P in parallel with a B
machine M .

CSP controllers. Controllers will be written in a subset of the CSP process
algebraic language [9,11]. We begin with the following simple controller language:

Definition 1 (Controller Syntax)

P ::= a → P | P1 � P2 | STOP | S

The event a is drawn from the set of events, and S is a CSP process variable.
Events can either be pure CSP events, or correspond to operations in the con-
trolled B machine. Notationally we will use e for simple atomic CSP events not
corresponding to operations, whereas a will be used for operation names. S is a
process variable. Recursive definitions are then given as S =̂ P . In a controller
definition, all process variables used are bound by some recursive definition.

More generally, events can consist of channels communicating values. An event
will then have the structure c.v , where c is the channel name and v is the value
being passed on the channel. In general, channels can carry multiple values. The
process c!v?x → P(x ) denotes a process ready to output v on channel c, and
to input a value x at the same time. Its subsequent behaviour is described by
P(x ).

B machines. The B-method [1] is structured around B-machines, which provide
an encapsulation of state (which can be abstract mathematical structures) and
operations on that state, in an object-style structure. A machine is introduced



Changing System Interfaces Consistently 105

with a name, state variables, an invariant (including type information) on those
variables, an initialisation, and a collection of operations on the state.

Operations are declared as out ←− op(in) =̂ PRE P THEN S END , where P
is the precondition of the operation, and S is its body. in and out can in general
be sequences of formal parameters. S is an abstract assignment describing how
the state can be updated. This can include single and concurrent updates, and
nondeterministic choice. Initialisation is also given as an abstract assignment.
The abstract assignment constructions we use in this paper are assignment:
x := E ; precondition: PRE P THEN S END which executes S if P is true,
but otherwise its behaviour is undetermined; parallel assignment: S ‖ T ; and
sequential composition S ;T .

A machine is consistent if its invariant I is initially true, and is preserved
by all of the machine’s operations when called within their preconditions. The
B-Method uses weakest precondition semantics to establish that machines are
consistent, and we will assume machine consistency for the purposes of this paper
(i.e. the results apply only for consistent machines). The notation [S ]I denotes
the weakest precondition required for statement S to guarantee achieving post-
condition I . Invoking a preconditioned operation cannot guarantee anything (not
even termination) if the precondition is false, thus [PRE P THEN S END ]I =
P ∧ [S ]I : to guarantee establishing I , P must initially be true, and furthermore
S must establish I .

Refinement may be considered between two machines M and M ′. A linking
invariant J is a predicate on the states of both M and M ′ that is used to
capture the relationship between their states, to identify when an abstract state
is matched by a concrete state. The proof obligation I ∧ J ⇒ [T ](¬[S ]¬J ) is
used to establish that the concrete statement T is a refinement of the abstract
statement S in such a context. Further explanation can be found in [1,12].

Controlled components. A component is a controller definition P and an
associated B machine M . The operations a in the machine correspond to events
of the same name a in the controller. Operations outa ←− a(ina ) are matched by
complementary channel communications a?outa !ina in the controller: input ina

to the machine is provided by (i.e. an output from) the controller; and output
outa is read by (i.e. input to) the controller. The alphabet αM of the machine is
given by its set of operations. We require that αM ⊆ αP , that every operation
also occurs in the controller. However, controllers may also use CSP events not
included in the machine, for interacting with other parts of a larger system, or
with its environment.

Morgan’s CSP semantics for action systems [10] allows traces, failures, and
divergences to be defined for B machines in terms of the sequences of operations
that they can and cannot engage in. This gives a way of considering B machines
as CSP processes, and treating them within the CSP framework. This enables
us to give P ‖ M a CSP semantics.

The traces of a machine M are those sequences of operations tr = 〈a1, . . . , an〉
which are possible for the machine. In weakest precondition semantics, an im-
possible trace tr is miraculous: it establishes false, i.e. [T ;tr ]false (where T is



106 S. Schneider and H. Treharne

the initialisation of the machine). Hence the negation characterises the traces of
the machine: ¬[T ;tr ]false. Thus traces(M ) = {tr | ¬[T ;tr ]false}.

A sequence of operations tr is a divergence if the sequence of operations is
not guaranteed to terminate, i.e. ¬[T ; tr ]true. Thus divergences(M ) = {tr |
¬[T ;tr ]true

These two definitions provide the link between the weakest precondition se-
mantics of the operations, and the CSP semantics of the B machine. This defini-
tion means that calling an operation outside its precondition yields a divergence:
termination cannot be guaranteed.

3 The Basic Refinement Framework without i/o

To develop the basic framework we will begin by considering pure operations and
events, without any input or output communication on them. This will enable
us to focus on the sequences of events that we wish to consider. Input/Output
considerations will be introduced later, in Section 4.

3.1 Sequence Notation

We use the following notation in the paper. If A is a set, then A∗ is the set of
finite sequences of elements of A, and A+ denotes the non-empty finite sequences
of elements of A. The empty sequence is denoted 〈〉, and the concatenation of
sequences s and t is denoted s � t . We write s � t to denote that s is a prefix of
t . If A is a set, then s � A is the maximal subsequence of s all of whose elements
are in A: projection of s to A. We also define the downwards and upwards closure
on a set of sequences S respectively as follows:

↓ S =̂ {tr | ∃ tr ′ ∈ S .tr � tr ′} ↑A S =̂ {tr ∈ A∗ | ∃ tr ′ ∈ S .tr ′ � tr}

If the set A is implicit from the context then we may write ↑ S .

3.2 Implementation Mappings

We can now give a definition of consistent refinement between two consistent
components P ‖ M and P ′ ‖ M ′. The key underlying idea is that whenever an
event in an abstract controller P is substituted by a sequence of concrete events
in a concrete controller’s execution P ′, and the new concrete events correspond
to B operations in a machine M ′, then we can guarantee that the concrete
controlled component is a consistent refinement of the abstract one. We shall
see that care will need to be taken when we re-use operations from M in the
concrete component.

To do this, we must first introduce an implementation mapping imp as follows,
which will need to be instantiated for each proposed component refinement.

Definition 2 (implementation mapping for events). An implementation
mapping is a function imp ∈ A → C+, from abstract events to a sequence of
concrete events.



Changing System Interfaces Consistently 107

Here A = αP and C = αP ′. Note that A and C do not have to be disjoint,
therefore we must take into account what happens when events do not change
in a refinement. We require a healthiness condition IMP1 on imp as follows:

∀ b ∈ A ∩ C . imp(b) = 〈b〉

We also require that M and M ′ have the same intersection with A ∩ C , and
that their definitions for those operations in the intersection are identical. Since
we are aiming for refinement, this requirement states that these elements do not
change in the refinement step.

Observe that implementation mappings are different to CSP alphabet renam-
ings, which map events to single events rather than to sequences.

We now define a mapping from sequences of abstract events to sequences of
concrete traces.

Definition 3 (implementation mapping). Given an implementation map-
ping imp, the function φimp : A∗ → C ∗ is defined as follows:

φimp(〈〉) = 〈〉 φimp(〈a〉 � tr) = imp(a) � φ(tr)

If the mapping imp is clear from the context, then it may be elided and we write
φ(tr). Note that in functional terms, φimp = flatten ◦ (map imp).

When we come to consider divergences we will need one further construction:
the set of non-empty prefixes of concrete traces:

Definition 4. Given an implementation mapping imp : A → C+ and a ∈ A,
we define imp+(a) =̂ {tr ′ | tr ′ ≤ imp(a) ∧ tr ′ �= 〈〉}.

This is used in the following definition: the mapping ψ identifies all subsequences
related to an abstract sequence of events including the complete subsequences.
This definition will be used in Theorem 4 to track down the point at which a
concrete trace diverges.

Definition 5 (subsequence implementation mapping). The function ψ :
A∗ → C ∗ is defined as follows:

ψ(〈〉) = 〈〉 ψ(tr � 〈a〉) = {φ(tr)} � imp+(a)

3.3 Refinement

Having identified correspondences between abstract and concrete traces, through
the function φimp , we are now in a position to define a corresponding notion of
refinement:

Definition 6 (trace refinement relative to imp)

P �T
imp P ′ iff traces(P ′) ⊆ ↓ {φimp(tr) | tr ∈ traces(P)}.



108 S. Schneider and H. Treharne

Note that refinement with respect to an implementation mapping is not pre-
served by parallel composition, as the following example illustrates:

Example 1. Consider imp(a) = imp(b) = 〈c〉, and

P = a → STOP Q = b → STOP P ′ = Q ′ = c → STOP

Observe that P �T
imp P ′ and Q �T

imp Q ′ but P ‖ Q = STOP ,P ′ ‖ Q ′ = c →
STOP , and so the refinement relation does not hold between P ‖ Q and P ′ ‖ Q ′.

We now obtain the following result which allows refinement of a controlled com-
ponent to be deduced from the appropriate refinement relation between con-
trollers.

Theorem 1. If P �T
imp P ′ then P ‖ M �T

imp P ′ ‖ M ′

Proof. traces(P ‖ M ) = traces(P) and traces(P ′ ‖ M ′) = traces(P ′) in this case
(since there is no i/o).

Observe that the machines M and M ′ can be independent: the result follows
purely from the relationship between P and P ′.

The mapping imp can also be used to transform a CSP process description
to another CSP process which is a refinement.

Definition 7 (mapping abstract to concrete processes). If imp : A → C+

is an implementation mapping, then we define the mapping Θimp on CSP process
descriptions as follows:

Θimp(STOP) = STOP
Θimp(a → P) = Pref (imp(a), Θimp (P))

Θimp(P1 � P2) = Θimp(P1) � Θimp(P2)
Θimp(S ) = S

where Pref (〈〉,Q) = Q

Pref ((〈b〉 � tr ,Q) = b → Pref (tr ,Q)

The mapping has been constructed to yield the following theorem, proven by
structural induction on P : that the result of the transformation is a refinement
of the original process.

Theorem 2. ∀ imp,P . P �T
imp Θimp(P)

3.4 Refining B Machines

Now we consider what it means to refine a B machine in the context of an im-
plementation mapping imp. This will enable the introduction of new operations
during the refinement process.



Changing System Interfaces Consistently 109

Definition 8. For a machine M and a sequence of events tr , we define opM (tr)
= tr � αM. In other words, opM (tr) is the sequence of operations in tr that the
machine M participates in. If the machine M is clear from the context then we
may write op(tr).

Definition 9 (refinement of B machines). If M and M ′ have linking in-
variant J , then

M �B
imp M ′ iff ∀ a ∈ α(M ) . a � imp(a) i.e., I ∧ J ∧ P ⇒ [op(imp(a))]¬[a]¬J

This states that any imp trace refinement is respected in the B machine: any
sequence of operations corresponding to a matches the operation a. It is com-
plementary to the trace notion of refinement �T

imp , which requires that only
those concrete sequences of operations that correspond to abstract ones should
be possible.

3.5 Traces/Divergences

Now we wish to generalise the notion of refinement so that it works for refinement
in the traces/divergences model.

Definition 10 (Traces/divergences refinement with respect to imp). If
imp is an implementation mapping, then

P �TD
imp P ′ iff P �T

imp P ′ (1)

∧ divergences(P ′) ⊆ ↑αP ′ (
⋃

tr∈divergences(P)

ψ(tr)) (2)

This states that any divergence of P ′ must correspond to a divergence of P : given
a divergent trace tr of P , ψ(tr) gives the corresponding divergences of P ′. Thus
if event a introduces divergence, then divergence can be introduced anywhere
along imp(a) from the first event onwards. These are exactly the sequences in
ψ(tr).

Example 2. Consider imp(a) = 〈c, d〉 and imp(b) = 〈e, f 〉. Consider P and P ′

as follows, where P diverges after 〈a, b〉, and P ′ diverges after 〈c, d , e〉:

traces(P) = {〈〉, 〈a〉, 〈a, b〉} ∪ {〈a, b〉 � s | s ∈ {a, b}∗}
divergences(P) = {〈a, b〉 � s | s ∈ {a, b}∗}

traces(P ′) = {〈〉, 〈c〉, 〈c, d〉, 〈c, d , e〉} ∪ {〈c, d , e〉 � s | s ∈ {c, d , e, f }∗}
divergences(P ′) = {〈c, d , e〉 � s | s ∈ {c, d , e, f }∗}

Observe that ψ(〈a, b〉) = {〈c, d , e〉, 〈c, d , e, f 〉} and so the condition in Line 2 is
satisfied, and P �TD

imp P ′.

We obtain the same result, again proved by structural induction over P , for trace
divergence refinement as we did in Theorem 2 for trace refinement.



110 S. Schneider and H. Treharne

Theorem 3. ∀ imp,P . P �TD
imp Θimp(P)

The previous definitions have laid the groundwork for the following result, which
is the key compositionality property we have been working towards:

Theorem 4 (Trace divergence refinement in controlled components).
If P �TD

imp P ′ and M �B
imp M ′ then P ‖ M �TD

imp P ′ ‖ M ′.

Proof. We know

traces(P ′) ⊆ ↓ (
⋃

tr∈traces(P)

φ(tr)) (3)

divergences(P ′) = ∅ = divergences(P) (4)
traces(M ′) = (αM ′)∗ where αM ′ ⊆ αP ′ (5)
traces(M ) = (αM )∗ where αM ⊆ αP (6)

Then consider tr ∈ divergences(P ′ ‖ M ′). Then let tr0 be the minimal diver-
gent prefix of tr .

Then tr0 ∈ traces(P ′) and tr0 � αM ′ ∈ divergences(M ′)

∃ tr ′′ ∈ traces(P).tr0 ≤ φ(tr ′′) from (3)

Also tr0 � αM ′ ∈ divergences(M ′) so φ(tr ′′) � αM ′ ∈ divergences(M ′). There-
fore tr ′′ � αM ∈ divergences(M ) from Lemma 2 below.

Therefore tr ′′ ∈ divergences(M ) ∩ traces(P) so tr ′′ ∈ divergences(P ‖ M ).

Lemmas 1 and 2 below are used in the proof of Theorem 4 above.

Lemma 1. If M �B
imp M ′ then I ∧ J ∧ [op(tr)]true ⇒ [op(φimp (tr))]true

Lemma 2. If M �B
imp M ′ and (φimp(tr)) � αM ′ is a divergence of M ′ then

tr � αM is a divergence of M .

Theorem 4, unlike Theorem 1, requires the refinement relationship between ma-
chines. When only traces are considered, internal states of the machines do not
affect the semantics of the parallel combination, so refinement relies purely on the
CSP controllers. However, when divergences are also considered, then divergent
behaviour (corresponding to an operation being called outside its precondition)
is reflected in the semantics. Hence refinement of a controlled component re-
quires that the states of the machines match up, so the concrete machine can
diverge only where the abstract machine description allows it.

Example 3. Consider M �B
imp M ′ where

– imp(a) = 〈b, c〉; imp(w) = 〈v〉; where a, b, and c are machine operations
and w and v are not;

– Machine M has operation a =̂ BEGIN nn := nn + 4 END ;



Changing System Interfaces Consistently 111

– Machine M ′ has b =̂ PRE even(mm) THEN mm := mm + 1 END and
c =̂ PRE ¬even(mm) THEN mm := mm + 3 END .

The example shows that an event can be refined to a sequence of events. M ′

does contain divergences (e.g. 〈b, b〉 or 〈b, c, c〉), but the refinement of M and M ′

is in the context of imp so only sequences which are the image of some abstract
sequence need to be considered. Therefore, we need only show that refining a
by the sequence of operations (b;c) is an appropriate B refinement, achieved
in practice by discharging the proof obligation identified in Definition 9. An
appropriate J would be nn = mm. We could equally have reused nn in M ′.
Divergent sequences of operations such as (b;b) and (b;c;c) are ruled out since
they cannot arise from an application of imp to an abstract trace.

Consider an abstract trace tr = 〈a,w , a〉. Then φ(tr) = 〈b, c, v , b, c〉. If tr �
αM = 〈a, a〉 is not a divergence of M , then φ(tr) � αM ′ = 〈b, c, b, c〉 is not a
divergence of M ′ by the contrapositive of Lemma 2.

Define P = a → w → P and Θimp(P) = P ′ = b → c → v → P ′. We have
P �TD

imp P ′ from Theorem 3. Theorem 4 then yields that P ‖ M �TD
imp P ′ � M ′.

4 The Refinement Framework with i/o

We begin by focusing on the B framework. Our form of interface refinement in
the context of operation input and output means that the input and output
values across the operations need to be related.

4.1 Refining B Operations

For a given event a with imp(a) = cs = 〈c1, . . . , cn〉, let ina be the sequence of
input variables to a, and outa be the sequence of output variables for a, i.e. the
declaration of a is outa ←− a(ina ). Let incs be the sequence of input variables to
the collection of the c operations for c ∈ cs , and outcs be the sequence of output
variables for the c operations. In other words, if the ci operations’ declarations
are outci ←− ci(inci ), then outcs = outc1

�. . .�outcn , and inci = inc1
�. . .�incn .

We assume that all operations have disjoint input and output variable names.
An interface refinement for a will relate the abstract and concrete input vari-

ables, and similarly with the output variables. The relationships can be for-
malised with a relation rin,a relating the abstract and concrete input variables,
and a relationship rout,a relating the abstract and concrete output variables.
These relations may be thought of as linking invariants for the inputs and for
the outputs. We will use r to abbreviate the collection of all the rin,a and rout,a .

We generalise Definition 9. The refinement relation is with respect both to
the mapping imp and the collection of relations r :

Definition 11 (Refinement of operations within B machines). If M and
M ′ have linking invariant J then

M �B
imp,r M ′iff

∀ a ∈ α(M ) , rin,a ∧ I ∧ J ∧ Pa ⇒ [op(imp(a))]¬[a]¬(J ∧ rout,a)



112 S. Schneider and H. Treharne

4.2 Examples Illustrating Aspects of Definition 11

Example 4 (Implementation modulo 5). The example in Figure 1 considers a
change in data representation, resulting in a loss of information but in a way
that allows refinement. Our single operation multiplies an input by 3 and returns
the result. If we wish to refine this so that all values are modulo 5, then the
refined operation may be used. This only inputs and outputs values modulo
5. The relations on inputs and on outputs capture this relationship: input of
an abstract value is implemented by the input of that value modulo 5, and
the resulting output will be the abstract output, modulo 5. The resulting proof
obligation can be discharged to establish the refinement relationship.

MACHINE Times3

OPERATIONS

yy <-- triple(xx) =

PRE xx : NAT

THEN yy := 3 * xx

END

END

MACHINE Times3R

OPERATIONS

zz <-- tripleR(ww) =

PRE ww : 0..4

THEN zz := (ww * 3) mod 5

END

END

Fig. 1. Tripling, modulo 5

Times3R is a refinement of Times with imp(triple) = 〈tripleR〉 and the fol-
lowing definitions, which together satisfy the proof obligation of Definition 11:

J = true rin,triple : ww = xx mod 5 rout,triple : zz = yy mod 5

Example 5 (Change of offset). In the example of Figure 2, we change the offset
of the readings, so that concrete inputs are the abstract inputs offset by +1.

MACHINE Increase

VARIABLES total

INVARIANT total : NAT

INITIALISATION total := 0

OPERATIONS

add(xx) =

PRE xx : NAT

THEN total := total + xx

END

END

MACHINE IncreaseR

VARIABLES totalR

INVARIANT totalR : NAT

& totalR = total

INITIALISATION totalR := 0

OPERATIONS

addR(ww) =

PRE ww : NAT

THEN totalR := totalR + (ww - 1)

END

END

Fig. 2. Change of offset I

An abstract input value xx is implemented by the concrete value xx +1. This
is captured in the relation rin,add .



Changing System Interfaces Consistently 113

IncreaseR is a refinement of Increase, under the following definitions:

imp(add) = 〈addR〉 J : totalR = total rin,add : xx = ww − 1

The proof obligation of Definition 11 is met by these definitions. The steps are
as follows:

[addR]¬[total := total + xx ]¬(J ∧ rout,add)
= [addR](total + xx = totalRR)
= ww ∈ NAT ∧ (total + xx = totalR + ww − 1)
⇐ xx ∈ NAT ∧ xx = ww − 1 ∧ total = totalR (7)
= Padd ∧ rin,add ∧ J

Example 6 (Change of offset). The example in Figure 3 is similar to the previous
example, except that the concrete inputs are the abstract inputs offset by −1.

MACHINE Increase

VARIABLES total

INVARIANT total : NAT

INITIALISATION total := 0

OPERATIONS

add(xx) =

PRE xx : NAT

THEN total := total + xx

END

END

MACHINE IncreaseR

VARIABLES totalR

INVARIANT totalR : NAT

& totalR = total

INITIALISATION totalR := 0

OPERATIONS

addR(ww) =

PRE ww : NAT

THEN totalR := totalR + (ww + 1)

END

END

Fig. 3. Change of offset II

The change of offset is captured in the relation rin,add . One might hope that
the following definitions would show that IncreaseR is a refinement of Increase:

imp(add) = 〈addR〉 J : totalR = total rin,add : xx = ww + 1

However, the proof obligation of Definition 11 is not met by these definitions, and
in particular the implication in Line 7 does not carry through, since an abstract
input xx = 0 cannot be matched by any natural number ww . Note that if the
precondition on the concrete operation allowed ww also to range over negative
integers, then the proof obligation would be met: clearly the abstract value 0 is
represented by −1.

Examples 5 and 6 together illustrate the delicate relationship between what is
required by the refinement and what is allowed by the abstract machine. We see
that whenever the abstract operation is enabled with a particular input, then
the refinement must also be enabled with a related input value. However, we see



114 S. Schneider and H. Treharne

MACHINE Sensor

VARIABLES tt, pp

INVARIANT tt : NAT

& pp : NAT

INITIALISATION tt :: NAT

|| pp :: NAT

OPERATIONS

update(dt,dp) =

PRE dt : NAT & dp : NAT

THEN tt := tt + dt

|| pp := pp + dp

END

END

MACHINE SensorR

VARIABLES rrR, ppR

INVARIANT ttR : NAT & ppR : NAT

& ttR = tt & ppR = pp

INITIALISATION ttR :: NAT

|| ppR :: NAT

OPERATIONS

updatet(dt1) =

PRE dt1 : NAT

THEN ttR := ttR + dt1

END;

updatep(dp1) =

PRE dp1 : NAT

THEN ppR := ppR + dp1

END

END

Fig. 4. Distributing inputs

from Example 5 that the converse is not the case: the concrete input 0 there
does not correspond to any abstract input. The abstract machine imposes no
requirements on the refinement behaviour for that input value: it corresponds to
a value that is outside the abstract precondition.

Example 7 (distributing inputs)
In Figure 4, SensorR is a refinement of Sensor with the following definitions:

imp(update) = 〈updatet , updatep〉 rin,update : dt = dt1 ∧ dp = dp1

Observe that the proof obligation requires only that the abstract and refined
machine states match at the end of the sequence of concrete operations. The
refinement machine will pass through states that need not match the abstract
state.

5 Trace Refinement with i/o

Given an implementation mapping imp and relations rin,a , rout,a , we can define
a refinement relation on processes that incorporates the input and output values.

Given a particular rin,a (as used in the machine refinement), and where
imp(a) = 〈c1, . . . , cn〉 we will define the sequences of concrete events with their
inputs and outputs, associated with an abstract i/o event a.v .w , where v is the
inputs to a, and w is the outputs. The mapping imp lifts to a mapping imp′

which gives the set of all sequences corresponding to a particular i/o event:

Definition 12

imp′(a.v .w) =
{〈c1.v1.w1, . . . , cn .vn .wn〉 | rin,a(v , v1, . . . , vn) ∧ rout,a (w ,w1, . . . ,wn)}



Changing System Interfaces Consistently 115

The function φ then generalises as follows:

φimp,r (〈〉) = {〈〉} φimp,r (〈a.v .w〉 � tr) = imp′(a.v .w) � φimp,r (tr)

This supports the natural definition of trace refinement: that every trace of
P ′ should arise from some trace of P .

Definition 13 (trace refinement relative to imp and r)

P �T
imp,r P ′ iff traces(P ′) ⊆ ↓ (

⋃
tr∈traces(P) φimp,r (tr))

We have already identified a notion of refinement for processes, and one for
machines in terms of relationships between their operations. We are aiming for
the following compositionality result, which is an extension of Theorem 4 in the
context of the relation r on i/o:

Conjecture 1. If P �T
imp,r P ′ and M �B

imp,r M ′ then P ‖ M �T
imp,r P ′ ‖ M ′.

Note that the traces of machines M are no longer all possible traces (as they
are without i/o), since they constrain the possible outputs. Hence the conjecture
takes the machine traces into account, since they restrict the overall behaviour.

This notion of refinement is not reflexive: P �imp,r P does not hold in general,
because the inputs and outputs may change (even where imp is the identity
function). Hence a combination P ‖ M will not be refined simply by refining M ;
the controller will need to be refined as well.

6 Discussion and Related Work

In this paper we presented the theoretical framework to support the refine-
ment of an abstract event with a sequence of concrete events within the CSP‖B
framework. From this point of view the important result is Theorem 4. We also
described what it means to distribute inputs and outputs across the concrete
sequence of operations, and showed how the type of the inputs and outputs can
also be refined. Natural extensions to the work are consideration of failures in-
formation, and refinement of events by processes, allowing nondeterminism. We
were not able to consider them in this paper for reasons of space.

In [7], Derrick and Boiten present a theory for non-atomic refinement using
Z. They also support the refinement of an abstract operation with a sequence of
concrete operations. Our motivation is the same as theirs: the precise structure
of an implementation may not be known at the abstract level and we need to
provide a way of being able to introduce more detail at the concrete level. We can
also split a collection of inputs and/or outputs across a number of operations.
The difference with our work is that the sequences of operations we need to
consider are defined within a CSP controller and the implementation mapping
between abstract and concrete operations is explicitly described.

Derrick and Boiten also consider a notion of I/O refinement in [5, Chapter
10]. They establish conditions for changing the I/O within single operations to



116 S. Schneider and H. Treharne

provide a refinement, using input and output transformers, which play a similar
role to our relations rin,a and rout,a . In [8] Derrick and Wehrheim bring together
the ideas from [7] and [5] and refine atomic operations by sequences of opera-
tions together with I/O refinement. Their approach is entirely state-based, which
makes the handling of sequences of operations more difficult, and the authors
state in their conclusions that the combination with process algebra remains to
be investigated. This paper does combine the state-based view with a process
algebra, giving explicit and natural descriptions of control in specifications, and
so handling the refining sequences of operations more easily.

In Event-B [2], a refinement of an event, e.g., a can be achieved using sev-
eral events (at least one), one of which must be the refinement of the original a
event. Any new events must be a refinement of Skip. Event-B refinement proof
obligations ensure that new events do not cause infinite internal behaviour. Fur-
thermore, new events can occur non-deterministically, provided their guards are
true, i.e., Event-B does not require an explicit scheduler. We have shown how
to refine an event (which may have a corresponding B operation) with a single
sequence of events (again with underlying B operations) and thus an explicit
schedule must be provided in the refinement. This may be restrictive when there
are several scheduling possibilities. However, if the scheduler is known in advance
then we provide an explicit way of describing it in a refinement. Also, we do not
require that one event is a refinement of the original event. What we require
is that a sequence of events is an appropriate refinement of an abstract event.
Our refinement also allows I/O refinement and type refinement of the inputs and
the outputs; recent research in Event-B is also examining how to include I/O
parameters in events [6].

Our approach to traces and trace divergences event refinement bears some
resemblance to the approaches to action refinement in process algebras developed
in the 1980’s and early 1990’s, see e.g. [3], where single events are refined by more
complex behaviour. However, the focus then was within pure process algebra,
and with more intricate semantics. In contrast, our emphasis is on developing an
approach which integrates with state-based components, in our case B-machines,
and it is this emphasis that has driven the development of the approach presented
in this paper.

In our recent work we have continued to generalise the results in order to
support refining events to sets of sequences of events and to processes.

Acknowledgments. Thanks to Thai Son Hoang for discussions related to Event-
B. Thanks also to the IFM reviewers for their insightful and helpful comments.

References

1. Abrial, J.-R.: The B Book: Assigning programs to meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. Cambridge
University Press (in preparation)

3. Aceto, L.: Action Refinement in Process Algebras. Cambridge University Press,
Cambridge (1992)



Changing System Interfaces Consistently 117

4. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra.
North-Holland, Amsterdam (2001)

5. Boiten, E., Derrick, J.: Refinement in Z and Object-Z: Foundations and Advanced
Applications. Springer, Heidelberg (2001)

6. Butler, M.: Personal communication (September 2008)
7. Derrick, J., Boiten, E.: Non-atomic refinement in Z. In: Woodcock, J.C.P., Davies,

J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1477–1496. Springer, Heidel-
berg (1999)

8. Derrick, J., Wehrheim, H.: Using coupled simulations in non-atomic refinement.
In: ZBB (2003)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

10. Morgan, C.: Of wp and CSP. In: Beauty is our business: a birthday salute to E.
W. Dijkstra, pp. 319–326 (1990)

11. Schneider, S.: Concurrent and Real-Time Systems: the CSP Approach. Wiley,
Chichester (1999)

12. Schneider, S.: The B-Method: an introduction. Palgrave (2001)
13. Schneider, S., Pizarro, D., Treharne, H.: The futuretech demonstrator, Future Tech-

nologies for System Design Technical Report, University of Surrey (2008)
14. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal

Asp. Comput. 17(4), 390–422 (2005)



CSP with Hierarchical State

Robert Colvin and Ian J. Hayes

The University of Queensland,
ARC Centre for Complex Systems,

School of Information Technology and Electrical Engineering,
Brisbane, Australia

Abstract. The process algebra CSP is designed for specifying interac-
tions between concurrent systems. In CSP, and related languages, con-
current processes synchronise on common events, while the internal
operations of the individual processes are treated abstractly. In some con-
texts, however, such as when modelling systems of systems, it is desirable
to model both interprocess communications as well as the internal opera-
tions of individual processes. At the implementation level, shared state is
often the method of communication between processes, and tests and up-
dates of local state are used to implement internal operations. In this paper
we propose an extension of the CSP language which maintains CSP’s core
elegance in specifying process synchronisation, while also allowing state-
based behaviour. State is treated hierarchically, allowing (nested) declara-
tions of local and shared variables. The state can be accessed and modified
using a refinement calculus-style specification command, which may be op-
tionally paired with event synchronisation. The semantics of the extended
language, preserves the original CSP rules. The approach we present is
novel in that state is part of the process, rather than a meta-level construct
appearing only in the rules.

1 Introduction

The process algebra CSP [7] is a language designed for specifying concurrent
systems in which processes interact by synchronising and exchanging informa-
tion through a set of common events. Because the focus is on interactions, the
internal operations of a process are treated abstractly. In this paper we give
an extension of CSP to include a construct for declaring state, and a general
construct for testing and updating the state. The state can be declared local
to a single sequential process, or shared between concurrent processes. The in-
tegration of state-based constructs with CSP enables the internal operations
of a process to be specified in a familiar, imperative programming style, and
modelling of shared-state systems. The extension is designed so that CSP’s core
elegance in specifying interprocess communication is maintained, and therefore
obeys the following constraints: it is “lightweight”, in that it includes only a
few straightforward language extensions which do not affect existing constructs
(syntactic preservation), and therefore remains faithful to the original style of
CSP; all existing CSP operational laws remain valid (semantic preservation); it

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 118–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



CSP with Hierarchical State 119

allows both local state as well as shared state in a hierarchical way; and it allows
combining state operations with a single synchronisation.

In Sect. 2 we review CSP and present the operational semantics of a subset
of the language. In Sect. 3 we extend CSP with a construct for declaring state,
and commands for testing and updating state. In Sect. 4 we generalise tests and
updates to any relationship between pre- and post-states, and allow them to be
combined with event synchronisation in a single atomic action. Related work is
discussed in Sect. 5 and we conclude in Sect. 6.

2 Review of CSP

2.1 Syntax

CSP is a process algebra which allows concurrent processes to communicate
synchronously via shared events. We base our understanding of CSP on the
book by Hoare [7], and present its meaning via an operational semantics in the
style of Roscoe [11] and Schneider [12].

Processes interact via a set of events, Event . In addition, there are two special
events, τ , representing an internal (unobservable) event, and �, representing
successful termination. A subset of the syntax of a process in CSP is summarised
below.

P ::= (a →P) | (P1 � P2) | (P1 [] P2) | (P1 ‖ P2) | (P\A) | (P1 ; P2) |
SKIPA | STOPA

(1)

An event prefix process a →P , where a ∈ Event , is one that synchronises on
event a before behaving as process P . An internal choice between P and Q ,
written P � Q , nondeterministically chooses between P and Q , without refer-
ence to a particular event. An external choice between processes P and Q is
given by P []Q . Whichever process is the first to perform a synchronisation event
with the environment becomes active. Concurrency is written by P ‖ Q , which
states that the two processes operate in parallel, synchronising on shared events
and interleaving non-shared events. A set of events A ⊆ Event within P may be
“hidden”, written P\A, so that any events in A are not visible externally to P
(these become internal steps of P\A). A sequential composition P ;Q behaves as
P until P terminates, after which it behaves as Q . The process SKIPA has only
one possible behaviour, which is to terminate successfully and take no further
action. The process STOPA has no behaviour – it may never synchronise or take
any other action. Both SKIPA and STOPA are parameterised by a set of events
A, which forms their alphabet, described below. In general, processes may also
be parameterised by values, examples of which are given below.

Events can contain values, e.g., c.v , where c is a channel name and v is a
value. Channels are used for passing information from one process to another.
By convention, the sending process c.v →P is written c!v →P , and the receiving
process is written c?x : T →P(x ), which represents a process that engages in
any event c.v for v ∈ T , then behaves as P(x ) (a process dependent on x ). In



120 R. Colvin and I.J. Hayes

this paper, to avoid distractions associated with type systems, we assume all
values are of a universal type Val , and hence will omit the type qualifier T .

CSP includes a range of other operators, but for the purposes of this paper
we take the above subset as core. As an example, consider the specification of a
queue in CSP.

Qu(〈〉) =̂ enq?x →Qu(〈x 〉)

Qu(〈y〉 � q) =̂ (enq?x →Qu(〈y〉 � q � 〈x 〉)) [] (deq!y →Qu(q))
(2)

The state of the queue is maintained as a parameter to the process. Values are
enqueued via channel enq and dequeued on deq. We have followed Schneider’s
[12] style of separating the empty and non-empty cases of the queue parameter.
This is required because the deq channel is not available if the queue is empty.

The set of events a process P may engage in is given by its alphabet, α(P) ⊆
Event ∪ {�}. The alphabet of a process must satisfy the equations below.

α(a →P) = α(P) where a ∈ α(P)
α(P � Q) = α(P) = α(Q)
α(P [] Q) = α(P) = α(Q)
α(P ‖ Q) = α(P) ∪ α(Q)

α(P\A) = α(P) \ A
α(P ; Q) = α(P) ∪ α(Q)

α(SKIPA) = A ∪ {�}
α(STOPA) = A

(3)

Unless otherwise specified, we assume the alphabet of a process is the minimum
required to satisfy the above rules. For instance, a non-empty queue can engage
in all enq and deq events, while an empty queue can immediately engage in
enq events, followed by all events in the alphabet of a non-empty queue. Define
c.Val =̂ {v : Val • c.v}, i.e., c.Val is the set of events formed from channel
c and a value. Then for any sequence of values, q, the definition α(Qu(q)) =
enq.Val ∪ deq.Val is valid because it satisfies the equations given in (3).

As a more complex process example, consider a system which is formed from
two processes, S and R, which communicate via a buffer implemented as a queue
(process Qu). S generates values for the queue and R reads those values and
performs some actions on them. Assume the existence of a process Produce which
generates a value x . Process S repeatedly starts process Produce(x ) and puts x
on the queue. Process R reads value y from the queue and then performs some
actions via process Consume(y). The whole system, Sys , is formed by running
S and R in parallel with Qu(〈〉), and hiding the communication events.

S =̂ (Produce(x ) ; (enq!x →S ))
R =̂ deq?y →(Consume(y) ; R)

Sys =̂ (S ‖ R ‖ Qu(〈〉))\(enq.Val ∪ deq.Val)
(4)

Process Sys hides all communication on channels enq and deq. Processes external
to Sys will not see any of the events associated with enq or deq – all internal
communication will appear as a step in τ . (Sys is not a recursive process and
hence may declare the hiding internally.)



CSP with Hierarchical State 121

(a→P) a−→P (5)

(P � Q) τ−→P
and similarly for Q .

(6)

P
a−→P ′ Q

a−→Q ′

P ‖ Q
a−→P ′ ‖ Q ′

(7)

P
µ−→P ′ µ �∈ α(Q)

P ‖ Q
µ−→P ′ ‖ Q

and similarly for Q .

(8)

SKIPA
�−→ STOPA (9)

P
τ−→P ′

P [] Q τ−→P ′ [] Q

P
a−→P ′

P [] Q a−→P ′

and similarly for Q .

(10)

P
a−→P ′ a ∈ A

P\A τ−→ P ′\A
P

µ−→P ′ µ �∈ A

P\A µ−→P ′\A
(11)

P
µ−→P ′ µ �= �

P ; Q
µ−→P ′ ; Q

P
�−→ P ′

P ; Q τ−→ Q
(12)

Fig. 1. Rules for CSP

2.2 Operational Semantics

The operational semantics for CSP operators is given in Fig. 1, and follows
the style of Schneider [12]. Internal transitions are labelled with the internal
event τ , and unless otherwise stated, transitions labelled with a are valid for
a ∈ Event ∪ {�}. Transitions labelled with µ apply for µ ∈ Event ∪ {�, τ}.

Rule (5) states that a prefixed process a →P may take a step in a then
behave as P . (Recall that a prefix a is a member of Event , i.e., cannot be τ
or �.) Rule (6) states that an internal choice between P and Q may evolve to
either process, without any visible action. Rule (7) states that P and Q may
synchronise on event a if both are able to do so. Rule (8) states that P may evolve
by interleaving an event µ that is not in the alphabet of Q . Rule (9) states that
the special process SKIPA transitions in the � event and then takes no further
action. There are no rules for STOPA – it cannot engage in any actions. We
follow the convention of omitting the alphabet subscript on SKIPA and STOPA

when it is clear from context. Rule (10) states that P in an external choice may
take an internal step without affecting the choice itself. Alternatively, if P may
take a step with event a then the choice may be made in P ’s favour. Symmetric
rules holds for Q . Rule (11) states that if P may take a step in a and a is hidden,
then P\A may take an internal step. Alternatively, P\A may take a step in a if
a is not hidden. Rule (12) states that until P terminates, P ; Q behaves as P ,
after which it behaves as Q .

As an example, an initially empty Qu process can take the following steps.

Qu(〈〉) enq.v−→ Qu(〈v〉) enq.w−→ Qu(〈v ,w〉) deq.v−→ Qu(〈w〉) deq.w−→ Qu(〈〉)

These steps are justified by Rules (5) and (10). If channels enq and deq were
hidden, each transition label above would be τ (Rule (11)). Without the hiding,
the queue process could synchronise and exchange values with a concurrent pro-
cess which is listening to the enq and deq events via Rule (7), such as processes
S and R in (4).



122 R. Colvin and I.J. Hayes

3 CSP Extended with State

We extend the CSP language with operators for testing and updating state,
and call the new language CSPσ. We assume the existence of a set of variable
identifiers, Var , a set of values of variables, Val , and define a state as a partial
mapping from variables to values, state =̂ Var �→ Val . We use σ to denote such
partial states; on occasion we refer to a state which is total on Var , and we
denote such states by Σ.

3.1 Syntax

Three new operators are added to the language, as shown below, where σ is a
state, g is a predicate, x is a variable, and E is an expression1.

P ::= (st σ • P) | ([g]→P) | ((x :=E )→P) | . . . (13)

where ‘. . .’ includes the operators for CSP from (1). Guards and updates do not
appear in process event alphabets.

A local state process (st σ • P) defines the variables in the domain of σ to be
local to P , with their value in σ giving their initial value. Updates to and accesses
of variables in the domain of σ are hidden from external observers, and hence, the
local state hides variables in the same way that events in A are hidden by P\A.
Local states may be declared hierarchically (nested), e.g., (st σ1 • (st σ2 • P)),
where expressions in P may contain free variables which are in the domain of σ1
or σ2. If a variable x appears in both σ1 and σ2, the value for x in σ2 overrides
the value in σ1. We call the combination of all local states for some process its
context.

A guard prefix process [g]→P is blocked from proceeding until predicate g is
evaluated to true in the current context, after which it behaves as P . An update
prefix process (x := E )→P updates the variable x to the expression E evaluated
in the current context, then behaves as P . We use the term action to cover
everything that may appear on the left-hand side of a prefix, i.e., events, guards
and updates.

As an example, consider the (at this stage flawed) specification of a queue in
CSPσ. We define a process Q which handles messages along channels enq and
deq as before, explicitly updating queue variable q. The variable q is declared
locally to process Qu.

Qu =̂ (st {q �→ 〈〉} • Q)

Q =̂ enq?x →(q := q � 〈x 〉)→Q
[] [q �= 〈〉]→ deq!head(q)→(q := tail(q))→Q

(14)

After an enq?x event, q is explicitly updated and the process repeats. If q is
nonempty Q may participate in deq events. However, once the second branch is
chosen, Q will refuse enq events, which may lead to deadlock if the environment
1 To avoid distractions we assume all expressions are well defined.



CSP with Hierarchical State 123

is not offering deq. The desired behaviour is that the event deq may occur, and
the second branch selected, only if q �= 〈〉. To achieve this we must be able to
atomically combine guards with events; this will be explored in Sect. 4. Processes
S , R and Sys from (4) may be defined similarly in CSPσ, except the Qu process
does not need a parameter.

Computation sequences can be specified in CSPσ, as shown by the following
process Sum(X ) which calculates the sum of the natural numbers up to X using
local variables s and i , and then writes the result to non-local variable x .

Sum(X ) =̂ (st {i �→ 1, s �→ 0} • S (X ))

S (X ) =̂ [i ≤ X ]→(s := s + i)→(i := i + 1)→S (X )
[] [i > X ]→(x := s)→SKIP

(15)

To an external observer, all of the steps prior to the final copy to x are internal
since they test and update only the local variables i and s .

3.2 Operational Semantics

Our novel approach to defining the operational semantics of guards and up-
dates is to introduce them as transition labels which are “hidden” by the closest
declaring state, in the same way that events may be hidden in CSP. However,
because states may only hide some of the free variables referenced by a guard or
update, such states only partially hide those transitions. For example, consider
the following transitions of process P prefixed by a guard, within a state which
maps i to 1. The local state {i �→ 1} ‘hides’ i from external observers.

(st {i �→ 1} • [i ≤ 5]→P) �−→ (st {i �→ 1} • P) (16)

(st {i �→ 1} • [i ≤ x ]→P)
[1≤x ]−→ (st {i �→ 1} • P) (17)

(st {i �→ 1} • [y ≤ x ]→P)
[y≤x ]−→ (st {i �→ 1} • P) (18)

In (16) the transition label is #, which plays a similar role to τ . The guard triv-
ially evaluates to true in the local state, so to an external observer some internal
step is taken. In (17) the guard accesses non-local variable x . The externally
observable behaviour of this process is that it will evolve to P if x ≥ 1. The
predicate has been partially instantiated according to the local state. In (18)
the local state has no effect on the guard: its progress is dependent on non-local
variables and hence is externally visible (via the transition label). A process
(st {i �→ 1} • [i > 5]→P) cannot transition at all since the guard does not hold
in the local context.

Now consider the following transitions of process P prefixed by an update of
variable s .

(st {i �→ 1} • s := 0→P) s := 0−→ (st {i �→ 1} • P) (19)

(st {s �→ 1} • s := 0→P) �−→ (st {s �→ 0} • P) (20)

(st {i �→ 1} • s := i →P) s := 1−→ (st {i �→ 1} • P) (21)



124 R. Colvin and I.J. Hayes

Transition (19) describes an update to a non-local variable, in which the update
expression is independent of the local state. Transition (20) describes an update
of a local variable. The process evolves to P with s updated locally to 0. This is
an internal transition and hence labelled with #. In (21) the local context does
not include s , but does include a variable in the update expression. Since i is
mapped to 1 locally, to an external observer the process appears as an update
of s to 1. We consider more complex update examples below.

Before giving the formal rules for state-based constructs we define some nota-
tion. For an expression E and state σ, E [σ] represents E with its free variables
that are in the domain of σ replaced by their value in σ. For instance, if E is the
boolean expression (x = y + 1) and σ is {x �→ 5}, E [σ] is (5 = y + 1). If E is a
predicate, as in the above example, then [[E ]] is true if and only if E holds for all
values of all its free variables, i.e., (∀Σ • E [Σ]). (Recall that Σ is a state total
on Var .) We write sat([g]) if g is satisfiable for some values of its free variables,
i.e., (∃Σ • g[Σ]). Note that sat([g]) = ¬[[¬g]].

As foreshadowed, we extend the set of possible transition labels to include

SCmd , which contains guards and updates. A transition P
[g]−→ P ′ says that

P can evolve to P ′ if the predicate g is true, and a transition P x :=E−→ P ′ says
that P evolves P ′ and has the effect of updating x to E . The transition #
is a member of SCmd : it represents a transition in guard [g] where [[g]]. It is
the state-based equivalent of τ , but note that # ∈ SCmd , whereas τ �∈ Event .
This makes the definition of the rules more compact, since a transition which
is allowable in every state (#) is just a special case. By abuse of notation we
treat # as a single entity, although it in fact represents a set of transitions (e.g.,
[true], [1 > 0], [x = x ], etc.).

If we allow µ to also range over SCmd actions, then all of the rules in Fig. 1
still hold. The only construct from (1) which needs an additional rule to handle
SCmd transitions is external choice – see Rule (23), which is the state-based
equivalent of Rule (10).

Fig. 2 contains transition rules for the extended set of constructs and transi-
tion labels. Rule (22) defines the transitions for guards and updates in a similar
manner to event prefixing (Rule (5)). Rule (24) states that (st σ • P) transitions
in τ, � or event a if P does. We allow event a to reference state variables (if
a represents the passing of information along a channel), therefore a must be
(partially) instantiated by the local state. For instance,

(st {x �→ 1} • c!x →P) c.1−→ (st {x �→ 1} • P)

Rule (25) states that (st σ • P) may transition in guard [g[σ]] if P may take
a transition in [g], and [g[σ]] is satisfiable. This proviso ensures that guards
that cannot evaluate to true cannot transition. The rule may be compared to
Rule (11), in the sense that variables that occur in the domain of σ are replaced
in g by their local value in σ. If g only contains free variables that occur in
the domain of σ, then g[σ] may be evaluated locally: it will either evaluate to
true ([[g[σ]]] = true), in which case the transition can always occur, or it will
evaluate to false, and no transition is possible (since sat([g[σ]]) will not hold).



CSP with Hierarchical State 125

([g ]→P)
[g]−→ P ((x := E )→P) x := E−→ P (22)

P
�−→ P ′

P [] Q �−→ P ′ [] Q

P
s−→P ′ s ∈ SCmd \ {�}

P [] Q s−→P ′

and similarly for Q .

(23)

P
µ−→ P ′

(st σ • P)
µ[σ]−→ (st σ • P ′)

(24)

P
[g]−→ P ′ sat([g [σ]])

(st σ • P)
[g[σ]]−→ (st σ • P ′)

(25)

P
x :=E−→ P ′ x �∈ dom σ

(st σ • P)
x :=E [σ]−→ (st σ • P ′)

(26)

P
x := E−→ P ′ x ∈ dom σ v ∈ Val sat([E [σ] = v ])

(st σ • P)
[E [σ]=v]−→ (st σ ⊕ {x �→ v} • P ′)

(27)

Fig. 2. Rules for guards and updates

The example transitions (16)–(18) may all be justified by applying Rule (25)
and Rule (22).

Rule (26) states (st σ • P) may transition in “x :=E [σ]” if P may transition
in “x :=E” and x is not local to σ. In this case, the expression E is partially
instantiated with respect to σ, and the local state is not affected. Examples of
this were given in (19) and (21).

Rule (27) captures the case where the updated variable x is local to P . This
case is complicated by the possibility that the value of E may not be determined
solely by σ, that is, when E contains variables not in the domain of σ. The rule
therefore describes many possible transitions, one for each possible value of v
such that (E [σ] = v) is satisfiable. In each such transition, the local state is
updated so that x is mapped to v . Importantly, the transition label [E [σ] = v ]
below the line is a guard, whereas above the line the label x :=E is an update.
The labelling ensures that the value v chosen for x is consistent with the context.
The updated state is described notationally by σ⊕{x �→ v}; more generally, for
functions f and g, f overridden by g, f ⊕ g, is a function which returns g(x ) for
elements in the domain of g, and f (x ) otherwise.

Transition (20) given earlier is a simple example of the application of (27)
where we make the obvious choice of 0 for v , since E [σ] evaluates to 0, and
therefore [E [σ] = v ] = [0 = 0] = #. Given below is a set of transitions for the
more complex case where the updated variable is local but the expression E is
not.

(st {s �→ 1} • s := s + i →P)
[i=0]−→ (st {s �→ 1} • P) (28)

(st {s �→ 1} • s := s + i →P)
[i=1]−→ (st {s �→ 2} • P) (29)

(st {s �→ 1} • s := s + i →P)
[i=2]−→ (st {s �→ 3} • P) (30)



126 R. Colvin and I.J. Hayes

In these cases we cannot locally determine the value to which s must be updated,
since the update expression accesses non-local variable i . Locally, therefore, there
are many possible transitions, one for each v ∈ Val to which s can be updated
(we have shown only the transitions for v = 1, v = 2, v = 3). However, in
practice, only one transition will be possible for a given context. In this case,
that will be the transition in which v has the value of 1 + i in context.

For instance, the process can evolve to P with s = 2 in the local state only if
i = 1 in the context (29). Hence, consider an outer context of P in which i has
the value 1.

(st {i �→ 1} • (st {s �→ 1} • s := s + i →P)) �−→
(st {i �→ 1} • (st {s �→ 2} • P))

The assignment s := s + i is completely determined by the context provided by
the outer state {i �→ 1}, and hence always transitions (in #). The effect is to
update the value of s within the inner state. By Rule (25), transitions (28) and
(30) are not possible when the outer context determines i = 1, since, for example,
sat([(i = 0)[{i �→ 1}]]) does not hold.

Below is the execution of program Sum(2) from (15).

(st {i �→ 1, s �→ 0} • S (2))
�−→ (st {i �→ 1, s �→ 0} •

(s := s + i)→(i := i + 1)→S (2)) Rules (22), (23), (25)

�−→ (st {i �→ 1, s �→ 1} • (i := i + 1)→S (2)) Rules (22), (27)
�−→ (st {i �→ 2, s �→ 1} • S (2)) Rules (22), (27)
�−→ (st {i �→ 2, s �→ 1} •

(s := s + i)→(i := i + 1)→S (2)) Rules (22), (23), (25)

�=⇒ (st {i �→ 3, s �→ 3} • S (2)) Rules (22), (27) (×2)
�−→ (st {i �→ 3, s �→ 3} • x := s →SKIP) Rules (22), (23), (25)

x :=3−→ (st {i �→ 3, s �→ 3} • SKIP) Rules (22), (26)

It is a series of unobservable steps (in #) until the final observable transition
which updates x to 3. No more transitions are possible. (We have used �=⇒ to

indicate a sequence of more than one �−→ transitions.) The steps in # may be
interleaved with other processes operating in parallel by Rule (8). The process
avoids internal “divergence” by eventually updating a non-local variable.

4 Combining Synchronisation and State-Based Actions

We have so far given a relatively small and straightforward extension to CSP
to allow state-based behaviour. However the language is limited in that one
cannot combine guards, updates and events in one atomic action. To this end we
generalise guards and updates to specification commands (Sect. 4.1), which allow
arbitrary relationships between pre- and post- states, and allow specification
commands to be paired with events (Sect. 4.2).



CSP with Hierarchical State 127

4.1 Specification Commands

A specification command is of the form x : [R], where x is a set of variables and
R is a two-state predicate. This construct is based on Morgan’s specification
command [9], except he uses x0 and x for pre- and post-state variables, where
we use x and x ′, respectively. The frame of the command is the set x , i.e.,
frame(x : [R]) = x , and it is the set of variables which may be modified by the
specification command. R defines the relationship between the values of pre-
and post variables. Variables in the post-state are primed versions, and only
variables in the frame x may appear primed in R. For example, a specification
command which increments i is written as i : [i ′ = i + 1]. A guard as described
in the previous section is a special case of a specification command where x is
empty and R (therefore) does not refer to the post-state, that is, [g] is now an
abbreviation for ∅ : [g], as in [9]. Similarly, an update x := E is an abbreviation
for x : [x ′ = E ]. The syntax of processes is extended to allow a specification
command as a prefix, which, given these abbreviations, subsumes prefixing by
guards and assignments.

P ::= (st σ • P) | (x : [R]→P) | . . . (31)

where ‘. . .’ includes the operators for CSP from (1). We require α(x : [R]→P) =
α(P).

As in the previous extension, we define the set of state-based actions, SCmd , to
contain all specification commands (and allow guard and update abbreviations to
appear in transition labels). In keeping with the guard abbreviation, we define #
as any command ∅ : [g] where [[g]] = true. The following rule subsumes Rule (22).

(x : [R]→P)
x : [R]−→ P (32)

Given a two-state predicate R and states σ and σ′, the substitution of σ in
the pre-state of R and σ′ in the post-state of R is written R[σ, σ′]. For instance,
if σ = {i �→ 0} and σ′ = {i �→ 1}, then (i ′ = i + 1)[σ, σ′] is (1 = 0 + 1).
A specification command x : [R] is satisfiable when there exists some state σ
and values for the frame variables x such that R holds for the pre-state σ and
post-state formed from σ updated with the new values for the variables in x .

sat(x : [R]) =̂ (∃Σ • (∃V : (x → Val) • R[Σ, Σ ⊕ V ]))

The rule for a specification command transition in a local state is given below.

P
x : [R]−→ P ′ y = x ∩ dom σ z = x \ dom σ V ∈ (y → Val)

σ′ = σ ⊕ V sat(z : [R[σ, σ′]])

(st σ • P)
z : [R[σ,σ′]]−→ (st σ′ • P ′)

(33)

A process (st σ • P) may take a transition labelled by a specification com-
mand z : [R[σ, σ′]] under the following conditions. P transitions in specification
command x : [R] to P ′. Set y is the subset of variables of x that are in the local



128 R. Colvin and I.J. Hayes

state σ; z is the remaining variables. Choose some new values for the variables in
y and call this state V . Then the new state σ′ is the same as σ with variables in
y updated according to V . Finally, the specification command z : [R[σ, σ′]] must
be satisfiable. Then the conclusion of the rule states that (st σ • P) transitions
to (st σ′ • P ′) with label z : [R[σ, σ′]], i.e., the visible behaviour is an update
of non-local variables z such that R holds, after variables in the local state σ
are replaced by their local values in the pre- and post-states. If z is empty and
[[R[σ, σ′]]], the label is ∅ : [true], i.e., #.

For example, consider a specification command which swaps the values of two
variables, i and j , if both are greater than 0, but blocks otherwise.

i , j : [R] where R =̂ i > 0 ∧ j > 0 ∧ i ′ = j ∧ j ′ = i

Consider the execution of (i , j : [R]→Q) in a context which maps i to 5 and j
to 10. The guard is satisfied since both i and j are non-zero, and the result is to
swap their values. The following transition is justified by Rules (33) and (32).

(st {i �→ 5, j �→ 10} • i , j : [R]→Q) �−→ (st {i �→ 10, j �→ 5} • Q)

The instantiations of the rule meta-variables are y = {i , j}, z = ∅,V = {i �→
10, j �→ 5} = σ′. Substituting σ and σ′ into R gives true, and hence R[σ, σ′] is
trivially satisfiable. No other choice for V would give a valid transition, since
the satisfiability constraint would not hold.

All rules in Figs. 1 and 2 remain valid. In particular, Rule (33) specialises
to Rule (25) with the following instantiations: x = y = z = {}; hence V = {}
and σ′ = σ. Rule (33) specialises to Rule (26) for x �∈ dom σ by replacing the
abbreviation x :=E by x : [x ′ = E ], with the following instantiations: y = ∅, z =
{x}, and hence V = ∅ and σ′ = σ. We assume that E does not contain any
primed variables, and therefore sat(x : [x ′ = E [σ]]) holds because it simplifies
to (∃Σ • (∃w : Val • w = E [Σ])) which is true by the one-point law. Rule (33)
specialises to Rule (27) for x ∈ dom σ, by replacing the abbreviation x :=E by
x : [x ′ = E ], with the following instantiations: y = {x}, z = ∅, and hence, for
some v , V = {x �→ v} and σ′ = σ ⊕ {x �→ v}. We assume that E does not
contain any primed variables, and therefore z : [R[σ, σ′]] is ∅ : [v = E [σ]].

4.2 Combining State and Synchronisations

To allow more generality, we now allow each action in the language to be a
specification command/event pair, written (c, µ). This pair subsumes both spec-
ification command prefix and event prefix. If c is # we abbreviate (c, µ) to µ,
and if µ is τ we abbreviate (c, µ) to c. We allow τ as an abbreviation for (#, τ).
We require

α((c, µ)→P) = α(P) where µ ∈ Event ⇒ µ ∈ α(P)

The intuition is that an action (c, a) can synchronise on an event a if the guard
for c holds, and will update the variables in the frame according to c. For



CSP with Hierarchical State 129

instance, to correct the problem with possible refusals of enq events associated
with process (14), the bottom line can be written as

([q �= 〈〉], deq!head(q))→(q := tail(q))→Q

This ensures that the synchronisation on channel deq will occur only when q is
nonempty, without precluding the choice to enqueue a value.

For syntactic convenience in specifying a sequence of state-based actions to be
executed atomically, we allow action pairs to be composed. Such a composition
is well-formed only if at most one of the commands has an event a. That is,
two events cannot be composed. We use the symbol ‘◦’ to denote composition of
action pairs, and overload it to also denote relational composition of specification
commands.

(c1, τ) ◦ (c2, τ) = (c1 ◦ c2, τ) (34)
(c1, a) ◦ (c2, τ) = (c1 ◦ c2, a) = (c1, τ) ◦ (c2, a) (35)

The relational composition of two specification commands, c1 ◦ c2, which have
the same frame x , is defined by matching the post-state of c1 to the pre-state of
c2 via intermediate variables x ′′.

x : [R1] ◦ x : [R2] = x : [∃ x ′′ • R1[
x ′′

x ′ ] ∧ R2[
x ′′

x
]] (36)

The expression R1[ x
′′

x ′ ] is R1 with a syntactic replacement of variables x ′ with
x ′′. Note that this is a different type of substitution to that involving states. For
the purposes of defining relational composition when the frames do not match,
their frames may be widened according to the rule below.

x : [R] = x ∪ y : [R ∧ y ′ = y] for x ∩ y = ∅ (37)

For example, the dequeuing of an element can be merged with the test of non-
emptiness and an event on channel deq into a single atomic action as follows.

([q �= 〈〉], deq!head(q)) ◦ (q := tail(q), τ)
= ([q �= 〈〉] ◦ q := tail(q), deq!head(q)) from (35)
= (q : [q �= 〈〉 ∧ q ′ = q] ◦ q : [q ′ = tail(q)], deq!head(q)) from (37)
= (q : [∃ q ′′ • q �= 〈〉 ∧ q ′′ = q ∧ q ′ = tail(q ′′)], deq!head(q)) from (36)
= (q : [q �= 〈〉 ∧ q ′ = tail(q)], deq!head(q)) one-point rule

In addition to allowing paired actions, we now require transition labels to be
pairs of commands and events. As above, a transition with command c and event

µ is written P
c,µ−→ P ′. Both fields are mandatory for every transition, however,

if the command is # or the event is τ , we omit them, with the minimum label
being τ . As an example of a non-trivial label, by the above calculation:

[q �= 〈〉] ◦ deq!head(q) ◦ q := tail(q)→P
q : [q 
=〈〉∧q′=tail(q)],deq!head(q)−→ P



130 R. Colvin and I.J. Hayes

((c, µ)→P)
c,µ−→P (38)

P
c,a−→P ′ a �∈ α(Q)

P ‖ Q
c,a−→P ′ ‖ Q

and similarly for Q .

(39)

P
c,µ−→ P ′ µ �= �

P ; Q
c,µ−→ P ′ ; Q

P
�−→ P ′

P ; Q τ−→ Q
(40)

P
c,a−→P ′ a ∈ A

P\A c,τ−→ P ′\A
P

c,µ−→P ′ µ �∈ A

P\A c,µ−→P ′\A
(41)

P
τ−→P ′

P [] Q τ−→P ′ [] Q

P
c,µ−→P ′ (c, µ) �= (�, τ )

P [] Q
c,µ−→P ′

and similarly for Q .

(42)

P
x1 : [R1],a−→ P ′ Q

x2 : [R2],a−→ Q ′ x1 ∩ x2 = ∅

P ‖ Q
(x1∪x2):[R1∧R2],a−→ P ′ ‖ Q ′

(43)

P
x : [R],µ−→ P ′ y = x ∩ dom σ z = x \ dom σ V ∈ (y → Val)

σ′ = σ ⊕ V sat(z : [R[σ, σ′]])

(st σ • P)
z :[R[σ,σ′]],µ[σ]−→ (st σ′ • P ′)

(44)

Fig. 3. Rules for specification command/event pairs

We must now define the rules for paired specification command/event tran-
sition labels. This is just a matter of combining the rules from Figs. 1 and 2;
the result is given in Fig. 3. Rules (6) and (9) do not change. Rule (44) is a
combination of Rules (24) and (33). Note that when c is #, the rules collapse to
those for CSP given in Fig. 1, and when µ is τ and c is a guard or update, the
rules collapse to those in Fig. 2. Rule (43) allows two specification commands to
be conjoined if their frames are disjoint. Recall that to be well-formed a specifi-
cation command cannot alter variables outside its frame. This allows concurrent
(and atomic) updates of distinct variables in separate threads.

4.3 Example

Recall the processes S , R and Sys from (4) and Qu from (14). So that CSPσ

may be compared more readily with CSP, these processes have been defined using
communication over channels. We now rewrite these processes using state vari-
ables to communicate data. We assume that Sys interacts with its environment
by receiving information on channel ci and passing information on co. Firstly, we
assume x is the only non-local variable that process Produce in S visibly alters,
and therefore Produce does not need to be parameterised. An implementation
of Produce may be a process which reads some value from the environment on
channel ci then finds the sum to that number, i.e.,

Produce =̂ ci?X →Sum(X )

where Sum(X ) is defined in (15). Process Consume(y) used in R in (4) may
perform some actions that manipulate non-local variable y (possibly involving



CSP with Hierarchical State 131

local variables), and then output the result to the environment on channel co.
For the purposes of this example we define Consume minimally as a process
which outputs y on channel co, i.e., Consume(y) =̂ co!y →SKIP .

The next transformation we make is to replace communication with the Qu
thread by direct operations on the variable q. In addition, we introduce the scope
of x and y to contain S and R, respectively. These states are external to S and
R because these processes are recursively defined, and would otherwise result in
a series of redundant nested states.

S =̂ Produce ; (q := q � 〈x 〉→S )
R =̂ y, q : [q = 〈y〉 � q ′]→(Consume(y) ; R)

Sys =̂ (st {q �→ 〈〉} • (st {x �→ 0} • S ) ‖ (st {y �→ 0} • R))
(45)

Process S involves three layers of state. Within Produce are the local variables of
Sum, i and s , which are not visible. Variable x is external to Sum and Produce
but local to S ; while q is external to S but local to Sys . The variables i and s
are local variables, while q is a shared variable, however, the semantics makes
no distinction.

A trace of Sys will appear as a sequence of communications on channels ci and
co, interspersed with steps in τ . We build such a trace below. For space reasons
we write a process (st {x �→ 0} • P) as Px=0, and write P s=⇒ Q to represent
a transition formed from multiple steps, in which the only externally visible
transitions are those in s . Trace (46) represents possible executions of processes
S and R. Process S receives the value 2 on channel ci from the environment,
the sum to 2 is evaluated and stored in x , and q is updated to contain the value
in x . Process R takes y from the queue and outputs it on channel co. Trace
(47) is a trace formed from S and R in parallel, observed externally to the local
variables x and y. Note that the values of those variables change within the
state, and that references to them are replaced in the transition labels. Trace
(48) represents a trace of the process Sys viewed externally; only communication
with the environment is visible, with the updates to q reflected in the local state.

S
ci.2/x := 3/q := q�〈x〉

=⇒ S R
y,q : [q=〈y〉�q′]/co.y−→ R (46)

(S x=0 ‖ Ry=0)
ci.2/q := q�〈3〉

=⇒ (S x=3 ‖ Ry=0)
q : [q 
=〈〉∧q′=tail(q)]/co.3

=⇒ (S x=3 ‖ Ry=3)
(47)

(S x=0 ‖ Ry=0)
q=〈〉 ci.2=⇒ (S x=3 ‖ Ry=0)

q=〈3〉 co.3=⇒ (S x=3 ‖ Ry=3)
q=〈〉

(48)

5 Related Work

5.1 Comparison with CSP

We first note that (P ‖ P) = P does not hold if P accesses non-local variables,
even in the absence of internal choice (demonic nondeterminism). Intuitively,
this is as expected because successive updates of the same variable could result



132 R. Colvin and I.J. Hayes

in a different final value. Technically, this is because specification commands are
interleaved by Rule (39) (and an SCmd does not appear in the alphabet of any
process), unless accompanied by a synchronisation event (Rule (43)).

The language extensions and semantics we have introduced in this paper pro-
vide a notational convenience for specifying state-based process behaviour. How-
ever, any process written in CSPσ can be transformed into a process in CSP if
state values are kept as parameters to processes and channels are used to ex-
change information instead of shared variables. To transform a process in CSPσ

to CSP, any accesses of a variable that is shared among multiple parallel pro-
cesses must become encapsulated by a separate process. For instance, the queue
is represented by a variable in (45), while in (4) it must be represented by a
separate process, in this case, Qu(〈〉).

The CSP process in (2) gives an encapsulated data type Qu, which in some
contexts is desirable, but can become cumbersome in others. Consider an ex-
tension of the CSP process Sys (4) that contains n instances of process R. We
add a parameter to R, indicated by a subscript i ∈ 1..n, and must distinguish
the deq channels so that pairs Ri and Rj do not synchronise with each other,
but only with Qu. We also parameterise Consume in a similar manner, so that
interactions with the environment do not need to synchronise between Ris. The
Qu(q) process must also be updated to listen on multiple channels. The relevant
definitions are given below.

Ri =̂ deqi?y →(Consumei(y) ; Ri)

Qu(〈y〉 � q) =̂ enq?x →Qu(〈y〉 � q � 〈x 〉)
[] ([]ideqi !y →Qu(q))

(49)

We have used a generalised external choice to specify that the deq channel can
output (synchronise) for any i ∈ 1..n.

Consider a further modification such that each Ri consumes two successive
elements of the queue. However Ri =̂ deqi?y → deqi?z →(Consumei(y, z ) ;Ri). is
insufficient as it does not ensure y and z were successively enqueued, since other
deqj events may interleave between. One solution is to define another event,
e.g., deq2i?(y, z ) which will atomically dequeue two elements. The definition is
trivial, but requires a third process definition to be added to (49) (we assume
that capability to dequeue a single element is still required). The Sys process is
also updated to hide the new event and include n instances of R, for which we
assume a generalised parallel composition operator.

Queue2(〈〉) =̂ . . . Queue2(〈y〉) =̂ . . .

Queue2(〈y, z 〉 � q) =̂
enq?x → . . .

[] ([]ideqi !y →Queue2(〈z 〉 � q))
[] ([]ideq2i !(y, z )→Queue2(q))

S =̂ (Produce(x ) ; (enq!x →S ))
Ri =̂ deq2i?(y, z )→(Consumei(y, z ) ; Ri)
Sys =̂ (S ‖ (‖i Ri) ‖ Queue2)\(enq.Val ∪ (

⋃
i deq2i .V ))

(50)



CSP with Hierarchical State 133

The approach of adding new operations does not scale for complex data types
which require arbitrary, atomic combinations of operations. It is more convenient
to specify this behaviour directly in a state-based style. Recall from (45) that
there is no need for a queue process, as the queue operations may be merged
into S and R directly. Similarly, we are able to define the operation of removing
two adjacent elements in one atomic action. The Sys process, with n instances
of R and double-dequeue is shown below.

S =̂ Produce ; ((q := q � 〈x 〉)→S )
Ri =̂ y, z , q : [q = 〈y, z 〉 � q ′]→(Consumei(y, z ) ; Ri)

Sys =̂ (st {q �→ 〈〉} • S x=0 ‖ (‖i Ri
y=0,z=0))

(51)

Note that there are n declarations of the local variables y and z , but we do not
need to subscript them to distinguish the different instances. All references to y
or z in Rj will properly reference the correct version.

Given that a new process Queue2 does not need to be defined and internal
messages do not need to be hidden, (51) is a more compact specification than
that given by (50). It is also flexible enough if other operations on the queue are
required. In CSP, all shared data must have an opaque type, however, as demon-
strated above, in CSPσ shared data may have their types exposed. Of course, it
is a separate question as to whether process algebras such as CSP should be used
for defining programs like Sys . Hoare gives laws for assignment and state vari-
ables, but concludes that the laws are not mathematically convenient, and that
“... there are adequate grounds for introducing the assignable program variable
as a new primitive concept” [7, Sect. 5.5.3]. We intend CSPσ to be in keeping
with the spirit of this statement, and the specification style of CSP in general.

5.2 Other Work

CSP has been integrated with state-based languages, for instance, with Z by
Woodcock & Cavalcanti (Circus) [14], with Object-Z by Smith and Fischer &
Wehrheim (CSP-OZ) [13,5], with Action Systems by Butler [2], and with B
by Butler & Leuschel [1]. In comparison with these approaches to combining
state-based specification with CSP, we have taken a “lightweight” approach,
integrating only a single construct for defining state manipulation, and with little
change to the underlying syntax and semantics of CSP. Of course, the addition
of state tests and updates does not provide the same richness of specification as
afforded by a full incorporation of Z , etc., but may provide a useful stepping
stone between event- and state-based specifications.

Plotkin’s seminal paper on operational semantics [10] defines transition rules
for imperative languages with state. There are also many other examples of such
semantics in the literature, in particular, the semantics of Hoare and He Jifeng
[8], and the semantics for the programming language Occam [6]. Our approach
is different in that the state is treated as part of the process, and guards and
updates are treated as labels to the transition relation. This allows state accesses
to be (perhaps partially) hidden by an outer context which defines the values



134 R. Colvin and I.J. Hayes

of the local state. The traditional operational semantics approach defines the
transition relation on program/state pairs, and the state is updated in the rule
for each construct (e.g., update). This approach does not so easily support the
hierarchical construction of the state as in our approach, with local variables
in the traditional style being captured as global variables with syntactic restric-
tions. In the approach adopted here, by treating state access as transition labels,
the state-based reasoning is ‘quarantined’ to a single, general rule (Rule (44)),
allowing the construct rules, e.g., Rule (22) and Rule (32), to be defined con-
cisely, and without explicit reference to a particular state. This extends to more
complex constructs, for instance, the transition rules for conditional can be given
without reference to state (see Rule (52)).

(if b then P else Q)
[b]−→ P (if b then P else Q)

[¬b]−→ Q (52)

6 Conclusions

In this paper we have given an extension to the CSP language which allows
state-based constructs to be integrated with inter-process synchronisation and
other CSP constructs. The extension is given an operational semantics, defined
so that it is also an extension of the CSP operational semantics: all existing
transitions are preserved. The approach taken to defining the transition rules
is novel in that the state is maintained as part of the process, instead of a
meta-level construct in the rules, and that, therefore, transitions are labelled by
specification commands. This enables a more compact presentation and naturally
leads to hierarchical definition of states.

The work was motivated when developing a semantics for Behavior Trees [3],
a notation used for capturing natural language requirements of large systems.
Such requirement documents often mix styles and levels of specification, e.g., a
system of systems will specify both the interactions and the internal operations
of the processes involved. In future work we will extend CSPσ to handle the
full range of Behavior Tree constructs. In preparation for developing code from
CSPσ, we will define a trace-based semantics for refinement of CSPσ.

Because the extension builds on existing constructs and semantics, the state-
based rules should fit with existing tool support for CSP, such as FDR [4].
However, state-space explosion will become an issue with unrestricted types,
and evaluation strategies must be devised to avoid efficiency issues with checking
satisfiability in Rule (44).

Acknowledgments. The authors thank three anonymous reviewers for help-
ful comments on this paper. Ian Hayes would like to acknowledge his Visiting
Professorship at, and the hospitality of, the University of Newcastle (UK), and
support by the EPSRC-funded Trustworthy Ambient Systems (TrAmS) Plat-
form Project.



CSP with Hierarchical State 135

References

1. Butler, M.J., Leuschel, M.: Combining CSP and B for Specification and Property
Verification. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

2. Butler, M.J.: A CSP Approach to Action Systems. PhD thesis, Computing Labo-
ratory, Oxford Univ. (1992)

3. Dromey, R.G.: Formalizing the transition from requirements to design. In: Jifeng,
H., Liu, Z. (eds.) Mathematical Frameworks for Component Software: Models for
Analysis and Synthesis, River Edge, NJ, USA. Component-Based Development,
pp. 156–187. World Scientific Publishing Co., Inc., Singapore (2006)

4. FDR2 user manual (2005), http://www.fsel.com/fdr2_manual.html
5. Fischer, C., Wehrheim, H.: Model-Checking CSP-OZ Specifications with FDR..

In: Araki, K., Galloway, A., Taguchi, K. (eds.) Integrated Formal Methods, 1st
International Conference, Proceedings, pp. 315–334. Springer, Heidelberg (1999)

6. Gurevich, Y., Moss, L.S.: Algebraic operational semantics and Occam. In: Börger,
E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1989. LNCS, vol. 440, pp. 176–192.
Springer, Heidelberg (1990)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Engle-
wood Cliffs (1985)

8. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall, En-
glewood Cliffs (1998)

9. Morgan, C.: Programming from Specifications, 2nd edn. Prentice-Hall, Englewood
Cliffs (1994)

10. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

11. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1998)

12. Schneider, S.: Concurrent and Real-time Systems: The CSP Approach. Wiley,
Chichester (2000)

13. Smith, G.: A semantic integration of Object-Z and CSP for the specification of
concurrent systems. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997.
LNCS, vol. 1313, pp. 62–81. Springer, Heidelberg (1997)

14. Woodcock, J.C.P., Cavalcanti, A.L.C.: The semantics of circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272,
pp. 184–203. Springer, Heidelberg (2002)

http://www.fsel.com/fdr2_manual.html


Predicate Abstraction in a
Program Logic Calculus

Benjamin Weiß

Institute for Theoretical Computer Science
University of Karlsruhe, D-76128 Karlsruhe, Germany

bweiss@ira.uka.de

Abstract. Predicate abstraction is a form of abstract interpretation
where the abstract domain is constructed from a finite set of predicates
over the variables of the program. This paper explores a way to integrate
predicate abstraction into a calculus for deductive program verification,
where it allows to infer loop invariants automatically that would other-
wise have to be given interactively. The approach has been implemented
as a part of the KeY verification system.

1 Introduction

Deductive verification of imperative programs typically requires hand-crafted
loop invariants, i.e., assertions about the program states which can possibly oc-
cur at the beginning of each iteration of a loop. Finding sufficiently strong loop
invariants can be difficult, and today this is often one of only a few human inter-
actions necessary in an otherwise heavily automated verification environment.

On the other hand, there are methods which can automatically determine loop
invariants. Leaving aside testing-based approaches like Daikon [9], such methods
are predominantly based on abstract interpretation [6], a theoretical framework
for static program analysis which can roughly be described as symbolic execution
of the program, using an abstract (i.e., approximative) domain for the variable
values, together with fixed-point iteration.

Predicate abstraction [11] is a variant of abstract interpretation where the
abstract domain is constructed from a finite set of predicates over the variables
of the program. Here, the symbolic execution is itself done in a precise fashion,
and the necessary approximation is performed in between by explicit abstrac-
tion steps, in which an automated theorem prover is used to determine a valid
boolean combination of the predicates. Compared with other forms of abstract
interpretation, a fundamental disadvantage of predicate abstraction is that it is
limited to finite abstract domains. On the other hand, an advantage is that its
abstract domain can be flexibly adapted by simply changing the set of predi-
cates. In the same vein, predicate abstraction can quite easily support complex,
quantified invariants [10]. It can be extended with an iterative refinement process
that automatically adapts the domain to the particular problem [5].

This paper presents an approach for integrating predicate abstraction into
a deductive program verification calculus. This allows to infer loop invariants

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 136–150, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Predicate Abstraction in a Program Logic Calculus 137

within this calculus, on demand and as an integral part of constructing the
overall correctness proof.

Outline. Sect. 2 gives an overview of relevant related work. Necessary background
on the underlying program logic and calculus is provided in Sect. 3. A high level
explanation of the approach follows in Sect. 4. In Sect. 5, new calculus rules are
introduced, and how these rules are to be used is described in Sect. 6. Sect. 7
gives details on the predicate abstraction scheme. The overall method is further
illustrated with the help of an example in Sect. 8, and practical experience with
an implementation is reported in Sect. 9. Finally, Sect. 10 contains conclusions
and future work.

2 Related Work

This paper draws much inspiration from Flanagan and Qadeer’s approach for
using predicate abstraction in program verification [10]. Both in their approach
and in ours, a set of predicates is associated with each loop in a program, and
used to abstract specifically at loop entry points. Quantified loop invariants are
supported by allowing the loop predicates to contain free variables which are
later quantified over. The main difference is that in our setting, the inference is
done within a logical calculus, the same that is used for the verification itself.
This also distinguishes our technique from the one used in the Boogie verifier
[2], where a separate abstract interpretation component is used to infer needed
loop invariants, leading to a duplication of knowledge between the verifier and
the abstract interpreter.

Several related approaches in striving for a closer integration between de-
ductive verification and static analysis based invariant inference exist. In the
“loop invariants on demand” technique [14], first-order verification conditions
are generated from programs, which include placeholder predicates for the loop
invariants. These are then passed to a first-order theorem prover. When an in-
variant is necessary for a sub-proof, the prover tries to infer it by repeatedly in-
voking an abstract interpreter with successively more precise abstract domains.
Still, the verification condition generator, theorem prover, and abstract inter-
preter, are all separate components. In [15], parts of the invariant generation
are moved inside the theorem prover, with the verification condition generation
remaining separated. In our approach, all three tasks—especially generation of
verification conditions and generation of invariants, which are closely related as
they both deal with programs—can be performed within one program logic the-
orem prover. Logical interpretation [19] goes the other way round by embedding
theorem proving techniques in an abstract interpretation framework.

The results presented in this paper are based on earlier work reported in [18].
Compared to [18], there are significant improvements: no unsoundness issues
remain; the integration of invariant inference into the calculus is more natural,
as proofs are no longer necessarily tree-shaped; and the transformation of state
updates into formulas is now lazy instead of eager, which improves performance.



138 B. Weiß

3 Program Logic

The verification framework used in this paper is dynamic logic with non-rigid
functions (DL) [4,3], a generalisation of Hoare logic [12]. DL extends first-order
logic by modal operators [p], where p can be any legal sequence of statements
in some programming language. Additionally, it features modal operators {u},
where u is a so-called update [17], representing a state change in a language-
independent, logical way. A core DL for a minimalist object-oriented language
is formally defined in [4], and a full-blown version for Java in [3].

Formulas are evaluated in program states, which are first-order structures. The
formula [p]ψ holds in a state if all states reachable by executing p in this state
satisfy ψ. Similarly, {u}ψ holds in a state if ψ holds in the state produced by the
update u. A formula is valid if it holds in all states. A typical program verification
task is to prove the validity of a formula ϕ → [p]ψ, which is equivalent to the
Hoare triple {ϕ}p{ψ}. Object attributes are represented as non-rigid function
symbols, i.e., symbols whose interpretation may be changed by programs.

The validity of DL formulas can be proven using a sequent calculus. A sequent
is a construct Γ % ∆, where Γ and ∆ are finite sets of formulas, and whose
semantics is the same as that of

∧
Γ →

∨
∆. A sequent calculus rule deduces

the validity of a sequent (the rule’s conclusion) from the validity of one or more
other sequents (the rule’s premises). In order to prove the validity of a sequent,
one constructs a proof tree: its root is the original sequent itself, and in each step,
it is extended by applying a rule to one of its leaves (called goals). Applying a rule
means matching its conclusion to the goal, and adding its premises as children
of the goal. If a proof goal is obviously valid (e.g., Γ % true), it is closed. If all
goals of a proof tree are closed, this means that the root sequent is valid as well.

Formulas with programs in them may be handled by rules which operate on
the active statement, i.e., the first basic command in the modal operator, and
stepwise shorten the program until only a first-order problem remains. Intu-
itively, this process can be understood as symbolic execution: the program is
“executed”, but with symbolic instead of concrete values for its variables. It is
similar to the verification condition generation in related verification approaches,
but differs in that it is intertwined with other forms of reasoning, in particular
first-order reasoning and arithmetic simplification, within the same calculus.

Such symbolic execution rules formalise the semantics of the underlying pro-
gramming language. In the following, we take a look at rules for the three el-
ementary programming constructs of assignments, conditional statements, and
loops, in a Java-like language. The basic assignment rule is

assign
Γ % {u; x := se}[ω]ψ, ∆
Γ % {u}[x = se; ω]ψ, ∆

where Γ and ∆ are sets of formulas; u is an update; se is a “simple expression”,
i.e., an expression without side effects; ω is the rest of the program after the
assignment; and ψ is a formula. The rule simply transforms the program assign-
ment x = se; into an equivalent update x := se. The update u; x := se is the
sequential composition of the updates u and x := se. Parallel composition of



Predicate Abstraction in a Program Logic Calculus 139

updates is also possible; for example, (x := 1‖y := x) sets x to 1 and y to the
value of x simultaneously. Finally, the update language allows quantified updates
such as (for x; a[x] := 0), which sets all elements of the array a to 0 in parallel.

The assign rule reduces assignments to updates. In the course of symbolic
execution, a composite update accumulates in this way in front of the modal
operator. This update can be simplified aggressively using update rewriting rules
[17], which for simplicity we use as a monolithic rule simplifyUpdate here. Once
the program has been dealt with completely, the final update can be applied
to the postcondition as a substitution (also by simplifyUpdate). As an example,
consider the following unclosed proof tree (with the root at the bottom):

(simplifyUpdate)
(assign)

(simplifyUpdate)
(assign)
(assign)

% if (a .= b)then(2)else(1) .= 1
% {a.f := 1; b.f := 2}(a.f .= 1)
% {a.f := 1; }[b.f = 2;]a.f .= 1

% {a.f := 0; a.f := 1; }[b.f = 2;]a.f .= 1
% {a.f := 0}[a.f = 1; b.f = 2;]a.f .= 1
% [a.f = 0; a.f = 1; b.f = 2;]a.f .= 1

Terms like f(a), where f is a non-rigid function symbol, are written as a.f
in order to resemble the usual object attribute access notation. One after the
other, the three assignments are turned into updates. Since the first is overridden
by the second, it can be simplified away. Finally, the update is applied to the
postcondition a.f

.= 1 (expressing equality of a.f and 1). This last step creates a
syntactical case distinction on whether a and b refer to the same object. Delaying
and sometimes avoiding such aliasing related case distinctions is the primary
motivation for handling assignments via updates in this way.

Conditional statements are symbolically executed by branching the proof on
whether the guard is true or false, and loops by unwinding them:

ifElse

Γ, {u}se .= true % {u}[p ω]ψ, ∆ (then branch)
Γ, {u}se .= false % {u}[q ω]ψ, ∆ (else branch)

Γ % {u}[if(se) p else q ω]ψ, ∆

loopUnwind
Γ % {u}[if(e){p while(e) p} ω]ψ, ∆

Γ % {u}[while(e) p ω]ψ, ∆

Using loopUnwind is sufficient only for loops which terminate after a fixed, stati-
cally known number of iterations. General loops can be handled with loopInvari-
ant (both loop rules are shown in a simplified form which assumes that the loop
body does not terminate abruptly, e.g by throwing an exception):

loopInvariant

Γ % {u}Inv, ∆ (initially valid)
Inv , se

.= true % [p]Inv (preserved by body)
Inv , se

.= false % [ω]ψ (use case)
Γ % {u}[while(se) p ω]ψ, ∆

Here, Inv is a loop invariant which has to be provided from the outside. The first
two branches ensure that Inv is indeed an invariant, i.e., that it holds both when
initially encountering the loop and after an arbitrary number of loop iterations.
In the third branch, symbolic execution continues behind the loop.



140 B. Weiß

4 Approach

A program logic calculus like the one introduced in the previous section bears
many similarities to abstract interpretation style program analysis; both use
symbolic execution to infer and check properties about programs. Unlike usual
abstract interpretations, the deductive approach can, at least in principle, han-
dle arbitrarily precise properties. This comes at the cost of sometimes needing
human interaction for proving the resulting first-order problems, and at the cost
of requiring manually specified loop invariants. This paper aims to address the
latter issue by integrating abstract interpretation concepts into the deductive
setting.

A difference between abstract interpretation and our calculus is in the treat-
ment of control flow splits: the calculus handles them by branching the proof tree,
where the created branches remain separated permanently. On the other hand,
abstract interpretations typically use a “merge” operator to combine properties
at junction points in the control flow graph. This corresponds to accumulat-
ing properties for every program point, instead of treating the execution paths
separately. For loops, the infinite number of paths makes such an accumulation
necessary; deductive verification “cheats” here by assuming to be given a loop
invariant, which already is an accumulated description of all paths through the
loop. We can overcome this difference rather straightforwardly by introducing a
rule into the calculus which merges several proof branches into one.

With this change, loops can be treated by applying loopUnwind and ifElse,
symbolically executing the body, and then merging the resulting sequent (where
the loop entry is again the active statement) with the previous such sequent. For
example, we might begin with a sequent i .= 0 % [while(i<j) ...]ψ. After one
iteration, we might arrive at i .= 0 ∨ i

.= 1 % [while(i<j) ...]ψ, reflecting the
fact that after this iteration, i has been incremented by one. Every such iteration
leads to a larger set of states possible for the loop entry point. In principle, we
only have to repeat this iterative process until this set of states stabilises, i.e.,
until it is a fixed point of the process: once this happens, it covers all states
which are possible for the loop entry on any execution path, or in other words,
its representation as a formula then is a loop invariant.

In the terminology of abstract interpretation, this would correspond to a com-
putation of the static semantics. Obviously, the infinite number of states means
that for most loops, such a computation would not terminate. To change this, we
need to introduce approximation. A form of approximation particularly suitable
in our context is that of predicate abstraction [11,10]: We assume that for each
loop we are given a finite set P of predicates (formulas). Then, the abstraction
of a formula for the entry point of this loop is a boolean combination of ele-
ments of P which is implied by the original formula. That is, the abstraction
retains the information from the formula which is expressible by the predicates
in P , and approximates away everything else. Since there are only finitely many
boolean combinations of the predicates, performing such an abstraction before
each unwinding step ensures convergence after a finite number of iterations. The
found invariant can then be used to apply loopInvariant.



Predicate Abstraction in a Program Logic Calculus 141

With predicate abstraction, the predicates P associated with a loop form the
building blocks for the invariants which can be found for that loop. Such pred-
icates can either be specified manually—which is easier than having to specify
whole, correct loop invariants—or be generated heuristically based on the par-
ticular program and specification to be verified.

5 Rules

In this section, we define new sequent calculus rules which extend a rule base
like the one sketched in Sect. 3 with predicate abstraction based loop invariant
inference as described in Sect. 4. The soundness proofs for these rules are omitted
here for space reasons. First is a rule for merging execution paths at junction
points in the control flow graph, called merge:

merge

∧
(Γ1 ∪ ¬∆1) ∨ · · · ∨

∧
(Γn ∪ ¬∆n) % ψ

Γ1 % ψ, ∆1 . . . Γn % ψ, ∆n

This rule is unusual in that it has several conclusions, or in other words, in that it
is applied to several proof goals at once. To allow such rules means to generalise
the structure of proofs from trees to directed acyclic graphs (DAGs) which are
connected and rooted. Apart from that, merge is a rather simple rule operating
on the propositional logic level. A typical application (to be read, intuitively,
from bottom to top) is

(merge)
ϕ1 ∨ ϕ2 % [while(e) p]ψ

ϕ1 % [while(e) p]ψ ϕ2 % [while(e) p]ψ

The next rule is responsible for the predicate abstraction step:

predicateAbstraction
αP (

∧
(Γ ∪ ¬∆)) % [while(e) p ω]ψ
Γ % [while(e) p ω]ψ, ∆

where P is the set of predicates associated with the loop while(e)p, and where
αP is a meta-operator which computes for any formula ϕ a predicate abstraction
using P . This means that αP (ϕ) is some boolean combination of the predicates
in P such that ϕ → αP (ϕ) is valid. The details of computing αP (ϕ) depend on
the particular predicate abstraction scheme (Sect. 7); usually, this computation
itself requires first-order reasoning modulo several theories.

Both above rules operate on sequents without updates in front of the modal
operators containing the programs. Thus, we need a way to transform typical
sequents ϕ % {u}[p]ψ such that the update u is removed from a modality [p].
This can be achieved with the shiftUpdate rule:

shiftUpdate
{u′}Γ, Upd % [p]ψ, {u′}∆

Γ % {u}[p]ψ, ∆

where:

– targets(u) is the set of all (non-rigid) function symbols f occurring as top
level operators of the left hand side of an elementary update (f(t̄) := t) in u



142 B. Weiß

– for each f ∈ targets(u): f ′ is a fresh rigid function symbol with the same
arity as f

– the update u′ is the parallel composition of the updates (for x̄; f(x̄) := f ′(x̄)
)

for all such pairs (f, f ′), where x̄ = x1, . . . , xn, n being the arity of f and f ′

– Upd =
∧

f∈targets(u) ∀ȳ; f(ȳ) .= {u′}{u}f(ȳ)

Intuitively, the update u′ substitutes for each updated function symbol f a fresh
symbol f ′ which represents the old, pre-update, instance of f . The formula Upd
links the old instances with the current ones. The following proof tree is an
example:

(simplifyUpdate)

(shiftUpdate)

f ′(a) .= 27,
∀y; y.f .= if (y .= b)then(42)else(f ′(y))

% [p]ψ
{for x; x.f := f ′(x)}a.f .= 27,

∀y; y.f .= {for x; x.f := f ′(x)}{b.f := 42}y.f
% [p]ψ

a.f
.= 27 % {b.f := 42}[p]ψ

Since the updates resulting from this application of shiftUpdate are attached to
formulas without modalities, they can be simplified away immediately, leading
to a sequent without updates at all. This example also shows the disadvantage
of using shiftUpdate, which is that it indirectly introduces quantifications and
case distinctions for the possible aliasing situations. Using updates, instead of
handling assignments in the style of shiftUpdate right away, allows to delay these
complications as long as possible.

Finally, we introduce an operation setBack, which is defined as “replace a
goal by one of its dominators in the proof graph”. This is not strictly expressible
as a sequent calculus rule, but it preserves the overall meaning of the proof: if
all goals are valid, then the root must be valid. It is useful for “cutting off”
proof branches which do not contribute to the loop invariant of the current loop.
Such irrelevant branches for example occur when the loop body may throw an
uncaught exception; the execution paths where this happens never return to
the loop entry, and thus do not affect the loop invariant. Another example is
the loop termination branch which is created when applying loopUnwind and
subsequently ifElse. Instead of considering these side branches in every iteration
of symbolic execution, they can be reverted to the loop entry with setBack. This
is exemplified by the proof graph below:

(loopUnwind, ifElse)
ϕ1 % [p; while(e) p]ψ (setBack)

ϕ % [while(e) p]ψ
ϕ2 % []ψ

ϕ % [while(e) p]ψ

Instead of continuing on the right branch, it is set back to the loop entry. Once
the loop body p has been symbolically executed on the left branch, merge can
be used to combine both branches.



Predicate Abstraction in a Program Logic Calculus 143

6 Proof Search Strategy

Sect. 4 has sketched the overall idea for how to apply the rules defined in Sect. 5.
In this section, we concretise this aspect by defining a corresponding proof search
strategy, i.e., an algorithm which automatically chooses the next rule to apply
to a given unclosed proof. Our strategy extends a strategy able to do regular
symbolic execution and first-order reasoning with the capability to infer a loop in-
variant whenever an invariant-less loop is encountered during proof construction.

The strategy is defined semi-formally in Fig. 1. The first three functions are
helpers for the main function chooseRuleApplication . This function returns a pair
of a goal node and a rule, with the meaning that the returned rule should be
applied to the returned goal. The presentation is a bit imprecise in this respect,
because in general there may of course be multiple ways to apply a single rule to
a particular goal. However, for the rules that matter here, the exact application
focus is either unique or it is explained in the paragraphs below. We assume
that the occurring sequents are of the form (Γ % {u}[p]ψ, ∆), where p is the
only program occurring in the sequent.

We consider a symbolic execution state, as captured by a node of the proof
graph, to be “in” a loop when that loop has previously been “entered” by ap-
plying loopUnwind but not yet “left” by applying loopInvariant. Accordingly, the
entryNode function determines the node where a specific loop, passed as a pa-
rameter to the function, has last been entered. Function innermostLoop returns
the loop that has last been entered but not yet left.

Function waiting tells whether the symbolic execution of the passed node
should not be continued yet, because operations on other branches have to be
performed first. This is the case if the active statement is a loop, and if from the
entry node of that loop it is possible to reach in the graph open goals where the
active statement is not that loop: in this case, we first want to continue symbolic
execution of these other goals until they get back to the loop as active statement.
Only then do we continue with all of them, by combining them with merge.

The main function chooseRuleApplication now works as follows. First, it picks
an arbitrary open goal which is not waiting for other branches. Then, it checks
whether the innermost loop that symbolic execution is “in” does not occur in
the program contained in the modal operator anymore. If so, this indicates that
the current branch will not return to the loop entry, for example because an
exception has been thrown which is not caught within the loop body. The next
step is then to revert it to the entry point of the innermost loop with setBack.
Otherwise, the choice of the rule depends on whether the active statement is a
loop or not. If not, the strategy chooses a regular applicable symbolic execution
rule or a first-order rule (abbreviated as SE in Fig. 1).

If the active statement is a loop, and if an invariant is already known for
this loop, the invariant is used to apply loopInvariant. If no invariant is known,
special rules are applied in a fixed order. First after reaching the loop entry
via regular symbolic execution, shiftUpdate is used to get rid of any update
preceding the modal operator. Then, merge can be applied to merge the current
proof branch with all other branches that have been waiting for it. The next step



144 B. Weiß

Pseudocode

//returns the node where symbolic execution entered a loop
Node entryNode(node, loop)

if(activeStatement(node) = loop)
if(appliedRule(node) = loopUnwind) return node;
else if(appliedRule(node) = loopInvariant) return none;

return entryNode(firstParent(node), loop);

//returns the innermost loop which symbolic execution is in
Loop innermostLoop(node, leftLoops)

if(activeStatement(node) is a loop)
if(appliedRule(node) = loopUnwind and loop �∈ leftLoops)

return loop;
else if(appliedRule(node) = loopInvariant) leftLoops := leftLoops ∪ {loop};

return innermostLoop(firstParent(node), leftLoops);

//tells whether a node has to wait for other merge parents
boolean waiting(node)

if(activeStatement(node) is a loop)
foreach(goal reachable from entryNode(node, loop))

if(open(goal) and activeStatement(goal) �= loop) return true;
return false;

//main: chooses a goal and a rule which should be applied to the goal
(Node, Rule) chooseRuleApplication()

goal := any goal with open(goal) and not waiting(goal);
if(not occursIn(innermostLoop(goal, ∅), goal)) rule := setBack;
else if(activeStatement(goal) is a loop)

if(knownInvariant(loop) �= none) rule := loopInvariant;
else lastRule := appliedRule(firstParent(goal));

if(lastRule = SE) rule := shiftUpdate;
else if(lastRule = shiftUpdate) rule := merge;
else if(lastRule = merge) rule := predicateAbstraction;
else if(lastRule = predicateAbstraction)

if(fixed point) rule := loopInvariant;
else rule := loopUnwind;

else rule := SE;
return (goal, rule);

Pseudocode

Fig. 1. Proof search strategy for predicate abstraction

is to perform predicate abstraction. Finally, if the iterative unwinding process
has reached a fixed point, i.e., if the current abstraction (as returned by αP ) is
logically equivalent to the previous abstraction for this loop, then this abstraction
is an invariant for the loop. This invariant is then used to apply loopInvariant.
Otherwise, one more iteration is initiated with loopUnwind.



Predicate Abstraction in a Program Logic Calculus 145

7 Predicate Abstraction Scheme

The details of the predicate abstraction operator αP have been left open in
Sect. 5, because the approach does not depend on the use of any particular
predicate abstraction algorithm. It is only necessary that ϕ → αP (ϕ) is always
valid, and that the image of αP is finite. Existing algorithms which can be used
include those presented in [7] and in [10].

The approach has been implemented prototypically as an extension of the KeY
system [1,3], a partly automated dynamic logic theorem prover for the verifica-
tion of Java programs. This implementation uses the following simple predicate
abstraction scheme: the abstraction of ϕ is the conjunction of all predicates from
P which are implied by ϕ, i.e., αP (ϕ) =

∧
{p ∈ P | (ϕ → p) is found to be valid}.

This only allows conjunctions of the predicates, which is less flexible than sup-
porting arbitrary boolean combinations. On the other hand, it is much cheaper
to compute, which allows to handle a significantly higher number of predicates.

For efficiency, the implementation uses Simplify [8] instead of KeY itself for
checking the validity of the formulas ϕ → p. In order to keep the number of such
checks down, known implication relationships between predicates are exploited:
if p1 → p2 is known to be valid a priori, and if we have been unsuccessful in
proving ϕ → p2, then there is no need to check ϕ → p1.

Another aspect of practical importance are heuristics for automatically gen-
erating predicates. Our implementation features an ad hoc set of such heuristics.
These take into consideration the program, the manually specified predicates,
and the pre- and postcondition, and create in an exhaustive way many typical
invariant components, such as ordering comparisons between pairs of integer
variables, or that the value of a reference type variable is null or different from
null. Extending such heuristics to cover more invariant elements is easily possi-
ble; however, increasing the number of predicates of course has an adverse effect
on performance, so one has to strike a balance between power and efficiency.

8 Example

As an extended example, we walk through a proof for the Java implementation of
selection sort shown in Fig. 2. The code is annotated with specifications written
in the Java Modeling Language (JML) [13]. The requires and ensures clauses
give a pre- and a postcondition for sort, respectively. The clause diverges true
states that sort must not necessarily terminate; it is present because we are not
concerned with termination issues in this paper.

No loop invariants are specified for the two loops of sort, instead only loop
predicates are given. The syntax used for this has been proposed as an extension
of JML in [10]: loop annotations starting with loop_predicate contain an arbi-
trary number of user-specified predicates for the loop, and free variables can be
declared with skolem_constant. Fig. 2 gives exactly those predicates which are
minimally necessary to make our implementation arrive at an invariant strong
enough for proving the given method contract. These are supplemented by the



146 B. Weiß

Java + JML

����� Sorter {

������ ���[] a;

//@ ��	��� normal_behaviour

//@ 
����
�� a != ����;

//@ ����
�� (��
��� ��� x; 0 < x && x < a.length; a[x-1] <= a[x]);

//@ ����
��� �
��;

��	��� ������ ���� sort() {

//@ ��������������� ��� x, y;

//@ ������
������� a[x] <= a[y];

��
(��� i = 0; i < a.length; i++) {

��� minIndex = i;

//@ ��������������� ��� x;

//@ ������
������� a[minIndex] <= a[x];

��
(��� j = i + 1; j < a.length; j++)

��(a[j] < a[minIndex]) minIndex = j;

��� temp = a[i];

a[i] = a[minIndex];

a[minIndex] = temp;

} } }

Java + JML

Fig. 2. Java implementation of selection sort

heuristically generated predicates; for example, based on the specified predicate
a[minIndex] ≤ a[x], the essential predicate ∀x; (0 ≤ x < i → a[minIndex] ≤
a[x]) is generated automatically, together with many similar quantified formulas
using different guards.

The JML specification can be translated into a DL sequent of the form ϕ %
[Sorter.sort();]ψ, where ϕ and ψ are essentially DL representations of the
requires clause and the ensures clause, respectively. Applying the predicate
abstraction proof search strategy to this root sequent yields the proof graph
sketched in Fig. 3.

The first step in the construction of this proof is to perform symbolic execution
of the program (abbreviated as SE in the figure) until the outer loop becomes the
active statement. After applying shiftUpdate and merge (in this first iteration,
to only one predecessor), we perform predicate abstraction for the outer loop.
Since no fixed point has yet been reached, we unwind the outer loop, creating
one branch where the loop body is entered and one where the loop terminates.
The latter is immediately cut off with setBack, since it will not return to the
loop entry and is therefore irrelevant for the loop invariant. On the former, the
body is symbolically executed, which entails dealing with the inner loop (shown
in the right half of Fig. 3) and finally leads to two branches where the outer loop
is again the active statement. After applying shiftUpdate to each of them, these
branches can be merged, and predicate abstraction is done again. Assuming that
the resulting abstraction is not equivalent to the previous one, another identical
iteration is performed.



Predicate Abstraction in a Program Logic Calculus 147

ro
o
t

o
u
te

r
lo

o
p

en
tr

y
S
E
,

sh
if
tU

p
d
a
te

,
m

e
rg

e

o
u
te

r
lo

o
p

en
tr

y

o
u
te

r
lo

o
p

b
o
d
y

o
u
te

r
lo

o
p

ex
it

lo
o
p
U

n
w

in
d
,

if
E
ls
e

o
u
te

r
lo

o
p

en
tr

y

se
tB

a
c
k

in
n
er

lo
o
p

o
u
te

r
lo

o
p

en
tr

y
o
u
te

r
lo

o
p

en
tr

y

o
u
te

r
lo

o
p

en
tr

y
sh

if
tU

p
d
a
te

,
m

e
rg

e

o
u
te

r
lo

o
p

en
tr

y

o
u
te

r
lo

o
p

b
o
d
y

o
u
te

r
lo

o
p

ex
it

lo
o
p
U

n
w

in
d
,

if
E
ls
e

o
u
te

r
lo

o
p

en
tr

y

se
tB

a
c
k

in
n
er

lo
o
p

o
u
te

r
lo

o
p

en
tr

y
o
u
te

r
lo

o
p

en
tr

y

o
u
te

r
lo

o
p

en
tr

y
sh

if
tU

p
d
a
te

,
m

e
rg

e

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

o
u
te

r
lo

o
p

en
tr

y
p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

in
it

ia
ll
y

v
a
li
d

p
re

se
rv

ed
b
y

b
o
d
y

u
se

ca
se

lo
o
p
In

v
a
ri
a
n
t

*
*

*
F
O

L
S
E
,

F
O

L
S
E
,

F
O

L

o
u
te

r
lo

o
p

b
o
d
y

in
n
er

lo
o
p

en
tr

y
S
E
,

sh
if
tU

p
d
a
te

,
m

e
rg

e

in
n
er

lo
o
p

en
tr

y

in
n
er

lo
o
p

b
o
d
y

in
n
er

lo
o
p

ex
it

lo
o
p
U

n
w

in
d
,

if
E
ls
e

th
en

b
ra

n
ch

el
se

b
ra

n
ch

S
E
,

if
E
ls
e

in
n
er

lo
o
p

en
tr

y

se
tB

a
c
k

in
n
er

lo
o
p

en
tr

y
in

n
er

lo
o
p

en
tr

y
S
E

S
E

in
n
er

lo
o
p

en
tr

y
sh

if
tU

p
d
a
te

,
m

e
rg

e

in
n
er

lo
o
p

en
tr

y

in
n
er

lo
o
p

b
o
d
y

in
n
er

lo
o
p

ex
it

lo
o
p
U

n
w

in
d
,

if
E
ls
e

th
en

b
ra

n
ch

el
se

b
ra

n
ch

S
E
,

if
E
ls
e

in
n
er

lo
o
p

en
tr

y

se
tB

a
c
k

in
n
er

lo
o
p

en
tr

y
in

n
er

lo
o
p

en
tr

y
S
E

S
E

in
n
er

lo
o
p

en
tr

y
sh

if
tU

p
d
a
te

,
m

e
rg

e

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

in
n
er

lo
o
p

en
tr

y
p
re

d
ic

a
te

A
b
st

ra
c
ti
o
n

in
it

ia
ll
y

v
a
li
d

p
re

se
rv

ed
b
y

b
o
d
y

u
se

ca
se

lo
o
p
In

v
a
ri
a
n
t

*
o
u
te

r
lo

o
p

en
tr

y
o
u
te

r
lo

o
p

en
tr

y
F
O

L
se

tB
a
c
k

S
E

F
ig

.
3
.
P

ro
of

gr
ap

h
fo

r
se

le
ct

io
n

so
rt



148 B. Weiß

We assume that after this second iteration, a fixed point has been reached:
the current antecedent, resulting from an application of predicateAbstraction, is
logically equivalent to its counterpart in the first iteration, and is thus a loop
invariant. With our implementation this inferred invariant is

∀x; ∀y; (0 ≤ x ∧ x < y ∧ y < i → a[x] ≤ a[y])
∧ ∀x; ∀y; (0 ≤ x < i ∧ i ≤ y < a.length→ a[x] ≤ a[y])
∧ 0 ≤ a.length ∧ i ≤ a.length ∧ 0 ≤ i ∧ a � .= null ∧ exc

.= null

where exc is a temporary variable introduced in the course of symbolic execution
to buffer a possibly thrown exception. Using this for Inv , we apply loopInvariant.
This creates three branches: the “initially valid” branch is trivial to close, because
u is empty and Inv is identical to Γ . Proving the “preserved by body” branch
entails applying loopInvariant to the inner loop, using the invariant inferred for
that loop in the last iteration. As the inferred invariant is strong enough to imply
the postcondition, the “use case” is closeable by further symbolic execution of
the remaining program and first-order reasoning (abbreviated FOL in the figure).

The structure of the subgraph for the inner loop is analogous to the struc-
ture of the overall graph. Each time the inner loop is encountered, an invariant
is inferred for it by repeated unwindings and predicate abstraction steps. The
invariants inferred in the first and the second occurrence of the inner loop are
different; they are dependent on the initial states occurring for the inner loop in
each iteration for the outer loop. Of the three branches created by loopInvariant,
the first one is again trivially closeable; the “preserved by body” branch is set
back to the outer loop entry, because it does not return to that loop; and the
use case is where symbolic execution actually continues back to the outer loop.

In practice, additional proof branches occur, dealing e.g. with the situation
where the accessed array a is null. These are left out in Fig. 3 for simplicity. In
this example, they can always be closed immediately (because the corresponding
execution path is obviously infeasible), or cut off with setBack (because the
execution path never returns to the respective loop entry).

9 Experiments

To give an indication of the feasibility of the approach, the results of applying the
prototypical implementation to eight Java methods are listed in Table 1. For each
method, the table shows its lines of combined code and specifications; the number
of predicates that had to be given manually; the number of predicates that were
generated automatically by the heuristics; the number of rule applications; the
number of calls to Simplify for computing the predicate abstraction; and an
approximate overall running time (obtained on a 1.5GHz, 2GB laptop).

The getMaximumRecordmethod is a simple loop which retrieves the “largest”
element out of an array of objects. The second example is selection sort, as
discussed in Sect. 8. The next four methods are from the Java Card API reference
implementation described in [16]. These methods are simpler than selection sort



Predicate Abstraction in a Program Logic Calculus 149

Table 1. Experimental results

Lines Man. prds. Gen. prds. Rule apps. Simplify Time
LogFile::getMaximumRecord 22 1 30 1362 41 10 s
Sorter::sort 22 1 1092 4594 431 90 s
Dispatcher::dispatch 70 0 297 2434 338 85 s
Dispatcher::removeService 67 1 159 3607 229 55 s
KeyImpl::clearKey 74 1 105 1777 252 115 s
KeyImpl::initialize 69 1 104 1746 242 95 s
IntervalSeq::incSize 33 2 178 3666 231 120 s
Subject::registerObserver 36 2 185 4431 242 125 s

algorithmically, but more technically involved. The last two examples are the
two methods requiring loop invariants in the tutorial [1].

In all listed cases, the found invariant was strong enough to complete the
verification task at hand (except for proving termination), without interaction.
Manually specifying the necessary zero to two loop predicates appeared notably
easier than having to provide the invariant as a whole. On the negative side, there
are three additional loops in [16] for which a strong enough invariant could not be
inferred. Two of them require invariants of a form (involving, e.g., existentially
quantified subformulas) which are not covered by the implemented predicate
abstraction scheme. The third contains deeply nested case distinctions in the
loop body, which lead to large disjunctive formulas that overwhelmed Simplify.

10 Conclusions

This paper has investigated an approach for integrating abstract interpretation
techniques, in particular predicate abstraction, into a calculus for deductive pro-
gram verification. This allows to take advantage of the power of a deductive
framework, while selectively introducing the approximation characteristic for
abstract interpretation to find loop invariants automatically when necessary.

The approach consists of adding a small number of additional rules, and a
dedicated proof search strategy to drive the invariant inference process. As is
common for abstract interpretation, this process always finds an invariant for
a loop, but this invariant is not in all cases expressive enough to be useful.
Its strength heavily depends on the underlying set of loop predicates, whose
elements are either generated heuristically or provided manually instead of the
loop invariants themselves.

Experience with an implementation in the KeY system demonstrates the
general feasibility of the approach. A line of future work is combining it with
more sophisticated predicate abstraction algorithms and heuristics for generat-
ing predicates. Another possible direction is the integration of an abstraction-
refinement mechanism, which would aim at systematically deriving predicates
from failed proof attempts. Also, it should be possible to generalise the approach
to also support other abstract domains, in addition to predicate abstraction.



150 B. Weiß

References

1. Ahrendt, W., Beckert, B., Hähnle, R., Rümmer, P., Schmitt, P.H.: Verifying object-
oriented programs with KeY: A tutorial. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 70–101. Springer,
Heidelberg (2007)

2. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

4. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-
oriented program verification. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS, vol. 4130, pp. 266–280. Springer, Heidelberg (2006)

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM Press, New York (1977)

7. Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidel-
berg (1999)

8. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Journal of the ACM 52, 365–473 (2005)

9. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27, 99–123 (2001)

10. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL
2002, pp. 191–202. ACM Press, New York (2002)

11. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12, 576–580 (1969)

13. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM Soft. Eng. Notes 31, 1–38 (2006)

14. Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.) APLAS
2005. LNCS, vol. 3780, pp. 119–134. Springer, Heidelberg (2005)

15. Leino, K.R.M., Logozzo, F.: Using widenings to infer loop invariants inside an SMT
solver, or: A theorem prover as abstract domain. In: WING 2007 (2007)

16. Mostowski, W.: Fully verified Java Card API reference implementation. In: Beckert,
B., Beckert, B. (eds.) VERIFY 2007, vol. 259, pp. 136–151. CEUR-WS.org (2007)

17. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 422–436.
Springer, Heidelberg (2006)

18. Schmitt, P.H., Weiß, B.: Inferring invariants by symbolic execution. In: Beckert,
B. (ed.) VERIFY 2007, vol. 259, pp. 195–210. CEUR-WS.org (2007)

19. Tiwari, A., Gulwani, S.: Logical interpretation: Static program analysis using the-
orem proving. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 147–166.
Springer, Heidelberg (2007)



Mechanised Translation of
Control Law Diagrams into Circus

Frank Zeyda and Ana Cavalcanti

Department of Computer Science, University of York, UK
{zeyda,ana}@cs.york.ac.uk

Abstract. Previously we proposed a strategy for translating control law
diagrams into Circus. Combining elements from Z, CSP, and a refinement
calculus, Circus captures functional and dynamic aspects of a diagram,
and allows us to formally verify implementations. The main contribu-
tions of this paper are first to discuss a generalisation of the existing
translation strategy, motivated by its mechanisation and application to
sizable examples. Secondly, we present a tool, the Circus Producer, which
automates the translation, and describe how its architecture facilitates
subsequent development of further verification tools.

Keywords: Simulink, verification, ClawZ, Z, CSP.

1 Introduction

Control law diagrams are commonly used by engineers in the specification and
design of control systems. They describe a system as a directed graph of blocks
carrying out elementary functions, and interconnecting wires transmitting data
values between the outputs and inputs of the blocks. The diagrams can be struc-
tured in that (subsystem) blocks at a higher level can be defined in terms of
subordinate diagrams at a lower level. The outputs of a diagram are repetitively
computed in cycles of execution where inputs are taken and outputs calculated.

Where control law diagrams are used in the context of safety-critical systems,
methods for analysis and validation are vital. Simulink [19] is a de facto standard
for specifying control law diagrams and offers support for static analysis and
simulation. Approaches based on model-checking have also been successfully
used to verify properties of discrete-time and hybrid systems [18,10,11].

Most existing work indeed focuses on validating properties of diagrams; com-
plementary to this, our concern is to verify the correctness of implementations.
For this purpose, the ClawZ suite of tools [2,1] has been developed and success-
fully used in industry. ClawZ verifies implementations by constructing a func-
tional Z model of the diagram, and deriving a refinement conjecture for a given
implementation. The implementation is typically written in a subset of Ada.
Discharging the refinement conjecture is achieved in ProofPower-Z, a mechani-
cal theorem prover for the Z language; it is performed mostly automatically.

A restriction of ClawZ is that it ignores the potential parallelism between the
blocks of a diagram. In principle, the computations they define can be performed

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 151–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



152 F. Zeyda and A. Cavalcanti

in parallel, with order imposed only by the way in which they are wired. Paral-
lelism also surfaces when independent flows of execution within subsystems give
rise to the possibility of outputs being produced before all inputs are received.
Even some basic blocks, such as the UnitDelay, which delays a signal by one
cycle, may produce their output prior to receiving their input.

To capture this aspect of control laws, we proposed an alternative technique
based on Circus [6], a language for refinement that incorporates elements of Z,
CSP, Dijkstra’s Guarded Command Language and Morgan’s refinement calcu-
lus [20,7]. It is suitable for development of state-rich, reactive systems [14,15].
In our Circus model of Simulink diagrams, we enrich the Z model produced by
ClawZ to capture parallelism. The success of ClawZ in the avionics sector to
reduce the cost of verification [1] strengthens our claim that a similar approach
with equal benefit can be realised using Circus as a formal description language.

Due to the complexity and size of diagrams in real applications, tool support
is indispensable to effectively generate the models that we propose. The main
contribution of this paper is to report on a tool that mechanises the translation
of discrete-time1 single-rate Simulink diagrams into Circus specifications.

A further contribution is a generalisation of the translation strategy as pre-
sented in [6]. We obtain (a) more flexibility in defining the structure of the Circus
models to match that of the proposed implementations and thereby facilitate the
verification, (b) cover more sophisticated wiring, that is, those in which diagram
outputs may refer to the same wire; and (c) simplify the interplay between Z
and Circus to minimise the risk of introducing errors in the Z model.

In Section 2 we present ClawZ and give an overview of Circus and its verifica-
tion technique for control systems; we also discuss how our tool integrates with
the ClawZ framework. In Section 3 we explain the extensions that we propose to
the translation strategy. Section 4 then describes the use of our translation tool,
the Circus Producer, and Section 5 addresses some design and implementation
issues. Finally, in Section 6 we draw our conclusions and address future work.

2 ClawZ and Circus

The verification process supported by ClawZ, and its major components are
depicted in Fig. 1. First, the Simulink model is submitted to the Z Producer
which generates the Z model encoded in the notation of ProofPower-Z. Each
block or subsystem is defined by a schema introducing variables for the inputs,
outputs and state components of the block. The set of bindings of the schema
specifies the behaviour of the block. The schemas for subsystems are dynamically
constructed upon translation, but those for primitive blocks are inferred from a
predefined library that may be extended by the user.

From the Z specification and the Ada implementation the RSG tool (Re-
finement Script Generator) constructs a compliance argument: a series of re-
finement conjectures which, if proved valid, establish the correctness of the

1 Discrete time is a requirement for diagrams to be implementable in software.



Mechanised Translation of Control Law Diagrams into Circus 153

Simulink
Model

Z Producer ClawZ Block 
Library

Functional Z Specification
of the Control Law

RSG

Ada ImplementationCompliance Argument
(Refinement Script)

ProofPower Z
High-level Tactics

Correctness 
Proof

“Ada Code implements Simulink Diagram”

Circus Producer

ClaSP Block 
Library

Functional & Behavioural 
Circus Specification

Generation of the Circus Model

Mechanised
Circus Semantics

Fig. 1. ClawZ tools framework and integration of the Circus Producer

implementation. Using ProofPower-Z and specialised proof tactics, these conjec-
tures are proved almost entirely automatically — even for large real systems.

In our approach and tool, we reuse elements of ClawZ to reduce the devel-
opment effort, and take advantage of validated tools and Z models. We directly
incorporate the schemas generated by the Z Producer into our Circus model. In
Fig. 1, the dotted line indicates the components that we added to the ClawZ
toolset to cater for Circus models. An additional element of supplied information
is the ClaSP block library. It contains essential information regarding the con-
current behaviour of primitive blocks. Like with the ClawZ library, we anticipate
that for particular diagrams the ClaSP library may have to be extended. The
mechanised Circus semantics [16] enables us to translate the Circus model into
a ProofPower-Z encoding, and like in the ClawZ verification process we will use
specialised high-level tactics to automate the refinement proof.

Circus adopts elements from sequential programming as well as process al-
gebra. The fundamental constructs are channels, processes and actions [20,7].
Channels are introduced through channel declarations and are required for com-
munication and synchronisation as in CSP. Processes can be defined either explic-
itly or in terms of process operators. An explicitly defined process is a sequence
of paragraphs that specify its state, auxiliary actions, which use or change the
state information, and a main action that defines the behaviour of the process.



154 F. Zeyda and A. Cavalcanti

process Debounce Process =̂ (
Debounce LogicalOperator Process
{| Flag ,Debounce LogicalOperator out , end cycle |}

‖
Debounce DataTypeConversion1 Process
{| Debounce LogicalOperator out ,
Debounce DataTypeConversion1 out , end cycle |}

‖
. . .

Debounce Terminator Process
{| Debounce SzRFlipzFlop out2, end cycle |}) \

(Debounce LogicalOperator out ,
Debounce DataTypeConversion1 out ,
Debounce DataTypeConversion2 out , . . . )

Fig. 2. Circus translation of the Debounce diagram presented in Fig. 3

Fig. 5 provides an example of an explicitly defined process and some prior
channel declarations. In the process, we first introduce a state paragraph that de-
clares two components, namely, Debounce Counter64Hz1 UnitDelay1 state
and Debounce Counter64Hz1 UnitDelay2 state; the set U represents a uni-
versal type in ProofPower-Z. Actions are defined by schemas, like in the case
of Calculate Debounce Counter64Hz1, or by a mixture of sequential and CSP
constructs, like in the case of Execute Time. CSP operators such as guarding,
parallelism, interleaving and hiding can also be used. In Execute Time, for ex-
ample, we moreover use variable declarations and assignments.

Circus also provides operators to combine processes. In the models of control
law diagrams, we only require parallelism, channel renaming and hiding. Fig. 2
exemplifies the n-way alphabetised parallel operator where each process is asso-
ciated with a set of channels on which it is required to synchronise. Renaming
changes the names of channels within a process. Finally, hiding, also used in
Fig. 2, internalises communication events over given channels.

To perform the translation from Simulink to Circus we further require a graph
model of the diagram. It records the number of inputs and outputs, and indepen-
dent flows of execution of each block. It additionally includes details of whether
flows depend on enabling signals, or the order of arrival of their inputs.

The Circus model of a diagram defines channels to represent each of its in-
puts, outputs and internal wires, and a basic explicitly defined process for each
block. In addition, the diagram itself is modelled by a parallel composition that
combines the processes defining the blocks. For example, Fig. 2 sketches the
translation of the Debounce diagram given in Fig. 3.

Each of the parallel processes results from the translation of one block in
the diagram. The synchronisation sets include their interface, that is, input and
output signals, as well as end cycle. While the synchronisation on interface
channels corresponds to the passing of signals between blocks, synchronisation



Mechanised Translation of Control Law Diagrams into Circus 155

on end cycle ensures that a new cycle is commenced only after all blocks have
finished their computation for the current cycle. The channels that correspond
to internal wires are hidden to reflect the view of the diagram as a ‘black box’.

The blocks are each translated to a centralised, explicitly defined process
that lifts the functional Z specification produced by ClawZ; Fig. 5 gives an ex-
ample: the translation of Counter64Hz1. We maintain the functional behaviour
defined by ClawZ, but also accommodate the intrinsic parallelism. The rôle of
the Flow action is to specify, through interleaving, the independent signal flows
inside the block; in our example, though, there is only one flow. For blocks
with state, the Circus process introduces a state paragraph. The purpose of the
StateUpdate action is then to update the state; it is based on the ClawZ schema.
In Fig. 5, for conciseness, we omit the ClawZ schema Debounce Counter64Hz1.

In the next section we explain the modifications and extensions to this strategy
that have been suggested by its mechanisation.

3 Extended Translation Strategy

The experience we gained from implementing and applying our tool has given
rise to three extensions to the translation strategy, which we discuss in the sequel.

Structure of Models. The translation strategy outlined above distinguishes
the translation of the top-level diagram from that of its blocks. The diagram
is represented by a parallel composition of block models, which are centralised,
explicitly defined processes. This is appropriate if parallelism in the implemen-
tation is only at the level of procedures implementing block functionality.

If, on the other hand, subsystem blocks in the top-level diagram, or any other
level of the diagram structure, are implemented by parallel procedures, represent-
ing them as parallel processes is more appropriate. This renders the architecture
of the specification closely aligned to that of the implementation, and greatly
reduces the effort in deriving and discharging the refinement conjecture.

Centralised Circus processes which are implemented by parallel procedures
have to be decomposed during refinement. The strategy that can accomplish
this is not as easily automated, as it requires the definition of coupling invariants
relating the state of the centralised and the decomposed processes.

We propose that each subsystem block of the diagram may be selectively trans-
lated into either an explicitly defined, centralised process, or a parallel process.
The decision can be governed by the architecture of a prospective implementa-
tion. The choices have an impact only on the automation of the verification; the
models that are produced as the result of the different choices are semantically
equivalent, and as a consequence they both capture the intrinsic parallelism in
the diagram. This can be easily proved using laws of Circus.

To illustrate this point, we consider the Debounce control law given in Fig. 3.
(This control system filters out a potential succession of quick oscillations upon
toggling the state of a mechanical sensor or switch.) In the existing transla-
tion strategy, each element of the Debounce diagram would be translated into a



156 F. Zeyda and A. Cavalcanti

Debounce Simulink Model

Output
1

Terminator

S-R
Flip-Flop

S

R

Q

!Q

>=

>=

NOT

double

double

Counter64Hz2

Enable Time

Counter64Hz1

Enable Time

Debounce_Time
2

Flag
1

Fig. 3. Simulink diagram of the Debounce control law

Debounce/Counter64Hz1 Subsystem

Time
1

UnitDelay 2

z

1

UnitDelay 1

z

1
Sum

Product
Gain

1/64
Enable

1

Fig. 4. Simulink diagram of the Counter64Hz1 subsystem

centralised Circus process. Taking, for example, the Counter64Hz1 subsystem
block, included in Fig. 4, the corresponding translation would read as shown in
Fig. 5.

A possible implementation may choose to first compute the Time output sig-
nal, and then proceed by concurrently updating the state of the two UnitDelay
blocks. Clearly, this parallelism is not directly reflected in the StateUpdate action
of the centralised Circus model in Fig. 5. Using our extended translation strat-
egy, we may decide to translate this subsystem in a parallel manner. It adopts
the same mode of translation we already used for the top-level diagram in the
existing strategy (Fig. 2), but applies it to a subsystem. The process parallelism
between the block translations exactly reflects our intention, for example, of
implementing the UnitDelay1 and UnitDelay2 blocks by individual procedures.



Mechanised Translation of Control Law Diagrams into Circus 157

channel Enable,Time : U

process Debounce Counter64Hz1 Process =̂ begin

state Debounce Counter64Hz1 State ==
[Debounce Counter64Hz1 UnitDelay1 state : U] ∧
[Debounce Counter64Hz1 UnitDelay2 state : U]

Init
Debounce Counter64Hz1 State ′

(∃ b : Debounce Counter64Hz1 UnitDelay1 •
Debounce Counter64Hz1 UnitDelay1 state ′ = b.initial state) ∧

(∃ b : Debounce Counter64Hz1 UnitDelay2 •
Debounce Counter64Hz1 UnitDelay2 state ′ = b.initial state)

Calculate Debounce Counter64Hz1
In1? : U

Out1! : U

(∃ b : Debounce Counter64Hz1 •
In1? = b.In1? ∧ Out1! = b.Out1! ∧
Debounce Counter64Hz1 UnitDelay1 state = b.UnitDelay1.state ∧
Debounce Counter64Hz1 UnitDelay1 state ′ = b.UnitDelay1.state ′ ∧
Debounce Counter64Hz1 UnitDelay2 state = b.UnitDelay2.state ∧
Debounce Counter64Hz1 UnitDelay2 state ′ = b.UnitDelay2.state ′)

Calculate Time ==
Calculate Debounce Counter64Hz1 \ (

Debounce Counter64Hz1 UnitDelay1 state ′,
Debounce Counter64Hz1 UnitDelay2 state ′) ∧

ΞDebounce Counter64Hz1 State

Execute Time =̂
var In1 : U • Enable ?x → In1 := x ;

var Out1 : U • Calculate Time ;Time !Out1→ Skip

Flows =̂ Execute Time

Calculate Debounce Counter64Hz1 State ==
Calculate Debounce Counter64Hz1 \ (Out1!)

StateUpdate =̂
var In1 : U • Enable ?x → In1 := x ;

Calculate Debounce Counter64Hz1 State

• Init ;
µX • Flows |[ ∅ | {| Enable |} | {

Debounce Counter64Hz1 UnitDelay1 state,
Debounce Counter64Hz1 UnitDelay2 state} ]| StateUpdate ;

end cycle → X
end

Fig. 5. Centralised translation of the Counter64Hz1 subsystem



158 F. Zeyda and A. Cavalcanti

C
2
B
1

Terminator

Complex to
Real -Imag

Re
Im

A
1

Fig. 6. Diagram causing problems for generating signal names

Naming of Signals. Internal signals of a diagram are named according to the
source block they connect. Clearly, there can only be one such block for each wire,
although blocks can have multiple outputs. For blocks with only one output, the
corresponding signal name is obtained by appending the suffix ‘ out’; for blocks
with more than one output, the suffixes ‘ out1’, ‘ out2’, etc. are used.

An exception to the above rule are signals that connect input and output
ports of the diagram. These are always named according to the respective port
they connect in the model, i.e. A, B and C in Fig. 6. For input signals this proves
not to be an issue, since there can only be one input port acting as the source.

For output signals, Fig. 6 depicts a scenario in which the signal name for the
wire connecting Complex to Real-Imag, B and C cannot be uniquely derived as
there exist two output ports potentially determining the name. To solve the
problem, signal names are now always determined by their source location. In
the example above, the name of the signal connecting the two output ports is
SignalNamingIssue ComplextoRealzImag out1. We still, however, need to
introduce signals for the outputs of the subsystem, through which it communi-
cates with other blocks when instantiated in some diagram context. Hence there
will be three channel declarations for our example.

channel SignalNamingIssue ComplextoRealzImag out1,B ,C : U

To communicate values to the output ports we take a view of them as blocks
that simply pass on their input signal. This results in additional processes being
created for each output port in the Circus translation, but the approach yields a
very uniform treatment compatible with the fact that output ports are indeed
represented as (Outport) blocks in the Simulink diagram.

Global Inclusion of the ClawZ Schemas. Finally, we avoid the inclusion of
the ClawZ schemas in the local scope of the explicitly defined Circus processes.
Initially this ensured that the Z schemas were only available in the scope in which
they were used. It was an appropriate use of the modularity afforded by pro-
cesses, but, for automatically generated models, it is not much of an advantage,
and breaks the traceability between the Circus model and the ClawZ output.
The actual inclusion of the ClawZ schemas takes place at a later stage when the
Circus processes are semantically encoded into ProofPower-Z (see Fig. 1). Here,
we directly incorporate the Z schemas from the respective ProofPower database



Mechanised Translation of Control Law Diagrams into Circus 159

generated by ClawZ upon model construction. This removes the need for repars-
ing the ClawZ-generated schemas when producing the Circus model and thereby
erases the possibility of introducing errors in combining the Z and Circus models.

4 The Circus Producer

In this section we describe the main features of the Circus Producer — our tool
for translating Simulink diagrams into Circus. We focus on the usage of the tool;
its design and implementation are discussed in the next section.

User Interface. The graphical interface of the Circus Producer is shown in Fig. 7.
The structure of the given Simulink diagram is rendered as a tree where each
internal node corresponds to a subsystem, and each leaf to a primitive block.
The textual description for each node gives the name of the respective element
in the diagram, and in parentheses its block type. The user may double-click
on internal nodes to expand or collapse them. The functions Expand All and
Collapse All expand or collapse all descending nodes of the current selection.

Fig. 7. Screen shot of the Circus Producer application

An important feature of the graphical interface is that translation of the
Simulink model is affected by the configuration of nodes in the tree control : sub-
system nodes that are expanded are translated in a parallel manner, and those
collapsed are translated into centralised processes.

The context menu function Show LaTeX performs the translation of the
(sub)diagram implied by the currently selected node; as a result, a LATEX file
is produced. The LATEX directives used in the encoding are those of the Circus
extension of the Community Z Tools (CZT).



160 F. Zeyda and A. Cavalcanti

By using LATEX as the encoding language, viewable documents are easily gen-
erated for the produced processes. In fact, the Show DVI context menu function
performs the translation as before, and additionally converts the generated LATEX
file into a DVI document and immediately displays it. The Circus process given
in Fig. 5 was indeed automatically generated applying the Circus Producer to
the subdiagram Counter64Hz1 of the Debounce model (Fig. 3, 4).

The ClaSP Library. Part of the translation algorithm constructs a graph model
of the diagram. Signal flows for subsystem blocks are calculated dynamically. For
primitive blocks, however, we need to specify the number of input and output
ports, and signal flows. This information is included in the ClaSP block library.

To encode the library we use an XML-based format. The advantages of XML
are, beyond standardisation and interchangeability, that the encoded file can be
validated against the XML schema that defines its exact structure.

In general, the user only needs to make additions to the ClaSP library when
blocks are encountered which the Circus Producer cannot translate. To help with
their identification for a particular model, the Circus Producer generates warning
messages each time a block is found that is not present in the ClaSP library.

To give an example of the format of library entries, Fig. 8 includes the ClaSP
block specification of the UnitDelayWithPreviewResettable block. This block acts
as a resettable unit delay with two outputs: one for the value of the input signal
in the previous cycle, and an additional one for its current value. As the delayed
output does not depend on the current input, the block has two flows.

The <BlockType>...</BlockType> pair of tags introduces the new type of
block. The compulsory name attribute has to match the respective BlockType
field in the Simulink encoding of the block. The optional boolean state attribute
determines whether the block has state or not.

The aggregated <BlockWiring>...</BlockWiring> tags contain information
about the inputs, outputs and flows of the block. The <inps>...</inps> and
<outs>...</outs> tags specify the number of input and output ports. They can
have a value varlength, if the block has a variable number of inputs, or outputs.
In this case, the actual number of ports is inferred upon instantiation of the block
in the model. The <flows>...</flows> tags include all independent signal flows
of the block as an instance of <flow>...</flow>. In the example, there are two
flows: one depends on both inputs, and the other on none.

The elements for each <flow>...</flow> instance correspond to our charac-
terisation of the ClaSP model as formalised in [6]. Thus <enabled> specifies
whether execution of the flow depends on enabling signals, <order>...</order>
states whether the order of arrival of inputs is significant, <rinps>...</rinps>
determine the set of input ports, and <pouts>...</pouts> the output ports of
the flow. They can be given as individual ports (<port>1</port>), port lists
(<portList>1 2 3</portList>), or ranges (<portRange from="1" to="3">).

Circus Model Simplification. Simplification is an optional feature of the trans-
lation which may be enabled or disabled by checking or unchecking an Enable
Simplification check-box. This function only has an effect on the translation of



Mechanised Translation of Control Law Diagrams into Circus 161

<ClaSP>
<BlockLibrary>
...
<!-- Unit Delay with Preview Resettable (Additional Math & Discrete) -->
<BlockType name="UnitDelayWithPreviewResettable" state="true">

<BlockWiring>
<inps>2</inps>
<outs>2</outs>
<flows>

<flow>
<enabled always="true"/>
<ordered>false</ordered>
<rinps>

<portList>1 2</portList>
</rinps>
<pouts>

<port>1</port>
</pouts>

</flow>
<flow>
<enabled always="true"/>
<ordered>false</ordered>
<rinps/>
<pouts>

<port>2</port>
</pouts>

</flow>
</flows>

</BlockWiring>
</BlockType>
...

</BlockLibrary>
</ClaSP>

Fig. 8. ClaSP Library extract for the UnitDelayWithPreviewResettable block

primitive blocks which do not possess state. In such cases, the strict application
of the translation procedure results in introducing vacuous state paragraphs,
actions and schemas for performing the state update. Enabling simplification
avoids the generation of these redundant parts of the process. The simplifica-
tions performed do not have an impact on the semantics of the translation; they
merely aid readability and ease subsequent mechanical formal analysis.

5 Design and Implementation

We now discuss a few of the underlying design decisions and implementation
issues encountered during the development of our tool.

Integration with CZT. An important decision in the design of the Circus Producer
was to integrate with CZT, the Community Z Tools, for the purpose of encoding
and internally representing Circus specifications. CZT has been initially devel-
oped to provide a component library to facilitate development of Z tools [12].
Its open architecture, however, led to various extensions, including support for
Circus [13,9]. The integration with CZT, most importantly, avoids the need for
a new design and implementation of a data model for Circus processes, since we
can readily employ CZT’s Annotated Syntax Trees (ASTs).



162 F. Zeyda and A. Cavalcanti

To process ASTs of Circus specifications, CZT’s implementation of the Visitor
design pattern endows us with a powerful and flexible mechanism to traverse and
transform syntax trees. This will be especially useful for generating a semantic
representation of Circus specifications in ProofPower, as required in further stages
of our work. An additional benefit of integrating with the CZT component library
is that we have the option to take advantage of existing or future CZT tools,
such as the Circus type checker and model checker. This opens up opportunities
for follow-up research using alternative approaches to reason about control laws
in Circus, while exploiting the development effort we have already invested.

Architectural Considerations. For the development of the Circus Producer appli-
cation, we built a transparent library of well-designed, reusable data structures
and components. This makes it easier to perform modifications and extensions to
existing components, and, importantly, simplifies the development of new tools.

The tool has been structured into Java packages that deal separately with
various aspects of data encapsulation, parsing, analysis and processing of data
objects. The central data structures reside in the three sub-packages Simulink,
Diagram and ClaSP of the enclosing package Data of the root application pack-
age. The classes in these packages are used to represent the Simulink file, the
underlying Simulink diagram, and the ClaSP model, respectively.

The design objective was to make handling of the data objects as easy as
possible for typical tasks, so that high-level functionality can be implemented
with little effort. This is achieved by a tight linkage between data objects; for
example, signals in flows are aware of the wire in the diagram they refer to, wires
are aware of the blocks they connect, and so on. This allows information, such
as signal names or the ClaSP wiring of blocks, to be computed dynamically, and
reduces the data that has to be effectively managed by the application. To coun-
teract a loss in efficiency resulting from dynamic computation, we integrated an
annotation API similar to the one of CZT to cache information once computed.

Other packages provide tool components for parsing Simulink files, ClawZ
library-meta files, generate Simulink diagram object representations from parsed
files, and perform high-level operations on Simulink diagrams and, as we antici-
pate in subsequent versions, on Circus models. The modular architecture of these
components allows for the quick prototyping and development of new tools; this,
in particular, lead to the development of a collection of Java-based supplemen-
tary tools for ClawZ extending it and facilitating its use.

Representation of Blocks. Each block in a diagram is represented by an object of
a particular class. This means that developers of additional tools can introduce
extra methods and fields specific to certain types of Simulink blocks, if needed.
For example, the Inport and Outport classes representing the input and output
ports of a diagram provide methods to obtain the port number of the blocks.

A potential complication is that upon extending the ClaSP library, classes
must be created for each new block. This is a task that in practice should not be
negotiated to the user. Therefore, such classes are generated automatically by a
utility during compilation. The instantiation of block classes through a factory



Mechanised Translation of Control Law Diagrams into Circus 163

makes it possible for the developer to derive from the automatically generated
classes in order to attach custom functionality if required.

Generation of the Circus Translation. The various elements of the Circus pro-
cesses resulting from the translation are described using the string template en-
gine developed by Parr [17]. Templates are text files which contain place-holders
to be ‘filled in’ when the template is instantiated. This isolates the static pattern
of the translation from dynamic data that has to be provided to generate the
concrete results such as names of processes, actions, signals, and so on.

The meta-language of the template engine defines constructs to address com-
mon cases such as generating lists within templates, conditional inclusion of text
fragments, and the instantiation of one template from inside another.

We defined 22 templates to specify the translation rules. The use of string
templates has so far proved very beneficial in terms of compacting the program
code and facilitating changes and adjustments to the details of the translation,
in particular since recompilation is not required when altering them.

6 Conclusions

In this paper we have extended the work in [6], where we describe a strategy
to translate Simulink diagrams into Circus models, and presented tool support
for mechanical translation. The extensions allow us to align the structure of the
Circus specification with that of a given implementation, with the objective of
simplifying the proof of refinement. The extended strategy also covers a wider
range of wiring configurations, since it allows block outputs to be shared as
diagram outputs. Finally, it simplifies the structure of the Circus model, and
avoids the potential to introduce errors in the Z model which it aggregates.

Case Studies. The Circus Producer has been employed on a number of case
studies of reasonable size which have served the purpose of validating the tool
and evaluating its use. The examples have been provided to us by collabora-
tors in the avionics industry, namely, EMBRAER and QinetiQ. The diagrams
exhibit subsystem structure of up to 4 nesting levels, and the most complex
of them contains a total of 155 elementary blocks and 14 subsystems making
the construction of the Circus model by hand practically infeasible. Initially,
applying the tool to these diagrams yielded only a partial translations due to
incompleteness of the ClaSP library. At this stage, warning messages produced
by the tool helped to identify the missing blocks, and subsequent consultation
of the Simulink documentation to determine their behaviour in terms of flows.

The produced Circus models have been validated by inspection and compar-
ison with the translation strategy in [6], and besides were tested for syntactic
errors using the Circus parser of CZT. A further degree of validation will take
place when future work semantically encodes these models in ProofPower-Z and
applies the refinement strategy. We have compared the translation of the same
diagram in different configurations, in particular to verify that parallelism is cor-
rectly represented in the sequential translation of subsystems. Notably, QinetiQ



164 F. Zeyda and A. Cavalcanti

provided us with an example in which parallelism that surfaced at the top-most
level of a digram revealed certain assumptions made about the environment by
an implementation that were not explicit in the model.

As with ClawZ, the process of generating the Circus specification for control
law diagrams can be largely automated, requiring a minimal amount of user
interaction: the extension of the ClaSP library and the configuration of the
translation of subsystem blocks as centralised or parallel processes. For both
no knowledge of the underlying semantic details of the Circus representation is
needed. This is very important as we would like most aspects of the verification to
be driven by engineers without in-depth knowledge of the underlying verification
strategy, let alone its formal justification. The Circus Producer, including its
source code, is openly available for download from http://www.cs.york.ac.uk/
circus/cld/tools.html.

Related Work. In [3], an algorithm and tool is presented to translate Simulink
diagrams into formal descriptions understood by the NuSVM model checker.
Models are specified as finite state machines, hence the technique only applies
to diagrams with finitary state spaces. The focus of this work is on automated
verification of properties about the diagram; in comparison, we are concerned
with proving conformity between diagrams and their implementations.

A formal semantics and tool support to reason about functional and timing
aspects of Simulink diagrams is described in [8]. This work is based on the Timed
Interval Calculus (TIC); tool support is provided for mechanical translation of
TIC specifications generated from Simulink diagrams into corresponding speci-
fications to be processed by the PVS theorem prover. This is again to validate
properties of the diagram rather than to verify implementations. We currently
do not characterise timing properties in our semantics; future work will consider
the use of the timed extension of Circus for this purpose.

A Lustre model of Simulink diagrams is the object of the work in [4], which
reports on the development of a strategy and translator utility. This can also
be regarded as a formalisation of Simulink since Lustre, like Circus, is equipped
with a formal semantics, including strong typing. The potential of this approach
to produce implementations adhering to a high standard of reliability is, for
example, in the use of certified code generators for specific target languages.

Future Work. At present, the automatic translation does not yet account for
enabling signals which govern enabled, trigger or action subsystems. In [6] we
already described how they should be handled, however work to extend ClawZ
and the Circus Producer to accommodate these rules is still pending.

Another line of future work is the translation of StateFlow blocks, which
permit the specification of subsystems using a notation based on State Charts.
In [5], we described how Circus can be used to define models of StateFlow dia-
grams that can be used as components of a model of a Simulink diagram which
includes them; automation is our next step.

The next phase of our work aims to translate the tool-generated Circus spec-
ifications into corresponding ProofPower-Z specifications using our semantic

http://www.cs.york.ac.uk/circus/cld/tools.html
http://www.cs.york.ac.uk/circus/cld/tools.html


Mechanised Translation of Control Law Diagrams into Circus 165

embedding of Circus proposed in [16]. We are then able to mechanically reason,
within ProofPower, about the Circus specification, and apply our refinement
strategy to show the validity of implementations. Automating the translation
into ProofPower-Z shall only pose a problem of minor difficulty, however the
mechanised proof of the refinement conjecture sets a substantial challenge.

Acknowledgements. We benefitted from discussions with Phil Clayton, Leo Fre-
itas and Daniel Bolton. We also acknowledge EPSRC for funding this work under
the Programming from Control Laws research grant EP/E025366/1.

References

1. Adams, M., Clayton, P.: ClawZ: Cost-Effective Formal Verification of Control Sys-
tems. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 465–479.
Springer, Heidelberg (2005)

2. Arthan, R., Caseley, P., O’Halloran, C., Smith, A.: ClawZ: Control laws in Z. In:
3rd International Conference on Formal Engineering Methods, September 2000, pp.
169–176. IEEE Computer Society Digital Library (2000)

3. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for Translating Simulink Models into
Input Language of a Model Checker. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 606–620. Springer, Heidelberg (2006)

4. Capsi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S.: Translating Discrete-
Time Simulink to Lustre. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS,
vol. 2855, pp. 84–99. Springer, Heidelberg (2003)

5. Cavalcanti, A.: Stateflow Diagrams in Circus. In: SBMF 2008, pp. 1–16 (2008)
6. Cavalcanti, A., Clayton, P., O’Halloran, C.: Control Law Diagrams in Circus. In:

Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
253–268. Springer, Heidelberg (2005)

7. Cavalcanti, A., Sampaio, A., Woodcock, J.: A Refinement Strategy for Circus.
Formal Aspects of Computing 15(2–3), 146–181 (2003)

8. Chen, C., Dong, J.S.: Applying Timed Interval Calculus to Simulink Diagrams. In:
Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 74–93. Springer, Heidelberg
(2006)

9. Freitas, L., Woodcock, J., Cavalcanti, A.: An Architecture for Circus Tools. In:
SBMF 2007: Brazilian Symposium on Formal Methods (August 2007)

10. Krogh, B.: Approximating Hybrid System Dynamics for Analysis and Control. In:
Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, p. 2.
Springer, Heidelberg (1999)

11. Krogh, B.: Recent Developments in Modeling and Analysis of Hybrid Dynamic
Systems. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, p. 106.
Springer, Heidelberg (1999)

12. Malik, P., Utting, M.: CZT: A Framework for Z Tools. In: Treharne, H., King, S.,
Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 65–84. Springer,
Heidelberg (2005)

13. Miller, T., Freitas, L., Malik, P., Utting, M.: CZT Support for Z Extensions. In:
Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp.
227–245. Springer, Heidelberg (2005)



166 F. Zeyda and A. Cavalcanti

14. Oliveira, M., Cavalcanti, A., Woodcock, J.: Refining Industrial Scale Systems in
Circus. In: Communicating Process Architectures. Concurrent Systems Engineer-
ing Series, vol. 62, pp. 281–309. IOS Press, Amsterdam (2004)

15. Oliveira, M., Cavalcanti, A., Woodcock, J.: Formal Development of Industrial-Scale
Systems in Circus. Innovations in Systems and Software Engineering 1(2), 125–146
(2005)

16. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects of Computing, Online First (2007)

17. Parr, T.: StringTemplate Engine, http://www.stringtemplate.org
18. Ranville, S., Black, P.E.: Automated Testing Requirements — Automotive Per-

spective. In: The Second International Workshop on Automated Program Analysis,
Testing and Verification (May 2001)

19. The MathWorks, Inc. Simulink R© (1994–2008)
20. Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D., Bowen, J.P.,

Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp.
184–203. Springer, Heidelberg (2002)

http://www.stringtemplate.org


Realizability of Choreographies Using Process
Algebra Encodings

Gwen Salaün1 and Tevfik Bultan2

1 University of Málaga, Spain
salaun@lcc.uma.es

2 University of California, Santa Barbara, USA
bultan@cs.ucsb.edu

Abstract. Service-oriented computing has emerged as a new program-
ming paradigm that aims at implementing software applications which
can be used through a network via the exchange of messages. Interac-
tions among a set of services involved in a new system are described from
a global point of view using choreography specification languages such as
WS-CDL or collaboration diagrams. In this paper, we present an en-
coding of collaboration diagrams into the LOTOS process algebra. This
encoding allows to (i) check choreography specification using the LOTOS
verification toolbox (CADP), (ii) check realizability of collaboration dia-
grams for both synchronous communication and bounded asynchronous
communication, and (iii) automate service peer generation. Realizability
indicates whether peers can be generated from a choreography such that
they will behave exactly as formalized in its specification. If the collabo-
ration diagram is unrealizable, our approach extends the peer generation
process by adding some communications that make the peers respect the
choreography specification.

1 Introduction

Formal methods play a key role in many open research problems that are of sig-
nificant importance to the field of service-oriented applications. This is the case
for problems related to choreography, i.e., specification of interactions among
a set of services from a global point of view. Several formalisms have already
been proposed to specify choreographies: WS-CDL, collaboration diagrams, pro-
cess calculi, BPMN, SRML, etc. Given a choreography specification, it would be
desirable if the local implementations, namely peers, can be automatically gen-
erated via projection. However, generation of peers that precisely implement
the choreography specification is not always possible: This problem is known as
realizability.

Recent works on this topic [10,15,4,2] advocate techniques to check the real-
izability of a choreography, or define well-formedness rules to be applied while
writing the choreography specification in order to ensure its realizability. To the
best of our knowledge, no solution has been proposed yet to generate peers real-
izing any choreography without adding rules or constraints on the choreography

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 167–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



168 G. Salaün and T. Bultan

language or on specifications written with it. Accordingly, our contribution is
twofold. First, our solution generates peers for any choreography specification
by extending them with additional messages if the choreography is unrealizable.
Second, our approach is supported by tools for verification of choreographies,
testing realizability, and generation of peers in a completely automated way.

In this paper, we use collaboration diagrams as the choreography specification
language. We propose an encoding of collaboration diagrams into the LOTOS
process algebra. We chose LOTOS because it provides a good level of expres-
siveness to describe all the collaboration diagram interaction constraints, and
is equipped with a rich toolbox (CADP) which offers state-of-the-art tools for
state space exploration and verification. The LOTOS encoding allows to (i) verify
choreography specification using CADP, (ii) check realizability of collaboration
diagrams for both synchronous communication and bounded asynchronous com-
munication1, and (iii) automate service peer generation, adding new messages if
the diagram is unrealizable.

The rest of this paper is organized as follows. Section 2 introduces collabo-
ration diagrams and the problem of their realizability. Section 3 presents our
encoding into LOTOS, and how this encoding is used to test realizability and
generate peers. Section 4 sketches the tools that support our approach. Section 5
compares our proposal to related work, and Section 6 ends the paper with some
concluding remarks.

2 Collaboration Diagrams

A collaboration diagram [2] (called communication diagram in UML 2) consists
of a set of peers, a set of links between peers, and a set of message send events
associated with links. An event is a tuple containing a dependency relation (fac-
ultative), a (unique) label, a message, and a recurrence type. Labels (1, 2, 3, ...,
A1, A2, A3, ..., B1, B2, B3, ...) contain prefixes (ε, A, B) that organize events into
different threads. All messages in one thread share the same prefix and execute
based on the numerical order defined by their labels. Messages from different
threads occur concurrently, and can be interleaved in any order that respects
the dependency relation. A recurrence type is either “1” (default type) meaning
that the associated event happens once, “?” for a conditional event (the event
may occur once or it may not occur at all), or “*” for an iterative event (the
event may not occur at all or it may occur multiple times).

Figure 1 presents a collaboration diagram for a train station service that we
will use as a running example throughout this paper. This diagram contains four
peers, respectively Customer, TrainStation, Availability, and Booking. It involves
three threads: 1) The main thread with prefix ε and events 1 and 2; 2) The

1 Promela (with its SPIN model-checker) is a formalism we could have used as an
alternative to LOTOS, since Promela supports both synchronous and asynchronous
communications whereas asynchronous communication can be expressed in LOTOS
by explicitly encoding queues. However, SPIN does not provide behavioural equiva-
lence checking we needed for the approach at hand.



Realizability of Choreographies Using Process Algebra Encodings 169

:Cus tomer

:Tra inStation

:Booking

:Ava i lab i l i ty

1:reques t

B2/2:resu l t

1/A1:info

A2:infoAva i l

A3/B1:book

B2:ack

B3:invoice ?

A3 : i t inerary *

Fig. 1. Train station service collaboration diagram

A thread with prefix A and events A1, A2 and A3; and 3) The B thread with
prefix B and events B1, B2 and B3. The collaboration diagram starts by the
emission of a request to the train station (event 1). Next, the station checks
ticket availability (events A1, A2, and A3), reserves tickets (events B1, B2, and
B3), and sends the result to the customer (event 2).

Let us focus on thread A. It contains three events, the first one, 1/A1:info,
means that the message info should be sent by peer TrainStation to peer Avail-
ability only after the execution of the event 1. I.e., the tuple (1, A1) is included
in the dependency relation, indicating that the event A1 is executable only after
the event with label 1 (namely 1:request) has been executed. The third event of
thread A (A3:itinerary *) must be run after A2 (due to the sequential order within
a thread), and can be executed several times (due to “*” recurrence type).

Before illustrating the realizability problem for collaboration diagrams, let us
introduce the peer model. A peer is described as a Labeled Transition System
(LTS). An LTS is a tuple (A, S, I, F, T ) where: A is an alphabet, that is a set
of messages with direction (“!” for emission, and “?” for reception), S is a set
of states, I ∈ S is the initial state, F ⊆ S are final states, and T ⊆ S × A × S
is the transition function. Peers interact using binary communication on same
message names with opposite directions. In this paper, we will consider both
synchronous and asynchronous communication models.

A couple of unrealizable collaboration diagrams are presented in Figure 2. The
first one (left hand side) is unrealizable because it is impossible for C to know
when A sends its request message (no interaction between A and C). Hence, the
peers cannot respect the execution order of messages as specified in the collab-
oration diagram. The second one is slightly more subtle because this diagram
is realizable for synchronous communication, and unrealizable for asynchronous
communication. Indeed, in case of synchronous communication, C can synchro-
nize with A (rendez-vous) only once request is sent, so the message order is
respected. This is not the case for asynchronous communication, since C sends
its message to A without knowing if A has sent request or not. Therefore, the
correct order between the two messages cannot be satisfied. We also give in
Figure 2 the LTS generated for peer A.



170 G. Salaün and T. Bultan

:A

1:reques t

:B

:C

2:upda te

:D

:A

1:reques t

:B

:C

2:upda te
peer A

reques t !
upda te?

Fig. 2. Examples of unrealizable collaboration diagrams

Although realizability is easily figured out for these simple examples, it
is much more complicated to say if the collaboration diagram presented in
Figure 1 is realizable or not. We present in Section 3 an approach to automate
the realizability test, and show that the train service collaboration diagram is
unrealizable for asynchronous communication.

3 Encoding into LOTOS

The backbone of our proposal is an encoding of collaboration diagrams into the
LOTOS process algebra [9]. We chose LOTOS because it relies on a rich notation
that allows to specify complex concurrent systems possibly involving data types.
In a second step, the LOTOS encoding allows (i) choreography verification by
using model checking tools available in CADP [8], (ii) realizability test and (iii)
generation of service peer implementations both for synchronous and bounded
asynchronous communication models. The different steps of our approach are
completely automated by different tools we present in Section 4.

3.1 Encoding Collaboration Diagrams into LOTOS

The collaboration diagram choreography is encoded using a LOTOS process.
This process is split up in as many parts (referred as thread behaviour in the
following) as there are threads in the diagram. Each thread behaviour encodes all
the messages involved in its thread in the order in which they must be executed
(achieved using the LOTOS action prefix operator). Each message is encoded
using source and target peer names as prefixes to avoid name clashes. The con-
ditional recurrence type “?” is encoded as a choice between the actual message
(condition is true), and a termination (exit) meaning that the condition is false
and the message not transmitted. The iterative recurrence type “*” is translated
into LOTOS using an intermediate looping process whose behaviour is: message;
loop process [message] [] i ; exit.

Each thread behaviour evolves independently, and they synchronize together
to respect dependency constraints (explicitly specified at the beginning of some



Realizability of Choreographies Using Process Algebra Encodings 171

events, e.g., 1/A1:info) using new messages prefixed by “SYNC ”. These messages
are inserted in the LOTOS specification in two cases: (i) before running a message
if this event depends on another message execution, (ii) after a message when
this message appears in a dependency relation in the diagram. In the second case,
the synchronization message should not block the thread execution, accordingly
it is interleaved with the rest of the thread behaviour.

Let us give a part of the LOTOS code generated for our running example.
We can distinguish the three threads, respectively for events starting by A, B,
and numbers. Thread A for instance contains three messages (info, infoAvail, and
itinerary) which are encoded in sequence and prefixed with peers participating
in these interactions (only initials for readability reasons). The last message
(a ts itinerary) involves an iterative recurrence type and is therefore translated
using a loop process. An example of “?” recurrence type is given at the end of
thread B where the choice ([]) is used to express the execution of message invoice
(b c invoice) or not (exit).

As regards synchronization between thread behaviours, we can see for in-
stance that thread A synchronizes with the two others on messages SYNC 1 and
SYNC A3. SYNC 1 is used to synchronize thread A and the main thread in order
to run message ts a info with label A1 after message c ts request with label 1
(execution of SYNC 1 acts as a pre-condition to the execution of ts a info). In
thread B, the event B1 can only occur after A3 therefore message a ts itinerary
(which is labeled by A3) is followed by a SYNC A3 message, in order to run
ts b book after A3. Note that the synchronization message SYNC A3 should not
block the thread execution. Accordingly it is interleaved with the rest of the
thread behaviour (exit in this case, since it is the end of the thread).

( (* -- thread A encoding -- *)

SYNC_1;

ts_a_info;

a_ts_infoAvail;

loop_process [a_ts_itinerary] >>

( SYNC_A3; exit ||| exit )

)

|[SYNC_1, SYNC_A3]|

( (* -- thread B encoding -- *)

(

SYNC_A3;

ts_b_book;

b_ts_ack;

(

SYNC_B2; exit

|||

(

b_c_invoice; exit

[]

exit

) >> exit

)



172 G. Salaün and T. Bultan

)

|[SYNC_B2]|

( ... (* -- main thread’s encoding -- *) )

)

From this encoding, the corresponding LTS can be generated using CADP
state space generation tools, and verified using the Evaluator model-checker [13].
We checked for instance the liveness property stating that each c ts request is
eventually answered (ts c result). We show in Figure 3, the LTS obtained for the
collaboration diagram from the LOTOS encoding. This LTS was obtained by
hiding “SYNC ” messages, and by minimizing the resulting LTS (determiniza-
tion, removal of τ transitions2, and suppression of similar paths) using reduction
techniques3 available in the CADP toolbox.

c_ts_request ts_a_info

a_ts_itinerary

a_ts_infoAvail

ts_b_book

b_ts_ack

ts_c_result

b_c_invoice

ts_c_result

b_c_invoice

Fig. 3. Train station service: collaboration diagram LTS

3.2 Peer Generation

Peers are generated by projection from the LOTOS process encoding the collab-
oration diagram. This is achieved by generating a LOTOS process for each peer
whose body is an instance of the collaboration diagram process, and hiding in
this process all the messages in which the peer does not participate in.

Figure 4 gives a graphical view of peers generated for our running example
from their LOTOS descriptions. For instance, peer Booking (Fig. 4, (b)) starts
receiving a book request (ts b book?) from the train station, sends back an ac-
knowledgement (b ts ack!), and either stops or sends an invoice to the customer
(b c invoice!). We recall that peers interact on same message names with oppo-
site directions, e.g., c ts request! in the customer with c ts request? in the train
station.
2 τ transitions stand for internal actions. These transitions are generated while compil-

ing the LOTOS code. For example the LOTOS sequential composition “>>” inserts
such a τ transition in the corresponding state space.

3 In this paper, minimizations are achieved using weak trace, safety and strong reduc-
tions.



Realizability of Choreographies Using Process Algebra Encodings 173

c_ts_request!

ts_a_info?

a_ts_itinerary!

ts_b_book? b_ts_ack!

ts_c_result?

b_c_invoice?

ts_c_result?

b_c_invoice!

a_ts_infoAvail!

c_ts_request? ts_a_info! a_ts_infoAvail?
a_ts_itinerary?

ts_b_book!

b_ts_ack?ts_c_resu lt!

(a)

(b)

(c)

(d)

b_c_invoice?

Fig. 4. Peers generated from the collaboration diagram: (a) customer, (b) booking,
(c) train station, (d) availability

Once peers are generated, it is very difficult to say if their execution will
respect the interaction constraints specified in the collaboration diagram (order
of messages within a thread, and inter-thread message dependencies). In the
next subsection, we propose automated techniques to check realizability.

3.3 Realizability

Our idea is to compute realizability by comparing the collaboration diagram
LTS with the system composed of interacting peers using behavioural equiva-
lences [14]. If these two systems are equivalent, it means that the peer genera-
tion exactly preserves the collaboration diagram constraints. If they are not, it
is because peers do not generate the same interactions than those specified in
the diagram, therefore it is unrealizable. Computing realizability is achieved in
two steps: (i) generation of the system composed of interacting peers, and (ii)
equivalence checking between the LTS resulting from step (i) and the collabora-
tion diagram LTS. In the following, we consider both synchronous and bounded
asynchronous communication models.

Synchronous communication. LOTOS relies on synchronous communication,
therefore from the LOTOS code obtained previously, we generate an LTS for
each peer process, and compose all peers in parallel making explicit messages on
which they synchronize.

Let us now give the resulting system for our running example. This system
is given in SVL [7] below. SVL is a scripting language that complements the
LOTOS encoding, and automates parts of the approach by calling the different



174 G. Salaün and T. Bultan

CADP tools we reuse. Moreover, these scripts were used to circumvent the state
explosion problem (see a discussion on this issue in Section 4). Bcg files (delimited
by double quotes and with extension bcg below) are internal state/transition
representations computed (by CADP) from the LOTOS peer processes. Message
directions “!” and “?” as added in Figure 4 for pretty-printing reasons, have a
different semantics in LOTOS, they are used for value passing. Since, we do
not need this feature here, we have encoded messages without any direction for
the synchronous case as they appear in the synchronization sets (noted between
|[..]|) below. If two peers do not have to synchronize, they are composed using
the interleaving operator (|||).

"distributed_system.bcg" =

"peer_Customer_lts.bcg"

|[c_ts_request, ts_c_result, b_c_invoice]|

(

"peer_TrainStation_lts.bcg"

|[ts_a_info, a_ts_infoAvail, a_ts_itinerary, ts_b_book, b_ts_ack]|

(

"peer_Availability_lts.bcg" ||| "peer_Booking_lts.bcg"

)

)

Once this system is generated and reduced, we compare it to the collaboration
diagram LTS generated as explained in Section 3.1 using a strong equivalence
relation [14]. This check either says that both systems are equivalent and the
collaboration diagram is then realizable, or returns false which means that the
diagram is unrealizable. As far as our running example is concerned, the equiv-
alence test returns true for synchronous communication.

Asynchronous communication. This case is slightly more difficult because
asynchronous communication is not supported by LOTOS. To simulate how
the system evolves with an asynchronous communication model, we generate
some LOTOS code to implement bounded FIFO queues. Each peer is associated
with a queue (a LOTOS process) from which it can consume messages received
beforehand. This also means that a peer which wants to send a message to
another one, will actually interact (synchronously) with the other one’s queue. A
queue process needs a queue datatype (BQueue below) to store received messages.
This datatype is implemented using algebraic specification facilities provided
by LOTOS. A queue process can either interact with other peers on messages
that can be received by its own peer (t s book for the Booking queue below),
or synchronizes with its own peer if this one wants to evolve by consuming a
message available in its own queue (t s book REC for the Booking peer). Note
that a local communication between a peer and its queue is suffixed with “ REC”,
whereas a communication between a peer (sender) and a queue is not suffixed.
The datatype encoding queues defines several operations: bisfull tests if the queue
is full, binsert appends a message to the end of the queue, bishead tests if a
message appears at the head of the queue, and bremove suppresses the message
at the head of the queue.



Realizability of Choreographies Using Process Algebra Encodings 175

process queue_Booking [ts_b_book, ts_b_book_REC] (q:BQueue) : exit :=

[not(bisfull(q))] ->

ts_b_book;

queue_Booking [ts_b_book, ts_b_book_REC] (binsert(ts_b_book,q))

[]

[bishead(ts_b_book,q)] ->

ts_b_book_REC;

queue_Booking [ts_b_book, ts_b_book_REC] (bremove(q))

[]

exit

endproc

Next, a process for each couple (peer, queue) is generated in LOTOS. A peer
and a queue interact together on all messages (suffixed with “ REC”) that can
be received by the peer. From an external point of view, these messages are
not of interest, and that is why they are hidden. We show below the LOTOS
peer queue Customer process body for illustration purposes. Notice that the pro-
cess queue Customer below is instantiated with a size set to 1 and no messages in
the queue (nil). The queue size is an input parameter of the LOTOS encoding.

hide ts_c_result_REC, b_c_invoice_REC in

(

peer_Customer [...]

|[ts_c_result_REC, b_c_invoice_REC]|

queue_Customer [...] (queue (1, nil))

)

Finally, the distributed system (in SVL below) is obtained by compiling all
LOTOS processes encoding couples (peer, queue) into bcg files, and making all
these couples synchronize correctly on messages exchanged among peers (that is
all messages sent from peers to corresponding queues).

"distributed_system_async.bcg"=

"peer_queue_Customer.bcg"

|[c_ts_request, ts_c_result, b_c_invoice]|

(

"peer_queue_TrainStation.bcg"

|[ts_a_info, a_ts_infoAvail, a_ts_itinerary, ts_b_book, b_ts_ack]|

(

"peer_queue_Availability.bcg" ||| "peer_queue_Booking.bcg"

)

)

Once the distributed system is computed, realizability is checked similarly to
the synchronous case, by comparing if the collaboration diagram LTS obtained
as presented in Section 3.1 is strongly equivalent to the distributed system.

As far as our running example is concerned, the equivalence test says false, and
indicates that the trace c ts request, ts a info, a ts infoAvail, ts b book appears
in both systems, but a ts itinerary is then present in the distributed system (it



176 G. Salaün and T. Bultan

should not be), and not in the collaboration diagram LTS. The problem here is
that the train station peer has no way to know whether the availability peer will
send or not a ts itinerary because the recurrence type is “*” which means zero or
several times. So, what happens is that the train station peer sends ts b book to
the booking peer (assuming the availability peer will never send a ts itinerary),
and after this emission, the availability peer finally sends a ts itinerary, thus the
dependency relation A3/B1:book is not respected. We show in the next subsec-
tion how such unrealizable collaboration diagrams can be implemented.

3.4 Peer Generation, Extended

To make peers respect interaction constraints of unrealizable collaboration dia-
grams, we have to insert additional communications among peers. To do so, peers
have to (i) respect the application order of messages in each thread, and (ii) re-
spect dependency relations which specify constraints on the firing of a specific
message. The first constraint is achieved by adding in the collaboration diagram
encoding some explicit messages prefixed with “SEQ ” between each thread mes-
sage. As regards the second one, we will use the “SYNC ” messages that have
been used in the initial encoding to respect message dependency relations.

Let us illustrate with thread A of our running example, where in addition to
messages SYNC 1 and SYNC A3, two new messages SEQ A1 and SEQ A2 appear
respectively after messages ts a info and a ts infoAvail. It is not useful to insert
such a message after the last message since it is the end of the thread.

( (* -- thread A encoding -- *)

SYNC_1;

ts_a_info;

SEQ_A1;

a_ts_infoAvail;

SEQ_A2;

loop_process [a_ts_itinerary] >>

( SYNC_A3; exit ||| exit )

) ...

From this extended collaboration diagram encoding, peers are generated by
keeping visible the messages in which the peer does participate in, and also some
of the additional communications introduced above. Additional communications
to be kept are figured out following two rules: (i) A peer contains in its be-
haviour all “SEQ ” messages of a specific thread if the peer participates in at
least one interaction of this thread; (ii) a peer contains in its behaviour each
“SYNC ” message for which the corresponding message (e.g., for SYNC 1, the
message labeled 1 that is c ts request) is either one of its own messages, or is
used in a dependency relation of the collaboration diagram. For both rules, peers
synchronize on all additional communications that they share in their alphabets.

Let us illustrate that showing peer Booking (Fig. 5) generated with this ap-
proach. First, since peer Booking only participates in thread B, its behaviour
contains messages SEQ B1 and SEQ B2 which means that all peers involved in



Realizability of Choreographies Using Process Algebra Encodings 177

SYNC_A3 ts_b_book? SEQ_B1

b_ts_ack!

SEQ_B2

b_c_invoice!

SYNC_B2

SYNC_B2

b_c_invoice!

Fig. 5. Peer Booking with additional messages

thread B (namely peers Customer, Booking, and TrainStation) will synchronize
using these messages so as to respect the execution order of messages in this
thread. Second, two messages for dependency relations, SYNC A3 and SYNC B2,
are used too. SYNC A3 is necessary because message ts b book must be run only
after the message identified by A3 (a ts itinerary) in the collaboration diagram.
Moreover, SYNC B2 appears in peer Booking because the message identified by
B2 in the collaboration diagram (b ts ack) is used as dependency of another mes-
sage (ts c result sent by the train station to the customer), thus once b ts ack is
sent, peer Booking will interact with peers Customer and TrainStation to inform
them the result can be emitted.

Once the new peers are generated, the distributed system is built by extending
the description given in Section 3.3 with additional communications and also
synchronizing peers on them. We recall that all peers do not synchronize on
all additional communications but only on those belonging to their alphabet
and shared with the other peers. Finally, equivalence between the collaboration
diagram LTS and the distributed system in which all additional communications
have been hidden, confirms that the extended peers conform to the collaboration
diagram.

4 Tool Support and Experiments

The different steps of our approach are completely automated by several tools
(Fig. 6). We have implemented a prototype tool named cd2lotos which, given a
collaboration diagram, generates the LOTOS code necessary to compute all the
results we have presented before in this paper. The cd2lotos prototype also gen-
erates some SVL scripts that complement the LOTOS encoding and automate
the rest of the process by calling the different CADP tools we reuse. Thus, LTS
generation is achieved using Caesar.adt and Caesar LOTOS compilers, as well
as reduction techniques available in Reductor. Model-checking can be performed
using Evaluator. Note that model-checking is the only step which is not fully au-
tomated. Indeed, if a designer wants to go beyond basic checks (such as deadlock-
freeness), (s)he has to write some formulas encoding properties to be satisfied



178 G. Salaün and T. Bultan

Collaborat ion LOTOS/SVL LOTOS spec.

SVL scripts
+

Peer LTSs

diagram

not ok          modify

Tempora l
propert ies

t rue

g e n e r a t i o n

P r o t o c o l
g e n e r a t i o n

E q u i v a l e n c e
c h e c k i n g

M o d e l
c h e c k i n g

false

change option

Collabo. diagram
LTS

add communicat ions

Fig. 6. Tool overview

by the choreography specification. Last, Bisimulator is used to check that the
collaboration diagram LTS is equivalent to the distributed peer implementation.

Our approach, and especially the tool we implemented (cd2lotos), was applied
and validated on about 85 collaboration diagrams (which resulted in the gener-
ation of about 49,000 lines of LOTOS and 23,000 lines of SVL). We also tested
realizability on all these case studies, and all the unrealizable ones were checked
equivalent once additional communications were inserted in the peer protocols.

Table 1 shows experimental results4 on some of the examples belonging to
our database. For each experiment, the table gives the size of the diagram in
terms of number of peers, messages, and threads. Next, the table contains the
number of lines of LOTOS and SVL generated by our prototype as well as the
size (number of states and transitions) of the LTS generated from the diagram.
Last, we give realizability results for both synchronous and asynchronous com-
munication, and the time needed to compute both realizability checks. Example
cd-045 corresponds to the case study presented in this paper.

First of all, it takes 1.9s to our prototype to generate SVL and LOTOS files for
all the examples of our database for both communication models (synchronous
and asynchronous) and both strategies (with and without additional communi-
cations). For medium size examples (cd-008, cd-025, cd-045), the generation of
all intermediate LTSs and the realizability checks are quite fast (less than 20
seconds). For bigger diagrams (cd-059, cd-072), the computation time increases
up to several minutes. It is interesting to note that examples involving more
threads (cd-064) induce time consuming computations since they generate big-
ger intermediate state spaces due to the higher number of interleavings coming
with the number of threads.

4 Experiments have been carried out on a Vaio VGN-FZ11Z (Intel Core 2 Duo Pro-
cessor T7300 2GHz, 2GB of RAM).



Realizability of Choreographies Using Process Algebra Encodings 179

Table 1. Realizability results for some case studies (no additional communications)

Collab. Size LOTOS SVL CD LTS Realizability
diagrams peers messages threads (lines) (lines) (st./tr.) sync. async. time
cd-008 5 9 4 388 148 27/46

√ √
19.56s

cd-025 4 6 3 304 130 12/15
√ √

16.20s
cd-045 5 8 3 341 130 10/13

√ × 18.69s
cd-059 10 20 3 666 238 56/175 × × 1m12.31s
cd-064 7 13 6 495 184 96/396 × × 1m46.14s
cd-072 16 30 4 959 346 220/748 × × 6m31.39s

Table 2. Realizability results for some case studies (additional communications)

Collab. Size LOTOS SVL CD LTS Realizability
diagrams peers messages threads (lines) (lines) (st./tr.) sync. async. time
cd-045 5 8 3 343 134 10/13

√ √
17.09s

cd-059 10 20 3 674 242 56/175
√ √

44.45s
cd-064 7 13 6 501 188 96/396

√ √
1m25.25s

cd-072 16 30 4 974 350 220/748
√ √

6m51.51s

Table 2 shows results obtained for the unrealizable examples presented in
Table 1 once some additional communications are inserted. Obviously, all these
examples are realized by adding these communications. Notice that realizability
tests may take less time compared to Table 1 (cd-059, cd-064) because adding
communications increases the sequentiality of the system, and therefore reduces
communication interleaving.

During the experiments, we had to face the state explosion problem. In a first
attempt, we were computing distributed systems in a single step, but, even for
simple examples, the state space compilation lasted several minutes. Experiments
showed that for collaboration diagrams of medium size (4/5 peers and 10/15
messages), the compilation of couples (peer, queue) was returning LTS containing
hundreds even thousands of states (resp. transitions). Consequently, we decided
to build first each couple (peer, queue), minimize them, and compose them to
finally obtain the expected system. This technique (known as compositional
verification in CADP) allows to generate any step of the (distributed) system
computation in less than one second.

5 Related Work

Several works aimed at studying and defining the realizability problem for chore-
ography [10,3,11,6,2]. In [3,11], the authors define models for choreography and
orchestration, and formalize a conformance relation between both models. These
models are assumed given as input whereas we focus on the generation of one
from the other (generation of peers from a global specification) while ensuring



180 G. Salaün and T. Bultan

conformance. On a wider scale, all these approaches focus on theoretical aspects
and most of them lack of tool support. WSAT [5] is the only tool we know which
takes conversation protocols as input, and checks a set of realizability condi-
tions on them. Our proposal is fully automated by tools. Moreover, these works
only test realizability, but do not try to modify or extend peers to make them
implementable as we do.

Other works [4,15] propose well-formedness rules to enforce the specification
to be realizable. For example, in [4], the authors rely on a π-calculus-like language
and session types to formally describe choreographies. Then, they identify three
principles for global description under which they define a sound and complete
end-point projection, that is the generation of distributed processes from the
choreography description. We consider this solution too restricted since it may
prevent the designer from specifying what (s)he wants to. In addition, it makes
the choreography design more complicated since the designer cannot only focus
on composition issues, but has to consider at the same time these well-formedness
rules.

Last, to the best of our knowledge, the only work which proposes to add
messages in order to implement unrealizable choreographies is [15]. To do so,
the authors modify their choreography language to take new constructs (named
dominated choice and loop) into account. During the projection of these new
operators, some communications are added in order to make peers respect the
choreography specification. This solution complicates the design because these
new constructs are more restricting than the original ones, and they oblige the
designer to explicit extra-constraints in the choreography specification by asso-
ciating dominant roles to certain peers.

With respect to all these works, ours allows to implement any choreography
specification (here written with collaboration diagrams) without adding any rule
or constraint on the choreography language or specifications written with it.
Furthermore, the LOTOS encoding makes possible the complete automation of
realizability test, choreography verification, and peer generation (possibly with
additional messages). Last but not least, we consider in this paper both syn-
chronous and asynchronous communication models.

6 Concluding Remarks

In this paper, we have presented an encoding of collaboration diagrams into
LOTOS in order to detect realizability issues, and if necessary solve them while
generating peers by adding some communications. Our proposal deals with syn-
chronous communication but also bounded asynchronous communication, and
allows a completely automated and smooth process thanks to a prototype tool
we implemented to generate LOTOS code, and the use of the CADP toolbox to
analyze results generated from this code.

We have not discussed implementation issues here because it was out of scope.
However, from peers generated using our approach either new services can be
implemented, or some wrappers can be generated if an implementation of a



Realizability of Choreographies Using Process Algebra Encodings 181

service already exists [16]. In the latter case, the wrapper aims at constraining
the functionality of the existing service to make it respect the application order
of operations as specified in the generated peer behaviour. Implementation of
executable services (Java, BPEL) from abstract descriptions can be achieved
using Pi4SOA technologies [1], or following guidelines presented in [12].

As regards future works, a first perspective aims at extending our approach
by considering as input to our problem a set of collaboration diagrams. Indeed,
choice is a missing construct in the collaboration diagram notation, and using
a set of diagrams allows to fill this gap. Second, realizability results for asyn-
chronous communication were computed with various queue sizes. During these
experiments, we noticed that results for queues of size one can be generalised
to any size (i.e., if a collaboration diagram is realizable for peers with queues
of size one, it will be realizable too for queues of size k). Intuitively, this is be-
cause the equivalence check involves only sent messages, and received messages
can be run at any time without any control. However, although this conjecture
was experimentally validated, we would like to go forward and formally prove
that realizability results for queues of size one hold for queues of size k and un-
bounded queues. Last, additional communications inserted in peer protocols to
make them respect the collaboration diagram choreography can be minimized.
In this paper, we systematically added a new message for each sequence of two
actions in every thread, as well as for each dependency relation. However, all
these messages are not always useful, and removing some of them for certain
collaboration diagrams does not invalid their realizability. We would like to pro-
pose automatic techniques which figure out the minimal number of necessary
additional messages to implement a given collaboration diagram.

Acknowledgements. The authors thank Javier Cámara and José Antonio
Mart́ın for fruitful discussions and interesting comments on a former version
of this paper. This work has been partially supported by project TIN2008-05932
funded by the Spanish Ministry of Innovation and Science, project P06-TIC2250
funded by the Andalusian local Government, and US National Science Founda-
tion Grants CCF-0614002 and CCF-0716095.

References

1. Pi4SOA Project, http://www.pi4soa.org
2. Bultan, T., Fu, X.: Specification of Realizable Service Conversations using Col-

laboration Diagrams. Service Oriented Computing and Applications 2(1), 27–39
(2008)

3. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration Conformance for System Design. In: Ciancarini, P., Wiklicky, H.
(eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg
(2006)

4. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Pro-
gramming for Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 2–17. Springer, Heidelberg (2007)

http://www.pi4soa.org


182 G. Salaün and T. Bultan

5. Fu, X., Bultan, T., Su, J.: WSAT: A Tool for Formal Analysis of Web Services. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 510–514. Springer,
Heidelberg (2004)

6. Fu, X., Bultan, T., Su, J.: Synchronizability of Conversations among Web Services.
IEEE Transactions on Software Engineering 31(12), 1042–1055 (2005)

7. Garavel, H., Lang, F.: SVL: A Scripting Language for Compositional Verification.
In: Proc. of FORTE 2001, pp. 377–394. Kluwer, Dordrecht (2001)

8. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

9. ISO. LOTOS — A Formal Description Technique Based on the Temporal Order-
ing of Observational Behaviour. Technical Report 8807, International Standards
Organisation (1989)

10. Kazhamiakin, R., Pistore, M.: Analysis of Realizability Conditions for Web Service
Choreographies. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 61–76. Springer, Heidelberg (2006)

11. Li, J., Zhu, H., Pu, G.: Conformance Validation between Choreography and Or-
chestration. In: Proc. of TASE 2007, pp. 473–482. IEEE Computer Society Press,
Los Alamitos (2007)

12. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols using Process
Algebra and On-the-Fly Reduction Techniques. In: Bouguettaya, A., Krüger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg
(2008)

13. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming 46(3), 255–281
(2003)

14. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice-Hall, Englewood Cliffs (1989)

15. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the Theoretical Foundation of Chore-
ography. In: Proc. of WWW 2007, pp. 973–982. ACM Press, New York (2007)

16. Salaün, G.: Generation of Service Wrapper Protocols from Choreography Specifi-
cations. In: Proc. of SEFM 2008, pp. 313–322. IEEE Computer Society Press, Los
Alamitos (2008)



Modelling Divergence in Relational Concurrent
Refinement

Eerke Boiten1 and John Derrick2

1 Computing Laboratory, University of Kent, Canterbury, Kent, UK
E.A.Boiten@kent.ac.uk

2 Department of Computer Science, University of Sheffield, Sheffield, UK
J.Derrick@dcs.shef.ac.uk

Abstract. An integration of state-based and behavioural formalisms
can be obtained by imposing a concurrency semantics on a relational
formalism. The data refinement theory for relational languages then pro-
vides a method for verifying the concurrent refinement relation. In this
paper we investigate how divergence can be modelled relationally, and in
particular show how differing process algebraic interpretations of diver-
gence can be embedded in a relational framework. In doing so we derive
relational simulation conditions for process algebraic refinement incor-
porating divergence.

Keywords: Data refinement, simulations, internal operations, process
algebraic refinement preorders, divergence.

1 Introduction

The modelling and understanding of divergence is important in computer sci-
ence. It plays an especially important role in refinement, where how divergence
is modelled, and how it is treated in a development step lead to differences and
subtleties. These distinctions are more prominent in a process algebra or be-
havioural setting where many refinement preorders have been defined, reflecting
different choices of what is taken to be observable and, within these, different
choices of divergence modelling.

For example, in a process algebra such as CSP [23,30] a system is defined in
terms of actions (or events) which represent the interactions between a system
and its environment. The differing semantics of CSP are denotational, associating
one or more sets with each process, for example traces, refusals, divergences.
Refinement is then defined in terms of set inclusions and equalities between the
corresponding sets for different processes. Even without considering different
models of divergence, many possible choices of semantics can be made, and
a survey of many of these is given in [20,19]. Divergence in process algebraic
models often arises from systems being able to engage in an infinite sequence of
hidden (i.e., unobservable) actions. However, semantic models give a variety of
interpretations to this situation and its consequences.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 183–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



184 E. Boiten and J. Derrick

In a state-based system, e.g., one specified in Z, specifications are considered
to define abstract data types (ADTs), consisting of an initialisation, a collection
of operations and a finalisation. A program over an ADT is a sequential com-
position of these elements. Refinement is defined to be the subset relation over
program behaviours for all possible programs, where what is deemed visible is
the input/output relation. The accepted approach to make verification of refine-
ments tractable is through downward and upward simulations which are sound
and jointly complete [12]. Divergence in state-based models is almost univer-
sally taken to be due to partial definition, although the role of divergence due
to internal events has also been considered [17].

In integrated notations, for both practical and theoretical reasons, it is impor-
tant to keep track of how divergence arises, whether from the process algebraic
or state-based angle, and how this impacts on refinement. Our ongoing research
on “relational concurrent refinement” [14,4,16] contributes to this agenda, by ex-
plicitly recording in a relational setting the observations characterising process
algebraic models. This allows the interpretation of relational formalisms like Z in
a concurrency model, and also the verification of concurrent refinement through
the standard relational method of simulations. In this work so far, we have only
considered divergence in the context of the CSP-based failures-divergence seman-
tics, with the specific “catastrophic” notion of divergence, see [4]. The current
paper extends this by considering other published refinement relations for po-
tentially diverging processes, in particular also ones which interpret divergence
in a non-catastrophic way. In doing so, we uncover some of the properties and
limitations of the relational concurrent refinement paradigm in general.

The structure of this paper is as follows. In Section 2 we discuss process
algebraic refinement relations including how divergence can be modelled. In Sec-
tion 3 we provide the basic definitions and background of the state-based, or
relational, view of refinement, including our “relational concurrent refinement”
approach, how CSP failures-divergences semantics is modelled in this, and some
reflections on previous work. In Section 4 we model further refinement relations
in our framework, providing simulation rules for a number of process algebraic
preorders. The final section presents some conclusions, and areas for future work.

2 Process Algebraic Based Refinement

Process algebras [23,26,2] provide a means to describe and verify concurrent
systems and processes. The semantics of a process algebra is either denotational
(as in CSP) or else is given by means of a structural operational semantics which
associates a labelled transition system (LTS) to each term; thus, its root is the
state corresponding to the process term. Equivalences, and preorders, can be
defined over the semantics where two terms are identified whenever no observer
can notice any difference between their external behaviours. Such definitions are
given in terms of a function O that represents the set of observations one could
make while interacting with a process – i.e., generating a denotational semantics.
For every such O we can define p �O q iff O(q) ⊆ O(p). For any preorder �X

we define: p ≡X q iff p �X q and q �X p. Thus, p ≡O q iff O(q) = O(p).



Modelling Divergence in Relational Concurrent Refinement 185

Varying how the environment interacts with a process leads to differing ob-
servations and thus different preorders (i.e., refinement relations). For systems
without divergence an extensive overview of the choices is given in [18,20]; the
successor paper [19] surveys refinement preorders in the presence of silent steps
and the resultant possibility of divergence.

2.1 Notation

We assume here that the reader has a working knowledge of process algebraic
refinement, we also assume the usual notation for labelled transition systems
(LTSs) which are given in terms of a transition relation T ⊆ States×Act×States
over the states and the set of actions Act .

We use the usual notation for writing transitions as p a−→ q for (p, a, q) ∈ T
and the extension of this to traces (written p tr−→ q), and to the presence of
internal events (thus writing p tr=⇒ q). A sequence of events σ ∈ Act∗ is a trace
of a process p if ∃ q • p σ=⇒ q. Tr(p) denotes the set of traces of p. For a trace
p and set of actions A, p � A denotes p with all actions outside A removed.

The set of initial actions of a process is defined as: next(p) = {a ∈ Act | ∃ q •
p a=⇒ q}. p after σ is the set of all states reachable from p by performing the
trace σ, i.e., {q | p σ=⇒ q}. Ref (p, σ) is the refusal set of p after the trace σ, i.e.,
{X ⊆ Act | ∃ q • p σ=⇒ q and X ∩ next(q) = ∅}.

Throughout this paper we use i to denote the internal, or unobservable, event.
The set of processes q allowing infinite internal evolution, denoted q i∞−→, is the
largest set of processes which allow an internal transition to another state in
that set.

2.2 Refinement Relations Ignoring Divergence

A number of different effects can give rise to divergence in a system, and these
can be modelled in a specification of a system. In the context of a process alge-
bra, divergence is usually associated with the occurrence of livelock, whereby an
unbounded amount of internal computation takes place.

A number of process algebraic refinement relations ignore divergence. Thus
they provide the most non-catastrophic interpretation of divergence. These in-
clude observational equivalence from CCS [26] (which is the standard notions of
equivalence between processes in CCS), trace refinement, reduction and testing
equivalence.

Although these were not considered in [20], reduction and testing equivalence
have been motivated [7,8] in the context of testing from LOTOS specifications
[5,7]. Reduction (also called the testing preorder [11]) in the absence of diver-
gence is identical to the failures preorder. The equivalence ≡red induced by that
preorder is also called testing equivalence. Leduc [25] documents the relationship
between these and other relations in some detail. They can be defined as follows.



186 E. Boiten and J. Derrick

Definition 1 (Trace refinement, reduction)
Let p, q be LTSs. Then

p �tr q iff Tr(q) ⊆ Tr(p)
p �red q iff

(a) Tr(q) ⊆ Tr(p)
(b) ∀σ : Tr(q) • Ref (q, σ) ⊆ Ref (p, σ) �

Thus p �red q means that q has a subset of the traces of p, but deadlocks
less often even in an environment whose traces are limited to those of q. Test-
ing equivalence is obviously stronger than trace equivalence but weaker than
weak bisimulation. Because divergences are ignored, both reduction and test-
ing equivalence take the same non-catastrophic interpretation of divergence as
observational equivalence.

2.3 Relations with Differing Interpretations of Divergence

We now turn to refinement relations that take divergence into account. Our first
port of call in this discussion is the idea of divergent traces, with two basic
notions as follows. First the catastrophic interpretation – that taken often in
CSP. We define a predicate p ↑ σ to mean that there is a prefix of σ such that
p may diverge after this prefix, and Div1(p) as the set of traces of p that have
a divergent subtrace. Note that the notions of traces (Tr) and divergent traces
(Div1) are different from those in the denotational traces-divergences models for
CSP: there divergences are upward closed, i.e. they consist of all strings in Act∗

with a prefix in Div1, and all of these are also included in the set of traces. This
distinction explains some subtleties later on.

Definition 2 (Div1 and Conv1)

p ↑ σ iff ∃ q, σ′ ≤ σ • p σ′
=⇒ q i∞−→

p ↓ σ iff ¬(p ↑ σ) i.e., iff ∀σ′ ≤ σ • ∀ q ∈ p after σ′ • ¬(q i∞−→)
σ ∈ Div1(p) iff σ ∈ Tr(p) ∧ p ↑ σ
σ ∈ Conv1(p) iff σ ∈ Tr(p) ∧ p ↓ σ �

The sets Div1 and Conv1 have been used in the definition of a number of refine-
ment relations, specifically in the definition of may and must testing [27,22,10].
Informally, p is may-refined by q if q may only do things that p may do; similarly
for must-refinement, which by contraposition (“must allow” = “can’t refuse”)
equals reverse failures refinement; t -refinement is their intersection.

Definition 3 (May, must and t-refinement)
Let p, q be LTSs. Then

p �may q iff p �tr q iff Tr(q) ⊆ Tr(p)
p �must q iff

(a) ∀σ ∈ Tr(p) \ Tr(q) • q ↑ σ
(b) ∀σ ∈ Tr(p) ∩ Conv1(q) • σ ∈ Conv1(p) ∧ Ref (p, σ) ⊆ Ref (q, σ)

p �t q iff p �may q ∧ p �must q �



Modelling Divergence in Relational Concurrent Refinement 187

One can illustrate the difference in approach in these relations via a number of
simple examples (taken from [25]), where ≡t is the equivalence induced by �t :

1. Given the behaviours defined by the diagrams in Figure 1 then we have
P ≡red Q , but ¬(P �must Q) and ¬(P �t Q).

2. Given the behaviours defined by the diagrams in Figure 1 then we have
R ≡red S , but ¬(R �must S ) and ¬(R �t S ).

3. Given the behaviours defined by the diagrams in Figure 2 then we have
¬(U ≡red V ), but U ≡must V and ¬(U ≡t V ). The latter is caused by
¬(U ≡may V ).

4. Given the behaviours defined by the diagrams in Figure 2 then we have
¬(X �red Y ), but X ≡must Y and X ≡t Y .

S

a a a a

i

iP Q

R

Fig. 1. Examples 1 and 2

As can be seen, and to summarise:

1. Some relations, e.g., testing equivalence, trace refinement, reduction, ignore
divergence.

2. Others, such as ≡t , require that the sets of convergent and divergent traces
are equal and refusal sets are only required to be equal for convergent traces.

3. Others still, such as ≡must (i.e., failures-divergences equivalence), are less
discriminating than ≡t . Here equivalent processes must have equal sets of
convergent traces and refusal sets have to be equal for after convergent traces.
However, they are just required to start diverging after the same traces - and
after a divergent point they can have completely different behaviour.

In [25] Leduc argues that it makes more sense to use a more restrictive notion
of divergence than that provided by the catastrophic interpretation. Specifically,
he views a trace to be divergent if after that trace it is possible to engage in
an infinite sequence of internal events. Such a non-catastrophic interpretation is
also used in [1] (called a LTS with divergence whereby a predicate ↑ is defined
on states in the LTS). This results in the following.

Definition 4 (Div2 and Conv2)

σ ∈ Div2(p) iff σ ∈ Tr(p) ∧ ∃ q ∈ p after σ • q i∞−→
σ ∈ Conv2(p) iff σ ∈ Tr(p) ∧ ∀ q ∈ p after σ • ¬(q i∞−→) �



188 E. Boiten and J. Derrick

Fig. 2. Examples 3 and 4

Leduc argues that Div2 and Conv2 are more realistic in LTS models (as opposed
to tree based models), and that in an LTS, divergence should be associated
with the reachability of a divergent state, rather than the possibility of passing
through a divergent state. Using these, further preorders and equivalences can
be defined. For example, we can make the following definitions.

Definition 5 (lte refinement). Let p, q be LTSs with alphabet Act. Then
p �lte q iff

(a) Tr(q) ⊆ Tr(p)
(b) Div2(q) ⊆ Div2(p)
(c) ∀σ ∈ Tr(q) • Ref (q, σ) ⊆ Ref (p, σ) �

The intuition behind this is that ≡lte requires equality of refusal sets even after
points of divergence.

Similar ideas have been explored in a CSP context by Roscoe [31] following on
from work on process algebra congruence relations by Puhakka and Valmari [28].

3 Relational Refinement

Having presented the process algebraic theory, we now turn to the refinement
theory for abstract data types in a relational setting, see also [13]. The relational
model of data refinement as described by He, Hoare and Sanders [21] initially
required all operations to be total relations, but this unnecessary restriction was
omitted in later presentations of the theory by these authors. The refinement
theory of Z [32,13] is based on the original theory, embedding partial operations
into the total ones. The standard way of doing so for Z, where domains get
interpreted as preconditions, is called the non-blocking model. In previous work
on relational concurrency semantics we have used an alternative embedding of
partial relations into total relations, called the blocking model, which views the
domain as a guard. We discuss the partial relations model in detail below, then



Modelling Divergence in Relational Concurrent Refinement 189

briefly discuss the blocking model, and then describe how these both have been
used in embedding concurrency semantics. We also discuss the issues that arise
with the relational modelling of data types with internal operations.

3.1 A Partial Relational Model

A program (defined here as a finite sequence of operations) is given as a relation
over a global state G, implemented using a local state State. A data type is a
tuple (State, G, Init, {Opk}k∈Act, Fin), where the operations {Opk}, indexed by
k ∈ Act , are relations on the set State; Init is a total relation from G to State;
Fin is a total relation from State to G.

A complete program over a data type D = (State, G, Init, {Opk}k∈Act, Fin) is an
expression of the form Init o

9 P o
9 Fin, where P, a relation over State, is a sequential

composition of operations from {Opk}k∈Act . For every sequence p over Act , and
data type D, pD denotes the complete program over D characterised by p.

Definition 6 (Data refinement for partial relations)
For partial data types A and C, C refines A, denoted A �data C, iff for each finite
sequence p over Act, pC ⊆ pA. �

Downward and upward simulations form a sound and jointly complete [21,12]
proof method for verifying refinements. In a simulation a step-by-step compari-
son is made of each operation in the data types, and to do so the concrete and
abstract states are related by a retrieve relation.

Definition 7 (Downward simulation)
Assume data types A = (AState, G, AInit, {AOpk}k∈Act , AFin) and C = (CState, G,
CInit, {COpk}k∈Act , CFin). A downward simulation is a relation R from AState
to CState satisfying

CInit ⊆ AInit o
9 R

R o
9 CFin ⊆ AFin

∀ k : Act • R o
9 COpk ⊆ AOpk

o
9 R �

Any relational data types A and C in this section are assumed to be defined as in
the above definition; in later sections, i-data types A and C will have, in addition
to this, an internal operation called iA or iC as an extra component.

Definition 8 (Upward simulation)
For data types A and C, an upward simulation is a relation T from CState to
AState such that

CInit o
9 T ⊆ AInit

CFin ⊆ T o
9 AFin

∀ k : Act • COpk
o
9 T ⊆ T o

9 AOpk �

If we interpret the “attempted” application of an operation outside its domain
as a deadlock, this model observes deadlock by not returning a result for a



190 E. Boiten and J. Derrick

particular program. However, if the same program allows another sequence of
states where it does not deadlock, the original deadlock is unobservable (through
relational union), and thus only certain deadlock is observed. The information
contained in the observations of these data types is mostly determined by the
choice of the global state G. In the simplest possible case, G is a singleton set
{∗} and all that can be observed is a relation on G indicating whether a program
must deadlock (the empty relation) or not (the maximal relation {(∗, ∗)}).

3.2 The Blocking Model of Totalised Relations

Soundness and joint completeness of upward and downward simulations hold
both when the operations are required to be total, and when they are not. In the
latter case, also a different refinement theory can be obtained by first embedding
the partial relations into total relations, and then applying the simulation rules.
Two variants of this exist: the non-blocking model (traditionally used for Z, but
of no further relevance to this paper) and the blocking model discussed here.

In the blocking model, a relational formalism like Z is given a semantics which
corresponds more closely to a reactive than to a sequential model of computation.
In particular, it views the domain of an operation as a guard which may not be
weakened. This effect is encoded by totalising the relations in a particular way,
turning a partial relation on a set S into a total relation on a set S⊥, which
is S extended with a distinguished value ⊥ not already in S or G. The value
⊥ denotes the effect of applying an operation outside its domain; by explicitly
representing this, this semantics observes possible as well as certain deadlock. For
the simplest basic global state G = {∗}, possible program outcomes are subsets
of G⊥ = {∗,⊥}: {⊥} represents certain deadlock, {⊥, ∗} possible deadlock, and
{∗} absence of deadlock.

Characterisations of downward and upward simulations on these totalised re-
lations can be simplified to remove any reference to ⊥, see [14] for full details of
the embedding, the derivation of the rules and the definition of upward simula-
tion.

Definition 9 (Blocking downward simulation)
Given data types A and C where the operations may be partial. A blocking down-
ward simulation is a relation R from AState to CState satisfying1

CInit ⊆ AInit o
9 R

R o
9 CFin ⊆ AFin

∀ k : Act • ran(dom AOpk � R) ⊆ dom COpk

∀ k : Act • R o
9 COpk ⊆ AOpk

o
9 R �

We have recently shown, however, that the upward and downward simulations
given above are not jointly complete for blocking refinement [3], which means
that completeness of any simulation rules derived from this needs to be proved
separately. This contributes to making the blocking model less interesting as a
computational model.
1 P � R is the relation R constrained to the domain P , i.e., {(x , y) : R | x ∈ P}.



Modelling Divergence in Relational Concurrent Refinement 191

3.3 Relational Concurrent Refinement

Work by Bolton et al. [6] highlighted the subtle difference between blocking
relational refinement and failures refinement. In response to this, we started a
line of research exploring how concurrency semantics could be characterised by
making extra observations in a relational formalism. This research programme
of “Relational concurrent refinement” has three main objectives:

– to provide relational specification mechanisms (such as Z) with a concur-
rency semantics, e.g. to allow the integration of state-based and behavioural
specification;

– to provide a way of verifying concurrency refinement inductively on an action-
by-action basis (rather than e.g. computing inclusions of sets), through the
relational method of simulations;

– to increase understanding of the relations between various concurrency se-
mantics and refinement relations.

We first investigated in [14] how blocking refinement could be strengthened to
failures refinement by including additional observable aspects. We showed that
by observing refusal sets in finalisation, failures refinement could be recovered
from blocking relational refinement. In a similar way, simulations for readiness
refinement could be derived by observing ready sets at finalisation in the partial
relational model. The paper [14] also discussed failures refinement for several se-
mantic models for operations with inputs and outputs. In [4] internal operations
were included in the discussion, and forms of relational data refinement were
shown to be in correspondence with traces-divergences and failures-divergences
refinement in a process semantics. The most recent research in this programme
[16] moves away from a CSP-like context to consider how a variety of other pro-
cess algebraic refinement relations can be defined in a state-based interpretation.

We can make a few observations and reflections on our previous work which
turn out to be relevant for the refinement relations to be modelled in the rest of
this paper. First, note we have used two refinement models for our embeddings:
the partial relations model for readiness refinement, and the blocking model for
various forms of failures refinement. These were conscious choices, though not
always the only options. For readiness refinement, we observed that we could
not use the blocking model because [14] ”it has included observations (i.e., ⊥G)
that are simply not observed via a finalisation that really only looks at enabled
events”. A more general way of putting this is the following. Any refinement
relation encoded in the partial relations model will necessarily be conjoined with
trace refinement, as this is the refinement relation that underlies it [16]. If the
modelled relation implies trace refinement (as readiness refinement does), this
is not harmful; if it does not, the resulting refinement rules will necessarily
be incomplete, checking for a stronger relation than intended. Similarly, any
embedding based on the blocking model will incur a conjunction with blocking
data refinement, which is only slightly weaker than singleton failure refinement
[6,29]. Thus, the real reason that readiness refinement cannot be embedded in
the blocking model is that it does not imply blocking data refinement.



192 E. Boiten and J. Derrick

On the other hand, we chose the blocking model for failures(-divergences)
modelling, although these refinement relations do imply trace refinement. Indeed,
[4, Lemma 3] shows that this representation is redundant, as a program returns
“blocking” ⊥ exactly when one of its prefixes observes the refusal of the next
action of the program. Thus, for failures modelling, we have a choice of model, as
failures refinement implies both trace refinement and blocking data refinement.

3.4 Modelling Internal Actions

In order to model data types with internal actions in a relational formalism
which does not provide directly for these, the relations will have to be extended
to account for any internal behaviour. In LTS terms, we need to encode every
path a=⇒ as a transition a→. Internal evolution will need to be accounted for
between any two operations, after initialisation, and before finalisation. The first
two would be necessary in an LTS setting, too (all states reachable through ε=⇒
become initial); the latter has no LTS analogue but reflects the richer semantic
framework that relational observations at finalisation provide. Composing with
arbitrary internal behaviour in all those places is usually correct, but complicates
the formulas. Usually correct, because some semantics (e.g. stable failures) only
allow observations in “stable” states, i.e., where no internal actions are enabled.
This seems to imply that finalisations need to be pre-composed with maximal
internal behaviour, and this is indeed what was done in [4].

We first described refinement with internal operations for Z [17] (also [13,
Chapter 11]), although we did not derive these so-called “weak refinement” rules
from a relational characterisation. Internal behaviour was added both before and
after operations in the downward simulation rules, and also after initialisation.
In the Z context, finalisation is not affected by internal behaviour when internal
operations are precluded from producing output. Divergence was given a light
touch, by only disallowing infinite internal behaviour in the concrete specifica-
tion, along the lines of Butler’s approach for B [9].

The first coverage of internal operations in the relational concurrent refine-
ment framework was in [15]. However, the encoding given there was too dis-
criminating, by observing blocking of an operation where it would have become
applicable after internal evolution. It also did not restrict observations to stable
states.

In [4], we provided an embedding which resolved both these issues, based on a
generalised notion of data type that allows for both blocking and (catastrophic)
divergence. In that embedding, initialisation is followed by finite internal evolu-
tion. Operations are both preceded and followed by finite internal evolution. Fi-
nalisation is restricted to non-divergent states, and preceded by maximal internal
evolution. This embedding was proved to correctly represent failures-divergences
refinement using the KIV interactive theorem prover. We also included several
models for operations with outputs. Theorems on the closure of simulations un-
der internal behaviour allow some simplification of the resulting simulation rules.

We observed that the embedding of [4] in the blocking model contains re-
dundant explicit blocking information. Actually, basing the failures-divergences



Modelling Divergence in Relational Concurrent Refinement 193

model on the partial relations model instead has several advantages. First, van
Glabbeek [19] observes that when the testing model observes refusals, it is im-
material whether observations are restricted to stable states or not. Thus, the
restriction on finalisation is unnecessary. Second, prepending internal behaviour
to operations is necessary in the blocking model to avoid recording blocking (⊥).
For example, a process which does a then i then b should not record ⊥ for the
trace ab just because b cannot be applied right after a. However, the partial
relations model avoids this potential problem: the blocking of b right after a will
not be visible, as its empty result will be hidden by the result of a (including i)
followed by b. Thus, we only need to include internal evolution after operations.

4 Divergence Modelling

We now return to the process algebra based preorders discussed in Section 2.
Generally speaking, embeddings of these in the relational framework will need
to ensure the following points:

– they need to incorporate internal behaviour into the operations, initialisation
and possibly finalisation;

– if they ignore divergence, there are no further requirements;
– otherwise, they need to ensure the correct observations are made when the

final state records divergence;
– catastrophic interpretations need to generate arbitrary behaviour from the

point of divergence onwards, and propagate this into all subsequent opera-
tions.

Following [4], we will record divergence using a special value ω which is assumed
not to be included in any local or global state space. For any set S, let Sω =
S ∪ {ω}.

First, the refinement relations that ignore divergence.

Trace refinement (and may-refinement). As discussed also in [16], trace refine-
ment in the absence of internal operations “is” the partial relations model. In-
cluding also internal operations is relatively simple. For the same reasons as
discussed in the context of failures-divergences refinement, we only need to in-
clude internal operations after initialisation and operation.

Definition 10 (Embedding trace refinement ignoring divergence)
An i-data type D = (State, G, Init, {Opk}k∈Act , i , Fin) is embedded as the data
type D̂ = (State, G, Înit, {Ôpk}k∈Act , Fin) where

Ôp = Op o
9 i∗

Înit = Init o
9 i∗ �

If D only makes trivial observations, i.e., G = {∗}, then so does D̂, and further-
more their traces are identical, i.e., for every sequence p over Act

pD̂ =
⋃

q�Act=p qD



194 E. Boiten and J. Derrick

or equivalently (recall that a non-empty result indicates a trace being possible
in this basic model):

pD̂ �= ∅ ≡ ∃ q • q � Act = p ∧ qD �= ∅

This can easily be proved by induction over the length of p. The simulation
rules deriving from this are those of Definitions 7 and 8 with internal behaviour
inserted after all occurrences of operations and initialisation. In the absence of
(observed) divergence, joint completeness of the simulations follows from joint
completeness of the partial relations simulations, plus the fact that the data
type with internal operations is refinement equivalent to its embedding as in
Definition 10, see also [13] for the latter point.

Note that this trace refinement relation is different from trace inclusion in the
CSP failures-divergences model, as that does take divergence into account. An
embedding for CSP trace refinement would be a simplification of the failures-
divergences embedding, with a trivial observation at finalisation instead of re-
fusals, as follows:

Definition 11 (Embedding trace refinement (CSP f-d model))
An i-data type D = (State, G, Init, {Opk}k∈Act , i , Fin) is embedded as the data
type D̂ = (Stateω, G, Înit, {Ôpk}k∈Act}, F̂in) where

Înit = Init o
9 i∗ ∪ if divi Init then G × Stateω

Ôp = Op o
9 i∗ ∪ div Op × Stateω

F̂in = Fin ∪ {ω} × G

div Op =def {s : State | ∃ s ′ : State • (s , s ′) ∈ Op ∧ s ′ i∞−→}
divi Init =def ∃ s : ran Init • s i∞−→ �

The derivation of simulation rules is similar to those in [13, Section 3.3] or [4,
Section 4.1], leading to the following definition.

Definition 12 (Simulations for trace refinement (CSP f-d model))
A relation R between AState and CState is a downward simulation between i-data
types A and C iff ∀ k : Act we have:2

if divi CInit then divi AInit else CInit o
9 i∗C ⊆ AInit o

9 i∗A o
9 R

R o
9 CFin ⊆ AFin

(div AOpk ) −� R o
9 COpk

o
9 i∗C ⊆ AOpk

o
9 i∗A o

9 R
dom(R � div COpk ) ⊆ div AOpk

A relation T between CState and AState is an upward simulation between i-data
types A and C iff ∀ k : Act

if divi CInit then divi AInit else CInit o
9 i∗C o

9 T ⊆ AInit o
9 i∗A

CFin ⊆ T o
9 AFin

dom(T � div AOpk ) −� COpk
o
9 i∗C o

9 T ⊆ T o
9 AOpk

o
9 i∗A

div COpk ⊆ dom(T � div AOpk ) �

2 The relation P −� R is R with P excluded from its domain, i.e., {(x , y) : R | x �∈ P}.



Modelling Divergence in Relational Concurrent Refinement 195

Reduction. The embedding for reduction is a simplification of that for failures-
divergences refinement, e.g. as given in [4], introducing an extra component E
recording refused events, but removing the case distinctions and special treat-
ment arising from infinite internal evolution.

Definition 13 (Embedding reduction). An i-data type D = (State, G, Init,

{Opk}k∈Act , i , Fin) is embedded as the data type D̂ = (State, G × P Act , Înit,

{Ôpk}k∈Act , F̂in) where

Înit = {((g,E ), s) : (G × PAct) × State | (g, s) ∈ Init o
9 i∗}

Ôp = Op o
9 i∗

F̂in = {(s , (g,E )) : State × (G × P Act)|
(s , g) ∈ Fin ∧ ∀ k : E • s �∈ dom(i∗ o

9 Opk )} �

Note that the change to initialisation is only to account for the extra compo-
nent E in the global state. The resulting simulation rules are identical to those
for failures refinement with internal evolution added after all operations and
initialisation, and before operations in precondition (refusal) computation. The
multiple components observed in finalisation imply that the simulations are not
in general complete: the simulations as given impose separate conditions on each
component, whereas due to dependencies between the components weaker con-
ditions may suffice. However, for trivial original finalisations, due to the same
normal form argument as given for trace refinement above, these rules inherit the
joint completeness of the failures refinement rules proved e.g. by Josephs [24].

Must-refinement and t-refinement. Although the characterisation given in Def-
inition 3 is different (using a set of traces which does not contain the upward
closure of divergences), this relation is identical to failures-divergences refine-
ment in CSP, but reversing the direction, see also [19]. The crucial observation
in this respect is that the conditions above impose no restrictions on traces with
a divergent prefix in q, making all specified behaviour after divergence irrelevant.

Thus, must-refinement can be checked by using the failures-divergences sim-
ulations [4] in reverse order, i.e., swapping abstract and concrete. For the CSP
traces model, failures-divergences refinement implies trace refinement; however,
reverse must-refinement does not imply may-refinement due to may-refinement
ignoring divergence.

We do not believe we can sensibly model t -refinement through an embed-
ding, i.e., even if we could find a denotational model using sets where inclusion
represents t -refinement, we do not believe this could lead to a complete simula-
tion method. This is because any (e.g. downward) simulation relations derived
from this would need to establish both a failure-divergence refinement (and thus
CSP style trace refinement) in one direction, and a (divergence-ignoring) trace
refinement in the opposite direction.

Non-catastrophic divergence. In a non-catastrophic interpretation, divergence is
a property only of the state (whether it admits infinite internal evolution) and



196 E. Boiten and J. Derrick

not of the trace (whether it may have come through such a state). Thus, em-
beddings for associated refinement relations are significantly simpler, not having
to propagate divergence from one state to the next, nor having to introduce
arbitrary behaviour in such states.

In the global state for an embedding of lte-refinement we need to record three
components: the original global state; refusal information for the final state;
and whether the final state was divergent. Also, we need to ensure that “non-
divergent” is a subset of “divergent”, so we will record the former by returning
∅ and the latter by returning both ∅ and {ω}.

Definition 14 (Embedding lte-refinement). An i-data type D = (State, G,

Init, {Opk}k∈Act , i , Fin) is embedded as the data type D̂ = (State, G × P Act ×
P{ω}, Înit,

{Ôpk}k∈Act , F̂in) where

Înit = {((g,E , d), s) : (G × PAct × P{ω})× State | (g, s) ∈ Init o
9 i∗}

Ôp = Op o
9 i∗

F̂in = {(s , (g,E , d)) : State × (G × P Act × P{ω})|
(s , g) ∈ Fin ∧ (d = ∅ ∨ s i∞−→) ∧ ∀ k : E • s �∈ dom(i∗ o

9 Opk )} �

Note that this embedding includes observations of divergence in the global state
only, as opposed to others which include it in the local state, or in both.

Definition 15 (Simulations for lte-refinement). A relation R between AState
and CState is a downward simulation between i-data types A and C iff ∀ k : Act

CInit o
9 i∗C ⊆ AInit o

9 i∗A o
9 R

R o
9 CFin ⊆ AFin

ran(dom(i∗A o
9 AOpk) � R) ⊆ dom(i∗C o

9 COpk)
R � C ↑⊆ A ↑
R o

9 COpk
o
9 i∗C ⊆ AOpk

o
9 i∗A o

9 R

where

State ↑ =def {s : State | s i∞−→}

A relation T between CState and AState is an upward simulation between i-data
types A and C iff ∀ k : Act

CInit o
9 i∗C o

9 T ⊆ AInit o
9 i∗A

CFin ⊆ T o
9 AFin

∀ c : CState • ∃ a : AState • (c, a) ∈ T ∧
∀ k : Act • a ∈ dom(i∗A o

9 AOpk ) ⇒ c ∈ dom(i∗C o
9 COpk )

C ↑⊆ T � A ↑
COpk

o
9 i∗C o

9 T ⊆ T o
9 AOpk

o
9 i∗A �



Modelling Divergence in Relational Concurrent Refinement 197

The conditions are the familiar ones of failures refinement (bringing in the con-
dition on domains from the blocking model in the downward simulation, and a
stronger condition on domains in upward simulation), plus conditions on diver-
gent states. As we have separated, in deriving these simulation rules, conditions
between tuples (g,E , d) (where g is arbitrary) into conditions on their elements,
completeness is not guaranteed.

5 Conclusions

In this paper we have discussed how divergence can be modelled relationally
in the context of defining refinement relations. Specifically, we have shown how
various interpretations of divergence as found in the process algebra literature
can be embedded in a relational model. In doing so we have derived simulations
for relational embeddings of a number of refinement preorders found in process
algebras. Alongside successful embeddings, we have also highlighted a number of
limitations of the relational concurrent refinement method, at least at present.
Preorders which do not imply trace refinement, few as they may be, do not fit
in well. Also, from embeddings of individual preorders we can construct an em-
bedding for their intersection, but it seems unlikely that the resulting simulation
rules would be complete in general.

Our earlier embedding of failures-divergences refinement in [4] was based on
an intermediate data type, where each operation was split into three parts: the
normal behaviour, its domain of blocking, and its domain of (catastrophic) di-
vergence, together partitioning the state. The commonalities between the em-
beddings in this paper suggest further enhancements: removing the partitioning
requirement in order to use the partial relations model, to allow for both explicit
and implicit modelling of blocking; and addition of “transient error” behaviour
such as the non-catastrophic divergence modelled in this paper. (Both the block-
ing and divergent behaviour essentially make all operations after the point of
“error” irrelevant.) Further alternative preorders e.g. relating to “unfair test-
ing equivalence” (identifying blocking and divergence) [25] could be modelled
using such an intermediate type, too. It would also be interesting to see how
Roscoe’s denotational semantics “looking beyond divergence” [31] fits in with
these preorders.

This paper only addressed divergence due to internal events, which in an
operational view may also be taken to include unguarded recursion. Divergence
due to partial definition is the norm in relational formalisms, and indeed the
essence of the non-blocking model referred to in Section 3. Leduc also discusses
divergence due to a lack of image finiteness. There the intuition is that the
mechanism for resolving an infinitely branching internal choice may consume
infinite time. This could also be modelled using the intermediate data type of
[4] which abstracts from the particular cause of divergence.

Further work also includes mechanisation of this theory (along the lines found
in [4]) and the unification of the refinement relations as defined for IO automata.



198 E. Boiten and J. Derrick

References

1. Abramsky, S.: Observation equivalence as a testing equivalence. Theor. Comput.
Sci. 53(2-3), 225–241 (1987)

2. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. El-
sevier Science Inc., New York (2001)

3. Boiten, E.A., Derrick, J.: Incompleteness of relational simulations in the blocking
paradigm (submitted for publication, 2008)

4. Boiten, E.A., Derrick, J., Schellhorn, G.: Relational concurrent refinement II: In-
ternal operations and outputs. Formal Aspects of Computing (accepted for publi-
cation)

5. Bolognesi, T., Brinksma, E.: Introduction to the ISO Specification Language LO-
TOS. Computer Networks and ISDN Systems 14(1), 25–59 (1988)

6. Bolton, C., Davies, J.: Refinement in Object-Z and CSP. In: Butler, M., Petre,
L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 225–244. Springer, Heidelberg
(2002)

7. Brinksma, E., Scollo, G.: Formal notions of implementation and conformance in
LOTOS. Technical Report INF-86-13, Dept of Informatics, Twente University of
Technology (1986)

8. Brinksma, E., Scollo, G., Steenbergen, C.: Process specification, their implemen-
tation and their tests. In: Sarikaya, B., Bochmann, G.v. (eds.) Protocol Specifi-
cation, Testing and Verification, VI, Montreal, Canada, jun 1986, pp. 349–360.
North-Holland, Amsterdam (1986)

9. Butler, M.: An approach to the design of distributed systems with B AMN. In: Till,
D., Bowen, J.P., Hinchey, M.G. (eds.) ZUM 1997. LNCS, vol. 1212, pp. 223–241.
Springer, Heidelberg (1997)

10. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
In: Proceedings of the international workshop on Automatic verification methods
for finite state systems, pp. 11–23. Springer, New York (1990)

11. de Nicola, R.: Extensional equivalences for transition systems. Acta Informat-
ica 24(2), 211–237 (1987)

12. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge University Press, Cambridge (1998)

13. Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z. Springer, Heidelberg
(2001)

14. Derrick, J., Boiten, E.A.: Relational concurrent refinement. Formal Aspects of
Computing 15(1), 182–214 (2003)

15. Derrick, J., Boiten, E.A.: Relational concurrent refinement with internal opera-
tions. In: Aichernig, B., Boiten, E.A., Derrick, J., Groves, L. (eds.) BCS-FACS
Refinement Workshop. ENTCS, vol. 187, pp. 35–53 (2006)

16. Derrick, J., Boiten, E.A.: More relational concurrent refinement: traces and partial
relations. In: Boiten, E.A., Derrick, J., Schellhorn, G. (eds.) Proceedings REFINE.
ENTCS (to appear, 2008)

17. Derrick, J., Boiten, E.A., Bowman, H., Steen, M.: Specifying and Refining Internal
Operations in Z. Formal Aspects of Computing 10, 125–159 (1998)

18. van Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidel-
berg (1990)

19. van Glabbeek, R.J.: The linear time – branching time spectrum II; the semantics
of sequential systems with silent moves (extended abstract). In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)



Modelling Divergence in Relational Concurrent Refinement 199

20. van Glabbeek, R.J.: The linear time - branching time spectrum I. The semantics
of concrete sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, pp. 3–99. North-Holland, Amsterdam (2001)

21. Jifeng, H., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B.,
Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg
(1986)

22. Hennessy, M.: Algebraic theory of processes. MIT Press, Cambridge (1988)
23. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)
24. Josephs, M.B.: A state-based approach to communicating processes. Distributed

Computing 3, 9–18 (1988)
25. Leduc, G.: On the Role of Implementation Relations in the Design of Distributed

Systems using LOTOS. PhD thesis, University of Liège, Liège, Belgium (June 1991)
26. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs

(1989)
27. De Nicola, R., Hennessy, M.: Testing equivalence for processes. In: Dı́az, J. (ed.)

ICALP 1983. LNCS, vol. 154, pp. 548–560. Springer, Heidelberg (1983)
28. Puhakka, A., Valmari, A.: Weakest-congruence results for livelock-preserving equiv-

alences. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp.
510–524. Springer, Heidelberg (1999)

29. Reeves, S., Streader, D.: Data refinement and singleton failures refinement are not
equivalent. Formal Aspects of Computing 20(3), 295–301 (2008)

30. Roscoe, A.W.: The Theory and Practice of Concurrency. International Series in
Computer Science. Prentice-Hall, Englewood Cliffs (1998)

31. Roscoe, A.W.: Seeing beyond divergence. In: Abdallah, A.E., Jones, C.B., Sanders,
J.W. (eds.) Communicating Sequential Processes. LNCS, vol. 3525, pp. 15–35.
Springer, Heidelberg (2005)

32. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Refinement, and Proof.
Prentice-Hall, Englewood Cliffs (1996)



SAL-Based Symbolic Scheduling in
Time-Triggered Networks

Sebastian Voss1, Maria Sorea1, and Klaus Echtle2

1 EADS Innovation Works, Munich, Germany
{sebastian.voss,maria.sorea}@eads.net

2 University of Duisburg-Essen, Essen, Germany
echtle@dc.uni-due.de

Abstract. This paper presents a novel approach for combined task and
message scheduling for TDM-based avionics applications that allows to
automatically compute schedules with minimal end-to-end latency. Our
approach relies on a symbolic encoding of the scheduling problem. The
symbolic encoding is done by constructing gradually a schedule beginning
in a state where no task has started and no messages have been sent
on the bus yet, and proceeding one step at a time assigning starting
times to tasks and slot positions to messages. We use the SAL toolset
from SRI for our experiments. Experimental results demonstrate how the
latest generation of model-checking tools meet the challenges of providing
both a convenient modeling language and the performance to solve given
scheduling problems.

1 Introduction

Embedded systems in aerospace become more and more integrated in order to
reduce weight, volume/size, and power of hardware for more fuel-efficiency. The
trend is towards integrated modular avionics (IMA) architectures in which sev-
eral functions share a common (fault tolerant) computing resource, and operate
in a more integrated (i.e., mutually interactive) manner. Since the IMA approach
allows multiple applications of different criticality levels to share common com-
puting resources, it is important to keep individual application away from poten-
tial interference. The main way for protecting integrated applications and system
resources is via temporal and spatial partitioning. Spatial partitioning guarantees
that an application has exclusive control over its own data and state information.
With spatial partitioning, an application can be protected from any erroneous
behaviors of other applications while sharing same physical resources. Temporal
partitioning guarantees that an application or communication server has tempo-
ral exclusive access to its pre-allocated resources. With guaranteed pre-scheduled
temporal partitioning, applications can meet their timing requirements.

For enforcing temporal partitioning, shared resources have to be scheduled
while guaranteeing timing constraints of the application. When considering dis-
tributed systems, one has to take into account not only the constraints imposed

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 200–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



SAL-Based Symbolic Scheduling in Time-Triggered Networks 201

by the applications but also the characteristics and efficient usage of the underly-
ing communication bus [1,2]. Therefore, an effective scheduling policy for TDM-
based avionics applications has to consider both task and message scheduling.

We present a novel technique for task and message scheduling for TDM-based
avionics applications that allows to automatically compute schedules with mini-
mal end-to-end latency. Our approach relies on a symbolic encoding of the given
scheduling problem [3]. This symbolic encoding is done by constructing gradu-
ally a schedule beginning in a state where no task has started and no messages
have been sent on the bus yet, and proceeding one step at a time assigning start-
ing times to tasks and slot positions to messages. Therefore, a symbolic state
represents tasks that have not started, tasks that are running, and tasks that
have finished. Symbolic model checking is employed to automatically search for
a schedule with minimal end-to-end latency.

Experimental results demonstrate how the latest generation of model-checking
tools (we use SAL from SRI) meets the challenges of providing both a conve-
nient modeling language and the performance to solve given scheduling prob-
lems. These results show with respect to system size and the degree of intertask
communication a limitation of system with up to 15 tasks caused by the given
state-space explosion.

Combined task and message scheduling is considered by [4,5,1,6]. The ap-
proach advocated by Pree et al. addresses both task and message scheduling.
However, different techniques are employed for task and message scheduling,
namely, Earliest Deadline First (EDF) for task scheduling and an heuristic algo-
rithm, adapted from Reverse EDF for message scheduling, respectively. Tindell
and Clark [5] provide a holistic scheduling technique. Based upon a distributed
real-time system where fixed-priority tasks with arbitrary deadlines communi-
cate by message passing with a simple TDMA protocol, a window-based analysis
technique is provided to calculate the worst-case response times of the distributed
task set. Pop, Eles and Peng [1] provide an approach to find for a minimal worst
case delay by which the system completes execution. A priority based schema is
used to decide which processes or tasks are extracted in order to be scheduled at
a given time. The algorithm provided by Abdelzaher and Kang [6] uses a branch-
and-bound technique to find a task schedule. The algorithm takes into account
delays, and precedence relations imposed by interprocess communications, and
considers many possibilities for improving the scheduling lateness at the cost of
complexity.

Symbolic task scheduling is considered by Jensen, Lauritzen and Laursen [7].
The authors use BDDs for representing the task graph scheduling problem with
uniform processors and arbitrary task execution times. A breadth-first search and
an A*-based algorithm is employed for finding optimal schedules. The represen-
tation of tasks is similar to this paper, however, they do not consider underlying
network communication aspects, and message scheduling.

A SAT-based approach to task and message allocation problem of distributed
real-time systems is considered by Metzner, Fränzle, Herde and Stierand [8]. An



202 S. Voss, M. Sorea, and K. Echtle

optimal strategy to assign task and messages to ECUs and network busses is
done by modeling timing and resource restrictions as a set of integer formulae.

The paper is structured as follows. Section 2 formalizes the task and message
scheduling problem in TDM-based networks. Section 3 introduce briefly the SAL
framework, which is used for encoding the scheduling problem. Section 4 gives
an overview over the employed analysis techniques and presents and discusses
experimental results. We conclude in Section 5.

2 Scheduling in Time-Triggered Systems

Communication in time-triggered networks is realized by a time-division
multiple-access (TDMA) discipline, in which n nodes share a time-triggered bus
based on a cyclic schedule. Each node ni can transmit only during a predeter-
mined time interval, denoted as TDMA (or time) slot. A sequence of slots builds
a TDMA round. Several rounds are combined into a cycle that is repeated pe-
riodically. Tasks are executed on nodes, and communicate with each other by
message passing. A node might send messages (from a given set of messsages
M) in several slots in a TDMA round.

In the following, the set of time slots is denoted by SL = {sl1, . . . , slk}. The
time intervals associated to every slot sl i are disjoint. A function σ : M → SL
allocates slots to messages. The task and message scheduling technique presented
here computes, for a given set of tasks T , (1) the starting time si for all tasks
ti ∈ T , and (2) the slot allocation function σ, that is the slot (or slots, in case
several messages are sent) in which a task ti is scheduled to transmit its messages
on the communication bus. Formally, the task/message scheduling problem is
defined as follows.

Definition 1. Let N = {n1, n2, ..., nm} be a set of nodes, T = {t1, t2, ..., tn}
a set of tasks, and M = {m1, m2, ..., mo} a set of input/output messages of the
tasks. The dependencies between the tasks in T are captured by a precedence
graph G. Furthermore, let η : N → T be a function that assigns to every node
a task running on it, and τ : T → 2M a function that assigns a set of messages
to tasks. The scheduling problem consists of determining the starting time and
slot(s) position of the tasks in T that is, to calculate for every task ti ∈ T
the tuple γi = 〈si, {σ(m1), . . . , σ(mj)}〉, where si is the execution starting time
of ti, and σ(m1), . . . , σ(mj) the slots in which the messages {m1, . . . , mj} are
transmitted. Furthermore, we define the destination of a task t ∈ T under m ∈
M , as the function D : T × M → T , with D(t, m) = {t′ ∈ T |〈t, m, t′〉 ∈ E}.

Remark 1. We consider the period P of a task to be equivalent to the communi-
cation cycle, thus identical for all tasks in T . Hence, the arrival times ai, which
denote the earliest time a task can be invoked is equivalent to the beginning of
each communication cycle for all tasks. The deadline di, which is the latest time
it can finish its execution corresponds to the end of the communication cycle.
Preemption of tasks is not considered.



SAL-Based Symbolic Scheduling in Time-Triggered Networks 203

Fig. 1. Simple example of a Precedence Graph

Example 1. Consider a set of tasks T = {t0, t1, t2, t3}, and a set of messages
M = {m0, m1, m2, m3}, cf. figure 1. Furthermore, τ(t0) = {m0, m1}, τ(t1) =
{m2}, τ(t2) = {m3}, τ(t3) = {}, η(n0) = t0, η(n1) = {t1, t2} and η(n2) = {t3}.
For simplicity reasons we just use time units, and assume an equal computation
time for each task with ci = 2 time units. Each edge Edgei in figure 1 complies
to the corresponding message mi (Edge0 =̂ m0). The destination function is
given as D(t0, m0) = t1, D(t0, m1) = t2, D(t2, m3) = t3, D(t1, m2) = t3.

3 Translation to SAL

SAL (Symbolic Analysis Laboratory, http://sal.csl.sri.com) [9] is a frame-
work for specification and analysis of concurrent systems. It consists of the SAL
language, which provides notations for specifying state machines and their prop-
erties, and the SAL system that provides model checkers and other tools for
analyzing properties of state machines specifications. The SAL model checkers
are of interest for our analysis: the symbolic model checker sal-smc that uses the
CUDD BDD package and provides access to many options for variable order-
ing, and for clustering and partitioning the transition relation, and the bounded
model checking of infinite-state systems. This model checker relies on a solver for
deciding the validity of logical formulas that can mix linear arithmetic, equalities
with uninterpreted function symbols, and propositional logic. The default solver
used by SAL is Yices [10]. In this way we can encode our scheduling problem
both in discrete time and continuous time, and use either the symbolic model
checker or the infinite-state model checker for computing our schedules.

We propose to solve the scheduling protocol as formulated in Definition 1 by
using symbolic model checking. For this we need to encode this problem as a
transition system. This is done by constructing gradually a schedule, following
the precedence graph, beginning in a state where no task has started and no
messages have been sent on the bus yet, and proceeding on step at a time as-
signing starting times to tasks and slots positions to messages. Our goal is to
use SALs model checkers to calculate an integrated task and message schedule
that is minimal in terms of end-to-end latency.

3.1 Precedence Graph

The given precedence graph, as specified in section 2, comprises several elements:
a set of tasks, a set of messages and a set of nodes. Thus, we begin by defining

http://sal.csl.sri.com


204 S. Voss, M. Sorea, and K. Echtle

the type declaration for these precedence graph elements in SAL. All given tasks
are defined via the enumeration type TASKS. Furthermore, the enumeration types
MESSAGES and NODES specify, respectively, all messages and all nodes of the given
precedence graph.

TASKS : TYPE = {Task0, Task1, Task2, Task3};
MESSAGES : TYPE = {Edge0, Edge1, Edge2, Edge3};
NODES : TYPE = {Node0, Node1, Node2};

To specify tasks, messages and nodes, several parameters are defined in dedi-
cated data structures, in particular, a task, a message, and a node record.

Task Record Message Record Node Record

taskcalendar:TYPE=[# msgcalendar:TYPE=[# nodecalendar:TYPE=[#

t started:BOOLEAN, m started:BOOLEAN, node free:BOOLEAN,

t finished:BOOLEAN, m set:BOOLEAN, node task:TASKS #];

t start:NATURAL, m slot:NATURAL #];

t clock:NATURAL,

t comp:NATURAL,

t node:NODES #];

Fig. 2. Declaration of task, message and node records

The defined task record, for instance, stores the parameter information of a
single task ti. The variable t started indicates whether ti has already started
or not. Because a tasks’ computation time can last for more than one time step,
the variable t finished indicates if task ti has finished or not. In combination
with the variable t clock, which holds the actual task computation duration,
the current status of a task can be exactly described. To obtain a time schedule,
each task needs to store its calculated starting time. This is done by the variable
t start. Furthermore, t comp stores the given computation duration of task ti,
and t node represents the node a task is allocated to. We specify and store the
parameters of all tasks defined for the given precedence graph G as an array of
records, TASKARRAY : TYPE = ARRAY TASKS OF taskcalendar;.

Modeling precedence relations requires a distinction between task and mes-
sage. For each given task and message, the direct predecessor is stored. A pre-
decessor of a task is defined as a message, except if the task is the starting task
(source of precedence graph). The source task has no predecessors. For instance,
a task ti may receive two messages. These messages are stored as predecessors of
that task. A predecessor of a message is always a single task. These precedence
relations are represented via an array structure, as PREC TASK : ARRAY INDEX
OF MESSAGES and PREC MSG : ARRAY INDEX OF TASKS.

The allocation of task to nodes, τ : T → 2M (cf. section 2), is specified by
an array structure as NODETASKS: TYPE = ARRAY INDEX OF NODES, while the
unique precedence relations of each single task, is modeled as prec TASK1 :
PREC TASK = [[i:INDEX]Edge0].



SAL-Based Symbolic Scheduling in Time-Triggered Networks 205

The precedence relations for all messages as well as the allocation
of tasks to nodes is modeled in the same way, prec Edge1: PREC MSG =
[[i:INDEX]Task0], and Task1 node: NODETASKS = [[i:INDEX]Node1], re-
spectively.

Furthermore, two functions getPrecTask and getPrecMsg are needed by the
transitions as a condition request about a tasks’ or a message’s predecessors.
The getPrecTask function, for instance, is used by a certain message to check
whether its predecessor (namely the task who sends this message) is already
finished (t finished = TRUE). Hence, getPrecTask has two parameters: the
message m, whose predecessors’ condition is requested and the task record array
taskarry. If, and only if the predecessor task (or sender task) is already finished
the functions returns TRUE. This scenario is specified in SAL as follows:

getPrecTask(m : MESSAGES, taskarray : TASKARRAY) : BOOLEAN =

IF(m=Edge0 AND(EXISTS(j:INDEX1):taskarray[prec_Edge0[j]].

t_finished=FALSE)) THEN FALSE

ELSIF (m=Edge1 AND(EXISTS(j:INDEX1):taskarray[prec_Edge1[j]].

t_finished=FALSE)) THEN FALSE

The function getPrecMsg(t:TASKS, msgarray:MSGARRAY) : BOOLEAN detects
for a certain task ti if all predecessors (namely all messages mj with D(tx, mj) =
ti) are already set. If all predecessors messages are already scheduled, the func-
tion returns TRUE. Initially, only the source tasks fulfills this request. Thus, it
can be said, that the schedule is build according to the precedence graph from
source to sink. A further function getNodeTask(t:TASKS):NODES is modeled to
detect and return the node n, a certain task ti is allocated to.

3.2 Basic Module

The basic construct in SAL is a module. A module contains the definition of
variables (including, local, global, input and output), the initial state, and the
transition relations. The discrete-time variable T ime is used for specifying the
global system time. Thus, the state space is finite.

scheduler : MODULE = BEGIN

GLOBAL currenttaskarray : TASKARRAY; currentmessagearray : MSGARRAY;

currentnodearray : NODEARRAY; Time : TIME; Bus_free:BOOLEAN

For instance, the initial state for the simple precedence graph from 2, is spec-
ified in SAL as follows:

INITIATLIZATION

currenttaskarray[Task0].t_comp = 2.0;

currenttaskarray[Task0].t_node = Node0; ...

Time = 0; Bus_free = TRUE; ...

(FORALL (i:TASKS): currenttaskarray[i].t_started = FALSE);

(FORALL (i:TASKS): currenttaskarray[i].t_finished = FALSE);



206 S. Voss, M. Sorea, and K. Echtle

(FORALL (i:TASKS): currenttaskarray[i].t_start = 0);

(FORALL (i:TASKS): currenttaskarray[i].t_clock = 0);

(FORALL (i:MESSAGES): currentmessagearray[i].m_started = FALSE);

(FORALL (i:MESSAGES): currentmessagearray[i].m_set = FALSE);

(FORALL (i:MESSAGES): currentmessagearray[i].m_slot = 0);

(FORALL (i:NODES): currentnodearray[i].node_free = TRUE);

(FORALL (i:NODES): currentnodearray[i].node_task = Task3);

Initially, the computation time is set for each task to t comp=2.0. Tasks are allo-
cated to nodes currenttaskarray[Task0].t node=Node0. The global variable
Time is initially set to 0. The time-triggered communication bus is represented
by the variable Bus free, which indicates whether, at a certain point in time, the
bus, respectively the current time slot, is allocated by a node or not. Initially, the
bus is not used. Initialization of the record arrays for tasks, messages and nodes
can be described as follows: Initially, none of the tasks has started, thus the
variable t started is set to FALSE. No task has finished (t finished = FALSE)
and starting time variable (t start) is set to 0. The clock variable t clock is
also set to 0. The initialization for all given messages is done in the same way.
All messages are not started (m started = FALSE). The variable m set = FALSE
points out that no messages has been scheduled yet, which implies that also no
slot has been allocated by a certain message (m slot = 0). For the node record
the parameter node free indicates that the current nodes’ CPU is not allocated
by a task. The parameter node free is initially set to the sink task in the given
precedence graph G.

3.3 Transitions

State transitions are specified in SAL via guarded commands. Here, the [ char-
acter introduces a set of guarded commands, which are separated by the [ ]
symbol. A SAL guarded command is eligible for execution in the current state
if its guard (i.e., the part before the --> arrow) is true. The SAL model checker
nondeterministically selects one of the enabled commands for execution at each
step. In case no command is eligible, the system is deadlocked. State variables
are unprimed before execution of a command and primed in the new state, that
is after the execution command.

The scheduling algorithm is encoded in SAL using six different transition rela-
tions. Four transition relations (start task, run task, change task, end task)
are used to model task scheduling, while start message, and end message en-
codes message scheduling on bus level.

3.3.1 Start Task Transition
The Start Task Transition allows for starting all tasks, which comply to the
following conditions: (1) the CPU is not yet allocated by another task on the
same node, (2) the task has either finished or started and (3) all predecessors
(input messages) are already set (arranged by the function getPrecMsg).



SAL-Based Symbolic Scheduling in Time-Triggered Networks 207

[([](i:TASKS): start_transition:

currentnodearray[getNodeTask(i)].node_free = TRUE AND

currenttaskarray[i].t_started = FALSE AND

getPrecMsg(i,currentmessagearray) = TRUE -->

currenttaskarray’= currenttaskarray WITH [i].t_started:=TRUE

WITH [i].t_clock:=0 WITH [i].t_start:=Time;

currentnodearray’= currentnodearray

WITH [getNodeTask(i)].node_free:=FALSE

WITH [getNodeTask(i)].node_task:=i)

Any task ti, whose corresponding node is free (first line of code) and that has
not started yet (second line), is allowed to be started (currenttaskarray[i].
t started = TRUE). The clock is set to 0 and the starting time is set to the
actual time (currenttaskarray[i].t start = Time). Furthermore, the node’s
resource is allocated by the current task ti, therefore, node free variable is set
to FALSE.

3.3.2 Run Task Transition
The Run Task Transition allows tasks to run on their allocated node (nodes’ CPU)
by incrementing the time variable Time, respectively the task’ clock variable clock
by one. Basically, the run transition controls the progress of time. Each task, which
has already started and whose computation duration is not actually reached, can
progress its execution time, controlled by the t clock variable. The first part of
the pre-condition (i.e., first disjunct) states that the current task ti has started
yet. The value of task clock variable t clock has to be less than the value of the
computation time variable t comp, otherwise the task would be a candidate for the
end transition. Three additional conditions, for excluding the possibility of exe-
cuting other transitions, have to be satisfied for enabling the run transition: (1) No
other task is able to start on another node (handled by the start transition),
(2) No other task is able to be finished (handled by the end transition) and (3)
No message is able to start (handled by the start message transition). The
second part of the disjunction in the precondition specifies the scenario when the
current running task is interrupted by another (cf. 3.3.3). These conditions states
that (1) another task can be started on the same node, (2) no other task can be
finished, (3) no message is able to start.

These pre-conditions describe the exact situation in which the run
transition is used, that is, the situation in which tasks executes and time
is allowed to pass. Due to the lack of space the extensive code is not described
in detail here.

run_transition:

(Compare textual description for preconditions above) -->

currenttaskarray’[Task0].t_clock = IF currenttaskarray[Task0]

.t_started = TRUE AND

currenttaskarray[Task0].t_clock < currenttaskarray[Task0].t_comp

THEN currenttaskarray[Task0].t_clock+1

ELSE currenttaskarray[Task0].t_clock ENDIF;

Time’=Time+1;



208 S. Voss, M. Sorea, and K. Echtle

3.3.3 Change Task Transition
The Change Task Transition allows for stopping an already started task tj by
another task ti, which is allocated to the same resource ni. This may be necessary
if the precedence graph G consists of concurrent task precedence relations, which
might originate two competitively tasks (share the same resource) at the same
point in time. In order to find an optimal solution, in terms of total length of
the final schedule, it might be better to interrupt such an already started task tj
by another one. The guarded command reflects these requirements by determin-
ing a potential starting task currentaskarray[i] whose resource is currently
allocated (currentnodearray[getNodeTask(i)].node free = FALSE).

([](i:TASKS): change_transition:

currentnodearray[getNodeTask(i)].node_free = FALSE AND

currenttaskarray[i].t_started = FALSE AND

getPrecMsg(i,currentmessagearray) = TRUE -->

currenttaskarray’= currenttaskarray WITH [i].t_started:= TRUE

WITH [i].t_clock:=0 WITH [i].t_start:=Time

WITH [currentnodearray[getNodeTask(i)].node_task].t_started:=FALSE

WITH [currentnodearray[getNodeTask(i)].node_task].t_clock:=0

WITH [currentnodearray[getNodeTask(i)].node_task].t_start:=0;

currentnodearray’= currentnodearray WITH [getNodeTask(i)].node_free:=F

WITH [getNodeTask(i)].node_task:=i)

If the preconditions are satisfied, the task, currently using the required re-
source (currenttaskarray[currentnodearray[getNodeTask(i)]]), is inter-
rupted, and its starting time (...t start:=0) and computation counter
(...t clock:=0) is reseted. This steams from the fact that we do not
consider here any preemption scheduling possibilities. The concurrent task
(currenttaskarray’[i]) is started instead and allocated to the shared resource
(currentnodearray’=...).

3.3.4 End Task Transition
The End Task Transition ensures that a task ti can be finished and the resource
released. The guarded command detects whether the task execution time (repre-
sented by currenttaskarray[i].t clock) equals the tasks’ computation time
(currenttaskarray[i].t comp).

([](i:TASKS): endtransition:

currenttaskarray[i].t_started = TRUE AND

currenttaskarray[i].t_clock = currenttaskarray[i].t_comp AND

currenttaskarray[i].t_finished = FALSE -->

currenttaskarray’[i].t_finished = TRUE;

currentnodearray’= (currentnodearray

WITH [getNodeTask(i)].node_free:=TRUE)

WITH [getNodeTask(i)].node_task:=Task3)



SAL-Based Symbolic Scheduling in Time-Triggered Networks 209

In case these preconditions are fulfilled the tasks’ execution is finished and
the nodes’ resource is released for the possible execution of the next task.

3.3.5 Start Message Transition
The Start Message Transition enables sending of a message on the bus
in the next available time slot of the underlaying time-triggered protocol.
As a precondition the next possible slot needs to be free (not already al-
located) by another message. This is checked by the variable Bus free
=TRUE. Furthermore, the message should not be started and not finished
yet, (currentmessagearry[i].m started=FALSE, currentmessagearry[i].
m set = FALSE). However, the task, which sends the message, needs to be fin-
ished. The start message transition, like the run task transition, is able
to progress time by one time unit. Thus, it needs to be checked, whether other
transitions are able to be handled first. Therefore, two more conditions, intro-
duced by NOT (EXISTS...), cover these constrains: (1) No task is able to start
(handled by the start task transition) and (2) No task is able to be finished
(handled by the end task transition).

([](i:MESSAGES): start_message_transition:

currentmessagearray[i].m_set = FALSE AND

currentmessagearray[i].m_started = FALSE AND

Bus_free = TRUE AND

getPrecTask(i,currenttaskarray)=TRUE AND

(NOT(EXISTS(j:TASKS):currentnodearray[getNodeTask(j)].node_free=TRUE AND

currenttaskarray[j].t_started = FALSE AND

getPrecMsg(j,currentmessagearray)=TRUE)) AND

(NOT(EXISTS(k:TASKS):currenttaskarray[k].t_started = TRUE AND

currenttaskarray[k].t_clock = currenttaskarray[k].t_comp AND

currenttaskarray[k].t_finished = FALSE)) -->

currentmessagearray’=currentmessagearray WITH [i].m_started:=TRUE

WITH [i].m_slot:=Time;

Bus_free’ = FALSE;

Time’=IF(NOT (EXISTS(j:TASKS):currenttaskarray[j].t_started=TRUE AND

currenttaskarray[j].t_finished=FALSE))

THEN Time+1 ELSE Time ENDIF;)

If the preconditions are satisfied the current message, (currenttaskarray[j]),
is started and allocated to a certain slot. Hence, the bus is blocked and if there
are no further tasks which need to be started or finished the time is incremented.

3.3.6 End Message Transition
The End Message Transition ensures that a message mi can be finished and
the bus resource is released. The guarded command represents this require-
ment and checks, if time has elapsed since starting the message / slot al-
location (cf. Time = currentmessagearray[i].m slot+1). If these conditions
are satisfied the bus resource is released and the message is marked as set
(currentmessagarray’[i].m set = TRUE).



210 S. Voss, M. Sorea, and K. Echtle

([](i:MESSAGES): endmessagetransition:

currentmessagearray[i].m_set = FALSE AND

currentmessagearray[i].m_started = TRUE AND

Time = currentmessagearray[i].m_slot+1 -->

currentmessagearray’[i].m_set = TRUE; Bus_free’ = TRUE)

With the combination of all transitions it is possible to generate an integrated
task and message schedule which is optimized for minimizing the maximum
latency. As specified in the run task transition, for example, the order of
transition execution is controlled. This is done due to the optimization criteria
as well as for complying with all kinds of precedence graph characteristics (e.g.,
sequential or concurrent precedence graphs).

4 Analysis and Results

In this section we present results from our experiments using the SAL’s model
checkers for the development of an integrated task and message schedule for hard-
real time systems. Our experiments were performed on an Intel(R) Pentium(R)
4CPU 2.80GHz and 2,49GB RAM.

The primary function of a model checker is the analysis of a specified model
with respect to a given property. The model checker returns either verified or
falsified, depending whether a given property is fulfilled by the model or not. In
the latter case, the model checkers usually output a counterexample. We use this
capability to compute a combined task and message schedule that is optimal in
terms of minimizing the maximum latency.

By failing the property we obtain a counterexample containing a task and
message schedule. This schedule might not be optimal, concerning end to
end latency, because the transition system is allowed to take transitions at
which no time is consumed. To obtain an optimal task and message sched-
ule under consideration, we further use a binary search for finding that solu-
tion. To find such a counterexample we can either use SAL’s bounded model
checker [11], sal-bmc, or one of SAL’s symbolic model checkers, sal-smc or,
sal-wmc [12]. We want a schedule that guarantees that all tasks are finished
and all messages are sent, that is we look for a witness for the CTL formula
EF (∀i : TASKS. currenttaskarray[i].t f inished = TRUE). The condition
that all message are sent is implicitly contained in this formula, since all tasks
finished implies that all messages have been sent. By model checking the nega-
tion of above formula, we obtain a counterexample that contains the solution to
the task-message scheduling problem. This negation of the above CTL formula
is specified in SAL as the following theorem, stating that in (reacheable) every
state there are some tasks that have not finished. A counterexample to this for-
mula is generated if a state is reached in which all tasks are finished. The value
of the state variables in the last step of the counterexample gives us the desired
schedule fulfilling the requirement of minimizing the maximum latency.

th: theorem schedule |- AG(EXISTS (i:TASKS):currenttaskarray[i]

.t_finished=FALSE);



SAL-Based Symbolic Scheduling in Time-Triggered Networks 211

For analysis and demonstration of operation, we use the simple example ex-
plained in section 2. We invoke SAL’s symbolic model checker with the com-
mand sal-smc -v 3 scheduler th. SAL outputs a counterexample, which is
explained in the following. Some interesting properties are listed below. The ver-
ification time of sal-smc while finding a counterexample is measured with 1, 109
seconds. The Model Checker explores 93952 states with a total execution time
of 7, 845 seconds.

The symbol model checker shows that there is a state that can be reached
within 24 steps, in which all tasks are finished. This complies to the short-
est counterexample possible. Because of the given functions getPrecTask and
getPrecMsg, as described in section 3.1, the schedule is modeled - in the words
of a precedence graph - from source to sink. In case of any resource constraints,
either bus or CPU restrictions, the model checker performs different possible
schedules. For example, there are two tasks, task t1 and task t2 allocated to the
same resource which are able to be started. Thus, three different possibilities are
given. One possibility allocates primary task t1 to the shared resource, in the
other one the task t2 is preferred. The third possible solution would be if none of
them would allocate this resource. However, the third solution would not be fea-
sible, because of the optimality requirement of minimizing the maximum latency.
The start task transition enables these possibilities by defining these possi-
bilities as next states s′1, s′2 and s′3. Additionally the change task transition
handles the further possibility of stopping and replacing an already started task.
This is useful to minimize the overall scheduling length.

Thus, by reaching a state, that fails the correctness property (complies to
the situation in which all tasks are finished), it would implicitly indicate that
there are no counterexamples with less than the certain number of steps. Hence,
there are no shorter schedules reachable. As shown in the counterexample for
our example, 24 transitions steps are necessary to find a schedule, in which all
tasks have been scheduled optimally.

Step 24: --- System Variables (assignments) ---

currenttaskarray[Task0].t_clock = 2

currenttaskarray[Task0].t_comp = 2

currenttaskarray[Task0].t_finished = true

currenttaskarray[Task0].t_node = Node0

currenttaskarray[Task0].t_start = 0

currenttaskarray[Task0].t_started = true...

currentmessagearray[Edge0].m_set = true

currentmessagearray[Edge0].m_slot = 2

currentmessagearray[Edge0].m_started = true

currentmessagearray[Edge1].m_set = true ...

Time = 10

Bus_free = true

The counterexample comprises the different global variables, calculated by
the model checker. From this counterexample a schedule γ = {ti �→ γi|∀ti ∈
T } for our simple example (compare section 2) is extracted as: γ = {t0 �→
〈0, {sl2, sl3}〉, t1 �→〈3, {sl5}〉, t2 �→〈5, {sl7}〉, t3 �→〈8, {}〉}



212 S. Voss, M. Sorea, and K. Echtle

This schedule is illustrated in figure 3a. As explained in section 2, the tasks
Task1 and Task2 are allocated to the same node: Node1. Hence, the execution
ordering needs to be sequential for that node (compare figure 3a). The optimal
schedule length for the given tasks is 10 time units. This is given by the global
variable Time in the above counterexample. The Time variable is just influenced
by the two transitions run task transition and start message transition.
As explained in section 3.3, these transitions guarantee that the time only pro-
ceeds, if no other transitions are able to be handled. That is why the current
time reached in any certain state, represented by the variable Time equals the
schedule length.

Slot 7Slot 5

= 0S 0 S 1 = 3

Mess.

Task

Task 0

Task 1

Schedule

m0 m1

Task 2

m3m2

S 2 = 5 S 3 = 8

Task 3

Slot 2 Slot 3 Length = 10

(a) Calculated Task and Message Sched-
ule

Start_Task_Transition 
(Task 0)

Run_Task_Transition 
(Task 0)

Run_Task_Transition 
(Task 0)

Finish_Task_Transition 
(Task 0)

Start_Msg_Transition
(Edge0)

Start_Msg_Transition
(Edge1)

End_Msg_Transition
(Edge1)

End_Msg_Transition
(Edge0)

...

...

(b) Ordering of transitions

Fig. 3. Final Schedule and Ordering of transitions

Although the transitions are written in arbitrary order, they cannot be exe-
cuted non-deterministically due to undesirable effects on the integrated schedule.
Thus, an ordering has to be chosen in such a way to reflect the constraints posed
on task execution and message transmission as given by the precedence graph.
For the example in section 2 the possible execution ordering of transitions is
depicted in figure 3b. The given precedence graph G is traversed from source to
sink. The source task(s) tsource are characterized by the non-existence of any pre-
decessors (input messages). Thus, the start task transitions for such source tasks
are executed first. Whenever the given precedence graph G allows for different
possible solutions, characterized by the concurrency to a shared resource (either
the time-triggered bus or a nodes’ CPU), we use the model checker’s capabilities
(state space exploration) to explore all interleaved possibilities. The ordering of
transitions is caused by this requirement. Figure 3.3 points out that both Edge0
(message 0) and Edge1 (message1) may access the next available time slot. Thus,
both ways are handled via different next states s′. Generally, from each given
state s the transitions generate a next state s′ with all necessary scheduling
combinations which are possible, according to the given precedence graph G.

4.1 Results of Experiment Series

To get a better understanding of complexity in terms of precedence graph struc-
ture and verification time, a graph generator tool was written in Java. The



SAL-Based Symbolic Scheduling in Time-Triggered Networks 213

verification time can be seen as the CPU time for verifying an integrated task
and messages schedule using SAL 3.0. These runtimes are given in seconds and
were measured for 20 randomly generated graphs consisting out of N number
of tasks ranging from 3 to 12. Each graph may have multiple starting nodes
and multiple ending nodes. The complete structure is calculated randomly. The
proportion of task and message is 1:1.

All these numbers, given in figure 4a, must be taken with caution. They
reflect the performance of sal-smc on the specific formalization of the integrated
task and message scheduling problem specified in SAL. But, never the less, the
expected trend can be confirmed. Each verification time displayed in the table is
the average value of all 20 graphs consisting of N tasks. The standard deviation
reflects the mean variation of values from the average value of all 20 graphs.
As it can be seen by the verification time, increasing the number of task in the
randomized precedence graphs would increase the verification time exponentially.
Besides, the standard deviation is increased dramatically as well. While having a
standard deviation of 9, 05s for graphs with 6 tasks, the mean variation from the
average value for precedence graphs with 12 tasks was calculated with 1619, 60s.

In the following the computation time is shown by a logarithmically diagram.
The verification times comply the averagevalue of all 20 graphs. It can be seen, that
starting from precedence graphs containing a minimum of 6 taskswithout dynamic
reordering, a linear correlation of verification time can be identified. Thus, for 13
tasks an averageverification time of around 10000 s can be expected (cf. figure 4b).

(a) Computation Time of Experiment
Series

(b) Comparison with dynamic reordering

Fig. 4. Results of Experiment Series

Model Checking has been proven to be a powerful tool in calculation of inte-
grated task and message scheduling. However, efficient model checking of prob-
lems with huge state spaces is only possible with efficient representation of the
model itself. Ordered Binary Decision Diagrams (OBDDs) allow an efficient sym-
bolic representation of the model. As the size of the OBDDs and also the com-
putation time depends on the order of the input variables, dynamic reordering
strategies may accelerate the process of computation and increases the efficiency
of computation. Figure 4b illustrates the positive effect of dynamic reordering
on the computation time.



214 S. Voss, M. Sorea, and K. Echtle

5 Conclusion and Future Work

We have presented an automatic approach to combined task and message sched-
uling for TDM-based applications that allows to compute an integrated task
and message schedule. We described the modeling concepts for abstracting the
given problem symbolically in SAL, together with the generation of an optimal
schedule under the given requirement of minimizing the maximum latency.

Experimental results have demonstrated how the latest generation of model-
checking tools meets the challenges of providing both a convenient modeling
language and the performance to solve given scheduling problems. However,
it remains to evaluate whether our approach scales up to large industrial ap-
plications. We are currently implementing a heuristic approach for state-space
reduction to scale up for larger application. Furthermore weighted state-space
reduction improvements are considered.

References

1. Pop, P., Eles, P., Peng, Z.: Scheduling with optimized communication for time-
triggered embedded systems. In: CODES 1999, pp. 178–182. ACM Press, New
York (1999)

2. Tovar, E., Vasques, F.: From task scheduling in single processor environments to
message scheduling in a profibus. In: IPPS/SPDP Workshops, pp. 339–252 (1999)

3. Voss, S., Sorea, M., Echtle, K.: Symbolic task and message scheduling for time-
triggered networks (in preparation, 2008)

4. Farcas, E., Farcas, C., Pree, W., Templ, J.: Transparent distribution of real-time
components based on logical execution time. SIGPLAN Not. 40(7), 31–39 (2005)

5. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and Microprogramming - Euromicro Journal (Special
Issue on Parallel Embedded Real-Time Systems) 40, 117–134 (1994)

6. Abdelzaher, T.F., Shin, K.G.: Combined task and message scheduling in dis-
tributed real-time systems. IEEE Trans. Parallel Distrib. Syst. 10(11) (1999)

7. Jensen, A.R., Lauritzen, L.B., Laursen, O.: Optimal task graph scheduling with
binary decision diagrams (2004)

8. Metzner, A., Fränzle, M., Herde, C., Stierand, I.: Scheduling distributed real-time
systems by satisfiability checking. In: RTCSA 2005, Washington, DC, USA, pp.
409–415. IEEE Computer Society Press, Los Alamitos (2005)

9. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari,
A.: Tool presentation: SAL2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114. Springer, Heidelberg (2004)

10. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

11. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From
refutation to verification. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 14–26. Springer, Heidelberg (2003)

12. Shankar, N., Sorea, M.: Counterexample-driven model checking. Technical Report
SRI-CSL-03-04, SRI International (2003)



Incremental Reasoning for Multiple Inheritance�

Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen

Department of Informatics, University of Oslo, Norway
{johand,einarj,olaf,msteffen}@ifi.uio.no

Abstract. Object-orientation supports code reuse and incremental programming.
Multiple inheritance increases the power of code reuse, but complicates the bind-
ing of method calls and thereby program analysis. Behavioral subtyping allows
program analysis under an open world assumption; i.e., under the assumption
that class hierarchies are extensible. However, method redefinition is severely re-
stricted by behavioral subtyping, and multiple inheritance often leads to conflict-
ing restrictions from independently designed superclasses. This paper presents an
approach to incremental reasoning for multiple inheritance under an open world
assumption. The approach, based on a notion of lazy behavioral subtyping, is
less restrictive than behavioral subtyping and fits well with multiple inheritance,
as it incrementally imposes context-dependent behavioral constraints on new sub-
classes. We formalize the approach as a calculus, for which we show soundness.

1 Introduction

Object-orientation supports code reuse and incremental programming through inheri-
tance. Class hierarchies are extended over time as subclasses are developed and added.
A class may reuse code from its superclasses but it may also specialize and adapt this
code by providing additional method definitions, possibly overriding definitions in su-
perclasses. This way, the class hierarchy allows programs to be represented in a compact
and succinct way, significantly reducing the need for code duplication. Late binding is
the underlying mechanism for this incremental programming style; the binding of a
method call at run-time depends on the actual class of the called object. Consequently,
the code to be executed depends on information which is not statically available. Al-
though late binding is an important feature of object-oriented programming, this loss of
control severely complicates reasoning about object-oriented programs.

Behavioral subtyping is the most prominent solution to regain static control of late-
bound method calls (see, e.g., [21, 1, 20]), with an open world assumption; i.e., where
class hierarchies are extensible. This approach achieves incremental reasoning in the
sense that a subclass may be analyzed in the context of previously defined classes,
such that previously proved properties are ensured by additional verification conditions.
However, the approach restricts how methods may be redefined in subclasses. To avoid
reverification, any method redefinition must preserve certain properties of the method
which is redefined. In particular, this applies to the method’s contract; i.e., the pre- and

� This research is partially funded by the EU project IST-33826 CREDO: Modeling and analysis
of evolutionary structures for distributed services (http://credo.cwi.nl).

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 215–230, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



216 J. Dovland et al.

postcondition for its body. This contract can be seen as a description of the promised
behavior of all implementations of the method. Unfortunately, this restriction hinders
code reuse and is often violated in practice [30]; for example, it is not respected by the
standard Java library definitions.

Multiple inheritance offers greater flexibility than single inheritance, as several class
hierarchies can be combined in a subclass. However, it also complicates language de-
sign and is often explained in terms of complex run-time data structures such as vir-
tual pointer tables [31], which are hard to understand. Formal treatments are scarce
(e.g., [29,8,5,14,32]), but help clarify intricacies, thus facilitating design and reasoning
for programs using multiple inheritance. Multiple inheritance also complicates behav-
ioral reasoning, as name conflicts may occur between methods independently defined
in different branches of the class hierarchy.

Work on behavioral reasoning about object-oriented programs has mostly focused
on languages with single inheritance (see, e.g., [27, 28, 7]). It is an open problem how
to design an incremental proof system for multiple inheritance under an open world
assumption, without severely restricting code reuse. In this paper we propose a solution
to this problem. The approach extends lazy behavioral subtyping, which was originally
developed for single inheritance systems [13] to allow more flexible code reuse than rea-
soning systems based on behavioral subtyping. Our approach applies to a wide class of
object-oriented systems, relying on the assumption of a healthy binding strategy, which
is needed for incremental reasoning. Healthiness may easily be imposed on non-healthy
binding strategies. The approach is formalized as a syntax-driven inference system, for
which we show soundness, combines deductive style program logic with incremen-
tal program development, and is well-suited for program development environments.
Proofs and a more detailed example may be found in [12].

Paper overview. Sect. 2 introduces late binding and multiple inheritance, Sect. 3 proof
environments for behavioral reasoning, and Sect. 4 presents the inference system for in-
cremental reasoning. Sect. 5 discusses methodological aspects, Sect. 6 discusses related
work, and Sect. 7 concludes the paper.

2 Late Binding and Multiple Inheritance

An object-oriented kernel language is given in Fig. 1, based on Featherweight Java [16].
For simplicity, we let expressions e be without side-effects and assume that fields f have
(locally) distinct names, methods with the same name have the same signature (i.e., no
method overloading), class names are unique, programs are well-typed, there is read-
only access to the formal parameters of methods, as well as this, and we ignore the

P ::=L {t} L ::=class C extends C { f M}
M ::=m (x){t} e ::=new C | b | v | this | e.m(e) | m(e) | m(e)@C

v ::= f | f @C t ::= v := e | return e | skip | if b then t else t fi | t;t

Fig. 1. The language syntax, with class names C and method names m. Expressions e include
fields, this, object creation, Boolean expressions b, and method calls. Whitespace is used for
list concatenation (i.e., e is a list and e e a non-empty list of expressions).



Incremental Reasoning for Multiple Inheritance 217

types of fields and methods. Two notable differences to Featherweight Java are multiple
inheritance and a corresponding form of static method calls. These are explained below.
(For brevity, we do not explain standard language features in detail.)

A class C extends a list C of superclass names with fields f and methods M, where
C consists of unique names. We say that C defines a method m if the set M contains
an implementation of m. Let a partial function body(C,m) return this implementation
(so body(C,m) is undefined if m is not in M). For any superclass B of C and method
m defined in B, we say that C inherits m from B if C does not define m, otherwise m is
overridden in C. We say that a class C1 is below class C2 (written C1 ≤C2) if C1 and C2

are the same class or if C1 extends a class below C2. Furthermore, C2 is above C1 if C1

is below C2. A subclass is below a superclass. Two classes are related if one is below
the other.

There are two kinds of method calls. A static call m(e)@C may occur in a class
below C, and it is bound above C at compile time. This statement generalizes the call
to the superclass found in languages with single inheritance. In a remote call e.m(e),
the object e receives a call to m with actual parameters e. For convenience, we write
e.m(e) or simply e.m instead of v := e.m(e) if the result is not needed. Explicit self-
calls, written m(e), are late-bound to this. Similarly, f @C binds a field f above C.

2.1 Name Conflicts and Healthiness

Inheritance relates classes in a class hierarchy. For single inheritance this hierarchy
forms a tree, whereas for multiple inheritance, the hierarchy forms a directed, acyclic
graph. In the single inheritance tree, vertical name conflicts occur when a subclass over-
rides a method from a superclass. The binding strategy for method calls must resolve
such conflicts. Late binding or dynamic dispatch selects the method body to be executed
at run-time, depending on the callee’s run-time class: the selected body is found by the
first matching definition of the method above the actual class of the object. In multiple
inheritance class hierarchies there are also horizontal name conflicts. These occur when
different definitions of the same method are found above a given class, depending on
the chosen path through the hierarchy. More elaborate binding strategies are needed to
resolve horizontal conflicts. Some binding strategies are infeasible, as they contradict
incremental program development. This is illustrated by the following example.

Example 1. We consider a class hierarchy for a bank account system, given in Fig. 2.
Potential problems with horizontal name conflicts are illustrated by the classes in Fig. 3,
sketching an implementation of the account system. (A more detailed implementation

Account

���������
���������� Number

����������

FeeAccount

���������� InterestAccount

������������

Card

Fig. 2. A multiple inheritance class hierarchy for an account system. The inheritance relation is
indicated by lines, e.g., class FeeAccount inherits from Account.



218 J. Dovland et al.

class Account { int bal = 0;
deposit(int x) {...;update(x)}
withdraw(int x) {...;update(-x)}
update(int y) {...;bal=bal+y;...}}

class Number { int num;
update(int x) {num = x }
increase(int x) {update(num+x)}}

class InterestAccount extends Account Number { int fee;
addInterest(int x y) {...; deposit(x);increase(y)}
withdraw(int x) {withdraw(x)@Account;if bal<0 then update(-fee) fi}}

class FeeAccount extends Account { int fee;
withdraw(int x) {withdraw(x)@Account;update(-fee) }
update(int y) {...; bal=bal+y;...}}

class Card extends FeeAccount InterestAccount {
withdraw(int x) {withdraw(x)@InterestAccount;update(-fee@FeeAccount)}}

Fig. 3. Implementation sketches of the classes in Fig. 2

is available in the extended version of this paper [12].) Class Account implements
basic facilities for depositing and withdrawing money. The actual manipulation of the
balance is implemented by a method update. Class Number, developed indepen-
dently of Account, provides functionality for manipulating a number num. These two
classes are inherited by the subclass InterestAccount, where field num plays the
role of the current interest rate. Method addInterest increases the interest rate after
depositing a value. For InterestAccount, inheritance of Account and Number
gives a horizontal name conflict for method update. The behavior of the two ver-
sions of update is completely different, which means that the behavior specified by
increase in Number will not hold in the subclass, if the self-call to update in
increase is bound to Account. Thus, in order to support incremental design, the
self-call in Number should bind to the definition in Number, and correspondingly for
the self-call in Accountshould bind to the definition in Account.

One solution to resolve horizontal name conflicts is explicit resolution specified as part
of an inheritance list; e.g., to use qualification or renaming as in C++ [31], Eiffel [23],
and POOL [2]. However, it might be undesirable to force the programmer to modify
method names, making programs more difficult to understand and maintain. We gen-
eralize this approach and decorate each self-call with a binding clause restricting the
binding space. Such a clause may represent a specific name resolution strategy, or be
explicitly provided by the programmer. This way, the approach of this paper is applica-
ble to several resolution strategies. Binding clauses allow us to consider horizontal name
conflicts as a natural feature of multiple inheritance. In particular when using libraries,
the programmer cannot be expected to know (or resolve) potential name conflicts of,
e.g., auxiliary methods in the libraries. To support incremental program development
and reasoning, we impose the following healthiness condition on the binding strategy:

– a self-call made by a method defined in C must bind to a class related to C, and
– a remote call x.m, where x has C as declared class, must bind to a class related to C.

It is easy to see that healthiness removes accidental overriding of methods, due to
unfortunate binding. Let C#m denote a call to m where the binding is restricted to



Incremental Reasoning for Multiple Inheritance 219

classes related to C. In Example 1, if the call to update in Number is replaced
by Number#update, the call becomes healthy. When executed in an instance of
InterestAccount, the call will bind related to Number. For the rest of the paper,
we use the convention that a self-call to m made by a method defined in C is understood
as C#m. Similarly, a remote call x.m with C as the declared class of x, is understood as
x.C#m. As static calls are inherently healthy, this ensures healthy binding. A particular
binding strategy is given below. We here assume that the notation C#m and x.C#m is
introduced during static analysis, but it could also be made available to the programmer.

2.2 The Binding of Method Calls and Fields

For the reasoning system, we need an explicit definition of a healthy resolution strat-
egy. In this paper, we formalize the strategy by a function bind defined below. Other
definitions of bind are possible and would lead to variations of the calculus. A call to a
method m is bound with respect to a search class D; i.e., bind(D,m), where the search
for a definition of m starts in D. Following [9, 11, 17], ambiguities are solved by fixing
the order in which inherited classes are searched, e.g., from left to right. Let Cid and
Mid denote class and method names. To make the representation of class hierarchies
compact, a class name is bound to a tuple 〈C, f ,M〉 of type Class, where C, f , and M
are accessible by the observer functions inh, fields, and mtds, respectively. This binding
strategy can be defined by a partial function bind: List[Cid]×Mid → Cid:

bind(nil,m) � ⊥
bind(D D,m) � D if m ∈ D.mtds
bind(D D,m) � bind(D.inh D,m) otherwise,

where nil denotes the empty list and D.inh D reduces to D when D.inh is empty. This
strategy is not healthy, since a self-call would be bound independently of where in the
hierarchy the call is made. A healthy strategy can be obtained by restricting the binding
to classes related to the class where the call is made. We let the notation bind(D,C#m)
define the call C#m for search class D. The search is restricted by C; the returned class
must be either above or below C. This ensures the healthiness condition described
above. By type-safety, there is a definition of m above C; thus bind(D,C#m) is well-
defined for D below C.

Definition 1. Define bind(_,_#_) : List[Cid]×Cid×Mid → Cid by:

bind(nil,C#m) � ⊥
bind(D D,C#m) � D if (D < C∨D ≥C)∧m ∈ D.mtds
bind(D D,C#m) � bind(D.inh D,C#m) if (D < C∨D ≥C)∧m /∈ D.mtds
bind(D D,C#m) � bind(D,C#m) otherwise

A remote call x.m is bound by bind(D,C#m) where C is the declared class of x and D the
actual class of x. A statically bound method call m@C is bound above C independently
of the actual class that the call is executed in. Following the traversal strategy above,
the binding of the call is given by bind(m@C):

Definition 2. Define bind(_@_) : Mid×Cid → Cid by: bind(m@C) � bind(C,C#m).



220 J. Dovland et al.

Similar binding functions may be used to define the binding of fields: An occurrence of
f @B is allowed inside a class declaration C if B is above C, and is bound above B; and
an unqualified occurrence of f inside C is understood as f @C.

3 Lazy Behavioral Subtyping

Lazy behavioral subtyping supports incremental reasoning for extensible class hierar-
chies; each class is analyzed based on the analysis of its superclasses, but independent
of (future) subclasses. Lazy behavioral subtyping was presented for single inheritance
in [13]. We here present an extension for multiple inheritance and horizontal name con-
flicts, assuming a healthy binding strategy. With healthy binding, a method call binds to
a class related to the calling class. Therefore behavioral constraints may be propagated
down the class hierarchy, which allows incremental reasoning. The proof method has
two parts, a conventional program logic (e.g., [27,15,4,25]) and, on top of that, a proof
environment which incrementally tracks method specifications and requirements.

The proof system uses Hoare triples {p} t {q} with the standard partial correctness
interpretation: if a statement t starts execution in a state where a precondition p holds
and this execution terminates, then the postcondition q holds afterwards. Triples can be
derived in any suited program logic, so let %PL {p} t {q} denote that the triple {p} t {q}
is derivable in the chosen program logic PL. A proof outline [25] for a method definition
m(x){t} is an annotated method definition m(x) : (p,q){t}, where method calls inside t
are decorated with call-site requirements. We henceforth assume that all method bodies
are decorated in this way. The derivability %PL m(x) : (p,q){t} of a proof outline is
given by %PL {p} t {q}. Let Spec denote pairs (p,q) of conditions.

Method specifications and requirements. The verification technique distinguishes be-
tween a method’s declared specification (its contract) and its requirement. Roughly,
the first captures its announced behavior as declared in the pre- and post-condition of
the method definition. In contrast, the requirements stem from call-sites and represent
properties needed to verify the client code of a method, namely to satisfy the client
code’s specification in turn. Due to inheritance and overriding, a method with a given
name is available in more than one class, and can be called from different client codes.
Consequently, the properties are considered per class and its position in the class hier-
archy. If, furthermore, the class hierarchy is incrementally extended, new specifications
and requirements may be added. This bookkeeping of the properties is done in a proof
environment, through the two mappings S and R.

Definition 3 (Proof environments). A proof environment is a triple 〈P,S,R〉 of type
Env, where P : Cid → Class is a partial mapping and R and S are total mappings of
type Cid×Cid×Mid → Set[Spec].

In such a proof environment E , the mapping P reflects the class hierarchy and the two
mappings S and R contain the constraints collected so far during analysis. We use a
subscript, e.g., RE , if the proof environment is not clear from the context.

For a method m defined in a class B, besides m’s declared specification as given in B
itself, subclasses of B may give additional specifications for the method. For example,



Incremental Reasoning for Multiple Inheritance 221

if a method n is overridden by a subclass C of B, and m calls n, a specification of
body(B,m) given by C may account for m’s behavior relying on the overriding version
of n. Hence, for a method m defined in B, S(C,B.m) represents the specification as given
in C. Note that a non-empty S(C,B.m) implies C ≤ B.

Example 2. Recall the method update, implemented in both Account and Number
in Example 1. Let the specifications of these two definitions of update be contained in
S(Account,Account.update) and S(Number,Number.update), respectively.
The common subclass InterestAccountmay provide additional specifications for
these implementations in the sets S(InterestAccount,Account.update) and
S(InterestAccount,Number.update).

In order to preserve a declared specification (p,q) ∈ S(C,B.m) when inheriting m, it is
necessary to impose requirements on methods called via late binding in body(B,m). The
requirements are given by the proof outline m(x) : (p,q){body(B,m)} and maintained
by the requirement mapping R. For each call {r}n(){s} in this outline, the requirement
(r,s) is included in R(C,B#n). Here, C denotes the class that imposes the requirement
and B is the call-site class where m is defined.

Since we work with sets of specifications, the entailment relation is lifted as follows.
Let p′ be the condition p with all fields f substituted by f ′, avoiding name capture.

Definition 4 (Entailment). Assume specifications (p,q) and (r,s), and specification
sets U = {(pi,qi) |1 ≤ i ≤ n} and V = {(ri,si) |1 ≤ i ≤ m}. Entailment is defined by

i) (p,q) � (r,s) � (∀z1 . p ⇒ q′) ⇒ (∀z2 . r ⇒ s′),
where z1 and z2 are the logical variables in (p,q) and (r,s), respectively

ii) U � (r,s) � (
∧

1≤i≤n(∀zi . pi ⇒ q′i)) ⇒ (∀z . r ⇒ s′) .

iii) U � V � ∧
1≤i≤m U � (ri,si) .

The relation U � (r,s) corresponds to Hoare-style reasoning, proving {r} t {s} from
{pi} t {qi} for all 1 ≤ i ≤ n, by means of the adaptation and conjunction rules [3]. En-
tailment is reflexive and transitive, and V ⊆ U implies U � V .

Soundness. It is crucial for incremental reasoning to preserve the declared specifica-
tions for inherited methods: for a specification (p,q) included in S(C,B.m) it is safe
to rely on (p,q) when body(B,m) is executed on an instance of subclasses of C. Note
that overriding implementations of m in such subclasses may satisfy different contracts
than the definition in the superclass. This flexibility goes beyond standard behavioral
subtyping. With the open world assumption the subclasses of C are unknown when C is
analyzed, so soundness is ensured by tracking the requirements that (p,q) imposes on
late-bound calls in body(B,m). If n is overridden in a class D below C, all requirements
towards n made by classes above D must be satisfied by body(D,n). This is expressed
by S(D,D.n) � R↑(D,n), where R↑(D,n) denotes the union of all requirements towards
n made above D; i.e., the union of R(C,B#n) for all D ≤C ≤ B.

In general soundness means that if body(B,m) is executed on an instance of class D,
it must be safe to rely on S↑(D,B.m), which is the union of S(C,B.m) for all classes C
where D ≤C ≤ B. Soundness is formalized by the following definition of sound proof



222 J. Dovland et al.

environments and Lemma 1. Let C ∈ E denote that PE (C) is defined, and x : C.m the
remote call x.m where x is declared with type C.

Definition 5 (Sound environments). Let B,C,D : Cid and m,n : Mid. A sound environ-
ment E satisfies the following two conditions for all B,C ∈ E and m:

i) ∀(p,q) ∈ SE (C,B.m) . ∃body(B,m) . %PL m(x) : (p,q){body(B,m)}
∧ LocalE (C,B,body(B,m))∧RemE (body(B,m))∧StatE (C,body(B,m))

ii) m ∈C.mtds ⇒ SE (C,C.m) � R↑E (C,m)

where

LocalE (C,B,t) � ∀{r}n{s} ∈ t . ∀D ≤E C . S↑E (D,bind(D,B#n).n) � (r,s)
RemE (t) � ∀{r}x : D.n{s} ∈ t . S↑E (D,bind(n@D).n) � (r,s)∧ R↑E (D,n) � (r,s)
StatE (C,t) � ∀{r}n@B{s} ∈ t . S↑E (C,bind(n@B).n) � (r,s)

The soundness of a proof environment can be explained informally as follows: Assume
that (p,q) ∈ SE (C,B.m) and that there is a proof outline of body(B,m) for (p,q). For
each requirement {r}n{s} to a self-call in this proof outline and for each subclass D of
C, (r,s) must follow from the specifications of the method definition to which a call is
bound for search class D. For each requirement {r}x.n{s} to a remote call, (r,s) must
follow from the specification of the method provided by the static type of x, and it must
be imposed on redefinitions below the static type. For each requirement {r}n@A{s} to
a static call, (r,s) must follow from the specification of the method implementation to
which the call will bind. The requirement is not imposed on method overridings since
the call is bound at compile time.

Let |=C {p} t {q} denote |= {p} t {q} provided that late-bound self-calls in t are
bound for search class C, and let |=C m(x) : (p,q){t} be given by |=C {p} t {q}. If t
is without calls and %PL {p} t {q}, then |= {p} t {q} follows by the soundness of PL.
Lemma 1 states that if (p,q) ∈ SE (C,B.m) and body(B,m) is executed in an instance of
a subclass D of C, a sound environment guarantees that (p,q) is a valid specification:

Lemma 1. Assume given a sound environment E and a sound program logic PL. Let
B,D : Cid, m : Mid, and (p,q) : Spec such that B,D ∈ E and (p,q)∈ S↑E(D,B.m). Then
|=D m(x) : (p,q){bodyE (B,m)}.

Example 3. Consider the method Account.withdraw(x), specified by (bal = b0,
bal = b0 − x) ∈ S(Account,Account.withdraw). This specification leads to a
requirement on update: the method modifies the balance according to its parame-
ter. The requirement is satisfied by update defined in Account, and FeeAccount,
the two implementations to which the call in Account can be bound. The separa-
tion of method specifications from requirements made by method calls allows incre-
mental reasoning without imposing the constraints of behavioral subtyping on method
overridings. For instance in FeeAccount, the overriding implementation satisfies
(bal = b0,bal = b0 − x−fee@FeeAccount). Incremental reasoning is still sup-
ported as the static call to the superclass method relies on the verified specification of



Incremental Reasoning for Multiple Inheritance 223

withdraw in Account. Correspondingly for the implementations of withdraw in
InterestAccount and Card.

4 The Inference System for Incremental Reasoning

The inference system analyzes and manipulates the proof environments. Establishing a
proof outline for one method at a given stage of the overall analysis gives rise to (further)
proof-obligations, which are tracked by the proof system (cf. Section 4.1). The system
itself is formalized as a set of derivation rules (cf. Section 4.3), whose traversal through
the class-hierarchy is driven by the analysis operations given in Section 4.2.

4.1 Tracking Behavioral Constraints

Assume that a proof outline m(x) : (p,q){body(B,m)} is given by a class C. To ensure
soundness, this gives rise to the following steps:

1. (p,q) is included in S(C,B.m).
2. for each call {r}n{s} in the proof outline:

(a) (r,s) is analyzed with regard to the implementation of B#n found for search
class C; i.e., the proof obligation S↑(C,E.n) � (r,s) must be established, where
E = bind(C,B#n).

(b) (r,s) is included in R(C,B#n).

Establishing S↑(C,E.n) � (r,s) in step 2a means: Either (r,s) follows directly from
the already established specifications in S↑(C,E.n) by entailment, or the proof outline
n(y) : (r,s){body(E,n)} given by C is analyzed in the same manner as the original spec-
ification of m. This adds (r,s) to S(C,E.n), trivializing the proof of S↑(C,E.n) � (r,s).

Including (r,s) into R(C,B#n) in step 2b constrains future subclasses of C: Each
subclass D of C must ensure

S↑(D,bind(D,B#n).n) � (r,s) (1)

If n is overridden by D, all late-bound calls to n made by classes above D will bind
to the definition of n in D. As explained, the calculus then ensures (1) by establish-
ing S(D,D.n) � R↑(D,n). If n is not overridden by D, we distinguish two cases. Let
E = bind(D,B#n); i.e., the call B#n will bind to the implementation in E for search
class D. If E is related to C, soundness of the analysis of superclasses of D ensures (1).
If otherwise E is unrelated to C, class D may introduce a diamond in the class hierar-
chy, which needs to dealt with. A diamond is introduced by D if there are two different
classes D1 and D2 in D.inh and a class A such that D1 ≤A and D2 ≤A. Let commSup(D)
denote the union of all such classes A. For an E unrelated to C, let B ∈ commSup(D).
Then the requirements R(C,B#n) were not imposed on body(E,n) at the time E was an-
alyzed. For soundness, they are therefore imposed on body(E,n) when the diamond is
created by D. More generally, the same argument applies to all classes between D and B
that are unrelated to E . We let the set dreq(D,B#n) of diamond requirements denote the
union of all R(C,B#n) for C such that D≤C ≤B and bind(D,B#n) is unrelated to C. By
the analysis of D, the calculus ensures (1) by establishing S↑(D,E.n) � dreq(D,B#n).



224 J. Dovland et al.

Note that in the subcase where E is related to C, class D may also introduce a diamond.
This case is covered by the proof of Theorem 1 (details are in the extended version [12]).

Example 4. In the classes of Example 1, the method update is defined in Account
and overridden in FeeAccount. Let class InterestAccount impose a require-
ment (r,s) on update, contained in R(InterestAccount,Account#update).
Now the class Card introduces a diamond in the class hierarchy. Since class Card
is a subclass of InterestAccount, soundness requires the validity of the formula
S↑(Card,bind(Card,Account#update).update) � (r,s) where the method bind-
ing resolves to FeeAccount. Since FeeAccount and InterestAccount are un-
related, (r,s) is in the set dreq(Card,Account#update), and the calculus establishes
the required verification of (r,s) by the analysis of Card.

4.2 Analysis Operations

The judgments of the calculus are of the form E % A , where E is the proof environment
and A is a list of analysis operations with the following syntax.

O ::=ε |anMtd(M) |anOutln(C,t) | verify(C,m,R) | supCls(C) | supMtd(C,m) |O ·O
S ::= /0 |L | require(C,m,(p,q)) |S ∪S
A ::=module(L) | [〈C : O〉 ; S ] | [ε ; S ] |module(L) ·A

Here L denotes a class definition, as defined in Fig. 1. The rule system below specifies
an algorithm that traverses a class hierarchy and its syntactic constituents — classes,
methods, statements, etc. — according to the principles explained above; in particular,
tracking specifications and requirements. The analysis starts with an E % A where E
is empty and A contains the program as a sequence of modules. A module is a set of
classes considered as a compilation unit. At each stage of the development, the modules
given so far represent a complete, compilable program. Programs are open in the sense
that new modules may be analyzed at later stages. Inside a module, the set S contains
a module’s classes. The inference rules ensure that a class can only be analyzed after
analysis of all its superclasses.

The above operations and the proof environment drive the algorithm through the
program. The operation class C extends D {f M} initiates the analysis of C, and
[〈C : O〉 ; S ] analyzes O in the context of class C before operations in S are considered.
The analysis of a specific class involves the analysis of the proof outlines for its methods
M, the verification of the requirements for a method, and collecting the proof obliga-
tions for the calls mentioned inside the method bodies (by the operations anMtd(M),
verify(D,m,R), and anOutln(D,t)). The operation require(D,m,(p,q)) applies to re-
mote calls to ensure that m in D satisfies the requirement (p,q). Requirements are lifted
outside the context of the analyzed class by this operation, and shifted into the set S of
analysis operations. The two remaining operations, supCls(D) and supMtd(D,m) are
only used during analysis of C, if C introduces diamonds.

Environment updates. Updates are represented by the operator _⊕_ : Env×Update →
Env, where the second argument represents the update. There are three different



Incremental Reasoning for Multiple Inheritance 225

environment updates; loading a new class and extending the specifications or the re-
quirements of a method in a class. The updates are defined as follows:

E ⊕ extP(C,D, f ,M) = 〈PE [C �→ 〈D, f ,M〉],SE ,RE 〉
E ⊕ extS(C,D,m,(p,q)) = 〈PE ,SE [(C,D,m) �→ SE (C,D,m)∪{(p,q)}],RE 〉
E ⊕ extR(C,D,m,(p,q)) = 〈PE ,SE ,RE [(C,D,m) �→ RE (C,D,m)∪{(p,q)}]〉

4.3 The Inference Rules

The inference rules are given in Fig. 4. Rule (NEWMODULE) initiates the analysis of a
set of classes. For convenience, we let L denote both a list and set of classes. Further-
more, (NEWCLASS) loads a new class C for analysis, the second premise ensures that the
superclasses D have already been analyzed. For each method m in C, the calculus gen-
erates an operation verify(C,m,R), where R is the set of requirements that must hold
for this method. Rules (REQDER) and (REQNOTDER) deal with the verification of a partic-
ular specification with respect to the implementation. If the specification follows from
the already established specification of the method, rule (REQDER) continues with the
remaining analysis operations. Otherwise, a proof of the specification is required. By
(REQNOTDER) , an outline of the specification is then analyzed by an anOutln operation.
Remark that only rule (REQNOTDER) extends the S mapping.

For a given proof outline, the rules (LATECALL), (STATCALL) , and (REMCALL) handle late-
bound, static, and remote calls, respectively. Rule (LATECALL) extends the R mapping and
generates a verify operation to analyze the requirement for the implementation to which
the call will bind. The extension of R ensures that the requirement will be respected by
future subclasses. Rule (STATCALL) also generates a verify operation, but does not extend
R. Remote late-bound calls are handled by the rules (REMREQ) and (REMCALL), which
allow reasoning from the method requirements given in the declared class of the callee.
Notice that no new requirements are imposed. However, as requirements are generated
from internal self-calls in a class, these may not provide suitable external specifications.

Finally, there are rules for analyzing requirements from common superclasses when
diamonds are introduced in the environment. Rule (SUPMTD) generates a supMtd for
each common superclass. For each method called by a common superclass, (SUPREQ)

generates a verify operation for the requirements imposed by calls to the method. If a
class introduced by (NEWCLASS) does not have any common superclasses, the generated
supCls operation will have an empty argument and can be discarded by (NOSUP).

For brevity, we elide a few straightforward rules which formalize a lifting from
single-elements to sets or sequences of elements. For example, the rule for anMtd(M)
(which occurs in the premise of (NEWCLASS)), generalizes the analysis of a single method
which is done in (NEWMTD) . These rules are included in the extended version of this pa-
per [12], together with the proof of the soundness theorem below. Note that a proof
of E % module(L) has exactly one leaf node E ′ % [ε ; /0]; we call E ′ the environment
resulting from the analysis of module(L).

Theorem 1. Let E be a sound environment and L a set of class declarations. If a proof
of E % module(L) has E ′ as its resulting environment, then E ′ is also sound.



226 J. Dovland et al.

(NEWCLASS) (NEWMODULE)

C /∈ E D �= nil ⇒ D ∈ E E = commSupE (C)
E ⊕extP(C,D, f ,M) % [〈C : anMtd(M) · supCls(E)〉 ; S ] ·A

E % [ε ; {class C extends D {f M}}∪S ] ·A

E % [ε ; L] ·A
E % module(L) ·A

(NEWMTD) (EMPCLASS)

E % [〈C : verify(C,m,{(p,q)}∪R↑E (C.inh,m)) ·O〉 ; S ] ·A
E % [〈C : anMtd(m(x) : (p,q){t}) ·O〉 ; S ] ·A

E % [ε ; S ] ·A
E % [〈C : ε〉 ; S ] ·A

(REQDER) (EMPMODULE)

S↑E (C,D.m) � (p,q) E % [〈C : O〉 ; S ] ·A
E % [〈C : verify(D,m,(p,q)) ·O〉 ; S ] ·A

E % A
E % [ε ; /0] ·A

(REQNOTDER)

%PL m : (p,q){bodyE (D,m)}
E ⊕extS(C,D,m,(p,q)) % [〈C : anOutln(D,bodyE (D,m)) ·O〉 ; S ] ·A

E % [〈C : verify(D,m,(p,q)) ·O〉 ; S ] ·A

(LATECALL)

E = bind(C,D#m) E ⊕extR(C,D,m,(p,q)) % [〈C : verify(E,m,(p,q)) ·O〉 ; S ] ·A
E % [〈C : anOutln(D,{p}m{q}) ·O〉 ; S ] ·A

(STATCALL)

E % [〈C : verify(bind(m@B),m,(p,q)) ·O〉 ; S ] ·A
E % [〈C : anOutln(D,{p}m@B{q}) ·O〉 ; S ] ·A

(REMCALL)

E % [〈C : O〉 ; S ∪{require(E,m,(p,q))}] ·A
E % [〈C : anOutln(D,{p}x : E.m{q}) ·O〉 ; S ] ·A

(REMREQ)

C ∈ E R↑E (C,m) � (p,q) S↑E (C,bind(m@C).m) � (p,q) E % [ε ; S ] ·A
E % [ε ; {require(C,m,(p,q))}∪S ] ·A

(SUPMTD)

E % [〈C : supMtd(D,calledE (D)\C.mtds) ·O〉 ; S ] ·A
E % [〈C : supCls(D) ·O〉 ; S ] ·A

(SUPREQ)

E = bind(C,D#m) E % [〈C : verify(E,m,dreq(C,D#m)) ·O〉 ; S ] ·A
E % [〈C : supMtd(D,m) ·O〉 ; S ] ·A

(NOSUP) (NOSUPMTD)

E % [〈C : O〉 ; S ] ·A
E % [〈C : supCls( /0) ·O〉 ; S ] ·A

E % [〈C : O〉 ; S ] ·A
E % [〈C : supMtd(D, /0) ·O〉 ; S ] ·A

Fig. 4. The inference system. Here m denotes a call, including actual parameters, and called(D)
denotes the names of the methods called by D.



Incremental Reasoning for Multiple Inheritance 227

5 Methodological Aspects

With the given approach, a programmer typically provides S-requirements for
each class. Their verification generates R-requirements for the late-bound self-calls
occurring in the class, which will be imposed on subclass redefinitions of the called
methods. In a subclass C, redefined methods can violate the S-requirements of a super-
class, but not the R-requirements. C may give additional contracts for inherited meth-
ods, resulting in additional verification of such methods, which may generate additional
R-requirement for future subclasses of C. With multiple inheritance, this means that
different parts of the inheritance graph may have different R-requirements to the same
method. Note that behavioral subtyping is not implied by this approach: When m is
overridden, the new definition need not implement all superclass specifications of m,
but only the R-requirements made towards usage of m. This way, lazy behavioral sub-
typing still supports incremental reasoning under an open world assumption.

A weakness of the approach presented here is that a remote call x.m(..) may create
R-requirements to m for the declared class of x, say C, and these requirements must
be imposed on C and its subclasses, unless they follow from already established R-
requirements to m for C. Adding R-requirements to a previously established class hier-
archy can lead to several verification tasks, which makes the approach less modular. As
R-requirements generated from internal self-calls in a class may not in general provide
suitable external properties, a programmer should provide R-requirements such that rea-
soning about remote calls can be derived from these. Therefore a programmer should
be aware of the distinction between S- and R-requirements, and be able to provide both,
and that unnecessarily strong R-requirements will restrict future method redefinitions.

A more modular version of lazy behavioral subtyping may be obtained by using
behavioral interfaces. A behavioral interface describes the visible methods of a class
and their contracts (or possibly an invariant), and inheritance may be used to form
new interfaces from old ones. An advantage of seeing all classes through interfaces is
that explicit hiding constructs become superfluous. A class may then be specified by a
number of interfaces. If all object variables (references) are typed by interfaces, one may
let the inheritance hierarchies of interfaces and classes be independent. In particular, one
need not require that a subclass of C inherits (nor respects) the behavioral interfaces
specified for C: Static type checking of an assignment x := e must then ensure that the
expression e denotes an object supporting the declared interface of the object variable
x. In this setting, the substitution principle for objects can be reformulated as follows:
For an object variable x with declared interface I, the actual object referred to by x at
run-time will satisfy the behavioral specification I. As a consequence, a subclass may
freely reuse and redefine superclass methods, since it is free to violate the behavioral
specification of superclasses. Reasoning about a remote call x.m(..) can then be done
by relying on the behavioral interface of the object variable x, simplifying rule (REMREQ)

to simply check interface contracts. This approach is followed by, e.g., Creol [18].

6 Related Work

Multiple inheritance is supported in, e.g., C++ [31], CLOS [11], Eiffel [23], POOL [2],
and Self [9]. Horizontal name conflicts in C++, POOL, and Eiffel are removed by



228 J. Dovland et al.

explicit resolution, after which the inheritance graph may be linearized. Multiple dis-
patch, or multi-methods [11], gives a more powerful binding mechanism, but reasoning
about multi-methods and redefinition is difficult. The prototype-based language Self [9]
proposes an elegant prioritized binding strategy. Each superclass is given a priority.
With equal priority, the superclass related to the caller class is preferred. However, ex-
plicit class priorities may cause surprises in large class hierarchies: names may become
ambiguous through inheritance. If neither class is related to the caller, binding fails.

Formalizations of multiple inheritance in the literature traditionally use the objects-
as-records paradigm. This approach addresses subtyping issues related to subclassing,
but method binding is not easily captured. In Cardelli’s denotational semantics of mul-
tiple inheritance [8], not even access to methods of superclasses is addressed. Rossie,
Friedman, and Wand [29] formalize multiple inheritance using subobjects, a run-time
data structure used for virtual pointer tables [19,31]. This work focuses on compile-time
issues and does not clarify multiple inheritance at the abstraction level of the program-
ming language. A natural semantics for late binding in Eiffel models the binding mech-
anism at the abstraction level of the program [5]. Recently, an operational semantics
and type safety proof inspired by C++ has been formalized in Isabelle [32].

Work on behavioral reasoning about object-oriented programs address languages
with single inheritance (e.g., [27, 28, 7]). For late binding, different variations of be-
havioral subtyping are most common [21, 1, 20], as discussed above. Pierik and de
Boer [27] present a sound and complete reasoning system for late-bound calls which
does not rely on behavioral subtyping. This work, also for single inheritance, is based on
a closed world assumption, meaning that the class hierarchy is not open for incremental
extensions. To support object-oriented design, proof systems should be constructed for
incremental reasoning.

Lately, incremental reasoning, both for single and multiple inheritance, has been
considered in the setting of separation logic [22, 10, 26]. These approaches support a
distinction between static specifications, given for each method implementation, and
dynamic specifications that are used to verify late-bound calls. The dynamic specifica-
tions are given at the declaration site, in contrast to our work where late-bound calls are
verified based on call-site requirements.

7 Conclusion and Future Work

Lazy behavioral subtyping supports incremental reasoning under an open world
assumption, where class hierarchies can be gradually extended by inheritance. The
approach is more flexible than traditional behavioral subtyping, as illustrated by the
running example. This paper has introduced a healthiness condition for method bind-
ing and extended lazy behavioral subtyping to the setting of multiple inheritance for
healthy binding strategies. This extension requires additional context information for
method specifications and requirements, in order to resolve ambiguities that do not oc-
cur in single inheritance languages. The combination of healthiness and lazy behavioral
subtyping has the advantage that requirements from two independent class hierarchies
do not interfere with each other when the hierarchies are combined in a common sub-
class. This is essential in an incremental proof system.



Incremental Reasoning for Multiple Inheritance 229

The inference rules for incremental reasoning presented in this paper are essentially
syntax-driven and would form a good basis for integrating behavioral reasoning in a
tool supported environment for program development. In such a tool, specifications for
method definitions must be manually annotated, whereas method requirements in proof
outlines may often be inferred. The integration of lazy behavioral subtyping in the KeY
tool [6] is currently being investigated. This integration will allow more elaborate case
studies to better evaluate the methodology and practical applicability of the approach.

References

1. America, P.: Designing an object-oriented programming language with behavioural subtyp-
ing. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1990. LNCS, vol. 489,
pp. 60–90. Springer, Heidelberg (1991)

2. America, P., van der Linden, F.: A parallel object-oriented language with inheritance and
subtyping. In: Meyrowitz, N. (ed.) Proceedings of the Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA 1990), vol. 25(10), pp. 161–
168. ACM Press, New York (1990)

3. Apt, K.R.: Ten years of Hoare’s logic: A survey — Part I. ACM Transactions on Program-
ming Languages and Systems 3(4), 431–483 (1981)

4. Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Systems. In: Texts and
Monographs in Computer Science. Springer, Heidelberg (1991)

5. Attali, I., Caromel, D., Ehmety, S.O.: A natural semantics for Eiffel dynamic binding. ACM
Transactions on Programming Languages and Systems 18(6), 711–729 (1996)

6. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software.
LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

7. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on Software Tools
for Technology Transfer 7(3), 212–232 (2005)

8. Cardelli, L.: A semantics of multiple inheritance. Information and Computation 76(2-3),
138–164 (1988)

9. Chambers, C., Ungar, D., Chang, B.-W., Hölzle, U.: Parents are shared parts of objects: In-
heritance and encapsulation in SELF. Lisp and Symbolic Computation 4(3), 207–222 (1991)

10. Chin, W.-N., David, C., Nguyen, H.-H., Qin, S.: Enhancing modular OO verification with
separation logic. In: Necula and Wadler [24], pp. 87–99.

11. Demichiel, L.G., Gabriel, R.P.: The common lisp object system: An overview. In: Bézivin, J.,
Hullot, J.-M., Lieberman, H., Cointe, P. (eds.) ECOOP 1987. LNCS, vol. 276, pp. 151–170.
Springer, Heidelberg (1987)

12. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Incremental reasoning for multiple in-
heritance. Research Report 373, Dept. of Informatics, University of Oslo (April 2008),
http://heim.ifi.uio.no/~creol

13. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. In: Cuellar, J.,
Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 52–67. Springer, Heidelberg
(2008)

14. Fournet, C., Laneve, C., Maranget, L., Rémy, D.: Inheritance in the Join calculus. Journal of
Logic and Algebraic Programming 57(1-2), 23–69 (2003)

15. Hoare, C.A.R.: An Axiomatic Basis of Computer Programming. Communications of the
ACM 12, 576–580 (1969)

16. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems 23(3), 396–450 (2001)

http://heim.ifi.uio.no/~creol


230 J. Dovland et al.

17. Johnsen, E.B., Owe, O.: A dynamic binding strategy for multiple inheritance and asyn-
chronously communicating objects. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever,
W.-P. (eds.) FMCO 2004. LNCS, vol. 3657, pp. 274–295. Springer, Heidelberg (2005)

18. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for distributed
concurrent systems. Theoretical Computer Science 365(1–2), 23–66 (2006)

19. Krogdahl, S.: Multiple inheritance in Simula-like languages. BIT 25(2), 318–326 (1985)
20. Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance, and modular

reasoning. Tech. Rep. 06-20a, Dept. of Comp. Sci., Iowa State University (2006)
21. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on Program-

ming Languages and Systems 16(6), 1811–1841 (1994)
22. Luo, C., Qin, S.: Separation logic for multiple inheritance. Electronic Notes in Theoretical

Computer Science 212, 27–40 (2008)
23. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood Cliffs

(1997)
24. Necula, G.C., Wadler, P. (eds.): 37th Annual Symposium on Principles of Programming Lan-

guages (POPL 2008). ACM Press, New York (2008)
25. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informat-

ica 6(4), 319–340 (1976)
26. Parkinson, M.J., Biermann, G.M.: Separation logic, abstraction, and inheritance. In: Necula

and Wadler [24]
27. Pierik, C., de Boer, F.S.: A proof outline logic for object-oriented programming. Theoretical

Computer Science 343(3), 413–442 (2005)
28. Poetzsch-Heffter, A., Müller, P.: A programming logic for sequential Java. In: Swierstra, S.D.

(ed.) ESOP 1999. LNCS, vol. 1576, pp. 162–176. Springer, Heidelberg (1999)
29. Rossie Jr., J.G., Friedman, D.P., Wand, M.: Modeling subobject-based inheritance. In: Cointe,

P. (ed.) ECOOP 1996. LNCS, vol. 1098, pp. 248–274. Springer, Heidelberg (1996)
30. Soundarajan, N., Fridella, S.: Inheritance: From code reuse to reasoning reuse. In: Devanbu,

P., Poulin, J. (eds.) Proc. Fifth International Conference on Software Reuse (ICSR5), pp.
206–215. IEEE Computer Society Press, Los Alamitos (1998)

31. Stroustrup, B.: Multiple inheritance for C++. Computing Systems 2(4), 367–395 (1989)
32. Wasserrab, D., Nipkow, T., Snelting, G., Tip, F.: An operational semantics and type safety

proof for multiple inheritance in C++. In: Tarr, P.L., Cook, W.R. (eds.) Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA 2006), pp. 345–362. ACM, New York (2006)



Model Checking LTL Formulae in RAISE with FDR

Abigail Parisaca Vargas1, Ana G. Garis2, S. Lizeth Tapia Tarifa1, and Chris George3

1 San Pablo Catholic University, Arequipa, Peru
2 University of San Luis, Argentina

3 International Institute for Software Technology,
United Nations University, Macao

Abstract. The Raise Specification Language (RSL) is a modeling language which
supports various specification styles. To apply model checking to RSL concurrent
descriptions, we translate RSL specifications into the input language CSPM of
FDR. FDR is the model checker for the process algebra CSP. First, we define a
syntactic and semantic translation from the concurrent applicative subset of RSL
to CSPM, and show that this translation is a strong bisimulation which preserves
properties such as traces and deadlock. Consequently, results obtained by refine-
ment checks in FDR are sound for the original RSL descriptions. Second, RSL
uses Linear Temporal Logic (LTL) to specify desired properties, but FDR does
not support LTL. LTL formulas may be translated to CSP test processes in order
to check them with FDR. We build a tool which automates the translation of RSL
specifications into CSPM and translates LTL formulas to CSP processes, enabling
the model checking of LTL formulas over RSL descriptions with FDR.

Keywords: RAISE, RSL, CSP, FDR, formal methods, model checking, refine-
ment, tools, LTL.

1 Introduction

Concurrent systems are increasingly necessary in society. Two characteristics that make
concurrent processes difficult to understand are distribution and reactivity. In order to
facilitate the modeling and verification of such complicated systems, we need powerful
languages and tools than can facilitate the modeling and verification of them.

Although many different kinds of modelling languages and tools are available, it can
still be difficult to model and reason about these systems. Combining the use of two or
more of these formalisms may be suitable to model a particular system. Moreover, it is
also possible to integrate different formalisms to automate the different kinds of tasks
that should be done.

In this paper, we describe the steps we followed in order to model check Raise Speci-
fication Language (RSL) descriptions using the CSP model checker FDR [10]. Section 2
discusses model checking in the context of RSL.

In Section 3 we describe our approach to develop a translation from RSL [5] to
CSP [6,16,14], in particular to its machine-readable variant CSPM . We establish a con-
current applicative subset of RSL that has a translation to CSPM , then we establish
a semantic link between an RSL specification and its CSPM translation by means of
bisimulation. This translation is, actually, a strong bisimulation that preserves properties

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 231–245, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



232 A. Parisaca Vargas et al.

such as deadlock and divergence. Hence we show that results obtained by refinement
checks in FDR are sound with respect to the original RSL description.

In Section 4 we consider how to assert and prove properties of our models. In model
checking by refinement, one has to express the required property in terms of a more
abstract process: the property is valid for a model if the property’s description as a pro-
cess is refined by the model. In CSP there are three kind of refinement: traces, failures
and failures-divergences. Each one is specially useful for proving different properties;
for instance, traces refinement is useful for proving safety properties. It is not always
convenient to express properties in terms of more abstract processes, and temporal logic
has been the traditional means of stating properties to be model checked.

The relationship between the refinement-based and temporal logic approach was
studied by Leuschel, Massart and Currie [9,8]. They show an approach for doing LTL
model checking of CSP specifications using refinement checking in FDR. They present
a way to handle deadlocking systems, and discuss the validity for infinite state systems.
After analyzing Leuschel, Massart and Currie’s approach, we take the general idea and
adapt it to translate LTL formulae from RSL to CSP processes.

Section 5 gives a short description of our tool, which implements the various steps
of the approach explained in the paper.

Section 6 summarizes the achievement: a tool that translates a subset of RSL into
CSPM in order to apply refinement checking techniques over RSL specifications us-
ing FDR, and the translation of LTL formulae from RSL descriptions to CSP tester
processes, so we can apply the traditional model checking technique to applicative con-
current RSL specifications.

2 Model Checking

Model checking is an automatic technique for verifying finite state systems. Enabling
model checking often requires building a smaller, more abstract or simplified model of
the main design that preserves its essential characteristics but avoids complexity. The
idea then is to verify this model.

Applying model checking to a model includes mainly these three tasks: modeling
(construction of the model), specification (definition of the properties to be checked)
and verification (mechanical checking of the properties against the model). Many for-
mal languages have been used for modeling, with corresponding tools for verification.
Some form of temporal logic is the most common language for expressing properties,
and the most useful for asynchronous processes is probably LTL [12], which we use.

2.1 Traditional Model Checking and Model Checking by Refinement

The traditional model checking (MC) method is a verification process which decides
whether p holds for M (M , s |= p); where M is a model structure with a initial state s
and p is a desired property of the system. LTL formulae allow one to specify different
requirements of systems; in particular, they are useful to correctly specify safety and
liveness properties.

The FDR tool is a refinement checker for CSP models and it supports three models:
traces model, failures model and failures/divergences model [10]. Traces(P) represents



Model Checking LTL Formulae in RAISE with FDR 233

the set of finite sequences of communications that a process P can perform. Failures(P)
represents the set of all the pairs (s, X), where ‘s’ is a finite trace of a process P and
‘X’ is a set of refusals, the events that P can refuse to participate in after doing the
trace s. Divergences(P) represents the set of failures and also the set of divergences;
while or after a divergence happens, P can perform an infinite sequence of consecutive
internal actions. The forms of refinement corresponding to the traces, failures and diver-
gences models are called traces refinement, failures refinement and failures-divergences
refinement respectively. Traces refinement allows the checking for safety properties and
failures refinement the checking of deadlock freedom, while failures-divergences re-
finement is the most appropriate for checking livelock freedom.

2.2 Model Checking in RSL

RAISE is a formal method, with RSL as its specification language. A set of tools [4]
is available for RSL, including test coverage analysis and mutation testing, translators
to different languages, and a translator to PVS which allows RSL specifications to be
proved by the PVS theorem prover. Model checking has been supported using the Sym-
bolic Analysis Laboratory (SAL) as a third party model checker. This also involved
adding the possibility to include LTL assertions in RSL specifications.

2.3 Using FDR for RSL

The SAL tool in the RAISE suite does not allow one to model check concurrent RSL
specifications. Our purpose then was to translate the RSL applicative concurrent style
process models to suitable CSP ones in order to apply tools like FDR which can help
us to model RSL processes. This raises two issues

1. Translation: There are syntactic and semantic differences between RSL and CSP
which we need to cope with.

2. Specification: We need to find a way to translate LTL into CSP processes.

3 Translation

We want to translate RSL applicative concurrent descriptions to corresponding CSP
ones. We describe the translation in syntactic terms, and then establish formally what
we mean by “corresponding”: we will show that the RSL and CSP descriptions are
strongly bisimilar. The details are in a technical report [18]: we give just an overview
here.

3.1 The Syntax

Since we are interested in the translation of RSL to CSPM , the variant of CSP accepted
as input by FDR, we need to identify the features of RSL that can be expressed in
CSPM . This translation subset includes:



234 A. Parisaca Vargas et al.

– The built-in types Bool, Int and Nat as shown in Table 1.
– The compound types Product, Set, List, Subtype, Variant and Record as shown

in Table 2. Since complex variants and records in RSL provide an implicit con-
structor, destructors, and (optionally) reconstructors, equivalent functions to these
features have to be created during the translation to CSPM .

Table 1. Built-in types translation from RSL to CSPM

Language Type Values Operators
RSL Bool true, false ∧, ∨, ∼, =, �=
CSPM Boolean true, false ∧,∨,¬ , ==, ! =
RSL Int ...,-1,0,1... +, −, ∗, /, \, <, ≤, >, ≥
CSPM Number ...,-1,0,1... +,−, ∗, /, %, <,≤,>,≥
RSL Nat 0,1... +, −, ∗, /, \, <, ≤, >, ≥
CSPM Open range set {0..} +,−, ∗, /, %, <,≤,>,≥

Table 2. Compound types translation from RSL to CSPM

Language Type Example
definition

Example
value

Operators

RSL Product type Position = Int × Int (-6,5)
CSPM Tuple (-6,5)
RSL Set type IntegerSet = Int-set {1..5} ∪, ∩,\,∈ , card
CSPM Set {1..5} ∪,∩,−,∈, card

RSL List type IntegerList = Int∗ 〈1, 2, 3〉 hd, tl , ̂, len
CSPM Sequence 〈1, 2, 3〉 head , tail , �, #
RSL Subtype type Gun = {| i : Nat • i ∈ {0..15} |}
CSPM

Close
range set

nametype Gun = {0..15}

RSL Variant
type ComplexColour ==

RGB(Red : Gun, Green : Gun, Blue : Gun) | Black |White

CSPM Data type

datatype ComplexColour = RGB .Gun.Gun.Gun | Black |White
Red(RGB .vRed .vGreen.vBlue) = vRed
Green(RGB .vRed .vGreen.vBlue) = vGreen
Blue(RGB .vRed .vGreen.vBlue) = vBlue

RSL Record type Figure :: S : Shape C : ComplexColour

CSPM Data type
datatype Figure = mk Figure.Shape.ComplexColour
S(mk Figure.vS .vC ) = vS
C (mk Figure.vS .vC ) = vC

– Explicit constant values of built-in types and compound types.
– Simple channels and channel arrays as shown in Table 3.

In RSL a channel array is expressed through an object array and it is translated to a
complex protocol channel in CSPM .

– Explicit function and process with if, case and/or let expressions as shown in Ta-
ble 4. CSPM does not support elsif and case process expressions, but they can be
simulated using If and Let expressions in the translation to CSPM .



Model Checking LTL Formulae in RAISE with FDR 235

Table 3. Channel translation from RSL to CSPM

Channel Language Example definition
Simple channel RSL channel mess : Index × Data

CSPM channel mess : (Index ,Data)

Channel array RSL
object fork[ p : Index, f : Index ] :

class channel pickup, putdown : Unit end
CSPM channel fork pickup, fork putdown : Index .Index

Table 4. Function and process expression translation from RSL to CSPM

Expression Language Example
If RSL if x > y then x − y else y − x end

CSPM if x > y then x − y else y − x

Let RSL
let p = input? in let (x,y) = p in output!x+y;
PROC PLUS() end end

CSPM
input?p → let (x , y) = p within output !x + y
→ PROC PLUS

Case RSL

case p of
(true,false)→ true,
→ false

end

CSPM

if let (x1 , x2 ) = p
within x1 == true and x2 == false

then let (x1 , x2 ) = p
within true else false

– The communication primitives sequence, internal and external choice, compre-
hended internal and external choice, parallel and comprehended parallel; and the
basic processes stop and skip. To find an equivalence between these communica-
tion primitives and basic processes in RSL and CSPM , it is necessary to evaluate
the operational semantics of these two languages.

3.2 The Semantics

In this section we compare the semantics of the subsets of RSL and CSP.

The operators of RSL and CSP. Based on the grammar of the process expression in
both process algebras, we show the operators which can be translated in both cases.

The RSL expressions are as follows:

P = skip | stop | E ; P | P � P | P�P | P‖P | if v then P else P end
E = c? | c!v
where v is a pure value expression, and P is a process expression.

The CSP expressions are as follows:

P = SKIP | STOP | E → P | P � P | P�P | P‖P | if v then P else P
E = c? | c!v
where v is a pure value expression, and P is a process expression.



236 A. Parisaca Vargas et al.

Although the operators are syntactically similar, they are sometimes semantically
different as discussed below.

Operational Semantics Comparison. The operational semantics rules are taken
from [1] in the case of the RSL rules and from [16] in the case of the CSP rules.

We do not include the details here, but simply state that the internal and external
choice combinators have equivalent semantics in the two languages. The differences lie
in parallelism, essentially since CSP adopts a “broadcast” semantics to communication
between parallel processes, while RSL adopts a “point-to-point” semantics.

We consider two cases for parallel processes : synchronization and non-
synchronization.

Synchronization. The operational semantics rules for synchronization of RSL and CSP
are the following:

RSL CSP

ρ % P
a→ P′ , Q

ā→ Q′

ρ % P‖Q
τ→ P′‖Q′ (1)

P a→ P ′ , Q a→ Q ′

P‖Q a→ P ′‖Q ′ (2)

where if a is an input (c?x) then ā is an output on the same channel (c!v), and vice
versa. Note that in RSL the event is “consumed” by the synchronization, becoming a τ .
The CSP rule is more general, in that both events may be inputs or outputs. The event in
CSP is not consumed; other processes running in parallel may also participate in it. We
see that the two rules will coincide only for matched inputs and outputs, and provided
we hide synchronized events as they occur.

To deal with this problem, we adopt the following as a design rule:

A process can only either input or output on a channel, and at most one other process
can access that channel, and the access is in the opposite direction.

This rule may seem restrictive, but is in fact advised by the RAISE Method [13], and
is natural in a language with point-to-point communication. If we adopt this rule for
RSL then we see that such RSL translated in the natural manner to CSP will produce
CSP processes in which the two sub cases where both events are inputs, or both are
outputs, cannot occur.

This rule is statically checkable provided there are no channel arrays.

Non-synchronization. A non-synchronised transition between parallel processes occurs
when one process makes a transition and the other does not. The relevant semantics
rules for CSP and RSL show that for an internal event the rules are the same. But for a
visible event CSP alone requires that the event involved in the transition of one process
is not in the alphabet of the other. There is no such restriction in RSL. This is necessary
in a language like RSL with point-to-point communication to preserve the associativity
of the parallel operator. Suppose, for example, that P can output on channel c, and both
Q and R can input on c. Then the combination (P ‖ Q) ‖ R must be able to progress by



Model Checking LTL Formulae in RAISE with FDR 237

P communicating with either Q or R, and for P to communicate with R, (P ‖ Q) must
be able to output on c, without Q being involved.

We can see that our design rule takes care of this problem by not allowing such a
parallel combination: we cannot have both Q and R inputting on channel c.1

So we adopt the following rule for translating parallel processes:

(P‖Q)T = (PT‖QT )\αPT ∩ αQT

where XT is the CSP process translated from the RSL process X.

Soundness. Soundness means establishing that the results obtained from tools applied
to the CSP model are valid for the original RSL. So we need to establish the following
proof rule:

RT |= PT

R % P

where we want to prove property P of RSL specification R, translated to PT and RT

respectively.
FDR is essentially a refinement checker, so PT is typically a (traces, failures, or

failures-divergence) refinement relation, but may also be an assertion of deadlock free-
dom. We can therefore establish soundness by establishing the following:

1. that the translation scheme is a strong bisimulation. We need strong rather than
weak bisimilarity to include divergence as a property that is preserved.

2. that strongly bisimilar processes have the same traces, failures, divergences and
deadlocks.

The details are in a technical report [20]: we give a brief summary here.

Bisimulation. We first establish the obvious mapping of the events and basic processes
of RSL and CSP. We then proceed by structural induction over the syntax of RSL pro-
cesses: for each construction we assume the component processes are bisimilar to their
translations, and show the constructed process to be bisimilar to its translation.

For example, to prove bisimilarity for the parallel combinator, we assume P is bisim-
ilar to its translation PT , and Q is bisimilar to its translation QT . We then show that
P‖Q is bisimilar to its translation (given above): call this PQT . To show bisimilarity
we consider each possible transition of P‖Q according to the RSL operational seman-
tics to process X , say, and show there is a corresponding transition for PQT in the
CSP operational semantics to a process which is bisimilar to X . Then we do the con-
verse, considering each possible transition of PQT , finding a corresponding transition
for P‖Q , and showing the resulting processes are bisimilar.

1 We can also see that our design rule does not remove the possibility of such an architecture.
We replace c by two channels cpq and cpr, say, so that Q inputs on cpq and R on cpr, and P
makes an internal (non-deterministic) output choice between cpq and cpr. This is semantically
equivalent to the original system (assuming no other processes access c) and obeys our design
rule.



238 A. Parisaca Vargas et al.

Properties. We prove the following for a process P and its (strongly bisimilar) transla-
tion PT :

1. Traces: P can do a trace l iff PT can do a trace l .
2. Deadlock: P can deadlock iff PT can deadlock.
3. Refusals: x is a refusal of P iff x is a refusal of PT

4. Failures: failures(P) = failures(PT ).
5. Divergences: P diverges iff PT diverges.

This means that properties we can prove of translated CSP scripts using FDR (lack
of deadlock, trace-, failures- or failures-divergence-refinement) must also be true of the
original RSL descriptions. In other words we have shown that FDR is a sound model
checker for applicative concurrent RSL descriptions.

4 Specification

In this section, we deal with the modelling of LTL formulae. We first explain how
LTL formulae may be modelled as tester processes in CSP, following the approach of
Leuschel, Massart, and Currie [9,8]. We then discuss how this approach can be adapted
to the RSL setting.

4.1 A Translation of LTL Formulae to CSP

After a careful study of the relationship between the refinement-based approach and
temporal logic, Leuschel, Massart and Currie [9,8] propose to make a general solution
building a tester for each possible LTL formula. Looking at the possible LTL formulae
they observe that in general infinite traces have to be tested in order to infer whether a
formula is satisfied. They check the satisfaction of a LTL property following the pro-
cedure defined by Vardi and Wolper [19]; that is, verifying that [[S ]]w ∩ [[¬φ]]w = ∅
(where [[S ]]w represents all the traces of the system′s model and [[¬φ]]w all the traces
of the negation of a LTL formula). If the intersection between [[S ]]w and [[¬φ]]w is
empty then S |= φ.

The approach consists of building a tester Tφ from a formula φ, composing Tφ with
a system S , and checking if the composition satisfies some property. Tφ is built by
translating φ to the corresponding Büchi automaton and translating this automaton to
CSP; finally, FDR is used for checking emptiness. Special attention is paid to deadlock-
ing traces, so they build a tester Tφ which accepts infinite traces and also deadlocking
traces.

Deadlocking treatment and tester building. An extended LTL called LTL∆ is defined
in order to handle deadlocking traces. LTL∆ is specified in the same way as LTL but
over an extended alphabet. That is, while LTL is defined over Σ, LTL∆ is over Σ∪{∆};
where ∆ /∈ Σ. If a valid trace π is finite then it is over Σ terminating on infinite ∆’s;
otherwise π is an infinite trace over Σ. Regarding the semantics of LTL∆, two rules are
defined in [9,8] for translating LTL into LTL∆:

1) Xφ 	 ¬∆ ∧ Xφ
2) ¬Xφ 	 ∆ ∨ X¬φ



Model Checking LTL Formulae in RAISE with FDR 239

Also, the definition of when an LTL∆ formula holds is shown. Given a system specifi-
cation S and a LTL∆ formula φ:

S |= φ iff ∀π ∈ [[S ]]∆, π |= φ,
where [[S ]]∆ = [[S ]]w ∪ {γ∆w | (γ, Σ) ∈ failures(S )}
Following that idea, and considering that CSP system S cannot extend its traces to

consider deadlocking traces, a tester Tφ of the LTL formula φ is built. Tφ accepts, on
the one hand, infinite traces; and on the other hand, deadlocking traces. The tester is
built from a Büchi automaton using the classical approach. Therefore, given an LTL
formula to check, first it is negated, second it is translated to LTL∆, and finally it is
translated to a special Büchi automaton called B∆. B∆ extends the traditional Büchi
automaton, adding acceptance conditions to manage deadlocks. More formally, B∆ is
defined in [9] as B∆ = (Σ,Q,T,Q0,F,D) where: Σ is the alphabet, Q is the set
of states, T ⊆ Q × Σ × Q is the transition relation, Q0 ⊆ Q is a set of initial states,
F ⊆ Q is a set of infinite trace accepting states and D ⊆ Q is a set of deadlock monitor
states.

B∆ has two acceptance conditions, the classical acceptance condition for infinite
traces and acceptance conditions for deadlocking traces. The traditional Büchi automa-
ton B over the alphabet Σ ∪ {∆} is modified into B∆ over the alphabet Σ by:

1. identifying deadlock monitor states (DMS) which are reachable from an initial
state by transitions in Σ and accept strings ∆w with the classical Büchi condition,

2. removing all ∆ transitions,
3. removing all transitions and states which do not lead to the acceptance of a trace.

Translation from B∆ to CSP. Each state of B∆ is translated to a CSP process with
different characteristics depending on what kind of state it is. If it is an accepting state,
a CSP process with a special success action is created; and if it is a DMS, a special ∆
transition is added. Therefore, translation from B∆ automaton into CSP is defined as:

- map every q ∈ Q to a CSP process name NAME (q)
- for every q ∈ Q0 add the CSP definition TESTER = NAME (q),
- for every non-accepting state q ∈ Q�F and

for all outgoing edges (q, a, q ′) ∈ T
add the CSP definition NAME (q) = a → NAME (q ′)

- for every accepting state q ∈ F where
{(q, a1, q1), ..., (q, an , qn)} ⊆ T are all the outgoing edges of q
add the CSP definition
NAME (q) = success → (a1 → NAME (q1) � ... � an → NAME (qn))

- for every state q ∈ D
add the CSP definition NAME (q) = deadlock → DEADLOCK

- add a single CSP definition of DEADLOCK (where Σ = {a1, ..., an})
DEADLOCK = a1 → k0 → STOP � ... � an → k0 → STOP

Note that success , deadlock and k0 are all different and not in Σ.
If the system is not deadlocked in a deadlock monitor state then the system in parallel

with the DEADLOCK process will be able to perform some action in Σ and then the



240 A. Parisaca Vargas et al.

action k0. On the other hand, if the system is deadlocked in a deadlock monitor state,
the DEADLOCK process will not be able to perform k0, so deadlocking traces will
correspond to CSP failures.

Checking emptiness using FDR. The final step to verify that [[S ]]w ∩ [[¬φ]]w = ∅ is
to check whether an infinite trace or a finite deadlocking trace of S satisfies ¬φ; if there
does not exist such a trace then S |= φ. The way to do this check using FDR is through
two kinds of refinement check.

– Traces which generate infinite successes are checked by testing whether:
SUC (T (S [[Σ]]TESTER) \ (Σ ∪ {deadlock , k0}) holds, where
SUC = success → SUC .

– Deadlocking acceptances are checked by testing whether:
deadlock → STOP (F (S [[Σ]]TESTER) \ (Σ ∪ {success}) holds

If one of the tests succeeds then S � φ, so S |= φ only if both of them fail.

4.2 An Approach to Translate LTL Formulae from RSL to CSP

After analyzing the approach presented in [9] and [8], we take the general idea and
we adapt it in order to translate LTL from RSL to FDR. In the next subsections, our
framework to translate LTL properties from RSL to FDR is detailed.

LTL specification from RSL to LTL∆. We define a grammar for writing LTL as-
sertions in RSL. LTL properties are preceded by the key word “ltl assertion” and the
definition of each property is written using an identifier tag, the process which will be
tested, and the LTL property.

LTL prop decl ::= “ltl assertion” {LTL assertion}+,
LTL assertion ::= “[ ” LTL tag “ ]” Process name % LTL prop
LTL prop ::= Channel name

| LTL prefix LTL prop | LTL prop LTL infix LTL prop
| “true” | “false” | “(” LTL prop “)”

LTL prefix ::= “X” | “G” | “F” | “∼”
LTL infix ::= “R” | “U” | “∨” | “∧” | “⇒”

‘Process name’ and ‘Channel name’ are type identifiers defined previously for a
process and a channel respectively. ‘LTL tag’ is also an identifier, more precisely
an LTL property identifier. For example, consider the RSL specification in Fig.1: An
ltl assertion called “happy” is defined over the process “SYS” and the property is
specified using channels “rich” and “smile”. An occurrence of a channel name in an
ltl assertion indicates that the corresponding event occurs. So “happy” asserts that
whenever a “rich” event occurs a “smile” will eventually occur — a classical liveness
property.

The translation from RSL to LTL∆ requires that alphabets are defined by extension,
i.e. as finite sets. So LTL properties only can be defined using models involving simple
channels (not channel arrays).



Model Checking LTL Formulae in RAISE with FDR 241

scheme VENDING MACHINE =
class

channel
rich,coin, choc, toff,smile: Unit

value
Machine: Unit→ in coin out choc, toff Unit
Machine() ≡ coin?;(choc!();Machine()����toff!();Machine()),

Customer: Unit→ out coin,smile in rich, choc, toff Unit
Customer() ≡ rich?;coin!();(choc?;smile!();Customer()��toff?;smile!();Customer()),

SYS: Unit→ in coin,choc,toff,smile,rich out coin,choc,toff,smile Unit
SYS()≡Machine()‖Customer()

ltl assertion
[ happy ] SYS � G(rich⇒ F(smile))
end

Fig. 1. RSL specification for a simple vending machine

Negating LTL properties. We want to verify that [[S ]]w ∩ [[¬φ]]w = ∅ (where [[S ]]w
represents all the traces of the system’s model and [[¬φ]]w all the traces of the negation
of a LTL formula). So, the first step on the way to translate a LTL formula to LTL∆, is
the negation of the property by means of the introduction of the operator ‘∼’. For this
first translation we use standard rules such as ∼ G φ = F(∼ φ).

Observe that the negation of a event ‘x ’ it is equivalent to concatenation by ‘∨’ of
each alphabet’s symbol, less x and plus the ∆ symbol. This is because we know we
have CSP events where exactly one event from the alphabet happens at any step. For
the same reason, it is not possible to have more that one event concatenated by the ‘∧’
operator either. For instance, if the alphabet is {a,b,c} then

∼a = b ∨ c ∨ ∆ and ∼∆ = a ∨ b ∨ c and a ∧ b = false and a ∧ ∆ = false
These rules enable us to remove the negations from any formula. (We will often for

clarity leave ∼∆ unexpanded in the presentation.)

Introducing the special symbol ∆. Taking as models the rules defined in [9] for trans-
lating the LTL properties Xφ and ¬Xφ into LTL∆ (see subsection 4.1), we analyzed
the semantics for each LTL∆ operator. Therefore, we specify a translation T of every
LTL operator of a formula φ as follows:

T(G(φ)) = G(∆) R T(φ)
T(F(φ)) = ∼∆ U T(φ)
T(X(φ)) = ∼∆ ∧ X( T(φ))
T(φ U ψ) = (∼∆ ∧ T(φ) ) U T(ψ)
T(φ R ψ) = (G(∆) ∨ T(φ)) R T(ψ)

T(φ ∧ ψ) = T(φ) ∧ T(ψ)
T(φ ∨ ψ) = T(φ) ∨ T(ψ)
T(φ ⇒ ψ) = T(φ) ⇒ T(ψ)
T(a) = a, where a ∈ Σ
T(∆) = ∆

Considering the VENDING MACHINE example shown previously, the translation
for the LTL assertion happy after the negation of the LTL property and the introduction
of the symbol ∆ is as follows:

T(∼(G(rich ⇒ F(smile)))) = ∼∆ U (rich ∧ (G(∆) R (∆ ∨ rich)))



242 A. Parisaca Vargas et al.

Fig. 2. Büchi automaton for the happy assertion

Translation from LTL∆ to Büchi automata. The SPIN model checker [7] is used in
[9] to translate LTL∆ to Büchi automata. Instead of SPIN, we use ltl2ba [2] to generate
the Büchi automaton from an LTL∆ expression. We choose ltl2ba because it is open
source, which allows us to extend it. In addition, experimental work shows that it is
more efficient than SPIN [3].

The ltl2ba algorithm generates a Büchi automaton from an LTL formula. First a very
weak alternating automaton is built and then it is transformed it into a Büchi automa-
ton, using a generalized Büchi automaton. Each automaton is simplified on-the-fly for
saving memory and time, using iteratively three rules until no more simplification are
possible [3]:

1. Inaccessible states are removed.
2. If a transition t1 implies a transition t2, then t2 is removed.
3. If states q1 and q2 are equivalent, then they are merged.

The Büchi automaton for the happy assertion is shown in figure 2.

Translation from Büchi automata to Büchi delta B∆. We took the source code of
ltl2ba and extended it to generate B∆ from the Büchi automaton. B∆ is obtained fol-
lowing the steps shown in subsection 4.1, that is: 1) identifying each DMS, 2) removing
all ∆ transitions and finally 3) removing transitions and states which do not lead to the
acceptance of a trace.

Regarding detection of DMS, in [9] they are found following an algorithm defined in
[17] (adaptation of the Tarjan’s search algorithm for strongly connected components).
However, this one only detects states which accept strings ∆w with the classical Büchi
condition, but it does not consider which are reachable from an initial state by tran-
sitions in Σ. Therefore, we defined a complementary algorithm which detects states
reachable by Σ transitions.

Consider the Büchi automaton corresponding to the VENDING MACHINE exam-
ple. Only state 1 is detected as DMS, because it is reachable from the initial state by
transitions in Σ and accepts the string ∆w with the classical Büchi condition. Also, ∆
transitions are removed, according to step 2) for building B∆. The transition labelled
‘rich && delta’ is removed too, because we know we have CSP events where exactly
one event from the alphabet happens at any time. Therefore, we get the B∆ automaton
shown in figure 3.



Model Checking LTL Formulae in RAISE with FDR 243

Fig. 3. B∆ automaton for the happy assertion

Translation from B∆ to CSP and emptiness check. After building B∆, we use the
algorithm of section 4.1 for generating the corresponding CSP specification from B∆.
Also, we generate FDR code for the two refinement checks as explained in subsection
4.1; i.e. checking traces which generate infinite successes and checking for deadlock.

5 Implementation of the Tool

The approach described in this paper has been implemented in a tool which translates
RSL specifications with temporal logic assertions into a CSPM specification and a
tester process.

In order to do so it is set up with two main components that we will call “RSL FDR2”
and “RSL LTL FDR2”.

RSL FDR2 takes an RSL specification as an input and performs two things. First,
the RSL is transformed into an AST (abstract syntax tree) by the RSL type checker;
then, applying many translation rules, the AST of RSL is transformed into an AST
of CSPM ; and finally this AST is converted into a new output script (a .fdr2 file)
in CSPM . Second, if one or more LTL assertions are specified (using RSL syntax),
RSL FDR2 translates them to the corresponding LTL∆ formulae and saves them in
.ltl files. These .ltl files are input to RSL LTL FDR2, an extension of ltl2ba,
which generates for each a TESTER process and some CSP refinement statements, and
appends them to the .fdr2 file.

For instance, when we give the VENDING MACHINE example of Section 4 to the
tool, it produces the following CSPM script as output:

channel rich,coin,choc,toff,smile

Alph_in_Machine = {|coin|}
Alph_out_Machine = {|toff,choc|}
Machine = coin -> (choc -> (Machine) [] toff -> (Machine))

Alph_in_Customer = {|toff,choc,rich|}
Alph_out_Customer = {|smile,coin|}
Customer = rich -> (coin -> (choc -> (smile -> (Customer)) |˜|

toff -> (smile -> (Customer))))

Alph_in_SYS = {|rich|}
Alph_out_SYS = {|smile|}
SYS = (Machine [{|coin,toff,choc|}||

{|toff,choc,rich,smile,coin|}] Customer)\
{|coin,toff,choc|}



244 A. Parisaca Vargas et al.

channel success0,deadlock0,k0
Alph_SYS0 = union(Alph_in_SYS,Alph_out_SYS)

TESTER0 = State0_0
State0_0 =
rich?x -> State1_0 [] rich?x -> State0_0 [] smile?x -> State0_0

State1_0 =
success0 -> ( rich?x -> State1_0 ) [] deadlock0 -> DEADLOCK0

DEADLOCK0 = rich?x -> k0 -> STOP [] smile?x -> k0 -> STOP
Composition0 =

(SYS [|Alph_SYS0|] TESTER0)\ union(Alph_SYS0,{deadlock0,k0})
DComposition0 =

(SYS [|Alph_SYS0|] TESTER0)\ union(Alph_SYS0,{success0})

SUC0 = success0 -> SUC0
assert Composition0 [T= SUC0
RealDeadlock0 = deadlock0 -> STOP
assert DComposition0 [F= RealDeadlock0

The Composition0 and DComposition0 assertions are checked using FDR to de-
termine if the property holds. Compostion0 checks for traces which generate infinite
successes and Dcompositon0 checks for deadlock. Since both assertions fail, it is estab-
lished that SYS satisfies the property G(rich ⇒ F(smile)).

5.1 Efficiency

As suggested by the fact that there is a bisimulation between the RSL description and
its translation, there is a one-to-one relation between the events in RSL and those in
CSP, and the translation is almost certainly as good and as efficient in model checking
as a hand translation would be. This has been borne out by trying the translator on a
number of standard examples: cyclic scheduler, dining philosophers, railway crossing,
producer-consumer, alternating bit protocol, multiplexed buffer [18].

6 Conclusions

We have shown an approach to translate a concurrent applicative subset of RSL into
CSPM , and shown the soundness of the translation through establishing a strong bisim-
ulation. We have analyzed the approach presented in [9] and [8] and we have observed
it is possible to take the general idea but it is necessary to adapt it in order to translate
from RSL to CSP. Therefore, we have shown the whole translation of every LTL opera-
tor to LTL∆ operators, we have used ltl2ba algorithm to translate from LTL expressions
to Büchi automata and we have shown how to extend ltl2ba to build B∆.

Finally, we have developed a tool for the specification of concurrent systems that
allows us, first, to use the FDR tool on the CSPM scripts, and to draw sound conclusions
about the RSL descriptions and second, to translate LTL formulas from RSL to CSP that
helps us to express the specification of desired properties in a friendly way enabling the
model checking of LTL formulae about RSL descriptions with FDR.



Model Checking LTL Formulae in RAISE with FDR 245

A problem with this approach is that it needs failure of model checking to prove
success. So if the proposed property is not proved, there is only model checking success
and no trace to indicate what went wrong. By including a notion of fairness in the model
checking it may be possible to prove LTL properties more directly, as hinted by Roscoe
[15] and adopted in recent work in Singapore [11].

References

1. Debabi, M.: The RSL semantic course (1993)
2. Gastin, P., Oddoux, D.: ltl2ba tool,

http://www.lsv.ens-cachan.fr/˜gastin/ltl2ba/index.php
3. Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Berry, G., Comon, H.,

Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)
4. George, C.: RAISE Tools User Guide. Technical Report 227, UNU-IIST, P.O. Box 3058,

Macau (February 2001), http://www.iist.unu.edu
5. The RAISE Language Group. The RAISE Specification Language. Prentice-Hall, Engle-

wood Cliffs (1992)
6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs

(1985)
7. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2003)
8. Leuschel, M., Massart, T., Currie, A.: How to Make FDR Spin LTL Model Checking of CSP

by Refinement. Journal Lecture Notes in Computer Science 2021, 99+ (2001)
9. Leuschel, M., Massart, T., Currie, A.: How to Make FDR Spin LTL Model Checking of CSP

by Refinement, Technical Report, Dependable Systems and Software Engineering Research
Group, School of Electronics and Computer Science, University of Southampton, England
(September 2000)

10. Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Manual (2005)
11. PAT: Process Analysis Toolkit, http://www.comp.nus.edu.sg/˜pat/
12. Pnueli, A.: The temporal logic of concurrent programs. Theoretical Computer Science 13,

45–60 (1981)
13. The RAISE Method Group. The RAISE Development Method. Prentice-Hall International,

Englewood Cliffs (1995)
14. Roscoe, A.W.: Model-checking CSP, pp. 353–378. Prentice Hall International (UK) Ltd.,

Hertfordshire (1994)
15. Roscoe, A.W.: Compiling Shared Variable Programs into CSP. In: Proceedings of

PROGRESS workshop 2001 (2001)
16. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs

(2005)
17. Sedgewick, R.: Algorithms in C++. Addison-Wesley, Reading (1992)
18. Tapia, L., George, C.: Model Checking Concurrent RSL with CSPM and FDR2. Research

Report 393, UNU-IIST, P.O.Box 3058, Macau (April 2008)
19. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.

In: Proccedings of LIC6, pp. 332–344 (1986)
20. Vargas, A.P., George, C.: Formalising the translation from RSL to CSP. Research Report 395,

UNU-IIST, P.O.Box 3058, Macau (May 2008)

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php
http://www.iist.unu.edu
http://www.comp.nus.edu.sg/~pat/


An Introduction to Grammar Convergence

Ralf Lämmel and Vadim Zaytsev

Software Languages Team, The University of Koblenz-Landau, Germany

Abstract. Grammar convergence is a lightweight verification method for estab-
lishing and maintaining the correspondence between grammar knowledge in-
grained in all kinds of software artifacts, e.g., object models, XML schemas,
parser descriptions, or language documents. The central idea is to extract gram-
mars from diverse software artifacts, and to transform the grammars until they
become syntactically identical. The present paper introduces and illustrates the
basics of grammar convergence.

1 Introduction

Grammar convergence is a lightweight verification method for establishing and main-
taining the correspondence between grammar knowledge ingrained in all kinds of soft-
ware artifacts. In fact, it is an integrated method that works purposely across different
programming and specification languages as well as different approaches to software
development. Here are few use cases for grammar convergence:

– Given are Java classes for a specific domain, say financial exchange. There is also
an independently designed XML schema that is meant to standardize that domain.
One needs to establish the agreement between the object model and the schema.

– Given is a compiler for a programming language, say gcc for C++. There is also
a reverse/re- engineering tool for the same language based on a different parsing
infrastructure. One needs to establish that both tools agree on the language at hand.

– Given is an XML-data binding technology. One needs to test the (customizable)
mapping from XML schemas to object models. The oracle for testing relies on
establishing an agreement between XML schemas and object models.

– Given are 3 versions of the Java language specification, with 2 grammars per ver-
sion. One needs to align grammars per version and express the evolution from ver-
sion to version. (We have done such a case study; see the authors’ website.)

The central idea of grammar convergence is to extract grammars from diverse software
artifacts, and to transform the grammars until they become syntactically identical. In
more detail, the method entails the following core ingredients:

1. A unified grammar format that effectively supports abstraction from specialities or
idiosyncrasies of the grammars as they occur in software artifacts in practice.

2. A grammar extractor for each kind of artifact – e.g., a Java extractor maps Java
classes to the unified grammar format.

3. A grammar comparer that determines and reports grammar differences in the sense
of deviations from syntactical equality (if any).

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 246–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



An Introduction to Grammar Convergence 247

4. A framework for automated grammar transformation that can be used to refactor, or
to otherwise more liberally edit grammars until they become syntactically identical.

The method also entails the following optional ingredients:

5. Grammar convergence may be extended to the ‘instance level’ so that instances (such
as parse trees or XML documents) are also extracted, compared and transformed.

6. The transformations of grammar convergence may be semi-automatically derived
(‘inferred’) from grammar differences.

The present paper only covers the core ingredients 1.-4.

Contributions

– Grammar convergence helps in relating grammar knowledge that is readily in-
grained in diverse forms of software artifacts; it complements the use of genera-
tive (or model-driven) approaches, when they are not used, have not been used, or
cannot (yet) be used.

– Grammar convergence delivers conceptually simple grammar transformations to
software artifacts of kinds that would normally require more complicated transfor-
mations, e.g., XML schemas, and object models. This is possible because of the
abstraction done during extraction.

– An implementation of grammar convergence is publicly available.1

Roadmap. §2 describes the basics of grammar convergence and introduces the running
example of the paper. §3 outlines BGF — the BNF-like Grammar Format, i.e., the
unified grammar format that we use in our implementation of grammar convergence.
§4 describes and illustrates the concept of grammar extraction. §5 sketches our suite of
programmable transformations for grammar convergence. §6 discusses related work. §7
concludes the paper.

2 Basics and Running Example

We use a trivial programming language FL (‘Factorial Language’; available from the
quoted repository) as a running example. That is, we converge grammars for FL that
were obtained from different FL language processors such as interpreters and optimiz-
ers. Here is an illustrative program in the FL language; it defines two functions: one for
multiplication; another for the factorial function; the latter in terms of the former:

mult n m = if (n == 0) then 0 else (m + (mult (n − 1) m))
fac n = if (n == 0) then 1 else (mult n ( fac (n − 1)))

2.1 Sources of Convergence

Fig. 1 shows a convergence tree for some FL components. The leafs of the tree (see
at the top) denote different sources. We use the term source to mean ‘software artifact
containing grammar knowledge’. Here is short description of the sources for FL:

1 https://sourceforge.net/projects/slps/

https://sourceforge.net/projects/slps/


248 R. Lämmel and V. Zaytsev

antlr. This is a parser description in the input language of ANTLR2. Semantic actions
(in Java) are intertwined with EBNF-like productions.

dcg. This is a logic program written in the style of definite clause grammars; c.f. Fig. 2.
sdf. This is a concrete syntax definition in the notation of SDF/SGLR3 with scannerless

generalized LR parsing as parsing model; c.f. Fig. 3.
xsd. This is an XML schema4 for the abstract syntax of FL.
om. This is a hand-crafted object model (Java classes) for the abstract syntax of FL.
jaxb. This object model was generated by JAXB5 from an XML schema for FL.

antlr dcg

topdown

sdf xsd

concrete

om

abstract

jaxb

java

limit

Fig. 1. The overall convergence graph for the ‘Factorial Language’

program(Fs) −−> +(function,Fs).
function (N,Ns,E)) −−> name(N), +(name,Ns), @(”=”), expr(E), +(newline).

expr(E) −−> lassoc(ops,atom,binary,E).
expr(apply(N,Es)) −−> name(N), +(atom,Es).
expr( ifThenElse(E1,E2,E3)) −−> reserved(”if”), expr(E1), ...

atom( literal ( I )) −−> int(I).
atom(argument(N)) −−> name(N).
atom(E) −−> @(”(”), expr(E), @(”)”).

ops(equal ) −−> @(”==”).
ops(plus ) −−> @(”+”).
ops(minus) −−> @(”−”).

Fig. 2. Definite Clause Grammar for FL (The clauses construct a term representation; see the
arguments of the various predicates. The DCG leverages higher-order predicates for EBNF-like
expressiveness and left-associative tree construction (c.f., ‘+’ and ‘lassoc’). The priorities on
expression forms are expressed by means of a layered definition; c.f., ‘expr’ vs. ‘atom’.)

2 http://antlr.org
3 http://www.program-transformation.org/Sdf/SGLR
4 http://www.w3.org/XML/Schema
5 http://jaxb.dev.java.net/

http://antlr.org
http://www.program-transformation.org/Sdf/SGLR
http://www.w3.org/XML/Schema
http://jaxb.dev.java.net/


An Introduction to Grammar Convergence 249

Function+ → Program
Name Name+ ”=” Expr Newline+ → Function
Expr Ops Expr → Expr { left ,prefer ,cons(binary)}
Name Expr+ → Expr {avoid,cons(apply)}
”if” Expr ”then” Expr ”else” Expr → Expr {cons(ifThenElse)}
”(” Expr ”)” → Expr {bracket}
Name → Expr {cons(argument)}
Int → Expr {cons( literal )}
”−” → Ops {cons(minus)}
”+” → Ops {cons(plus)}
”==” → Ops {cons(equal)}

Fig. 3. SDF grammar for FL (Only (context-free) SDF productions are shown. Notice that the
‘defining expression’ of a production appears on the left side of the arrow, and the ‘defined non-
terminal’ on the right side. Productions can be annotated in certain ways between the braces, e.g.,
with constructor names (c.f., cons), or directions for disambiguation (c.f., prefer, avoid).)

2.2 Targets of Convergence

Consider again Fig. 1. The inner nodes and the root denote a number of targets for FL.
We use the term target to mean ‘derived grammars that establish the correspondence
between some sources’. Here is short description of the targets for FL:

topdown. The sources antlr and dcg both leverage top-down parsing. Their correspon-
dence can be established by a few simple refactoring steps.

concrete. This target converges all concrete syntax definitions. A noteworthy difference
is that sdf uses one expression nonterminal, whereas topdown uses two ‘layers’.

java. The sources om and jaxb are both object models whose correspondence can be
established by simple refactoring steps.

abstract. The target java and the XML schema are to be converged to an abstract
syntax definition. The corresponding refactorings need to neutralize the style dif-
ferences implied by the data models: OO vs. XML.

limit. The targets concrete and abstract are converged (to an even more abstract syn-
tax). For instance, terminals are removed from concrete.

3 BGF — BNF-Like Grammar Format

3.1 Design Rationale

In principle, we could try to leverage an existing syntax definition formalism (e.g., SD-
F/SGLR (see an earlier footnote) or a meta-modeling facility (e.g., EMF6). In contrast,
we have derived BGF such that it covers the grammar-like expressiveness that we en-
countered in different kinds of software artifacts. Also, BGF allows us to avoid any sort
of bias towards a particular parsing model or other details of operational semantics. For
convenience, we can still represent BGF in other notations (using a generative approach
as in [13]).

6 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/


250 R. Lämmel and V. Zaytsev

3.2 BGF Concepts

We start with the most trivial aspects:

– Terminals and nonterminals.
– Regular expression-like composition and grouping:

• Sequential composition (infix ‘,’ – also called ‘sequence’).
• Alternative composition (infix ‘;’ – also called ‘choice’).
• Epsilon (’true’) and the ‘empty language’.
• Iteration and optionality (‘*’, ‘+’, ‘?’).

– A production is a pair of ‘defined nonterminal’ and ‘defining expression’.
– A grammar consists of a set of start symbols and a set of productions.

At this point, we have reached ‘representation capability’ for textbook-style BNF and
EBNF (when restricted to context-free syntax). Only few more concepts are needed to
represent essential extras of XML schemas, object models, and algebraic signatures:

Production labels. Extraction may populate these labels from names of OO subclasses,
derived XML schema types, or algebraic term constructors. As a bonus, labels are
convenient in addressing productions in programmable grammar transformations.

Expression selectors. While a flat record-like grammar structure with top-level se-
lectors is sufficient to represent typical object models, more liberal selectors are
needed to represent arbitrarily nested element declarations of XML Schema.

Simple types. Types such as string and int are added to cover the simple types used
in algebraic data types, object models, and XML schemas. Even syntax definitions
indirectly involve simple types through the attributes associated with lexemes.

Universal type. This type is a fallback for extraction whenever no precise grammar
structure can be determined, e.g., when mapping the OO base type ‘object’, wild-
cards of XML Schema, or dynamics in functional programming.

Namespaces. Various kinds of sources are organized in namespaces, c.f., Java’s pack-
ages for object models, Haskell’s hierarchical module system, or XML Schema’s
foundation on XML namespaces. Such organization can be preserved by extraction.

3.3 Self-representation

In our implementation, BGF is primarily defined by an XML Schema, which natu-
rally, is too voluminous to be shown here. While the XML-based representation of
BGF grammar may be convenient for data exchange, several of our components use
a Prolog-based term notation. (For instance, the transformation component is imple-
mented in Prolog.) Fig. 4 lists the BGF of BGF in the Prolog-based term notation.7 The
interesting status of the shown grammar is that it has been computed from the BGF
that was extracted from the primary XML schema for BGF. That is, we have applied
grammar convergence to align the XML schema with the expected Prolog-based term
notation for BGF.

7 The notation uses predominantly prefix terms with the exception of special list notation and
infix functors ‘,’ and ‘;’ for sequences and choices. Note that optionality is represented via
lists — using the empty list [] for the case of absence, and the singleton list otherwise. Certain
symbols need to be escaped by quotes or parentheses, as one can see in the figure.



An Introduction to Grammar Convergence 251

g( [g ,p,x ,v , l ,n,s , t ], [
p([g ], g , (∗(n(n )), ∗(n(p )))), −− grammar = start symbols + productions
p([p], p, (?(n( l )), n(n), n(x ))), −− production = label + LHS + RHS
p([true ], x , true ), −− epsilon
p([ fail ], x , true ), −− empty language
p([v ], x , n(v )), −− values of simple types
p([a ], x , true ), −− all ( universal type)
p([ t ], x , n(t )), −− terminals
p([n], x , n(n )), −− nonterminals
p([s ], x , (n(s ), n(x ))), −− selector expressions
p ([( ’ , ’ )], x , (n(x ), n(x ))), −− sequence
p ([(;)], x , (n(x ), n(x ))), −− choice
p ([?], x , n(x )), −− optionality
p ([+], x , n(x )), −− 1 or more repetitions
p ([∗], x , n(x )), −− 0,1 or more repetitions
p([ int ], v , true ), −− integer values
p([ string ], v , true ), −− strings
p ([], l , v( string )), −− labels are strings
p ([], n, v( string )), −− nonterminal symbols are strings
p ([], s , v( string )), −− selectors are strings
p ([], t , v( string )) −− terminal symbols are strings

])

Fig. 4. BGF of BGF w/o namespaces

4 Grammar Extraction

4.1 Abstraction by Extraction

The limited expressiveness of BGF, when compared to any possible source format,
implies that some of the details of the source format are not conveyed into the extracted
grammar; we call this effect ‘abstraction by extraction’. Such abstraction simplifies
proofs of grammar correspondences at the cost of potentially missing certain kinds
of grammar differences. Here are examples of details that are abstracted away in this
manner; they are grouped by kinds of grammarware:

Parser descriptions
– Semantic actions
– Lexical syntax descriptions
– Precedence declarations

Object models
– Constructors, static methods, initializers
– Specific types of collection classes
– Distinction of classes vs. interfaces and fields vs. methods

Algebraic data types
– Distinction of nominal types vs. types aliases
– Higher-order and quantified types (represented universally)



252 R. Lämmel and V. Zaytsev

BGF extracted from the SDF for FL as of Fig. 3
p([ binary ], ’Expr’ , (n(’Expr’ ), n(’Ops’), n(’Expr’ ))),
p([apply ], ’Expr’ , (n(’Name’), +n(’Expr’ ))),
p([ ifThenElse ], ’Expr’ , ( t ( if ), n(’Expr’ ), t ( then ), n(’Expr’ ), t ( else ), n(’Expr’ ))),
p ([], ’Expr’ , ( t ( ’ ( ’ ), n(’Expr’ ), t ( ’ ) ’ ))),
p([argument], ’Expr’ , n(’Name’)),
p([ literal ], ’Expr’ , n(’ Int ’ )),
p([minus], ’Ops’, t (−)),
p([ plus ], ’Ops’, t (+)),
p([equal ], ’Ops’, t (==))

BGF extracted from the DCG for FL as of Fig. 2
p([ binary ], expr , (n(atom), ∗((n(ops ), n(atom ))))),
p([apply ], expr , (n(name), +n(atom))),
p([ ifThenElse ], expr , ( t ( if ), n(expr ), t ( then ), n(expr ), t ( else ), n(expr ))),
p([ literal ], atom, n( int )),
p([argument], atom, n(name)),
p ([], atom, ( t ( ’ ( ’ ), n(expr ), t ( ’ ) ’ ))),
p([equal ], ops, t (==)),
p([ plus ], ops, t (+)),
p([minus], ops, t(−))

BGF extracted from an ANTLR frontend for FL
p ([], expr , (n(binary ); n(apply ); n(ifThenElse ))),
p ([], binary , (n(atom), ∗((n(ops ), n(atom ))))),
p ([], apply, (n(’ID’ ), +n(atom))),
p ([], ifThenElse , ( t ( if ), n(expr ), t ( then ), n(expr ), t ( else ), n(expr ))),
p ([], atom, (n(’ID’ ); n(’INT’); t ( ’ ( ’ ), n(expr ), t ( ’ ) ’ ))),
p ([], ops, ( t (==); t (+); t(−)))

BGF extracted from an XML schema for FL
p ([], ’Function’ , (s(name, v( string )), +s(arg , v( string )), s( rhs , n(’Expr’ )))),
p ([], ’Expr’ , (n(’ Literal ’ ); n(’Argument’);n(’Binary’ ); n(’ IfThenElse ’ ); n(’Apply’ ))),
p ([], ’ Literal ’ , s( info , v( int ))),
p ([], ’Argument’, s(name, v( string ))),
p ([], ’Binary’ , (s(ops, n(’Ops’ )), s( left , n(’Expr’ )), s( right , n(’Expr’ )))),
p ([], ’Ops’, (s( ’Equal’ , true ); s( ’Plus’ , true ); s( ’Minus’, true ))),
p ([], ’ IfThenElse ’ , (s( ifExpr , n(’Expr’ )), s(thenExpr, n(’Expr’ )), s(elseExpr , n(’Expr’ )))),
p ([], ’Apply’ , (s(name, v( string )), +s(arg , n(’Expr’ ))))

Fig. 5. Some extraction results for FL (Only expression syntax is shown.)

XML schemas
– Distinction of elements, attributes, complex types, and groups
– Simple type constraints

4.2 Grammar Extractors

An extractor is simply a software component that processes a software artifact and pro-
duces a (BGF) grammar. In the typical case, extraction boils down to a straightforward
mapping defined by a single pass over the input. Extractors are preferably implemented
within the computational framework of the source artifact at hand, or in its affinity, e.g.:

– ANTLR: ANTLR
– DCG: Prolog



An Introduction to Grammar Convergence 253

– Java: java.lang.reflect or com.sun.source.tree
– SDF: ASF+SDF Meta-Environment8 or Stratego/XT9

On the output side, an extractor leverages the XML format for BGF.

4.3 Extraction Samples

Fig. 5 contrasts the extraction results for several FL sources. The differences between
the grammars can be summarized as follows:

– Only the ANTLR&DCG&SDF extracts contain terminals.
– The ANTLR&DCG extracts contain expressions layers expr and atom.
– The SDF&XSD extracts contain a single expression layer.
– Only the XSD extract contains selectors.
– The ANTLR&XSD extracts leverage choices.
– The DCG&SDF extracts leverage nonterminals with multiple productions.
– There is also some variation on using production labels.
– More trivially, the grammars disagree on names, upper and lower case.

5 Programmable Grammar Transformations

In the more preferable case, two different grammars can be refactored to become
syntactically identical. We use the term refactoring in the established sense of semantics-
preserving transformations. In the less preferable case, non-semantics-preserving trans-
formations are due, in which case weaker properties should limit the impact.

5.1 Transformation Properties

We may refer to the semantics of a grammar as the language (set of strings) gener-
ated by the grammar, as it is common for formal languages — for context-free gram-
mars, in particular. With the string-oriented semantics in mind, few transformations
are semantics-preserving. Examples include renaming of nonterminals, and fold/unfold
manipulations. To give an example where different semantics are needed consider the
scenario of aligning a concrete and an abstract syntax.

When necessary, we may apply the algebraic interpretation of a grammar, where gram-
mar productions constitute an algebraic signature subject to a term-algebraic model. In
this case, the terminal occurrences in any given production do no longer carry semantic
meaning; they are part of the function symbol. (Hence, abstract and concrete syntaxes
can be aligned now.) Some transformations that were effortlessly semantics-preserving
w.r.t. the string-oriented semantics, require designated bijective mappings w.r.t. the term-
oriented semantics, e.g., fold/unfold manipulations, but generally, the term-oriented
semantics admits a larger class of semantics-preserving transformations than the string-
oriented one.

8 http://www.meta-environment.org/
9 http://strategoxt.org/

http://www.meta-environment.org/
http://strategoxt.org/


254 R. Lämmel and V. Zaytsev

For brevity, we omit the discussion of another alternative: graph-oriented semantics.
Transformations that are not semantics-preserving may still be ‘reasonable’ if they

model data refinement [8,25].10 A simple way to think of data refinement in our context
is that a transformation increases or decreases the number of ‘representational options’,
e.g., by making a certain syntactic structure optional or mandatory. Here we assume the
term-oriented semantics with its term-algebraically defined domains.

Some grammar differences may require more arbitrary replacements. In this case,
one would want to be sure that a) indeed no more preserving transformation is possible,
and b) the scope of replacement is as small as possible. To this end, we have developed
an effective strategy, which however is beyond the scope of the present paper.

5.2 Grammar Refactoring

Let us demonstrate a number of refactoring operators. In our running example, there are
two sources that are very close to each other: antlr and dcg; c.f., Fig. 5. Both sources
serve top-down parsing. The remaining differences are neutralized by the following
refactorings to be applied to the ANTLR grammar; we show the applications of the
transformation operators combined with an explanatory comment:

renameN(’NEWLINE’, newline) % use lower case
renameN(’INT’, int ) % use lower case
renameN(’ID’, name) % rename ID to name
verticalN (expr) % many expr productions
unchain(p ([], expr , n(apply ))) % inline apply production
unchain(p ([], expr , n(binary ))) % inline binary production
unchain(p ([], expr , n(ifThenElse ))) % inline ifThenElse
verticalN (atom) % many atom productions
deanonymize(p([ literal ], atom, n( int ))) % add label for literals
deanonymize(p([argument], atom, n(name))) % add label for arg refs
verticalN (ops) % many ops productions
deanonymize(p([equal ], ops, t (==))) % label == production with equal
deanonymize(p([plus ], ops, t (+))) % label + production with plus
deanonymize(p([minus], ops, t (−))) % label − production with minus

Fig. 6 briefly describes a small suite of refactoring operators. All operators except
permute are semantics-preserving w.r.t. string-oriented semantics. Without exception,
the operators are semantics-preserving w.r.t. term-oriented semantics.

5.3 Grammar Editing

We use the term grammar editing for transformations that go beyond refactoring. Let
us consider an example. The antlr and dcg sources of FL use two expression layers
(expr and atom), whereas the sdf source only uses one expression layer (and deals with

10 We say that a data type (domain) A can be refined to a data type (domain) B, denoted by the
inequality A ≤ B, if there is an injective, total function to : A → B (the representation
function), and a surjective, possibly partial function from : B → A (the abstraction function)
such that from.to = idA, where idA is the identity function on A.



An Introduction to Grammar Convergence 255

renameN(N1, N2) renames all occurrences of the nonterminal N1 to N2, provided N2 does
not occur in G. There are also operators renameL and renameS for renaming labels and
selectors. In renameS(OL, S1, S2), OL is an optional label; if present, S1 is renamed only
in the scope of the identified production, or globally otherwise.

permute(P ) replaces a production say P ′ by P , where P and P ′ must agree on their defined
nonterminal and (optional) label while their defining expressions must be permutations of
each other (with regard to sequential composition). Here is an example:

– A production: p([binary ], expr , (n(expr ), n(ops ), n(expr )))
– A permutation: p([ binary ], expr , (n(ops ), n(expr ), n(expr )))

verticalN(N) converts the choice-based definition of N to multiple productions. Each alterna-
tive of the choice becomes another production. An outermost selector, if present, is reused
as a production label (but must not yet be in use in G). The variation verticalP(P ) limits
the conversion to a production P . There is the opposite operator horizontal.

unchain(P ) replaces a chain production P and the production P ′ that defines the nonterminal
of its defining expression by a production that inlines P ′ in P . (There is also the opposite
operator chain.) Here is an example:

– The chain production: p ([], expr ,n( literal ))
– The referenced definition: p ([], literal ,n( int ))
– The result of unchaining: p([ literal ], expr ,n( int ))

deanonymize(P ) replaces an unlabeled production say P ′ by its labeled variant P . There is
also the opposite operator anonymize.

lassoc(P ) replaces list-based recursion by binary recursion. (The ‘l’ in lassoc is for left asso-
ciation hinting at the expected effect at the instance level. There is also an operator rassoc
hence.) Here, P describes binary recursion. Their must be a corresponding production in
G that uses list-based recursion. Here is an example:

– Binary recursion: p([ binary ], expr , (n(expr ), n(ops ), n(expr )))
– List-based recursion: p([ binary ], expr , (n(expr ), ∗((n(ops ), n(expr )))))

Fig. 6. Operators for grammar refactoring (G refers to the input grammar.)

priorities by extra annotations). The following transformation uses an editing operator
unite to merge the two layers (i.e., nonterminals) in one:

unite (atom, expr)

Consider another example. The grammars in Fig. 5 differ with regard to the grammatical
details regarding FL’s literals and function or argument names. The xsd source uses pre-
cise (simple) types int and string, whereas the other grammars leave the corresponding
nonterminals undefined (because the extraction only returned immediate context-free
structure in those cases). The following transformations resolve the undefined nonter-
minals in accordance to the xsd source:

define ([p ([], name, v( string ))]) % names are strings
define ([p ([], int , v( int ))]) % ints ( literals ) are ints

Consider a final example. The convergence of concrete and abstract syntax definitions
requires a transformation that removes all details that are specific to concrete syntax
definitions. That is, we project away the reference to newline, strip off all terminals,



256 R. Lämmel and V. Zaytsev

project(P ) replaces a production say P ′ by P , where P and P ′ must agree on their defined
nonterminal and (optional) label, and the defining expression of P must be a sub-sequence
of the one of P ′ (with regard to sequential composition).

stripTs removes all terminals.

stripSs removes all selectors.

skip(P ) removes a reflexive chain production P .

unite(N1, N2) recursively merges the definitions of N1 and N2 into one by replacing all defin-
ing and using occurrences of N1 by N2.

define(Ps) adds the productions Ps as a definition, assuming that all productions agree on
a defined nonterminal that is used but not yet defined in G. We take the view that an
undefined nonterminal is implicitly defined to be equal to the universal type. Hence, the
define operator essentially ‘narrows’ a definition in a semantic sense. There is also the
opposite operator undefine for discarding the explicit definition of a nonterminal.

Fig. 7. Operators for grammar editing (G refers to the input grammar.)

remove the bracketing production, and permute the ingredients of binary expressions to
resemble prefix instead of infix notation. Thus:

project (p ([], function , (v( string ), +v( string ), t (=), n(expr ))))
stripTs
skip (p ([], expr , n(expr )))
permute(p([binary ], expr , ’ , ’ ([n(ops ), n(expr ), n(expr )])))

Fig. 7 briefly describes a small suite of editing operators. In fact, the editing operators
stripTs and stripSs are semantics-preserving w.r.t. the term-oriented semantics because
terminals and selectors are irrelevant for interpreting a grammar as a signature. All but
one of the remaining operators model data refinement in one direction or the other, i.e.,
from input (I) to output (O), or vice versa: skip: O ≤ I , unite: I ≤ O, define: O ≤ I ,
undefine: I ≤ O. The operator project does not model data refinement; rather it models
‘data disposal’. Its I-to-O mapping for project is total, surjective, non-injective; its O-
to-I mapping is not generally defined.

6 Related Work

Interoperability. The consistent use of structural and nominal types (to be compared
here with grammar knowledge) is a goal shared with programming-language type sys-
tems, exchange formats, and interface definition languages (IDLs). IDLs are specifi-
cally used in distributed programming. Exchange formats are widely used for any sort
of data- and communication-intensive programming. A domain with classic grammar-
like exchange formats including bridges between different formats is reverse engi-
neering [9, 14]. In the broad context of interoperability, grammar convergence
provides added value in the situation where diverse, related grammar-like knowledge
is ingrained in different software artifacts. The use of extraction and transformation
compensates for the lack of consistent use of a common type system, IDL, or exchange
format, and it allows for flexible correspondence relationships.



An Introduction to Grammar Convergence 257

Testing grammarware. The I/O behavior of grammarware (e.g., the acceptor behavior
of a frontend) can be tested by ‘sampling’ — subject to test-data generation and test
suites [16, 19, 23, 31]. Such approaches are specifically useful for differential testing
of grammarware. Grammar convergence is complementary in that it provides a static
verification of the correspondence between different software artifacts based on access
to the internal structure of the artifacts. It can also be applied to specify the ‘distance’
between grammars.

Generators and synchronizers. If two artifacts are meant to use the same grammar
(type, etc.) modulo its realization in the software artifact, then, arguably one grammar
(or software artifact) should be generated from the other. One scenario of that kind
is XML-object mapping where object models are derived from XML schemas or vice
versa [18]. Another scenario is the provision of text-to-model and model-to-text capa-
bilities in model-driven engineering, where, for example, a parser description may be
generated from a sufficiently rich (‘annotated’) metamodel [11].

One may go beyond generation, and even require bidirectional synchronization be-
tween scattered grammar knowledge, akin to bidirectional model/model or model/code
synchronization in model-driven engineering [32]. As should be clear from the list of
use cases in the introduction, grammar convergence is applicable even when genera-
tors or bidirectional synchronizers are not, have not been, or cannot (yet) be used for
whatever technical or other reason. In particular, existing components do not need to
be adapted, in any way, when applying the method of grammar convergence.

As an illustration, let us consider two concrete scenarios. First, consider the prob-
lem of different versions of a highly idiosyncratic parser description [27]. Bidirectional
synchronization is not available in this context, but grammar convergence applies, and
establishes the correspondence between the grammar versions. Second, consider the
derivation of a technology-specific parser description from a technology-neutral base-
line grammar. Only simpler cases of this process can be automated [13, 11].

Grammar recovery. Our work is heavily influenced by the idea of grammar recov-
ery [2, 6, 10, 17, 20, 30], especially those forms that begin with the extraction of gram-
mar knowledge from an artifact like a standard (containing syntax) or an implemen-
tation (based on an idiosyncratic parsing technology). Just like grammar convergence,
grammar recovery involves (manual or automated) grammar transformations, which we
discuss below. While grammar recovery has focused on (mostly concrete) syntax defi-
nitions, grammar convergence applies to a very broad interpretation of grammars (XML
schemas, object models, etc.). Grammar recovery is a reverse-engineering method that
relies on conservative parser testing to derive a quality grammar from the source. In
contrast, grammar convergence is a verification method that establishes and maintains
grammatical correspondences between software artifacts.

Grammar transformation. (Automated) grammar transformation has seen a surge of in-
terest over the last decade, but the concept is much older because parsing technologies
tend to require some internal transformations, c.f., the classic example of left-recursion
removal [1,22,24]. There are several modern use cases for grammar transformation that
support automated software engineering and grammar-based programming in one way
or another: grammar recovery (see above), derivation of an abstract from a concrete



258 R. Lämmel and V. Zaytsev

syntax [33], problem-specific customization of grammars [4], and mediation between
different grammar classes [28]. Ultimately, we speak of grammar programming or pro-
grammable grammar transformations [3].

Grammar convergence relies on an advanced operator suite for grammar transfor-
mation the design of which is driven by the unified grammar format, and the kinds of
grammar differences that we have encountered. The design of the operator suite has
not yet fully stabilized; we are still pursuing research on principled properties of gram-
mar transformations — at all levels: single operators, operator suites, and sequences of
operator applications. This work is based on earlier research by the first author [15,21].

Grammar convergence. Finally, we mention grammar engineering techniques that can
be seen as specific forms of grammar convergence. In [2], the compatibility of (different
implementations of) precedence rules in grammars is checked. Our (current) grammar
convergence approach does not address any parsing techniques specifically, but in re-
turn, it is more generic (with regard to the notion of grammar), and programmable
(with regard to deltas between grammars). In [12], the correspondence between a con-
crete and abstract syntax definition is addressed: the specifications for both syntaxes
may be incomplete, as long as they complement each other consistently. Grammar con-
vergence provides a general tool for ‘programming’ such relationships, and verifying
them. In [27], the problem of proliferation of grammar-based artifacts (in fact, parser
descriptions with semantic actions) due to grammar evolution or always new grammar
use cases is addressed. Based on ideas of version control, a parser description remains
associated with its ‘prototype’, so that revisions of the prototype can be signaled to
derivatives. Grammar convergence also covers this scenario, except that it cannot detect
modifications that are gone after grammar extraction.

7 Concluding Remarks

If unit testing is the simple, pragmatic, and effective method to generally validate the
I/O behavior of software modules, then grammar convergence is the simple, pragmatic,
and effective method to keep scattered grammar knowledge ‘in sync’. The method can
also be used to capture and henceforth verify the differences between scattered grammar
knowledge — both intended differences (due to evolution or implementational choices)
and accidental differences (that cannot be resolved immediately). In one case study
(see the authors’ website), we have applied the method to the various grammars in the
Java language specification; we have accurately captured the evolution from version to
version, and we have spotted a substantial number of inconsistencies.

We currently work on the application of grammar convergence at the instance level
(c.f., XML trees, derivation trees, parse trees, etc.) so that one can compare and con-
verge ‘data’ from different software artifacts. Our implementation already supports
some operators at the instance level so that instances of one grammar can be converted
to instances of another grammar.

Our current implementation of grammar convergence does not infer transformation
candidates in any way; the software engineer must use the output of grammar compar-
ison intelligently. This is an obvious target for future work, and we expect useful input
from other areas of software engineering: schema matching and data integration in the



An Introduction to Grammar Convergence 259

field of data modeling and databases [29]; comparison of UML models or metamodels
in the context of model-driven engineering [34,7]; the computation of refactorings from
different OO program versions [26, 5].

Acknowledgement. The first author is grateful for opportunities to present and dis-
cuss some of this work at University of Waterloo, IEEE Kitchener-Waterloo, on August
6, 2008, at Dagstuhl Seminar 08331, ‘Perspectives Workshop: Model Engineering of
Complex Systems (MECS)’, on August 12, 2008, and at invited talks at the METRIK
Workshop, in Berlin, on November 21, 2008, and at the BENEVOL Workshop, in Eind-
hoven, on December 12, 2008.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, Techniques and Tools. Addison-
Wesley, Reading (1986)

2. Bouwers, E., Bravenboer, M., Visser, E.: Grammar Engineering Support for Precedence Rule
Recovery and Compatibility Checking. ENTCS 203(2), 85–101 (2008)

3. Dean, T., Cordy, J., Malton, A., Schneider, K.: Grammar Programming in TXL. In: Proceed-
ings of Source Code Analysis and Manipulation (SCAM 2002). IEEE, Los Alamitos (2002)

4. Dean, T., Cordy, J., Malton, A., Schneider, K.: Agile Parsing in TXL. Journal of Automated
Software Engineering 10(4), 311–336 (2003)

5. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automated Detection of Refactorings in
Evolving Components. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 404–428.
Springer, Heidelberg (2006)

6. Duffy, E.B., Malloy, B.A.: An Automated Approach to Grammar Recovery for a Dialect of
the C++ Language. In: Proceedings of 14th Working Conference on Reverse Engineering
(WCRE 2007), pp. 11–20. IEEE, Los Alamitos (2007)

7. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel Matching for Automatic
Model Transformation Generation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer, Heidelberg (2008)

8. Hoare, C.A.R.: Proof of Correctness of Data Representations. Acta Informatica 1(4), 271–
281 (1972)

9. Jin, D., Cordy, J., Dean, T.: Where’s the Schema? A Taxonomy of Patterns for Software
Exchange. In: Proceedings of International Workshop on Program Comprehension (IWPC
2002), pp. 65–74. IEEE, Los Alamitos (2002)

10. de Jonge, M., Monajemi, R.: Cost-effective maintenance tools for proprietary languages. In:
Proceedings of International Conference on Software Maintenance (ICSM 2001), pp. 240–
249. IEEE, Los Alamitos (2001)

11. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete syn-
taxes in model engineering. In: Proceedings of Generative programming and component en-
gineering (GPCE 2006), pp. 249–254. ACM Press, New York (2006)

12. Kadhim, B., Waite, W.: Maptool—supporting modular syntax development. In: Gyimóthy,
T. (ed.) CC 1996. LNCS, vol. 1060, pp. 268–280. Springer, Heidelberg (1996)

13. Kort, J., Lämmel, R., Verhoef, C.: The Grammar Deployment Kit. ENTCS 65(3), 7 Pages
(2002); Proceedings of Language Descriptions, Tools, and Applications (LDTA 2002)

14. Kraft, N.A., Malloy, B.A., Power, J.F.: An infrastructure to support interoperability in reverse
engineering. Information & Software Technology 49(3), 292–307 (2007)

15. Lämmel, R.: Grammar Adaptation. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS,
vol. 2021, pp. 550–570. Springer, Heidelberg (2001)



260 R. Lämmel and V. Zaytsev

16. Lämmel, R.: Grammar Testing. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp.
201–216. Springer, Heidelberg (2001)

17. Lämmel, R.: The Amsterdam toolkit for language archaeology. ENTCS 137(3), 43–55
(2004); Post-proceedings of the 2nd International Workshop on Meta-Models, Schemas and
Grammars for Reverse Engineering (ATEM 2004)

18. Lämmel, R., Meijer, E.: Revealing the X/O Impedance Mismatch. In: Backhouse, R., Gib-
bons, J., Hinze, R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719, pp. 285–368. Springer,
Heidelberg (2007)

19. Lämmel, R., Schulte, W.: Controllable Combinatorial Coverage in Grammar-Based Testing.
In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 19–38.
Springer, Heidelberg (2006)

20. Lämmel, R., Verhoef, C.: Semi-automatic Grammar Recovery. Software—Practice & Expe-
rience 31(15), 1395–1438 (2001)

21. Lämmel, R., Wachsmuth, G.: Transformation of SDF syntax definitions in the ASF+SDF
Meta-Environment. ENTCS 44(2) (2001); Proceedings of Language Descriptions, Tools and
Applications (LDTA 2001)

22. Lohmann, W., Riedewald, G., Stoy, M.: Semantics-preserving migration of semantic rules
after left recursion removal in attribute grammars. ENTCS 110, 133–148 (2004); Proceedings
of 4th Workshop on Language Descriptions, Tools and Applications (LDTA 2004)

23. Malloy, B., Power, J., Waldron, J.: Applying software engineering techniques to parser de-
sign: the development of a C# parser. In: Proceedings of Conference of the South African
institute of computer scientists and information technologists, pp. 75–82. ACM Press, New
York (2002)

24. Moore, R.C.: Removing left recursion from context-free grammars. In: Proceedings of the
first conference on North American chapter of the Association for Computational Linguis-
tics, pp. 249–255. Morgan Kaufmann Publishers Inc., San Francisco (2000)

25. Morgan, C.: Programming from Specifications. Prentice Hall International, Englewood Cliffs
(1990)

26. O’Keeffe, M., Cinnéide, M.O.: Search-based refactoring: an empirical study. Journal of Soft-
ware Maintenance and Evolution 20(5), 345–364 (2008)

27. Parr, T.: The Reuse of Grammars with Embedded Semantic Actions. In: Proceedings of
the 16th IEEE Conference on Program Comprehension (ICPC 2008), pp. 5–10. IEEE, Los
Alamitos (2008)

28. Pepper, P.: LR Parsing = Grammar Transformation + LL Parsing. Technical Report CS-99-
05, TU Berlin (1999)

29. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)

30. Sellink, M., Verhoef, C.: Development, Assessment, and Reengineering of Language De-
scriptions. In: Proceedings of Conference on Software Maintenance and Reengineering
(CSMR 2000), pp. 151–160. IEEE, Los Alamitos (2000)

31. Sirer, E., Bershad, B.: Using Production Grammars in Software Testing. In: USENIX (ed.)
Proceedings of Domain-Specific Languages (DSL 1999), pp. 1–13. USENIX (1999)

32. Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and Open Ques-
tions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

33. Wile, D.: Abstract syntax from concrete syntax. In: Proceedings of International Conference
on Software Engineering (ICSE 1997), pp. 472–480. ACM Press, New York (1997)

34. Xing, Z., Stroulia, E.: Refactoring Detection based on UMLDiff Change-Facts Queries. In:
Proceedings of the 13th Working Conference on Reverse Engineering (WCRE 2006), pp.
263–274. IEEE, Los Alamitos (2006)



Application of Graph Transformation in
Verification of Dynamic Systems�

Zarrin Langari and Richard Trefler

David R. Cheriton School of Computer Science
University of Waterloo, Canada

{zlangari,trefler}@cs.uwaterloo.ca

Abstract. A communication system evolves dynamically with the ad-
dition and deletion of services. In our previous work [12], a graph trans-
formation system (GTS) was used to model the dynamic behaviour of a
telecommunication system. In this paper, we show how GTS modeling
can facilitate verification of invariant properties of potentially infinite-
state communication systems. We take as a case study for this approach
an invariant property of telecommunication service components that can
act both as the source and the target of a connection. Verifying an order-
ing among service components to be invariant is essential to guarantee
the desirable behaviour of these services. We show how the verification
can be performed by the analysis of a finite set of transformation rules
describing the GTS system model. We prove that invariant properties are
preserved in a GTS model if the set of transformation rules describing
the model satisfies the property. Thus, we show how to perform system
verification through analysis of the model description without building
the full system state space.

1 Introduction

Connection-oriented communication protocols require a connection session to be
established prior to data transfer. In these protocols, services are described by the
inter-operation of individual units of functionality known as features. Dynamic
evolution of a communication system changes the topology of the system as
new features are added to or existing ones deleted from the connection session.
This dynamic evolution may cause the violation of inter-feature specifications,
thereby causing undesirable feature interactions.

In the current work, we show how to verify high-level invariant properties of
connection-oriented services given as graph transformation system (GTS) [6,14]
model descriptions. We show that if a property is preserved by the finite set of
transformation rules describing the system model, and if the initial state satisfies
the property, then the property is an invariant of the protocol. Therefore, our
verification method avoids the explicit analysis of the behaviours and potentially
enormous state space that the transformation rules encode.
� The authors’ research is supported in part by a grant from the Natural Sciences and

Engineering Research Council of Canada.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 261–276, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



262 Z. Langari and R. Trefler

Motivation. Among connection-oriented services, some so called reversible
modules perform crucial functions such as controlling multi-point connections
and transferring the connection from one endpoint device to another endpoint
device without disturbing an ongoing connection [18]. Telecommunication proto-
cols are perhaps the best examples of connection-oriented systems, and in fact,
reversible modules in these systems are able to initiate a call on their own. For
instance, after a connection has been dropped due to a failure, such a reversible
module (feature) will re-establish the connection to the appropriate endpoint.
As instances of reversible modules in telephony, we can name Call-Waiting for
switching between two incoming calls; Automatic-Call-Back that offers the caller
an automatic call whenever the callee is idle, in case of call failure (e.g. busy
line); and Mid-Call-Move that moves an endpoint of a connection from one de-
vice to another while the caller and the callee are in the “talk” mode. Reversible
modules have an important role in maintaining source and destination symmetry.
This symmetry ensures that messages are not being lost and that the connection
is long-lasting and continuous. This continuity is characteristic of well-behaved
communication protocols.

A strong motivation for the current work is to find a way of managing interac-
tions among reversible service modules by imposing an appropriate ordering on
them that satisfies the system specification and governs desirable interactions.

Contribution. Distributed communication protocols are notoriously resistant
to formal modeling due to their size and complexity. In our previous work [12],
we used graph transformation, a straight forward, visual formalism to do this
modeling. In experiments with the Distributed Feature Composition (DFC)
protocol[10], an IP-based telecommunication architecture of AT&T, we found
that graph transformation offers several key advantages over naive methods in
modeling the dynamic evolution of a reactive communication protocol. The struc-
ture of the generated model closely resembles the way in which communication
protocols are typically separated into three levels: the first describing local fea-
tures or components, the second characterizing interactions among components,
and the third showing the evolution of the component set. The graph transfor-
mation semantics follows this scheme, enabling a clean separation of concerns
when describing a protocol.

In addition, in distributed communication protocols, verifying properties of
feature compositions is problematic due to the state explosion problem and may
not even be decidable. Therefore, avoiding explicit analysis of the system state
space is desirable. In this paper, we address the verification problem for a class
of systems with potentially unbounded state spaces. We show that an invariant
system property encoded as a graph can be verified against the GTS model
[12] by examining the model’s finite set of transformation rules, and without
resorting to the exploration of the full state space. While the problem is in
general undecidable, we show that the property is satisfied by the GTS model
if the set of rules are property preserving. To enable this type of verification,
first we define the notion of graph satisfaction. Then we use this notion to define
what it means for a transformation rule to preserve a property.



Application of Graph Transformation in Verification of Dynamic Systems 263

We then show that the ordering property of reversible features in communica-
tion systems is guaranteed through our analysis of the GTS model of the system.
We choose DFC as our communication system case study. We also present the
invariant ordering property of reversible features in DFC. This property states
that the sequence of reversible features in an existing call associated with an
address is an invariant of the call. Maintaining this property is important to
avoid feature interaction problems due to the dynamic evolution of the system.

Structure of the Paper. In Section 2, an informal description of DFC se-
mantics and the specifications of the ordering property of reversible features are
presented. An overview of GTS modeling is given in Section 3 and is followed by
a description of the verification problem and its analysis in Section 4. In Section
5, we present the verification of the ordering property. Related work is presented
in Section 6, and we conclude in Section 7.

2 Motivating Problem: Reversible Features in DFC

2.1 Introduction to DFC

In this section we define DFC [10] terminologies used for building a connection.

Usages. In DFC, a request for telecommunication service is satisfied by a usage,
which describes the dynamics of a telephone call between two or more end par-
ties. In our modeling of DFC [12], a usage is presented visually as a graph of boxes
and internal calls. A box is a concurrent process providing either feature functions
(a feature box) or presenting an end party (an interface box). An internal call is
a basic connection between any two points (phone-to-phone, phone-to-feature,
feature-to-phone and feature-to-feature) without any intervening feature. Each
feature box is context-independent, so feature boxes can be added, deleted, and
changed. Each interface box has an address which is a string used to identify a
telecommunication device attached to a network. Each feature box has a box type
that corresponds to the feature that it implements, and an address. A feature
box is instantiated from its box type on behalf of an address.

For each address, the sequence of box types that should be assembled into a
usage on behalf of the address when the address is the source or the target of
a connection are called Source or Target Subscriptions. There is a partial prece-
dence order between both source-subscribed and target-subscribed box types of
an address. This order is an input to the routing algorithm and is chosen by
the designer based on features priorities to eliminate undesirable feature inter-
actions. Figure 1.a shows a straightforward usage formed when the device with
address X that has subscribed to features F1 and F2 requests a connection to
end party Y that has subscribed to features F3 and F4.

Routing. When an interface box requests a connection, the connection is built
using a DFC routing algorithm. This algorithm [10] has three basic methods:
new, continue, and reverse that are executed on behalf of interface or feature



264 Z. Langari and R. Trefler

Fig. 1. a) A simple usage. b) A usage with reversible boxes A, B, D.

boxes. The method new is executed by an interface box that requests the con-
nection and creates a setup signal. The method continue is applied to a received
setup signal by a feature box and results in the resubmission of that signal to the
next box closer to the desired end party. The method reverse is performed by a
feature box to reverse its incoming call, i.e. change the direction of a call, pos-
sibly back towards the initiating interface box. For routing, the router chooses
feature boxes in sequence from a list, called route, associated with the current
address. The route consists of a sequence of source-subscribed box types of the
source address and a sequence of target-subscribed box types of the target ad-
dress. The point on the connection path of the usage in which the call is routed
from source to target-subscribed boxes, is called the mid-point of the call.

If feature boxes use only the continue method, then the simplest usage as
depicted in Figure 1.a has instances of all source-subscribed box types of the
source address, followed by all target-subscribed box types of the target address.
A usage with activated reversible features may be formed in an unusual way
with internal calls in different directions. As an example, consider the usage in
Figure 1.b, with features A, B, C, and D subscribed to by address X from which
A, B, and D are reversible (depicted in bold), and feature D is activated.

2.2 Invariant Ordering Property of Reversible Features

The invariant ordering property of reversible features is significant in a usage
because it guarantees that the interactions of all the reversible features follow a
desired pattern even though the usage has changed from its initial configuration
[16]. In this section, we explain this property using DFC specifications.

Using the informal description of DFC specifications given in the previous sec-
tion, we have extracted three specification statements as first-order logic pred-
icates to describe the above mentioned property about orderliness of reversible
features in DFC routing. In these statements, a is an address from the set of exist-
ing addresses, Addr; Reversible is the set of reversible feature boxes subscribed
to by an address; SrcSubscriptions and TargetSubscriptions, respectively, show
the sequences of source and target subscriptions of an address. Precedes(≺) is
a relation between feature boxes that shows the order in which they are as-
sembled in the usage of an address. R and R′, respectively, are the projection of



Application of Graph Transformation in Verification of Dynamic Systems 265

source and target subscriptions onto reversible boxes. Therefore, for address a
we have:

a.R = a.Reversible ∩ a.SrcSubscriptions a.R′ = a.Reversible∩ a.T rgSubscriptions

In the box below, we have the specification statements about reversible fea-
tures. In these specifications, angle brackets “ < ” and “ > ” are used to denote
the list of members in a sequence. In order to show that a sequence is a sub-
sequence of another sequence we use the notation �, e.g. A � B denotes that
sequence A is a subsequence of sequence B. The first specification in the box
states that if an address subscribes to a reversible box, it must subscribe to it
both as a source and as a target address. The second one states that the prece-
dence order relation (≺) in the set of reversible boxes being subscribed to as
source subscriptions of an address is a total order. In this specification, if R is
replaced by R′ then we get the total order for reversible boxes being subscribed to
as target subscriptions. The third specification expresses that the subsequences
of source and target reversible features of an address have an opposite precedence
order.

1. (∀a ∈ Addr,∀f ∈ a.Reversible)⇒
(f ∈ a.SrcSubscriptions⇔ f ∈ a.T rgSubscriptions)

2. (∀a ∈ Addr,∀f1, f2 ∈ a.R, f1 �= f2)⇒
(((f1 ≺ f2) ∨ (f2 ≺ f1)) ∧ ¬((f1 ≺ f2) ∧ (f2 ≺ f1)))

3. (∀a ∈ Addr,∀f1, f2 ∈ a.Reversible, f1 �= f2)⇒
((< f1, f2 >� a.SrcSubscriptions)⇔ (< f2, f1 >� a.T rgSubscriptions))

The third specification is needed to ensure that a usage consisting of multiple
features is constructed in an acceptable way, and in particular to ensure that
a new usage does not need to be established when the direction of signals is
reversed. Using the above specifications, we have this property:

Requirement. In a usage associated with an address, if we order the feature
boxes from outermost (closest to the endpoint) to innermost (closest to the mid-
point), the sequence of reversible feature boxes associated with the address is an
invariant sequence regardless of how the usage is initially constructed.

To justify the invariant ordering we use an example that shows an undesirable
behaviour when reversible features do not follow an invariant ordering. The
example in Figure 2 shows that a usage has been set up between a source x with
subscribed reversible features Call Waiting (CW ), 3-Way Calling(3WC), and
Automatic Call Back (ACB), and the end party y. We are not concerned with
the subscribed features of end party y for this example. Scenario 1 in Figure
2 demonstrates a usage of address x with the source ordering: CW ≺ 3WC ≺
ACB. Automatic Call Back acts as a source feature, and if an outgoing call
fails, it offers the user x a chance to activate the feature. If x does so, the ACB



266 Z. Langari and R. Trefler

Fig. 2. Interaction of three reversible features in a usage

box disconnects from 3WC, and waits until the original callee is available, this
behaviour is depicted in Scenario 2 of Figure 2, though we are not concerned
with the details of how ACB knows the callee is available. Once y becomes
available, as depicted in Scenario 3 of Figure 2, ACB places a call to x using
reverse and the target ordering ACB ≺ 3WC ≺ CW . When it is connected to
x, it places a (hopefully successful) call to the original callee. The call to the
callee is a continue rather than a reverse.

Now, say, there is an error in the target order and we have the order as
3WC ≺ CW ≺ ACB. As shown in Scenario 4 of Figure 2, because of the
incorrect order, ACB is the last feature in the order, and 3WC and CW are not
routed to. Therefore, if x is actually engaged in another call via CW , it will miss
the call from ACB, even though CW would have enabled it to take the call.

We conclude that the reversible sequence associated with an address must
have a fixed ordering from the left to the right. In the following sections, we
model this property as a graph and show how to verify it via GTS modeling.

3 Graph Transformation System Modeling

GTS is a powerful formalism for modeling the semantics of distributed systems
[6]. In our previous work [12], we modelled the dynamic behaviour of DFC as it
changes over time. In this modelling, we use a graph transition or a graph trans-
formation system, in which nodes represent states of the system at a particular
point and transitions show how the system evolves from one state to the next.
Each state of the system is modelled as a usage graph of features and interface
boxes and by using the graph transformation system we describe how a usage
changes its state to another by the application of transformation rules. The GTS
model that we use to describe DFC is defined in this section.

Definition 1 (Graph [8]). A graph G = (V, E, Src, T rg, Lab) consists of a set
V of nodes, a set E of edges, and functions Src, T rg : E → V , and the labelling
function Lab : E, V → lab, where lab belongs to a set of labels.



Application of Graph Transformation in Verification of Dynamic Systems 267

Definition 2 (Graph Morphism [14]). A graph morphism f : G → H maps
nodes (V) and edges (E) of graph G to nodes and edges of graph H. fv : VG → VH

and fe : EG → EH are structure-preserving functions, that is, we have for
all edges e ∈ EG, fv(SrcG(e)) = SrcH(fe(e)), fv(TrgG(e)) = TrgH(fe(e)),
and LabH(fe(e)) = LabG(e). If fv, fe are total functions, then we have a total
morphism, and if these functions are partial, we have a partial morphism.

Note that in a structure-preserving mapping, the shape and the edge labelling
of the original graph are preserved. A graph morphism f = (fe, fv) is called
injective if both fe and fv are injective mappings.

Definition 3 (Graph Transition System [14,9]). A transition system is
defined as: G = 〈S, T, I〉. S is a set of states (nodes), where each state has a
graph structure, I is an initial state, and T is a set of transitions based on
graph morphism: T ⊆ S × P × S where P is a set of transformation rules. A
transformation t is defined as t : G

r �� H where r ∈ P . The transformation
rule r appears in the form: L → R, L is the left side graph and R is the right
side graph of the rule. The application of a rule r to a graph G, is based on a
total morphism between L and graph G. We write t : G0

r �� G1 to show that
the system will be transformed from the state G0 to G1 by the application of rule
r. A graph transformation t : G0

∗ �� Gn is a series of G0 ⇒ G1 ⇒ ... ⇒ Gn

direct graph transformations.

In some cases, the application of rules is restricted by conditions. These condi-
tions forbid specific graph elements to be in a graph for a rule to be applicable.

These conditions are just present in the left side graph (L) of a rule, since the
application of a rule to a graph G is based on morphisms between G and L. In
general, the process of applying a rule to a graph is that everything in the left
side graph (L) but not in the right side graph (R) will be deleted, everything
in R which is not in L will be created, and everything that is in both sides will
be preserved [14]. A total match between the left side subgraph of a rule and a
subgraph in the source graph is made, then the source subgraph is deleted and
replaced by the right side subgraph R.

For graphs, we adopt a GTS model with attributed graphs and node iden-
tification [14,4,12]. In some cases nodes or edges of a graph are identified by
data attributes such as strings and numbers. The GTS defined above supports
attributed graphs. In this model, every node of the graph is unique based on its
attributes. In the definition of GTS we also require the application of transforma-
tion rules based on injective mappings which means we have injective mappings
between the left side of the rule and the source graph.

4 Verification through GTS

We define the verification problem of a GTS and present our method to solve it.
In [11], Kastenberg and Rensink showed that a labelled transition system (LTS)
created by a graph transition system, can be seen as a representation of a Kripke



268 Z. Langari and R. Trefler

Structure for a system model. Therefore, to verify an invariant property on a
generated LTS, all the reachable states should be verified for the satisfaction of
the property. GTSs can generate an infinite-state model; hence, automatic veri-
fication is problematic for these systems. At an appropriate level of abstraction,
communication protocols are typically modelled as infinite-state systems. Thus,
it is reasonable to model them using GTSs.

Here we address the verification of invariant properties that are expressed by
the CTL modality AG and atomic propositions [9] modelled as graphs called
proposition graphs. Unlike the work in [5] that is restricted to forbidden (nega-
tive) constraints, we consider positive propositions, because in most cases nega-
tive constraints can be expressed by negation of positive constraints [8].

We use the notation of a graph transformation tool, GROOVE [11], for ex-
pressing proposition graphs with labels as regular expressions (e.g. Kleene star
labels). We use these labels to compactly express feature connectivity patterns,
for instance, to show that between two features of interest there may be an arbi-
trary length sequence of intervening features. Therefore, we need to extend the
definitions of graph and graph morphism to include Kleene star labels. The fol-
lowing definition of regular expression graph provides this extension. A regular
expression graph is a graph in which edges may be labelled with the Kleene star
operator over the set of labels. Using regular expression graphs in the proposi-
tion graphs and transformation rule graphs makes these graphs more expressive.

Definition 4 (Regular Expression Graph (REG)). An REG is a graph G
where ∃e ∈ EG such that LabG(e) ∈ Labels∗.

An REG can be a subgraph of the left side or the right side graph in a transfor-
mation rule or a subgraph of a proposition graph. Examples of these two cases
are depicted in Figures 4 and 5 respectively. There is an exception that Kleene
star labels are not allowed on newly created graph edges (on the right side of a
rule) or on edges to be deleted (on the left side of a rule.)

Definition 5 (Path). In a graph G = (V, E, Src, T rg, Lab), a path p from node
v1 to node vn is a sequence of nodes connected by edges: p = {v1, v2, ..., vn} ∈ V
such that {e1, e2, ..., en−1} ∈ E, v1 = Src(e1), and for all 1 ≤ i ≤ n − 2,
vi+1 = Trg(ei) = Src(ei+1), and vn = Trg(en−1), and Lab(ei) ∈ Labels∗.

In a path, if there are Kleene star labelled edges, then G is an REG and the path
is defined for an REG. Hence, the sequence s of edge labels in path p, written as
s = (Lab(e1)...Lab(en−1)), specifies a language. For example, for a path p, with
consecutively labelled edges a, x∗, y∗ and b, the sequence s = (ax∗y∗b) specifies
the language of path p, and the string w = axb is a member of that language.
To specify the satisfaction of a proposition graph (an REG) by another graph
(possibly an REG), we need to define a specific type of morphism to map a path
in one REG to another path in the second REG.

Definition 6 (Regular Expression Graph Morphism). rgm : G → H is
an REG morphism between graphs G and H, if either G or H is an REG and
for a path p = {v1, ..., vn} in G there is a path q = {u1, ..., un} in H such that:



Application of Graph Transformation in Verification of Dynamic Systems 269

– There is a graph morphism m : VG → VH between the beginning and the end
nodes of these two paths, written as u1 = m(v1), un = m(vn).

– For 2 ≤ i ≤ n − 1, three cases may occur:
1. If both G and H are REGs, then the language specified by the sequence of

corresponding labels over the edges connecting nodes vi in p is a subset of
the language specified by the sequence of labels over the edges connecting
nodes ui in q.

2. If H is an REG, and G is a graph without Kleene star labelled elements,
then the string specified by the sequence of corresponding labels over the
edges connecting nodes vi in p is a member of the language specified by
the sequence of labels over the edges connecting nodes ui in q.

3. If G is an REG, and H is a graph without Kleene star labelled elements,
then this is similar to case 2 with respective changes for G and H.

We have total or partial REG morphisms, if the mappings are respectively total
(for the set of non-overlapping paths in G) or partial.

The verification problem is solved using a forward analysis method which ensures
that the invariant property is never violated by the application of transformation
rules. Thus the required invariant is satisfied by the system model. Though the
example we picked here for the invariant property is an ordering property of DFC,
the method can be used for invariants that are expressed by positive proposition
graphs. For example, in a linear linked list we may wish to verify that always all
nodes of the list contain some data value. To express the verification problem of
invariant properties we define our notion of graph satisfaction:

Definition 7 (Graph Satisfaction). An REG or a graph G satisfies an REG
or a graph φ, G |= φ, iff there exists an appropriate total morphism (graph or
REG morphism) m between φ and G written as m : φ → G. A graph G weakly
satisfies a graph φ, written as G |=w φ, iff there exists a non-empty appropriate
partial morphism (graph or REG morphism) between φ and G, mw : φ →w G.

Following this definition, then G �|=w φ (G does not weakly satisfy φ) means there
is no morphism between φ and G, and it implies that G does not satisfy φ. Note
that empty morphisms where there is no mapping between two graphs are in fact
types of partial morphism, but they are excluded from the definition of G |=w φ;
therefore, empty morphisms are considered to be non-satisfying. Figure 3 shows
a graph satisfaction example based on morphisms in Definition 6.

Fig. 3. A proposition graph ϕ is satisfied by graph s



270 Z. Langari and R. Trefler

Proposition graphs may be defined as boolean combinations of two or more
graphs. Then graph satisfaction is defined as:

G |= ϕ ∨ ψ iff G |= ϕ or G |= ψ
G |= ϕ ∧ ψ iff G |= ϕ and G |= ψ

Using above definitions, the following theorem states a satisfying condition for
a transformation rule to preserve a property φ. In general, when the property φ
is satisfied in a state, the transformation rule preserves the property, if this rule
does not transform the state graph in a way that violates the property. That is,
given a property φ as a proposition graph, a rule r is guaranteed to preserve φ
if its left side graph does not weakly satisfy φ or its right side satisfies φ.

Theorem 1 (Property Preservation). Given G = 〈S, T, I〉, let φ be a state
property, and 〈s, r, t〉 ∈ T , where r is a rule, r : L → R, and s, t ∈ S, and
suppose s |= φ. If L �|=w φ or R |= φ, then t |= φ.

Proof. Based on Definition 3, when a rule is applied to a state graph s, it recon-
figures s resulting in another state graph t. Considering the fact that both s and
φ are graphs, if s already satisfies the property φ, and if r does not reconfigure
parts of s that have a mapping to φ, then the resulting graph satisfies φ.

To make sure that a rule preserves a property in the transformed state, we
have to check how the transformation affects the existing mapping of φ to s. Thus
the morphisms between the left and the right side graphs of r and φ determine
if r affects φ’s mapping to s or not. In other words, based on Definition 7, how
L and R satisfy φ leads us to find out if r’s transformation process violates φ.
Though there might be different types of satisfaction relation between L, R and
φ resulting in different combinations, all those combinations can be summarized
in two cases, which we prove separately:

1) s |= φ and R |= φ ⇒ t |= φ
2) s |= φ and L �|=w φ ⇒ t |= φ

Case 1: This case states that if the right side of a rule satisfies a property,
no matter what is the satisfaction situation with its left side, the rule’s
application preserves the property. Based on the rule’s application process
defined in Section 3, the common elements in R and L are preserved and
other elements in R are created in the transformed state. Therefore, if R
satisfies φ, then φ’s elements will be mapped to the transformed state, no
matter if L satisfies φ or not.

Case 2: In this case, when L �|=w φ, it means there is no morphism (partial
or total) between L and φ. Since s |= φ and there is a total graph or REG
morphism between L and s (Definitions 3, 4), then whether R satisfies φ or
no, either r transforms s with creation of some or all elements of φ, or it
transforms a part of s that does not map to any elements of φ. ��

The second case occurs when a rule transforms parts of a big graph that do not
interfere with the proposition graph elements, in other words, those parts do not



Application of Graph Transformation in Verification of Dynamic Systems 271

have a mapping to the proposition graph. In all other cases (L |= φ and R �|=w φ,
L |= φ and R |=w φ, L |=w φ and R |=w φ), the rule may transform the graph in
a way that elements mapping to the proposition graph in the left side are deleted
in the transformed state. These cases may therefore violate the property. Thus,
such transformation rules may or may not preserve the property. Therefore, this
verification technique is sound but incomplete (may introduce false negatives).

Note that this theorem may not hold for GTSs without node identification[14],
where we have similar nodes with the same attributes, or when rules are applied
based on non-injective mappings. For instance, consider the non-injective map-
ping of the left side of a rule to a graph s where there are two sets of mappings
from L to a subgraph in s. If both sides of the rule and also s preserve a prop-
erty (based on the same subgraph mapping), and rule applies to s with the goal
to delete the mapped subgraph, because of the priority of deletion over preser-
vation in the rule application approach [12], the transformed state graph does
not satisfy the property. This exception does not occur in our GTS rules built
to present DFC behaviour, because we use graph nodes with identification and
injective graph morphisms for the rules application in our modelling.

The above Theorem is used to prove the satisfaction of invariant properties
defined as a CTL formula AG(φ) in a GTS description of a system.

Corollary 1. For the graph transition system G = 〈S, T, I〉 and the state prop-
erty φ, G |= φ, if I |= φ and for all rules r ∈ G, r preserves φ.

Proof. This Corollary can be proved by induction using I |= φ as the base
case. Based on Theorem 1, a hypothesis is made to assume that the property
is preserved by all the rules in G that are applied to the states up to the kth
level in the LTS. In the induction step, since we have proven that the property
is satisfied at the states of the LTS in level k, and because all rules are property
preserving, then the given property also holds through all the rules application
at level k + 1 of the LTS. ��

5 Verifying an AG(φ) Property in a DFC Usage

After the establishment of a connection in a DFC usage, the usage can grow,
shrink, split, or merge with other usages. The establishment of a connection is
based on DFC routing algorithm, which builds a connection from the ordered
feature list associated with an address. Each feature box requests a connection
using the “new”, “continue”, or “reverse” methods (Section 2.1).

The DFC routing algorithm is described by two GTS models in the following
steps. In the first model, a GTS is used to build a connection for a usage associ-
ated with two endpoints. These GTS transformation rules describe the methods
“new” and “continue” found in the DFC routing algorithm. For interested read-
ers, the GTS model for establishing a connection was given in [12]. The second
GTS includes those transformation rules for activation of caller’s and callee’s
reversible features. From these rules, caller’s reverse activation rule is illustrated
in Figure 4. The other rules for propagation of reverse signal to the source of the
connection and callee’s reverse activation rules are similar, thus omitted here.



272 Z. Langari and R. Trefler

After the establishment of a connection, which we know satisfies the ordering
property that is given explicitly in the model description, the second graph
transition system, which utilizes the built connection as the initial state, encodes
dynamic changes of the usage graph. As an example, Figure 4 illustrates the rule
for activation of a caller’s subscribed reversible feature. In this picture, nodes
labelled with ?x and ?y match an arbitrary label for the caller and callee names
respectively. Edges labelled with ?x, ?y show that the edge has the same labelling
as caller, callee names pair and present that each segment of the path is related
to which caller and callee. ?x∗, ?y∗ edge labels express that two features are
connected through a sequence of intervening features connected by x, y-labelled
edges. Features have several attributes such as their name; subscriber; status,
which shows if it is a source subscription or target subscription or both; and
mode, which shows whether a feature is reversible. Attributes are depicted as
circular nodes, and elements in the left side of the rule that are being deleted are
illustrated as thin dashed elements. The solid fat elements show those elements
that are being created by the right side of the rule, and the rest of elements are
those preserved by both sides of the rule. To express that the reversible feature F
in Figure 4 is connected to a callee through a sequence of non-reversible features,
Kleene star labelled edges are used (REG). This figure shows the activation of
a caller’s reversible feature.

Fig. 4. The reverse rule ActivateCallerReverseFeature

We verify the invariant AG(φ) in DFC usages, where φ denotes the correct or-
dering of reversible features of an address. We use the requirement in Section 2.2
and REG definition to encode property φ as proposition graphs connected by
operators ∨ and ∧. The first case to consider with any usage is when reversible
features have been assembled into the usage, but are not active. Therefore, a
proposition graph is needed to ensure the ordering of these features as they
appear in the established connection path of an address. The next step is to
construct the proposition graphs that ensure the correct ordering of reversible
features after they are active. For this step, we use the fact that there is a total
precedence order relation among these features, and this ordering for source sub-
scribed features is the opposite of the ordering for the target subscribed features
of an address. Thus, when any of these features activates, it should be verified
that only the direction of signals is changed, because the role of the reversible
feature has been changed from source to target or vice versa. So these proposition



Application of Graph Transformation in Verification of Dynamic Systems 273

Fig. 5. Propositions P, Q in the property AG(φ)

graphs consider the correct activation of each reversible feature, ensuring that
the existing established connection path is used.

The invariant ordering property of two reversible features, A and B, sub-
scribed to by a caller in an established connection between the caller and a
callee in a DFC usage is stated as AG(φ). Two of proposition graphs that par-
ticipate in constructing φ are P and Q as depicted in Figure 5. In this picture,
proposition P shows that there is an established connection between the caller
and the callee ensuring that the reversible features A and B appear in the con-
nection in an order, with zero or more non-reversible features in between (shown
as Kleene star labelled edges). In this example, we are not concerned with the
callee’s subscribed features, so these features are abstracted as an F labelled
node connected by zero or more ?x, ?y labelled edges. Proposition Q shows that
if the reversible feature A activates, the order of B respective to A does not
change in the established connection path from the caller to the callee. Though
other propositions are omitted here, they are similar to Q for checking the prop-
agation of reverse signal to the caller and the activation of reversible feature B.
In GROOVE [11], propositions are specified in the form of transformation rules
with identical left and right sides.

Now we state the verification problem for invariant ordering of reversible
features in a DFC usage in Lemma 1.

Lemma 1. Let G = 〈S, T, I〉 be the DFC transition system, and I be the state
of an established connection associated with address A. Let φ be the invariant
ordering property of reversible features associated with address A, such that I |=
φ. If for all rules r in G, r preserves φ, then G |= φ.

The Lemma is easily proved using Corollary 1 to show that the ordering property
in an established connection of a DFC usage can be verified through our GTS
model of DFC. The GTS with an established connection as the initial state is



274 Z. Langari and R. Trefler

given as a transition system G = 〈S, T, I〉, where I is an established connection
state. We have developed G with a small, but important representative set of
transformation rules that describe DFC behaviour for reversible features, and
all are property preserving based on Theorem 1. After the connection has been
set up between two endpoints, regardless of how the usage graph evolves, the
ordering sequence of reversible features associated with any of the addresses at
each end of the connection should remain a fixed sequence.

The number of rules that describe the behaviour of DFC are finite. Thus, we
are able to verify invariant properties on a potentially infinite state system.

6 Related Work

There are two main types of verification work using GTSs. The first type focuses
on the verification of finite-state systems [15,7,11]. In the current work, which
is a sound though incomplete technique (discussed in Section 4), we focus on
dynamic systems that are not a priori finite state.

Similar to our work, the second type considers verification of infinite-state
systems. Interesting work by Baldan, Corradini, and König [1,2,3] considers an
abstraction approach through unfolding of a GTS by means of constructing
finite Petri-net structures. This work provides an approximate technique and
may introduce false positives [1,2,3]. In addition, in this approach, properties
are not formulated graphically.

The work in [13] also considers an abstraction approach called shaping that
partitions elements of a graph based on their similarities. This work uses an
alternate GTS formalism that does not make use of graph morphisms utilized
in the current work. Furthermore, the approach of [13] is not precise, because
concretization of the same abstract graph is different in shape and structure.

The work in [9] focuses on assertional reasoning and constructing a weakest
precondition, and though it is applicable to infinite-state systems, verifying in-
variants using this approach is difficult. In [9], properties are graph morphisms
based on rule application conditions, while in our approach, properties are graphs
that can be generated in a straightforward manner from user requirements.

The work in [5] also addresses the verification of changing structure modelled
by GTSs. This work is an approximative invariant verification method, and it
only considers the conjunction of unsafe situations where the proposition graphs
encode forbidden cases. Unlike our work that is a type of forward analysis of
rules against the requirement graph, the work in [5] does the verification using
a backward reachability analysis. The work analyzes the actual system states
that are unsafe by explicitly applying rules backward to these states. This work
uses safe system states to build a requirement, whereas invariant requirements
are often given by the user and can be built directly as a proposition graph.

7 Conclusion

In [12], it is shown that graph transformation is a powerful formalism for mod-
elling the dynamic evolution of communication and telecommunication systems.



Application of Graph Transformation in Verification of Dynamic Systems 275

In the present work we show a verification method for invariant checking on
the GTS model of a telecommunication system. GTSs generate an LTS as the
transition graph. The generated LTS for a communication system may lead to
an infinite state model, and verifying invariants on the model requires analysis
of the full state space.

Using the graph satisfaction notion we address the verification of an invariant
using the finite set of transformation rules that describe the system behaviour.
Further, we present the conditions under which a transformation rule preserves
a property. Then we show that if the initial state of the GTS model satisfies the
property, and if all transformation rules are also property preserving, then the
system satisfies the property. Therefore, by analyzing the transformation rules,
we are able to verify a property without explicit exploration of the state space.

This behaviour is true for invariants or properties of the form AG(φ). The
proposition φ is described as a graph and we define two forms for transformation
rules and show that, if all transformation rules are of one of those two forms,
then they are φ preserving. For future work, we are implementing a utility that
checks the preservation of a property by analyzing a transformation rule. Also,
we would like to consider more complex paths and path properties in address
translation cases, where reversible features change their source or target address
[17]. We are also considering verification of liveness and fairness properties.

Acknowledgement

We are grateful to Pamela Zave, Shoham Ben-David and Ali Taleghani for their
many insights and constructive comments on this research.

References

1. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph trans-
formation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, pp. 381–395. Springer, Heidelberg (2001)

2. Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: an
unfolding-based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004.
LNCS, vol. 3170, pp. 83–98. Springer, Heidelberg (2004)

3. Baldan, P., König, B., Rensink, A.: Summary 2: Graph grammar verification
through abstraction. In: Dagstuhl Seminar Proceedings, vol. 04241 (2005)

4. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software
engineering perspective. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 402–429. Springer, Heidelberg (2002)

5. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verifi-
cation for systems with dynamic structural adaptation. In: ICSE 2006, pp. 72–81
(2006)

6. Degano, P., Montanari, U.: A model for distributed systems based on graph rewrit-
ing. J. ACM 34(2), 411–449 (1987)

7. dos Santos, O.M., Dotti, F.L., Ribeiro, L.: Verifying object-based graph grammars.
Software and System Modeling (3), 289–311 (2006)



276 Z. Langari and R. Trefler

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, New York (2006)

9. Habel, A., Pennemann, K., Rensink, A.: Weakest preconditions for high-level pro-
grams. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006)

10. Jackson, M., Zave, P.: Distributed feature composition: A virtual architecture for
telecommunications services. Software Engineering 24(10), 831–847 (1998)

11. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 299–305. Springer, Heidelberg
(2006)

12. Langari, Z., Trefler, R.: Formal modeling of communication protocols by graph
transformation. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS,
vol. 4085, pp. 348–363. Springer, Heidelberg (2006)

13. Rensink, A., Distefano, D.: Abstract graph transformation. In: International Work-
shop on Software Verification and Validation (SVV) (2005)

14. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, Foundations, vol. 1. World Scientific, Singapore (1997)

15. Varró, D.: Automated formal verification of visual modeling languages by model
checking. Journal of Software and Systems Modelling (2003)

16. Zave, P.: Ideal connection paths in DFC. Technical report, AT&T Research
(November 2003)

17. Zave, P.: Address translation in telecommunication features. ACM Trans. Softw.
Eng. Methodol. 13(1), 1–36 (2004)

18. Zave, P.: Requirements for routing in the application layer. In: Murphy, A.L., Vitek,
J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 19–36. Springer, Heidelberg
(2007)



Formal Probabilistic Analysis of Stuck-at Faults
in Reconfigurable Memory Arrays

Osman Hasan, Naeem Abbasi, and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

{o hasan,n ab,tahar}@ece.concordia.ca

Abstract. Reconfigurable memory arrays with spare rows and columns
are quite frequently used as reliable data storage components in present
age System-on-Chips (SoCs). The spare memory rows and columns can
be utilized to automatically replace rows or columns that are found to
contain a cell fault after fabrication. One of the biggest SoC design chal-
lenges is to estimate, prior to the actual fabrication process, the right
number of these spare rows and spare columns for meeting the reliability
specifications. Traditionally, computer simulation techniques are used to
perform probabilistic analysis of reconfigurable memory arrays but they
provide inaccurate results. To ensure accurate analysis and thus more
reliable SoC designs, we propose, in this paper, a probabilistic theorem
proving approach in the domain of reconfigurable memory array analysis.
We present a higher-order-logic stuck-at fault model for reconfigurable
memory arrays, based on which, we illustrate the formal verification of
some key statistical properties related to the number of stuck-at faults
and the repairability condition.

1 Introduction

Embedded memory is the most dominant component in terms of silicon area
of any System-on-Chip (SoC) these days. Applications such as mobile commu-
nication devices, medical and industrial signal processing and digital switching
systems used in computer networks all require large amounts of memory. It is
expected that by the end of this decade about 90% of the chip area on a typical
SoC will be taken up by memory of one type or the other (Static, Dynamic,
Flash, or Content addressable) [15]. These memories on a chip are usually orga-
nized in very highly optimized structures in an effort to reduce cost. Extremely
small memory cell sizes and the fact that a significant amount of the chip area is
taken by compact memory arrays, makes memories more prone to defects during
fabrication than regular logic. The defects in a memory can render the whole
SoC useless. Even in mature fabrication processes where the defect densities tend
to be small, the throwing away of any chip is considered unacceptable because of
its adverse effect on yield. Moreover, these defects may also lead to devastating
situations when the bug is not caught in the testing phase and the faulty chip is
used in a safety critical domain, such as medicine, military and transportation.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 277–291, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



278 O. Hasan, N. Abbasi, and S. Tahar

In order to analyze the effects of memory defects, memory fault models are
constructed that describe how a fault in memory might occur and predict the
resulting device behavior. There are four main types of faults that may occur in
a memory array: stuck-at faults, transition faults, coupling faults, and neighbor-
hood pattern sensitive faults [20]. Stuck-at faults, which occur when a memory
cell never changes its state, i.e., it is always stuck in one state, is the most com-
monly used fault model for analyzing memory arrays and logic. The information
gathered from the fault models is utilized for the development of techniques for
detecting and repairing memory faults. One such widely used technique is to
add some redundancy to the memory array during the design phase. This way
even after fabrication, we can repair some of the memory faults by replacing
the rows or columns of the memory array containing faulty memory cells with
the available spare rows or columns. Memories fabricated with these spare rows
and columns are usually termed as reconfigurable memory arrays. This technique
poses an interesting solution to the memory faults problem but comes with a
bigger design challenge of estimating the right number of spare rows and columns
for meeting reliability specifications. If a combination of spare rows and columns
exists such that all faults from the memory array can be eliminated then such a
combination of spare rows and columns is called a repair solution, and the array
is called repairable. The repairability problem of a reconfigurable memory array
is similar to the vertex cover problem of the bipartite graph and is known to
be an NP complete problem [16]. Thus, probabilistic analysis and some graph
theory principles are usually utilized to obtain reasonable solutions [25,18,2].

Today, simulation is the most commonly used computer based probabilistic
analysis tool for reconfigurable memory arrays, e.g., see [21,23]. Most simulation
based memory array analysis software provide a programming environment for
defining functions that approximate random variables for probability distribu-
tions. The random elements, such as fault occurrences, in a given memory array
are modeled by these functions and the model is analyzed using computer simu-
lation techniques [5], such as the Monte Carlo method [19], where the main idea
is to approximately answer a query on a probability distribution by analyzing a
large number of samples. Statistical quantities, such as expectation and variance,
may then be calculated, based on the data collected during the sampling process,
using their mathematical relations in a computer. Due to the inherent nature of
simulation coupled with the usage of computer arithmetic, the probabilistic anal-
ysis results attained by the simulation approach can never be termed as 100%
accurate. Moreover, simulation requires an enormous amount of CPU time for
attaining meaningful estimates. We generally need to acquire hundreds of thou-
sands of samples to estimate the desired probabilistic quantities and this fact
makes the simulation approach impractical when each sample acquisition step
involves extensive computations, which is usually the case for analyzing recon-
figurable memory arrays due to their large capacities. Thus, simulation should
not be relied upon for the analysis of reconfigurable memory arrays, especially
when they are used in safety critical areas, where inaccuracies and inadequacies
in the analysis may even result in the loss of human lives.



Formal Probabilistic Analysis of Stuck-at Faults 279

In the past couple of decades, formal methods [8] have been successfully used
for the precise analysis of a verity of hardware and software systems. The rigorous
exercise of developing a mathematical model for the given system and analyz-
ing this model using mathematical reasoning usually increases the chances for
catching subtle but critical design errors that are often ignored by traditional
techniques like simulation. Given the sophistication of the present age memory
reconfigurable arrays and their extensive usage in SoCs for safety critical appli-
cations, there is a dire need of using formal methods in this domain. However, to
the best of our knowledge, due to the random and unpredictable occurrence pat-
tern of memory array faults, the usage of formal methods for their analysis has
never been attempted. Some of the major reasons for this include the inability to
precisely reason about statistical properties, such as expectation and variance,
in the case of state-based approaches and the fear of huge proof efforts involved
in modeling and reasoning about random occurrence patterns of memory faults
in the case of theorem proving with expressive logics.

We believe that due to the recent developments in the formalization of proba-
bility theory concepts [14,11,12,13], we are now at the stage where we can handle
the probabilistic analysis of reconfigurable memory arrays in a higher-order-
logic theorem prover [6] with reasonable amount of modeling and verification
efforts. We illustrate the practical effectiveness of this argument by presenting
the higher-order-logic theorem proving based analysis of the repairability prob-
lem for stuck-at faults in this paper. Even though, we concentrate on stuck-at
faults here, the presented approach is quite general and can be essentially utilized
to conduct the analysis of other kinds of memory faults as well.

This paper presents a three step approach for tackling the repairability prob-
lem. We proceed by formally expressing a stuck-at fault model for reconfigurable
memory arrays in higher-order logic. Our formalization utilizes precise random
variable functions to express the random components in the model. Secondly,
we utilize our formal model to express and verify statistical properties, such as
expectation and variance of the number of faults in terms of memory array and
spare rows and columns sizes, as higher-order logic theorems. Finally, this for-
mal statistical information is utilized to formally verify a relation that ascertains
that a large square memory array is almost always repairable (with probability
1) if stuck-at faults are independent and identically distributed with a specific
probability. This result can now be used to accurately estimate the number of
spare rows and columns required for reliable operation against stuck-at faults of
any reconfigurable memory array without any CPU time constraints. We have
utilized the higher-order-logic theorem prover HOL [7] for this work. The main
motivation behind using the HOL theorem prover is the fact that it contains
most of the foundational probability theory work that we build upon.

The rest of the paper is organized as follows: Section 2 presents some related
work. Section 3 provides an overview of HOL probabilistic analysis related foun-
dations that we build upon to conduct the analysis of reconfigurable memory
arrays in this paper. In Section 4, we present our formal probabilistic model of
the number of stuck-at faults in memory arrays. This is followed by the formal



280 O. Hasan, N. Abbasi, and S. Tahar

verification of some statistical properties and the repairability condition in Sec-
tion 5. Finally, Section 6 concludes the paper.

2 Related Work

Simulation techniques are very commonly used in the yield and repairability
analysis for memory arrays. One such yield analysis tool , described in [23], for
integrated circuits containing multiple, possibly different, repairable embedded
memories. Pseudo random faults are generated based on memory area, defect
density, and fault distribution. Then, using a flexible array model, optimal num-
bers of spare rows and columns for a given memory are determined. The tool
is also used to determine the effectiveness of various repair algorithms. In [21]
a Built-in self repair (BISR) technique is presented that merges error correction
coding schemes and self repair using spare rows and columns. The technique is
validated through simulation and it is shown that for defect densities as high
as 10−2 % (or when 3% of cells are defective) near 100% memory yield can be
achieved and thus is suitable for nanometer CMOS process generations.

When memory sizes become large, analysis through simulation very quickly
becomes computationally difficult to handle. Paper-and-pencil based analytical
analysis have been traditionally used for such cases. A memory array probability
model represents either the occurrence of individual faults or the total number of
faults as a random variable and thus allows reasoning about statistical properties.
Questions, such as “given a certain fault distribution and number of faults can
almost every memory array be repaired”, or “with how many faults a memory
array can almost never be repaired”, can then be answered [2,25,18].

To the best of our knowledge, higher-order-logic theorem proving has never
been used for the probabilistic analysis of any memory reconfigurable array so
far. Though, some useful research related to the foundations of probabilistic
analysis is available in the open literature. Random variables can be formal-
ized and verified, based on their probability distribution properties, using the
methodology proposed in [14]. In fact, [14] presents the formalization of some dis-
crete random variables along with their verification, based on the corresponding
PMF properties. Building upon Hurd’s formalization framework [14], the sam-
pling algorithms of a few continuous random variables have also been formalized
and verified [11]. In [12,10], we extended Hurd’s formalization framework with
a formal definition of expectation. This definition is then utilized to formalize
and verify the expectation and variance characteristics associated with discrete
random variables that attain values in natural numbers only.

Besides theorem proving, another formal method that can be used for conduct-
ing precise probabilistic analysis of reconfigurable memory arrays is probabilistic
model checking [1,22]. The main idea behind this approach is to construct a pre-
cise state-based mathematical model of the given memory array and then utilize
this model to exhaustively verify the intended, formally represented, probabilis-
tic properties, such as the probability of number of faults being less than some
threshold value in a given memory array. Besides the accuracy of the results,



Formal Probabilistic Analysis of Stuck-at Faults 281

the most promising feature of probabilistic model checking is the ability to per-
form the analysis automatically. On the other hand, it is limited to systems that
can only be expressed as probabilistic finite state machines or Markov chains.
Another major limitation of the probabilistic model checking approach is state
space explosion [3], due to which large capacity memories cannot be analyzed
using this approach. Similarly, to the best of our knowledge, it has not been
possible to precisely reason about statistical quantities, such as variance and
tail distribution bounds, using probabilistic model checking so far. The most
that has been reported in this domain is the evaluation of a small subset of
expected values in a couple of model checkers, such as PRISM [17] and VESTA
[24]. Because of the above mentioned limitations, probabilistic model checking is
not feasible for analyzing memory array repairability problem as the models are
usually large and most of the decision making in this domain is made based on
statistical quantities. Whereas, the proposed higher-order-logic theorem proving
based approach, allows us to analyze a wider range of memory arrays without
any modeling limitations, such as the restrictiveness to Markovian models or the
state-space explosion problem, and formally verify statistical properties, as will
be seen in the next section.

3 Probabilistic Analysis in HOL

The foremost criteria for implementing a theorem proving based probabilistic
analysis framework is to be able to formalize and verify random variables in
higher-order logic. Hurd’s PhD thesis [14] can be considered a pioneering work
in this regard as it presents a methodology for the formalization and verification
of probabilistic algorithms in the HOL theorem prover. Random variables can
be formalized in higher-order logic as deterministic functions with access to
an infinite Boolean sequence B∞; a source of infinite random bits [14]. These
deterministic functions make random choices based on the result of popping the
top most bit in the infinite Boolean sequence and may pop as many random bits
as they need for their computation. When the functions terminate, they return
the result along with the remaining portion of the infinite Boolean sequence to
be used by other programs. Thus, a random variable which takes a parameter
of type α and ranges over values of type β can be represented in HOL by the
function.

F : α → B∞ → β × B∞

As an example, consider the Bernoulli(1
2 ) random variable that returns 1 or

0 with equal probability 1
2 . It can be formalized in HOL as follows

% bit = (λs. if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The probabilistic programs
can also be expressed in the more general state-transforming monad where the
states are the infinite Boolean sequences.



282 O. Hasan, N. Abbasi, and S. Tahar

% ∀ a s. unit a s = (a,s)
% ∀ f g s. bind f g s = g (fst (f s)) (snd (f s))

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All monad laws hold for this definition,
and the notation allows us to write functions without explicitly mentioning the
sequence that is passed around, e.g., function bit can be defined as

% bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).
[14] also presents some formalization of the mathematical measure theory in

HOL, which can be used to define a probability function P from sets of infinite
Boolean sequences to real numbers between 0 and 1. The domain of P is the
set E of events of the probability space. Both P and E are defined using the
Carathéodory’s Extension theorem, which ensures that E is a σ-algebra: closed
under complements and countable unions. The formalized P and E can be used
to formally verify probabilistic properties, e.g.,

% P {s | fst (bit s) = 1} = 1
2

where the HOL function fst selects the first component of a pair and {x|C(x)}
represents a set of all x that satisfy the condition C. The above approach has been
successfully used to formalize and verify both discrete [14,13] and continuous
random variables [11] in HOL.

Expectation theory plays a vital role in the domain of probabilistic analysis
as it is a lot easier to judge performance issues based on the average value
of a random variable, which is a single number, rather than its distribution
function. Building on the above mentioned probabilistic analysis infrastructure,
[12] presents a higher-order-logic definition of expectation for discrete random
variables. This function has been used to successfully verify the average values of
most of the commonly used discrete random variables. For example, [13] presents
the verification of average value of the Binomial random variable, which will be
later utilized in this paper for memory array analysis.

Lemma 1: Expectation of Binomial(m,p) Random Variable

% ∀ m p. 0 ≤ p ∧ p ≤ 1 ⇒ expec (λs. prob bino m p s) = m p

where (λx.t) represents a lambda abstraction function in HOL that maps its
argument x to t(x) and prob bino is the HOL function for the Binomial random
variable modeled using the above mentioned approach.

The higher-order-logic probabilistic analysis approach was further strength-
ened by some additional formalization related to expectation theory in [10]. This
includes a formal definition of the variance characteristic, which is used for mea-
suring dispersion of a random variable. This definition of variance can be utilized
to verify variance characteristics of most of the commonly used discrete random
variables, e.g., [13] presents the verification of variance of the Binomial random
variable as the following theorem.



Formal Probabilistic Analysis of Stuck-at Faults 283

Lemma 2: Variance of Binomial(m,p) Random Variable

% ∀ m p. 0 ≤ p ∧ p ≤ 1
⇒ variance (λs. prob bino m p s) = m p (1 - p)

The work in [13], also includes the verification of some classical properties of ex-
pectation and variance in HOL. One such property is the Chebyshev’s inequality,
which plays a vital role in verifying tail distribution bounds of probabilistic sys-
tems within the HOL theorem prover and is given below

Lemma 3: Chebyshev’s Inequality

% ∀ R a. (0 < a) ∧ (0 < variance R) ∧
(summable(λn. n P{s | fst (R s) = n})) ∧
(summable(λn. n2

P{s | fst (R s) = n}))
⇒ P {s | abs (fst (R s) - expec R) ≥ a} ≤ variance R

a2

where the HOL predicate summable is True if the infinite summation of its real
sequence argument exists [9], i.e., ∃x. lim

k→∞

∑k
n=0 f(n) = x. Thus, the summable

assumptions in the above theorem state that the theorem is only valid for a
random variable R with well-defined expectation and variance values.

In this paper, we utilize the above mentioned infrastructure for conducting
formal probabilistic analysis of reconfigurable memory arrays, a novelty that to
the best of our knowledge does not exist in the open literature so far.

4 Formal Stuck-at Fault Memory Model

In this section, we develop a formal generic stuck-at fault model for reconfig-
urable memory arrays. This model will be used to formally reason about the
statistical properties and repairability of the memory arrays in the next section.
Our formalization approach is mainly inspired by the analytical model developed
in [25] for the paper-and-pencil based analysis of reconfigurable memory arrays.

The reconfigurable memory array can be modeled as a bipartite graph (R, C,
F ). In this bipartite graph, R represents the set of nodes representing rows of
the memory array, C is the set of nodes representing the columns of memory
array, and F is a set of edges, with each edge connecting one node in the set R to
a node in the set C, and represents a fault in the memory array. It is important
to note here that the number of elements in the set F and their identities is a
random quantity as fault occurrence is an unpredictable event. Therefore, we
associate a probability p with every possible pair combination of the elements of
the sets R and C of being included in the set F . Also, the occurrence of stuck-at
faults, and thus the inclusion of a pair in the set F , is assumed to be independent
and identically distributed in this model.

For illustration purposes, consider a square memory array of size n x n
with sr spare rows and sc spare columns and four stuck-at faults, as shown in
Figure 1.(a). The corresponding bipartite graph model of the memory array is
given in Figure 1.(b). In this model, each of the four faults is represented as an
edge connecting a row and column node.



284 O. Hasan, N. Abbasi, and S. Tahar

sc = b n

Number of Columns = n

cp cq cr

N
um

ber
of

ri

ri

r

cp

c

e1

e2
e3f

Row
s
=
n

rj

rk
rk

rj cq

cr

3

e4

sr = a n

(a) (b)

Fig. 1. Memory Array Model

A stuck-at fault occurring at location (x, y) in the memory array can be
repaired by replacing either row x or column y with a spare row or a spare
column. Thus, in the worst case scenario when we require one row or column
to repair a single fault only, a memory array is considered to be absolutely
repairable if its total number of stuck-at faults is less than the available number
of spare columns or rows. This repairability problem is similar to the vertex cover
problem of the bipartite graph and is known to be an NP complete problem [16].
Therefore, we consider solutions to this problem using probability theory and
define the probability of repairability, using our memory array model, as follows

Pr(|F | ≤ sr + sc) (1)

where Pr and |F | represent the probability function and cardinality of a set
F , respectively. Equation (1) represents the probability of the event when the
number of stuck-at faults |F |, a random quantity, is less than the total number
of spare rows and columns sr + sc. We can express Equation (1) in terms of the
number of rows or columns of a square n x n reconfigurable memory array as

Pr(|F | ≤ (a + b)n) (2)

where a = sr
n and b = sc

n . The values of a and b are bounded in the real interval
[0, 1], since the number of spare rows and spare columns is usually a small fraction
of the total number of rows and columns in the array and can never exceed it.

In this paper, our primary goal is to formally verify that if the probability of
stuck-at fault occurrence is given by the following expression

p =
(a + b)

n
− w(n)

n
√

n
(3)

then the memory array is almost always repairable, whereas w(n) → ∞ as
n → ∞. The term almost always repairable in the above context means that
the probability of repairability tends to 1 as n becomes very very large. The
above expression for the stuck-at fault occurrence probability has been initially



Formal Probabilistic Analysis of Stuck-at Faults 285

proposed and analyzed using informal techniques in [25]. Our contribution in this
paper is to formally verify the above argument using the HOL theorem prover.

We proceed in this direction by first modeling the number of faults or the
cardinality of the set F using the following higher-order-logic functions.

Definition 1: Stuck-at Fault Memory Model

% (∀ p. mem fault model helper 0 p = unit 0) ∧
∀ c p. mem fault model helper (c + 1) p =
bind (mem fault model helper c p)

(λa. bind (prob bern p) (λb. unit (if b then (a+1) else a)))

% (∀ c p. mem fault model 0 c p = unit 0) ∧
∀ r c p. mem fault model (r + 1) c p =
bind (mem fault model r c p)

(λa. bind (mem fault model helper c p) (λb. unit (a + b)))

The function mem fault model accepts three parameters: the cardinalities of the
sets R and C and the probability of fault occurrence p. It recursively manipulates
these three parameters, with the help of the function mem fault model helper
and returns the number of faults found in the memory array of size |R| x |C|.
It is important to note that the fault occurrence behavior, which is the random
component in this model, is represented by the formalized Bernoulli random
variable function prob bern [14] above. The function mem fault model basically
performs a Bernoulli trail, with the probability of obtaining a True being equal
to the probability of fault occurrence, for each cell of the memory array and
returns the total number of True outcomes obtained.

Now, in order to verify the condition of repairability, given in Equation (3),
we define the following special case of our general memory model.

Definition 2: Stuck-at Fault Memory Model for Repairability Problem

% ∀ n a b w. mem fault model rep n a b w =

mem fault model n n ( (a+b)
n

− w(n)
n
√
n
)

The function mem fault model rep accepts four parameters: the cardinality of
the sets R and C of a square reconfigurable memory array as a natural number
n, the fractions of spare rows and columns as real numbers a and b, respectively,
and the real sequence w with data type (natural → real). It utilizes the function
mem fault model, given in Definition 1, to return the number of stuck-at faults
for the specific case of a square n x n memory array with the fault occurrence
probability equal to the expression, given in Equation (3).

For simplifying the interactive proofs related to the function mem fault model
rep, it can be alternately expressed as follows

Lemma 4: Alternate Stuck-at Fault Memory Model for Repairability Problem

% ∀ n a b w.
mem fault model rep n a b w = prob bino n2 ( (a+b)

n
− w(n)

n
√
n
)



286 O. Hasan, N. Abbasi, and S. Tahar

The proof of the above lemma is primarily based on the fact that the stuck-
at fault occurrences in our memory array model are independent and identi-
cally distributed and so are the Bernoulli random variables used in the function
definition of mem fault model rep. This allows us to express the summation
of n2 Bernoulli(p) random variables in the function mem fault model rep as a
Binomial(n2, p) random variable, since Binomial(m, p) random variable basically
counts the number of successes in m independent and identically distributed
Bernoulli trials, with a success probability p [4].

5 Statistical Properties and Repairability Condition

In this section, we utilize the function mem fault model rep to formally verify
a couple of statistical properties regarding the number of faults and the almost
always repairability condition for an n x n reconfigurable memory array with
stuck-at fault occurrence probability given by Equation (3). These verification
results play a vital role in designing reliable reconfigurable memory arrays.

5.1 Average Number of Stuck-at Faults

With the probability of stuck-fault occurrence, given by Equation (3), the aver-
age number of stuck-at faults for an n x n memory array is given by

Ex[|F |] = n2(
(a + b)

n
− w(n)

n
√

n
) (4)

This property can be formally expressed in higher-order logic using our formal
definition of the number of faults, given in Definition 2, as follows.

Theorem 1: Average Number of Stuck-at Faults

% ∀ a b n w.
(0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧ (1 < n) ∧
(∀ n. (0 < w(n)) ∧ (w(n) < (a + b)

√
n))

⇒ expec (λs. mem fault model rep n a b w s) = n2( (a+b)
n

− w(n)
n
√
n
)

The first four assumptions in the above theorem ensure that the fractions a and b
are bounded by the interval [0, 1] as described in the previous section. Whereas,
the precondition 1 < n has been used in order to ensure that the given memory
array has more than one cell. The last assumption is about the real sequence
w and basically provides its upper and lower bounds. These bounds have been
used in order to prevent the stuck-at fault occurrence probability p, given in
Equation (3), from falling outside its allowed interval [0, 1]. It is interesting to
note that no such restriction on the sequence w was imposed in the paper-and-
pencil based analysis of the repairability problem given in [25]. This fact clearly
demonstrates the strength of formal methods based analysis as it allowed us
to highlight this corner case, which if ignored could lead to the invalidation



Formal Probabilistic Analysis of Stuck-at Faults 287

of the whole repairability analysis. The conclusion of Theorem 1 presents the
mathematical relation given in Equation (4).

The HOL proof for Theorem 1 is based on Lemma 4 and the expectation
relation for the Binomial random variable, given in Lemma 1. The proof involves
some arithmetic reasoning to verify that the probability p, given in Equation (3),
lies in the interval [0, 1], which is a precondition for Lemma 1.

5.2 Variance of the Number of Stuck-at Faults

The variance of the number of stuck-at faults for an n x n memory array, with
the probability of stuck-at fault occurrence given by Equation (3), is given by

V ar[|F |] = n2(
(a + b)

n
− w(n)

n
√

n
)(1 − (

(a + b)
n

− w(n)
n
√

n
)) (5)

This property can be formally expressed in HOL as follows

Theorem 2: Variance of the Number of Stuck-at Faults

% ∀ a b n w s.
(0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧ (1 < n) ∧
(∀ n. (0 < w(n)) ∧ (w(n) < (a + b)

√
n))

⇒ variance
(λs. mem fault model rep n a b w s) =

n2( (a+b)
n

− w(n)
n
√
n
)(1− ( (a+b)

n
− w(n)

n
√
n
))

and verified using Lemma 2 just like Lemma 1 was used to verify Theorem 1.

5.3 Tail Distribution Bound for the Number of Stuck-at Faults

A tail distribution bound of the number of stuck-at faults for our n x n memory
array, with the probability of stuck-at fault occurrence, given by Equation (3),
can be expressed as follows.

Pr(|F | ≤ (a + b)n) ≥ 1 −
n2( (a+b)

n − w(n)
n
√

n
)(1 − ( (a+b)

n − w(n)
n
√

n
))

n(w(n))2
(6)

Whereas, the corresponding HOL theorem is as follows.

Theorem 3: Tail Distribution Bound for the number of Stuck-at Faults

% ∀ a b n w s.
(0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧ (1 < n) ∧
(∀ n. (0 < w(n)) ∧ (w(n) < (a + b)

√
n))

⇒ (P {s | (fst (mem fault model rep n a b w s)) ≤ (a + b)n} ≥

1 - (
n2( (a+b)

n
− w(n)

n
√

n
)(1−( (a+b)

n
− w(n)

n
√

n
))

n(w(n))2 )

We proceed with the verification of this theorem by splitting its proof goal into
two subgoals using the less-than-or-equal-to transitive property as follows.



288 O. Hasan, N. Abbasi, and S. Tahar

P {s | (fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s) > (a + b)n− 2

√
nw(n)) ∧

(fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s) < (a + b)n }

≤ P {s | (fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s))≤ (a + b)n}

1 -
n2( (a+b)

n
− w(n)

n
√

n
)(1−( (a+b)

n
− w(n)

n
√

n
))

(nw(n)w(n)) ≤
P {s | (fst (prob bino n2 ( (a+b)

n
− w(n)

n
√
n
) s)) > (a + b)n− 2

√
nw(n) ∧

(fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s)) < (a + b)n }

The first subgoal can be verified using the basic probability axiom (∀A B.A ⊆
B ⇒ (Pr(A) ≤ Pr(B))) since the set on the left-hand-side (LHS) of the inequal-
ity is a subset of the set on the right-hand-side (RHS). Whereas, by rewriting the
two inequalities in the argument of the probability function of subgoal 2 using
absolute value theorem ((|y − x| < d) = (x − d < y < x + d) we get:

1-
n2( (a+b)

n
− w(n)

n
√

n
)(1−( (a+b)

n
− w(n)

n
√

n
))

(nw(n)w(n)) ≤
P { s | |fst (prob bino n2 ( (a+b)

n
− w(n)

n
√
n
) s) - ((a + b)n−

√
nw(n))|

<
√
nw(n) }

Now using the complement probability law (∀A.Pr(Ā) = 1 − Pr(A)) along
with Theorems 1 and 2, we can rewrite the above sub goal as follows

P {s | |fst (prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s) -

expec (λs. prob bino n2 ( (a+b)
n

− w(n)
n
√
n
) s)| ≥

√
nw(n) } ≤

variance(λs.prob bino n2( (a+b)
n

− w(n)
n
√

n
)s)

(
√
nw(n))2

The above subgoal can now be discharged from the HOL goal stack by using
Chebyshev’s inequality, given in Lemma 3, along with some arithmetic reasoning.

5.4 Repairability Problem

Now, we use the statistical properties verified so far to analyze the repairability
problem, i.e., an n x n reconfigurable memory array with the probability of
stuck-at fault occurrence given by Equation (3), is almost always repairable.

lim
n→∞

Pr(|F | ≤ (a + b)n) = 1 (7)

The corresponding HOL theorem is as follows

Theorem 4: Repairability Problem of Stuck-at Faults

% ∀ a b w. (0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧
(∀ n. (0 < w(n)) ∧ (w(n) < (a + b)

√
n)) ∧

(lim (λn. 1
w(n)) = 0)

⇒ (lim (λn.
P {s | (fst (num of faults n a b w s)) ≤ (a + b) n }) = 1))



Formal Probabilistic Analysis of Stuck-at Faults 289

where lim M represents the HOL formalization of the limit of a real sequence M
(i.e., lim M = lim

n→∞
M(n)) [9]. The new assumption (lim(λn. 1

w(n) ) = 0) formally
represents the intrinsic characteristic of real sequence w that it tends to infinity
as its natural argument becomes very very large.

We proceed with the verification of Theorem 4 by first splitting its proof goal
into the following two subgoals, based on some simple arithmetic reasoning.

lim(λn. P{s | fst (mem fault model rep n a b w s) ≤ (a + b)n})≤1

1≤lim(λn. P{s | fst (mem fault model rep n a b w s) ≤ (a + b)n})

The first subgoal can be verified using the basic probability axiom (∀A.Pr(A)
≤ 1). Whereas, we utilize Theorem 3 and the transitivity property of less-than-
or-equal-to for real numbers to rewrite the second subgoal as follows.

1 ≤ lim (λn. 1 -
n2( a+b

n
− w(n)

n
√

n
)(1− a+b

n
+ w(n)

n
√

n
)

n(w(n))2 )

The expression in the RHS of the above inequality can be rewritten as follows
using some arithmetic reasoning.

1 ≤ lim (λn. 1 - (( a+b
w(n) −

1√
n
)( 1

w(n) −
a+b
nw(n) + 1

n
√
n
)))

This subgoal can now be verified as the limit value of the expression on the
RHS tends to 1, since all the denominator terms in this expression tend to ∞ as
n becomes very very large. This also concludes the proof for Theorem 4.

Our results clearly demonstrate the effectiveness of the theorem proving based
reconfigurable memory array analysis approach. Due to the formal nature of
the model and inherent soundness of theorem proving, we have been able to
verify the properties of interest regarding the given memory array with 100%
precision; a novelty which is not available in simulation. Similarly, due to the high
expressibility of higher-order logic we have been able to formally reason about
statistical properties of the problem that cannot be analyzed using a probabilistic
model checker. The proposed approach is also superior than the paper-and-pencil
proof methods in terms of accuracy. In the paper-and-pencil approach, the proof
checking and associated bookkeeping is an error prone process, specially when
dealing with large proofs, and thus often leads either to wasted time and effort or
a wrong result. On the other hand, in theorem proving, these complicated tasks
are done by the computer within a sound core, which is based on a very few
axioms and inference rules. Each proven theorem can be logically traced back
to these basic axioms and the associated proof steps can be linked to the basic
inference rules. Due to this inherent soundness, it is impossible to prove wrong
statements in a theorem prover.

The above mentioned additional benefits, associated with the theorem proving
approach, are attained at the cost of the time and effort spent, while formalizing
the memory array and formally reasoning about its properties, by the user.
But, the fact that we were building on top of already verified probability theory
related results helped significantly in this regard as this analysis only consumed
approximately 80 man-hours and 1200 lines of HOL code by an expert user.



290 O. Hasan, N. Abbasi, and S. Tahar

6 Conclusions

In this paper, we utilized the mathematical probability theory formalized in a
higher-order-logic theorem prover to analyze reconfigurable memory arrays in
the presence of stuck-at faults. To the best of our knowledge, this is the first
study on using these kind of techniques for such an application. We developed a
higher-order-logic based formal stuck-at fault model for reconfigurable memory
arrays, and based on this model we formally verified some key statistical proper-
ties and repairability condition. The rigorous exercise of developing a computer
based formal model for the memory array and analyzing it using mechanized
mathematical reasoning allowed us to discover a couple of critical assumptions
that are missed by almost all of the paper-and-pencil based analysis, that we
came across, of a similar problem. Due to the formal nature of the models and
the inherent soundness of theorem proving systems, the analysis is guaranteed
to provide exact answers. These feature makes the proposed approach very use-
ful for the probabilistic analysis of memory arrays that are to be used in safety
critical and highly sensitive areas.

Our approach for the probabilistic analysis of stuck-at faults in memory re-
configurable arrays is quite general and can be extended and easily adapted to
conduct precise probabilistic analysis of other kinds of fault models, like transi-
tion faults, coupling faults, and neighborhood pattern sensitive faults, as well.
The random or unpredictable elements found in these models can be represented
using an appropriate random variable from the existing library of formalized dis-
crete [14,12,13] and continuous random variables [11], and the precise statistical
quantities associated with the parameters of interest may then be verified within
the sound core of a higher-order-logic theorem prover. For example, the proba-
bilistic analysis approach for coupling faults [25] can be adapted in a theorem
prove using the formal definition of the Binomial random variable along with
the theorems regarding its expectation and variance. Similarly, other statistical
properties, such as the conditions for irrepairability and tail distribution bounds
based on Markov’s inequality, can also be verified.

References

1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model Checking Algorithms
for Continuous time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(4), 524–541 (2003)

2. Blough, D.M.: Performance Evaluation of a Reconfiguration-Algorithm for Memory
Arrays containing Clustered Faults. IEEE Transactions on Reliability 45(2), 274–
284 (1996)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

4. DeGroot, M.: Probability and Statistics. Addison-Wesley, Reading (1989)
5. Devroye, L.: Non-Uniform Random Variate Generation. Springer, Heidelberg

(1986)
6. Gordon, M.J.C.: Mechanizing Programming Logics in Higher-0rder Logic. In: Cur-

rent Trends in Hardware Verification and Automated Theorem Proving, pp. 387–
439. Springer, Heidelberg (1989)



Formal Probabilistic Analysis of Stuck-at Faults 291

7. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

8. Gupta, A.: Formal Hardware Verification Methods: A Survey. Formal Methods in
System Design 1(2-3), 151–238 (1992)

9. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)
10. Hasan, O.: Formal Probabilistic Analysis using Theorem Proving. PhD Thesis,

Concordia University, Montreal, QC, Canada (2008)
11. Hasan, O., Tahar, S.: Formalization of the Continuous Probability Distributions.

In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 3–18. Springer,
Heidelberg (2007)

12. Hasan, O., Tahar, S.: Verification of Expectation Properties for Discrete Ran-
dom Variables in HOL. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS,
vol. 4732, pp. 119–134. Springer, Heidelberg (2007)

13. Hasan, O., Tahar, S.: Formal Verification of Tail Distribution Bounds in the
HOL Theorem Prover. Mathematical Methods in the Applied Sciences (2008),
http://www3.interscience.wiley.com/journal/120747455/abstract

14. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, University
of Cambridge, Cambridge, UK (2002)

15. ITRS (2008), http://www.itrs.net/links/2003itrs/home2003.htm
16. Kuo, S., Fuchs, W.K.: Efficient Spare Allocation for Reconfigurable Arrays. IEEE

Design & Test of Computers 4(1), 24–31 (1987)
17. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative Analysis with the Prob-

abilistic Model Checker PRISM. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 5–31 (2005)

18. Low, C.P., Leong, H.W.: Probabilistic Analysis of Memory Reconfiguration in the
Presence of Coupling Faults. In: Proceedings of the IEEE International Workshop
on Defect and Fault Tolerance in VLSI Systems (1992)

19. MacKay, D.J.C.: Introduction to Monte Carlo Methods. In: Learning in Graphical
Models, NATO Science Series, pp. 175–204. Kluwer Academic Press, Dordrecht
(1998)

20. Miczo, A.: Digital Logic Testing and Simulation. Wiley Interscience, Chichester
(2003)

21. Nicolaidis, M., Achouri, N., Anghel, L.: A Diversified Memory Built-in Self-repair
Approach for Nanotechnologies. In: Proceedings of the 22nd IEEE VLSI Test Sym-
posium, pp. 313–318 (2004)

22. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques
for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph Series,
vol. 23. American Mathematical Society (2004)

23. Sehgal, A., Dubey, A., Marinissen, E.J., Wouters, C., Vranken, H., Chakrabarty,
K.: Redundancy Modelling and Array Yield Analysis for Repairable Embedded
Memories. IEE Proceedings of Computers and Digital Techniques 152(1), 97–106
(2005)

24. Sen, K., Viswanathan, M., Agha, G.: VESTA: A Statistical Model-Checker and
Analyzer for Probabilistic Systems. In: Proc. IEEE International Conference on
the Quantitative Evaluation of Systems, pp. 251–252 (2005)

25. Shi, W., Fuchs, W.K.: Probabilistic Analysis and Algorithms for Reconfiguration
of Memory Arrays. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 11(9), 1153–1160 (1992)

http://www3.interscience.wiley.com/journal/120747455/abstract
http://www.itrs.net/links/2003itrs/home2003.htm


Challenges in the Specification of Full Contracts�

Gordon J. Pace1 and Gerardo Schneider2

1 Department of Computer Science, University of Malta, Malta
2 Department of Informatics, University of Oslo, Oslo, Norway
gordon.pace@um.edu.mt, gerardo@ifi.uio.no

Abstract. The complete specification of full contracts — contracts which in-
clude tolerated exceptions, and which enable reasoning about the contracts them-
selves, can be achieved using a combination of temporal and deontic concepts.
In this paper we discuss the challenges in combining deontic and other relevant
logics, in particular focusing on operators for choice, obligations over sequences,
contrary-to-duty obligations, and how internal and external decisions may be in-
corporated in an action-based language for specifying contracts. We provide dif-
ferent viable interpretations and approaches for the development of such a sound
logic and outline challenges for the future.

1 Introduction

The specification and analysis of full contracts, i.e. contracts between different entities
regulating not only the normal interactive behaviours but also the exceptional ones, is
becoming an imperative in many Computer Science applications. These include service-
oriented architectures, e-commerce, component-based software development, and any
other application where there is a need for trustful collaborative interactions. Such con-
tracts should express not merely the sequence and causality of events, but also what are
the obligations, permissions and prohibitions of the participating entities. These three
notions being the object of study of the so-called deontic logic.

The specification of such contracts needs a formal language rich enough to capture
deontic notions, temporal and dynamic aspects, real-time issues (e.g. deadlines), and
the handling of actions (events) and exception mechanisms. Besides, contracts must be
amenable to formal analysis techniques (e.g. model checking and runtime verification).
Furthermore, the use of contracts is only meaningful if there is a mechanism to monitor
their fulfillment. We believe that such successful language should be built on top of
a basic deontic logic, in combination with modalities and operators from temporal,
dynamic, action-based, and real-time logics.

Deontic logic is the logic concerned with moral and normative notions such as obli-
gation, permission, prohibition, optionality, power, indifference, immunity and inten-
tion, among others. Though the scope of the logic (from the philosophical point of
view) is huge and there is no way to formalise all those notions and study their relation
in one single formalism, it is usually recognised that a deontic logic must contain at
least the notions of obligation, permission, and prohibition, and preserve their intuitive

� Partially supported by the Nordunet3 project “COSoDIS”.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 292–306, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Challenges in the Specification of Full Contracts 293

properties. Even when restricting the logic to just these three notions, its formalisation
is not easy, as witnessed by the extensive research conducted by the deontic community
both from the philosophical and the logical point of view (see [19,31]).

Besides obligations, permissions and prohibitions, contracts, agreements, and nor-
mative systems contain clauses which by definition may be violated, represented by
contrary-to-duty obligations (CTD) and contrary-to-prohibitions (CTP). CTDs are
statements that represent the fact that obligations might not be respected where CTPs
are similar statements which deal with prohibitions that might be violated. Both con-
structions specify the obligation/prohibition to be fulfilled and which is the repara-
tion/penalty to be applied in case of violation.

We believe that when restricted to specific domains, deontic logic is a practical pow-
erful specification tool, if combined with the above-mentioned logics. However, it is
well known that deontic logic is not useful unless we ensure the absence of paradoxes
and practical oddities [19,25]. Many of these paradoxes are due to the problematic com-
bination of classical propositional logic operators with sequences, choices, repetitive
behaviour, and CTDs and CTPs.

In this paper, we outline some of the choices to be made, and the challenges to be
faced when combining deontic notions with other useful temporal concepts in the defi-
nition of a formal language for full contracts. Frequently, contracts are perceived simply
as properties to be satisfied by a system. However, the analysis of the contracts as first
class entities along the lines we are presenting it in this paper, can be fruitful in a va-
riety of contexts especially in situations where services may require to be composed.
Each service may come with its own contract, and the analysis of the composition of
the constituent contracts may be necessary to study interaction of such services. One
may also want to make queries about the contract, for instance to know what are the
obligations of each participant and the penalties in case of not fulfillment of those pri-
mary obligations. Moreover, the decisions taken in the design of such a language are
crucial since the ultimate goal is to have a framework facilitating contract analysis, as
for instance: (i) Check that a particular system satisfies a contract; (ii) Reason about the
contract itself directly; (iii) Reason about the relation between different contracts.

The paper is organised as follows. In the next section we argue for a ”practical” de-
ontic logic, base for a formal contract language, highlighting general aspects. In section
3 we present our language of discourse for specifying full contracts. In the following
sections we discuss the problems arising with the formalisation of obligation, CTDs,
sequences, regular expressions and internal vs. external operators, in combination with
other concepts from temporal, dynamic and real-time logics.

2 What Is Needed for a “Practical” Deontic Logic

As presented in the previous section, we claim that a good language for the specifi-
cation of full contracts needs a practical deontic logic. The use of deontic logic goes
beyond the standard formalisation of legal contracts, abstracting from other “modal-
ities” and subtleties1 and concentrating on obligations, permissions and prohibitions

1 One may want to make a distinction between “rights” and “permissions”, between having the
power to do something and the permission to do so, or even between “must”, “ought to” and
“should”, but for certain kind of analysis these distinctions are not needed.



294 G.J. Pace and G. Schneider

and their relation. Our aim is to restrict deontic logic to avoid paradoxes, and extend
it accordingly as to be useful in the following contexts: (1) Fault-tolerant systems; (2)
Compensable transactions; (3) Regulatory systems (4) Service-oriented architectures;
(5) Component-based development.

Both fault-tolerant systems and systems with long transactions have in common that
the specified desirable (mandatory) behaviour (sequence of states) will not necessarily
be respected due to failures. In the presence of such failures, for some specified reason,
we want to be able to come back to a previous state where an alternative behaviour
must be enforced. This is very much what a CTD (or CTP) means. In some other cases
we rather want to describe this deviation from expected mandatory behaviours as ex-
ceptions. Regulatory systems are normative systems containing regulations, laws and
policies, rich on clauses specifying not only primary obligations but also exceptions.
Such documents abound on cross-references to other clauses intra- and inter-document.
In the context of SOA a deontic based approach may serve the purpose to give seman-
tics to Service Level Agreements, or SLAs (which currently lack formal semantics)
or to be used just as a specification language to write contracts between services. In
component-based software development, contracts may be attached to components in
order to guarantee, among other things, their compatibility both at development and
deployment time.

Due to lack of space we will only indicate few papers where examples can be found.
See for instance [26] for an example on the formalisation of a legal contract, and [10,7]
for a justification on the use of deontic logic, and examples, on fault-tolerant systems.
See [14,16] for compensable transactions, [11] for regulatory conformance checking,
and [24] for state of the art and challenges in SOA. See [23] for a discussion of the use
of contracts in the setting of component-based systems.

In order to avoid an inconvenient generalisation on the use of the term “deontic
logic” we will restrict ourselves in what follows to a variant of deontic logic, which
we believe is expressive enough to handle the representative number of applications
mentioned above. We will call OPP-logic a logic or formal language containing the
deontic modalities of Obligation, Permission and Prohibition (OPP), defined over com-
plex actions, obtained from basic actions by (a restricted) combination of the following
operators; choice +, sequential composition ·, concurrency &, Kleene star ∗, and ac-
tion negation ·. Moreover, in OPP-logic it should be possible to specify: (i) Nested
CTDs and CTPs; (ii) Temporal (causal) aspects; (iii) Nested Exceptions; (iv) Real-time
aspects; (v) References to other expressions or clauses; (vi) Invariants; (vii) Fairness
constraints; (viii) Contract introspection/reflection. Due to lack of space we will mainly
concentrate on the first three aspects above, though we will also comment on the other
items without entering into details.

3 The Language of Discourse

In this section, we outline the syntax of a language for the purpose of expressing full
contracts. Please note that the language presented is not intended to be a complete
formal language, but rather a language rich enough for us to illustrate issues in the use
of a logic in expressing contracts over systems, in the spirit of the OPP-logic discussed
above. The semantic issues will be discussed informally in later sections of the paper.



Challenges in the Specification of Full Contracts 295

Actions: An important decision is that of whether the deontic operators act upon the
state or the actions influencing the state. The two views, already familiar to com-
puter scientists in the domain of specification languages2, can both be defended,
depending on the domain of application. We will base our approach on an action-
based logic. As in the domain of process calculi, we go beyond simple actions
to include parameterised actions (for example, pay may be a parameterised action
whose parameter specifies the amount paid), and collections, or multisets of actions
(to enable concurrent actions, including multiple instances of the same action). We
also will use the notation act for any action different from act.

Action ::= ε |Any | SimpAction | SimpAction(Param) |Action & Action |Action

We will use lower-case Latin letters, a, b, c, . . . to denote basic actions.
Expressions over actions: Since we are interested in behaviour over time, to reason

about causality, we require the enriching of actions over a temporal logic with op-
erators such as sequentiality, choice and repetition. For the purposes of this paper,
we will use extended regular expressions over actions, with + for choice, * for
repetition, . for sequencing, & for concurrency and ¬ for negation.

CompAction ::= Action | ¬ CompAction |CompAction∗ |CompAction + CompAction

| CompAction & CompAction |CompAction . CompAction

We will use lower-case Greek letters, α, β, . . . to denote compound actions.
Deontic operators: We will be using three basic deontic operators: permission, prohi-

bition and obligation, which can be applied on compound actions. The basic con-
tracts Y and N, respectively corresponding to the trivially satisfied and unsatisfiable
contracts, will also be included for completeness.

SimpContract ::= Y |N |P(CompAction) |F(CompAction) |O(CompAction)

Default contracts: Rather often, contracts are composed of a cascade of contracts:
you are obliged to do something, but if you do not, you are then obliged to do
something else. In general, one may define a defaulting operator over contracts
which, given two contracts, behaves like the first, but enacts the second if the first is
broken. However, we will limit ourselves to two simple forms of this operator in this
paper: to Contrary-To-Duty (CTD) contracts, and Contrary-To-Prohibition (CTP)
contracts. A CTD is made up of a compound action, and another contract — the
performance of the action is obliged, but if not performed, the contract is enacted.
Similary CTPs enact a prohibition by default. In other cases we may rather consider
exceptions, where a given contract is not enforced if another one is fulfilled.

CompContract ::= SimpContract |CTD(CompAction, CompContract) |
CTP(CompAction, CompContract) |
CompContract unless CompContract

Expressions over contracts: We also require temporal operators over contracts (for
instance, to be able to express that an obligation is enacted as soon as another
obligation is satisfied). We will similary use regular expressions for this purpose.

2 Specification languages such as Z, enable a state-based view of the system, as opposed to
process calculi such as CSP and CCS, where the emphasis is on the actions.



296 G.J. Pace and G. Schneider

We add another operator to test for the presence of an action, with a?.C being
equivalent to contract C (as of the next time unit) if a is present now, but void (for
which nothing needs to be done to satisfy it) otherwise.

Contract ::= CompContract | ¬Contract |Contract∗ |Contract + Contract |
Contract & Contract |Contract . Contract |CompAction? . Contract

The use of contract negation may seem an odd choice — the interpretation of nega-
tion is that the particular contract is not enacted. For example, one can express permis-
sion to perform an action, as the negation of the obligation to perform something other
than the action. We will not provide a formal semantics of the language since our inten-
tion is to explore the design and problems of such formal language and not its particular
formalisation.

4 Combining Temporal and Deontic Notions
4.1 Sequences

We need sequences of actions if we want to distinguish between situations such as “You
are obliged to fill in the form, and then sign it” from “You are obliged to fill in the form,
after which you are obliged to sign it”.

Sequences over Contracts, and Contracts over Sequences. The choice of includ-
ing sequences both inside and outside contracts is arguably necessary for a number of
reasons. The semantic difference between a statement such as F(a.b) and F(a).F(b) is
rather straightforward — while the former disallows the sequence of a followed by b,
the latter forbids a, after which it forbids b. While the former allows an action a, fol-
lowed by c, the latter is broken upon the arrival of action a. The distinction is similarly
clear with permissions. However, the distinction when it comes to obligations of se-
quences is finer [32]. In DDL (Dynamic Deontic Logic) sequences of obligations (SoO)
and obligations on sequences (OoS) are equivalent [21], though they should not be con-
sidered equivalent [32]. This is indeed clear if we consider what is the consequence of
fulfillment and violation of such contracts. In SoO one can associate different repara-
tions to each element on the sequence, while this is not the case in OoS (see [32] for
examples). The need for distinguishing between sequences of contracts and contracts
over sequences is however justified on a number of criteria.

Elegance of expression: It can be argued that contracts over sequences can be encoded
as sequences over contracts. For instance, F(a.b) can be (up to a certain extent) be en-
coded as a?.F(b), similarly O(a.b) could be written as O(a) ∧ a?.O(b). If a contract’s
semantics cares only about the instances of failure (breaking the contract), the con-
tracts could be argued to be similar. However, the rewritten contracts (as sequences of
contracts) lose the direct intuitive meaning originally meant and expressed as contract
over sequences. Furthermore, without introducing a general contract default operator,
expressing CTDs and CTPs over contracts on sequences introduces further compli-
cations — for example, CTD(a.b, C) could be rewritten into something of the form
a?.CTD(b, C) ∧ ā?.C.

Contract violation: If a prohibition clause over a sequence a.b is expressed using a con-
ditional term a?.F(b), the first action a is not seen as an explicit part of the prohibition.



Challenges in the Specification of Full Contracts 297

The interpretation of such a term indicates that breaking the contract results from per-
forming action b which is forbidden after an action a. This is in direct contrast with the
intended interpretation which forbids the sequence a.b.

Reasoning about contracts: Furthermore, the failure semantics of a contract is but one
interpretation. Other views of the contract may include analysis directly related to the
deontic operators in a contract (such as which contracts are active at a particular point
in time, the total number of obligations in a particular contract, etc). Furthermore, if one
extends the deontic language to refer to use the presence or absence of obligations and
prohibitions as conditions within the language, action sequences become indispensable.

Causality. Another interesting issue is that of causality. Consider the semantics of the
default contract operators such as CTD(α, C). The informal interpretation of the oper-
ator is that an obligation to perform α is enacted, but if it is not, contract C has to be
satisfied. However, this leads to two differing views of the operator: (i) contract C must
hold as soon as (or one time unit after) the initial obligation is broken; or (ii) the choice
between performing the obligations or the alternative contract C as soon as the CTD is
enacted. In the literature, the first interpretation is typically given. The second interpre-
tation leads to interesting causality situations. Consider the contract CTD(Any.a, O(b))
— if one views O(b) as an exception/option, it has to be done before breaking the orig-
inal obligation. An initial action b may satisfy the CTD or not — there is no way we
can know this until we get the second set of events.

Breaking an obligation. CTDs and contracts with exceptions still prove to be chal-
lenging with sequences of actions. Consider the following situation:

The law of a country says that: ‘You are obliged to hand in Form A on Monday
and Form B on Tuesday, unless officials stop you from doing so.’
On Monday, John spent a day on the beach, thus not handing in Form A. On

Tuesday at 00:00 he was arrested, and broght to justice on Wednesday.
The police argue: ‘To satisfy his obligation the defendant had to hand in Form
A on Monday, which he did not. Hence he should be found guilty.’
But John’s lawyer argues back: ‘But to satisfy the obligation the defendant had
to hand in Form B on Tuesday, which he was stopped from doing by officials.
He is hence innocent.’

Who is right? Formalising the primary obligation in the law, we get O(a.b), where
a represents handling Form A on Monday and b handling Form B on Tuesday. When
is the obligation to be considered violated — upon the lack of action a, or at the end
of two consecutive actions? It will depend on whether we model the above with CTDs
or “unless”, and what is the formal semantics. To avoid this and similar paradoxes, we
propose the use of an earliest failure semantics, in which, a contract fails as soon as it
can no longer be satisfiable.

CTDs and Sequences of Actions. The introduction of time into the deontic soup raises
the question of what are the most natural semantics to CTDs. For example, let us con-
sider CTD(a, O(b)). Does this correspond to an obligation to do a, which if violated,
will then set up an obligation to perform a b, or can the b be performed immediately



298 G.J. Pace and G. Schneider

to satisfy the contract. In other words, does the sequence of actions (ā&b̄).b satisfy the
contract? What about ā&b.ā?

The enactment of the compensation contract (and hence the possibility of satisfy-
ing it) only after the first obligation is violated distinguishes CTDs from mere choice,
even if external choice over contracts may be desirable in certain contexts. This will be
further discussed in the coming sections.

Introducing sequences of actions into a CTD is directly related to the paradox given
above. If the moment of violation of the obligation is used as the triggering of the new
(compensation) contract, earliest failure semantics may be necessary.

4.2 Choice

The choice operator has an intuitively different semantics when given inside, or outside
a deontic operator. The contract obliging you to hand in Form A or Form B, is distinct
from the disjunctive contract which says that either you are obliged to hand in Form A,
or you are obliged to hand in Form B. The interpretation of the latter contract has been
much discussed in the literature, and various paradoxes are known, which challenge
various naı̈ve semantics of the operator. In our opinion, it is not advisable to have the
classical disjunction in contracts, or at least to restrict its use, since De Morgan rules
may introduce paradoxes.

Choice of Obligations, and Obligations of Choices. Let us start by considering the
contract with an obligation over a choice: O(a + b). As in standard process calculi, the
choice operator can have (at least) two radically different views: angelic vs demonic,
or sometimes internal vs external choice. Does performing action a always satisfy the
contract, or is the choice made internally (demonically) and you may be obliged to
perform action b? Similarly, the choice over contracts has a similar issue — O(a) +
O(b). The distinction between the two as used in natural language contracts can be
made clearer by considering financial contracts which John signs with Peter:

Contract 1: ‘On the 1st of May, John will either (i) be obliged to sell 100 shares at $1
each; or (ii) be obliged to sell 50 shares at the market price.’

Contract 2: ‘On the 1st of May, John will be obliged either (i) to sell 100 shares at $1
each; or (ii) to sell 50 shares at the market price.’

The (possibly debatable) interpretation of the contracts is that, while in contract 1
the choice of which obligation to enact lies with Peter, in the latter one obligation is
enacted, and it is up to John to decide how to discharge it. Peter should prefer the first
contract, whereas John should prefer the second.

This interpretation corresponds to having choice outside the deontic operators to be
resolved by the contract controller (demonic, or internal choice), while choice inside de-
ontic operators to be resolved at the entity upon whom the contract acts (angelic, or ex-
ternal choice).3 The only way to, a priori, guarantee satisfying the contract O(a)+O(b)
is through performing both actions a and b, which may be impossible if the semantics
of + is given as an exclusive or.

3 Note that here internal and external refers to the contract, and not to the performer of the action.



Challenges in the Specification of Full Contracts 299

This raises the question, once again, whether the logic, or implementation should
have access to currently enacted obligations. In such cases, one would be able to write
something on the lines of Oa?.a + Ob?.b (Oa? says whether an obligation to do a is
active right now, continuing without any delay in time) to guarantee that the contract
O(a) + O(b) is always satisfied. On the other hand, having access to this information
within the logic may lead to contructive anomalies with contracts such as ¬Oa?.O(a).
Constructiveness of such logics has been studied in other contexts such as synchronous
programming [28] and cycles in circuits [9].

Let us consider now the contract: You are forbidden from doing a or b, written as
F(a + b). In O(a + b) we seem to take it to mean ‘you must do something which
creates a trace satisfying the regexp a + b’. In F(a + b), we are saying ‘you must not do
something which creates a trace satisfying the regexp a + b’. What is the meaning of +
in F(a + b)? It seems like the choice inside a forbidden operator becomes an internal
choice, not an external one. The implicit negation outside the F switches the + from
external to internal. Is this a suitable interpretation? It depends. If we define F(a + b)
to be (F(a) ∧ P(b)) + (F(b) ∧ P(a)) it seems that the above interpretation is correct.
On the other hand, we have a different interpretation if we consider that F(a + b) to be
defined as ¬P(a+ b), where P(a+ b) means the same as P(a)∧P(b), in which case we
get that both a and b are forbidden.

Clearly, it is debatable whether external and internal choice should be separate oper-
ators or a single operator with different interpretations in different modalities.

The Moment of Choice and the Moment of Contract Satisfaction. Differentiating
between internal and external choice makes it possible to express different contracts in a
natural way. However, another parameter which has to be decided for a temporal deontic
logic is when the choice is made. Consider the non-deterministic contract Any?.O(a)+
Any?.O(b). In this example, Any? acts like the silent action τ in process calculi such
as CCS [22], and raises the question of whether this contract is in any way different
from Any?.(O(a) + O(b)). The choice between contracts can be made immediately,
or later on in the future, as soon as a contract is to be enacted. Therefore, to write a
contract which leads to different obligations depending on the presence (or otherwise)
of a particular action, one would express it as: (a?.O(b)) + (ā?.O(c)).

On the other hand, due to the user-centric view of angelic choice, the satisfaction of
a contract with choice may yield different interpretations. Consider a contract such as
O(a + a.c).O(d). After receiving an action a, we are unsure whether the first contract
has been satisfied, since it depends on whether the user will proceed with c.d, or simply
with d. Similarly, given the contract O(a+a.c).O(c), it is non-deterministic whether the
action sequence a.c.c satisfied the contract after the first two, or three symbols. Besides
the above technicalities concerning non-determinism, we argue for forcing determinis-
tic contracts, as desirable both in the legal arena as in our mentioned applications.

Choice and CTDs. If choice between contracts leads to internal, nondeterministic
choice, a contract such as CTD(a, b) + CTD(c, d), may be broken if one performs
an action a but no c (and no d to compensate). Without having access to how the
choice over contracts is resolved, leads to having to satisfy both contracts. With CTDs,
such a composition of contracts may lead to unsatisfiable contracts in roundabout,



300 G.J. Pace and G. Schneider

counter-intuitive ways. Furthermore, the issue of when a contract over sequences is
violated rises again, since the CTD is triggered upon violation.

Note that the choice operator may be seen as a kind of exclusive disjunction. How-
ever, this similarity is only apparent as clear in the case of writing the following contract:
CTD(a, O(b)) + CTD(b, O(a)). With an exclusive or point of view, the above will lead
to a violation independently of what is done, as performing a may be seen as satisfying
the primary obligation in the first disjunct, but also the reparation in the second; sim-
ilarly with b. The above example is problematic even under the interpretation of + as
choice, if non-determinism is allowed.

4.3 Repetition

The use of repetition in contracts, corresponding to a combination of choice, sequences
and fix-points, poses a variety of challenges related to the ones already discussed. As
in the case of choice and sequences, a contract stating that ‘John is repeatedly obliged
to pay after which he is permitted to use the service’, is different from ‘John is obliged
to pay repeatedly after which he will be permitted to use the service’ — O(p)∗.P(s) as
opposed to O(p∗).P(s).

Notation. Different approaches to logic use different operators for repetition. Lan-
guages such as CL [26] use the LTL- and CTL-style until operator. In this paper, we
use the regular expression-style star operator to indicate repetitions. This gives a uni-
form view of temporal operators inside, and outside the deontic operators, and enables
repetition of contracts which take more than one time unit to terminate. For instance,
the contract O(5c.10c + 50c)∗.P(choc) will repeatedly obliges inserting 5 and 10 cent
coins in sequence or a 50 cent coin, until at the end withdrawing a chocolate is permit-
ted. Similarly, one can give a contract O((5c.10c + 50c)∗).P(choc), which has a single
obligation for the user to insert any number of coins, after which she is permitted to
withdraw a chocolate. Should the two contracts be distinguishable?

Expressing contracts with action sequences within the deontic operators using an
until operator can prove to be challenging. It is certainly desirable to have the inner
temporal logic match (at least in style) with the outer one. Using an interval logic (reg-
ular expressions) inside the deontic operators and a point logic outside the operators
can result in spin the presence of CTDs (and CTPs).

Contracts of Repetitions and Repetitions of Contracts. Informally, equating the star
operator with an unbounded sequence of choices indicates that the interpretation of
the choice operator inside and outside the deontic operators should be respected with
repetition. In other words, a contract such as O(a∗) (intuitively equivalent to O(ε+a+
a.a+. . .)) means that a number of actions a are to be performed — the choice regarding
the number of repetitions is external, that is, decided by the entity bound by the contract.
On the other hand, with O(a)∗ (intuitively equivalent to Y+ O(a)+ O(a).O(a)+ . . .),
the choice regarding the number of repetitions is internal, and thus imposed.

Unbounded Repetition. Let us consider the contract saying that ‘If John uses the ser-
vice, then he is bound to eventually pay.’ One would write this as s?.O(Any∗.p). Note



Challenges in the Specification of Full Contracts 301

that no bound is placed on how long John takes to pay his dues. Giving a formal se-
mantics of the logic over infinite sequences enables one to say whether or not John
has satisfied the contract. On the other hand, when one looks at finite sequences, one
requires the use of a three-valued logic to differentiate between the contract being vi-
olated, satisfied, and the third situation when it may still be satisfied in the future. In
certain contexts, such as runtime verification, this approach will be required. In practice,
however, it seems more natural to have only bounded iteration, to be able to enforce the
payment in a life-time period. However, one may question whether unbounded repeti-
tion inside deontic operators is meaningful. John would certainly have no qualms about
signing the above-mentioned contract, since he is not due to perform any action on his
part to satisfy the contract. On the other hand, unbounded repetition outside deontic
operators is still meaningful, given that the choice over repetition is an internal one.

4.4 Other Issues

Real-Time Aspects. Most useful contracts include some timing aspects: deadlines,
timeouts, durations, etc. Dealing with real-time introduces further challenges when
combined with deontic notions: Should we associate time with the modalities, clauses,
actions, or with all of them? Is an interval-based logic necessary to reason about the
beginning and end of an action?

Since we want not only to specify but also to be able to analyse contracts written in
our logic, we aim at a decidable extension. Though many of the above decisions may be
application-driven, we propose to consider the use of clocks with freezing quantifiers
and resets [1]. A modular conservative approach would be to extend an untimed OPP-
logic with clocks. In this way a suitable combination of Kripke-like structures with
timed automata could be envisaged as a semantical framework for such a logic.

Reference to other expressions. A nominal logic or simply annotations on clauses and
contracts may be needed to be able to refer to other clauses (in the same contract) or
contracts. In principle the analysis of cross-references could be analysed with standard
existing techniques on graph (e.g. reachability analysis).

Introspection / reflection. One interesting extension is that of introducing contract in-
trospection — the capability of having conditions which depend on which obligations,
permissions and prohibitions are active, to express contracts such as ‘Whenever you are
obliged to pay, you are also obliged to produce identification’. Furthermore, a contract
may contain references to itself, i.e. be reflexive, for instance a clause may determine
that under certain circumstances a party may have the power to change other clauses,
or even to cancel the contract. Note that, not only does this complicate compositional
analysis of contracts, but may also introduce causality issues. Related to contract intro-
spection, we could also envisage to have a formal theory to relate policies and contracts
(i.e. “vertical” contracts regulating “horizontal” contracts).

Fairness and invariants. Other issue is how easy is to represent fairness and invari-
ants. In what concerns invariants, we may be able to represent the “box” operator of
LTL in a similar way as it is defined in Duration Calculus, i.e. by negating a partic-
ular contract sequence. Concerning fairness, we want to specify properties like “any



302 G.J. Pace and G. Schneider

infinitely often enabled process should be infinitely often taken” (or other variations of
fairness constraints usually defined in temporal logics). As in temporal logics, we may
decide to take a syntactic approach (e.g. as in LTL) in which case the logic should allow
writing something like ��C, or a semantic approach (e.g. à la CTL). Again, in practice
it seems reasonable to enforce only bounded fairness.

Concurrency. In many applications it seems natural to consider true concurrency,
mainly under the deontic operators. For instance, one may need to say that ‘you are
obliged to sit-down and remain silent’, O(s&r), where an eventual violation of this
obligation includes not doing any (nor both) actions. The combination of such concur-
rent operator introduces many challenges and its combination with the other regular
expression operators is not easy. One problem is that depending on the interpretation
of conjunction on obligations, it may be difficult to assert whether O(s) ∧ O(r) entails
O(s&r), or whether they are equivalent. In the latter this introduces a big challenge
concerning the semantic interpretation of & in a deontic logic based on actions in the
style of dynamic logic, since conjunction is usually interpreted as a branching in certain
cases. See [27] for further discussion on the topic.

Conditional Contracts. The use of conditions outside the deontic operators enables
the formulation of contracts which are dependant on runtime behaviour. The question
of whether such conditions should also be allowed inside the deontic operators leads
to interesting possibilities. Consider the contract ‘Unless the service is disabled, John
is obliged to pay in the next time unit’ as opposed to the contract ‘John is obliged to
pay in the next time unit, unless the service is disabled now.’ The former obligation
is never enacted if the service is disabled, whereas the latter is enacted, but becomes
trivially satisfied when disabling the service. The former corresponds to d̄?.O(p), while
the latter to O(d̄.p + d) (or even Any.O(p) unless d?). Different approaches can be
used to express such conditional contracts.

Encoding as normal actions: As seen in the example, one can encode conditional con-
tracts using regular expressions. The main drawback of this approach is that which
actions are conditions, and which are actually obliged by the contract becomes blurred.
Although for most uses of a contract such a view is sufficient, when analysing a con-
tract (for instance, to identify what actions one may be obliged to take) one may require
further information.

Subjects, objects and actors: One approach is the identification of the actors of a con-
tract — who the subject of an action is, and who the object is. Automatically, actions
which are not performed by the party being obliged to do something, are conditions.
However, this approach fails when the condition includes actions under the control of
the party. In the above example, John may be the actor who chooses whether or not to
disable the service. Introducing the subject and object of an action gives insight into a
contract, but not sufficient information to analyse conditions.

Assertions: Actions (or regular expressions over actions) may be explicitely tagged as
conditions, or assertions to indicate that they are not part of the obligation or prohibi-
tion: O(d? + d̄?.p). The semantics to such a statement, is that if d is not present, then
p must follow, otherwise the obligation becomes trivially violated. Although one may



Challenges in the Specification of Full Contracts 303

also give a semantics in which the default is the trivially satisfied contract, this leads
to confusing situations — consider the contract ‘John is obliged to pay until he dis-
ables the service’. This can be written as O((d̄?.p)∗d?), which intuitively corresponds
to O(d?+ d̄?.p.d?+ d̄?.p.d̄?.p.d?+ . . .). Recall that we suggested that a logical choice
for the semantics of choice inside deontic operators is an external (user-driven) choice.
But by not disabling the service and choosing the first choice in the unrolled version
of the contract, the contract is trivially satisfied. Rewriting the contract to work with
such semantics would require an implicit choice operator within deontic operators, or
use unnecessarily intricate formulations such as: O((d?.0 + d̄.p)∗(d? + d̄.0)) (where 0
corresponds to an action that can never be performed).

Another choice in the design of conditions in a logic for contracts is that of whether
they should take time to evaluate. If the original contract discussed in this section were
‘John is obliged to pay, unless the service is disabled,’ one would have to reformulate
the formal contract using conjunction O((d̄?&p)+d?). An alternative is to have condi-
tions (both inside and outside deontic operators) with no time to evaluate, and proceed
in the same time unit. Having such an approach makes expressing certain properties
more straightforward, but at the cost of the need for constructiveness checking to avoid
expressing counter-intuitive, or meaningless properties such as d̄?.d (if d is not present
in the current time unit, then ensure it is).

5 Final Discussion

We have argued here that a formal language for full contracts needs a ‘practical’ deon-
tic logic in combination with features from many other logics, and we have discussed
some problems in obtaining such a logic. Giving a sound formal semantics to a real-time
temporal deontic logic is not an easy task. Different approaches may be necessary for
different application areas. To be able to discuss CTDs and CTPs (or default contracts,
in general), a failure-oriented semantics is very desirable. Equivalence of contracts is
another major challenge, and a bisimulation based approach can prove to be fruitful —
the main question is to define reasonable bisimulation relations to encompass the dif-
ferent views of what equivalence over contracts means. Analysis of contracts is another
important area worthy of investigation. We have recently developed a model-checking
technique for the discovery of contradictory contracts in CL [13]. However, other anal-
ysis techniques are required — constructiveness analysis ensures no causality cycles in
a contract, timing analysis may be used to study the lifetime of a contract, etc.

In identifying a number of challenges in combining temporal and deontic opera-
tors, we have mentioned various extensions which introduce more expressivity, but also
further complexity into the logic. These include introspection, real-time issues, cross-
references, a suitable treatment of true concurrency, fairness and conditional contracts

Also, since we have considered an ought-to-do approach (i.e. the deontic modalities
are applied on actions and not state-of-affairs), one may also have to consider many
aspects from dynamic logic, in the spirit of Meyer’s work [21] (see also [4,26]).

Finally, we have used a simple temporal logic (regular expressions) onto which to
graft our deontic logic. One may choose to start from another logic such as LTL, CTL or
µ-calculus. The general question of how one can uniformly extend a (discrete) temporal



304 G.J. Pace and G. Schneider

logic with deontic operators is an interesting one, giving a unified view of a deontic
transformer (in the style of monad transformers [17] in functional programming).

Besides specific technical differences with problems identified in previous work on
deontic logic (see related work below), our work is set apart by the fact that some chal-
lenges in the specification of full contracts go beyond the “traditional” research by the
deontic community. Thus, the definition of a formal language (and reasoning system)
for full contracts in Computer Science applications, involves additional challenges, as
for instance: (1) Combination with other logics, in particular real-time logics; (2) The
need of a trace semantics for the contract language, since contracts must be monitored at
runtime; (3) An algorithm to automatically obtain such a runtime monitor; (4) Eventual
use of an enforcement mechanism, at runtime; (5) Development of a contract-as-types
theory in order to manipulate contracts at the programming language level.

Related Work. Puzzles and paradoxes have accompanied deontic logic since its very
beginning [30], starting with its formalisation in the so-called standard deontic logic
(SDL). See von Wright’s account [31] and McNamara’s article [19]

Problems in formalising CTDs in the original papers on deontic logic were first dis-
cussed by Chisholm in [8]. Åqvist [2] gave a solution to the paradoxes related to CTDs
(and also to the Good Samaritan and the paradox of the epistemic obligation) by propos-
ing different semantic relations for primary and reparational obligations. The problem
with the proposed solution is that one might need an unbounded (and eventually infinite)
number of such relations in case of an unbounded number of nested CTDs. Prakken and
Sergot [25] further discussed the difficulties to get a good representation of CTDs, based
on an ought-to-be approach. In particular they showed how non-monotonic methods are
not suitable for such cases, since such logics (e.g. defeasible logic) treat CTDs as ex-
ceptions, in which case the primary obligation is not really violated, since it is never
applied. The difference between a CTD and an exception may be seen in the follow-
ing example: Let A be ‘you are obliged to pay unless somebody else pays for you’,
and B be ‘you are obliged to pay, and if you do not pay somebody else has to pay for
you’. A expresses an exception where ‘somebody else pays for you’ can be seen as a
rule defeating the first obligation, which is never enacted in case the exception happens.
However, in B, whenever you do not pay and somebody else does it for you, there has
been a violation of the primary obligation, and the fact that somebody pays for you is
seen as a reparation to the violated obligation. The difference is not naı̈ve, and contracts
A and B should be seen as different.

The problem of sequence of obligations versus obligation on sequences, and their
combinations with CTDs has been discussed by Wyner in [32]. Wyner argues that none
of previous work (including [6,21]) have given a good unproblematic representation of
CTDs, in particular its relation with sequences and obligations. Khosla and Maibaum
[15] mentioned these differences but did not propose a suitable solution. Wyner further
studies the distinction, making a difference between ‘distributed obligations´ and ‘obli-
gations on an interruptible sequence’, corresponding to our proposal of external and
internal sequences on obligations.

A discussion on the difference between internal and external choice in deontic logic
has been addressed for instance in [20] and more recently in [29].



Challenges in the Specification of Full Contracts 305

In [18] Lomuscio and Sergot describe a way to distinguish between normal and ex-
ceptional cases in their deontic interpreted systems, from the semantical point of view,
by separating “allowed” from “disallowed” states.

A different approach based on dynamic logic by Meyer [21], where a special marker
V for violation is introduced in order to mark that an obligation has been violated (or
a forbidden action has been performed) in the current world (where V holds). Though
the approach makes a big step towards a solution of many of the deontic paradoxes, it
does not properly address the problem of what follows after a violation. Furthermore, in
Meyer’s logic it is a theorem that sequences of obligations are equivalent to obligation
on sequences, which is not the case as we have argued in section 4.1.

An example of the use of a restricted deontic logic for fault-tolerant systems is pre-
sented by Castro and Maibaum [7] (see also Coenen’s work [10]). As far as we know,
there is no application of deontic logic to systems with compensable transactions. Most
of the research conducted in this domain uses process calculi (see for instance [16,5]).

A choice operator explicitly appears in those works using the ought-to-do approach,
where the operator is among actions (a + b), for instance in the works by Broersen et al
[4], and Prisacariu and Schneider [26]. The latter also allowing concurrent actions.

A logic with deontic flavor has been recently introduced by Dinesh et al. in [11,12].
The main objective of that work is to represent conditional obligations and permissions,
to capture exceptions to norms, and most notably to be able to represent (and reason)
about references among norms (clauses). As far as we know, it is not possible to repre-
sent CTDs and CTPs in that logic. However, the application domain of the paper is the
regulatory system of blood donations, where CTDs and CTPs are not common.

The recent paper by Åqvist [3] proposes a formalisation of a logic for conditional
obligations and permissions, combined with temporal modalities. No CTDs, CTPs, nor
real-time is considered.

Finally, note that the concept of contract used in this paper is more general than
behavioural interfaces, the design-by-contract programming style using pre- and post-
conditions, and other more “standard” notion of contracts in Computer Science (see
[23] for a discussion on that).

References

1. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Information and
Computation 104, 390–401 (1993)

2. Åqvist, L.: Good samaritans, contrary-to-duty imperatives, and epistemic obligations.
Noûs 1(4), 361–379 (1967)

3. Åqvist, L.: Combinations of tense and deontic modality: On the approach to temporal logic
with historical necessity and conditional obligation. J. Applied Logic 3(3-4), 421–460 (2005)

4. Broersen, J., Wieringa, R., Meyer, J.-J.C.: A fixed-point characterization of a deontic logic
of regular action. Fundam. Inf. 48(2-3), 107–128 (2001)

5. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensations in flow
composition languages. In: POPL 2005, pp. 209–220. ACM Press, New York (2005)

6. Carmo, J., Jones, A.J.: Deontic logic and contrary-to-duties, vol. 8, pp. 265–343. Kluwer
Academic Publishers, Dordrecht (2002)

7. Castro, P.F., Maibaum, T.S.E.: A complete and compact propositional deontic logic. In:
Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 109–123.
Springer, Heidelberg (2007)



306 G.J. Pace and G. Schneider

8. Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis (XXIV), 33–36
(1963)

9. Claessen, K.: Safety Property Verification of Cyclic Synchronous Circuits. In: SLAP 2003.
ENTCS, vol. 88. Elsevier, Amsterdam (2003)

10. Coenen, J.: Top-down development of layered fault tolerant systems and its problems- a
denotic perspective. Ann. Math. Artif. Intell. 9(1-2), 133–150 (1993)

11. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: A logic for regulatory conformance checking. In:
Proceedings of the 14th Monterey Workshop (2007)

12. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions and exceptions to
laws in regulatory conformance checking. In: van der Meyden, R., van der Torre, L. (eds.)
DEON 2008. LNCS, vol. 5076, pp. 110–124. Springer, Heidelberg (2008)

13. Fenech, S., Pace, G.J., Schneider, G.: Conflict analysis of deontic contracts. In: WICT 2008
(November 2008) (to appear)

14. Hoare, C.A.R., Butler, M., Ferreira, C.: A trace semantics for long running processes. In: Ab-
dallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. LNCS,
vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

15. Khosla, S., Maibaum, T.S.E.: The prescription and description of state based systems. In:
Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS,
vol. 398, pp. 243–294. Springer, Heidelberg (1989)

16. Li, J., Zhu, H., Pu, G., He, J.: A formal model for compensable transactions. In: ICECCS
2007, pp. 64–73. IEEE Computer Society Press, Los Alamitos (2007)

17. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In: POPL
1995, pp. 333–343. ACM Press, New York (1995)

18. Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica (75), 63–92 (2003)
19. McNamara, P.: Deontic logic. Handbook of the History of Logic, vol. 7, pp. 197–289. North-

Holland Publishing, Amsterdam (2006)
20. Meyer, J.-J.: Free choice permissions and ross’s paradox: Internal vs. external nondetermin-

ism. In: Proc. 8th. Amsterdam Collloquium, University of Amsterdam, pp. 367–380 (1992)
21. Meyer, J.-J.C.: A different approach to deontic logic: Deontic logic viewed as a variant of

dynamic logic. Notre Dame Journal of Formal Logic 29, 109–136 (1988)
22. Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982)
23. Owe, O., Schneider, G., Steffen, M.: Components, objects, and contracts. In: SAVCBS 2007,

Dubrovnik, Croatia, September 2007. ACM Digital Library, pp. 91–94 (2007)
24. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State

of the art and research challenges. Computer 40(11), 38–45 (2007)
25. Prakken, H., Sergot, M.: Contrary-to-duty obligations. Studia Logica 57(1), 91–115 (1996)
26. Prisacariu, C., Schneider, G.: A Formal Language for Electronic Contracts. In: Bonsangue,

M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189. Springer, Hei-
delberg (2007)

27. Prisacariu, C., Schneider, G.: Towards a formal definition of electronic contracts. Technical
Report 348, Dept. of Informatics, Univ. of Oslo. (January 2007)

28. Shiple, G.B.T., Touati, H.: Constructive analysis of cyclic circuits. In: European Design and
Test Conference (1996)

29. van der Hoek, W., van Linder, B., Meyer, J.-J.C.: On agents that have the ability to choose.
Studia Logica 66(1), 79–119 (2000)

30. Wright, G.H.V.: Deontic logic. Mind 60, 1–15 (1951)
31. Wright, G.H.V.: Deontic logic: A personal view. Ratio Juris 12(1), 26–38 (1999)
32. Wyner, A.Z.: Sequences, obligations, and the contrary-to-duty paradox. In: Goble, L., Meyer,

J.-J.C. (eds.) DEON 2006. LNCS, vol. 4048, pp. 255–271. Springer, Heidelberg (2006)



Partial Order Reduction for State/Event LTL

Nikola Beneš�, Lubos Brim�, Ivana Černá��, Jiri Sochor��, Pavlina Vařeková��,
and Barbora Zimmerova��

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. Software systems assembled from a large number of autono-
mous components become an interesting target for formal verification due
to the issue of correct interplay in component interaction. State/event
LTL [1,2] incorporates both states and events to express important prop-
erties of component-based software systems.

The main contribution of the paper is a partial order reduction tech-
nique for verification of state/event LTL properties. The core of the par-
tial order reduction is a novel notion of stuttering equivalence which
we call state/event stuttering equivalence. The positive attribute of the
equivalence is that it can be resolved with existing methods for partial
order reduction. State/event LTL properties are, in general, not pre-
served under state/event stuttering equivalence. To this end we define
a new logic, called weak state/event LTL, which is invariant under the
new equivalence.

1 Introduction

Increasing complexity in software development stimulates application of new tech-
niques that help to deliver systems in shorter time and with lower costs. One of such
techniques is the component-based development, that builds software systems out
of prefabricated autonomous components, often developed with no knowledge of
their deployment context. Under such conditions, interaction among components
in the system becomes a crucial issue in the system correctness.

Verification of component-based systems. Similarly to communicating processes,
interaction of components can be formalized in terms of labelled transition sys-
tems, representing communicational behaviour of the components, and correct-
ness of the systems in a temporal logic. In practice, real systems are composed
of a large number of components which are often independent on each other and
run concurrently. In such cases, automated verification becomes challenging due
to their size and complexity. This motivates the search of component-specific
attributes, which can be exploited in order to make the verification feasible.

� The author has been supported by grant no. 1ET408050503.
�� The author has been supported by grant no. 1ET400300504.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 307–321, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



308 N. Beneš et al.

Correctness attributes. One of the crucial observations in verification of compo-
nent interaction in component-based systems is that the correctness attributes
often highlight interaction among specific components which form only a small
part of the system. Even if the rest of the system is also important as it may coor-
dinate these components, with appropriate reduction techniques a large portion
of its complexity could be abstracted away during verification.

Partial-order reduction technique. One of the techniques successfully employed
to state-space reduction is the partial order reduction. This technique is able to
identify redundancies in the model during the verification process, commonly
caused by interleaving of independent actions. This allows the technique to omit
generation of some of them while at least one representative of each equivalence
class remains part of the actually verified model.

State/event temporal logic. In component-based systems, as in any modular
programs in general, communication among components proceeds via events,
which represent message passing, service calls, delivery of return values, etc.
At the same time, components preserve also persistent state information about
current values of their attributes. The adequate logic formalizing properties of
these systems hence should be able to express both state-based and action-
based properties, as well as their combinations. Research conducted on this topic
resulted in the state/event LTL [1,2]. For the logic, however, there is no partial
order reduction method known at the time. The situation is complicated for its
fragment, the action-based LTL, as well.

Contribution. The main contribution of this paper is a partial order reduction
method for state/event LTL, and for action-based LTL as its special case. The
whole framework is moreover defined in a way that it can be turned at no
additional cost into the standard partial order reduction problem for state-based
LTL at the end. Hence, it can be resolved with known and widely implemented
techniques.

For the reduction to have required effect one needs to identify an equivalence of
two runs. The equivalence should allow for considerable level of reduction, while
preserving temporal properties that reflect meaningful correctness attributes for
the studied systems. We define an equivalence relation, state/event stuttering
equivalence, driven by the correctness attributes of component-based systems,
highlighting only the interesting interaction of components as discussed above,
and characterize the state/event LTL properties preserved by the equivalence in
terms of a new logic named weak state/event LTL.

2 Related Work

A combination of state-based and action-based linear temporal logic, named
state/event LTL, has been studied in [1,2]. The authors argue that formalisms
including both states and actions are suited for modelling of modular systems, in-
cluding component-based systems, better than pure state-based or action-based



Partial Order Reduction for State/Event LTL 309

approaches. It is also shown that the automata-based verification method for
state-based LTL [3] can be modified to a verification method for state/event LTL
in a straightforward way and at no additional cost of time and space. As noted by
the authors, the results indicate the importance of further research in reduction
techniques. The partial order reduction is suggested as a future direction. Its
need was also discovered in our recent work on verification of component-based
systems [4,5].

The partial order reduction method was originally introduced in three inde-
pendent works [6,7,8]. The approach has been further developed, but in connec-
tion with linear temporal properties, state-based LTL has always been assumed.
The reason for leaving action-based and state/event LTL behind is most likely
because the correctness of the partial order reduction method is based on the con-
cept of stuttering invariance of properties [9]. To the best of our knowledge, the
stuttering concept has currently no convenient analogue for neither state/event
nor action-based LTL. There have been, though, approaches like [10] which solve
this problem by transforming state/event systems into purely state-based ones
and then using state-based LTL and the standard partial order reduction. How-
ever, this comes at a cost, in both enlarging the state space (the number of states
can be in worst case multiplied by the size of the alphabet) and weakening the
logic (LTL without the next operator is unable to distinguish between one and
more consecutive executions of a single event).

An approach that relates actions and stuttering equivalence is the temporal
logic of actions [11], where the formulae are constructed in a way that they are
stuttering invariant. However, the actions are formulated in terms of changes of
state propositions and/or variables, not allowing an arbitrary concept of actions.
In our approach, we adopt a more general attitude to actions, as we consider
arbitrary actions not tied to the properties of states.

The idea behind the state/event stuttering equivalence defined in Section 5
bears many similarities to the concept of projection in [12]. However, the logic
and the methods studied in [12] are more specialized and quite different from
the general case of SE-LTL and partial order reduction.

3 Basic Definitions

As a general modelling formalism for state/event systems we use labelled Kripke
structures. Many automata-based approaches, such as Component-Interaction
Automata [4,5], Interface Automata [13] and I/O automata [14], can be easily
translated to labelled Kripke structures.

Definition 1 (LKS). A labelled Kripke structure (LKS) is a 6-tuple (S, Act, ∆,
sinit, Ap,L) where S is a nonempty set of states, Act is a finite set of actions,
∆ ⊆ S × Act × S is a transition relation, sinit ∈ S is an initial state, Ap is
a finite set of atomic propositions and L : S → 2Ap is a state-labelling function.
Instead of (s, a, s′) ∈ ∆, we also write s

a−→ s′.
A run π of an LKS is an infinite alternating sequence of states and actions

π = s0, a0, s1, a1, . . . such that ∀i : si
ai−→ si+1. We call a run initial if s0 = sinit.



310 N. Beneš et al.

2	
�����
Caption

����������������

Controller : �� 1	
�����
Picture

��������������� Caption �� 3	
����� Picture �� 4	
����� Update �� 5	
�����
Update

��

Updater : �� 1	
����� Update �� 2	
����� MakeSave �� 3	
����� Log �� 4	
�����

Log��5	
�����Update

��

Logger : �� 1	
����� Log �� 2	
����� Log �� 3	
�����
MakeLog

��

Fig. 1. Models of the Controller, Updater and Logger components

		�
��

��
��

A	
�����

Caption





Picture

		�
��

��
��

� J	
�����
MakeLog

��

Caption





Picture

��		
		

		
		

C	
�����

Caption





L	
�����

Caption





MakeLog



B	
�����

Picture 		�
��

��
��

� K	
�����

Picture��		
		

		
		

MakeLog

��

D	
�����
Update





M	
�����
MakeLog



Update




E	
�����

MakeSave





N	
�����
MakeLog



MakeSave




F	
�����

Log

��












 O	
�����
MakeLog



G	
�����
Log

��














I	
�����

Update

��

H	
�����
MakeLog



Update

��

Fig. 2. Model of the Photo gallery system



Partial Order Reduction for State/Event LTL 311

Given a run π, we also define: the ith subrun of π as πi = si, ai, si+1, ai+1, . . .,
the ith state of π as π(i) = si and the ith action of π as �(π, i) = ai.

Other kinds of transition systems can be naturally translated into LKSs. The
most commonly used are the Kripke structures, which correspond to LKSs with-
out transition labels (i.e. actions), and the labelled transition systems, which
correspond to LKSs without atomic propositions and state labelling.

Example 1. Consider a component-based system implementing a simple photo
gallery, modelled as an LKS in Figure 2. The system consists of three compo-
nents: Controller, Updater and Logger, with behavioural descriptions in Figure 1.
The interface of the system is formed by Controller, which inserts photos with
captions into the gallery. When provided with a picture and its caption (in any
order), Controller asks Updater to update information in the gallery via action
Update, which synchronizes with a corresponding action in Updater. In the model
of the system in Figure 2, Updater gains focus and starts the update. It saves
the changes first and then asks Logger to log the information. Logger responds
to the Log call via Log and then completes the operation. Concurrently with
the MakeLog operation of Logger, Updater returns response to Controller, which
afterall takes all the components (and hence the system) to the initial setting.

To make the LKS model of this system in Figure 2 complete, we need to add
the set Ap of atomic propositions and the state labelling function L. In this
case we choose the atomic propositions reflecting action enabledness. That is,
Ap = {E(a) | a ∈ Act} where each E(a) represents a state proposition with the
meaning “action a is enabled in this state”. The labelling function is then given
as L(s) = {E(a) | ∃s′ : s

a−→ s′} associating with each state the actions enabled
in that state. For example L(A) = {E(Picture), E(Caption)}.

We continue with defining the linear temporal logic that encompasses both state
propositions and actions. This definition is equivalent to the definition in [1], it
only slightly differs in notation.

Definition 2 (SE-LTL). Let Act be a set of actions, Ap a set of atomic propo-
sitions. The syntax of the state/event LTL (SE-LTL for short) formulae is de-
fined inductively as:

ϕ ::= P(a) | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | Xϕ

where a ranges over Act and p ranges over Ap.
Let π be a run of an LKS, the semantics of SE-LTL for runs is defined as:

π |= P(a) ⇐⇒ �(π, 0) = a

π |= p ⇐⇒ p ∈ L(π(0))
π |= ¬ϕ ⇐⇒ π �|= ϕ

π |= ϕ ∧ ψ ⇐⇒ π |= ϕ and π |= ψ

π |= ϕ U ψ ⇐⇒ ∃k ≥ 0 : πk |= ψ and ∀j < k : πj |= ϕ

π |= Xϕ ⇐⇒ π1 |= ϕ



312 N. Beneš et al.

Further, we say that an LKS M satisfies ϕ, written as M |= ϕ if for all initial
runs π of M , π |= ϕ.

Example 2. Consider the LKS from Example 1 in Figure 2. Let Fϕ stand for
true U ϕ and Gϕ stand for ¬F¬ϕ. The property reflecting that an arbitrary
number of pictures can be inserted into the album, can be stated in SE-LTL as
GFP(Picture). An example of a property using state atomic propositions could
be “whenever the action Picture becomes enabled, it is eventually executed”,
which is expressible as G (E(Picture) ⇒ FP(Picture)).

It has been demonstrated in [1] that the automata-based approach for state-
based LTL verification (see e.g. [3]) can be straightforwardly transformed into
an automata-based verification method for SE-LTL with no extra cost.

4 Motivation

As mentioned in the introduction, to cope with the enormous size of real system
models consisting of a large number of components it is necessary to employ
reduction methods. The aim of such methods is to generate a reduced state
space instead of the complete one while ensuring preservation of all required
properties. One of such methods, the partial order reduction method, exploits
the redundancies in the system caused by concurrent interleaving. When dealing
with state-based LTL properties, the partial order reduction technique is built
on the concept of stuttering equivalence [9]. Two runs of a system are considered
to be stuttering equivalent if the only difference between them lies in sequential
repetitions of states with identical labelling. The partial order reduction method
then ensures that for each run of the system there is a stuttering equivalent
run in the reduced state space. The subset of LTL properties that are preserved
by this equivalence can be characterized syntactically: they are exactly those
properties that can be written without the X operator.

To apply the partial order reduction method to SE-LTL, we need first to
find a suitable concept that would play the role of stuttering equivalence for
the state/event case. The above mentioned stuttering equivalence cannot be
employed, as it considers state labelling only.

The first idea is to transfer the stuttering concept to actions. In the stuttering
equivalence, consecutive states labelled with the same atomic propositions are ig-
nored. Let us therefore consider an equivalence that ignores consecutive transitions
labelled with the same action and let us call this equivalence action stuttering. It
implies that, for instance, two runs of the form s0, a, s1, a, s2, b, s3, c, s4, c, . . . and
q0, a, q1, b, q2, b, q3, b, q4, c, . . . are action-stuttering equivalent. The advantage of
this straightforward approach is that all formulae of action-based LTL not using
the X operator are preserved by this equivalence. However, there is a number of
arguments against this choice.

It is obvious that the partial order reduction method does not preserve this
action-stuttering equivalence. Figure 3 shows a typical situation. If the tran-
sitions labelled with a and b are independent and one of them is invisible, the



Partial Order Reduction for State/Event LTL 313

�������� b
���������

�� �������� a ���������

b
��������� �������� �� · · ·�������� a

���������

Fig. 3. A typical situation for partial order reduction

partial order reduction method traverses just one of the two runs ab . . . and ba . . .
However, those two runs are not action-stuttering equivalent.

The problem is more fundamental. Consider a component-based system con-
sisting of two components whose interaction is to be verified. Suppose we extend
the system with an additional component that does not influence the commu-
nication of the original ones. A suitable substitution for stuttering equivalence
should consider every run corresponding to the interaction behaviour of the orig-
inal components equivalent regardless of interleaving with the third component.
It is clear that the proposed action-stuttering equivalence does not satisfy this
reasonable property.

We define a new equivalence, which, while still retaining the stuttering concept
with respect to the state propositions, employs a different approach towards the
transition labels (actions). This new equivalence enjoys the property that it is
preserved by the partial order reduction method, thus allowing all the advantages
of it. This comes at a cost. Contrary to state-based LTL, we do not have any
syntactic characterization of SE-LTL formulae that are preserved by the new
equivalence. However, we show that they can be elegantly described in terms of
an adjusted weak version of SE-LTL.

5 State/Event Stuttering Equivalence

The main idea of the equivalence is that some of the actions are regarded as
interesting. Transitions with noninteresting actions are then overlooked by the
equivalence. As we want to consider both actions and states, this idea is com-
bined with the stuttering principle for state propositions, i.e. transitions which
change state propositions we are interested in cannot be overlooked. In order
to define the equivalence formally, we introduce the notions of a projection and
a signature.

Definition 3 (projection, signature). Let π = s0, a0, s1, a1, . . . be a run of
LKS (S, Act, ∆, sinit, Ap,L), let Act′⊆ Act and Ap′⊆ Ap. Let τ be a new symbol,
τ �∈ Act. A projection of π onto Act′ and Ap′ is defined as

prAp′

Act′(π) = E0, b0, E1, b1, . . .

where Ei = L(si)∩Ap′, bi is equal to τ whenever ai �∈ Act′ and bi = ai otherwise.
Furthermore, a signature of π with respect to Act′and Ap′, denoted as sigAp′

Act′(π)
is defined as the (finite or infinite) alternating sequence of sets of atomic proposi-
tions and actions that arises from the projection of π onto Act′and Ap′by replacing
every maximal subsequence of the form Ei, τ, Ei+1, τ, . . ., where Ei = Ei+1 = · · · ,
with just Ei.



314 N. Beneš et al.

Example 3. Let π = A, Caption, B, Picture, D, Update, E, MakeSave, F, . . . and let
Act′ = {Update} and Ap′ = {E(Picture)}. Then the projection of π onto Act′

and Ap′ is prAp′

Act′(π) = {E(Picture)}, τ, {E(Picture)}, τ, ∅, Update, ∅, τ, ∅, . . . and
its signature is sigAp′

Act′(π) = {E(Picture)}, τ, ∅, Update, ∅, . . .

Definition 4 (state/event stuttering equivalence). Let π and σ be two
runs, let Act′ be a set of actions, Ap′ a set of atomic propositions. We say that π
and σ are state/event stuttering equivalent with respect to Act′ and Ap′, denoted
as π ≡Ap′

Act′ σ, if they have the same signatures, i.e. sigAp′

Act′(π) = sigAp′

Act′(σ).
Two LKSs are said to be state/event stuttering equivalent with respect to Act′

and Ap′, if for each run of one LKS there is a state/event stuttering equivalent
run of the other and vice versa.

Stuttering equivalence is a special case of state/event stuttering equivalence for
Act′= ∅.

Definition 5 (weak SE-LTL). Let Act be a set of actions, Ap a set of atomic
propositions and let Act′ ⊆ Act. We define the weak state/event LTL with re-
spect to Act′, wSE-LTL for short, as follows. The syntax of the formulae is
defined inductively as:

ϕ ::= P̃(a) | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | X̃ϕ | ϕ1 Ua ϕ2

where a ranges over Act′ and p ranges over Ap.
Let π be a run of an LKS. The semantics for runs is defined inductively as

π |= P̃(a) ⇐⇒ ∃k ≥ 0 : �(π, k) = a and ∀j < k : �(π, j) �∈ Act′

π |= p ⇐⇒ p ∈ L(π(0))
π |= ¬ϕ ⇐⇒ π �|= ϕ

π |= ϕ ∧ ψ ⇐⇒ π |= ϕ and π |= ψ

π |= ϕ U ψ ⇐⇒ ∃k ≥ 0 : πk |= ψ and ∀j < k : πj |= ϕ

π |= X̃ϕ ⇐⇒ ∃k ≥ 0 : �(π, k) ∈ Act′, ∀j < k : �(π, j) �∈ Act′ and πk+1 |= ϕ

π |= ϕ Ua ψ ⇐⇒ ∃k ≥ 0 : �(π, k) = a, πk+1 |= ψ and ∀j < k + 1 : πj |= ϕ

The main difference between SE-LTL and wSE-LTL is in the semantics of the
next and action operators. While P(a) states that “the first action is a”, P̃(a)
states that “the first interesting action is a”. The formula Xϕ states that “in the
next step, ϕ holds”, while the formula X̃ϕ states that “after the next interesting
action, ϕ holds”. Actually, the definition of X̃ϕ is of the form “there is a next
interesting action and after this action, ϕ holds”. We could also sometimes be
interested in stating the property that “if there is a next interesting action, then
after this action, ϕ holds”. Nevertheless, this alternative X̂ϕ operator can be
defined as a derived operator: X̂ϕ := ¬ X̃¬ϕ.

Additionally, wSE-LTL has a new operator Ua. The motivation is to express
properties like “atomic proposition p holds until action a happens”. In SE-LTL,



Partial Order Reduction for State/Event LTL 315

this can be expressed with pU (p∧P(a)). In wSE-LTL this is no longer possible
as the semantics of P̃(a) is different and the intuitive solution pU(p∧P̃(a)) holds
even for runs that do not satisfy the original property, e.g. a run with signature
{p}, τ, {¬p}, a, . . . Thanks to the Ua operator, this property is expressible as
pUa true. The Ua operator is not needed in the action-based fragment of wSE-
LTL. The reader may verify that every formula ϕUa ψ, where ϕ and ψ both do
not use state atomic propositions, is equivalent to ϕ U (P̃(a) ∧ ϕ ∧ X̃ψ).

In the previous, interesting means “from Act′”. In many natural cases, the
interpretation of a wSE-LTL formula remains the same regardless of the choice
of Act′ as long as Act′ contains all action labels from P(a) and Ua subformulae of
the formula. This is, however, not true in general, as semantics of some wSE-LTL
formulae may depend on this choice. When specifying properties in wSE-LTL,
it is therefore assumed that a pair (ϕ, Act′) is given instead of just ϕ.

An example of a formula that has different validity depending on the choice
of Act′ is given in the following.

Example 4. Consider the LKS from Example 1 in Figure 2 and the formula

G(P̃(Update) ⇒ X̃((E(Picture) ∨ E(Caption)) U P̃(MakeSave)))

expressing the property that “After finishing the update, it is possible to add
a picture or a caption until MakeSave follows as the next observable action.”
This formula holds if Act′ is given as {Update, MakeSave}. However, it does not
hold when the action label Update is added to Act′.

We are now ready to present the main result of this section, namely that the
properties expressible in weak SE-LTL are preserved by the state/event stutter-
ing equivalence. The proof of the following theorem can be found in [15].

Theorem 1 (equivalence preserves properties). Let Act′ be a set of ac-
tions, Ap′ a set of atomic propositions, and let π and σ be two runs such that
π ≡Ap′

Act′ σ. Then for each formula ϕ of wSE-LTL with respect to Act′ such that it
only contains atomic propositions from Ap′, π |= ϕ if and only if σ |= ϕ.

What remains is to show that wSE-LTL is indeed a weak version of SE-LTL,
i.e. that all properties expressible in wSE-LTL are also expressible in SE-LTL.
The following theorem states that every formula of wSE-LTL can be translated
in linear time to an equivalent formula of SE-LTL. This way the verification
problem for wSE-LTL can be reduced to the verification problem for SE-LTL,
which is solvable in a way similar to the standard LTL verification as described
in [1].

Theorem 2 (embedding of wSE-LTL into SE-LTL). Every formula ϕ of
weak SE-LTL with respect to Act′ can be translated to a formula T (ϕ) of SE-LTL
such that for each π, π |= ϕ if and only if π |= T (ϕ).



316 N. Beneš et al.

Proof. We define an auxiliary formula ξ :=
∧

a∈Act′¬P(a). The translation is
defined inductively as follows:

T (p) := p

T (P̃(a)) := ξ U P(a)

T (X̃ϕ) := ξ U (¬ξ ∧XT (ϕ))

T (ϕ U ψ) := T (ϕ) U T (ψ)
T (ϕ Ua ψ) := T (ϕ) U (P(a) ∧ T (ϕ) ∧ XT (ψ))

T (ϕ ∧ ψ) := T (ϕ) ∧ T (ψ)
T (¬ϕ) := ¬T (ϕ)

The correctness of this construction is proved in [15]. ��

5.1 Characterization of Invariant SE-LTL Properties

We have shown that wSE-LTL is preserved by state/event stuttering equivalence
and can be embedded into SE-LTL. Thus, wSE-LTL can be seen as a character-
ization of some SE-LTL properties that are preserved by state/event stuttering
equivalence (we use the term state/event stutter-invariant for such properties
in the following). We now show that this characterization is exact, i.e. that
all state/event stutter-invariant SE-LTL properties are expressible in wSE-LTL.
The proof follows the method of [9].

Definition 6. A run π is state/event stutter-free, if for each i ≥ 0 one of the
following holds:

– �(π, i) ∈ Act′ (ith transition is labelled by interesting action)
– L(π(i)) ∩ Ap′ �= L(π(i + 1)) ∩ Ap′ (ith transition changes the state labelling)
– �(π, j) �∈ Act′ and L(π(j)) ∩ Ap′ = L(π(j + 1)) ∩ Ap′ for all j ≥ i (nothing

interesting ever happens from ith position onwards)

It is clear that a state/event stutter-free run is a unique representant of its
state/event stuttering equivalence class. Note that an arbitrary subrun of a state/
event stutter-free run is also state/event stutter-free.

Theorem 3. Every state/event stutter-invariant property expressible in
SE-LTL is expressible in wSE-LTL.

Proof. We will show that for every SE-LTL formula ϕ there exists a wSE-LTL
formula τ(ϕ) that agrees with ϕ on all state/event stutter-free runs. Clearly this
implies the theorem.

The formula τ(ϕ) is defined inductively as follows. The straightforward parts
are τ(p) = p for p ∈ Ap′, τ(¬ϕ) = ¬τ(ϕ), τ(ϕ∧ψ) = τ(ϕ)∧τ(ψ) and τ(ϕUψ) =
τ(ϕ) U τ(ψ). These choices are obviously correct. The more difficult parts are
that of P(a) and Xϕ.



Partial Order Reduction for State/Event LTL 317

Assume that Ap′ = {p1, . . . , pn} and let N be the set of all subsets of Ap′,
i.e. N = 2Ap′

. For each ν ∈ N , let βν be the formula α1 ∧ · · · ∧αn where αj = pj

if pj ∈ ν and αj = ¬pj otherwise. If Ap′= ∅ then N = {∅} and β∅ = true. Thus,
βν holds in precisely those states whose valuation is equal to ν.

The two remaining formulae can be then dealt with as follows:

τ(P(a)) := P̃(a) ∧
∨

ν∈N

βν Ua true

τ(Xϕ) := ψ1 ∨ ψ2 ∨ ψ3, where

ψ1 :=
∨

ν∈N

(
Gβν ∧ ¬ X̃ true ∧ τ(ϕ)

)

ψ2 :=
∨

ν∈N

∨
a∈Act′

(
βν Ua true ∧ X̃ τ(ϕ)

)

ψ3 := ¬
∨

ν∈N

∨
a∈Act′

(βν Ua true) ∧
∨

ν∈N

∨
ν′∈N�{ν}

(βν ∧ (βν U (βν′ ∧ τ(ϕ))))

The correctness of this choice is proved in [15]. ��

Although the construction in the above proof is exponential in worst case, the
main significance of this result is that using weak SE-LTL comes without loss
of expressiveness over SE-LTL if we want to use state/event stutter-invariant
properties. Moreover, the construction justifies the choice of wSE-LTL operators,
namely the P̃, X̃ and Ua operators, which made the construction possible. Note
that if any of these were excluded from the logic, it would be less expressive and
the above result would not hold.

6 Partial Order Reduction

The goal of this section is to show that the partial order reduction method can be
applied to LKSs so that the reduced LKS remains state/event stuttering equiv-
alent. At first, we summarize the basics of the partial order reduction method.
While presenting the method we follow the explication from [16]. Consequently,
we explain how the method can be applied to SE-LTL.

Definition 7 (state transition system). A state transition system is a triple
(S, T, sinit) where S is a set of states, sinit is an initial state and T is a set of
transitions such that for each α ∈ T , α ⊆ S × S. Further, for each α ∈ T and
for each state s ∈ S there is at most one s′ ∈ S such that (s, s′) ∈ α.

An initial transition path of a state transition system is an infinite sequence
α0α1 . . . such that there are states s0, s1, . . . satisfying s0 = sinit and for all i,
(si, si+1) ∈ αi.

The idea of the ample set method [7,17] is to construct a reduced state space
by choosing a smaller set of successors at each state. Instead of exploring all
successors from a given state, denoted as enabled(s), we explore only successors
from ample(s) ⊆ enabled(s).



318 N. Beneš et al.

Theorem 4. [16] Let M be a state transition system and let V ⊆ T be an
arbitrary set of visible transitions. Let M ′ be the reduced system constructed
using the ample set partial order algorithm. Then for each initial transition path
π from M there is an initial transition path σ in M ′ such that π and σ have the
same sequence of visible transitions.

Proof. The theorem follows from the proof of Theorem 12 in [16]. ��

Now we present a transformation of an LKS to a state transition system. From
now on, we fix the LKS K = (S, Act, ∆, sinit, Ap,L), and two sets, Act′⊆ Act and
Ap′⊆ Ap of interesting actions and interesting atomic propositions respectively.
We need the notions of invisibility and proper transition partition first.

Definition 8 (invisibility). A transition (q, a, r) ∈ ∆ is called invisible if a �∈
Act′ and L(q)∩Ap′= L(r)∩Ap′. A transition is called visible if it is not invisible.

Definition 9 (proper transition partition). An indexed set P = {∆i | i ∈
I} is called a proper transition partition if the following holds:

– P is a partition of ∆, i.e.
⋃

i∈I ∆i = ∆ and ∆i ∩ ∆j = ∅ for all i �= j.
– P preserves actions, i.e. ∀i ∈ I . ∃a ∈ Act : ∆i ⊆ S × {a} × S.
– P is deterministic, i.e. for all i and for all s ∈ S, there is at most one s′ ∈ S

such that (s, a, s′) ∈ ∆i.

We now present a transformation of LKS K = (S, Act, ∆, sinit, Ap,L) with
a proper transition partition P into a state transition system M = (S, T, sinit).
Let T = {αi | i ∈ I} and αi = {(s, s′) | (s, a, s′) ∈ ∆i}. The set of visible tran-
sitions V ⊆ T is defined as V = {αi | at least one transition in ∆i is visible}.
We denote ∆(αi) = ∆i the underlying partition set for αi. Let α = α0α1 . . . be
an initial transition path of the state transition system (S, T, sinit). We assign
to α an initial run s0, a0, s1, a1, . . . where s0 = sinit, (si, ai, si+1) ∈ ∆(αi) for
i ≥ 0. Clearly, the assigned initial run is a unique initial run of the LKS due to
the nature of the proper transition partition.

Theorem 5. Let α = α0α1 . . . and β = β0β1 . . . be two initial transition paths
of the state transition system (S, T, sinit). Let π and σ be the initial runs assigned
to α and β, respectively. If α and β have the same sequence of visible transitions,
then π ≡Ap′

Act′ σ.

Proof. Invisible transitions of the state transition system represent transitions
of the original LKS such that they do not contribute to the runs’ signatures. ��

Corollary 1. Let M be an LKS and let Act′⊆ Act and Ap′⊆ Ap. Let M ′ be the
reduced system constructed using the ample set partial order algorithm on the
state transition system that is created as discussed above. Then for each initial
run π of M there is an initial run σ of M ′ such that π ≡Ap′

Act′ σ.

Three things have to be supplied to the partial order reduction algorithm along
with the LKS to be verified in order for the method to work. They are the proper



Partial Order Reduction for State/Event LTL 319

�� A	
�����

Caption





Picture

���
��

��
��

J	
�����

C	
�����

Caption





L	
�����

B	
�����
Picture ���

��
��

��
K	
�����

D	
�����
Update





M	
�����

E	
�����
MakeSave





N	
�����

F	
�����
Log

�������������� O	
�����

G	
�����
Log

��������������

I	
�����

Update

��

H	
�����
MakeLog



Fig. 4. Example from Figure 2 after partial order reduction

transition partition, the set of interesting atomic propositions Ap′ and the set of
interesting actions Act′.

A proper transition partition can be constructed automatically from some
additional information of the structure of the LKS in question. Take for instance
that the LKS represents a component-based system made from a number of
smaller components such as the LKS in Example 1. A proper transition parti-
tion can be constructed in such a way that all transitions of the system that
correspond with one transition of a smaller component constitute exactly one
set of the partition.

A set of interesting atomic propositions is acquired from the verified formula.
It is constructed as the set of all atomic propositions present in the formula. A set
of interesting actions, however, has to be supplied by the user by hand. This set
has to be a part of the property specification, as noted in Section 5, nonetheless.
The cardinality of this set can affect the effectivity of the reduction method. It
is thus desirable to specify as small set of interesting actions as possible, bearing
in mind the intended semantics of the verified formula.

The partial order reduction itself can then be done on the fly during the
automata-based verification process. Known methods and implementations can
be used for this purpose, see e.g. [18].

Example 5. Consider the LKS from Example 1. If we choose Ap′ to be an arbi-
trary subset of Ap and Act′ to be an arbitrary subset of Act such that MakeLog �∈
Act′ then the state space of the reduced LKS will look as depicted in Figure 4.
In this case ample(s) = enabled(s) for all states except H and ample(H) = {I}.



320 N. Beneš et al.

7 Conclusion and Future Work

The paper introduces a partial order reduction technique for state/event LTL.
The technique is based on a new stuttering equivalence, which is able to reflect
both state and transition labels while regarding both with a different principle
to closely fit their nature. On the level of states, the stuttering concentrates
on changes in assigned atomic propositions along a run, whereas in the case
of actions, the interesting events are observed at every single occurrence of an
action representing interesting behaviour of the system, which is stated explicitly
with respect to the verified property for instance. The paper moreover gives the
characterization of the state/event LTL properties preserved by the equivalence,
and summarizes the attributes into the definition of its fragment, called weak
state/event LTL. This fragment is preserved by the equivalence while staying
strong enough to reflect interesting component-specific properties, discussed at
the beginning of this paper.

After introducing both the equivalence and the corresponding logic fragment,
we discuss the partial order reduction technique. We show that the partial order
reduction task for the state/event case can be translated into the state-based case
via providing existing algorithms with a modified definition of transition invisi-
bility reflecting the discussed specifics. The advantage of such translation is that
known algorithms may be used for solving the problem. Moreover, the efficiency
of the partial order reduction method, which has been experimentally verified on
a number of case studies [18,19,20], can be attributed to our approach as well.

Future work. Our ongoing and future aims are connected to the employment of
the technique into our framework for formal verification of component-based sys-
tems [21] based upon the formalism of Component-Interaction automata [4,22].
The framework, in connection with the model checking tool DiVinE [23], recently
helped us to perform an extensive verification case study [5], which uncovered
the need of a partial order reduction method for state/event systems not found
elsewhere. Currently we work on the implementation and plan to perform a de-
tailed experimental case study using our framework and Component-Interaction
automata as an underlying formalism. The technique, however, is general and
independent on the application we aim it for.

References

1. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based
software model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)

2. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent software
verification with states, events, and deadlocks. Formal Aspects of Computing 17(4),
461–483 (2005)

3. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Proceedings of PSTV 1995, Warsaw, Poland,
pp. 3–18. Chapman and Hall, Boca Raton (1995)



Partial Order Reduction for State/Event LTL 321

4. Zimmerova, B., Vařeková, P., Beneš, N., Černá, I., Brim, L., Sochor, J.:
Component-Interaction Automata Approach (CoIn). In: Rausch, A., Reussner,
R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example.
LNCS, vol. 5153, pp. 146–176. Springer, Heidelberg (2008)

5. Beneš, N., Černá, I., Sochor, J., Vařeková, P., Zimmerova, B.: A case study in
parallel verification of component-based systems. In: Proceedings of PDMC 2008,
pp. 35–51 (2008)

6. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

7. Peled,D.:All fromone,onefromall: onmodel checkingusingrepresentatives. In:Cour-
coubetis,C. (ed.)CAV1993.LNCS,vol. 697,pp.409–423.Springer,Heidelberg(1993)

8. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185. Springer,
Heidelberg (1991)

9. Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next-time operator. Information Processing Letters 63(5), 243–246 (1997)

10. Sun, J., Liu, Y., Dong, J.S., Wang, H.H.: Specifying and verifying event-based
fairness enhanced systems. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008.
LNCS, vol. 5256, pp. 5–24. Springer, Heidelberg (2008)

11. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16(3), 872–923 (1994)

12. Brückner, I., Wehrheim, H.: Slicing object-Z specifications for verification. In: Tre-
harne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455,
pp. 414–433. Springer, Heidelberg (2005)

13. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Proceedings of the 2004
Marktoberdorf Summer School. Kluwer, The Netherlands (2005)

14. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

15. Beneš, N., Brim, L., Černá, I., Sochor, J., Vařeková, P., Zimmerova, B.: Par-
tial Order Reduction for State/Event LTL. Technical Report FIMU-RS-2008-07,
Masaryk University, Faculty of Informatics, Brno, Czech Republic (July 2008),
http://www.fi.muni.cz/reports/files/2008/FIMU-RS-2008-07.pdf

16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge
(1999)

17. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg (1994)

18. Bosnacki, D., Leue, S., Lluch-Lafuente, A.: Partial-order reduction for general state
exploring algorithms. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 271–
287. Springer, Heidelberg (2006)

19. Peled, D.: Ten years of partial order reduction. In: Y. Vardi, M. (ed.) CAV 1998.
LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998)

20. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: FORTE,
London, UK, pp. 197–211. Chapman and Hall, Boca Raton (1994)

21. The CoIn Team: CoIn Tool – Formal Verification Tool for Component Interaction
Automata, http://anna.fi.muni.cz/coin/tool/

22. Brim, L., Černá, I., Vařeková, P., Zimmerova, B.: Component-Interaction automata
as a verification-oriented component-based system specification. In: Proceedings of
SAVCBS 2005, pp. 31–38. ACM Press, New York (2005)

23. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE – a
tool for distributed verification. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 278–281. Springer, Heidelberg (2006)

http://www.fi.muni.cz/reports/files/2008/FIMU-RS-2008-07.pdf
http://anna.fi.muni.cz/coin/tool/


Dynamic Path Reduction for
Software Model Checking�

Zijiang Yang1, Bashar Al-Rawi2, Karem Sakallah2, Xiaowan Huang3,
Scott Smolka3, and Radu Grosu3

1 Western Michigan University, Kalamazoo, MI, USA
2 University of Michigan, Ann Arbor, MI, USA

3 Stony Brook University, Stony Book, NY, USA

Abstract. We present the technique of dynamic path reduction (DPR),
which allows one to prune redundant paths from the state space of a
program under verification. DPR is based on the symbolic analysis of
concrete executions. For each explored execution path π that does not
reach an abort statement, we repeatedly apply a weakest-precondition
computation to accumulate the constraints associated with an infeasible
sub-path derived from π by taking the alternative branch to an if-then-
else statement. We then use an SMT solver to learn the minimally unsat-
isfiable core of these constraints. By further learning the statements in π
that are critical to the sub-path’s infeasibility as well as the control-flow
decisions that must be taken to execute these statements, unexplored
paths containing the same unsatisfiable core can be efficiently and dy-
namically pruned. DPR is a very general technique which we consider
here in the context of the bounded model checking of sequential programs
with nondeterministic conditionals. Our preliminary experimental results
show that DPR can prune a significant percentage of execution paths, a
percentage that grows with the size of the instance of the problem being
considered.

1 Introduction

There are two approaches to software model checking. The first, as typified by [1],
applies traditional model-checking techniques [10] to a finite-state model auto-
matically extracted from the software system in question. The use of abstraction
techniques [3] leads to a model with more behaviors than the original program
and consequently an analysis that is conservative in nature. This form of software
model checking allows one to prove the absence of certain types of errors without
actually executing the program. Its success hinges on recent advances in symbolic
techniques. Performance can be further improved by exploiting software-specific
features [15,16].

The second approach is based on the dynamic execution of the actual pro-
gram; see, for example, [6]. It differs from testing in that it explores exhaustively

� This work was partially supported by NSF grants CCF-0811287 and CCF-0810865.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 322–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Dynamic Path Reduction for Software Model Checking 323

the program’s state space. This approach allows for the detection of subtle im-
plementation errors that are usually missed by abstraction-based software model
checkers. In the case of concurrent programs, partial-order reduction [13,11,5] can
be used to reduce the size of the state space by exploiting the commutativity of
concurrently executed transitions that result in the same state when executed
in different orders. However, there is no general technique to reduce the state
space in dynamic execution based model checking of sequential programs.

In this paper, we present the technique of dynamic path reduction (DPR),
which allows one to prune redundant paths from the state space of a program
in dynamic execution based model checking. DPR is a very general technique
which we consider here in the context of the bounded model checking of sequen-
tial programs with nondeterministic conditionals. Such programs arise naturally
as a byproduct of abstraction during verification as well as being inherent in
nondeterministic programming languages. Nondeterministic choice also arises in
the modeling of randomized algorithms. The key idea behind DPR is to learn
from each explored path so that unexplored paths exhibiting the same behavior
can be avoided.

To illustrate the DPR approach to model checking, consider the C program of
Figure 1(a). Its first two conditional statements are nondeterministic, denoted
by placing an asterisk in the condition position. The property we would like
to check is whether the program can reach the abort statement. The initial
values of variables x, y, z are 5, 8, 20, respectively. Suppose the first executed
path is π = 〈0, 1, 2, 5, 6, 7, 10, 13〉. Executing the program along this path avoids
the abort statement and ends with the halt statement. After executing this
path, the existing dynamic execution based model checkers will backtrack to
Line 6 and explore the else-branch in the next execution. Since there are two
nondeterministic choices in the program, four executions are required to prove
that it cannot be aborted.

This is where DPR can be applied. Analyzing the execution trace π allows us
to learn that the assignments x = 5 and x = 2*x falsify the predicate x>10 which
forces the third conditional to choose its else-branch. We also learn that none
of the assignments within the branches of the nondeterministic conditionals can
make the predicate true. This allows us to prune all the remaining paths from
the search space. A DPR-based model checker would therefore stop after the
first execution and report that abort is not reachable.

The rest of the paper is organized as follows. Section 2 presents our execution-
based, bounded model-checking algorithm with dynamic path reduction. Sec-
tion 3 discusses our space-efficient, symbolic representation of execution paths.
Section 4 contains our experimental results, while Section 5 considers related
work. Section 6 offers our concluding remarks and directions for future work.

2 DPR-Based Model Checking Algorithm

In this section, we present DPR-MC, our bounded model-checking algorithm with
dynamic path reduction. Our presentation is carried out in stages, starting with



324 Z. Yang et al.

foo( ) {
0 x=5,y=8,z=20;
1 if (*)
2 y = y-1;
3 else
4 y = y+1;
5 x = 2*x;
6 if (*)
7 z = z-1;
8 else
9 z = z+1;
10 if (x>10)
11 abort;
12 else
13 halt;
}

foo SSA( ){
0 x1=5,y1=8,z1=20;
1 if (*)
2 y2 = y1-1;
3 else
4 y3 = y1+1;
5 y4 = ϕ(y2,y3);
6 x2 = 2*x1;
7 if (*)
8 z2 = z1-1;
9 else
10 z3 = z1+1;
11 z4 = ϕ(z2,z3);
12 if (x2 >10)
13 abort;
14 else
15 halt;
}

y2=y1-1 y3=y1+1

y4=ϕ(y2,y3)

x2=2*x1

z2=z1-1 z3=z1+1

z4=ϕ(z2,z3)

haltabort

T E

T

T

E

E

x2>10

x1=5,y1=8,z1=20

Fig. 1. A sample C program (left), its SSA form (middle), and SSA graph representa-
tion (right)

a simplified but transparent version of the algorithm, and with each stage incre-
mentally improving the algorithm’s performance. The model-checking algorithm
we propose is tunable to run either as a randomized Las Vegas algorithm or as
a guided-search algorithm.

As defined formally below, a k-oracle is a bit string of length k representing
a sequence of nondeterministic choices a program might make during execution.
Suppose we want to perform bounded model checking on a program up to search
depth D, such that within this D-bounded search space, each execution path
contains at most k nondeterministic choices. In this case, the DPR-MC algorithm
repeats the following three steps until the entire D-bounded search space has
been explored: (1) Ask a constraint solver to provide a k-oracle. (2) Execute
the program on that oracle; stop if an abort statement is reached. (3) Use a
constraint solver to prune from the search space all paths that are equivalent to
the one just executed.

2.1 Global Search Algorithm

The core language we use for analysis is a subset of C, extended with one statement
type not present in C: nondeterministic conditionals. To simplify the analysis un-
dertaken by DPR-MC, we use the static single assignment (SSA) representation of
programs. For example, the SSA representation of the C program of Figure 1 (left)
is shown in Figure 1 (middle). By indexing (versioning) variables and introducing
the so-called ϕ function at join points, this intermediate representation ensures
that each variable is statically assigned only once. We leverage the SSA represen-
tation to interface with the satisfiability modulo theory (SMT) solver Yices [4]. In
this context, every statement (excepting statements within loops) can be conve-
niently represented as a predicate. Looping statements are handled by unfolding



Dynamic Path Reduction for Software Model Checking 325

them up so that every execution path has at most k nondeterministic choices; i.e., a
k-oracle is used to resolve the choices. We refer to the SSA representation obtained
after such a k-unfolding as the dynamic single assignment (DSA) representation.

Suppose the program C to be analyzed has at most k nondeterministic con-
ditionals on every execution path. We call a resolution of these k conditionals
a k-oracle. Obviously, each k-oracle uniquely determines a finite concrete exe-
cution path of C. Let R be the set of all k-oracles (resolvents) of C. R can be
organized as a decision tree whose paths are k-oracles.

Algorithm 1. DPR-MC(Program C, int k)

1: R = all k-oracles in C;
2: while R �= ∅ do
3: Remove an oracle R = 〈r1r2 . . . rk〉 from R;
4: ExecuteFollowOracle(R,R, k);
5: end while
6: exit(“No bug found up to oracle-depth k”);

Algorithm 1 is the main loop of our DPR-MC algorithm. It repeatedly removes a
k-oracle R from R and executes C as guided by R. The algorithm terminates
if: (1) execution reaches abort within ExecuteFollowOracle, indicating that a
bug is found; or (2) R becomes empty after all oracles have been explored, in
which case the program is bug-free to oracle-depth k.

Note that Algorithm 1 employs a global search strategy. If the oracle removal
is random, it corresponds to a randomized Las Vegas algorithm. If the oracle
removal is heuristic, it corresponds to a guided-search algorithm. Obviously, the
number of oracles is exponential in the depth k of the decision tree R. Hence,
the algorithm is unlikely to work for nontrivial programs. We subsequently shall
show how to efficiently store the decision tree and how to prune oracles by
learning from previous executions.

2.2 Weakest Precondition Computation

An execution path π = 〈s1, s2, . . . , sn〉 is a sequence of program statements,
where each si is either an assignment or a conditional. We write cT and cE

for the then and else branches respectively of a conditional statement c. For
brevity, we sometimes refer to an execution path simply as a “path”.

Definition 1. Let x be a variable, e an expression, c a Boolean expression, P
a predicate, and P [e/x] the simultaneous substitution of x with e in P . The
weakest precondition wp(π,P) of π with respect to P is defined inductively as
follows:

Assignment: wp(x= e,P) = P[e/x].
Conditional: wp(if(c)T,P) = P∧ c; wp(if(c)E,P) = P ∧ ¬c.
Nondeterminism: wp(if(*)T,P) = wp(if(*)E,P) = P .
Sequence: wp(s1; s2,P) = wp(s1, wp(s2, P)).



326 Z. Yang et al.

Given an execution path π = 〈s1, s2, . . . , sn〉, we use πi = si to denote the
i-th statement of π, and πi,j = si, . . . , sj to denote the segment of π between
i and j. Assume now that πn, the last statement of π, is either cT or cE . If
πn = cT , then it is impossible for any execution path with prefix π1,n−1 to take
the else-branch at πn. That is, any execution path that has ρ as a prefix, where
ρi = πi(1 ≤ i < n) and ρn �= πn, is infeasible. Because of this, we say that ρ is
an infeasible sub-path.

Let ρ be an infeasible sub-path of length n where ρn is a conditional c. We use
wp(ρ) to denote wp(ρ1,n−1, c), and wp(ρ) = false as ρ is infeasible. According
to Definition 1, assuming that ρ contains t < n conditionals in addition to c, we
have:

wp(ρ) = c′ ∧ (c′1 ∧ c′2 . . . ∧ c′t) = false

where c′ is ρn transformed through transitive variable substitutions, and simi-
larly each c′l is a transformed deterministic predicate in sl: (cl)T/E (1 ≤ l ≤ t).
More formally, given a formula F , we use F ′ to denote the formula in wp that is
transformed from F . The definition is transitive in that both F ′ = F (e/v) and
F ′(e2/v2) are transformed formulae from F .

2.3 Learning From Infeasible Sub-paths

Upon encountering a new execution path, the DPR-MC algorithm collects informa-
tion about infeasible sub-paths at deterministic predicates by using the weakest
precondition computation presented in the previous section. We now analyze the
reasons behind the infeasibility of such paths in order to provide useful informa-
tion for pruning unexplored execution paths.

Since wp(ρ) is unsatisfiable, there must exist an unsatisfiable subformula
wpus(ρ) that consists of a subset of clauses {c′, c′1, c′2 . . . , c′t}.

Definition 2. Aminimallyunsatisfiable subformulaofwp(ρ), denotedbymus(ρ),
is a subformula of wp(ρ) that becomes satisfiable whenever any of its clauses is re-
moved. A smallest cardinality MUS of wp(ρ), denoted by smus(ρ), is an MUS such
that for all mus(ρ), |smus(ρ)| ≤ |mus(ρ)|.

In general, any unexplored paths that contain mus(ρ) are infeasible and can be
pruned. wp(ρ) can have one or more MUSes; as a matter of succinctness, we
keep track of smus(ρ) for pruning purposes.

Next, we need to identify which statements are responsible for ρ’s infeasibility
and thus smus(ρ).

Definition 3. A transforming statement of a predicate c is an assignment state-
ment s: v = e such that variable v appears in the transitive support of c.

For example, the statement s1:x = y+1 is a transforming statement of the con-
dition c : (x > 0), since wp(s1, c) produces c′ : (y + 1 > 0). During weakest
precondition computations, only assignment statements can transform an ex-
isting conjunct c into a new conjunct c′. Branching statements can only add
new conjuncts to the existing formulae, but cannot transform them. Given an



Dynamic Path Reduction for Software Model Checking 327

execution path πi,j = si, . . . , sj , we use ts(πi,j , c) ⊆ {si, . . . , sj} to denote the
transforming statements for c.

Definition 4. We define the explanation of the infeasibility of ρ to be the set
of transforming statements explain(ρ) = {s | s ∈ ts(ρ, smus(ρ))}.

2.4 Pruning Unexplored Paths

In this section we use examples to illustrate how to prune the path search space
based on information obtained after learning.

The SSA form of the program of Figure 1 is represented graphically to its
right. Assume the first explored execution π (highlighted in the figure) takes the
then-branches at the two nondeterministic if statements. We would like to learn
from π to prune unexplored paths. In the example, π = 〈x1 = 5, y1 = 8, z1 =
20, ∗, y2 = y1 − 1, y4 = y2, x2 = 2x1, ∗, z2 = z1 − 1, z4 = z2,¬(x2 > 10), halt〉,
which implies the infeasible sub-path ρ = 〈x1 = 5, y1 = 8, z1 = 20, ∗, y2 = y1 −
1, y4 = y2, x2 = 2x1, ∗, z2 = z1 − 1, z4 = z2, x2 > 10〉. According to Definition 1,
we have:

wp(ρ) = (x1 = 5) ∧ (y1 = 8) ∧ (z1 = 20) ∧ (true) ∧ (true) ∧ (2x1 > 10) = false

The first three conjuncts come from the initial variable assignments and the
next two (true) come from the nondeterministic conditionals. The last conjunct
2x1 > 10 is due to the deterministic conditional x2 > 10 and the assignment
x2 = 2x1. A decision procedure can decide smus(ρ) = (2x1 > 10) ∧ (x1 = 5).
The explanation for ρ’s infeasibility is explain(ρ) = {x1 = 5, x2 = 2 ∗ x1}.
Therefore, we learned that any path containing these two assignments will not
satisfy x2 > 10; that is, any execution that contains explain(ρ) can only take
the else-branch to the conditional x2 > 10. Since all the four possible paths
contain explain(ρ), none can reach the abort statement, which requires a path
through the then-branch of the conditional x2 > 10. Therefore, with DPR, a
proof is obtained after only one execution.

A question that naturally arises from the example is what happens if a variable
assigned in explain(ρ) is subsequently reassigned? The answer is that if a variable
is reassigned at si, then si will be included in explain(ρ) if it is considered part
of the explanation to ρ’s infeasibility. For example, consider the program foo2
which is the same as program foo of Figure 1 except for an additional assignment
x = x + 1. The SSA form of foo2 and its graphical representation is shown in
Figure 2. Due to the new assignment x = x + 1 on Line 11, we need to add
x4 = ϕ(x2, x3) on Line 12 to decide which version of x to use on Line 14.
Assume the first execution, as highlighted in Figure 2, is π2 = 〈0 : x1 = 5, y1 =
8, z1 = 20, 1T : ∗, 2 : y2 = y1 − 1, 5 : y4 = y2, 6 : x2 = 2x1, 7T : ∗, 8 : z2 =
z1 − 1, 12 : x4 = x2, 13 : z4 = z2, 14E : ¬(x4 > 10), 15 : halt〉. From this, we
can infer the infeasible execution segment ρ2 = 〈0 : x1 = 5, y1 = 8, z1 = 20, 1T :
∗, 2 : y2 = y1 − 1, 5 : y4 = y2, 6 : x2 = 2x1, 7T : ∗, 8 : z2 = z1 − 1, 12 : x4 =
x2, 13 : z4 = z2, 14T : x4 > 10〉. Based on an analysis similar to that used in the
previous example, we have:

wp(ρ2) = ((x1 = 5)∧ (y1 = 8)∧ (z1 = 20)∧ (true)∧ (true)∧ (2x1 > 10)) = false



328 Z. Yang et al.

foo2 SSA( ){
0 x1=5,y1=8,z1=20;
1 if (*)
2 y2 = y1-1;
3 else
4 y3 = y1+1;
5 y4 = ϕ(y2,y3);
6 x2 = 2*x1;
7 if (*)
8 z2 = z1-1;
9 else
10 z3 = z1+1;
11 x3= x2+1;
12 x4 = ϕ(x2,x3);
13 z4 = ϕ(z2,z3);
14 if (x4 >10)
15 abort;
16 else
17 halt;
}

y2=y1-1 y3=y1+1

y4=ϕ(y2,y3)

x2=2*x1

z2=z1-1
z3=z1+1

x4=ϕ(x2,x3)

T E

x2>10

x3=x2+1

z4=ϕ(z2,z3)

y2=y1-1 y3=y1+1

y4=ϕ(y2,y3)

x2=2*x1

z3=z1+1

x4=x3

x2>10

x3=x2+1

z4=z3

x1=5,y1=8,z1=20x1=5,y1=8,z1=20

haltabort

T E

haltabort

T E

T

T
E

E

E

Fig. 2. A C program in SSA form (left), its graphical representation with a highlighted
execution path (middle), and the remaining paths after learning from the highlighted
path

Although it results in the same smus(ρ2) = (2x1 > 10)∧ (x1 = 5) as smus(ρ1),
the explanation to smus(ρ2) is different: explain(ρ2) = {x1 = 5, x2 = 2x1, x4 =
x2}. As a result, we can prune fewer paths than in the previous example of
Figure 1. Figure 2(right) shows the remaining paths after pruning. Both of the
remaining paths take the else-branch at the second nondeterministic if state-
ment, which will go through x4 = x3. They cannot be pruned because neither
path contains the statement x4 = x2 of explain(ρ2).

2.5 Path Reduction Algorithm

Algorithm 2 gives the pseudo-code that our DPR-MC algorithm uses in order to
drive the execution of the program under verification along the path determined
by a given k-oracle R. If the current statement si is an abort statement (Lines
3-4), an execution with a bug is found and the algorithm terminates. If si is a
halt statement (Lines 5-6), the current execution is completed. An assignment is
performed if si is an assignment statement (Lines 7-8). If si is a nondeterministic
conditional (Lines 9-12), the algorithm checks if the threshold k has already been
reached. If not, the algorithm follows the branch specified by oracle R[j] and
increase the value of j by 1; otherwise the algorithm breaks from the loop. If
si is a deterministic conditional c (Lines 13-17), the value of c is computed and
the corresponding branch is taken. Meanwhile, DPR is performed on the branch
not taken, as shown in Algorithm 3, if the taken branch cannot reach the abort
statement. Finally, the completed execution is removed from the unexplored
oracle set (Line 20).



Dynamic Path Reduction for Software Model Checking 329

Algorithm 2. ExecuteFollowOracle(k-Oracle R, Set R, int k)

1: i = j = 0;
2: while true do
3: if si== abort then
4: exit(“report bug trace 〈s1, . . . , si〉”);
5: else if si == halt then
6: break;
7: else if si is an assignment then
8: Perform the assignment;
9: else if si is a nondeterministic conditional then

10: if j == k break;
11: follow oracle R[j];
12: j + +;
13: else if si is deterministic conditional c with value true then
14: LearnToPrune(〈s1, . . . , si−1,¬c〉, R) if then-branch cannot reach abort;
15: else if si is deterministic conditional c with value false then
16: LearnToPrune(〈s1, . . . , si−1, c〉, R) if else-branch cannot reach abort;
17: end if
18: i + +;
19: end while
20: R = R− {R};

The SMT-based learning procedure is given in Algorithm 3. The meaning of,
and reason for, each statement, i.e., weakest-precondition computation, SMUS
and transforming statements, have been explained in previous sections.

Algorithm 3. LearnToPrune(InfeasibleSubPath ρ, Set R)

1: w = wp(ρ); // Perform weakest precondition computation
2: s = smus(w) // Compute smallest cardinality MUS
3: e = explain(s); // Obtain transforming statements
4: R = prune(R, e); //Remove all oracles in R that define paths containing e

3 Implicit Oracle Enumeration Using SAT

One problem with Algorithm 1 is the need to save in R all k-oracles when model
checking commences, the number of which can be exponential in k. In order to
avoid this complexity, we show how Boolean formulae can be used to symbolically
represent k-oracles.

Our discussion of the symbolic representation of k-oracles will be centered
around loop-unrolled control flow graphs (CFGs), which can be viewed as di-
rected acyclic graphs whose nodes are program statements and whose edges
represent the control flow among statements. We shall assume that every loop-
unrolled CFG has a distinguished root node. The statement depth of a loop-
unrolled CFG is the maximum number of statements along any complete path



330 Z. Yang et al.

2

1

3 4

5 6

8 9

13

10

15

20

14

18 19

22

26

12

7

11

1716

21

b1

b2

b3

b4

24 25

23

Fig. 3. An example control flow graph

from the root. The oracle depth of a loop-unrolled CFG is the maximum number
of nondeterministic conditional nodes along any complete path from the root.

Figure 3 depicts a typical loop-unrolled CFG, where each node in the CFG has a
unique index. Diamond-shaped nodes correspond to nondeterministic condition-
als and rectangles are used for other statement types. The statement depth of this
CFG is 10. As for its oracle depth, there are 7 nondeterministic conditionals di-
vided into 4 levels (indicated by dotted lines); i.e., its oracle depth is 4.

To encode the choice made along a particular execution path at each level,
we introduce the Boolean variables b1, b2, b3 and b4, with positive literal bi indi-
cating the then-branch and negative literal ¬bi indicating the else-branch. For
example, path 〈1, 2, 4, 6, 9, 13, 19, 22, 25, 26〉 is captured by ¬b1 ∧ b2 ∧ b3 ∧ ¬b4.

In general, a loop-unrolled CFG will have k levels of nondeterministic condi-
tionals, and we will use k-oracles to explore its path space, with each k-oracle
represented as a bit vector of the form R = 〈b1, b2, . . . , bk〉. As such, the valua-
tion of Boolean variable bi indicates an oracle’s choice along an execution path
at level i, and we call bi an oracle choice variable (OCV). Such considerations
lead to a symbolic implementation of the oracle space in which we use Boolean
formulae over bi(1 ≤ i ≤ k) to encode k-oracles. For example, the Boolean
formula b1b2b3b4 + ¬b1b2¬b3 encodes two paths through the CFG of Figure 3:
〈1, 2, 3, 5, 7, 11, 16, 21, 24, 26〉 and 〈1, 2, 4, 6, 9, 14, 22, 25, 26〉. In order to use mod-
ern SAT solvers, we maintain such Boolean formulae in conjunctive normal form
(CNF).

Algorithm 4 presents a SAT-based implementation of Algorithm 1. It main-
tains a CNF B over k OCVs {b1, b2, . . . , bk}. Initially, B is a tautology; the while-
loop continues until B becomes unsatisfiable. Inside the while-loop, we first use
a SAT solver to find a k-oracle that is a solution of B, and then perform the
program execution determined by the oracle. Algorithm 4 is essentially the same
as Algorithm 1 except that: 1) oracle R and set R are represented symbolically
by b̂ and B, respectively; and 2) function calls to LearnToPrune (in algorithm
ExecuteFollowOracle) are replaced by function calls to SATLearnToPrune,
whose pseudo-code is given in Algorithm 5.



Dynamic Path Reduction for Software Model Checking 331

Algorithm 4. DPR-SATMC(Program C, int k)

1: Let bi(1 ≤ i ≤ k) be k OCV variables, where k is C’s oracle depth;
2: CNF B = true;
3: while B is satisfiable do
4: Obtain a k-oracle b̂ = 〈̂b1b̂2 . . . b̂k〉 which is a solution of B;
5: ExecuteFollowOracle(̂b,B, k);
6: end while
7: exit(“No bug found up to oracle-depth k”);

Let s be an assignment statement in an infeasible sub-path ρ. We define
OCVs to be the conjunction of those signed (positive or negative) OCVs within
whose scope s falls. Also, given ρ’s set of transforming statements explain(ρ) =
{s1, . . . , st}, OCV (explain(ρ)) = ∧t

i=1OCVsi . Note that OCV (ρ) �= false as all
statements in explain(ρ) are along a single path. Further note that explain(ρ)
and OCV (explain(ρ)) can be simultaneously computed with one traversal of ρ:
if a transforming statement s in explain(ρ) is within the scope of a nondeter-
ministic conditional, then the conditional’s associated OCV variable is in OCVs.

To illustrate these concepts, assume explain(ρ) = {1, 4, 22} in the loop-
unrolled CFG of Figure 3. Since node 1 can be reached from root node without
going through any conditional branches, OCV1 = true. Node 4 on the other hand
is within the scope of the else-branch of nondeterministic conditional node 2
and thus OCV4 = ¬b1. Similarly, OCV22 = ¬b1b2. Notice that the scopes of b3
and b4 close prior to node 22 and are therefore not included in OCV22. Finally,
OCV (ρ) = OCV1 ∧ OCV4 ∧ OCV22 = ¬b1b2.

Algorithm 5 is our SAT-based implementation of Algorithm 3. OCV (e) de-
termines the set of paths containing all statements in explain(ρ), and thus all
paths that can be pruned. Let OCV (e) = l1 ∧ l2 ∧ . . . ∧ lm, where li is a literal
denoting bi or ¬bi. Adding ¬OCV (e) = ¬l1∨¬l2∨ . . .∨¬lm to the CNF formula
B will prevent the SAT solver from returning any solution (k-oracle) that has
been pruned. We refer to ¬OCV (e) as a conflict clause.

Algorithm 5. SATLearnToPrune(InfeasibleSubPath ρ, CNF B)

1: w = wp(ρ); // Perform weakest precondition computation
2: s = smus(w); // Compute smallest cardinality MUS
3: e = explain(s); // Obtain transforming statements
4: b = OCV (e); //Obtain OCV on which e depends
5: let b = l1 ∧ l2 ∧ . . . ∧ lm where li is a literal for bi or ¬bi;
6: B = B ∧ (¬l1 ∨ ¬l2 ∨ . . . ∨ ¬lm);

Note that the added conflict clause may prune multiple oracles, including the
one just executed. Further note that when exploring a path by virtue of a given
k-oracle, not all OCVs may be executed. For example, if the k-oracle in question
is b1¬b2b3b4 in Figure 3, the actual execution path terminates after ¬b2. In this
case, the added conflict clause is (¬b1 ∨ b2) instead of (¬b1 ∨ b2 ∨ ¬b3 ∨ ¬b4).



332 Z. Yang et al.

To further illustrate Algorithms 4 and 5, consider once again the program
of Figure 1. Suppose that the first path π1 to be explored is the highlighted
one in the figure. In this case, the infeasible sub-path ρ1 to be considered is the
same as π1 except that the then-branch of the final deterministic conditional is
taken leading to the abort statement. We then have that smus(ρ1) = (2x1 >
10) ∧ (x1 = 5) and the explanation for ρ1’s infeasibility is explain(ρ1) = {x1 =
5, x2 = 2 ∗ x1}. Moreover, OCV (e1) = true as neither of the statements in
e1 = explain(ρ) are in the scope of a nondeterministic conditional. The resulting
conflict clause is false and adding (conjoining) it to B renders B unsatisfiable;
i.e., all remaining paths can be pruned.

Consider next the program of Figure 2 and its highlighted execution π2. As
explained in Section 2, smus(ρ2) = smus(ρ1), where ρ2 is the infeasible sub-
path corresponding to π2. However, the explanation for smus(ρ2), explain(ρ2) =
{x1 = 5, x2 = 2x1, x4 = x2}, is different. Furthermore, OCV (e2) = b2, where
e2 = explain(ρ2), since the assignment x4 = x2 is within the scope of the then-
branch of the second nondeterministic conditional. We thus add conflict clause
¬b2 to B, which results in the two remaining paths after pruning illustrated in
Figure 2(right), both of which take the else-branch at the second nondetermin-
istic conditional.

Theorem 1. (Soundness and Completeness). Let C be a CFG that is loop-
unrolled to statement depth D, and let φ be a safety property, the violation of
which is represented by an abort statement in C. Then algorithm DPR-MC re-
ports that the abort statement is reachable if and only if C violates φ within
statement depth D.

Proof.

– Soundness: Algorithm DPR-MC reports a counterexample only when a state-
ment in C that violates φ is reached within depth D. Since procedure
ExecuteFollowOracle, which is used to follow the path of the counterex-
ample, is precise, the reported counterexample is an acutal counterexample
in C.

– Completeness: Algorithm DPR-MC starts from a set P containing all paths
in C up to depth D. A path is removed from P only if it has been executed
or shown by the learning procedure not to violate ϕ. The fact that DPR-MC
terminates without counterexamples only if P becomes empty proves that if
C �|= φ within depth D, a counterexample will be reported. In the symbolic
implementation, the completeness of DPR-MC also relies on the completeness
of SAT solvers. That is, the SAT solver declares unsatisfiability only if the
CNF instance has no solutions.

4 Experimental Evaluation

In order to assess the effectiveness of the DPR technique in the context of
bounded model checking, we conducted several case studies involving well-known
randomized algorithms. All results were obtained on a PC with a 3 GHz Intel



Dynamic Path Reduction for Software Model Checking 333

Table 1. Bounded model checking with DPR of Randomized MAX-3SAT

vars clauses paths explored pruned time w DPR(s) time w/o DPR(s)
9 349 512 44 468 5.44 3.86

10 488 1024 264 760 13.77 7.61
11 660 2048 140 1908 9.67 15.58
12 867 4096 261 3835 14.53 30.59
13 1114 8192 1038 7154 49.61 70.10
14 1404 16384 965 15419 54.05 150.32
15 1740 32768 337 32431 25.58 300.80
16 2125 65536 2369 63167 49.32 Timeout
17 2564 131072 2024 129048 184.91 Timeout
18 3060 262144 1344 260800 175.34 Timeout
19 3615 524288 669 523619 110.14 Timeout

Duo-Core processor with 4 GB of RAM running Fedora Core 7. We set a time
limit of 500 seconds for each program execution.

In the first case study, we implemented a randomized algorithm for the MAX-
3SAT problem. Given a 3-CNF formula (i.e., with at most 3 variables per clause),
MAX-3SAT finds an assignment that satisfies the largest number of clauses. Ob-
taining an exact solution to MAX-3SAT is NP-hard. A randomized approxima-
tion algorithm independently sets each variable to 1 with probability 0.5 and
to 0 with probability 0.5, and the number of satisfied clauses is then determined.
In our implementation, we inserted an unreachable abort statement; as such,
all paths have to be explored to prove the absence of any reachable abort state-
ment. Table 1 presents our experimental results for the randomized MAX-3SAT
algorithm. Each row of the table contains the data for a randomly generated
CNF instance, with Columns 1 and 2 listing the number of variables and clauses
in the instance, respectively. Columns 3-5 respectively show the total number of
execution paths, the number explored paths, and the number of pruned paths,
with the sum of the latter two equal to the former. Finally, Columns 6-7 present
the run time with DPR and the run time of executing all paths without DPR.
From these results, we can observe that DPR is able to prune a significant num-
ber of the possible execution paths. Furthermore, the larger the CNF instance,
the more effective dynamic path reduction is.

Table 2. Bounded model checking with DPR of NFA for floating-point expressions

Benchmark With DPR Without DPR
length valid paths explored pruned time(s) explored time(s)

13 yes 8192 22 8166 0.707 2741 0.085
14 yes 16384 28 16356 0.845 10963 0.144
18 yes 262144 39 262105 2.312 175403 7.285
20 yes 1048576 29 1048542 4.183 350806 6.699
21 yes 2097152 26 2097097 4.202 175403 4.339
11 no 2048 15 2033 1.69 2048 10.027
13 no 4096 13 4083 0.52 4096 16.607
14 no 16384 8 16376 0.84 16384 53.358
20 no 1048576 28 1048548 3.32 - Timeout



334 Z. Yang et al.

In our second case study, we implemented an algorithm that uses a Nondeter-
ministic Finite Automaton (NFA) to recognize regular expressions for floating-
point values of the form [+]?[0 − 9] + \.[0 − 9]+. We encoded the accept state
as an abort statement and verified whether it is reachable. Table 2 contains our
experimental results on nine input sentences, among which five are valid floating-
point expressions and four are not. Columns 1 and 2 give the length of the input
and whether or not it is accepted by the NFA. Column 3 lists the total number
of execution paths Columns 4-6 contain the results using DPR, i.e. the number
explored paths, the number of pruned paths and the run time. Columns 7 and 8
list the number of explored paths and run time without DPR. Note that in the
case of a valid floating-point expression, the number of explored paths without
DPR may not be the same as the number of total paths since the accept state is
reached before exploring the remaining paths. As in the MAX-3SAT case study,
we can again observe a very high percentage of pruned paths, a percentage that
grows with the instance size.

5 Related Work

With dynamic path reduction, we perform symbolic analysis on program
executions in order to learn and subsequently prune infeasible executions. Con-
colic testing and related approaches [7,2,9] also uses symbolic analysis of pro-
gram executions—in conjunction with random testing—to generate new test
inputs that can systematically direct program execution along alternative pro-
gram paths. While these approaches can handle nondeterminism by introducing
a Boolean input variable for each nondeterministic choice, they do not attempt
to learn and prune infeasible paths. In fact, these testing procedures generate
all possible paths and, for each such path, pass to a constraint solver the rele-
vant constraints to determine the path’s feasibility. Consequently, DPR can be
beneficially used to reduce the path space these procedures explore.

The optimizations realized by DPR are similar to those achieved by perform-
ing bounded model checking (BMC) with a SAT/SMT solver [8]. There are, how-
ever, significant differences between the two approaches. First, DPR is based on
dynamic path execution whereas BMC is a form of abstraction-based software
model checking. Consequently, BMC, unlike DPR, may miss subtle implemen-
tation errors and may not able to provide partial results. Second, the manner in
which DPR and BMC utilize constraint solvers is different. BMC converts the
complete program model (up to a predefined bound) to a SAT formula and relies
on a constraint solver to check its satisfiability; DPR uses a constraint solver to
analyze a single infeasible path. The memory consumption in DPR is therefore
much less demanding than in BMC. Finally, BMC relies on nonchronological
backtracking (NCB) [12], a feature of modern SAT/SMT solvers, to achieve
pruning. NCB avoids redundant search by flipping the most recent open deci-
sion contributing to a conflict. Therefore, the learning that occurs in BMC takes
place post-conflict. On the other hand, DPR starts from a particular path that
ends with condition c, and learns, before any conflict happens, from the fact that
the path that ends with not c is not taken. Therefore, DPR pre-computes the



Dynamic Path Reduction for Software Model Checking 335

paths to explore, which is made possible by the knowledge of control and data
flow information at the programming language level.

Similar to fault localization [14], DPR uses weakest-precondition and
minimally-unsatisfiable-core computations to identity interesting (transforming)
statements along an execution path. Program slicing also attempts to identify
interesting program statements. Due to the imprecision of static dependence
graphs, dynamic slicing algorithms [17] have been proposed to build more accu-
rate dynamic dependence graphs, which lead to more precise results. However,
even though the dependence graphs capture the dependence relation among
statements, it contains no information about values and therefore cannot offer
precise answer to questions involving values. For example, given an execution
path π = 〈x = 10; y = x; w = 0; w = w ∗ y; assert(w! = 0); 〉, dynamic program
slicing will determine that all the statements are responsible for the assertion
failure. On the other hand, DPR will only pick w = 0 and w = w ∗ y as the
reason for the assertion failure.

6 Conclusions

We have presented the new technique of dynamic path reduction (DPR) for
software model checking. SMT-based learning techniques allow DPR to prune
infeasible execution paths while model checking sequential software systems
with nondeterministic conditionals. Our approach uses weakest-precondition and
minimally-unsatisfiable-core computations to reveal the interesting (transform-
ing) statements behind infeasible sub-paths. By determining the oracle control
variables associated with these statements, unexplored paths containing the same
unsatisfiable core can be efficiently and dynamically pruned. Our preliminary ex-
perimental results show that DPR can prune a significant percentage of execution
paths, a percentage that grows with the instance size.

The language we currently handle is a subset of C allowing only one pro-
cedure and assignments, loops and (and possibly nondeterministic) conditional
statements. There are no constraints placed on conditionals, but the constraint
solver is able to handle linear constraints only. While we can analyze certain
applications, future work will seek to extend the DPR technique to more general
programs, including those with input statements.

References

1. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: SIGPLAN Conference on Programming Language
Design and Implementation, pp. 203–213 (2001)

2. Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., Engler, D.: EXE: automatically
generating inputs of death. In: ACM conference on Computer and communications
security (CCS) (2006)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)



336 Z. Yang et al.

4. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

5. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996)

6. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL 1997: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 174–186. ACM Press, New York (1997)

7. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random test-
ing. In: ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI) (2005)

8. Ivancic, F., Yang, Z., Ganai, M., Gupta, A., Ashar, P.: Efficient sat-based bounded
model checking for software verification. Theoretical Computer Science 404(3)
(2008)

9. Majumdar, R., Sen, K.: Hybrid concolic testing. In: International Conference on
Software Engineering (ICSE) (2007)

10. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston
(1994)

11. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993)

12. Silva, J.P.M., Sakallah, K.A.: GRASP—a new search algorithm for satisfiability.
In: ICCAD 1996: Proceedings of the 1996 IEEE/ACM international conference on
Computer-aided design, pp. 220–227 (1996)

13. Valmari, A.: Stubborn sets for reduced state generation. In: Rozenberg, G. (ed.)
APN 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

14. Wang, C., Yang, Z.-J., Ivančić, F., Gupta, A.: Whodunit? Causal analysis for
counterexamples. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218,
pp. 82–95. Springer, Heidelberg (2006)

15. Wang, C., Yang, Z., Ivancic, F., Gupta, A.: Disjunctive image computation for
software verfication. ACM Transactions on Design Automation of Electronic Sys-
tems 12(2) (2007)

16. Yang, Z., Wang, C., Gupta, A., Ivancic, F.: Model checking sequential software pro-
grams via mixed symbolic analysis. In: ACM Transactions on Design Automation
of Electronic Systems (TODAES) (to appear)

17. Zhang, X., Gupta, R., Zhang, Y.: Precise dynamic slicing algorithms. In:
IEEE/ACM International Conference on Software Engineering, pp. 319–329 (2003)



Automatic Generation of Error Messages for the
Symbolic Execution of EB3 Process Expressions

Jérémy Milhau, Benoı̂t Fraikin, and Marc Frappier

Université de Sherbrooke, Département d’Informatique
2500 Boulevard Université, Sherbrooke, Québec, Canada, J1K 2R1

{Jeremy.Milhau,Benoit.Fraikin,Marc.Frappier}@USherbrooke.ca

Abstract. This paper describes an algorithm to automatically generate error mes-
sages for events refused by a process expression. It can be used in the context of an
information system specified with the EB3 method. In this method, a process ex-
pression is used to describe the valid traces of events that the information system
must accept. If a user submits an event which is rejected by this process expres-
sion, our algorithm produces an error message explaining why the event has been
rejected; it also suggests which event should be submitted in order to correct the
error.

1 Introduction

Information systems (IS) are commonly used nowadays in organizations, but their de-
velopment is expensive and requires a long-term vision for their integration. With the
aim of reducing cost and time needed to develop such systems, the Automated Produc-
tion of Information Systems (APIS) project [1] was launched to provide an efficient way
to generate ISs from formal specifications. As part of the APIS project, the Entity-Based
Black-Box method (EB3) [2,3] provides mechanisms to write formal specifications that
describe the input-output behavior of the IS. A specification includes a process expres-
sion (PE) that describes the valid traces of input events that the IS must accept.

Fraikin and Frappier have shown that a PE can be efficiently executed by the EB3

Process Algebra Interpreter (EB3PAI) [4], the core of the generated IS. If, for one reason
or another, the user input, which is called the query henceforth, does not comply with
the specification, EB3PAI rejects it and preserves the state of the IS.

In such a case, an error message [5] must be issued to report to the user that his query
is not valid, and explain why and how he can modify his query to comply with the IS
specification. In a traditional implementation of an IS, error messages are determined
and implemented by a programmer. Since EB3PAI uses symbolic execution based on the
operational semantics of the EB3 process algebra, the state of the system is represented
by the abstract syntax tree (AST) of the PE. Hence, we can not manually determine
the error message to produce when an event is rejected. Consequently, we have derived
an algorithm that produces an error message through an analysis of the AST of the PE.
This problem is somewhat similar to the generation of error messages within a compiler
(e.g. a Java compiler). The PE of the IS specification corresponds to the programming
language addressed by the compiler (e.g., Java for a Java compiler). The user inputs

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 337–351, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



338 J. Milhau, B. Fraikin, and M. Frappier

correspond to the program text (i.e. the Java program submitted to the Java compiler).
An invalid event corresponds to a syntax error in the program text. However, there are
major differences: a compiler is built for a specific programming language (e.g. Java);
EB3PAI must be able to execute any PE. Since a compiler is built for a single language,
the compiler designer can exploit the syntax of the language to determine the error mes-
sage. Error message generation in a compiler is an art that the compiler designer must
master [6]. In our case, we must devise a generic algorithm, which works for any PE.

2 Background

The EB3 process algebra is similar to several other process algebra like CSP [7], CCS,
ACP and Lotos. We shall briefly introduce it here; the reader is referred to [2] for a
complete description. An elementary PE is either an internal action λ, which plays the
same role as ε in regular expressions, or an action a( t1, . . . , tn ), where a is an action la-
bel and ti denotes a constant or a variable. Compound PEs are built using the following
operators: E1 
E2 (sequence, also called concatenation), E1 | E2 (choice), E1

∗ (Kleene
closure of E1), E1|[∆]|E2 (synchronization over the set ∆) and p =⇒ E (guard p over
the PE E). A quantified version of the choice | and the synchronization |[∆]| can also
be used. Other operators are built from these operators: E1 �E2 (interleaving operator)
which is defined as E1|[∅]|E2, and E1 ‖ E2 (parallel operator) defined as E1|[∆]|E2
where ∆ is the intersection of the alphabets of the operands. The PE ΓE denotes the
application of environment Γ to E; Γ is a substitution ([x1 := y1, . . . xn := yn]) which
denotes the values of variables xi in E.

2.1 Symbolic Execution of EB3 Process Expression

EB3PAI uses symbolic execution based on the operational semantics of the EB3 process
algebra. For instance, the PE a 
(b | c) 
d can execute a and transform into PE (b | c) 
d,
which we note a 
 (b | c) 
 d a−→ (b | c) 
 d; this is called a transition and it is computed
by EB3PAI from the inference rules of the operational semantics. PE are represented by
their AST in EB3PAI.

2.2 A Specification

A simple example of IS specification is the library. The library can acquire and discard
books, and members can join or leave membership of the library. If a member wants
to borrow a book, he must first reserve it if the book is already borrowed. A member
can then renew its loans and return a borrowed book. The first person on the reservation
list can borrow the book when the previous borrower returned it and anyone can cancel
its reservation at anytime. Some statistics such as the current borrower of a book, the
number of loans for a member and a list of all borrowers by category can be generated.

The specification of Fig. 1 describes the behavior of an IS which aims to monitor
a library for both members and books. This specification follows commonly used pat-
terns [2] for entities (book and member) and relationships (loan and reservation).

This specification describes the life cycle of members and books that are then put
in parallel execution. The process member describes a member whose key is mId.



Automatic Generation of Error Messages for the Symbolic Execution of EB3 PEs 339

main = ( � bId ∈ BOOKID : book ( bId )∗ )
‖ ( �mId ∈ MEMBERID : member ( mId )∗ )
‖ DisplayBorrowerByCategory( )∗

book ( bId : BOOKID ) = Acquire( bId, )

 ( (|mId ∈ MEMBERID : loan ( mId, bId ))∗

‖ ( � mId ∈ MEMBERID : reservation ( mId, bId )∗)
‖ DisplayCurrentBorrower( bId )∗

)

 Discard( bId )

member ( mId : MEMBERID ) = Join( mId )

 ( ( � bId ∈ BOOKID : loan ( mId, bId )∗ )

‖ ( � bId ∈ BOOKID : reservation ( mId, bId )∗)
‖ DisplayNumberOfLoans( mId )∗

)

 Leave( mId )

loan ( mId : MEMBERID, bId : BOOKID ) =
( Lend( mId, bId ) | Take( mId, bId ) ) 
 Renew( mId, bId )∗ 
 Return( mId, bId )

reservation ( mId : MEMBERID, bId : BOOKID ) =
Reserve( mId, bId ) 
 ( isF irst(trace, mId, bId) =⇒ Take( mId, bId )

| Cancel( mId, bId ) )

Fig. 1. EB3 PE of a library

By using �mId ∈ MEMBERID : member ( mId )∗, the specification allows multiple
member processes with different mId keys to run simultaneously. The same technique
is used for the book process that allows multiple instances of book with different bId
to run simultaneously.

Both sets of processes run in parallel execution and synchronize over the shared
actions of the loan and the reservation processes. Since one book can not be borrowed
by more than one member at once, the quantification for loan in the book process is
over a choice.

2.3 Error Types

Two categories of errors can be detected: syntax errors and execution errors.

Syntax Errors. Syntax errors are the simplest to detect and manage. They correspond
to a violation of the signature of actions defined in the EB3 specification. For instance,
they include query parameters with improper types, an invalid number of parameters
(i.e. missing or extra parameters), and an invalid action label. The production of error
messages for these cases is trivial and not described in this paper.



340 J. Milhau, B. Fraikin, and M. Frappier

Execution Errors. Execution errors denote syntactically correct queries which can not
be accepted by the current PE. This paper focuses on the generation of error messages
for this kind of errors.

3 Identifying the Cause of an Execution Error

This section describes the algorithm used to identify the cause of an error. Note that the
PE is supposed to be correct; it is the user query which is incorrect. However, we will
speak about the “causes” of an error in the PE, in order to identify why the query is
rejected. The cause of an error is essentially one or several operators in the PE which
can not accept the user query.

For the sake of illustration1, the terminology of police investigation is used to de-
scribe the process of finding of the cause of an execution error. The causes of an error
are referred as guilty operators that are designated among suspect operators. Some op-
erators may also have an alibi that removes them from the suspect list. There are two
classes of alibi: acquired and inherent. An acquired alibi depends upon the context of
execution. It is called an environmental alibi. An inherent alibi is always valid whatever
the crime is, i.e. whatever the context is. Operators with inherent alibis are referred be-
low as permissive operators. The operators that belong to this class will be safe from
the investigation due to their semantics that prove they can not be designated as guilty.

The next algorithm, called main, computes information from the current state of
the IS and the query from the user to deduce a list of guilty operators. It describes the
needed steps of the investigation that lead to a verdict, i.e. a complete error message.
The functions called by main are described in the rest of Sect. 3.

Algorithm 1. main(E, σ)

Description: The main algorithm for the generation and display of error messages.
input E: An EB3 PE that describes the current state of an IS.
input σ: A query from the user refused by E.

main(E, σ)
begin

let V be the list of victims, v = V ictims(E, σ),
let V ′ be the list of victims with no environmental alibi,

V ′ = filter
(
V, λx.noEnvironmentalAlibi(x, E, σ)

)
,

let W be the list of list of witnesses, W = map
(
λx.Witnesses(x, E, σ), V ′),

let S be the list of list of suspects, S = map
(
λx.Suspects(x), W

)
let C be the list of culprits, C = map

(
λx.Culprit(x), S

)
foreach c in C do

display(getV erdictFrom(c, σ, E))
done

end

where map and filter are the classical list operators in functional programming and
getV erdictFrom creates the error message; its algorithm is described in Sect. 4.

1 And also for the fun of it.



Automatic Generation of Error Messages for the Symbolic Execution of EB3 PEs 341

The reader is invited to consult [8] for complete details about the implementation of
this algorithm in Caml.

3.1 Victims

Considering the query entered by the user of the IS, a list of all the potential victims
of the error is made. these are the actions of the PE that share with the query the same
action label. The intuition is that if a PE can execute the query, there must exist a leaf in
the AST that matches this query. If there is no leaf, that matches this query, then it will
never be possible to execute the query. When such a leaf exists, we can start analysing
why it can be executed. From this list are removed actions that do not comply with the
restrictions imposed by the parameters of the query. Indeed, the parameters of the query
may have values that are not compatible with the values of corresponding parameters
in the PE. That is why these actions with environmental alibis are removed from the list
of victims.

Definition 1. Environmental alibi of an action relative to a query
Let σ = a( v1, ..., vn ) be a query. An action ω = a( u1, ..., un ) is said to have an environ-
mental alibi if, after applying the substitutions of the enclosing environments, the pred-
icate

∨n
i=1(¬isV ariable(ui) ∧ (ui �= vi)) is evaluated to TRUE, where isV ariable(x)

returns TRUE if x is a variable.

Alibi Example. Let the following definitions: σ = a( 1, 2 ), E = �x ∈ 1..5 : a( x, 2 ),
F = ([y := 2])

(
� x ∈ 1..5 : a( x, y )

)
and G = ([y := 3])

(
� x ∈ 1..5 : a( x, y )

)
. If

environments are applied as substitutions, then we can rewrite F = �x ∈ 1..5 :
a( x, 2 ) and G = �x ∈ 1..5 : a( x, 3 ). Then E and F are similar. Now the predicate
is applied to the action a( , ) of each PE. For E and F , x is bounded by the � x ∈ 1..5
operator and the second parameter of a equals the second parameter of σ so there is no
environmental alibi for both actions. For G, x is bounded, 2 �= 3 ; hence the action in
G has an environmental alibi.

Definition 2. Victims relative to σ
Let E be a PE and σ a query refused by E. Victims relative to σ are defined as the set
of leaves of E whose label is the same as σ and does not have environmental alibi.

Example. In the library IS described in Fig. 1, if the user tries to execute the action
DisplayNumberOfLoans( John ) where John is a valid id for a member (i.e. John ∈
MEMBERID) but John is not a registered member (i.e. Join( John ) was never executed)
then the system can not execute the query of the user.

Victims relative to DisplayNumberOfLoans( John ) is the list reduced to one leaf:
DisplayNumberOfLoans( John ) in the member process of the initial specification.
Fig. 2 show the position of this leaf in the member process. In this simplified AST
of the member entity, some operators are numbered to help further references. Opera-
tors that will not be referenced are not numbered.



342 J. Milhau, B. Fraikin, and M. Frappier

Join

reservationloan

DisplayNumberOfLoans

Leave

‖

� bId � bId

∗
2

‖ 3


 2


 1

Fig. 2. Simplified AST of member entity in the EB3 specification of the library

3.2 Witnesses

Since the query of the user is refused by the PE, the causes of the error are one or
more operators related to the action. Based on the victims, a list of witness operators is
established. This list contains the list of all operators on the path from a leaf in the list
of the victims to the root of the PE.

Definition 3. Witnesses relative to a victim v
Let E be a PE, σ a query from the user refused by E and v a victim of E relative to σ.
Witnesses relative to a victim v are defined as the list of operators which are parents of
v in E.

Example. The calculus of the witnesses relative of a victim is easy to do with the AST
representation of the PE. Since only one victim was found relative to the query of the
user, only one list of witnesses will be generated by this step.

The list of witnesses relative to the victim of DisplayNumberOfLoans( John ) is: ‖1,
‖2, � mId, ∗

1, 
 1, 
 2, ‖ 3, ∗
2. The first four operators come from the PE of the main

process; they are omitted from Fig. 2 for the sake of concision. The last four come from
the PE of the member process.

3.3 Suspects

To reduce the field of investigation, some operators, which we call permissive, are re-
moved from witnesses. Permissive operators can execute the query if their operands
can. In other words, if the query fails, it is not their fault, but the fault of the operators
occurring in their operands. This is the crux of the permissiveness evaluation described
below. The predicate isPermissive is applied to each witness to evaluate if it can be
removed (TRUE) or considered as suspect (FALSE). The following algorithm is written
using the functional language Caml [9], and uses pattern matching in order to evaluate
the predicate isPermissive.



Automatic Generation of Error Messages for the Symbolic Execution of EB3 PEs 343

Algorithm 2. isPermissive(F, σ, Γ )

Description: Evaluates if an operator must not be considered as suspect.
input F : An AST whose root is the witness operator for which permissiveness is eval-

uated. At least one victim must occur in F .
input σ: A query from the user.
input Γ : The enclosing environment of F .

let isPermissive(F, σ, Γ ) = match F with
E1 | E2 → TRUE

E1
∗ → TRUE

E1 
 E2 → label(σ) ∈ alphabet(E1) ∨ λ-terminate(E1, Γ )
|x ∈ X : E1 → param(σ)[kappaIndice(F, label(σ))] ∈ X
E1|[∆]|E2 → label(σ) /∈ ∆ ∨

(label(σ) ∈ alphabet(E1) ∧ label(σ) ∈ alphabet(E2))
|[∆]| x ∈ X : E1 → param(σ)[kappaIndice(F, label(σ))] ∈ X
([ω])E1 → TRUE

P =⇒ E1 → evaluate(P, Γ )

where alphabet(E) returns the set of all action labels used in E, label(σ) returns
the label of σ, param(σ) returns the list of the parameters of σ, kappaIndice(E, l)
returns the position of the quantified variable in E for the action whose label is l, and
evaluate(P, Γ ) returns the evaluation of the predicate P under the environment Γ .
λ-terminate is described below in the paragraph of sequence operator.

In the sequel, we illustrate the algorithm for each operator.

Choice. The choice operator is permissive since if one of its operands can execute the
query, then the choice can also execute it. For instance, when σ = a, the choice operator
is permissive in (b 
 a) | b.

Kleene closure. This operator is always permissive by definition. Indeed, if E can
execute sigma, then E∗ can execute sigma. That is why an error is never due to the
Kleene closure. When σ = a, the Kleene closure is permissive in (b 
 a)∗.

Sequence. The sequence operator may be permissive depending on the location of the
label of σ in its operands. Semantically, there are two cases. In the first case, the ac-
tion occurs in the left operand; then the sequence operator is permissive, since the left
operand should be able to execute the action; hence, the sequence is not responsible for
the error. For instance, let σ = a in (b 
1 a) 
2 b. The first occurrence 
1 is not permissive,
since a doesn’t occur in the left operand; the second occurrence 
2 is permissive, since
a occurs in its left operand.

In the second case of permissiveness, the action occurs in the right operand and the
left operand can terminate successfully by executing a sequence of the internal action
λ, a condition which we denote by λ-terminate. For instance, let σ = a in b∗ 
1 (b 
2a).
The first occurrence 
1 is permissive, since b∗ can λ-terminate, while occurrence 
2 is
not permissive, since b can not λ-terminate. For the sake of concision, the definition



344 J. Milhau, B. Fraikin, and M. Frappier

of λ-termination is omitted; the reader is referred to [4] for a complete definition. It
can be computed in O(n), where n is the size of the AST. λ-termination is similar to
ε-transitions in regular expressions and non-deterministic automata.

Quantified Choice. The quantified choice operator is permissive if the set of the quan-
tification contains the value of the corresponding parameter in the query. Let σ = a( 4 )
in the following. In |x ∈ 1..3 : a( x ), the quantified choice operator is not permissive.
Whereas in |x ∈ 1..4 : b( x ) 
 a( x ) the quantified choice operator is permissive.

Synchronization. Synchronization operators are permissive on non-synchronized ac-
tions. If an action is synchronized then all the operands of the synchronization must con-
tain the action. Otherwise the synchronization is declared not permissive. Let σ = a
in the following. For (b 
 a)|[∅]| b, |[∅]| is permissive. For (b 
 c)|[c]| (c 
 a), |[c]| is per-
missive. For (b 
 a)|[a]| (a 
 b), |[a]| is permissive. For b|[a]| a, |[a]| is not permissive
because a is not in both sides of the synchronization despite it is in the synchronization
set.

Quantified Synchronization. As for quantified choice, quantified synchronization oper-
ator is permissive if the set of the quantification contains the value of the corresponding
parameter in the query.

Guard. A guard allows executing the guarded expression if, and only if the guard is
evaluated to TRUE. In this case, the guard is permissive. In the other case, the guard
is declared as not permissive. Let σ = a in the following. For TRUE =⇒ (b 
 a), the
guard is permissive. For x ≥ 0 =⇒ (b 
 a) under the environment ([x := 1]), the guard is
permissive. For FALSE =⇒ (b 
 a), the guard is not permissive. For x ≥ 10 =⇒ (b 
 a)
under the environment ([x := 1]), the guard is not permissive. Note that the environment
is always permissive; its value determines the permissiveness of enclosed operators.

Establishing Suspects List. After the evaluation of the predicate isPermissive for
all the witnesses, the suspects list can be determined.

Definition 4. Suspects relative to σ
Let E be a PE, σ a query from the user that generates an execution error, v a victim of
E relative to σ and w its witnesses. Suspects are defined as the list of operators which
are in w and that are not permissive.

Example. The predicate isPermissive is applied on each member of the witnesses
list. The operator 
 1 is not permissive because σ is located in the right whereas for the
operator 
 2, σ is on the left as it can be seen at Fig. 2. All others operators are permissive
as shown in Table 1.

3.4 Culprits

For each list of suspects (i.e. one list per witness), the head (the nearest operator to the
root) is declared guilty. In case this list is empty, no operator is declared guilty, and the



Automatic Generation of Error Messages for the Symbolic Execution of EB3 PEs 345

Table 1. Suspects relative to the victim of DisplayNumberOfLoans( John )

Witness isPermissive Why ? Suspect

‖ 1 TRUE Synchronization ok no
‖ 2 TRUE Synchronization ok no

� mId ∈ MEMBERID : TRUE John ∈ MEMBERID no
∗
1 TRUE Always permissive no


 1 FALSE Right operand and no λ-termination yes

 2 TRUE Left operand no
‖ 3 TRUE Synchronization ok no
∗
2 TRUE Always permissive no

algorithm can not provide an error message for the request of the user. In the other case,
a list of culprit operators is established and this concludes the investigations to find the
cause of an execution error.

Definition 5. Culprit relative to a victim
Let E be a PE, σ a query from the user refused by E, v a victim of E for σ and s its
suspects. The culprit relative to v is defined as the operator which is in s and that is the
closest to the root.

Example. Since only one suspect was found for DisplayNumberOfLoans( John ), this
operator is automatically declared guilty.

4 Generating Messages for an Execution Error

After the localization of the cause of an error, the IS must build its error messages in
order to explain to the user the cause of the failure to execute his query. This process is
divided in several steps, as the message is built for several goals.

4.1 Messages from Culprits

For each culprit found, a message is generated according to the type of operator. This
message is built using a skeleton that must be completed by information from several
origins, like the query, parameters of the query, and elements from the culprit operator
(if any). This message aims to report the cause of the error and its context to the user
with related information.

Message Skeletons by Operators. This algorithm uses pattern matching to link oper-
ators to message skeletons. Operators which are always permissive are not considered
in the algorithm, since they can never be culprits.



346 J. Milhau, B. Fraikin, and M. Frappier

Algorithm 3. skeletonFromCulprit(σ, culprit)

Description: Returns the message skeleton for a culprit found for σ.
input σ: A query from the user.
input culprit: An operator that was previously declared as culprit.

let skeletonFromCulprit(σ, culprit) = match culprit with
E1 
 E2 → “Execution order of actions is not respected.”
|x ∈ X : E1 → “The x variable of the query σ is not in X.”
E1|[∆]|E2 → “The system will not be able to execute σ in this process.”
|[∆]| x ∈ X : E1 → “The x variable of the query σ is not in X.”
P =⇒ E1 → “The constraint P is not verified.”

Example. For the victim DisplayNumberOfLoans( John ), the culprit operator is 
 1.
Then the skeleton message associated to this operator is “ Execution order of actions is
not respected. ”.

4.2 Required Action

In order to help the user after the display of the error message, the system must in-
vite him to do something. That is why the algorithm computes required actions. These
actions are submitted as advice to help the user to execute his initial query.

Definition 6. Required action
Let E be a PE, σ a query from the user refused by E, v a victim of E for σ and c
the culprit associated with v. A required action associated to c to execute σ in E is an
action that must be executed before considering to execute σ.

After executing a required action, the user can not assume that σ will be executed with-
out any error. Other attempts to execute σ may fail again, but these attempts may gen-
erate other error messages.

Algorithm. Since there can be several required actions for a single culprit, the algo-
rithm stocks them into a list. The algorithm also takes into account the fact that some
actions may not be always executable due to guards or other conditions. That is why the
algorithm uses a pair (action, Boolean) to represent a required action. In the case that
the Boolean is FALSE, the action can not be executed in the current state of the IS, but
is still required in order to execute σ.

Algorithm 4. requiredA(exp, σ, Γ, φ)

Description: Returns a list of required actions for a culprit found for σ.
input exp: An operator (PE) that is initially a culprit of σ.
input σ: A query from the user.
input Γ : An environment of the PE exp.
input φ: A condition associated with the required action, initially TRUE.



Automatic Generation of Error Messages for the Symbolic Execution of EB3 PEs 347

let rec requiredA(exp, σ,Γ, φ) =match exp with
Action(label, ) → [(exp, φ)]
E1 | E2 → requiredA(E1, σ, Γ, φ) ⊕ requiredA(E2, σ, Γ, φ)
E∗ → requiredA(E, σ, Γ, φ)
E1 
 E2 → requiredA(E1, σ, Γ, φ)
|x ∈ X : E1 → requiredA(E1, σ, Γ, φ)
E1 |[∆]| E2 → requiredA(E1, σ, Γ, φ) ⊕ requiredA(E2, σ, Γ, φ)
|[∆]| x ∈ X : E1 → requiredA(E1, σ, Γ, φ)
([ω])E1 → requiredA(E1, σ, (Γ � ω), φ)
P =⇒ E1 → requiredA(E1, σ, Γ, φ ∧ P )

where ⊕ is the classical concatenation operator for lists and � denotes the environment
composition.

Translation to a Recommendation. Since the user can only execute one action at
the same time, only one required action will be executed just after the broadcast of
the error message, or none if the user does not take this advice into account. When a
required action (ω , φ) is computed, then the recommendation addressed to the user is:
“ In order to execute σ, you should try executing ω under the condition φ. ”

4.3 Information System Patterns

An IS generated using the EB3 method is produced from (among other things) an entity-
relationship diagram. Several PE patterns based on this diagram are defined in [2].
These patterns may be used to deduce an improved version of the error message.

Definition 7. Entity pattern
Let P( x ), M( x ) and C( x ) be PEs and let E be a PE that matches the following pattern,
where P( x ) denotes a choice of producers, M( x ) denotes a choice of modifiers, C( x )
denotes a choice of consumers and x a key for an entity with x in XID :

� x ∈ XID : P( x ) 
 M( x )∗ 
 C( x )

In the case that the entity pattern is a sub-expression of the current state of an IS and
σ, the query of the user, is a modifier or a consumer relative to this entity pattern,
if the system can not execute σ, then the error message skeleton associated to the 

operator can be upgraded to: “ The entity x of type E does not exist. ” The translation
to a recommendation of the required action can be more precise: “ In order to create
it, you should try executing ω under the condition φ. ” with (ω , φ) as computed by the
requiredA algorithm.

Definition 8. 1-n relationship pattern

Let P1( x ) and C1( x ) be PEs and let E1 be a PE that matches the following pattern:

E1 = � x ∈ XID : P1( x ) 
 (� y ∈ YID : A( x, y ))∗ 
 C1( x )

Let P2( y ) and C2( y ) be PEs and let E2 be a PE that matches the following pattern:

E2 = � y ∈ YID : P2( y ) 
 (|x ∈ XID : A( x, y ))∗ 
 C2( y )

Let F = E1 ‖ E2, then F is said to follow the 1-n relationship pattern.



348 J. Milhau, B. Fraikin, and M. Frappier

In the case that the 1-n relationship pattern is a sub-expression of the current state of an
IS and σ, the query of the user, is an action of A, if the system can not execute σ, then the
error message skeleton associated to one of the 
 operators of E1 or E2 can be upgraded
to : “ The relationship A between the entity x of type E1 and the entity y of type E2 does
not exist. You can create it by executing ω. ” with (ω , φ) as computed by the requiredA
algorithm. This message may even become more pertinent with a label name associated
to both entities and the 1-n relationship. As a good practice, relationship names should
be used as process names in the formal specification.

The n-n relationship pattern is similar to the 1-n relationship pattern except that the
E2 PE matches the following pattern:

� y ∈ yId : P2( y ) 
 (�x ∈ xId : F( x, y ))∗ 
 C2( y )

Example. In our case, the culprit operator is 
1 and above it there is a quantified inter-
leaving in the list of witnesses. This is the entity pattern, so the skeleton message of 
1
can be replaced. The required action algorithm applied to our culprit generate only one
element in the list: (Join( mId ), TRUE). Then we can build the full error message that
will be displayed: “ The ‘member’ entity ‘John’ does not exist. In order to create it,
you should try executing Join( mId ). ”

5 Case Study

This section will apply the process described above to other errors.

5.1 Current State

Since a system evolves from its initial state, and in order to illustrate some more com-
plex cases of execution error, a state, different from the initial state (see Fig. 1) is used
in the following cases.

First, BOOKID is defined as the set of naturals between 0 and 9, MEMBERID is defined
as the set of naturals between 10 and 19. Then, the library is populated with 2 books
(with bId 0 and 1) and 3 members (with mId 10, 11 and 12). To finish, member 10 has
borrowed book 0, just returned book 1 and members 11 and 12 have made reservation
for book 1 in this order.

In short, the current state used below is the state resulting from the execution
of the actions Acquire( 0 ), Acquire( 1 ), Join( 10 ), Join( 11 ), Join( 12 ), Lend( 10, 0 ),
Lend( 10, 1 ), Reserve( 11, 1 ), Reserve( 12, 1 ) and Return( 10, 1 ) in this order upon the
initial specification.

5.2 Generated Messages

Trying to Borrow a Currently Borrowed Book. If a member wants to borrow a
book that is already borrowed by another member, the system should refuse the query
and warn the user about this error. The user could expect from a system with “human-
generated” error messages a message that explains to him that the book is not available.



Automatic Generation of Error Messages for the Symbolic Execution of EB3 PEs 349

Applying the “police investigation” method on this state while attempting to execute
Lend( 11, 0 ) produces a list of seven victims (with six environmental alibis found).
Since several victims can share the same culprit, fewer messages will be generated.
Only one victim is matching the exact query from the user for both environments and
quantification sets. Here is the complete execution of the algorithm for this victim.

Table 2. Investigation over Lend( 11, 0 )

Witnesses Suspect Why ? Culprit Pattern

� no Always permissive - -
([bId := 0]) no Always permissive - -


 yes Right operand and no λ-termination yes -
|mId ∈ [10, 19] : no mId ∈ [ 10,19 ] - -

From this culprit, the algorithm provides a skeleton message that is used to generate
the first part of the message: “ Execution order of actions is not respected. ”

Then, in addition to this first part are generated required actions for this culprit.
The execution of the algorithm returns the action Return( 10, 0 ) with condition TRUE

that we can translate into: “ In order to execute Lend( 11, 0 ), you should try execut-
ing Return( 10, 0 ). ” Since no known pattern is detected in this investigation, the final
message is generated: “ Execution order of actions is not respected. In order to execute
Lend( 11, 0 ), you should try executing Return( 10, 0 ). ”

Trying to Bypass the Reservation List. In case that the user of the system tries to
execute an action protected by a FALSE-evaluated guard, the system must block the
execution of the query. In the library, this can happen when a user wants to bypass the
reservation process by taking a book while he is not the first on the reservation list.

Trying to execute Take( 12, 1 ) in the current state where member 11 is first in the
reservation list produces the investigation shown in the Table 3.

Table 3. Investigation over Take( 12, 1 )

Witnesses Suspect Why ? Culprit Pattern

‖ no Synchronization ok - -
� no Always permissive - -

([mId := 12]) no Always permissive - -
‖ no Synchronization ok - -
� no Always permissive - -

([bId := 1]) no Always permissive - -

 no Left operand - -

isF irst(trace,mId, bId) =⇒ yes FALSE-evaluated yes -



350 J. Milhau, B. Fraikin, and M. Frappier

In this case, there are no required action before executing Take( 12, 1 ), the guard
is the only thing that prevents the user to execute the query: “ In order to execute
Take( 12, 1 ), the predicate isF irst(trace, mId, bId) must be evaluated to TRUE. ”

It could be interesting to point to the user of the IS exactly what makes the guard
evaluated to FALSE. In the library specification, the predicate isF irst(trace, mId, bId)
is specified as a recursive function over the trace of the IS. The trace of the system
consists of a sequence of all the actions executed since the launch of the system. In our
example, we could provide to the user the name of the member that is the first in the
reservation list. On the other hand, this raises the issue of confidentiality; hence, there
is a need for configurability when selecting messages to display. Another analysis that
could be done is to determine, from the definition of the function isF irst, which actions
can make the guard true. This means solving a predicate, which is a hard problem in
the general case, but simple heuristics could probably solve a large number of simple
cases.

6 Conclusion

We have presented an algorithm that can generate an error message for an event refused
by a process expression. The algorithm is generic, in that it can be used on any pro-
cess expression. The algorithm identifies the causes of an error and suggests corrective
actions. Currently, nothing can ensure that a required action will be executable. This
limitation may be annoying for the user of the system since he can not receive use-
ful advice. But if he tries to execute the required action, he can receive another error
message that will help him to execute his initial request.

In the case of non-fulfilled guards, the user may not be able to know what to do
in order to comply with a guard. Indeed, nothing indicates how to modify the state of
the system or the value of attributes that are involved in the guard. By finding which
attributes are involved in a guard and providing a list of actions that modify these at-
tributes, the error message could help the user in order to satisfy a guard.

Another limitation could be the names of the variables and actions of the PE. Indeed,
without a pertinent name, error message will integrate impertinent information that will
not be easy to understand by the user. That is why this method requires an active in-
volvement of the designer of the system by using pertinent and understandable names
in his specification.

The message skeletons we have provided are rather simple. They can be enhanced;
for instance, we can compute the query parameter associated to the quantification vari-
able mentioned in a skeleton. We could use this parameter name instead (each action
has a signature with parameter names). One can also imagine that annotations could
be added to the specification which could automatically be included in the skeletons
to provide more information. Guard predicates could also be translated into a natural
language representation. They could also be further analysed to target specific subpred-
icates which make the overall predicate false.

To improve readability, a selection of one among all the generated messages ac-
cording to a heuristic could be interesting. This heuristic could vary depending on the
target and the goal of the message. However, this feature has not been developed for the
moment.



Automatic Generation of Error Messages for the Symbolic Execution of EB3 PEs 351

The approach of automatic deduction of pertinent error messages from EB3 specifi-
cation could be adapted to other specification languages such as CSP [7]. Indeed, the
method to find the cause of an error could be transposed to another process algebra,
with some modifications to the “permissive” and the “message skeleton” parts.

CSP operators for sequence “→” and “;” are similar to EB3 operator “
”. Hence, the
permissiveness and the message skeleton of these operators would not change. CSP
external choice operator “�” is also similar to EB3 “|” whereas CSP’s internal choice
“�” has no equivalent in EB3. This operator would need a new predicate to evaluate its
permissiveness and a new message skeleton.

Acknowledgements. The authors would to thank the anonymous referees for their in-
sightful comments. This research is supported by NSERC (Natural Sciences and Engi-
neering Research Council of Canada).

References

1. Fraikin, B., Gervais, F., Frappier, M., Laleau, R., Richard, M.: Synthesizing information sys-
tems: the APIS project. In: Rolland, C., Pastor, O., Cavarero, J.L. (eds.) First International
Conference on Research Challenges in Information Science (RCIS), Ouarzazate, Morocco,
April 2007, vol. 12 (2007)

2. Frappier, M., St-Denis, R.: EB3: an entity-based black-box specification method for informa-
tion systems. Software and Systems Modeling 2(2), 134–149 (2003)

3. Fraikin, B., Frappier, M., Laleau, R.: State-based versus event-based specifications for infor-
mation system specification: a comparison of b and eb3. Software and System Modeling 4(3),
236–257 (2005)

4. Fraikin, B.: Interprétation efficace d’expression de processus EB3. PhD thesis, Département
d’informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada (April 2006)

5. Brown, P.J.: Error messages: the neglected area of the man/machine interface. Communica-
tions of the ACM 26(4), 246–249 (1983)

6. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Reading,
Mass (1986)

7. Hoare, C.A.R.: CSP–Communicating Sequential Processes. Prentice Hall, Englewood Cliffs
(1985)

8. Milhau, J., Fraikin, B.: Technical report 25, an algorithm for automatic generation of error
messages for EB3. Technical report, Université de Sherbrooke, Département d’informatique
(September 2008)

9. Leroy, X., Weis, P.: Manuel de référence du langage Caml. InterEditions (1993)



Decompositional Petri Net Reductions�

Astrid Rakow

Universität Oldenburg

Abstract. As a means to tackle the state explosion problem of model
checking 1-safe Petri nets for linear time logic without next-time (LTL-X),
an approach that combines compositional verification and Petri net re-
ductions is presented. We decompose a Petri net into (i) a so-called kernel
net Σk containing all places mentioned by the LTL-X property φ and (ii)
environment subnets Σe1 , ..., Σen . These environment nets do not inter-
act with each other and have limited influence on the kernel only. Six
distinct and very simple summary nets suffice to describe the influence of
any environment net. To determine the appropriate summary net S(Σei)
we modularly verify up to three fixed LTL-X formulas on Σei . We reduce
Σ by replacing every environment subnet Σei in Σ by its summary net.
Instead of checking φ on Σ, we check φ on the reduced net. Verification of
several case-studies shows that our reduction approach can significantly
speed-up model checking.

1 Introduction

Model checking is a technique to automatically verify that a system satisfies a
formal property by exploring the system’s state space. The main challenge in
model checking is that the number of states may grow exponentially in the sys-
tem size, which is widely known as state explosion. Among others compositional
verification and Petri net reductions are two techniques to combat the state ex-
plosion problem for model checking Petri nets. Compositional verification allows
to infer global properties from verification of the system’s components. By veri-
fying the components in isolation, the combinatorial blow-up of the state space is
avoided and verification is possible at much lower computational expense. Prin-
cipal challenges of using compositional verification for monolithic Petri nets are
to find an appropriate decomposition and local properties to check on the com-
ponents. A major issue in determining a decomposition for a monolithic Petri
net is finding the right border, since it is possible that a component exposes spu-
rious behaviour in isolation, i.e., behaviour that the component does not have as
part of the global system due to context constraints imposed by the component’s
environment.

Petri net reduction is a method to reduce the Petri net graph (as opposed
to the often considered reachability graph) while preserving some properties of

� This work is supported by the German Research Foundation (DFG), grant GRK
1076/1.

M. Leuschel and H. Wehrheim (Eds.): IFM 2009, LNCS 5423, pp. 352–366, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Decompositional Petri Net Reductions 353

interest. Petri net reductions for model checking aim to reduce a Petri net graph
such that the reduced net has a smaller state space.

In this paper we present a new approach that combines compositional verifi-
cation and Petri net reduction. We decompose a monolithic 1-safe Petri net Σ
for a given LTL-X (LTL without next-time) property into a kernel net Σk and
environment nets Σe1, ..., Σen . The kernel subnet contains all places mentioned
by the LTL-X property φ and shares with an environment net a single place q
only. Every environment net Σei is replaced by a summary net S(Σei), which
is a small net of at most four nodes and describes Σei ’s influence on the ker-
nel precisely. To determine the appropriate summary net S(Σei), Σei is model
checked independently to characterise its influence on the kernel. For this up to
three local and fixed LTL-X properties are checked on Σei . We establish whether
φ holds on Σ by model checking whether φ holds on the reduced net. The de-
composition of a monolithic 1-safe Petri net can be determined in linear time,
and by choosing a restrictive interface between kernel and environment, that is
the single place q, the risk of encountering spurious behaviour within an isolated
environment net is minimised.

Related Work. A decompositional approach to check boundedness and liveness
of a monolithic Petri net is described by Lee et al. in [1]. A net is decomposed
based on minimal linear invariants. The generated components may overlap, that
is share places and transitions. The components’ reachability graphs are reduced
and (re)composed to analyse the global behaviour, where shared transitions have
to be synchronised. An iterative approach to decompose a monolithic Petri net
for checking LTL-X properties is presented by Klai et al. in [2]. The generated
components approximate the global behaviour. If a component does not satisfy
the property under consideration, the validity of the counterexample has to be
checked by means of a so-called non-constraining relation, which represents the
environment’s constraints. If this relation is not satisfied, the net is reexamined
under a coarser partition. In the approach of Lee et al. spurious behaviour is
ruled out by synchronising the transitions shared among components. In the
approach of Klai et al. spurious behaviour may lead to repartition such that
the global behaviour is captured more accurately with each iteration. We will
show that our decomposition allows us to accurately characterise the influence
of the environment net on the kernel net, so that neither local components need
to be synchronised as in the approach of [1] nor an iterative refinement as in
[2] is necessary. When model checking an environment net Σei to characterise
its influence on the kernel, only in one out of six cases is it possible that Σei

exposes spurious behaviour. As we see model checking as one of the later steps
taken when analysing a Petri net, we argue that often this case might be ruled
out by earlier results of the analysis.

Valmari suggested in [3] an approach to compositional analysis for Petri nets
whose subnets share a set of places only. It is assumed that the given net is
divided into an environment component and an interesting component, i.e. a
kernel. A labelled transition system representing the environment net’s behaviour
is condensed by a CFFD-semantics preserving algorithm. The environment net is



354 A. Rakow

then replaced by a net corresponding to the condensed labelled transition system.
Since in our approach kernel and environment net share a single place only, we
consider a special case of the scenario examined in [3]. In our case we can identify
six fixed summary nets that suffice to describe the influence of any environment
net, whereas in [3] the replacement net is the result of a condensation. Also we
use model checking to determine the replacement and thus can make use of the
various methods that have been invented to speed up model checking.

Several works on Petri net reductions that preserve some properties of in-
terest have been suggested, for instance [4,5]. Petri net reductions for model
checking have been examined in [6,7,8]. Poitrenaud and Pradat-Peyre showed
in [6] that the local net reduction rules called Pre- and Post-agglomeration of
Berthelot [4] preserve LTL-X properties. In [7] Esparza and Schröter presented
a set of reduction rules for LTL-X model checking of 1-safe Petri nets based
on invariants, implicit places and local net reductions, thereby extending the
works of [4,6]. In [8] Haddad and Pradat-Peyre further generalised the Pre- and
Post-agglomeration rules by defining behavioural preconditions and sufficient
structural conditions based on the description of linear programs. Whereas these
reductions all focus on replacing a fixed structure, e.g. a transition, input and
output places, we introduce here a reduction rule that replaces a variable subnet.

Outline of the Paper. In Sect. 3 we introduce the LTL-X formulas that are model
checked on an environment net Σei in order to characterise its influence on the
kernel and we present the six distinct summary nets that suffice to equivalently
describe Σei ’s influence. A net reduced by replacing Σei in Σ by the summary
net S(Σei) satisfies an LTL-X property φ if and only if Σ satisfies φ, provided
we can assume a very weak form of fairness that guarantees some progress on
Σk. The correctness results of our reductions are also given in Sect. 3. Section
4 illustrates the decomposition algorithm for 1-safe Petri nets and discusses the
computational expense of determining a decomposition. In Sect. 5 we show that
our approach can efficiently speed up the model checking time and examine a
combination of our approach and the partial order approach of stubborn sets [9].
We conclude in Sect. 6 with a discussion of our approach. In the next section we
introduce the basic notions of this paper.

2 Preliminaries

Petri Net Definitions. A Petri net N is a triple (P, T, W ) where P and T are
disjoint sets and W : ((P ×T )∪(T ×P )) → N. An element p ∈ P is called a place
and t ∈ T a transition. The function W defines weighted arcs between places
and transitions. We denote the restriction of W to ((P ′ × T ′) ∪ (T ′ × P ′)) as
W |(P ′,T ′) for P ′ ⊆ P , T ′ ⊆ T . The preset of t ∈ T is •t = {p ∈ P | W (p, t) > 0},
its postset is t• = {p ∈ P | W (t, p) > 0}. Analogously •p and p• are defined.

A marking of a net N is a function M : P → N, which assigns a number of
tokens to each place. M |P ′ is the restriction of M to places P ′ ⊆ P . With a
given order on the places, p1, ..., pn, M can be represented as a vector in N

|P |,



Decompositional Petri Net Reductions 355

where the i-th component is M(pi). As M q=x we denote the marking that places
x tokens on q and M(p) tokens on any other place p.

A transition t ∈ T is enabled at marking M , M [t〉, iff ∀p ∈ •t : M(p) ≥
W (p, t). If t is enabled it can fire. The firing of t generates a new marking M ′,
M [t〉M ′, which is determined by the firing rule as M ′(p) = M(p) + W (t, p) −
W (p, t), ∀p ∈ P . The definition of [〉 is extended to transition sequences σ as
follows. A marking M always enables the empty firing sequence ε and its firing
generates M . M enables a transition sequence σt, M [σt〉, iff M [σ〉M ′ and M ′[t〉.
If M [σ〉, the transition sequence σ is called a firing sequence from M . A firing
sequence σ from M is maximal iff either σ is infinite or σ cannot be extended,
i.e., ¬M [σt〉, ∀t ∈ T . Given a firing sequence σ = t1t2... with M0[t1〉M1[t2〉M2...,
the sequence M0M1M2... is called the marking sequence from M0, M(M0, σ). A
marking sequence M(M, σ) is maximal iff σ is a maximal firing sequence. By
convention, we regard a finite maximal marking sequence µ as equivalent to the
infinite marking sequence µ′ that repeats the final marking of µ infinitely often.

We denote X∗∪Xω as X∞ for a set X . For a finite sequence γ = x1x2...xn ∈
X∞, |γ| is n, the length of γ. If γ is infinite, |γ| = ∞. γ(i) denotes the i-th
element and γi denotes the suffix of γ that truncates the first i positions of γ.

A Petri net Σ = (N, M0) with a designated initial marking M0 is called a
marked Petri net. A marking of Σ is reachable if there is a firing sequence from
M0 that generates M , M0[σ〉M . The set of reachable markings of Σ is denoted
as [M0〉. A place p is k-bounded if any reachable marking has at most k tokens at
p. Σ is k-bounded if all of its places are. 1-boundedness is also referred to as 1-
safeness. In the following we use N synonymous with its defining triple (P, T, W )
and Σ synonymous with (N, M0). Also subscripts carry over to components, e.g.
Σe = (Ne, Me0) = (Pe, Te, We, Me0).

Logics. We now briefly introduce the temporal logics LTL and define when an
infinite sequence of markings satisfies an LTL formula φ. In the next paragraph
(cf. Petri Net Semantics) we will define when a Petri Net satisfies φ.

Definition 1 (LTL, LTL-X). Let AP ⊆ P × N be the set of atomic proposi-
tions. Let µ = M1M2... ∈ (N|P |)ω be an infinite sequence of markings.

LTL Syntax:
Every (s, x) ∈ AP is an LTL formula. If φ1 and φ2 are LTL formulas, ¬φ1,
φ1 ∧ φ2, Xφ1, φ1Uφ2 are LTL formulas.

LTL Semantics:
µ |= (p, x) iff (µ(1))(p) = M1(p) = x
µ |= ¬φ1 iff not µ |= φ1
µ |= φ1 ∧ φ2 iff µ |= φ1 and µ |= φ2
µ |= Xφ1 iff µ1 |= φ1
µ |= φ1Uφ2 iff ∃i, 0 ≤ i : µi |= φ2 ∧ ∀j, 0 ≤ j < i : µj |= φ1

An LTL-X formula is an LTL formula built without using the X operator.

We use the following abbreviations: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), true ≡ (p, 1) ∨
¬(p, 1), ♦φ ≡ trueUφ, �φ ≡ ¬♦(¬φ).



356 A. Rakow

We use the function scope to associate with every LTL formula φ the set of
places referred to in φ. For example scope((p1, 1)U(p2, 2)) is {p1, p2}.

Petri Net Semantics. In the following we define when a Petri net Σ satisfies
a formula. Intuitively, a Petri net satisfies a formula φ if its behaviour satisfies
φ. In the sequel we study maximal and fair firing sequences: We consider firing
sequences of original net Σ that are fair w.r.t. Tk and maximal firing sequences of
Σei – where Σ is composed of environment nets Σei and a kernel Σk containing
scope(φ). We assume that Σ is fair w.r.t. Tk, such that the kernel within Σ
does not starve, i.e. as long as there is a transition t permanently waiting to
be fired, Σk eventually fires some transition. Next we define formally that a
firing sequence is fair w.r.t. T ′ ⊆ T (cf. Def. 3), if in case a transition t ∈ T ′ is
eventually permanently enabled, it fires infinitely often some transition of T ′.

Definition 2 (eventually permanently enabled)
Let σ = t1t2... be a firing sequence of Σ with Mi[ti+1〉Mi+1, ∀i, 0 ≤ i < |σ|.

σ eventually permanently enables t ∈ T iff
either σ is finite and M|σ|[t〉 or σ is infinite and ∃i, 0 ≤ i : ∀j, i ≤ j : Mj [t〉.

Definition 3 (fairness with respect to T ′)
Let T ′ be a subset of T , let σ = t1t2t3... be a maximal firing sequence of Σ and
Mi be the markings with Mi[ti+1〉Mi+1, ∀i, 0 ≤ i < |σ|.

σ is fair w.r.t. T ′ iff
− either σ is finite
− or σ is infinite, and, if there is a t ∈ T ′ it permanently enables, it then fires
infinitely often some transition of T ′ (which may or may not be t itself).

We also say Σ is fair w.r.t. T ′ to express that we only consider firing sequences
of Σ that are fair w.r.t. T ′.

Given scope(φ) is a subset of P , we say Σ models φ, Σ |= φ, iff all maximal
firing sequences σ satisfy M(M0, σ) |= φ. Given a set of transitions T ′ ⊆ T , we
say Σ |= φ fairly w.r.t T ′ iff all firing sequences σ that are fair w.r.t. T ′ satisfy
M(M0, σ) |= φ.

3 The Reduction Rules

In the following we show how to reduce a net Σ composed of a kernel net Σk and
an environment net Σe. An algorithm to determine an appropriate decomposition
for a 1-safe net is presented in the next section. Note, that in this section we do
not assume that Σ is 1-safe but only require that the shared place q is 1-safe.

Any subnet Σe of Σ that shares just a 1-safe place q with the remainder is
reducible by our approach. We will show how such an environment net can be
summarised by a simple net S(Σe) and that the environment net can be exam-
ined independently to determine its summary, S(Σe). The restrictive interface,
that is the 1-safe place q, between Σk and Σe allows us to abstract efficiently
from the detailed behaviour of Σe. Before we show how to reduce a Σ that is
composed of Σk and Σe, we formally define how these two nets compose Σ.



Decompositional Petri Net Reductions 357

Definition 4 (reducible, kernel, environment)
Let Σ be a marked Petri net and φ be an LTL-X formula. Σ is reducible by Ne
iff there is a 1-safe place q ∈ P and a subnet Nk, such that N = (Pk - (Pe \
{q}), Tk - Te, W |(Pk,Tk) - W |(Pe,Te)), scope(φ) ⊆ (Pk \ {q}) and q ∈ Pk. Σ is
reducible by Σe = (Ne, M0|Pe) iff Σ is reducible by Ne.

We call Σk = (Nk, M0|Pk) the kernel subnet and Σe the environment subnet.

So Σ is reducible by an environment net Ne iff Σ is composed of an environment
net Ne and a kernel Nk, such that (i) φ does not refer to the environment Ne and
(ii) kernel Nk and environment Ne have only a 1-safe place q in common, the
transitions of kernel and environment are disjoint and they have neither input-
nor output places in the other net with exception of q.

In the sequel let φ be an LTL-X formula, let Σk = (Nk, M0|Pk) be the kernel
and Σe = (Ne, M0|Pe) be the environment subnet of Σ, such that Σ is reducible
by Σe according to Def. 4. Let q be the place shared by Σk and Σe. Next we
intuitively, then formally introduce the rules to reduce Σ by Σe. The reductions
are applied to examples in Fig. 1.

Let us assume that Σ is fair w.r.t. Tk, which means that any firing sequence
that permanently enables a tk ∈ Tk fires at least one transition of Tk infinitely
often. This fairness assumption guarantees progress in Σk, since as long as there
are transitions in Tk permanently enabled, some transition in Tk is fired. To
characterise how Σe may affect the given property φ we study Σe’s effect on
the 1-safe place q at the two scenarios, Σe with a token on q, which is Σq=1

e =
(Ne, M

q=1
0 |Pe), and Σe without a token on q, denoted as Σq=0

e = (Ne, M
q=0
0 |Pe).

An environment subnet Σe is called a Borrower if it may take a token from
q -one or several times- but eventually permanently marks q. As we study
stuttering-invariant properties, which do not count execution steps [10], Bor-
rower subnets can be omitted.

An environment subnet Σe is a Consumer, if Σe may not return the token
from q, i.e. Σq=1

e has at least one execution that does not eventually permanently
mark q. Due to our weak fairness notion, progress in Σk is only guaranteed, if
a transition is eventually permanently enabled, i.e. its preset is permanently
(sufficiently) marked. The Consumer subnet Σe in Fig. 1 does not eventually
permanently mark q. Assume that t3 has been fired. It is not guaranteed that
eventually t4 is fired. The token may get lost in Σe by firing infinitely often t2t1.
So a Consumer net can be replaced by just one transition that may remove the
token from q, just as the Consumer may remove the token from q or keep the
token for ever.

Σe is called a Producer, if Σq=0
e eventually permanently marks the initially

unmarked q. In case of a Producer environment, it is enough to place a token on
q, as stuttering-invariant properties do not count the number of steps to generate
the token on q.

We apply a Dead End reduction, if the place q is never marked in Σ. In case
of a Dead End environment we can omit Σe and also the transitions of Σk that
are connected to it. Transitions in •q are never fired because otherwise q would
be marked and since q is never marked, transitions in q• are never enabled.



358 A. Rakow

p1

q

p3

Nk

Ne

Σ
Borrower

Σq=1
e |= ��(q, 1)

p1

q

p3

Σ b Σe

p1

q

p3
t1 t2
t3 t4

Nk

Ne

Σ
Consumer

Σq=1
e �|= ��(q, 1)

p1
tr

q

p3

Σ c Σe

p1 q p3

Nk

Ne

Σ

Producer
Σq=0

e |= ��(q, 1)

p1 q p3

Σ p Σe

p1 q p3

Nk

Ne

Σ

Dead-End
Σq=0

e |= �(q, 0)

p1 p3

Σ d Σe

p1 q p3

Nk

Ne
Unreliable Producer

Σq=0
e |= �((q, 1) ⇒ ��(q, 1))

Σq=0
e �|= �(q, 0)

p1

tc

pp

tp

q p3

Σ up Σe

p1 q p3

Nk

Ne
Producer-Consumer

Σq=0
e �|= �((q, 1) ⇒ ��(q, 1))

Σq=0
e �|= �(q, 0)

p1
tr

q p3

Σ pc Σe

Fig. 1. The reductions

Σe is an Unreliable Producer, if Σq=0
e eventually permanently marks q at

some executions and never marks q at others. An Unreliable Producer subnet is
replaced by a net that can do the same, i.e. produce a token or never mark q.

An environment subnet Σe is called a Producer-Consumer, if some executions
of Σq=0

e generate a token on q but do not eventually permanently mark q.



Decompositional Petri Net Reductions 359

Definition 5 (Borrower, Consumer, Dead End, Producer, Unreliable
Producer, Producer-Consumer)
Let Σ be reducible by an environment Σe. Let Nk be the kernel and q be the
1-safe contact place, q ∈ (Pk ∩ Pe).

Σe is a Borrower
iff q is a 1-safe place of Σq=1

e and Σq=1
e |= ♦�(q, 1).

The Borrower-reduced of Σ by Σe, Σ b Σe, is the net (Pk, Tk, W |(Pk,Tk), M0|Pk).

Σe is a Consumer
iff q is a 1-safe place of Σq=1

e and Σq=1
e �|= ♦�(q, 1).

The Consumer-reduced of Σ by Σe, Σ c Σe is the net Σ c Σe = (N ′, M0|Pk)
with N ′ = (Pk, Tk - {tr}, W |(Pk,Tk) - {(q, tr) �→ 1}).

Σe is a Dead End
iff q is not 1-safe in Σq=1

e and Σq=0
e |= �(q, 0).

The Dead End-reduced of Σ by Σe, Σ d Σe, is (P ′, T ′, W |(P ′,T ′), M0|P ′) with
P ′ = Pk \ {q} and T ′ = Tk \ ( •q ∪ q•).

Σe is a Producer
iff Σq=0

e |= ♦�(q, 1).
The Producer-reduced of Σ by Σe, Σ p Σe, is (Pk, Tk, W |(Pk,Tk), M

q=1
0 |Pk).

Σe is an Unreliable Producer
iff Σq=0

e �|= �(q, 0) and Σq=0
e |= �((q, 1) ⇒ ♦�(q, 1)).

The Unreliable Producer-reduced of Σ by Σe, Σ up Σe, is the net Σ up Σe =
(Pk-{pp}, Tk-{tc, tp}, W |(Pk,Tk)-{(pp, tp) �→ 1, (tp, q) �→ 1, (pp, tc) �→ 1}, M0|Pk-
{pp �→ 1}).

Σe is a Producer-Consumer
iff Σq=0

e �|= �(q, 0) and Σq=0
e �|= �((q, 1) ⇒ ♦�(q, 1)).

The Producer-Consumer-reduced of Σ by Σe, Σ pc Σe is the net Σ pc Σe =
(Pk, Tk - {tr}, W |(Pk,Tk) - {(q, tr) �→ 1}, M q=1

0 |Pk).

Note, that the contact place q is 1-safe in Σq=0
e in all cases. The place q is not

1-safe in Σq=1
e for a Dead End environment and the producing environment nets,

that is Σ p Σe, Σ up Σe and Σ pc Σe. But Σq=1
e does not need to be examined

for the producing environments. All reductions guarantee that q remains 1-safe
in the reduced net.

Each of these reduction rules preserves LTL-X, i.e., Σ satisfies an LTL-X prop-
erty φ fairly w.r.t. Tk if and only if its reduced net Σ′ satisfies φ.

Theorem 6. Let φ be an LTL-X formula. Let Σ be reducible by Σe according to
Definition 5 and let Σ′ be the corresponding reduced net. Let Tk be the transition
set of Σk.

Σ |= φ fairly w.r.t Tk ⇔ Σ′ |= φ.

For some reduction rules even stronger results hold. The proof of these results
can be found in the full version of this paper [11]. We briefly sketch the general



360 A. Rakow

structure of the proof. We show that any firing sequence of Σ that is fair w.r.t.
Tk corresponds to a maximal firing sequence of Σ′. Also, any maximal firing
sequence of Σ′ corresponds to a firing sequence of Σ that is fair w.r.t. Tk. Corre-
sponding firing sequences generate corresponding markings. Firing sequences σ
of Σ and σ′ of Σ′ correspond iff they fire the same transitions of Tk in the same
order. Markings M and M ′ correspond iff they coincide on places in Pk \ {q}.
Marking sequences that are generated by corresponding firing sequences satisfy
the same LTL-X formulas.

Figure 2 illustrates how the appropriate reduction rule to replace an environ-
ment net Σe can be determined. The decision tree also illustrates that the set
of reduction rules is complete, i.e. every environment net is reducible by one of
the reduction rules.

The reductions guarantee that the behaviour of the kernel subnet Σk is pre-
served and thus also its state space. Only for the Dead End reduction, Σe –
more precisely Σq=1

e – may possibly expose spurious behaviour. Σq=1
e may even

be unbounded, whereas Σe within Σ is bounded. During the evaluation of this
method we never encountered such a case. For a 1-safe Petri net, Σe is already
proved a Dead End, if Σq=0

e satisfies �(q, 0) and some place in Σq=1
e gets more

than one token. Also, if earlier simulation showed that q can be marked, Σe is
consequently not a Dead End.

Σq=0
e |= � (q, 0)?

Is q 1-safe in Σq=1
e ? Σq=0

e |= �� (q, 1) ?

Σq=1
e |= ��(q, 1)? Dead End Producer

ConsumerBorrower

Σq=0
e |= � ((q, 1) ⇒ �� (q, 1))?

Unreliable Producer Producer-Consumer

yes no

yes no yes no

noyes yes no

Fig. 2. Leafs of the decision tree classify Σe

In this section we have shown how to reduce a net Σ composed of a kernel Σk
and an environment Σe, such that Σk and Σe only share a 1-safe place. First,
LTL-X formulas are checked on Σe to determine the appropriate reduction rule.
The reduction rule replaces Σe by the corresponding summary net S(Σe). In
the next section we will present an algorithm that decomposes a given 1-safe
net into a kernel and environment nets. Note, that in case there are several
environment nets Σe1 , ..., Σen , the results of this section justify to check all nets
simultaneously, since which reduction rule is applicable depends on Σei only.

4 The Decomposition Algorithm

In this section we present an algorithm that determines a decomposition of a
given connected and 1-safe net Σ into (i) a kernel net Σk that contains all



Decompositional Petri Net Reductions 361

places mentioned by the temporal logic property φ and (ii) environment nets
Σe1 , ..., Σen . The connectedness assumption simplifies the following but does not
impose a strong restriction, as we can apply the linear time slicing algorithm of
[12] and then consider every connected subnet of Σ on its own.

With a simple modification of Σ, the task of finding environment nets of Σ is
basically the task of finding places q ∈ (P \ scope(φ)) such that after removing
q from Σ, Σ is not connected anymore. In terms of graph theory, this is the
problem of finding articulation points q ∈ (P \ scope(φ)). The set of articulation
points can be determined in linear time by an depth-first search (DFS) algorithm.
A good presentation of a DFS algorithm to determine articulation points can be
found in [13].

Before we sketch the decomposition algorithm, we briefly introduce the terms
connected component and biconnected component [14]. A subgraph is connected
if there is a path between any two nodes. A connected component is a maximal
connected subgraph. A subgraph is biconnected if any two nodes can be joined
by two independent paths. A biconnected component is a maximal biconnected
subgraph.

The decomposition algorithm can be sketched as follows:
Given a net Σ and a set of places scope(φ), we consider Σ as an undirected
graph with nodes P ∪ T and edges {(n, n′) | W (n, n′) �= 0}.

1. Generate the modified Σ, Σ̂.
Introduce a new transition t′ and connect every place in scope(φ) to t′, that is
Σ̂ := (P, T -{t′}, W ∪{(t′, p) | p ∈ scope(φ)}, M0). All places p, p′ ∈ scope(φ)
are biconnected in Σ̂. One path between p and p′ exists since Σ is connected
and there is a second path via t′.

2. Perform a DFS to determine biconnected components of Σ̂.
Ignore articulation points a ∈ (T ∪ scope(φ)). The DFS uses a stack to keep
track of the currently traversed component. Visited edges are put onto the
stack. If a component has been found, all its edges are removed from the
stack. The search starts at a place p ∈ scope(φ), so that the first and thus
the last component on the stack is the biconnected component containing
all places in scope(φ), that is the kernel Σ̂k.

3. Subtract the edges of Σ̂k from Σ̂.
4. Subtract unconnected places and transitions of Σ̂k from Σ̂.

The remainder of Σ̂ equals the reducible part of Σ.

There are several possibilities to continue. The theoretically best way to avoid
the combinatorial blow-up of the state space is to repeatedly replace the smallest
environments. For technical reasons, we implemented step 5 in our prototype as:

5. Perform a DFS to determine the connected components.
Every connected component is an environment net and can thus be replaced.

This way we chose the greatest environment subnets.
Figure 3 illustrates the algorithm on an example. The two grey places are in

scope(φ). Σ is already extended by t′ to connect the places in scope(φ) (step 1).



362 A. Rakow

The original net Σ consists of five biconnected components whereas the extended
net Σ̂ consists of three biconnected components only. The three biconnected com-
ponents of Σ with articulation points {p1}, {p1, p2}, and {p2, p3}, respectively,
build one biconnected component in Σ̂, that is Σ̂k. In Fig. 3 (a) the maximal
environments have been determined, as implemented by step 5. In Fig. 3 (b) the
minimal environment nets have been determined. For the latter, we first model
check Σe1 , which is then replaced, generating a reduced environment Σ′

e2
. Then

the reduced environment net Σ′
e2

is model checked and replaced, generating a
reduced kernel.

t′

(a)

Σ̂k Σe

p1 p2 p3

t′

(b)

p1 p2 p3

Σ̂k Σe1Σe2

Fig. 3. Decomposition in kernel and (a) maximal and (b) minimal environments

In the next section we give experimental data gained with our prototype im-
plementation of the presented algorithm. But let us first consider the complexity
of the presented algorithm. Step 1 can be done in O(|scope(φ)|) time. To deter-
mine biconnected components of Σ̂ via DFS (step 2), takes O(|P |+|T |+1+|W |+
|scope(φ)|), where |W | = |{(x, y) ∈ ((P × T ) ∪ (T × P )) | W (x, y) �= 0}|. Note
that Σ̂ has |scope(φ)| additional arcs and one additional transition. Steps 3+4
take O(|P |+ |T |+1+ |scope(φ)|). To perform a DFS to determine the connected
components takes again O(|P |+ |T |+1+ |W |+ |scope(φ)|). Hence the algorithm
determines the greatest environment nets in O(|P |+ |T |+ |W |+ |scope(φ)|) time.

The decomposition algorithm presented in this section can also be applied to
non-1-safe nets, but to apply the reductions it has additionally to be guaranteed
that the articulation points are 1-safe in Σ. To determine whether a given P/T
net is 1-safe, is known to be PSPACE complete [15], but it may for instance
be possible to determine a structural bound by linear programming techniques,
which can be done in polynomial time [16].

5 Evaluation and Extensions

To evaluate our approach we used a set of widely used case studies1. All nets
of the benchmark are known to be 1-safe. Most of them are taken from the
benchmark set of Corbett [17]. The nets bruijn 2, rw 1w3r and dijkstra 2 are
part of a benchmark in [19]. For all other examples we used the formulas of [20].

Table 1 sketches the benchmark. It displays the net size (number of places,
transitions, arcs) of the original and the reduced net, the LTL-X property to
check and the number of articulation points used of the total number of articu-
lation points. Since the prototype determines maximal environment nets, some
articulation points are not used for the decomposition.
1 The benchmark is downloadable at [18].



Decompositional Petri Net Reductions 363

Table 1. The benchmark nets

original reduced property #(used articul.)
#(articul.)

peterson 27,31,120 22,26,110 �(♦¬P9) 5/5
bds 1 82,63,342 5,5,17 �(P83 ⇒ (♦ P82)) 1/6
rw 12 115,317,1890 5,5,17 �(P115 ⇒ (♦ P114)) 1/2
dijkstra 2 68,86,324 62,80,312 �(¬P22 || ¬P43 ) 6/6
bruijn 2 86,165,777 79,158,763 �(¬P33 || ¬P66) 7/7
gas nq 4 312,469,2770 311,468,2768 ♦(�(P311 ||P312)) 1/1
over 5 145,99,546 5,5,17 ♦(�(P144 ||P145)) 1/6
rw 1w3r 106,270,1172 96,260,1152 �(P1 ⇒ (♦ P2)) 10/10

In Table 2 the number of states and state transitions is displayed that have
been encountered while model checking the given LTL-X property using the Prod
tool [21]. Column original displays the number of states and state transitions
encountered while model checking the full net, reduced displays the results en-
countered while model checking the reduced net. The overhead for checking the
LTL-X formulas to characterise the influence of an environment net is captured
in column interm. . This column gives the sum of states and state transitions
encountered at model checking the characterising formulas on environment nets.
Column saved gives savings as percentage of the original (cf. first column).

Table 2. State space savings by the reductions

original reduced interm. saved [%]

peterson 186,617 76,199 40,40 37.6,61.2
bds 1 72271,790174 8,11 36189,263406 49.9,66.6
rw 12 8222,147536 8,11 4199,49276 48.8,66.6
dijkstra 2 2725,9243 492,995 48,48 80.1,88.7
bruijn 2 5184,19112 1097,2383 56,56 77.7,87.2
gas nq 4 18385,59906 18250,59393 8,8 0.6,0.6
over 5 45095,221113 5,5 33563,163675 25.5,25.9
rw 1w3r 330545,1573296 44569,141318 80,80 86.4,91.0

Similar to Table 2, Table 3 displays the results of model checking the given
properties, but this time Prod uses partial order reduction [9]. The columns
interm. and saved display again the number of states and state transitions en-
countered while model checking the characterising formulas and the number of
saved states and state transitions, respectively. For the nets peterson, dijkstra 2,
bruijn 2 and rw 1w3r our approach performs worse than using partial order re-
duction only. Analysis showed that the biconnected components were very small
and thus the gain of applying our reductions was not sufficient. This inspired to
optimise our algorithm by micro reduction rules. The appropriate reduction rule
for an environment consisting of an articulation point, a transition and up to one
additional place is determined by matching the net structure instead of model



364 A. Rakow

Table 3. Reduction results with partial order reduction

original reduced interm. saved [%] interm. saved [%]

(micro) (micro)
peterson 65,139 58,129 40,40 -50.7,-50.7 0,0 10.7,7.1
bds 1 1498,3610 8,11 788,1247 46.8,65.1 788,1247 46.8,65.1
rw 12 8222,147536 8,11 4199,49276 48.8,66.5 4199,49276 48.8,66.5
dijkstra 2 422,645 416,639 48,48 -9.9,6.5 0,0 1.4,0.9
bruijn 2 766,1192 759,1185 56,56 -6.3,-4.1 0,0 0.9,0.5
gas nq 4 12561,31038 12560,31031 8,8 ∼ 0,0 0,0 ∼0,0
over 5 7379,12861 5,5 6102,10704 17.2,16.7 6102,10704 17.2,16.7
rw 1w3r 15637,26452 15617,26432 80,80 -0.3,-0,2 0,0 ∼0.1,0

checking. The result of applying the modified reduction algorithm using these
micro reductions is displayed at columns interm. (micro) and saved (micro). The
results show that our approach can help to tackle the state explosion problem.
The approach is most efficient for nets with big environment nets like bds 1,
rw 12 and over 5. For these nets even the combination without micro reduc-
tions has a beneficial effect. The nets peterson, dijkstra 2, bruijn 2, gas nq 4
and rw 1w3r have micro environments only. For these nets our approach causes
an overhead but with micro reductions it is beneficial for all considered examples.

6 Discussion and Conclusion

Effectiveness. We see the main contributions of this paper to be a decomposition
algorithm that partitions the net efficiently and generates components so that
spurious behaviour is unlikely. The approach speeds up model checking as the
combinatorial blow-up caused by concurrent behaviour of kernel and environ-
ments is avoided by reducing the environments. For 1-safe nets the decompo-
sition can be determined in linear time. Spurious behaviour is possible only in
case Σe is a Dead End. Given we know from previous analysis that the contact
place is eventually marked, there is no risk to encounter spurious behaviour.

To determine the appropriate reduction the environment net is model checked
three times (cf. Fig. 2). Thus our method may examine a slightly greater number
of states than by model checking the original system and only in case there is
very little concurrency within kernel and environment net. Micro reductions are a
measure to deal with the smallest environment nets that expose no concurrency.

Restriction to 1-safe Nets. The correctness results of Sect. 3 apply not only to
1-safe nets. Also the algorithm presented in Sect. 4 can decompose any P/T net.
But to apply the reduction it has to be guaranteed that the articulation points
are 1-safe (for instance by a structural bound). We plan to examine the effect of
our approach on bounded Petri nets, extending the decomposition algorithm to
check whether an articulation point is structurally 1-bounded.

Decomposition Approaches. The results in Sect. 5 were gained with our first
prototype that replaces maximal environment nets. Recent experiments with a



Decompositional Petri Net Reductions 365

second implementation have shown that replacing minimal environments per-
forms better when the full state space is considered, but an algorithm replacing
maximal environments performs better when partial order reductions are ap-
plied. We are currently examining this unexpected experimental effect.

Conclusion. We presented a decompositional approach to alleviate the state
explosion problem of model checking an LTL-X formula φ. We suggested to de-
compose the Petri net into a kernel net containing scope(φ) and environment
nets so that articulation points of the Petri net graph are interfaces between
kernel and environment nets. For a 1-safe net the decomposition can be deter-
mined in linear time and every environment net can be replaced. To determine
the applicable reduction an environment net is checked in isolation, thus avoid-
ing the combinatorial blow-up. The application of our prototype to several case
studies has shown good results. The evaluation also indicates that our approach
can help to further accelerate model checking when combined with partial order
reductions.

Acknowledgements. I thank Jan Rakow and Eike Best for reading and com-
menting this paper.

References

1. Lee, W.J., Cha, S.D., Kwon, Y.R., Kim, H.N.: A Slicing-based Approach to En-
hance Petri Net Reachability Analysis. Journal of Research and Practice in Infor-
mation Technology 3, 131–143 (2000)

2. Klai, K., Petrucci, L., Reniers, M.: An Incremental and Modular Technique for
Checking LTL\X Properties of Petri nets. In: Derrick, J., Vain, J. (eds.) FORTE
2007. LNCS, vol. 4574, pp. 280–295. Springer, Heidelberg (2007)

3. Valmari, A.: Compositional Analysis with Place-Bordered Subnets. In: Valette, R.
(ed.) ICATPN 1994. LNCS, vol. 815, pp. 531–547. Springer, Heidelberg (1994)

4. Berthelot, G.: Checking Properties of Nets Using Transformation. In: Rozenberg,
G. (ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)

5. Desel, J., Esparza, J.: Free choice Petri Nets. Cambridge University Press, New
York (1995)

6. Poitrenaud, D., Pradat-Peyre, J.-F.: Pre- and Post-agglomerations for LTL Model
Checking. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp.
387–408. Springer, Heidelberg (2000)

7. Esparza, J., Schröter, C.: Net Reductions for LTL Model-Checking. In: Margaria,
T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 310–324. Springer,
Heidelberg (2001)

8. Haddad, S., Pradat-Peyre, J.-F.: New Efficient Petri Nets Reductions for Paral-
lel Programs Verification. In: Parallel Processing Letters, vol. 16(1), pp. 101–116.
World Scientific Publishing Company, Singapore (2006)

9. Valmari, A.: On-the-Fly Verification with Stubborn Sets. In: Courcoubetis, C. (ed.)
CAV 1993. LNCS, vol. 697, pp. 397–408. Springer, Heidelberg (1993)

10. Lamport, L.: What Good is Temporal Logic? In: Information Processing 1983:
Proceedings of the IFIO 9th World Computer Congress, pp. 657–668 (1983)



366 A. Rakow

11. Rakow, A.: Decompositional Petri Net Reductions. Technical Report (June 2008),
http://parsys.informatik.uni-oldenburg.de/~astrid3/ifm/reducts.pdf

12. Rakow, A.: Slicing Petri nets with an Application to Workflow Verification. In:
Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 436–447. Springer, Heidelberg (2008)

13. http://sparcs.kaist.ac.kr/~lacrimosa/algorithm/2003/CS300-09.ppt

14. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2005)

15. Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-safe nets. In: Shya-
masundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 326–337. Springer, Hei-
delberg (1993)

16. Girault, C., Valk, R.: Petri Nets for System Engineering: A Guide to Modeling,
Verification, and Applications. Springer, New York (2001)

17. Corbett, J.C.: Evaluating Deadlock Detection Methods for Concurrent Software.
IEEE Transactions on Software Engineering 22(3), 161–180 (1996)

18. http://parsys.informatik.uni-oldenburg.de/~astrid3/ifm/bm.tar.gz

19. Esparza, J., Heljanko, K.: Implementing LTL Model Checking with Net Unfold-
ings. Research Report A68, Laboratory for Theoretical Computer Science, Helsinki
University of Technology, Espoo, Finland, 29p. (March 2001)

20. Schröter, C., Khomenko, V.: Parallel LTL-X Model Checking of High-Level Petri
Nets Based on Unfoldings. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 109–121. Springer, Heidelberg (2004)

21. http://www.tcs.hut.fi/Software/prod/

http://parsys.informatik.uni-oldenburg.de/~astrid3/ifm/reducts.pdf
http://sparcs.kaist.ac.kr/~lacrimosa/algorithm/2003/CS300-09.ppt
http://parsys.informatik.uni-oldenburg.de/~astrid3/ifm/bm.tar.gz
http://www.tcs.hut.fi/Software/prod/


Author Index

Abbasi, Naeem 277
Abrial, Jean-Raymond 1
Al-Rawi, Bashar 322

Basin, David 1
Beneš, Nikola 307
Boiten, Eerke 183
Brim, Lubos 307
Bui, Thang H. 72
Bultan, Tevfik 167
Butler, Michael 20

Cabot, Jordi 40
Cavalcanti, Ana 151
Černá, Ivana 307
Clarisó, Robert 40
Colvin, Robert 118
Cook, Byron 39

Derrick, John 183
Dovland, Johan 215

Echtle, Klaus 200

Fraikin, Benôıt 337
Frappier, Marc 337

Garavel, Hubert 88
Garis, Ana G. 231
George, Chris 231
Gibbons, Jeremy 56
Grosu, Radu 322

Hasan, Osman 277
Hayes, Ian J. 118
Hoang, Thai Son 1
Huang, Xiaowan 322

Johnsen, Einar Broch 215

Kuruma, Hironobu 1

Lämmel, Ralf 246
Lang, Frédéric 88
Langari, Zarrin 261

Milhau, Jérémy 337

Nymeyer, Albert 72

Owe, Olaf 215

Pace, Gordon J. 292
Parisaca Vargas, Abigail 231

Rakow, Astrid 352
Riera, Daniel 40

Sakallah, Karem 322
Salaün, Gwen 167
Schneider, Gerardo 292
Schneider, Steve 103
Smolka, Scott 322
Sochor, Jiri 307
Sorea, Maria 200
Steffen, Martin 215
Stöcker, Jan 88

Tahar, Sofiène 277
Tarifa, S. Lizeth Tapia 231
Trefler, Richard 261
Treharne, Helen 103

Vařeková, Pavlina 307
Voss, Sebastian 200

Weiß, Benjamin 136
Wong, Peter Y.H. 56

Yang, Zijiang 322

Zaytsev, Vadim 246
Zeyda, Frank 151
Zimmerova, Barbora 307


	Preface
	Organization
	Table of Contents
	Invited Talks
	Developing Topology Discovery in Event-B
	Introduction
	Background on Event-B
	Topology Discovery
	Informal Description
	Requirements for Topology Discovery
	Environment Assumptions

	Formal Development
	The Context and Initial Model
	The First Refinement
	The Second Refinement
	The Third Refinement
	The Fourth Refinement
	The Fifth Refinement
	Sixth Refinement
	Partial Convergence Implies Stability
	Summary— Proof Statistics

	Conclusions
	References

	Decomposition Structures for Event-B
	Introduction
	Decomposing Atomicity
	Decomposing File Write
	Decomposing Machines
	Incremental Development of a Distributed File Transfer
	Abstract Model
	Breaking Atomicity
	Split Events to A Side and B Side
	Introduce Message Variables
	Separate Machines

	More about Event Refinement Diagrams
	Concluding
	References

	Taming the Unbounded for Hardware Synthesis

	Contributed Papers
	Verifying UML/OCL Operation Contracts
	Introduction
	Declarative Operations in OCL: Basic Concepts
	List of Correctness Properties
	Verifying Operations with Constraint Programming
	Translation of the UML Class Diagram
	Translation of OCL Invariants
	Translation of OCL Operation Contracts
	Translation of Correctness Properties

	Tool Support
	Related Work
	Conclusions and Further Work
	References

	Property Specifications for Workflow Modelling
	Introduction
	Property Specification Patterns
	Nondeterministic Interleaving
	Our Approach
	Assumptions and Structure of the Paper

	Refusal Traces Model
	Patterns of Behaviour
	Property Patterns
	Bounded Existence
	Revisiting the Example

	Conclusion
	References

	Formal Verification Based on Guided Random Walks
	Introduction
	Technical Background
	Symbolic Abstraction-Guided Model Checking
	Random-Walk Based Model Checking

	Random-Walk and Abstraction-Guided Algorithms
	Experimentation
	Which Is the ‘Fastest’ Random-Walk Based Algorithm?
	How Much Faster Is (Guided) Simulation Than Verification?

	Future Work and Conclusions
	References

	Parallel Processes with Real-Time and Data: The ATLANTIF Intermediate Format
	Introduction
	Overview of ATLANTIF
	Syntax
	Sequential Processes in ATLANTIF
	Concurrency in ATLANTIF

	Automated Translations to Verification Tools
	Conclusion
	References

	Changing System Interfaces Consistently: A New Refinement Strategy for CSP$\|$B
	Introduction
	CSP$\|$B Overview
	The Basic Refinement Framework without i/o
	Sequence Notation
	Implementation Mappings
	Refinement
	Refining B Machines
	Traces/Divergences

	The Refinement Framework with i/o
	Refining B Operations
	Examples Illustrating Aspects of Definition 11

	Trace Refinement with i/o
	Discussion and Related Work
	References

	CSP with Hierarchical State
	Introduction
	ReviewofCSP
	Syntax
	Operational Semantics

	CSP Extended with State
	Syntax
	Operational Semantics

	Combining Synchronisation and State-Based Actions
	Specification Commands
	Combining State and Synchronisations
	Example

	Related Work
	Comparison with CSP
	Other Work

	Conclusions
	References

	Predicate Abstraction in a Program Logic Calculus
	Introduction
	Related Work
	Program Logic
	Approach
	Rules
	Proof Search Strategy
	Predicate Abstraction Scheme
	Example
	Experiments
	Conclusions
	References

	Mechanised Translation of Control Law Diagrams into {\sf Circus}
	Introduction
	Claw Z and {\sf Circus}
	Extended Translation Strategy
	The {\sf Circus} Producer
	Design and Implementation
	Conclusions
	References

	Realizability of Choreographies Using Process Algebra Encodings
	Introduction
	Collaboration Diagrams
	Encoding into LOTOS
	Encoding Collaboration Diagrams into LOTOS
	Peer Generation
	Realizability
	Peer Generation, Extended

	Tool Support and Experiments
	Related Work
	Concluding Remarks
	References

	Modelling Divergence in Relational Concurrent Refinement
	Introduction
	Process Algebraic Based Refinement
	Notation
	Refinement Relations Ignoring Divergence
	Relations with Differing Interpretations of Divergence

	Relational Refinement
	A Partial Relational Model
	The Blocking Model of Totalised Relations
	Relational Concurrent Refinement
	Modelling Internal Actions

	Divergence Modelling
	Conclusions
	References

	SAL-Based Symbolic Scheduling in Time-Triggered Networks
	Introduction
	Scheduling in Time-Triggered Systems
	Translation to SAL
	Precedence Graph
	Basic Module
	Transitions

	Analysis and Results
	Results of Experiment Series

	Conclusion and Future Work
	References

	Incremental Reasoning for Multiple Inheritance
	Introduction
	Late Binding and Multiple Inheritance
	Name Conflicts and Healthiness
	The Binding of Method Calls and Fields

	Lazy Behavioral Subtyping
	The Inference System for Incremental Reasoning
	Tracking Behavioral Constraints
	Analysis Operations
	The Inference Rules

	Methodological Aspects
	Related Work
	Conclusion and Future Work
	References

	Model Checking LTL Formulae in RAISE with FDR
	Introduction
	Model Checking
	Traditional Model Checking and Model Checking by Refinement
	Model Checking in RSL
	Using FDR for RSL

	Translation
	The Syntax
	The Semantics

	Specification
	A Translation of LTL Formulae to CSP
	An Approach to Translate LTL Formulae from RSL to CSP

	Implementation of the Tool
	Efficiency

	Conclusions
	References

	An Introduction to Grammar Convergence
	Introduction
	Basics and Running Example
	Sources of Convergence
	Targets of Convergence

	BGF — BNF-Like Grammar Format
	Design Rationale
	BGF Concepts
	Self-representation

	Grammar Extraction
	Abstraction by Extraction
	Grammar Extractors
	Extraction Samples

	Programmable Grammar Transformations
	Transformation Properties
	Grammar Refactoring
	Grammar Editing

	Related Work
	Concluding Remarks
	References

	Application of Graph Transformation in Verification of Dynamic Systems
	Introduction
	Motivating Problem: Reversible Features in DFC
	Introduction to DFC
	Invariant Ordering Property of Reversible Features

	Graph Transformation System Modeling
	Verification through GTS
	Verifying an $AG(\phi)$ Property in a DFC Usage
	Related Work
	Conclusion
	References

	Formal Probabilistic Analysis of Stuck-at Faults in Reconfigurable Memory Arrays
	Introduction
	Related Work
	Probabilistic Analysis in HOL
	Formal Stuck-at Fault Memory Model
	Statistical Properties and Repairability Condition
	Average Number of Stuck-at Faults
	Variance of the Number of Stuck-at Faults
	Tail Distribution Bound for the Number of Stuck-at Faults
	Repairability Problem

	Conclusions
	References

	Challenges in the Specification of Full Contracts
	Introduction
	What Is Needed for a “Practical” Deontic Logic
	The Language of Discourse
	Combining Temporal and Deontic Notions
	Sequences
	Choice
	Repetition
	Other Issues

	Final Discussion
	References

	Partial Order Reduction for State/Event LTL
	Introduction
	Related Work
	Basic Definitions
	Motivation
	State/Event Stuttering Equivalence
	Characterization of Invariant SE-LTL Properties

	Partial Order Reduction
	Conclusion and Future Work
	References

	Dynamic Path Reduction for Software Model Checking
	Introduction
	DPR-Based Model Checking Algorithm
	Global Search Algorithm
	Weakest Precondition Computation
	Learning From Infeasible Sub-paths
	Pruning Unexplored Paths
	Path Reduction Algorithm

	Implicit Oracle Enumeration Using SAT
	Experimental Evaluation
	Related Work
	Conclusions
	References

	Automatic Generation of Error Messages for the Symbolic Execution of EB3 Process Expressions
	Introduction
	Background
	Symbolic Execution of EB^{3} Process Expression
	A Specification
	Error Types

	Identifying the Cause of an Execution Error
	Victims
	Witnesses
	Suspects
	Culprits

	Generating Messages for an Execution Error
	Messages from Culprits
	Required Action
	Information System Patterns

	Case Study
	Current State
	GeneratedMessages

	Conclusion
	References

	Decompositional Petri Net Reductions
	Introduction
	Preliminaries
	The Reduction Rules
	The Decomposition Algorithm
	Evaluation and Extensions
	Discussion and Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




