

Lecture Notes in Computer Science 5432
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Utz Roedig Cormac J. Sreenan (Eds.)

Wireless
Sensor Networks

6th European Conference, EWSN 2009
Cork, Ireland, February 11-13, 2009
Proceedings

13

Volume Editors

Utz Roedig
Lancaster University
InfoLab21
Lancaster, LA1 4WA, UK
E-mail: u.roedig@lancaster.ac.uk

Cormac J. Sreenan
University College Cork
Department of Computer Science
Kane Building, College Road, Cork, Ireland
E-mail: cjs@cs.ucc.ie

Library of Congress Control Number: 2008944097

CR Subject Classification (1998): C.2.4, C.2, F.2, D.1.3, D.2, E.1, H.4, C.3

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-642-00223-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00223-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12613724 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of EWSN 2009, the 6th European Confer-
ence on Wireless Sensor Networks. The conference took place in Cork, Ireland
during February 11–13, 2009. The aim of the conference was to discuss the latest
research results and developments in the field of wireless sensor networks.

EWSN received a total of 145 full paper submissions of which 23 were se-
lected for publication and presentation, yielding an acceptance rate of just under
16%. Paper submissions were received from 36 different countries in all parts of
the world. EWSN adopted a double-blind review process, where the identities of
the paper authors were also withheld from the reviewers. The selection process
involved well over 400 reviews with all papers being evaluated by at least three
independent reviewers. In addition, the reviews were discussed by the Technical
Program Committee after collecting all reviews and prior to making final de-
cisions. The final program covered a wide range of topics which were grouped
into six sessions: performance and quality of service, routing, coordination and
synchronization, data collection, security, evaluation and management. It in-
cluded theoretical and analytical approaches, together with empirical research
and protocol/system design and implementation.

The conference included a demo and poster session, co-chaired by Dirk Pesch
and Sajal Das, for which separate proceedings are available. In addition, the con-
ference included a keynote address by John Stankovic entitled “Wireless Sensor
Networks: Time for Real-Time?”, a panel discussion moderated by Jorge Pereira
on the topic “What Is Holding WSNs Back? Breakthroughs or Mindsets?”, a tu-
torial by Luca Mottola and Gian Pietro Picco on “Programming WSNs: From
Theory to Practice,” and a tutorial by Mario Alves on “WSN Standards and
COTS Landscape: Can We Get QoS and Calm Technology?” The Conference
was preceded by a workshop—the First European TinyOS Technology Exchange
(ETTX 2009).

We would like to thank everyone who contributed to EWSN 2009. In par-
ticular, we would like to thank the Technical Program Committee for their re-
views and input in forming the program. We also would like to thank the local
administration at University College Cork for their help with the conference plan-
ning, and last but certainly not least our sponsors—Cork Institute of Technology
(Platinum Sponsor), CONET Network of Excellence (Gold Sponsor), Tyndall
National Institute (Gold Sponsor) and University College Cork (Silver Sponsor).

February 2009 Utz Roedig
Cormac J. Sreenan

Organization

EWSN 2009, the 6th European Conference on Wireless Sensor Networks, took
place in Cork, Ireland, February 11–13, 2009. The conference was organized by
Lancaster University (UK) and University College Cork (Ireland).

Conference and Technical Program Committee Co-chairs

Utz Roedig Lancaster University, UK
Cormac J. Sreenan University College Cork, Ireland

Posters and Demos Co-chairs

Dirk Pesch Cork Institute of Technology, Ireland
Sajal K. Das University Texas at Arlington, USA

Publicity Chairs

Chenyang Lu Washington University in St. Louis, USA
Jorge Sa Silva University of Coimbra, Portugal
Rosalind Wang CSIRO, Australia

Program Committee

Tarek Abdelzaher University of Illinois, Urbana Champaign
Habib M. Ammari Hofstra University, New York
Michael Beigl TU Braunschweig
Jan Beutel ETH Zurich
Philippe Bonnet University of Copenhagen
Athanassios Boulis National ICT Australia
Torsten Braun University of Bern
Nirupama Bulusu Portland State University
Andrew Campbell Dartmouth College
Srdjan Capkun ETH Zurich
Mun Choon Chan National University of Singapore
Peter Corke CSIRO
Andrzej Duda Grenoble Informatics Laboratory
Deborah Estrin University of California at Los Angeles
Hannes Frey University of Paderborn
Mike Hazas Lancaster University
Sanjay Jha University of NSW

VIII Organization

Holger Karl University of Paderborn
Ralph Kling Crossbow
Srdjan Krco Ericsson Ireland
Koen Langendoen Delft University of Technology
Pedro Marron University of Bonn and Fraunhofer IAIS
Suman Nath Microsoft Research
Brendan O’ Flynn Tyndall National Institude
Joseph Paradiso MIT
Joe Polastre Sentilla
Nissanka Priyantha Microsoft Research
Kay Roemer ETH Zurich
Andreas Savvides Yale University
John Stankovic University of Virginia
Andreas Terzis Johns Hopkins University
Roberto Verdone University of Bologna
Thiemo Voigt Swedish Institute of Computer Science
Dirk Westhoff NEC Europe
Andreas Willig Technical University of Berlin
Adam Wolisz Technical University of Berlin

Additional Reviewers

Markus Anwander
Abdelmalik Bachir
Chiara Buratti
Shafique Chaudhry
Tony Chung
Virgini Corvino
Benoit Darties
Shane Eisenman
Jia Fang
Szymon Fedor
Matthias Gauger
Eugenio Giordano

Alexander Gluhak
Gertjan Halkes
Muhammad Haroon
Philipp Hurni
Umer Iqbal
Venkat Iyer
Nicholas Lane
Hong Lu
Andreas Meier
Emiliano Miluzzo
Daniel Minder
Prasant Misra

Benoit Ponsard
Silvia Santini
Robert Sauter
Chia-Yen Shih
Petcharat Suriyachai
Hwee-Xian Tan
Shao Tao
Fabrice Theoleyre
Nicolas Tsiftes
Markus Waelchli
Gerald Wagenknecht
Matthias Woehrle

Sponsors

Platinum: Cork Institute of Technology
Gold: CONET Network of Excellence, Tyndall National Institute
Silver: University College Cork

Table of Contents

Performance and Quality of Service

Area Throughput of an IEEE 802.15.4 Based Wireless Sensor
Network . 1

Chiara Buratti, Flavio Fabbri, and Roberto Verdone

Experimental Study of the Impact of WLAN Interference on IEEE
802.15.4 Body Area Networks . 17

Jan-Hinrich Hauer, Vlado Handziski, and Adam Wolisz

Flow-Based Real-Time Communication in Multi-Channel Wireless
Sensor Networks . 33

Xiaodong Wang, Xiaorui Wang, Xing Fu, Guoliang Xing, and
Nitish Jha

QoS Management for Wireless Sensor Networks with a Mobile Sink 53
Rob Hoes, Twan Basten, Wai-Leong Yeow, Chen-Khong Tham,
Marc Geilen, and Henk Corporaal

Routing

A Context and Content-Based Routing Protocol for Mobile Sensor
Networks . 69

Gianpaolo Cugola and Matteo Migliavacca

Dynamic Source Routing versus Greedy Routing in a Testbed Sensor
Network Deployment . 86

Hannes Frey and Kristen Pind

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks:
A Case for Gossip-Based Protocols . 102

Konrad Iwanicki and Maarten van Steen

Potentials of Opportunistic Routing in Energy-Constrained Wireless
Sensor Networks . 118

Gunnar Schaefer, François Ingelrest, and Martin Vetterli

Coordination and Synchronization

A Better Choice for Sensor Sleeping . 134
Ou Yang and Wendi Heinzelman

X Table of Contents

Distributed Task Synchronization in Wireless Sensor Networks 150
Marc Aoun, Julien Catalano, and Peter van der Stok

Solving the Wake-Up Scattering Problem Optimally 166
Luigi Palopoli, Roberto Passerone, Amy L. Murphy,
Gian Pietro Picco, and Alessandro Giusti

Sundial: Using Sunlight to Reconstruct Global Timestamps 183
Jayant Gupchup, Răzvan Musăloiu-E., Alex Szalay, and
Andreas Terzis

Data Collection

An Analytical Study of Reliable and Energy-Efficient Data Collection
in Sparse Sensor Networks with Mobile Relays . 199

Giuseppe Anastasi, Marco Conti, and Mario Di Francesco

MVSink: Incrementally Building In-Network Aggregation Trees 216
Leonardo L. Fernandes and Amy L. Murphy

The Minimum Number of Sensors – Interpolation of Spatial
Temperature Profiles in Chilled Transports . 232

Reiner Jedermann and Walter Lang

Security

Acoustic Sensor Network-Based Parking Lot Surveillance System 247
Keewook Na, Yungeun Kim, and Hojung Cha

Cooperative Intrusion Detection in Wireless Sensor Networks 263
Ioannis Krontiris, Zinaida Benenson, Thanassis Giannetsos,
Felix C. Freiling, and Tassos Dimitriou

SCOPES: Smart Cameras Object Position Estimation System 279
Ankur Kamthe, Lun Jiang, Matthew Dudys, and Alberto Cerpa

secFleck: A Public Key Technology Platform for Wireless Sensor
Networks . 296

Wen Hu, Peter Corke, Wen Chan Shih, and Leslie Overs

Evaluation and Management

Accurate Network-Scale Power Profiling for Sensor Network
Simulators . 312

Joakim Eriksson, Fredrik Österlind, Niclas Finne, Adam Dunkels,
Nicolas Tsiftes, and Thiemo Voigt

Table of Contents XI

DHV: A Code Consistency Maintenance Protocol for Multi-hop
Wireless Sensor Networks . 327

Thanh Dang, Nirupama Bulusu, Wu-chi Feng, and Seungweon Park

Sensornet Checkpointing: Enabling Repeatability in Testbeds and
Realism in Simulations . 343

Fredrik Österlind, Adam Dunkels, Thiemo Voigt, Nicolas Tsiftes,
Joakim Eriksson, and Niclas Finne

SRCP: Simple Remote Control for Perpetual High-Power Sensor
Networks . 358

Navin Sharma, Jeremy Gummeson, David Irwin, and
Prashant Shenoy

Author Index . 375

Area Throughput of an IEEE 802.15.4 Based
Wireless Sensor Network

Chiara Buratti, Flavio Fabbri, and Roberto Verdone

WiLab - DEIS at University of Bologna,
V.le Risorgimento, 2

I-40136 Bologna, Italy
{c.buratti,flavio.fabbri,roberto.verdone}@unibo.it

Abstract. In this paper we present a mathematical model to evaluate
the performance of an IEEE 802.15.4 based multi-sink Wireless Sensor
Network (WSN). Both sensors and sinks are assumed to be Poisson dis-
tributed in a given finite domain. Sinks send periodic and
synchronous queries, and each sensor transmits its sample to a sink,
selected among those that are audible. The IEEE 802.15.4 Multiple Ac-
cess Control (MAC) protocol is used by sensors to access the channel:
both Beacon-Enabled and Non Beacon-Enabled modes are considered.
Our aim is to describe how the Area Throughput, defined as the amount
of samples per unit of time successfully transmitted to the sinks from
the given area, depends on the density of sensors and the query inter-
val. We jointly account for MAC issues (i.e. packet collisions) and con-
nectivity aspects (i.e. network topology, power losses and radio channel
behaviour). Performance is evaluated by varying the traffic offered to
the network (i.e. the number of sensors deployed), the packet size, the
number of Guaranteed Time Slots allocated, and the Superframe Or-
der. A comparison between results obtained in the Beacon-Enabled and
the Non Beacon-Enabled cases is also provided, showing how the Area
Throughput can be optimised.

1 Introduction

Many applications of Wireless Sensor Networks (WSNs) deal with the estimation
of spatial/temporal random processes [1], [2]. Sensors are deployed in the target
area, which is observed through query/respond mechanisms: queries are peri-
odically generated by the application, and sensor nodes react by sampling and
sending data to a centralised unit. By collecting samples taken from different lo-
cations and observing their temporal variations, estimates of the target random
process realisation can be produced [3]. Good estimates require sufficient data
taken from the area. Often, the data must be sampled from a specific portion
of space, even if the sensor nodes are distributed over a larger area. Therefore,
only a location-driven subset of sensor nodes must respond to queries. The aim
of the query/response mechanism is then to acquire the largest possible number
of samples from the area.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 C. Buratti, F. Fabbri, and R. Verdone

The data taken from the area are transmitted to the unit by means of wireless
links connecting sensors to sinks, which collect the samples and forward them
to the unit through a proper network. If few sensor nodes are deployed and the
target area is small, a single sink can be used. When the number of sensors or
the target area are large, they are often organised in clusters; one sink per cluster
forwards the queries to sensors, and collects the responses.

Sinks are sometimes specifically deployed in optimised and planned locations
with respect to sensors. However, opportunistic exploitation of the presence of
sinks, connected to the centralised unit through some mobile radio interface,
is an option in some cases [4]. Under these circumstances, many sinks can be
present in the monitored space, but their positions are unknown and unplanned;
therefore, achievement of a sufficient level of samples is not guaranteed, because
the sensor nodes might not reach any sinks (and thus be isolated) due to the
limited transmission range. In such an uncoordinated environment, network con-
nectivity is a relevant issue, and it is basically dominated by the randomness of
radio channel and the density of sinks.

Being the acquisition of samples from the target area the main issue for the
application scenario considered, we define a new metric for studying the behavior
of the WSN, namely the Area Throughput, denoting the amount of samples per
unit of time successfully transmitted to the centralised unit, originating from
the target area. We evaluate the Area Throughput in this paper, assuming that
sinks forward the data collected to the centralized unit with no losses: therefore,
only the WSN (sensors and sinks) is modelled. As expected, the Area Through-
put is larger if the density of sensor nodes is larger, but, on the other hand,
if a contention-based MAC protocol is used, the density of nodes significantly
affects the ability of the protocol to avoid packet collisions (i.e. simultaneous
transmissions from separate sensors towards the same sink). If, in fact, the num-
ber of sensor nodes per cluster is very large, collisions and backoff procedures
can make data transmission impossible under time-constrained conditions, and
the samples taken from sensors do not reach the sinks and, consequently, the
centralised unit. Therefore, the optimisation of the Area Throughput requires
proper dimensioning of the density of sensors, in a framework model where both
MAC and connectivity issues are considered.

We assume sensors transmit their samples to sinks through an IEEE 802.15.4
air interface. IEEE 802.15.4 [5] is a short-range wireless technology intended
to provide applications with relaxed throughput and latency requirements in
wireless Personal Area Networks (PANs). In our scenario, sinks will act as PAN
coordinators, periodically transmitting queries to sensors and waiting for replies.
The 802.15.4 standard offers two types of channel access mechanisms: Beacon
and Non Beacon-Enabled. The latter case uses unslotted CSMA/CA (Carrier
Sensing Multiple Access with Collision Avoidance), whereas in the former oper-
ation mode a slotted CSMA/CA algorithm and a superframe structure managed
by the PAN coordinator, is used. According to the standard, the different PAN
coordinators, and therefore the PANs, use different frequency channels (see the
scan functionality performed by the PAN coordinator for establishing a PAN).

Area Throughput of an IEEE 802.15.4 Based Wireless Sensor Network 3

A

sensor

sink

Fig. 1. The Reference Scenario considered

Therefore no collisions may occur between nodes belonging to different PANs;
however, nodes belonging to the same cluster, will compete to try to transmit
their packets to the sink.

We consider here an infinite area where sensors and sinks are uniformly dis-
tributed at random. Then, we define a specific portion of space, of finite size
and given shape (without loss of generality, we consider a square), as the target
area; both the number of sensors and sinks are then Poisson distributed in such
area (see Figure 1).

We define as Offered Load the amount of samples available from the sensors
deployed in the area, per unit time. The basic objective of this paper is thus to
determine how the Area Throughput depends on the Offered Load and the para-
meters of the IEEE 802.15.4 MAC protocol used. Both MAC and connectivity
issues are taken into account under a joint approach.

In general terms, we might say that we aim at defining a picture showing how
throughput varies with load, as done for many years in the literature for different
types of MAC protocols: here, we also include connectivity and the plurality of
sinks into account. The aim of this paper is to compare the Area Throughput
obtained in the Beacon-Enabled and Non Beacon-Enabled modes, as a function
of all MAC parameters, the density of nodes and the query interval. The study
is completely performed through mathematical analysis.

The rest of the paper is organised as follows. The following Section deals with
related works, Section 3 introduces the scenario and the link model. In Section
4 the Area Throughput is evaluated, by computing the success probability for the
transmission of a packet accounting for connectivity and MAC issues. In Section 5
the IEEE 802.15.4 MAC protocol model for the Beacon- and Non Beacon-Enabled
cases is introduced, for the evaluation of the success probability related to MAC.
Finally, in Section 6 and 7 numerical results and conclusions are presented.

2 Related Works

Many works in the literature are related to the modelling of different MAC
protocols, and also to connectivity models, but very few papers jointly consider
the two issues under a mathematical approach. Some analysis of the two issues

4 C. Buratti, F. Fabbri, and R. Verdone

are performed through simulations: as examples, [6] related to ad hoc networks,
and [7], to WSNs. Many papers devoted their attention to connectivity issues of
wireless ad-hoc and sensor networks in the past (e.g., [8]). Single-sink scenarios
have attracted more attention so far. However, an example of multi-sink scenario
can be found in [9]. All the previously cited works do not account for MAC issues.

Concerning the analytical modelling of the IEEE 802.15.4 MAC protocol few
works devoted their attention to Non Beacon-Enabled mode [10]; most of the
analytical models are related to Beacon-Enabled networks [11,12,13,14]. In [10],
the authors try to model the unslotted CSMA/CA protocol for non beacon-
enabled networks, but they do not capture correctly the protocol, because they
include in the Markov chain two subsequent sensing phases, and not one, as fixed
in the Standard (see Section 5).

[11] fails to match simulation results [12], as the authors use the same Markov
formulation and assumptions made by Bianchi in [15], where the 802.11 MAC
protocol is considered. A better, even if similar, model is proposed in [13], where,
however, the sensing states are not correctly captured by the Markov chain.
In [12] the main gaps of the previous models are overcome. However, in all the
previous works, the probability to find the channel busy is evaluated regardless
of the backoff stage in which the node is. Our model, instead, captures the
different probabilities at the different backoff stages. This leads to a better match
between simulation and analytical model results (see [17,18,19]). Moreover, the
aforementioned models assume that nodes always (or at least with a certain
probability) have a packet to be transmitted. In this case, when a node succeeds
in transmitting its packet, it will restart the backoff algorithm, possibly with
a certain probability. In our model, instead, nodes transmit only one packet
per received query, according to the applications considered. Finally, all the
above cited works study the asymptotic behavior of the network, that is the
behavior of the system at the equilibrium conditions, evaluating the stationary
probabilities, obtained when time, t, approaches infinite (t → ∞). Our analysis,
instead, evaluates the statistical distribution of some metrics over time, starting
from the reception of the query sent by the sink.

The model proposed here is based on the following previous works. In [16] the
authors presented a mathematical model for the evaluation of the degree of con-
nectivity of a multi-sink WSN in unbounded and bounded domains. [17, 18] pro-
vide a mathematical model to derive the success probability for the transmission
of a packet in an IEEE 802.15.4 single-sink scenariowhen the Non Beacon-Enabled
mode isused; in [19] themathematicalmodel for theIEEE802.15.4Beacon-Enabled
mode, is provided. Finally, in [20] the concept of Area Throughput has been in-
troduced, and the Non Beacon-Enabled mode has been considered as an example
case. All these contributions are combined here to achieve the goal of this paper.

3 Assumptions and Reference Scenario

The reference scenario considered consists of an area of finite size and given
shape, where sensors and sinks are both distributed according to a homogeneous

Area Throughput of an IEEE 802.15.4 Based Wireless Sensor Network 5

Poisson Point Process (PPP). We denote as ρs[m−2] and ρ0[m−2] the sensors
and sinks densities, respectively, and with A the area of the target domain.
Denoting by k the number of sensor nodes in A, k is Poisson distributed with
mean k̄ = ρs · A and p.d.f.

gk =
k̄ke−k̄

k!
. (1)

We also denote as I = ρ0 · A the average number of sinks in A.
We assume that sinks periodically send queries to sensors and wait for replies.

In case a sensor node receives a query from more than one sink, it selects the one
providing the largest received power and responds to it. Upon reception of the
query, each node will take one sample from the environment and will start the
CSMA/CA-based algorithm (slotted and unslotted, depending on the modality
selected), to try to transmit the data to the sink, through a direct link. We
assume that each node transmits a packet having size D·10 Bytes, with D being
a positive integer. Since an IEEE 802.15.4 air interface is considered, the time
needed to transmit a packet is equal to D · T , where T = 320 μsec, as a bit rate
of 250 kbit/sec is used. Moreover, we set the size of the query equal to 60 Bytes.

We denote as fq = 1/Tq the frequency of the queries transmitted by the sinks,
being Tq is the time interval between two consecutive queries.

3.1 The Link Model

The link model that we exploit accounts for the power loss due to propagation
effects including both a distance-dependent path loss and the random channel
fluctuations caused by possible obstructions. Specifically, a direct radio link be-
tween two nodes is said to exist if L < Lth, where L is the power loss and
Lth represents the maximum loss tolerable by the communication system. In
that case, the two nodes are said to be ”audible”. The threshold Lth depends
on transmit power and receiver sensitivity. The power loss in decibel scale at
distance d is expressed in the following form

L = k0 + k1 ln d + s, (2)

where k0 and k1 are constants, s is a Gaussian r.v. with zero mean, variance
σ2, which represents channel fluctuations. This channel model was also adopted
in [21]. By considering an average transmission range as in [21], an average
connectivity area of the sensor can be defined as

Aσ = πe
2(Lth−k0)

k1 e
2σ2

k2
1 . (3)

4 Evaluation of the Area Throughput

The Area Throughput is mathematically derived through an intermediate step:
we first consider the probability of successful data transmission by an arbitrary
sensor node, when k nodes are present in the queried area. Then, the overall
Area Throughput is evaluated based on this result.

6 C. Buratti, F. Fabbri, and R. Verdone

4.1 Joint MAC/Connectivity Probability of Success

Let us consider an arbitrary sensor node that is located in the queried area
A at a certain time instant. We aim at computing the probability that it can
connect to one of the sinks deployed in A and successfully transmit its data
sample to the infrastructure. Such an event is clearly related to connectivity
issues (i.e., the sensor must employ an adequate transmitting power in order
to reach the sink and not be isolated) and to MAC problems (i.e., the number
of sensors which attempt at connecting to the same sink strongly affects the
probability of successful transmission). For this reason, we define Ps|k(x, y) as
the probability of successful transmission conditioned on the overall number,
k, of sensors present in the queried area, which also depends on the position
(x, y) of the sensor relative to a reference system with origin centered in A. This
dependence is due to the well-known border effects in connectivity [8].

In particular, we assume

Ps|k(x, y) = En[PMAC(n) · PCON (x, y)]
= En[PMAC(n)] · PCON (x, y), (4)

with Ex being the expectation operator with respect to variable x and where we
separated the impact of connectivity and MAC on the transmission of samples.
A packet will be successfully received by a sink if the sensor node is connected
to at least one sink and if no MAC failures occur. We now analyze the two terms
that appear in (4).

PCON (x, y) represents the probability that the sensor is not isolated (i.e., it
receives a sufficiently strong signal from at least one sink), which is computed
in [16] for a scenario analogous to the one considered here (e.g., squared and
rectangular areas). This probability decreases as the sensor approaches the bor-
ders (border effects). Specifically, since the position of the sensor is in general
unknown, Ps|k(x, y) of (4) can be deconditioned as follows:

Ps|k = Ex,y[Ps|k(x, y)]
= Ex,y[PCON (x, y)] · En[PMAC(n)]. (5)

It is also shown in [16] that border effects are negligible when Aσ < 0.1A. In
this case the following holds:

PCON (x, y) � PCON = 1 − e−μsink , (6)

where μsink = ρ0Aσ = IAσ/A is the mean number of audible sinks on an
infinite plane from any position [21]. Throughout this paper we assume that
connectivity is not affected by border effects. However, in case it is, the approach
remains completely valid: only the computation of Ex,y[PCON (x, y)] requires
greater efforts (see [16]).

PMAC(n), n ≥ 1, is the probability of successful transmission when n − 1
interfering sensors are present. It accounts for MAC issues and is treated in
Section 5 for the particular case of the IEEE 802.15.4 standard, even though the

Area Throughput of an IEEE 802.15.4 Based Wireless Sensor Network 7

model is applicable to any MAC protocol. For now we only emphasize that it is
a monotonic decreasing function of the number, n, of sensors which attempt to
connect to the same serving sink. This number is in general a random variable
in the range [0, k]. In fact, note that in (4) there is no explicit dependence on
k, except for the fact that n ≤ k must hold. Moreover in our case we assume
1 ≤ n ≤ k, as there is at least one sensor competing for access with probability
PCON (6).

In [22], Orriss et al. showed that the number of sensors uniformly distributed
on an infinite plane that hear one particular sink as the one with the strongest
signal power (i.e., the number of sensors competing for access to such sink) is
Poisson distributed with mean

n̄ = μs
1 − e−μsink

μsink
, (7)

with μs = ρsAσ being the mean number of sensors that are audible by a given
sink. Such a result is relevant toward our goal even though it was derived on the
infinite plane. In fact, when border effects are negligible (i.e., Aσ < 0.1A) and k
is large, n can still be considered Poisson distributed. The only two things that
change are:

– n is upper bounded by k (i.e., the pdf is truncated)
– the density ρs is to be computed as the ratio k/A [m−2], thus yielding μs =

k Aσ

A .

Therefore, we assume n ∼ Poisson(n̄), with

n̄ = n̄(k) = k
Aσ

A

1 − e−μsink

μsink
= k

1 − e−IAσ/A

I
. (8)

Finally, by making the average in (5) explicit and by means of (6), we get

Ps|k = (1 − e−IAσ/A) · 1
M

k∑

n=1

PMAC(n)
n̄ne−n̄

n!
, (9)

where

M =
k∑

n=1

n̄ne−n̄

n!
(10)

is a normalizing factor.

4.2 Area Throughput

The amount of data samples generated by the network as response to a given
query is equal to the number of sensors, k, that are present and active when the
query is received. As a consequence, the average number of data samples-per-
query generated by the network is the mean number of sensors, k̄, in the queried
area.

8 C. Buratti, F. Fabbri, and R. Verdone

Now denote by G the Offered Load, that is the average number of data samples
generated per unit of time, given by

G = k̄ · fq = ρs · A · 1
Tq

[samples/sec]. (11)

From (11) we have k̄ = GTq.
The average amount of data received by the infrastructure per unit of time

(Area Throughput), S, is given by:

S =
+∞∑

k=0

S(k) · gk [samples/sec], (12)

where S(k) = k
Tq

Ps|k, gk as in (1) and Ps|k as in (9).
Finally, by means of (9), (10) and (11), equation (12) may be rewritten as

S =
1 − e−IAσ/A

Tq

·
+∞∑

k=1

∑k
n=1 PMAC(n) n̄ne−n̄

n!∑k
n=1

n̄ne−n̄

n!

· (GTq)ke−GTq

(k − 1)!
. (13)

5 The IEEE 802.15.4 MAC Protocol

In this Section we introduce the two mathematical models used to derive the
success probability, PMAC(n), when an IEEE 802.15.4 single-sink scenario, is
considered. Both Beacon-Enabled and Non Beacon-Enabled modes are studied
here (see the standard [5]).

In [17, 18] an analytical model of the IEEE 802.15.4 Non Beacon-Enabled
mode, was presented. For details on the protocol we refer to the standard as
well. Here, we just want to underline that a maximum number of times a node
can try to access the channel and perform the backoff algorithm, NBmax = 4,
is imposed. According to this, there will be a maximum delay affecting a packet
transmission. In [17, 18] it is shown that, in case nodes transmit packets of size
D ·10 Bytes, the maximum interval of time between the instant at which a node
receives the query and the instant at which the sink receives the end of the
packet is equal to (120+D) ·T . Moreover, since the time needed to transmit the
query is equal to 6 · T (being the query size 60 Bytes), the maximum delay with
which the sink may receive a packet will be equal to (126 + D) · T . Therefore,
to ensure that all nodes have finished the CSMA/CA algorithm, the sink should
set Tq ≥ (126 + D) · T . However, no constraints are imposed on the values of
Tq in this modality, therefore lower values of Tq should be used (see Figure 2,
above part). If a node receives a new query, when it is still trying to access the
channel, the old packet will be lost, and the node will take a new sample and
will start again the CSMA/CA algorithm.

Area Throughput of an IEEE 802.15.4 Based Wireless Sensor Network 9

For what concerns the Beacon-Enabled mode, the model described in [19] is
used here to derive PMAC(n). According to this mode, the access to the channel is
managed through a superframe, starting with a packet, called beacon, transmit-
ted by the sink. In our scenario, the beacon includes the query. The superframe
is composed of 16 slots and is divided into two parts: a Contention Access Period
(CAP), during which nodes use a slotted CSMA/CA, and a Contention Free Pe-
riod (CFP), containing a number of Guaranteed Time Slots (GTSs), that can be
allocated by the sink to specific nodes (see Figure 2, below part). We denote as
NGTS the number of GTSs allocated by the sink to specific nodes in the PAN.

The superframe duration, SD, depends on the value of an integer parameter
ranging from 0 to 14, called Superframe Order, SO, and given by:

SD = 16 · 60 · 2SOTs ; (14)

where 60 · 2SOTs is the slot size, and Ts=16μsec is the symbol time. Since the
queries coincide with beacons in this case, Tq must be equal to SD. Therefore, Tq

may assume only a finite set of values, depending on SO. Note that by increasing
SO, the time nodes are given to try to access the channel also increases, but the
query frequency is smaller. The sink may allocate up to seven GTSs, and a GTS
may occupy more than one slot. However, a sufficient portion of the superframe
must remain for contention-based access. The minimum CAP duration is equal
to 440 Ts. In case a node accessing the channel through the CSMA/CA algorithm
does not succeed in accessing the channel by the end of the CAP portion, its
packet will be lost.

By changing the packet size (i.e., D) and the slot size (i.e., SO), the number
of slots occupied by each GTS and the maximum number of GTSs that can
be allocated, vary. As an example, when D = 2 the packet occupies one slot,
whatever SO and, therefore, the sink may allocate up to seven GTSs. In the
case D = 10, instead, a packet occupies four slots when SO = 0, two slots when
SO = 1, and one slot when SO ≥ 2. Therefore, a maximum number of two, six
and seven GTSs may be allocated in the three cases, respectively.

In this Section we show some results obtained through our mathematical
model, considering a single-sink scenario, where n sensors transmit data to the
sink through a direct link, with no connectivity problems. A finite state transition
diagram is used to model sensor nodes states, in both cases Beacon- and Non
Beacon-Enabled mode. Through the analysis of this diagram the probability
that a given sensor successfully transmits its packet, PMAC(n), is evaluated. We
do not report here the expression of this probability, owing to its complexity,
but we refer to [18, 17] for the Non Beacon-Enabled case and to [19] for the
Beacon-Enabled case, where details on formulae are given and where a validation
of the model, through comparison with simulations, is provided for n ≤ 50.
The probability PMAC(n) obtained in these works, can be used in (13) for the
evaluation of S.

In Figures 3 and 4 PMAC as functions of n, for different values of SO, having
fixed D = 2 and D = 10, are shown, respectively. The cases of no GTSs allocated
and NGTS equal to the maximum number of GTSs allocable, are considered. As

10 C. Buratti, F. Fabbri, and R. Verdone

explained above, this maximum number depends on the values of D and SO.
In these Figures the Beacon-Enabled mode is analysed. As we can see, PMAC

decreases monotonically (for n > 1 when NGTS = 0 and for n > NGTS when
NGTS > 0), by increasing n, since the number of sensors competing for the
channel increases. In both Figures, once we fix SO, by increasing NGTS , PMAC

increases, since less nodes have to compete for the channel. Moreover, once we
fix NGTS , by increasing SO, PMAC gets larger, since increases the CAP size and
nodes have more time to try to access the channel.

In Figure 5 PMAC(n) as functions of n, for different values of D and Tq, is
shown, considering a Non Beacon-Enabled network. As we can see, a decrease
of Tq, results in a decreasing of PMAC , since nodes have less time to access the
channel. However, the decreasing of Tq brings to an increasing of the queries
frequency, and this impacts on the Area Throughput (see Section 6).

Beacon/
Query CFPCAP

G
T
S

G
T
S

G
T
S

G
T
S

G
T
S

G
T
S

G
T
S

SD = Tq

Beacon/
Query

NGTS GTSs allocated

CSMA/CA

Non BE mode

Query yreuQyreuQ

CSMA/CA CSMA/CA

BE mode

Tq Tq

Fig. 2. Above part: The IEEE 802.15.4 Non Beacon-Enabled mode. Below part: The
IEEE 802.15.4 Beacon-Enabled mode.

6 Numerical Results

In this Section the behavior of the Area Throughput as a function of the Of-
fered Load, G, for the Beacon- and the Non Beacon-Enabled modes, considering
different values of D, SO, NGTS , Tq and different connectivity levels, is shown.
Validation of the framework via simulation is not reported here for a matter of
space. However, the validation of connectivity and MAC models separately may
be found in [23] and [18, 19], respectively.

Let us consider a square domain, having area A = 106 m2, where an av-
erage number of 10 sinks are distributed according to a PPP (I = 10). We
also set k0 = 40 dB, k1 = 13.03, σ = 4 dB (the values are taken from ex-
perimental measurements made on the field with Freescale devices [24]) and
Lth = 107 dB.

Area Throughput of an IEEE 802.15.4 Based Wireless Sensor Network 11

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

P
M

A
C

SO=0 SO=1

SO=2

SO=0, N
GTS

=0

SO=0, N
GTS

=7

SO=1, N
GTS

=0

SO=1, N
GTS

=7

SO=2, N
GTS

=0

SO=2, N
GTS

=7

Fig. 3. PMAC(n) as a function of n, in the Beacon-Enabled case, for different values
of SO and NGTS , having fixed D = 2

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

P
M

A
C

SO=0
SO=1

SO=2

SO=0, N
GTS

=0

SO=0, N
GTS

=2

SO=1, N
GTS

=0

SO=1, N
GTS

=6

SO=2, N
GTS

=0

SO=2, N
GTS

=7

Fig. 4. PMAC(n) as a function of n, in the Beacon-Enabled case, for different values
of SO and NGTS , having fixed D = 10

In Figures 6 and 7, S as a function of G, when varying SO, NGTS and Tq,
for D = 2 and D = 10, is shown, respectively. The input parameters that we
entered give a connection probability PCON = 0.89. Both Beacon- and Non
Beacon-Enabled modes are considered. In both Figures we note that, once SO is
fixed (Beacon-Enabled case), an increase of NGTS results in an increment of S,
since PMAC increases. Moreover, once NGTS is fixed, there exists a value of SO

12 C. Buratti, F. Fabbri, and R. Verdone

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

P
M

A
C

D=10, Tq=136T
D=10, Tq=76T
D=10, Tq=56T
D=2, Tq=128T
D=2, Tq=38T
D=2, Tq=58T

Fig. 5. PMAC(n) as a function of n, in the Non Beacon-Enabled case, for different
values of Tq and D

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

2000

4000

6000

8000

10000

12000

G [samples/sec]

S
(G

)
[s

am
pl

es
/s

ec
]

SO=0

SO=1 SO=2

BE S0=0, N
GTS

=0

BE S0=0, N
GTS

=7

BE S0=1, N
GTS

=0

BE S0=1, N
GTS

=7

BE S0=2, N
GTS

=0

BE S0=2, N
GTS

=7

Non BE Tq=128T
Non BE Tq=38T
Non BE Tq=58T

Fig. 6. S as a function of G, for the Beacon- and Non Beacon-Enabled cases, by varying
SO, NGTS and Tq, having fixed D = 2

maximising S. When D = 2, an increase of SO results in a decrement of S since,
even though PMAC gets greater, the query interval is longer and, therefore, the
number of samples per second received by the sink decreases. On the other hand,
when D = 10 and all possible GTSs are allocated, the optimum value of SO is
1. This is due to the fact that, having large packets, when SO = 0 too many
packets are lost, owing to the short duration of the superframe. However, when

Area Throughput of an IEEE 802.15.4 Based Wireless Sensor Network 13

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1000

2000

3000

4000

5000

6000

G [samples/sec]

S
(G

)
[s

am
pl

es
/s

ec
]

SO=0SO=1

SO=2

BE S0=0, N
GTS

=0

BE S0=0, N
GTS

=2

BE S0=1, N
GTS

=0

BE S0=1, N
GTS

=6

BE S0=2, N
GTS

=0

BE S0=2, N
GTS

=7

Non BE Tq=136T
Non BE Tq=76T
Non BE Tq=56T

Fig. 7. S as a function of G, for the Beacon- and Non Beacon-Enabled cases, by varying
SO, NGTS and Tq, having fixed D = 10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

G [samples/sec]

S
(G

)
[s

am
pl

es
/s

ec
]

D=2, Tq=128T

D=10, Tq=136T

Pcon=0.89
Pcon=1
Pcon=0.15

Fig. 8. S as a function of G, in the Non Beacon-Enabled case, for different values of
D and PCON , having fixed Tq to the maximum delay

NGTS = 0 the best case is, once again, SO = 0, since in this case MAC losses are
approximately the same obtained in the case of SO = 1 (see Figure 4), which,
however, brings to a higher query interval. In conclusion, we can deduce that the
use of GTSs is always advantageous, and that there exists an optimum value of
SO maximising S, which depends on D and NGTS .

14 C. Buratti, F. Fabbri, and R. Verdone

Concerning the Non Beacon-Enabled case, in both Figures we note that, by
decreasing Tq, S gets larger even though PMAC decreases, since, once again, the
MAC losses are balanced by larger values of fq.

By comparison of Figures 6 and 7, we note that, once the Offered Load, G, is
fixed, S gets notably smaller when D increases. S, in fact, is expressed in terms
of samples/sec received by the sink, and not in Bytes/sec. Therefore, once Tq is
fixed, by increasing D, PMAC gets smaller. On the other hand, by increasing D,
the maximum value of S is reached for lower values of G. This means that, when D
is small, the maximum value of S is reached at the cost of deploying more sensors.

Finally, we show the effects of connectivity on the Area Throughput. When
PCON is less than 1, only a fraction of the deployed nodes has a sink in its
vicinity. In particular, an average number, k̄ = PCONGTq/I, of sensors compete
for access at each sink. In Figure 8 we consider the Non Beacon-enabled case
with D = 2, Tq = 128T and D = 10, Tq = 136T . When D = 10, Tq = 136T , for
high Offered Loads the area throughput tends to decay, since packet collisions
dominate. Hence, by moving from PCON = 1 to PCON = 0.89, we observe a
slight improvement due to the fact that a smaller average number of sensors
tries to connect to the same sink. Conversely, when D = 2, Tq = 128T , S is
still increasing with G, then by moving from PCON = 1 to PCON = 0.89, we
just reduce the useful traffic. Furthermore, when PCON = 0.15, the Offered Load
is very light, so that we are working in the region where PMAC(D = 2, Tq =
128T) < PMAC(D = 10, Tq = 136T) (see Fig. 5), resulting in a slightly better
performance of the case with D = 2. Thus we conclude that the effect of lowering
PCON results in a stretch of the curves reported in the previous plots.

7 Conclusions

An IEEE 802.15.4 standard compliant multi-sink WSN where sensor nodes trans-
mit their packets to a sink selected among many, is studied. A mathematical
framework is developed to evaluate the Area Throughput, that is the amount of
samples per second successfully transmitted to the sinks. The behavior of the
Area Throughput for Beacon-Enabled and Non Beacon-Enabled networks, by
considering different packet sizes, number of GTSs allocated, and queries fre-
quency, is shown. Results show that the use of GTSs improves performance of
the Beacon-Enabled mode and that thanks to these GTSs this mode outper-
forms the Non Beacon-Enabled mode. Moreover, results show that there exists
a value of SO maximising the Area Throughput and this value depends on D
and NGTS. Finally, the effects of the connectivity on the Area Throughput are
evaluated. Results show that when connectivity decreases, the number of sensors
that must be deployed to obtain large Area Throughput, increases.

Acknowledgment

This work was supported by the European Commission in the framework of
the FP7 Network of Excellence in Wireless COMmunications NEWCOM++
(contract n. 216715).

Area Throughput of an IEEE 802.15.4 Based Wireless Sensor Network 15

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor
Networks. IEEE Communications Magazine, 102–114 (2002)

2. Verdone, R., Dardari, D., Mazzini, G., Conti, A.: Wireless sensor and actuator
networks, 1st edn. Elsevier, Amsterdam (2008)

3. Dardari, D., Conti, A., Buratti, C., Verdone, R.: Mathematical evaluation of en-
vironmental monitoring estimation error through energy-efficient Wireless Sensor
Networks. IEEE Transaction on Mobile Computing 6(7), 790–803 (2007)

4. Buratti, C., Verdone, R.: A Hybrid Hierarchical Architecture: From a Wireless
Sensor Network to the Fixed Infrastructure. In: IEEE EW 2008, Prague, Czech
Republic, pp. 22–25 (June 2008)

5. IEEE 802.15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE,
Wei Ye (2003)

6. Stuedi, P., Chinellato, O., Alonso, G.: Connectivity in the presence of Shadowing
in 802.11 Ad Hoc Networks. In: IEEE WCNC 2005 (2005)

7. Buratti, C., Verdone, R.: On the of Cluster Heads minimising the Error Rate for a
Wireless Sensor Network using a Hierarchical Topology over IEEE 802.15.4. IEEE
PIMRC 2006, Helsinki, FI, September 11-14 (2006)

8. Bettstetter, C.: On the minimum node degree and connectivity of a wireless mul-
tihop network. In: Proc. ACM Symp. on Mobile Ad Hoc Networks and Comp.
(Mobihoc) (June 2002)

9. Vincze, Z., Vida, R., Vidacs, A.: Deploying multiple sinks in multi-hop wireless
sensor networks. In: IEEE International Conference on Pervasive Secrices, July
15-20, 2007, pp. 55–63 (2007)

10. Kim, T.O., Park, J.S., Kim, K.J., Choi, B.D.: Analytical Model of IEEE 802.15.4
Non-beacon Mode with Download Traffic by the Piggyback Methods. In: Interna-
tional Federation for Information Processing 2007, pp. 435–444 (2007)

11. Misic, J., Shafi, S., Misic, V.B.: Maintaining Reliability Through Activity Man-
agement in an 802.15.4 Sensor Cluster. IEEE Transactions on Vehicular Technol-
ogy 55(3), 779–788 (2006)

12. Pollin, S., Ergen, M., Ergen, S.C., Bougard, B., Van der Pierre, L., Catthoor, F.,
Moerman, I., Bahai, A., Varaiya, P.: Performance Analysis of Slotted Carrier Sense
IEEE 802.15.4 Medium Access Layer. In: Proceeding of GLOBECOM 2006, San
Francisco, California, November 27 - December 1 (2006)

13. Park, T.R., Kim, T.H., Choi, J.Y., Choi, S., Kwon, W.H.: Throughput and en-
ergy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. IEEE Electronics
Letters 41(18), 1017–1019 (2005)

14. Chen, Z., Lin, C., Wen, H., Yin, H.: An analytical model for evaluating IEEE
802.15.4 CSMA/CA protocol in Low rate wireless application. In: Proceedings of
IEEE AINAW 2007 (2007)

15. Bianchi, G.: Performance Analysis of the IEEE 802.11 Distributed Coordination
Function. IEEE Journal on Selected Areas in Communications 18(3) (March 2000)

16. Fabbri, F., Verdone, R.: A statistical model for the connectivity of nodes in a multi-
sink wireless sensor network over a bounded region. In: IEEE EW 2008, Prague,
Czech Republic, pp. 22–25 (June 2008)

17. Buratti, C., Verdone, R.: Performance Analysis of IEEE 802.15.4 Non-Beacon En-
abled Mode. IEEE Transactions on Vehicular Technologies (TVT) (to appear)

16 C. Buratti, F. Fabbri, and R. Verdone

18. Buratti, C., Verdone, R.: A Mathematical Model for Performance Analysis of IEEE
802.15.4 Non-Beacon Enabled Mode. In: IEEE EW 2008, Prague, Czech Republic,
June 2008, pp. 22–25 (2008)

19. Buratti, C.: A Mathematical Model for Performance of IEEE 802.15.4 Beacon-
Enabled Mode. In: IEEE ICC 2009 (submitted, 2009)

20. Verdone, R., Fabbri, F., Buratti, C.: Area Throughput for CSMA Based Wireless
Sensor Network. In: IEEE PIMRC 2008, September 15-18, Cannes, France (2008)

21. Orriss, J., Barton, S.K.: Probability distributions for the number of radio trans-
ceivers which can communicate with one another. IEEE Trans. Commun. 51(4),
676–681 (2003)

22. Verdone, R., Orriss, J., Zanella, A., Barton, S.: Evaluation of the blocking prob-
ability in a cellular environment with hard capacity: a statistical approach. In:
Personal, Indoor and Mobile Radio Communications (PIMRC 2002), September
15-18, 2002, vol. 2 (2002)

23. Fabbri, F., Buratti, C., Verdone, R.: A Multi-Sink Multi-Hop Wireless Sensor Net-
work Over a Square Region: Connectivity and Energy Consumption Issues. In:
Wireless Mesh and Sensor Networks Workshop at GLOBECOM 2008, New Or-
leans, LA, USA, 30 November-4 December (2008)

24. Freescale, Freescale semiconductor’s mc13192 developer’s kit,
http://www.freescale.com/webapp/sps/site/prodsummary.jspcode=13193EVB

http://www.freescale.com/webapp/sps/site/prodsummary.jspcode=13193EVB

Experimental Study of the Impact of WLAN
Interference on IEEE 802.15.4 Body Area

Networks�

Jan-Hinrich Hauer, Vlado Handziski, and Adam Wolisz

Telecommunication Networks Group
Technische Universität Berlin, Germany

{hauer,handzisk,wolisz}@tkn.tu-berlin.de

Abstract. As the number of wireless devices sharing the unlicensed
2.4 GHz ISM band increases, interference is becoming a problem of
paramount importance. We experimentally investigate the effects of con-
trolled 802.11b interference as well as realistic urban RF interference on
packet delivery performance in IEEE 802.15.4 body area networks. Our
multi-channel measurements, conducted with Tmote Sky sensor nodes,
show that in the low-power regime external interference is typically the
major cause for substantial packet loss. We report on the empirical corre-
lation between 802.15.4 packet delivery performance and urban WLAN
activity and explore 802.15.4 cross-channel quality correlation. Lastly,
we examine trends in the noise floor as a potential trigger for channel
hopping to detect and mitigate the effects of interference.

Keywords: Body Area Networks, IEEE 802.15.4, Interference.

1 Introduction

Body Area Networks (BANs) allow monitoring of the human body with detail
and pervasiveness that is opening new application opportunities in domains rang-
ing from personalized health-care and assisted living to sport and fitness moni-
toring [1]. In these domains the wireless telemetry was traditionally based either
on proprietary communication technologies or on standardized solutions with
significant licencing overhead and limited geographic availability. With the in-
troduction of the IEEE 802.15.4 standard [8] and its focus on low data rates, low
power consumption, reduced complexity and device size, an alternative emerged
that matches the specific requirement of a BAN platform quite well.

Although 802.15.4 technology has rapidly matured and become the basis of
several commercial products, there is still a level of uncertainty whether it can
meet the stringent QoS requirements typical for some BAN applications under
more challenging operating conditions. These concerns especially pertain to the
coexistence with other major users of the unlicensed 2.4 GHz ISM band, notably
� This work has been partially supported by the European Commission under the

contracts FP7-2007-IST-2-224053 (CONET) and FP6-2005-IST-5-033506 (ANGEL).

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 17–32, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 J.-H. Hauer, V. Handziski, and A. Wolisz

Fig. 1. IEEE 802.15.4 and 802.11 spectrum usage in the 2.4 GHz ISM band. The
availability of channels is regulated per country.

IEEE 802.11 (WLAN) [10] and IEEE 802.15.1 (Bluetooth) [9]. Due to their
virtual omnipresence and comparably high transmit power (20 dBm in Europe)
WLANs pose a particular challenge.

Fig. 1 shows the spectrum usage of the two technologies in the 2.4 GHz ISM
band. Despite interference mitigation mechanisms like DSSS and “listen-before-
send” incorporated in both standards, it is well established that their mutual
interference can result in notable deterioration of packet delivery performance.
Although previous studies have treated this problem both from analytical and
experimental side (Sect. 6), none of them has taken into consideration the specific
characteristics and operational features of the BAN domain in terms of topology
configuration, mobility and radio duty cycle under realistic interference scenarios
in typical urban environments.

Our work targets this unexplored area. We present a measurement setup that
allows capturing of a large subset of the parameter space with detail that was
previously not reported. It supports mobile long-term monitoring of interference
effects using symmetric communication and variable transmit power on all six-
teen IEEE 802.15.4 channels in the 2.4 GHz band. We (1) report on multi-channel
measurements from a controlled environment as well as from different urban
environments, (2) demonstrate empirical correlation between 802.15.4 packet
delivery performance and “real-life” WLAN activity and (3) explore 802.15.4
cross-channel quality correlation and trends that may be used as a potential
trigger for channel hopping.

We believe that our study is an important step towards a realistic assessment
of how WLAN interference can affect IEEE 802.15.4 BANs and towards the
development of schemes for interference detection and mitigation.

The rest of the paper is structured as follows: in Sect. 2 we describe our ex-
perimental setup and provide a definition of the relevant metrics. We present
the results of a set of baseline experiments in Sect. 3 and report on a rep-
resentative sample of our dataset from an urban environment in Sect. 4. In
a “first cut” evaluation we analyze in Sect. 5 the empirical traces for cross-
channel quality correlation and trends in the noise floor. In Sect. 6 we dis-
cuss related work and present our conclusions and plans for future work in
Sect. 7.

Study of the Impact of WLAN Interference on IEEE 802.15.4 BANs 19

2 Experimental Setup

This section introduces our measurement platform and provides a definition of
the relevant metrics.

2.1 Measurement Platform

Our measurements are performed with Tmote Sky [13] (Telos Rev. B) sensor
nodes, which are equipped with the IEEE 802.15.4-compliant Texas Instruments
CC2420 transceiver [2]. The CC2420 operates in the 2.4 GHz ISM band, uses O-
QPSK modulation and has a data rate of 250 kbps. A packet can be transmitted
on one of 16 channels which are spaced 5 MHz apart and occupy frequencies
2405 MHz - 2480 MHz as shown in Fig. 1.

Our setup consists of two nodes, each node is placed in a thin plastic en-
closure and strapped to a person: one to the left upper arm, the other on the
right shin just above the ankle, resulting in a relative distance of about 1.5 m
(Fig. 2a, left). When the person stands still both nodes have the same alignment
and both surface areas are facing in the same horizontal direction. However, in
all experiments, the test person is walking at an even speed of about 1.2 m/s
(common walking speed). Our setup introduces two auxiliary wired channels:
one to synchronize the transmissions on the IEEE 802.15.4 channel; and a sec-
ond for streaming measurement results to a laptop. This is schematically shown
in Fig. 2a (right) and explained in the following.

Packet Transmission. Our measurement software accesses the CC2420 radio
directly, there is no MAC layer involved and all packets are sent immediately
(without clear channel assessment, CCA). Both nodes continuously iterate over
the 16 channels, exchanging one DATA and acknowledgement (ACK) packet per

(a) Node placement and schematic
measurement setup. The laptop is
carried in a backpack.

(b) MSC describing a sweep. Note that only
DATA and ACK packets are exchanged over the
wireless channel.

Fig. 2. Measurement setup and Message Sequence Chart (MSC) for a single sweep

20 J.-H. Hauer, V. Handziski, and A. Wolisz

channel. We call an iteration over all 16 channels – involving 32 packets – a
sweep. During a sweep the roles of the nodes are fixed: one node sends the DATA
packets, the other node sends the ACK packets; after every sweep the roles are
swapped. We use acknowledgements, because this is common to many IEEE
802.15.4 networks, and we let the nodes swap roles, because this allows us to
(better) evaluate link (a)symmetry.

The CC2420 supports different transmission power levels, the datasheet docu-
ments 8 discrete levels ranging from −25 dBm to 0 dBm [2]. The relevant TXCTRL
register of the radio, however, accepts 32 different values. The radio manufac-
turer confirmed to us that all 32 values are valid, however, “the relation between
the register setting and the output power is not linear”. We experimentally de-
termined an output power of roughly −42 dBm when the TXCTRL.PA LEVEL is
set to the value of 2.1 In our study we then used three different output power
levels of −10 dBm, −25 dBm and −42 dBm, alternating every sweep. The MSC
in Fig. 2b shows the sequence of operations performed during a sweep.

Synchronization. Whenever a packet is transmitted by one node, the other
node’s radio is in receive mode, both nodes have tuned to the same channel, and
they use the same level of transmission power for the DATA and ACK packet. This
requires very careful synchronization. One option is to perform synchronization
through the arrival times of DATA and ACK packets, but since our experiments
are conducted in an environment of possibly strong RF interference we rejected
such “in-band” synchronization, because it would require unknown (conserva-
tive) guard times to counter the clock drift in case of successive packet losses.
Instead we perform synchronization over digital I/O signals through pins exposed
on the Tmote Sky expansion header: with a shielded cable we interconnect the
two microcontrollers via four digital I/O ports. To increase robustness we use
differential signalling (complementary signals sent on two separate wires) and
thus allow four different signals, which is sufficient to synchronize the transmis-
sion of DATA and ACK packets. The sequence of exchanged digital I/O signals is
shown in Fig. 2b, the vocabulary of messages and signals is listed in Table 1.

Data Logging. During our study the sensor nodes collect large amounts of
statistics that, due to limited memory, cannot be stored on the nodes themselves.
Instead the nodes are connected and continuously output the results to a laptop
through the USB interface of the Tmote Sky, which also serves as their power
supply. The laptop is carried in a backpack by the same person that wears the
two sensor nodes and is also used to monitor 802.11b/g traffic on selected WLAN
channels during the experiments.

1 We chose 38 sender/receiver combinations from a batch of 10 Tmote Sky nodes
and measured RSSI for different documented as well as the undocumented register
settings in a low-interference environment based on a fixed node placement. Assum-
ing a linear relationship between output power and RSSI, we used the documented
values in combination with the measured average RSSI as anchors for a linear regres-
sion to determine the unknown transmission power level based on the corresponding
measured RSSI value.

Study of the Impact of WLAN Interference on IEEE 802.15.4 BANs 21

Table 1. Messages and signals exchanged during the measurements

Message/
Signal

Channel Description

DATA 802.15.4 DATA packet (MPDU of 36 byte)
ACK 802.15.4 ACK packet (MPDU of 5 byte)
RTS Digital I/O Sender requests to send a DATA packet
CTS Digital I/O Receiver is ready to receive DATA packet
TxD Digital I/O Sender has sent a DATA packet
TxACK Digital I/O Receiver has sent an ACK packet
TRACE USB Measurement results for a sweep over 16 channels

Sweep-time Performance. In our setup the time required for a sweep over
16 channels is about 87 ms, which results in around 12 sweeps (384 packets) per
second including streaming the measurement results over USB. This is achiev-
able because we increase the Tmote Sky CPU frequency to the maximum of
8 MHz and because synchronization over digital I/O is very fast. We took par-
ticular care to minimize the impact of streaming the statistics over the USB
on the actual measurement and its periodic workflow: most operations related
to the transmission of 802.15.4 packets and synchronization occur in interrupt
context, while sending serial packets over USB is divided in many small blocks
of code that are executed in non-interrupt context. All outgoing/incoming pack-
ets are timestamped. After the measurement we use the hardware generated
timestamps of successful transmissions as anchors, perform a linear regression
to cancel out the clock drift, and obtain precise timing information to verify
that in our setup 802.15.4 data packets are indeed transmitted periodically with
an average interarrival time of around 5.5 ms. For example, in the experiment
described in Sect. 4.1 we determine an average interarrival time of 5.43 ms (max-
imum: 6.45 ms, minimum: 4.39 ms).

2.2 Additional Hardware

We use a portable Wi-Spy 2.4x USB spectrum analyzer to verify that the base-
line measurements are conducted in an environment of negligible external RF
interference. The two laptops that generate controlled 802.11b traffic (Sect. 3.2)
use Intel PRO/Wireless 2100 network interface cards. In some of our measure-
ments we also monitor 802.11b/g traffic using a PC card based on an Atheros
chipset plugged into the laptop that collects the measurement results.

2.3 Metrics

In our study all 802.15.4 DATA packets are acknowledged and a transmission is
defined as successful if both, DATA and ACK packet, were received without errors.
Correspondingly, a transmission has failed if either DATA or ACK packet (or both)
were corrupted (CRC check failed). Whenever we report on moving averages,

22 J.-H. Hauer, V. Handziski, and A. Wolisz

the average is calculated over either 10 or 100 transmissions for a particular
channel and transmission power level. Because a sweep takes about 87 ms and
we use three different transmission power levels alternating every sweep, this
corresponds to a time window of about 2.6 s (10 transmissions) or 26 s (100
transmissions).

The CC2420 radio adds to every received packet the Receive Signal Strength
Indicator (RSSI) level and a Link Quality Indication (LQI) value. We use the for-
mula in the CC2420 datasheet [2] to convert the exported RSSI value to dBm. The
LQI value from the CC2420 “represents a measurement of correlation between the
received [and the determined] chip”2 and we always report the raw LQI values
ranging from about 110 (maximum quality) to 50 (worst quality). In addition to
per-packet RSSI and LQI we measure the noise floor in between transmissions by
reading the CC2420 RSSI register, which we hereafter call SSInoise.

3 Baseline Measurements

We begin our study with a set of baseline measurement conducted outdoors in
a large park, an environment of negligible external RF interference, as verified
with the help of a portable spectrum analyzer. The results are intended to give
some confidence in the performance of our setup, to reveal that — at least in
this environment — the effects of mobility are virtually negligible and to show
possible effects of 802.11b interference on 802.15.4 link quality.

3.1 Low Interference

In our first measurement the test person takes a 35 minute walk while the BAN
measures packet loss, noise floor, RSSI and LQI over the 16 different channels.
Out of the total 390.096 transmission only 2 failed (one at −42 dBm, the other
at −25 dBm). This is negligible and indicates that with our setup a transmission
power of −42 dBm is in principle sufficient in this kind of environment. We
observe only small variance in RSSI, the maximum standard deviation for RSSI
on any channel for any out of three given transmission power was 1.54 dBm.
However, at −42 dBm transmission power the RSSI is usually around −88 dBm,
which is close to the −94 dBm sensitivity threshold specified in the CC2420
datasheet. LQI varies a little more, in particular at −42 dBm transmission power,
where we observe a maximum standard deviation of 3.10 for channel 11 on one
node. The noise floor was very stable at −99 dBm on both nodes.

3.2 Controlled 802.11b Interference

We are interested in how a nearby 802.11 network can affect the link quality of
the 16 different 802.15.4 channels. In this experiment we set up two laptops to
form an 802.11b ad-hoc network and start a large file transfer from one to the
2 One 802.15.4 symbol is mapped to a sequence of 32 chips resulting in a nominal chip

rate of 2.0 Mchip/s.

Study of the Impact of WLAN Interference on IEEE 802.15.4 BANs 23

80
2.

15
.4

ch
an

ne
l

11

16

21

26

80
2.

15
.4

ch
an

ne
l

11

16

21

26

80
2.

15
.4

ch
an

ne
l

time [seconds]
20 40 60 80 100 120 140

11

16

21

26

100

50

0
100

50

60

40

20

0

TxPower −10 dBm

TxPower −25 dBm

TxPower −42 dBm

0

fa
ile

d
tr

an
s−

m
is

si
on

s
(%

)
fa

ile
d

tr
an

s−
m

is
si

on
s

(%
)

fa
ile

d
tr

an
s−

m
is

si
on

s
(%

)

Fig. 3. Failed 802.15.4 transmissions while walking past two 802.11b stations transmit-
ting at maximum rate on 802.11 channel 7. For every 802.15.4 channel the transmissions
are averaged over a window of 10 transmissions, and 802.15.4 packets are transmit-
ted with either −10 dBm (top), −25 dBm (middle) or −42 dBm (bottom) transmission
power, alternating every sweep. The total distance covered is 180 m, the 802.11 network
is located at 100 m distance from the starting point.

other. Both laptops are placed close to each other on the ground, and generate
heavy traffic on 802.11 channel 7 at 11 Mbit/s. The experiment is simple: our test
person first stands 100 m away from the 802.11 network, at time t = 0 s starts
walking on a straight line towards it, passes 1 m by the two laptops (at about
t = 80 s) and continues walking on the same straight line. The BAN measures
the number of failed 802.15.4 transmissions, the changes in noise floor and per-
packet RSSI and LQI. After the experiment we sort the measurement results by
the transmission power level, and produce a contour plot, respectively, showing
failed transmission averaged over a window of 10 transmissions (2.6 s) for each
channel. The result can be seen in Fig. 3.

The 802.11b network temporarily caused significant packet loss: at −10 dBm
transmission power transmissions failed only at close distance (a few meters),
at −25 dBm losses occurred within about ± 10 m, and at −42 dBm the first
transmissions failed at more than 75 m distance. However, packets were lost only
on channels that are close to 2442 MHz, the center frequency of 802.11 channel 7,
that is mainly on 802.15.4 channels 17 to 20 (compare Fig. 1). According to the
802.11 standard, at ± 11 MHz from the center frequency, the radiated energy
must be 30 dB lower than the maximum signal level; still, when the 802.15.4
network transmitted at −42 dBm even channels 15, 16, 21 and 22 suffered short-
term losses at close distance.

The results can be interpreted in line with the SINR model: from the per-
spective of the 802.15.4 BAN the 802.11b laptops generate interference, which
decays (non-linearly) with distance. When approaching the interferers, at a cer-
tain distance the ratio of received power in the 802.15.4 signal to the power of

24 J.-H. Hauer, V. Handziski, and A. Wolisz

0 40 80 120
−100

−80

−60

−40

time [seconds]

S
S

I no
is

e [d
B

m
]

0 40 80 120
−100

−80

−60

−40

time [seconds]

R
S

S
I [

dB
m

]

0 40 80 120

60

80

100

time [seconds]

LQ
I −10 dBm

−25 dBm

−42 dBm

TxPower:

Fig. 4. Noise floor (left), RSSI (middle) and LQI (right) on channel 18 over time,
extracted from the traces belonging to the experiment shown in Fig. 3

the interference is too low for the CC2420 radio to correctly decode the symbols
and packets are lost.

Fig. 4 shows the dynamics in the noise floor, RSSI and LQI. The figure only
shows the results for 802.15.4 channel 18, because it was one of the most affected
by packet loss. Naturally RSSI and LQI are only available for received packets,
but the respective graphs (middle and right in Fig. 4) give some first insight in
temporal trends around the losses.

As expected, the noise floor increases with smaller distance to the 802.11b
network; however, even at very close distance (around t = 80 s), we see a range
of different SSInoise values, some as low as −99 dBm. A possible explanation is
that the 802.11 stations are not permanently transmitting. For example, there
are at least short Inter-Frame Spaces (IFS) between 802.11 packets during which
the channel is idle. The CC2420 averages a single SSInoise reading over 128 μs,
and it can thus happen that a sample is taken while the channel is (partially) idle.
This indicates that a single SSInoise value is rather unreliable for determining
presence of an interferer.

RSSI seems almost unaffected by the 802.11 traffic, but LQI shows higher
variance as distance to the 802.11 network decreases, especially at −42 dBm
transmission power. This is understandable since LQI represents a measure of
correlation between 802.15.4 chips: single chips may be corrupted by 802.11
interference while the symbols are still correctly decoded.

4 Urban Measurement Campaign

We made measurements in three different environments in the city of Berlin,
Germany: at a shopping street, in a central residential area and in an office
area. During all measurements the test person was walking outdoors on the
urban streets using the same setup as described previously. A single measurement
typically lasted around 30 minutes. As a case study in this section we report on
one such measurement in detail, in the next Sect. 5 we present an evaluation of
the empirical traces from all measurements.

The measurement described in the rest of this section was made at a central
urban shopping street. Buildings were located on either side of the roughly 30 m
wide street, which was moderately frequented by cars and other pedestrians on

Study of the Impact of WLAN Interference on IEEE 802.15.4 BANs 25
80

2.
15

.4
ch

an
ne

l

16

21

11

26

80
2.

15
.4

ch
an

ne
l

16

21

11

26

80
2.

15
.4

ch
an

ne
l

19:05h 19:15h 19:25h19:00h 19:10h 19:20h 19:30h

16

21

11

26

100

50

0

0

20

40

60

3

2

1

TxPower −42 dBm

TxPower −25 dBm

fa
ile

d
tr

an
s−

m
is

si
on

s
(%

)
fa

ile
d

tr
an

s−
m

is
si

on
s

(%
)

TxPower −10 dBm

fa
ile

d
tr

an
s−

m
is

si
on

s
(%

)

Fig. 5. Failed 802.15.4 transmissions while walking along an urban shopping street.
For every 802.15.4 channel the transmissions are averaged over a window of 100 trans-
missions (26 s), and packets are sent with three different transmission power levels:
−10 dBm (top), −25 dBm (middle) or −42 dBm (bottom), alternating every sweep.

80
2.

15
.4

ch
an

ne
l

19:02:45h 19:03:25h 19:04:05h 19:04:45h
11

16

21

26

100

50

0

fa
ile

d
tr

an
s−

m
is

si
on

s
(%

)

Fig. 6. Two minute excerpt from bottom Fig. 5, averaged over 10 transmissions

a weekday evening at 7 p.m. The test person took a 30 minute walk outdoors
along the pavement passing by shops, coffee bars and offices as well as other
pedestrians. The walk was one-way and close to straight-line at even walking
speed (stopping only at red traffic lights).

4.1 Transmission Failures

Fig. 5 shows failed 802.15.4 transmissions averaged over 100 transmissions per
channel (about 26 s) sorted by transmission power.

The losses for −10 dBm transmission power (top) are negligible, even at
−25 dBm (middle) we never see more than 60 % loss within a window of 26 s
on any channel. At −42 dBm (bottom) transmissions failed more frequently and
some channels were temporarily completely blocked. The figure suggests that
losses were not completely random. Instead they showed some correlation in
time and frequency, sometimes lasting for a few tens of seconds up to multiple
minutes and spanning over multiple consecutive 802.15.4 channels.

Fig. 6 shows a 2 minute excerpt of the bottom Fig. 5 at around 19:03 h. In this
figure transmissions are averaged over a window of 10 transmissions (2.6 s) as in
the baseline measurement shown in Fig. 3. When comparing these two figures
we find that in Fig. 6 the pattern at around 19:03 h to 19:04 h on channels 13
closely resembles the 802.11b “footprint” in Fig. 3, which suggests that these
losses might have been caused by 802.11 traffic.

26 J.-H. Hauer, V. Handziski, and A. Wolisz

19:00h 19:05h 19:10h 19:15h 19:20h 19:25h 19:30h
100

80

60

40

20

0

fa
ile

d
tr

an
sm

is
si

on
s

(%
)

on

IE
E

E
 8

02
.1

5.
4

ch
an

ne
l 1

8

19:00h 19:05h 19:10h 19:15h 19:20h 19:25h 19:30h
0

80

160

240

320

tr
af

fic
 o

n
80

2.
11

b/
g

 c
ha

nn
el

 7

(p
ac

ke
ts

 p
er

 s
ec

on
d)

IEEE 802.15.4

IEEE 802.11

Fig. 7. 802.15.4 transmission failures on channel 18 using transmission power −42 dBm
(left Y-Axis) and 802.11b/g traffic on WLAN channel 7 (right Y-Axis) averaged over
a window of about 26 s

4.2 Correlation with 802.11b/g Traffic

During the experiments the 802.11b/g card of the laptop that collected the statis-
tics from the nodes was set to passive monitoring mode so that all 802.11 traffic on
a given channel was captured. We tuned the card to 802.11 channel 7, because it
is one of the most commonly used. In this way we measured two things in parallel:
802.15.4 failures on all channels and 802.11b/g traffic on 802.11 channel 7.

In Fig. 7 one can see both, failures on 802.15.4 channel 18 using transmission
power −42 dBm and the number of received 802.11 packets on channel 7, aver-
aged over 100 transmissions in the 802.15.4 network (26 s). As shown in Fig. 1,
802.11 channel 7 completely overlaps with 802.15.4 channel 18. The results ap-
pear (negatively) correlated both, visually and statistically. The empirical cor-
relation coefficient is r = -0.89, which when squared is 0.79 and describes the
proportion of variance in common between the number of 802.15.4 failures and
received 802.11 packets when averaged over a window of 26 s. This suggests that
in this experiment 802.11 was indeed the cause for considerable packet loss, at
least on channel 18.

When we repeated the measurement at other locations we observed less corre-
lation (correlation coefficients around r = -0.4). It must be noted, however, that
the correlation coefficients indicate only linear dependency and that the number
of received 802.11 packets is a rather coarse metric because it does not take, for
example, packet size or signal strength into consideration.

5 Evaluation of Selected Aspects

The measurement results from three different urban environments provided us
with a large dataset to explore. In the following we analyze this dataset to
determine (1) the interrelation of the transmission quality on different channels
at a given point in time, and (2) whether trends in the noise floor can indicate a
(future) decrease of transmission quality. The first helps understanding to what
extent channel hopping could improve transmission quality, the second gives
insight in a potential (dynamic) trigger for channel switching.

Study of the Impact of WLAN Interference on IEEE 802.15.4 BANs 27

19:00h 19:05h 10:10h 19:15h 19:20h 19:25h 19:30h
4

10

16
su

cc
es

sf
ul

 tr
an

s−

m
is

si
on

s
pe

r
sw

ee
p

TxPower −42 dBm

TxPower −25 dBm

TxPower −10 dBm

Fig. 8. Successful transmissions per sweep for the measurements described in Sect. 4.1

Our evaluation is an important starting point, but also has its limitations: it
is trace-driven and therefore the results are applicable only for the particular en-
vironments, the specific mobility pattern and node placement. Our measurement
setup also allows us to abstract from many practical issues such as scheduling
periodic noise sampling so that transmissions of other nodes do not interfere.

5.1 Cross-Channel Quality Correlation

We are interested in the correlation of transmission failures over different chan-
nels at (roughly) the same time. Little correlation would mean that they share
little variance and thus there is a greater probability that a “good” channel is
available at a given point in time. In the following we first examine the fraction
of good channels over time, then report on the empirical correlation between
the channels and finally evaluate post factum how many hops an ideal frequency
hopping scheme would have required to achieve 0 % transmission failures.

Fig. 8 shows the number of successful transmissions per sweep over time for the
measurement described in Sect. 4.1 (it was the environment where we observed
most transmission failures). At −10 dBm and −25 dBm transmission power for
the majority of time the transmissions succeeded on almost all channels. Even for
−42 dBm the number of good channels rarely dropped below 10, only at around
19:07 h temporarily 13 out of the 16 available channels were blocked. This means
that in principle there were enough good channels at any point in time.

From the figure one cannot conclude how much variance the different chan-
nels have in common. We calculated the empirical correlation coefficients for
the number of failed transmissions over time between all channels and found
that they are often very low (typically around zero). For example, for −42 dBm
transmission power the maximum correlation coefficients for any two channels
in the three measurements were r2 = 0.1844, r2 = 0.1052, and r2 = 0.0336,
respectively.

We are interested in the minimum number of channel switches that would
have been required to achieve 0 % transmission failures. In other words, the
minimum number of hops that an ideal channel hopping scheme with precise
knowledge of the future channel conditions would have taken to guarantee that
all transmissions succeeded. We implemented a simple greedy algorithm that
replays the empirical traces, starting from the first transmission and proceeding
in time. The algorithm examines all transmissions and chooses the channel that
provides 0 % transmission failures for the maximum time ahead. It proceeds

28 J.-H. Hauer, V. Handziski, and A. Wolisz

80
2.

15
.4

ch
an

ne
l

11

16

21

26

100

50

0

fa
ile

d
tr

an
s−

m
is

si
on

s
(%

)

80
2.

15
.4

ch
an

ne
l

18:15h 18:20h 18:25h 18:30h 18:35h 18:40h 18:45h
11

16

21

26

−95

−90

−85

−80

−75

S
S

I no
is

e [d
B

m
]

Fig. 9. Failed 802.15.4 transmissions at −42 dBm transmission power while walking
through a central urban residential area (top). The bottom figure shows the noise floor
measured during the same experiment. The results are averaged over a window of 100
transmissions per channel (26 s).

in time on this channel until a transmission failure occurs and switches the
channel during this very sweep, again by choosing the channel that provides 0 %
transmission failures for the maximum time ahead (from the previous evaluation
we know that there is always a “good” channel). It repeats this step until it
reaches the end of the empirical trace and then outputs the overall (minimum)
number of channel switches (hops).

When the algorithm replayed the traces from the three measurements the
total number of channel switches for −10 dBm transmission power was zero
for all three empirical traces, which means there was at least one channel on
which no failures occurred, respectively. At −25 dBm transmission power two
or three hops were required. And at −42 dBm the measurement described in
Sect. 4.1 required 50 hops (note that Fig. 5 shows moving averages over 100
transmissions), resulting in an average hopping frequency of about 2 Hz. The
empirical results from the residential and office area corresponded to 27 and 38
channel switches, respectively.

5.2 Prediction of the Link Quality Degradation

A brief examination of the measurement results revealed that a substantial in-
crease in noise floor is typically accompanied by heavy packet loss, in particular
at −42 dBm transmission power. For example, Fig. 9 shows failed transmissions
over time (top) together with a contour plot of the noise floor (bottom) averaged
over 100 transmissions; this measurement was made in an urban residential area
on a Friday afternoon.

We are interested in the dynamics of SSInoise around the point in time when
the quality of a communication link experiences significant degradation. For
−42 dBm transmission power we define the threshold as ≥ 90 % transmission
failures within 100 transmissions on a given channel, that means ≥ 90 % failures
within 26 s. An analysis of the empirical traces reveals 8 (shopping street), 11
(residential area) and 2 (office area) = a total of 21 occurrences of significant

Study of the Impact of WLAN Interference on IEEE 802.15.4 BANs 29

−120 −90 −60 −30 0 +30 +60 +90 +120
−100

−95

−90

−85

−80

−75

−70

−65

time [seconds]

S
S

I no
is

e [d
B

m
]

TxPower −42 dBm

(a) −42 dBm transmission power: between
0 s and 26 s ≥ 90% transmissions failed.

−120 −90 −60 −30 0 +30 +60 +90 +120
−100

−95

−90

−85

−80

−75

−70

−65

time [seconds]

S
S

I no
is

e [d
B

m
]

TxPower −25 dBm

(b) −25 dBm transmission power: between
0 s and 26 s ≥ 50 % transmissions failed.

Fig. 10. Noise floor within a window of ±2 minutes around heavy transmission failures
(starting at 0s). SSInoise is arithmetically averaged over the past 26 s (prior moving
average).

link quality degradation. For every occurrence we extract SSInoise on the given
channel within a window of ±2 minutes (roughly 1000 noise floor samples and
corresponding to a SSInoise sampling frequency of 4 Hz). Note that in our analy-
sis we count only the first occurrence per channel (otherwise there was a total
of 26 occurrences) and we ignore channels that already had significant losses at
the beginning of the measurement, because for them the previous 2 minutes are
not available.

Fig. 10a shows the results for −42 dBm transmission power. Since we are inter-
ested in general trends independent of the environment or a particular channel
it includes the results from all measurements, one graph for every occurrence
of link quality degradation. Each graph is aligned relative to the beginning of
significant link quality degradation, which is represented by the vertical dashed
line at time t = 0 s. This means, starting from t = 0 s the next 90 or more out of
100 transmissions failed, respectively. SSInoise is arithmetically averaged over
the past 26 s (prior moving average). A single point on one of the 21 graphs thus
includes the current as well as the history of 99 previous noise floor samples.

At −25 dBm output power transmission failures were less frequent and we
therefore reduced the threshold to ≥ 50 % transmission failures within a window
of 26 s. This resulted in a total of 5 occurrences of link quality degradation as
shown in Fig. 10b.

Discussion. The graphs show similar trends: at time t = −120 s the average
(past) noise floor is typically below −95 dBm, respectively. Between t = −120 s
and t = 0 s it increases slightly and the most substantial increases are observable
around and especially short after t = 0 s, which is also the start of significant
transmission failures. Right-shifting the dashed line by 13 s as well as left-shifting
the noise floor graphs by 13 s, respectively, establishes temporal alignment be-
tween the moving averages. It is then clearly observable that significant link
quality degradation corresponds with a simultaneous increase in average noise
floor, which strongly suggests that external RF interference is indeed causing the

30 J.-H. Hauer, V. Handziski, and A. Wolisz

packet loss. The graphs are typically bell-shaped, which is likely a result from
walking past a stationary interferer (for example, a WLAN access point).

The results suggestalso that (thehistoryof)noisefloorobservationsmaybevalu-
able input to a link estimator. Especially at lower transmission frequency trends in
the noise floor may be observable before a communication link experiences signif-
icant degradation. Increasing the noise floor sampling frequency and using more
elaborated statistical techniques than a simple moving average are likely to have
better predictive quality. We consider these topics part of our future work.

6 Related Work

The problem of coexistence between IEEE 802.11 and IEEE 802.15.4 networks
has received significant interest from the research community. Most early work
concentrated on developing probabilistic models that capture the dependence of
interference-related packet loss in a 802.15.4 network based on frequency overlap
and duty cycle, transmit power and distance of an 802.11 interferer [18]. Others
analyzed the reverse problem, that is the impact of 802.15.4 networks on 802.11
devices [7], concluding that it is little to non-existing. A recent experimental
study comes to a different conclusion, reporting that 802.15.4 devices may cause
significant packet loss in an 802.11 network under specific conditions [16]. Prior
work assessing the impact of WLAN interference on static 802.15.4 networks
in lab environments typically reported on severe packet loss at small distances
between the interfering devices [5].

Recently several 802.15.4 radio chip manufacturers have published guidelines
to mitigate interference effects between the two technologies [11,17,4], for ex-
ample, through minimal frequency offset of 20 MHz , spatial separation of 2 m
and the use of the complete protocol stack (using ARQ to translate losses into
latency) [17]. Acknowledging the problem, the IEEE 802.15 Task Group 4e cur-
rently investigates how to incorporate frequency hopping in the MAC layer.
Meanwhile, recent revisions of standards that build on top of the 802.15.4, al-
ready incorporate simple frequency agility methods like periodic random channel
hopping [19,6].

There is not so much experimental work on the specific challenges and oppor-
tunities of 802.15.4 BANs. Some recent studies have examined the performance
of mobile 802.15.4 person-to-person communication, as well as with static re-
ceivers [3,12]. This work targets the impact of the human body on an inter-BAN
communication link under specific mobility patterns, rather than external RF in-
terference. Despite their static setup, the study presented in [14] is closest to our
work: it focuses on detecting and mitigating the WLAN interference impact on
802.15.4 networks in an office setting. Targeting stationary networks, their mea-
surement setup is optimized for more stable interference configurations, which is
also reflected in the significantly higher duration of the sweep time compared to
our setup (1.6 s vs. 85 ms). Their results confirm the correlation between 802.15.4
packet loss and 802.11 activity, as well as the suitability of noise-based predictors
of WLAN interference.

Study of the Impact of WLAN Interference on IEEE 802.15.4 BANs 31

7 Conclusions and Future Work

The effects that we observed in the isolated baseline measurements could, to
some extent, also be recognized in the urban environments: transmission failures
sometimes span over multiple consecutive 802.15.4 channels, are often correlated
in time and substantial losses are typically accompanied by an increase in the
noise floor. This suggests that external interference, in particular the virtually
omnipresent WLAN, can be a major cause for substantial packet loss in IEEE
802.15.4 body area networks. However, in our configuration this is true only for
the very low-power regime: already at −10 dBm transmit power transmission
failures were negligible.

An obvious conclusion for the design of BAN protocols is to use higher trans-
mission power (the IEEE 802.15.4 default is 0 dBm). On the other hand, there
are several arguments for using low transmission power in BANs: less interfer-
ence for other networks; less absorption of electromagnetic energy by the human
body; less energy spent by the transceiver and thus longer lifetime (especially
important for implanted sensors); less susceptibility for eavesdropping.

Adaptive transmission power control seems a promising approach to unite
these requirements. Investigating the overhead of more effective interference eva-
sion mechanisms, more intelligent noise “probing” approaches, combined with
learning algorithms, as presented in [15], seem to be another promising direction
of research that warrants experimental validation.

References

1. Yang, G.-Z. (ed.): Body Sensor Networks. Springer, Heidelberg (2006)
2. Texas Instruments. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver

(April 2002), http://www.ti.com/lit/gpn/cc2420
3. Espina, J., Falc, T., Mülhens, O.: Network Topologies, Communication Proto-

cols, and Standards. In: Body Sensor Networks, pp. 145–182. Springer, Heidelberg
(2006)

4. Freescale Semiconductor. Mc1319x coexistence - application note,
http://www.freescale.com

5. Golmie, N., Cypher, D., Rébala, O.: Performance analysis of low rate wireless
technologies for medical applications. Computer Communications 28(10), 1255–
1275 (2005)

6. HART field communication protocol specifications: TDMA data link layer specifi-
cation. HCF SPEC-75 (2008)

7. Howitt, I., Gutierrez, J.: IEEE 802.15.4 low rate - wireless personal area network
coexistence issues. In: Wireless Communications and Networking, 2003. WCNC
2003. 2003 IEEE, vol. 3, pp. 1481–1486 (2003)

8. IEEE standard for information technology - telecommunications and information
exchange between systems - local and metropolitan area networks specific require-
ments part 15.4: wireless medium access control (MAC) and physical layer (PHY)
specifications for low-rate wireless personal area networks (LR-WPANs). IEEE Std
802.15.4-2003, pp. 1–670 (2003)

http://www.ti.com/lit/gpn/cc2420
http://www.freescale.com

32 J.-H. Hauer, V. Handziski, and A. Wolisz

9. IEEE standard for information technology - telecommunications and information
exchange between systems - local and metropolitan area networks - specific re-
quirements. - part 15.1: Wireless medium access control (MAC) and physical layer
(PHY) specifications for wireless personal area networks (WPANs). IEEE Std
802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pp. 1–580 (2005)

10. IEEE standard for information technology-telecommunications and information
exchange between systems-local and metropolitan area networks-specific require-
ments - part 11: Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999),
pp. C1–1184 (December 2007)

11. Jennic Ltd. Co-existence of IEEE 802.15.4 at 2.4 GHz - application note,
http://www.jennic.com/

12. Miluzzo, E., Zheng, X., Fodor, K., Campbell, A.T.: Radio characterization of
802.15.4 and its impact on the design of mobile sensor networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 171–188. Springer, Heidelberg (2008)

13. Moteiv Corporation. Tmote sky datasheet,
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf

14. Musaloiu-E, R., Terzis, A.: Minimising the effect of WiFi interference in 802.15.4
wireless sensor networks. Int. J. Sen. Netw. 3(1), 43–54 (2008)

15. Pollin, S., Ergen, M., Timmers, M., Dejonghe, A., van der Perre, L., Catthoor, F.,
Moerman, I., Bahai, A.: Distributed cognitive coexistence of 802.15.4 with 802.11.
In: 1st International Conference on Cognitive Radio Oriented Wireless Networks
and Communications, 2006, June 2006, pp. 1–5 (2006)

16. Pollin, S., Tan, I., Hodge, B., Chun, C., Bahai, A.: Harmful coexistence between
802.15.4 and 802.11: A measurement-based study. In: 3rd International Confer-
ence on Cognitive Radio Oriented Wireless Networks and Communications, 2008.
CrownCom 2008, May 2008, pp. 1–6 (2008)

17. Thonet, G., Allard-Jacquin, P., Colle, P.: ZigBee - WiFi coexistence, white paper
and test report. Technical report, Schneider Electric (2008)

18. Yoon, D.G., Shin, S.Y., Kwon, W.H., Park, H.S.: Packet error rate analysis of IEEE
802.15.4 under IEEE 802.11b interference. In: IEEE 63rd Vehicular Technology
Conference, 2006. VTC 2006-Spring, May 2006, vol. 3, pp. 1186–1190 (2006)

19. ZigBee Alliance. ZigBee specification. ZigBee Document 053474r17 (2008)

http://www.jennic.com/
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf

Flow-Based Real-Time Communication in
Multi-Channel Wireless Sensor Networks

Xiaodong Wang1, Xiaorui Wang1, Xing Fu1, Guoliang Xing2, and Nitish Jha1

1 Department of EECS, University of Tennessee, Knoxville, TN 37996
2 Department of CSE, Michigan State University, MI 48824
{xwang33,xwang,xfu1,njha}@utk.edu, glxing@cse.msu.edu

Abstract. As many radio chips used in today’s sensor mote hardware
can work at different frequencies, several multi-channel communication
protocols have recently been proposed to improve network throughput
and reduce packet loss for wireless sensor networks. However, existing
work cannot utilize multiple channels to provide explicit guarantees for
application-specified end-to-end communication delays, which are critical
to many real-time applications such as surveillance and disaster response.
In this paper, we propose MCRT, a multi-channel real-time communi-
cation protocol that features a flow-based channel allocation strategy.
Because of the small number of orthogonal channels available in current
mote hardware, MCRT allocates channels to network partitions formed
based on many-to-one data flows. To achieve bounded end-to-end com-
munication delay for every data flow, the channel allocation problem has
been formulated as a constrained optimization problem and proved to
be NP-complete. We then present the design of MCRT, which includes a
channel allocation algorithm and a real-time packet forwarding strategy.
Extensive simulation results based on a realistic radio model demon-
strate that MCRT can effectively utilize multiple channels to reduce the
number of deadlines missed in end-to-end communications. Our results
also show that MCRT outperforms a state-of-the-art real-time protocol
and two baseline multi-channel communication schemes.

1 Introduction

Many wireless sensor networks (WSN) applications heavily rely on information
being transmitted in a timely manner. For example, a WSN-based disaster warn-
ing system must report detected events within a specified real-time deadline.
Likewise, a surveillance system needs to notify authorities promptly upon the
detection of any intruders. In WSNs, due to the lossy nature of wireless links,
real-time communication protocols are commonly designed to provide only soft
probabilistic real-time guarantees. There are many factors that may affect the
end-to-end delay of a packet from the source to the destination (e.g., a base
station). Among them, a major factor is the retransmission caused by unreliable
wireless links and channel contention [1].

A common way to improve link quality is to increase transmission power [2].
Transmission power can be used as a knob to reduce end-to-end delays due to

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 33–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

34 X. Wang et al.

several advantages. First, it is supported by current sensor mote hardware. For
example, the CC2420 radio chip [3] used in many mote hardware platforms has
31 different transmission power levels. Second, higher transmission power can
lead to higher signal to noise ratio, hence reduce the number of retransmissions
for a packet to be delivered [2]. Third, it may also increase the area range of high
packet reception rate (i.e., boundary of the gray area) of each node [1], and thus
may lead to reduced number of hops needed to reach the destination. Previous
work [4] has also shown that desired delays can be achieved by adapting trans-
mission power of each node along an end-to-end path. However, a well-known
drawback of increasing power for shorter delays is that high transmission power
may significantly increase interferences and channel contention. As a result, the
network capacity may be reduced [5]. This has greatly limited the feasibility of
using transmission power to provide real-time guarantees.

Recently, multi-channel communication protocols have been proposed for
WSNs to improve the performance of traditional single-channel protocols com-
monly used in WSNs. For example, a multi-channel protocol has been designed
in [6] to improve network throughput and reduce packet loss for WSNs. Multi-
channel MAC protocols [7][8] have also been proposed to improve network
throughput for WSNs. Their simulation results show that those multi-channel
protocols outperform their corresponding single-channel protocols. Multi-channel
communications are promising because many radio chips used in today’s sensor
mote hardware can work at multiple frequencies. For example, the CC2420 ra-
dio chip provides 16 non-overlapping channels with radio frequency from 2,400
to 2,483MHz. However, existing multi-channel protocols do not provide explicit
guarantees for application-specified end-to-end communication delays. On the
other hand, as demonstrated in [9], multiple channels can significantly increase
network capacity and thus greatly alleviate the drawback of using transmission
power as a knob to achieve desired communication delays.

In this paper, we propose MCRT, a Multi-Channel Real-Time communication
protocol that utilizes both multiple channels and transmission power adaptation
for real-time WSNs. MCRT features a flow-based channel allocation strategy
that is designed based on the multi-channel realities identified in a recent em-
pirical study [6]. In particular, MCRT uses only a small number of orthogonal
channels and avoids costly time synchronization. In MCRT, channels are allo-
cated to network partitions formed based on many-to-one data flows in a WSN.
To achieve bounded end-to-end communication delay for every data flow, we
formulate the channel allocation problem as a constrained optimization prob-
lem and reduce it to the Maximum Length-Bounded Disjoint Paths problem
[10], which is known as NP-complete. We then present an allocation algorithm
designed based on well-established heuristics [11] to maximize the number of
disjoint paths in the network that can meet the specified end-to-end communi-
cation delay. MCRT allocates a different channel to each data flow to minimize
the channel contention among different flows. After the network partitions are
established, transmission power adaptation is used to achieve energy-efficiency
while forwarding each packet with real-time guarantees. We compare MCRT

Flow-Based Real-Time Communication in Multi-Channel WSN 35

against three baselines. The first baseline is a simple flow-based channel alloca-
tion solution. The second baseline has a node-level channel allocation strategy.
The third baseline is a recently published work [4] that uses only transmission
power to achieve real-time performance on a single channel. Extensive simulation
results based on a realistic radio model demonstrate that MCRT outperforms
all the three baselines and can effectively utilize multiple channels to reduce
the number of deadlines missed in end-to-end communications. Specifically, the
contributions of this paper are four-fold.

– We formulate the flow-based channel allocation problem in multi-channel
real-time communications as a constrained optimization problem.

– We prove that the channel allocation problem is NP-complete and present a
novel allocation strategy based on well-designed heuristics.

– We combine our channel allocation strategy with a power-efficient real-time
packet forwarding protocol to achieve bounded communication delay on each
channel.

– We evaluate the performance of our protocol against three baselines using
extensive simulations in ns-2.

The rest of paper is organized as follows. Section 2 highlights the distinction
of our work by discussing the related work. Section 3 introduces the formulation,
proof, and algorithm of our flow-based channel allocation strategy. Section 4 dis-
cusses power-efficient real-time packet forwarding. Section 5 provides the design
of the baselines used in our experiments. In Section 6, we evaluate the perfor-
mance of our protocol using simulations. Section 7 concludes the paper.

2 Related Work

Many real-time communication protocols have been proposed for wireless sen-
sor and ad hoc networks. A comprehensive review of real-time communication in
WSNs is presented in [12]. At the MAC layer, Implicit EDF [13] is a collision-free
real-time scheduling scheme by exploiting the periodicity of WSN traffic. RAP
[14] uses a novel velocity monotonic scheduling scheme to prioritize real-time
traffic based on a packet’s deadline and distance to the destination. At higher
layers, SPEED [15] achieves desired end-to-end communication delays by enforc-
ing a uniform communication speed throughout the network. MMSPEED [16]
can provide QoS differentiation to meet both reliability and timeliness require-
ments. SWAN [17] also proposes stateless control algorithms for differentiated
services. Karenos et al. [18] have also presented a flow-based real-time traf-
fic management mechanism. However, none of the existing real-time protocols
takes advantage of the capability of multi-channel communications available in
today’s mote hardware. Our proposed MCRT protocol is specially designed for
real-time communications in multi-channel WSNs.

Recently, several multi-channel MAC protocols have been proposed for WSNs
[7][8]. In these protocols, channels are assigned to different nodes locally to mini-
mize interferences. This strategy is referred to as node-based channel assignment.

36 X. Wang et al.

In node-based protocols, a node usually has a different channel from its down-
stream node and upstream node in a data flow. Therefore, each pair of nodes
must switch to the same channel for communication, which may require precise
time synchronization and lead to non-trivial overhead. In addition, some node-
based strategies may require a large number of orthogonal channels, which may
not be practical for existing mote hardware, as discussed in [6]. Nonetheless,
simulation results demonstrate that these protocols can improve communication
performance such as network throughput for WSNs. In this paper, one of our
baselines also uses node-based channel assignment but requires neither time syn-
chronization nor a large number of orthogonal channels. In contrast to the above
related work, MCRT is designed to achieve application-specified end-to-end de-
lays by using only a small number of orthogonal channels.

Some recent work [6][19] proposes coarse-grained channel assignment policies,
which allocate channels to disjoint trees or partitions. By minimizing the in-
terferences between different trees or partitions, parallel transmissions can be
exploited. In addition, experiments on Micaz hardware are also presented in
[6] to investigate multi-channel realities. Two important realities have been re-
ported. First, the number of orthogonal channels is actually small such that
a practical multi-channel protocol should rely on only a small number of non-
adjacent channels. Second, time synchronization protocols in WSNs could be
expensive, in terms of bandwidth and power consumption. Hence, frequent re-
synchronization should be avoided in protocols design. Our proposed MCRT
protocol organizes the network into different partitions based on data flows,
such that the interferences among different flows can be minimized. In addition,
MCRT is designed to achieve desired end-to-end communication delays and re-
duce power consumption at the same time, which are not addressed in existing
multi-channel work.

Transmission power control for energy efficiency has been studied exten-
sively in the context of wireless ad hoc networks. The previous work can be
roughly classified into two categories: topology control and power-aware rout-
ing. Topology control preserves the desirable property of a wireless network (e.g.,
connectivity) by reducing transmission power to the maximum degree. A sur-
vey on existing topology control schemes can be founded in [20] and several
representative projects are [21][22][23][24]. The goal of power-aware routing is
to find energy-efficient routes by varying transmission power, as presented in
[25][26][27][28][29]. Although the above studies demonstrate the effectiveness of
transmission power control in reducing energy consumption, none of them deals
with real-time requirements in multi-channel WSNs. In our work, we propose
multi-channel protocol that uses transmission power adaptation to meet packet
deadlines.

Different from all the aforementioned work that handles real-time guarantees,
multi-channel communications, and energy-efficiency in isolation, our MCRT
communication protocol utilizes the realistic capabilities of existing sensor mote
hardware to support power-efficient multi-channel communications for real-time
WSNs.

Flow-Based Real-Time Communication in Multi-Channel WSN 37

3 Flow-Based Channel Allocation

Our MCRT protocol features a flow-based channel allocation policy, which is
mainly motivated by two observations. First, we conducted hardware experi-
ments to motivate this work. As shown in our empirical results presented in an
extended version of this paper [30], multiple data flows in a WSN compete for
the shared wireless channel and thus result in degraded real-time performance.
Hence, it is preferable that each data flow uses a different channel. Second, dy-
namic channel switching at the node level incurs overhead in terms of switching
delay and energy consumption. Therefore, it is also preferable that nodes do not
need to switch channel too frequently for data transmissions in a data flow.

In our flow-based channel allocation policy, we try to allocate a different
channel to each data flow in the network such that the interferences among
different data flows can be reduced. A data flow is composed of a source node
and the destination, as well as the intermediate nodes in the network that can be
used to forward packets from the source node to the destination. Data packets
are periodically sent from the source node to the destination in a data flow, but
each data packet may take a different path in the flow under different network
conditions. Since each data flow is using a different channel, any node in the
network (except the destination) can only be allocated to at most one data flow.
To establish data flows, we partition the network by searching for a set of disjoint
paths from source nodes to the destination. In order for each data flow to meet
the specified deadline, the worst-case end-to-end communication delay of each
path needs to be smaller than the deadline.

In this section, we first formulate the problem of finding disjoint paths with
bounded delay as a constrained optimization problem. We then prove that the
problem is NP-complete and propose a search algorithm based on well-established
heuristics [11] to find the required number of disjoint paths in the network.

3.1 Problem Formulation

As discussed in [31], any two nodes A and B in a WSN may have three types of
communication relationship. First, if B can reliably receive packets transmitted
by A, we say that there exists a communication link from A to B. Second, if
B cannot reliably receive packets from A, but A’s transmission interferes with
any transmission intended for B, we say that there exists an interference link
from A to B. Last, if A and B cannot communicate or interfere with each other,
there is no link between A and B. In this paper, we use Packet Reception Rate
(PRR) to determine the communication relationship between two nodes in the
WSN. Based on the empirical studies presented in previous work [24], we set a
link with PRR ≥ 90% to be a communication link and a link with PRR ≥ 10%
to be an interference link. The PRR value of each link can be measured using
an online link quality estimator (e.g., [32]).

Based on the definitions of communication and interference links, a WSN can
be represented as a directional graph G = (V, E), where V is a set of nodes

38 X. Wang et al.

and E is a set of directional links. In the graph, each link is assumed to be uni-
directional. Our assumption is reasonable in our applications because we try to
meet the end-to-end deadline for the data flows from the source nodes to the
destination. In our real-time forwarding algorithm presented in Section 4, we
adopt a greedy forwarding policy, i.e., every node forwards packets to neighbors
that are closer to the destination. As a result, based on the locations of the
nodes, all the communication links in the network can be treated uni-directional.
In this paper, we assume that each node is stationary and knows its location
via GPS or other localization services. This assumption is reasonable because
localization is a basic service essential to many WSN applications that need to
know the physical location of sensor readings.

In order for each data flow to meet the given end-to-end communication dead-
line, we first consider the one-hop delay for a node to successfully receive a packet
from another node along a data flow. Without accounting for interferences, the
expected number of re-transmissions needed for the node to successfully receive a
data packet from the other node can be calculated as the inverse of the PRR value
of the communication link between the two nodes. The retransmission number is
initially used as the weight of the communication link. For example, the weight of
the link from E to B in Figure 1(a) can be calculated as 4, which corresponds to
a PRR of 25%. We then consider the interferences that may increase the one-hop
delay from E to B. Because interferences occur at the receiver, the communica-
tion link FB and the interference link AB in Figure 1 may interfere with EB. The
longest delay that EB could experience is when all the transmissions happen to
occur at the same time, i.e., E is sending a packet to B; F is also sending a packet
to B; A is interfering with B by sending a packet to another node (e.g., C). The
worst-case for EB is that E has to wait for both F and A to finish their transmis-
sions before starting its own transmission. Therefore, the worst-case delay for EB
is the aggregate weight of all the communication and interference links directed
to B. As a result, the one-hop delay of EB is estimated as 12 (retransmissions).
The weight of the interference link AB can be estimated as the maximum weight
of the outgoing communication link from A, because EB needs to wait for the
longest time when A is sending a packet to C. By doing this calculation for ev-
ery communication link, we have a new graph where the weight of each link is its
longest one-hop delay, as shown in Figure 1(b).

3

4

2 4

5

5

5

A

B

C

F

E

G

12

12

2 4

5

5

A

B

C

E

G

F

Communication Link

Interference Link

(a) (b)

Fig. 1. An example of estimating the worst-case one-hop delay

Flow-Based Real-Time Communication in Multi-Channel WSN 39

With the one-hop delay of each link, we now need to find a set of disjoint
paths from the source nodes to the destination such that the end-to-end delay
of each path is smaller than the deadline. The delay of a path is calculated as
the sum of the weights of all the links in the end-to-end path. Those paths are
used to partition the network to form data flows with bounded communication
delays. Therefore, the problem of finding Disjoint Paths with Bounded Delay
(DPBD) can be formulated as a constrained optimization problem as follows.
Given a directed graph G = (V, E) with k source vertices as s1, . . . , sk, a
destination vertex t, and a set of edges with various weights, we need to find k
or more mutually vertex-disjoint (except the sources and destination) paths from
si, (1 ≤ i ≤ k) to t. The optimization problem is subject to the constraint that
the weight (i.e., delay) of each path needs to be smaller than the deadline W . If
the number of vertex-disjoint paths is greater than k, some data flows can have
more than one path. If we cannot find a path from a source to the destination,
the end-to-end delay of that data flow cannot be guaranteed to be smaller than
the deadline.

3.2 Proof of NP-Completeness

We now prove the DPBD problem to be NP-complete by reducing it to a well-
known NP-complete problem, the Maximum Length-Bounded Disjoint Paths
(MLBDP) problem [10], which is stated as follows. Given a graph G = (V, E)
with specified vertices s, t and positive integers k, W ′ ≤ ‖V ‖, does G contain
k or more mutually vertex-disjoint paths from s to t, none involving more than
W ′ edges?

Theorem 1. The DPBD problem is NP-Complete.

Proof. First, it is clear that our problem belongs to NP problem because given
a set of k disjoint paths, we can check if the weight of each path is bounded by
the value W . This check can be performed in polynomial time.

We now reduce our problem to the MLBDP problem. There are two differences
between our DPBD problem and the MLBDP problem. First, the edges (i.e.,
links) in our graph have various weights while the edges in the MLBDP problem
have a uniform weight of 1. Second, we need to find one or more paths from each
of the k source nodes to the same destination. However, the MLBDP problem
aims to find k or more paths between the same source s and the same destination
t. We use two steps to reduce our problem to the MLBDP problem.

In the first step, as the weight of each edge is a rational number, we can
always find the greatest common denominator for all the edge weights in the
graph, which is denoted as c. Thus, the weight of each edge can be expressed as
I × 1/c, where I is an integer. We then replace this edge with a chain composed
of I new edges (with a weight of 1/c) and I − 1 new intermediate vertices, as
shown in Figure 2(a). As a result, the total weight between the two vertices of
the original edge is still I × 1/c while each edge now has a uniform weight of
1/c. All the edges in the graph can be replaced in the same way, which leads to
a new graph where all the edges have the same weight. In the second step, we

40 X. Wang et al.

I/c

…… ……
I-1

1/c

S’
S1

Sk

…………..………

(a) (b)

Fig. 2. Graph transformation of the DPBD problem

first add an auxiliary vertex, denoted as s′ to the graph G. We then link s′ to
each of the k source vertices with an edge whose weight is the uniform value, as
shown in Figure 2(b). If we can find k disjoint paths from s′ to t, each source
node will have one path to the destination with bounded delay.

After the two steps, we have transformed our graph to a new graph G’ =
(V’,E’) with specified vertices s′, t and positive integers k, W ′ = W × c + 1.
The DPBD problem is reduced to a new problem stated as follows. Given the
new graph G’, does G’ contain k mutually vertex-disjoint paths from s′ to t,
none involving more than W ′ edges? The new problem is exactly the MLBDP
problem. Therefore, our problem is NP-complete. 	

3.3 Disjoint Paths Search Algorithm

In this section, we propose a search algorithm designed based on well-established
heuristics [11] to find the required number of disjoint paths in the new graph G’
in two steps.

In the first step, the algorithm adopts the Dijkstra’s algorithm to find the
shortest path from s′ to the destination t in the network. If the shortest path is
not bounded by W ′, it is impossible to find k disjoint weight-bounded paths. In
that case, the search algorithm fails. If the shortest path is bounded, it is added
to the solution set T.

In the second step, based on the shortest path found in the first step, the
algorithm iteratively search for the rest k − 1 bounded disjoint paths. Every
iteration of the algorithm finds a new path, whose length is bounded by W ′, and
guarantees that all the paths found so far are disjoint. Note that each iteration
may modify the paths found in previous iterations to maximize the number of
bounded paths. Specifically, each iteration works as follows.

Starting from s′, the algorithm adopts the Depth-First-Search (DFS) method
to search for a new path toward t whose length is bounded by W ′. Suppose
that the search has reached node n and is looking for the next hop, as shown in
Figure 3. In order to guarantee that the path found by DFS is disjoint from the
existing paths in T, the algorithm first tries to pick the next-hop node of the new
path from the neighbors of n that do not belong to any existing paths (referred
to as free neighbors). If such a neighbor is available and the total length of the
path after adding this neighbor is still smaller than the bound, the neighbor is
picked by DFS as the next hop in the new path.

Flow-Based Real-Time Communication in Multi-Channel WSN 41

p_i

s2 ns’

s1
……………….

………

i

p_n

t
………

P

P’

Fig. 3. Example of the Matching Procedure

S’

S1

Sk

………

S1’

Sk’
…..

…

…

A

Fig. 4. Extended DPBD problem

If such a neighbor is unavailable, the algorithm starts an augmentation proce-
dure called matching. The procedure checks if n has any neighbor, which belongs
to a path in T, can provide a W ′ bounded path toward t. For example, suppose
i is such a neighbor and i belongs to an existing path P in T. The procedure
forms a new path P ′, which includes the current search path from s′ to n, the
link between n and i, and the part of path P from i to t. If the length of the new
path is bounded by W ′, P is deleted from the solution set T and P ′ is added to
T. The procedure then uses i’s predecessor, p i, in path P as the current node.
After the matching procedure, the algorithm starts DFS again from node p i.

Since DFS may fail to find the next hop and need to back off, the search may
go back to node s′. In that case, if all the neighbors of s′ have already been
visited, it indicates that the last matching procedure was not successful. The
algorithm then adds path P , which was deleted in the last matching procedure,
back to T, and then removes the new path P ′ established in last matching from
T. The algorithm then rolls back to continue DFS from node p n, which is the
predecessor of the current node n in the last matching procedure.

The whole algorithm terminates under two conditions. First, if the destination
t is reached, the algorithm has successfully found a new disjoint length-bounded
path. Second, if the search goes back to s′ with no more neighbor to visit and all
the matching procedures conducted before have been rolled back, the algorithm
fails to find a new disjoint length-bounded path. The number of paths in T is
the maximum number of disjoint paths with bounded length that the algorithm
can find. The detailed algorithm of finding a new disjoint path in the second
step is presented in the pseudo code (Algorithm 1).

Based on the analysis in [11], the time complexity for DFS to find a new path
is O(W ′‖E‖). The time complexity of the matching procedure in the algorithm
is O(W ′2‖V ‖‖E‖). Therefore, the time complexity of finding a new disjoint path
with bounded delay is O(W ′2‖V ‖‖E‖). The algorithm is currently a centralized
procedure but will be extended to a distributed procedure in our future work.

In a real WSN, it is preferable to have multiple paths in each data flow for
two reasons. First, a data flow composed of only a single path is not fault-
tolerant as node failures may disconnect the flow. Second, with more nodes in
a data flow, each node can have more choices to pick the most power-efficient
next hop for packet forwarding while meeting the deadline requirement. Power-
efficient real-time forwarding is discussed in detail in Section 4. Therefore, in our
real implementation of the algorithm, we extend the DPBD problem to allow a

42 X. Wang et al.

Algorithm 1. Finding One New Disjoint W ′ Bounded Path
Assume we have a solution set T that contains l ≤ k disjoint paths;
n ⇐ s′; Matching Stack Height ⇐ 0;
while n �= t do

Use DFS to find next free neighbor n + 1 that provides W ′ length bounded path
to t;
if no free neighbor available then

Find a neighbor i in path P ⊂ T , which can provide a W ′ length bounded path
to t; Establish path P ′ through n and i; Push n into the stack; T = T −P +P ′;
n ⇐ p i;
Continue;

end if
if no non-free neighbor available then

n ⇐ p n;
if n = s′ then

if matching stack hight = 0 then
Return failure.

else
n ⇐ stack pop out; T = T − P ′ + P ;

end if
end if

end if
end while

source node to have multiple (e.g., m) paths. To this end, we further transform
the new graph G’ = (V’,E’) in the proof of Theorem 1 to make m − 1 copies of
each source node si, as shown in Figure 4. Each copy of a source node has the
same edges that the source node has. For example, s1’s copy, s′1, also has edges
to s′ and A. We then run the search algorithm to find the maximum number
of disjoint paths for the new graph. As a result, some of the data flows may
have multiple paths to the destination. After all the disjoint paths are found,
the channel allocation algorithm merges all the copies for each source node in
the graph. All the paths that share the same source node belong to the same
data flow and are thus allocated a different channel. As a result, interferences
among different data flows can be minimized.

4 Power-Efficient Real-Time Routing

Based on the theoretical analysis presented in Section 3, all data flows are guar-
anteed to have bounded end-to-end delay even when every node experiences
the worst-case one-hop delay. In a real WSN, end-to-end deadline can be set to
be shorter than the theoretical bound. In this section, we present the power-
efficient real-time routing strategy adopted by MCRT, which is the second step
of MCRT after the channel allocation step. Since each data flow is allocated a
different channel, we consider the communication of one data flow in this section.

Flow-Based Real-Time Communication in Multi-Channel WSN 43

The design principle of our power-efficient real-time routing strategy is to use
adaptive transmission power control to achieve required one-hop delay. Empiri-
cal results [2] demonstrate that higher transmission power may lead to improved
link quality due to the increased packet reception rate. High reception rate
will in turn reduce the number of retransmissions needed to deliver a packet,
and thus reduce the transmission delay. Another advantage of power adapta-
tion is energy efficiency. An unnecessary high power level may lead to excessive
power consumption. In addition, high transmission power may cause increased
interferences and channel contention, and hence reduce the network capacity.
In this paper, we implement power adaptation to use just enough power for
desired transmission delays. Please note that though we only control transmis-
sion power in this paper, our protocol can be integrated with energy-efficient
WSN MAC protocols with periodic sleeping (e.g., B-MAC [33]) for further en-
ergy saving at the cost of longer communication delays. The integration is our
future work.

4.1 Real-Time Forwarding

Based on the single-channel real-time routing algorithm presented in [4], we
adopt a dynamic velocity assignment policy and a forwarding policy based on
delay estimation. We assume that a data flow periodically sends a packet to
the destination. The end-to-end deadline of the data flow is embedded in the
packet. Each node that receives the data packet needs to forward the packet to
a neighbor based on whether the neighbor can meet the delay requirement of
the packet at the minimum cost of energy consumption. In this paper, we use
two metrics: required velocity and provided velocity to map a packet’s end-to-end
deadline to a set of local deadlines for each node to meet. Specifically, when a
node needs to forward a packet, it calculates its local deadline, i.e., the required
velocity to be achieved for the current hop based on the following equation:

velocityrequired(s, d) =
dis(s, d)
slack

(1)

where dis(s, d) is the Euclidean distance from the current node s to the desti-
nation node d. slack is the amount of time left before the deadline. Note that
with this deadline assignment policy, if a packet can meet its required velocity
at every hop, it can guarantee to meet its end-to-end deadline. The required ve-
locity is recomputed at each hop. The slack is initially set to be the end-to-end
deadline at the source node. At each hop, the slack is decremented to account for
queuing, contention and transmission delays based on the estimation methods
introduced in [4].

To meet the velocity requirement, the velocity that can be provided by each
forwarding choice (i.e., a neighbor node with a certain power level) in the neigh-
borhood table is computed. In the case when node s forwards a packet to des-
tination d using a forwarding choice (n, p, c), which means node n is selected
as the next hop, p is the transmission power, and c is n’s channel, the velocity
provided by the forwarding choice is:

44 X. Wang et al.

velocityprovided(n, p, c) =
dis(s, d) − dis(n, d)

delay(n, p, c)
(2)

The one-hop delay delay(n, p, c) is estimated based on the methods described
in [4]. dis(s, d) − dis(n, d) is the progress made toward the destination by for-
warding the packet to node n. To ensure that the neighbor receives the packet,
the node has to receive the MAC-layer ACK from the neighbor. If the number of
needed retransmissions is larger than 5, the data packet is dropped. This multi-
channel forwarding policy eliminates the need of costly time synchronization
used in previous node-based multi-channel work (e.g., [7][8]).

4.2 Neighborhood Management

We adopt the reliable routing framework proposed in [32] to deal with the dy-
namic and lossy nature of WSNs. First, link quality and status need to be mea-
sured dynamically through a link estimator. Second, measured link quality must
be maintained in a neighborhood table for making reliable routing decisions in
dynamic environments. In our protocols, we measure the one-hop delay between
the node and its each neighbor using data packets to avoid the overhead of
probing packets. The delay information of each neighbor is stored in a neighbor
table and used to make reliable routing decisions in our protocol. Specifically, we
maintain a neighbor table for each node to record the provided velocity of each
neighbor. When a node receives a data packet, it searches the table to find a
neighbor that can provide the requested velocity and has the lowest transmission
power. In that way, we use just enough power for the desired velocity and thus
can achieve power-efficiency.

If no neighbor can provide the requested velocity, the node will select some
neighbors to conduct power adaptation [2]. The neighbor node used in the last
successful packet delivery to the same destination will be considered first, because
its link status is most up-to-date. If the last used node is not eligible, the second
last used node will be considered. We only consider those neighbor nodes that
have a non-zero retransmission number as there is space for power adaptation
to reduce their delays. If the neighbor’s corresponding transmission power is not
the highest power level yet, we use a policy similar to the well-known Multiple
Increase Linear Decrease (MILD) backoff algorithm to adjust the power level
used to transmit a packet to the neighbor. Specifically, the power level will be
multiplied by 1.5 for timely delivery of the current data packet. For example, if
the current power level is 10, a power level of 15 will be used to transmit the
data packet. This policy is used because timeliness is regarded more important
than energy-efficiency in this work. After the packet is successfully transmitted,
the power level will be decreased by 1 and will continue to decrease upon every
successful packet transmission to this neighbor.

If a node cannot find a neighbor eligible for power adaptation, it sends out a
Routing Request (RR) packet to find new neighbors that can provide the required
velocity. The RR packet contains the required velocity and neighborhood table
information, and is broadcast using the highest power level. When neighbors

Flow-Based Real-Time Communication in Multi-Channel WSN 45

that are not currently in the neighbor table receive the RR packet, they check
whether they can provide the required velocity. If a neighbor can provide required
velocity, it replies to the RR packet after a random delay. When other neighbors
overhear the reply, they stop sending replies to the current node to reduce the
chance of network congestion caused by a large number of replies.

5 Design of Baseline Algorithms

In all our experiments, we compare our MCRT protocol against three well-
designed baselines: a simple flow-based multi-channel real-time protocol, a node-
based multi-channel real-time protocol, and a single-channel power-aware
real-time protocol [4].

The first baseline we use to compare with MCRT is a simple flow-based multi-
channel real-time protocol called SIMPLE, which is designed in the same way as
MCRT except that it uses a simple heuristic to find disjoint paths for channel
allocation. During the initialization phase of the network, the source node of
each flow broadcasts an explorer packet on the common channel with the distance
from the source to the destination attached. Nodes that receive this packet check
its own distance to the destination. If its distance is shorter than that in the
packet, it waits for a random time and then replies to the source node. Other
nodes that overhear the reply will stop sending reply message to avoid network
congestion. The packet is then forwarded to the first replying node. The process
continues until the explorer packet arrives at the destination. A path from the
source to the destination is then established. A multi-hop ACK packet is then
sent from the destination back to the source. Every node on the path switches to
the new channel immediately after successfully receiving the MAC-layer ACK.
In our experiments, two explore packets are used to find two paths for a data
flow.

The second baseline is a node-based multi-channel real-time protocol. In this
protocol, instead of allocating channels to data flows, every node has its own
default channel and needs to dynamically switch channel in order to communi-
cate with another node. In the initialization phase of a WSN, every node claims
its own default channel in a way to have approximately even distribution of the
channels. During the data transmission phase, if the current node wants to for-
ward a packet to a neighbor on a different channel, the node needs to switch to
that channel to send the packet. To ensure that the neighbor receives the packet,
the node has to receive the MAC-layer ACK from the neighbor before switching
back to its own channel. Note that our node-based baseline eliminates the need
of costly time synchronization used in previous node-based multi-channel work
(e.g., [7][8]). Different from the single-channel work such as [4], RR packets are
broadcast on different channels. In our baseline, a node first broadcasts on its
own channel and then switches to other channels to broadcast the RR packet.
After that the node switches back to its own channel. If a qualified node needs
to send a RR reply to the current node, it switches to the current node’s channel
to do so.

46 X. Wang et al.

The last baseline is a single-channel real-time routing protocol called
RPAR [4]. We compare MCRT against RPAR to show that multiple channels can
be effectively utilized to reduce packet drop ratio, and thus reduce the number of
needed retransmissions and communication delays, especially when the specified
deadlines are tight. Note that RPAR outperforms several existing real-time and
energy-efficient protocols (including one similar to SPEED [15]), by achieving a
smaller deadline miss ratio and less energy consumption, as demonstrated in [4].
Therefore, by having better real-time performance and less energy consumption
than RPAR, our MCRT protocol also outperforms the baseline protocols used
by RPAR.

6 Performance Evaluation

In this section, we first introduce our simulation setup. We then present the
simulation results to compare our MCRT protocol against the three baselines,
under different transmission deadlines, data rates, number of data flows, and
network densities.

6.1 Simulation Setup

We implement the MCRT protocol in the ns-2.29.3 release of the ns-2 network
simulator [34]. We configure ns-2 based on the characteristics of Mica2 sensor
motes. Each node has 31 transmission power levels, from -20 dBm to 10 dBm.
The bandwidth is set as 40Kbps for the experiments. The probabilistic radio
model in [35] has been implemented in ns-2 to model lossy links. The ns-2 simu-
lator is also modified to support multiple channels and to allow dynamic channel
switching. The MAC protocol used in our simulations is a simple CSMA scheme
similar to B-MAC [33], the default MAC protocol in TinyOS.

The network topology used in the experiments includes 130 nodes distributed
in a 150m × 150m area. The area is divided into 13 × 10 grids, each of which is
roughly 13m × 10m. Each grid is configured to have a node randomly deployed
in it. In Section 6.4, the network topology consists of 361 nodes distributed in the
same area with a higher density. We use the common many-to-one traffic pattern
in our simulations. In each experiment, the first source node is selected to be
the node in the center of the left-most grid column in the network. Other source
nodes are randomly selected from the left-most grids with a certain distance from
each other. We assume the destination node (i.e., the base station) is a special
node that is equipped with multiple radio transceivers, such that it can receive
packets on multiple channels simultaneously. We assume the destination locates
just outside the right-side boundary of the network. The destination can directly
talk, on different channels, to several adjacent nodes located in the center of the
right-most grids. As long as a packet can be delivered from a source node to
one of those nodes, the packet is assumed to be successfully delivered to the
destination.

We use a traffic generator that varies the interval between two data packets
based on the sum of a constant (300ms) and a random number generated by

Flow-Based Real-Time Communication in Multi-Channel WSN 47

an exponential distribution. The following setup is used in the experiments if
not otherwise indicated. The network is configured to have 3 data flows from 3
source nodes to the destination. Each source node generates a new packet every
4 seconds. The end-to-end transmission deadline is 300ms. Three channels are
used in our simulations due to the limited availability of orthogonal channels, as
reported in [6]. All the nodes start with no neighbor information and thus have
an empty neighborhood table.

We use two performance metrics to evaluate the performance of the four pro-
tocols: the MCRT protocol and the three baselines. The first metric is deadline
miss ratio which is the fraction of data packets that miss their deadlines during
end-to-end transmissions. This metric examines the real-time performance re-
quired in many real-time WSN applications. The second metric we use is energy
consumption per data packet, which is the ratio between the total energy con-
sumed in transmissions and the number of packets that successfully meet their
deadlines. This metric evaluates the energy efficiency of the proposed protocols.
Each data point in all the figures is the average of five different runs. The 90%
confidence interval of each data point is also plotted.

6.2 Different Transmission Deadlines

The first set of experiments evaluates the performance of the four protocols
under different end-to-end transmission deadlines. Figure 5 shows the deadline
miss ratios when the deadline varies from 150 ms to 350 ms. MCRT has the
lowest miss ratio among all the four protocols. MCRT has better performance
than RPAR because it can utilize multiple channels for reduced communica-
tion delays. MCRT outperforms the node-based scheme because the node-based
scheme needs to broadcast RR packet in multiple channels when it fails to find a
neighbor that can provide the required velocity, which contributes to longer de-
lay. The performance of MCRT is slightly better than that of SIMPLE because
the data flows in MCRT are formed to be bounded even when every node has
the worst-case one-hop delay. In contrast, as introduced in Section 5, SIMPLE
randomly picks nodes to form data flows without considering interferences and
one-hop delay of each node.

0

0.1

0.2

0.3

0.4

150 200 250 300 350
Deadline (ms)

M
is

s
R

at
io

Node Based SIMPLE

MCRT RPAR

Fig. 5. Miss ratio when deadline is varied

2

4

6

8

10

150 200 250 300 350
Deadline (ms)

E
n

er
g

y
p

er
 d

at
a

p
kt

 (
m

J/
d

at
a

p
kt

) Node Based RPAR

SIMPLE MCRT

Fig. 6. Energy consumption when dead-
line is varied

48 X. Wang et al.

Figure 6 shows the energy consumption of the four protocols. MCRT has
the lowest energy consumption for all the deadlines. The reason is that MCRT
has the smallest number of retransmissions, which greatly reduces the energy
consumption. In addition, MCRT also has a much lower deadline miss ratio as
shown in Figure 5. As a result, more packets successfully meet their deadlines,
which leads to improved energy efficiency.

6.3 Different Data Rates

This set of experiments studies the performance of the four protocols when the
data rate of the three source nodes is increased from one packet per 5 seconds
to one packet every second. Figure 7 shows that there is no clear evidence that
data rate may significantly affect the miss ratio for the four protocols. MCRT
and SIMPLE have better real-time performance because they divide the network
into partitions, with a different channel used in each partition. As a result, the
interferences between different data flows can be reduced.

0

0.05

0.1

0.15

1 2 3 4 5
Inter Packet Time (s)

M
is

s
R

at
io

Node Based SIMPLE

MCRT RPAR

Fig. 7. Miss ratio when data rate is varied

2
4
6
8

10
12
14

1 2 3 4 5
Inter Packet Time (s)

E
n

er
g

y
p

er
 d

at
a

p
kt

 (
m

J/
d

at
a

p
kt

) Node Based RPAR

SIMPLE MCRT

Fig. 8. Energy consumption when data
rate is varied

Figure 8 shows the energy consumption. Both MCRT and SIMPLE have lower
energy consumptions, compared with the other two protocols. This is because
they have much fewer retransmissions caused by the channel contention among
different data flows. The node-based scheme consumes the most energy because
it needs to send out RR packets on multiple channels. In addition, it is easier
for the node-based scheme to have some long-distance neighbors that may need
higher power to successfully transmit packets. Those long-distance neighbors are
due to the fact that the node-based scheme switches between multiple channels to
broadcast RR packets, and thus has a smaller chance of finding nearby neighbors
to provide the required velocity.

6.4 Different Number of Data Flows

In this experiment, we vary the number of data flows in the network from 2
to 6 and 361 nodes are deployed in the network. When the number of flows
is greater than the number of channels, we try to evenly distribute the flows
to each channel for the MCRT and SIMPLE protocols. For example, with four

Flow-Based Real-Time Communication in Multi-Channel WSN 49

flows and three channels, two of the flows will share a single channel. Figure 9
shows that the deadline miss ratios of MCRT and SIMPLE remain the same
when the number of flows increases from 2 to 3. This is because each flow can
transmit on a separate channel when the number of flows is smaller than or equal
to 3. The miss ratios of MCRT and SIMPLE increase slightly when the number
of flows increases from 3 to 6, because two flows need to share one channel,
leading to slightly increased channel contention and deadline miss ratios. The
increased number of flows has the biggest impact on RPAR, raising its deadline
miss ratio to almost 30%. The results show that single-channel protocols are
more vulnerable to the increasing number of competing data flows. On the other
side, multi-channel protocols can utilize multiple channels to effectively reduce
packet drop ratio, and so mitigate the impact of increased data flows.

0

0.1

0.2

0.3

0.4

2 3 4 5 6
Number of Flows

M
is

s
R

at
io

Node Based SIMPLE

MCRT RPAR

Fig. 9. Miss ratio when number of data
flows is varied

2

6

10

14

18

2 3 4 5 6
Number of Flows

E
n

er
g

y
p

er
 d

at
a

p
kt

 (
m

J/
d

at
a

p
kt

) Node Based RPAR

SIMPLE MCRT

Fig. 10. Energy consumption when num-
ber of data flows is varied

As shown in Figure 10, MCRT and SIMPLE have lower energy consumption.
The reason is that MCRT and SIMPLE have fewer retransmissions caused by
the channel contention among different flows, as they have fewer flows in each
network partition. MCRT is slightly better than SIMPLE (only except for 5
flows) because the delays of the data flows in MCRT are bounded, which results
in fewer nodes in each flow and hence smaller number of transmissions to reach
the destination. The node-based protocol has the highest energy consumption
because each node is more likely to have long-distance neighbors, which require
higher power for successful transmissions. In addition, the node-based protocol
broadcasts RR packets in multiple channels, which contributes significantly to
its energy consumption because more RR packets need to be sent when more
data flows are competing for the channel.

6.5 Different Network Densities

In this set of experiments, we vary the network density by changing the spacing
between every two nodes from 14m to 8m, which in turn changes the total num-
ber of nodes from 121 to 361. Figures 11 and 12 show the miss ratio and energy
consumption for all the four protocols, respectively. The miss ratios of RPAR and
the node-based protocol increase when the network density increases. This is be-
cause the neighborhood table of each node is filled up with some short-distance
neighbors in a high density network. As a result, the required number of hops for

50 X. Wang et al.

0

0.05

0.1

0.15

0.2

8 9 10 11 12 13 14
Inter Node Spacing (m)

M
is

s
R

at
io

Node Based SIMPLE

MCRT RPAR

Fig. 11. Miss ratio when network density
is varied

2
4
6
8

10
12
14
16

8 9 10 11 12 13 14
Inter Node Spacing (m)

E
n

er
g

y
p

er
 d

at
a

p
kt

 (
m

J/
d

at
a

p
kt

) Node Based RPAR

SIMPLE MCRT

Fig. 12. Energy consumption when net-
work density is varied

a packet to reach the destination is increased, making it hard to meet the dead-
line. MCRT and SIMPLE are not significantly impacted by the varying network
density because partitioning the network leads to fewer short-distance neighbors
in each data flow. The energy consumption decreases for all the four protocols
when the network density decreases. This is because more packets are success-
fully transmitted to the destination due to smaller miss ratios and the number of
hops to deliver a packet becomes smaller when the density is lower. MCRT has
the lowest energy consumption because it has fewer retransmissions and a lower
deadline miss ratio. The node-based protocol has the highest energy consumption
because it uses more RR packets than other protocols.

7 Conclusion

In this paper, we have presented MCRT, a multi-channel real-time communi-
cation protocol that utilizes both multiple channels and transmission power
adaptation to achieve real-time communications in WSNs. MCRT features a
flow-based channel allocation strategy, which is designed based on the multi-
channel realities identified in previous work to use only a small number of orthog-
onal channels. To achieve bounded end-to-end communication delay for every
data flow, the channel allocation problem has been formulated as a constrained
optimization problem and proved to be NP-complete. The design of MCRT in-
cludes a channel allocation algorithm designed based on well-established heuris-
tics and a real-time packet forwarding strategy. Extensive simulation results
demonstrate that MCRT can effectively utilize multiple channels to reduce the
number of deadlines missed in end-to-end communications. Our results also show
that MCRT outperforms a state-of-the-art real-time protocol and two baseline
multi-channel communication schemes.

References

1. Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wire-
less sensor networks. In: SenSys (2003)

2. Lin, S., He, T., Zhang, J., Zhou, G., Gu, L., Stankovic, J.A.: ATPC: Adaptive
transmission power control for wireless sensor. In: SenSys (2005)

Flow-Based Real-Time Communication in Multi-Channel WSN 51

3. CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver,
http://www.chipcon.com

4. Chipara, O., He, Z., Xing, G., Chen, Q., Wang, X., Lu, C., Stankovic, J., Abdelza-
her, T.: Real-time power-aware routing in sensor networks. In: IWQoS (2006)

5. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on
on Information Theory 46(2) (2000)

6. Wu, Y., Stankovic, J., He, T., Lin, S.: Realistic and efficient multi-channel com-
munications in dense sensor networks. In: INFOCOM (2008)

7. Zhang, J., Zhou, G., Huang, C., Son, S.H., Stankovic, J.A.: TMMAC: An energy
efficient multi-channel mac protocol for ad hoc networks. In: IEEE ICC (2007)

8. Zhou, G., Huang, C., Yan, T., He, T., Stankovic, J.A., Abdelzaher, T.F.: MMSN:
Multi-frequency media access control for wireless sensor networks. In: INFOCOM
(April 2006)

9. Kyasanur, P., Vaidya, N.H.: Capacity of multi-channel wireless networks: impact
of number of channels and interfaces. In: MobiCom (2005)

10. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

11. Ronen, D., Perl, Y.: Heuristics for finding a maximum number of disjoint bounded
paths. Networks 14, 531–544 (1984)

12. Stankovic, J.A., Abdelzaher, T., Lu, C., Sha, L., Hou, J.: Real-time communication
and coordination in embedded sensor networks. Proceedings of the IEEE 91(7)
(2003)

13. Caccamo, M., Zhang, L.Y., Sha, L.: An implicit prioritized access protocol for
wireless sensor networks. In: RTSS (2002)

14. Lu, C., Blum, B.M., Abdelzaher, T.F., Stankovic, J.A., He, T.: RAP: A real-
time communication architecture for large-scale wireless sensor networks. In: RTAS
(2002)

15. He, T., Stankovic, J., Lu, C., Abdelzaher, T.: SPEED: A stateless protocol for
real-time communication in sensor networks. In: ICDCS (2003)

16. Lee, E.F.C.-G., Ekici, E.: MMSPEED: Multi-path multi-speed protocol for qos
guarantee of reliability and timeliness in wireless sensor networks. IEEE Transac-
tions on Mobile Computing 5(6), 738–754 (2006)

17. Ahn, G.-S., Sun, L.-H., Veres, A., Campbell, A.T.: SWAN: Service differentiation
in stateless wireless ad hoc networks. In: INFOCOM (2002)

18. Karenos, K., Kalogeraki, V.: Real-time traffic management in sensor networks. In:
RTSS (2006)

19. Vedantham, R., Kakumanu, S., Lakshmanan, S., Sivakumar, R.: Component based
channel assignment in single radio, multi-channel ad hoc networks. In: MobiCom
(2006)

20. Santi, P.: Topology control in wireless ad hoc and sensor networks. Istituto di
Informatica e Telematica, Pisa - Italy, Tech. Rep. IIT-TR-04 (2003)

21. Ramanathan, R., Hain, R.: Topology control of multihop wireless networks using
transmit power adjustment. In: INFOCOM (2000)

22. Li, L., Halpern, J.Y., Bahl, P., Wang, Y.-M., Wattenhofer, R.: Analysis of a cone-
based distributed topology control algorithm for wireless multi-hop networks. In:
PODC (2001)

23. Li, N., Hou, J.C., Sha, L.: Design and analysis of an mst-based topology control
algorithm. In: INFOCOM (2003)

24. Son, D., Krishnamachari, B., Heidemann, J.: Experimental study of the effects of
transmission power control and blacklisting in wireless sensor networks. In: SECON
(2004)

http://www.chipcon.com

52 X. Wang et al.

25. Singh, S., Woo, M., Raghavendra, C.S.: Power-aware routing in mobile ad hoc
networks. In: MobiCom (1998)

26. Li, Q., Aslam, J., Rus, D.: Online power-aware routing in wireless ad-hoc networks.
In: MobiCom (2001)

27. Chang, J.-H., Tassiulas, L.: Energy conserving routing in wireless ad-hoc networks.
In: INFOCOM (2000)

28. Sankar, A., Liu, Z.: Maximum lifetime routing in wireless ad-hoc networks. In:
INFOCOM (2004)

29. Doshi, S., Bhandare, S., Brown, T.X.: An on-demand minimum energy routing
protocol for a wireless ad hoc network. SIGMOBILE Mob. Comput. Commun.
Rev. 6(3) (2002)

30. Wang, X., Wang, X., Fu, X., Xing, G., Jha, N.: Flow-based real-time communi-
cation in multi-channel wireless sensor networks, Tech Report, University of Ten-
nessee, Knoxville, TN (2008),
http://www.ece.utk.edu/∼xwang/papers/mcrt.pdf

31. Chipara, O., Lu, C., Stankovic, J.: Dynamic conflict-free query scheduling for wire-
less sensor networks. In: ICNP (2006)

32. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: SenSys (2003)

33. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: SenSys (2004)

34. ns-2 Network Simulator, http://nsnam.isi.edu/nsnam/index.php/Main Page
35. Zuniga, M., Krishnamachari, B.: Analyzing the transitional region in low power

wireless links. In: SECON (2004)

http://www.ece.utk.edu/~xwang/papers/mcrt.pdf
http://nsnam.isi.edu/nsnam/index.php/Main_Page

QoS Management for Wireless Sensor Networks
with a Mobile Sink

Rob Hoes1,2, Twan Basten2,3, Wai-Leong Yeow4, Chen-Khong Tham1,
Marc Geilen2, and Henk Corporaal2

1 National University of Singapore
2 Eindhoven University of Technology

3 Embedded Systems Institute
4 Institute for Infocomm Research

Abstract. The problem of configuration of Wireless Sensor Networks
is an interesting challenge. The objective is to find the settings, for each
sensor node, that optimise certain task-level QoS metrics. An existing
configuration method is available for tree-based static networks. We ex-
tend this method to support a mobile sink. First, the routing tree is
adapted to the sink’s new location, after which the parameters of the
nodes are optimised. Both algorithms are distributed and localised, and
therefore efficient and scalable, and are able to flexibly trade reconfigu-
ration cost (time and energy) for quality to match the demands of the
application. Various options are analysed, and evaluated in simulation.

1 Introduction

The research on Wireless Sensor Networks (WSNs) in recent years has fo-
cused extensively on hardware, operating systems and communication protocols.
Quality-of-Service (QoS) management, in which one places constraints on perfor-
mance criteria on several observable quality metrics such as lifetime, reliability,
or delay, is becoming an important area of interest as well. A relatively new, but
very significant topic deals with the question of how to configure a WSN that
has been designed and deployed to fulfil a certain task. Sensor nodes all have a
number of hardware or software settings that can be individually set. Carefully
fine-tuning these parameters can yield significant performance gains. The prob-
lem is very challenging due to the vast number of possible configurations a WSN
has, a number that grows exponentially with the size of the network.

In earlier work, we provided a solution to the configuration problem for static
networks [1]. The solution is a scalable configuration method that intelligently
searches through the full configuration space and delivers Pareto-optimal solu-
tions or Pareto points : the best possible trade-off points. However, sensor net-
works are often dynamic, and the only way this method is able to deal with
events such as moving nodes, is by completely reconfiguring the network.

This paper extends the configuration method by providing facilities for effi-
cient reconfiguration upon a move of the data sink. Supporting a mobile sink is of
interest for lifetime extension, as it relieves the energy bottleneck that naturally

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 53–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

54 R. Hoes et al.

exists at nodes close to the sink, which need to transfer much more data than
nodes further away [2, 3]. Furthermore, the application may have the need for a
mobile sink, for example in disaster-recovery situations in which rescue workers
walk around with handheld devices to collect information about the scene.

The configuration method assumes that a routing tree is used for communi-
cation between sensors and the sink. If the sink moves, the tree likely breaks,
and needs to be fixed. Furthermore, the change in situation may have rendered
the current configuration sub-optimal, or worse, QoS constraints may have been
violated. Efficient reconfiguration of the tree and node parameters requires dis-
tributed and localised algorithms. In this paper, we describe an algorithm for
tree reconstruction that is able to trade the cost of reconfiguration in terms
of time and energy, for the quality of the new tree measured by the average
path length. The algorithm selectively reconfigures a local area around the sink
of which the size can be adjusted, while guaranteeing that a correctly rebuilt
tree results. This goes hand in hand with a localised QoS-optimisation scheme
that is able to find new Pareto points given that only a sub-set of the nodes
may be touched. Both methods and their practical and seamlessly integrated
implementation, are the main contributions of this paper.

2 Related Work

Many researchers recognise the need for methods that deal with conflicting per-
formance demands and set up a sensor network properly. Some authors sug-
gest to use a knowledge base to make a match between task-level demands and
network protocols to use [4, 5]. These efforts choose a mode of operation that
is common for all nodes in the network, while our configuration method de-
termines settings for each node individually. MONSOON [6] is a distributed
scheme that uses agents to carry out application tasks, while the behaviour of
these agents is adapted to the situation at hand according to evolutionary prin-
ciples. Lu et al. [7] also look at WSN configuration in a method for address
allocation. The overhead of the configuration protocol itself is optimised, but
unlike our approach, the performance of a higher-level application is not. None
of the existing configuration approaches explicitly deals with adaptation to sink
movement.

Several topology-maintenance schemes have been suggested earlier [8,9], some
of which aim at mobile sinks or targets [10,11]. The tree-reconstruction method of
Zhang et al. [12] comes closest to our method, as they also flood a restricted area.
However, our way of combining such restricted flooding with a baseline mech-
anism that ensures connectivity is new. By doing this, we enable a wide range
of possible trade-offs between maintenance costs and task-level quality met-
rics. Furthermore, contrary to many existing approaches, our tree-reconstruction
method does not require any knowledge about the deployment of nodes or move-
ment of the sink, and is robust to message loss. Moreover, our way of inte-
grating topology control with node configuration to meet task-level QoS goals
is unique.

QoS Management for Wireless Sensor Networks with a Mobile Sink 55

3 Configuring a WSN with QoS Requirements

In this section, we give an overview of the configuration process and the type
of networks we target. Our dynamic reconfiguration method follows the same
general steps. The focus of this work is on large networks of static sensor nodes
positioned in some target area. In addition, there is sink node, whose job is to
collect the data from the WSN. We assume all nodes have similar communication
capabilities and all network links are symmetric. The network has a specific task,
such as tracking a target or creating a map of the area based on measured data.
We further assume that a routing tree is used to connect each node to the sink.

The process of configuring a WSN consists of a number of phases and can be
executed in both a centralised or a distributed fashion. The first configuration
phase is the construction of the tree. The goal of this phase is to create a tree
that is good in terms of the quality of the task running on the network, but
also tuned to relax the complexity of the following phase. Given the tree, the
QoS-optimisation phase is responsible for finding a Pareto-optimal set of config-
urations (see below) for the parameters of all nodes in the network, in terms of
a number of quality metrics. An algorithm to do this efficiently was introduced
earlier [1]. One of the found configurations is then chosen based on constraints
and other considerations, and loaded into the network (the loading phase).

3.1 Routing-Tree Construction

A routing tree has two properties that are especially relevant for the configu-
ration problem: the average path length and the maximum node degree. Short
paths in the tree are favourable for delay metrics. The degree of a node is defined
as the number of child nodes it has. A low maximum node degree leads to good
load balancing, and therefore to a better lifetime. Furthermore, the complexity
of the QoS-optimisation algorithm greatly depends on the degree of nodes (see
below). We assume that the quality of the task improves if the average path
length is reduced for a given maximum node degree, and vice versa.

As minimising the average path length and maximum node degree are con-
flicting goals, the challenge is to find a suitable trade-off between them. We
developed a method that finds a shortest-path spanning tree (SPST) within a
given maximum-degree target [13]. First, the network is flooded to construct an
SPST. In practise, flooding does not always result in an SPST, but here we accept
this sub-optimality in exchange of efficiency and ease of implementation. Subse-
quently, each node that has a degree higher than the target tries to reduce its
degree by requesting some of its children to find a suitable other parent node. Fur-
ther details are not important for this paper, and can be found in the reference.

3.2 QoS Optimisation

Each node has parameters, which are hardware or software settings that can be
controlled, and every parameter has a set of possible values. Suppose a node has
three parameters with three possible values each; then there are 33 = 27 possible

56 R. Hoes et al.

sink

leaf node

cluster root

cluster

task-level metric vectors:

(0.9, 1.2, 3000, 0.6)

(0.6, 1.2, 3000, 0.6)

(0.9, 1.1, 5000, 0.2)

(0.6, 0.8, 5500, 0.2)

node-level metric vectors:

(0.9, 2.4, 4000, 0.6)

(0.6, 1.2, 3000, 0.4)

(0.6, 1.0, 2500, 0.4)

(0.9, 1.1, 6500, 0.2)

(0.6, 0.8, 5500, 0.2)

Fig. 1. Illustration of a network, cluster, leaf node, and node/task-level quality-metric
vectors (tuples of information completeness, detection speed, lifetime and coverage
degree); dominated configurations are crossed out

parameter vectors per node. In a network of n nodes, with 3n independent
parameters, this leads to 27n possible configurations for the whole network.
Each parameter vector of a node maps to a vector of measurable properties
called quality metrics for this node. Likewise, a parameter vector of all nodes
together maps to a vector of quality metrics for the whole network, which are our
optimisation targets. Such mappings can be captured in equations, and together
form a model of the WSN and the task running on it. Figure 1 shows an example
of a network, configurations, and related concepts.

An example of a model for a target-tracking task is available in [1]. In this
task, one or more targets move around in an area of interest. Any node that
detects a target, sends a report to the sink node. The model has four task-level
quality metrics: information completeness, the fraction of the data messages from
the sensor nodes that arrive at the sink; detection speed, a measure for the delay
from detection of a target to notification at the sink; lifetime; and finally coverage
degree, the minimum percentage of the time that each part of the area is observed
by at least one sensor. There are inherent trade-offs between these metrics.

The challenge is to find a set of network configurations (vectors of parameters
plus metrics they map to) that are Pareto optimal. A configuration c̄1 dominates
a configuration c̄2 if and only if c̄2 is not better than c̄1 in any of the quality
metrics. The Pareto-optimal configurations, or Pareto points, of a set of configu-
rations are all configurations that are not dominated by any other configuration
in the set, and are therefore considered to be the best. The process of finding all
Pareto points of a configuration set is called minimisation [14].

An obvious way to find the Pareto points for a WSN is to compute all configu-
rations and minimise this set. However, since the total number of configurations
for a WSN typically increases exponentially with the number of nodes, this is
generally not feasible. A solution is to find the Pareto points of groups of nodes
called clusters, and incrementally grow these groups. At each step, dominated
configurations are removed to keep the sets small. First, every node is initialised
as a one-node cluster. This means that all parameter vectors are mapped to
cluster-level metrics, and the resulting configuration set is minimised. Then, two
or more clusters are combined, cluster metrics for this higher-level cluster are
derived using cluster-to-cluster mappings, and the resulting configuration set is
minimised. This is repeated until there is a single cluster left, which contains all
nodes. The quality metrics of this cluster are the task-level quality metrics.

QoS Management for Wireless Sensor Networks with a Mobile Sink 57

Algorithm 1. Distributed QoS-analysis algorithm (runs in each node)

1 wait until each child node has transferred its Pareto set
2 create one-node cluster Pareto set
3 combine one-node cluster and child-clusters Pareto sets (if any)
4 derive quality metrics of new configuration set
5 minimise configuration set
6 send minimised configuration set to parent

It is not possible to combine any arbitrary group of clusters into a new clus-
ter, and then minimise the new configuration set, without the risk of losing
configurations that are Pareto optimal at the task level. We need a property
called monotonicity: a clustering step is monotone if and only if dominated con-
figurations from the clusters that are being combined can never be part of a
non-dominated configuration in the combined cluster. If all clustering steps are
monotone, dominated configurations can be safely removed in each clustering
step, without potentially losing Pareto-optimal network configurations.

It has been proven [1] that a clustering step is monotone if two conditions are
met. Firstly, the cluster-to-cluster mappings need to be monotone (they need to
be non-decreasing functions), which is the case for the target-tracking model.
Further, every cluster must form a sub-tree of the routing tree. Therefore, a clus-
ter is redefined to be a root node together with all its descendants in the tree (all
downstream nodes up to and including the leaf nodes). This imposes a clustering
order that starts with the leaf nodes of the network, and grows clusters towards
the sink. A straightforward distributed algorithm is possible, in which each node
runs the program given in Algorithm 1. After the sink completes the program,
it has the complete set of Pareto points for the whole network: the quality
metrics plus parameter values for each node that achieve these. Next, the sink
chooses a feasible Pareto point, and sends it down the tree (the loading phase).

The run time of this algorithm for a single node is roughly proportional to
the product of the number of configurations in each Pareto set that is combined,
and therefore heavily depends on the number of children the node has. This is
one of the reasons to build a routing tree with low node degrees. It is shown that
the algorithm, while having an exponential theoretical worst-case complexity, is
sub-linear in practise, and therefore scalable to large networks.

To reduce memory usage, and communication in the loading phase, an in-
dexing method is used. Each node maintains an indexing table that links each
configuration in its Pareto set to the associated configurations of its child nodes,
and does not store configurations of individual nodes in its cluster. In the loading
phase, a node only needs an index from its parent to know which parameters to
use, and sends indices to its children after a look-up in the indexing table.

4 Adapting the Routing Tree

The previous section shows how to configure a WSN from scratch. We now con-
sider a configured WSN in operation, in which the sink moves to a new location.

58 R. Hoes et al.

sink

path to former children

sink

(a)

sink
2 23sink

2

3

1

1

1

13

*

*

the tunnel

* *

*

*

(b)

Fig. 2. The sink moved from left (dashed triangle) to right. (a) The nodes that have
dashed arrows became disconnected after the move of the sink. Thick arrows indicate
a path from the new position of the sink to these nodes. (b) Dark-coloured nodes form
the affected area of QuickFix. The number indicates the QuickFix phase they perform.

To ensure the network’s task is able to continue running, and its quality meets
the demands in the new situation, a reconfiguration of the network is needed.
As the routing tree most likely breaks when the sink moves, the tree needs to be
reconstructed (see Figure 2(a)). We assume that the sink moves stepwise, and
after each step resides at its position long enough to justify rebuilding the tree.
For applications with a continuously and relatively fast moving sink, maintaining
a routing tree is probably not the best solution and other methods of delivering
data to the sink may be more suitable.

As outlined in Section 3.1, our goal is to create a tree in which all nodes have a
degree no more than a certain threshold, and paths are made as short as possible
within that constraint. After a move of the sink, the cost of globally reconstructing
the tree (in time and energy) may be too high, especially if moves are frequent.
We therefore propose a new algorithm that recreates the tree only in a certain
region around the sink, referred to as the affected area, and retains the parts of
the existing tree elsewhere, thereby sacrificing some quality (longer paths).

4.1 Minimal-Cost Reconstruction

We consider full tree reconfiguration as a baseline algorithm that provides the
best quality against the highest cost. At the other end of the spectrum would
be an algorithm that has the lowest reconfiguration cost, but a lower quality
as well. This algorithm ensures that all nodes are connected to the sink again,
and is therefore required for a minimum service level, but does nothing beyond
that to improve the quality. We call this algorithm QuickFix. It is similar to the
Arrow protocol introduced in a different context [15]. We first explain QuickFix,
and then explain under which assumptions it works properly.

After the sink moves to a new position, it may be out of range of some or all of
its children in the existing tree. QuickFix creates new paths from these nodes to
the sink. All other nodes in the network are descendants of the former children
of the sink. Therefore, reconnecting these former children to the sink means that
all nodes are connected again. Reconnection is based on the observation that the

QoS Management for Wireless Sensor Networks with a Mobile Sink 59

A B

tunnel
sink

(a)

sinksink

1

1

0

1

the tunnel

0 1
0

0 1
0

0

0

(b)

Fig. 3. (a) Former children of the sink, in two disconnected groups. Group A is con-
nected to the tunnel, but none of these nodes can reach a node in group B by broad-
casting. Group B’s nodes (plus all descendants) remain disconnected after QuickFix.
(b) The example of Fig. 2 with Controlled Flooding (CF) having deviation = 1. Dark-
coloured nodes have been affected by CF and some of them (those in the bottom part)
have found a shortcut to the sink. The numbers indicate the deviation values per node.

existing tree has paths to the sink’s former child nodes from anywhere in the
area, and happens in three phases; see Figure 2 for an overview. The sink, at its
new position, starts by broadcasting a control message. The nodes that receive
this message become the sink’s new children, which all have a path to one of the
disconnected former children of the sink. In the second phase, QuickFix follows
these paths and reverses the links, until such a former child is reached. Finally,
this node broadcasts a control message that enables other former children of the
sink to connect, which is repeated until all are reconnected.

QuickFix effectively creates a tunnel, containing all above mentioned paths,
through which all disconnected nodes are reconnected to the sink. This has no
effect on the node degrees (except the sink’s), but all paths are enlarged by
paths of the tunnel. An optimisation that does not cost any extra transmissions
can be made: any node that overhears a control message may set the sender of
this message as its parent node (nodes marked by an asterisk in Figure 2(b)).
By doing this, the node creates a shortcut to the tunnel and shortens the path
of itself and its descendants.

QuickFix leads to a tree containing all nodes under the following conditions:

1. The sink’s broadcast after the move is received by at least one sensor node.
If not, the first phase breaks.

2. QuickFix messages creating the tunnel are not lost. If this happens, the
second phase breaks.

3. The sub-network consisting of only the former children of the sink is fully
connected. If not, the third phase breaks (see Figure 3(a)).

The first condition implies that the sink needs acknowledgements from its new
children that have received its broadcast. If no acknowledgement is received, the
sink rebroadcasts. The next condition can also be guaranteed by an acknowledge-
ment scheme, as all transmissions are unicast. The third condition will generally
be met if the node density (with respect to the radio range) is sufficiently high.
This will usually be the case, as WSNs are typically very dense.

60 R. Hoes et al.

4.2 Improving the Quality

QuickFix reconnects all nodes to the sink in a highly cost-efficient way, but the
average path length of the resulting tree will be high. The affected area consists of
only the old and new children of the sink and the tunnel between them. To reduce
the average path length, but keep the costs limited, we use another mechanism
on top of QuickFix, which enlarges the affected area by a number of hops that
can be specified, called the deviation parameter. This parameter is part of the
control-message format. Any node that overhears a control message does not
only connect to the sender (as described in the previous sub-section), but if the
deviation value is larger than zero, it will broadcast a new control message with
a decremented deviation value. We refer to this as Controlled Flooding (CF). By
flooding the affected area, a local SPST is constructed, and consequently also
the paths of the nodes outside the area are reduced in length (see Figure 3(b)).

QuickFix and CF are not executed consecutively, but run in parallel. To ensure
that nodes react to a control message only once, an update number is used in
the control-message format. This number is incremented at each reconfiguration
(sink move), and only if a node receives a control message which has a higher
update number than it has seen before, it will update its parent variable and
forward the message. There is one exception to this rule: since QuickFix is crucial
to reconnect all nodes in the new tree, QuickFix control messages are always
forwarded (to the parent in the old tree!), even though a CF message with
the same update number arrived earlier. Since all chains of forwarded control
messages (QuickFix and CF) originate from the sink, each affected link is pointed
to the node that sent the message, and nodes react only once to CF messages of
a certain update number, a correct tree (rooted at the sink, loop-free) is formed
in the affected area. The nodes at the edge of the affected area keep their existing
sub-trees, so all nodes are connected to the affected area and hence to the sink.
Loss of CF messages may lead to longer paths, but never results in a broken tree.

After QuickFix and CF finish, the node degrees are reduced as before. Only
nodes in the affected area take part in the degree reduction. When only QuickFix
is used, the reduction algorithm is not able to do much, since the affected area
is small. Therefore, we bound the number of nodes that may directly connect to
the sink already in the first phase of QuickFix via some extra handshaking.

The deviation parameter controls the trade-off between reconfiguration cost
and quality. A larger deviation value leads to a larger affected area, and thus to
more nodes obtaining shorter paths, and a better quality. On the other hand,
reconfiguring a larger affected area takes more time and more transmitted control
messages. The best value for the deviation parameter depends on the application.

5 Reconfiguring Node Parameters

Normal operation of the network task can continue as soon as the tree has been
reconstructed. However, due to the changes in the structure of the network, the
level of quality achieved by the running task is typically lower than possible, and

QoS Management for Wireless Sensor Networks with a Mobile Sink 61

4 26sink

1

5 3

Fig. 4. Node 1 has changed from node 2 to node 3 as its parent. Only the dark-coloured
nodes and the sink (the affected area) need to recompute their Pareto points.

could even be such that QoS constraints are violated. It is therefore worthwhile
to improve the quality by reconfiguring the nodes’ parameters.

While parameter reconfiguration is in progress, the network is in a state of
reduced quality. It is therefore desirable to reconfigure as quickly as possible. More-
over, parameter reconfiguration comes at a cost, as processing and communication
is needed to compute and load the new settings. In this section, we explore the
trade-off between the quality achieved by reconfiguration and the cost it has.

5.1 Optimisation Strategies

We first discuss how to find the best possible node configurations in terms of
quality, given the reconfigured tree. The most straightforward, but inefficient,
way to do this is to simply re-run Algorithm 1 on all nodes, from the leaves up to
the root. Observe however, that if the tree reconfiguration only happens in a local
area around the sink, many nodes and their sub-trees/clusters remain unchanged.
Therefore, also the sets of Pareto-optimal configurations for all nodes and clusters
outside the affected area do not change, and need not be recomputed.

To verify this, first consider a fully configured network in which a single node
changes its parent (for whichever reason), as in Figure 4, where node 1 switches
from node 2 to 3. This would cause changes in the Pareto set of the cluster with
root node 1. Further, the roots of all other clusters that have changes in them
need to be updated (remember that a cluster is a node with all its descendants):
the clusters with as root node 1, its old and new parent (nodes 2 and 3), and all
nodes on the paths from these three nodes to the sink (nodes 4, 5 and 6). This im-
plies that the QoS-optimisation algorithm may start at the nodes at the edge of
the affected area (further referred to as the boundary nodes ; in Figure 4, nodes 1
and 2 are boundary nodes) instead of at the leaf nodes of the network. The recon-
figuration of the affected area reuses the Pareto sets of the clusters just outside
the area. Note, however, that the newly selected configuration at the sink, may
cause a different configuration to be selected from the Pareto sets of the nodes
outside the affected area. This means that, while recomputing the Pareto sets is
local, loading the selected configuration still involves all nodes in the network.

To make the reconfiguration completely local, not only the tree reconstruction
and QoS analysis phases, also the loading phase should be restricted to a local

62 R. Hoes et al.

area. Nodes outside the affected area should retain their configurations, and this
should be taken into account in the QoS-analysis: not the full Pareto sets of
the non-changing clusters should be used, but only the selected configuration.
A boundary node then combines its new one-node cluster set with the selected
configurations of each of its children. This has the added benefit that the analysis
becomes simpler (smaller configuration space), significantly reducing the cost of
reconfiguration. The price is sub-optimality of the found task-level Pareto set and
hence a potentially non-optimal quality of the selected configuration. To further
exchange quality for lower cost, we could reduce the area even more (smaller
than the area of tree reconfiguration), the extreme case being not reconfiguring
at all. However, not re-analysing all nodes in the affected area means that the
computed task-level metrics are not accurate; when locally reconfiguring from
boundary nodes to root, the computed metrics are always accurate.

5.2 Practical Details

From the previous, it follows that we need to make the boundary nodes start
Algorithm 1 with the correct child Pareto sets. However, a node actually does
not know whether it is a boundary node or not, and what is more, not every
node knows that it is a part of the affected area. In the example of Figure 4 in
which node 1 changed parents, only nodes 2 and 3 will be aware of the change,
while also 4, 5, and 6 need to be updated. We therefore make every changed
node send a message to its parent (after some delay to ensure the tree is stable)
that indicates it is part of the affected area. If the parent was not a changed
node, it now knows that it is also in the affected area, and forwards the message
to its own parent. Subsequently, to start the analysis process, a node outside the
affected area that overhears such a message from its parent (all light-coloured
nodes in Figure 4 that are children of dark coloured-nodes), knows that its parent
is a boundary node, and forwards its unchanged cluster-level Pareto set, or only
the currently selected configuration in case of localised reconfiguration. Nodes
in the affected area can now continue as in Algorithm 1.

After completing the QoS-analysis phase, the sink proceeds with the loading
phase as usual. When the load messages reach outside the affected area, they
are no longer forwarded in the localised case. In the globally-optimal case, the
load messages are forwarded until the leaf nodes of the network.

6 Experiments

Since the performance of our reconfiguration approach depends on many factors,
such as the type of task, the size of the network, and the movement pattern of
the sink (size of steps, speed), we use simulations to compare various scenarios.
We are especially interested in the influence of the deviation parameter and the
choice between localised and globalised QoS analysis on resulting task quality
and reconfiguration costs. To see whether parameter reconfiguration really makes
sense, we also compare the results with the option of not reconfiguring at all (but
we do always need QuickFix, as the tree always needs to be fixed after a move).

QoS Management for Wireless Sensor Networks with a Mobile Sink 63

6.1 Simulation Overview

All simulations were done in the OMNeT++ discrete-event simulator [16],
for networks of 900 TelosB sensor nodes [17] randomly deployed in an area
of 300×300 m. These nodes employ a simple 8 MHz processor and a radio
transceiver with 250 kbps bit rate. To ensure an even distribution of the nodes
in the area, they were placed with some variance around fixed grid points. The
communication range of the nodes was set to 20 m. The first scenario we look at
has the sink placed at coordinates (100,150), and the network configured with
the existing method [1]. Then the sink makes a single move to position (200,150),
and the network is reconfigured using the various options described in this pa-
per. We simulated 100 different networks and report the medians of the metrics
of interest. In the second scenario, the sink makes multiple consecutive moves,
while the network is reconfigured after each move.

Our simulations take into account the processing time of Algorithm 1 on real
TelosB sensor nodes. Profiling of a TinyOS implementation on such a node was
done to obtain the run times for various sizes of the configuration sets (see [13] for
details). All simulations were done for the target-tracking task [1] and 27 different
configurations per node. We distinguish four cases: naive and efficient global
reconfiguration, local reconfiguration, and no reconfiguration at all. The former
two refer to re-analysing all nodes and only the affected nodes respectively, which
should both arrive at the same globally-optimal Pareto points.

A selection function is needed that chooses one of the Pareto points to be
loaded into the network. For easy comparison of the various methods, we use
a selection function that assigns a single value to a configuration. We use a
weighted sum of all four metrics, where each weight normalises the metric. To this
end, we define the value of a configuration vector c̄ = (information completeness,
detection speed, lifetime, coverage degree) (see Section 3) as its inner product
with the vector v̄ = (100, 200, 0.1, 100).

The evaluation metrics are as follows:

– Disruption time: the duration of service disruption just after the sink’s
move until the tree has been reconfigured, and thus equal to the time needed
for tree reconstruction. During the parameter-optimisation time, the network
does function, though its service quality is reduced.

– Reconfiguration time: the total duration of the tree- and parameter-
reconfiguration process. The total reconfiguration time is also a rough in-
dication of the amount of processing needed on the nodes (the optimisation
time is dominated by processing).

– Communication cost: the average number of bytes transmitted for recon-
figuration, over all nodes in the network.

– Value loss: the relative loss in value compared to the best case.

6.2 Tree Reconstruction

We first study the behaviour of the tree-reconstruction algorithm described in
Section 4 in the single-move scenario. All 100 networks were tested with various

64 R. Hoes et al.

(a) Average path length (the dashed line is
the optimum)

(b) Size of the affected area

(c) Communication cost (d) Total disruption time (solid line) and
only QuickFix+CF (dashed line)

Fig. 5. Evaluation of tree reconstruction for various deviation values

values of the deviation parameter, as well as full flooding as a baseline. The
degree-reduction algorithm with a target node degree of 2 (see Section 3.1) was
executed on the resulting networks. The first point to note is that the tree
was correctly rebuilt in all of the cases. Figure 5(a) shows that average path
length decreases monotonically from almost 18.2 to 11.5 when increasing the
deviation from 0 (only QuickFix) to 12. The optimal average path length (when
fully flooding the network) is also 11.5. Figure 5(b) indicates that the size of
the affected region also grows steadily with the deviation until, at deviation 12,
almost the whole network is reconfigured, and hence we obtain an SPST with
this deviation (within the degree constraint). Observe that the affected area
first grows faster than linearly, but slows down after deviation 6; this is the
point where Controlled Flooding reaches the edges of the network.

Along with the affected area, the amount of communication increases in a sim-
ilar pace (Figure 5(c)). As expected, also the time it takes to rebuild the tree,
excluding degree reduction, increases with the deviation (Figure 5(d), dashed
line), with an offset due to QuickFix. The time needed for QuickFix/CF is rel-
atively short compared to the time used to reduce the node degrees, and to-
gether with the fact that the latter does not depend on the size of the affected
area, this explains why the total time spent on tree reconstruction (solid line in
Figure 5(d)) is not clearly dependent on the deviation. Also recall that if only

QoS Management for Wireless Sensor Networks with a Mobile Sink 65

(a) Optimisation time (b) Value loss

Fig. 6. Timing results and value improvement for parameter optimisation

QuickFix is used, the degree-reduction algorithm is hardly effective due to the
small affected area, which is why the run time at deviation 0 is lower than for
the others. Overall, the total disruption time is always less than 1.4 s.

6.3 Parameter Optimisation

Now compare the optimisation times of the various cases of parameter optimi-
sation in Figure 6(a). We confirm that efficient global reconfiguration, in which
only nodes in the affected area recompute their Pareto points, is always faster
than the naive version, and this is most pronounced for small deviations. How-
ever, the differences are not as large as might be expected. Local optimisation
on the other hand, in which the same nodes recompute their Pareto points as in
the efficient global case, but with boundary nodes using just one configuration
for their child nodes outside the affected area (instead of their full set of Pareto
points), is much faster. This may imply that the configuration sets of nodes
closer to the sink are larger than those of nodes further away. It is interesting to
see that the optimisation time of the localised algorithm initially increases very
slowly (sub-linearly) with the deviation, starting at just 9.7 s. Deviation 5 ap-
pears to be an inflection point beyond which the rate of increase grows quickly.
Eventually, the three lines meet at 418 s (about seven minutes; not visible in the
graph), when fully flooding the network; this is equivalent to deviation infinity,
as the affected area is the whole network.

Next, we test the quality of the resulting configurations by comparing their
values. The best value occurs when using full flooding and global parameter opti-
misation. Using this value as a baseline, Figure 6(b) shows the relative loss in value
when using the other methods. It turns out that, for the target-tracking task, all
methods for parameter optimisation, local and global, achieve the same quality
(the solid line), while not optimising is significantly worse (8 to 10 percentage
points; the dashed line). Given its low overhead, this makes local reconfiguration
very attractive for any deviation. The best value possible when not optimising
(at deviation 12) can be attained with optimisation already at deviation 3. For a
larger deviation, we see a steady improvement in value, which is consistent with
our assumptions in Section 3. At deviation 0, the difference with the optimum is
quite large at 14.3%, but after deviation 6 it becomes smaller than 1%.

66 R. Hoes et al.

(a) Time vs. value loss (b) Communication vs. value loss

Fig. 7. Pareto plots for the reconfiguration process. Black dots belong to (efficient)
global parameter reconfiguration, grey to local, and white to no parameter optimisation.
Deviation values are given at interesting trade-off points.

6.4 Quality/Cost Trade-Offs

Combining all results yields the totals for the reconfiguration process in the eval-
uation metrics. The disruption time only depends on tree reconstruction and has
been reported above. Figure 7 gives an overview of the trade-offs between the
total time and communication costs of reconfiguration, and the value loss of the
resulting configuration, for all reconfiguration options. The two plots should be
seen together as a three-dimensional trade-off space. It is immediately clear that
all global-reconfiguration points (the black dots) are dominated by the locally
optimised (grey) and non-optimised (white) options. In contrast, most of the
other points are Pareto optimal. As non-optimisation is obviously the fastest,
it is the best choice when speed and low processing costs are most important,
although the loss in value is at least 7.7%. In many cases, however, local recon-
figuration provides the best trade-off between the three metrics: low cost and
good quality. At deviation 5, for example, local reconfiguration takes 44.9 s (of
which the service is disrupted for 1.4 s), costs 50.3 bytes of communication per
node, and the overall quality is 3.5% lower than the best case. The configuration
space that was analysed in this time, for the affected area of 350 nodes, has a size
of 27350 configurations, of which the found configuration has the optimal value.

6.5 Multiple Moves

It is interesting to see what happens to the loss of value when the sink moves
repeatedly, and the network is locally optimised at each move. Figure 8 shows the
value loss of local optimisation with deviation 5 compared to the optimal case,
for 25 consecutive moves of 50 m in random directions. The results are averages
over five different runs. A very irregular pattern is visible, but the trend is a
slowly increasing loss for each move. We therefore suggest to do a full network
reconfiguration periodically, or when the attained value becomes too low.

QoS Management for Wireless Sensor Networks with a Mobile Sink 67

Fig. 8. Multiple consecutive moves: value loss compared to optimal with trend line

7 Conclusions and Future Work

This paper provides a method for reconfiguration of a WSN with a mobile sink.
It does not only reconstruct the routing tree, but also optimises the parameters
(hard- or software settings) of the nodes that were affected to improve the service
level. Since reconfiguration takes time and energy, which are scarce resources,
optimally reconfiguring the network each time the sink moves is likely to be
infeasible. Trade-offs can be made between the effort spent on optimisation and
the resulting level of service quality of the running task in terms of QoS metrics.
The algorithms work in a distributed and localised way by reconfiguring only
an area around the sink, of which the size can be adjusted via a deviation
parameter. Practical implementation details are given, and experiments show
that the localised algorithms indeed manage to find suitable trade-off points.

The best choice of reconfiguration method and deviation value heavily de-
pends on the application and its requirements, and the sink behaviour. Due to
the unpredictable nature of the sizes of the Pareto sets and therefore the optimi-
sation time, as well as the quality of the resulting task-level Pareto set, it is hard
to give guidelines for this choice. In practise, a system could first have a calibra-
tion phase to tune the deviation value, or simulations like ours can be used.

The methods that do all processing in-network are useful for applications in
which the sink stays at its position for a while before moving again (e.g. when mov-
ing the sink for lifetime improvement), to justify the cost and speed of reconfigu-
ration. For scenarios such as disaster recovery, in which the sink (rescue worker
with handheld) may move a bit faster, an interesting option is to deploy special,
more powerful nodes that handle most of the optimisation duties, or even do all
the work at the sink. This is again a trade-off: between communication and pro-
cessing cost (offloading computation effort increases the amount of communication
between sensors and sink), and of course the cost of the additional nodes. For ex-
ample, doing the QoS analysis for deviation 5 as above on a laptop (Intel Core 2
Duo processor at 2.4 GHz) takes 3.0 s for the globally-optimal case, and just 0.6 s
for the localised case. For handheld devices, these numbers would be higher, but
still much lower than when done in-network on sensornodes. However, the commu-
nication costs per node increase by about five times (both global and local). Future
work will focus on this trade-off in more depth.

68 R. Hoes et al.

Acknowledgements. The authors would like to thank Dr. Vikram Srinivasan
for his help in the early stages of this project. This work was partly supported
by EC FP6 project IST-034963.

References

1. Hoes, R., Basten, T., Tham, C.K., Geilen, M., Corporaal, H.: Quality-of-service
trade-off analysis for wireless sensor networks. Elsevier Performance Evaluation
(2008), http://dx.doi.org/10.1016/j.peva.2008.10.007

2. Luo, J., Hubaux, J.P.: Joint mobility and routing for lifetime elongation in wireless
sensor networks. In: INFOCOM 2005, Proc. IEEE, Los Alamitos (2005)

3. Wang, W., Srinivasan, V., Chua, K.C.: Using mobile relays to prolong the lifetime
of wireless sensor networks. In: MobiCom 2005, Proc., pp. 270–283. ACM, New
York (2005)

4. Pirmez, L., Delicato, F., Pires, P., Mostardinha, A., de Rezende, N.: Applying
fuzzy logic for decision-making on wireless sensor networks. In: Fuzzy Systems
Conference 2007, Proc., pp. 1–6. IEEE, Los Alamitos (2007)

5. Wolenetz, M., Kumar, R., Shin, J., Ramachandran, U.: A simulation-based study of
wireless sensor network middleware. Network Management 15(4), 255–267 (2005)

6. Boonma, P., Suzuki, J.: MONSOON: A coevolutionary multiobjective adaptation
framework for dynamic wireless sensor networks. In: HICSS 2008, Proc., pp. 497–
497. IEEE, Los Alamitos (2008)

7. Lu, J., Valois, F., Barthel, D., Dohler, M.: Fisco: A fully integrated scheme of self-
configuration and self-organization for wsn. In: WCNC 2007, Proc., pp. 3370–3375.
IEEE, Los Alamitos (2007)

8. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring sEnsor Networks
Topologies. In: INFOCOM 2002, Proc., pp. 23–27. IEEE, Los Alamitos (2002)

9. Schurgers, C., Tsiatsis, V., Srivastava, M.B.: STEM: Topology Management for En-
ergy Efficient Sensor Networks. In: Aerospace Conference, Proc. IEEE, Los Alami-
tos (2002)

10. Luo, J., Panchard, J., Piórkowski, M., Grossglauser, M., Hubaux, J.-P.: MobiRoute:
Routing towards a mobile sink for improving lifetime in sensor networks. In:
Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS,
vol. 4026, pp. 480–497. Springer, Heidelberg (2006)

11. Bhattacharya, S., Xing, G., Lu, C., Roman, G.C., Harris, B., Chipara, O.: Dynamic
Wake-up and Topology Maintenance Protocols with Spatiotemporal Guarantees.
In: IPSN 2005, Proc. IEEE, Los Alamitos (2005)

12. Zhang, W., Cao, G.: Optimizing tree reconfiguration for mobile target tracking in
sensor networks. In: INFOCOM 2004, Proc. IEEE, Los Alamitos (2004)

13. Hoes, R.: Configuring Heterogeneous Wireless Sensor Networks Under Quality-of-
Service Constraints. PhD thesis, TU/e and NUS (to appear, 2009)

14. Geilen, M., Basten, T., Theelen, B., Otten, R.: An algebra of Pareto points. Fun-
damenta Informaticae 78(1), 35–74 (2007)

15. Demmer, M., Herlihy, M.: The arrow distributed directory protocol. In: Kutten, S.
(ed.) DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

16. OMNeT++, http://www.omnetpp.org
17. Crossbow Technology, http://www.xbow.com

http://dx.doi.org/10.1016/j.peva.2008.10.007
http://www.omnetpp.org
http://www.xbow.com

A Context and Content-Based Routing Protocol
for Mobile Sensor Networks�

Gianpaolo Cugola and Matteo Migliavacca

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
{cugola,migliava}@elet.polimi.it

Abstract. The need of monitoring people, animals, and things in gen-
eral, brings to consider mobile WSNs besides traditional, fixed ones.
Moreover, several advanced scenarios, like those including actuators, in-
volve multiple sinks. Mobility and multiple sinks radically changes the
way routing is performed, while the peculiarities of WSNs make it diffi-
cult to reuse protocols designed for other types of mobile networks.

In this paper, we describe CCBR, a Context and Content-Based Routing
protocol explicitly designed for multi-sink, mobile WSNs. CCBR adopts
content-based addressing to effectively support the data-centric commu-
nication paradigm usually adopted by WSN applications. It also takes into
account the characteristics (i.e., context) of the sensors to filter data.

Simulations show that CCBR outperforms alternative approaches in
the multi-sink, mobile scenarios it was designed for, while providing good
performance in more traditional (fixed) scenarios.

1 Introduction

The recent advances in WSNs are rapidly expanding the range of applications
they can support: from “traditional” environmental monitoring, where a number
of nodes is scattered across an area collecting data for a single sink, to mobile
scenarios involving multiple sinks. This happens when the entities to monitor
are animals (e.g., in farming scenarios), people (e.g., in elderly care scenarios),
or things moving around (e.g., in logistics), while several mobile devices (e.g.,
PDAs) are used as sinks, or actuators, also acting as sinks, are involved.

Unfortunately, mobility and the presence of multiple sinks is something that
has been largely neglected by research on WSNs so far, especially if we consider
the case of data-aware routing protocols. Indeed, one of the main peculiarities of
WSNs is the data-centric form of communication that they usually adopt: a few
sinks (a single one in the simplest scenarios) are interested in receiving only some
specific data among those collected by sensors, e.g., the temperature readings
that exceed some threshold. This suggests abandoning traditional, address-based
routing protocols, to adopt a Content-Based Routing (CBR) [1] protocol, in

� This work has been partially funded by the European Community under the IST-
034963 WASP project and by the Italian Government under the MIUR-FIRB pro-
gram INSYEME.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 69–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 G. Cugola and M. Migliavacca

which messages do not carry any explicit address, while they are routed based
on their content and on the interests specified by nodes. This is the solution taken
by popular protocols for WSNs like Directed Diffusion [2] and TinyCOPS [3],
without however considering mobility as a key aspect.

Moreover, if we look at the typical scenarios of usage of a WSN, we may notice
that communication is not only data-centric but it is also often context-aware. As
an example, a farmer could be interested in knowing the activity level of “young”
cattle only, while, in a logistics application, different temperature thresholds
are critical for different goods. Encoding such context-awareness as part of the
message content and using standard CBR to route messages is possible, but can
be inefficient, increasing message size and communication overhead.

Starting fromthese considerations,wedevelopedCCBR,aContext andContent-
Based Routing protocol for multi-sink, mobile WSNs. It adopts a probabilistic,
receiver-based approach to routing, where each node decides autonomous-ly if for-
warding packets, loosely collaborating with others in keeping routing information
up-to-date. This approach has proven to be well suited to support the multi-sink,
mobile scenarios we target, also being able to efficiently address the (albeit slower)
dynamics inherent in traditional, non-mobile WSNs.

The next section goes into the details of the protocol, explaining how it op-
erates, while Sect. 3 evaluates the performance of CCBR through simulation,
comparing it with other approaches. Finally, Sect. 4 surveys related work and
Sect. 5 draws some conclusions and describes our future plans.

2 Context and Content-Based Routing

The reference scenario for CCBR is that of a WSN composed of a set of nodes
possibly moving around at different speeds. Among these nodes we distinguish
between those that are interested in receiving messages (the sinks), and those
that send out messages (the sensors). In such a network: (i) the same node may
act both as a sink and as a sensor, and (ii) messages do not necessarily carry
sensors readings. As an example, a node could collect temperature readings from
other nodes (acting as a “sink”) to notify fire alarms (acting as a “sensor”).

2.1 The API

CCBR offers three main primitives to the upper layers:

setComponentProp(Properties p, DataListener dl)
listenFor(CompFilter cf, MsgFilter mf, AddData ad, MsgListener ml, int l)
send(Message m)

where the DataListener dl and the MsgListener ml are pointers to callback
functions invoked when additional data and messages arrive, respectively.

The setComponentProp operation allows sensors to specify the properties that
describe the context in which they are, e.g., the fact that they are installed on
a pig or a cattle, and the age of the animal.

A Context and Content-Based Routing Protocol for Mobile Sensor Networks 71

The listenFor operation allows sinks to express their interests, by specifying
both the content of the messages they are interested in (through the message
filter mf) and the sources they consider relevant (through the component fil-
ter cf). As an example, a sink could be interested in receiving messages such
that: activity!="stationary" (the message filter), originating from sensors
such that: type==cattle AND age<24 (the component filter). The additional
data ad is blindly transported by the protocol from the listening sinks to the
matching sensors (those whose properties match the component filter). As an
example, this data could be used by a sink to spread around information about
the sampling period for sensing. Finally, the integer l is the lease time after
which the expression of interest expires.

The send operation allows messages to be sent to the interested sinks, if any.

2.2 The Protocol in General

To support the mobile, multi-sink scenarios it has been conceived for, CCBR
abandons the traditional approach to routing, which uses link-layer unicast pack-
ets to transport data from hop to hop, to use the broadcast facility provided by
wireless networks. It also turns away from the usual, deterministic, sender-based
approach to routing, to adopt a probabilistic mechanism to decide if and how
packets are forwarded, leaving this decision to the receiver of the packet, which
operates autonomously w.r.t. the sender.

All these choices, which differentiate CCBR from the previously proposed
routing protocols for WSNs, were strongly influenced by our experience with
mobile ad-hoc networks [4,5,6,7], which convinced us that “broadcast”, “proba-
bilistic”, and “receiver-based” are the right keywords when mobility and multi-
cast interactions (resulting from the presence of multiple sinks) enter the picture.

To describe CCBR in details we first describe its forwarding mechanism, i.e.,
how packets flow from sensors to sinks using the various routing tables, then we
describe how such tables are built and maintained.

2.3 Forwarding

In CCBR, each sink has an associated sink number : an integer in the range
1...K where K is the maximum number of allowed sinks (see Sect. 2.4 for details
on choosing sink numbers). To forward data from sources to sinks, each node
maintains a distance table and a content table. The former stores an estimate of
the distance (in hops) of the node from each sink, while the latter keeps track
of the interests of sinks that are relevant for the node. In particular, the content
table of a node with properties p maps each sink number n with those (not yet
expired) message filters issued by n whose component filter matched p.

Figure 1 shows the content table of a sensor N with properties p when two
sinks S1 and S2 (with sink numbers n1 and n2, respectively) have invoked the
listenFor primitive, with message filters mfS1, mfS2 and component filters cfS1,
cfS2, both matching p. Note that N ’s content table does not include any infor-
mation about sinks, like S3 in the figure, whose interests do not match N ’s

72 G. Cugola and M. Migliavacca

Fig. 1. Content and distance tables in CCBR

properties (i.e., cfS3 does not match p). This highlights the positive consequence
of keeping context and content information separate: the routing tables can be
kept smaller and they have to include the message filters but not the context
filters. This saves memory and reduces the matching effort (and related power
consumption) at message sending time, two fundamental issues in WSNs.

Whenever the send(m) primitive is invoked at a node N , the CCBR protocol
looks up m’s content in the content table and computes the set of sinks interested
in receiving m. After that, it builds a forwarding header composed of a unique
message identifier, a destination vector, and a distance vector.

– The destination vector is a bit-vector with length K, having a 1 in each
position that corresponds to the number of an interested sink (as computed
from the content table). In our example, supposing m matches mfS1 but not
mfS2, the destination vector has bit n1 set, the others clear.

– The distance vector is an array of bytes, one for each interested sink, storing
the distance of N from that sink (in order of sink numbers). In our example,
it includes a single byte with an initial value of 2.

Afterward, CCBR builds a forwarding packet putting together the forwarding
header and the message m and yields it to the MAC for broadcast transmission.

The first time a node receives a forwarding packet p, it compares the destina-
tion and distance vectors in the header of p with its own distance table. If the
receiving node is farther or equally distant from the recipients of p, it drops it.
If the receiving node is closer to at least one of the sinks listed in p’s forwarding
header: (i) it updates the distance vector in p, putting its own distance for those
sinks it is closer, and (ii) it schedules the packet for transmission. The packet,
indeed, is not transmitted immediately, while a delay and cancel mechanism is
exploited1.

Delay and Cancel. The packet is put in a transmission queue, where it remains
for a period dtx (the delay of transmission), which is smaller when the global
1 To maximize the network lifetime we also add a probability of re-forwarding based

on the remaining capacity of the node’s battery.

A Context and Content-Based Routing Protocol for Mobile Sensor Networks 73

improvement performed on the packet’s distance vector is higher. As an example,
consider the case of a node N with distance table {1|4, 2|2, 3|5}. When N
receives a packet with destination vector 111 and distance vector {5, 3, 4},
it rewrites the latter putting {4, 2, 4}, and calculates a global improvement
H = 2. At this point N will schedule the packet for retransmission with a delay
dtx = δ · [max(0, Hmax − H) + rnd(0, 1)], where δ is proportional to the average
time to transmit a packet (including MAC and transmission delays), while Hmax

has to be chosen looking at the average number of destinations for each packet.
Whenever a node receives a packet, it looks at its transmission queue and deletes
pending retransmission of the same packet (same identifier) if the queued copy
has a distance vector which is higher or equal to the distance vector of the
received packet for all destinations.

Under ideal conditions, this results in an efficient, greedy forwarding algo-
rithm, which: (i) suppresses redundant transmissions (i.e., those originating from
nodes equally distant from all the destinations); and (ii) favors, as forwarders,
the nodes with the lowest distance from the highest number of destinations (i.e.,
the paths that lead to multiple destinations). In real scenarios, these results are
only partially achievable since not all the receivers of a packet may hear each
other, which may result in multiple path forwarding. We will come back on this
issue while evaluating CCBR’s overhead.

Mobility and Local Minima. Mobility is another factor that may break the
mechanism above, by producing local minima in the distance function. This
occurs whenever a node N has an wrong estimate of its distance from a sink,
e.g., because it was once closer to it but now moved in a region where the real
distance is higher. Nearby nodes will not forward packets generated by N because
of the (wrong) lower distance it puts in the distance vector of those packets.

To solve this issue we complemented the basic forwarding algorithm above
with a retransmission mechanism. After transmitting a packet (either as a source
or as a forwarder), a node N puts it in an retransmission queue. If a predefined
timeout of retransmission expires without hearing the same packet with at least
one element in the distance vector lowered (i.e., if no one re-forwards the packet
toward a destination), the node N :

1. adds a retransmission bit-vector to the forwarding header of the packet, with
a one for each sink whose distance was set by itself;

2. increases the distance vector of the packet for each sink in the retransmission
bit-vector;

3. transmits the resulting packet again.

Nodes hearing such a packet will reconsider it even if they already received it
before, but only for improvement with respect to the sinks listed in the retrans-
mission bit-vector (which is reset to 0, afterward).

The consequence of this mechanism is twofold: on one hand it increases the
CCBR’s resistance to collisions, which is good since link-layer broadcasting is
particularly subject to collisions. On the other hand, increasing the distance
vector for packets that where not forwarded by neighbors (step 2 above) also

74 G. Cugola and M. Migliavacca

allows to overcome local minima, by increasing the set of potential forwarders
for the retransmitted packet.

Unfortunately, asymmetric links may trigger this retransmission mechanism
even when it was not required, thus increasing the network traffic without any
positive effect on delivery. To limit this problem we allow each node to retransmit
each packet at most once. Moreover, we also introduce in CCBR a mechanism
of credits, which further reduces retransmission. When a packet is created, it
is assigned a predefined credit: an integer stored into its forwarding header,
which is decremented each time the retransmission timeout expires at a node.
The retransmission mechanism does not apply to packets which ended their
credit, i.e., the initial credit of a packet represents the maximum number of
times the retransmission mechanism may fire along its route from the sender to
the sink.

Delivery to Sinks. Whenever a sink receives a packet p, it looks at the bit
in p’s destination vector that corresponds to its sink number. If the bit is set
the packet is forwarded to the application layer (by invoking the corresponding
MsgListener) otherwise it is not. In any case, p is also processed normally for
forwarding (sinks are standard nodes, so they must participate in the forwarding
process). Finally, if p was targeted to that sink and it is not scheduled for for-
warding, a special packet is created and broadcasted to stop the retransmission
mechanism at the sender node.

2.4 Routing

To build and maintain distance tables, each sink periodically (every tb seconds)
broadcasts a beacon that contains its sink number, a sequence number and a
distance, initially set to 0. Each node receiving a beacon, first increments the
included distance and uses it to update its distance table, then it schedules the
beacon for forwarding. Even in this case we use a “delay and cancel” mechanism
to limit redundant transmissions. This time we are interested in favoring beacon
retransmission by nodes that are farther away from the previous forwarder, to
cover more distance with fewer retransmissions. Accordingly, we use a delay that
is inversely proportional to the RSSI information provided by the MAC.

Whenever the setComponentProp primitive is invoked at a sensor, the CCBR
layer simply stores the component property and the DataListener internally.

When the listenFor is invoked at a sink, its parameters (component filter,
message filter, additional data, and lease time), are stored in a filter table. Every
tf (tf ≥ tb) seconds the filters and additional data in such table for which the
lease time is not elapsed are grouped and piggybacked on top of the next emitted
beacon. When a sensor N receives this special “fat” beacon, it updates its dis-
tance table but also its content table as follow: for each filter whose component
filter matches N ’s properties, the message filter, together with the sink number,
are stored into the content table. If they were not already there (i.e., the same
information has not been already received before), the additional data is passed
to the related DataListener. Moreover, old filters from the same sink that are

A Context and Content-Based Routing Protocol for Mobile Sensor Networks 75

not refreshed by the beacon are deleted from the content table as this means
that they expired.

Finally, to decide its sink number, at startup time each sink waits at least tb
seconds (but possibly a multiple of that) to see the beacons coming from other
sinks. Afterward, it randomly picks a number in the interval 1...K (see beginning
of Sect. 2.3), not chosen by other sinks and starts operating. Clashes in choosing
sink numbers may still happen (e.g., if two sinks turn on at the same time). They
can be easily resolved by letting the sink with the lowest MAC address (or any
other distinguishing value) to change its number when it discovers the clash.

3 Evaluation

Due to the difficulty of extensively testing a protocol like CCBR in a real set-
ting, with hundreds of nodes moving around, and to do so in a replicable way,
we decided to use a network simulator. Accordingly, we implemented the entire
CCBR protocol (and a model of the CC2420 card and 802.15.4 MAC) in OM-
NeT++ [8], using the Mobility Framework [9] to simulate a mobile environment.
We used a path loss channel model fully considering interferences from other,
parallel transmissions to calculate (at run-time) the SNR of each frame.

Besides measuring the performance of CCBR under different conditions, we
were also interested in comparing it with other protocols. In particular, we chose
two simplified protocols, which well represent two very different classes of solu-
tions to route packets in a mobile network. We call them Gossip and Uni.

Gossip is a structure-less protocol in which nodes send packets using the
broadcast facility provided by the MAC layer and forwards them based on a
pure probabilistic decision: when a node hears a packet for the first time it
retransmit it with a probability p ∈ (0, 1]. Gossip is interesting as it represents
the simplest possible approach to manage a mobile network, indeed it is often
used as a baseline to compare protocols for MANETs.

Uni adopts a totally different approach. It uses beacons flooding the network
as in CCBR to build unicast routing tables toward the sinks. Messages matching
the interests of a sink S (considering both its context and content part) are sent,
using link-layer unicast transmissions, hop by hop, up reaching S (different sinks
are managed separately). Unicast is a good representative of those protocols, like
Directed Diffusion [2], which set up a tree along which sources report their data
to sinks.

To evaluate the performance of CCBR under different conditions, we con-
sidered a wide range of scenarios by changing the different parameters of our
simulation: the density of the network (number of sensors per Km2), the num-
ber of sinks (one of them stays firm at the center of the field, the others move
around), the area of the field in which nodes move, the pattern of mobility (in-
cluding the speed at which they move), the frequency at which each sensor sends
out messages, and the selectivity of filters. In all the resulting scenarios we mea-
sured the performance of CCBR, Gossip, and Uni varying their key parameters:
for CCBR the beaconing interval (the filters summarizing the interests of sinks

76 G. Cugola and M. Migliavacca

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Gossip p=0.5

Gossip p=0.7

Gossip p=0.9

UNI t=30
CCBR t=30 c=0

CCBR t=30 c=1

CCBR t=30 c=2

CCBR t=30 c=3

D
el

iv
er

y
(p

er
ce

nt
ag

e)

delivery

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

UNI t=30
CCBR t=30 c=0

CCBR t=30 c=1

CCBR t=30 c=2

CCBR t=30 c=3

G
en

er
at

ed
 tr

af
fic

 (
K

B
/s

ec
) beacons

f_beacons
 data_overh

data

Fig. 2. The results measured in the default scenario

are added to such beacons once every three of them) and the initial number of
credits; for Gossip the forwarding probability; for Uni the beaconing interval.

This very extensive analysis resulted in a large body of data (and graphs),
which allowed us to examine all the aspects of CCBR and how it performs w.r.t.
Gossip and Uni. On the other hand, the limited space available does not allow
to report here all the tests we have done. Next sections discuss a subset of them,
those we found most relevant2.

3.1 The Default Scenario

Our default scenario reflects the situation of a set of persons or animals moving
around in a limited area and being monitored by both mobile and fixed sinks. In
particular, we consider an area of 0.5 Km2, 50 sensors, and three sinks. Nodes
(i.e., all the sensor nodes and two sinks over three) move according to a random
waypoint mobility model with a speed between 1 and 2 m/s and a stop period
of up to 10s. Sensors send a message every 10s, while the interests of each sink
have 10% of chances to match each of the published messages, which means
that 28% of the messages sent has to be delivered to at least one of the three
sinks (i.e., Uni and CCBR only have to deliver one message every 36 seconds,
on average).

Figure 2 (left) shows the delivery we measured for every protocol in this sce-
nario. CCBR with zero credits, Uni, and Gossip with p = 0.7 provide similar
results, correctly delivering between 72% and 74% of messages, while CCBR with
the retransmission mechanism in place (i.e., when credits are greater than zero)
provides the best performance, reaching a very good 90% of delivery with two
credits. To put these numbers in context, we notice that the range of communi-
cation resulted, from our model, around 100m in absence of any other commu-
nication (i.e., no interferences), being much shorter when several nodes transmit
data at the same time, as it happens in our scenario. As a result, our default
2 The reader is warned that, even if we did not plot the confidence intervals in the

graphs below (to avoid cluttering them), we took them into consideration. In partic-
ular, we run each simulation several times, varying the seeds of the random number
generators we used in our models, until the size of the 95% confidence interval of the
sample mean we measured was below 5% of the mean itself.

A Context and Content-Based Routing Protocol for Mobile Sensor Networks 77

density of 100 nodes per Km2 results in periodic partitions of the network, which
explains why none of the protocols we considered reaches a 100% of delivery.

As a further observation, it could appear strange how Gossip with a high
probability of forwarding (e.g., p = 0.9) does not provide the best delivery. To
understand why this happens we observe (graph not reported for space reasons)
that Gossip generates 15 times more traffic than CCBR and Uni: 7.7 KB/s for
Gossip with p = 0.9 vs. 0.53 KB/s for Uni, thus incurring in a number of collisions
and interferences that strongly limits its capacity of delivering messages.

A more detailed analysis of the traffic (measured at the physical layer) gen-
erated by CCBR and Uni in the default scenario is provided by Fig. 2 (right).
First, we observe how the traffic generated by CCBR increases less than linearly
with credits: a very positive result that proves the efficiency of the CCBR’s re-
transmission mechanism. We also notice how beacons, including those carrying
filters (i.e., f beacons in figure), contribute around one fourth of the overall
traffic. This is reasonable since in the default scenario each sensor produces, on
average, one message every 36 seconds that is worth transmitting to at least one
of the sinks, while the three sinks emit one beacon every 30 seconds which flood
the network (albeit with the efficient “delay and cancel” mechanism explained
above) to keep tables up to date, despite of mobility.

The last thing worth observing is how the total traffic generated by Uni is
much greater than that generated by CCBR with zero credits, which performs
comparably w.r.t. delivery. This is counterintuitive, since in the default scenario,
in which most of the messages are addressed to a single sink, a routing based
on unicast communication and shortest path tree forwarding, like Uni, should
generate the least traffic to deliver messages. To understand why this happens,
in Fig. 2 (right) we distinguished between the traffic generated by each protocol
and sent to the MAC layer (“data” in figure), and the overhead generated by
the MAC and physical layers (“data overhead” in figure). If we look at the first
number alone, we see how Uni produces much less traffic than CCBR at the
“routing” layer (above the MAC). Unfortunately, it incurs in a lot of overhead
at the MAC and physical layers. This can be explained by remembering that
802.15.4 is a “reliable” MAC, using acknowledgements and multiple retransmis-
sions to correctly deliver unicast packets. In presence of mobility this approach is
detrimental, since the MAC wastes a lot of bandwidth in trying to reach nodes
that went out of range. Conversely, CCBR uses broadcast at the MAC layer,
which is unreliable but incurs much less overhead. This result supports our be-
lief (see Sect. 2.2) that using broadcast and leaving the decision of forwarding to
the receiver of a packet, not to the sender, whose routing tables may be outdated,
is the right choice in presence of mobility.

3.2 The Impact of Credits and Beaconing Interval vs. Speed

CCBR was especially designed to support mobile scenarios, so it is important to
see how it behaves under different patterns of mobility and how the beaconing
interval and the number of credits impact its performance. In particular, while
keeping all the other parameters as in the default scenario, we considered three

78 G. Cugola and M. Migliavacca

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

D
el

iv
er

y
(p

er
ce

nt
ag

e)

Beaconing interval (sec)

GOSSIP p=0.5
GOSSIP p=0.7
GOSSIP p=0.9

UNI
CCBR c=0
CCBR c=1
CCBR c=2
CCBR c=3

 0.1

 1

 10

 0 20 40 60 80 100 120

R
ou

tin
g

C
os

t (
K

B
/m

sg
)

Beaconing interval (sec)

The default scenario

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

D
el

iv
er

y
(p

er
ce

nt
ag

e)

Beaconing interval (sec)

GOSSIP p=0.5
GOSSIP p=0.7
GOSSIP p=0.9

UNI
CCBR c=0
CCBR c=1
CCBR c=2
CCBR c=3

 0.1

 1

 10

 0 20 40 60 80 100 120

R
ou

tin
g

C
os

t (
K

B
/m

sg
)

Beaconing interval (sec)

The medium speed scenario

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

D
el

iv
er

y
(p

er
ce

nt
ag

e)

Beaconing interval (sec)

GOSSIP p=0.5
GOSSIP p=0.7
GOSSIP p=0.9

UNI
CCBR c=0
CCBR c=1
CCBR c=2
CCBR c=3

 0.1

 1

 10

 0 20 40 60 80 100 120

R
ou

tin
g

C
os

t (
K

B
/m

sg
)

Beaconing interval (sec)

The fast scenario

Fig. 3. The impact of speed and beaconing interval on results

levels of mobility: the default one, a “medium speed” scenario with nodes moving
between 3 and 5 m/s and stopping for at most 2 seconds, and a “fast” scenario
with nodes continuously moving at a speed between 5 and 10 m/s.

In Fig. 3 we plot the delivery and the routing cost3, measured in KByte of
traffic (generated at the physical layer) per delivered message, in these three
scenarios. First we may notice how, in all scenarios, Uni is the protocol which

3 Notice how the graphs plotting the routing cost are in logarithmic scale.

A Context and Content-Based Routing Protocol for Mobile Sensor Networks 79

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

D
el

iv
er

y
(p

er
ce

nt
ag

e)

Node density (nodes/square km)

GOSSIP p=0.5
GOSSIP p=0.7
GOSSIP p=0.9

UNI
CCBR c=0
CCBR c=1
CCBR c=2
CCBR c=3

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

R
ou

tin
g

C
os

t (
K

B
/m

sg
)

Node density (nodes/square km)

Fig. 4. The impact of node density on results

suffers more when the beaconing interval grows. On the contrary, the delivery of
CCBR, even with zero credits, i.e., with the retransmission mechanism disabled,
decreases much more slowly.

The efficacy of the retransmission mechanism can be measured by looking at
CCBR with one or more credits. Its delivery is much better w.r.t. the case with
zero credits, with the impact of the beaconing interval becoming less and less
relevant as the number of credits grows. In the default scenario, CCBR with two
credits provides 75% of delivery even with one beacon every 120 seconds, while
in the hardest scenario of mobility one beacon every 30 seconds is enough for
CCBR with two credits to provide a reasonable 70% of delivery. In the same
situation the delivery of Uni is below 33%.

The graphs on the right in Fig. 3 show how CCBR, in every scenario of
mobility we considered, is much better than Uni at keeping the routing cost
constant while the beaconing interval grows. This, again, shows how a sender-
based, unicast approach to routing, with automatic retries at the MAC layer,
is not well suited to propagate packets in presence of mobility, i.e., when the
correctness of the routing tables cannot be guaranteed. The same graphs also
show how the number of credits has a minimal impact on the routing cost, a
measure of the efficiency of the retransmission mechanism.

3.3 Density of Nodes and Area of the Network

Figure 4 shows the impact of a changing density of nodes when all the other
parameters remain fixed at their default values. We observe that all protocols
except Gossip increase their delivery as the density grows. Gossip performs better
when density grows but only up to a certain limit (200 nodes per Km2). After
that point collisions become an issue even for the lowest forwarding probability
we tested.

To compare the three protocols we may notice how CCBR with zero cred-
its, Uni, and Gossip with p = 0.7 provide similar performance up to 200 nodes
per Km2, with CCBR and Uni also performing similarly up to the maximum
density. On the other hand, the delivery tells only one side of the story. If we
look at the routing cost we notice how Gossip with p = 0.7, while delivering

80 G. Cugola and M. Migliavacca

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
el

iv
er

y
(p

er
ce

nt
ag

e)

Size (square km)

GOSSIP p=0.5
GOSSIP p=0.7
GOSSIP p=0.9

UNI
CCBR c=0
CCBR c=1
CCBR c=2
CCBR c=3

 0.1

 1

 10

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ou

tin
g

C
os

t (
K

B
/m

sg
)

Size (square km)

Fig. 5. The impact of an increasing area on results

the same percentage of messages of CCBR and Uni, uses much more band-
width (the graph is in logarithmic scale). CCBR with zero credits and Uni in-
curs in very similar costs, with the former performing better when the density
is low.

Even in this case, the retransmission mechanism proves its efficacy and effi-
ciency. Indeed, CCBR with one or more credits outperforms all the other proto-
cols at every density, while showing a routing cost that is only slightly greater
than that of CCBR with zero credits and Uni.

Finally, we notice how the routing cost for CCBR is very marginally influenced
by the density of the network. This is a very positive result for CCBR, that must
be ascribed to the “delay and cancel” mechanism of forwarding, which minimizes
useless retransmissions when the density grows.

Another interesting question to answer is how the performance of the different
protocols changes when the area of the network grows (at a constant density of
nodes). What we expect is an increase in the cost to deliver each packet, since
the number of hops to travel increases, and this is confirmed by our tests (see
Fig. 5), with CCBR and Uni decreasing their efficiency less than Gossip.

As for delivery, it decreases much more slowly when CCBR and Uni are
adopted instead of Gossip, with CCBR outperforming Uni especially when the
retransmission mechanism is used (i.e., with one or more credits). In a field of 2
Km2 CCBR with two credits delivers 36% more messages than Uni, i.e., from
55% to 75% of delivery. The same figure also shows how the larger is the network
the better it is to use more credits. This can be explained by observing that the
more hops a packet has to travel the more credits it requires to overcome possible
problems (i.e., local minima).

3.4 Static Scenario and Multiple Recipients Per Message

After seeing how CCBR behaves in the mobile scenarios it was designed for, we
are interested in seeing how it performs in a static scenario, and how it compares
with Uni, which should operate at best when nodes are firm. Since CCBR was
developed to support multi-sink scenarios, we are interested in seeing how the
number of message recipients impacts its performance in this stationary scenario.

A Context and Content-Based Routing Protocol for Mobile Sensor Networks 81

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7

D
el

iv
er

y
(p

er
ce

nt
ag

e)

Number of sinks

UNI
CCBR c=0
CCBR c=1
CCBR c=2
CCBR c=3

 1

 1 2 3 4 5 6 7

R
ou

tin
g

C
os

t (
K

B
/m

sg
)

Number of sinks

Fig. 6. The results for a static scenario (firm nodes)

Accordingly, we measured the performance of CCBR and Uni with firm nodes,
letting each message go to every sink and progressively increasing the total
number of sinks. Figure 6 shows the results we had. As we expected, Uni provides
the best delivery in this scenario, with CCBR being very close and surpassing
Uni when the number of sinks grows over a certain limit (at that point the
contention on the channel to deliver the same packet to multiple sinks becomes
an issue for Uni). What is even more positive is to observe how the cost of routing
for CCBR is initially greater than that of Uni, but becomes smaller as soon as
the number of receivers of each message grows. This shows that we centered our
second goal: CCBR is capable of optimizing routing when the same message has
to be delivered to more sinks.

As a final remark, by comparing the behavior of CCBR and Uni in the single
sink, static scenario (the hardest one for CCBR), we may evaluate the efficiency
of the “delay and cancel” mechanism. Number at hands, we measured (for CCBR
with zero credits) 24% more traffic than Uni. This means that once every four
hops the delay and cancel mechanism “fails”. A good result considering that this
mechanism has been designed to provide the robustness and efficiency required
for very different scenarios, i.e., those including mobility and multiple sinks.

4 Related Work

While fully mobile WSNs have been rarely considered so far, the case of mobile
sinks in a stationary WSN is not new [10,11,12]. Sink mobility has been also
considered as a way to transform the problem of routing data toward the sinks
into the problem of routing sinks towards the data [13,14,15,16].

The case of WSNs involving mobile sensors, like those deployed to monitor
animals [17,18], is also not new. Unfortunately, the routing protocols proposed
in this area [19,20,21,22] focused on strongly disconnected scenarios, where the
very low density of nodes requires mechanisms typical of delay-tolerant net-
works. As mentioned, we consider different scenarios in which sink reachability
is more the rule than the exception, thus allowing real-time monitoring of critical
situations.

82 G. Cugola and M. Migliavacca

These scenarios are typical of Mobile Ad-hoc NETworks (MANETs), in-
deed CCBR is based on our previous experience in developing content-based
publish-subscribe routing protocols for MANETs [4,5,6,7]. However a direct
application of these and other content-based routing proposals for MANETs
(e.g., [23]) to WSNs is hard because of sensors’ tight resource constraints.

To the best of our knowledge CCBR is the first data-aware (i.e., content-based)
routing protocol especially designed for mobile WSNs. Other protocols adopting
a similar, data-aware model, such as Directed Diffusion (DD) [2], GRAB [24], and
TinyCOPS [3] have considered fixed networks as their reference scenario [25]. An
evaluation of these protocols in mobile scenarios will be beyond their intended
scope, even unfair [26], since they only consider (i) long-term faults with a fre-
quency in the range of hours or days, due to slow fading and node failures, (ii)
short-term faults with frequency in the order of μs due to transmission errors
and collisions. As an example, DD handles the former with path repairing mech-
anisms, while delegates the latter to unicast, reliable MACs. Mobility dynamics,
being in the order of seconds, sits almost in the middle of these two extremes,
and cause faults that are too frequent to be handled by repair mechanisms and
too long lasting to be handled by retransmission. Moreover, as also noted in [27]
and confirmed by our simulations, unicast and reliable MACs aggravate the sit-
uation, by interpreting faults due to mobility as transmission errors, causing
useless delays and wasting bandwidth and energy.

GRAB strives for higher robustness with respect to both short and long-term
faults by abandoning sender-based, unicast forwarding in favor of link layer
broadcast primitives and receiver-based forwarding. Differently from CCBR,
however, to increase robustness it does not suppress redundant retransmissions:
each node within a certain, progressively reducing, distance from the sink (result-
ing in a lens-shaped area) retransmits the message. Unfortunately, the distance
field used by GRAB for taking receiver-based forwarding decisions rapidly de-
teriorates when nodes move. As before, while GRAB approach is to rebuild the
cost field in those situations, it lacks mechanisms to mask faults induced by
mobility, such as the CCBR retransmission and credits mechanism.

Other mechanisms adopted by CCBR are receiver contention, channel over-
hearing and RSSI estimations. They exploit WSNs peculiarities to allow dis-
tributed routing decisions with minimal state and communication. Other
proposals in WSNs use similar mechanisms. Receiver contention is used by ge-
ographic routing [28,29,26], opportunistic routing [30], data dissemination [31],
and cooperative diversity [32] schemes to select the best forwarder or relay with
minimal overhead. CCBR uses this approach with a different goal: to select
efficient routes leading to multiple destinations in spite of unreliable routing
information resulting from mobility. Channel overhearing is used in geographic
routing to trigger void avoidance phases, while CCBR (using hop-counts) does
not have voids but uses instead overhearing to trigger its local minima escape
mechanism. Finally, exploiting RSSI to quickly establish distances was already
proposed in [33].

A Context and Content-Based Routing Protocol for Mobile Sensor Networks 83

5 Conclusion

While the typical application for WSNs is in environmental monitoring, different
scenarios are also possible. In particular, in the WASP project financed by the
EU Commission we are considering scenarios like controlling animals in a farm
or monitoring elder people in hospices, which involve mobile nodes and multiple
sinks, while continuous connectivity is guaranteed by the small area in which
sensors move (e.g., the field in which cattle move) or by the presence of fixed
sensors that may act as forwarders (e.g., in a house).

The CCBR protocol we described in this paper provides a context and content-
based routing layer especially tailored to such scenarios. On top of this layer,
it becomes easy to develop several communication paradigms, from publish-
subscribe to continuous queries ala TinyDB. Our simulations show that the
mechanisms used by CCBR are very effective in providing good delivery with a
low cost of routing, which potentially implies a low power consumption.

With respect to the issue of power consumption, other partners of the WASP
project developed a MAC protocol optimized for the kind of broadcast com-
munication adopted by CCBR. It guarantees low power drain both for sending
and for receiving broadcast packets by extensively using advanced duty cycling
mechanisms. We are currently implementing CCBR on top of the first release of
this MAC to measure power consumption on real nodes.

As a further work in this area, we are interested in investigating how to add
“in network processing” capabilities to CCBR, to allow sinks to specify some
aggregation function, letting CCBR decide where to aggregate data. A very
complex task in mobile scenarios like those we target.

References

1. Carzaniga, A., Wolf, A.L.: Content-based networking: A new communication in-
frastructure. In: König-Ries, B., Makki, K., Makki, S.A.M., Pissinou, N., Scheuer-
mann, P. (eds.) IMWS 2001. LNCS, vol. 2538, pp. 59–68. Springer, Heidelberg
(2002)

2. Intanagonwiwat, C., Govindan, R., Estrin, D., Heideman, J., Silva, F.: Directed
diffusion for wireless sensor networking. Trans. on Netw. 11(1), 2–16 (2003)

3. Hauer, J.H., Handziski, V., Köpke, A., Willig, A., Wolisz, A.: A component frame-
work for content-based publish/subscribe in sensor networks. Wireless Sensor Net-
works, 369–385 (2008)

4. Mottola, L., Cugola, G., Picco, G.P.: A self-repairing tree topology enabling
content-based routing in mobile ad hoc networks. IEEE Trans. on Mobile Com-
puting 7(8), 946–960 (2008)

5. Baldoni, R., Beraldi, R., Querzoni, L., Cugola, G., Migliavacca, M.: Content-based
routing in highly dynamic mobile ad hoc networks. Int. Journ. of Perv. Comp. and
Comm. 1(4), 277–288 (2005)

6. Costa, P., Migliavacca, M., Picco, G.P., Cugola, G.: Epidemic algorithms for re-
liable content-based publish-subscribe: An evaluation. In: ICDCS, pp. 552–561
(2004)

84 G. Cugola and M. Migliavacca

7. Picco, G.P., Cugola, G., Murphy, A.L.: Efficient content-based event dispatching
in the presence of topological reconfiguration. In: ICDCS, pp. 234–243 (2003)

8. OMNeT++ Web page, http://www.omnetpp.org
9. Mobility Framework for OMNeT++ Web page,

http://mobility-fw.sourceforge.net
10. Luo, H., Ye, F., Cheng, J., Lu, S., Zhang, L.: Ttdd: Two-tier data dissemination

in large-scale wireless sensor networks. Wireless Networks 11(1-2), 161–175 (2005)
11. Kim, H.S., Abdelzaher, T.F., Kwon, W.H.: Minimum-energy asynchronous dissem-

ination to mobile sinks in wireless sensor networks. In: SenSys (2003)
12. Hwang, K.-i., In, J., Eom, D.-S.: Distributed dynamic shared tree for minimum

energy data aggregation of multiple mobile sinks in wireless sensor networks. In:
Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 132–147.
Springer, Heidelberg (2006)

13. Shah, R., Roy, S., Jain, S., Brunette, W.: Data mules: Modeling a three-tier archi-
tecture for sparse sensor networks. In: IEEE SNPA Workshop (2003)

14. Somasundara, A., Kansal, A., Jea, D., Estrin, D., Srivastava, M.: Controllably
mobile infrastructure for low energy embedded networks. IEEE Transactions on
Mob. Comp. 5(8), 958–973 (2006)

15. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: Efficient data propagation strate-
gies in wireless sensor networks using a single mobile sink. Comput. Commun. 31(5)
(2008)

16. Ammari, H.M., Das, S.K.: Promoting heterogeneity, mobility, and energy-aware
voronoi diagram in wireless sensor networks. IEEE TPDS 19(7), 995–1008 (2008)

17. Bonnet, P., Leopold, M., Madsen, K.: Hogthrob: towards a sensor network infras-
tructure for sow monitoring. In: DATE (2006)

18. Butler, Z., Corke, P., Peterson, R., Rus, D.: Dynamic virtual fences for controlling
cows. In: Experim. Robotics IX. Springer Tracts in Adv. Rob. Springer, Heidelberg
(2006)

19. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy-
efficient computing for wildlife tracking: Design tradeoffs and early experiences
with zebranet. In: ASPLOS, San Jose, CA (October 2002)

20. Pasztor, B., Musolesi, M., Mascolo, C.: Opportunistic mobile sensor data collection
with scar. In: MASS (2007)

21. Henriksson, D., Abdelzaher, T., Ganti, R.: A caching-based approach to routing
in delay-tolerant networks. In: ICCCN 2007, August 2007, pp. 69–74 (2007)

22. Luo, T.L., Huang, C., Abdelzaher, Stankovic, J.: Envirostore: A cooperative storage
system for disconnected operation in sensor networks (2007)

23. Petrovic, M., Muthusamy, V., Jacobsen, H.A.: Content-based routing in mobile ad
hoc networks. In: MobiQuitous, pp. 45–55 (2005)

24. Ye, F., Zhong, G., Lu, S., Zhang, L.: Gradient broadcast: a robust data delivery
protocol for large scale sensor networks. Wirel. Netw. 11(3), 285–298 (2005)

25. Bokareva, T., Bulusu, N., Jha, S.: A performance comparison of data dissemination
protocols for wireless sensor networks. In: GlobeCom Workshops 2004, November
-3 December 2004, pp. 85–89. IEEE, Los Alamitos (2004)

26. He, T., Blum, B.M., Cao, Q., Stankovic, J.A., Son, S.H., Abdelzaher, T.F.: Ro-
bust and timely communication over highly dynamic sensor networks. Real-Time
Syst. 37(3), 261–289 (2007)

27. Heissenbüttel, M., Braun, T., Wälchli, M., Bernoulli, T.: Evaluating the limitations
of and alternatives in beaconing. Ad Hoc Netw 5(5), 558–578 (2007)

28. Zorzi, M., Rao, R.R.: Geographic random forwarding (geraf) for ad hoc and sensor
networks: Multihop performance. IEEE Trans. Mob. Comput. 2(4), 337–348 (2003)

http://www.omnetpp.org
http://mobility-fw.sourceforge.net

A Context and Content-Based Routing Protocol for Mobile Sensor Networks 85

29. Heissenbüttel, M., Braun, T., Bernoulli, T., Wälchli, M.: Blr: Beacon-less routing
algorithm for mobile ad hoc networks. Comp. Comm. 27(11), 1076–1086 (2004)

30. Biswas, S., Morris, R.: Exor: opportunistic multi-hop routing for wireless networks.
In: SIGCOMM, pp. 133–144 (2005)

31. Mastrogiovanni, M., Petrioli, C., Rossi, M., Vitaletti, A., Zorzi, M.: Integrated
data delivery and interest dissemination techniques for wireless sensor networks.
In: GLOBECOM (2006)

32. Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity
method based on network path selection. IEEE JSAC 24(3), 659–672 (2006)

33. Dutta, P., Culler, D., Shenker, S.: Procrastination might lead to a longer and more
useful life. In: 6th Workshop on Hot Topics in Networks (HotNets VI) (2007)

Dynamic Source Routing versus Greedy Routing
in a Testbed Sensor Network Deployment

Hannes Frey1 and Kristen Pind2

1 University of Paderborn
hannes.frey@uni-paderborn.de

2 University of Southern Denmark
kristen@imada.sdu.dk

Abstract. We present our findings of an empirical performance com-
parison between dynamic source routing and greedy routing in a testbed
wireless sensor network deployment. The environment is based on a grid
ranging between 2×2 to 7×7 battery operated Tmote Sky sensor nodes.
We briefly sketch the protocol implementations and the experimental
setup used in this work. We also discuss how we managed such larger
set of nodes in a convenient way. We hope that some of the lessons we
learnt may be useful to others doing such kind of testbed experiments
as well. Finally, we discuss our findings from the measurement data we
have gathered.

1 Introduction

This work describes our recent advances in providing real world measurements
of basic wireless data communication primitives. At the time of writing we have
been focusing on end-to-end communication between a source and destination
node. We believe that a basic understanding of such basic primitives will as
well provide insights in more advanced sensor network specific data collection
primitives. Moreover, sensor networks are not only about data collection trees.
For instance, a data sink issuing a sensor request into a specific geographic region,
a data sink issuing a request to a certain area identified by a specific node, or
a data source trying to connect to a specific actuator are just a few examples
which show that sensor networks require basic unicast communication primitives
as well.

Data communication protocols can be classified in topology based and geo-
graphic ones. Surveys can be found in [1] and [2], respectively. Topology based
communication requires either proactive or reactive exchange of global informa-
tion before message forwarding from source to destination can take place. Geo-
graphic message communication in contrast does not require such global message
exchange. In such routing mechanism it is assumed that each node knows its cur-
rent physical location. Based on this additional information a routing decision
can be performed in a pure localized manner, i.e., a forwarding decision requires
only information about the position of the current node, its immediate neigh-
bors, and the message destination. It is believed that such localized protocols

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 86–101, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic Source Routing versus Greedy Routing 87

provide scalable solutions, that is, solutions for wireless networks with an arbi-
trary number of nodes. Future sensor networks, for instance, might consist of
thousands or ten thousands of nodes.

Research on localized algorithms – in particular the comparison of localized
versus non-localized approaches – has focused mainly on theoretical investiga-
tions and simulation. While both form an important aspect in getting a thorough
understanding on what is going on, a critical part has widely been neglected so
far. It is of paramount importance to perform the comparison “localized versus
non-localized” in the domain where the protocols are supposed to be applied.
Localized algorithms are not supposed to run in Ns2, Omnet, or Qualnet. They
are supposed to run on real hardware platforms like MicaZ, or Tmote Sky nodes.

What follows is just a drop in a bucket, to provide some numbers of real-world
measurement for comparing the domain of localized versus non-localized data
communication. We focused at first on two protocols. We selected greedy routing
as a representative of the localized domain and dynamic source routing as a rep-
resentative of the non-localized (or topology-based) domain. The protocols and
how we implemented them are described briefly in Section 2. Then we describe
our experimental setup in Section 3. The results are presented in Section 4. We
conclude our work and provide some future research directions in Section 5.

2 Protocol Implementations

We implemented dynamic source routing and greedy routing in nesC [3] un-
der the TinyOS 2.0 execution environment [4]. Wireless communication between
immediate neighboring sensor nodes and wired serial communication between
sensor node and host computer is implemented on the basis of Active Messag-
ing [5]. The maximum allowed message size was fixed to 64 bytes payload. We
used the standard IEEE 802.15.4 MAC protocol provided by the mixed soft-
ware/hardware CC2420 radio stack in TinyOS, without changing any settings
or implementations.

The following provides a brief outline on both implemented protocols and mo-
tivates the rationale behind our implementation decisions. For both variants we
investigated in our studies a version with and one without link layer acknowl-
edgement. We used the link layer acknowledgement realized in the CC2420 radio
stack. When using the acknowledgement feature, we set the maximum number
of retransmissions to 3 and the retransmission delay to 0 msec.

2.1 Dynamic Source Routing

The Algorithm Principle. Dynamic source routing [6], DSR in short, ba-
sically works as follows. The source node sends out a route request message
RREQ which is repeated by all intermediate nodes once they receive it for the
first time. Additional RREQ receptions are just ignored. In other words, the
RREQ message is just flooded over the entire network.

Every RREQ message copy stores the sequence of nodes it has visited so
far. In this way several copies of the RREQ message will eventually reach the

88 H. Frey and K. Pind

destination node which can then pick up one of these messages to send a route
reply RREP back along the reverse of the path stored in the RREQ messages.
To achieve this, the RREP message just stores the sequence of nodes which have
to be visited from source to destination. Once the message arrives at the source
node, the reverse of the path stored in the RREQ message can finally be used
to send data towards the destination node.

Implementation. Our DSR implementation provides a timeout which can be
used to invalidate the current route form source to destination. This means when
using this timeout a new route discovery will be initiated periodically. However,
this is just an optional feature which is useful to adapt proactively to a dynam-
ically changing network topology; due to mobility or any kind of fading effects.
We used this feature in those kinds of measurements where we investigated delay
induced by DSR route recovery under dynamic network topologies.

Finally, when using link layer acknowledgments our DSR implementation pro-
vides error notification at the source in case of path breakage. A node which
realizes that the link to the next hop along the path is broken, will send an ERR
message along the reverse path to the source node. When triggered by the next
message from the upper layer, the source node will send out a next RREQ in
order to find a new path from source to destination.

2.2 Greedy Routing

The Algorithm Principle. The greedy routing principle [7,8,9] works as fol-
lows. Each node is supposed to know its own location in terms of some given
coordinate system. Messages store the location of the destination node as well.
A current forwarding node has to acquire the position of its one hop neighbors
and then choose that next hop neighbor whose location is the best one with
respect to the current node’s location, the final destination’s location, and the
localized metric being applied. If the current node is the best one, the message
will be dropped.

Implementation. In greedy routing each node is supposed to know the loca-
tions of the nodes in its vicinity. In this work we focused on the so called beacon
less greedy routing variant [10,11,12]. However, we implemented the following
active neighbor selection variant. As long as a node has not to forward anything,
it is not supposed to know its neighbors. As soon as a message gets in, the neigh-
bors have to be determined first. The node will broadcast a neighbor discovery
message NDSC first. Any neighbor node receiving a NDSC message will send a
unicast reply message NREP which includes the node’s ID, its location, and a
value indicating the quality of the link from the NDSC originator to the NDSC
recipient. On reception of a NDSC message, the latter value is immediately re-
quested by the NDSC recipient from the CC2420 TinyOS module. Finally, to
keep the number of collisions low, a node replying with a NREP message will
wait a random time between 0 and 50 msec before sending the NREP back to
the NDSC initiator.

Dynamic Source Routing versus Greedy Routing 89

In a static topology, neighbor discovery needs to be performed only once. As
soon as the first message was handled, the other messages coming in can use the
already determined set of one hop neighbor nodes. In a highly dynamic scenario,
however, this set will be outdated and a new neighbor discovery gets neces-
sary. To support any topology properties between those two extreme cases we
implemented a timeout based scheme where the neighbor set is invalidated peri-
odically. Thus, message handling within one period requires neighbor discovery
only once. The timeout period can be set as a protocol parameter.

In addition, when using link layer acknowledgements our greedy implementa-
tion supports a simple error recovery mechanism. On failure notification from the
link layer, the entire neighbor list is erased. When a message has to be forwarded
from a node with an empty neighbor list, a new list will be set up by issuing
a NDSC message and waiting 70 msec for collecting NREPs and resuming the
next greedy forwarding step.

In this work we focus on two basic greedy routing metrics, a distance based
and a link quality based one. In the distance based metric the next forwarding
step is the node which minimizes the distance to the destination. We refer to
this method as Greedy-dist in the following. In the link quality based variant,
the node which maximizes the link quality indicator value will be selected. We
refer to this variant as Greedy-lqi in the following. In both variants, however, in
order to prevent routing loops, only nodes which are closer to the destination
than the current node are used.

Location information is an important ingredient of any localized data commu-
nication protocol. Here we focused on the routing aspects only. We implemented
a TinyOS module which provides an interface to request a node’s position. The
current implementation just returns a preconfigured location value which is set
in the phase of mote flashing.

3 Experimental Setup

The following described experiments were performed on a grid of battery oper-
ated Tmote Sky sensor nodes (see www.sentilla.com). We varied the grid size
between 2×2 to 7×7 nodes. The network was deployed indoors in a single room.
Nodes were located on the ground and have all been oriented such that their
antennas were pointing in the same direction. No obstacles have been placed in
between them.

To have a reasonable multi-hop experimental scenario on a small experiential
area, transmission power of each node was set to 1 (out of a range between 0
and 31). We investigated that a transmission power 0 rendered many message
losses due to weak signal strength. A signal strength above 1 kept too many
nodes connected thus rendering the topology almost fully connected.

With transmission power set to 1, we were interested in placing nodes with
about the same density in both, column and row direction. To achieve this,
we determined a rough estimate of the radiation pattern of the sensor nodes
(see Fig. 1a). We used one node continuously transmitting short packages whose

90 H. Frey and K. Pind

116 cm
29

5
cm

(a) Radiation pattern.

LQI ∈[0, 80)
LQI ∈[80, 90)
LQI ∈[90, 100)
LQI ∈[100, ∞)

1 7

43 49

(b) Network topology.

Fig. 1. Setting up the experiment

correct reception was measured in a second sensor board which we moved away
until the first messages got lost. In this way we determined the depicted reference
points. While we do not claim that the depicted polygon reflects a precise radi-
ation pattern, the shape however gave us a rough picture of the directionality of
the sensor board’s antenna.

Our measurement suggested an antenna radiation being in column direction
between 2 to 3 times larger than in row direction. In order to get about the
same density in both column and row direction, we decided on row distances two
times larger than column distances. Finally we placed nodes such that immediate
column and row neighbors will likely see each other. To achieve this we selected
node distances such that neighbor nodes are located about on the half between
a node and the boundary of its radiation polygon. According to this, as depicted
in Fig. 1b, nodes were equally aligned and placed on a grid with 25 cm grid
width and 50 cm grid height.

The links in the figure depict for one example setup the node’s capabilities
in reaching another node with a reception probability above 75%. This means,
out of 100 transmitted messages, at least 75 were received. Depicted are bidirec-
tional links only, i.e., in both direction at least 75 messages were received. Links
are further distinguished according to the average link quality indicator values
provided by the CC2420 module. LQI values may differ for the communication
direction along one link. In this graphical representation we show the minimum
over both LQI values of each link.

The grid structure (see Fig. 1b) was also used to determine the nodes’ IDs and
relative coordinates. Node IDs just count the nodes from the bottom left to the
top right corner. Greedy routing does not require absolute node positions. Any
virtual coordinate system which supports computing distances between nodes
is sufficient. We have set the node positions according to their location in the

Dynamic Source Routing versus Greedy Routing 91

grid, with the node in the bottom left corner having position (1, 1) and the node
in the top right corner having position (7, 13). More precisely, a node on grid
position (i, j) has position (i, 2j) in our relative coordinate system.

3.1 Controlling the Experiments

To control the experiment, node 1 and node 49 have been attached via USB to a
notebook computer. We implemented a Java application to generate the traffic,
and collect measurement data from the final destination node.

We implemented a TinyOS module listening for control messages coming from
the USB port. Two classes of control messages exist. One class of control message
is flooded through the entire network to reach all nodes. This way we are able
to manage the whole set of nodes from a single notebook computer without the
need to touch a single sensor after flashing. Control messages out of this class
implemented so far enable selection between Greedy-dist, Greedy-lqi, and DSR
and support resetting these protocols to an initial state.

The second class of control messages is not flooded but only addressed to one
of the nodes attached to the notebook computer directly. So far we implemented
a single instance of this kind of message in order to inject data communication
tasks into the network. More precisely, the Java application tells the attached
source node to send a data packet periodically to the destination node.

3.2 Measuring Time

Due to high jitter we observed for the USB communication between sensor nodes
and notebook computer, we decided on time measurement in the source and
destination sensor nodes directly. We used the difference Δ between send time
at the source and receive time at the destination. To determine the duration of
one routing message to get from source to destination we add the clock offset
between source and destination to Δ. To determine that clock offset, before each
measurement source and destination node perform 100 direct message exchanges
at full signal strength to determine the average over time at source node minus
time at destination node minus half of the round trip delay of direct transmission.
We observed a very predictable round trip delay with a 4 msec standard deviation
which provided us some confidence in computing the clock offset between source
and destination in that way.

4 Results

In the following graphs we compare the performance of DSR and greedy routing
in terms of delay, delivery ratio, hop count, and data rate. Delay is the time
interval between packet transmission at the source and packet reception at the
destination. The delivery ratio is the number of packets successfully delivered at
the destination over the total number of packets sent by the source. Hop count
is just the number of nodes visited by a packet when it gets delivered at the
destination. The data rate is the amount of data which is successfully received
at the destination node per time unit.

92 H. Frey and K. Pind

4.1 Intuition from Path Accumulation Diagrams

In order to get a first intuition on the performance to be expected, Fig. 2 shows
the path accumulation diagram for the three considered routing protocols. The
diagrams are a pictorial representation of (1) the paths visited by a protocol for
a given number of independent routing tasks, and (2) the frequency of the links
taken along these paths. Every depicted link means that this link was used at
least once. The thicker a link the more frequent this link was taken. The figure
was obtained from 500 independent routing tasks. In each routing task a single
message was sent from node 1 to node 49.

The diagrams show that the paths taken by DSR involve more network links
than the Greedy variants. However, there is a concentration on the links following
the diagonal edges from the source node to the destination node. The paths
taken by the Greedy variants involve less nodes of the network. In both cases
the paths concentrate on the upper diagonal of the experimental setup. We
explain this by the fact that in this setting Greedy routing favors nodes located
in the north south direction over nodes located in the east west direction. Due
to the directionality of the sensor nodes antennae and due to the alignment of
nodes, a node in north south direction is easier to reach than a node in east
west direction. Moreover, the next row is providing more progress towards the
destination than the next column. Thus, for both greedy routing variants it
is more likely to select a next hop node along the column than a node along
the row. DSR in contrast is flooding the entire network thus it is becoming
more likely that all nodes in the network sometimes get involved in a routing
path. Finally, both for, DSR and Greedy-dist several long links bypassing a
whole row or column can be observed. This is different to Greedy-lqi where this
happens less frequently. Here, the most frequently used links are the shortest
possible ones.

1 7

43 49

(a) DSR.
1 7

43 49

(b) Greedy-dist.

1 7

43 49

(c) Greedy-lqi.

Fig. 2. Path accumulation diagrams

Dynamic Source Routing versus Greedy Routing 93

4.2 Evaluating the Static Case

We were interested in the protocol behavior in terms of hop count, data rate,
delay, and delivery ratio, when network size increases. Experiments have been
performed for grid sizes ranging from 2 × 2 to 7 × 7. Data packets were injected
at the grid’s bottom left corner, i.e., node 1, and routed to the grid’s top left
corner, e.g., node 49 in case of the 7 × 7 grid.

Hop Count and Data Rate. Fig. 3a depicts the average number of hops
performed by DSR, Greedy-dist, and Greedy-lqi over increasing field sizes. We
considered only the case with link layer acknowledgments turned on. Each mea-
surement point resulted from 500 independent routing tasks, with each routing
task sending out a single message. The hops taken by the successful messages
have been averaged. The figure shows in numbers what intuitively is suggested
by the path accumulation diagrams depicted in Fig. 2. Greedy-lqi selecting high
quality links, favors short links over long ones. DSR selecting the first route re-
quest arriving at the destination, implicitly selects paths with a low number of
hops. The same applies for Greedy-dist. Selecting the next hop node closest to
the destination results in a short hop path. In our simulation setting, Greedy-lqi
resulted in path lengths being slightly more than twice the path lengths of DSR
and Greedy-dist. In other words, the average length of best quality links se-
lected by greedy-lqi is roughly half of the length of the link providing the largest
advance towards the destination node.

Next, we discuss the maximum data rate which can be supported by the dif-
ferent routing protocols. Since we do not know which send interval between two
successive packets drives the routing protocol in a saturated state, we consid-
ered the send interval between two successive packet transmissions as the varying
parameter, i.e., the interval between two successive packets injected into the net-
work. Clearly, if this interval is too short, the source node is not able to handle
all incoming packets, leading to many message drops already in the source node.
On the other hand, when the interval is too large, the routing protocol will idle
between two successive packets, not exploiting the full available bandwidth for

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 5 10 15 20 25 30 35 40 45 50

DSR
Greedy-dist

Greedy-lqi

Network size (# nodes)

N
u
m

b
er

o
f
h
o
p
s

(a) Average number of hops.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450 500

DSR-20
DSR-mhc
DSR-var

Greedy-dist
Greedy-lqi

Send interval (ms)

D
a
ta

ra
te

(b
y
te

s/
se

c)

(b) Data rate in bytes per second.

Fig. 3. The average number of hops and data rate for increasing network size

94 H. Frey and K. Pind

massage forwarding. An optimal saturated state is to be expected in between
these two extreme cases. This is confirmed by the measurement results depicted
in Fig. 3b. In those measurements we considered the protocols with link layer
acknowledgements and drove them with different send intervals. We observed
for all protocols a maximum data rate for a send interval ranging from 50 msec
to 70 msec.

The maximum data rate achieved both by greedy-lqi and Greedy-dist is close to
500 bytes per second. Maximum data rate achieved by DSR deserves a closer look.
DSR requires the path to be stored in the packet. Thus for fixed packet sizes the
achievable data rate is correlated with the portion of the packet reserved for the
path. In the extreme case no payload will be available, resulting in a data rate of 0.
We measured three different variants. DSR-20 is a conservative implementation,
which reserves a fixed size packet header which can store at most 20 hops. DSR-
mhc (mhc stands for maximum hop count) has also a fixed header size which can
store a maximum number of hops. However, this is set to the maximum expected
hop count in the scenario. This value has to be determined in advance. Here, we
considered the maximum achieved hop count of previous DSR runs in the current
experimental setup. Finally, DSR-var is a DSR variant which adapts the header
length to the actual traversed path. Thus, short paths will automatically provide
more payload and thus positively influence the data rate.

Clearly, setting a conservative fixed header length degrades DSR performance
significantly. In the considered example, the maximum performance of DSR-
20 drops by factor 3 from the maximum data rate achieved by DSR-var and
DSR-mhc. Interestingly, DSR-mhc and DSR-var achieved almost the same per-
formance in our experimental setting. This is an indication, that there are no
significant outliers regarding the maximum hop count obtained by DSR. In other
words, the maximum hop count is close to the average number of hops by DSR.

For the saturated case, why is DSR performing better than Greedy-dist and
why is Greedy-lqi performing less good than DSR and Greedy-dist? We explain
the first part of the question by the fact that Greedy-dist is forced to use links to
the node closest to the destination notwithstanding the link quality. With DSR
in contrast links with bad quality may render RREQ messages getting lost with a
high probability. Thus, although DSR and Greedy-dist produce very similar hop
counts, DSR is to be expected to use paths which do not contain weakest links.
Due to retransmissions sending a message over a weak link requires more time
and thus occupies the channel for a longer time. The whole network capacity
will be reduced. The same effect can be observed for Greedy-lqi, explaining the
second part of our question. While Greedy-lqi selects only high quality links,
the number of hops performed by Greedy-lqi is increased. Since we are using
fixed signal strengths, i.e., transmission of DSR and Greedy-lqi have the same
interference range, the algorithm with less hops per message, DSR, will support
higher network capacity.

An interesting observation we made in this experiment as well is, when send
intervals are increased, superiority of DSR-var and DSR-mhc are interchanged by
Greedy-lqi and Greedy-dist. In our measurements this happens for a send interval

Dynamic Source Routing versus Greedy Routing 95

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

DSR
Greedy-dist

Greedy-lqi

Network size (# nodes)

D
el

a
y

(m
s)

(a) Delay with ack turned on.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

DSR
Greedy-dist

Greedy-lqi

Network size (# nodes)

D
el

a
y

(m
s)

(b) Delay with ack turned off.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

DSR
Greedy-dist

Greedy-lqi

Network size (# nodes)

D
el

iv
er

y
ra

ti
o

(c) Delivery ratio with ack turned on.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

DSR
Greedy-dist

Greedy-lqi

Network size (# nodes)

D
el

iv
er

y
ra

ti
o

(d) Delivery ratio with ack turned off.

Fig. 4. Average delay and delivery ratio under increasing network size

of 70 msec. For intervals at or beyond 70 msec both, Greedy-lqi and Greedy-dist,
achieve a slightly better performance than DSR. A reasonable explanation for
this behavior is missing so far.

Average Delay and Delivery Ratio. Fig.4 depicts the delay and delivery
ratio we observed for the protocols, realized with and without link layer ac-
knowledgements. Each measure point is the average over 5 independent routing
tasks, while each routing task was sending 500 messages from source to destina-
tion. The send interval between two messages was set to 500 msec.

For the delay, depicted in Fig. 4a and 4b, we observed no significant difference
when running the protocols with and without link layer acknowledgements. In
both cases Greedy-lqi introduced the highest and DSR the lowest delay. The
significantly higher delay from Greedy-lqi is reasonable from the previously dis-
cussed path diagrams, which suggested that Greedy-lqi favors short edges. The
paths taken are thus longer in general. Performance of Greedy-dist is lying in be-
tween the performance of DSR and Greedy-lqi. It is closer to the performance of
DSR than the one of Greedy-lqi. Clearly, since the hop count distance increases
with increasing field size, for all protocols an increase in delay can be observed.

Interestingly, for DSR and Greedy-dist our measurements show a larger la-
tency in the 2 × 2 network compared with the 3 × 3 network. Our log files show

96 H. Frey and K. Pind

that by coincidence placement and selection of nodes resulted in a 2×2 network
where the direct link between source and destination was missing. In contrast,
although being longer for the 3×3 network a link between source and destination
was available in that network. Although the figures are a result from the average
of several experimental runs, the 2× 2 and 3× 3 networks have only been set up
once. We see a possible improvement for future measurements here: Before start-
ing the next experimental run in the same network setting, collect the previous
used nodes, mix them with all available nodes, and set up the same network
again by randomly selecting nodes form the set of all nodes. This significant
amount of additional administrative overhead may pay off with less correlated
results from subsequent measurements for one network setting.

We also want to note that our intention here is to depict the average time
it takes to get a sequence of message form source to destination. We depict
the delay for DSR including the route setup time for the first message. When
looking at a single message the delay incurred by route setup and sending the
first message completely from source to destination is much higher. For this case
our measurements showed a delay ranging from 127 ms for the 2 × 2 field to 311
ms for the 7 × 7 field.

As depicted in Fig. 4c, when link layer acknowledgements are turned on, all
protocols show a comparable behavior in terms of delivery ratio. All protocols
have a delivery ratio clearly above 90%. While for increasing network size DSR
and Greedy-dist show some slight variation in delivery ratio, Greedy-lqi appears
to achieve a stable delivery ratio close to 100%; a fact which can be explained
due to the stable connections hop-wise selected by Greedy-lqi.

When link layer acknowledgements are turned off, DSR and Greedy-dist show
high fluctuations in delivery ratio, while delivery ratio of Greedy-lqi still remains
above 90% and even close to 100% for larger network sizes. DSR still stays above
80% delivery ratio. Greedy-dist even drops below 30%. While this measurement
point appears to be a statistical outlier, the graphs however suggest an ordering
with respect to delivery ratio, in most cases Greedy-lqi showing a performance
better than DSR, and in most cases DSR showing a better performance than
Greed-dist. An explanation for this observation is again the fact that Greedy-lqi
selects a stable connection in each hop. DSR in contrast selects the first route
getting through to the destination. This path by coincidence may contain links
which are less stable. Though, very unstable links are unlikely to be discovered in
the route discovery process. In contrast Greedy-dist selects the discovered node
closest to the destination, i.e., often a next hop node which is far away from
the current node. Due to signal attenuation blindly selecting such large links is
counterproductive when aiming on a hop-wise high transmission success.

Delay and Delivery Ratio of the First Packet. In Fig. 5 we depict the de-
lay and the success of getting the first message from source to destination. Each
measure point is the average over 500 independent routing tasks. For each task
we sent messages until the first message from source to destination was delivered
successfully. Running protocols with link layer acknowledgements clearly shows a

Dynamic Source Routing versus Greedy Routing 97

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45 50

DSR
Greedy-dist

Greedy-lqi

Network size (# nodes)

D
el

a
y

o
f
fi
rs

t
p
a
ck

et
(m

s)

(a) Delay until first packet success.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50

DSR
Greedy-dist

Greedy-lqi

Network size (# nodes)

F
ir
st

d
a
ta

p
a
ck

et
d
el

iv
er

y
ra

ti
o

(b) Delivery ratio of the first packet.

Fig. 5. The first packet’s delay and delivery ratio under increasing network size

better performance than running them without. Thus, for brevity, in the following
we focus on the protocol variants with link layer acknowledgements only.

As can be seen in Fig. 5a, the delay of the first successfully received packet
is highly variable for DSR and Greedy-dist. No clear trend can be observed
from our measurements. Contrary, Greedy-lqi shows a smooth increase of delay
when network size increases. Interestingly, contrary to the average over many
messages (see Fig. 4a), when considering first successful reception of a message
only, the delay of Greedy-lqi is not clearly above the delay obtained by DSR and
Greedy-dist. This is due to the high success of the first Greedy-lqi message as
supported by the measurement depicted in Fig. 5b. Greedy-lqi showing a first
packet delivery ratio close to 100%, outperformed Greedy-dist and DSR in our
measurements. DSR and Greedy-dist are showing the same fluctuations here
and no clear trend which one is better can be drawn from our measurements.
However, there is an obvious correlation among the DSR and Greedy-dist graphs
in Fig. 5a and 5b. A high delivery ratio of the first packet results in a lower delay
of the first successful packet reception. Thus, the graph of DSR in Fig 5a appears
horizontally mirrored in and 5b. The same applies for Greedy-dist.

4.3 Evaluating a Dynamic Scenario

In addition to the experiments with increasing field size, we investigated the pro-
tocol behavior in a dynamic environment. In these measurements we kept the
maximum field size of 7 × 7. Since there is no direct way to add dynamics with
reasonable effort to our experimental setup, we “simulate” a dynamic environ-
ment by artificially invalidating routes used by DSR and neighborhood tables
used by Greedy routing in regular time intervals. By this means we emulate the
effect of a dynamic environment where established routes or established neigh-
borhood information frequently get invalid due to topology changes. In DSR,
once a path is invalidated, DSR has to set up a new route. In Greedy, once a
neighbor list is invalidated, a new neighbor list has to be established.

Fig. 6 depicts the delay and delivery ratio we observed for the protocols, again
investigated with and without link layer acknowledgements. Each measurement

98 H. Frey and K. Pind

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60

DSR
Greedy-dist

Greedy-lqi

Route/Neighbor cache TTL (sec)

D
el

a
y

(m
s)

(a) Delay with ack turned on.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60

DSR
Greedy-dist

Greedy-lqi

Route/Neighbor cache TTL (sec)

D
el

a
y

(m
s)

(b) Delay with ack turned off.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

DSR
Greedy-dist

Greedy-lqi

Route/Neighbor cache TTL (sec)

D
el

iv
er

y
ra

ti
o

(c) Delivery ratio with ack turned on.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

DSR
Greedy-dist

Greedy-lqi

Route/Neighbor cache TTL (sec)

D
el

iv
er

y
ra

ti
o

(d) Delivery ratio with ack turned off.

Fig. 6. Average delay and delivery ratio under increasing dynamics

point is an average over 10 independent routing tasks, while in each routing task
100 messages have been sent. The send interval between two successive messages
was set to 1 sec. The dynamics parameter was varied in decimal steps from 0 to
60 sec route or neighbor list invalidation time, respectively.

For the delay, depicted in Fig. 6a and 6b we observed no significant difference
in protocol performance when link layer acknowledgements are turned on or
off. The measurements show the same behavior as observed for the static case.
Greedy-lqi introduces the highest and DSR the lowest delay. The performance
of Greedy-dist is lying in between, being closer to the performance of DSR than
to the performance of Greedy-dist. The reason behind is again explained by the
fact that Greedy-lqi is taking significantly longer paths. Clearly, for all protocols
delay increases when the dynamics is increased. In the extreme case with an
invalidation timeout of 0 sec, delay for all protocols is at maximum. DSR is
required to set up a new path for each new message. Both Greedy routing variants
are required to rediscover the neighborhood list in each forwarding step.

Finally, Fig. 6c and 6d depicts the delivery ratio when running the protocols
with and without link layer acknowledgements, respectively. In both cases Greedy-
lqi outperforms delivery ratio of DSR and Greedy-dist, being close to 100% when
using acknowledgements and being close to 90% when not using them. In the
case of acknowledgements performance of DSR stays above Greedy-dist for all

Dynamic Source Routing versus Greedy Routing 99

investigates dynamic values. When not using acknowledgements, interestingly, the
roles of DSR and Greedy-dist with respect to delivery ratio are changing. While
lower dynamics is better supported by DSR, Greedy-dist becomes better when
the invalidation timeout drops below 30 sec. We explain this by the fact that we
observed in the log files frequent message losses in the beginning when DSR with-
out link layer acknowledges is setting up a new route. Thus, if route invalidation
timeout is increasing, DSR will perform better, approaching its performance for
the static case. As discussed in the previous section in the static case DSR shows
a better delivery rate compared to Greedy-dist.

5 Conclusion
5.1 Our Present Findings

In this work we presented an empirical performance comparison between a lo-
calized and a global routing approach. Although, this work is not the first one
providing measurements in a real-world sensor network deployment, we think
that in answering the question on what are the advantages and disadvantages of
localized over globalized approaches, such empirical results are still lacking.

A summary of the empirical performance comparison in this work is given
in the following table. It shows the preferred protocol choice for the accord-
ing scenarios used in this work. Here, any refers to any of the protocols DSR,
Greedy-dist, or greedy-lqi, and Greedy refers to any of the protocols Greedy-
dist or Greedy-lqi. Those possible parameter/scenario combinations we have not
investigated in this work are marked with a “-”.

Table 1. Preferred protocol choice for the experimental settings

Static Dynamic
ack no ack ack no ack

Delay DSR DSR DSR DSR
Delivery ratio any Greedy-lqi Greedy-lqi Greedy-lqi
First contact delay any - - -
First packet delivery ratio Greedy-lqi - - -
Data rate at full speed DSR - - -
Data rate at low speed Greedy - - -

A general conclusion from this table: When delay of successful packets has
highest priority, DSR is the preferred choice. In a static scenario with the use of
acknowledgements all protocols achieve a good delivery ratio. In harsh environ-
ments, when no acknowledgements are available, or if available but the network
gets dynamic, Greedy-lqi shows its benefits resulting from the on demand high
quality link selection. In scenarios where getting a single small piece of data to
a receiver is of importance, the protocols are not clearly distinguishable with
respect to delay. In terms of delivery ratio, however, Greedy-lqi is the preferred
choice. Finally, when driving the protocols in a saturated state, DSR performs
best in terms of data rate. If packets are injected below protocol saturation, the
Greedy variants perform better.

100 H. Frey and K. Pind

5.2 Open Research Directions

Our intention is to substantiate advantages and disadvantages of localized over
centralized data communication protocols with real-world measurements. We
focused on one representative of localized and one representative of global routing
so far. The space of possible future investigations is endless and we anticipate
following the most interesting ones in our future research.

The protocols themselves enable different implementation variants. For in-
stance, in Greedy routing other localized forwarding metrics might be considered
and compared to their global counter parts. Moreover, comparison against DSR
using link quality measures as well is a possible next step of investigations. Most
important, other opponents in the domain of global routing protocols might be
considered as well. Finally, for sensor networks one main future track should
be the data collecting trees. Here again, localized solutions should be compared
against non-localized ones in real-world experimental settings.

The traffic pattern used in this work placed only a light load on the network.
We considered just one source communicating to one destination node. Other
experiments could contain other traffic patterns stressing the network more than
our current setting.

Localized communication protocols require location information. Here we as-
sumed the location information to be configured in advance. This is a reasonable
assumption in case of a planned sensor network; which is in most of the prac-
tical studies the case. Future performance studies might however incorporate
the additional overhead and location inaccuracies of self organized localization
techniques; jet opening a new investigation dimension.

There is one important aspect which is still missing in our practical evalua-
tions: energy efficiency. Measuring a protocol’s energy consumption in a testbed
deployment requires sensor nodes to be attached to additional hardware units
which sample the sensor node’s current draw during protocol execution. We
are aware of two different research groups which have already built such mea-
surement units [13,14]. The described prototypes are so far not commercially
available. Resources for reverse engineering or developing a new prototype were
not available at the time. We focused our investigations on traditional network-
ing parameters. For future experimental studies we have plans to build energy
measurement hardware which allows us to backtrack the sources of energy dis-
sipation in testbed studies.

Finally, we think that a final justification when a localized is better than
a globalized approach requires many independent measurements coming from
independent research groups. Even measurements repeating experimental setups
and experiments of certain protocols are of importance here. We advertise that a
single result of one paper should not exclude other papers performing the same
measurements and probably achieving varying results. This is however often not
that accepted in network research like it is accepted in other disciplines like
physics, for instance.

Dynamic Source Routing versus Greedy Routing 101

References

1. Royer, E.M., Toh, C.K.: A review of current routing protocols for ad hoc mobile
wireless networks. IEEE Personal Communications 6(2), 46–55 (1999)

2. Frey, H., Stojmenovic, I.: Geographic and energy aware routing in sensor networks.
In: Stojmenovic, I. (ed.) Handobook on Sensor Networks. Wiley, Chichester (2005)

3. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc
language: A holistic approach to networked embedded systems. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation (2003)

4. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System
architecture directions for networked sensors. In: Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 93–104 (2000)

5. Buonadonna, P., Hill, J., Culler, D.: Active message communication for tiny net-
worked sensors. In: Proceedings of the Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2001) (April 2001)

6. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Mobile Computing. Kluwer Academic Publishers, Dordrecht (1996)

7. Takagi, H., Kleinrock, L.: Optimal transmission ranges for randomly distributed
packet radio terminals. IEEE Transactions on Communications 32(3), 246–257
(1984)

8. Finn, G.G.: Routing and addressing problems in large metropolitan-scale inter-
networks. Technical Report ISI/RR-87-180, Information Sciences Institute (ISI)
(March 1987)

9. Kuruvila, J., Nayak, A., Stojmenovic, I.: Greedy localized routing for maximizing
probability of delivery in wireless ad hoc networks with a realistic physical layer. In:
CD Proceedings of the 1st International Workshop on AlgorithmS for Wireless And
mobile Networks (A-SWAN), Personal, Sensor, Ad-hoc, and Cellular Workshop (at
MobiQuitous), Boston, Massachusetts (August 2004)

10. Heissenbüttel, M., Braun, T.: BLR: Beacon-less routing algorithm for mobile ad-
hoc networks. Elsevier’s Computer Communications Journal (2003)

11. Blum, B.M., He, T., Son, S., Stankovic, J.A.: IGF: A state-free robust communica-
tion protocol for wireless sensor networks. Technical Report CS-2003-11, Depart-
ment of Computer Science, University of Virginia, April 21 (2003)

12. Füßler, H., Widmer, J., Käsemann, M., Mauve, M., Hartenstein, H.: Contention-
based forwarding for mobile ad-hoc networks. Ad Hoc Networks 1(4), 351–369
(2003)

13. Jiang, X., Dutta, P., Culler, D., Stoica, I.: Micro power meter for energy monitoring
of wireless sensor networks at scale. In: Proceedings of the 6th International Sym-
posium on Information Processing in Sensor Networks (IPSN 2007), April 25–27,
2007, pp. 186–195 (2007)

14. Köpke, A., Wolisz, A.: Measuring the node energy consumption in USB based
WSN testbeds. In: Workshop Proceedings of the 28th International Conference on
Distributed Computing Systems (ICDCS 2008), June 17–20, 2008, pp. 333–338
(2008)

Multi-hop Cluster Hierarchy Maintenance in Wireless
Sensor Networks: A Case for Gossip-Based Protocols

Konrad Iwanicki1,2 and Maarten van Steen1

1 Vrije Universiteit, Amsterdam, The Netherlands
2 Development Laboratories (DevLab), Eindhoven, The Netherlands

{iwanicki,steen}@few.vu.nl

Abstract. Multi-hop cluster hierarchy has been presented as an organization for
large wireless sensor networks (WSNs) that can provide scalable routing, data
aggregation, and querying. In this paper, we revisit the fundamental problem of
maintenance of such a hierarchy. To this end, we observe that, due to tightly cou-
pling their operation with the topology of the hierarchy, existing state-of-the-art
cluster hierarchy maintenance protocols may not necessarily be efficient. Based
on our observations, we make a case for a novel gossip-based hierarchy mainte-
nance protocol that decouples its operation from the hierarchy topology. Through
experiments with actual embedded implementations we have developed, we con-
firm that our protocol can outperform the existing state-of-the-art solutions by a
few factors in terms of both the energy consumption and the latency of bootstrap-
ping and recovering the hierarchy.

1 Introduction

Many of the proposed wireless sensor network (WSN) applications assume large node
populations deployed over sizable areas. Due to inherent resource limitations of most
of wireless sensor node platforms, large multi-hop WSNs must be organized in a way
that enables scalable routing, data aggregation, and querying. Moreover, to minimize
the effort involved in the deployment and upkeep of a large WSN, it is highly desirable
that the organization should be maintainable with minimal human intervention.

Multi-hop cluster hierarchy is a prominent example of such an organization [1,2,3,4].
This hierarchy is a virtual multi-level overlay on the physical network topology: based
on their connectivity, nodes are grouped into clusters at level 1, which in turn are
grouped into superclusters at level 2, and so on at higher levels. The overlay provides
addressing and routing mechanisms, which require only O(logN) node state, thereby
offering excellent scalability. These basic mechanisms can be further used to build more
advanced services such as distributed hash tables [1,4] or multi-level in-network aggre-
gation and querying [3,5]. Moreover, the overlay can be synthesized and maintained
without human intervention, thereby minimizing deployment efforts and facilitating
unattended operation. For these reasons, a number of WSN application proposals can
be founded on a multi-hop cluster hierarchy, for example, object tracking [1], reactive
tasking [6], energy-efficient centralized data collection [3], scalable network monitoring
[7], and multi-dimensional range querying [5], to name a few. By and large, multi-hop
cluster hierarchy is a compelling paradigm for organizing nodes in large WSNs.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 102–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks 103

The key component in a system based on a multi-hop cluster hierarchy is the hier-
archy maintenance protocol. Such a protocol not only determines the target hierarchy
properties and thereby the costs of routing, data collection, and querying, but also gen-
erates additional costs due to maintaining these properties during system lifetime. The
maintenance costs can easily account for the majority of energy consumed by the nodes.
Therefore, since WSNs operate on tight energy budgets, it is essential that the energy
costs of hierarchy maintenance are minimized. Even a few-percent improvement in en-
ergy consumption can substantially reduce the expenses involved in the upkeep of a
large network or can even enable applications that require the prolonged lifetime. Like-
wise, the hierarchy maintenance protocol should minimize the time to bootstrap the
hierarchy and recover it after changes in the network. This affects the availability of the
overlay services (e.g., routing, aggregation, querying), especially since large WSNs are
less stable in terms of node population and connectivity than their smaller counterparts.
The challenge in cluster hierarchy maintenance is the fact that minimizing energy con-
sumption and minimizing bootstrap and recovery time are typically conflicting goals.

In this paper, we revisit the problem of multi-hop cluster hierarchy maintenance in
large WSNs with the goal of minimizing the energy consumed to maintain the hierarchy
and the time to bootstrap and recover the hierarchy. In contrast to prior work, which
focuses on clustering heuristics, we revisit the common general protocol scheme.

More specifically, we observe that maintaining a hierarchy with the existing state-of-
the-art protocols for WSNs is expensive in terms of energy. This is because the operation
of all these protocols is tightly coupled with the topology of the hierarchy, leading to
many small messages being exchanged. In WSNs, however, small messages are typi-
cally inefficient, as they incur significant energy overhead on the actual protocol data.

Based on this observation, we propose an alternative protocol that, to improve the
performance of hierarchy maintenance, decouples its operation from the topology of
the hierarchy. The protocol employs a combination of local operations for updating
the hierarchy and periodic local gossiping (i.e., asynchronous state exchanges between
neighboring nodes) for propagating updates and advertising clusters. This results in
more efficient traffic: irrespective of the hierarchy topology, each node periodically
transmits only a single big message. Through experiments with actual embedded im-
plementations, we show that our protocol can outperform the existing state-of-the-art
protocols, while providing the same hierarchy properties.

The rest of the paper is organized as follows. We formulate the problem and survey
prior work in Sect. 2. We explain our protocol in Sect. 3 and evaluate it against existing
solutions in Sect. 4. Finally, in Sect. 5, we conclude. Due to space constraints, the code
listings and supporting proofs have been moved to a technical report [8].

2 Background and Related Work

Since multi-hop cluster hierarchies have many potential applications in WSNs and other
environments, they have received significant research attention. Our protocol builds
upon prior work by allowing for using most of the existing clustering heuristics, de-
veloped and carefully tuned for particular WSN applications or deployment settings. In
this way, the protocol can maintain hierarchies with the same properties as in the exist-
ing solutions, and thus, it can be used in the same applications. However, our protocol

104 K. Iwanicki and M. van Steen

D

E

F

B

K

P

A

C
L

G

R
M

N

H

I

Q

J

O
C1

M

C1

Q

C1

E

C1

P

C2

P

C2

P

C1

P
C1

E
C1

Q C1

M

P

P

A B C G K L P

E

D E F

Q

H I J N O Q

M

M R

(a) cluster hierarchy (b) node labels as a tree (read from the bottom to the top)

P

C1

P

P

C1

Q

Q

C1

M

ME

E FD

(c) routing table of node D (label D.E.P)

Fig. 1. An example of a multi-hop cluster hierarchy

follows a novel design paradigm that results in a completely different general opera-
tion scheme as compared to the existing protocols. As we show in this paper, this new
scheme can improve the efficiency of hierarchy maintenance by significantly reducing
the energy consumption and the hierarchy bootstrap and recovery latencies.

In the remainder of this section, we first formulate the problem and then survey prior
work. For illustration purposes, we assume a common set of target cluster hierarchy
properties [1,2,3,4]. However, as mentioned above and signaled in the protocol descrip-
tion, one can easily obtain different hierarchy properties by simple modifications to the
protocol and by employing different clustering heuristics.

2.1 Problem Formulation

A multi-hop cluster hierarchy (see Fig. 1a) consists of multiple levels, on the order of
O(logN) with respect to the number of nodes. A node belongs to exactly one cluster
at each level, with level-0 singleton clusters that correspond to individual nodes and
one or a few top-level clusters that contain all nodes. Each cluster has a cluster head
that maintains the cluster and can have other roles in some applications, for instance, as
an aggregator node for the cluster. Assuming that each node has a unique identifier, a
cluster, Ci

X , is uniquely identified by its level, i, and the identifier of its head, X .
The cluster hierarchy is reflected in the labels of the nodes. A node’s label is a con-

catenation of the cluster head identifiers for all the clusters the node is member of (see
Fig. 1b). For instance, the label of node D from Fig. 1, which is a level-0 cluster head,
is L(D) = D.E.P as D belongs to clusters: C0

D , C1
E , and C2

P . The label of node E,
a level-1 cluster head, is L(E) = E.E.P as E belongs to clusters: C0

E , C1
E , and C2

P .
Finally, the label of node P , a level-2 cluster head, is L(P) = P.P.P as P belongs to
clusters: C0

P , C1
P , and C2

P .

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks 105

Based on its label, each node also keeps a O(logN) hierarchical routing table [9].
At each level, a node’s routing table contains entries for the heads of sibling clusters at
this level (see Fig. 1c). With node labels acting as routing addresses, the routing tables
of all nodes enable hierarchical point-to-point routing [1,9]. Since routing is not used
by our protocol but only by the applications on top, we omit the algorithm for brevity.

The cluster hierarchy maintenance protocol, therefore, is responsible for maintain-
ing the labels and the routing tables of all the nodes throughout the system’s lifetime.
The longevity of a WSN system and its interactions with the physical environment im-
ply changes in the node population and connectivity over time. Hence, to account for
the changes, the hierarchy maintenance must be performed continuously rather than
just upon system deployment. Such continuous maintenance must consume minimal
amounts of energy and provide fast hierarchy bootstrap and recovery after changes.

2.2 Prior Work

In earlier work on hierarchical routing [9], Hagouel proved that constructing an optimal
cluster hierarchy is an NP-complete problem. Thus, only heuristic solutions are practi-
cal. Many such heuristics have been developed in data mining for partitioning data sets
with respect to a given parameter [10]. Those algorithms, however, require centralized
control and fail to scale to large networks of resource-constrained devices.

For this reason, distributed protocols have been introduced. One family of such
protocols provides single-level (flat) clustering [11,12,13]. While flat clustering is im-
portant in WSN applications using local sensor collaboration for event detection, the
definition of cluster hierarchy implies multiple levels. Yet, flat clustering algorithms
cannot be easily generalized to efficiently support a multi-hop cluster hierarchy, as their
traffic pattern precludes multiple levels and long multi-hop internode distances.

Another family of clustering protocols aims at reducing the energy cost of centralized
data collection in dense WSNs [14,15,16]. To this end, the nodes maintain a cluster hi-
erarchy by dynamically adjusting their transmission power and thereby communication
range, such that on average the energy consumed by data transmission is minimal. All
these algorithms assume that by increasing transmission power, each node can directly
communicate with any other node (i.e., one-hop communication). However, while this
assumption may hold in WSNs deployed densely in small areas, for practical reasons,
it does not hold hold in large-scale real-world WSNs.

These limitations led to a family of cluster hierarchy maintenance protocols aimed
specifically at large multi-hop networks of low-power wireless devices [1,2,3,4]. In
these protocols, nodes self-organize into a recursive hierarchy of clusters by grouping
connected nodes into clusters, grouping clusters into superclusters, and so on. Such a
bottom-up approach is better suited for WSNs than an alternative top-down approach
[17], which has difficulties with varying deployment parameters, like node densities [1].

Although these state-of-the-art bottom-up protocols vary in clustering heuristics,
they follow the same general scheme. In this scheme, nodes advertise their clusters
periodically, so that other nodes join such clusters or probabilistically spawn their own
higher-level clusters, thereby constructing the hierarchy. The whole process of cluster
advertising and update propagation is founded on hierarchical beaconing, which is a
multi-hop adaptation of hierarchical clustering for dense one-hop networks [14,15,16].

106 K. Iwanicki and M. van Steen

In hierarchical beaconing, a level-i cluster head periodically advertises its cluster by
issuing a beacon message that is flooded over Ri hops. To ensure O(logN) hierarchy
levels, Ri depends exponentially on i (typically Ri = 2i). Issuing a level-i beacon is
expensive, as all nodes within Ri hops from the cluster head must forward the beacon.
Therefore, the protocols usually amortize the costs of higher-level beacon forwarding
over time by making the number of periods (rounds) between subsequent beacons pro-
portional to the beacon propagation radius. For example, a level-0 cluster head issues a
R0-hop beacon every R0 rounds, a level-1 cluster head — a R1-hop beacon every R1
rounds, and so on. This reduces the beacon forwarding cost at the expense of an increase
in the hierarchy bootstrap and recovery latency. To mitigate this increase, a cluster head
also issues a beacon whenever it modifies its label, to propagate the update fast.

3 Gossip-Based Hierarchy Maintenance

While these state-of-the-art protocols are elegant, their efficiency, crucial for most ap-
plications, can be improved considerably. To conserve energy on idle listening, sensor
nodes power their radios off when idle. Such radio activity scheduling, however, incurs
significant energy overhead on message transmission or reception, as the sender and
receivers must coordinate to have their radios on during the transmission. Very often
this overhead outweighs the cost of actual data transmission. For instance, the standard
TinyOS MAC layer for WSNs [18] precedes a message with a 100- to 2000-ms pream-
ble, which is a lot compared to less than 0.4 ms necessary to transmit a 12-byte beacon
payload (in our implementation). Energy-efficient protocols should thus minimize the
overhead on the exchanged data by using fewer but longer messages [18,19].

However, this is essentially not happening for hierarchical beaconing, which gener-
ates myriads of small messages. In preliminary experiments for a hierarchical cluster-
based system we are building, for example, to ensure reasonable data availability in the
presence of failures, beacon messages could account for more than 90% of energy spent
on communication. This also illustrates that minimizing energy overhead incurred by
the hierarchy maintenance protocol is crucial for any hierarchical cluster-based system.

3.1 Principal Idea

We observe that the protocols using periodic hierarchical beaconing are so expensive
because hierarchical beaconing is tightly coupled with the cluster hierarchy. Every bea-
con is dedicated for one cluster and at every level, i, each node forwards beacons of all
level-i heads that are within Ri hops.

Consequently, to reduce the cost of cluster hierarchy maintenance, we propose a pro-
tocol that decouples its operation from the topology of the hierarchy. Our protocol is
based on a combination of local-only operations for updating the hierarchy and peri-
odic local gossiping (i.e., asynchronous state exchanges between neighboring nodes)
for propagating such updates and advertising clusters.

The protocol operates in rounds1. Once per round, each node broadcasts its protocol
state in a single heartbeat message. The state consists of the node’s label, update vector

1 The rounds are local for each node, that is, the node clocks do not have to be synchronized.

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks 107

(Sect. 3.2), and routing table entries. The heartbeat message is local: it is received only
by the node’s neighbors and is not forwarded by them. Likewise, in every round, these
neighbors broadcast their own state in their heartbeats. The received neighbor state is
merged with the node’s own local state, so that the node can learn about any changes
that have recently occurred in the hierarchy. At the end of its round, the node checks
its local state to detect any such changes and to account for them by modifying its state
locally. The modified state is broadcast in the node’s heartbeat in the next round.

Hierarchy information is thus propagated implicitly, by repeatedly merging the
node’s state with the state received from its neighbors and broadcasting such a merged
state in the next heartbeat message. This is in contrast to periodic hierarchical beacon-
ing, in which the information is propagated explicitly, by forwarding multiple beacon
messages dedicated for specific clusters. The result of this paradigm shift is smaller
energy overhead on protocol data: instead of forwarding multiple small beacons per
round, each node transmits only a single big heartbeat message.

The paradigm shift, however, requires revisiting the mechanisms for maintaining the
hierarchy, which is our focus in the rest of this section. Since formally describing the
protocol is outside the scope of this paper, we aim only at explaining it adequately.
The pseudo-code and proofs, in turn, can be found in our technical report [8].

3.2 Update Vector

One of the key revisited mechanisms is hierarchy membership update resolution. Since
in hierarchical beaconing every member of a cluster receives beacons issued by the
head of this cluster, it has direct access to the label of the head. Therefore, when the
head modifies its label and issues a beacon, the cluster members can consistently apply
the updates to their labels. In contrast, with local gossiping, a node has access only to the
labels of its immediate neighbors, and there is no way to determine which of the neigh-
bors’ labels contain fresher membership information. For example, without additional
information, a node with label A.K.P.R.S, receiving from its neighbors heartbeats with
labels B.K.P.Q.T and C.J.P.U.V , cannot determine which of the three labels contains
the freshest information on the membership of cluster C2

P in the hierarchy.
To solve this problem, we introduce update vectors. A node’s update vector corre-

sponds to the node’s label and unambiguously specifies the updates applied to the label.
The i-th element of the vector denotes the sequence number of the last known label up-
date made at level i+1 by the node’s level-i cluster head, as illustrated in Fig. 2. A node’s

A K P

3 5 0

L(A)

U(A)

nullR S

4 8

Fig. 2. A label and update vector. A knows that: (i) the last level-1 label update of A has number
3 and wrote K at position 1; (ii) the last level-2 update of K has number 5 and wrote P at
position 2; (iii) the last level-3 update of P has number 4 and wrote R at position 3; (iv) the last
level-4 update of R has number 8 and wrote S at position 4; (v) S has not yet made any level-5
updates (U(A)[4] = 0).

108 K. Iwanicki and M. van Steen

P

n

i i+1
L(P)

U(P)

P

m

i i+1

L(P)

U(P)

Q

0

m next seq. no.

P

n

i i+1
L(P)

U(P)

P

m

i i+1
L(P)

U(P)

R

k

m next seq. no.

Ci

P
Ci

P
Ci

Q
Ci

Q

P Q

Q

P Q

Q

Ci

P
Ci

P
Ci

R
Ci

R

P

R

R P R

R

(a) label extension (b) label cut

Fig. 3. Label extension and label cut

A K P R S B K P Q T

3 5 4 8 2 5 6 7

L(B)

U(B)

L(A)

U(A)

i=2

j=3
A K P Q T

3 5 6 7

L(A)

U(A)

0 0

0

Fig. 4. Label resolution and update adoption

update vector is broadcast with the node’s label in the node’s heartbeat messages and is
essential to synthesizing and maintaining node labels.

3.3 Basic Label Operations

To maintain their labels, the nodes use three basic operations: label extension, label cut,
and label resolution. Label extension (see Fig. 3a) is executed locally by a top-level
cluster head, P , during hierarchy construction or recovery. It corresponds to joining
cluster Ci

P to a higher-level cluster, Ci+1
Q (if P ’s label is extended with Q), or spawn-

ing a new higher-level cluster, Ci+1
P (if P ’s label is extended with P). Label cut (see

Fig. 3b), in turn, is executed locally by a non-top-level head, P , during hierarchy re-
covery when P detects that its supercluster, Ci+1

R , no longer exists as, for example, its
head, R, may have died. This operation corresponds to removing cluster Ci

P from the
no longer existing higher-level cluster, Ci+1

R . In both operations, when modifying its
label at level i+1, node P also writes a new sequence number at the i-th position of its
update vector. This is to indicate that this label update by P is the freshest one, so that
other members of Ci

P can also adopt the update through label resolution.
Label resolution is thus the way to propagate label updates in our protocol. It is done

every time a node, A, receives a heartbeat from a neighbor, B, and works as follows
(see Fig. 4). A checks if it shares a cluster with B, that is, A looks for the minimal i
such that L(A)[i] = L(B)[i]. If such i exists, A checks which of the labels is fresher
by comparing its update vector, U(A), with B’s update vector, U(B), from position i.
If for some j ≥ i, U(A)[j] �= U(B)[j] then one of the labels is fresher than the other

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks 109

(they can differ from the j+1-st element). If B’s label is fresher (U(A)[j] < U(B)[j]),
then A copies B’s label and update vector from position j+1 and j, respectively:
L(A)[j+ 1. . .H] ← L(B)[j+1 . . .H] and U(A)[j . . . H] ← U(B)[j . . . H]. In this way,
A’s hierarchy membership information becomes consistent with the fresher information
from B. Moreover, when A broadcasts its next heartbeat, its other neighbors also adopt
the fresh information, and so on. In our technical report [8], we formally prove that this
algorithm guarantees consistent label update adoption by all cluster members.

3.4 Maintaining Routing Tables

While label resolution is performed for every received heartbeat, the usage of label
extension and cut is dependent on the state of a node’s routing table. Node routing
tables are maintained with a custom distance-vector algorithm.

A routing entry corresponds to a cluster (cf. Sect. 2.1). It consists of the level and the
identifier of the cluster head, a sequence number, the link-layer address of a next-hop
neighbor on the path to the head, the number of hops on this path, and an additional bit
indicating whether the cluster is adjacent to the present node’s cluster at the same level.

An entry for a cluster originates at the cluster head, which sets the hop count of
the entry to zero and generates a new sequence number for the entry. Generating the
sequence numbers follows the same pattern as issuing beacon messages in hierarchical
beaconing: a level-i head generates a new sequence number for its cluster entry every
Ri rounds. Alternatively, a new sequence number can be generated in each round.

Clusters are advertised via heartbeat messages. When the head broadcasts a heart-
beat, its neighbors can refresh the entries for the head’s cluster with a new sequence
number. When they broadcast their heartbeats, their neighbors can also refresh their
routing entries, and so on up to Ri hops. More specifically, a heartbeat broadcast by a
node contains those entries from the node’s routing table that were refreshed in the past
round (or k rounds if we want to tolerate message loss). A node receiving a heartbeat re-
freshes those entries in its routing table that are present in the heartbeat and have fresher
sequence numbers than the node’s own entries. In addition, since the same routing en-
try can be present in heartbeats of different neighbors, the node must choose one of the
neighbors as the next hop for the routing entry. As in the distance-vector algorithm, it
chooses the neighbor whose routing entry has had the smallest hop count.

When a node does not refresh a routing entry for a certain number of rounds, de-
pending on Ri, it concludes that the cluster corresponding to the entry is no longer
reachable, for instance, because the head died. Consequently, the entry can be removed
from the node’s routing table. To prevent routing cycles in the presence of node failures,
we use route poisoning: before removing an entry a node marks it as unreachable and
broadcasts such an entry in its heartbeat messages for several rounds, thereby allowing
other nodes to learn about the failure as well.

For a given cluster hierarchy, the routes maintained by the above algorithm are the
same as the routes maintained by periodic hierarchical beaconing. This is because the
rules for constructing the routes are the same. However, the protocols employ com-
pletely different paradigms for propagating route information. In periodic hierarchical
beaconing, every routing entry of a node is refreshed by a separate beacon message re-
ceived by the node. In our protocol, in contrast, a single heartbeat message can refresh

110 K. Iwanicki and M. van Steen

multiple routing entries of the receiving node. As a result, our protocol maintains the
same routing tables more efficiently as we demonstrate empirically in the next section.

3.5 Synthesizing and Maintaining Labels

Based on its routing table, each node synthesizes and maintains its label with the three
basic label operations. During a round, a node receives heartbeat messages from its
neighbors. The heartbeats are used for refreshing the node’s routing table and for re-
solving and adopting any label updates made by the heads of the node’s clusters. At
the end of the round, the node, being itself a cluster head at some level, analyzes its
routing table and, as a result, possibly extends or cuts its label locally to account for
any network changes that have occurred. The possibly updated node label is broadcast
in the node’s heartbeat in the next round, allowing the members of the node’s cluster to
gradually adopt the label updates. By repeating this scheme in every round, the nodes
synthesize and continuously maintain their labels.

Label Synthesis. Initially, each node is a top-level head of its level-0 cluster, as its label
contains only one element. If the node discovers in its routing table an entry for another
cluster head at the same or a higher level, it has to either spawn a new higher-level
cluster itself or join the higher-level cluster of the other node. In the first case, it would
extend its label with its own identifier, promoting itself to a higher-level head. In the
second case, it would extend its label with the identifier of the other node (see Fig. 3a).

Joining an existing cluster is preferred, as it decreases the number of clusters at
subsequent levels. However, depending on clustering heuristics, joining may not always
be possible. In that case, our protocol utilizes the same heuristics as the existing state-of-
the-art protocols [1,2,3,4]. More specifically, the node probabilistically defers spawning
the higher-level cluster by drawing a random promotion slot and waiting for this slot.
If during this time other nodes in a similar situation spawn new higher-level clusters,
the node may be able to join one of such clusters. Otherwise, the node spawns its own
higher-level cluster. In any case, when the node broadcasts its heartbeat after extending
its label, the node’s neighbors that belong to the node’s cluster can also extend their
labels through the label resolution operation. When they broadcast their heartbeats, their
neighbors that belong to the node’s cluster can extend their labels as well and so on. In
our technical report, we prove that this ensures probabilistic label convergence [8].

Label Recovery. When a node has died, it no longer advertises its cluster. Thus, other
nodes do not refresh the routing entries for that cluster. If a node has not refreshed a
routing entry for a certain number of rounds, the entry is evicted from the node’s routing
table. If a node, being a level-i cluster head, discovers that the entry for its parent level-
i+1 head has been evicted, it concludes that its cluster must not be a subcluster of the
no longer existing level-i+1 cluster. Hence, it cuts its label down to level i (see Fig. 3b).
Later, by virtue of the above label synthesizing mechanisms, the dangling cluster of this
node will join to some other higher-level cluster, completing the recovery.

By employing the same probabilistic clustering heuristics as the existing state-of-the-
art protocols, our solution constructs the same cluster hierarchies as those protocols.
One of the consequences of building upon these well-established heuristics is that our
protocol can be utilized in the same applications, for instance, to improve performance.

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks 111

Table 1. Memory breakdown of the test application for a TelosB node. Both protocols require lit-
tle memory, with their RAM footprints being dominated by the pools for the routing table entries.
Due to the more sophisticated operation scheme, however, our protocol (Decoupled) requires
slightly more code and data space. The total data space, in turn, is higher for the application
with the other protocol (Coupled), as it requires more message buffers (for beacon messages).

Variant / Coupled Decoupled
Component RAM ROM RAM ROM

Protocol Only 1,382 B 3,600 B 1,469 B 4,269 B
Total 4,408 B 22,452 B 4,094 B 23,774 B

4 Experimental Evaluation

We evaluate the existing state-of-the-art solutions against our approach using actual
embedded implementations. To the best of our knowledge, this is the first reported
implementation-based evaluation of multi-hop cluster hierarchy maintenance protocols
for WSNs. While prototyping our protocol, we also conducted extensive experiments
with a custom simulator. Those results are presented in our technical report [8].

4.1 Protocol Implementations

The discussed existing multi-hop cluster hierarchy maintenance protocols for WSNs
[1,2,3,4] operate according to the same common scheme, founded on hierarchical bea-
coning, but differ slightly in clustering heuristics. Therefore, we have implemented the
most recent protocol with arguably the most efficient heuristics [3]. To enable fair com-
parison, we have used the same heuristics in the implementation of our solution. In
general, where possible, both implementations use precisely the same components. As
a result, both the implementations build hierarchies with the same target properties, and
differ only in mechanisms for maintaining these properties. We believe that this is a
sound approach to show the performance gains that can be obtained with our protocol.

For the purpose of the evaluation, we have written a simple test application that con-
tains only statistic reporting functionality and either of the protocol implementations.
The test application enables testing hierarchy maintenance in isolation from other ser-
vices present in a complete real system. We leave the evaluation of a complete repre-
sentative system for future work. In the remainder of this section, we use Coupled to
refer to the variant of the application with the state-of-the-art protocol based on periodic
hierarchical beaconing, and Decoupled to refer to the variant with our protocol.

As the implementation platform for the protocols and the test application, we have
chosen TinyOS 2.0. To estimate link quality, which is necessary for discriminating node
neighbors from poorly connected nodes, we use the standard link estimator based on
exponentially weighted moving average of packet reception rate [20]. This estimator is
fast and portable, and offers acceptably accurate link estimates. As the MAC layer, we
use the standard TinyOS 2.0 MAC, that is, CSMA/CA with low-power listening [18].
This MAC layer is well suited for hierarchical cluster-based systems as it provides low
energy consumption, scales to large networks, and efficiently handles varying work-
loads and network dynamics. The memory breakdown of the test application for each
of the hierarchy maintenance protocols is presented in Table 1.

112 K. Iwanicki and M. van Steen

4.2 Experimental Setup

We have conducted our experiments on a small indoor testbed consisting of 55 TelosB
nodes [21] and in TOSSIM, a low-level TinyOS simulator. In both environments, we
used precisely the same test application, described above. Since the evaluated protocols
display most of their scaling properties only in large networks, starting from some hun-
dred nodes [1,2,3,4,8], due to space constraints, in this paper we focus mostly on the
TOSSIM experiments and only briefly summarize the small-scale testbed results.

TOSSIM provides a realistic and accurate simulation environment for TinyOS ap-
plications. It captures the TinyOS behavior at a low level and offers signal propagation
and noise models derived from real deployments. This enables accurate evaluation of
the protocols in realistic settings that give good predictions on the real-world protocol
behavior, as we have seen in the testbed experiments.

We have conducted TOSSIM experiments in a number of network configurations. To
evaluate protocol scalability, we exponentially varied the node population from 64 to
1024 nodes. The nodes were placed on a square grid. By also varying the grid spacing,
we obtained different node densities: from 11.27 (sparse) to 46.42 (dense) good-quality
neighbors per node on average. Using traces from real-world deployments and TOSSIM
tools, for each configuration, we generated a realistic signal propagation model. The re-
sulting connectivity exhibited many irregularities that are common in real-world WSNs.
For example, nearby nodes were often not connected and there were many asymmetric
links. As a result, the grid node placement was not mirrored by the neighbor relation.
This alleviates the problem that due to page constraints on this paper, we omit other
tested topologies (i.e., uniform and random).

In all configurations, a node was identified with 10 bits. The top hierarchy level was
5, as this was enough for a top-level cluster to cover the whole network. Consequently,
the label size in a beacon or heartbeat message was at most (10·(5 + 1))/8� = 8 bytes.
This was also the size of the update vector in a heartbeat message. A single routing table
entry in a heartbeat message, in turn, was 4 bytes long.

4.3 Experimental Results

When maintaining the desired properties of a multi-hop cluster hierarchy, the goal is to
minimize both the energy consumption and the bootstrap/recovery latency. Since these
two are often in conflict, our target performance metric is the energy consumption per
given time period versus the latency of bootstrapping and recovering the hierarchy.

We start with standard experiments in which all nodes are booted simultaneously and
have to construct the hierarchy from scratch. For both protocols, the round length, T , is
equal to 10 minutes. This allows us to illustrate the strengths and weaknesses of each
of the protocols. Selected results of the experiments are presented in Fig. 5.

As we argued in the previous section, the Coupled protocol uses substantially more
messages than our Decoupled protocol (Fig. 5a). In a sparse 1024-node network, for
example, it generates more than 20 messages per node per hour (> 3 messages per
round), and this value varies significantly between nodes. Our Decoupled protocol, in
turn, produces small flat traffic of 6 messages per node per hour (1 message per round).

Likewise, because it advertises clusters less efficiently, the Coupled protocol requires
more bandwidth in larger networks (Fig. 5b). Every beacon message has two coupled

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks 113

 0

 5

 10

 15

 20

 25

 30

 32 64 128 256 512 1024 2048

m

es
sa

ge
s

tr
an

sm
itt

ed
 p

er
 h

ou
r

nodes

Coupled
Decoupled

 0

 100

 200

 300

 400

 32 64 128 256 512 1024 2048

by

te
s

tr
an

sm
itt

ed
 p

er
 h

ou
r

nodes

Coupled
Decoupled

 0

 120

 240

 360

 480

 32 64 128 256 512 1024 2048hi
er

ar
ch

y
bo

ot
st

ra
p

tim
e

[m
in

ut
es

]

nodes

Coupled
Decoupled

(a) messages per node per hour (b) bytes per node per hour (c) bootstrap latency

Fig. 5. Protocol scaling properties. Each point represents the average and the standard deviation
over 10 runs. The round length, T , is 10 minutes for both protocols. The networks are sparse. The
results for denser networks do not differ significantly. Note also a logarithmic scale of the x-axes.

objectives: consistently propagating hierarchy membership updates for a cluster and
advertising the cluster to refresh node routing tables. To this end, apart from a hop
count and a sequence number, a beacon has to store the full label of the cluster head
(up to 8 bytes in our implementation). In our Decoupled protocol, in contrast, propa-
gating cluster advertisements is independent of update propagation, which is performed
through label resolution. Therefore, instead of a full label, an advertisement of a cluster
corresponds only to the routing entry for the cluster (4 bytes in our implementation).
Note also that due to maintaining the same target hierarchy properties, both protocols
generate roughly the same number of cluster advertisements. Consequently, since in
larger networks cluster advertisements dominate the payload of heartbeat messages,
our protocol requires less bandwidth, even though it incurs some additional overhead
due to transmitting neighbor labels and update vectors. Moreover, due to transmitting
less messages, our approach saves bandwidth on TinyOS message headers and footers.
These results, however, are not included in the plot.

For the hierarchy bootstrap latency, the relationship is opposite (Fig. 5c). Since a
beacon is forwarded by a node shortly after it is received, hierarchy updates in the Cou-
pled protocol propagate fast. In contrast, because heartbeats are broadcast by a node
only once per round, update propagation through label resolution is slower. In the most
pessimistic scenario, it can take up to d rounds to propagate an update over d hops. For
this reason, given the same round length, the Decoupled protocol bootstraps the hierar-
chy slower than the Coupled one. In the networks plotted, this difference is roughly a
factor of two. The bootstrap latencies in the plot seem flat because for implementation
purposes we limited the top level to 5. If this is not the case and the bootstrap criterion
is a single top-level cluster, the latency grows with the network size [8]. Moreover, the
latency can change depending on the number of rounds the link estimator requires to
identify good-quality links. In our implementation, this number ranged from 5 to 6.

Since the reduction in energy consumption is typically sublinear with respect to the
reduction in the traffic volume, to avoid exaggerating the performance improvements
of our protocol, we directly compare the energy consumed by both the protocols. We
obtain the energy consumption by following a standard methodology for the underly-
ing MAC layer [18,19], which produces relatively accurate results. More specifically,

114 K. Iwanicki and M. van Steen

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000 1200

av
g.

 e
ne

rg
y

us
ed

 p
er

 h
ou

r
by

 a
 n

od
e’

s
ra

di
o

[m
A

h]

configurable LPL check period [ms]

small error in
configuration

large growth in energy
consumption

large error in configuration

small growth
in energy

consumption

Coupled
Decoupled

Fig. 6. Energy consumption as a function of the LPL check period. The round length, T , is 10
minutes for both protocols. The network consists of 1024 densely deployed nodes. Again, for
sparse networks the results are consistent. The current draw measurements correspond to 250-
kbit/s IEEE 802.15.4 radios (as in TelosBs) and come from Klues et al. [19]. The results for
slower radios, such as in Mica2s, are consistent, albeit the difference is slightly smaller.

we combine radio activity traces from the above experiments with publicly available
measurements of the current drawn by a node’s radio in various sensor node platforms.
Sample results for the TelosB platform are depicted in Fig. 6.

To conserve radio energy, the standard MAC layer for TinyOS 2.0 employs a tech-
nique called low-power listening (LPL) [18]. LPL involves one configurable parameter,
the LPL check period, which determines how often the radio is turned on to check for
a carrier and how long the message preamble is. This parameter reflects the trade-off
between energy consumption when the radios are idle and the energy overhead on data
transmission. Figure 6 shows that, for the same round length, our Decoupled protocol
outperforms the Coupled one for all reasonable settings of the LPL check period. In
particular, with the LPL check period configured optimally for each of the protocols,
our protocol requires 2.5 times less energy than the Coupled protocol. Moreover, in
the Coupled protocol even a small deviation from the optimal setting results in large
growth of the energy consumption. This, however, is undesirable as such deviations
are expected in the real world because experience shows that WSN applications often
exhibit traffic patterns that are difficult to predict prior to the actual deployments.

In the experiments so far, both protocols operated with the same round length, T =
10 minutes. In this configuration, the Coupled protocol bootstrapped the hierarchy faster
(cf. Fig. 5c), but consumed more energy than our Decoupled protocol (cf. Fig. 6). There-
fore, a systematic comparison requires varying the round length, T , as in Fig. 7.

Our Decoupled protocol consistently outperforms the Coupled one, thereby get-
ting closer to the ideal protocol. For example, when the round length for each of the
protocols is configured such that both protocols consume the same amount of energy
per hour, our protocol bootstraps the hierarchy ∼2.6-3.1 times faster. When the two
protocols are configured to bootstrap the hierarchy with the same speed, in turn, our
Decoupled protocol consumes only ∼0.49-0.67 of the energy consumed by the Coupled

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks 115

 0

 60

 120

 180

 240

 300

 360

 0 0.5 1 1.5 2 2.5

hi
er

ar
ch

y
bo

ot
st

ra
p

tim
e

[m
in

ut
es

]

avg. energy used per hour by a node’s radio [mAh]
for the optimal LPL check period

Ideal
Protocol

reduction in
bootstrap
time

reduction
in energy

reduction
in both

T = 25

T = 20

T = 15

T = 10

T = 6

T = 10

T = 7

T = 5

T = 3

T = 1.5

Coupled
Decoupled

Fig. 7. Energy consumption versus hierarchy bootstrap latency. Each point represents the average
over 10 runs. The network consists of 1024 densely deployed IEEE 802.15.4 nodes. Again, the
results for different node densities and radios are consistent. The round lengths, T , are in minutes.

 0

 60

 120

 180

 240

 300

 0 1 2 3 4 5

av
g.

 h
ie

ra
rc

hy
 r

ec
ov

er
y

tim
e

[m
in

ut
es

]

level as cluster head

379.09 361.29 319.09 347.50 600.00 610.00
Coupled

Decoupled

Fig. 8. Latency of recovery after a failure of a cluster head at a given level. The network consists
of 1024 sparsely deployed nodes. The round length, T , is 3 minutes for our Decoupled protocol
and 15 minutes for the Coupled one as this results in a similar average energy consumption.

protocol. Moreover, it is possible to configure our protocol to outperform the Coupled
one in both the metrics. These results constitute a major performance improvement as
50% reduction in energy consumption typically doubles the network lifetime.

After the above experiments, to compare the performance of failure recovery, we
conducted the following micro-benchmarks. We set the round length for both protocols
such that they consume roughly the same amount of energy per hour in the stable state.
After the hierarchy has converged, we killed a single node and measured the time to re-
cover the hierarchy depending on the node’s level as cluster head. By recovery we mean
a state in which neither the label nor the routing table of any alive node contains the
identifier of the failed node. Reaching this state guarantees that all higher-level services
(e.g., routing, aggregation, querying) will operate correctly. Afterward, we reincarnated
the dead node and let it fully rejoin the system. We then repeated the above steps for all
other nodes in the network. The results of the experiment are presented in Fig. 8.

116 K. Iwanicki and M. van Steen

Table 2. Comparison of the TOSSIM experiments from Fig. 5 with the testbed experiments. In
general, the results match. The small differences in protocol performance stem mainly from the
differences in the deployment parameters, like the network size, density, and topology.

Experimental Setting / TOSSIM Testbed
Metric Name Coupled Decoupled Coupled Decoupled

Number of Nodes 64 55
Avg. Number of Neighbors per Node 7.72 19.51

Avg. Messages per Node per Hour 11.73 6.0 12.44 6.00
Avg. Bytes per Node per Hour 135.75 164.73 143.78 149.30

Hierarchy Bootstrap Time [minutes] 108.02 245.02 135 ± 5 235 ± 5

These results again demonstrate higher efficiency of our protocol. Failure recovery
involves two mechanisms: detection and repair. In both protocols, cluster head failure
detection requires the same number of rounds, depending on the level of the cluster
head. Because our Decoupled protocol performs better than the Coupled protocol when
operating with shorter rounds (cf. Fig. 7), it detects cluster head failures faster. More-
over, since the repair is done by the same mechanisms as the hierarchy construction
(Sect. 3.5) and since our protocol constructs the hierarchy more efficiently, it is also
more efficient when repairing the hierarchy. Consequently, our protocol outperforms
the Coupled one also in failure recovery. In the conducted experiment, for instance, our
protocol recovered from a level-5 cluster head failure ∼11.12 times faster (not visible
in the plot), while using the same amounts of energy as the Coupled protocol.

Finally, to verify the TOSSIM results we ran the protocols on our 55-node testbed
[21]. Table 2 confirms that the testbed results match the TOSSIM results. Moreover, it
indicates that our solution can smoothly operate in the real world.

Altogether, the results demonstrate that by decoupling its operation from the hi-
erarchy topology, our protocol can propagate hierarchy information more efficiently,
through less frequent albeit much bigger messages. This allows for shortening the pro-
tocol round, and thus, for reducing the bootstrap and recovery latency, but without in-
creasing the energy consumption. While the absolute performance gains may differ in
different environments (i.e., hardware platforms, MAC layers, deployment settings), we
believe that our protocol has potential to improve the efficiency of large-scale hierar-
chical cluster-based systems built using wireless low-power devices.

5 Conclusions

We argued that, by proverbially “doing more with less,” the efficiency of state-of-the-art
multi-hop cluster hierarchy maintenance protocols for large WSNs can be significantly
improved. To illustrate our claim, we proposed a novel protocol that maintains the same
target hierarchy properties with fewer albeit bigger messages, thereby minimizing en-
ergy overhead on the exchanged hierarchy information. These reductions are achieved
by having redesigned hierarchy maintenance to use a combination of local updates and
periodic local gossiping, which decouples protocol operation from the topology of the
hierarchy. As we showed, the reductions in energy consumption and hierarchy bootstrap
and recovery latency due to such decoupling can be substantial.

Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks 117

References

1. Kumar, S., Alaettinoglu, C., Estrin, D.: SCalable Object-tracking through Unattended Tech-
niques (SCOUT). In: Proc. IEEE ICNP 2000, Osaka, Japan, pp. 253–262 (2000)

2. Subramanian, L., Katz, R.H.: An architecture for building self-configurable systems. In:
Proc. ACM MobiHoc 2000, Boston, MA, USA, pp. 63–73 (2000)

3. Bandyopadhyay, S., Coyle, E.J.: An energy efficient hierarchical clustering algorithm for
wireless sensor networks. In: Proc. IEEE INFOCOM 2003, San Francisco, CA, USA (2003)

4. Du, S., Khan, A., PalChaudhuri, S., Post, A., Saha, A.K., Druschel, P., Johnson, D.B., Riedi,
R.: Self-organizing hierarchical routing for scalable ad hoc networking. Technical Report
TR04-433, Rice University, Houston, TX, USA (2004)

5. Li, X., Kim, Y.J., Govindan, R., Hong, W.: Multi-dimensional range queries in sensor net-
works. In: Proc. ACM SenSys 2003, Los Angeles, CA, USA, pp. 63–75 (2003)

6. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: Research challenges. Ad
Hoc Networks 2(4), 351–367 (2004)

7. Iwanicki, K., van Steen, M.: Towards a versatile problem diagnosis infrastructure for large
wireless sensor networks. In: Proc. OTM PerSys 2007, Vilamoura, Portugal, pp. 845–855
(2007)

8. Iwanicki, K., van Steen, M.: The PL-Gossip algorithm. Technical Report IR-CS-034, Vrije
Universiteit, Amsterdam, the Netherlands (2007)

9. Hagouel, J.: Issues in Routing for Large and Dynamic Networks. PhD thesis, Columbia Uni-
versity (1983)

10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Fran-
cisco (2001)

11. Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor networks: A hybrid, energy-
efficient approach. In: Proc. IEEE INFOCOM 2004, Hong Kong, China, pp. 640–651 (2004)

12. Jia, L., Rajaraman, R., Suel, T.: An efficient distributed algorithm for constructing small
dominating sets. Distributed Computing 15(4), 193–205 (2002)

13. Amis, A.D., Prakash, R., Vuong, T.H.P., Huynh, D.T.: Max-min d-cluster formation in wire-
less ad hoc networks. In: Proc. IEEE INFOCOM 2000, Tel-Aviv, Israel, pp. 32–41 (2000)

14. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication pro-
tocols for wireless microsensor networks. In: Proc. 33rd HICSS, Maui, HI, USA (2000)

15. Manjeshwar, A., Agrawal, D.P.: TEEN: A routing protocol for enhanced efficiency in wire-
less sensor networks. In: Proc. IEEE IPDPS 2001 Workshops, San Francisco, CA (2001)

16. Ye, M., Li, C., Chen, G., Wu, J.: EECS: An energy efficient clustering scheme in wireless
sensor networks. In: Proc. IEEE IPCCC 2005, Phoenix, AZ, USA, pp. 535–540 (2005)

17. Thaler, D., Ravishankar, C.V.: Distributed top-down hierarchy construction. In: Proc. IEEE
INFOCOM 1998, San Francisco, CA, USA, pp. 693–701 (1998)

18. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor net-
works. In: Proc. ACM SenSys 2004, Baltimore, MD, USA, pp. 95–107 (2004)

19. Klues, K., Handziski, V., Lu, C., Wolisz, A., Culler, D., Gay, D., Levis, P.: Integrating concur-
rency control and energy management in device drivers. In: Proc. ACM SOSP 2007, Steven-
son, WA, USA, pp. 251–264 (2007)

20. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop routing
in sensor networks. In: Proc. ACM SenSys 2003, Los Angeles, CA, USA, pp. 14–27 (2003)

21. Iwanicki, K., Gaba, A., van Steen, M.: KonTest: A wireless sensor network testbed at Vrije
Universiteit Amsterdam. Technical Report IR-CS-045, Vrije Universiteit, Amsterdam, the
Netherlands (2008)

Potentials of Opportunistic Routing in
Energy-Constrained Wireless Sensor Networks

Gunnar Schaefer, François Ingelrest, and Martin Vetterli

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Switzerland

firstname.lastname@epfl.ch

Abstract. The low quality of wireless links leads to perpetual packet
losses. While an acknowledgment mechanism is generally used to cope
with these losses, multiple retransmissions nevertheless occur. Oppor-
tunistic routing limits these retransmissions by taking advantage of the
broadcast nature of the wireless channel: sending packets to multiple re-
ceivers at once, and only then, based on the outcome, choosing the actual
next hop [1]. In this paper, we first study the potentials of opportunistic
routing in energy-constrained wireless sensor networks. In particular, the
reduction of retransmissions due to the broadcast advantage is balanced
with the arising need for coordination to avoid duplicate packets. We
then propose Coordinated Anypath Routing, an opportunistic routing
protocol designed for wireless sensor networks, in which the coordination
between receivers is handled by an overhearing-based acknowledgment
scheme. Our protocol may be used to minimize either retransmissions
or power consumption, and our simulation results show that, with lossy
links, energy savings go up to 7%, even for small networks of 20 nodes.

1 Introduction

Multi-hop routing is a key feature of wireless ad hoc networks. Compared to
traditional cellular architectures, ad hoc networks are much more flexible, as
they allow users and/or devices to roam freely, without having to worry about
access point locations. As long as there exists an unbroken chain of devices from a
source to a destination, it is the responsibility of the routing protocol to discover
it and to construct a route along it, allowing for long-distance communications.

In wireless sensor networks (WSNs), although nodes are often stationary,
multi-hop routing still offers much-desired flexibility in placing, adding, and
removing sensor nodes. One such example is SensorScope1, on which we have
worked over the past three years. It is a time-driven WSN, used to gather dense
spatio-temporal measures of various environmental parameters. Our most promi-
nent deployment took place on top of the Génépi mountain in the Swiss Alps.
The gathered data allowed environmental scientists to detect and model a mi-
croclimate, which had been the cause of dangerous mud flows during strong rain

1 http://sensorscope.ch/

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 118–133, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://sensorscope.ch/

Potentials of Opportunistic Routing in Energy-Constrained WSNs 119

falls [2,3]. In this particular case, multi-hop routing was a fundamental require-
ment, because the sink node—equipped with a GPRS transceiver—had to be
placed on a nearby ridge to ensure connectivity to the GSM network. As a cel-
lular network architecture would have forced all stations to be close to the sink,
it would have prevented us from gathering the desired data.

Although much work has already been published on multi-hop routing for
both ad hoc and sensor networks (e.g., OLSR [4], ZRP [5], MintRoute [6]), many
papers are still appearing, proposing novel algorithms, each of them trying to
improve certain networking aspects (e.g., energy consumption, robustness). All
of these protocols, however, generally have one thing in common: at each node, a
given packet is forwarded to a single, preselected neighbor. Opportunistic routing
takes a different approach: each packet is forwarded to a set of neighbors, instead
of only one [1,7]. Obviously, the probability that at least one node in this set
receives a packet is much higher than that of a particular node receiving it. In
working on the SensorScope system, we became very interested in this simple,
yet intriguing idea, and have worked on adapting it to wireless sensor networks.

In this paper, we present our work on opportunistic routing in data gathering
WSNs. Section 2 discusses common routing protocols for wireless ad hoc and
sensor networks, while Sec. 3 provides an introduction to opportunistic routing
and discusses its theoretical properties w.r.t. data gathering. Next, in Sec. 4, we
show that the difficulty of efficient opportunistic routing lies in coordinating the
actual receivers of a packet to avoid duplicates. For this purpose, we propose
a coordinated anypath routing scheme, called CA-Path. Our simulation results
show that our scheme is indeed able to minimize retransmissions when dealing
with lossy links. In Sec. 5, we focus on minimizing energy consumption and
show how CA-Path may be modified for this metric. Once again, our simulation
results show that good energy savings may be expected with lossy links. We
finally conclude in Sec. 6 and point out future work.

2 Routing in Wireless Ad Hoc and Sensor Networks

In ad hoc wireless networks, the limited range of radio signals forces long-distance
communications to be multi-hop, i.e., intermediate nodes between the source and
the destination have to relay packets [8]. Since nodes have no a priori knowl-
edge of the network topology, they have to discover it. The general idea is that
nodes somehow announce their presence and monitor network traffic to learn
about other nodes. After some time, each node should know about at least one
route to reach each other node. Unicast, broadcast, and multicast are the typical
communication primitives of ad hoc networks.

A data gathering WSN is a special case of an ad hoc network, typically com-
prising a large number of data sources, but only a small number of data sinks,
or even just a single one [9]. The responsibilities of the routing protocol are
thus limited to ensuring data-flow to a very small number of destinations, as
opposed to all other nodes in the network. Most often, data-gathering networks
are abstracted as sink-rooted trees.

120 G. Schaefer, F. Ingelrest, and M. Vetterli

A large number of routing protocols exists for both ad hoc and sensor net-
works. These protocols are commonly classified according to various criteria, for
instance, whether route discovery is reactive (e.g., DSR [10]), or proactive (e.g.,
OLSR [4]). Orthogonally, protocols may be singlepath, such as MintRoute [6]
and the Collection Tree Protocol [11], or multipath (e.g., Maximum Lifetime
Routing [12]). Many more classification criteria may, in fact, be defined [13].

Nevertheless, all of these criteria fail to highlight the fact that forwarding
packets is always performed in the same way: the sender selects a single next
hop according to a given metric, and packets are sent exclusively to that node.
This behavior actually stems from the well-established wired networks and, as
we will elaborate in the next section, may not be ideally suited for wireless
networks.

3 Opportunistic Routing for Data Gathering

As mentioned in the introduction, opportunistic routing views the routing prob-
lem with a different philosophy, compared to traditional algorithms. While choos-
ing a next hop a priori, i.e., before actually sending a packet, may be well suited
for wired networks (in which losses are almost inexistent), this is not necessarily
the case for wireless networks. Due to the broadcast nature of the wireless chan-
nel, packets are, in fact, typically transmitted to all nearby nodes2, regardless of
any chosen next-hop. Hence, finalizing the next hop routing decision only after
sending a packet to a set of possible relays may be a better solution.

For instance, in Fig. 1, when Node E has to send a packet to the Sink, its three
possible next hops are A, B, and C. By preselecting one of them, the probability
that the chosen node will not receive the packet—and thus the retransmission
probability—is 1 − 0.4 = 0.6. Node E, however, should not have to care about
which node will be the actual next hop. Much rather, it could simply broadcast
the packet to the candidate relays A, B, and C. Subsequently, an agreement will
have to be reached, regarding which node(s) will forward the packet. In this case,
the probability that at least one of the prospective relays receives the packet is
1− (1−0.4)3 = 0.784. The retransmission probability of the packet is now equal
to only 0.216, much lower than the original 0.6. Moreover, even if one of the links
was very lossy, opportunistic routing could make use of it, resulting in a natural
load balancing between A, B, and C. Most traditional routing algorithms would
use only the better links in such a scenario.

Generalizing the Bellman-Ford algorithm, the cost of an opportunistic route
comprises two components: the anycast link cost (ALC), which is the cost to
reach the candidate relay set (CRS), and the remaining path cost (RPC), which
is the cost to get from the candidate relay set to the destination. Following
our previous example, the ALC is the cost to send a packet from E to the set
{A, B, C}, and the RPC is the cost to send the packet from this set to the Sink.

2 We assume customary omnidirectional antennas.

Potentials of Opportunistic Routing in Energy-Constrained WSNs 121

Fig. 1. Topology of a wireless network. All links have a delivery probability of 0.4.

As it is our aim to reduce the number of retransmissions, we draw upon the
expected transmission count metric (ETX) [14]. In the following, the term “cost”
will thus always imply the ETX metric.

3.1 Anypath Routing

Anypath routing provides a general way of computing the cost to reach a given
destination [7]. To find the shortest anypath route (SAR) between two nodes, we
assign a CRS to each node, such that the expected cost of forwarding packets via
this set to the destination is minimized. Anypath routing provably computes the
optimal set for each node to reach a certain destination. For this, Dubois-Ferrière
et al. have proposed the following three equations [7].

Node i’s anycast link cost, which accounts for reaching at least one node in
the CRS J , is defined as

ALCiJ =
1

piJ
=

1

1 −
∏

j∈J

(1 − pij)
, (1)

where pij is the probability of successful transmission between nodes i and j,
and piJ is the probability of successful transmission between i and at least one
node in the set J .

The remaining path cost of node i’s CRS J is defined as

RPCiJ =

C1pi1 +
|J|∑

j=2

Cjpij

j−1∏

k=1

(1 − pik)

1 −
∏

j∈J

(1 − pij)
, (2)

assuming that the nodes in J are sorted by their cost, i.e., C1 < C2 < . . . < C|J|.
The numerator of this equation represents the probability of a packet being
received by a particular node in the CRS J and not being received by any node
with a lower cost to reach the destination, while the denominator accounts for
the probability that at least one node in J has received the packet.

The cost of the shortest anypath route is defined as

CSAR
i = min

J∈2N(i)
(ALCiJ + RPCiJ) , (3)

122 G. Schaefer, F. Ingelrest, and M. Vetterli

where N(i) is the set of neighbors of node i, and 2N(i) is the power set of
N(i). Due to the aforementioned sorting of J , the search space is only of size
n = |N(i)|, as opposed to the 2|N(i)| − 1 non-empty subsets of i’s neighbors. If
it is not beneficial to add neighbor j to the CRS, then it cannot be beneficial
to add neighbor j + 1, with cost greater than that of j. Furthermore, the cost
of the shortest anypath route will never be higher than that of the shortest
singlepath route, since the set of opportunistic routes between two nodes includes
all singlepath routes.

In examining these equations, an inherent tension between ALC and RPC
becomes apparent. The ALC is minimized by taking the entire neighborhood as
candidate relay set; on the contrary, the RPC is minimized by choosing only the
one neighbor with the least cost to reach the destination. Note also that these
equations do not consider the acknowledgment cost, although acknowledging
packets is mandatory to prevent losses.

3.2 Anypath Routing for Data Gathering

Anypath routing has been specifically targeted towards ad hoc networks, in
which any pair of nodes may wish to communicate. This stands in contrast to
data gathering WSNs, in which communication occurs only between the sensor
nodes and the sink. However, as long as there is no in-network data processing
(e.g., aggregation), data gathering represents a special case, in which compu-
tational overhead and memory footprint are both reduced, as each node must
maintain the optimal CRS for only a single destination.

Returning to the example network of Fig. 1, we now compare the cost of the
shortest singlepath route to that of the shortest anypath route for the particular
case of Node E.

For both singlepath and anypath, the cost to send a packet from A, B, or C
to the Sink is

CA = CB = CC =
1

0.4
= 2.5 .

Singlepath: The cost to send a packet from E, via A (or via either B or C), to
the Sink is

CE =
1

0.4
+ CA = 5.0 .

Anypath: The cost to send a packet from E, via the CRS J(E) = {A, B, C}, to
the Sink is

CE = ALCE,{A,B,C} + RPCE,{A,B,C}

=
1

1 − (1 − 0.4)3
+

2.5·0.4 + 2.5·0.4·(1 − 0.4) + 2.5·0.4·(1 − 0.4)2

1 − (1 − 0.4)3
= 3.78 .

Table 1, providing the results for the entire network, clearly shows the poten-
tial of anypath routing. Note that the given network is an intentionally simple

Potentials of Opportunistic Routing in Energy-Constrained WSNs 123

Table 1. Comparison of singlepath and anypath routing w.r.t. Fig. 1

Node Singlepath Anypath Improvement

A 2.50 2.50 0.0%
B 2.50 2.50 0.0%
C 2.50 2.50 0.0%
D 5.00 4.01 19.8%
E 5.00 3.78 24.5%
F 5.00 4.01 19.8%
G 7.50 5.17 31.1%

Total 30.00 24.46 18.5%

example; the advantage of anypath becomes more pronounced as the number of
hops increases. Note also that we focus on shortest singlepath routing for com-
parison. Other protocols would show similar results, as all of them use a single
next hop and would thus face the same losses.

4 Coordinated Anypath Routing

So far, we have implicitly assumed the existence of a mechanism ensuring that
only one receiver—the one with the lowest cost—will indeed forward a packet.
Without such a mechanism, many duplicate packets will appear, resulting in
substantial growth of the energy consumption. For instance, considering Fig. 1,
the full cost of sending a packet from Node E, via the CRS {A, B, C}, to the
Sink would be CE = 5.1, even more than the cost of the shortest singlepath
route. This cost accounts for all possible receiver scenarios: (i) one candidate
receives, (ii) two candidates receive, and (iii) all three candidates receive (and
forward) the packet. Hence, coordinating the actual receivers is mandatory.

4.1 Receiver Coordination

A few solutions for receiver coordination have been proposed. While cooperative
diversity schemes [15] are information-theoretically interesting, they are incom-
patible with today’s WSN hardware. RTS/CTS-based methods (e.g., MAC-layer
anycasting [16]) require additional messages to be sent, that can quickly outweigh
the gains obtained thanks to opportunistic routing.

Extremely Opportunistic Routing (ExOR), designed for throughput maxi-
mization [1], comprises an overhearing-based coordination scheme. To choose
the effective next hop, the sender includes in its packets a prioritized list of
the CRS members. Next, the receivers send their acknowledgments (ACKs) in
a staggered fashion (see Fig. 2), based on each node’s position in the aforemen-
tioned list. As the nodes listen to each other, they include, in their own ACK,
the ID of the highest-priority actual receiver they know about—possibly, their
own ID. Then, all nodes believing to be the highest-priority receiver further relay
the packet. The original sender of the packet considers it successfully forwarded

124 G. Schaefer, F. Ingelrest, and M. Vetterli

Fig. 2. The ordered list of intended receivers, sent as part of each packet, fosters colli-
sions avoidance: ACKs are sent in a staggered fashion, rather than concurrently. Nodes
include the ID of the highest-priority actual receiver they know about (by overhearing)
in their own ACK. This example assumes that A and C cannot hear each other, but B
can communicate with A and with C. Thus, both B and C learn about a higher-priority
receiver, and drop their packets accordingly, while A will forward its packet.

as soon as it receives one ACK. Obviously, the emergence of multiple forwarders
is not entirely eliminated, as it is not guaranteed that receivers are sufficiently
able to overhear each other.

ExOR has been designed to increase throughput, not for energy-efficient data
gathering, and we cannot use it directly for our purpose. However, as it is our
goal to reduce retransmissions, we have chosen to follow the same idea for co-
ordinating receivers. Not only does it avoid additional transmissions (ACKs are
anyhow mandatory to prevent losses), but it relies solely on adding a few bytes
to packets, which has little impact on transmissions (see, for instance, Fig. 3 in
Sec. 5, showing the power consumption of a typical sensor mote).

4.2 Coordinated Anypath Routing for Data Gathering

Based on the cost of the shortest anypath route, given in Equation (3), the cost
of the shortest coordinated anypath route (SCA-Path) is equal to

CSCA-Path
i = min

J∈2N(i)
(ALCiJ + ACiJ + RCCJ + RPCiJ) , (4)

where ACiJ is the acknowledgment cost of CRS J at node i, and RCCJ is the
cost of coordination among the nodes in CRS J .

As we are using a purely overhearing-based coordination approach, the RCC
can immediately be set to zero:

CSCA-Path
i = min

J∈2N(i)
(ALCiJ + ACiJ + RPCiJ) , (5)

where the respective definitions of ALCiJ and RPCiJ remain as given in Sec. 3.
To define ACiJ , we must introduce some additional notation. Let A ∈

{0, 1}|J(i)| be a random vector representing the outcome of the current trans-
mission. Let Aj = 1 iff j ∈ A(i), where A(i) is the set of actual receivers; hence,
A(i) ⊆ J(i). Finally, a : {0, 1}|J(i)| → IR is the function, which assigns—to a
specific realization of A—the acknowledgment cost, with a(0) = 0. ACiJ is thus
the expected cost of acknowledging a packet by a certain set to actual receivers,
conditional on at least one node in the CRS receiving the packet:

Potentials of Opportunistic Routing in Energy-Constrained WSNs 125

Table 2. Comparison of singlepath and CA-Path routing w.r.t. Fig. 1

Node Singlepath CA-Path Improvement

A 5.00 5.00 0.0%
B 5.00 5.00 0.0%
C 5.00 5.00 0.0%
D 10.00 9.69 3.1%
E 10.00 9.69 3.1%
F 10.00 9.69 3.1%
G 15.00 14.38 4.2%

Total 60.00 58.44 2.6%

ACiJ = E

[
a(A)|

∑

k∈J

Ak > 0

]
=

E [a(A)]

P

⎛

⎝
∑

j∈J

Aj > 0

⎞

⎠
=

∑

A∈2J

P (A) a(A)

1 −
∏

j∈J

(1 − pij)
, (6)

where 2J is the power set of J , and P (A) is the probability that the set of actual
receivers is indeed A:

P (A) =
∏

j∈A

pij ·
∏

j∈J\A

(1 − pij) , (7)

and a(A) is the cost of acknowledging a packet received by all nodes in A:

a(A) =
∑

j∈A

1
pji

. (8)

We call this coordinated anypath routing scheme CA-Path. From hereon, sin-
glepath costs will include acknowledgment costs, just as CA-Path costs do. Note
that the optimal CRS determined by CA-Path is likely to be smaller than that
found with anypath routing, as a larger CRS incurs a higher acknowledgment
cost. Furthermore, similar to anypath routing, the cost of the shortest CA-Path
route will never be higher than that of the shortest singlepath route.

Returning to Fig. 1, we now compare the cost of the shortest singlepath route
to that of the shortest CA-Path route.

For both schemes, the cost to send a packet from A, B, or C to the Sink is

CA = CB = CC =
1

0.4
+

1
0.4

= 5.0 .

Singlepath: The cost to send a packet from E, via A (or via either B or C), to
the Sink is

CE =
1

0.4
+

1
0.4

+ CA = 10.0 .

126 G. Schaefer, F. Ingelrest, and M. Vetterli

CA-Path: The cost to send a packet from E, via the CRS J(E) = {A, B}, to
the Sink is

CE = ALCE,{A,B} + ACE,{A,B} + RPCE,{A,B}

=
1

1 − (1 − 0.4)2
+

2 · 1
0.4 · 0.4 · (1 − 0.4) +

(1
0.4 + 1

0.4

)
· 0.42

1 − (1 − 0.4)2

+
5.0 · 0.4 + 5.0 · 0.4 · (1 − 0.4)

1 − (1 − 0.4)2
= 9.69 .

This is the cost of the shortest CA-Path route from Node E to the Sink. Note
that this optimal CRS is smaller than the one resulting from the original anypath
equations. Table 2 provides the results for all the nodes of Fig. 1. Although we
are now considering acknowledgment costs, CA-Path still has an advantage.

4.3 Theoretical Bounds

Let us assume a network, in which all links have the same delivery probability p.
For such a network, we can determine the threshold probability, below which se-
lecting multiple next hops with CA-Path provides better results than singlepath.
Let us consider Node D of the network shown in Fig. 1: its two possible next
hops towards the Sink are A and B. Since all probabilities are equal, D obviously
cannot consider E and G as candidate next hops. The question, of whether it
is better to use two next hops instead of one, reduces to solving the following
inequality:

CCA-Path
D,{A,B} < CSP

D,{A}. (9)

In other words, for which values of p can CA-Path decrease the cost compared
to singlepath? Developing this equation, we find

1
1 − (1 − p)2

+
2 · 1

p · p · (1 − p) + 2
p · p2

1 − (1 − p)2
+

2
p · p + 2

p · p · (1 − p)

1 − (1 − p)2
<

2
p

+
2
p

,

which solves to p < 0.5. Thus, when p ≥ 0.5, CA-Path reduces to singlepath.
Following similar reasoning, choosing three or even four next hops is interesting
only when p < 0.38 or p < 0.31, respectively. This explains why, in Fig. 1, where
p = 0.4, Node E uses only two candidate relays.

4.4 Simulation Results

In order to concentrate on the networking aspects, and avoid issues unrelated to
CA-Path, we have developed our own open-source simulation tool3, rather than
relying on one of the existing heavyweight frameworks. The ns-2 simulator4, for
3 http://rr.epfl.ch/19/
4 http://nsnam.isi.edu/nsnam/

http://rr.epfl.ch/19/
http://nsnam.isi.edu/nsnam/

Potentials of Opportunistic Routing in Energy-Constrained WSNs 127

Table 3. ETX performance of CA-Path for different types of networks: n is the number
of nodes and d the average maximum number of hops to the sink

Network Singlepath CA-Path Improvement

n = 20, d = 2.6 250.80 241.68 3.6%
n = 35, d = 3.6 566.67 540.76 4.6%
n = 50, d = 4.4 956.75 906.80 5.2%
n = 100, d = 6.1 2663.33 2507.12 5.9%
n = 250, d = 9.4 10152.46 9483.79 6.6%
n = 500, d = 12.9 27915.92 25982.50 6.9%

instance, entails great effort for an in-depth understanding of the interactions
between its numerous components. Moreover, it requires so many modifications
and add-ons for simple primitives (e.g., broadcasting a packet to all neighbors)
that results may not be trustworthy in the end.

Each result provided in this section is an average over 500 generated network
topologies. For each topology, nodes are uniformly and randomly placed in a
square area, whose size is determined by the number of nodes and the average
node degree, which is fixed at 10. A single sink is present in each network. Non-
connected topologies are discarded and regenerated as necessary. Link quality
estimation is out of the scope of this paper; we assume that a neighborhood
discovery protocol is in charge of it. A simple solution, such as counting sequence
numbers, is sufficient for this purpose [2].

To limit computational complexity, the maximum CRS size in is set to three,
i.e., nodes select at most three next hops, even if more would further decrease
their cost. If we assume that node identifiers are stored on a single byte, this
leads to a maximum overhead of three bytes per data packet, which is negligible
w.r.t. energy consumption. More on this subject is elaborated in the next section.

As we have pointed out previously, using CA-Path is obviously sensible only
when links are lossy. In this case, the number of additional ACK transmissions is
less than the number of data packet retransmissions and thus leads to a smaller
ETX. On the contrary, when links are strong, CA-Path reduces to singlepath.
Hence, for the results presented in this section, all links in the generated networks
have a delivery probability of p = 0.25.

Table 3 provides the average overall ETX for various network sizes. We have
considered many scenarios: small, medium, large, and very large networks. Most
current WSN deployments are rather small-scale (e.g., LUSTER [17],
SensorScope [2]), but larger scenarios are envisioned for the near future. As
expected, savings increase with the average distance to the sink, since CA-Path
is able to save a few transmissions over singlepath at each hop. In fact, the last
hop to the sink limits the savings, since it is cheaper for many nodes to commu-
nicate exclusively with the sink. In this case, CA-Path resumes to singlepath.
Overall, results are promising for all kinds of networks, as savings range from
3.6% for small networks of 20 nodes to 6.9% for very large networks of 500 nodes.
This clearly shows the potential of CA-Path when dealing with lossy links.

128 G. Schaefer, F. Ingelrest, and M. Vetterli

5 Minimizing Energy Consumption

So far, we have only considered the problem of minimizing the number of trans-
missions, while—in the real world—minimizing energy consumption is generally
more interesting. These two metrics are of course correlated, but even with a
fixed transmission power, sending packets of different sizes results in different
energy consumption.

To determine the respective costs of ACKs and data packets, we have mea-
sured the power consumption of a TinyNode sensor mote5, while transmitting
packets of different payload lengths (see Fig. 3). The power consumption when
sending a 0-byte payload is not zero, because each payload is preceded by a
network header. Moreover, the radio precedes each packet with a specific pat-
tern of bits, so that receivers can detect the beginning of incoming packets6.
Based on our measurements, the duration of transmission—and thus the power
consumption—may be approximated as

C(l) = 0.1043 · l + 1.966, (10)

where l is the payload length, in bytes. According to this equation, sending a
28-byte data packet costs C(28) = 4.89 while a 2-byte acknowledgment costs
C(2) = 2.17. The ratio between the two costs is 0.44, which we approximate
by 0.5, making ACKs a bit more costly than in reality. Thus, in the follow-
ing, we assume that an acknowledgment consumes half as much energy as a
data packet.

Considering these relative costs has no impact on singlepath, which will always
select the same path to send packets to the sink. With CA-Path, things are
different, as the CRS size impacts the acknowledgment cost. To take this into
account, we must modify Equation (8), such that a(A) is now equal to

10

20

30

40

50

60

C
u

rr
e

n
t

[m
A

]

1.98 ms

0 bytes

2.68 ms

7 bytes

3.42 ms

14 bytes

4.16 ms

21 bytes

4.89 ms

28 bytes

Fig. 3. Power consumption of a TinyNode mote when sending packets of various pay-
load lengths. The transmission power is set to 15 dBm.

5 http://tinynode.com/
6 Note that this is not related to a low power listening mechanism.

http://tinynode.com/

Potentials of Opportunistic Routing in Energy-Constrained WSNs 129

a(A) =
∑

j∈A

0.5
pji

, (11)

while the other cost functions remain unchanged.

5.1 Implementation Issues

CA-Path may be implemented as a purely overhearing-based, proactive routing
protocol, i.e., no additional messages are required for route maintenance. Nodes
must keep an up-to-date table of their neighbors’ costs and include their own cost
to reach the sink, together with the chosen list of intended receivers, in each data
packet. Any node, overhearing this information, can update its neighborhood
table accordingly. To get the process started, the sink must send out beacons,
advertising its own cost of zero.

In order to find the best CRS, each node needs to examine all possible subsets
of its neighbors. Let us assume that d is the number of neighbors and m is the
maximum CRS size (1 ≤ m ≤ d) we wish to consider. With the full-fledged
scheme presented above, the number of candidate relay sets to examine is

m∑

k=1

(
d

k

)
,

which results in a time complexity of O(dm). As savings with CA-Path may occur
only when m ≥ 2, complexity quickly becomes a problem on today’s motes.

To overcome this issue, we propose the following greedy heuristic: each node
evaluates its own cost w.r.t. all singleton CRSs and sorts those accordingly. Now,
the node sets its CRS to be the least expensive singleton and tries to merge it
with the next best one. If that decreases its cost, the node sets its CRS to be
these two nodes and then tries to merge it with the third best singleton. The
process is repeated until (i) the cost of the current node no longer decreases or
(ii) the CRS has reached its maximum size.

This heuristic will consider at most d+m−1 CRSs, leading to a complexity of
O(d), which is much better suited to the capabilities of current sensor motes, as
well as being more scalable. As we will experimentally show below, the heuristic
is a good approximation of the exhaustive search for the optimal CRS.

5.2 Simulation Results

To evaluate our protocol in terms of energy consumption, we have used the same
simulation tool as before, incorporating the modified equation for CA-Path. All
parameters remain the same, except for the generated topologies: instead of
using a uniform delivery probability, each link is assigned a random probability
p, such that 0.1 ≤ p ≤ 0.4. This modification is needed to evaluate the heuristic
(denoted CA-Path (H)) we have proposed above; with uniform probabilities,
there is no difference to the full-fledged scheme.

130 G. Schaefer, F. Ingelrest, and M. Vetterli

 58.63

117.26

175.89

Singlepath CA-Path (H) CA-Path

E
n
e
rg

y
 [
m

J
]

0.50

0.43 0.43

−6.54% −7.00%

ACK ETX
Data ETX

(a) n = 20, d = 2.6.

215.11

430.22

645.33

Singlepath CA-Path (H) CA-Path

E
n
e
rg

y
 [
m

J
]

0.50

0.43 0.42

−6.86% −7.25%

ACK ETX
Data ETX

(c) n = 50, d = 4.4.

 2.14

 4.27

 6.41

Singlepath CA-Path (H) CA-Path

E
n
e
rg

y
 [
J
]

0.50

0.41 0.41

−7.20% −7.55%

ACK ETX
Data ETX

(e) n = 250, d = 9.4.

127.71

255.42

383.13

Singlepath CA-Path (H) CA-Path

E
n
e
rg

y
 [
m

J
]

0.50

0.43 0.42

−6.70% −7.13%

ACK ETX
Data ETX

(b) n = 35, d = 3.6.

 0.57

 1.14

 1.71

Singlepath CA-Path (H) CA-Path

E
n
e
rg

y
 [
J
]

0.50

0.42 0.42

−6.95% −7.33%

ACK ETX
Data ETX

(d) n = 100, d = 6.1.

 5.78

 11.55

 17.33

Singlepath CA-Path (H) CA-Path

E
n
e
rg

y
 [
J
]

0.50

0.41 0.41

−7.36% −7.71%

ACK ETX
Data ETX

(f) n = 500, d = 12.9.

Fig. 4. Performance of CA-Path when minimizing energy consumption. The “(H)”
indicates use of the heuristic instead of exhaustive search for the optimal CRS. Each
bar also shows the ratio between data packet and ACK transmissions.

Figure 4 depicts the average overall expected energy consumption for the
various network sizes we have considered. This consumption includes the trans-
mission (and acknowledgment) of one data packet from each node to the sink.
For instance, when n = 20, using singlepath leads to a global consumption
of 175.89mJ at each transmission cycle. To compute these values, we made
use of the TinyNode power consumption data illustrated in Fig. 3. Sending a

Potentials of Opportunistic Routing in Energy-Constrained WSNs 131

28-byte data packet draws 60mA at 3.3V for 4.89ms, leading to a consumption
of 0.97mJ. Similarly, sending an ACK consumes 0.43mJ.

From these results, we can see that the ratio of energy saved by CA-Path
ranges from 7.00% for small networks of 20 nodes to 7.71% for large networks
of 500 nodes. Overall, the greedy heuristic provides results close to the optimal
ones, always within half of a percentage point. This is encouraging, since the
complexity of the heuristic is linear, making it very scalable.

Figure 4 also provides the distribution of the expected number of transmissions
between data packets and acknowledgments. For singlepath, the ratio is always
0.5, since each data packet triggers one ACK. For CA-Path, we can observe that
the transmission load is shifted from data packets to ACKs, and the ratio goes
down to 0.41 for the 500-node networks. As a result, even when the same overall
number of packets is sent, CA-Path leads to energy savings due to the smaller
cost of ACKs.

6 Conclusion and Perspectives

In this paper, we have studied the potentials of opportunistic routing in data
gathering wireless sensor networks. CA-Path, our implementation of a coor-
dinated opportunistic routing scheme, is specifically designed to limit energy
wasting when dealing with radio links of poor quality. We have shown that with
strong links, CA-Path reduces to singlepath, while, when working in difficult
environments with lossy links (e.g., very long distance between nodes), CA-Path
is a viable solution, leading to energy savings. With its linear time complexity,
the heuristic we have proposed is especially suited to embedded sensor motes
and provides results very close to exhaustive search.

The results we have shown must, however, be moderated a bit: in our simula-
tions, routes are loop-free, and all actual receivers of a data packet can hear each
other. While loops may affect any routing protocol and measures may be taken
against them, non-overheard ACKs are more difficult to cope with. Due to our
selection scheme, next hops should be close to each other, but of course this does
not ensure that they can actually hear each other. The resulting duplicates have
the potential to outweigh the savings obtained with CA-Path. We are thus plan-
ning to benchmark CA-Path by implementing it on a real sensor network. We
will also study the extend of load balancing induced by CA-Path, in comparison
to traditional protocols. In this area, too, good results are expected.

Finally, our results pave the way to even greater energy savings, when com-
bined with other coordination schemes. Decreasing the coordination cost will
lead CA-Path to using larger candidate relays sets and thus to lower energy
consumption. One possibility could be to acknowledge multiple data packets at
once, by working with a window of sequence numbers, similar to TCP. In this
case, the cost of ACKs would be lowered, although at the expense of higher
latency. Hence, application-specific solutions should provide the best results,
overall.

132 G. Schaefer, F. Ingelrest, and M. Vetterli

Acknowledgments

This work was partially financed by the Swiss National Center of Competence in
Research for Mobile Information and Communication Systems (NCCR MICS)
and the European Commission under the FP6 project WASP.

References

1. Biswas, S., Morris, R.: ExOR: Opportunistic multi-hop routing for wireless net-
works. In: Proceedings of the ACM SIGCOMM Conference (October 2005)

2. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., Parlange,
M.: Sensorscope: Out-of-the-box environmental monitoring. In: Proceedings of the
ACM/IEEE International Conference on Information Processing in Sensor Net-
works (IPSN) (April 2008)

3. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M.: The hitchhiker’s guide to
successful wireless sensor network deployments. In: Proceedings of the ACM Inter-
national Conference on Embedded Networked Sensor Systems (SenSys) (November
2008)

4. Jacquet, P., Mühlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.:
Optimized link state routing protocol for ad hoc networks. In: Proceedings of the
IEEE International Multi-topic Conference (INMIC) (December 2001)

5. Haas, Z.J.: A new routing protocol for the reconfigurable wireless networks. In:
Proceedings of the IEEE International Conference on Universal Personal Commu-
nications (October 1997)

6. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In: Proceedings of the ACM International Confer-
ence on Embedded Networked Sensor Systems (SenSys) (November 2003)

7. Dubois-Ferrière, H., Grossglauser, M., Vetterli, M.: Least-cost opportunistic rout-
ing. In: Proceedings of the Allerton Conference on Communication, Control, and
Computing (September 2007)

8. Basagni, S., Giordano, S., Stojmenović, I.: Mobile Ad Hoc Networking. IEEE Com-
puter Society Press, Los Alamitos (2004)

9. Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the world with
wireless sensor networks. In: Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (May 2001)

10. Johnson, D.B.: Routing in ad hoc networks of mobile hosts. In: Proceedings of
the IEEE Workshop on Mobile Computing Systems and Applications (WMCSA)
(December 1994)

11. Fonseca, R., Gnawali, O., Jamieson, K., Kim, S., Levis, P., Woo, A.: The collection
tree protocol (CTP) (2006),
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html

12. Chang, J.H., Tassiulas, L.: Maximum lifetime routing in wireless sensor networks.
IEEE/ACM Transactions on Networking 12(4), 609–619 (2004)

13. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: A
survey. IEEE Wireless Communications 11(6), 6–28 (2004)

14. Couto, D.D., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for
multi-hop wireless routing. In: Proceedings of the ACM International Conference
on Mobile Computing and Networking (MobiCom) (September 2003)

http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html

Potentials of Opportunistic Routing in Energy-Constrained WSNs 133

15. Laneman, J., Tse, D., Wornell, G.: Cooperative diversity in wireless networks:
Efficient protocols and outage behavior. IEEE Transactions on Information The-
ory 50(12), 3062–3080 (2004)

16. Choudhury, R., Vaidya, N.: Mac-layer anycasting in ad hoc networks. In: Proceed-
ings of the ACM SIGCOMM Conference (August 2004)

17. Selavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., Wu, Y., Kang,
W., Stankovic, J., Young, D., Porter, J.: LUSTER: Wireless sensor network for
environmental research. In: Proceedings of the ACM International Conference on
Embedded Networked Sensor Systems (SenSys) (November 2007)

A Better Choice for Sensor Sleeping

Ou Yang and Wendi Heinzelman

Dept. of ECE, University of Rochester, Rochester, NY, 14620, USA
oyang@ece.rochester.edu, wheinzel@ece.rochester.edu

Abstract. Sensor sleeping is a widely-used and cost-effective technique
to save energy in wireless sensor networks. Protocols at different stack
levels can, either individually or simultaneously, make the sensor sleep
so as to extend the application lifetime. To determine the best choice for
sensor sleeping under different network conditions and application re-
quirements, we investigate single layer and multi-layer sleeping schemes
at the routing and MAC layers. Our results show that routing layer
sleeping performs better when there is high network redundancy or high
contention, while MAC layer sleeping performs better when there is low
contention or in small networks. Moreover, multi-layer sleeping requires
cross-layer coordination to outperform single layer sleeping under low
contention. Therefore, our conclusions can not only guide the implemen-
tation of practical sensor networks, but they also provide hints to the
design of cross-layer power management to dynamically choose the best
sleeping scheme under different network and application scenarios.

Keywords: Sensor sleeping, Directed Diffusion, SMAC, Cross-layer
coordination.

1 Introduction

Wireless sensor networks are gaining increasing attention for practical uses rang-
ing from military surveillance to civil monitoring due to their low cost, ease of
deployment and good coverage of the monitored area. However, one of the main
issues preventing the ubiquitous use of wireless sensor networks is how to sup-
port an application for extended periods of time, as sensors are usually battery-
powered and hence highly constrained in energy supply. Consequently, to save
energy, the idea of “making sensors sleep when they are not used” has motivated
much research in wireless sensor networks [1] [2] [3] [4] [5] [6] [7]. In particular,
the selection of source node(s) that should transmit data to the sink(s), which
is done at the application layer, allows redundant source nodes to sleep in order
to save energy for later use. Topology control, which is usually performed at the
network layer, creates a routing backbone for data delivery so that the remain-
ing non-router nodes can sleep. Turning off routing nodes that are not directly
involved in the delivery of data can also be done by the routing protocol. Finally,
duty cycling is often employed by the MAC protocol, allowing sensors to sleep
periodically to reduce their idle listening, which is energy intensive.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 134–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Better Choice for Sensor Sleeping 135

Since protocols at different stack layers can make sensors sleep, the question
becomes at which layer should sleeping be used in order to extend application
lifetime for a specific network and application scenario? In other words, is there
a particular layer in which sleep scheduling provides the most benefit? Can sleep
scheduling be done at multiple layers independently for even more gain than sim-
ply sleeping at a single layer? Or is some sort of cross-layer coordination of sleep
scheduling needed to obtain the maximum benefit in terms of extending appli-
cation lifetime? To examine these questions, in this paper we compare sleeping
techniques employed by routing protocols and MAC protocols under various net-
work scenarios and application requirements. Application layer sleeping schemes
are currently not considered to avoid any application-specific conclusions. Thus,
the contributions of this paper are:

(1) We propose a sleeping scheme for Directed Diffusion [9], which significantly
improves the application lifetime by allowing nodes not involved in the trans-
mission of data to sleep periodically. (2) We provide detailed performance com-
parisons of MAC layer sleeping and routing layer sleeping, under various node
densities, different network scales, diverse numbers of source nodes and varying
application data rates. These results show that MAC layer sleeping works better
under conditions of low contention, while routing layer sleeping works better in
networks with high redundancy. (3) We also examine the performance of making
sensors sleep at the routing and MAC layers simultaneously, with and without
cross-layer coordination. Our preliminary results show that it is necessary to em-
ploy cross-layer coordination between the layers to obtain further improvement
in throughput when the contention in the network is low. (4) Our conclusions
can be used to design a policy for a centralized power manager that dynami-
cally decides which layer(s) should have control over sleep scheduling as network
parameters vary or application requirements change over time.

2 Motivation and Background

Wireless sensors have stringent energy constraints since they are usually battery-
powered, and oftentimes it is impractical to recharge the sensors manually due to
their large-scale deployment. Hence, it is critical to employ energy-saving tech-
niques so as to support an application for extended periods of time. Among the
existing energy-saving strategies, e.g., flooding avoidance [8] [9], traffic balancing
using cost functions [10] [11], data fusion [12], etc., putting sensors into the sleep
state is the most widely-used and cost-effective way to prolong the application
lifetime. By turning off the radio of a sensor at appropriate times, various sleep-
ing schemes [1] [2] [3] [4] [5] [6] [7] aim to cut down on “idle listening”, which
in wireless sensor networks provides little benefit yet consumes almost as much
power as transmitting or receiving data [13].

To save the most energy, it is intuitive to make sensors sleep whenever possible.
This implies that (1) redundant source nodes may sleep when their sensed data
is not required by the sink, (2) redundant routing nodes may sleep when they
have no data to relay, and (3) source nodes and routing nodes that are involved

136 O. Yang and W. Heinzelman

in the data delivery may also sleep when it is not their turn to transmit or receive
data. Correspondingly, existing sleeping schemes are implemented in such a way
that different layers perform these different tasks mentioned above.

Specifically, the application layer selects and activates only some of the source
nodes to reduce energy drain while maintaining desired QoS [1]. For example,
in the application of target tracking [1], all sensors within a certain distance of
the target could be source nodes, but only a few are finally activated by the
application layer to achieve low distortion and reduce the energy consumption.

Routing nodes, on the other hand, are usually selected and activated by the
network layer in two ways. The first way is called topology control [2] [3], which
aims to establish a routing backbone to guarantee the network connectivity,
and consequently non-backbone nodes can sleep. Topology control also updates
the backbone periodically according to the remaining energy of each sensor to
balance the energy consumption. For instance, GAF [2] is a topology control
protocol, which divides a network into virtual grids with only one sensor in each
grid activated at any time, constituting a backbone network to route all the
data. Topology control is often used in large scale, dense networks where many
nodes provide redundant routes. Hence, making all of them except the activated
sensors sleep can significantly extend the application lifetime.

The second way of making sensors sleep at the network layer is through routing
protocols. Routing protocols [4] [5] update routes periodically, and save energy
by turning off the routing nodes that are not involved in the data delivery.
For example, the technique described in [4] puts sensors to sleep by monitoring
routing control messages and data transmissions so that only useful routers are
kept active. The technique described in [5] also utilizes the routing decisions
so that sensor nodes do not wake up when they are not part of a routing path.
Compared to topology control, those routing protocols with sleeping do not waste
the energy of non-used routing nodes, and they are also suitable for sparse or
not large scale networks where topology control performs poorly.

Once source nodes and routing paths are determined, the MAC layer can
put sensors into sleep-awake cycles [6] [7] so that idle-listening can be further
reduced due to the fact that the traffic load in wireless sensor networks is usu-
ally not very high [6]. For example, SMAC [6] makes each sensor broadcast its
sleep-awake schedule once in a while, so that its neighboring sensors can hear
it and synchronize their schedules with it. Once sensors are synchronized, they
use RTS/CTS/DATA/ACK sequences to communicate during the awake period
of each cycle. BMAC [7], using periodic low power listening, forces a sensor to
sleep if nothing is detected on the media in the sensor’s awake duration. How-
ever, the benefit of longer application lifetime provided by MAC layer sleeping
accompanies lower throughput and higher latency.

As sleeping can be implemented at the application layer, network layer and
MAC layer individually, questions arise as to which layer provides the most
benefit for determining when a sensor should sleep, under what conditions should
each sleeping scheme be chosen, and whether cross-layer coordination is needed
to obtain further improvement when sleeping schemes are employed at different

A Better Choice for Sensor Sleeping 137

layers simultaneously. The answer to these questions may not only guide us in
the implementation of practical sensor networks, but they may also provide hints
into the design of cross-layer power management.

3 Sleeping at Different Layers Individually and
Simultaneously

As wireless sensing applications operate in diverse networking environments and
have a range of QoS requirements, source node selection at the application layer
is always application-specific, and hence it is hard to generalize its performance.
Therefore, to avoid any application-specific conclusions, in this paper we choose
a general query-based application, and we focus on more general sleeping strate-
gies at the network and MAC layers. Specifically, we look into sleeping schemes
implemented in the routing and MAC protocols, defined as “routing layer sleep-
ing” and “MAC layer sleeping”, respectively, throughout this paper. Topology
control (done by the network layer) is currently not investigated. We make con-
clusions by comparing the performance of (1) a non-sleeping routing protocol
with a non-sleeping MAC protocol, (2) a non-sleeping routing protocol with a
sleeping MAC protocol, (3) a sleeping routing protocol with a non-sleeping MAC
protocol, and (4) a sleeping routing protocol with a sleeping MAC protocol.

For the non-sleeping routing protocol, we choose Directed Diffusion [9], as it
is specially designed for data-centric sensor networks and widely accepted as a
typical routing protocol for wireless sensor networks. However, Directed Diffu-
sion does not include any sleeping strategy. We, therefore, propose an improved
Directed Diffusion with sleeping as our sleeping routing protocol (see details in
Section 3.1). The sleeping Directed Diffusion performs exactly the same as the
original Directed Diffusion in terms of source node discovery and routing path
establishment and maintenance, but sleeping Directed Diffusion allows routing
nodes to sleep during the interval between two successive routing updates, if they
are not reinforced by the sink to relay data. Therefore, the application lifetime
may be prolonged by getting data from another routing path once the previous
path dies due to energy depletion.

For the MAC layer, we use IEEE 802.11 and SMAC as the non-sleeping and
sleeping protocols, respectively. SMAC is a typical MAC protocol with duty
cycled sleeping for wireless sensor networks. Except for the duty cycle, SMAC
is similar to IEEE 802.11. In other words, SMAC with 100% duty cycle has the
same performance as IEEE 802.11 under light traffic load. Hence, comparing the
performance of the network using IEEE 802.11 and SMAC provides clear insight
into the benefits and drawbacks of duty cycling the sensors at the MAC layer.

3.1 Sleeping at the Routing Layer

To understand our proposed sleeping Directed Diffusion, we first review the
mechanisms of Directed Diffusion, and then we explain our implementation of
sleep-awake cycles used with Directed Diffusion.

138 O. Yang and W. Heinzelman

Directed Diffusion. Directed Diffusion [9] includes two phases, an exploratory
phase and a reinforcement phase, which together allow a sink node to obtain
desirable data from source nodes. The exploratory phase is used to discover
data sources at a low data rate, while the reinforcement phase is used to pull
down the desirable data at a high data rate.

In the exploratory phase, a sink starts broadcasting INTEREST packets peri-
odically in the network. An INTEREST packet includes a description of desired
data attributes and indicates the exploratory rate of this specific data (usually
as low as one packet per hundreds of seconds). A node that receives an INTER-
EST packet floods it to all of its neighbors. Meanwhile, every node maintains
a gradient table, caching each distinguishable INTEREST packet in terms of
where it came from (previous hop) and what the desired data rate is as the
local routing information. Each caching entry is called a gradient, which expires
and hence will be removed from the gradient table after a certain time, so as to
take care of topology changes or node failures. New gradients will be established
by the periodic INTEREST packets flooded in the network. As a result, after
some time, all the nodes, including the data sources in the network know the
INTEREST, and all possible routing paths are established in a distributed man-
ner by checking gradient information at each node. When a source node receives
an INTEREST packet, it broadcasts DATA packets to all its neighbors at the
exploratory rate. All the intermediate nodes cache and flood all distinguishable
DATA packets and discard duplicate ones (e.g., if the time stamp is very close
- less than the interval of two successive high rate DATA packets - to any re-
ceived DATA packet). Finally, the sink node receives the DATA packets that
it is interested in from multiple paths. Then the sink starts the reinforcement
phase.

In the reinforcement phase, the sink node has a specific policy to reinforce
some of the routing paths to pull down the data from the source nodes at high
data rates. The policy in our experiments is to reinforce the neighbor that deliv-
ered the exploratory data first. The sink node unicasts a positive reinforcement
packet, which is actually an INTEREST packet with high desired data rate (usu-
ally tens of times higher than the exploratory rate), to the selected neighbor,
and then the selected neighbor forwards this positive reinforcement packet to
the next hop, which is chosen by the same policy. When a source node receives
a positive reinforcement packet, it starts sending back DATA packets at the re-
quested high data rate, along the path where the positive reinforcement packet
came from. Therefore, the sink node finally obtains data at the desired high rate
from the reinforced path. In the case of topology changes, node failures or link
quality changes, a new path may be positively reinforced. Hence, every sensor
periodically checks if a negative reinforcement is needed to slow down the data
delivery on the previously reinforced paths.

Directed Diffusion does not allow sensors to sleep. However, not every routing
node is involved in the data delivery all the time, as only the least delayed
routing path is positively reinforced. Hence, allowing redundant routing nodes
to sleep may save other routing paths and contribute to a longer application
lifetime when the previous ones run out of energy.

A Better Choice for Sensor Sleeping 139

INTEREST (flooding)

high rate DATA (unicast)

exploratory DATA (flooding)

positive reinforcement (unicast)

SINK SOURCE

Time gap of
DATA
timer

Time gap of
INTEREST

timer

Fig. 1. Time sequences of path establishment in sleeping Directed Diffusion

Sleeping Directed Diffusion. To make routing nodes sleep when they are not
involved in the data delivery, it is necessary to note the importance of INTER-
EST flooding and exploratory DATA flooding, and figure out the time sequences
of path establishment and maintenance in Directed Diffusion.

As mentioned above, in Directed Diffusion there are two critical floodings
throughout the network. One is the periodic flooding of an INTEREST packet,
initiated by the sink node. All routing nodes need to be awake to forward this
packet so that source nodes can finally receive it, and a gradient table can be
established to route the DATA packets that are going to follow. The other flood-
ing is exploratory DATA flooding, periodically initiated by a source node. All
routing nodes need to be awake to forward those packets so that the sink node
can finally receive them and start positive reinforcement based on their arrival
times. As a result, for each distinguishable INTEREST (query for different data
attributes), we define two timers, INTEREST timer and DATA timer, at each
node, for INTEREST flooding and exploratory DATA flooding, respectively. The
two timers are scheduled and fire periodically. Specifically, INTEREST timer is
scheduled after an INTEREST flooding ends, and fires before the next INTER-
EST flooding starts, while DATA timer is scheduled after an exploratory DATA
flooding ends, and fires before the next exploratory DATA flooding starts. A
sensor may sleep when the two timers are pending, but it MUST wake up once
either timer fires, and remain awake until the timer is rescheduled.

There is a time gap between when a timer fires and when it is rescheduled.
The time gap is used to wait for the response of the corresponding flooding so as
to establish a reinforced path from the sink node to the source node. As shown
in Fig. 1, path establishment starts with INTEREST flooding, followed by the
exploratory DATA flooding, which is then followed by positive reinforcement
unicasting, and consequently followed by high rate DATA unicasting. Hence,
the time gap of the INTEREST timer is used to wait for the exploratory DATA
flooding if new source nodes are discovered, while the time gap of the DATA
timer is used to wait for the positive reinforcement packets so that one of the
source nodes can be reinforced and start delivering high rate data.

If a node does not receive any exploratory DATA packet during the time gap
of its INTEREST timer as a result of no source node available or packet loss, the
exploratory DATA timer is not initiated. Hence, the node follows the INTEREST
timer to sleep (when it is pending) and wake up (when it expires). Otherwise, the
exploratory DATA timer is initiated, and it is scheduled periodically according

140 O. Yang and W. Heinzelman

to the exploratory rate. If the node receives a positive reinforcement packet
during the time gap of its DATA timer, the node is located on the reinforced
path (involved in the data delivery), and thus cannot sleep until it is negatively
reinforced or it runs out of energy. If the node does not receive any positive
reinforcement packet during the time gap of its DATA timer, the node goes to
sleep when both of the timers are pending (no flooding is going on), and wakes
up whenever at least one of the timers expires (at least one flooding is going on).

3.2 Sleeping at the MAC Layer

SMAC is a MAC protocol explicitly proposed for wireless sensor networks, with
reducing energy consumption as its primary goal [6]. It introduces periodic sleep-
awake cycles for each node to eliminate idle-listening. Used for transmitting and
receiving data, the awake period of a cycle has a fixed length, which is determined
by the physical layer and MAC layer parameters. The sleeping period of a cycle,
instead, can be set longer or shorter, which influences the power consumption
of SMAC, as well as the latency incurred by sleeping. Hence, variations in duty
cycle, which is defined as the ratio of the awake period to a complete sleep and
awake cycle, leads to corresponding variations in the performance of SMAC.

For the convenience of communication, and to reduce the control overhead,
SMAC tries to synchronize every node, so that nodes sleep and wake up simul-
taneously. To achieve this, every node periodically broadcasts its schedule in a
SYNC packet, so that neighbors who hear the SYNC packet start following the
same schedule. However, some nodes may not hear the SYNC packets from their
neighbors because they have already been running different schedules. Hence, ev-
ery node must keep awake for a whole SYNC packet interval once in a while, so
that different schedules of its neighbors can be heard. A node that has a different
schedule from its neighbors may follow both schedules at the same time.

During the awake time, SMAC is similar to IEEE 802.11, which (1) uses
RTS/CTS to solve the hidden terminal problem, (2) uses physical carrier sensing
and virtual carrier sensing to avoid collision, and (3) uses RTS/CTS/DATA/
ACK sequences to guarantee successful unicast transmissions. If a node fails to
access the media, it goes back to sleep until the next awake period. If, on the
other hand, a node successfully accesses the media, it does not sleep until it
finishes the current transmission.

3.3 Sleeping at Both Routing and MAC Layers

To employ sleeping Directed Diffusion and SMAC simultaneously, we can either
simply implement them as they are, at the routing layer and the MAC layer,
respectively, or do cross-layer coordination between the routing layer and the
MAC layer to improve the overall performance.

There are various ways to coordinate the routing and MAC layer sleeping. We
implement two methods in our simulations. The first cross-layer coordination is
based on priority. As sleeping Directed Diffusion puts all the nodes that are not
involved in the data delivery to sleep during successive floodings, there is no
need to make those nodes wake up at the MAC layer according to its duty cycle,

A Better Choice for Sensor Sleeping 141

as no data needs to be transmitted. Hence, sleeping Directed Diffusion should
have higher priority than SMAC to schedule the nodes. In other words, SMAC
only effectively schedules a node when sleeping Directed Diffusion needs to keep
this node active. The second cross-layer coordination is differentiation between
routing layer sleeping and energy depletion. As SMAC updates a neighbor list at
each node by recognizing SYNC packets sent by its neighbors for a given period of
time, long sleeping time of a node scheduled by sleeping Directed Diffusion may
make the node’s neighbors mistakenly drop its information from their neighbor
lists, as no SYNC packet is sent from this node during its sleeping time. We,
therefore, make a SYNC packet bear the remaining energy of its sender, so that
the receiving nodes can easily tell the status of the sender, and remove the sender
from its neighbor list only when it is running out of energy.

4 Simulations and Discussions

In this section, we analyze the pros and cons of making sensors sleep at individual
layers under different network scenarios and application requirements. We also
give some preliminary results on the necessity of cross-layer coordination when
sensors sleep at both layers. Two metrics are considered. The first metric is
throughput, which is the total number of packets received by the sink node. In
general, the higher the throughput, the more information is collected at the sink,
which corresponds to a longer application lifetime. However, a high throughput
does not necessarily imply a good data delivery ratio. Therefore, we define the
second metric, data delivery ratio, as the throughput divided by the number of
packets the sink node should ideally receive. Ideally, the sink node receives as
many packets as generated by a single reinforced source node during the whole
data delivery period. The higher the data delivery ratio is, the fewer packets are
lost. In general, for a given application and network deployment, we desire both
throughput and data delivery ratio to be high.

We use ns-2.32 [14] to simulate the performance of all combinations of a non-
sleeping/sleeping routing protocol (Directed Diffusion/sleeping Directed Diffu-
sion) and a non-sleeping/sleeping MAC protocol(IEEE 802.11/SMAC1). We
assume that (1) sensors are static and randomly distributed in a given area,
(2) there is only one sink node and more than one source node, (3) the sink node
has infinite power supply, while other nodes have 22J initial energy, (4) each
node’s power consumptions in transmitting, receiving, and idle status are set
the same at 50mW, based on measurements of CC1000, a radio chip for MICA2
motes, and CC2420, a radio chip for IEEE 802.15.4 [13], (5) the size of an ap-
plication layer data packet is 64 bytes, (6) MAC layer bandwidth is 2Mbps, and
(7) the communication range of a sensor is 250m.

For Directed Diffusion, we assume that the sink node floods an INTEREST
packet every 30s. Each gradient entry in the gradient table is valid for 50s. The
exploratory rate is 1 packet per 100s. Negative reinforcement check is executed
every 6 high rate DATA packet intervals. For sleeping Directed Diffusion, either
1 Adaptive listening [9] is used in the simulation of SMAC.

142 O. Yang and W. Heinzelman

timer has a 6s time gap. For SMAC, the size of a DATA packet is 50 bytes, the
size of a SYNC packet is 9 bytes, and the size of other control packets, like RTS,
CTS, and ACK, are 10 bytes. A SYNC packet is sent by each node every 10
duty cycles.

We first look into the performance of individual layer sleeping schemes, namely
sleeping Directed Diffusion and SMAC, and then compare their performances un-
der different situations. Finally, we show the performance differences of sleeping
at both routing and MAC layers, with and without cross-layer coordination. By
default, 30 nodes are randomly distributed in an 800mX800m area. There is 1
sink node and 5 source nodes. A reinforced source node generates 3 application
layer packets per 10s. For each scenario, 10 topologies are generated, and the
results are averaged over 20 simulations, except as noted.

4.1 Performance of Single Layer Sleeping

Fig. 2 shows the throughput of single layer sleeping schemes over time in one
simulation. IEEE 802.11 is used as the common MAC protocol in the simulation
of sleeping Directed Diffusion, while Directed Diffusion is used as the common
routing protocol in the simulation of SMAC. As we can see, both sleeping Di-
rected Diffusion and SMAC can significantly improve the data delivery period,
and hence the overall throughput. However, sleeping Directed Diffusion has a
“QoS pause” between 740s to 800s, as the throughput remains the same during
this period of time. Since a new path reinforcement is always triggered by an
exploratory DATA flooding, there might be a gap during which the old path has
died but a new path has not been established, and therefore no DATA packets
are delivered to the sink. Directed Diffusion does not have a QoS pause because
all the nodes in the network die at the same time (a sensor’s power consumption
in transmitting, receiving and idling are the same), thus no redundant routing
paths or source nodes are available to use. As a result, Directed Diffusion leads
to a short data delivery period. Moreover, compared to ideal receiving, sleeping
Directed Diffusion has almost the same increasing slope in throughput except
QoS pauses, but SMAC always has lower throughput, because SMAC suffers
from more contention and hence more collisions than IEEE 802.11.

200 400 600 800 1000 1200
0

100

200

300

time in s

th
ro

ug
hp

ut
 (

#p
kt

)

Performance of sleeping Directed Diffusion

Ideal
DDslp
DD

200 400 600 800 1000 1200
0

100

200

300

time in s

th
ro

ug
hp

ut
 (

#p
kt

)

Performance of SMAC

Ideal
SMAC
802.11

Fig. 2. Performance of sleeping Directed Diffusion and SMAC

A Better Choice for Sensor Sleeping 143

4.2 Performance Comparisons of Individual Layer Sleeping

In this section, we examine the performance of sleeping at individual layers. For
simplicity, we mention the combination of Directed Diffusion and IEEE 802.11 as
DD802, the combination of Directed Diffusion and SMAC as DDSMAC followed
by a specific duty cycle, and the combination of sleeping Directed Diffusion and
IEEE 802.11 as DDslp802.

Varying Node Density. In this experiment, we vary the node density.
Fig. 3 shows the performance rendered by 7 schemes under the deployment of
10 nodes, 20 nodes, 30 nodes, 40 nodes and 50 nodes, within the fixed area. As
we can see, without sleeping, DD802 performs the same in both throughput and
data delivery ratio, no matter what the node density is. This provides a baseline
to judge the performance of all the sleeping schemes. Specifically, DD802 has a
throughput of 105 packets on average with 100% data delivery ratio. However,
its data delivery period is short in the absence of any sleeping technique.

DDSMAC, on the other hand, shows a diversity of performance under different
duty cycles and different node densities. For a given node density, generally, the
lower the duty cycle is, the longer alive time every sensor in the network can have,
which is beneficial to receiving more packets at the sink node. However, a low
duty cycle also leads to severe contention and consequently higher probability
of collision. One one hand, collisions may affect the SYNC packet exchange, so
that some sensors cannot communicate with each other, and hence have to drop
packets. On the other hand, consistent collisions may either lead to packet drop
once the packet is retransmitted up to the limit, or incur long packet delay, so
that negative reinforcement may be initiated by Directed Diffusion, and then the
data delivery path is cut off. Therefore, lower duty cycles always have lower data
delivery ratio, but lower duty cycles may not necessarily have high throughput.
As shown in Fig. 3, the best duty cycle for DDSMAC in terms of throughput
varies according to the node density, which reflects the contention in the network.
As the node density increases, the duty cycle with highest throughput increases
from 10% for 10 nodes to 40% for 50 nodes. Note that when the node density
is very high, more than 40 nodes in our experiment, DDSMAC under all duty
cycles performs worse than DD802 in both throughput and data delivery ratio.
Therefore, it is not worth sleeping only at the MAC layer in this case. For a given
duty cycle, both throughput and data delivery ratio decrease as the node density
increases. This can be explained by the fact that high node density causes high
contention.

On the contrary, DDslp802 has higher throughput as the node density in-
creases. Higher node density implies more routing redundancy. DDSMAC wastes
the routing redundancy, but DDslp802 takes advantage of this added redun-
dancy. Specifically, DDSMAC wakes up redundant routing nodes the same as it
wakes up reinforced routing nodes. Hence when a reinforced routing path runs
out of energy, all the other redundant paths run out of energy as well. The
maximum throughput of DDSMAC is upper-bounded by the the total number
of packets that can be generated by a single source node. DDslp802, however,

144 O. Yang and W. Heinzelman

10 20 30 40 50
0

500

number of nodes

th
ro

ug
hp

ut
 (

#p
kt

)

DD802 DDSMAC10% DDSMAC20% DDSMAC30%

10 20 30 40 50
0

0.5

1

number of nodes

da
ta

 d
el

iv
er

y
ra

tio

 DDSMAC40% DDSMAC50% DDslp802

Fig. 3. Performance comparison under varying node density

saves the energy of those redundant paths by allowing redundant routing nodes
to sleep, so that when one path dies, another path can be used to deliver packets.
The higher the node density is, the more redundant paths will be available to
improve the data delivery period as well as the throughput. However, DDslp802
suffers from QoS pauses. The more often it changes to a new routing path, the
more chances it introduces a period of QoS pause. Hence, DDslp802 has worse
data delivery ratio as the node density increases. However, the data delivery
ratio of DDslp802 decreases much slower than the data delivery ratio of DDS-
MAC. Fig. 3 also shows that QoS pause impairs the data delivery ratio more
than SMAC unreliability at low node density, but it impairs the data delivery
ratio less than SMAC unreliability at high node density.

Due to space limitations, the standard deviations of throughput and data
delivery ratio are not shown in the figures. However, we observed that DD802
and DDslp802 have very small standard deviations for both throughput and
data delivery ratio, while DDSMAC has larger standard deviations as the node
density increases or as the duty cycle decreases. Similar results are observed in
all the experiments throughout the paper.

Varying Network Scale. In this experiment, we fix the node density, but
vary the network scale. 17, 23, 30, 38 and 47 nodes are placed in a 600mX600m,
700mX700m, 800mx800m, 900mX900m and 1000mX1000m area, respectively.

Fig. 4 shows the performance of the 7 schemes under different network scales
with the same node density. DD802 performs almost the same as in the experi-
ment of varying node density in a fixed area, with a throughput of 105 packets
on average and 100% data delivery ratio. Obviously, neither node density nor
network scale influences the performance of DD802.

DDSMAC has an overall decreasing performance as the network scale in-
creases. Since a large network scale implies that source nodes are on average
more hops away from the sink node, packets from a source node may experi-
ence worse synchronization, longer delay and higher dropping probability on the
routing path. Therefore, as the network scale increases, the best duty cycle for
DDSMAC in terms of throughput increases from 20% for 600mX600m area to
40% for 1000mX1000m area, due to the fact that larger duty cycles always have
better data delivery ratios.

A Better Choice for Sensor Sleeping 145

600 700 800 900 1000
0

100

200

300

length of square area in m

th
ro

ug
hp

ut
 (

#p
kt

)

DD802 DDSMAC10% DDSMAC20% DDSMAC30%

600 700 800 900 1000
0

0.5

1

length of square area in m

da
ta

 d
el

iv
er

y
ra

di
o

 DDSMAC40% DDSMAC50% DDslp802

Fig. 4. Performance comparison under varying network scale

DDslp802, on the other hand, has a steady performance in both through-
put and data delivery ratio. As fixed node density guarantees that a sensor
has on average a fixed number of neighbors, enlarging the network scale does
not increase the routing redundancy. Meanwhile, IEEE 802.11 has reliable data
delivery, hence DDslp802 does not suffer from extended multi-hop transmission.

Varying Number of Sources. In this experiment, the number of source nodes
varies from 2 to 26. Fig. 5 shows the performance of the 7 schemes. DD802, as
usual, has constant performance.

Overall, DDSMAC has an obvious improvement in throughput when the num-
ber of source nodes increases from 2 to 5, but the improvement slows down when
the number of source nodes continues to increase. As the number of source nodes
increases, the sink node can on average reach one of the source nodes in fewer
hops. The fewer hops a transmission experiences, the higher data delivery ratio
it will have, see Fig. 4. However, as the number of source nodes increases, the
probability that the sink node has at least one neighboring source node improves
from fast to slowly (more than one 1-hop source node does not help DDSMAC
since DDSMAC does not utilize routing redundancy). Accordingly, the improve-
ment in throughput slows down.

DDslp802 increases in throughput, but decreases in data delivery ratio. This
is because source nodes are the second redundancy that sleep Directed Diffusion
could use besides redundant routing nodes. Since Directed Diffusion reinforces

2 5 8 14 20 26
0

200

number of source nodes

th
ro

ug
hp

ut
 (

#p
kt

)

DD802 DDSMAC10% DDSMAC20% DDSMAC30%

2 5 8 14 20 26
0

0.5

1

number of source nodes

da
ta

 d
el

iv
er

y
ra

tio

 DDSMAC40% DDSMAC50% DDslp802

Fig. 5. Performance comparison under varying number of source nodes

146 O. Yang and W. Heinzelman

1 3 5 8
0

50

100

app data rate (#pkt/10s)

th
ro

ug
hp

ut
 (

#p
kt

)
/a

pp
 d

at
a

ra
te

DD802 DDSMAC10% DDSMAC20% DDSMAC30%

1 3 5 8
0

0.5

1

app data rate (#pkt/10s)

da
ta

 d
el

iv
er

y
ra

tio

DDSMAC40% DDSMAC50% DDslp802

Fig. 6. Performance comparison under varying application data rate

one path (one source node) at once to deliver data, other redundant source nodes
are put to sleep for later use. Hence, once a source node dies, another source node
can be reinforced to continue the data delivery. However, the more source nodes
to reinforce, the more chances DDslp802 will incur a QoS pause. Consequently,
the data delivery ratio decreases slightly as the number of source nodes increases.

Varying Data Rate. In this experiment, the application data rate at each rein-
forced source node varies from 1 packet per 10s to 8 packets per 10s.
Fig. 6 shows the throughput of the 7 schemes scaled by the application data rate
and their corresponding data delivery ratio. The throughput of DD802 increases
proportionally to the application data rate, while the data delivery ratio is 100%.

In absolute terms, DDSMAC also receives more packets as the application
data rate increases, but relatively, the throughput of DDSMAC is decreasing if
scaled by the application data rate. The decreasing performance of DDSMAC
can also be seen in its data delivery ratio. This is because SMAC cannot provide
reliable data delivery, as shown in Section 4.1, due to the contention in the
network. Higher application data rates mean more packets to send, and hence
more contention and packet loss in a fixed period of time. As the application
data rate increases, the best duty cycle in terms of throughput increases from
20% for 1 packet per 10s to 30% for 8 packets per 10s. Larger duty cycles can
alleviate contention in the network, as sensors are sleeping for a shorter time.

DDslp802, on the other hand, has throughput proportional to the application
data rate and maintains the same data delivery ratio as the application data rate
changes. As IEEE 802.11 provides reliable data delivery, the data delivery ratio of
DDslp802 drops only because of the QoS pauses introduced by sleeping Directed
Diffusion. When the node density and the number of sources are kept the same,
the redundancy that DDslp802 can utilize does not change. Hence, DDslp802
reinforces on average the same number of redundant paths, and consequently
has the same chances of introducing a QoS pause.

4.3 Performance of Sleeping at Both Layers

In this experiment, we compare the performance of sleeping schemes at both
routing and MAC layers, with and without cross-layer coordination, as described

A Better Choice for Sensor Sleeping 147

10 20 30 40 50
0

500

number of nodes

th
ro

ug
hp

ut
 (

#p
kt

)

DD802 DDSMAC DDslp802

10 20 30 40 50
0

0.5

1

number of nodes

da
ta

 d
el

iv
er

y
ra

tio

 DDslpSMAC−NC DDslpSMAC−C

Fig. 7. Performance of multi-layer sleeping with/without cross-layer coordination

in Section 3.3, as we vary the node density. For simplicity, we mention the com-
bination of sleeping Directed Diffusion and SMAC with its best duty cycle in
terms of throughput under DDSMAC as DDslpSMAC, followed by -NC or -C
for the case of without coordination or with coordination, respectively.

Fig. 7 shows the throughput and the data delivery ratio of 5 schemes. As
we can see, DDslpSMAC-NC has very similar performance in both throughput
and data delivery ratio as DDSMAC even though sensors can now sleep at both
layers. Since no coordination is implemented between the routing layer and the
MAC layer, sleeping Directed Diffusion does not have higher priority than SMAC
to schedule the sensors. When a sensor is turned off by sleeping Directed Diffu-
sion, it will still be woken up periodically by SMAC according to its duty cycle.
Hence, sensors are mostly following SMAC to sleep and wake up.

On the other hand, with certain coordination, DDslpSMAC-C significantly
improves the throughput compared with DDSMAC, since it not only reduces
idle listening during data delivery but also utilizes network redundancy. When
the node density is not very high, DDslpSMAC-C performs the best in terms
of throughput among all the sleeping schemes. However, when the node density
increases, DDslpSMAC-C cannot achieve as high throughput as DDslp802, since
the severe contention at the MAC layer greatly impairs the most vulnerable
but most important data delivery at the routing layer - unicasting positive rein-
forcement packets and unicasting high rate DATA packets. The loss of positive
reinforcement packets delays the path establishment, while the loss of DATA
packets impairs the throughput directly. Hence, DDslpSMAC-C cannot further
improve the throughput compared with DDslp802, although sensors sleep at
both layers. DDslpSMAC has a data delivery ratio lower than the data delivery
ratio of either DDSMAC or DDslp802, because both QoS pauses and SMAC un-
reliability are degrading the performance. Meanwhile, DDslpSMAC has similar
standard deviations with DDSMAC in either throughput or data delivery ratio,
while DDslp802 has smaller standard deviations (not shown in the figure).

These preliminary results show the benefit of employing cross-layer coordi-
nation between the routing and MAC layers to achieve higher throughput un-
der low network density. Hence, a smart decision can be made by the power

148 O. Yang and W. Heinzelman

management of wireless sensor networks to dynamically choose the best sleeping
scheme (single layer sleeping or multi-layer sleeping with coordination) as the
network density changes over time. We expect in our future work that sleeping at
both routing and MAC layers with cross-layer coordination can also outperform
single layer sleeping schemes when varying network scale, the number of source
nodes and the application data rate, as long as the contention in the network
is low. Moreover, we believe the performance of DDslpSMAC-C can be further
improved and may outperform single layer sleeping schemes all the time as more
sophisticated cross-layer coordination is employed.

5 Conclusions

In this paper, we analyze sleeping schemes conducted by routing protocols and
MAC protocols individually and simultaneously, for wireless sensor networks, in
order to determine the best method for sleeping under different network and
application scenarios. While conclusions are made by simulating networks that
run routing protocols with/without sleeping (Directed Diffusion and our newly
proposed sleeping Directed Diffusion) and MAC protocols with/without sleeping
(IEEE 802.11 and SMAC), the conclusions can also be applied to other routing
protocols that turn off sensors when they are not involved in the data delivery,
and other MAC protocols that use duty cycles to save energy. In general, our
results show that routing layer sleeping is more suitable for networks with high
redundancy or high contention, while MAC layer sleeping is more sensitive to
contention, and hence is a good choice for light traffic applications under small
scale networks. Furthermore, we show that cross-layer coordination can signif-
icantly improve the network throughput under low contention scenarios, when
routing layer sleeping and MAC layer sleeping are employed simultaneously.
Therefore, a smart decision can be made by a power manager to dynamically
switch to a sleeping scheme at the routing layer or the MAC layer or both layers
with cross-layer coordination, as the network conditions or application require-
ments change over time. Moreover, more sophisticated cross-layer coordination
has the potential to further improve the network throughput and outperform
single layer sleeping schemes in all cases.

Acknowledgments. This work was supported in part by the National Science
Foundation under grant # CNS-0448046 and in part by a Young Investigator
grant from the Office of Naval Research, # N00014-05-1-0626.

References

1. Zoghi, M.R., Kahaei, M.H.: Sensor Selection for Target Tracking in WSN Us-
ing Modified INS Algorithm. In: 3rd Internatioanl Conference on Information and
Communication Technologies: From Theory to Applications, pp. 1–6 (2008)

2. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed Energy Conservation for
Ad Hoc Routing. In: 7th Annual International Conference on Mobile Computing
and Networking, pp. 70–84 (2001)

A Better Choice for Sensor Sleeping 149

3. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An Energy-Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wirleess Networks.
Wireless Networks 8(5), 481–494 (2002)

4. Zheng, R., Kravets, R.: On-demand Power Management for Ad Hoc Networks.
In: 22nd Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 1, pp. 481–491 (2003)

5. Wang, H., Wang, W., Peng, D., Sharif, H.: A Route-oriented Sleep Approach in
Wireless Sensor Network. In: 10th IEEE Singapore International Conference on
Communication systems, pp. 1–5 (2006)

6. Ye, W., Heidemann, J., Estrin, D.: Medium Access Control with Coordinated
Adaptive Sleeping for Wireless Sensor Networks. IEEE/ACM Trans. on Network-
ing 3, 493–506 (2004)

7. Polastre, J., Hill, J., Culler, D.: Versatile Low Power Media Access for Wireless
Sensor Networks. In: 2nd International Conference on Embedded Networked Sensor
Systems, pp. 95–107 (2004)

8. Kulik, J., Rabiner, W., Balakrishnan, H.: Adaptive Protocols for Information Dis-
semination in Wireless Sensor Networks. In: 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, pp. 174–185 (1999)

9. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J.: Directed Diffusion
for Wireless Sensor Networking. IEEE/ACM Trans. on Networking 11(1), 2–16
(2003)

10. Chang, J., Tassiulas, L.: Maximum Lifetime Routing in Wireless Sensor Networks.
IEEE/ACM Trans. on Networking 12(4), 609–619 (2004)

11. Perillo, M., Heinzelman, W.: DAPR: A Protocol for Wireless Sensor Networks
Utilizing an Application-based Routing Cost. In: Wireless Communications and
Networking Conference, vol. 3, pp. 1540–1545 (2004)

12. Luo, H., Luo, J., Liu, Y., Das, S.K.: Adaptive Data Fusion for Energy Efficient
Routing in Wireless Sensor Networks. IEEE Trans. on Computers 55(10), 1286–
1299 (2006)

13. http://circuit.ucsd.edu/curts/courses/ECE284 F05/lectures/
ECE284 F05 L07 EnergyEfficiency 2pp.pdf

14. http://www.isi.edu/nsnam/ns/

http://circuit.ucsd.edu/curts/courses/ECE284_F05/lectures/ECE284_F05_L07_EnergyEfficiency_2pp.pdf
http://circuit.ucsd.edu/curts/courses/ECE284_F05/lectures/ECE284_F05_L07_EnergyEfficiency_2pp.pdf
http://www.isi.edu/nsnam/ns/

Distributed Task Synchronization in Wireless
Sensor Networks

Marc Aoun1, Julien Catalano2, and Peter van der Stok1

1 Philips Research, High Tech Campus 34, 5656AE Eindhoven, The Netherlands
{marc.aoun,peter.van.der.stok}@philips.com

2 Enensys Technologies, Le Germanium, 80 avenue des Buttes de Coesmes,
35700 Rennes, France

julien.catalano@enensys.com

Abstract. A WSN is envisaged to consist of a large number of nodes,
each combining sensing, processing and wireless communication capabil-
ities. The nodes have to cooperate to achieve a global function required
by the user. Towards achieving this goal, multiple tasks are performed on
all nodes or a subset of nodes in the network. The subject of this paper is
the synchronized execution of periodic tasks at different nodes, for exam-
ple: sensing tasks or a periodic on/off switching of radio transceivers. The
method is based on synchronizing timer interrupt occurrences at differ-
ent nodes to a single reference, leading to tight synchronization of tasks
over nodes. Measurements show that task synchronization is achieved on
our hardware platform with an average time difference of 5 μs between
the starts of temporally related tasks on different nodes.

Keywords: task synchronization, time synchronization, real-time
operating system, timestamping, synchronized sampling, clock drift.

1 Introduction

Major technological advances in the field of MicroElectroMechanical Systems
(MEMS) have allowed the production of small size, low cost nodes with sens-
ing, processing, and wireless communication capabilities. Ad-hoc networks made
of these nodes are referred to as Wireless Sensor Networks (WSNs). Although
initially investigated for military applications, the usage of WSNs is currently
envisioned for a multitude of civilian application fields such as agriculture, secu-
rity, habitat monitoring, and preventive machine maintenance. One of the main
application fields is the healthcare domain, with what is referred to as Body Sen-
sor Networks (BSNs) that are used to monitor the health of patients by sensing
their vital signs and other relevant aspects such as the level of activity.

Nodes in a WSN operate autonomously, and have to cooperate to achieve a
main objective required by the application. Each node has to perform a number
of tasks, where some tasks are periodic, some are event-driven and some are
performed only once. In this paper, we focus on periodic tasks. A set of identical

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 150–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Distributed Task Synchronization in WSNs 151

tasks, common to all nodes or at least a subset of nodes, are periodically exe-
cuted by different nodes. This distributed execution is usually not automatically
synchronized among nodes.

To synchronize the measurements performed by the tasks, a synchronized
execution of the tasks has been developed. Thanks to this work, synchronizing
the sensing tasks over a set of nodes has resulted in samples that are taken
within an interval of a few μs, therefore providing the high accuracy needed for
data correlation. Examples where this is needed are:

1. Studying gait and limb orientation of a subject, for either improving sport
performance or reeducation of stroke patients. A simultaneous measurement
of the orientation in space of two or more parts of the body is required.

2. Synchronized on/off switching of radio transceivers for power saving in Time
Division Multiple Access (TDMA) schemes. Synchronized tasks on the
sender and receiver nodes switch their radio modules at the same time for
communication and then turn them off to reduce power consumption.

Task synchronization complements time synchronization. With task synchro-
nization, measurements or actions can be as close as 5 μs; without task synchro-
nization but with time synchronization, measurements or actions can be several
milliseconds apart.

With the exception of the work done by Werner-Allen et al. [1], the topic
of distributed task synchronization in WSNs has gained limited attention so
far. Previous work focused on providing a WSN with time synchronization, and
therefore on providing the nodes with the same global time that is then used
to timestamp sampled data. However, there is no guarantee that the sampled
data are measured close enough in time. Timestamps help to correlate data, and
figure out when a certain sensing sample was made, but they do not allow the
samples to be actually made within a very narrow interval.

Going beyond time synchronization, our work aims at providing a WSN with
a task synchronization service. We describe in this paper a method for achieving
this purpose. The observation that tasks are started by an operating system (OS)
when the interrupts of a specific timer occurs, and knowing that the timers on
the nodes are started at different moments, lead to the insight of synchronizing
network-wide the interrupt occurrences of this specific OS timer. Synchronizing
the operating system timer ticks leads in a straightforward to task synchroniza-
tion. In what follows, we refer to the synchronization of the OS timer interrupt
occurrences as “Tick Interrupt Alignment” (TIA).

We tested the devised method on our target platform that runs FreeRTOS,
an open source Real-Time Operating System [8]. Measurements show that the
method achieves task synchronization in a single-hop network with a time offset
of 5 μs on average between the start of execution of the temporally related tasks
on different nodes. In the remaining parts of this paper, we will discuss some of
the related work, present the theoretical foundations of our method, the practical
implementation on our target platform, and finally, the measurements that we
obtained on real nodes.

152 M. Aoun, J. Catalano, and P. van der Stok

2 Time Synchronization Versus Task Synchronization

We deem it important at this early stage of the paper to clarify the differ-
ence between time synchronization and task synchronization, and dissipate any
confusion that might arise because of their similar nomenclature. Time synchro-
nization per se provides a way to translate the local time of a node to a global
time that becomes common to all the nodes in the network. On the other hand,
task synchronization aims at executing related tasks at different nodes in syn-
chrony with each other. It might, towards that end, use information provided by
a running time synchronization service.

One might be tempted at this point to present a “simple” solution to the task
synchronization problem; it would seem straightforward to first define when a
task should be executed on the global timescale. The defined global time could
then be translated into a corresponding local time value. The node could wait
until this local time value is reached, and then trigger the execution of the task.
As much as such a solution seems attractive at first glance, it suffers from a major
flaw; it totally overlooks the fact that in a multitasking OS environment, task
execution is dictated by and can only be triggered in harmony with a specific OS
timer. Even when the method claims to trigger the task, the actual execution
will get delayed until the OS timer fires. Since the OS timer runs at its own pace,
differently from node to node, this method’s performance would be significantly
limited.

3 Related Work

Previous work has mostly dealt with the concept of time synchronization. Some
of the proposed time synchronization protocols such as TPSN [3] periodically
compensate the accumulated time offset between two nodes (instantaneous syn-
chronization), whereas other protocols, such as RBS [2] and FTSP [4], go beyond
a simple instantaneous synchronization by estimating the relative clock offset
evolution (first order time derivative) between the clocks of the nodes. This ap-
proach reduces the frequency with which time synchronization packets should be
sent and therefore reduces the energy consumption needed for synchronization
while keeping the same accuracy. A precise timestamping at the MAC layer dur-
ing the transmission and reception of time synchronization messages is proposed
in [3], [4], and [5] to minimize the jitter in timestamping delay.

The issue of coordinating task execution, which is the specific topic of our
paper, is addressed by Werner-Allen et al. [1]. The authors use the word syn-
chronicity to refer to a coordinated “firing” of pulses by the sensor nodes. The
idea is based on a work done by R. Mirollo and S. Strogatz [7] that provides a
model (M&S model) for synchronous firing of biological oscillators. In the M&S
model, a node has an internal time t, that starts at 0 and is incremented until
reaching the period value. Once this value is reached, the node fires and t is
reset to 0. When another node notices that its neighbor fired, it adjusts its time
t forward in order to reduce its time to fire. The adjustment is determined by a

Distributed Task Synchronization in WSNs 153

“firing function” f and a constant ε smaller than 1. Mirollo and Strogatz prove
that a set of sensor nodes in an all-to-all topology will achieve synchronicity in
firing if f is smooth, monotonically increasing and concave down [1]. Later work
done by Lucarelli and Wang [6] proved that synchronicity would still be achieved
in a multi-hop network where nodes can only listen to a subset of nodes in the
network.

The authors in [1] base their work on the M&S model, while taking into
account the characteristics of wireless communication such as message delays,
message loss and medium access control based on CSMA schemes. A simple
approximation of the function f is used to overcome the limited floating-point
arithmetic capabilities of the nodes. The main presented contribution is a delay-
ing of the time adjustments by one time cycle to avoid problems that might arise
due to message delays and out-of-order messages reception. The authors report a
synchronicity with an accuracy up to 100 μs. The two main shortcomings of the
method are the long setup time and the high rate of message exchange needed
to achieve and maintain synchronicity.

4 Tick Interrupt Alignment (TIA)

4.1 General Overview

A tick interrupt is a periodic timer interrupt event that happens once the oper-
ating system timer counter in the node reaches a predefined end value E and is
reset back to its starting value S. Operating systems such as FreeRTOS [8] use
tick interrupts as a reference to start executing a scheduled task. Once a tick
interrupt happens, the task picked by the operating system scheduler will start
being executed.

Tick interrupts happen at all nodes in the network. It is highly unlikely that
tick interrupts occur at the same moment at all nodes or that the number of
tick interrupts contained in a time frame [t1 : t2] on a reference timescale is the
same at all nodes. The reason is the difference in start-up times of the nodes,
which translates itself into different start-up times of the counters. Additionally,
even if timers are started at the same moment,the deviation of the real oscillator
frequency from the nominal frequency provokes a drift of the individual start
times with respect to each other.

The main objective of Tick Interrupt Alignment (TIA) is to achieve and main-
tain a network-wide synchronized occurrence of tick interrupts, such that the tick
interrupt becomes a synchronized event over the network that is then used as
reference for executing the temporally related tasks in a synchronous fashion
on different nodes. Such an approach alleviates the coordination effort needed
in centralized coordination schemes where a single entity directs all the other
nodes on the moment the task should be executed.

TIA bears some similarities to the firefly-inspired synchronicity [1] discussed in
Sect. 3. Both approaches aim at synchronizing the occurrence of an event over
a set of nodes (e.g. the timer loop that periodically generates a firing event).
On the other hand, major differences between the two methods also exist; our

154 M. Aoun, J. Catalano, and P. van der Stok

method synchronizes the timer interrupt events of all nodes in a network to that
of a single master whereas in [1], nodes receive firing events information from all
neighboring nodes, and adjust their firing schedules based on this information,
without relying on a reference node. In addition, TIA does not make use of a
firing function f nor of a constant ε to define adjustments that should be made,
and therefore, needs less time to converge.

TIA is based on a periodic exchange of counter values coupled with an esti-
mate of the evolution of the periods T of the timer counter with respect to the
master’s. By taking the period’s evolution into account, TIA is able to reduce
the rate of instantaneous offset corrections, maintaining task synchronization at
no additional message exchange cost in between these correction interventions.
This is in great contrast to the firefly-inspired method [1] where the period evo-
lution is not taken into account, which requires a node to send a message every
time its event fires.

In [1], no proposal is made for operating system support to start synchro-
nized tasks. As already mentioned, in operating systems such as FreeRTOS, a
task execution cannot be planned to occur at any point in time. Tasks can be
scheduled to start executing only at the boundaries of timer loops, defined by
tick interrupt occurrences. Ignoring the scheduling characteristics significantly
limits the performance of any task synchronization method.

4.2 Timer Functionality

Sensor node controllers are usually equipped with timers. A timer counts from
a start value S to an end value E, set to default values Sdefault and Edefault
respectively. We will refer to a counting cycle from S to E followed by a reset
back to S as “timer round”. The default number of unitary counting steps in a
timer round is given by

τround,default = |Edefault − Sdefault| + 1 . (1)

Counting is based on the oscillations of a crystal oscillator. Two counting direc-
tions are possible: incrementing counting where Sdefault < Edefault, and decre-
menting counting where Sdefault > Edefault. In general, Sdefault is equal to 0
for incrementing counters and Edefault is equal to 0 for decrementing counters.
Incrementing counting and decrementing counting are illustrated in Fig. 1.

. . .

S

E

. . .

S

E

T r o u n d T i c k I n t e r r u p t

(a) I n c r e m e n t i n g t i m e r c o u n t e r (b) D e c r e m e n t i n g t i m e r c o u n t e r

 r o u n d T i c k I n t e r r u p tT

Fig. 1. Incrementing (a) and decrementing (b) timer counter

Distributed Task Synchronization in WSNs 155

Once a timer round is completed, a timer interrupt is signaled. The timer
interrupts on node i occur periodically, with a period Tround,i given by

Tround,i =
τround,default

fnominal
. (2)

Based on the functionality provided by the timer, node i can calculate its local
time tlocal,i using

tlocal,i = n × Tround,i +
∣∣∣∣
Vi − Sdefault

fnominal

∣∣∣∣ , (3)

where:

⎧
⎨

⎩

n = number of completed timer rounds,
Vi = current value of the timer counter,
fnominal = nominal frequency of the oscillator.

Without loss of generality, the subsequent explanation of Tick Interrupt Align-
ment will be based on an incrementing time counter.

Counting from S to E starts when the node is powered on. Since nodes
are in general not turned on at exactly the same moment, counting is not
synchronized on all nodes. This is illustrated in Fig. 2, for two nodes M
and N.

. . .

S

E

T i c k I n t e r r u p t
 o f n o d e M

T i c k I n t e r r u p t
 o f n o d e N

T r o u n d , N T r o u n d , M

I n te r rup t
 o f fset

S t a r t - u p
 o f fset

Fig. 2. Timer interrupts not synchronized due to start-up time offset.

Timer counters are based on a crystal oscillator, and variations in the oscil-
lator frequency are very likely to exist between oscillators present on different
nodes. Furthermore, the frequency of an oscillator can vary with time, causing
a variation in the timer rounds’ period within the same node. The difference
in oscillator frequency between M and N implies that even in the absence of
a start-up time offset, the nodes are not likely to exhibit synchronized timer
interrupt occurrences. This is illustrated in Fig. 3.

156 M. Aoun, J. Catalano, and P. van der Stok

. . .

S

E

T i c k I n t e r r u p t
 o f n o d e M

T i c k I n t e r r u p t
 o f n o d e N

T r o u n d , N T r o u n d , M

Fig. 3. Timer interrupts not synchronized due to differences in oscillator frequencies

Due to the initial time offset and the difference in oscillator frequencies, local
times of different nodes will seldom be equal. The relationship between the local
time tlocal,M of node M and the local time tlocal,N of node N is

tlocal,M = (1 + δ)tlocal,N + β , (4)

where:

{
δ = relative clock skew evolution between M and N,
β = initial time offset between M and N.

The job of a time synchronization service is limited to providing estimates of δ
and β and as such, approximating the relationship defined in (4). The job of our
task synchronization service is equalizing the values of Vi and Tround,i to align
the tick interrupts.

4.3 Aligning the Timer Interrupts

In this section, tick interrupts of node N are synchronized to those of node M.
We define a timer counter snapshot to be a value reached by the timer counter
at a given moment of interest. This value is bounded by the start and end value
of the timer round during which the snapshot is made.

When the relative clock skew evolution δ between M and N is equal to 0,
interrupt alignment can be achieved with a single exchange of snapshots followed
by a one-time modification of the end value of a timer round at node N to correct
for the counting offset. The snapshots, one from node M, and another from node
N, are made at the occurrence of an event common to both nodes. We will refer
to the snapshots taken at M and N by snpM and snpN respectively, and to the
difference between them by D, given by

D = snpM − snpN . (5)

In order for D to precisely reflect the counting offset that exists between the two
timer counters, the common event should ideally happen simultaneously on the
two nodes, i.e. without indeterministic delay components. In practice, this can be
approximated by sending a broadcast message to nodes M and N, which reaches

Distributed Task Synchronization in WSNs 157

the nodes M and N almost simultaneously, followed by almost equal interrupt
service routine (ISR) activation delays at both nodes.

Once D becomes available at node N, the latter can modify the end value of
one of it’s timer rounds to achieve interrupt alignment. Two options are available
at this point: As Soon As Possible (ASAP) Alignment, and Delayed Alignment.
In ASAP Alignment, the end value is set to EASAP. In Delayed Alignment, the
end value is set to EDelayed. These values are calculated using

EASAP = Edefault − D , (6)
EDelayed = Edefault + (Edefault − D) . (7)

ASAP Alignment achieves tick interrupt synchronization one timer interrupt
earlier than Delayed Alignment, hence the nomenclature. The reasons to use
one or the other is determined by the value of (EASAP − D) and the delay until
its ISR is executed, as outlined below.

The end value of a timer round should be modified in the tick ISR. When a
timer interrupt is signaled, the timer counter is reset to S and counting continues,
regardless of whether or not the ISR has been executed or its execution is delayed
until the processor is free.

When EASAP is smaller than the delay that exists between the occurrence of
a timer interrupt and the execution of its corresponding ISR, it can happen that
the end value is set to EASAP only after the timer counter has already exceeded
this value. In such a case, the timer counter will continue counting until it reaches
the maximum value that its register can hold. It will then be reset back to 0, and
count till it reaches EASAP. Only then would a timer interrupt occur again. This
behavior is unwanted. On the other hand, in Delayed Alignment, the correction
of the end value is delayed by one complete timer round, therefore avoiding any
problems due to delays in interrupt processing. For decrementing timer counters,
the problem does not exist since it is the start value that will be modified in the
ISR.

A decision should thus be made in the ISR on whether to use an ASAP Align-
ment or a Delayed Alignment, based on the calculated EASAP and an estimate of
the worst-case delay that can exist between a timer interrupt and the execution
of its ISR.

For the case where δ is equal to 0, once the offset is corrected for, all subsequent
timer interrupts at node N will occur synchronously to the interrupts at node M.

Since δ is in reality unlikely to be equal to 0, a one-time correction would not
be enough to keep the tick interrupts synchronized. A periodic offset correction
can be performed. The period with which corrections are made depends on the
value of δ and on the required synchronization precision. Such a periodic instan-
taneous correction approach performs poorly in terms of energy consumption
since it requires a high rate of message exchange to keep the counting offset
below a required limit.

A different approach, proposed and adopted in this work, is based on a com-
bination of periodic instantaneous corrections, referred to as Major Correction
Steps (MCS), and a correction phase that spans multiple consecutive timer

158 M. Aoun, J. Catalano, and P. van der Stok

rounds and during which the skew evolution is compensated for. During this
phase, referred to as Skew Compensation Phase (SCP), no message exchange is
needed. Compensating for the skew evolution on counting reduces the need for
instantaneous corrections. This reduces the rate of message exchange and thus
energy consumption.

In general, SCP takes place directly after each MCS, and will keep on being
applied until the next MCS is executed. Therefore, a SCP covers a period of
time bounded by two MCSs. The reason why an MCS is performed periodically
is that the skew evolution estimate is periodically updated. Each time a new skew
evolution estimate is available, a MCS is applied to correct for any small offset
that might have accumulated during the SCP. Each MCS serves as a starting
point for a new SCP that uses the most recent available skew evolution estimate.

In SCP, node N uses the estimate of its clock skew evolution relative to M to
deduce an end value Eδ that gives the same effective timer period as that of M. Eδ

will be used as end value for all timer rounds until the next MCS. It is given by

Eδ =
τround,default

(1 + δ)
+ Sdefault − 1 . (8)

Whereas (8) would likely result in non-integer values, the end value of the counter
can only be an integer. Therefore, in the SCP, the end value is set to the integer
that is closest to the result of (8). The fractional offset between this result and
the integer value is accumulated. A correction is made once the accumulated
value becomes bigger or equal to 1 or any predefined integer value.

Accuracy of the MCS suffers from a δ not equal to 0; (6) and (7) would
not provide accurate results. There is usually a delay between the moment the
snapshots are made and the MCS is performed. A non-zero skew evolution and
this delay will result in outdated snapshot information for the MCS.

To perform snapshot updates and scale conversions, the following procedure
is performed: When snpN is made, the number n1 of completed timer rounds is
recorded. In the ISR during which MCS is performed, a new snapshot snpN,new is
made and n2, the new number of completed timer rounds, is recorded. The total
number of counting steps τtotal,N elapsed between snpN and snpN,new is found.
for the first MCS and any MCS that is not preceded by a SCP this number
satisfies

τtotal,N =(n2 − n1 − 1)τround,default + snpN,new

+ (Edefault − snpN + 1) . (9)

For an MCS that is preceded by a SCP, τtotal,N is found using

τtotal,N =(n2 − n1 − 1)
τround,default

1 + δ
+ snpN,new

+ (Eδ − snpN + 1) . (10)

Distributed Task Synchronization in WSNs 159

τtotal,N is then used to estimate the corresponding number of elapsed counting
steps τtotal,M at node M, such that

τtotal,M = (1 + δ)τtotal,N . (11)

An updated snapshot value snpM,new is found using

snpM,new = [τtotal,N − (Edefault − snpM + 1)]
mod(τround,default) . (12)

To perform the MCS, the end value of N’s timer counter is set to either EASAP
or EDelayed given by

EASAP =
Edefault

1 + δ
−

(
snpM,new

1 + δ
− snpN,new

)

− δ

1 + δ
(13)

and
EDelayed = EASAP + Eδ . (14)

Snapshot updates and snapshot scale conversions may produce a too large over-
head for the tick ISR and lead to extra delays in the system. In practice, they
can be omitted at the expense of less accuracy.

5 Coexistence of TIA and Time Synchronization

A time synchronization algorithm uses timestamps of the local time and the
global time, to find an estimate of the skew evolution and the offset between
them. As mentioned in sect 4.2, local time is measured by keeping track of the
progress of a timer.

Our TIA algorithm uses the skew estimate provided by the time synchroniza-
tion service to complete its SCP. The evolution estimate indirectly reflects the
functioning of the oscillator used by a timer. As such, to provide the skew evolu-
tion estimate relevant for TIA, the time synchronization should either be based
on the OS timer used by TIA, or another one that shares the same oscillator as
the OS timer. In our case, it is based on the OS timer.

Time synchronization requires a free-running timer. If the counting progress
of the timer is “artificially” perturbed by changing the start or end values of the
timer rounds, the estimation mechanism would result in completely erroneous
estimates. In both its phases (MCS and SCP), the TIA algorithm introduces
modifications to the free-running timer, perturbing its normal progress. There-
fore, to achieve a coexistence between TIA and time synchronization, the per-
ception of a free-running counter is maintained by reconstructing the raw timer
values.

160 M. Aoun, J. Catalano, and P. van der Stok

6 Tick to Task Mapping

With synchronized ticks, task synchronization is achieved when at every node
the same tick interrupt is chosen to activate the task.

A potential method is: the nodes one hop from a given master can receive
information about the next execution time of the task at the master node, and
then provide similar information to the nodes at the next hop, and so forth.

The alternative that we chose to implement is based on node-local decisions
concerning task execution times. The method is based on using the global time
to deduce the number of completed timer rounds at the master, and start the
periodic task when this number becomes a multiple of the task’s period. In such a
way, even though each node achieves TIA asynchronously from other nodes and
starts executing the task regardless of whether or not other nodes are ready (i.e.
achieved TIA), the execution moments will become aligned at some point due to
the fact that they are multiples of the same value. Multiple periodic tasks can
be synchronized independently based on the achieved tick interrupt alignment.

7 Implementation and Practical Aspects

Task synchronization software have been developed for our node hardware. In
addition, a time synchronization service has been implemented. Measurements
were executed on this hardware and software. All results are real-life measure-
ments and no simulations.

7.1 The Target Platform

Our testbed consists of a single-hop network of 5 SAND nodes. Each SAND
node incorporates, among other modules, a CoolFlux DSP and a CC2420 radio
chip. The CoolFlux is a 24-bit dual-Harvard architecture Digital Signal Processor
(DSP). It features two 64 Kwords data memories (24 bits) and one 64 Kwords
program memory (32 bits) [12].

The CC2420 operates in the frequency range 2400–2483 MHz, divided into 16
channels. It has a data rate of 250 kbps and an output power ranging from -25
to 0 dBm [10].

The CoolFlux DSP in our platform runs a real-time operating system, FreeR-
TOS [8], and an implementation of the IEEE 802.15.4 standard [9].

One node in the network acts as time master. The remaining nodes perform
time synchronization and task synchronization relative to the master node.

7.2 FreeRTOS

FreeRTOS [8] is an open source Real-Time Operating System. It provides the
choice between preemptive and cooperative scheduling policies. In this test we
use the preemptive scheduling mode. FreeRTOS’s scheduler is a round robin
priority-based scheduler. Each task has a priority level. The total number of
priority levels is defined by the program designer. A timer is used to periodically

Distributed Task Synchronization in WSNs 161

generate interrupts that define when tasks start executing. Each time such a
tick interrupt occurs, the scheduler checks which tasks are in the ready state
and picks the one that has the highest priority for execution. Tasks having the
same priority level share the processor in a round-robin fashion by allowing a
task to run for only one time slice (time between two tick interrupts).

A chosen task starts to get executed until it blocks, or its time slice ends.
The next equal-priority task in line will then start to be executed directly after.
Once no more tasks of the highest priority level are ready, the scheduler moves
to the next lower priority level, and so forth.

The period Tround,DSP with which tick interrupts are generated is configurable.
This period defines the time it takes for a timer round from start to end value
to be completed. By default, in FreeRTOS, Tround,DSP is equal to 1000 μs.

7.3 Time Synchronization

Time synchronization provides us with an estimate of the relative clock skew
evolution δ. The nodes are running a one-hop version [5] of FTSP [4], with
MAC-layer timestamping and skew evolution estimation. The SFD interrupt
specified in [9] has been used to timestamp time synchronization messages at
both the sender side (master) and the receiver side. The SFD interrupt occurs
at the sender side when the SFD byte of the IEEE 802.15.4 frame (time syn-
chronization message) has been sent, and at the receiver side when this same
byte has been received. Neglecting propagation time, this interrupt occurs al-
most simultaneously at both the sender and receiver [13]. The CC2420 datasheet
[10] mentions a small delay of approximately 2 μs because of bandwidth limita-
tions in both the transmitter and the receiver. The average value of this delay
is corrected for.

Every P seconds, a message sent by the master results in a pair of timestamps,
(master Ts, node Ts) at each node. This pair is added to the linear regression
table. Linear regression is performed on a set of r timestamp pairs.

From a computation efficiency point of view, we use 24-bit variables to hold
time values on the DSP. One consequence of our choice is that the overflow
value of the local time on the DSP is equal to 16777216 μs. We slightly modified

Table 1. Time synchronization results (mean (μ), standard deviation (σ), maximum
and minimum) using Linear Regression (LR) for different values of r and P

P = 2 sec 4 sec 6 sec 8 sec

2-points LR

min (μs) -6 -7 -7 -9
max (μs) 6 8 6 8

μ (μs) 1.40 1.48 1.6 2.0
σ (μs) 1.14 1.25 1.33 1.64

4-points LR

min (μs) -4 -5
max (μs) 4 6

μ (μs) 0.91 0.89
σ (μs) 0.82 0.91

P = 2 sec

6-points LR

min (μs) -3
max (μs) 4

μ (μs) 0.87
σ (μs) 0.79

8-points LR

min (μs) -3
max (μs) 3

μ (μs) 0.86
σ (μs) 0.72

162 M. Aoun, J. Catalano, and P. van der Stok

Tround,DSP to a power of 2 value, 1024 μs, to have an integer number of timer
rounds for each overflow cycle of the local time.

The small time overflow value introduces constraints on the maximum possible
value that the product r×P can take; r×P should be smaller than the overflow
period. Therefore, with a simple 2-points linear regression (r = 2), P can at
most be equal to 8 seconds. Table 1 shows the time synchronization performance
between the master node and the other nodes in our testbed.

Based on this implementation, our performance compares to the time
synchronization performance reported in [4] and [5]. Our results show that com-
bining MAC-layer timestamping and skew evolution estimation results in ac-
curate time synchronization, with an achievable average absolute error in the
sub-microsecond range.

7.4 Tick Interrupt Alignment Practical Implementation

The TIA implementation follows the analytical model presented in Sect. 4.3.
The SFD interrupt outlined in Sect. 7.3 was used as reference event for
generating snapshot pairs (snpM, snpN). To reduce the message overhead fur-
ther, the snapshots were included in the same messages exchanged for the time
synchronization service. The snapshot pairs are used to perform the MCS. The
skew evolution estimate relative to the master is used to perform the SCP. The
time synchronization period was set to two seconds and a simple 2-points LR was
used. This means that a new skew evolution estimate is delivered by the time
synchronization service every two seconds, triggering a new MCS. To alleviate
computation requirements, the processing delay and the skew evolution were as-
sumed to be negligible when performing the MCS, an assumption that greatly
simplifies the calculations (no snapshot updates and scale conversion required
anymore) without incurring substantial errors.

7.5 Task Synchronization

Before TIA is achieved, the “to-be-synchronized” periodic task will remain
blocked waiting on a semaphore. Once TIA is completed, the semaphore is re-
leased. The next time the task is accessed for execution, a task preamble is
executed only once. This part finds an estimate of the current global time and
deduces the number nmaster of completed timer rounds at the master node using

nmaster =
⌊

tglobal

Tround,DSP

⌋
. (15)

This number is consistent over all nodes. The preamble ends with a call to a
delay function that delays the execution of the task by a number Δn of local
timer rounds, such that

Δn = Ptask − (nmaster mod(Ptask)) . (16)

After the delay expiry and this initial execution, all of the following executions
of the task will be performed each Ptask.

Distributed Task Synchronization in WSNs 163

7.6 Testing Procedure and Results

To test the performance of our method, a signal level on a GPIO pin of each DSP
was changed each time a synchronized task, with a period equal to 512 tick inter-
rupts, starts to execute. The signals were visualized on an oscilloscope.
Fig. 4 shows an example, illustrating the signals of the master and a second node.

Fig. 4. Task execution start-up on each node is represented by a signal level change
from low to high. The oscilloscope’s “persist” function is used here to keep track of the
task synchronization offset.

Of interest is the value of the absolute offset between each node and the
master. This value was determined at each node for 1000 task executions, thus
resulting in a total of 4000 offset values. The cumulative distribution function and
statistics of the offset are presented in Fig. 5. The average absolute offset is equal
to 5.05 μs. The minimum offset value is equal to 0 μs and the maximum absolute
offset value is equal to 20.7 μs. The results show that task synchronization based

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Task synchronization offset (µs)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

of
 s

yn
ch

ro
ni

za
tio

n
of

fs
et

Mean = 5.05 µs
Minimum = 0 µs
Maximum = 20.7 µs
50th percentile = 4.2 µs
95th percentile = 11.6 µs

Fig. 5. Cumulative distribution function of the task synchronization absolute offset
values

164 M. Aoun, J. Catalano, and P. van der Stok

on Tick Interrupt Alignment can achieve a high degree of task synchronization
accuracy, with 90% of the offset values being smaller than 10 μs.

We identify the following potential reasons why the average of 5.05 μs achieved
by task synchronization is larger than the time synchronization accuracy of 1.4 μs
(with r = 2, P = 2 seconds):

1. Existence of jitter in the operating system context switch on each DSP.
2. Existence (in practice) of delay between making snapshots at the master and

listening nodes.
3. Snapshot updates and scale conversions are not implemented.
4. Errors in the skew evolution estimate (would contribute to an accumulated

error in the SCP).

8 Conclusion and Future Work

We presented in this paper a method that is capable of achieving and main-
taining a synchronized network-wide execution of periodic tasks in a Wireless
Sensor Network. The method is based on providing synchronized timer interrupt
occurrences that are used by the operating system as reference to launch tasks.
The test results show that our method is capable of achieving a high level of task
synchronization accuracy, with an average time offset of 5 μs between the start
of execution of the same task on different nodes in a single-hop scenario. In the
near future, we intend to investigate the performance of our method in a multi-
hop environment. Preliminary tests on multi-hop time synchronization showed
an increase of less than 0.3 μs per hop. It can be stated at this point that task
synchronization performance will not substantially degrade when increasing the
number of hops and that it will exhibit a performance similar to multi-hop time
synchronization. Nevertheless, only the actual testing that we intend to perform
would confirm our expectations.

Acknowledgments

We are thankful to Prof. Dr. Petri Mähönen, Head of the Department of Wireless
Networks at RWTH Aachen (Germany), for making this work possible. This work
is partially financed by the European Commission under the Framework 6 IST
Project “Wirelessly Accessible Sensor Populations (WASP)” (IST-034963).

References

1. Werner-Allen, G., Tewari, G., Patel, A., Nagpal, R., Welsh, M.: Firefly-Inspired
Sensor Network Synchronicity with Realistic Radio Effects. In: 3rd ACM Confer-
ence on Embedded Networked Sensor Systems (Sensys 2005), pp. 142–153 (2005)

2. Elson, J., Girod, L., Estrin, D.: Fine-Grained Network Time Synchronization Us-
ing Reference Broadcasts. In: 5th Symposium on Operating System Design and
Implementation (OSDI 2002), pp. 147–163 (2002)

Distributed Task Synchronization in WSNs 165

3. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync Protocol for Sensor Net-
works. In: 1st International Conference on Embedded Networked Sensor Systems
(SenSys 2003), pp. 138–149 (2003)

4. Maróti, M., Kusy, B., Simon, G., Lédeczi, Á.: The Flooding Time Synchroniza-
tion Protocol. In: 2nd International Conference on Embedded Networked Sensor
Systems (SenSys 2004), pp. 39–49 (2004)

5. Aoun, M., Schoofs, A., van der Stok, P.: Efficient Time Synchronization for Wireless
Sensor Networks in an Industrial Setting. In: 6th ACM Conference on Embedded
Networked Sensor Systems (Sensys 2008), pp. 419–420 (2008)

6. Lucarelli, D., Wang, I.-J.: Decentralized Synchronization Protocols with Nearest
Neighbor Communication. In: 2nd International Conference on Embedded Net-
worked Sensor Systems (SenSys 2004), pp. 62–68 (2004)

7. Mirollo, R.E., Strogatz, S.H.: Synchronization of Pulse-Coupled Biological Oscil-
lators. SIAM Journal on Applied Mathematics 50(6), 1645–1662 (1990)

8. FreeRTOSTMHomepage (accessed, August 2008), http://www.freertos.org/
9. IEEE Std 802.15.4-2006: IEEE Standard for Information Technology – Part 15.4:

Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low-Rate Wireless Personal Area Networks (WPANs) (2006)

10. Chipcon (Texas Instruments): CC2420 data sheet. 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver (2006)

11. Atmel Corporation: ATMega128L data sheet. 8-bit Microcontroller with 128K
Bytes In-System Programmable Flash (2006)

12. Roeven, H., Coninx, J., Ade, M.: CoolFlux DSP: The Embedded Ultra Low Power
C-programmable DSP Core. In: Proceedings of the International Signal Processing
Conference (GSPx), Santa Clara (2004)

13. Cox, D., Jovanov, E., Milenkovic, A.: Time Synchronization for ZigBee Networks.
In: 37th Southeastern Symposium on System Theory (SSST 2005), pp. 135–138
(2005)

http://www.freertos.org/

Solving the Wake-Up Scattering Problem
Optimally

Luigi Palopoli1, Roberto Passerone1, Amy L. Murphy2, Gian Pietro Picco1,
and Alessandro Giusti3

1 Dip. di Ingegneria e Scienza dell’Informazione (DISI), University of Trento, Italy
{luigi.palopoli,roberto.passerone,gianpietro.picco}@unitn.it

2 Fondazione Bruno Kessler—IRST, Trento, Italy
murphy@fbk.eu

3 Dept. of Electronics and Information, Politecnico di Milano, Italy
giusti@elet.polimi.it

Abstract. In their EWSN’07 paper [1], Giusti et al. proposed a de-
centralized wake-up scattering algorithm for temporally spreading the
intervals in which the nodes of a wireless sensor network (WSN) are ac-
tive, and showed that the resulting schedules significantly improve over
the commonly-used random ones, e.g., by providing greater area coverage
at less energy costs. However, an open question remained about whether
further improvements are possible. Here, we complete the work in [1] by
providing a (centralized) optimal solution that constitutes a theoretical
upper bound for wake-up scattering protocols. Simulation results shows
that the decentralized algorithm proposed in [1] comes within 4% to 11%
of the optimum. Moreover, we show that the modeling framework we use
to derive the solution, based on integer programming techniques, allows
for a particularly efficient solution. The latter result discloses important
opportunities for the practical utilization of the model. The model is also
general enough to encompass alternative formulations of the problem.

1 Introduction

The operation of a wireless sensor network (WSN) node is usually characterized
by (long) periods of inactivity spent in a low-power stand-by state, interleaved
with (short) periods where the expected sensing, computation, and commu-
nication duties are carried out. This duty-cycling is used to minimize energy
consumption, therefore maximizing the lifetime of the network at large. Never-
theless, the performance of WSN applications critically depends on the quality
of the duty-cycling schedule, ensuring that the right nodes are active at the right
time. A random schedule may lead to an inefficient use of resources. Consider
Figure 1, where three nodes cover, with overlaps, a given area. Ensuring that
nodes 2 and 3 are not simultaneously active saves energy. Indeed, since a point
in the target area may be monitored by multiple nodes, it is possible to switch
some off as long as the remaining active nodes cover the target area.

In their EWSN’07 paper [1], Giusti et al. presented a decentralized protocol
that leverages this observation by scattering the nodes’ wake-up times, therefore

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 166–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Solving the Wake-Up Scattering Problem Optimally 167

taking advantage of the overlap among the nodes’ sensing range. They demon-
strated the effectiveness and practical relevance of their wake-up scattering pro-
tocol in several common WSN scenarios, including the coverage problem above.
However, although they showed that their protocol yields significant improve-
ments over random schedules, they did not answer the question about whether
further improvements can be obtained and, if so, how significant.

This paper provides an answer to this question, by

3

1

3 2

Fig. 1. A topology
where wake-up scatter-
ing matters

giving a means to compute the optimal schedule of
wake-up times that maximizes the area covered by
a set of sensor nodes. Our technique, based on inte-
ger linear programming (ILP), is inherently central-
ized as it assumes global topology knowledge. However,
the significant theoretical contribution of this paper is
that, under the reasonable assumption of a constant
and periodically-repeated awake interval, the result-
ing optimization problem can be radically simplified,
enabling an efficient solution. The significant compu-
tational speed-up we gain allows us to deal with a
large number of nodes in a reasonable time. Therefore,
besides providing a theoretical upper bound against
which to evaluate distributed solutions, our technique can be used as an effec-
tive design tool in cases where parameters such as the deployment topology are
under control. Moreover, we envision a combination of the two techniques, where
our optimal off-line solution determines the initial configuration of the system
at deployment time, and the distributed algorithm in [1] is used online to adapt
to topology changes.

Section 2 presents a complete description of the problem, followed by the
description of our approach and a proof that our formulation, which offers sig-
nificant computational speed-ups, provides results equivalent to the general case.
In Section 3 we compare quantitatively our optimal solution against the original
decentralized one in [1]. The evaluation confirms that the latter algorithm, al-
beit very simple, is very efficient, as it comes within 4% to 11% of the optimum.
Moreover, through our mathematical formulation we are able to gain insights
into the relationships among coverage, lifetime, and node density.

Our modeling framework is actually general enough to represent problems
other than coverage, similarly affected by duty-cycling: we discuss these issues
in Section 4. Finally, after a concise survey of related approaches in Section 5,
we end the paper with our concluding remarks in Section 6.

2 System Model and Solution Algorithm

Our approach assumes1 a target area A to be monitored using a set of sensor
nodes N . For each node n ∈ N , we know its position in the target area A,
1 For simplicity, we describe the problem in two dimensions: the extension to a three-

dimensional space is straightforward.

168 L. Palopoli et al.

represented as a pair of coordinates (xn, yn), as well as its sensing range nA,
i.e., the area that is directly monitored by n. We assume that the sensitivity of
a node in its sensing range is constant, and that the boundaries of the sensing
range are sharp. In other words, the complete topology of the problem is known
in advance. An example was already shown in the introduction in Figure 1.

The system operates according to a periodic schedule. The period, called the
epoch, is denoted by E. In our problem, the lifetime of the system is fixed and
determined by the awake or activation interval of a node, i.e., the interval during
which a node is awake in the epoch. We assume that the awake interval is the
same across all nodes, and that each node is woken up only once per epoch.
Alternative formulations with different awake intervals or multiple activations
per epoch are possible at the expense of increased computational complexity.

Our objective is to maximize the coverage by scheduling the nodes’ wake-up
time. At any time t, the set of nodes awake at t defines a covered area S(t),
equal to the union2 of the sensing areas of all awake nodes. Our objective is thus
to maximize the integral of S(t) over the epoch. Clearly, constraining the awake
interval and the epoch is tantamount to fixing the network lifetime, and one
could argue that we address the problem of maximizing the coverage given the
lifetime. However, as shown in Section 4, solving the problem for different values
of the lifetime allows us to explore the tradeoffs between lifetime and coverage.

Our method to solve the optimization problem goes through two steps, which
are described in detail in Section 2.1 and 2.2, respectively.We first consider and
solve the spatial partitioning problem, i.e., how to determine a finite number of
regions in the target area that, without loss of accuracy, can be used to model
the system topology and the area overlaps. Then, we set up an integer linear
program expressing the scheduling problem, with coverage constraints for each
node and region found in the previous step. The optimization problem is then
solved using standard linear programming and branch-and-bound techniques,
and yields the optimal schedule for the given objective function and constraints.

2.1 Spatial Partitioning

The optimization problem can be setup as a linear program by enforcing a certain
level of coverage on the target area A, using appropriate constraints discussed
in Section 2.2. This approach is feasible if A is discretized into a finite number
of regions, to avoid generating constraints for each of the infinitely many points
in A. Here we use the concept of field [2], i.e., regions of A that are invariant
relative to node coverage. In other words, any two points within one such region
are covered by exactly the same nodes. In this case, it is sufficient to consider
only one point per region, or, equivalently, consider the region as a whole.

Several algorithms have been proposed for field computation. Slijepcevic and
Potkonjak approximate the computation by a regular sampling of the area [2],
while Tian and Georganas rely on geometric approximations to compute the
required intersections [3]. Huang and Tseng propose an exact and efficient algo-
rithm for deciding if an area is covered by at least k sensors by considering only
2 Unlike the sum of these areas, overlaps are not counted multiple times.

Solving the Wake-Up Scattering Problem Optimally 169

the perimeter of the sensing area [4] and reasoning on the angles of intersection.
This way, the computational complexity is reduced to O(nd log n), where n is
the number of nodes and d is the average number of nodes that overlap a given
node. Here, we present a simpler algorithm, with the same complexity, for the
case of rectangular rather than the more traditional circular sensing areas, and
use coordinates instead of angles. Our algorithm works without change when the
sensing area is represented by unions of rectangles, including the case of uncon-
nected sensing areas. This feature can be used to approximate arbitrary shapes,
albeit with increased computational complexity. In any case, our optimization is
independent of the shape of the sensing area and the way regions are computed.

In the following sections, we will use r : A → 2N

Fig. 2. Target area and
scanning sequence

Region Nodes Area
ρ0 ∅ 56
ρ4 { 1, 3 } 96
ρ1 { 1 } 144
ρ5 { 2 } 244
ρ2 { 1, 2 } 140
ρ6 { 2, 3 } 272
ρ3 { 1, 2, 3 } 160
ρ7 { 3 } 112

Fig. 3. Regions for the
topology of Figure 2

to denote the function that for each point p ∈ A
returns the set of nodes that cover p. A region (or
field) ρ is the largest subset of points of A which
are covered by the same set of nodes, We denote
the set of regions by the symbol R. For each region
ρ ∈ R, the corresponding area is returned by the
function w : R → R+. Given that there is a one-to-
one mapping, we use r(ρ) to denote the set of nodes
covering region ρ. Note also that each region need
not necessarily be connected, even when the sensing
areas of the nodes are connected and convex. Thus,
this kind of spatial partitioning cannot be obtained
using a simple regular discretization.

The partitioning algorithm works by scanning the
target area horizontally, left to right, stopping at ev-
ery vertical boundary of a node’s range, as shown
in Figure 2. At every stop, the algorithm performs
a vertical scan, from bottom to top, that computes
the regions found at that horizontal position, and
updates their area. This is sufficient, since the com-
putation of the optimal schedule does not require the
shape of the regions, but only their area and cor-
responding set of covering nodes. The latter conve-
niently identifies the region, as discussed above. For
example, in Figure 2, the vertical scan at x0 finds
a sequence of regions corresponding to the sets of
nodes

{3}, {2, 3}, {1, 2, 3}, {1, 2}, {2}. (1)

Areas are accumulated incrementally, and computed up to the next stop in the
scanning sequence. The procedure is shown in detail in Algorithm 1. To perform
the horizontal scan, we first build a sequence h scan of all the vertical boundaries
of the nodes, ordered by their horizontal position (line 2.1). We then loop through
this sequence (line 2.1) and stop at every element. To perform the vertical scan we
also build a sequence, denoted v scan, by inserting the horizontal boundaries of

170 L. Palopoli et al.

Algorithm 1. Spatial partitioning algorithm.
1. h scan = list of vertical boundaries of nodes, ordered by their horizontal position
2. v scan = ∅
3. R = ∅
4. for i = h scan.begin() to h scan.end() do
5. if i is left boundary of node n then
6. Insert the horizontal boundary of n in v scan ordered by vertical position
7. else // i is the right boundary of node n
8. Erase the horizontal boundary of n from v scan
9. end if
10. h extent = horizontal extent to next stop
11. node set = ∅
12. for j = v scan.begin() to v scan.end() do
13. if j is bottom boundary of node n then
14. Insert n in node set
15. else // j is the top boundary of node n
16. Remove n from node set
17. end if
18. v extent = vertical extent to next stop
19. area = h extent · v extent
20. R = R ∪ {node set}
21. node set.area = node set.area + area
22. end for
23. end for

the nodes that intersect the scan at the current horizontal position in the order of
their vertical position. For efficiency, this sequence is constructed incrementally:
it is initialized to empty (line 2.1) and at every step of the horizontal scan we
insert or remove the horizontal boundaries of the node at that position, according
to whether we are entering (from the left) or exiting (to the right) the sensing
area of the node (lines 2.1 and 2.1). In the example of Figure 2, the vertical scan
at x0 would already have the ordered entries (3bot, 1bot, 3top, 1top). At x0, since
we are entering node 2, we add 2bot and 2top in the correct order, to obtain

(3bot, 2bot, 1bot, 3top, 1top, 2top). (2)

The vertical scan starts with the loop at line 2.1. During this phase, we keep
track of the set of nodes node set for which the current point is in range. This
set is updated at every step of the scan according to whether we are entering the
node’s range from the bottom (line 2.1) or exiting it from the top (line 2.1). For
example, by scanning sequence (2) we obtain the regions of sequence (1). After
computing the area of the node set, we add it to the set R (line 2.1). If the region
was already present in the set, we do not add a new element but simply update
its area (line 2.1). The result of applying Algorithm 1 to the topology of Figure 2
is shown in Figure 3, where each region ρ is associated with its covering nodes
and its area. Note that the area covered outside the target area A is ignored.

2.2 Computation of the Optimal Schedule

As discussed, we consider periodic schedules of a fixed duration E, called the
epoch. We assume that every node wakes up exactly once per epoch, and operates
for a defined time I, the awake interval. The optimization problem consists of
finding the time within the epoch at which each node should wake up (the

Solving the Wake-Up Scattering Problem Optimally 171

wake-up time) in order to maximize the total coverage. Intuitively, this can be
achieved by scheduling the operation of overlapping nodes at different times,
while nodes that do not overlap could be scheduled concurrently. The original
decentralized algorithm described in [1] approximates this idea by scattering the
awake times of neighboring nodes, which are more likely to overlap. Finding
the optimal solution to this problem is complex, and a naive formulation easily
results in algorithms that are impractical even for small networks. Nonetheless,
it is possible to simplify the problem by taking advantage of the following result.

Theorem 1. Let the duration E of the epoch be an integer multiple of the awake
interval I. Then there exists a schedule such that every node wakes up at some
integer multiple of I (within the epoch) which maximizes the average coverage.

Instead of considering arbitrary wake-up times distributed on the real line, we
can discretize the problem by dividing the epoch E into L = E/I equal slots of
length I, where every node is awake in exactly one slot. Thus, to solve our prob-
lem, we do not need to look at schedules in which nodes overlap only partially in
time, thereby pruning a large portion of the solution space. Assuming that the
epoch is an integer multiple of the awake interval may seem a severe limitation.
However, high power savings can be achieved only at low duty-cycles, where our
approach has sufficient granularity to provide accurate trade-offs.

To prove the theorem (see [5] for an ex-

alignment regionslot
alignment boundaries

awake interval
E

wrap

A

B

1
2

3
4

6
5

7
8

d = 3 w8

7

Fig. 4. Node alignment

tended proof), we assume that the epoch
E is initially finely discretized into s slots,
s � L, and the awake interval spans d
slots (i.e., I = d· E

s). Since, by hypothesis,
E is an integer multiple of I, we have s =
L·d. The continuous case can be obtained
when s tends to infinity. Figure 4 depicts
our notation. Slots are ordered and iden-
tified by their position 0 ≤ k ≤ s − 1.
In addition, all operations on slot indices
are done modulo s. Node n has a wake-
up time 0 ≤ wn ≤ s − 1. We say that a
node is aligned if it is scheduled at an integer multiple of the awake interval,
i.e., if wn mod d = 0. We say that a schedule is aligned if all nodes in the sched-
ule are aligned. The line that identifies the slots at which aligned nodes can be
scheduled is called an alignment boundary. The slots between two consecutive
alignment boundaries is called an alignment region. If the schedule is aligned,
then all nodes are scheduled at the alignment boundaries, that is, they pairwise
either completely overlap in time, or they do not overlap at all. Given an arbi-
trary schedule, we can partition the set N of nodes into the set A of those that
are already aligned, and the set B of those which are not. For every slot k, we
denote by Ak the set of aligned nodes that are awake at slot k, and by Bk the set
of non-aligned nodes that are awake at slot k. Because all non-aligned nodes span
across an alignment boundary, the set of non-aligned nodes awake at the slots
across an alignment boundary are the same. Thus, for k mod d = 0, Bk−1 = Bk.

172 L. Palopoli et al.

Similarly, the aligned nodes in slots that belong to the same alignment region
are, of course, the same. Therefore, Ak = Ak′ for dm ≤ k, k′ ≤ d(m + 1) − 1.

We compute the gain (positive or negative) in covered area that is obtained
by shifting the schedule of all the non-aligned nodes together by one slot to the
left or to the right. To do so, we must compute the coverage before and after
the shift. The change in coverage depends on the area overlaps before and after:
without overlaps all schedules are equivalent. More precisely, because we shift
all non-aligned nodes together, the gain g+

k of slot k for a right shift is given by
the area overlap between the non-aligned and the aligned nodes before the shift,
minus the area overlap of the same non-aligned nodes with the aligned nodes in
the new slot, after the shift. Formally, let ak ⊆ R

2 be the region covered by the
nodes in Ak, bk ⊆ R

2 the region covered by the nodes in Bk, and A : R
2 → R be

the function that to a subset of R
2 gives the corresponding area. Then,

g+
k = A(ak ∩ bk) − A(ak+1 ∩ bk). (3)

A slot k which is not near an alignment boundary, however, gives no gain, since
in that case ak = ak+1. Recalling that L = s/d, and by similar arguments for
left shifts, we can therefore express the total gains as

G+ =
L−1∑

i=0

g+
di−1, G− =

L−1∑

i=0

g−di. (4)

The key observation is that a right and a left shift give gains that are equal,
but of opposite sign. In fact, let di = k be a slot marking the beginning of an
alignment region. As observed before, bk−1 = bk. Therefore,

g−di = g−k = A(ak ∩ bk) − A(ak−1 ∩ bk)

= A(ak ∩ bk−1) − A(ak−1 ∩ bk−1) = −g+
k−1 = −g+

di−1

By matching corresponding terms in G+ and G−, it follows that G+ = −G−.
If a shift of the non-aligned nodes does not result in any new node being

aligned, a further shift of the same non-aligned nodes in the same direction will
give the exact same area gain. For instance, let G+

1 be an initial right shift. Under
the new configuration, if the aligned node do not change, it must be G+

1 = −G−
2 .

By the same argument, −G−
2 = G+

2 , and therefore G+
1 = G+

2 . The same holds
for a left shift that does not alter the partition.

The proof of Theorem 1 proceeds by induction. Given a non-aligned schedule,
it is easy to construct an aligned schedule which has equal or better coverage. It
is sufficient to shift the non-aligned nodes in the direction of zero or positive gain
(since gains are opposite, they are either both zero or one of them is positive).
Once a new node is aligned, we proceed by shifting the remaining non-aligned
nodes, until the schedule is fully aligned. Since all moves had zero or positive
gain, the new schedule has equal or better coverage. Thus, given an optimal
schedule, we are always able to find an aligned schedule with the same coverage.

While Theorem 1 guarantees the existence of an aligned optimal schedule, it
does not tell us how to find an optimal schedule in the first place. However, it

Solving the Wake-Up Scattering Problem Optimally 173

ensures that the coarsest possible discretization of the problem is also optimal,
which allows us to set up a significantly simpler optimization problem. We set up
a boolean linear program (BLP), which can be solved by standard commercial
and open source tools. We compute the coverage starting from the partition of
the target area in regions by introducing a set of binary coverage variables Cρ,k

which take value 1 whenever region ρ is covered during slot k ∈ [0, L − 1], and 0
otherwise. Since regions are by definition disjoint, using the coverage variables
Cρ,k and the area function A, the covered area can be computed as

S =
L−1∑

k=0

∑

ρ∈R
Ck,ρ · A(ρ). (5)

Our objective is to maximize the total area S.
The value of Cρ,k depends on the schedule. To model it, we introduce a set

of binary scheduling variables xn,k which take the value 1 whenever node n is
awake in slot k, and 0 otherwise. Then, we express the relation between the
coverage and the scheduling variables as linear optimization constraints. This
relation can be easily understood by observing that Cρ,k = 1 if and only if at
least one of the nodes that cover ρ is active in slot k, i.e., when xn,k = 1 for
some n ∈ r(ρ). Likewise, Cρ,k = 0 whenever all of the nodes that cover ρ are
inactive in slot k, i.e., when xn,k = 0 for all n ∈ r(ρ). This translates into the
following constraints:

∀ρ ∈ R, ∀k ∈ [0, L − 1], Cρ,k ≤
∑

n∈r(ρ)

xn,k (6)

∀ρ ∈ R, ∀k ∈ [0, L − 1], ∀n ∈ r(ρ), Cρ,k ≥ xn,k (7)

∀n ∈ N ,

L−1∑

k=0

xn,k ≤ 1 (8)

Constraint (6) forces the condition Cρ,k = 0 when no node covers a region in
a slot, (7) ensures that Cρ,k = 1 when at least one node covers a region, and
finally (8) ensures that a node wakes up at most once per awake interval.

The optimization problem can be further simplified by observing that the
coverage variables Cρ,k are constrained by Equations (6) and (7) to never take
values strictly between 0 and 1, regardless of whether they are defined as integer
or real variables. Thus, we can relax Cρ,k to a continuous variable, which is more
efficiently handled by optimization algorithms, by adding the constraints:

∀ρ ∈ R, ∀k ∈ [0, L − 1], 0 ≤ Cρ,k ≤ 1 (9)

More complex situations can also be handled, however at the expense of increased
computational complexity. We describe some of these in Section 4, and compare
them against related work in Section 5.

174 L. Palopoli et al.

3 Optimal vs. Distributed: Evaluation

As stated previously, our motivation for this work was to find an optimal solu-
tion for the wake-up scattering problem, and determine how close the original
distributed solution [1] comes to it. This section presents an evaluation by using
covered area as the primary performance metric. Specifically, if S(k) is the area
covered during slot k, the covered area during an epoch is 1

L

∑L−1
k=0 S(k). Intu-

itively, this calculates the largest coverage possible given a network topology,
ignoring regions of the field that are not covered by any sensors. Our evaluation
uses GLPK [6], an open source linear programming kit3, to compute the optimal
schedule, and the simulator described in [1] to compute the distributed ones.

While the full details of the distributed solution are available in [1], for com-
pleteness we briefly describe its key functionality here. The distributed solution
starts by assigning each node a random wake-up time. Through a simple se-
quence of message exchanges, each node learns which of its neighboring nodes
wakes up immediately before and after it in the epoch. It also learns when these
nodes wake up relative to its own wake-up time, then selects its new wake-up
time to be approximately in the middle of these two points in time. This process
repeats at all nodes until no significant changes in the wake-up time are made at
a single step. Although the resulting schedule is not aligned on slot boundaries,
by Theorem 1 it can be slotted without loss of coverage.

The majority of our experiments were performed in a 500 × 500 area. The
number of nodes varied from 15 to 50, allowing us to consider increasing node
densities. To achieve statistical significance, each point in our plots represents an
average over 100 distinct topologies. Additionally, because the distributed scat-
tering protocol does not change the wake-up order among nodes and is therefore
affected by the initial random wake-up configuration, the results average 10 dif-
ferent initializations for each topology. This is sufficient as the variation with
different initializations is small. We considered square sensing areas, the sensing
range RS being half of the edge length. For the distributed solution, we used
a circular communication range RC = RS

√
2, creating a sensing square exactly

inscribed in the communication circle. The resulting node densities for RS = 100
range from 2.7 to 9.3. To verify that the results carry over to larger topologies,
we also ran experiments with similar densities obtained with up to 200 nodes in
a 1000 × 1000 area, as reported at the end of this section.

We studied two main configurations, corresponding to the two main dimen-
sions of the problem. In the first setting, we fixed the number of slots per epoch
and therefore the duty cycle, and varied the sensing range. In the second, we
reversed roles, fixing the sensing range and varying the number of slots. In each
case, a node is awake for only one slot. The results in Figures 5(a) and 6(a)
clearly show that as either the sensing range or duty cycle increase, both so-
lutions cover larger areas. The standard deviation is a few percent points. In

3 Although the GLPK documentation mentions a 10-100 performance gap w.r.t. com-
mercial tools, our computation times on a common workstation were in the order of
a few hours even for a very complex topology with a hundreds of nodes.

Solving the Wake-Up Scattering Problem Optimally 175

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 15 20 25 30 35 40 45 50

C
ov

er
ag

e

Number of Nodes

Rs=75 (OPT)
Rs=75 (DIST)

Rs=100 (OPT)
Rs=100 (DIST)
Rs=125 (OPT)
Rs=125 (DIST)

(a) Absolute coverage

 4

 6

 8

 10

 12

 15 20 25 30 35 40 45 50

Im
pr

ov
em

en
t o

f o
pt

im
al

 (
%

)

Number of Nodes

Rs=75
Rs=100
Rs=125

(b) Percent improvement of optimal

Fig. 5. Fixed number of slots (L = 4), variable sensing range

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 15 20 25 30 35 40 45 50

C
ov

er
ag

e

Number of Nodes

L = 5 (OPT)
L = 5 (DIST)
L = 4 (OPT)
L = 4 (DIST)
L = 3 (OPT)
L = 3 (DIST)

(a) Absolute coverage

 4

 6

 8

 10

 12

 15 20 25 30 35 40 45 50

Im
pr

ov
em

en
t o

f o
pt

im
al

 (
%

)

Number of Nodes

L = 5
L = 4
L = 3

(b) Percent improvement of optimal

Fig. 6. Fixed sensing range (RS = 100), variable number of slots

general, the evaluation shows how the distributed wake-up scattering in [1], al-
beit very simple, is remarkably effective and yields schedules performing within
4% to 11% of the optimal ones computed with the technique presented here.

Interesting trends emerge when studying the percentage improvement of the
optimal solution w.r.t. the distributed one, defined as optimal−distributed

optimal and re-
ported in Figures 5(b) and 6(b). In both plots, each line, representing either
a different sensing range or number of slots, shows a general trend where the
percent improvement increases to a certain point, then begins to decline. This
indicates that at low and high densities the optimal and distributed solutions
behave similarly, while at intermediate densities the optimal one performs better.

The initial similarity of the two solutions is due the fact that at low den-
sities very few nodes overlap in space. In a sense, at low densities the sys-
tem is far away from saturation and both solutions find schedules in which
overlapping sensing areas overlap very little in time. As the density increases,
overlaps become inevitable and the system must scatter the wake up times to
eliminate them as much as possible. Unfortunately, to properly manage spa-
tial overlaps, node locations must be considered and nodes close to one

176 L. Palopoli et al.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 60 80 100 120 140 160 180 200

C
ov

er
ag

e

Number of Nodes

Rs=75 (OPT)
Rs=75 (DIST)

Rs=100 (OPT)
Rs=100 (DIST)
Rs=125 (OPT)
Rs=125 (DIST)

(a) Fixed number of slots (L = 4)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 60 80 100 120 140 160 180 200

C
ov

er
ag

e

Number of Nodes

L = 5 (OPT)
L = 5 (DIST)
L = 4 (OPT)
L = 4 (DIST)
L = 3 (OPT)
L = 3 (DIST)

(b) Fixed sensing range (RS = 100)

Fig. 7. Experiments with 1000 × 1000 area

another should be more scattered. However, because the distributed solution
does not consider the distance between nodes and does not change the sequence
of node wake-up times, with more dense scenarios it is more likely that physically
close nodes are next to one another in the wake-up sequence, and therefore less
scattered. At low densities, physically close nodes are also close in the sched-
ule, however, with fewer total neighbors, the interval between wake-up times
is larger. In contrast, the optimal solution considers neither connectivity con-
straints nor initial wake-up times, and therefore does not suffer from the same
problem.

The tail of the curves, where the two solutions again perform similarly, is
due to the saturation of the covered area in either time or space. With a fixed
number of slots, saturation is due to the increased number of nodes covering a
single point in space. Instead, with a fixed sensing range, saturation arises from
the higher number of nodes awake at a given time. In both cases, the distributed
solution again approaches the optimal.

Because saturation depends on the sensing range and number of slots, the peak
of each line appears at different network densities. In Figure 5(b), larger sensing
ranges saturate faster, while in Figure 6(b), in scenarios with fewer slots, when
nodes are awake for longer, saturation occurs earlier. Interestingly, in Figure 5(b)
the sensing range RS = 75 does not reach saturation, which is however likely to
appear at higher densities.

Finally, to demonstrate that our results scale to larger topologies, we consid-
ered a 1000 × 1000 area containing from 60 to 200 nodes. This yields the same
density as in the previous experiments. Because the computation of the optimal
schedules in this case took two days to complete, we ran only 10 topologies for
each point. The trends in Figure 7 clearly follow those in Figures 5(a) and 6(a),
suggesting that similar trends hold for large topologies as well. This is expected
as both solutions work by considering overlapping sensing ranges, which by na-
ture are localized. Put another way, a 1000 × 1000 topology behaves similarly
to a scenario where four of the smaller 500×500 topologies are juxtaposed to form

Solving the Wake-Up Scattering Problem Optimally 177

a 1000 × 1000 square area. The main difference is that, in the larger topologies,
the edges of the four quadrants of the area are properly scattered, while in a
solution which considers each quadrant independently, the edge nodes would not
be properly scattered.

4 Using and Extending the Model

Although our original motivation was to compare the optimal and distributed
solutions, we explore here two additional research contributions: some practical
applications of the optimal results and an extension to a new class of problems.

As shown in Section 3, the

Fig. 8. Lifetime vs. covered area with L = 4
slots

distributed solution closely approx-
imates the optimal solution, coming
within 4% to 11% in all cases. There-
fore, the optimal solution can be nat-
urally applied as a pre-deployment
tool to select system parameters that
meet the application needs. For ex-
ample, consider a system with given
lifetime and coverage constraints.
Plots generated by the offline opti-
mization tool, such as the one in
Figure 8 showing lifetime as the ra-
tio of the epoch length and the slot
length, clearly show the trade-off be-
tween lifetime and coverage and thus
the system behavior with various settings. Although the distributed solution
will not achieve equivalent results, such an evaluation still provides the devel-
oper with valuable insight into system behavior prior to deployment. Alternate
topologies may also be considered, either fixing the locations of some nodes or
changing the number of nodes. Because these simulations are relatively straight-
forward to perform, extensive pre-deployment evaluation can be performed at
little cost. In case of a controlled deployment, not only the centralized algorithm
provide a quick evaluation of the results that can be achieved, but it can be also
used as a full-fledged design tool to decide the initial schedule of nodes. In this
case, the distributed algorithm can be used to adapt to changes (e.g., depletion
of the battery on some nodes) affecting the system topology.

While the above provide an immediate, practical use for the optimal solution,
we also explored how the formulation proposed in Section 2.2 can be applied to
a wider class of problems other than coverage. For example, we can handle the
inverse problem: given a required coverage, find a schedule that maximizes the
lifetime of the network. If we take the common definition of lifetime based on
failure of the first node, the goal can be achieved by minimizing the maximum
energy consumed by any node in a single epoch. We can also relax several of the
assumption made previously, yielding a more flexible solution space and perhaps

178 L. Palopoli et al.

additional efficiency. For example, we can allow nodes to activate/deactivate
multiple times, effectively being awake for multiple non-contiguous slots each
epoch. To ensure that the power consumption model remains accurate in this
scenario, we can extend the power model such that a cost is incurred for each
activation. Additionally, one can explore adding constraints to manage latency
in delivery of information to a sink node. This is naturally expressed as a set of
additional constraints on the awake times between parent and children nodes in
a collection tree.

To give an example, we consider the problem of maximizing lifetime given a
certain level of required coverage. We also extend the model to consider multiple
activations of nodes within the epoch, since in this case Theorem 1 no longer
applies. For power consumption, we adopt a model in which a node incurs an
energy cost proportional to its active interval, with an additional cost for each
activation. A conceptual formulation of the problem is the following:

min max
n∈N

αI(n) + βWa(n), (10)

subject to
< the assigned area is covered > (11)

The cost function to be minimized is the largest of the energy consumed by each
node n. Here, α is the energy consumed by a node during an active slot (i.e., for
sensing, computation and communication); I(n) is the total number of active
slots for n; β is the energy spent for activation; and Wa(n) is the number of
times n is activated/deactivated during the epoch. The vector notation in the
cost function can be reformulated in scalar form by rephrasing the minimization
in terms of an additional decision variable μ constrained as follows:

min μ, subject to ∀n ∈ N , μ ≥ αI(n) + βWa(n)

Function I(n) is simply given by I(n) =
∑L−1

k=0 xn,k. Function Wa can be
computed by accumulating the difference between adjacent scheduling variables:

Wa(n) =
L−1∑

k=0

|xn,k − xn,(k+1) mod L|,

The above can be linearized using new variables sn,k, and the constraints

sn,k ≥ xn,k − xn,((k+1) mod L)

sn,k ≥ xn,((k+1) modL) − xn,k

The minimization process ensures that sn,k will equal the absolute value, even
if it is not declared as an integer variable. Finally, constraint (11) can be easily
expressed by requiring that the area of the covered regions, for each slot, be
greater than the given value A0:

∀k ∈ [0, L − 1],
∑

ρ∈R
A(ρ)Cρ,k ≥ A0

where the Cρ,k variables are computed using (6) and (7).
A full evaluation of such alternate scenarios is part of our future work.

Solving the Wake-Up Scattering Problem Optimally 179

5 Related Work

Several studies approached the problem of maximizing the WSN lifetime by
running sensor nodes on a low duty cycle, while maintaining a high level of per-
formance. Regarding the coverage problem, we can classify existing approaches
as centralized techniques, making use of global information about the deploy-
ment, and distributed techniques, typically limited by network connectivity but
more easily adapting to network dynamics.

Within centralized techniques, Slijepcevic and Potkonjak [2] are among the
first to address the problem of maintaining full coverage while minimizing power
consumption through active/sleep schedule. The problem is solved by parti-
tioning the nodes into disjoint sets, activated one at a time, where each set
of nodes completely covers the monitored area. The solution leverages a cen-
tralized heuristic of quadratic complexity in the number of nodes, shown to
significantly improve over a simulated annealing approach. However, no exact
solution is derived in the paper. Cardei et al. propose a method where nodes
are divided in sets that are not necessarily disjoint, achieving further improve-
ments [7]. The goal is to maximize the network lifetime by scheduling the activity
of nodes while maintaining full coverage over a finite set of points. The prob-
lem is formulated as an integer linear program that, due to its complexity, is
only solved through heuristics. Similar formulations are proposed in [8,9]. In
the first case, the authors use a two-step procedure to compute the maximal
lifetime and to include communication costs. In the second approach, two co-
ordinated optimization problems are solved to determine the subset partitions
and their duration. The authors also propose a greedy distributed heuristic,
which is however shown to yield solutions that may perform as much as 40% of
the optimal.

Although our technique is also based on an mixed integer (boolean) linear
program, unlike previous work we do not aim at maintaining full coverage of
an area or of a set of points, rather at establishing a periodic schedule that
guarantees the largest total coverage of an area over a scheduling period given a
specified lifetime of the system, in accordance to the problem statement of [1].
By doing so, we are also able to compute the optimal trade-off between cover-
age and lifetime. An experimental comparison of our approach against previous
work is thus difficult, since the optimization objectives differ. In our approach,
each node is activated exactly once per epoch, with the latter constrained to be
an integer multiple of the awake interval. Cardei et al. show that this choice,
compared to allowing nodes to wake-up multiple times in an epoch, is subop-
timal in the case of full coverage of a set of points [7]. While this applies also
to our problem, we have found that for random topologies, the possible increase
in the largest total coverage is negligible—zero or fractions of a percent. On
the other hand, the restriction allows us to greatly improve the performance
of the exact optimization program, and handle a much larger number of nodes
(see Theorem 1).

As for distributed techniques, they typically use information from neighbor-
ing nodes to locally compute a schedule. In the simplest form, nodes wake up

180 L. Palopoli et al.

regularly and check whether a neighboring node is awake: if so, they go back
to sleep to conserve energy. Ye et al. [10] complement this simple scheme with
an adaptive sleeping scheme which dynamically determines the duration of the
sleep time to optimally maintain a certain degree of coverage. More elaborate
schemes take coverage information from neighboring nodes into account, to pre-
serve the full coverage of an area. Tian and Georganas propose a technique that
proceeds in rounds [3]. At the beginning of a round, each node computes the
fraction of its sensed area that is also covered by neighboring nodes, by exchang-
ing position information. When a node determines that it is fully covered by
others it goes to sleep for the rest of the round. Hsin and Liu [11] improve on
this scheme with a coordinated sleep scheme where the duration of the sleep
state is computed as a function of the residual energy of the node and of the
neighboring nodes, instead of being fixed by the length of the round. This way,
they obtain a more graceful degradation of the overall coverage as nodes fail.
Similarly to our distributed solution, Cao et al. [12] use a setup phase where
nodes schedule their operation to overlap least in time with nearby nodes cov-
ering the same area. This is done by exchanging exact position information
and incrementally adjusting the schedule until the procedure converges. More
recently, Cărbunar et al. [13] proposed a distributed algorithm for preserving
full coverage and computing the coverage boundary. They reduce the problem
of finding redundant nodes to that of checking coverage of certain Voronoi di-
agrams associated to the topology. This result is used to efficiently compute
the coverage due to the neighbors, while the diagrams are updated dynami-
cally as nodes fail. Their experiments show a significant improvement over the
method in [3].

In contrast, the distributed technique in [1] is extremely simple, and requires
neither exact position information nor time synchronization—a significant as-
set when considering the overall energy budget of a node. Nonetheless, we have
shown that the resulting schedules provide a degree of coverage that come very
close to the optimum. This is possible since the goal is to maximize the largest
total coverage, instead of maintaining full coverage that, again, makes the ex-
perimental comparison with previous work difficult. Moreover, we showed that
our mathematical formulation is useful to determine the best trade-off between
coverage and lifetime, a very valuable input for dimensioning real deployments.

A related problem is how to achieve the best sensor placement to cover an
area [14]. Solutions rely on integer programming [15], greedy heuristics [16,17,18]
and virtual force methods [19]. These complement the temporal spreading in-
vestigated here, and can be applied in parallel to achieve further improvements.

6 Conclusions and Future Work

In this paper we presented a way to compute optimal schedules for scattering
node wake-up times in a WSN. Although here we focused primarily on area cov-
erage, the wake-up scattering problem has practical relevance in many settings,
as discussed in the original wake-up scattering paper [1]. Our evaluation through

Solving the Wake-Up Scattering Problem Optimally 181

simulation shows that the decentralized algorithm there presented, albeit very
simple, is remarkably efficient, generating schedules whose performance is within
4% to 11% of the optimal ones. The formulation presented in this paper can be
used to evaluate the trade-off between coverage and lifetime and, given the small
difference between the optimal and distributed schedules, guide engineering de-
cisions in practical deployments. Finally, the modeling framework we presented
here is amenable to extension and adaptation towards similar problems. We are
currently investigating such extensions, beginning with the inverse problem of
determining the lifetime of the system given a desired coverage.

References

1. Giusti, A., Murphy, A.L., Picco, G.P.: Decentralized Scattering of Wake-up Times
in Wireless Sensor Networks. In: Langendoen, K.G., Voigt, T. (eds.) EWSN 2007.
LNCS, vol. 4373, pp. 245–260. Springer, Heidelberg (2007)

2. Slijepcevic, S., Potkonjak, M.: Power efficient organization of wireless sensor net-
works. In: Proc. of the IEEE Int. Conf. on Communications (ICC) (June 2001)

3. Tian, D., Georganas, N.D.: A coverage-preserving node scheduling scheme for large
wireless sensor networks. In: First ACM Int. Wkshp. on Wireless Sensor networks
and Applications (WSNA) (2002)

4. Huang, C., Tseng, Y.: The coverage problem in a wireless sensor network. In: Proc.
of the 2nd ACM Int. Conf. on Wireless Sensor Networks and Applications (WSNA
2003) (September 2003)

5. Passerone, R., Palopoli, L.: Aligned schedules are optimal. Technical report, Uni-
versity of Trento (2008)

6. The Gnu Linear Programming Kit, http://www.gnu.org/software/glpk/
7. Cardei, M., Thai, M., Li, Y., Wu, W.: Energy-efficient target coverage in wireless

sensor networks. In: Proc. of INFOCOM (2005)
8. Liu, H., et al.: Maximizing lifetime of sensor surveillance systems. IEEE/ACM

Trans. on Networking 15(2), 334–345 (2007)
9. Alfieri, A., Bianco, A., Brandimarte, P., Chiasserini, C.F.: Maximizing system life-

time in wireless sensor networks. European Journal of Operational Research 127(1),
390–402 (2007)

10. Ye, F., Zhong, G., Cheng, J., Lu, S., Zhang, L.: PEAS: A robust energy conserving
protocol foo long-lived sensor networks. In: 3rd Int. Conf. on Distributed Comput-
ing Systems (ICDCS 2003) (May 2003)

11. Hsin, C., Liu, M.: Network coverage using low duty-cycled sensors: Random & coor-
dinated sleep algorithms. In: Proc. of the 3th Int. Symp. on Information Processing
in Sensor Networks (IPSN) (2004)

12. Cao, Q., Abdelzaher, T., He, T., Stankovic, J.: Towards optimal sleep scheduling
in sensor networks for rare-event detection. In: Proc. of the 4th Int. Symp. on
Information Processing in Sensor Networks (IPSN) (April 2005)

13. Carbunar, B., Grama, A., Vitek, J., Carbunar, O.: Redundancy and coverage de-
tection in sensor networks. ACM Trans. on Sensor Networks 2(1), 94–128 (2006)

14. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage prob-
lems in wireless ad-hoc sensor networks. In: Proc. of 20th IEEE INFOCOM, April
2001, pp. 1380–1387 (2001)

http://www.gnu.org/software/glpk/

182 L. Palopoli et al.

15. Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E.: Grid coverage for surveillance and
target location in distributed sensor networks. IEEE Trans. on Computers 51(12),
1448–1453 (2002)

16. Bulusu, N., Estrin, D., Heidemann, J.: Adaptive beacon placement. In: Proc. of
the 21st Int. Conf. on Distributed Computing Systems (ICDCS), April 2001, pp.
489–498 (2001)

17. Howard, A., Mataric, M., Sukhatme, G.: An incremental self-deployment algorithm
for mobile sensor networks. Auton. Robots 13(2), 113–126 (2002)

18. Howard, A., Mataric, M., Sukhatme, G.: Mobile sensor network deployment using
potential fields: A distributed, scalable solution to the area coverage problem. In:
Proc. of 7th Int. Symp. on Distributed Autonomous Robotic Systems (June 2002)

19. Zou, Y., Chakrabarty, K.: Sensor deployment and target localization in distributed
sensor networks. IEEE Trans. on Embedded Computing Systems 3(1), 61–91 (2004)

Sundial: Using Sunlight to Reconstruct Global
Timestamps

Jayant Gupchup1, Răzvan Musăloiu-E.1, Alex Szalay2, and Andreas Terzis1

1Computer Science Department; 2Physics and Astronomy Department
Johns Hopkins University

{gupchup,razvanm,terzis}@jhu.edu, szalay@jhu.edu

Abstract. This paper investigates postmortem timestamp reconstruc-
tion in environmental monitoring networks. In the absence of a time-
synchronization protocol, these networks use multiple pairs of (local,
global) timestamps to retroactively estimate the motes’ clock drift and
offset and thus reconstruct the measurement time series. We present
Sundial, a novel offline algorithm for reconstructing global timestamps
that is robust to unreliable global clock sources. Sundial reconstructs
timestamps by correlating annual solar patterns with measurements pro-
vided by the motes’ inexpensive light sensors. The surprising ability to
accurately estimate the length of day using light intensity measurements
enables Sundial to be robust to arbitrary mote clock restarts. Experi-
mental results, based on multiple environmental network deployments
spanning a period of over 2.5 years, show that Sundial achieves accuracy
as high as 10 parts per million (ppm), using solar radiation readings
recorded at 20 minute intervals.

1 Introduction

A number of environmental monitoring applications have demonstrated the abil-
ity to capture environmental data at scientifically-relevant spatial and temporal
scales [11,12]. These applications do not need online clock synchronization and
in the interest of simplicity and efficiency often do not employ one. Indeed,
motes do not keep any global time information, but instead, use their local
clocks to generate local timestamps for their measurements. Then, a postmortem
timestamp reconstruction algorithm retroactively uses (local, global) timestamp
pairs, recorded for each mote throughout the deployment, to reconstruct global
timestamps for all the recorded local timestamps. This scheme relies on the as-
sumptions that a mote’s local clock increases monotonically and the global clock
source (e.g., the base-station’s clock) is completely reliable. However, we have
encountered multiple cases in which these assumptions are violated. Motes often
reboot due to electrical shorts caused by harsh environments and their clocks
restart. Furthermore, basestations’ clocks can be desynchronized due to human
and other errors. Finally the basestation might fail while the network continues
to collect data.

We present Sundial, a robust offline time reconstruction mechanism that op-
erates in the absence of any global clock source and tolerates random mote

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 183–198, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

184 J. Gupchup et al.

0 5000 10000 15000 20000 25000 30000 35000

0.
0e

+
00

1.
5e

+
07

3.
0e

+
07

Sequence number

Lo
ca

l t
im

es
ta

m
p

Fig. 1. An illustration of mote reboots, indicated by clock resets. Arrows indicate the
segments for which anchor points are collected.

clock restarts. Sundial’s main contribution is a novel approach to reconstruct the
global timestamps using only the repeated occurrences of day, night and noon.
We expect Sundial to work alongside existing postmortem timestamp recon-
struction algorithms, in situations where the basestations’ clock becomes inaccu-
rate, motes disconnect from the network, or the basestation fails entirely. While
these situations are infrequent, we have observed them in practice and therefore
warrant a solution. We evaluate Sundial using data from two long-term envi-
ronmental monitoring deployments. Our results show that Sundial reconstructs
timestamps with an accuracy of one minute for deployments that are well over
a year.

2 Problem Description

The problem of reconstructing global timestamps from local timestamps applies
to a wide range of sensor network applications that correlate data from different
motes and external data sources. This problem is related to mote clock synchro-
nization, in which motes’ clocks are persistently synchronized to a global clock
source. However, In this work, we focus on environmental monitoring applica-
tions that do not use online time synchronization, but rather employ postmortem
timestamp reconstruction to recover global timestamps.

2.1 Recovering Global Timestamps

As mentioned before, each mote records measurements using its local clock which
is not synchronized to a global time source. During the lifetime of a mote, a
basestation equipped with a global clock collects multiple pairs of (local, global)
timestamps. We refer to these pairs as anchor points1. Furthermore, we refer
to the series of local timestamps as LTS and the series of global timestamps
as GTS. The basestation maintains a list of anchor points for each mote and
1 We ignore the transmission and propagation delays associated with the anchor point

sampling process.

Sundial: Using Sunlight to Reconstruct Global Timestamps 185

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 min 1 hour 1 month 1 year

1.44 min

8.75 h

6 ms

0.36 s

8.64 s

52 min

0.6 ms

36 ms

5.25 min

60 us

E
rr

or

1 permil

100 ppm

10 ppm

1 ppm

Fig. 2. Time reconstruction error due to α estimation errors as a function of the de-
ployment lifetime

is responsible for reconstructing the global timestamps using the anchor points
and the local timestamps.

The mapping between local clock and global clock can be described by the
linear relation GTS = α·LTS+β, where α represents the slope and β represents
the intercept (start time). The basestation computes the correct α and β for each
mote using the anchor points. Note that these α and β values hold, if and only
if the mote does not reboot. In the subsections that follow, we describe the
challenges encountered in real deployments where the estimation of α and β
becomes non-trivial.

2.2 Problems in Timestamp Reconstruction

The methodology sketched in Section 2.1 reconstructs the timestamps for blocks
of measurements where the local clock increase monotonically. We refer to such
blocks as segments. Under ideal conditions, a single segment includes all the
mote’s measurements. However, software faults and electrical shorts (caused by
moisture in the mote enclosures) are two common causes for unattended mote
reboots. The mote’s local clock resets after a reboot and when this happens we
say that the mote has started a new segment.

When a new segment starts, α and β must be recomputed. This implies that
the reconstruction mechanism described above must obtain at least two anchor
points for each segment. However, as node reboots can happen at arbitrary times,
collecting two anchor points per segment is not always possible. Figure 1 shows
an example where no anchor points are taken for the biggest segment, making
the reconstruction of timestamps for that segment problematic. In some cases we
found that nodes rebooted repeatedly and did not come back up immediately.
Having a reboot counter helps recover the segment chronology but does not
provide the precise start time of the new segment.

186 J. Gupchup et al.

Furthermore, the basestation is responsible for providing the global timestamps
used in the anchor points. Our experience shows that assuming the veracity of
the basestation clock can be precarious. Inaccurate basestation clocks can cor-
rupt anchor points and lead to bad estimates of α and β introducing errors in
timestamp reconstruction. Long deployment exacerbate these problems, as Figure
2 illustrates: an α error of 100 parts per million (ppm) can lead to a reconstruction
error of 52 minutes over the course of a year.

2.3 A Test Case

Our Leakin Park deployment (referred to as “L”) provides an interesting case
study of the problems described above. The L deployment comprised six motes
deployed in an urban forest to study the spatial and temporal heterogeneity
in a typical urban soil ecosystem. The deployment spanned over a year and a
half, providing us with half a million measurements from five sensing modalities.
We downloaded data from the sensor nodes very infrequently using a laptop
PC and collected anchor points only during these downloads. One of the soil
scientists in our group discovered that the ambient temperature values did not
correlate among the different motes. Furthermore, correlating the ambient tem-
perature with an independent weather station, we found that the reconstruction
of timestamps had a major error in it.

Figure 3 shows data from two ambient temperature sensors that were part
of the L deployment. Node 72 and 76 show coherence for the period in April,
but data from June are completely out-of-sync. We traced the problem back
to the laptop acting as the global clock source. We made the mistake of not
synchronizing its clock using NTP before going to the field to download the
data. As a result the laptop’s clock was off by 10 hours, giving rise to large
errors in our α and β estimates and thereby introducing large errors in the
reconstructed timestamps. To complicate matters further, we discovered that
some of the motes had rebooted a few times between two consecutive downloads
and we did not have any anchor points for those segments of data.

A
D

C
 v

al
ue

s

Apr 2 Apr 3 Apr 4

300

400

500

600

700

800

Jun 16 Jun 17 Jun 18

Node 72
Node 76

Fig. 3. Ambient temperature data from two motes from the L deployment. The cor-
relation of temperature readings in the left panel indicates consistent timestamps at
the segment’s start. After two months, the mote’s reading become inconsistent due to
inaccurate α estimates.

Sundial: Using Sunlight to Reconstruct Global Timestamps 187

Algorithm 1. Robust Global Timestamp Reconstruction (RGTR)
constants
Q � Constant used to identify anchor points for the segment
δHIGH , δLOW , δDEC � Constants used in iterative fit

procedure ClockFit(ap)
(r, i) ← (0, 0)
q ← HoughQuantize(ap)
for each γ in Keys(q) do

s ← Size(q{γ})
if s > r then

(r, i) ← (s, γ)
return ComputeAlphaBeta(q{i})

procedure HoughQuantize(ap)
q ← {} � Map of empty sets
for each (ltsi, gtsi) in ap do

for each (ltsj , gtsj) in ap and (ltsj , gtsj) 	= (ltsi, gtsi) do
α ← (gtsj − gtsi)/(ltsj − ltsi)
if 0.9 ≤ α ≤ 1.1 then � Check if part of the same segment

β ← gtsj − α · ltsj

γ ← ROUND(β/Q)
Insert(q{γ}, (ltsi, gtsi))
Insert(q{γ}, (ltsj , gtsj))

return q

procedure ComputeAlphaBeta(ap)
δ ← δHIGH

bad ← {}
while δ > δLOW do

(α, β) ← LLSE(ap)
for each (lts, gts) ∈ ap and (lts, gts) /∈ bad do

residual ← (α · lts + β) − gts
if residual ≥ |δ| then

Insert(bad, (lts, gts))
δ ← δ − δDEC

return (α, β)

3 Solution

The test case above served as the motivation for a novel methodology that
robustly reconstructs global timestamps. The Robust Global Timestamp Re-
construction (RGTR) algorithm, presented in Section 3.1, outlines a procedure
to obtain robust estimates of α and β using anchor points that are potentially
unreliable. We address situations in which the basestation fails to collect any
anchor points for a segment through a novel method that uses solar information
alone to generate anchor points. We refer to this mechanism as Sundial.

3.1 Robust Global Timestamp Reconstruction (RGTR)

Having a large number of anchor points ensures immunity from inaccurate ones,
provided they are detected. Algorithm 1 describes the Robust Global Timestamp
Reconstruction (RGTR) algorithm that achieves this goal. RGTR takes as input
a set of anchor points (ap) for a given segment and identifies the anchor points
that belong to that segment, while censoring the bad ones. Finally, the algorithm

188 J. Gupchup et al.
H

ou
rs

Length
of day
Solar
noon

Jan 2006 Jul 2006 Jan 2007 Jul 2007 Jan 2008

10

11

12

13

14

15

11:30
11:45
12:00
12:15
12:30

Fig. 4. The solar (model) length of day
(LOD) and noon pattern for a period
of two years for the latitude of our de-
ployments

650000 700000 750000 800000 850000 900000

0
20

0
40

0
60

0
80

0
10

00

Local timestamps

H
ou

rs

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●

●
●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●

●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●

● Light Smooth Derivative

Fig. 5. The light time series (raw and
smoothed) and its first derivative. The
inflection points represent sunrise and
sunset.

returns the (α, β) values for the segment. RGTR assumes the availability of two
procedures: Insert and Llse. The Insert(x, y) procedure adds a new element,
y, to the set x. The Linear Least Square Estimation [4], Llse procedure takes
as input a set of anchor points belonging to the same segment and outputs the
parameters (α, β) that minimize the sum of square errors.

RGTR begins by identifying the anchor points for the segment. The procedure
HoughQuantize implements a well known feature extraction method, known
as the Hough Transform [5]. The central idea of this method is that anchor
points that belong to the same segment should fall on a straight line having a
slope of ∼ 1.0. Also, if we consider pairs of anchors (two at a time) and quantize
the intercepts, anchors belonging to the same segment should all collapse to the
same quantized value (bin). HoughQuantize returns a map, q, which stores
the anchor points that collapse to the same quantized value. The key (stored in
i) that contains the maximum number of elements contains the anchor points
for the segment.

Next, we invoke the procedure ComputeAlphaBeta to compute robust es-
timates of α and β for a given segment. We begin by creating an empty set,
bad. The set bad maintains a list of all anchor points that are detected as be-
ing outliers and do not participate in the parameter estimation. This procedure
is iterative and begins by estimating the fit (α, β) using all the anchor points.
Next, we look at the residual of all anchor points with the fit. Anchor points
whose residuals exceed the current threshold, δ, are added to the bad set and
are excluded in the next iteration fit. Initially, δ is set conservatively to δHIGH .
At the end of every iteration, the δ threshold is lowered and the process repeats
until no new entries are added to the bad set, or δ reaches δLOW .

3.2 Sundial

The parameters of the solar cycle (sunrise, sunset, noon) follow a well defined
pattern for locations on Earth with a given latitude. This pattern is evident in

Sundial: Using Sunlight to Reconstruct Global Timestamps 189

●●

●●●●●●

●●

●

●●●●●●●

●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●●

●●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●●

●

●

●●

●

●●

●●●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●
●●

●●

●

●●

●●

●

●

●

●

●

●●●

●●●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●
●
●

●

●

●

●

●●●●●●●●●●●

●●

●●

●

●
●
●●●●●●●●●●●●●●

●
●
●

●
●
●●

●

●

●

●
●

●●

●

●

●●

●●

●●

●●

●

●
●●●●●●

●●●●
●
●

●

●

●

●

●
●

●

●

●●●●●

●●●

●

●●

●●
●
●

●●
●

●

●

●●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●●●

●

●
●
●●

●●

●●
●
●

●●

●●●●

●●
●
●●

●

●

●●

●
●

●

●●
●

●
●

●

●

●
●

●

●
●
●

●●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●
●●

●●

●

0 100 200 300 400

8

10

12

14

16

Node 73

Days

Le
ng

th
 o

f d
ay

 [h
ou

rs
]

●
●

●

●

●

●

●

●●

●●

●●

●

●●●●

●●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●●

●●

●●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●●

●●
●
●

●

●

●●

●

●

●●

●
●
●

●●

●

●

●

●

●●

●

●

●
●
●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●●

●

●

●

●

●

●
●●●●
●

●
●
●
●

●

●

●
●
●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●
●
●

●

●●

●

●

●

●●

●
●
●

●
●

●●

●
●

●

●●●
●

●

●●

●

●●●

●

●●

●

●●

●

●

0 100 200 300 400

8

10

12

14

16

Node 76

Days

Le
ng

th
 o

f d
ay

 [h
ou

rs
]

Fig. 6. The length of day pattern for two long segments belonging to different nodes.
Day 0 represents the start-time for each of the segments

Figure 4 that presents the length of day (LOD) and solar noon for the period
between January 2006 and June 2008 for the latitude of the L deployment. Note
that the LOD signal is periodic and sinusoidal. Furthermore, the frequency of
the solar noon signal is twice the frequency of the LOD signal. We refer the
reader to [6] for more details on how the length of day can be computed for a
given location and day of the year.

The paragraphs that follow explain how information extracted from our light
sensors can be correlated with known solar information to reconstruct the mea-
surement timestamps.

Extracting Light Patterns: We begin by looking at the time series Li of
light sensor readings for node i. Li is defined for a single segment in terms of
the local clock. First, we create a smooth version of this series, to remove noise
and sharp transients. Then, we compute the first derivative for the smoothed
Li series, generating the Di time-series. Figure 5 provides an illustration of a
typical Di series overlaid on the light sensor series (Li). One can notice the
pattern of inflection points representing sunrise and sunset. The regions where
the derivative is high represent mornings, while the regions where the derivative
is low represent evenings. For this method, we select sunrise to be the point at
which the derivative is maximum and sunset the point at which the derivative
is minimum. Then, LOD is given as the difference between sunrise and sunset,
while noon is set to the midpoint between sunrise and sunset.

The method described above accurately detects noon time. However, the
method introduces a constant offset in LOD detection and it underestimates
LOD due to a late sunrise detection and an early sunset detection. The noon
time is unaffected due to these equal but opposite biases. In practice, we found
that a simple thresholding scheme works best for finding the sunrise and sunset
times. The light sensors’ sensitivity to changes simplifies the process of select-
ing the appropriate threshold. In the end, we used a hybrid approach whereby
we obtain noon times from the method that uses derivatives and LOD times
from the thresholding method. The net result of this procedure is a set of noon

190 J. Gupchup et al.

H
ou

rs

●●

●

●

●●●

●●

●

●●●●●

●

●

●

●●●●●●

●

●

●

●

●●

●●

●●●

●

●●●

●

●

●

●

●●

●●●●

●

●●●●●●●

●●

●●●

●●●●

●

●●

●●

●

●●

●

●

●●●

●

●●●

●●●●

●●

●●

●

●

●

●●

●

●

●

●●●

●●

●●

●

●●

●●

●

●●

●

●●●

●●●

●

●

●

●

●●●

●

●

●●●●●● ●

●●●●●●●●●●●

●●

●●

●

●

●●●●●●●●●●●●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●●●● ●●

●

●

●●●●●

●●●

●

●

●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●●●●

●

●

●●●

●●

●●

●●

●●●●

●●●●

●

●●

●

●

●

**

*

*

************************ ***********

******* * *********
*

**

*********** ***

Apr 2006 Jun 2006 Aug 2006 Oct 2006 Dec 2006 Feb 2007 Apr 2007

●

*
Model LOD
Model Noon

Computed LOD
Computed Noon

10
11

12
13

14
15

16

Fig. 7. An illustration of the computed LOD and noon values for the lag with maximum
correlation with the solar model

times and LOD for each day from the segment’s start in terms of the local clock.
Figure 6 shows the LOD values obtained for two different node segments after
extracting the light patterns.

Solar Reconstruction of Clocks: The solar model provides the LOD and
noon values in terms of the global clock (LODGT), while the procedure described
in the previous paragraph extracts the LOD and noon values from light sensor
measurements in terms of the motes’ local clocks (LODLT). In order to find the
best possible day alignment, we look at the correlation between the two LOD
signals (LODGT , LODLT) as a function of the lag (shift in days). The lag that
gives us the maximum correlation (ρmax) is an estimate of the day alignment.
Mathematically, the day alignment estimate (lag) is obtained as

argmax
lag

Cor(LODGT , LODLT , lag)

where Cor(X, Y, s) is the correlation between time series X and Y shifted by
s time units. Figure 7 presents an example of the match between model and
computed LOD and noon times achieved by the lag with the highest correla-
tion. The computed LOD time series tracks the one given by the solar model.
One also observes a constant shift between the two LOD patterns, which can
be attributed to the horizon effect. For some days, canopy cover and weather
patterns cause the extracted LOD to be underestimated. However, as the day
alignment is obtained by performing a cross-correlation with the model LOD
pattern, the result is robust to constant shifts. Furthermore, Figure 7 shows
that the equal and opposite effect of sunrise and sunset detection ensures that
the noon estimation in unaffected in the average case.

After obtaining the day alignment, we use the noon information to generate
anchor points. Specifically, for each day of the segment we have available to us
the noon time in local clock (from the light sensors) and noon time in global
clock (using the model). RGTR can then be used to obtain robust values of

Sundial: Using Sunlight to Reconstruct Global Timestamps 191

Day Offset Shift Anchor Points

RGTR
Global

Timestamps

Solar Model Light Timeseries

Correlation
Cross

Sundial

Length of Day Filter

Length of Day Length of Day
(local timestamps)

Noon
(local timestamps)

Noon
(global timestamps)(global timestamps)

Fig. 8. The steps involved in reconstructing global timestamps using Sundial

α and β. This fit is used to reconstruct the global timestamps. As Figure 4
suggests, the noon times change slowly over consecutive days as they oscillate
around 12:00. Thus, even if the day estimate is inaccurate, due to the small
difference in noon times, the α estimate remains largely unaffected. This implies
that even if the day alignment is not optimal, the time reconstruction within
the day will be accurate, provided that the noon times are accurately aligned.
The result of an inaccurate lag estimate is that β is off by a value equal to the
difference between the actual day and our estimate. In other words, β is off by
an integral and constant number of days (without any skew) over the course of
the whole deployment period.

We find that this methodology is well suited in finding the correct α. To im-
prove the β estimate, we perform an iterative procedure which works as follows.
For each iteration, we obtain the best estimate fit (α, β). We convert the motes’
local timestamps into global timestamps using this fit. We then look at the dif-
ference between the actual LOD (given by the model) and the current estimate
for that day. If the difference between the expected LOD and the estimate LOD
exceeds a threshold, we label that day as an outlier. We remove these outliers and
perform the LOD cross-correlation to obtain the day shift (lag) again. If the new
lag differs from the lag in the previous iteration, a new fit is obtained by shifting
the noon times by an amount proportional to the new lag. We iterate until the
lag does not change from the previous iteration. Figure 8 shows a schematic of
the steps involved in reconstructing global timestamps for a segment.

192 J. Gupchup et al.

4 Evaluation

We evaluate the proposed methodology using data from two deployments. De-
ployment J was done at the Jug Bay wetlands sanctuary along the Patuxent
river in Anne Arundel County, Maryland. The data it collected is used to study
the nesting conditions of the Eastern Box turtle (Terrapene carolina) [10]. Each
of the motes was deployed next to a turtle nest, whereas some of them have
a clear view of the sky while others are under multiple layers of tree canopy.
Deployment L, from Leakin Park, is described in Section 2.3.

289 days
481 days

587 days
567 days

341 days
308 days

158 days
141 days

167 days
134 days

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

76
73
72
74

71
75

2,5
6

8,11,13,14
29,43,44,45

D
ep

lo
ym

en
t L

D
ep

lo
ym

en
t J

Feb 2006 Aug 2006 Feb 2007 Aug 2007 Feb 2008 Aug 2008

Fig. 9. Node identifiers, segments and length of each segment (in days) for the two
deployments used in the evaluation

Figure 9 summarizes the node identifiers, segments, and segment lengths in
days for each of the two deployments. Recall that a segment is defined as a
block of data for which the mote’s clock increases monotonically. Data obtained
from the L dataset contained some segments lasting well over 500 days. The L
deployment uses MicaZ motes [3], while the J deployment uses TelosB motes [8].
Motes 2, 5, and 6 from Deployment J collected samples every 10 minutes. All
other motes for both deployments had a sampling interval of 20 minutes. In
addition to its on-board light, temperature, and humidity sensors, each mote
was connected to two soil moisture and two soil temperature sensors.

In order to evaluate Sundial’s accuracy, we must compare the reconstructed
global timestamps it produces, with timestamps that are known to be accurate
and precise. Thus we begin our evaluation by establishing the ground truth.

4.1 Ground Truth

For each of the segments shown in Figure 9, a set of good anchor points (sampled
using the basestation) were used to obtain a fit that maps the local timestamps
to the global timestamps. We refer to this fit as the Ground truth fit. This
fit was validated in two ways. First, we correlated the ambient temperature
readings among different sensors. We also correlated the motes’ measurements
with the air temperature measurements recorded by nearby weather stations.
The weather station for the L deployment was located approximately 17 km

Sundial: Using Sunlight to Reconstruct Global Timestamps 193
E

rr
or

 [d
ay

s]

●

● ●

● ●

●

●

● ●

● ●

●

●

● ● ●

● ●

●

● ●

●

●

0

2

4

6

8

10

12

14

16

18

20

Deployment L Deployment J

Fig. 10. Error in days for different
motes from the L and J deployments

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

 [m
in

ut
es

]

● ● ● ●

●

●

● ● ● ●

●

●

●

●

●
● ●

● ●

●

●

● ●

●

0

2

4

6

8

10

12

14

16

18

20

22

Deployment L Deployment J

Fig. 11. Root mean square error in
minutes (RMSEmin)

away from the deployment site [1], while the one for the J deployment was
located less than one km away [7]. Considering the proximity of the two weather
stations we expect that their readings are strongly correlated to the motes’
measurements.

Note that even if the absolute temperature measurements differ, the diur-
nal temperature patterns should exhibit the same behavior thus leading to high
correlation values. Visual inspection of the temperature data confirmed this in-
tuition. Finally, we note that due to the large length of the segments we consider,
any inconsistencies in the ground truth fit would become apparent for reasons
similar to the ones provided in Section 2.2.

4.2 Reconstructing Global Timestamps Using Sundial

We evaluate Sundial using data from the segments shown in Figure 9. Specifically,
we evaluate the accuracy of the timestamps reconstructed by Sundial as though
the start time of these segment is unknown (similar to the case of a mote reboot)
and no anchor points are available. Since we make no assumptions of the segment
start-time, a very large model (solar) signal needs to be considered to find the
correct shift (lag) for the day alignment.

Evaluation Metrics: We divide the timestamp reconstruction error to: (a)
error in days; and (b) error in minutes within the day. The error in minutes is
computed as the root mean square error (RMSEmin) over all the measurements.
We divide the reconstruction error into these two components, because this de-
coupling naturally reflects the accuracy of estimating the α and β parameters.
Specifically, if the α estimate were inaccurate, then, as Figure 2 suggests, the
reconstruction error would grow as a function of time. In turn, this would re-
sult in a large root mean squared error in minutes within the day over all the

194 J. Gupchup et al.

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

ρρmax

D
ay

 E
rr

or
 [d

ay
s]

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

5

10

15

Fig. 12. Relation between ρmax and er-
ror in days

●

●

●

●

●

●

0.9765754 0.9766024 0.9766295

0
10
20
30
40
50

pp
m

Deployment L

Deployment J

●

● ●

●
●

●

●

●

● ●●

0.999998 1.000129 1.000259

0

50

100

150

pp
m

Fig. 13. α estimates from Sundial and
estimation errors in ppm

measurements. On the other hand, a low RMSEmin corresponds to an accurate
estimate for α. Likewise, inaccuracies in the estimation of β would result in large
error in days.

Results: Figures 10 and 11 summarize Sundial’s accuracy results. Overall, we
find that longer segments show a lower day error. Segments belonging to the
L deployment span well over a year and the minimum day error is 0 while
the maximum day error is 6. In contrast, most of the segments for deployment
J are less than 6 months long and the error in days for all but two of those
segments is less than one week. Figure 12 presents the relationship between
the maximum correlation (ρmax) and the day error. As ρmax measures how
well we are able to match the LOD pattern for a node with the solar LOD
pattern, it is not surprising that high correlation is generally associated with
low reconstruction error. The RMSEmin obtained for each of the segments in
deployment L is very low (see Figure 11) . Remarkably, we are able to achieve an
accuracy (RMSEmin) of under a minute for the majority of the nodes of the L
deployment even though we are limited by our sampling frequency of 20 minutes.
Moreover, RMSEmin error is always within one sample period for all but one
segment.

Interestingly, we found that the α values for the two deployments were sig-
nificantly different. This disparity can be attributed to differences in node types
and thus clock logic. Nonetheless, Sundial accurately determined α in both cases.
Figure 13 presents the α values for the two deployments. We also show the error
between the α obtained using Sundial and the α value obtained by fitting the
good anchor points sampled by the gateway (i.e., ground truth fit). The ppm
error for both the deployments is remarkably low and close to the operating error
of the quartz crystal.

Sundial: Using Sunlight to Reconstruct Global Timestamps 195

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●
●●
●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●● ●●

80 120 160 200 240 280

0
10

20
30

40
50

60
70

Segment Length [days]

D
ay

 E
rr

or
 [d

ay
s]

Fig. 14. Error in days as a function of
segment size

●

●

●●

●

●
● ●

●

●

●

●

●
●

●

●●
●●

●

●

●

●
●●●

●

●

●
●

●●

● ●

●●●

●

●

●●
●

●

●●
●
●

●

●
●

●

●●

80 120 160 200 240 280

0
10

20
30

40

Segment Length [days]

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

 [m
in

ut
es

]
Fig. 15. Error in minutes (RMSEmin)
as a function of segment size

4.3 Impact of Segment Length

Sundial relies on matching solar patterns to the ones observed by the light sen-
sors. The natural question to ask is: what effect does the length of segment
have on the reconstruction error. We address this question by experimenting
with the length of segments and observing the reconstruction error in days and
RMSEmin. We selected data from three long segments from deployment L. To
eliminate bias, the start of each shortened segment was chosen from a uniform
random distribution. Figure 15 shows that the RMSEmin tends to be remark-
ably stable even for short segments. One concludes that even for short segment
lengths, Sundial estimates the clock drift (α) accurately. Figure 14 shows the
effect of segment size on day error. In general, the day error decreases as the
segment size increases. Moreover, for segments less than 150 days long, the error
tends to vary considerably.

4.4 Day Correction

The results so far show that 88% (15 out of 17) of the motes have a day offset
of less than a week. Next, we demonstrate how global events can be used to
correct for the day offset. We looked at soil moisture data from eight motes of
the J deployment after obtaining the best possible timestamp reconstruction.
Specifically, we correlated the motes’ soil moisture data with rainfall data to
correct for the day offset. We used rainfall data from a period of 133 days, starting
from December 4, 2007, during which 21 major rain events occurred. To calculate
the correlation, we created weighted daily vectors for soil moisture measurements
(SM) whose value was greater than a certain threshold and similarly rainfall
vectors having a daily precipitation (PPT) value of greater than 4.0 cm. Next,
we extracted the lag at which the cosine angle between the two vectors (cosine
similarity, θSM−PPT) is maximum. This method is inspired by the well-known

196 J. Gupchup et al.

0 15 30 45 60 75 90 105 120

Days

Soil moisture Rainfall

1

2

3

4

5

6

7
La

g
[d

ay
s]

Cosine
Similarity

Fig. 16. An illustration of the cosine similarity (θSM−PPT) values for seven different
day lags between moisture and rainfall vectors. θSM−PPT peaks at the correct lag of
five days, providing the correct day adjustment.

document clustering model used in the information retrieval community [9]. Note
that we computed θSM−PPT for a two-week window (± seven days) of lags and
found that seven out of the eight motes could be aligned perfectly. Figure 16
illustrates the soil moisture vectors, rainfall vectors and the associated θSM−PPT

for seven lags for one of the segments. Note that θSM−PPT peaks at the correct
lag of five, leading to the precise day correction. While we use soil moisture to
illustrate how global events can be used to achieve macro-level clock adjustments,
other modalities can also be used based on the application’s parameters.

5 Related Work

This study proposes a solution to the problem of postmortem timestamp recon-
struction for sensor measurements. To our knowledge, there is little previous work
that addresses this problem for deployments that span a year or longer. Deploy-
ment length can be an issue because the reconstruction error monotonically in-
creases as a function of time (cf. Sec.2.2). The timestamp reconstruction problem
was first introduced by Werner-Allen et al. who provided a detailed account of the
challenges they faced in synchronizing mote clocks during a 19-day deployment at
an active volcano [13]. Specifically, while the system employed the FTSP protocol
to synchronize the network’s motes, unexpected faults forced the authors to rely
on an offline time rectification algorithm to reconstruct global timestamps.

While experiences such as the one reported in [13] provide motivation for
an independent time reconstruction mechanism such as the one proposed in
this paper, the problem addressed by Werner-Allen et al. is different from the
one we aim to solve. Specifically, the volcano deployment had access to precise

Sundial: Using Sunlight to Reconstruct Global Timestamps 197

global timestamps (through a GPS receiver deployed at the site) and used linear
regression to translate local timestamps to global time, once timestamp outliers
were removed. While RGTR can also be used for outlier detection and timestamp
reconstruction, Sundial aims to recover timestamps in situations where a reliable
global clock source is not available.

Finally, Chang et. al. [2] describe their experiences with motes rebooting and
resetting of logical clocks, but do not furnish any details of how they recon-
structed the global timestamps when this happens.

6 Conclusion

In this paper we present Sundial, a method that uses light sensors to reconstruct
global timestamps. Specifically, Sundial uses light intensity measurements, col-
lected by the motes’ on-board sensors, to reconstruct the length of day (LOD)
and noon time throughout the deployment period. It then calculates the slope
and the offset by maximizing the correlation between the measurement-derived
LOD series and the one provided by astronomy. Sundial operates in the absence
of global clocks and allows for random node reboots. These features make Sun-
dial very attractive for environmental monitoring networks deployed in harsh
environments, where they operate disconnected over long periods of time. Fur-
thermore, Sundial can be used as an independent verification technique along
with any other time reconstruction algorithm.

Using data collected by two network deployments spanning a total of 2.5
years we show that Sundial can achieve accuracy in the order of a few minutes.
Furthermore, we show that one can use other global events such as rain events
to correct any day offsets that might exist. As expected, Sundial’s accuracy is
closely related to the segment size. In this study, we perform only a preliminary
investigation on how the length of the segment affects accuracy. An interest-
ing research direction we would like to pursue is to study the applicability of
Sundial to different deployments. Specifically, we are interested in understand-
ing how sampling frequency, segment length, latitude and season (time of year)
collectively affect reconstruction accuracy.

Sundial exploits the correlation between the well-understood solar model and
themeasurements obtained from inexpensive light sensors. Inprinciple, anymodal-
ity having a well-understood model can be used as a replacement for Sundial. In
the absence of a model, one can exploit correlation from a trusted data source to
achieve reconstruction, e.g., correlating the ambient temperaturemeasurementbe-
tween the motes with data obtained from a nearby weather station. However, we
note thatmanymodalities (such as ambient temperature) canbe highly susceptible
to micro-climate effects and exhibit a high degree a spatial and temporal variation.
Thus, the micro-climate invariant solar model makes light a robust modality to
reconstruct timestamps in the absence of any sampled anchor points.

Finally, we would like to emphasize the observation that most environmental
modalities are affected by the diurnal and annual solar cycles and not by the
human-created universal time. In this regard, the time base that Sundial estab-
lishes offers a more natural reference basis for environmental measurements.

198 J. Gupchup et al.

Acknowledgments

We would like to thank Yulia Savva (JHU, Department of Earth and Planetary
Science) for helping us identify the timestamp reconstruction problem. This re-
search was supported in part by NSF grants CNS-0546648, CSR-0720730, and
DBI-0754782. Any opinions, finding, conclusions or recommendations expressed
in this publication are those of the authors and do not represent the policy or
position of the NSF.

References

1. Baltimore-Washington International airport, weather station,
http://weather.marylandweather.com/cgi-bin/findweather/
getForecast?query=BWI

2. Chang, M., Cornou, C., Madsen, K., Bonett, P.: Lessons from the Hogthrob Deploy-
ments. In: Proceedings of the Second International Workshop on Wireless Sensor
Network Deployments (WiDeploy 2008) (June 2008)

3. Crossbow Corporation. MICAz Specifications,
http://www.xbow.com/Support/Support pdf files/
MPR-MIB Series Users Manual.pdf

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester
(2001)

5. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves
in pictures. Commun. ACM 15(1), 11–15 (1972)

6. Forsythea, W.C., Rykiel Jr., E.J., Stahla, R.S., Wua, H., Schoolfield, R.M.: A
model comparison for daylength as a function of latitude and day of year. Sci-
enceDirect 80(1) (January 1994)

7. National Estuarine Research Reserve. Jug Bay weather station (cbmjbwq),
http://cdmo.baruch.sc.edu/QueryPages/anychart.cfm

8. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling Ultra-Low Power Wireless
Research. In: Proceedings of the Fourth International Conference on Information
Processing in Sensor Networks: Special track on Platform Tools and Design Meth-
ods for Network Embedded Sensors (IPSN/SPOTS) (April 2005)

9. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

10. Szlavecz, K., Terzis, A., Musaloiu-E., R., Liang, C.-J., Cogan, J., Szalay, A.,
Gupchup, J., Klofas, J., Xia, L., Swarth, C., Matthews, S.: Turtle Nest Monitor-
ing with Wireless Sensor Networks. In: Proceedings of the American Geophysical
Union, Fall Meeting (2007)

11. Terzis, A., Musaloiu-E., R., Cogan, J., Szlavecz, K., Szalay, A., Gray, J., Ozer,
S., Liang, M., Gupchup, J., Burns, R.: Wireless Sensor Networks for Soil Science.
International Journal on Sensor Networks

12. Tolle, G., Polastre, J., Szewczyk, R., Turner, N., Tu, K., Buonadonna, P., Burgess,
S., Gay, D., Hong, W., Dawson, T., Culler, D.: A Macroscope in the Redwoods.
In: Proceedings of the 3rd ACM SenSys Conference (November 2005)

13. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and Yield
in a Volcano Monitoring Sensor Network. In: Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (November
2006)

http://weather.marylandweather.com/cgi-bin/findweather/getForecast?query=BWI
http://weather.marylandweather.com/cgi-bin/findweather/getForecast?query=BWI
http://www.xbow.com/Support/Support_pdf_files/MPR-MIB_Series_Users_Manual.pdf
http://www.xbow.com/Support/Support_pdf_files/MPR-MIB_Series_Users_Manual.pdf
http://cdmo.baruch.sc.edu/QueryPages/anychart.cfm

An Analytical Study of Reliable and
Energy-Efficient Data Collection in Sparse

Sensor Networks with Mobile Relays

Giuseppe Anastasi1, Marco Conti2, and Mario Di Francesco1

1 Dept. of Information Engineering, University of Pisa, Italy
{giuseppe.anastasi,mario.difrancesco}@iet.unipi.it

2 CNR-IIT, National Research Council, Italy
marco.conti@iit.cnr.it

Abstract. Sparse wireless sensor networks (WSNs) are emerging as an
effective solution for a wide range of applications, especially for environ-
mental monitoring. In this context, special mobile elements – i.e. mobile
relays (MRs) – can be used to get data sampled by sensor nodes. In this
paper we present an analytical evaluation of the data collection perfor-
mance in sparse WSNs with MRs. Our main contribution is the defini-
tion of a flexible model which can derive the total energy consumption
for each message correctly transferred by sensors to the MR. The results
show that a low duty cycle is convenient and allows a significant amount
of correctly received messages, especially when the MR moves with a low
speed. When the MR moves fast, depending on its mobility pattern, a
low duty cycle may not always be the most energy efficient option.

1 Introduction

Wireless sensor networks (WSNs) have become an enabling technology for a
wide range of applications. The traditional WSN architecture consists of a large
number of sensor nodes which are densely deployed over an area of interest. Sen-
sor nodes sample data from their surrounding environment, process them locally
and send the results to a data collection point, usually a sink node or an Ac-
cess Point (AP). The communication between the sensors and the data collection
point is multi-hop, which is possible due to the network density. More recently, a
different WSN architecture has been introduced for application scenarios where
fine-grained sensing is not required. In this case, nodes are sparsely deployed
over the sensing field. As the number of nodes is moderate or low, in contrast
with traditional solutions, the costs are reduced. However, since the network is
sparse, neighboring nodes are far away from each other, so that they cannot
communicate together directly nor through multi-hop paths and a different data
gathering scheme is required.

In sparse sensor networks, data collection can be accomplished by means of
mobile relays (MRs). MRs are special mobile nodes which are responsible for
data gathering. They are assumed to be powerful in terms of data storage and

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 199–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

200 G. Anastasi, M. Conti, and M. Di Francesco

processing capabilities, and not energy constrained, in the sense that their energy
source can be replaced or recharged easily. MRs carry data from sensors to the
sink node or an infra-structured AP [1]. Depending on the application scenario,
MRs may be either part of the external environment [2,3] (e.g., buses, cabs, or
walking people), or part of the network infrastructure [4,5] (e.g., mobile robots).

The communication between an MR and sensor nodes takes place in two
different phases. First, sensor nodes have to discover the presence of the MR
in their communication range. Then, they can transfer collected data to the
MR while satisfying certain reliability constraints, if required. Different from the
MRs, sensor nodes have a limited energy budget, so that both discovery and data
transfer should be energy efficient in order to prolong the network lifetime [6].
As the radio component is usually the major source of energy consumption, the
overall radio activity should be minimized. To this end, a duty cycle approach
can be used, so that sensors alternate sleep and active periods. However, the
effects of the duty cycle have to be properly investigated: if sensor nodes are
sleeping when the MR comes, they cannot detect it neither transmit data, so
that they are only wasting their energy.

In this paper we consider the joint impact of discovery and data transfer for
reliable and energy efficient data collection in sparse WSNs with MRs. The ma-
jor contribution of this paper is a detailed and realistic model for deriving the
performance of the overall data collection process. The proposed methodology
is general, so that it can be adapted to different discovery and data transfer
protocols, and does not depend on the mobility pattern of the MR. To the pur-
poses of our analysis, we consider a discovery scheme based on periodic wakeups
and an ARQ-based data transfer protocol. Finally, we derive the performance
of data collection in terms of both throughput (i.e. average number of messages
correctly transferred to the MR) and energy efficiency (i.e. total energy spent
per successfully transferred message) at each contact.

The results obtained show that, in general, a low duty cycle provides a better
energy efficiency, especially if the contact time is large enough to allow the reliable
transfer of a significant amount of data. However, when the contact time is limited,
a very low duty cycle is not convenient as the energy saved during discovery is
overcome by the decrease in the number of messages successfully transferred.

The rest of the paper is organized as follows. Section 2 presents an overview
of the relevant literature in the field. Section 3 introduces the system model
and the related assumptions. Section 4 and 5 present the analytical model for
the discovery and the data transfer phases, respectively. Section 6 presents and
discusses the obtained results. Finally, section 7 concludes the paper, giving
insights for future work.

2 Related Work

Many different papers have addressed the issues of data collection using MRs. In
the context of opportunistic networks, the well known message ferrying approach
has been proposed in [7]. Specifically, power management has been addressed

An Analytical Study of Reliable and Energy-Efficient Data Collection 201

by [8], where a general framework for energy conservation is introduced. The
proposed solution, which can also exploit knowledge about the mobility pattern
of the MR, is evaluated in terms of energy efficiency and delivery performance.
However, as the proposed solution is devised for opportunistic networks, it is not
applicable in the scenario considered in this paper.

Indeed, many solutions have also been conceived specifically for WSNs. While
many papers focus on the mobility of the MR [9,10], some works actually address
the problem of energy efficient data collection from the sensor node perspective.
For example, [5] considers a periodic wakeup scheme for discovery and a stop-
and-wait protocol for data transfer. A stop-and-wait protocol for data transfer
is also used in [11], where the MR is assumed to be controllable. A different
solution is investigated in [2], under the assumption that the MR has a com-
pletely predictable mobility. The above mentioned solutions, however, have only
been analyzed with simulations, while in this paper we address the problem an-
alytically. In addition, the solution proposed here is flexible enough to support
different protocols and mobility patterns of the MR.

In the specific context of MRs, [3] considers MRs which are not controllable
but move randomly, and models the success rate of messages arriving at the
access point. However, [3] focuses on buffer requirements at sensors rather than
on their energy consumption. Under the same scenario, [1] introduces a more
detailed formulation, which considers both the discovery and the data transfer
phases of data collection. Furthermore, it evaluates different mobility patterns of
the MR and supports sensor nodes operating with a duty cycle during discovery.
Although discussing the probability of data reception at the access point, both
[3] and [1] assume an ideal channel and no specific data transfer protocol, so that
their findings are mostly affected by buffering constraints. Instead, we explicitly
consider data transfer – in addition to discovery – for reliable data collection. In
addition, we take the message loss into account by using a model derived from
real measurements.

The problem of reliable and energy efficient data collection has also been ad-
dressed in [12], where an adaptive and window-based ARQ transmission scheme
is evaluated under a realistic message loss model derived from real measure-
ments [13]. In detail, [12] analytically shows that the proposed scheme achieves
not only a better throughput, but also a higher energy efficiency than a simple
stop-and-wait protocol. However, the proposed approach is evaluated only in the
application scenario where the sensor has only a limited amount of data to send.
In addition, [12] does not consider the effect of discovery on the subsequent data
transfer phase, as it focuses only on data transfer. On the contrary, the model
presented in this paper jointly considers discovery and data transfer for deriving
the overall energy efficiency.

3 System Model

In this section, we will first introduce the reference scenario considered in the
analysis. Then, we will describe the discovery and the data transfer protocols
used by the MR and the static sensors for data collection.

202 G. Anastasi, M. Conti, and M. Di Francesco

Rtx

Dy

Contact
area

d

Dx

c

radio

path

Sensor
node

Mobile
relay

cmax

(a)

timeout

Data Transfer

Discovery

Sleeping

MR out of reach

timeout

MR
discovered

(b)

Fig. 1. Reference scenario (a) and state diagram for the static node (b)

The reference network scenario is illustrated in Fig. 1(a). In the following, we
will consider a single MR and assume that the network is sparse enough so that
at any time at most a single (static) node can reach the MR. In addition, we
will assume that the MR is part of the environment (e.g. a bus or a car), so
that its mobility pattern cannot be controlled. Finally, we will assume that the
MR moves along a linear path at a fixed vertical distance (Dy) from the static
node, at a constant speed v. This assumption is reasonable for a sample scenario
where the MR moves along a street or a road. Data collection takes place only
during a contact, i.e. when the static node and the MR can reach each other.
Furthermore, the area within the radio transmission range Rtx of the static
node is called contact area1, and the overall time spent by the MR inside the
contact area is called contact time, and is referred to as cmax. During a contact,
messages exchanged between the MR and the static node experience a certain
message loss. We denote by p(t) the probability that a message transmitted at
time t is lost, and assume as t = 0 the instant at which the MR enters the
contact area. Any message transmitted when the static node and the MR are
not in contact is assumed to get lost, so that p(t) is defined only within the
contact area.

The overall data collection process can be split into three main phases.
Fig. 1(b) shows the state diagram of the static sensor node [8]. As MR ar-
rivals are generally unpredictable, the static node initially performs a discovery
phase for the timely detection of the MR. Indeed, the successful MR detection
by the static sensor is not immediate, but requires a certain amount of time,
called discovery time, and denoted by d in Fig. 1(a). Upon detecting the MR,
the static node switches from the discovery state to the data transfer state, and
starts transmitting data to the MR. As a result of the discovery process, the
static node cannot exploit the whole available contact time for data transfer.

1 Depicted with a circular shape in Fig. 1(a) only for convenience.

An Analytical Study of Reliable and Energy-Efficient Data Collection 203

The portion of the contact time which can be actually used for subsequent data
transfer is called residual contact time and is referred to as c. After the end of the
data transfer phase, the static node may switch to the discovery state again in
order to detect the next MR passage. However, if the MR has a (even partially)
predictable mobility, the static node can exploit this knowledge to further reduce
its energy consumption [8]. In this case, the static node can go to a sleep state
until the next expected arrival of the MR. In any case, the static sensor may be
awake also when the MR is out of reach. The amount of time spent by the static
node in the discovery state while the MR has not yet entered the contact area
is called waiting time, and is indicated with σ in Fig. 1(a).

We now briefly describe the discovery and data transfer protocols used by the
static sensor and the MR in the corresponding phases. In principle, different dis-
covery and data transfer protocols could be used for data collection in the above
scenario. In our analysis, however, we will consider a discovery protocol based
on a periodic beacon transmission by the MR, and an ARQ-based protocol for
reliable data transfer, as they are among the most frequent schemes in the field
[5,3,11]. To advertise its presence in the surrounding area, the MR periodically
sends special messages called beacons. The duration of a beacon message is equal
to TBD, and subsequent beacons are spaced by a beacon period, indicated with
TB. In order to save energy during the discovery phase, the static node operates
with a duty cycle δ, defined by the active time TON and the sleep time TOFF ,
i.e. δ = TON/(TON + TOFF). The static node follows a periodic wakeup scheme,
with its activity time set to TON = TB +TBD, i.e. a value which allows the node
to receive a complete beacon during its active time, provided that it wakes up
when the MR is in the contact area. On the other hand, the sleep time TOFF is
set to a value which enforces the desired duty cycle δ.

As soon as it receives a beacon from the MR, the static node enters the
data transfer state. While in this state, the static node remains always active to
exploit the residual contact time as much as possible. On the other hand, the
MR enters the data transfer phase as soon as it receives the first message sent
by the static node, and stops beacon transmissions. The communication scheme
adopted during the data transfer phase is based on Automatic Repeat reQuest
(ARQ). The static node splits buffered data into messages, which are transmitted
in groups (windows). The number of messages contained in a window, i.e. the
window size, is assumed to be fixed and known both at the sender and at the
receiver. The static node sends the messages in a window back to back, then
waits for an acknowledgement sent back by the MR. Note that, in this context,
the acknowledgement message is used not only for implementing a retransmission
strategy, but also as an indication of the MR presence in the contact area. In the
following, we assume that the static sensor has always data to send, so that the
data transfer phase ends when the MR is not reachable any more (i.e. at the end
of the residual contact time). However, the static node generally cannot know
when the MR will leave the contact area, for instance because it cannot derive the
residual contact time a priori. In practice, the static node assumes that the MR
has exited the contact area when it misses Nack consecutive acknowledgments.

204 G. Anastasi, M. Conti, and M. Di Francesco

Similarly, the MR assumes that the communication is over when it does not
receive any more message in a given period of time.

4 Discovery Phase Analysis

In this section we develop an analytical model for the discovery phase. The
purpose of the analysis is to derive the distribution of the discovery time and,
thus, the residual contact time as well. The analysis is split in two main parts.
First, the state of the static node (i.e. ON or OFF) over time is derived, by
keeping in consideration the duty cycle. Second, the beacon reception process is
modeled, i.e. the state transitions of the static node are characterized, on the
basis of the probability that a beacon sent by the MR at a given instant will be
correctly received by the static sensor.

With the help of Fig. 2(a) we introduce the framework for the subsequent
analysis. As beacon transmissions do not depend on when the MR enters the
contact area, the initial beacon transmission within the contact area is generally
affected by a random offset (with respect to the beginning of the contact time).
In detail, the time instant at which the MR transmits the first beacon while in
the contact area is denoted as t0. As beacon transmissions are periodic and start
at t0, the actual instants of subsequent beacon transmissions can be expressed
as tn = t0 + n · TB, with n ∈ [1, N − 1] where N = cmax/TB� is the maximum
number of beacons the MR can send while in the contact area. Therefore, if
the MR is discovered by means of the m-th beacon, the discovery time is d =
dm(t0) = t0+m·TB, and the corresponding residual contact time is c = cm(t0) =
cmax − d = cmax − dm(t0).

The state of the static node at a given instant is completely specified by its
composite state (s, r) where s denotes the radio state, i.e. ON or OFF, and

p(t)

t0 d cmax0

t

TB

c

r0

s0 ON

TON TOFF

s(t)

OFF

TBD

1

(a)

BN+1

B0 BN-1B1

BN

(b)

Fig. 2. Beacon discovery process (a) and beacon state (b)

An Analytical Study of Reliable and Energy-Efficient Data Collection 205

r represents the residual time, i.e. the amount of time the node will remain
in the same state s. The initial state of the static node at the time t = 0 is
referred to as (s0, r0). Let us denote by s(t) and r(t) the radio state and the
residual time, respectively, at a generic time t. Because of the duty cycle, both
s(t) and r(t) evolve in a deterministic way. In detail, the radio state of the
static node is periodic, with period equal TON + TOFF . We focus now on the
radio state s(tn) of the static node at beacon transmission times (tn). As s(t)
is periodic, it is sufficient to investigate the remainder of the ratio between the
beacon transmission times and the period of the duty cycle. By comparing this
remainder against the initial residual state s0 and the initial residual time r0, it
is possible to derive s(tn). Specifically, it is

s(tn)
s0=ON =

⎧
⎨

⎩

ON if 0 ≤ t′n < r0
OFF if r0 ≤ t′n < r0 + TOFF

ON if r0 + TOFF ≤ t′n < TON + TOFF

(1)

s(tn)
s0=OFF =

⎧
⎨

⎩

OFF if 0 ≤ t′n < r0
ON if r0 ≤ t′n < r0 + TON

OFF if r0 + TON ≤ t′n < TON + TOFF

(2)

where t′n = tn mod (TON + TOFF). Similarly, we can also derive the residual
time r(tn)

r(tn)
s0=ON =

⎧
⎨

⎩

r0 − t′n if 0 ≤ t′n < r0
TOFF + r0 − t′n if r0 ≤ t′n < r0 + TOFF

TON + TOFF + r0 − t′n if r0 + TOFF ≤ t′n < TON + TOFF

(3)

r(tn)
s0=OFF =

⎧
⎨

⎩

r0 − t′n if 0 ≤ t′n < r0
TON + r0 − t′n if r0 ≤ t′n < r0 + TON

TON + TOFF + r0 − t′n if r0 + TON ≤ t′n < TON + TOFF

(4)

Once the duty-cycled state of the static node has been fully characterized, we
have to model the actual beacon reception process. To this end we introduce the
state representation illustrated in Fig. 2(b), where the states Bi, i ∈ [0, N + 1],
refer to the static node at beacon transmission times. In detail, B0 is the initial
state in which the static node is waiting for the MR to transmit the first beacon
in the contact area. Bj is entered after missing the first j beacons sent by the
MR, where j ∈ [1, N − 1]. BN is entered when the static node has not detected
the MR presence at all, because it has not received any of the beacons. Finally,
BN+1 is entered when the static node has successfully received a beacon. When
it is in a state Bk, with k ∈ [0, N −1], the static node can only move to the state
Bk+1 or to the state BN+1 if it has lost or got a beacon, respectively. Note that
BN and BN+1 are absorbing states. In addition, the state of the static node is
completely specified by its current state.

Now, we can derive a joint characterization of the radio state of the static node
and the beacon reception process. For simplicity, time has been discretized in
slots with duration Δ, so that the whole process can be modeled as a discrete time

206 G. Anastasi, M. Conti, and M. Di Francesco

Markov chain. For the sake of clarity, in the following we will not explicitly refer
to time-dependent parameters by their actual discretized values, unless otherwise
specified. The transition matrix H corresponding to the beacon reception process
can be thus written as follows

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 H01 0 · · · 0 H0,N+1
0 0 H12 0 H1,N+1
...

...
. . .

...
...

0 0 0 · · · HN−1,N HN−1,N+1
0 0 0 · · · HNN 0
0 0 0 · · · 0 HN+1,N+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

where the Hkl are sub-blocks denoting the transition probability from the state
Bk to the state Bl. Note that the state B0 is evaluated at time t = 0, while
state Bi with i ∈ [1, N] is evaluated at the i-th beacon transmission time, i.e. ti.
In addition to the state B related to the beacon reception, the Hkl blocks also
keep track of the radio state of the static node. In detail, the elements of the Hkl

block can be expressed as hkl
(si,ri),(sj ,rj) = P {Bl, (sj , rj) | Bk, (si, ri)}. Since the

state of the static node is deterministic, the only admissible transitions are those
specified by the state equations (1-4), i.e. between the generic state (si, ri) and
the corresponding state (s∗j , r

∗
j) such that s∗j = s(tk) and r∗j = r(tk). Specifically,

the transition probabilities are as follows

hkl
(si,ri),(s∗

j ,r∗
j) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if s∗j = OFF and Bl �= BN+1

0 if s∗j = OFF and Bl = BN+1

p(tk) if s∗j = ON and Bl �= BN+1

1 − p(tk) if s∗j = ON and Bl = BN+1

The above probabilities can be justified as follows, assuming to be in the state
Bk.

– If the radio will be OFF during the next beacon transmission (at time tk),
then the static node will miss the beacon for sure, so that it can only enter
a state different from BN+1 (i.e. Bl = Bk+1).

– Otherwise, the static node will be active during the next beacon transmission
time. The static node will miss the beacon with a probability p(tk), thus
moving to the state Bl = Bk+1. Conversely, it will correctly receive the
beacon with a probability 1 − p(tk) thus entering the state Bl = BN+1.

Let X(0) be the initial state probability vector of the static node and X(k) the
state probability vector associated to the time of the k-th beacon transmission,
with k ∈ [1, N − 1],

X(k) =
(

X
(k)
0 X

(k)
1 · · · X

(k)
N−1 X

(k)
N X

(k)
N+1

)

X(0) =
(

X
(0)
0 0 0 · · · 0 0 0

)

An Analytical Study of Reliable and Energy-Efficient Data Collection 207

where only the X
(0)
0 component of the initial state vector is not zero, as when

the MR enters the contact area the static node is waiting for the first beacon to
be sent. By definition of discrete time Markov chain, it follows that

X(k+1) = X(k) · H for k = 0, 1, 2, . . . , N − 1 (5)

Note that the Xk
N+1 component of the state vector represents the cumulative

probability of the MR discovery after k beacon transmissions. Hence, the p.m.f. of
the discovery time r.v. D, i.e. d(m, t0) = P {D(t) = m}, can be derived as

d(m, t0) =

⎧
⎪⎨

⎪⎩

X
(0)
N+1 if m = t0

X
(k)
N+1 − X

(k−1)
N+1 if m = tk, k ∈ [1, N − 1]

0 otherwise
(6)

To derive the p.m.f. of the discovery time by (5) we need to know the initial
state probabilities for X(0). As both beacon transmissions and activations of
the static node are periodic and independent, it is reasonable to assume that
the initial radio state and the initial residual time are uniformly distributed
along all possible values. Hence, for both radio states and independent from the
residual time, the initial probability is Δ/(TON + TOFF), where Δ is duration
of a discretized time slot.

All the above discussion assumes a certain initial beacon transmission time t0.
To properly characterize the discovery time, the Equation (6) must be evaluated
for all possible values of t0. Again, as both beacon transmissions and activations
of the static node are periodic and independent, we will assume that all possible
values of t0 are uniformly distributed in the range 0 ≤ t0 < TB. Note that t0 has
been discretized into t̂0 ∈ T ≡ {0, Δ, . . . , nt0 · Δ}, where nt0 = �TB/Δ� is the
maximum number of discretized time slots Δ which fit into [0, TB). Hence, the
p.m.f. d(m) of the discovery time per contact is

d(m) =
∑

t̂0∈T

d(m, t̂0) · P
{
t̂0

}
=

Δ

TB

∑

t̂0∈T

d(m, t̂0)

5 Data Transfer Phase Analysis

In this section we derive the amount of messages correctly transferred by the
static node to the MR. Recall that the static node enters the data transfer phase
after a successful beacon reception. Since this depends on the discovery time, we
will make use of the p.m.f. d(m) obtained in the previous section to derive the
number of correctly transferred data messages.

As anticipated in Section 4, while in the data transfer state, the static sensor
is always on, and uses an ARQ-based communication protocol for data transfer.
In the following, we will assume that both data and acknowledgments messages
have a fixed duration Ts, referred to as message slot. In addition, we will assume
a window size of w messages.

208 G. Anastasi, M. Conti, and M. Di Francesco

We focus now on a single window starting at the generic time t. As the message
loss changes with the distance between the MR and the static sensor, every
message will experience its own loss probability. However, we will assume that the
message loss is constant during a message slot, i.e. that the i-th message in the
window starting at time t will experience a message loss probability p(t + i · Ts).
This is reasonable, given the short duration of the message slot. Let’s denote by
N(i, t) the r.v. denoting the number of messages successfully received by the MR
in a given slot i of the window starting at time t. Clearly, the p.m.f. of N(i, t) is
n(i, t, m) = P {N(i, t) = m}, i.e.

n(i, t, m) =

⎧
⎨

⎩

1 − p(t + i · Ts) if m = 1
p(t + i · Ts) if m = 0
0 otherwise

(7)

Hence, the total number of messages received by the MR within a window,
i.e. N(t), is the sum of the N(i, t) r.v.s N(t) =

∑w−1
i=0 N(i, t), so that its p.m.f. is

the convolution of the single p.m.f.s, i.e. n(t, m) = ⊗w−1
i=0 n(i, t, m).

Furthermore, we denote by R(t) the r.v. representing the number of messages
correctly transferred to the MR when an ARQ-based mechanism is used. So, in
this case R(t) represents the number of messages acknowledged by the MR. In
the following, we will consider a selective retransmission scheme, where acknowl-
edgements notify the sensor node which messages sent in the last window have
been correctly received by the MR. Hence, the reception of the acknowledgement
has to be accounted as well, so that the messages within a window are correctly
transferred if they are successfully received by the MR and the corresponding
acknowledgement is not lost. We denote by A(t) the r.v. indicating the number
of acknowledgements correctly received by the MR for the corresponding window
starting at time t. Hence, the p.m.f. of A(t) is a(t, m) = P {A(t) = m}, i.e.

a(t, m) =

⎧
⎨

⎩

1 − p(t + w · Ts) if m = 1
p(t + w · Ts) if m = 0
0 otherwise

(8)

hence R(t) = N(t) · A(t) and, being them indepedent, we have that

E [R(t)] = E [N(t)] · E [A(t)] =
w−1∑

i=0

[1 − p(t + i · Ts)] · [1 − p(t + w · Ts)]

5.1 Joint Discovery and Data Transfer

The above discussion focuses on a single communication window. To get the
number of messages transferred during the whole contact time, we have to char-
acterize both the starting time t of the first window and the total number W of
windows actually available in the residual contact time. Hence, the total number
of messages correctly transferred during a contact is

R =
W∑

i=0

R(t + i · (w + 1) · Ts)|t=D (9)

An Analytical Study of Reliable and Energy-Efficient Data Collection 209

If D is the r.v. denoting the discovery time, whose p.m.f. has been derived in
the previous section, clearly the start time of the first communication window
is t = D. In addition, the number of windows in the residual contact time is
W = �(cmax − D)/((w + 1) · Ts)�, under the assumption that the static node can
exploit all the residual contact time for data transfer. We verified by simulation
that with an appropriate setting of Nack it is possible to exploit the residual
contact time almost completely (see Section 6.2). Thus, the number of messages
transferred successfully can be expressed as the r.v. R which depends only on
the discovery time D.

Energy Efficiency. In this section we derive the total energy consumed by
the static node per message successfully delivered to the MR, on the average.
This metric provides an indication of the energy efficiency for the overall data
collection process. The energy consumed in a given radio state is calculated as
Prs · Trs, where Prs is the power drained in the state rs while Trs is the time
spent in the same state. As possible radio states we consider rx for receive, tx for
transmit and sl for sleep (i.e. shutdown). In addition, we assume that the power
consumption when the radio is idle (i.e. it is monitoring the channel) is the same
as in the receive state. As the energy efficiency depends on both discovery and
data transfer, we derive first the energy consumption for the discovery phase,
and then its joint effect on the subsequent data transfer.

Since the MR arrival may be unknown a priori, the static node may spend
a waiting time σ in addition to the discovery time (see Fig. 1(a)). Hence, the
energy spent during the discovery phase is

Edisc = Psl · (σ + E [D]) · (1 − δ) + Prx · (σ + E [D]) · δ

where the first term accounts for the energy spent in the sleep state, while the
second one accounts for the time spent in the active state before the correct
reception of the beacon message.

On the other side, the energy spent for data transfer – under the assumptions
that the static sensor has always data to send and data transfer takes the entire
residual contact time – is

Edt =
(

E [cmax − D]
w + 1

+ P {D} · Nack

2
· Ts

)
· (w · Ptx + Prx)

The first part of the equation denotes the number of windows in the contact
time plus the windows wasted after the end of the contact time. Note that
the wasted windows have to be considered only when the contact actually oc-
curs, so that the related term is multiplied by the probability of correct detec-
tion of the MR (i.e. P {D} = X

(N−1)
N). The second term, instead, denotes the

amount of power spent for a single window in the receive and transmit states,
respectively.

Finally, the average total energy consumed by the static sensor per each mes-
sage correctly transferred to the MR is Emsg = (Edisc + Edt)/E [R].

210 G. Anastasi, M. Conti, and M. Di Francesco

6 Results

In this section we will use the analytical formulas derived in the previous sections
to perform an integrated performance analysis of the overall data collection
process. To this end, we will consider the following performance metrics.

– Residual contact ratio, defined as the ratio between the average residual
contact time and the contact time η = E [(cmax − D)/cmax].

– Contact miss ratio, defined as the fraction of MR passages not detected by
the static sensor (i.e. P {N} = X

(N−1)
N+1).

– Throughput, defined as the average number of messages (or bytes) correctly
transferred to the MR at each contact (i.e. E [R]).

– Energy consumption per byte, defined as the mean energy spent by the static
sensor per each message (or byte) correctly transferred to the MR (i.e. Emsg

as defined in Subsection 5.1).

In our analysis we used a message loss function derived from the experimental data
presented in [13] and measured in the same scenario introduced in Section 3. To
get a more flexible model, we considered an interpolated polynomial packet loss
function in the form

p(t) = a2 ·
(
t − cmax

2

)2
+ a1 ·

(
t − cmax

2

)
+ a0 (10)

Equation (10) holds only within the contact area, i.e. for 0 < t < cmax. For other
values of t, p(t) is assumed to be equal to one, as outside of the contact area
any transmitted message is lost. To derive the coefficients in (10) – reported in
Table 1(a) for different MR speeds v and for a vertical distance Dy = 15 m – we
used the same methodology described in [12].

We evaluated the model derived in Sections 4 and 5 and validated the analyt-
ical results with a discrete event simulator written in C. In the following, we will
show both analytical and simulation results. However, unless stated otherwise,
we will refer to the analytical results. Table 1(b) shows the parameter settings
for both analysis and simulation.

Table 1. Interpolated message loss coefficients as functions of the MR speed (Dy =
15m (a) and other parameters used for analysis (b)

(a)

Coefficient v = 3.6 km/h v = 40 km/h
a0 0.133 0.4492
a1(m−1) 0 0
a2(m−2) 0.000138 0.0077

(b)

Parameter Value

Transmit power (0 dBm) 49.5 mW
Receive (idle) power 28.8 mW
Sleep power 0.6 μW
Message payload size 24 bytes
Message slot size 15 ms
TB 100 ms
TBD 9.3 ms

An Analytical Study of Reliable and Energy-Efficient Data Collection 211

6.1 Discovery Phase

In this section we evaluate the performance of the discovery protocol, in terms
of residual contact ratio and missed contacts. First of all, the effectiveness of the
discovery protocol strictly depends on the TB and TBD parameters. As a design
criterion, both parameters should be reduced as much as possible. In fact, a low
TB increases the frequency of beacon transmission, hence the probability of a
timely beacon discovery. On the other hand, a low TBD reduces the overhead
due to the beacon reception, so that the residual contact time is not significantly
decreased. The proper setting of both parameters strictly depends on the actual
system on which the data collection protocols are implemented. In the following
discussion we set TB = 100 ms and TBD = 9.3 ms, which have been found as
suitable values for a Mote class sensor platform [14].

Figure 3(a) shows the residual contact ratio as a function of the MR speed,
for different duty cycles. We start considering the MR moving at 3.6 km/h.
The results clearly show that the duty cycle used for discovery does not signifi-
cantly impact the residual contact ratio. For comparison purposes, we have also

100 10 5 1 0.5 100 10 5 1 0.5
0

10

20

30

40

50

60

70

80

90

100

R
es

id
ua

l c
on

ta
ct

 r
at

io
 (

%
)

Duty cycle (%) Duty cycle (%)
 v=3.6 km/h v=40 km/h

Analysis
Simulation

(a) Residual contact ratio

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
2500

2750

3000

3250

3500

3750

4000

4250

4500

Window size (w)

A
ck

no
w

le
dg

ed
 m

es
sa

ge
s

δ = 10% (Analysis)

δ = 5% (Analysis)

δ = 1% (Analysis)

δ = 0.5% (Analysis)

δ = 10%, Nack = 25 (Simulation)

δ = 5%, Nack = 25 (Simulation)

δ = 1%, Nack = 25 (Simulation)

δ = 0.5%, Nack = 25 (Simulation)

(b) Throughput as a function of the duty
cycle for v = 3.6 km/h

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

20

40

60

80

100

120

140

160

Window size (w)

A
ck

no
w

le
dg

ed
 m

es
sa

ge
s

δ = 10% (Analysis)

δ = 5% (Analysis)

δ = 1% (Analysis)

δ = 0.5% (Analysis)

δ = 10%, Nack = 10 (Simulation)

δ = 5%, Nack = 10 (Simulation)

δ = 1%, Nack = 10 (Simulation)

δ = 0.5%, Nack = 10 (Simulation)

(c) Throughput as a function of the duty
cycle for v = 40 km/h

0 100 200 300 400
5

6

7

8

9

10

11

12

13

Waiting time σ (s)

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

ac

kn
ow

le
dg

ed
 m

es
sa

ge
 (

m
J)

δ = 10%
δ = 5%
δ = 1%
δ = 0.5%

(d) Energy efficiency as a function of the
waiting time for v = 40 km/h

Fig. 3. Analysis vs simulation results

212 G. Anastasi, M. Conti, and M. Di Francesco

included the scenario in which the static sensor is always active during discovery.
In this case, the residual contact ratio is very close to the maximum achievable
value. Actually, the static sensor can exploit most of the contact time also when
it uses a moderate duty cycle. Also lower duty cycles can get satisfactory residual
contact ratios, over the 75% for duty cycles of 1% and 0.5%, respectively. These
results clearly depend on the average contact time – in this case equal to 158 s –
which is much greater than the sleep time of the static node, so that the contact
miss ratio is almost zero (i.e. 0.04%) even at a 0.5% duty cycle.

When the MR moves at 40 km/h we can see that the static node can still
use a large part of the contact time – which is approximately 17 s – when it is
always on during discovery, as the obtained residual contact ratio is above the
90%. However, the residual contact ratio drops when an even moderate duty
cycle is used. For lower duty cycles (i.e. 1% and 0.5%), the residual contact ratio
decreases significantly. In these cases, in fact, not only the residual contact ratio
is much shorter, but there is also a high contact miss probability. This is because
the 1% and the 0.5% duty cycles have a sleep time comparable to the contact
time. As a consequence, the chance that the static node does not detect the
passage of the MR at all is much higher than in the other cases.

6.2 Data Transfer

In this section we evaluate the performance of of an ARQ-based transfer protocol
in terms of throughput. It is worth recalling that the following results have been
obtained for the actual residual contact time, so that they account for the effects
of the discovery phase as well.

Figure 3(b) and Figure 3(c) show the throughput obtained by analysis and
simulation when the MR moves at different speeds. Note that analysis assumes
that the data transfer phase takes all the residual contact time, while simulation
uses the loss of Nack consecutive acknowedgements as end-of-contact indication.
This is the reason for the slight difference between analytical and simulation
results. Actually, this difference is higher for low values of the window size. This
happens because the time after which the sensor assumes the MR as out of
reach is (w + 1) · Nack · Ts, so that it increases with the window size when Nack

is constant. When the window size is small, the actual value of Nack should
be increased in order to keep Nack · (w + 1) of the same magnitude. Anyway,
the value of Nack should be tailored to the target scenario, which depends on
the speed of the MR. For instance, in our simulation we used Nack = 25 and
Nack = 10 for the 3.6 km/h and the 40 km/h scenarios, respectively.

We start considering the throughput in terms of messages acknowledged by
the MR. Figure 3(b) shows the throughput as a function of the window size when
v = 3.6 km/h. We can see that the throughput increases with the window size
for all considered duty cycles, so that the maximum is obtained with the largest
window size of 64 messages. This is due to the acknowledgement overhead, which
decreases as the window size grows up. Specifically, the throughput reaches over
4000 messages per contact, corresponding to about 100 kB of data, for the 10%
duty cycle. Similar results are also obtained with the lower 5% and 1% duty

An Analytical Study of Reliable and Energy-Efficient Data Collection 213

cycles. Such results can be explained on the basis of the residual contact ratios,
which are similar for the different duty cycles, i.e. the residual contact time is
not reduced significantly when a low duty cycle is used. The same is not true
for the 0.5% duty cycle, which actually experiences a lower, but still reasonable,
throughput of about 3500 messages per contact (nearly 88 kB).

Figure 3(c) shows the throughput as a function of the window size when
v = 40 km/h. The throughput has a different trend in this case. It first increases
when the window size is low, then decreases after a point which depends on the
duty cycle. In addition, the obtained throughput changes significantly with the
duty cycle. In fact, while the 10% and the 5% duty cycles both achieve a similar
throughput over 100 messages per contact (around 3 kB), the 1% duty cycle gets
only 50 messages (1.2 kB) per contact. The lowest 0.5% duty cycle even obtains
a throughput of 25 messages per contact (0.6 kB), which is rather low, but may
be enough for certain applications.

6.3 Energy Efficiency

In this section we evaluate the energy efficiency of data collection. It should be
noted that the considered energy consumption accounts for both discovery and
data transfer, so that it fully characterizes the overall data collection process.
While in the previous sections we have considered only what happens within
the contact area, in the following we take into account also the time spent by
the static sensor on waiting for the MR to enter the communication range. To
this end, we measured the average energy spent per acknowledged message as a
function of the waiting time.

Figure 3(d) shows the average energy consumption per acknowledged mes-
sage when the MR moves at v = 40 km/h and the window size is 32. Clearly
the energy consumption increases with the waiting time, but a very low duty
cycle is not necessarily the most convenient option. In fact, when the average
waiting time is below 25 s (i.e. the MR arrival can be predicted with rather good
accuracy), the best option is the 10% duty cycle. Instead, when the average
waiting time is between 25 s and 200 s, the most convenient duty cycle is 5%.
From later on, i.e. when the MR presence is very difficult to estimate, the best
duty cycle is 1%. In addition, the 0.5% duty cycle always gets a higher average
energy consumption than the 1% duty cycle. These results are in contrast to
the expected behavior, i.e. that the energy consumption decreases with the duty
cycle, as it happens in the scenario where the MR moves at 3.6 km/h (we have
omitted the correspondent figure for the sake of space).

Actually, these results can be explained as follows. Low duty cycles may delay
the MR detection, leading to lower residual contact times. In addition, they may
also produce high contact miss ratios, so that the energy spent during discovery is
simply wasted, as the sensor node cannot transmit any data. In the considered
scenario, where the MR moves with v = 40 km/h, the contact time and the
residual contact time are short. When the waiting time is low, i.e. when the
sensor knows the MR arrival times with a good accuracy, the energy overhead
due to discovery is negligible, because the sensor spends most of its active time

214 G. Anastasi, M. Conti, and M. Di Francesco

during data transfer. Instead, the advantages of low duty cycles become relevant
when the waiting time is high. In this case, the sensor may spend a significant
amount of time by looking for beacons when the MR is out of the contact area.
Thus, a low duty cycle reduces the activity of the sensor during the waiting
time, which is the highest share of the overall energy consumption. Regarding
the 0.5% duty cycle, it is always unsuitable in this scenario, because the energy
gain due to the lower activity time is thwarted by the decrease in the throughput
(see Fig. 3(c)).

7 Conclusions

In this paper we have developed an analytical model of the overall data collection
process in sparse sensor networks with mobile relays (MRs). The model is flexible
enough to incorporate different discovery and data transfer protocols. We limited
our discussion to a simple discovery algorithm where the MR sends periodic ad-
vertisements and the sensors follow an asynchronous scheme based on a low duty
cycle. In addition, we considered an ARQ communication protocol with selective
retransmission for data transfer. Our findings show that low duty cycles can be ac-
tually used for a large class of environmentalmonitoring applications. Surprisingly,
a low duty cycle may not always be the most energy efficient option, depending on
a number of different factors such as the speed and the mobility of the MR.

This work could be improved along different directions. First, the model pro-
posed in this paper could be extended to the case of multiple MRs. Second, differ-
ent discovery and data transfer schemes could be considered. Finally, the findings
of our analysis could be used as a basis for the definition of adaptive data collection
protocols, which are capable to tailor the operating parameters to the actual con-
ditions (i.e. knowledge of the MR arrivals, buffer constraints, residual energy of
sensor nodes etc.). We are currently evaluating these extensions as a future work.

Acknowledgements

Work funded partially by the European Commission under the FP6-2005-NEST-
PATH MEMORY project, and partially by the Italian Ministry for Education
and Scientific Research (MIUR) under the FIRB ArtDeco project. The authors
would like to thank Emmanuele Monaldi, Francesca Mancini and Paolo Caggiari
for their help.

References

1. Jain, S., Shah, R., Brunette, W., Borriello, G., Roy, S.: Exploiting mobility for
energy efficient data collection in wireless sensor networks. ACM/Springer Mobile
Networks and Applications 11(3), 327–339 (2006)

2. Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using predictable observer mobility
for power efficient design of sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN
2003. LNCS, vol. 2634, pp. 129–145. Springer, Heidelberg (2003)

An Analytical Study of Reliable and Energy-Efficient Data Collection 215

3. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: Modeling a three-tier
architecture for sparse sensor networks. In: Proc. IEEE SNPA 2003 (2003)

4. Jea, D., Somasundara, A., Srivastava, M.B.: Multiple controlled mobile elements
(Data mules) for data collection in sensor networks. In: Prasanna, V.K., Iyengar,
S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257.
Springer, Heidelberg (2005)

5. Kansal, A., Somasundara, A., Jea, D., Srivastava, M., Estrin, D.: Intelligent fluid
infrastructure for embedded networks. In: Proc. ACM Mobisys 2004 (2004)

6. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in
wireless sensor networks: A survey. In: Ad Hoc Networks (in press)

7. Zhao, W., Ammar, M.: Message ferrying: Proactive routing in highly-partitioned
wireless ad hoc networks. In: Proc. IEEE FTDCS 2003 (May 2005)

8. Jun, H., Ammar, M., Zegura, E.: Power management in delay tolerant networks: A
framework and knowledge-based mechanisms. In: Proc. IEEE SeCon 2005 (2005)

9. Gu, Y., Bozdag, D., Ekici, E.: Mobile element based differentiated message delivery
in wireless sensor networks. In: Proc. IEEE WoWMoM 2006 (2006)

10. Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., Lee, C.: Partitioning based mobile
element scheduling in wireless sensor networks. In: Proc. IEEE SECON 2005, pp.
386–395 (2005)

11. Somasundara, A., Kansal, A., Jea, D., Estrin, D., Srivastava, M.: Controllably
mobile infrastructure for low energy embedded networks. IEEE Transactions on
Mobile Computing 5(8) (2006)

12. Anastasi, G., Conti, M., Monaldi, E., Passarella, A.: An adaptive data-transfer
protocol for sensor networks with Data Mules. In: Proc. of IEEE WoWMoM 2007
(2007)

13. Anastasi, G., Conti, M., Gregori, E., Spagoni, C., Valente, G.: Motes sensor net-
works in dynamic scenarios. International Journal of Ubiquitous Computing and
Intelligence 1(1) (April 2007)

14. Anastasi, G., Conti, M., Di Francesco, M.: Data collection in sensor networks with
Data Mules: an integrated simulation analysis. In: Proc. of IEEE ISCC 2008 (2008)

MVSink: Incrementally Building In-Network
Aggregation Trees

Leonardo L. Fernandes1,2 and Amy L. Murphy2

1 University of Trento
2 Fondazione Bruno Kessler – IRST

Trento, Italy
{leiria,murphy}@fbk.eu

Abstract. In-network data aggregation is widely recognized as an ac-
ceptable means to reduce the amount of transmitted data without ad-
versely affecting the quality of the results. To date, most aggregation
protocols assume that data from localized regions is correlated, thus
they tend to identify aggregation points within these regions. Our work,
instead, targets systems where the data sources are largely independent,
and over time, the sink requests different combinations of data sources.
The combinations are essentially aggregation functions. This problem is
significantly different from the localized one because the functions are
initially known only by the sink, and the data sources to be combined
may be located in any part of the network, not necessarily near one an-
other. This paper describes MVSink, a protocol that lowers the network
cost by incrementally pushing the aggregation function as close to the
sources as possible, aggregating early the raw data. Our results show
between 20% and 30% savings over a simplistic approach in large net-
works, and demonstrate that a data request needs to be active only for
a reasonably short period of time to overcome the cost of identifying the
aggregation tree.

1 Introduction

In-network data aggregation is rapidly becoming the accepted mechanism to
reduce the amount of transmitted data in a wireless sensor network without
significant loss of data quality [1]. This requires both the selection of the aggre-
gation function, a highly application-dependent task, as well as the identification
of the best node at which to apply the function. Most existing approaches as-
sume that data from a localized region can be fused together, thus they focus on
identifying one or more nodes in each region, rotating the aggregation function
evaluation among them.

While many applications fit this scenario, we are motivated by a different class
of applications in which the sensors are more heterogeneous, and neither the re-
quired data nor the aggregation function are known in advance. An aggregation
function is a function that combines data from different sources. Aggregation
functions can be as simple as an average of many readings or more sophisticated

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 216–231, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MVSink: Incrementally Building In-Network Aggregation Trees 217

functions that take data from different types of sensors and make some appli-
cation specific decision, for example, combining data from smoke detectors and
temperature sensors to infer if there is a fire. We identified this problem during
our prior work on the Milan middleware [2], which, in summary, takes as input
a large set of sensors, and over time selects different subsets that, when com-
bined according to user-defined functions, meet a minimum quality constraint.
This choice of the subset and its duration of use is made to maximize the total
system lifetime. In Milan, we assume that the functions operating on data are
applied at the sink, but in this work we recognize that moving the functions into
the network reduces the amount of information that needs to be transmitted,
thus increasing system lifetime.

Our overall goal, therefore, is to identify the nodes where the aggregation
function should be applied, building a cost-effective aggregation tree. For this,
we take an incremental, in-network approach, assuming that the sink node is
initially the only node with knowledge of the function. The function is then in-
crementally pushed farther into the network until the best locations are found,
forming an aggregation tree. The novelty presented in this paper is a set of
heuristics that recognize when the function should be split, with distinct parts
moving toward different sets of sources. The optimal aggregation solution is a
Steiner tree that includes all the sources and the sink. Finding a Steiner tree in
an arbitrary graph is known to be NP-hard [3] even for centralized algorithms.
Therefore, our completely distributed approach aims to identify an approxima-
tion of the optimal Steiner tree using novel heuristics to incrementally identify
better locations for the aggregate functions. Nevertheless, this approximation is
an improvement over a solution that applies all functions at the sink or that
applies a shortest paths tree (SPT), as detailed in our evaluation.

Section 2 describes MVSink, our novel protocol for incrementally moving
an aggregation function from the sink closer to the data sources that provide
its input. The section emphases the heuristics used for pushing the function to
increasingly cost effective locations. Our results, presented in Section 3, indicate
that our approach provides significant benefit at reasonable cost. Section 4 places
this work in the context of related efforts while Section 5 ends the paper with
brief concluding remarks.

2 MVSink

This section begins with brief descriptions of the system model and basic def-
initions upon which our description of MVSink relies. We then overview the
protocol operation, then detail four heuristics we use for identifying the lowest
cost aggregation tree.

2.1 System Model

We assume a standard network environment in which nodes are connected with
bidirectional links. Any unidirectional links are pruned by a standard MAC

218 L.L. Fernandes and A.L. Murphy

A

C

B

S2

S3
S1

S Data Source

Virtual Sink

Data Sink

Link

Application Data Flow

S4

Subtree of V. Sink A

Fig. 1. Example of a network with nodes acting as sources, sink and virtual sinks

protocol. We further assume that all nodes operate in promiscuous mode, over-
hearing transmissions by their one-hop neighbors, whether or not the packet is
destined for them.

2.2 Basic Definitions

We begin with some basic definitions illustrated in Figure 1 and used throughout
the paper. How these components combine in a coherent protocol is described
next.

– Aggregation Tree: We represent the sensor network itself as an undirected,
connected graph G(V, E) with a single sink node and a set of data sources
S ⊂ V . An aggregation tree is a connected subgraph of G containing the sink,
the sources S and any other nodes and edges needed to connect these nodes
without creating cycles. Our protocol seeks to minimize the size of this tree.
The bold edges in Figure 1 identify the edges of the minimal aggregation
tree for this network.

– Virtual Sink: A virtual sink is a node in the aggregation tree that receives
data from two or more sources and applies an aggregation function, shrinking
the amount of data forwarded to the sink. Figure 1 shows three virtual sinks,
A, B, and C .

– Candidate Node: A candidate node is a candidate for serving as a virtual sink,
meaning it has the potential to aggregate a subset of the sources currently
aggregated by a virtual sink. All candidates are within k hops of a current
virtual sink, where k is a tunable parameter.

– Subtree: The subtree of a virtual sink or candidate node n is the tree that
contains n as a root and all the nodes and edges that compose the paths be-
tween each source n aggregates (or proposes to aggregate) and itself. Figure 1
highlights the subtree of virtual sink A.

MVSink: Incrementally Building In-Network Aggregation Trees 219

2.3 Protocol Operation

In a nutshell, MVSink seeks to minimize the size, in number of edges, of the
aggregation tree by incrementally moving the virtual sink from its initial location
at the data sink to a location closer to the sources. If necessary, the virtual sink
can be split into multiple pieces, creating some sinks that continue to migrate
deeper in the aggregation tree, closer to the source, while leaving one virtual
sink behind to combine the data from these deeper virtual sinks.

The protocol executes the following steps repeatedly, until no better
aggregation tree can be found:

1. The virtual sink announces in broadcast to its k-hop neighbors its id and
the set S of data sources it currently aggregates. k is a protocol parameter;

2. Nodes receiving such an announcement and that have overheard data flowing
from two or more nodes in S identify themselves as virtual sink candidates
as they can aggregate data from some set of sources. This candidacy is
communicated to the current virtual sink along with the information about
the subset of S that can be aggregated and the hopcount from the candidate
to each of these nodes. Intuitively, we include individual hop counts as it
allows the virtual sink to select a candidate based on the cost for any set of
sources it can aggregate. Sections 2.5 through 2.6 provide further details.

3. After receiving the candidacy messages, the virtual sink decides, based on one
of the heuristics we define later, which of the candidates should assume the
role of virtual sink and start aggregating data. There are multiple options.
For example, a single candidate can be chosen to aggregate all the sources
in S. Alternately, the virtual sink can be split among multiple candidates,
having each of them aggregate a subset of S. If no candidates propose a
cost/effective solution or if there are no candidates, the protocol ends with
the current virtual sink.

4. Any newly assigned virtual sinks start this process from the beginning.

The primary contribution of this paper is the proposal of four novel heuristics
applicable in step 2 described above. The following sections outline each.

2.4 Largest Set Heuristic

Intuitively, the more data a virtual sink aggregates, the more effectively it can
reduce the amount of data flowing in the network. Therefore, our first, and most
straightforward heuristic, simply identifies the candidate node with the largest
set of proposed sources. If multiple candidates can aggregate the same number
of sources, the choice is arbitrary or the best local gain heuristic, discussed next,
can be applied as a tie-break.

After the first candidate is selected and the sources it can cover are removed
from S, S may not be empty. The suitability of the remaining candidates is
evaluated to cover these sources, identifying additional virtual sinks. This first
heuristic employs very small candidacy messages, containing only the set of
sources proposed to be aggregated by the candidate.

220 L.L. Fernandes and A.L. Murphy

Fig. 2. Representation of the terms in (1). The set of sources for virtual sink V is
SV = {1, 2, 3} and for candidate C is SC = {2, 3}.

2.5 Best Local Gain Heuristic

Given that our goal is to reduce the size of the aggregation tree, our next heuristic
selects candidate virtual sinks based on the size of the subtree they yield. For
example, in Figure 2, the candidate node C proposes to aggregate sources SC =
{2, 3} with a subtree size of 4. As the cost for the current virtual sink to aggregate
this set of sources is 6, this represents an improvement in the overall size of the
aggregation tree of 1, as the link between V and C must be considered. Formally,
if T (X, SY) is the number of edges in the subtree that connects a node X to
the sources node Y aggregates, SY , where X = Y is allowed, then the cost if
candidate C is selected by virtual sink V is given by:

Cost(C) = T (V, SV) − T (V, SC) + T (C, SC) + d(V, C) (1)

where d(V, C) is the distance from V to C, in this case 1. Figure 2 shows the
T costs. This formula is applied to each candidate, and the one with the lowest
Cost(C) is chosen. In case of a tie, the node farthest from the virtual sink (i.e.,
with the largest d(V, C)) is selected, with the goal of moving the aggregation as
close to the sources as possible in a single step.

If the selected candidate does not aggregate all the sources aggregated by V ,
the remaining sinks and candidates are considered, always selecting the highest
Cost value until either there are no more sources, or there are no more suitable
candidates.

This heuristic can also be used as a tiebreak strategy for other heuristics.

2.6 Affinity Based Heuristics

We developed two affinity based heuristics in order to avoid the local minima
trees that are occasionally found in the previous heuristics. Such local minima
occur due to the lack of global information available at the virtual sink. A virtual
sink, with access to information from its neighborhood only, cannot identify
candidates potential to make progress with subsequent virtual sinks selection
closer to the data sources.

MVSink: Incrementally Building In-Network Aggregation Trees 221

n

A B

S2

S3

S1

S Data Source

Candidate Virtual Sink

Virtual Sink

Link

Application Data Flow

Affinity Matrix Kept by Virtual Sink

S1

S2

S3

S3

S2S1

3

05

5

-

-

-

30

Fig. 3. Example use of affinities. With only local (1-hop neighborhood) information,
the virtual sink cannot decide whether it is better to select candidate A or candidate
B as the next virtual sink. Candidate A proposes to aggregate data from S1 and S2,
whereas candidate B can aggregate sources S2 and S3. In the previous heuristics,
candidates A and B are equivalent choices, but the figure clearly shows that choosing
candidate B would result in a dead end, since there would be no further suitable
candidates in the network to aggregate S2 and S3, while candidate A is a much better
choice, since the protocol would then be able to proceed until reaching node n as a
virtual sink.

Figure 3 shows the motivation for the next two heuristics. In the picture, there
are two virtual sink candidates. Candidate A can aggregate sources {S1, S2},
and candidate B proposes to aggregate {S2, S3}. From the figure, it is clear that
sources S1 and S2 are more closely related than S2 and S3, making candidate A
the best choice. However, relying only on local (1-hop) information, the virtual
sink cannot identify the best option. We refer to this relationship between S1
and S2 as affinity, and develop a heuristic to identify it.

We define the affinity between two given sources as a numeric value kept by
every node i, reflecting approximately the distance from node i to a potential
aggregation point. In the figure, node n is a potential aggregation point for
{S1, S2} and is farther from the virtual sink than node B, which is the farthest
possible aggregation point for {S2, S3}. Therefore, the affinity perceived by the
virtual sink is higher for {S1, S2} than it is for {S2, S3}.

Affinity information is introduced in the network by nodes that overhear mes-
sages from two or more sources, a situation which indicates their ability to serve
as a virtual sink. Unfortunately, if such a node is not transmitting data, this
affinity information will not reach the current virtual sink. However, because
the node has already overheard application messages, a single, one-hop broad-
cast of this affinity information is enough to reach a node that is transmitting
data. This broadcast, referred to as an affinity message, carries affinity informa-
tion that is then forwarded with application messages toward the sink.

Affinity information is kept and transmitted as an n × n matrix, where n is
the number of sources. If all sources are not known in advance, a data structure

222 L.L. Fernandes and A.L. Murphy

containing only the information about known sources can be used. To save mem-
ory and reduce packet size, a triangular matrix can be used instead of a full ma-
trix, since the values in the upper and lower parts of the matrix are equivalent
(e. g. Ma,b = Mb,a).

Each node keeps the affinity values of all pairs of sources it knows, initially
all affinity values are zero. When a node overhears messages from two sources
with affinity zero between them, it sets the affinity to 1 and sends its affinity
matrix to its neighbors. The neighboring nodes update their local matrices, which
are transmitted with subsequent application messages. When a node receives
an affinity matrix A = (ai,j)n×n in an application message, the local matrix
B = (bi,j)n×n updates all of its entries as follows:

bi,j =
{

max(bi,j , ai,j + 1), if (ai,j > 0)
bi,j , otherwise. (2)

Since application messages are always forwarded through the current aggregation
tree, virtual sinks receive updated affinity information. Since the positive values
are incremented at each hop of application messages, the potential candidates
that are farther from the virtual sink receive higher priority, as desired.

The broadcast of affinity messages by nodes that are not already transmitting
data represents an extra cost to MVSink. Although affinity messages are limited
to a single one-hop broadcast per node, the number of such nodes can be large,
increasing the total cost of the protocol. This cost is discussed in the evaluation
section, where the benefits it provides are clearly shown to outweigh the cost.

Next, we briefly describe two heuristics that rely on affinity information to
choose between virtual sink candidates.

Best Affinity Candidate Heuristic. This heuristic simply selects the can-
didate that proposes to aggregate the set of sources with largest affinity. When
candidates propose to aggregate more than two sources, the affinity value of the
set is the average of the affinity values of each individual pair of sources in the
set. When affinity values are equal, the best local gain heuristic can be used as
a tiebreak.

Best Affinity Set Heuristic. This heuristic is similar to the best affinity
candidate heuristic, but it tries to redistribute the sources among the candidates
in a way that increases the total affinity in the sets rather than simply choosing
between the sets proposed by the candidates.

This strategy is motivated by situations in which candidates propose to ag-
gregate a large set S which effectively “steal” sources that have more affinity
with sources that are not part of S. For example, in Figure 4(a) a virtual sink
aggregates five sources S1 through S5. S1 and S2 have affinity 6. S3 and S4 also
have a good affinity value of 3. Now suppose there are two candidates A and B
proposing to be virtual sinks. Node A proposes to aggregate S1, S2 and S3 and
node B can aggregate S3, S4 and S5. The previous heuristic would let node A
aggregate its three sources, even though there is little affinity between S3 and
the other sources in A’s set. A better solution would be to let A aggregate S1

MVSink: Incrementally Building In-Network Aggregation Trees 223

B

A

S2

S3

S1

S4

Affinity Matrix

S1

S2

S3

S3

S2S1

1

06

6

-

-

-

10

S4

S4

0

0

3

-300

S5

S5

S5

0

0

1

2

-2100

(a) Example virtual sink and its affinity
matrix.

Pair Set of Sets Feasibility
S1, S2 {{S1, S2}} A{S1, S2}

S3, S4 {{S1, S2}, A{S2, S1}
{S3, S4}} B{S3, S4}

S3, S2 {{S1,S2,S3,S4}} Not feasible, undo.

S3, S5
{{S1, S2}, A{S2, S1}
{S3, S4, S5}} B{S3, S4, S5}

(b) Best affinity set heuristic execution. Pairs
added in decreasing order of affinity and the
resulting subsets according to algorithm 1.

Fig. 4. Motivating example for the best affinity set heuristic. Note that according to
the protocol there would be more candidates in this example, but for simplicity we
consider only candidates A and B.

and S2, and node B aggregate S3, S4 and S5, to take advantage of both good
affinity pairs.

Instead of considering the candidate sets, the virtual sink, using its local affin-
ity matrix, incrementally builds the best affinity sets and tries to find candidates
that can aggregate them.

Algorithm 1, executed on each virtual sink, outlines the heuristic. Essentially,
the algorithm adds each pair of sources, in decreasing order of affinity, to a set
of sets S to be assigned to virtual sink candidates. Adding a pair of sources to
S means that both sources should be in the same set of S, since there is good
affinity. The operation can result in adding both sources to a set in S or in the
merging of two sets of S, as detailed in algorithm 2. Figure 4 shows an example
execution, with the pairs of sources added and the resulting set of sets generated
at each step. Sets are built in order to maximize the total affinity between all
sets. After the addition of each pair, the algorithm tests if there are candidates
that can cover S, adding only pairs that produce sets feasible to be distributed
among the available candidates.

The feasible procedure returns a boolean value of true if there are candidates
available that can cover the sets in doneSources.

3 Evaluation

Intuitively the movement of the virtual sinks closer to the sources lowers network
cost, and thus has the potential to improve system lifetime. This section supports
this intuition with an evaluation through simulation showing both costs and
benefits. Two settings were used for simulations. Random deployment of sensors

224 L.L. Fernandes and A.L. Murphy

Algorithm 1. The best affinity set heuristic
Set mySources = aggregatedSources
SetOfSets doneSources = ∅
Matrix aff = affinityMatrix
while |mySources| > 1 and hasNextHigher(aff) do

pair (a,b) = getNextHigher(aff)
doneSources = addPair(a,b,doneSources)
remove(a,b,mySources)
if !feasible(doneSources) then

undo last addPair and remove calls
end if

end while
Distribute sets to resp. candidates

Algorithm 2. The addPair function.
Require: setOfSets and sources a and b as parameters

if setOfSets contains both sources a and b then
merge sets of a and b in setOfSets

else if setOfSets contains source a then
add b to the set that contains a

else if setOfSets contains source b then
add a to the set that contains b

else {setOfSets does not contain a or b}
add new set {a, b} to setOfSets

end if
return setOfSets

and distribution of sensors in a grid topology. The main difference between the
two topologies is the uniformity of grids. In random deployments there are often
connectivity holes and antiholes (subgraphs in which every vertex is adjacent to
every other) [4]. The presence of holes may result in local minima for virtual
sink placement. Antiholes can increase the cost of protocol operation due to
broadcasting in high density areas. With grids, node connectivity is uniform
throughout the network, avoiding both holes and antiholes. In both topologies,
data sources are randomly chosen among the nodes and data sinks are placed
at a corner of the simulated area. In the random topology, the deployment area
is a 1000 × 1000 square. In the grid topology, 1000 nodes are arranged in a
40 × 25 grid with nodes uniformly distributed. In all simulations, we use k = 2
for the virtual sink announcements. We assume a perfect aggregation function
(e.g. average), meaning that a packet of aggregated data has the same size as a
raw data packet.

We vary the communication range, the number of data sources and the number
of nodes in our simulations in order to evaluate the performance of MVSink in
different network sizes and densities. We compare MVSink’s different heuristics:
largest set, best local gain (BLG), best affinity candidate and best affinity set;
against shortest paths trees (SPT) and against a centralized algorithm.

MVSink: Incrementally Building In-Network Aggregation Trees 225

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

 Im
pr

ov
em

en
t o

ve
r

S
P

T

Number of Sources

Grid Topology - Approx. Density 8

Centralized Algorithm
Best Affinity Sets

Best Affinity Candidates
Largeest Set

Best Local Gain

(a) Variable number of sources

 10

 20

 30

 40

 50

 60

 60 65 70 75 80 85

P
er

ce
nt

 Im
pr

ov
em

en
t o

ve
r

S
P

T

Range

Random Topology - 20 Sources

Centralized Algorithm
Best Affinity Sets

Best Affinity Candidates
Largest Set

Best Local Gain

(b) Variable range

Fig. 5. Percent improvement of the heuristics over the shortest path tree

The shortest paths tree, or opportunistic aggregation tree, is formed by each
source sending application messages to the sink along a shortest path between
the two. Overlapping shortest paths are combined to form the aggregation tree.

The centralized approach is based on the nearest participant first algorithm by
Takahashi and Matsuyama [5]. The heuristic starts with the tree containing only
the sink. In each step, the closest source to the current tree is connected. This
process is repeated until all sources are connected. The output of this heuristic is
an approximation to the optimal Steiner tree containing all the sources and the
sink. The performance ratio of the algorithm is 2, in the worst case. Although
the centralized approach is significantly better than MVSink, it requires global
information which is not readily available and is very costly to obtain.

Each graph represents an average of 250 simulation runs. Error bars show stan-
dard deviation. The large values for standard deviation are due to results being
largely dependent on the placement of data sources in the network. Networks
with most sources close to the sink or to each other present results significantly
different from cases with most sources far away from the source and sparsely
distributed.

Since the main focus of this work is on the algorithm behavior, we used
Sinalgo, a simulator for network algorithms [6], abstracting away from low-level
network concerns. We assume reliable, constant delay, bidirectional channels,
and while we acknowledge that limitations exist in real deployments, they will
not affect the fundamental correctness of MVSink. We have also run simula-
tions with up to 10% message loss (except for the sink transferring messages,
which must be reliably delivered) and obtained results only slightly worse than
those presented here.

3.1 Improvement over Shortest Paths Tree

Since SPT is a common way of performing aggregation in sensor networks, in this
section we compare the percent improvement over SPT of the different heuristics

226 L.L. Fernandes and A.L. Murphy

and the centralized approach. The comparison allows us to clearly identify the
performance differences, in terms of tree size, between the four proposed heuris-
tics. The percent improvement is equivalent to the reduction in the tree size of
each heuristic compared to SPT.

Figure 5(a) shows this comparison in a grid with a density of 8 neighbors
per node, except at the edges. As expected, the best affinity sets approach is the
best of our heuristics, due to its characteristic of selecting better aggregation sets
at each step and its capability to collect information from nodes closer to the
sources. Best affinity sets trees were close to 9% smaller than SPT with 3 sources
and approximately 30% better for the case with 50 sources. The best local gain
heuristic obtained better results than the largest sets approach, however it is
still inferior to both affinity based heuristics.

In Figure 5(b) a similar graph is shown for a random topology and variable
communication range yielding densities between 10 and 20 neighbors per node.
Here we observe the improvement of the protocols as density grows. In this
scenario, the affinity based heuristics are superior to the other two.

Our results also lead us to conclude that the protocol works better in the grid
topology than in the random one. The results for the grid with density 8 and 20
sources in Figure 5(a) are better than for the random topology with 20 sources
and density 10, the leftmost points in Figure 5(b). This difference was expected
due to the regularity of grids.

3.2 Reducing Transmission Cost

The aggregation tree size is equivalent to the number of transmissions it takes
to transmit data from all of the sources to the sink. In this sense, minimizing
the tree size is crucial for energy savings and increasing network lifetime.

The graph in Figure 6(a) shows the comparison between our heuristics, the
centralized approach, and SPT. There is a clear tendency for MVSink to ap-
proach the centralized algorithm as communication range grows. This improve-
ment is due to the virtual sink announcements reaching more nodes in higher

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T
re

e
S

iz
e

Range

Grid Topology - 10 Sources

Shortest Paths Tree
Best Affinity Sets

Best Affinity Candidates
Largest Set

Best Local Gain
Centralized Algorithm

(a) Variable range

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40 45 50

T
re

e
S

iz
e

Number of Sources

Random Topology - Approx. Density 20

Shortest Paths Tree
Best Affinity Sets

Best Affinity Candidates
Largest Set

Best Local Gain
Centralized Algorithm

(b) Variable number of sources

Fig. 6. Tree sizes of MVSink heuristics, shortest paths tree and centralized approach

MVSink: Incrementally Building In-Network Aggregation Trees 227

density scenarios. There are also more possible candidates, since more nodes can
overhear application messages in dense networks. The larger groups of candi-
dates to choose from allows MVSink to make better decisions and to get closer
to the quality of the centralized algorithm.

Figure 6(b) demonstrates the consistent advantage of MVSink over the op-
portunistic aggregation scheme for different numbers of sources. MVSink tree
sizes are significantly better than SPT in all cases. The protocol scales well for all
ranges of sources simulated. Figure 6(b) shows, for example, that for runs with
fifty data sources MVSink on average achieves a tree size with approximately
140 edges, while SPT in the same scenario builds trees with size over 200.

We note a clear advantage of the affinity based heuristics over both the BLG
and the largest set heuristics. As expected, the extra information collected pro-
vides the affinity oriented virtual sinks the possibility to make better decisions.
But the extra information imposes higher costs. The affinity messages transmis-
sion cost is significant and must be taken into consideration. In the next section
we discuss the costs of each heuristic and provide a cost/benefit analysis.

3.3 Overhead Evaluation

We measure the cost of MVSink as the number of transmissions it takes to:
perform 2-hop broadcasts of all virtual sink announcements, send all unicast
candidacy and virtual sink assignment messages, and, in the case of the affinity
based heuristics, send all affinity messages. The cost is shown as the number
of times that the final aggregation tree must be used until the message savings
(compared to SPT) compensate for the costs of MVSink. We call this value the
break even point. For this analysis we set the cost of MVSink messages equal
to that of application messages. In many systems, application messages would
be larger than control messages and in such cases, the gains of using MVSink

would pay off even earlier.
In Figure 7(a), we can see that the break even is quite stable as the number

of sources increases. The affinity based heuristics get more expensive with more

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

B
re

ak
 E

ve
n

Number of Sources

Random Topology - Approx. Density 10

Best Affinity Sets
Best Affinity Candidates

Largest Set
Best Local Gain

(a) Variable number of sources

 0

 50

 100

 150

 200

 250

 300

 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

B
re

ak
 E

ve
n

Nodes

Random Topology - 20 Sources

Best Affinity Sets
Best Affinity Candidates

Largest Set
Best Local Gain

(b) Variable number of nodes

Fig. 7. Protocol Overhead

228 L.L. Fernandes and A.L. Murphy

sources, but still obtain a quite good average break even value of less than 200
for the considerable number of 50 data sources. For the BLG and largest sets
heuristics, the situation is even better, since the break even does not grow as the
number of sources increases. The small number of extra virtual sink announce-
ments, assignment and candidacy messages it takes those heuristics to deal with
larger numbers of sources (i.e. larger trees) are completely compensated by the
extra aggregation gain of smaller trees discussed in Sections 3.1 and 3.2.

Figure 7(b) shows the break even as a function of the network density. To
achieve increasing density, we simulated runs with different numbers of nodes in
the same area. The picture shows that as density grows, the break even costs
remain stable for all heuristics. In higher density scenarios, an increasing number
of messages is necessary to run the protocol. Denser 2-hop broadcast announce-
ments and the consequently larger number of candidacy messages, for instance,
affect the costs significantly. The number of affinity messages is also heavily
influenced by density, since more potential virtual sinks are likely to be found.
Despite all the extra cost required to run the protocol on higher density networks,
the aggregation gains improve enough to keep the break even costs reasonably
stable for all heuristics.

In both break even graphs it is clear that the affinity based heuristics are
more expensive than the other two, due to the need for affinity messages. These
results, combined with the observation from the previous sections that the affin-
ity based heuristics provide better trees, indicate that the affinity heuristics are
more suitable for longer lived queries, i.e. that use the tree for longer periods,
while BLG and largest sets heuristics are more appropriate for building trees
that will be used a smaller number of times.

4 Related Work

Aggregation has been extensively studied in the literature, and in general
has been shown to provide significant performance gains in a wide range of
scenarios [1].

Some aggregation oriented protocols require additional information to be
known in advance or transmitted throughout the network for a large cost. Greedy
Incremental Tree (GIT) [7,1], for example, incrementally builds an aggregation
tree by first selecting the shortest path connecting the sink to the closest source
and then connecting other sources to the tree, one at a time, at the closest point
between of the current tree. However, to do so GIT requires that “exploratory
samples have initially and repeatedly been flooded throughout the network” [7].
GIT uses the large amount of global information this makes available, but the
flooding is costly, even prohibitively so on large networks. Another approach,
by Kansal et. al. [8] requires node location information, which is often unavail-
able in sensor networks. The work by Ramachandran et.al. [9] requires specific
data fusion roles to be known in advance and needs some topological informa-
tion for achieving a good initial placement of such fusion points. Our protocol
does not require any additional knowledge above what is provided by a simple

MVSink: Incrementally Building In-Network Aggregation Trees 229

broadcast sink announcement to establish routes, such as that provided in stan-
dard versions of directed diffusion [10] and many other protocols.

Other proposed solutions [11,12,13] build approximations to a minimum span-
ning tree (MST) to be used as an aggregation tree. Minimum spanning trees are
good solutions for the case in which all nodes are sources, or when using the
same structure to deal with any arbitrary query. MVSink, instead, deals with
a different problem: approximating the optimal tree for a specific set of sources
on a per-query basis. The optimal solution in the case of MVSink is a Steiner
tree containing the sink and all the sources. Also, it is often the case in sensor
networks that the radio transmission radius is not tunable, meaning that essen-
tially all transmissions have the same cost (i.e. all edges have the same weight).
In such cases, any arbitrary spanning tree is an MST. Therefore, we claim that
an arbitrary spanning tree is not necessarily a good solution.

Other protocols provide aggregation in hierarchical topologies [14,15,16].
Nodes are divided in clusters with special nodes, cluster heads, that aggregate
the data from all nodes in the cluster. Such solutions rely on a hierarchy from
which generating an aggregation tree is straightforward. Often cluster based ap-
proaches also rely on the capability of cluster heads to transmit data directly
to the sink [14,17], which is very costly, especially on large networks. Gao et.
al. [18] propose a protocol for sparse data aggregation that forms an aggregation
forest, each tree being connected to a node in the boundary of the network.
The approach assumes nodes in the boundaries of the network have special
capabilities to communicate directly with the data sink. Fan et. al. propose
structure-free data aggregation [19], based on data-aware anycast transmissions
(e.g. receivers with data to aggregate have priority) and randomized waiting
to achieve aggregation. The approach is only suited for applications with high
time and spatial convergence, such as event based applications and does not
provide aggregation for sparse data on either time or space. Also, the approach
assumes the use of geographic information, which is often not available on sen-
sor networks. Our approach does not make any topological assumptions. It does
not rely on special nodes or on one-hop communication to the sink and is thus
applicable in any random, connected topology. MVSink takes advantage of spa-
tial convergence and can also find suitable solutions for reasonably sparse data
sources.

Many works address aspects such as quality of service [20], security [21] or
load balancing [8] and assume the a priori existence of a proper aggregation tree
over which to apply their techniques. The focus of MVSink is on the more basic
problem of finding a good tree. Therefore such techniques can be applied after
MVSink generates the aggregation tree.

One of the main concerns regarding the use of aggregation is the latency it
adds to the network. But, as shown by Zhu et al. [20], in extreme cases where
there is too much traffic in the network, the use of aggregation can actually
reduce latency in the network. It is important to notice that these are also the
cases in which aggregation is most useful.

230 L.L. Fernandes and A.L. Murphy

5 Conclusion

The work presented in this paper, the MVSink protocol, finds aggregation trees
for applying a single aggregation function to an arbitrary number of sources
in a wireless sensor network. While useful for a wide range of applications and
aggregation functions, another scenario requires multiple, unique functions. We
trivially solve this problem by running multiple instances of MVSink, one for
each function. For example, to apply F (G(S1, S2), H(S3, S4)), where S1 through
S4 are data sources and F , G and H are different aggregation functions, initially
two instances of the protocol are started to solve G and H . Then, a third instance
is started to solve F , considering the nodes that apply G and H as data sources.

In general, MVSink is unique in its approach to incrementally move aggrega-
tion points from the sink towards the sources, making it applicable in sink-driven
data collection scenarios. This paper focused on four novel heuristics for virtual
sink selection, and our evaluation showed the benefits of finding low-cost ag-
gregation trees clearly outweighs the overhead of the protocol for moderately
long-lived aggregation scenarios.

References

1. Krishnamachari, B., Estrin, D., Wicker, S.B.: The impact of data aggregation in
wireless sensor networks. In: Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS), Washington, DC, USA, pp. 575–578.
IEEE Computer Society Press, Los Alamitos (2002)

2. Heinzelman, W., Murphy, A.L., Carvalho, H., Perillo, M.: Middleware to support
sensor network applications. IEEE Network Magazine Special Issue (2004)

3. Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Lower bounds for approxima-
tion algorithms for the steiner tree problem. In: Brandstädt, A., Le, V.B. (eds.)
WG 2001. LNCS, vol. 2204, pp. 217–228. Springer, Heidelberg (2001)

4. Nikolopoulos, S.D., Palios, L.: Hole and antihole detection in graphs. In: SODA
2004: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Philadelphia, PA, USA, pp. 850–859. Society for Industrial and Applied
Mathematics (2004)

5. Takahashi, H., Matsuyama, A.: An approximate solution for the steiner problem
in graphs. Math. Japonica 24, 573–577 (1980)

6. Distributed Computing Group at ETH-Zürich: Sinalgo - simulator for network
algorithms, http://dcg.ethz.ch/projects/sinalgo/

7. Intanagonwiwat, C., Estrin, D., Govindan, R., Heidemann, J.: Impact of network
density on data aggregation in wireless sensor networks (2001)

8. Kansal, A., Srivastava, M.B.: An environmental energy harvesting framework for
sensor networks. In: Proceedings of the International Symposium on Low power
Electronics and Design (ISLPED), pp. 481–486. ACM Press, New York (2003)

9. Ramachandran, U., Kumar, R., Wolenetz, M., Cooper, B., Agarwalla, B., Shin,
J., Hutto, P., Paul, A.: Dynamic data fusion for future sensor networks. ACM
Transactions on Sensor Networks 2, 404–443 (2006)

10. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In: Proceedings of the 6th
International Conference on Mobile computing and Networking (MobiCom), pp.
56–67. ACM Press, New York (2000)

http://dcg.ethz.ch/projects/sinalgo/

MVSink: Incrementally Building In-Network Aggregation Trees 231

11. Ding, M., Cheng, X., Xue, G.: Aggregation tree construction in sensor networks. In:
IEEE 58th Vehicular Technology Conference, VTC 2003-Fall, vol. 4, pp. 2168–2172
(2003)

12. Khan, M., Pandurangan, G., Vullikanti, A.: Distributed algorithms for constructing
approximate minimum spanning trees in wireless sensor networks. IEEE Transac-
tions on Parallel and Distributed Systems (2008)

13. Cheng, H., Liu, Q., Jia, X.: Heuristic algorithms for real-time data aggregation in
wireless sensor networks. In: IWCMC 2006: Proceedings of the 2006 International
Conference on Wireless Communications and Mobile Computing, pp. 1123–1128.
ACM, New York (2006)

14. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: An application-specific pro-
tocol architecture for wireless microsensor networks. IEEE Transactions on Wire-
less Communications 1(4), 660–670 (2002)

15. Manjeshwar, A., Agrawal, D.P.: TEEN: A routing protocol for enhanced efficiency
in wireless sensor networks. In: Proceedings of the 15th International Parallel &
Distributed Processing Symposium (IPDPS), Washington, DC, USA, p. 189. IEEE
Computer Society Press, Los Alamitos (2001)

16. Wen, Y.F., Lin, F.Y.S.: Energy-efficient data aggregation routing and duty-cycle
scheduling in cluster-based sensor networks. In: 4th IEEE Consumer Communica-
tions and Networking Conference, 2007, CCNC 2007, pp. 95–99 (2007)

17. Lindsey, S., Raghavendra, C.S.: Pegasis: Power-efficient gathering in sensor infor-
mation systems. In: Aerospace Conference Proceedings, 2002, vol. 3, pp. 1125–1130.
IEEE, Los Alamitos (2002)

18. Gao, J., Guibas, L., Milosavljevic, N., Hershberger, J.: Sparse data aggregation in
sensor networks. In: IPSN 2007: Proceedings of the 6th International Conference on
Information Processing in Sensor Networks, pp. 430–439. ACM, New York (2007)

19. Fan, K.W., Liu, S., Sinha, P.: Structure-free data aggregation in sensor networks.
IEEE Transactions on Mobile Computing 6, 929–942 (2007)

20. Zhu, J., Papavassiliou, S., Yang, J.: Adaptive localized qos-constrained data ag-
gregation and processing in distributed sensor networks. IEEE Transactions on
Parallel and Distributed Systems 17, 923–933 (2006)

21. Chan, H., Perrig, A., Song, D.: Secure hierarchical in-network aggregation in sensor
networks. In: Proceedings of the 13th ACM Conference on Computer and Com-
munications security (CCS), pp. 278–287. ACM Press, New York (2006)

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 232–246, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Minimum Number of Sensors – Interpolation of
Spatial Temperature Profiles in Chilled Transports

Reiner Jedermann and Walter Lang

Microsystems Center Bremen (MCB)
University of Bremen, Otto Hahn Allee NW1, D-28359 Bremen, Germany

rjedermann@imsas.uni-bremen.de

Abstract. Wireless sensor networks are an important tool for the supervision of
cool chains. Previous research with a high number of measurement points re-
vealed spatial temperature deviations of more than 5 °C in chilled transport, but
the number of sensors has to be reduced to an economically useful value for use
in regular transport. This paper presents a method to estimate the minimum
number of sensors and to compare different sensor positioning strategies. Dif-
ferent methods of interpolating the temperature data of intermediate positions
were applied to the experimental data from a delivery truck. The average pre-
diction error for intermediate points was estimated as a function of the number
of sensors. The Kriging method, originally developed for the interpolation of
geostatistical data, produced the best results.

Keywords: Wireless sensor networks, Food logistics, Kriging, Information
Processing, Temperature mapping.

1 Wireless Sensors in Cool Chain Management

Product losses in food transportation due to temperature mismanagement and quality
decay can reach up to 35% [1]. These losses can be mitigated by better supervision of
the cool chain. If stock rotation is based on dynamic shelf life or current product qual-
ity instead of a fixed production date, quality losses in meat could be reduced from
16% to 8%, as the group of Taoukis has shown [2], and those in fish could be reduced
from 15% to 5% [3].

The prediction of shelf life requires temperature monitoring for individual product
batches. Temperature differences inside a truck of up to 12 Kelvin [4] can cause se-
vere deviations in product quality. Sea containers with air ducts in the floor allow for
a better air flow distribution, but differences between pallet surfaces and core tem-
peratures can still reach 6 Kelvin [5].

Wireless sensor networks provide online access to temperature data during trans-
port. Instant notifications of food quality problems allow for corrective actions to be
taken before the transport arrives at its destination. The prediction of shelf life losses
can be calculated by an automated system inside the means of transport [6]. Sensors
packed inside the cargo are often lost by the end of the transport. In order to avoid

 The Minimum Number of Sensors 233

high sensor replacement costs, it is not feasible to equip each box or pallet inside a
truck or container with a sensor node. Instead of oversampling the cargo hold by
implementing a high number of measurement points, the temperature has to be inter-
polated between the positions of a reduced number of sensors. Furthermore, the oper-
ating conditions of food transport place high physical demands on the sensors. The
sensors must be able to operate in temperatures below -20 °C, withstand high air hu-
midity and condensation, and endure cleaning by steam jet.

2 Required Number of Sensors

The goal of this study is to develop a method to the estimate the number of sensors
required to accurately interpolate a spatial temperature profile. The difference be-
tween the real temperature and the temperature predicted by interpolation increases
for low numbers of source or input sensors. Inappropriate positioning of the input
sensors and inaccuracies of the interpolation methods also lead to higher errors.

This paper begins by defining a measure for the interpolation error and introducing
the experimental data. The following section compares different interpolation meth-
ods for a fixed number of input sensors. A further analysis of the data tests to what
extent the interpolation error is reduced by increasing the number of sensors. The ef-
fects of different strategies to determine locations for the placement of additional sen-
sors are evaluated. The last section demonstrates how the interpolation error could
also be utilized as an indicator of the probability of sensor faults.

2.1 Source and Destination Points

The measurement data set was split into two groups. The first group of sensor loca-
tions serves as the input for the interpolation model. This group contains the NS source
points si. The second group of sensor locations serves as a reference. The measure-
ments at the NZ destination points zi were compared to the output of the selected in-
terpolation model.1

2.2 Definition of Interpolation Error

The error εi for one destination point i was defined as the median square deviation be-
tween the predicted iz

)
and the measured zi over NK samples for the transport duration:

() ()()

K

N

k
ii

i N

kzkz
K

∑
=

−
= 1

2

2

)

ε
(1)

1 Vectors are marked by bold lowercase letters, matrices by bold capital letters, and transposed

matrices by an additional superscript ‘T’. Temperature differences are given in Kelvin [K] and
absolute temperatures are given in degrees Celsius [°C]. Averages are indicated by an over-
bar. Context clarifies whether the average is taken over the transport duration or over all
measurement points for a certain sampling instance.

234 R. Jedermann and W. Lang

The quality of the interpolation methods was evaluated according to the average pre-
diction error ε over all destination points:

ε =
εi

i=1

NZ

∑
NZ

(2)

3 Experimental Data

With the purpose of conforming to the mechanical requirements of cool chain trans-
port, we equipped TelosB sensors with polyamide water-protected (IP65) housings
and external SHT75 temperature and humidity sensors. In order to evaluate the error
of the temperature interpolation, it is necessary to acquire data for more points than
the final number of sensor positions. Because we have only manufactured a limited
number of sensors, we performed the preliminary tests with low-cost data loggers.
The tests were performed inside delivery trucks provided by the German company
Rungis Express, which specializes in supplying high-quality food products to hotels
and restaurants. The cargo hold of each truck is separated into three different tempera-
ture zones. During two test transports, 40 TurboTag data loggers were placed in each
middle compartment in deep freezer mode with a set point of -29 °C.

Further details of the test are described in [7], whereas this paper focuses on an
analysis of the experimental data to determine the minimum number of sensors and
their optimal positions.

0 2 4 6 8 10 12
-40

-35

-30

-25

-20

-15

-10

-5

0

Hours after truck loading

T
em

pe
ra

tu
re

 in
 [

°C
]

Hottest measurement point

Coldest measurement point

Average of all points

Fig. 1. Temperature over time. Minimum, maximum, and average for transport 1.

 The Minimum Number of Sensors 235

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

0

0.5

1

1.5

2

-23.7

-25.6

-24.8

-23.3

-22.9

-23.4

-25.1

-24.3

X

-23.6

-24.5

-25.2

-23.0

-22.6

-23.2

-22.1

-22.3

-23.6-25.7

-24.5

-24.6

-26.9

-24.8

-23.4

-25.3

-26.5

-25.0

-25.8

-22.8

Y

-25.8

-28.3

-26.5

-24.8

-27.3

-29.8

-30.4

-28.3

-28.9

-29.2

-29.7

-27.9

Z

A

B

C

D

E

Fig. 2. Spatial temperature distribution at the end of the cooling period in transport 1. The cool-
ing unit is mounted under the ceiling. The direction of air flow at the ventilation outlet is
marked by the three arrows.

Figure 1 shows the temperature over time diagram of both the coldest and the hot-
test measurement points, as well as the average temperature of all points over the 11-
hour cooling period during the first transport. The oscillations of the temperature were
caused by the on/off cycles of the cooling unit with a period of approximately 1.2
hours. The automated defrosting caused a short temperature peak after 10.5 hours.

The spatial temperature distribution is given in Figure 2. The average over time
was calculated for each measurement point over a two hour period starting 8 hours af-
ter truck was loaded. Temperature differences of about 7.5 K are still present at the
end of the transport.

236 R. Jedermann and W. Lang

3.1 Time Correction

Data loggers are cheap and easy-to-use wireless devices, but they do not provide ac-
cess to the sensor data during the transport. Furthermore, they do not feature net-
worked time synchronization, which meshed sensor nodes provide. Data loggers can
exhibit considerable deviations of the sampling intervals, especially in deep freezer
conditions. We found clock deviations of ±3 % in our experimental data. The data
was converted to an equal sampling interval of 2.5 minutes by the resample() function
in MATLAB. This function resamples the input with a fixed frequency ratio of p/q by
upsampling the input by the factor p, filtering alias frequencies, and downsampling by
the factor q. A graphical comparison showed that the error introduced by the resam-
pling was lower than 0.05 Kelvin except for occasional peaks of up to 0.1 Kelvin.
Only samples at the beginning and end of the data set, which could have a higher er-
ror, were removed before further processing.

4 Methods for Spatial Interpolation

The following section compares different approaches for estimating the temperature
at the destination points by a linear combination of the values at the source points.
The prediction of the destination point iz

)
 at the sampling instance k is given by the

sum of the data of the source points sj multiplied with the time-invariant weighting
coefficients wij. The forecast depends solely on the current source values for these
linear methods; their prediction model does not contain any state variables.

() ()∑
=

⋅=
SN

j
ijji wkskz

1

)
 (3)

4.1 Inverse Distance Weighting

Inverse distance weighting is most common method for determining the weighting
coefficients. This method uses only the geometrical distances between the source
points. It assumes that the influence of a source point sj on a destination point zi de-
creases with the square of their distance hij. The weighting coefficients are given by
equation (4). The additional parameters ωi are used to scale the weighting coefficients
in such a way that their sum equals 1 for each destination point.

2
ij

i
ij

h
w

ω
= with

1

1
2

1
−

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

ZN

i ij

i
h

ω (4)

4.2 Kriging

An improved interpolation method was developed by D.G. Krige [8] in the 1950s for
the exploration of mineral resources with 1000 or more test drillings. To date,

 The Minimum Number of Sensors 237

the Kriging method has only been scarcely utilized in sensor networks; see [9] for ex-
ample. This might be due to the fact that, in general, there are a lower number of
probe points in wireless sensor applications than in geological research. We tested
whether Kriging could also calculate a precise prediction for small data sets with only
40 points of experimental data. The Kriging method, as described in equation (5)-(8)
[10], [11], was implemented as a set of MATLAB functions. As new applications of
Kriging we used this method to estimate the number of required sensors and to test
the plausibility of the sensor data.

Kriging calculates the solution with the least possible expected value for the errors
εi of each destination point by assuming the following:

a) The mean of the measurement values is independent of space, and
b) The expected value for the temperature difference between two points depends

solely on their spatial distance vector.

Depending on the data set, in many cases it is possible to reduce the second assump-
tion to an isotropic form in which the difference does not depend on the direction but
only on the absolute value of the distance.

Kriging can be seen as an improved form of inverse distance weighting. Whereas
the inverse distance method calculates the weighting coefficients directly by the geo-
metrical distance between two points hij, Kriging uses the variogram v(hij) that ex-
presses the statistical dependency of two points as function of their distance hij. The
variogram describes the statistical dependency by the expected value E for the square
of the temperature difference of two points i,j:

() ()(){ }2

2

1
)(ksksEhv jiij −= (5)

The primary disadvantage of the Kriging method lies in its estimation of the
variogram from the measurement values. Because our data set with 40 sensor loca-
tions did not allow for a determination of separate variograms for different direc-
tions of the distance vector, an isotropic distribution was assumed. In contrast to
geological research in which only one static value per probe point is taken, we ob-
tained a time-variant series of measurements. The equation to estimate the experi-
mental variogram v∗(h) from the data was slightly modified, resulting in the
following:

() () ()()∑
=

∗ −⋅=
KN

k
jijiji kskshv

1

2
,, 2

1
 (6)

The value was calculated for the first transport with all 0.5 · 40 · (40-1) = 780 possible
combinations of two points. The resulting values for v∗(h) were grouped by the abso-
lute value of the distance in intervals of 0.25 meter length. The average value for v∗
(h) inside each interval is given by a marker in Figure 3.

238 R. Jedermann and W. Lang

.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

20

Distance in [m]

V
ar

ia
nc

e
in

 [
K

2]

Experimental Variogram

Theoretical Variogram

Fig. 3. Experimental and theoretical variogram

This experimental curve was approximated by a theoretical variogram v(h). Only a
limited set of functions can be applied as theoretical variograms. The function must
conform to several limitations. For example, the variogram has to be a monotonically
increasing function. In addition, apart from the origin, the function has to be continu-
ous.2 The Gaussian model was selected from the supposed standard models [10], [11]
because it produced the best fit for the gentle rise of the curve for small distances:

() ()()2/3
00 1)(rhevvvhv −

∞ −⋅−+= (7)

The radius r as the primary parameter of the variogram can be interpreted as the
maximum distance for the mutual influence between two points. The initial value v0 is
the minimum value of variance for distances greater than zero. v∞ gives the variance
for large distances. The parameters of the variogram for the data from the first trans-
port were estimated to be r = 2.8 m, v0 = 1.0 K², v∞ = 13.5 K².

Analyses of the data from the second transport showed higher initial and final
values (v0 = 2.5 K², v∞ = 32.5 K²), but no significant difference in the radius.

The method of inverse distance weighting directly calculates the weighting coeffi-
cients as a function of distance, whereas the Kriging method also considers the mutual
influence of all measurement points by a linear system of equations. The Ordinary
Kriging method also estimates the spatial average μ as an auxiliary variable:

2 Only functions that are negative semi-definite can be utilized as variogram [11]. Otherwise,

equation (12) on page 12 could result in a negative value for the Kriging variance.

 The Minimum Number of Sensors 239

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1011

1

1

,

,1

,

,1

,1,

,11,1

qN

q

qN

q

NNN

N

SSSSS

S

v

v

w

w

vv

vv

MM

K

K

MMOM

μ

 (8)

The matrix on the left side contains the values of the variogram for the distances be-
tween all source points vi,j. The vector on the right side contains the values vi,q for the
distances between each source point and one destination point zq. The weighting coef-
ficients wi,q used in calculating the destination point are retrieved by solving the linear
set of equations in (8).

4.3 Kriging with Spatial Trends

The Ordinary Kriging method assumes that the mean value of the temperature is con-
stant over space, but our experimental data showed a difference of 4 K between the
average temperature of the left and right walls. There are three methods in which this
problem can be addressed.

The first method is to simply ignore the trend and directly apply Ordinary Kriging,
assuming that the effect of the trend is negligible for small distances.

The second method implements the following steps: a) A linear or polynomial
trend model is estimated from the source points. b) The prediction of the trend model
is subtracted from the source points. c) Ordinary Kriging is applied to the difference.
d) The trend model is added to the destination points obtained by Ordinary Kriging.

The third approach using the Universal Kriging method extends the set of linear
equations in (8). The parameter values of a trend model are calculated as additional
variables. However, Universal Kriging is only necessary if the temperature distribu-
tion exhibits local drifts in addition to a global trend [10, page 38].

Because our data set of 40 measurement points does not contain enough informa-
tion to estimate local drifts or cubic trend functions, only the second approach involv-
ing a linear model was applied. The temperature trend T∗ was predicted as a function
of the coordinates px, py, pz, of a point i. The model parameters α were estimated sepa-
rately for each sampling instance k:

() () () () () ()ipkipkipkkkiT zyx ⋅+⋅+⋅+=∗
3210)(),(αααα (9)

For the first transport, the average over time of the parameters was calculated as
C, -21.980 °=α K/m 15.0 K/m, 98.1- K/m, 17.0 321 === ααα .

5 Comparison of Interpolation Errors

The described interpolation methods were applied to the recorded data of both trans-
ports. We evaluated the data set twice, once using 8 source points and once using 30
source points. From the 40 total points, either 32 or 10 remained as destination points.
The average interpolation error was calculated for these remaining points. The set
with 8 source points includes the positions in the corners of the cargo hold that are

240 R. Jedermann and W. Lang

marked by a black frame in Figure 2. The positions of the sensors for the set with 30
source points were selected according to the approach described in the next section.

Two further simple interpolation approaches were applied as references for the
comparison: a) The time-dependent average of the source points was taken to predict
all destination points, independent of their locations. b) The destination values were
set according to the trend model in equation (9). The results of the comparison are
summarized in Table 1:

Table 1. Comparison of interpolation error ε for different methods for 8 and 30 source points

Experiment / Source points Ex1 / 8 Ex2 / 8 Ex1 / 30 Ex2 / 30

Average of source points 2.796 K 3.912 K 2.567 K 3.239 K

Linear trend 1.984 K 2.723 K 1.881 K 3.437 K

Inverse distance weighting 1.443 K 2.287 K 1.105 K 1.720 K

Ordinary Kriging 1.389 K 2.170 K 0.530 K 1.325 K

Kriging with linear trend 1.418 K 2.231 K 0.533 K 1.474 K

Ordinary Kriging gave the most accurate prediction with an interpolation error be-
tween 0.5 K and 2.2 K. The combination of Kriging with a linear trend model resulted
in a slightly higher error. A linear trend, which affects the whole cargo hold, fails to
properly explain the difference between the average temperatures of the left and right
walls. Thus, for this data set, the best approach is to directly apply Ordinary Kriging,
which gives the best fit for randomly distributed heat sources.

The accuracy of Kriging increases with the number of source points. A comparison
of the interpolation error of Ordinary Kriging with other methods gave the following
results: For 30 source points, the error is reduced by 52% for the first and 23% for the
second transport compared to inverse distance weighting. Compared to the simple av-
erage and the linear trend model, the improvement is between 59% and 79%.

The variograms for the first and second transports exhibited differences only in
their initial and final values, with a similar relation of v∞/v0. The variogram for the
second experiment can be approximated by a proportional scaling of the first
variogram:

() ()hvhv firstond ⋅≈ 4.2sec (10)

The factor 2.4 can be reduced in equation (8) because it appears on both sides. There-
fore, the weighting matrix for Kriging is almost independent of the number of the ex-
periment. The effect of the differences in the variogram was calculated to be lower
than 0.1 %.

5.1 Comparison with Linear Curve Fitting

The coefficients of the weighting matrix depend mainly on the geometrical locations
of the measurement points for the inverse distance and the Kriging method. The
weighting coefficients are almost independent of the current sensor data for these two
methods.

 The Minimum Number of Sensors 241

Other modeling approaches set the weighing coefficients in order to give the best
fit for a set of training data. A disadvantage of these approaches is that in addition to
the values of the source points, the values of the destination points must also be
known in advance for use as training data. Because the weighing coefficients depend
on the sensor data of the training experiment, it is necessary to test by a cross-
validation whether it is possible to apply the model to future experiments. Linear
curve fitting is introduced as an example for this approach.

Equation (3) was transferred to a matrix form. The rows of the matrices Z
)

and S
contain all measurement values at one sampling instance. The matrix W contains the
time-invariant weighting coefficients:

WSZ ⋅=
)

 (10)

The weighting coefficients are calculated as the least square error solution of the
overdetermined linear set of equations (10) by the Moore-Penrose pseudoinverse [12]:

() ZSSSW TT ⋅⋅⋅= −1
 (11)

If the weighting matrix is recalculated by equation (11) for each experiment, the curve
fitting delivers a superb approximation that is between 75% and 87% better than those
calculated with Kriging (Table 2). However, the curve fitting fails to give a prediction
for experiments in which the destination values are not known in advance. The
weighting matrix was calculated with the data of experiment one and applied to ex-
periment two and vice versa. The interpolation error of this cross-validation was al-
ways larger than the error predicted by Kriging. The prediction for the destination
points in experiment one was hardly better than the simple average of source values.

Table 2. Interpolation error ε and cross validation for linear curve fitting

Experiment / Source points Ex1 / 8 Ex2 / 8 Ex1 / 30 Ex2 / 30

Linear curve fitting 0.283 K 0.415 K 0.134 K 0.177 K

Cross validation curve fitting 2.638 K 2.234 K 2.417 K 1.470 K

This problem might also appear in other learning methods in which the parameters
of the prediction system are trained by the data of one or more experiments. Their
ability to predict destination values in future experiments has to be tested by careful
cross-validation.

6 The Number of Required Sensors

The prediction error of the Kriging method decreases with the number of source
points as shown in Table 1. In order to answer the initial question of this paper con-
cerning the required number of sensors, the average prediction error of the Ordinary
Kriging method was plotted in Figure 4 as a function of the number of source points.
Starting with a configuration of one sensor in each of the eight corners, new sensors
were added one by one. Furthermore, the effect of the location of the new sensors on

242 R. Jedermann and W. Lang

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of source points

A
ve

ra
ge

 p
re

di
ct

io
n

er
ro

r
pe

r
de

st
in

at
io

n
po

in
t

in
 [

K
]

Minimize Kriging Variance

Minimize εi

Crossvalidation Minimize εi

Random selection (100 Experiments)

Fig. 4. Average prediction error ε as a function of the number of source points for different
sensor-addition strategies

the prediction error was tested by this simulation. New points were added according
to four different strategies:

a) New points were added randomly. The curve shows the average of 100
random experiments.

b) The Kriging method also provides the means to estimate the expected er-
ror in unknown destination points. The Kriging variance KV or its square
root, the Kriging standard deviation σK, can be calculated as the product
of the two vectors in equation (8):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

1
,

,1

,

,1

2

qN

q

T

qN

q

K

SS
v

v

w

w

KV
MM

μ

σ (12)

 The goal of this strategy b) is to minimize the average Kriging variance
of the remaining destination points. All options to convert one destina-
tion point into a source point were tested. The point that resulted in the
lowest average was selected as new source point.

c) The destination point with the highest deviation between the predicted
and measured εi was converted into a source point.

d) Whereas the weighting coefficients are independent of the number of the
experiment, the cold and hot spots as locations of temperature extremes
can change location for different transports. Thus, the points with the

 The Minimum Number of Sensors 243

maximum εi are also subject to change. Therefore, strategy c) has to be
tested by cross-validation. The sequence for adding new sensors was de-
termined according to the measurements from experiment two by em-
ploying strategy c). Thereafter, the same sequence was applied to
experiment one.

A share of the measured prediction errors εi results from calibration tolerances of the
sensors at the destination points. The average measurement error was estimated by a
test in a climatic chamber for a set of 36 TurboTag data loggers. Their temperature
measurement exhibited a standard deviation of 0.25 K at 0 °C, 0.38 K at -10 °C, and
0.68 K at -25 °C. The average temperature in our experiments was approximately -
25 °C. Therefore, the related tolerance of 0.68 K should be considered as the low
boundary for the prediction error.

In general, not only the temperatures at the remaining destination points of the data
set should be estimated, but also those at any point inside the cargo hold. Therefore,
the simulation was stopped after 30 source points were added. Otherwise, there would
not have been a sufficient number of destination points remaining to reliably calculate
the average prediction error.

Only strategy c) goes slightly below the low boundary, because it selects the points
directly according to their prediction error, thus disregarding sensors with high toler-
ances. The other three strategies showed a slower decrease of the prediction error. If
new points are added by one of these strategies, far more than 30 source points are
necessary to reach the low boundary.

The four strategies were compared on the basis of the average error ε20-30 over the
interval between 20 and 30 source points. Strategy c), in which new sensors are added
according to the maximum εi, showed the best result with ε20-30 = 0.60 K. The cross-
validation increased its error to ε20-30 = 0.96 K, which is slightly higher than the error
that results from adding new sensors based on the Kriging variance with ε20-30 = 0.91
K. The improvement using the latter two strategies is less than 20% compared to the
average of the random experiments with ε20-30 = 1.11 K.

In typical applications, little or no sensor data is available before installation. In
these cases, it is only possible to determine the sensor positions based on the Kriging
variance. Strategy c) can only be applied if a larger data set is available. The number
of measurement points in the data set must exceed the number of the reduced sensor
positions. The error of strategy c) might increase for data from untrained transports,
but this error is only slightly larger compared to errors using other strategies.

Strategies a) to d) are all greedy in the sense that they seek only the instant advan-
tage and cannot change or undo earlier decisions. A fifth algorithm was tested as an
example of a less greedy variant of strategy b). The algorithm searches for the best
combination of the following three steps in order to minimize the average Kriging
variance for the remaining destination points: i) remove one source point; ii) replace it
with another point; iii) add a further point as source point. But the advantage of this
strategy compared to b) was rather marginal. For 30 points, both strategies resulted in
the same list but ordered differently.

The number of sensors required to achieve a given limit for the average prediction
error can be obtained from Figure 4. If, for example, the limit is 1.0 K and the posi-
tions are determined by the Kriging variance, at least 22 sensors are necessary.

244 R. Jedermann and W. Lang

7 Plausibility Testing Based on the Kriging Variance

The Kriging variance also provides a means of testing the plausibility of single meas-
urements or of the interpolation process itself. This related type of cross-validation
selects all measurements as source points except for one. The Kriging standard devia-
tion σK(i) and the prediction error εi are calculated for this destination point i. The
process is repeated after selecting the next location as destination point. Figure 5
shows the resulting values for all destination points.

If the data set satisfies the statistical assumptions of the Kriging method, the aver-
age of σK should be equal to the average prediction error. A large difference between
these two values indicates that either the expected value of the measurements exhibits
a spatial dependency, that a spatial trend or an anisotropic relation of the variogram
has not been considered, or that the variogram does not correctly represent the
measurements.

The values of the Kriging standard deviation are slightly too high for our data set
compared to the measured prediction error. This could be caused by the temperature
trend that was observed in direction of the y-axis. If a trend exists which is not
compensated in the Kriging process, the variogram can produce excessively high val-
ues according to Schafmeister [10, page 37].

The described cross-validation could also test whether the measured values of one
or more sensors are plausible. Figure 5 shows four points in which the measured val-
ues differ by more than 2 K from the calculated prediction. These deviations can arise
due to the following:

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Position number of the destination point

D
ev

ia
tio

n
in

 [
K

]

A
B

C

D

E

Kriging standard deviation σk

1.61 * σk

Prediction error εi

Fig. 5. Kriging standard deviation and prediction error as a function of the position of one des-
tination point

 The Minimum Number of Sensors 245

a) The prediction itself has a high level of uncertainty, because the neighbor
source points are too far away. This is expressed by the value of σK(i).

b) The error is caused by random noise or statistical effects.
c) The prediction error has a physical cause. The point could be warmed up by

a heat source that produces only a localized effect.
d) The sensor is faulty or exhibits an excessive tolerance.

In order to eliminate option a), the relation between the prediction error and the
Kriging standard deviation was used as an indicator of the likelihood of a sensor fault
at this point.

() ()iiF
K

i

σ
ε

= (13)

The five points with the highest indicator values 1.3 < F(i) < 1.61 are marked with the
letters A-E in figures 2 and 5. Point D has a higher prediction error εi than point E, al-
though point E has a higher indicator value. The error at point E has to be considered
as more significant. The distances to the two next neighbors are only half as great as
the distances for point D. Therefore, the prediction at point E is expected to be more
accurate.

Random noise might be the best explanation for the high indicator values of these
points. If a Gaussian distribution is assumed, 81% of the values should be inside the
interval ±1.3 ·σ . A share of 5 out of 40 sensors with F(i) > 1.3 can be explained by
the statistical distribution, but other possible explanations for the high prediction er-
rors should also be considered. Points A through D are all located close to the floor of
the cargo hold. Presumably, the sensors are blocked by boxes in front of them. These
sensors measure the box temperature rather than the distribution of air temperature.

The sensors that are most likely to be faulty can be identified by calculation the
Kriging variance in order to check their plausibility. Sensors with a deviation much
higher than the Kriging standard deviation should be carefully checked. In our data
set, the deviations could be attributed to a physical cause or to noise effects. Except
for these cases, sensors with high deviations should be regarded as faulty.

8 Summary and Conclusion

Wireless sensor networks can be used to detect local temperature deviations in cool
chain transports, but oversampling of the cargo hold by implementing too many sen-
sors should be avoided. The temperature value at any position can be estimated by
interpolating the values of a limited number of sensors.

The Kriging method proved to be a useful tool for the evaluation of spatial sensor
measurements. It delivers a more accurate interpolation than the commonly used in-
verse distance weighting. The expected prediction error at positions where no sensor
is present can be calculated by using the Kriging variance. The minimum number of
sensors can be estimated by a plot of the prediction error as a function of the number
of measurement points. The plausibility checking based on the Kriging variance also
provides a way to detect faulty sensors.

246 R. Jedermann and W. Lang

The disadvantage of Kriging is that it requires at least one data set with a high
number of sensor positions to estimate the required variogram. The 40 positions of
our data set seem to suffice for this process only by a small margin.

Although Kriging was originally developed for data sets made up of thousands of
positions, the comparison of different interpolation methods showed that Kriging can
also be usefully applied to typical sensor networks applications employing lower
numbers of measurement points.

Acknowledgment

This research was supported by the German Research Foundation (DFG) as part of
the Collaborative Research Centre 637 “Autonomous Cooperating Logistic Proc-
esses”. We further thank Rungis Express AG, Germany for the provision of test facili-
ties. See www.intelligentcontainer.com for additional project information.

References

1. Scheer, P.P.: Optimising supply chains using traceability systems. In: Smith, I., Furness,
A. (eds.) Improving traceability in food processing and distribution, pp. 52–64. Woodhead
publishing limited Cambridge, England (2006)

2. Koutsoumani, K., Taoukis, P.S., Nychas, G.J.E.: Development of a safety monitoring and
assurance system for chilled food products. International Journal of Food microbiol-
ogy 100(1-3), 253–260 (2005)

3. Tsironi, T., Gogou, E., Taoukis, P.: Chill chain management and shelf life optimization of
MAP seabream fillets: A TTI based alternative to FIFO. In: Kreyenschmidt, J. (ed.) 3rd In-
ternational Workshop on Coldchain Management, Bonn, pp. 83–89 (2008),
http://www.ccm.uni-bonn.de

4. Moureh, J., Flick, D.: Airflow pattern and temperature distribution in a typical refrigerated truck
configuration loaded with pallets. International Journal of Refrigeration 27(5), 464–474 (2004)

5. Tanner, D.J., Amos, N.D.: Heat and Mass Transfer - Temperature Variability during
Shipment of Fresh Produce. Acta Horticulturae 599, 193–204 (2003)

6. Jedermann, R., Schouten, R., Sklorz, A., Lang, W., van Kooten, O.: Linking keeping qual-
ity models and sensor systems to an autonomous transport supervision system. In: Kreyen-
schmidt, J., Petersen, B. (eds.) Proceedings of the 2nd international Workshop on Cold
Chain-Management, pp. 3–18. University Bonn, Bonn (2006)

7. Jedermann, R., Lang, W.: Semi-passive RFID and beyond: steps towards automated qual-
ity tracing in the food chain. International Journal of Radio Frequency Identification Tech-
nology and Applications (IJRFITA) 1(3), 247–259 (2007)

8. Krige, D.G.: A statistical approach to some mine valuations and allied problems at the
Witwatersrand, Master’s thesis of the University of Witwatersrand (1951)

9. Camilli, A., Cugnasca, C.E., Saraiva, A.M., Hirakawa, A.R., Corrêa, P.L.P.: From wireless
sensors to field mapping: Anatomy of an application for precision agriculture. Computers
and Electronics in Agriculture 58(1), 25–36 (2007)

10. Schafmeister, M.T.: Geostatistik für die hydrogeologische Praxis. Springer, Berlin (1999)
11. Chilès, J.P., Delfiner, P.: Geostatistics - modeling spatial uncertainty. John Wiley & Sons,

New York (1999)
12. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Springer, New York (2003)

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 247–262, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Acoustic Sensor Network-Based Parking Lot
Surveillance System

Keewook Na, Yungeun Kim, and Hojung Cha

Department of Computer Science, Yonsei University
Sinchon-dong 134, Seodaemun-gu, Seoul 120-749, Korea
{kwna,ygkim,hjcha}@cs.yonsei.ac.kr

Abstract. Camera-based surveillance systems are commonly installed in many
parking lots as a countermeasure for parking lot accidents. Unfortunately these
systems cannot effectively prevent accidents in advance but provide evidence of
the accidents or crimes. This paper describes the design, implementation, and
evaluation of an acoustic-sensor-network-based parking lot surveillance system.
The system uses sensor nodes equipped with low-cost microphones to localize
acoustic events such as car alarms or car crash sounds. Once the acoustic event
is localized, the cameras are adjusted to the estimated location to monitor and
record the current situation. We conducted extensive experiments in a parking
lot to validate the performance of the system. The experimental results show
that the system achieves reasonable accuracy and performance to localize the
events in parking lots. The main contribution of our work is to have applied
low-cost acoustic sensor network technologies to a real-life situation and solved
many of the practical issues found in the design, development, and evaluation
of the system.

Keywords: Acoustic source localization, Parking-lot surveillance system,
Wireless sensor networks.

1 Introduction

Over the past few years, sensor-network-based parking lot management systems have
drawn the attention of researchers. Lee et al. [1] proposed a parking lot application
using magnetic and ultrasound sensors to accurately count the number of passing
vehicles. Barton et al. [2] and Boda et al. [3] proposed parking lot management
systems to find empty parking spaces. Although these systems enhanced the
performance of conventional parking lot management systems by using various
sensors, most neglected the security issues in parking lots. As the number of large
parking lot increases, parking lot crimes such as car theft or vandalism also increase.
However, most of the existing parking lot security systems have not efficiently
protected these crimes. Parking lot security is generally maintained by car anti-theft
systems or surveillance cameras that are pre-installed in a parking lot. These methods,
however, have limitations in dealing with emergencies. In the case of camera-based
surveillance systems, security guards should monitor the current situation in real time.
Due to the practical restriction on constant monitoring of the system, camera-based

248 K. Na, Y. Kim, and H. Cha

surveillance systems are normally used to provide evidence after accidents have
occurred. SensEye [4] was proposed to address this issue. The system approximately
detects abnormal movements using sensor nodes equipped with low-performance
cameras. Once the movement is detected, a high-performance camera is activated to
zoom in on the target. Since there are diverse types of moving objects in a parking lot,
detecting abnormal movement is difficult. In the recently proposed SVATS (A Sensor
network based Vehicle Anti-Theft System) [5], a small sensor network is constructed
in a vehicle to identify unauthorized drivers. Although the system supports
quick response and is resilient to attacks, the sensor nodes should be installed in
advance. Moreover, the system cannot deal with other types of accidents except for
vehicle burglars.

To address the aforementioned problems of the existing systems, we propose an
acoustic sensor-network-based parking lot surveillance system. The system uses low-
cost microphone-enabled sensor nodes to localize acoustic events such as car alarms
or car crash sounds. Once the acoustic event is localized, the system makes use of
cameras to pinpoint and monitor the event scene. The contributions of this paper are
as follows:

• To the best of our knowledge, the proposed system is the first sensor-
network-based parking lot surveillance system using the acoustic source
localization algorithm.

• We proposed several mechanisms to improve the performance of the
existing acoustic source localization algorithm for real parking lot
environments.

• We improved the accuracy of the system by integrating image processing
techniques, such as template matching and motion detection, into our sensor
network-based system.

• The overall cost of the proposed system is significantly lower than the
previous solutions since our system uses a small number of low-cost sensor
nodes and cameras.

The rest of the paper is organized as follows. In Section 2, we provide an overview of
the proposed system. Section 3 describes the acoustic source localization algorithm
and several enhancement techniques. Section 4 presents the integration with
surveillance cameras. We present a detailed experimental environment and results in
Section 5. We conclude the paper in Section 6.

2 System Overview

Figure 1 illustrates the overall structure of the proposed surveillance system. The
system consists of three sub-systems: the Acoustic Source Localization (ASL) system,
the surveillance camera system, and the server system. The acoustic source
localization system localizes emergency sounds such as anti-theft alarms or car crash
sounds. The estimated position of the acoustic event is delivered to the server, which
displays the estimated position on the map and sounds an alarm. The surveillance
camera immediately adjusts the camera toward the estimated position to capture the
event scene, and performs motion detection to find a more accurate position.

 Acoustic Sensor Network-Based Parking Lot Surveillance System 249

Fig. 1. System overview of the intelligent parking lot surveillance system

Microphone-enabled sensor nodes are attached to the ceiling of the parking lot and
sample the current sound level at 3-kHz sampling rates. The Distributed Acoustic
Source Localization (DSL) [6, 7] runs on each sensor node to localize the acoustic
events. We present the detailed algorithm and enhancements in Section 3. In the
surveillance camera system, a set of cameras is installed to cover the entire area of the
parking lot. Considering diverse installation environments, we used the cameras that
have both wired and wireless network interfaces. The surveillance camera system
controls the camera direction to capture the estimated location of the acoustic source.
The final location is accurately adjusted with the motion detection algorithm. The
surveillance server notifies the supervisor of the event, through the video streamed
from the camera system, which monitors the current situation. The server displays the
estimated position of the event reported from the ASL system, and then sends the
information to the surveillance camera system.

3 Acoustic Source Localization System

In this section, we describe the acoustic source localization algorithm used in our
parking lot surveillance system. Several techniques to improve detection accuracy are
also described.

3.1 Distributed Acoustic Source Localization

The key part in our system is to find the position of the acoustic source using low-cost
sensor nodes. Among the previous techniques, we employed DSL (Distributed
acoustic Source Localization), [6, 7] which is the distributed acoustic source
localization algorithm. In DSL, sensor nodes exchange their sound detection times
when the current sensing value is higher than the threshold. The position of an

250 K. Na, Y. Kim, and H. Cha

Fig. 2. The DSL algorithm

acoustic source is calculated using order of detection time among sensor nodes. DSL
is able to localize sound events irrespective of sound types since the mechanism uses
time information. The system requires no additional hardware components except for
cheap microphone, in contrast with AOA (Angle Of Arrival) [8] or Beamforming[9].

Previous systems require expensive devices such as additional sampling circuit or
high-performance microprocessor to obtain high sampling rates. For example, the
shooter localization system [10] used a sensor board with Xilinx XC3S1000 FPGA
chip, and the Acoustic ENSBox system [11] used an ARM-based CPU module.

Figure 2 shows the overview of the DSL algorithm [6] used in our parking lot
surveillance system. When an acoustic event occurs, sensor nodes share their
detection time to elect a leader node that has the earliest event detection time. The
leader node calculates the EER (Essential Event Region) [7], which is the possible
region of the source location. All nodes check which cell in the EER has a high
probability of the acoustic source location by comparing detection times with each
other and then transmit the result to the leader node. The leader node finally estimates
the source location with the collected data. Detailed descripton on DSL and EER are
found in our previous papers [6][7].

Initially, we used the original version of DSL. However, our preliminary
experiments conducted at a parking lot did not show as a good performance as we had
expected. The problem was revisited, and several error sources were found in the real
experiments. The first error source is the low sampling rate of sensor node. The
higher the frequency of acoustic events, the higher the errors in detection time. We
therefore require an additional algorithm that complements the low sampling rate to
accurately detect high-frequency acoustic sources. Second, the location of node
deployment affects the localization errors. Since the sensor nodes located on the edge
of the parking lot suffer from a lack of information needed to estimate the position of
an acoustic source, DSL exhibits worse performance at the corner side than in the
middle of the sensor field. The final error source is the duration of the acoustic event.
The original DSL algorithm was designed to detect short-duration sound events;
hence, one long-duration acoustic event is considered a series of short-duration
acoustic events. Repeated detection of one acoustic event may cause energy waste,

 Acoustic Sensor Network-Based Parking Lot Surveillance System 251

Fig. 3. Sampling time difference between two nodes

and different starting points of the next sensing cycle also cause significant
localization errors.

3.2 Improving Accuracy on Detection Time

The low sampling rate of a microphone built into sensor nodes makes it difficult to
accurately measure the sound occurrence time. The error rates increase especially in
underground parking lots because of the strong echo and many obstacles. To
compensate for the errors in detecting time, we propose a compensation algorithm by
exploiting log data.

Figure 3 shows the wave form of an acoustic event. At time A1, node A cannot
detect an acoustic event since the sensing value is lower than the threshold. Therefore,
node A will detect a sound event at time A2. However, node B can detect a sound
event at time B1. This means that the phase of the sampling cycle and the threshold
level affect the accuracy in detecting the correct time. To address this problem, our
compensation algorithm determines the sound detection time using two levels of
thresholds. The algorithm has three steps:

1) A buffer with size n keeps the measured sensing value in FIFO order.

2) When the current sensing value is higher than the default threshold T1, the
average of the sensing values in the first half of the queue is calculated. The
calibrated threshold T2 is then computed using Equation (1).

T2 = avg + α < T1 (1)

3) By traversing the second half of the buffer in the time order, the time upon
which a sensing value higher than T2 was recorded is determined as the sound
detection time.

As shown in Figure 4, the detection time is initially where the sensing value is 2080
with threshold T1. It is then corrected to the time when the sensing value is 1920 with

252 K. Na, Y. Kim, and H. Cha

Fig. 4. Correction buffer

threshold T2. Finding the appropriate α value is an important issue. With a low α
value, the algorithm is susceptible to surrounding noise. On the other hand, a high α
value can cause a problem similar to that of the single threshold T1. In our system, we
use the empirically-found α value of 100. With the proposed algorithm, we reduce the
error between the detection time and the actual event time since the impact of
surrounding noise is alleviated through two levels of thresholds.

3.3 Handling Lengthy Event Source

Repeated detection of one long-duration acoustic event causes energy waste by the
sensor nodes. Moreover, different starting points of the next sensing cycle can be an
error source. In Figure 5, for example, node 1 and node 2 detected an acoustic event at
a similar time. However, different starting points of the next sensing cycle cause
jitters, which can be a significant source of estimation errors.

To solve this problem, the proposed system stops sensor nodes from sensing the
subsequent acoustic events. Only the node delivering the estimated position to the server
continues the sampling to detect the end of the acoustic event. If there is no acoustic
event that exceeds the threshold for the predefined time, the acoustic event is assumed
to be finished. A message is then transmitted to activate the sampling of other nodes.

Fig. 5. Detection time error vs. wakeup time

 Acoustic Sensor Network-Based Parking Lot Surveillance System 253

3.4 Improving Detection Accuracy on the Edge

In DSL, the node that has the earliest event detection time is elected as the leader node,
and collects event detection times from neighboring nodes. Since the EER is decided
based on the gathered information, the distribution direction of the neighboring nodes
is important to estimate the position of an acoustic source. The performance of DSL
varies depending on the position of an acoustic source. If an acoustic event occurs in
the middle of the sensor field, the position is detected with low error. If an acoustic
event occurs close to the edge, however, localizing an acoustic source is difficult
because of the lack of information required to estimate the position.

To overcome the lack of information on the edge, the proposed algorithm considers
the order of the event detection times as well as time differences between nodes. The
original DSL uses only time information to determine which node detects the event
earlier, whereas our algorithm exploits the differences in event detection times. The
algorithm works as follows:

1) Calculate the EER of the leader node using the DSL algorithm and sort the
detection times of all the nodes.

2) Divide the EER into discrete units of one parking space.
3) Perform the following procedures at each sub-region.

(a) Calculate the distance from the current sub-region to each node.
(b) Sort the distances.
(c) If the order of the distances does not comply with the order of the event

detection times, remove the current sub-region from the EER.
(d) Finally, remove the current sub-region from the EER if the time difference

and the distance difference sequences do not match.
4) Determine the position of an acoustic source by averaging the remaining sub-

regions in the EER.

For example, in Figure 6(a), the event is first detected by node 1, followed by nodes
2, 3, and 4. The time differences are 2 ms, 3 ms, and 1 ms, respectively. As shown in
Figure 6(b), the current sub-region in the EER satisfies the step 3 condition of the

 (a) Acoustic source detection (b) Compare distance with detection time of each cell

Fig. 6. Algorithm on the edge

254 K. Na, Y. Kim, and H. Cha

Fig. 7. Map-based localization result

algorithm because the order of the distances coincides with the order of the detection
times, and the time and distance difference sequences match.

We conducted experiments to confirm the performance enhancement at the corner
side. The average estimation error of our algorithm was 4.3 m, which is 48% of the
original DSL. The proposed algorithm reduced approximately 30% of the
communication overhead because an additional information exchange is not required
after the leader node is elected. In other words, the proposed algorithm reduced the
error rates at the corner side and the communication overhead.

3.5 Map-Based Correction

To reduce the location error of a sound event around obstacles, the proposed system
exploits map information. The server maintains map information and performs a map-
based correction when the estimated position of an acoustic source is received from
the sensor nodes. If the estimated position is in the wall or fixed obstacles, the
estimated position is discarded or moved. Figure 7 illustrates the correction method.
Since the estimated position is in the wall, the method moves the position into the
nearest obstacle-free region.

4 Surveillance Camera System

Recognizing the correct situation of a parking lot is difficult in practice if the system
depends solely on warnings from the acoustic source localization system. The
proposed system uses surveillance cameras to observe the scene and to increase the
event detection accuracy. The camera transmits the actual view of the scene in real-
time and tracks the scene by communicating with the server. For our system, a camera
with wired and wireless communication capability is used for implementation.

Although various correction techniques are used in Section 3 for acoustic source
localization, the result with the low-cost microphone sensors still exhibits errors. For

 Acoustic Sensor Network-Based Parking Lot Surveillance System 255

instance, in the case of a car collision, the position of an acoustic source and the
position of the car may be different because the car can be moved by the force of the
impact. The surveillance camera system should therefore cover the scene by
considering the error range of the acoustic source localization. If the error range is
unreasonably wide, the camera would transmit a picture of a very wide area. In our
work, basic image processing techniques are supplemented to find an accurate
position.

The first technique is to use the flickering headlights of a car. Typically, when the
car alarm is activated, the headlights also flicker. A more accurate position can be
found by analyzing the image taken by the camera and by checking if flickering
headlights exist. To find the flickering headlights, we used OpenCV [12] library and
template matching as in blink detection [13]. The process of finding the position of
the flickering headlights is shown in Figure 8. The difference between the current
picture and the previous picture from the camera is calculated and then compared with
the template image that had been previously acquired. As a result, we determine the
position of the headlights with the correlation maxima. According to our experiments,
68% of the maximum correlation value accurately indicates the position of the
headlights.

The second technique is to use the motion detection feature that is provided by the
surveillance camera. In general, when acoustic source is detected, there is a high
possibility of movement being detected around the acoustic source. However, if the
motion detection functionality is always active, any kind of normal movement is
detected, and consequently, the power consumption increases. In our system, the
motion detection feature is activated after the acoustic source is localized and
the camera is adjusted to the spot. When the server system detects the acoustic source,
the camera spots the detected area and performs motion detection.

The first technique detects the flickering headlights only, whereas the second one
detects both flickering headlights and movements of objects. The second technique is
used most of the time. However, the first one is exploited if a very accurate position
of the car is required.

Fig. 8. Detect headlights via template matching

256 K. Na, Y. Kim, and H. Cha

 (a) Parking lot (b) Deployed sensor node

Fig. 9. Experiment environment

5 Evaluation

We discuss several experiments that were conducted to evaluate the system. Every
experiment was performed in an underground parking lot environment. First, we
performed preliminary experiments to find appropriate node spacing for the system
deployment. The effect of radio congestion was evaluated, and the localization
accuracy of acoustic event was also experimentally obtained. Finally, we conducted
experiments to evaluate the overall system with every component activated in a multi-
hop environment. In this experiment, the accuracy as well as the reaction time of the
system were evaluated.

5.1 Experiment Setup

To evaluate the proposed system in a real environment, we deployed the system in the
underground parking lot at our university, as shown in Figure 9 (a). A PC was used for
the surveillance server, and we set up the surveillance cameras on the wall. The acoustic
source localization system consisted of Tmote Sky [14] with a microphone sensor[15].
RETOS [16] was used for the operating system for the sensor nodes. FTSP[17] and
ETA[18] are used for time synchronization in our work. We used ETA as our main time
synchronization method since its implementation overhead is smaller than that of FTSP.
The sampling rate for the sensor was 3 kHz, and the nodes were installed toward the
ground so they could detect sound more accurately, as shown in Figure 9 (b).

5.2 Preliminary Experiments

First of all, to consider the node deployment issue, we performed an experiment that
measured the system accuracy according to node spacing. Five nodes were deployed
with node spacing varied from 8 m to 25 m. The result is shown in Figure 10. The
average error was the biggest when the deployment range was 25 m. This is because
the distance between two terminal nodes was 59 m so they could not communicate
and obtain all the necessary information.

When the deployment range was shorter than 20 m, the radio communication
problem did not occur, and the deployment range of 8 m had the best result. However,
as the node spacing becomes narrow, the number of required nodes in the same space
increases. In the case of 8-m node spacing, no fewer than 29 nodes are needed to

 Acoustic Sensor Network-Based Parking Lot Surveillance System 257

Fig. 10. Localization error vs. node deployment

cover a parking lot size of 88 m by 88 m. Considering both the cost and the accuracy,
we decided to deploy 11 nodes in our parking lot size of 88 m by 50 m with spacing
of 18.75 m, as shown in Figure 11. All the parking spaces were numbered from 1 to
35 to estimate the accuracy and response time at each parking space.

Second, we conducted experiments to decide the threshold value for the proposed
system by measuring microphone levels for various sound events in a parking lot. The
measured values from microphone are the ADC(Analog Digital Converter) readings.
As Table 1 shows, the values of human dialogue and car moving sounds vary between
1700 and 2300. Consequently we set the threshold with 1600 to 2400 to filter these
sounds. In case of slamming car door upon which the sensor node responds, the event
can manually be classified with the camera. We plan to classify these sounds
automatically using a high performance microphone attached to the camera.

Table 1. Sensing values of various sounds in a parking-lot

 Dialogue Car moving Slamming door Car alarm
Decibel(dB) 65-70 75-85 90-110 105-125

Data from ADC 1780-2050 1715-2291 536-3502 75-3827

Fig. 11. Map of the parking lot

258 K. Na, Y. Kim, and H. Cha

(a) Localization error (b) Reception rate

Fig. 12. DSL and radio congestion

5.3 Radio Congestion

In the proposed system, sensor nodes broadcast their detection time to the neighbor
nodes when they detect an acoustic source. This simultaneous broadcasting can lead
to radio congestion, and some nodes may suffer from a lack of the information needed
to localize the acoustic source. This causes significant localization errors because the
performance of the DSL algorithm strongly depends on the number of nodes that
detect the acoustic source. Figure 12(a) shows the localization errors according to the
number of nodes in the parking lot. The localization error significantly increases even
with two or three nodes dropped out.

Our initial solution was to reduce congestion by having each node broadcast after a
certain amount of delay, but this method becomes ineffective as the number of motes
increases. The second solution was to use the data aggregation technique. Each mote
broadcasts its information two times: first with only its own information, and second
with information of other motes together with its own information. As shown in
Figure 12(b), sending twice without aggregation is better than once, but the reception
rate was still lower than 95% in the case of six nodes. Sending twice with
aggregation, however, significantly reduced the congestion, and the reception rate was
higher than 95% regardless of the number of nodes.

5.4 Acoustic Source Localization Accuracy

We measured the accuracy of acoustic source localization using 11 sensor nodes in a
parking lot size of 88 m by 50 m. The experiment was performed 10 times in each
region using a vehicle equipped with an alarm device. Figure 13 shows the
localization errors in each parking space. The average error shown in Figure 13 is
approximately 4 meters, which is an acceptable result considering the deployment
spacing. The error for the outer regions such as Regions 1 and 2 is also as small as
that for the central region so we identify that the correction algorithm is working
appropriately. In Regions 7 and 35, however, the error was significantly increased
because of the wall or pillars near the node.

 Acoustic Sensor Network-Based Parking Lot Surveillance System 259

Fig. 13. Acoustic source localization accuracy

5.5 Overall System Accuracy

When an alarm is activated, the position is located using the camera. When the
vehicle whose alarm is activated is in the camera picture, we regard it as “successful.”
Even though the calculated result from the sensor nodes accurately indicates the
region in which the alarm occurs, the camera often cannot show the region due to
various obstacles or the limitation of the camera angle. To remedy this situation, the
cameras were installed symmetrically, and only two cameras that were the closest to
the region that the alarm occurs are used to show the result.

With the laptop server, we can see the results moving around various regions. We
deployed three router nodes in the experimental environment because the leftmost and
rightmost nodes could not directly communicate with each other. Using multi-hop
communications, we obtained the result in any region in the experimental
environment. The detection result of the region with the alarm using a camera is
shown in Figure 14. The car picture in the figure is the actual position of the car, and

Fig. 14. Car alarm detection

260 K. Na, Y. Kim, and H. Cha

Fig. 15. Response time

the red dot is the estimated position. The success ratio was approximately 94%, which
is considered fairly accurate in real environments.

5.6 Response Time

Experiments on reaction time upon events were conducted, and the result is shown in
Figure 15. Since the proposed system exchanges time information with the
surrounding nodes and the first node that sensed the sound transmits the result, the
system imposes a delay in producing the actual result. The reaction time is, therefore,
an important metric for the system performance. Figure 15 shows that the output time
minimum was 1.67 seconds, the maximum was 2.23 seconds, and the average was 1.8
seconds, excluding the camera reaction time. The response times are influenced by
radio congestion. As we discussed in Section 5.3, all nodes send data twice with time
slot. With enhanced techniques for handling radio congestion, the response time
would be reduced. The server waited for additional results for approximately one
second after the reception of the result, because the result can be sent from a node that
misunderstood itself as a first node. The camera movement includes motor actuation,
which requires 1 to 3 seconds depending on the position of the camera. The overall
reaction time including the camera movement was approximately 5 seconds. This
mechanical delay is relatively long, but in practical situations this amount of delay is
still much faster than a human being manually searches the area upon hearing an
event. Additionally, the camera reaction time can be reduced by employing a high-
performance camera which has a faster motor speed.

5.6 Discussion

The accuracy of the DSL algorithm strongly depends on the deployment topology of
the network. We have in fact deployed the system in various topologies, but the
accuracy error was not changed significantly. The reason is that we deployed the
sensor nodes with more than 15-m node spacing in the underground parking lot where

 Acoustic Sensor Network-Based Parking Lot Surveillance System 261

many reverberation and obstacles exist; hence, the efficiency gain we obtained from
node deployment was limited.

As shown in Figure 13, more than 8 m of error occasionally happened in the outer
region regardless of the correction algorithm. This is due to the low sampling rate of 3
kHz and the surrounding obstacles, which hinder the accuracy of the detection time.
Although this issue can be solved by using powerful sensor nodes with high-
frequency sampling, it costs more, and therefore a trade-off between accuracy and
cost exists in real system design and deployment.

In our work we did not conduct experiments on power consumption of the
proposed system since the system is assumed to be deployed in parking lots where the
external power supply is available.

6 Conclusion

In this paper, we proposed a parking lot surveillance system using microphone-
enabled sensor nodes. The distributed acoustic source localization algorithm running
on sensor nodes localizes the acoustic event in a parking lot. Once the acoustic event
is localized, the surveillance camera system moves the camera direction toward the
event and performs motion detection to correct the estimated position. The proposed
system can localize loud sound events with a small number of sensor nodes and
provide the event scene through video streaming in real time. We improved the
existing acoustic source localization algorithm with several enhancement techniques,
and achieved high accuracy in an underground parking that contained many pillars.
The system effectively supervises a large parking lot of 100 vehicles using only a
dozen sensor nodes. The experiments conducted in a real parking lot validated the
feasibility of the system. Our future work includes further enhancement of the
detection accuracy of events, as well as the classification of various acoustic sources.

Acknowledgments

This research was supported by the National Research Laboratory (NRL) program of
the Korean Science and Engineering Foundation (No. M10500000059-6J0000-05910)
and the ITRC support program supervised by the IITA (IITA-2008-C1090-0801-0015).

References

1. Lee, S., Yoon, D., Ghosh, A.: Intelligent Parking Lot Application Using Wireless Sensor
Networks. In: International Symposium on Collaborative Technologies and Systems
(2008)

2. Barton, J., Buckley, J., O’Flynn, B., O’Mathuna, S.C., Benson, J.P., O’Donovan, T.,
Roedig, U., Sreenan, C.: The D-Systems Project - Wireless Sensor Networks for Car-Park
Management. In: Vehicular Technology Conference (2007)

3. Boda, V.K., Nasipuri, A., Howitt, I.: Design Considerations for a Wireless Sensor
Network for Locating Parking Spaces: SoutheastCon (2007)

262 K. Na, Y. Kim, and H. Cha

4. Kulkarni, P., Ganesan, D., Shenoy, P., Lu, Q.: SensEye: A Multitier Camera Sensor
Network. ACM Multimedia (2005)

5. Song, H., Zhu, S., Cao, G.: SVATS: A Sensor-network-based Vehicle Anti-Theft System.
In: Infocom (2008)

6. You, Y., Cha, H.: Scalable and Low-Cost Acoustic Source Localization for Wireless
Sensor Networks. UIC (2006)

7. You, Y., Yoo, J., Cha, H.: Event Region for Effective Distributed Acoustic Source
Localization in Wireless Sensor Networks. In: WCNC (2007)

8. Peng, R., Sichitiu, M.L.: Angle of Arrival Localization for Wireless Sensor Networks. In:
Secon (2006)

9. Veen, B.D.V., Buckley, K.M.: Beamforming: A Versatile Approach to Spatial Filtering.
IEEE ASSP Magazine (1988)

10. Volgyesi, P., Balogh, G., Nadas, A., Nash, C., Ledeczi, A.: Shooter localization and
weapon classification with soldier-wearable networked sensors. In: Mobisys (2007)

11. Trifa, V.M., Girod, L., Collier, T., Blumstein, D.T., Taylor, C.E.: Automated wildlife
monitoring using self-configuring sensor networks deployed in natural habitats. In: AROB
(2007)

12. OpenCV Project, http://sourceforge.net/projects/opencvlibrary/
13. Chau, M., Betke, M.: Real Time Eye Tracking and Blink Detection with USB Cameras,

Boston University Computer Science Technical Report No. 2005-12
14. Tmote Sky, http://www.moteiv.com
15. http://www.panasonic.com/industrial/components/pdf/

em05_wm62_a_c_cc_k_b_dne.pdf
16. Cha, H., Choi, S., Jung, I., Kim, H.: RETOS: Resilient, Expandable, and Threaded

Operating System for Wireless Sensor Networks. In: IPSN (2007),
http://retos.yonsei.ac.kr/

17. Maróti, M., Kusy, B., Simon, G., Lédeczi, Á.: The Flooding Time Synchronization
Protocol. In: Sensys (2004)

18. Kusy, B., et al.: Elapsed Time on Arrival: A simple, versatile, and scalable primitive for
canonical time synchronization services. Int. J. of Ad Hoc and Ubiquitous Computing
(2005)

Cooperative Intrusion Detection
in Wireless Sensor Networks

Ioannis Krontiris1, Zinaida Benenson2,�, Thanassis Giannetsos1,
Felix C. Freiling2, and Tassos Dimitriou1

1 Athens Information Technology, 19.5 Km Markopoulo Avenue, Peania, Greece
{ikro,tdim,agia}@ait.edu.gr

2 Laboratory for Dependable Distributed Systems, University of Mannheim,
68131 Mannheim, Germany

zina@uni-mannheim.de, freiling@informatik.uni-mannheim.de

Abstract. We consider the problem of cooperative intrusion detection
in wireless sensor networks where the nodes are equipped with local de-
tector modules and have to identify the intruder in a distributed fashion.
The detector modules issue suspicions about an intrusion in the sensor’s
neighborhood. We formally define the problem of intrusion detection and
identify necessary and sufficient conditions for its solvability. Based on
these conditions we develop a generic algorithm for intrusion detection
and present simulations and experiments which show the effectiveness of
our approach.

Keywords: sensor networks, security, intrusion detection.

1 Introduction

The pervasive interconnection of autonomous and possibly wireless sensor de-
vices has given birth to a broad class of exciting new applications in several areas
of our lives, including environment and habitat monitoring, healthcare applica-
tions, home automation, and traffic control. At the same time, however, their
unattended nature and the limited resources of their sensor nodes have created
an equal number of threats posed by attackers in order to gain access to the
network and the information transferred within.

There are several classical security methodologies so far that focus on trying
to prevent these intrusions. A lot of work in sensor network security has focused
on particular types of attacks and how they can be prevented. This can, however,
only be a first line of defense. It is impossible, or even infeasible, to guarantee
perfect prevention. Not all types of attacks are known and new ones appear
constantly. As a result, attackers can always find security holes to exploit. For
certain environments it makes sense to establish a second line of defense: An
Intrusion Detection System (IDS) that can detect an attack and warn the sensors
and the operator about it.
� Zinaida Benenson was supported by Landesstiftung Baden Württemberg as part of

Project “ZeuS” and by the Schlieben-Lange scholarship of the European Social Fund
and the Bundesland Baden-Württemberg.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 263–278, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

264 I. Krontiris et al.

1.1 Related Work

Intrusion detection has received some attention in wireless sensor networks be-
fore. Most work has focused on local detection, i.e., allowing nodes to locally
detect specific attacks which are performed in their neighborhood [1,2,3,4,8,5,10].

Da Silva et al. [2] and Onat and Miri [10] propose similar IDS systems, where
certain monitor nodes in the network are responsible for monitoring their neigh-
bors. They listen to messages in their radio range and store in a buffer specific
message fields that might be useful to an IDS system running within a sensor
node. Kargl et al. [3] focus on the detection of selfish nodes that try to preserve
their resources at the expense of others. Loo et al. [8] and Bhuse and Gupta [1]
describe two more IDSs for sensor networks. Both papers assume that routing
protocols for ad hoc networks can also be applied to WSNs.

In all the above work, there is no collaboration among the sensor nodes. The
only collaborative approaches we are aware of focus on the local detection of
selective forwarding attacks [4] and sinkhole attacks [5].

More extensive work has been done in intrusion detection for ad hoc net-
works [9]. In such networks, distributed and cooperative IDS architectures are
also preferable. Detailed distributed designs, actual detection techniques and
their performance have been studied in more depth. While also being ad hoc
networks, wireless sensor networks are much more resource constrained. We are
unaware of any work that has investigated the issue of intrusion detection in a
general collaborative way for wireless sensor networks.

1.2 Contributions

In this paper we study a general approach to intrusion detection in wireless
sensor networks which focuses more on the collaboration of sensors than on the
detection of specific attacks. We believe that wireless sensor networks with their
inherent redundancy are ideal for applying cooperative techniques. We therefore
abstract from concrete local detection techniques and define in Section 2 the
notion of a local alert module. Such modules issue suspicions about an intrusion
in the sensor’s neighborhood. We focus here on the case where sensor nodes try
to detect a single malicious node, as this case is already surprisingly complex.

We formally define the problem of intrusion detection in Section 3 and identify
necessary and sufficient conditions on the behavior of the local alert modules
such that they contain enough information to cooperatively solve the intrusion
detection problem in Section 4. These conditions also identify scenarios in which
cooperative intrusion detection is unsolvable.

We further develop an algorithm that solves intrusion detection based only
on the output of the alert modules in Section 5. The idea is that nodes in the
neighborhood of the attacker exchange information about who they suspect and
jointly identify the attacker. Note that this is not an easy task since the attacker
can also participate in the protocol and try to bring honest nodes to a wrong
conclusion. In this sense, intrusion detection may at first sight seem similar to
the problem of Byzantine agreement [11]. However, we show that both problems
are incomparable.

Cooperative Intrusion Detection in WSNs 265

Finally in Section 6 we investigate the probability that symmetry conditions
that make intrusion detection impossible to solve occur in practice, using simu-
lations. In Section 7, we present a lightweight implementation of our cooperative
intrusion detection algorithm on Moteiv Tmote Sky motes justifying the practi-
cality of our approach.

2 System Model

2.1 Sensor Nodes and Communication

We present a strong system model used for proofs of necessary and sufficient
conditions for intrusion detection in the sequel. It is useful, because if some
problem is impossible to solve in our model, it is also impossible to solve in
weaker models which are closer to the reality.

In our model, a wireless sensor network consists of a set S = {s1, ss, . . . , sn}
of n sensor nodes. Sensors communicate by sending messages over a wireless
broadcast medium, meaning that if some sensor s sends a message, many other
sensors can receive the message simultaneously. Possible collisions on the wireless
medium can only delay the receipt of a message for a relatively short time.

For any sensor node s, the set of nodes with which it can directly commu-
nicate is denoted by N(s). For simplicity, we assume a static and symmetric
neighborhood relation, i.e., if s ∈ N(s′) then s′ ∈ N(s). We assume that every
node knows its 2-hop-neighborhood.

Although the above assumptions are strong, considering unreliable asymmet-
ric wireless links and frequent neighborhood changes in real sensor networks, we
use them especially for proofs. In Section 4.4 we discuss how the system model
can be weakened. We also present an implementation of our algorithms for real
sensor networks in Section 7 which does not make these strong assumptions.

We make no assumptions about the communication topology defined by all
neighborhood sets apart from that all nodes that behave according to the proto-
col (honest nodes) are connected via a path consisted only of other honest nodes.
We expect that in typical sensor networks the density of the nodes is rather high
so that this condition will be satisfied with high probability.

2.2 Attacker Model

We assume that an attacker can capture at most t nodes to launch an attack on
the sensor network. We model this by allowing at most t nodes to behave in an
arbitrary manner (Byzantine failure). However, we do not propose a Byzantine
Agreement protocol, but focus on the Intrusion Detection Problem (Definition 3).
The relationship between Intrusion Detection and Byzantine Agreement is shown
in Section 4.3.

In the following, we concentrate on the case where t = 1. In this case, we
call the captured node the source of the attack, or the attacker, and use the
predicate source(s) which is true if and only if (iff) s is the attacker. All other
nodes are called honest: honest(s) ≡ ¬source(s). As the rigorous examination of

266 I. Krontiris et al.

this case already gives very useful insights on solvability of intrusion detection
(and turns out to be quite complex), we leave the case t > 1 to future work.

2.3 Alert Module

Attacks are locally detected by a local intrusion detection mechanism. We ab-
stract such mechanisms of a sensor node into an alert module. Whenever the
alert module at node s notices something wrong in its neighborhood, the alert
module outputs some set D(s) of suspected sensors, called the suspected set. If
|D(s)| = 1, then the node has identified the attacker. Most often however, D(s)
will contain a larger set of neighbors or may even be equal to N(s).

For example, in the detection of the selective forwarding attack [4], the nodes
are able to identify the one node that drops the messages by monitoring the
transmissions in their neighborhood (|D(s)| = 1). On the other hand, in the
protocol for detecting the sinkhole attack [5] nodes only know that the attacker
has to be one of their neighbors (D(s) = N(s)).

Formally, the alert module satisfies the following properties:

– If the alert module at a honest node s outputs D(s), then the source is in
that set, i.e., ∃s′ ∈ D(s) : source(s′).

– If the attacker attacks, then within some time delay δ the alert module at
some sensor s outputs a set D(s).

– Only neighbors are suspected by honest nodes, i.e., ∀s ∈ S : honest(s) ⇒
D(s) ⊆ N(s).

If the alert module at some node s outputs some set, we call s an alerted node.
The predicate A on S denotes the set of alerted nodes, i.e., A(s) holds iff s is
an alerted node. The set of alerted nodes is called the alerted set. Note that the
attacker may or may not belong to the alerted set, depending on the strategy
that the attacker chooses to follow. Also, we do not require that all neighbors
of the attacker belong to the alerted set.

3 The Intrusion Detection Problem

The cooperative intrusion detection process is triggered by an attack and by
the subsequent alerts by the local alert modules of the neighboring sensors. The
process ends by having the participating sensors jointly expose the source.

More formally, the predicate exposes(s′) is true if node s exposes node s′. The
intrusion detection problem can now be defined as follows:

Definition 1 (Intrusion Detection Problem (IDP)). Find an algorithm
that satisfies the following properties:

– (Correctness) If an honest node s exposes a node s′, then s is in the alerted
set and s′ is the source, i.e., ∀s ∈ S : honest(s) ∧ exposes(s′) ⇒ A(s) ∧
source(s′).

– (Termination) If the attacker attacks, then at most after some time τ all
honest nodes in the alerted set expose some node.

Cooperative Intrusion Detection in WSNs 267

4 Conditions for Solving Intrusion Detection

The idea of cooperative intrusion detection is to exchange the outputs of local
alert modules, thereby narrowing down the set of possible nodes that could
be the attacker. In the following we assume that nodes have no other way to
learn anything about the attacker than using their alert modules. As an initial
example, consider the case depicted in Fig. 1(a). Node p suspects the source q,
i.e., D(p) = {q}. Node q can claim to output D(q) = {p}. But p implicitly knows
that it is honest, so it will ignore the information provided by q and expose q.

D(p)={q}

p

q

D(q)={p}

(a)

D(p)={q,r}p

q

D(q)={p,r}

r D(r)={p,q}

(b)

Fig. 1. Different types of alerted neighborhoods. Sources of attacks are marked black.

In the example in Fig. 1(b), however, three nodes p, q, and r all suspect each
other (node q is the source). As every node occurs in exactly two suspect sets,
p cannot distinguish node r from node q by using only the suspect sets. We
conclude that it is impossible to solve IDP in this case.

Generalizing these two examples, the question arises about general conditions
for the solvability of the intrusion detection problem. In the following, we give
necessary (Section 4.2) and sufficient (Section 4.1) conditions for solvability of
IDP using a deterministic algorithm for t = 1. We show the relationship be-
tween IDP and Byzantine Agreement in Section 4.3. In Section 4.4 we consider
how weaker system models (unreliable links, neighborhood changes) affect the
solvability of IDP.

4.1 Sufficient Conditions for Solving IDP

The Intrusion Detection Condition (IDC) We now give a sufficient con-
dition for IDP solvability for t = 1 and deterministic algorithms. The intuition
behind the condition is a generalization of the observation made in Fig. 1(b): If
the suspected sets about some node s are structurally equivalent to those of the
source, then the problem is in general not solvable.

Formally, for a node s we define the set AN (s) to be the set of alerted neighbors
of s, i.e.:

AN (s) = {t|A(t) ∧ t ∈ N(s)}
Furthermore, we define the set of alerted neighbors of p with respect to q
ÃN (p, q) to be the set of alerted neighbors of p without q, i.e.:

ÃN (p, q) = AN (p) \ {q}

268 I. Krontiris et al.

For example, in Fig. 1(b) all three nodes are in alert mode and AN (s) = D(s).
The value of ÃN (p, q) = {r} is the information content of AN (p) = {q, r} that
is valuable to q.

Definition 2 (Intrusion Detection Condition (IDC)). The intrusion
detection condition (IDC) is defined as:

∀p, q ∈ S : source(q) ⇒ ÃN(p, q) �= ÃN(q, p)

Roughly speaking, IDC means that no other node has the same alerted
neighborhood as the attacker. Note that if p and q are not neighbors, then
IDC simplifies to:

∀p, q ∈ S : source(q) ⇒ AN (p) �= AN (q)

Theorem 1 (Sufficiency of IDC). If t = 1, IDC is sufficient for ID, i.e., if
IDC holds then IDP can be solved.

Proof. Let all alerted nodes exchange their suspected sets. This is possible in
our system model because each pair of honest nodes is connected by a path
consisting of honest nodes, and communication is reliable.

Note that the attacker also can go into alert mode. Moreover, it can send
different suspected sets to different nodes. However, as we assume that all nodes
know their 2-hop-neighborhood, the suspected set of the attacker may only con-
tain its neighbors. Otherwise, the attacker’s messages would be discarded.

Consider the suspected sets received by an honest node p. If some node is
suspected by a majority of the nodes, it is immediately identified as the attacker,
because the attacker is included in the suspected set of every honest node.

A more complicated case arises when there are two or more nodes which are
suspected by the majority of nodes. This situation can arise, e.g., if the attacker
also goes into the alert mode and accuses some of its neighbors.

We denote the attacker as q. Assume that there is a node p �= q which is
suspected by the same number of nodes as q. How can a node r distinguish
between q and p?

(1) If p = r, then r knows that it is honest, and exposes q.
(2) Consider p �= r. If all honest nodes suspect p, then the IDC does not hold.

Thus, for some honest node s holds: p /∈ D(s) and q ∈ D(s). It follows that q
is alerted and p ∈ D(q), as the number of nodes which suspect p is the same as
the number of nodes which suspect q.

Node r must now decide which of nodes s and q lies about their suspicion. We
now show that there is an alerted node v which is not neighbor of s. Indeed, if
all alerted nodes were neighbors of s, then s and q would have the same alerted
neighborhood with respect to each other, which contradicts the IDC. Thus, node
r has to find out which of the nodes s and q is not a neighbor of some alerted
node. This is possible as all nodes know their 2-hop neighborhood. This node
has to be honest, and the remaining node is identified as the attacker. 	

As an example, consider Figure 2. Nodes s and r are honest nodes and alerted.
Node p is also honest, but not alerted. The attacker is node q, which is alerted.

Cooperative Intrusion Detection in WSNs 269

In this example, nodes p and q are both suspected by two nodes. How can node
r distinguish the attacker? IDC holds here, and node p is suspected by each of q
and r. Thus, either q or s is lying about their suspicions. However, nodes r and
s are not neighbors, and therefore, s cannot be the attacker.

p

q

r

s

Fig. 2. Node q is the attacker, nodes s, r and q are alerted, while p is not alerted
and it is marked white. x → y means that node x suspects node y. D(r) = {q, p},
D(q) = {p, r, s}, and D(s) = {q}.

The Neighborhood Conditions (NC). What happens if IDC is not satisfied?
Can IDP still be solved, or is IDC also a necessary condition for solving IDP?

In the following we show that IDC is not a necessary condition. We give
another sufficient condition for IDP solvability which can be valid in the network
independently of the validity of the IDC.

Definition 3 (Neighborhood Conditions (NC)). The Neighborhood Con-
ditions (NC) consist of two conditions:

– NC1. All neighbors of the attacker are alerted.
– NC2. If two or more nodes are suspected by the majority of nodes, then all

honest nodes suspected by the majority have non-alerted neighbors.

Theorem 2 (Sufficiency of NC). If the NC holds, then the IDP can be solved.

Proof. We give an informal reasoning here. Let all alerted nodes exchange their
suspected sets. If only one node is suspected by the majority of nodes, then this
node is the attacker, as all neighbors of the attacker are alerted (NC1). If there
are two or more nodes which are suspected by the majority, the nodes in the
alerted set have to find out which of these nodes have non-alerted neighbors.
According to NC2, only the attacker does not have non-alerted neighbors. 	

4.2 Necessary and Sufficient Conditions for Solving IDP

We now show that for the solvability of IDP either the IDC or the NC (i.e., NC1
and NC2) should be satisfied in the sensor network.

Theorem 3. IDP can be solved using a deterministic algorithm if and only if
IDC or NC holds.

270 I. Krontiris et al.

p

q

r
(a)

p

q

r
(b)

Fig. 3. Case (a): Node p suspects q and r, node q suspects p and r, node r is the attacker
and suspects q. IDC and NC2 are not satisfied. Case (b): The suspicions remain as in
case (a), but node q is the attacker. No algorithm for solving the IDP can distinguish
between (a) and (b). Therefore, it is impossible to expose the attacker.

Proof. As shown in Theorems 1 and 2, if IDC holds or if NC holds, then the
intrusion detection problem can be solved (sufficiency). We now show that it is
also necessary for the solvability of the IDP that the IDC or the NC holds. It
suffices to show that if the IDC does not hold and the NC does not hold, then
the IDP cannot be solved.

Assume that the above claim is not true. That is, there exists a deterministic
algorithm A that always exposes the attacker in case both the IDC and the
NC do not hold. Consider Figure 3(a). The IDC does not hold there because
ÃN (p, r) = ÃN (r, p) = {q}. Also NC does not hold, because NC2 does not
hold: The attacker r and the honest node q are suspected by two nodes, but
q does not have non-alerted neighbors. In this case, the algorithm A should
expose r. However, the situation in Figure 3(b) is exactly the same as in (a)
from A’s point of view. The suspicions remain the same, the topology also does
not change. Thus, there is no additional information to help A to distinguish
between situations (a) and (b). However, A should be able to distinguish between
(a) and (b) and to expose r or q accordingly. It follows that A does not exist. 	

4.3 Byzantine Agreement vs. Intrusion Detection

In IDP, the honest nodes have to jointly expose the attacker. That is, they have
to reach agreement on the attacker’s identity. Although this looks similar to
Byzantine Agreement [11], these two problems cannot be reduced to each other.
In some cases, Byzantine Agreement can be solved whereas Intrusion Detection
is not solvable, and vice versa.

Consider Figure 4(a). Here, node q is the attacker and suspects both p and
r. The honest nodes, on the other hand, both suspect q. In this case, Intrusion
Detection is trivially solvable. However, Byzantine Agreement for three partic-
ipants with t = 1 cannot be solved [11]. In Figure 4(b) all nodes suspect each
other. IDC does not hold for nodes s and q, NC also does not hold, as no node
has non-alerted neighbors. Thus, Intrusion Detection is not solvable. However,
Byzantine Agreement for t = 1 can be solved here [11].

Cooperative Intrusion Detection in WSNs 271

p

q

r

(a)

q

p

r

s

(b)

Fig. 4. Byzantine Agreement and Intrusion Detection cannot be reduced to each other.
Case (a): Honest nodes p and r both suspect only the attacker q, thus Intrusion De-
tection can be solved, but Byzantine Agreement is not solvable. Case (b): Intrusion
detection cannot be solved, Byzantine Agreement is solvable.

4.4 Solving IDP in a Weaker System Model

In proofs we used our assumptions on reliable and timely communication. In
principle, we can also use weaker system models as long as they allow some
protocols for reliable and timely exchange of suspected sets with high probability.
For example, in our implementation we use an advertise-request protocol.

We also assumed a static and symmetric neighborhood relation. This assump-
tion can also be weakened. All we need is that the nodes have secure information
on their 2-hop neighborhood which does not change during a particular protocol
run. In our implementation we let the nodes to find out their neighborhood in
the secure initialization phase, where the attacker is absent. The neighborhood
tables which are used for intrusion detection are then fixed. In case that a neigh-
bor crashes, it looks in the protocol as if the node was not alerted. This can be
tolerated as long as the IDC holds (the NC does not hold in this case). On the
other hand, if some new neighbors arrive, they can be ignored. This is problem-
atic, however, in case the new node is the attacker. A better solution would be
to have a secure protocol for the neighborhood table update. We leave this to
future work.

5 A Cooperative Intrusion Detection Algorithm

Based on the ideas of Section 4, we now develop a general algorithm to solve the
intrusion detection problem, i.e., all honest and alerted neighbors of an attacker
share their partial views, agree on the identity of the source and expose it.

5.1 Initialization Phase

Prior to the deployment, each node is preloaded with a one-way key chain of
length l, using a pre-assigned unique secret key Kl. A one-way key chain [7]

272 I. Krontiris et al.

(K0, K1, . . . , Kl−1, Kl) is an ordered list of cryptographic keys generated by suc-
cessively applying a one-way hash function F (in our case SHA-1) to the key
seed Kl, such as Kj = F (Kj+1), for j = l − 1 . . . 0. Therefore, any key Kj is
a commitment to all subsequent keys Ki, i > j; more specifically, K0 is a key
chain commitment for the entire chain. The length of the key chain l is a sys-
tem parameter. In our implementation, we store the key chain on the external
flash memory, such that it does not affect the memory requirements of our al-
gorithm. This also allows us to set l to a large number, such that we can avoid
the overhead of renewing the key chain during deployment.

The initialization phase takes place right after the network deployment. The
duration of this phase is short enough so that we assume the absence of the at-
tacker. We also require that all nodes discover their immediate neighbors, which
is a standard procedure after deployment in almost all routing protocols. Fur-
ther, all nodes discover their 2-hop neighborhood by broadcasting their IDs with
a packet that has a TTL field equal to 2. The discovered neighborhood infor-
mation is stored in the 2-hops neighborhood table. Then, each node announces
their key chain commitment K0 to all its 1-hop and 2-hop neighbors.

5.2 Voting Phase

During the voting phase each node in the alert region sends its vote to all the
other members and respectively collects their votes. Let us denote the vote mes-
sage from node s as mv(s). Each vote consists of the nodes suspected by the
sender, so for node s, mv(s) = id||D(s). Node s “signs” its vote calculating the
MAC with the next key Kj from its one-way key chain, and broadcasts

mv(s),MACKj (mv(s)).

Following that, it sets a timer Tv to expire after time τv. During that time it
waits to receive the votes of the rest of the alerted nodes and buffers them, as it
has to wait for the key publishing phase in order to authenticate them.

The vote of each alerted node needs to reach all other alerted nodes. Since the
messages are signed with a key known only to the sender, the attacker cannot
change the votes. However, the attacker may refuse to forward votes, such that
they must be forwarded through other paths, bypassing the attacker. Note that
these paths can consist of more than two hops.

To ensure that the votes propagate to all alerted nodes, we follow a broadcast
message-suppression protocol, similar to SPIN [6]. When an alerted node receives
a vote, it advertises it, by broadcasting an ADV message. Upon receiving an
ADV, each neighboring node checks to see whether it already has received or
requested the advertised vote. If not, it sets a random timer Treq to expire,
uniformly chosen from a predetermined interval. When the timer expires, the
node sends a REQ message requesting the specific vote, unless it has overheard
a similar REQ from another node. In the latter case, it cancels its own request,
as it is redundant.

Cooperative Intrusion Detection in WSNs 273

5.3 Publish Key Phase

In the Publish Key phase each node broadcasts the key of its hash chain, Kj ,
which was used to sign the vote. When a node receives the disclosed key, it
can easily verify the correctness of the key by checking whether Kj generates
the previous key through the application of F . If the key is correct, it replaces
the old commitment Kj−1 with the new one in its memory. The node now uses
the key to verify the signature of the corresponding vote stored in its buffer from
the previous phase. If this process is successful, it accepts the vote as authentic.

We allow sufficient time for the nodes to exchange their keys by setting a
timer Tp. This timer is initialized just after a node publishes its own key and it
is set to expire at time τp. During this time period, the nodes follow the same
ADV-REQ scheme that we described above.

When the timer expires, the nodes move to the final step of processing the
votes and exposing the attacker. In the case where a key has been missed, the
corresponding vote is discarded.

Since nodes are not time synchronized, and some nodes may start publishing
their keys while others are still in the voting phase, we need to consider “man in
the middle” attacks. When a node sends its vote, an attacker may withhold it until
that node publishes its key. Then it can change the vote, sign it again with the
new key, and forward it to the next alerted node. Following that, the attacker also
forwards the key, and the receiverwill be able to verify the signature and accept the
fake vote as authentic. We deal with this problem implicitly by relying on residual
paths amongst the nodes. As votes are forwarded by all nodes, even if an attacker
refuses to forward a vote, it will arrive to the intended recipients via other paths.

5.4 Exposing the Attacker

When each alerted node s1, s2, . . . , sn has collected and authenticated the votes
from all the other members of the alert region, it will have knowledge of all
the corresponding suspect lists, D(s1), D(s2), . . . , D(sn), its own included. Then
it applies a count operator which counts the number of times δi each node i
appears in the suspect lists, in order to produce the final intrusion detection
result, i.e., the attacker’s ID. All alerted nodes will reach the same result, since
they all apply the same operator on the same sets.

As we proved in Section 4.1, IDC is a sufficient condition for the intrusion detec-
tion problem. But if it does not hold, then NC needs to hold in order to successfully
identify the attacker, as we proved in Section 4.2. Thus, if there is one node holding
the majority of the nodes, we know that this is the attacker. If not, then the hon-
est nodes which also collected the majority have non-alerted neighbors. So, the
nodes move to a new phase, the external ring reinforcement phase, where these
neighbors are called to support their honest neighbors. We describe this phase in
Section 5.5, where we will see that in this case the attacker is revealed.

5.5 External Ring Reinforcement Phase

As we said, when there are other nodes that have the same set of alerted neigh-
bors ÃN with respect to the attacker, i.e., IDC does not hold, the voting pro-

274 I. Krontiris et al.

cess may be inconclusive, if these nodes collect the same number of votes. In
this section, we present an algorithm where, if NC holds, the alerted region can
distinguish amongst the prevailing candidates and find the actual one. So, for
what follows we assume that NC holds, meaning that all neighbors of the at-
tacker are alerted and that honest nodes collecting the majority of the votes
have non-alerted neighbors.

Let us assume the set P = {p1, p2, . . . , pk} of the nodes collecting the same
number of votes as the attacker, including the attacker itself. According to NC,
the nodes in P do not have exactly the same neighborhood. Honest ones will
also have other neighbors, which are not in alerted state and are going to play
an important role in this phase. Therefore, we make the following definition:

Definition 4 (External Ring). The external ring is defined as the set of nodes
which are not members of the alerted region, but any of them is a direct neighbor
of at least one alerted node.

Figure 5 shows an example where nodes 96 (the attacker) and 76 have the
same alerted neighborhood, and therefore collected the same number of votes
during the voting phase, i.e., P = {96, 76}. The circle in the figure shows the
neighborhood of the attacker. The nodes in the external ring are represented
by a triangle. The neighborhood of node 76 also includes the nodes 81 and 79,
which are not alerted. These two nodes know that their neighbor 76 is not the
attacker. If they share this information with the nodes in the alerted region, they
can help them to distinguish the attacker.

The external ring reinforcement phase is initiated by the nodes in the alerted
region. They broadcast a request to their non-alerted neighbors, including the
set P in the message. The intended receivers check to see if any nodes in P are
their neighbors and broadcast a message voting in favor of them.

81

79
69

49

25

15
77

44

51

88

94
14 36

8491

96
76

19

30

46 38

2

24 98 16

Fig. 5. The attacker’s external ring is
defined by the nodes which are 2-hops
away from the attacker.

4 5 6 7 8 9 10 11 12
70

75

80

85

90

95

100

S
uc

ce
ss

 D
et

ec
tio

n(
%

)

Average Neighborhood size

Fig. 6. The overall success rate of the
simulated intrusion detection protocol
for different neighborhood sizes.

Cooperative Intrusion Detection in WSNs 275

The response message sent by any node of the external ring is forwarded
by alerted nodes as in previous phases, such that it can reach all nodes in the
alerted region. It is also signed using the next key in the key chain of the sender.
The key is released after some fixed period of time and used by the receivers to
authenticate the message.

6 Simulation Results

We simulated a sensor network of 100 nodes placed uniformly at random in order
to test our intrusion detection algorithm. Figure 6 shows the probability that
the IDS system successfully identifies the attacker. To calculate it we run the
simulation in 10, 000 different topologies, choosing each time a random attacker.
If the voting phase was conclusive the protocol ended, otherwise the external
ring reinforcement phase was activated. As the subsequent analysis showed, the
cases where the protocol did not succeed were all due to the fact that IDC or
NC were not satisfied in the given situation.

7 Implementation

In this section, we present experimental results from our implementation of the
proposed IDS algorithm. The goal is to exhibit a reference implementation and
check the feasibility of an IDS without focusing on its efficiency. Even so, the
result shows that such a system is lightweight enough to be a viable and real-
istic solution from the real deployment perspective. Moreover, various efficiency
improvements of the implementation are possible. We leave them to future work.

7.1 Memory and Computational Requirements

The memory footprint of the our implementation is an important measure of its
feasibility and usefulness on memory constrained sensor nodes. Table 1 lists the
memory footprint of the modules, compiled for the MSP430 microcontroller.

The largest module in terms of RAM footprint is the Key Management mod-
ule. Its size depends on the maximal number of node’s neighbors which is con-
figurable and currently set to 8. For each neighbor, a 10-byte key must also
be stored. In terms of ROM, the largest module is the Voting module, since it

Table 1. Size of the compiled code, in bytes

Module RAM Code Size

Neighborhood Discovery 136 968
Exchange of Keys 184 3628
Reliability (ADV-REQ) 104 32
Voting 159 4844
Total 583 9472

276 I. Krontiris et al.

4 5 6 7 8
0

5

10

15

20

25

Number of alerted nodes

P
ac

ke
ts

 S
en

t

Voting
Publish Key

(a)

4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of alerted nodes

T
im

e
(m

s)

Voting
Publish Key

(b)

Fig. 7. (a) Measured communication cost for different number of alerted nodes. (b)
Detection time for different number of alerted nodes.

has the most lines of code. In total, the IDS leaves enough space in the mote’s
memory for user applications. For example, Tmote Sky has 10KB of RAM and
48KB of program memory.

7.2 Experiments

To evaluate the performance of the implementation of the IDS, we tested it in a
real environment. We deployed several nodes in random topologies on the floor
of an office building, set a node to be the “attacker” and gradually incremented
the number of its neighbors to form larger alert regions. For each alert region
size, we repeated the experiment for 20 random topologies.

The experiments were performed with motes running a typical monitoring
application. We loaded the Delta application, where the motes report environ-
mental measurements to the base station every 5 seconds. We also deployed the
MultihopLQI protocol at the routing layer, which is an updated version of the
MintRoute protocol [12] for the Chipcon CC2420 radio. We tuned it to send
control packets every 5 seconds. Our goal was to investigate how well the IDS
would perform under the presence of traffic on other layers. Then we started an
attack to trigger the IDS protocol.

Figure 7(a) depicts the communication cost of the protocol measured in pack-
ets sent by a node. In particular, we broke it down to the packets exchanged for
the voting phase and the publish key phase (as a total of exchanging the votes,
ADV, REQ and keys). As expected, the number of packets exchanged in the
two phases is almost the same, since the message dissemination protocol does
not change. For small alert region sizes the cost is only about 12 packets, while
for more dense regions the cost still remains low (19 packets). This is the total
communication cost per attack and involves only the nodes in the alert region.
The number of packets depends on the topology and the number of the alerted
nodes, which determine the number of votes and keys circulated amongst them.

Cooperative Intrusion Detection in WSNs 277

Next we measured the time that each phase of the IDS protocol required,
i.e., the voting phase and the publish key phase. Figure 7(b) shows the mea-
sured mean times for each of the above phases, for different number of alerted
nodes (i.e., attacker’s neighborhood). We can see that the time for the voting
phase increases only moderately as the number of alerted nodes increases, and
contributes the smallest overhead in the total delay. The most time-consuming
phase is the publish key phase, where nodes exchange their keys and verify the
votes. To get a better insight, we measured the time needed for the compu-
tational operations within this phase. It turns out that the computations (key
verification, validation of the signatures on the votes, and the construction of the
final result) are responsible only for about 30% of the consumed time, whereas
the communication is responsible for the rest.

8 Conclusions and Future Work

In this paper we made a first attempt to formalize the problem of intrusion
detection in sensor networks, and showed the benefits and theoretical limitations
of the cooperative approach to intrusion detection. We presented necessary and
sufficient conditions for successfully exposing the attacker and a corresponding
algorithm that is shown to work under a general threat model.

Our investigation of the case of a single attacker (t = 1) gave very valuable
insights into the solvability of cooperative intrusion detection. In future work
we plan to concentrate on the case where the attacker can capture more nodes
(t > 1). We also plan to look into dynamic neighborhood changes, in particular,
into secure node addition and removal in sensor networks.

The intrusion detection algorithm we discussed is the first generic algorithm
for intrusion detection in sensor networks. Although individual solutions to spe-
cific problems might be more efficient, our reference implementation demon-
strates that our algorithm is lightweight enough to run on sensor nodes. Thus,
studying the problem of intrusion detection in sensor networks is a viable
research direction and with further investigation it can provide even more
attractive solutions for securing such types of networks.

References

1. Bhuse, V., Gupta, A.: Anomaly intrusion detection in wireless sensor networks.
Journal of High Speed Networks 15(1), 33–51 (2006)

2. da Silva, A.P., Martins, M., Rocha, B., Loureiro, A., Ruiz, L., Wong, H.C.: De-
centralized intrusion detection in wireless sensor networks. In: Proceedings of the
1st ACM international workshop on Quality of service & security in wireless and
mobile networks (Q2SWinet 2005), pp. 16–23. ACM Press, New York (2005)

3. Kargl, F., Klenk, A., Weber, M., Schlott, S.: Sensors for detection of misbehaving
nodes in MANETs. In: Flegel, U., Meier, M. (eds.) Detection of Intrusions and
Malware & Vulnerability Assessment, GI SIG SIDAR Workshop, DIMVA 2004,
Dortmund, Germany. LNI, vol. 46, pp. 83–97. GI (2004)

278 I. Krontiris et al.

4. Krontiris, I., Dimitriou, T., Freiling, F.C.: Towards intrusion detection in wireless
sensor networks. In: Proceedings of the 13th European Wireless Conference, Paris,
France (April 2007)

5. Krontiris, I., Dimitriou, T., Giannetsos, T., Mpasoukos, M.: Intrusion detection of
sinkhole attacks in wireless sensor networks. In: Proceedings of the 3rd Interna-
tional Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors
2007), Wroclaw, Poland (July 2007)

6. Kulik, J., Heinzelman, W., Balakrishnan, H.: Negotiation-based protocols for dis-
seminating information in wireless sensor networks. Wireless Networks 8(2/3), 169–
185 (2002)

7. Lamport, L.: Password authentication with insecure communication. Communica-
tions of the ACM 24(11), 770–772 (1981)

8. Loo, C.E., Ng, M.Y., Leckie, C., Palaniswami, M.: Intrusion detection for routing
attacks in sensor networks. International Journal of Distributed Sensor Networks
(2005)

9. Mishra, A., Nadkarni, K., Patcha, A.: Intrusion detection in wireless ad hoc net-
works. IEEE Wireless Communications 11(1), 48–60 (2004)

10. Onat, I., Miri, A.: An intrusion detection system for wireless sensor networks. In:
Proceeding of the IEEE International Conference on Wireless and Mobile Com-
puting, Networking and Communications, vol. 3, pp. 253–259 (2005)

11. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM 27(2), 228–234 (1980)

12. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable mul-
tihop routing in sensor networks. In: SenSys 2003: Proceedings of the 1st interna-
tional conference on Embedded networked sensor systems, pp. 14–27 (2003)

SCOPES: Smart Cameras Object Position
Estimation System

Ankur Kamthe, Lun Jiang, Matthew Dudys, and Alberto Cerpa

Electrical Engineering and Computer Science
University of California, Merced CA 95343, USA

{akamthe,ljiang2,mdudys,acerpa}@ucmerced.edu

Abstract. Wireless camera sensor networks have to balance the con-
flicting challenges imposed by the detection performance, latency and
lifetime requirements in surveillance applications. While previous stud-
ies for camera sensor networks have addressed these issues separately,
they have not quantified the trade-offs between these requirements. In
this paper, we discuss the design and implementation of SCOPES, a dis-
tributed Smart Camera Object Position Estimation System that balances
the trade-offs associated with camera sensor networks. The main contri-
bution of the paper is the extensive evaluation of parameters affecting the
performance of the system through analysis, simulation and experimen-
tation in real-life conditions. Our results demonstrates the effectiveness
of SCOPES, which achieves detection probabilities ranging from 84% to
98% and detection latencies from 10 seconds to 18 seconds. Moreover, by
using coordination schemes, the detection performance of SCOPES was
improved with increased system lifetime. SCOPES highlights that intel-
ligent system design can compensate for resource-constrained hardware
and computationally simple data processing algorithms.

1 Introduction

In the past decade, the day-to-day life of every human has been invaded by a
plethora of sensors. Networks comprised of large numbers of these sensors have
been deployed to gather data from the surrounding environment. From simple
inexpensive photo sensors to complex camera sensors, the acquisition of data
has grown easier but has imposed a greater challenge on the data-processing
side. In general, the data processing software is comprised of image processing
algorithms for feature extraction and interpretation. Techniques like Viola-Jones
[1] build a classifier from a large set of potential features to detect faces with a
very high detection rate and provide results in real-time on platforms with high
processing power (384x288 pixel images at 15fps on a 700MHz CPU). However,
an implementation of the Viola-Jones algorithm provided with the CMUcam3
platform (60MHz with no floating point capability) takes about 5-6 seconds to
detect faces [2]. Due to high computational complexity, these techniques do not
find widespread adoption in resource-limited wireless sensor networks.

Wireless sensor network-based detection and tracking systems use either com-
putationally lightweight algorithms when performing in-node processing of data

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 279–295, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

280 A. Kamthe et al.

or data aggregation techniques when transmitting raw data for centralized pro-
cessing. Aslam et al. [3] describe a centralized framework for tracking a moving
object by using a particle-filter for a binary sensor network. VigilNet [4] is a de-
tection and classification system for tracking metallic objects using information
from multiple magnetometer and acoustic sensors. In such approaches, the use
of simple sensors for tracking entails dense deployment to localize an object or
to infer its direction information.

In contrast, using camera sensor networks, we can infer position and direction
information from a single sensor by identifying an object and tracking its position
in successive images, respectively. This reduces the density of nodes required to
gather data while improving the data fidelity manyfold. However, camera sensors
are not without their caveats; namely, network lifetime, latency and detection
performance. The power consumption of wireless radios transmitting high band-
width image/video data to a central base station would result in rapid decrease
in the lifetime of the sensor mote, in addition to causing network congestion.
In-node computations process the raw data into summarized meta-data, which
reduces the amount of data to be transmitted. However, this introduces latency
because of limitations in the computational capabilities of sensor nodes. This ne-
cessitates, to reduce latency, the usage of lightweight processing algorithms and,
to avoid missed detections, the redistribution of sensing over multiple sensors.
At the same time, the low complexity of the data processing techniques should
not compromise the detection requirements of the application.

Our goal is to improve the performance of wireless sensor network-based
surveillance systems with synergy between the underlying hardware and software
infrastructure. The paper aims to show that SCOPES can achieve comparable,
if not better, detection performance by intelligent utilization of resources and
computationally lightweight algorithms in a resource-constrained environment,
while ensuring long lifetimes. Previous studies [5,6,7] have addressed algorithmic
issues for camera sensor networks but provide limited performance evaluation
(see Section 5). In this paper, we do not concentrate on the development of new
image processing approaches for camera sensor networks. Instead, we provide a
much more complete and extensive performance evaluation in a real-world envi-
ronment and design and implement solutions to the network lifetime, latency and
detection quality issues affecting the performance of any camera sensor network.
The design of SCOPES incorporates simple but fast image processing algorithms
for background update and object recognition, thereby reducing the amount of
data transmitted and the processing latency. The redundancy in sensor deploy-
ment is harnessed to implement a distributed coordination algorithm to handle
node failures. SCOPES was evaluated in real world conditions, with results be-
ing compiled from data of a real-life deployment of a camera sensor network
system for counting people in different sections of a building. We present results
quantifying the trade-offs between data processing latency, memory usage, power
consumption and detection performance for our system. To complete the discus-
sion, the paper provides a comparison of SCOPES with closely related works in
wireless camera sensor networks for surveillance purposes (see Section 5).

SCOPES: Smart Cameras Object Position Estimation System 281

2 System Description

2.1 Hardware and Software Infrastructure

Our SCOPES implementation comprises of an Cyclops camera [8] interfaced
with a Moteiv Tmote Sky module via an intermediate adapter board. The Cy-
clops consists of an ADCM-1700 imager, 512KB of external SRAM and a 4MHz
ATmega128L micro-controller (MCU). As the MCU can address a maximum of
64KB of memory, the external SRAM is divided into eight, 64KB memory banks
(nBanks, from Table 3). The Cyclops captures 10 64x64 pixel grayscale images
per bank (i.e., 80 total). It performs local detection and processing of the iamges
and sends summarized data (see Section 2.2: Object Recognition) to the Tmote
module which routes it to the base station using multihop communication. The
Cyclops and the Tmote run the TinyOS operating system (see Figure 1).

Set Image Capture
 Parameters

Capture Images Object Detection Trigger Tmote

HeartBeat Msg

Reset Cyclops User Interrupt
 Fired

Read Data From
 Cyclops

HeartBeat Msg

Object recognition

Send Data To Base Station
 Using Mutihop

Send Object Data To Tmote

SUMMARIZED OBJECT DATA ONLY

MISSED HEARTBEAT MSG FROM CYCLOPS

TMOTE

CYCLOPS

I2C COMMUNICATION

Fig. 1. Software Block Diagram of SCOPES: the arrows indicate the logical sequence
of operations and interactions between the two devices

2.2 Algorithms

Object Detection (OD): The goal of object detection is to determine the pres-
ence of an object in the image foreground, if any, and to update the background.
In order to achieve low processing latency, a modified background subtraction
algorithm is implemented for object detection. After background subtraction,
we use two preset thresholds (OBJECT-THRES = 40 and SHADOW-THRES
= 15) to assign a label (OBJECT, SHADOW or BG) to each pixel (see Figure 2).
Depending on the label assignment, the value of the corresponding background
pixel is updated using an Exponentially Weighted Moving Average (EWMA). In
the EWMA, we give less weight to the value of the current pixel if it is classified
as an object or shadow, as these changes to the background are less likely to
be of a long term nature. The weights are preset based on the image capture
speed of the camera (see Table 1), the area covered by the camera 2.4m x 2.4m)
and the speed of objects (approx. 1.2 m/s). In the current implementation, an
object would need to be immobile for atleast 5s before being classified as a
background pixel. This way, temporal background changes will be assimilated
into the background over time. When the number of pixels labelled as OBJECT

282 A. Kamthe et al.

count = 0
for (each pixel i in current image) do

delta = | img(i) - bg(i) |
if (delta ≥ OBJECT-THRESH)

pixel(i) = OBJECT
bg(i) = 0.99 * bg(i) + 0.01 * img(i)
count++

else if (delta ≥ SHADOW-THRESH)
pixel(i) = SHADOW
bg(i) = 0.95 * bg(i) + 0.05 * img(i)

else
pixel(i) = BG
bg(i) = 0.85 * bg(i) + 0.15 * img(i)

Fig. 2. Pseudo-code for background subtraction and up-
date

a b c

d x

Fig. 3. Grouping Pixels

Table 1. Time (in second) for execut-
ing various image processing operations
nFrames images at a time on the Cy-
clops (Note: averaged over 100 cycles)

Cyclops nFrames
Action 1 5 10

Image Capture (IC) 0.68 1.43 2.51
IC w/ OD 0.7 1.54 2.74

IC w/ (OD + OR) 1.3 4.71 9.50

Table 2. Basic algorithmic rules for
group assignments for pixel x. (Note:−
indicates group id is not assigned.)

Pixel b Pixel d Action
- - new group id

G1 - group G1
- G1 group G1

G1 G2 group G1 (merge G2 in G1)

exceed a preset threshold, an object detection is signalled. In the case of an ob-
ject detection, pixels labelled SHADOW are relabelled as OBJECT if they have
at least one neighbor that is an OBJECT pixel.

Object Recognition (OR): In this step, we try to group all pixels labelled
as OBJECT by raster scanning the image starting from the top left corner. A
pixel is considered to be part of an object if its left, top, top-left and top-right
neighbors are labelled OBJECT. For example, in Figure 3, let x be the pixel in
consideration and a, b, c and d are its top-left, top, top-right and left neighbors,
respectively. If x, a, b, c and d are all labelled OBJECT, then x is considered to
be part of an object. Assigning group id’s is done using the rules explained in
Table 2. Small groups in close proximity of each other are merged to account for
fragmentation of a big object. For each object, information regarding the centroid
(x and y coordinates), the number of pixels and the number of consecutive frames
in which the object is detected, is maintained.

Direction Inference: In SCOPES, the nodes were deployed in hallways to de-
tect the transitions of people between different sections of a building floorplan
(see Section 3.3). This entailed determining movement of people in only two
directions. In order to infer direction, objects in successive frames are matched
according to their size (in pixels). Any object in the current frame that can-
not be matched to another object in the previous frame is stored as a new
object. Information for objects from previous frames that disappear or can-
not be matched to objects in current frame are saved into a data structure.

SCOPES: Smart Cameras Object Position Estimation System 283

Table 3. Notations used in the paper with the associated meanings

Term Explanation
nFrames number of images captured consecutively
nBanks number of memory banks
T nF rames

S cyclops IC time for nFrames images
TS total cyclops IC time (camera ON), depends upon nBanks
TOD (avg.)object detection time for nBanks × nFrames images
TOR (avg.) object recognition time per image
P power consumption per node
DP detection probability per node
DFP detection failure prob. per node, 1 − DP

Information regarding the original position, displacement and number of consec-
utive frames is maintained for each object that appears across successive images
in the current memory bank. After processing all the images in the current bank,
an array of data structures containing information on a maximum of four objects
is transferred to the base station via the Tmote.

Density Estimation Algorithm: On the base station, the packets coming
from the various nodes are deconstructed. Messages are classified by source (node
id) and time of occurrence. From the object data in the Cyclops payload, we
can infer the direction of motion from the initial position and the displacement
vector. Since, we have prior information about the deployment of the nodes,
counting the transitions of objects enables the base station to compute the dis-
tribution of people in different sections of the building over time (assuming some
initial distribution). Objects with no direction information are filtered out.

3 Performance Evaluation of SCOPES

In this section, we present results quantifying the trade-offs between data pro-
cessing latency, memory usage, power consumption and detection performance.
Table 3 shows the notations for the parameters used in the discussion sections.

3.1 Objective Functions

Our goal for SCOPES was to function as a surveillance system to monitor the
occupancy of indoor environments such as office buildings. Some metrics and
objective functions of interest are as follows:

Global/Local Density Estimate: How accurately can we estimate the occu-
pancy of each section and of the total area covered?

Power Consumption: What is the system lifetime when powered by batteries?

Memory Usage: How much memory is required to achieve acceptable perfor-
mance? How is the performance affected by memory size?

Detection Latency: How long does the system take to report data?

Detection Probability: How good is the estimate of the movement of people
across different sections in the building?

284 A. Kamthe et al.

3.2 Simulation and Analysis

Since people passing under a camera can be regarded as a Poisson process, we
model their inter-arrival times with an exponential distribution as follows:

f(x; λ) =
{

λe−λx , x > 0
0 , x < 0

where 1
λ is the mean inter-arrival time for an event. The number of frames in

which an object appears is modeled by a uniform distribution (min=2;max=10)
to account for variation in speed of people. We simulate the operation of a
SCOPES node in the GNU R statistical computing package.

Sensing-Processing Ratio (SPR): In SCOPES, the camera is not operated
in trigger-driven or schedule-driven modes discussed in previous studies [7]. In-
stead, each camera is either in active period, capturing and processing images,
or in idle period, wait interval between successive active periods. In this paper,
we refer to the ratio of time taken to capture images by the camera and the total
active period i.e., the sum of the image capture and processing times, as sensing-
processing ratio. In our discussions, the sensing-processing ratio is the penalty
incurred by the system as a result of the data processing latency. A high sensing-
processing ratio is an indicator of lower data processing latency and vice-versa.

(a) SPR vs Objects Detected (b) SPR vs Mean Inter-Arrival Time

(c) SPR vs Memory Usage

 80

 85

 90

 95

 100

 105

 110

 115

 120

 10 30 50 120 300 600

P
ow

er
 C

on
su

m
pt

io
n

(in
 m

W
)

Mean Inter-Arrival Time (in seconds, on log10 scale)

w/o coord
with coord

(d) Power Consumption vs Mean
Inter-Arrival Time

Fig. 4. (a) shows the variation in SPR of a node as a function of the number of image
frames containing an object. (b) shows the SPR as a function of the mean inter-arrival
time. (c) shows the change in SPR as a function of the mean inter-arrival times for
different memory usages. (d) shows Power Consumption as function of the mean inter-
arrival times.

SCOPES: Smart Cameras Object Position Estimation System 285

There are two main reasons for operating the camera as described above; first,
the camera hardware in current sensor networks does not allow concurrent image
capture and processing of data and second, the object recognition algorithm in-
troduces long latencies between successive image capture periods. Understanding
sensing-processing ratio is important, since it affects many of our objective func-
tions, including global/local position estimation, power consumption, detection
probability and detection latency.

In Figure 4(a), we observe the variation in SPR of a node with respect to
the total number of images N in which an object (person) is detected. This
relationship can be expressed as follows:

SPR =
TS

TS + TOD + N × TOR
(1)

Background subtraction needs to be performed for all the images resulting in a
fixed cost TOD. The object recognition function needs to be executed on only the
N frames in which an object is detected. As object recognition incurs the highest
processing cost (TOR, see Table 1), the SPR of a node is affected by the time
taken for object recognition in each image. During the image processing latency
period, an object passing beneath the camera will be missed as the Cyclops is
not capable of simultaneously capturing and processing images. Thus, a low SPR
will result in lower detection probability.

Figure 4(b) shows the variation in SPR with respect to the mean inter-arrival
time 1

λ of an object detected by the camera with fixed amount of memory
(nBanks = 8 and nFrames = 10, refer Section 2.1 for cause of nBanks).
This relationship can be expressed as follows:

SPR =
nTS

n(TS + TOD) +
∑n

i=1 αiβiTOR
(2)

where n is the number of times we capture a set of 80 images, αi is the number of
times an object is detected and βi is the average number of frames occupied by
the object in the current (ith) set of images. When the mean inter-arrival time is
low, more objects are detected and the camera spends a longer time processing
the image data, leading to a low SPR. Hence, longer data processing time leads
to lower detection probability as the camera cannot capture images during that
period.As the inter-arrival time increases, the SPR increases because the relative
proportion of image processing time decreases.

In Figure 4(c), we observe the variation in SPR with respect to the mean inter-
arrival time as a function of memory usage (varying nBanks). The amount of
available memory dictates the space available to store images captured in time
TS (=nBanks × T nFrames

S). This relationship can be expressed as:

SPR =
n(nBanksT nFrames

S)
n(nBanksT nFrames

S + TOD) +
∑n

i=1 αiβiTOR
(3)

As the mean inter-arrival times varies from low to high, the SPR increases with
memory usage since a node captures more images while spending a lower per-
centage of its time processing the image data. Hence, in general, more memory

286 A. Kamthe et al.

leads to a better SPR. For long mean inter-arrival times, the amount of memory
does not have a significant effect on the SPR of a node.

Power Consumption (P): The lifetime of battery powered sensor nodes is
directly affected by the power consumption of the system. The power consumed
by the Cyclops and the Tmote Sky in different modes of operation is given
in Table 4. The relationship between the power consumption and the different
modes of operation of the node can be expressed as follows:

P = P sensing
cyclops + P proc

cyclops + P sleep
cyclops + PRX

tmote + PTX
tmote (4)

We analyse the power consumption under two different scenarios for node oper-
ation: (i) without coordination (multiple nodes sense the area at the same time)
and (ii) with coordination (multiple nodes sense the area in non-overlapping in-
tervals of time, see Section 4 for node coordination scheme details). Figure 4(d)
shows the variation in power consumption for each of 3 nodes deployed to sense
an area as a function of the mean inter-arrival time of an object.

For case (i), the Cyclops on each of the nodes is capturing and processing data
all the time, i.e., there are no idle periods (Sleep mode). The power consumed
by the Cyclops is slightly higher when it is processing image data stored in the
external SRAM as compared to the power consumed in Image Capture mode
(refer Table 4). This leads to higher power consumption when the inter-arrival
time is low as the Cyclops spends a higher proportion of its active time processing
data. For case (ii), with sensing coordination between the three nodes, the power
consumed by each node is significantly lower than in the first case as the Cyclops
has idle periods while waiting for its turn to sense the area.

Detection Failure Probability (DFP): Detection failures occur in the form
of false negatives and false positives. However, we define Detection Failure
Probability (DFP) as the probability that none of the camera nodes covering
a section report the presence of a person passing under the camera. DFP quan-
tifies the effect of only false negatives on our system. False negatives mainly

Table 4. Power Consumption of the Cy-
clops and Tmote Sky Modules. (For more
details, refer to [8] and the Tmote Sky data
sheet.)

Device Operation Notation Power
Cyclops
- Image Capture P sensing

cyclops 42mW
- Extended Memory Access P proc

cyclops 51.5mW
- Sleep P sleep

cyclops 0.7mW
Tmote
- MCU + Radio RX P RX

tmote 65.4mW
- MCU + Radio TX (0dBm) P RX

tmote 58.3mW Fig. 5. Detection Failure Probability as a
function of density of nodes covering the
same area and SPR

SCOPES: Smart Cameras Object Position Estimation System 287

(a) Morning Map (b) Noon Map

Fig. 6. Occupancy and Transition Maps. The arrows indicate the direction of motion.
The different sections of the floorplan are shaded and labelled with different alphabets.
The numbers indicate counts from SCOPES (left) and from ground truth (right).

depends on the SPR and to a lesser extent on the static thresholds in the object
detection algorithm. Detection failures, due to static thresholds, are difficult to
simulate as they might not provide an accurate representation of real-life con-
ditions. We only analyse the relationship between DFP and multiple nodes n
sensing an area at the same time (sensing without coordination) as a function
of varying SPR. This relationship can be expressed as:

DFP = (1 − SPR)n (5)

Figure 5 shows that the DFP decreases with higher SPR and number of nodes n.
Since, the worst case processing time is bounded because of memory constraints,
the SPR cannot fall below a certain number. Having coordination among the
nodes will improve detection failure probability by eliminating the chances of a
missed detection due to SPR. However, there will still be some missed detec-
tions because of the deficiencies of the hardware and software in the underlying
platform (See Section 4.3).

3.3 Experimental Deployment

We deployed 16 nodes on the ceiling of the corridors in an office building. The
deployment of nodes was done in this fashion to reduce privacy concerns of
individuals by sensing in the common areas of the floorplan. The floorplan was
separated into 5 sections by deploying the nodes in groups at transition points. In
each group, multiple nodes sense the same area at the same time, i.e., operating
without coordination. For collecting the ground truth, we installed two Panasonic
KX-HCM280A network web cameras to record the movement of people. They
are capable of capturing 10 frames per second (fps) at a resolution of 640 × 480
pixels. These images are timestamped using an NTP synchronized machine. The
ground truth data is processed using haar cascades implemented in the OpenCV
library [9] to provide a list of images in which a human being is detected. We
manually corrected the OpenCV output for the false positives and false negatives
in the processed ground truth. For computing detection probability and latency,
we compare the manually processed and corrected ground truth data with the

288 A. Kamthe et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 E
rr

or
 P

er
 S

ec
tio

n

Time of the Day (hour)

(a) Position Estimation Error vs
Time of the Day

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9

La
te

nc
y

(s
ec

on
ds

)

Number of Banks

(b) Detection Latency vs Memory
Usage

Fig. 7. Fig. 7(a) shows the Average Position Estimation Error (number of people)
per section for different times of the day. Fig. 7(b) shows the Detection Latency as a
function of the number of memory banks.

data collected from the SCOPES logs. The following is a list of experiments that
we conducted for the performance evaluation:

Occupancy and Flow Estimation: 4 groups of nodes with 4 nodes in each
group were deployed (nBanks = 8, nFrames = 10). The experiment was con-
ducted twice for different two-hour periods of the day

Memory Usage and Detection Latency: 3 groups of nodes with 4 nodes in
each group were deployed for each value of nBanks (nFrames = 10).

Detection Probability: experiment repeated thrice with 3, 4, 5 and 6 nodes
deployed in each group (nBanks = 8, nFrames = 10).

3.4 Experimental Results

Density Estimation: The first aspect we address is the evaluation of SCOPES
for building density estimation maps of area occupancy by counting the

 0

 0.05

 0.1

 0.15

 0.2

 2 3 4 5 6 7

D
et

ec
tio

n
F

ai
lu

re
 P

ro
ba

bi
lit

y

Density (nodes per band)

(a) Detection Failure Probability vs
Density of Nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

D
et

ec
tio

n
F

ai
lu

re
 P

ro
ba

bi
lit

y

Number of Banks

(b) Detection Failure Probability vs
Memory Usage

Fig. 8. Fig. 8(a) shows Detection Failure Probability as a function of the density of
nodes covering the same area. Fig. 8(b) shows the Detection Failure Probability as a
function of the number of memory banks.

SCOPES: Smart Cameras Object Position Estimation System 289

transitions across the different sections. Figure 6 shows the occupancy and tran-
sition estimation maps created from data acquired from individual SCOPES
experiments. From our results, we see that, we are able to track the movement
of people over more than 73 sq. meters of the Engineering Building with a small,
reasonable error. Figure 7(a) shows the average density estimation error for all
the sections at different times of the day. Since, the error bars are overlapping
with the mean values, we can say that there is no statistically significant change
in average error which remains bounded (under 2) at different times of the day.
The result shows that with suitable number of nodes and deployment location,
embedded camera sensor networks such as SCOPES can provide adequate per-
formance for density estimation purposes in real-world scenarios.

Detection Latency: Detection Latency is the time it takes for a node to report
a person transitioning among different areas to the base station. In the Cyclops,
the 512KB of available memory is partitioned into eight 64KB banks. Each
node first captures nBanks × nFrames images and then it starts processing
the image data in each bank. When the Cyclops is able to infer direction for an
object from images in a certain bank, it will transfer the summarized object data
to the Tmote for that bank. The Tmote routes the data to the base station via
the radio. In our experiments, the base station was located 2 hops away from the
farthest group of nodes. Figure 7(b) shows the variation in detection latency as a
function of the number of memory banks used for storing images. In Figure 7(b),
we observe that the detection latency is directly proportional to the amount of
memory utilized for storing images. The detection latency is 10 seconds when
nBanks = 1. It increases to 18 seconds when nBanks = 8. As the amount of
available memory (nBanks) increases, the Cyclops can capture a higher number
of images before processing the image data, resulting in longer detection latency.
This shows for camera sensor networks that capture sequences of images before
processing them, storing more image data can increase the detection latency,
which could adversely affect the responsiveness of the surveillance system.

Detection Failure Probability (DFP): Figure 8(a) shows the variation in
DFP i.e., false negatives as a function of the number of nodes used to cover
an area. In general, deploying more nodes improves the DFP which agrees with
our simulation results (see Figure 5). However, beyond 6 nodes we do not see
an improvement in DFP because of the limited capabilities of our nodes. In
Figure 8(b), we see the variation in DFP under memory constraints. In these
experiments, we vary the number of memory banks used for storing image data.
Figure 8(b) shows that DFP gets significantly reduced as we increase the number
of memory banks. From Figures 8(b) and 4(c), we confirm that as the numbers
of memory banks increases, SPR increases, leading to lower DFP.

Our experimental evaluation highlights and quantifies the trade-off between
detection latency and detection performance as a function of memory usage and
node density. For camera sensor networks like SCOPES, increasing the number of
nodes would keep the detection latency low and improve detection performance
at the expense of increased deployment cost. Also, by deploying sufficient number

290 A. Kamthe et al.

of nodes to cope with worst case SPR, we can enable lower detection latency
and hence, a more responsive system.

4 Improving SCOPES Using Node Coordination

To ameliorate the effects of concurrent data processing latency periods for nodes
working in a uncoordinated manner, we decided to implement a scheduling and
coordinated sensing scheme. The goal of the scheme is to improve the perfor-
mance of the existing system by reducing the detection failure as well to de-
creasing the power consumption of the nodes (refer Section 3.2). The design
requirements for our node coordination scheme are two-fold: (1) Nodes covering
the same area or nodes in close proximity should provide near-continuous sens-
ing coverage for the area, and (2) Nodes should provide near-continuous sensing
coverage for an area even if some nodes stop functioning.

4.1 Clustering Algorithm

The clustering algorithm (see Figure 9) executes periodically once every hour. At
the beginning, the nodes change their RF power level to reduce the transmission
distance (RF2). Each node then starts a one shot timer (Timer1) with a random
interval up to a maximum of T1 seconds. After the Timer1 fires, a node sends
a GROUP ASSOC message declaring itself as the group head. It then starts
Timer2 with an interval of T2 seconds. All nodes that are within close proxim-
ity of the group head respond by sending a GROUP INFORM CH message.
After Timer2 fires, the group head broadcasts a message containing information
regarding the group head and the associated group members. Since, these radio
messages do not propagate beyond a certain distance, we ensure that nodes in

Initialize()
Change RF Power Level to RF2.
Set Timer1 to fire after a random interval

Timer1.fired()
If no GROUP ASSOC packet received,

broadcast a GROUP ASSOC message with group head = current node and set isCH = TRUE
Set Timer2 to fire after a specific interval

Timer2.fired()
Broadcast a GROUP INFORM MEM message with
information such as group head and other group members.

ReceiveMsg.receive()
1 GROUP ASSOC message received,

isCh = FALSE
send GROUP INFORM CH message to associate with a group head

2 GROUP INFORM CH message received,
associate sender node id as part of group
If Timer2 is not running, set Timer2 to fire after a specific interval

3 GROUP INFORM MEM message received,
copy group data from packet (group head and other members information)

Fig. 9. Grouping Algorithm Pseudo-Code

SCOPES: Smart Cameras Object Position Estimation System 291

NODE 1

NODE 3

NODE 2

NODE 1
SENSING STARTED

SENSING

SENSINGIDLE

IDLE

IDLE

IDLE

PROCESS

NODE 2
SENSING STARTED

SENSING

IDLE

NODE 3
SENSING STARTED

NODE 1
SENSING STARTED,
NODE 2 MISSED MSG

PROCESS

PROCESS

SENSING

SENSING

IDLE

PROCESS

PROCESS

SENSING

NODE 3
SENSING STARTED

IDLE

IDLE

NODE 1
SENSING STARTED

IDLE

SENSING

PROCESS

Fig. 10. Illustration of the Group Coordination Algorithm

close proximity are part of the same group. This approach will work if the dis-
tance between groups of nodes is greater than the radio propagation distance for
the set RF power level. For SCOPES, we empirically set T1=8s and T2=60s.
The RF power level for group communication was set to < −25dBm.

4.2 Distributed Coordination and Scheduling

Once groups are formed, a node coordination scheme enables non-overlapping,
continuous sensing coverage. Our notion of node coordination uses “soft-state”
[10] to achieve continuous sensing coverage for a particular area. An illustration
of the working on the scheme is shown in Figure 10. Here, each node sends
an update message to its group members before it starts sensing. When the
other nodes in the same group receive an update message, they advance their
“start sensing” timers by one sensing period. When the sensing timer expires,
another node sends an update message informing that it has started sensing the
area. This way, we can achieve continuous sensing of an area, given sufficient
deployment. As all the coordination messages are sent over the radio, we can
never discount the possibility that an update message was missed by a particular
node. By design, if an update message is lost, the system does not break down.
In the event of a lost update message, nodes are expected to start sensing when
their sensing timer expires. This also helps to provide continuous coverage in the
event of node failures. When an update message is lost, multiple nodes will sense
the area in that cycle but the schedule is resumed as soon as the new update
messages are received in the following cycle. The current scheme adapts to node
failures while ensuring that cameras are providing continuous sensing coverage
all the time and non-overlapping coverage for a majority of the time.

4.3 Performance Evaluation

We performed experiments to evaluate the performance of the SCOPES when
nodes work in coordination, sensing in non-overlapping intervals of time. The
results are presented (refer Table 5) for a single, two hour experiment involving

292 A. Kamthe et al.

Table 5. Comparison of detection performance with and without node coordination

Operation Mode DFP/False Negative % False Positive % Number of Objects
Without Coordination 20.0% 21% 85

With Coordination 15.3% 18.5% 103

Table 6. Counting the number of occurrences of false positives and false negatives along
with their causes (NOTE: 1. Data is acquired from a single, two hour experiment with
3 nodes working together with coordination. 2. Under false negatives, 103 was the total
number of people passing beneath the SCOPES nodes. 3. Under false positives, 193 is
the total number of messages received at the base station).

Mis-Detections Reason Occurrences Percentage
False Negatives Object detected at memory bank border 4 out of 103 3.8%

Object detected at limit of Sensing Range 8 out of 103 7.7%
Software Inadequacy 4 out of 103 3.8%

False Positives Objects in background 15 out of 193 7.7%
Over-counting due to split-objects 21 out of 193 10.8%

3 nodes. We compare the performance of the SCOPES system in the presence
and absence of coordination (see Section 3.4). Here, we see that DFP is reduced
to 15% when nodes work with coordination as compared to 20% without any
coordination. The DFP is also the false negative percentage for the system. DFP
shows significant improvement with node coordination and we would like to con-
tinue that evaluation in future work. We have shown earlier (see Figure 4(d))
that we can significantly reduce the power consumption by using node coordi-
nation. Also, the relationship between detection performance, detection latency
and memory usage (see Figures 7(b) and 8(b)) is independent of the presence
or absence of coordination and hence, we expect these results to show similar
trends. To complete our evaluation of the system, we provide a quantitative
analysis of the detection failures in SCOPES.

Analysis of Detection Failures: In Table 6, we enumerate the number of oc-
currences and their respective percentages along with the associated reason for
misdetection, in the presence of node coordination.

False Negatives: We report a false negative when the ground truth indicates that
there is an object in the foreground whereas our system reports none.

Objects missed due to software: Under-counting occurs when the object detection
algorithm is unable to differentiate the object from the background. This hap-
pens because the colors of objects in the foreground do not contrast enough
against the background to trigger object detection. Another scenario where
under-counting could occur is when the object recognition algorithm (see Section
2.2) merges two objects that are in close proximity to each other.

Under-counting objects due to hardware: This occurs due to the following reasons:
(a) SPR ofnodes and (b) limitations of the sensing hardware.Detection failures due
to SPR are avoidedby using node coordination.However, the camera fails to detect

SCOPES: Smart Cameras Object Position Estimation System 293

an object due to loss of image data when the camera is switching memory banks.
Since, the object is seen in only one frame in each bank, the algorithm would report
no direction information as it does not combine information from successive banks.
This problem could be resolved if memory was continuous and not split into banks.
Objects that move close to the sensing range of the camera are missed because the
camera is not able to cover the entire object from its point of view.

False Positives: False positives result mainly, due to the high sensitivity of the
simple background subtraction algorithms used to detect the presence of objects
in the image foreground from the fixed thresholds. This might be due to over
counting of objects in the foreground and camera hardware calibration.

Over-Counting Objects: Over-counting occurs because the object recognition al-
gorithm might split one object into two objects. It also occurs when a foreign
object becomes part of the background for a short time.

Camera Hardware: In SCOPES, when the camera starts capturing images, at
times, the image at the start of the burst exhibits higher brightness as compared
to all the rest due to calibration issues. This behavior of the imager results in false
positives. However, the resulting message contains information about an object
with disproportionately large number of pixels and no direction information. We
neglect such objects when computing the false positives for our system.

As part of future work, we would like to provide detection failure compar-
isons between the output of OpenCV program, using computationally complex
algorithms, and our system.

5 Comparisons with Previous Work

In this section, we compare SCOPES with related work in the area of embedded
camera sensor networks on issues like processing algorithms, latency, memory
usage, detection probability and evaluation methods.

Kulkarni et al. [5] presented the design, implementation and evaluation of
SensEye, a multi-tier camera sensor network for surveillance applications. The
work aimed at showing that a multi-tier network can balance the conflicting goals
of latency and energy-efficiency. In the evaluation experiments, circular objects
were projected onto a wall with an area of 3m × 1.65m. Objects appeared at
different location for a certain time duration with only one object present at
a time. SensEye detected 42 out of 50 object appearances. It achieved 100%
detection probability when objects are in view for 9 seconds which decreases to
52% when object time duration is 5 seconds. For moving objects, speeds were
varied from 0.2m/s (all objects detected) to 0.6m/s (38% objects detected).

As seen in SensEye, a camera-based surveillance system fails when the speed
of the object exceeds the capability of the system. From empirical data, it is said
that humans move at speeds ranging from 1-1.5m/s [11]. The main difference
between the evaluation of SensEye and SCOPES is that SCOPES was evaluated
in uncontrolled real-life conditions where it had to account for variations in light

294 A. Kamthe et al.

conditions, shadows, occlusions, and the size and speed of people moving in the
environment. SCOPES still has an average detection probability of 84% when
we deploy 3 camera nodes to cover an area, which improves to 98% for 6 nodes.
Based on the image capture speed of the camera, SCOPES will fail to capture
information required to detect an object if the object moves at a speed greater
than 8m/s (no image data collected) and will fail to infer the direction if the
object moves faster than 4m/s (only one image frame collected).

Teixeira et al. [6] proposed a motion histogram approach to count people in
indoor spaces. The hardware infrastructure comprised of Intel iMote2 sensor
nodes with OmniVision OV7649 imagers. The iMote2 sensor platform operates
at 104MHz and is capable of processing 8fps while consuming 322mW (Imote
+ Camera) of power. Six nodes were deployed with minimum overlap between
areas covered by the cameras. Each camera has a field of view of 3m x 2m.
The experiments consisted of five people moving inside a lab setting.The system
has a detection rate of 89.5% when a single person is present inside the camera
network. This drops to 82.48% when two people are present and 79.8% for three.
Using the case study of the same camera node, Jung et al. [7] present lifetime
models for trigger-driven and schedule-driven sensor networks. Their models
predict the energy budgets under different application requirements. The results
in the paper show the variation in the lifetime of the camera sensor network with
respect to the detection probability and object inter-arrival rate.

In comparison, in SCOPES, the Cyclops board operates at 4MHz and is ca-
pable of processing 1fps while consuming 115mW of power (Tmote + Cyclops).
Inspite of the speed of the Cyclops platform (26 times slower than the iMote2)
and the simple image processing algorithms, SCOPES is able to achieve detec-
tion probability of 84% with 3 cameras which increases to approx. 98% with
6 cameras covering the same area (see Figure 8). On a faster platform such as
the iMote2, the SCOPES image processing algorithms would execute in roughly
26ms, eliminating the need for multiple cameras to provide coverage during the
detection latency period of a camera while achieving comparable, if not superior,
performance to the motion histogram approach. The performance evaluation of
SCOPES highlights the point that by using computationally simple image pro-
cessing techniques it is possible to achieve detection probabilities comparable to
techniques like the motion histogram approach, inspite of differences in the com-
putational capabilities of the underlying platforms. In SCOPES we analysed the
power consumption for continuous sensing (without coordination) or interleaved
sensing (with coordination) nodes, which differ from the operation models con-
sidered in [7]. In addition, in SCOPES, we also provide a detailed analysis and
evaluation of the memory usage, detection latency and detection probability as
a function of the system parameters.

6 Conclusion and Future Work

In this paper, we argued that previous studies lacked extensive performance eval-
uation of camera sensor networks in real life conditions, raising doubts regarding

SCOPES: Smart Cameras Object Position Estimation System 295

the sustainability of such systems. In contrast, through analysis, simulation and
extensive experimentation, we showed that deployment of multiple nodes work-
ing in coordination with each other eliminates some of the problems associated
with network lifetime, data processing latency and quality of detection perfor-
mance. In addition, we analysed the detection failures of SCOPES by describing
the causes of misdetections and quantifying their effects. Our system provides on
par or better detection performance than other approaches that have computa-
tionally intensive algorithms and more capable hardware, with a slightly higher
deployment cost. In summary, the paper presented a comprehensive design for
a embedded camera sensor network, alongwith extensive testing of parameters
affecting the system. As part of future work, we would like to pursue the devel-
opment of lightweight image processing algorithms for camera sensor networks.
We would also like to investigate the tradeoff between the network traffic and
detection quality by sending the entire image instead of summarized data.

References

1. Viola, P., Jones, M.: Robust real-time object detection. International Journal of
Computer Vision (2001)

2. Viola Jones Detector for CMUcam3, http://www.cmucam.org/wiki/viola-jones
3. Aslam, J., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., Rus, D.: Tracking a

moving object with a binary sensor network. In: SenSys 2003, pp. 150–161. ACM
Press, New York (2003)

4. Gu, L., Jia, D., Vicaire, P., Yan, T., Luo, L., Tirumala, A., Cao, Q., He, T.,
Stankovic, J.A., Abdelzaher, T., Krogh, B.H.: Lightweight detection and classifi-
cation for wireless sensor networks in realistic environments. In: SenSys 2005, pp.
205–217. ACM Press, New York (2005)

5. Kulkarni, P., Ganesan, D., Shenoy, P., Lu, Q.: Senseye: a multi-tier camera sensor
network. In: MULTIMEDIA 2005, pp. 229–238. ACM Press, New York (2005)

6. Teixeira, T., Savvides, A.: Lightweight people counting and localizing in indoor
spaces using camera sensor nodes. In: ICDSC 2007, September 25-28 (2007)

7. Jung, D., Teixeira, T., Barton-Sweeney, A., Savvides, A.: Model-based design ex-
ploration of wireless sensor node lifetimes. In: Langendoen, K.G., Voigt, T. (eds.)
EWSN 2007. LNCS, vol. 4373, pp. 277–292. Springer, Heidelberg (2007)

8. Rahimi, M., Baer, R., Iroezi, O.I., Garcia, J.C., Warrior, J., Estrin, D., Srivastava,
M.: Cyclops: in situ image sensing and interpretation in wireless sensor networks.
In: SenSys 2005, pp. 192–204. ACM Press, New York (2005)

9. OpenCV, http://opencvlibrary.sourceforge.net/
10. Ji, P., Ge, Z., Kurose, J., Towsley, D.: A comparison of hard-state and soft-state

signaling protocols. IEEE/ACM Transactions on Networking 15(2), 281–294 (2007)
11. NationMaster Orders of magnitude (speed),

http://www.nationmaster.com/encyclopedia/

http://www.cmucam.org/wiki/viola-jones
http://opencvlibrary.sourceforge.net/
http://www.nationmaster.com/encyclopedia/

secFleck: A Public Key Technology Platform for
Wireless Sensor Networks

Wen Hu, Peter Corke, Wen Chan Shih, and Leslie Overs

Autonomous Systems Laboratory, CSIRO ICT Centre, Australia
{wen.hu,peter.corke,teddy.wen-chan,leslie.overs}@csiro.au

http://www.sensornets.csiro.au

Abstract. We describe the design and implementation of a public-key
platform, secFleck, based on a commodity Trusted Platform Module
(TPM) chip that extends the capability of a standard node. Unlike
previous software public-key implementations this approach provides E-
Commerce grade security; is computationally fast, energy efficient; and
has low financial cost — all essential attributes for secure large-scale sen-
sor networks. We describe the secFleck message security services such as
confidentiality, authenticity and integrity, and present performance re-
sults including computation time, energy consumption and cost. This is
followed by examples, built on secFleck, of symmetric key management,
secure RPC and secure software update.

1 Introduction

Wireless sensor network (WSN) applications [6,12,1,2,21] are growing. While
the importance of security and privacy is generally agreed, it is still largely
ignored since the problem is considered impractical to solve given the limited
computation and energy resources available at node level. In the future, privacy,
authenticity and security will be required for WSN gathered resource utiliza-
tion (for billing purposes), and authenticity and security of WSN management
commands and program downloads. The lesson from the PC industry is that
ignoring security at the outset leads to huge pain when the technology becomes
ubiquitous.

Symmetric (shared) key algorithms are tractable on mote-class hardware and
can achieve message confidentiality. However, key distribution and management
remains a significant practical challenge, and these algorithms poorly support
message authenticity and integrity. On the Internet, Public Key Cryptography
(PKC) is widely used to support symmetric key management, as well as message
authenticity and integrity. Researchers have investigated methods to support
PK technology in WSN [22,15]. Such approaches have focused on software-based
PK technologies, such as Rivest Shamir Adelman (RSA) and Elliptic Curve
Cryptography (ECC) but the performance has been poor given the low clock rate
and memory availability. Consequently, a smaller RSA public exponent (e) and a
shorter key size are chosen, which compromises the security level of asymmetric
encryption.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 296–311, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

secFleck: A Public Key Technology Platform for WSNs 297

Fig. 1. secFleck TPM module (upper side) — an expansion board for the Fleck WSN
node

In this paper, we introduce the design and implementation of secFleck, a PK
platform that uses Trusted Platform Module (TPM) hardware to augment the
node. Our evaluation shows that the secFleck provides Internet-level PK services
with reasonable energy consumption and financial overhead. The contributions
of this paper include:

– The design and implementation of the secFleck platform, which includes a
standard TPM chip and a set of software primitives, to support Public Key
Cryptography (PKC) in a WSN. To the best of our knowledge, the secFleck is
the first platform that supports most RSA-based PKC functions (encryption,
decryption, signature, and signature verification) in WSN. RSA is the most
widely used PKC in the traditional networks such as the Internet.

– Extensive evaluation of the secFleck platform in terms of computation time,
energy consumption, memory footprint and cost. The results demonstrate
the feasibility of the secFleck platform.

– The demonstration that the secFleck platform is easy-to-use through case
studies of how to implement key management, secure software update, and
secure Remote Procedure Calls (RPC) services using the secFleck primitives.

The rest of this paper is organized as follows. In section 2, we give a brief
overview of the RSA algorithm, which secFleck is based on, followed by a
detailed description of the software and hardware architecture of secFleck
(Section 3). We evaluate the performance of secFleck in terms of computation
time, energy consumption and financial cost in Section 4. Section 5 describes,
by means of a case study, how secFleck primitives can be used to implement
state-of-the-art key management and secure software update protocol, and im-
prove the protocol’s performance. We present related work in Section 6. Finally,
we finish with conclusions and future work in Section 7.

298 W. Hu et al.

2 A Brief Introduction to the RSA Algorithm

In this section, we provide an overview of the Rivest Shamir Adelman (RSA)
algorithm [18], which secFleck is motivated by and built upon. We will also
discuss some RSA terms and parameters, such as modulus (n), random numbers
(p and q), public exponents (e) and key sizes (k), and their implications to the
RSA algorithm computation complexity and security levels.

RSA is an algorithm for public key cryptography (PKC), also called asym-
metric cryptography, in which the encryption key is different to the decryption
key. RSA is the first algorithm that is suitable for signing and encryption, and is
used widely in secure communication protocols, such as Secure Shell (SSH) and
Secure Sockets Layer (SSL), in the Internet.

The RSA algorithm generates a public key and a private key simultaneously
as follows. First, RSA chooses two large random numbers p and q. Second, RSA
calculates the product (n) of p and q: n = pq, where n is used as the modulus
for RSA public and private keys.

Third, RSA calculates the Euler’s totient function of n, given by: ϕ(n) =
(p − 1)(q − 1). Fourth, RSA chooses an integer (e, also called public exponent)
such that:

1 < e < ϕ(n), (1)

and
gcd(e, ϕ(n)) = 1, (2)

where gcd stands for the Greatest Common Divisor (GCD). Public exponent (e)
and modulus (n) together comprise the public key.

Fifth, RSA calculates private exponent (d) by

de ≡ mod ϕ(n), (3)

where parameters d, p, q are kept secrets.
Since the public key (n, e) of Alice is available to everyone, Bob can then

encrypt a plain text message (m) by

c = me mod n, (4)

where c is the cipher text (cipher) of plain text message m, and 0 ≤ c < n. Only
Alice, the owner of kept secrets (d, p, q), can decrypt the cipher (c) and obtain
plain text message (m) by

m = cd mod n. (5)

Further, with her private key (d, p, q), Alice can use the RSA algorithm to sign a
message by generating a signature (s) by substituting c with a hash value (H(m))
of m in Eq. (5). After receiving (H(m), s), Bob uses the same hash function, to-
gether with Alice’s public key (n, e), to verify the signature by Eq. (4).

Because the sizes of p and q are approximately half of the size of the key
size (k), the security level of RSA cryptography is a function of e and k. A
popular choice for the public exponent is e = 216 + 1 = 65, 537. Using small

secFleck: A Public Key Technology Platform for WSNs 299

e values such as 3, 5 or 17 can dramatically reducing computational cost, but
will lead to greater security risks [18]. The default e value in secFleck is 65,537.
It is common to believe that a RSA key size of 512 bits is too small to use
nowadays. Bernstein has proposed techniques that simplify brute-forcing RSA
[3], and other work based on [3] suggests that 1024-bit RSA keys can be broken
in one year by a device that costs $10 million rather than trillions as in previous
predictions [19]. It is currently recommended to use an RSA key at least 2048
bit long. Therefore, the default RSA key size in secFleck is 2048 bits.

3 Platform Architecture

In this section, we discuss both hardware and software modules in secFleck.

3.1 Hardware Module

The core of secFleck is an Atmel AT97SC3203S TPM chip (see Fig. 1) mounted
on a Fleck expansion board (see Fig. 2). The TPM chip follows version 1.2 of
Trusted Computing Group (TCG) specification for TPM. It has a true Random
Number Generator (RNG), which is Federal Information Processing Standards
(FIPS) 140-2 compliant. By implementing computationally intensive RSA op-
erations in hardware, the TPM chip performs these operations in an efficient
manner. For example, it can compute a 2048-bit RSA signature in 500ms ac-
cording to the Atmel data sheet.

Fig. 1 is a picture of TPM board. The TPM board, connected to a Fleck,
can be enabled to meet WSN application requirements. The TPM board and
the Fleck is shown in Fig. 2. The Fleck is a wireless sensor node that features
an Atmega 1281 micro controller (8 MHz clock rate and 8 KB memory) and
a Nordic nRF905 radio [4]. The TPM module has a 100 kHz SMBus which is
similar to the I2C and the TPM is connected to the Fleck’s I2C interface. The
SMBus makes the TPM chip easily integrated in embedded systems.

Fig. 3 shows a block diagram of the TPM module, which includes the bare
minimum of components required for operation: TPM chip, crystal, oscillator,
voltage regulator, power switch and an expansion connector.

Fig. 2. secFleck (Fleck3 and TPM module)

300 W. Hu et al.

Fig. 3. secFleck TPM module block diagram

3.2 Software Module

For the ease of WSN application developers, we have implemented a set of RSA
public key cryptographic primitives as a Fleck OS (FOS) [4] module, which
include encryption, decryption, signing, and signature verification etc., as well
as XTEA symmetric cryptographic primitives (see Fig. 4). FOS is a C-based
cooperative multi threaded operating system for WSN.

Asymmetric Key (RSA) FOS Functions. Previous research [11] shows that
the primitives, which allow an application to turn a system component on or
off, are important to conserve system energy consumption in sensor networks.
secFleck allows applications to duty cycle TPM component by calling primitives
fos tpm startup() and fos tpm turnoff(). These duty-cycle primitives are
more important in secFleck because its current consumption (around 50 mA) is
significantly more than Fleck’s average current consumption (around 5 mA).

Symmetric keys are typically generated by a pseudo-random number generator
in previous work [14]. If an attacker can extract the initial random symmetric
key, then it is possible for the attacker to compute all past and future keys.
Therefore, a high quality random number generator is very important for the
effectiveness of symmetric key operations. secFleck provides a fos tpm rand()
primitive, which is based on a true Random Number Generator (RNG), and is
Federal Information Processing Standards (FIPS) 140-2 compliant.

Each TPM has a unique 2048-bit private key established during manufacture
which cannot be read. However an application can acquire the corresponding
public key from the TPM which can be shared with other nodes for encryption
and signature verification purposes. An application encrypts a message by pro-
viding the plain text, the length of the plain text, and a public key — the cipher
text is returned. Similarly, an application can decrypt cipher text. The secFleck
encryption and decryption facilitates message confidentiality.

secFleck: A Public Key Technology Platform for WSNs 301

secFleck provides two additional primitives, i.e., fos tpm sign() and fos tpm
verifySign(), for applications to sign messages or to verify the signatures of
messages. The digest parameter in these two primitives are generated by the
Secure Hash Algorithm (SHA-1) of plain messages. FOS also provides a function
for computing SHA-1.

A base station typically has more computation, memory and energy resources
and can be treated as a Certificate Authority (CA). All the nodes store the CA’s
public key in their permanent memories such as EEPROM before deployment,
and the base station has the public keys of all nodes. Multiple base stations
and/or dedicated CA nodes with more memory can be used to improve the
scalability of this approach. Therefore, message authenticity can be facilitated.

1 /* Duty cycle TPM chip functions. */
2 uint8_t fos_tpm_startup(void);
3 uint8_t fos_tpm_turnoff(void);
4

5 /* True random number generator. */
6 uint8_t fos_tpm_rand(uint8_t *randNumber, uint8_t len);
7

8 /* secFleck public key collector. */
9 uint8_t fos_tpm_getPubKey(uint8_t *pubKey);

10

11 /* Asymmetric key encryption/decryption. */
12 uint8_t fos_tpm_encryption(uint8_t *msg, uint16_t len,
13 uint8_t *pubKey, uint8_t *cipher);
14 uint8_t fos_tpm_decryption(uint8_t *cipher, uint8_t *msg,
15 uint16_t *len);
16

17 /* Digital signature and verification. */
18 uint8_t fos_tpm_sign(uint8_t *digest, uint8_t *signature);
19 uint8_t fos_tpm_verifySign(uint8_t *signature, uint8_t *pubKey,
20 uint16_t *digest);
21

22 /* Symmetric session key encryption/decryption. */
23 uint8_t fos_xtea_encipher(uint8_t *msg, uint8_t *key,
24 uint8_t *cipher, uint8_t nRounds);
25 uint8_t fos_xtea_decipher(uint8_t *cipher, uint8_t *key,
26 uint8_t *msg, uint8_t nRounds);

Fig. 4. secFleck application interface for public key infrastructure and symmetric ses-
sion key functions. The public key cryptographic primitive interfaces allow applications
to start up and turn off on-board TPM chip, to read the public key of the TPM chip,
to encrypt or to decrypt a message, to sign a message, and to verify a signature. The
symmetric key primitive interfaces allow applications to encrypt and decrypt messages
by XTEA algorithm.

302 W. Hu et al.

Symmetric Key (XTEA) FOS Functions. Previous work [14] show that
symmetric key cryptography is tractable on mote-class hardware and can achieve
message confidentiality. Further, symmetric key cryptography is significantly less
resource-intensive than asymmetric key cryptography such as RSA. secFleck also
features a 128-bit symmetric block cipher based on eXtended Tiny Encryption
Algorithm (XTEA) [16]. XTEA operates on 64-bit blocks with 32 or 64 rounds.
secFleck chooses XTEA symmetric key cryptography because of its small Ran-
dom Access Memory (RAM) footprint, which makes it a good candidate for tiny
sensor devices that typically have less than 10 KB RAM. XTEA can be used in
an output feedback mode to encrypt or decrypt variable length strings.

4 Performance Evaluation

In this section, we discuss the performance of the secFleck platform in terms of
computation time, energy consumption, and financial cost.

4.1 Asymmetric Key (RSA) Operations

As part of our benchmarking we also implemented the RSA encryption algorithm
in software for comparison. Table 1 shows the encryption time for different key
sizes and RSA public exponents (e) in both software and hardware implemen-
tation. The results show that the TPM chip can reduce the computation time
of RSA encryption by a factor of 8, 000, when e = 65,537 and key size is 2048
bits. Table 1 also shows that software RSA implementation is impractical using
embedded micro controllers such as Atmega 128 when e > 3 and for key size
larger than 1024 bits. A small e will make RSA less secure, and a key size of
1024 bits will no longer be considered secure in a few years time.

We have not implemented the RSA decryption algorithm in software because
it is significantly more computationally intensive than the RSA encryption al-
gorithm (see Table 2). Table 2 also shows RSA encryption, decryption, sign and
signature verification computation time in secFleck.

Table 3 shows the current consumption for different secFleck operations. It
shows that RSA operations consume 37% to 65% more current than transmitting
in secFleck. Table 4 shows the energy consumption of 2048-bit RSA encryption
operation when e = 65, 537. It shows that the software-based approach consumes
around 1,300 times more energy compared to secFleck for an RSA encryption
operation. Table 4 also shows that the software-based approach RSA encryption

Table 1. Comparison of RSA encryption times

Public Exponent Software Software Hardware
(e) 1024 bit 2048 bit 2048 bit
3 0.45s 65s N/A

65,537 4.185s 450s 0.055s

secFleck: A Public Key Technology Platform for WSNs 303

Table 2. RSA computation time in secFleck for e = 65, 537 and 2048 bit key

Encryption Decryption Sign Verification
55ms 750ms 787ms 59ms

Table 3. secFleck current consumption

Module Current (mA)
Fleck3 (without radio, node idle) 8.0
Fleck3 + Receive 18.4
Fleck3 + Transmit 36.8
Fleck3 + TPM encryption 50.4
Fleck3 + TPM decryption 60.8
Fleck3 + TPM signature 60.8
Fleck3 + TPM signature verification 50.4

in WSN is indeed impractical in terms of both computation time and energy
consumption for reasonable RSA exponent and key size. On the other hand,
secFleck makes it feasible to support PK technology for WSN.

4.2 Symmetric Key (XTEA) Operations

We tested the performance of XTEA cryptography to determine its computation
speed on the Fleck platform. secFleck can encrypt one block of 64-bit data in
approximately 1.15 ms. Therefore, it takes approximately 18 μs (Table 4, Row 3)
to encrypt one bit data. Furthermore, the effective data rate of Fleck transceiver
(Nordic nRF905) is 50 kb/s with Manchester encoding. For a 32-byte physical
layer payload, there are a four-byte address and a two-byte Cyclic Redundancy
Check-16 (CRC-16) overheads. Therefore, the available bandwidth for Media
Access Layer (MAC) is 50 × 32 ÷ (32 + 4 + 2) = 42.11 kb/s. It takes 23.75 μs
for a NRF905 transceiver to transmit one bit, which is significantly longer than
the encryption time (17.97 μs).

Table 4 also shows that software symmetric key cryptography is indeed sig-
nificantly faster than hardware RSA asymmetric key cryptography (18 μs vs. 27
μs per bit). Furthermore, XTEA encryption consumes approximately ten times
less energy compared to hardware RSA encryption, and approximately 12,000

Table 4. secFleck (RSA and XTEA) encryption energy consumption for one bit of
data

Platform Current (mA) Time (μs) Energy (μJ)
RSA (software, e = 65, 537, 2048 bit key) 8.0 219,730 7,030.0
RSA (hardware, e = 65, 537, 2048 bit key) 50.4 27 5.4

XTEA (software, 128 bit key) 8.0 18 0.6

304 W. Hu et al.

times less energy compared to software RSA encryption. It suggests that, in
energy-impoverished WSN, we should use symmetric cryptography for most se-
cure communications, and should use asymmetric cryptography in critical tasks
only (i.e., the symmetric key management).

The other key advantage of XTEA is space efficiency. The FOS XTEA im-
plementation has less than 100 lines of C codes, and requires 52 bytes of RAM
and 1,082 bytes of program space only.

4.3 The Financial Cost of secFleck

An Atmel AT97SC3203S TPM chip costs $4.5 when ordered in quantities1, which
is less than 5% of the cost of popular sensor devices such as Telosb, Iris mote,
and Fleck (about $100). The TPM chip is small in size (Figure 1) measuring
just 6.1 × 9.7 mm and is less than 2% of the area of the Fleck and could be
integrated onto a future version rather than the cumbersome expansion board
used in this prototype.

5 Case Studies

In this section, we demonstrate the power of our secFleck primitives (shown in
Fig. 4) to easily and efficiently realize secure WSN applications. These applica-
tions include, but are not limited to, secure over-the-air programming, secure
Remote Procedure Calls (RPC), and secure session key management. We have
chosen to implement variants of state-of-the-art key management [17] and secure
software update protocol [13] with secFleck primitives, and show how secFleck
primitives can improve the protocol’s performance.

5.1 Symmetric Session Key Encryption/Decryption

Symmetric key cryptography consumes significantly less energy than RSA asym-
metric key cryptography (see Table 4), as we envision that symmetric session key
cryptography will be used for most WSN secure communications, and asymmet-
ric cryptography will be used for limited critical tasks. For example, asymmetric
cryptography is used to exchange a new symmetric key daily or hourly (also
called the rekey process). We will discuss the rekey process in detail later.

By utilizing two secFleck primitives, it is easy to achieve symmetric key cryp-
tography in secFleck (see Fig. 5). fos xtea getkey() (Line 4) reads a symmetric
key from secFleck memory, and fos xtea encipher() encrypts a plain message
(msg), and returns an encrypted message (cipher). Therefore, link-level secure
transmissions can be achieved by passing the returned cipher over the radio.

An application can choose to store the session keys in Fleck RAM, EEP-
ROM, or the TPM EEPROM. When the keys are stored in the Fleck RAM or

1 http://www.atmel.com/dyn/products/view detail.asp?
ref=&FileName=embedded10 18.html&Family id=620 (accessed on 18th June,
2008).

http://www.atmel.com/dyn/products/view_detail.asp?ref=&FileName=embedded10_18.html&Family_id=620
http://www.atmel.com/dyn/products/view_detail.asp?ref=&FileName=embedded10_18.html&Family_id=620

secFleck: A Public Key Technology Platform for WSNs 305

1 #DEFINE NROUNDS 64
2

3 /* XTEA encryption in secFleck. */
4 fos_xtea_getkey(key, location);
5 fos_xtea_storekey(key, location);
6 fos_xtea_encipher(msg, key, cipher, NROUNDS);

Fig. 5. XTEA encryption with secFleck primitives

EEPROM, the key (getting and storing) operations consumes significantly less
energy than when the keys are stored in the TPM EEPROM. However, storing
the keys in the Fleck also exposes the keys to more risks. Hartung et al. demon-
strated how to extract the information in a node’s EEPROM and RAM within
one minute in [10]. Perhaps it is better to store the key in the TPM chip for those
infrequent operations (e.g., sending one temperature sample to the base station
every five minutes); store the key in the Fleck memory for those high-throughput
operations (e.g., secure over-the-air-programming).

5.2 Sensor Node Symmetric Session Key Request/Assignment
Operation

Fig. 6 shows the protocol for a sensor node (Node A) to request a new symmetric
key from a base station. Node A initiates this process periodically, e.g., hourly or
daily, by generating a random number (Na) and encrypting Na with the Request
(Req) command using Base’s public key (PkBase) before transmitting it to the
base. After receiving the Request message from Node A, the base decrypts the
message with its private key (SKBase). The base then responds to the Req
command by generating a new symmetric session key (KBA), and encrypts it
together with Na using Node A’s public key (PkA) before transmitting it to Node
A. Node A decrypts the message from the Base with its private key (SKA) and
obtains the new symmetric key (KBA). Node A and the base can then use KBA

for future secure communications. Fig. 6 also shows the five secFleck primitives
associated with each step of the key request protocol.

The session key assignment operation is symmetric to the key request opera-
tions. The key assignment protocol is initiated, e.g., in an group key establish-
ment event (see Section 5.3), by the base station instead of a node.

5.3 Group Key Establishment Operation

Group key establishment can be achieved by a combination of sensor node sym-
metric session key request operations and sensor node symmetric session key
assignment operations. For example, if node A wants to communicate with node
B and C, Node A will request a new group session key from the base station via
the session key request operation introduced in Section 5.2. After receiving the
key request operation from Node A, the base station generates a new symmetric

306 W. Hu et al.

Fig. 6. Symmetric session key request operation with secFleck primitives (underline).
Node A request a session key from a base station.

key (Kabc). The base station assigns Kabc to Node B and C via two session key
assignment operations (see Section 5.2) before transmitting Kabc to Node A.
Then, Node A, B, and C begin secure communications using group session key
Kabc.

5.4 Secure Software Update Protocol

Multihop Over the Air Programming (MOAP) protocols such as Deluge [13] en-
able users to reprogram/retask the WSN remotely, which is critical to efficient
and effective management of large-scale long-duration WSNs. The basic Deluge
protocol works as follows. A node (Node A) advertises its program version peri-
odically. One of its neighbors (Node B) will send a request to download a copy
of the program from Node A if Node B’s version is older than Node A’s. Node A
begins the download process after receiving the request. To support concurrent
data disseminations and reduce network reprograming time, Deluge divides a
program into a number of pages.

By using the group key establishment operation introduced in Section 5.3,
secFleck can provide data confidentiality to Deluge. Furthermore, a base station
can achieve integrity and authentication by signing the advertisement message
and the program pages of Deluge with its private key (SKBase) before dissem-
inating it to the network. After receiving a program page or an advertisement
message, a secFleck node can then verify the page or the advertisement message
with the public key of the base station (PkBase). This mechanism ensures that
wireless bootstrap can only be initiated by an authorized host, that the code
stream is private, and that a page is not committed to flash unless it is from an
authorized host.

secFleck: A Public Key Technology Platform for WSNs 307

A secFleck node can verify the signature of the a 256 byte page in 59 ms (see
Table 2), which is more than 4,300 bytes/second. This secFleck signature verifi-
cation rate is approximately 50 times faster than the average 88.4 bytes/second
dissemination rate achieved by Deluge in a 75 node network [13].

5.5 Backward Secrecy and Forward Secrecy

secFleck can enhance the security levels of the rekey process by providing back-
ward secrecy and forward secrecy. Backward secrecy means that compromising
the current symmetric link key does not allow an attacker to learn previously
recorded messages encrypted with the previous key. Forward secrecy means that
compromising the symmetric link key does not allow an attacker to learn future
communication encrypted with the following key.

A symmetric link key can be found by an attacker by extracting it directly
from a captured node via a JTAG or similar device [10] because of the exposed
nature of nodes in WSN. Furthermore, the attacker can also extract the initial
random key used by the software pseudo-random number generator. This key
allows the attacker to compute all past and future nonces used in the key updat-
ing protocol, which in turn allows the attacker to compute all past and future
keys.

Equipped with a FIPS 140-2 compliant true Random Number Generator
(RNG), secFleck can increase the security level of the protocols. It is very diffi-
cult, if not impossible, for the attacker, who has obtained the current symmetric
link key, to find out the past or future keys generated by a true RNG. An appli-
cation can obtain a true random number by calling fos tpm rand() primitive
(Line 6, Fig. 4).

5.6 Secure Remote Procedure Calls

The Fleck Operating System (FOS) uses Remote Procedure Calls (RPC) to
allow application programs to seamlessly access services on one or more sensor
nodes.

Each node-side service is described by an action file, a C-like function that
supports multiple input and output arguments. A code generator, in Python,
parses all action files and generates a server function and all the serializing
and deserializing code, as well as a Python class to be used by base station
applications. All nodes support the common set of actions listed in Table 5, in
addition to application specific actions.

An RPC call message comprises the function arguments, the function enu-
merator, sequence number, node id of the caller and a CRC-32. Except for the
assign session key and request session key RPC messages, all the other
RPC messages are encrypted using XTEA with the current session key (see
Section 5.1). assign session key and request session key RPC messages are
encrypted and signed with PKC introduced in Section 5.2. On receipt of an RPC
call message (indicated by the routing header type) the message is decrypted us-
ing the session key and the CRC-32 checked.

308 W. Hu et al.

Table 5. Common secure FOS RPC actions

RPC actions Description Cryptography
assign session key assign a new symmetric session key to a node PK
request session key request a new symmetric session key from a base PK
kernel get FOS system memory statistics share
read eeprom read from EEPROM share
read ram read from RAM share
threads get information about threads, label and stack usage share
write eeprom write to EEPROM share
write ram write to RAM share
rtc get get time from the real-time clock share
rtc set set the real-time clock share
txpwr set set radio transmit power share
leds set or toggle LEDs share
power get battery and solar cell status share

In a sensor network, it is possible to broadcast the RPC call encrypted by a
group symmetric key (see Section 5.3), and have the function executed in parallel
on many nodes which all return their results to the caller. In this case the result
of an RPC call would be a list of return values rather than just one.

Secure RPC, based in secFleck primitives, provides privacy of commands and
return values, authentication and immunity to replay attacks.

6 Related Work

In this section, we provide a brief overview of secure communications most di-
rectly relevant to secFleck.

Rivest Shamir Adelman (RSA) is the most widely used Public Key Cryptog-
raphy (PKC) in the Internet, and a comprehensive guide to RSA is available
in [18]. RSA is much slower than Xtended Tiny Encryption Algorithm (XTEA)
[16] and other (shared) symmetric cryptography such as TinySec [14].

It is our thesis that most of the secure communications in resource-constrained
WSN will be based on symmetric cryptography. A symmetric key can be discov-
ered by an attacker by extracting it directly from a captured node via a JTAG
or similar device [10] because of the distributed and embedded nature of nodes
in WSN. Therefore, an effective symmetric key establishment and management
scheme is of prime importance. RSA and Diffie Hellman key agreement tech-
niques [8] are widely used key agreement protocols in the Internet, but have been
previously considered infeasible for WSNs because of the resource constraints of
sensor devices.

Researchers have proposed a limited version of RSA PKC (TinyPK) that
performs encryption operations only and uses smaller RSA parameters such

secFleck: A Public Key Technology Platform for WSNs 309

as public exponents and key sizes [22]. However, the security levels of RSA cryp-
tography is severely compromised by using smaller public exponents and key
sizes. Recently, the importance of symmetric key cryptography and the criti-
cal roles of key management mechanism in WSN was observed by Nilsson et
al. [17] who proposed an efficient symmetric key management protocol for the
WSN. However, they have focused on the protocol design and formal verifica-
tion, and have not addressed the resource constraint problems in implementing
the protocol.

The research community is developing faster and more energy efficient PKC
algorithms such as Tiny Elliptic Curve Cryptography TinyECC [15] for the
resource-impoverished WSN. While TinyECC shows the most promise to run
at usable speeds on WSN nodes [9], there are concerns related to patents, which
are one of the main factors limiting the widely acceptance of ECC. In this regard
we note that the RSA and XTEA algorithms used in this work is in the public
domain.

While Multihop Over the Air Programming (MOAP) protocols [13] enable
application users to program and reprogram WSNs easily, it also opens the
door for unauthorized users to implant malicious code into the WSN. Dutta et
al. attempt to secure the MOAP [7] by introducing program authenticity and
integrity with a cut-down version of software-based RSA PKC similar to TinyPK
[22]. As in TinyPK, the security levels of RSA cryptography will be compromised
by using smaller RSA public exponents and key sizes.

Believing that PKC such as RSA and ECC is too resource-intensive for the
resource-impoverished WSN, researchers have investigated alternative methods
to ensure program authenticity and integrity by secure hash chain, hash tree
and/or their hybrid [5,20].

In contrast to the existing alternatives of PKC that typically have limited
functions, secFleck provides E-Commerce level PKC, which facilitates secure
communication services such as confidentiality, authenticity and integrity with
low financial overhead, by exploiting the capability of a commodity Trusted
Platform Module (TPM) chip.

7 Conclusion and Future Work

We have presented secFleck, a TPM-based PK platform for sensor networks
that facilitates message security services such as confidentiality, authenticity and
integrity. Our evaluation shows that secFleck provides Internet-level public-key
services quickly, with low energy consumption and at low cost in terms of parts
and board size. This is followed by examples, built on secFleck, of symmetric
key management, secure RPC and secure software update, which demonstrates
that the secFleck platform is easy-to-use.

Our next step is to investigate other features of TPM modules such as secure
storages and remote attestations.

310 W. Hu et al.

Acknowledgments

The authors thank Hailun Tan (Univeristy of New South Wales, Australia), Dr.
Juanma Gonzalez Nieto (Queensland University of Technology, Australia) and
the anonymous reviewers for their comments and suggestions.

References

1. Habitat monitoring on great duck island, http://www.greatduckisland.net/
index.php

2. Habitat monitoring on james reserve, http://www.jamesreserve.edu/
3. Bernstein, B.: Circuits for integer factorization: A proposal (manuscript, 2001),

http://cr.yp.to/papers.html
4. Corke, P., Sikka, P.: Demo abstract: FOS — a new operating system for sensor

networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913. Springer, Heidelberg
(2008)

5. Deng, J., Han, R., Mishra, S.: Secure code distribution in dynamically pro-
grammable wireless sensor networks. In: IPSN 2006: Proceedings of the fifth in-
ternational conference on Information processing in sensor networks, pp. 292–300.
ACM Press, New York (2006)

6. Dinh, T.L., Hu, W., Sikka, P., Corke, P., Overs, L., Brosnan, S.: Design and de-
ployment of a remote robust sensor network: Experiences from an outdoor water
quality monitoring network. In: Second IEEE Workshop on Practical Issues in
Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland (October
2007)

7. Dutta, P.K., Hui, J.W., Chu, D.C., Culler, D.E.: Securing the deluge network pro-
gramming system. In: IPSN 2006: Proceedings of the fifth international conference
on Information processing in sensor networks, pp. 326–333. ACM Press, New York
(2006)

8. Goldwasser, S.: New directions in cryptography: twenty some years later (or cryp-
tograpy and complexity theory: a match made in heaven). In: FOCS 1997: Proceed-
ings of the 38th Annual Symposium on Foundations of Computer Science (FOCS
1997), Washington, DC, USA, p. 314. IEEE Computer Society Press, Los Alamitos
(1997)

9. Gurn, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and rsa on 8-bit cpus. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

10. Hartung, C., Balasalle, J., Han, R.: Node compromise in sensor networks: The need
for secure systems. Technical report, University of Colorado at Boulder (January
2005)

11. Hill, J., Culler, D.: Mica: a wireless platform for deeply embedded networks. IEEE
Micro 22(6), 12–24 (2002)

12. Hu, W., Tran, V.N., Bulusu, N., Chou, C.T., Jha, S., Taylor, A.: The design and
evaluation of a hybrid sensor network for cane-toad monitoring. In: IPSN 2005:
Proceedings of the 4th international symposium on Information processing in sen-
sor networks, Piscataway, NJ, USA. IEEE Press, Los Alamitos (2005)

13. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: SenSys 2004: Proceedings of the 2nd interna-
tional conference on Embedded networked sensor systems, pp. 81–94. ACM Press,
New York (2004)

http://www.greatduckisland.net/index.php
http://www.greatduckisland.net/index.php
http://www.jamesreserve.edu/
http://cr.yp.to/papers.html

secFleck: A Public Key Technology Platform for WSNs 311

14. Karlof, C., Sastry, N., Wagner, D.: Tinysec: a link layer security architecture for
wireless sensor networks. In: SenSys 2004: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pp. 162–175. ACM Press, New
York (2004)

15. Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: IPSN 2008: Proceedings of the 2008 International
Conference on Information Processing in Sensor Networks (ipsn 2008), Washington,
DC, USA, pp. 245–256. IEEE Computer Society Press, Los Alamitos (2008)

16. Needham, R., Wheeler, D.: Tea extensions. Technical report, University of Cam-
bridge (October 1997)

17. Nilsson, D.K., Roosta, T., Lindqvist, U., Valdes, A.: Key management and secure
software updates in wireless process control environments. In: WiSec 2008: Pro-
ceedings of the first ACM conference on Wireless network security, pp. 100–108.
ACM Press, New York (2008)

18. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

19. Shamir, A., Tromer, E.: On the cost of factoring rsa-1024. RSA CrytoBytes 6(2)
(2003)

20. Tan, H., Jha, S., Ostry, D., Zic, J., Sivaraman, V.: Secure multi-hop network pro-
gramming with multiple one-way key chains. In: WiSec 2008: Proceedings of the
first ACM conference on Wireless network security, pp. 183–193. ACM Press, New
York (2008)

21. Wark, T., Crossman, C., Hu, W., Guo, Y., Valencia, P., Sikka, P., Corke, P., Lee,
C., Henshall, J., Prayaga, K., O’Grady, J., Reed, M., Fisher, A.: The design and
evaluation of a mobile sensor/actuator network for autonomous animal control.
In: IPSN 2007: Proceedings of the 6th international conference on Information
processing in sensor networks, pp. 206–215. ACM Press, New York (2007)

22. Watro, R., Kong, D., Cuti, S.-f., Gardiner, C., Lynn, C., Kruus, P.: Tinypk: securing
sensor networks with public key technology. In: SASN 2004: Proceedings of the 2nd
ACM workshop on Security of ad hoc and sensor networks, pp. 59–64. ACM Press,
New York (2004)

Accurate Network-Scale Power Profiling for
Sensor Network Simulators

Joakim Eriksson, Fredrik Österlind, Niclas Finne,
Adam Dunkels, Nicolas Tsiftes, and Thiemo Voigt

Swedish Institute of Computer Science
{joakime,fros,nfi,adam,nvt,thiemo}@sics.se

Abstract. Power consumption is the most important metric in wireless
sensor network research, but existing simulation tools for measuring or
estimating power consumption are either impractical or have unclear ac-
curacy. We present COOJA/MSPSim, a practical simulation-based tool
for network-scale power estimation based on Contiki’s built-in power pro-
filing mechanism, the COOJA sensor network simulator and the MSP-
Sim sensor node emulator. We compare experimental results measured
on real sensor nodes with simulation results for three different MAC
protocols. The accuracy of our results indicates that COOJA/MSPSim
enables accurate network-scale simulation of the power consumption of
sensor networks.

1 Introduction

Power consumption is the most important metric in wireless sensor networks
because reduced power consumption leads to increased network lifetime. Many
different mechanisms for reducing the power consumption for sensor networks
have been proposed. Energy has been reduced with more efficient topology man-
agement [4], routing [20] and medium access [1, 24]. Most power-saving mech-
anisms focus on reducing radio on-time because radio communication and idle
listening are the most power-consuming task in wireless sensor networks [8, 18].
To evaluate the efficiency of power-saving mechanisms, researchers must be able
to quantify the energy consumption at the network scale.

Software-based power profiling has enabled non-intrusive and scalable power
profiling in real sensor networks [7]. The technique is based on measuring the
time that each component is active and multiplying that time by the compo-
nent’s power consumption. This method of measuring energy is accurate, but
by the nature of testbeds, it is typically limited in scale and mobility. Testbed
experiments require setup, instrumentation and infrastructure. Furthermore, the
arrangement of the nodes is usually fixed and difficult to change. Simulations,
on the other hand, scale well and handle mobility and repeatability with ease.
There exist a number of simulators for sensor networks. Some of them are able
to estimate power consumption but their accuracy has only been demonstrated
in node-local experiments.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 312–326, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Accurate Network-Scale Power Profiling for Sensor Network Simulators 313

In this paper we present COOJA/MSPSim, a power profiling tool that en-
ables accurate network-scale energy measurements in a simulated environment.
Our tool combines the sensor network simulator COOJA [16] with the MSPSim
hardware emulator [9] and Contiki’s software-based power profiler [7]. By using
the detailed instruction level emulation of the MSP430 processor, we can obtain
accurate power profiles of simulated networks in COOJA/MSPSim.

The contributions of this paper are the presentation and the evaluation of
COOJA/MSPSim. Our results demonstrate that COOJA/MSPSim enables ac-
curate network-scale power profiling for sensor networks. Our evaluation consists
of three case studies. In each case study we use a different MAC protocol to ex-
plore power profiling nuances as far down as possible in the network stack. The
MAC protocols are Low Power Probing [15], X-MAC [1], and a TDMA-based
data collection protocol called CoReDac [25]. Our case studies demonstrate that
the power measurements for both transmission and listen power in testbed and
simulation match very well. CoReDac’s transmission power is simulated with an
accuracy of around 0.6μW . Using LPP, we simulate the power consumption in
high packet transmission rate scenarios that matches the testbed results with
a difference of less than 0.8%. For the more complicated X-MAC protocol, the
difference between the experimental and simulated results is typically below 2%.

The remainder of this paper is outlined as follows. We explore related work in
Section 2. Then we describe our tool for network-scale power profiling in Section 3.
In Section 4we experimentally evaluate the accuracy of COOJA/MSPSim through
a set of case studies with different MAC protocols. Section 5 concludes our work.

2 Related Work

There are many sensor network simulators with energy estimation abilities [12,
13,21], but their accuracy has only been demonstrated in node-local experiments.
Avrora [22] is a machine code level simulator similar to MSPSim. While it offers a
cycle-accurate simulation of AVR-based nodes, it does not have a power profiler.
For this purpose, Landsiedel et al. have created the power analyzer AEON [12] on
top of Avrora. AEON is limited to TinyOS, however. Furthermore, the authors
do not compare simulation with testbed results for multi-hop applications. In
contrast, our work is aimed at power profiling at a network scale.

PowerTOSSIM [21] is an extension of TOSSIM [13] designed to estimate the
power consumption of Mica2 sensor nodes. Since TOSSIM operates at the oper-
ating system level, its granularity with respect to timing and interrupt properties
is not sufficient when nodes interact [22]. Our measurements of the radio power
consumption show that a very detailed model of the node is required to obtain ac-
curate results. Trathnigg et al. [23] improve the accuracy of PowerTOSSIM, but
for a single node only. Colesanti et al. [5] evaluated the accuracy of a multi-node
simulation using metrics such as packets sent and received. They got inaccurate
results and concluded that a more sophisticated node model is required. By using
emulated nodes in the simulation, COOJA/MSPSim uses a very detailed node
model that considerably improves the power measurement accuracy.

314 J. Eriksson et al.

Haq and Kunz compare emulated testbed results with simulation results for
mobile ad-hoc network routing protocols [10]. While their results match in low
traffic scenarios, the results differ in scenarios with higher traffic rates. In con-
trast, COOJA/MSPSim maintains the accuracy in high traffic. Cavin et al.
compare simulation results obtained with several simulators for mobile ad-hoc
networks [3]. They discovered large divergences for packet delivery rates, la-
tency and message overhead when simulating an intentionally simple flooding
algorithm in different scenarios.

Ivanov et al. show that after careful simulation parameter adjustment, NS-2
accurately models packet delivery ratios in a wireless mesh testbed [11]. The pa-
rameter adjustment did not improve the accuracy regarding connectivity and
packet latencies, however. COOJA/MSPSim allows accurate power profiling
of arbitrary nodes in the network, and is orthogonal to that of an accurate
radio model.

3 Simulation-Based Network-Scale Power Profiling

We develop COOJA/MSPSim for network-scale power estimation by combining
three existing tools: Contiki’s power profiling [7], the COOJA sensor network
simulator [16], and the MSPSim sensor node emulator [9].

3.1 Contiki Power Profiler

The built-in power profiler in Contiki estimates the power consumption of sensor
nodes in a real network. Thereby it enables scalable measurements of the power
consumption. The power profiling mechanism measures the time that hardware
components spend in different operating modes. This data is then combined
with detailed pre-measured data of power consumption for these components
into power consumption estimations. This mechanism can be implemented on
most microprocessors with very small overhead.

3.2 COOJA

The other important component of our power profiling software is the COOJA
simulator, a Java-based sensor network simulator. COOJA has the ability to mix
simulations of sensor devices at multiple abstraction levels. These levels are appli-
cation level, OS level, and hardware level. In the application level the simulated
nodes run the application logic reimplemented in Java - the native language of
COOJA. In the OS level the nodes use the same code as real nodes, but compiled
for the host machine running COOJA. Finally in the hardware level the nodes run
the same compiled code that can be used in real nodes, e.g. the same system im-
age. The hardware level is provided by MSPSim that emulates systems based on
the MSP430 processor family. By using MSPSim underneath, COOJA allows sim-
ulated nodes to execute the same system image as the one used on the real nodes.
The nodes at different abstraction levels communicate with each other using one
of the three radio propagation models available in COOJA.

Accurate Network-Scale Power Profiling for Sensor Network Simulators 315

3.3 MSPSim

MSPSim is an instruction level emulator of MSP430-based sensor network nodes.
MSPSim targets cycle accurate emulation of both the MSP430 CPU core and
built-in peripherals such as timers, serial communication and analog to digital
converters. Furthermore, MSPSim emulates external components such as the ra-
dio chip CC2420, sensors, and flash memories. MSPSim also provides emulation
of complete sensor devices such as the Tmote Sky [17] and Scatterweb ESB [19].

3.4 A Network-Scale Power Profiler

We combine the three tools presented above into an accurate network-scale
power profiler. Figure 1 shows the integrated COOJA/MSPSim architecture
with COOJA controlling MSPSim and the power profiler in Contiki that pro-
vides COOJA with the estimation of energy consumption. It also shows the sen-
sor nodes’ radio communication via the emulated CC2420 and COOJA’s radio
medium simulation. Several improvements of the involved tools are necessary to
achieve an accurate power profiling. We ensure that the components emulated
in MSPSim have the same timing as in real nodes. In addition, we integrate
MSPSim more tightly with COOJA including a more fine-grained connection
between the emulated nodes’ radio chips. In order to increase the power profil-
ing accuracy we extend the timer emulation, and improve the timing precision
of the SPI bus and the CC2420 radio transmissions.

We estimate the power consumption on a network scale in COOJA using Con-
tiki’s built-in power profiling mechanism, and we run the Contiki application on

Plugin system

Simulation scheduler and control

COOJA Simulator Core

Radio Medium

...

User interface

COOJA/MSPSim sensor network simulator

C
C

24
20

C
C

24
20

MSPSim

Contiki OS

MSPSim

Contiki OS
Power ProfilingPower Profiling

Fig. 1. The architecture of the COOJA/MSPSim simulator. MSPSim is integrated
into the COOJA simulator and Contiki’s built-in power profiler provides estimation of
power consumption.

316 J. Eriksson et al.

Fig. 2. Screenshot of power profiling in the COOJA/MSPSim simulator

emulated hardware using MSPSim. In this paper our simulations make use of
hardware-emulation for all nodes since we need accurate power profiling for the
complete network. Hence, we benefit both from COOJA’s ability to simulate
network behaviour and the on-line energy estimation in Contiki. Furthermore,
MSPSim’s sophisticated and detailed node model provides fine-grained timing
and interrupt modeling which is important for the accuracy when estimating
power consumption. Figure 2 shows a screenshot of our COOJA/MSPSim sim-
ulator during one of the evaluation experiments.

4 Evaluation

To evaluate the accuracy of our simulation-based approach, we compare the
results of the energy estimation obtained through simulation with results ob-
tained through testbed experiments. For the testbed experiments, we implement
all software in the Contiki operating system [6] and run it on Tmote Sky nodes.
The nodes use Contiki’s software-based method to measure power consumption
as described in Section 3.1. We perform the first experiments with a tree-based
data collection protocol CoReDac. Then we experiment with the MAC protocols
Low Power Probing [15] and X-MAC [1] to evaluate our power profiling accuracy
on the lowest levels of the network stack. To compute the power consumption,
we assume a voltage of 3V and a current draw of 20mA for listening and 17.7mA
for radio transmissions, as measured on Tmote Sky nodes by Dunkels et al. [7].

4.1 Case Study: Data Collection with CoReDac

Protocol Overview For this case study we use CoReDac, a TDMA-based converge-
cast protocol [25]. In contrast to other convergecast protocols such as Dozer [2],
CoReDac builds a collection tree that guarantees collision-free radio traffic.

To achieve low delay, CoReDac borrows the idea of staggered communication
from D-MAC [14] as shown in Figure 3. In D-MAC packets from nodes on the
same level can cause collisions, whereas CoReDac parent nodes avoid collisions

Accurate Network-Scale Power Profiling for Sensor Network Simulators 317

Recv Send

SendRecv

Recv
Sink

Level 1

Level 2

data

data

Recv Sendsleep

data

Recvsleep

sleep

Fig. 3. Staggered communication in CoReDac

data

data data

data

sleep t

ACK: N2;N1

sleep t+offset(2)

sleep t+offset(1)
TX

TX

RX

TX

RX

TX

N2@Level 1

N1@Level 1

Sink

ACK:
N2;N1

Fig. 4. On-demand slot assignment to avoid collisions

among packets from their children by assigning time slots for transmission to
their children. The information about the assignment is contained in the ac-
knowledgements. Acknowledgements play a pivotal role since they are also used
for synchronization and on-demand slot assignment.

Figure 4 shows how CoReDac assigns transmit slots. The figure shows that
the sink announces that N2 receives the transmit slot before N1. The sink’s
acknowledgement also signals when the sink’s next receive slot starts, namely
in sleept seconds. This way, the acknowledgements contain all information to
achieve a collision-free communication schedule between a parent node and its
children. This scheme is recursively applied towards the whole tree. In order to
avoid collisions between nodes on different levels, we set a maximum number of
children per node. Based on this maximum number, its position in the tree and
the receive slot of its parent, a node can compute its unique receive slot.

Setup and Results. We measure CoReDac’s energy-efficiency both on real hard-
ware with Contiki’s built-in power profiling mechanism and with COOJA/
MSPSim as described in Section 3. In these experiments, the maximum number
of children is set to three and sleept is set to 30 seconds. We compare networks
of different sizes namely with 4 and 15 nodes. We also simulate a network of
40 nodes. Due to the limited size of our testbed, we can simulate a network
consisting of only 15 nodes. We are able to simulate more than 40 nodes, but
then we need to increase sleept to guarantee collision-free trees. The length of
the receive slot is not dependent of the number of nodes in a network. In our

318 J. Eriksson et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Real 4 Real 15 Sim 4 Sim 15 Sim 20

R
X

 P
ow

er
 C

on
su

m
pt

io
n

(m
W

)
Listen power

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

Real 4 Real 15 Sim 4 Sim 15 Sim 40

T
X

 P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Transmission power

Fig. 5. The results from a testbed measurement of the power consumption of CoReDac
(Real) and the simulation runs (Sim) agree with each other. The left graph shows
the power consumption of the radio in listen mode and the right graph the power
consumption of the radio in transmission mode. Note that the scales are different.

CoReDac implementation, there is a small difference between the length of the
slots of the children of the same parent that depends on the order of the children.
Therefore, we expect that the power consumption is independent of the size of
the network but not exactly constant.

The left graph in Figure 5 shows CoReDac’s average power consumption per
node of the radio in listen mode that we call RX power consumption. Real n
denotes results from a testbed measurement with n nodes, whereas Sim n de-
notes simulation results with n nodes. The figure shows that the measured power
consumption on real nodes matches very well with the power consumption esti-
mated with COOJA/MSPSim. In particular, the difference between the results
does not increase with the size of the network.

The right graph in Figure 5 presents the average power consumption per node
for transmissions.The figure shows that the power consumption for transmitting
packets in CoReDac is less than 1% of the power consumption for listening
and receiving packets which confirms the measurements by Dunkels et al. [7].
As for power consumption of the radio in listen mode, the results obtained by
simulation and experiments with real hardware match well. The difference of the
power consumption for transmitting packets is less than 0.6μW . Further, the
difference between the results does not increase with the size of the simulated
networks. These results show that COOJA/MSPSim accurately power profiles
networks of nodes running TDMA-based MAC protocols.

4.2 Case Study: Low Power Probing

Protocol Overview. Low power probing (LPP) is a power-saving MAC protocol
[15]. As shown in Figure 6, LPP receivers periodically send small packets, so called
probes, to announce that they are awake and ready to receive a data packet. After
sending a probe, the receiver keeps its radio on for a short time to listen for data
packets. A sender that has a packet to be sent turns on its radio waiting for a probe

Accurate Network-Scale Power Profiling for Sensor Network Simulators 319

offtime

lpp sender

lpp receiver

data packet

time

dataprobes

Fig. 6. Low Power Probing

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

po
w

er
 c

on
su

m
pt

io
n

(m
W

)

packets per second

LPP receiver RX in COOJA
LPP receiver RX real nodes

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

po
w

er
 c

on
su

m
pt

io
n

(m
W

)

packets per second

LPP sender RX in COOJA
LPP sender RX real nodes

Fig. 7. With LPP as the underlying MAC protocol the results of the RX power con-
sumption of the receiver (top graph) and the sender (bottom graph) is accurately
simulated

from a neighbour it wants to send to. On the reception of a probe from a potential
receiver, the node sends an acknowledgement before the data packet.

The LPP implementation in Contiki contains two important parameters. On-
time determines how long a receiver keeps the radio on after the transmission
of a probe. Offtime is the time between probes. Nodes modify offtime with ran-

320 J. Eriksson et al.

dom offsets in order to avoid synchronization effects. The random offsets are
distributed uniformly between 3

4×offtime and 5
4×offtime.

Results: Sender-Receiver Scenario. In the first scenario we have one LPP receiver
and one LPP sender. We vary the packet rate at which the sender hands data
packets to the MAC layer. In the experiments, we set ontime to 1

128 seconds and
offtime to 0.25 seconds.

The results of this experiment are shown in Figure 7 and Figure 8. The top
graph of Figure 7 depicts the RX power consumption for the receiver when
the transmission rate of the sender increases from zero packets to four packets
per second. The figure shows that the basic power consumption of an LPP re-
ceiver is about 1.75 mW, namely 1.78 mW in the simulator and 1.725 mW
on real nodes. Note that this is very close to the theoretical value that is
1
33 × 20mA × 3V = 1.818mW with the assumptions above. The power is con-
sumed for keeping the radio on after the transmission of the probes. The power
consumption increases when more packets need to be received since the packet
reception requires the radio to be turned on longer than ontime. The figure also
shows that the estimated power consumption in the simulator matches the power
consumption measured with real hardware.

With a packet rate of four packets/s, the sending rate is higher than the prob-
ing rate and hence packets need to be dropped. Nevertheless, both the energy
consumption and the packet reception are accurately simulated. In
the simulation the packet rate is 87.9% on real nodes while it is 89.9% in simula-
tion. The energy consumption with 4 packet/s is very accurate with a difference
of less less than 4% for the receiver and less than 0.8% for the sender. The
results clearly demonstrate that we do not encounter the problems that Haq
and Kunz observed when comparing simulation and emulation of mobile ad hoc
routing protocols, namely a large quantitative and qualitative difference under
high traffic load [10]. The difference for lower packet rates is much smaller: for
a packet rate of 0.25 packets/s less than 0.3% for the receiver.

The bottom graph of Figure 7 depicts the RX power consumption of the
sender. Again, the results obtained by simulation match the results obtained
with real hardware very well. The figure also shows that as expected the power
consumption of the sender increases with a higher packet sending rate. With a
higher sending rate, the overall time a sender has its radio on waiting for probes
increases which causes higher RX power consumption.

Figure 8 shows that also the TX power consumption of both sender and
receiver are accurately simulated despite that the TX power consumption is
very low and hence only small timing differences could cause large relative
discrepancies.

Results: Multi-hop scenario. In the next experiment, we place a sender, a for-
warder and the sink in radio range of each other. All nodes run LPP with the
same configuration parameters as above. The sending rate of the sender is set
two packets/s. During our experiments, we do not experience any packet drops,
i.e. all packets arrive at the sink.

Accurate Network-Scale Power Profiling for Sensor Network Simulators 321

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.5 1 1.5 2 2.5 3 3.5 4

po
w

er
 c

on
su

m
pt

io
n

(m
W

)

packets per second

LPP receiver tx in COOJA
LPP receiver tx real nodes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.5 1 1.5 2 2.5 3 3.5 4

po
w

er
 c

on
su

m
pt

io
n

(m
W

)

packets per second

LPP sender tx in COOJA
LPP sender tx real nodes

Fig. 8. With LPP as the underlying MAC protocol also the TX power consumption of
the receiver (top graph) and the sender (bottom graph) are accurately simulated

Figure 9 shows the difference of the RX power consumption between the
simulation and the experiments on real nodes. For the sink, the difference is
below 2%. For the other two nodes, the difference is higher. When transmitting
a packet, these nodes need to keep the radio on until they receive a probe. Probes
are not sent at constant intervals to avoid synchronization effects, which is one
possible reason for the larger difference between simulation and results with real
nodes for nodes that transmit packets.

4.3 Case Study: X-MAC

Protocol Overview. X-MAC is a power-saving MAC protocol [1] in which senders
use a sequence of short preambles (strobes) to wake up receivers. Nodes turn off the
radio for most of the time to reduce idle radio listening. They wake up shortly at
regular intervals to listen for strobes. When a receiving node wakes up and receives
a strobe with its receiver address, the receiver replies with an acknowledgement

322 J. Eriksson et al.

 0

 1

 2

 3

 4

 5

 6

 7

Sink Forwarder Sender

di
ffe

re
nc

e
in

 R
X

 p
ow

er
 c

on
su

m
pt

io
n

(%
) difference

Fig. 9. The difference between simulated and measured RX power consumption for a
two-hop network is small

indicating that it is awake. On the reception of the acknowledgement, the sender
transmits the full packet.

The X-MAC implementation in the Contiki operating system contains two im-
portant parameters, namely ontime that determines how long a receiver keeps
the radio on when listening for strobes, and offtime, the time between two lis-
tening times.

During the tests ontime is set to 1
100s and offtime is set to 1

4s. During the
evaluation experiments the sending application sends data at a fixed packet rate
but with small variations in order to avoid synchronization between the sender
and receiver that would lead to a constant number of strobes before the receiver
wakes up. By doing this the average number of strobes required before wake-up
of the receiver is half the maximum strobes, which gives an average wake-up
time of offtime/2.

Results: X-MAC Sender and Receiver. The set-up of our first experiment with X-
MAC consists of two nodes, one sender and one receiver. We use several different

time

data packet

off time

strobes

receiver

sender

dataack

on time

Fig. 10. X-MAC: the sender strobes until the receiver is awake and can receive a packet

Accurate Network-Scale Power Profiling for Sensor Network Simulators 323

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2 2.5 3 3.5 4

po
w

er
 c

on
su

m
pt

io
n

R
X

 (
m

W
)

packets per second

XMAC sender in COOJA
XMAC sender real node

XMAC receiver in COOJA
XMAC receiver real node

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4

po
w

er
 c

on
su

m
pt

io
n

T
X

 (
m

W
)

packets per second

XMAC sender in COOJA
XMAC sender real node

XMAC receiver in COOJA
XMAC receiver real node

Fig. 11. X-MAC power consumption of radio listen (top graph) and radio transmissions
(bottom graph). Both real nodes and simulated nodes have very similar behaviour for
the senders and receivers when varying the packet ratio. This shows that the simulation
has a good accuracy when simulating X-MAC.

packet rates ranging from one packet per two seconds to four packets a second.
The latter is also the maximum speed with the used X-MAC configuration. Fig-
ure 11 shows the result of the measurements for both simulated and real nodes. The
top graph shows the power consumption of the radio while being in receive mode,
whereas the bottom graph shows the transmission power. The difference between
the average energy consumption in simulated nodes and real nodes is small, typi-
cally around two percent. The result for a packet rate of four packets/s differ more.
Initial experiments indicate that the main problem is the speed of communication
between the microprocessor and the radio chip for reading out received packets.

During the initial runs on real sensor nodes we observed a packet loss below
one percent. This packet loss was not simulated causing a small difference in
packet loss between simulation and real nodes. Since the packet loss is below
one percent this difference does not affect the results significantly.

324 J. Eriksson et al.

The results depicted in Figure 11 from both the simulations and real nodes
show that the average energy consumption for a X-MAC sender corresponds well
with our expectation of sending strobes for half the offtime before waking the
receiver.

4.4 Power Profiling Accuracy

Our experiments suggest that the results obtained through simulation match
the results obtained through testbed experiments and Contiki’s power profiling
mechanism for different MAC protocols including TDMA-based protocols, low
power probing and X-MAC low power listening. The results demonstrate that
COOJA can accurately estimate the energy consumption of interacting nodes.
For the TDMA-based CoReDac protocol we have shown that the simulation
results also match results obtained in our testbed.

Our results also confirm the findings of Colesanti et al. that argued for better
node models for improved accuracy [5]. Indeed, the results in Figure 8 initially
differed with 50%, i.e. the power consumption was 0.1 mW on real nodes com-
pared to 0.15 mW in simulation. Since transmitting a packet is inherently fast,
even small inaccuracies can be responsible for the divergence of the results. By
improving the accuracy of the timer system and the radio chip emulation in
MSPSim, we were able to almost eliminate the discrepancy and achieve a differ-
ence of less than 0.6μW between simulation and testbed results.

As mentioned in Section 2, our goal is not to validate the accuracy of the radio
models in COOJA but the radio power consumption caused by the interaction
of nodes. The TDMA-based CoReDac protocol is collision-free by design and
hence there are no collisions between nodes after the initialization phase. There-
fore, we were able to validate CoReDac’s simulated power consumption also in
the testbed. For LPP and X-MAC the actual power consumption depends very
much on the delivery rate, the risk of packet collisions and other factors that
are influenced by the environment. Therefore, we have constrained ourselves
to demonstrate COOJA’s ability to accurately simulate behaviour that relies on
fine-grained timing and interrupts when nodes interact. Nevertheless, our results
indicate that when appropriately modeling the surroundings, COOJA enables
accurate simulation of the power consumption of large-scale sensor networks.

5 Conclusions

In this paper we have presented COOJA/MSPSim, a tool for simulation-based
network-scale power profiling that combines Contiki’s on-line power profiling
mechanism, the COOJA sensor network simulator and the MSPSim sensor node
emulator. We have shown that the results obtained with COOJA/MSPSim cor-
respond well with the results obtained through measurements on real hardware.
Our results demonstrate that COOJA/MSPSim enables accurate simulation of
the power consumption of sensor networks.

Accurate Network-Scale Power Profiling for Sensor Network Simulators 325

Acknowledgements

This work was financed by VINNOVA, the Swedish Agency for Innovation Sys-
tems, and the Uppsala VINN Excellence Center for Wireless Sensor Networks
WISENET, also partly funded by VINNOVA. This work has been partially sup-
ported by CONET, the Cooperating Objects Network of Excellence, funded by
the European Commission under FP7 with contract number FP7-2007-2-224053.

References

1. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks. In: SenSys 2006: Proceedings of
the 4th international conference on Embedded networked sensor systems, Boulder,
Colorado, USA, pp. 307–320 (2006)

2. Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: ultra-low power data gath-
ering in sensor networks. In: IPSN 2007 (2007)

3. Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In:
Proceedings of the second ACM international workshop on Principles of mobile
computing, Toulouse, France (2002)

4. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring sEnsor Networks
Topologies. IEEE Transactions On Mobile Computing, 272–285 (2004)

5. Colesanti, U.M., Crociani, C., Vitaletti, A.: On the accuracy of omnet++ in the
wireless sensornetworks domain: simulation vs. testbed. In: Proceedings of the 4th
ACM workshop on Performance evaluation of wireless ad hoc, sensor, and ubiqui-
tous networks, Chania, Greece, October 2007, pp. 25–31 (2007)

6. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: Workshop on Embedded Networked Sensors,
Tampa, Florida, USA (November 2004)

7. Dunkels, A., Österlind, F., Tsiftes, N., He, Z.: Software-based on-line energy esti-
mation for sensor nodes. In: Proceedings of the Fourth Workshop on Embedded
Networked Sensors (Emnets IV), Cork, Ireland (June 2007)

8. Dutta, P., Culler, D., Shenker, S.: Procrastination might lead to a longer and more
useful life. In: Proceedings of HotNets-VI, Atlanta, GA, USA (November 2007)

9. Eriksson, J., Dunkels, A., Finne, N., Österlind, F., Voigt, T.: Mspsim – an exten-
sible simulator for msp430-equipped sensor boards. In: Langendoen, K.G., Voigt,
T. (eds.) EWSN 2007. LNCS, vol. 4373. Springer, Heidelberg (2007)

10. Haq, F., Kunz, T.: Simulation vs. emulation: Evaluating mobile ad hoc network
routing protocols. In: Proceedings of the International Workshop on Wireless Ad-
hoc Networks (IWWAN 2005), London, England (May 2005)

11. Ivanov, S., Herms, A., Lukas, G.: Experimental validation of the ns-2 wireless
model using simulation, emulation, and real network. In: Proceedings of the 4th
Workshop on Mobile Ad-Hoc Networks (WMAN 2007) (2007)

12. Landsiedel, O., Wehrle, K., Götz, S.: Accurate prediction of power consumption
in sensor networks. In: Proceedings of The Second IEEE Workshop on Embedded
Networked Sensors (EmNetS-II), Sydney, Australia (May 2005)

13. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation
of entire tinyos applications. In: Proceedings of the first international conference
on Embedded networked sensor systems, pp. 126–137 (2003)

326 J. Eriksson et al.

14. Lu, G., Krishnamachari, B., Raghavendra, C.: An adaptive energy-efficient and
low-latency mac for data gathering in wireless sensor networks. In: International
Parallel and Distributed Processing Symposium (IPDPS) (2004)

15. Musaloiu-E., R., Liang, C.-J.M., Terzis, A.: Koala: Ultra-Low Power Data Retrieval
in Wireless Sensor Networks. In: IPSN 2008 (2008)

16. Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor
network simulation with cooja. In: Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network Applications (SenseApp
2006), Tampa, Florida, USA (November 2006)

17. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low power wireless
research. In: Proc. IPSN/SPOTS 2005, Los Angeles, CA, USA (April 2005)

18. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy aware wireless
microsensor networks. IEEE Signal Processing Magazine 19(2), 40–50 (2002)

19. Schiller, J., Ritter, H., Liers, A., Voigt, T.: Scatterweb - low power nodes and en-
ergy aware routing. In: Proceedings of Hawaii International Conference on System
Sciences, Hawaii, USA (2005)

20. Shah, R.C., Rabaey, J.M.: Energy aware routing for low energy ad hoc sensor
networks. In: Proc. IEEE Wireless Communications and Networking Conference
(WCNC) (March 2002)

21. Shnayder, V., Hempstead, M., Chen, B., Allen, G.W., Welsh, M.: Simulating the
power consumption of large-scale sensor network applications. In: 2nd International
Conference on Embedded Networked Sensor Systems (ACM SenSys) (November
2004)

22. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: Proceedings of the 4th international symposium on Infor-
mation processing in sensor networks (IPSN) (April 2005)

23. Trathnigg, T., Moser, J., Weisse, R.: A low-cost energy measurement setup and
improving the accuracy of energy simulators for wireless sensor networks. In: Pro-
ceedings of REALWSN 2008 (April 2008)

24. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for
wireless sensor networks. In: Proceedings of the first international conference on
Embedded networked sensor systems, Los Angeles, California, USA (November
2003)

25. Voigt, T., Österlind, F.: CoReDac: Collision-free command-response data collec-
tion. In: 13th IEEE Conference on Emerging Technologies and Factory Automa-
tion, Hamburg, Germany (September 2008)

DHV: A Code Consistency Maintenance
Protocol for Multi-hop Wireless Sensor

Networks

Thanh Dang, Nirupama Bulusu, Wu-chi Feng, and Seungweon Park

Department of Computer Science,
Portland State University,

PO Box 751, Portland, OR, USA
{dangtx,nbulusu,wuchi,spark}@cs.pdx.edu

Abstract. Ensuring that every sensor node has the same code version
is challenging in dynamic, unreliable multi-hop sensor networks. When
nodes have different code versions, the network may not behave as in-
tended, wasting time and energy. We propose and evaluate DHV, an ef-
ficient code consistency maintenance protocol to ensure that every node
in a network will eventually have the same code. DHV is based on the
simple observation that if two code versions are different, their corre-
sponding version numbers often differ in only a few least significant bits
of their binary representation. DHV allows nodes to carefully select and
transmit only necessary bit level information to detect a newer code ver-
sion in the network. DHV can detect and identify version differences in
O(1) messages and latency compared to the logarithmic scale of current
protocols. Simulations and experiments on a real MicaZ testbed show
that DHV reduces the number of messages by 50%, converges in half the
time, and reduces the number of bits transmitted by 40-60% compared
to DIP, the state-of-the-art protocol.

Keywords: Code consistency, network reprogramming, sensor networks.

1 Introduction

Experience with wireless sensor network deployments across application domains
has shown that sensor node tasks typically change over time, for instance, to vary
sensed parameters, node duty cycles, or support debugging. Such reprograming
is accomplished through wireless communication using reprogrammable devices.
The goal of network reprogramming is to not only reprogram individual sensors
but to also ensure that all network sensors agree on the task to be performed.

Network reprogramming is typically implemented on top of data dissemination
protocols. For reprogramming, the data can be configuration parameters, code
capsules, or binary images. We will refer to this data as a code item. A node must
detect if there is a different code item in the network, identify if it is newer, and
update its code with minimal reprogramming cost, in terms of convergence speed
and energy.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 327–342, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

328 T. Dang et al.

Network reprogramming must address two main challenges — node unrelia-
bility and network dynamics. In a static network, sensor nodes run on batteries,
leading to inconsistent behaviors, with periods of no operation followed by ac-
tive periods. Radio communication is also known to be unreliable and dynamic
with intermittent connectivity and link asymmetry. Sensor networks are becom-
ing more dynamic due to mobility. Mobile sensor nodes might dynamically leave
and join a network, requiring that they also vary their tasks dynamically. For in-
stance, a sensor equipped car might be tasked to report carbon emissions within
city A but to report temperature in city B. In this case, even if code items are
disseminated correctly to all connected nodes during the reprogramming period,
some nodes may not have the current code version.

Naturally, this creates the need for a protocol to ensure that all network nodes
have the same up-to-date code items, which we refer to as a Code Consistency
Maintenance Protocol (CCMP). Depending upon the application, the bandwidth
and energy consumption of a CCMP can be comparable to sensing, particularly
for networks with mobility or large churn. The key requirements for a CCMP
are that they:

– ensure all network nodes eventually have the same updated code
– enable a node with an old code item to discover a newer code item and

update it with low latency
– conserve energy and bandwidth
– scale with both the network size and the total number of code items

We represent code items as a set of (key, version) tuples. Each key uniquely
identifies a code item. The corresponding version indicates if the code item is
old or new (the higher the version, the newer the code). A CCMP allows any
node to discover if there is a (key, version) tuple in the network with the same
key but a different version compared to its own tuple. A natural approach is
to allow a node to keep querying its neighbors, to find if there is a new code
item by comparing its own tuple to its neighbors tuples. If there are only two
nodes and one code item, a node can simply broadcast it own (key, version)
tuple periodically. In a realistic scenario involving hundreds of dynamic nodes
and hundreds of code items, a node should ask smart questions at the right time
to discover if it needs an update. This requires careful CCMP design to reduce
code update latency and to conserve both energy and bandwidth.

Previous CCMP protocols like DRIP [1] and DIP [2] incur high latency, high
cost and may be complicated. Both DRIP and DIP are built on top of Trickle
[3], a self-regulating algorithm for code propagation and maintenance in wireless
sensor networks. In DRIP, a node randomly broadcasts each of its own (key,
version) tuples to its neighbors separately. DRIP scales linearly with the total
number of items (O(T)). DIP improves the total number of messages and latency
to O(log(T)) by searching for a different (key, version) using hashes of the (key,
version) tuples. A common feature in both approaches is that they try to detect
and identify differences of versions as a whole.

In this paper, we propose a new code consistency maintenance protocol called
DHV. We observe that if two versions are different, they often only differ in

DHV: A Code Consistency Maintenance Protocol 329

a few least significant bits of their version number rather than in all their bits.
Hence, it is not necessary to transmit and compare the whole version identifier
in the network. DHV aims to detect and identify differences of version-levels for
code items with the goal of transmitting much less data in the network compared
to DRIP and DIP. The name DHV comes from the three steps in the protocol —
Difference detection, Horizontal search, and Vertical search. Each step requires
only O(1) total messages and latency with respect to the total number of items.
So DHV can identify a difference with as few as 3 transmissions.

The contributions of this paper are as follows:

– We design and implement DHV, a code consistency maintenance protocol
for wireless sensor networks (Sections 3, 4 and 5). DHV is simple, intuitive,
and easy to adapt to current systems. DHV does a two dimensional search
to identify exactly where the different (key, version) tuples are. DHV can
detect and identify differences in O(1).

– We evaluate DHV using simulations and real-world experiments on a MicaZ
testbed, comparing it to state-of-the-art CCMP protocols (Section 6). Our
results show that DHV reduces the number of messages by 50%, converges
in half the time, and reduces the number of bits transmitted by 40-60%.
Potentially, DHV can conserve significant energy compared to DIP, a state-
of-the-art CCMP protocol.

2 Related Work

Code consistency management protocols can be thought of as a complement
to data (code) dissemination protocols because a CCMP helps to efficiently
discover when a node needs updates. Several dissemination protocols like Deluge
[4], Sprinkler [5], and MNP [6] were developed to reprogram the whole network
by disseminating new binaries. Maté [7] and Tenet [8] break a program into
small code capsules or virtual programs and disseminate them to reprogram the
sensors. Finally, DRIP [1], DIP [2], and Marionette [9] disseminate configuration
parameters that can change sensor tasks.

Early attempts tried to adapt epidemic algorithms [10] to disseminate code
updates during specific reprogramming periods. But there is no way for new
nodes to discover past updates. If a node is not updated during the reprogram-
ming period, it will never get updated. To discover if a node needs an update, a
natural approach is to query or advertise its information periodically. The net-
work as a whole may transmit an excessive and unnecessary number of query
and advertisement messages. To address this problem, Levis et al [3] developed
the Trickle protocol to allow nodes to suppress unnecessary transmissions. In
Trickle, a node periodically broadcasts its versions but politely keeps quiet and
increases the period if it hears several messages containing the same information
as it has. When a difference is detected, the node resets the period to the lowest
preset interval. Trickle scales well with the number of nodes and has successfully
reduced the number of messages in the network.

330 T. Dang et al.

Table 1. Complexity Comparison of different CCMP protocols

Protocol Total cost Latency
Scan Serial O(T) O(T)

Scan Parallel O(T) O(1)
DIP O(Nlog(T)) O(log(T))
DHV O(N) O(1)

However, the total messaging cost of a naive approach using Trickle scales
linearly with the total number of code items, according to [2]. Lin et al [2]
proposed DIP, a dissemination protocol that scales logarithmically with the total
number of items. In DIP, a node periodically broadcasts a summary message,
containing hashes of its keys and versions. The use of hashing helps detect if there
is a difference in O(1). But, once a difference is detected, DIP requires multiple
iterations to hone in on the exact code items that have different version numbers.
The search is analogous to a binary search in a sorted array. Therefore, DIP has
O(log(T)) complexity in both the time and the number of messages required to
identify an item that needs an update. DIP uses a bloom filter to further improve
the search but it requires extra bytes to be included in every summary message.
If there are N new items, then the total number of messages is O(Nlog(T)).

Ideally, when there are N new items (N < T), we would like to transmit just
enough information to identify these N items to update. Both Trickle and DIP
transmit redundant information, O(T) and O(Nlog(T)) respectively, to identify
difference in version numbers. However, if two versions differ by even one bit in
their binary representation, the two versions are different from each other. Based
on this fact, we develop the DHV protocol, which can detect the differences in
O(1) complexity in both time and total number of transmitted messages. The
total number of messages required to identify which items have newer versions
is O(N). 1 Table 1 shows a complexity comparison of different CCMP protocols.

3 Design Philosophy and Assumptions

3.1 Design Philosophy

Bit-level identification: Previous CCMPs have transmitted the complete version
number for a code item. We observe that it may not always be necessary to do
so. We treat the version number as a bit array, with the versions of all the code
items representing a two dimensional bit array. DHV uses bit slicing to quickly
zero in on the out of date code segment, resulting in fewer bits transmitted in
the network.

Statelessness : Keeping state in the network, particularly with mobility, is not
scalable. DHV messages do not contain any state and usually small in size.
1 Strictly speaking, the DHV cost has one component with O(T). However, the con-

stant is very small and O(T) is often less than 2 messages for T less than 256. Please
refer to 4.1 for further details.

DHV: A Code Consistency Maintenance Protocol 331

Preference of a large message over multiple small messages: To reduce energy
consumption, it is better to transmit as much information possible in a single
maximum length message rather than transmit multiple small messages. Sensor
nodes turn off the radio when they are idle to conserve energy. Radio start-up
and turn-off times (300 microseconds) are much longer than the time used to
transmit one byte (30 microseconds) [11]. A long packet may affect the collision
rate and packet loss. However, that effect only becomes noticeable under bursty
data traffic conditions.

3.2 Assumptions

We assume that the order of code items in the set of (key, version) tuples is the
same at all nodes, by using the same sorting algorithm at all nodes as the keys
are often assigned at a base station and are unique. This assumption allows DHV
to identify which items need updates from the indices of the different versions.
In rare cases, nodes might have a different number of items, requiring that they
compare every (key, version) tuple to identify which items are missing. We do
not address these rare cases here.2

We also assume that the version number is incremented by only one for each
update. This assumption is reasonable and implicitly made in both DRIP and
DIP.3 It allows us to infer that, if two version numbers are different, they mostly
differ in a few least significant bits. DHV exploits this assumption to restrict the
comparison scope to only a few least significant bits of the versions.

4 The DHV Protocol

DHV has two main phases — detection and identification. In detection, each
node broadcasts a hash of all its versions called a SUMMARY message. Upon
receiving a hash from a neighbor, a node compares it to its own hash. If they
differ, there is at least one code item with a different version number.

In identification, the horizontal search and vertical search steps identify which
versions differ. In horizontal search, a node broadcasts a checksum of all versions,
called a HSUM message. Upon receiving a checksum from a neighbor, the node
compares it to its own checksum to identify which bit indices differ and proceeds
to the next step. In vertical search, the node broadcasts a bit slice, starting at
the least significant bit of all versions, called a VBIT message. If the bit indices
are similar, but the hashes differ, the node broadcasts a bit slice of index 0 and
increases the bit index to find the different locations until the hashes are the
same. Upon receiving a VBIT message, a node compares it to its own VBIT
to identify the locations corresponding to the differing (key, version) tuples.
After identifying which (key, version) tuples differ, the node broadcasts these

2 We plan to address these cases in the future as we integrate DHV with current
dissemination protocols.

3 In the implementations of DRIP and DIP, each time a code item is updated, its
version number is incremented by 1.

332 T. Dang et al.

Fig. 1. Main steps in the DHV protocol. DHV completes a search in only three steps,
having 0(1) complexity in both latency and cost.

(key, version) tuples in a VECTOR message. Upon receiving a VECTOR mes-
sage, a node compares it to its own (key, version) tuple to decide who has the
newer version and if it should broadcast its DATA. A node with a newer version
broadcasts its DATA to nodes with an older version.

Figure 1 illustrates the DHV protocol steps to complete a search to identify
which vectors differ. DHV requires O(1) in both latency and cost to identify all
the differences, in contrast to DIP, which requires O(log(T)) in both latency and
cost for searching.

Figure 2 illustrates how DHV works. Node 1 and Node 2 have a set of keys and
versions, in which key number 2 has different versions. Node 1 first broadcasts its
SUMMARY hash of all the versions. Node 2 receives hash 1 and sees that hash 1
is different from hash 2 of node 2. Hence, node 2 broadcasts its HSUM message,
checksum of all versions. Node 1 receives the HSUM message 2 and compares
it to its own checksum. Node 1 identifies that the 2nd bits differ. Hence, node
1 copies the 2nd bit of all the versions into one or more VBIT messages and
broadcasts them. Node 2 receives a VBIT message, compares it to its own VBIT
message and detects that the 2nd bits differ. Hence, node 2 knows that the item
with key index 2 is different from its neighbors. Node 2 broadcasts a VECTOR
message containing (key 2, version 2). Node 1 receives (key 2, version 2) from
node 2 and sees that node 1 has a newer version of this item. Hence, node 1
broadcasts the DATA of key 2.

DHV: A Code Consistency Maintenance Protocol 333

Fig. 2. DHV protocol example. Nodes identify a difference in only 3 steps.

4.1 Message Formats

DHV uses 5 message types (Figure 3). One byte is used to indicate message type.

SUMMARY : This message contains the hash of all versions as well as the random
seed used for hashing. It contains the least amount of information. A node can
only detect if there is a difference or not using this message.

HSUM : This message contains the checksum of all versions, the hash of all
versions as well as the random seed used for hashing. It is used to identify which
bit indices differ.

VBIT : This message contains the corresponding bits of all versions and is used
to identify which vectors differ. The bits corresponding to the differing indices
of the VBIT messages are identified from the HSUM messages. If two HSUM
messages are similar but the SUMMARY messages differ, the VBIT messages
for the least significant bit indices are compared. This approach is suitable as
the versions mostly differ in a few least significant bits. The VBIT size can be
varied. DHV prefers large messages over multiple small messages. The VBIT
message often has either the maximum packet length or the smallest size that
can fit all the corresponding bits of all versions. The size of this message scales
linearly with the total number of code items. However, the constant factor is
very small. Hence, DHV transmits only a few VBIT messages for searching.

334 T. Dang et al.

4 4
SALT HASH

4
CHECK

SUM

4 4
SALT HASH

4 4
SALT HASH

1
T

1
T

1
T

1
N

1
B

1
V

...
VBIT

1
T

1
L

4 4
KEY 1 VERSION 1

4 4
KEY 2 VERSION 2

...
...

T

4 4
KEY 1 VERSION 1

1
DATA

...

SUMMARY

HSUM

VBIT

VECTOR

DATA

MESSAGE
TYPE

FORMAT

Fig. 3. DHV message format

VECTOR: This message contains one or more (key, version) tuples, and is used
to identify who has newer versions to and send the code items.

DATA: This message contains the actual code items to be updated.

4.2 Suppression Mechanism

Suppression mechanisms must be carefully designed to avoid flooding the net-
work. As in Trickle, we develop our own suppression mechanism appropriate for
DHV. A decision if to send out a message is made when a Trickle timer fires
after a specified time interval. When the timer fires, if a node has DATA, VBIT,
or HSUM messages to send, it will send one message out, selected by order of
importance, DATA, VBIT, and HSUM messages. If there are no DATA, VBIT,
HSUM messages to send and the node has heard two or more messages in the
last interval, it decides to suppress its own messages. Otherwise, the node will
send either the VECTOR or the SUMMARY message. If a SUMMARY message
is sent, the next time interval is doubled as it expects that the network is stable.

5 Implementation

We have implemented DHV in TinyOS 2.1 and tested the protocol with MicaZ
motes. DHV uses the Trickle timer [7] to control transmission suppression. Sim-
ilar to DIP, both key and version in DHV are 4 bytes. The key and version sizes
can be adjusted for the application. Table 2 compares DHV memory usage to
DIP. They are largely similar, but DHV uses more RAM than DIP. We plan to
carefully optimize the code implementation and believe that the RAM usage can
be reduced significantly in subsequent versions.

DHV: A Code Consistency Maintenance Protocol 335

Table 2. DHV Implementation Statistics

Item DIP DHV
ROM (Byte) 20K 19K
RAM (Byte) 534 8739

Compiled code size (Byte) 63K 81K

6 Experimental Design and Analysis

6.1 Goals and Metrics

Previous work has shown that DIP outperforms other CCMP protocols [2]. Our
experimental goals are to study if DHV performs better than the state-of-the-art
DIP protocol over different scenarios. We use the following metrics to evaluate
the performance, with a lower value indicating better performance for all metrics.

– Total latency to update new items. This metric indicates how fast a CCMP
can help the network converge.

– Total numbers of transmitted messages and transmitted bytes to update new
items. These metrics indirectly represent energy and bandwidth
consumption.

– Total number of transmitted DATA messages. DATA can be as small as a
few bytes or as big as several KBytes.

– Latency of the first transmitted DATA message. This metric indicates how
quickly a new item is discovered.

6.2 Methodology

We conducted both simulations using TOSSIM [12], a discrete event simulator
tool for wireless sensor networks, and experiments using our DHV implementa-
tion on a real MicaZ sensor network testbed (Figure 4 Left).

TOSSIM does not allow simulation of packet loss directly. Instead, the packet
loss depends on several parameters like receiving gain, noise, and clear channel
access threshold. As a first step, we studied the effect of these parameters on
packet loss. We simulated a two-node network. The noise is simulated using the
state-of-the-art closest pattern matching approach with noise traces from the
Stanford Meyer library, available in the TinyOS source code. Due to memory
limitations, we only use the first 1000 entries in the trace, which is well above
the minimum requirement of 100 entries. Figure 4 (Right) shows the packet loss
rate versus receiving gain. The receiving gains correspond to packet loss rates
of 5, 10, 15, 20, 25, 30, 35, 40, and 45% are -70, -74, -76, -78, -81, 84, -87,-
88, -89dBM, respectively. We conducted three sets of experiments. Two sets are
simulation-based and one is on a real MicaZ sensor network. The first set studies
how DHV performance is impacted by different parameters including the total
number of items T , the total number of new items N , the packet loss rate L, and
the density D. Density refers to the number of radio communication neighbors.
We compare DHV and DIP in a clique network. The default setting is D =

336 T. Dang et al.

−120 −100 −80 −60 −40
0

20

40

60

80

100
packet loss versus receiving gain

receiving gain (dBm)

pa
ck

et
 lo

ss

Fig. 4. (Left) Real MicaZ Testbed. (Right) Packet loss versus receiving gain using
TOSSIM simulation.

32 (nodes), T = 64 (keys), N = 8 (keys), L = 5%. We vary D, T , N , and
L and observe the total numbers of transmitted messages, transmitted bytes,
and DATA messages, the true dissemination time, and the latency until the first
data is sent out. Each experiment is repeated 10 times to account for randomness
in timing. Like DIP, DHV uses 2 key/version tuples per VECTOR message to
ensure comparability.

The second set includes two experiments with a medium and a tight density
multi-hop network. The total number of nodes is 225. The topology and link
configurations are extracted from example files in TOSSIM (15-15-medium-
mica2-grid.txt and 15-15-tight-mica2-grid.txt in tossim/topologies directory).
We observe the total number of transmitted messages and bytes required to
complete updating as well as the update progress in terms of time.

Finally, we experimented with a real MicaZ sensor network testbed. We var-
ied the number of sensor nodes and observed the total number of transmitted
messages and total time required to complete updating the whole network. Un-
fortunately, the latest version of DIP on TinyOS 2.1 did not function properly on
the MicaZ platform. Due to time constraints and lack of hardware, the TinyOS
maintainers were unable to verify the problem. Hence, we can only evaluate DHV
experimentally, and not compare it to DIP.

6.3 Experimental Results

DHV Performance versus Total Number of Items. Figure 5 compares
DHV and DIP when we vary the total number of items, T . DHV performance
is relatively constant with T . Meanwhile, the cost and latency in DIP increases
as T increases. As an example case, when T = 64, nodes using DHV transmit
only about 40% of the total number of messages and complete reprogramming
within 45% of the time taken by nodes using DIP. The discovery latency for the
first new item in DHV is also a constant. Nodes using DHV also transmit only
about 50% of the total number of DATA messages and less than 50% of the total
number of bytes compared to nodes using DIP.

DHV: A Code Consistency Maintenance Protocol 337

0 50 100 150
20

40

60

80

100

120
total latency versus total items

total number of items

la
te

nc
y

(s
ec

on
d)

dip
dhv

0 50 100 150
0

50

100

150

200

total number of items

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

total transmitted messages versus total items

dip
dhv

0 50 100 150
1000

2000

3000

4000

5000

6000

7000

total number of items

to
ta

l t
ra

ns
m

itt
ed

 b
yt

es

total transmitted bytes versus total items

dip
dhv

0 50 100 150
10

15

20

25

total number of items

to
ta

l t
ra

ns
m

itt
ed

 d
at

a
m

es
sa

ge
s

total data messages versus total items

dip
dhv

0 50 100 150
0

5

10

15

20

25

30
latency of the first data versus total items

total number of items

la
te

nc
y

(s
ec

on
d)

dip
dhv

Fig. 5. Total latency versus total items: D = 32, N = 8, L = 5%. T varies from
8 to 128.

DHV Performance versus Total Number of New Items. Figure 6 com-
pares DHV and DIP when we vary the number of new items. DHV always uses
fewer messages than DIP and uses only half the time to complete updating the
network. For example, when N = 32, DHV uses about 70% of the messages of
DIP and completes reprogramming in half the time.

DHV Performance versus Network Density. Figure 7 compares DHV and
DIP when we vary the density of the network. DHV completes updating twice
faster and uses 50% fewer messages than DIP. Since, DHV uses smaller size

338 T. Dang et al.

0 20 40 60 80
0

100

200

300

400
total latency versus total new items

total of new items

la
te

nc
y

(s
ec

on
d)

dip
dhv

0 20 40 60 80
0

200

400

600

800

total of new items

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

total transmitted messages versus total new items

dip
dhv

Fig. 6. Total latency versus total new items: D = 32, T = 64, L = 5%. N varies from
8 to 64.

0 20 40 60 80
20

40

60

80

100
total latency versus density

density

la
te

nc
y

(s
ec

on
d)

dip
dhv

0 20 40 60 80
0

50

100

150

200

density

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

total transmitted messages versus density

dip
dhv

Fig. 7. Total latency versus network density: T = 64, N = 8, L = 5%. D varies from
8 to 64.

messages than DIP except for the VBIT message, the total transmitted bytes in
DHV are also much smaller than DIP.

DHV Performance versus Packet Loss Rate. Figure 8 compares DHV and
DIP when we vary the packet loss rate. DHV completely outperforms DIP in
terms of latency. DHV completes updating ten times faster than DIP while using
only half the number of messages. Unlike previous experiments, DHV and DIP
use similar numbers of DATA messages. But both DHV and DIP exhibit a high
performance variation, that increases with the packet loss rate.

DHV Performance in Multi-hop Networks. Figure 9 shows the total num-
ber of transmitted messages and bytes to complete updating a multi-hop network
using DHV and DIP. As expected, a denser network requires fewer total num-
ber of messages for updating data. In both medium and tight density networks,
DHV uses about 60% to 70% number of messages and about 50% number of bytes
compared to DIP. Figure 10 plots the update progress time versus the number

DHV: A Code Consistency Maintenance Protocol 339

0 10 20 30 40 50
0

200

400

600

800

1000

1200
total latency versus packet loss

packet loss (%)

la
te

nc
y

(s
ec

on
d)

dip
dhv

0 10 20 30 40 50
0

100

200

300

400

packet loss (%)

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

total transmitted messages versus packet loss

dip
dhv

Fig. 8. Total latency versus network density: D = 32, T = 64, N = 8. Packet loss rate
L varies from 5% to 45%.

1 2
0

1000

2000

3000

4000

5000

6000

7000

8000
total transmitted messages for multihop networks

density

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

dip
dhv

1 2
0

0.5

1

1.5

2

2.5

3x 10
5 total transmitted bytes for multihop networks

density

to
ta

l t
ra

ns
m

itt
ed

 b
yt

es

dip
dhv

Fig. 9. Total transmitted messages for multi-hop networks

0 50 100 150 200 250
50

100

150

200

250

300
total latency − medium density

number of completed node

tim
e

(s
ec

on
d)

dip
dhv

0 50 100 150 200 250
0

50

100

150

200
total latency − tight density

number of completed node

tim
e

(s
ec

on
d)

dip
dhv

Fig. 10. Convergence time for multi-hop networks

of completed nodes for both DHV and DIP. In update completion time, DHV
is at least two times faster than DIP in medium density networks and nearly
five times faster in tight density networks. In the medium density network, both

340 T. Dang et al.

0 20 40 60
0

20

40

60

80

100

120

140
total transmitted messages versus density

density

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s dhv−simulation
dhv−real

0 20 40 60
0

20

40

60

80
total latency versus density

density

la
te

nc
y

(s
ec

on
d)

dhv−simulation
dhv−real

Fig. 11. Total transmitted messages versus network density: T = 64, N = 8, D is
varied from 8 to 56 nodes

DHV and DIP update completion times grow linearly with the completed nodes
because in each transmission, only a few nodes can receive the messages. The
update progresses from the node with the new items and spreads out to the
whole network. Hence, the number of completed nodes grows linearly with time.
In contrast, in the tight density network, when a node broadcasts, most other
nodes receive the message. Hence, the network converges quickly. The inflection
point when the number of completed nodes is around 200 can be explained by
the fact that some nodes always receive messages with high noise. It takes much
longer to complete updating these nodes.

DHV Performance on a real MicaZ test-bed. Figure 11 shows the total
number of transmitted messages and the update completion time on a real MicaZ
network. There are total T=64 items and N=8 new items. The number of nodes
is varied from 8 to 56 nodes. Surprisingly, DHV performs better in the real
testbed than the simulation in section 6.3. DHV uses both fewer total messages
and completes updating earlier in the real testbed than in the simulation. This
might be explained by the fact that in the simulation the packet loss rate is 5%
while the packet loss rate of the testbed is pretty low.

7 Discussion

Unlike dissemination protocols like Deluge or MNP [4,6], which address the prob-
lem of how to disseminate code items in the network, code consistency manage-
ment protocols address the problem of when to perform code updates. Therefore,
it is important to ensure that the two protocols can be integrated well. The DHV
protocol enables a dissemination protocol to decide when to begin transferring a
new code item in the network so that the network can be updated quickly while
still conserving energy. This decision making process can be independent from the
operation of the dissemination protocol. Hence, the DHV protocol should work
well with the existing dissemination protocols. We plan to integrate the DHV pro-
tocol with Deluge in the next source code release. Sensor networks are becoming

DHV: A Code Consistency Maintenance Protocol 341

more heterogeneous with devices based on different hardware/software platforms,
having different numbers of code items. Ensuring code consistency for such net-
works is challenging, and a future research topic.

8 Conclusion

We have proposed and evaluated the DHV protocol to maintain code consistency
in wireless sensor networks. The key innovation in DHV is that it reduces the
number of transmitted bytes in the network by carefully selecting and transmit-
ting only absolutely necessary information at the bit level to detect and identify
which code items need updates. Together with a carefully designed suppression
mechanism, DHV is able to reduce the total number of messages significantly.
Theoretically, DHV can identify differences with O(1) complexity in the total
number of items instead of logarithmically compared to DIP. Simulations and
real-world experiments validate that DHV performs at least twice better than
the state-of-the-art DIP protocol. We believe that DHV can not only be used
in wireless sensor networks but also in other distributed applications that re-
quire data consistency. The preliminary version of the DHV source code can be
downloaded at http://sys.cs.pdx.edu/home/dhv.

Acknowledgments. This research was supported in part by National Science
Foundation grants 0514818 and 0722063. Any opinions, findings, conclusions or
recommendations it contains are those of the authors, and do not necessarily
reflect the views of the Foundation.

References

1. Tolle, G., Culler, D.: Design of an application-cooperative management system
for wireless sensor networks. In: Proceedings of the 2nd European Workshop on
Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey (2005)

2. Lin, K., Levis, P.: Data discovery and dissemination with dip. In: Proceedings of
the 2008 International Conference on Information Processing in Sensor Networks
(IPSN 2008), Washington, DC, USA, pp. 433–444. IEEE Computer Society Press,
Los Alamitos (2008)

3. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. In: Proceedings of
the 1st conference on Symposium on Networked Systems Design and Implementa-
tion (NSDI 2004), Berkeley, CA, USA, p. 2. USENIX Association (2004)

4. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: Proceedings of the 2nd international conference
on Embedded networked sensor systems (Sensys 2004), pp. 81–94. ACM, New York
(2004)

5. Naik, V., Arora, A., Sinha, P., Zhang, H.: Sprinkler: A reliable and energy efficient
data dissemination service for wireless embedded devices. In: Proceedings of the
26th IEEE International Real-Time Systems Symposium (RTSS 2005), Washing-
ton, DC, USA, pp. 277–286. IEEE Computer Society Press, Los Alamitos (2005)

http://sys.cs.pdx.edu/home/dhv

342 T. Dang et al.

6. Kulkarni, S.S., Wang, L.: Mnp: Multihop network reprogramming service for sen-
sor networks. In: Proceedings of the 25th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS 2005), Washington, DC, USA, pp. 7–16.
IEEE Computer Society Press, Los Alamitos (2005)

7. Levis, P., Gay, D., Culler, D.: Active sensor networks. In: Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation (NSDI
2005), Berkeley, CA, USA, pp. 343–356. USENIX Association (2005)

8. Gnawali, O., Jang, K.Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., Joki,
A., Estrin, D., Kohler, E.: The tenet architecture for tiered sensor networks. In:
Proceedings of the 4th international conference on Embedded networked sensor
systems (SenSys 2006), pp. 153–166. ACM Press, New York (2006)

9. Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta,
P., Culler, D.: Marionette: using rpc for interactive development and debugging of
wireless embedded networks. In: Proceedings of the fifth international conference
on Information processing in sensor networks (IPSN 2006), pp. 416–423. ACM,
New York (2006)

10. Akdere, M., Bilgin, C.Ç., Gerdaneri, O., Korpeoglu, I., Ulusoy, Ö., Çetintemel,
U.: A comparison of epidemic algorithms in wireless sensor networks. Computer
Communications 29(13-14), 2450–2457 (2006)

11. Kramer, M., Geraldy, A.: Energy measurements for micaz node. Technical Report,
Technical University Kaisers Lautern,GI/ITG KuVS, 1–7 (2006)

12. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation
of entire tinyos applications. In: Proceedings of the 1st international conference on
Embedded networked sensor systems (Sensys 2003), pp. 126–137. ACM Press, New
York (2003)

Sensornet Checkpointing: Enabling
Repeatability in Testbeds and Realism in

Simulations

Fredrik Österlind, Adam Dunkels, Thiemo Voigt,
Nicolas Tsiftes, Joakim Eriksson, and Niclas Finne

Swedish Institute of Computer Science
{fros,adam,thiemo,nvt,joakime,nfi}@sics.se

Abstract. When developing sensor network applications, the shift from
simulation to testbed causes application failures, resulting in additional
time-consuming iterations between simulation and testbed. We propose
transferring sensor network checkpoints between simulation and testbed
to reduce the gap between simulation and testbed. Sensornet check-
pointing combines the best of both simulation and testbeds: the non-
intrusiveness and repeatability of simulation, and the realism of testbeds.

1 Introduction

Simulationhas proven invaluable during development and testing ofwireless sensor
network applications. Simulation provides in-depth execution details, a rapid pro-
totyping environment, nonintrusive debugging, and repeatability. Before deploy-
ing an application, however, testing in simulation is not enough. The reason for
this, as argued by numerous researchers, is over-simplified simulation models, such
as the simulated radio environment. To increase realism, testbeds are employed as
an inter-mediate step between simulation and deployment. Testbeds allow appli-
cations to be run on real sensor node hardware, and in realistic surroundings. Mi-
grating an application from simulation to testbed is, however, expensive [8,21,26].
The application often behaves differently when in testbed than in simulation. This
causes additional time-consuming iterations between simulation and testbed.

To decrease the gap between simulation and testbed, hybrid simulation has
been proposed [12, 15, 23, 24]. Hybrid simulation contains both simulated and
testbed sensor nodes. Although hybrid simulation is feasible for scaling up net-
works – to see how real nodes behave and interact in large networks – it does
not benefit from many of the advantages of traditional simulation. Testbed nodes
do not offer nonintrusive execution details. Tests are not repeatable due to the
uncontrollable testbed environment: the realism, one of the main advantages of
hybrid simulation. Finally, test execution speed is fixed to real-time; it is not
possible to increase the test execution speed as when with only simulated nodes.

We propose a drastically different approach for simplifying migration from
simulation to testbed. In our approach every node exists both in testbed and
simulation. We checkpoint and transfer network state between the two domains.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 343–357, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

344 F. Österlind et al.

The entire network is at any given time, however, executing only in either sim-
ulation or testbed.

Our approach benefits from advantages of both simulation and testbeds: non-
intrusive execution details, repeatability, and realism. By transferring network
state to simulation, we can benefit from the inherent properties of simulation
to non-intrusively extract network details. We can deterministically repeat exe-
cution in simulation, or repeatedly roll back a single network state to testbed.
Finally, we benefit from the realism of real hardware when the network is exe-
cuted in testbed.

To highlight benefits of moving network state between simulation and testbed,
consider the following example. A batch-and-send data collection application is
executing in a testbed, and is periodically checkpointed by the testbed software.
One of the network checkpoints is imported into simulation, and so the simulator
obtains a realistic network state. While in simulation, network details can be
non-intrusively extracted and altered. Extracting details this way is comparable
to having a hardware debugging interface, such as JTAG, to every node in the
testbed: the full state is available without explicit software support on the nodes.
In contrast to with hardware debugging interfaces, however, network execution
may be continued in simulation.

Simulation provides good debugging and visualization tools, but may not ac-
curately measure environment-sensitive parameters such as multi-hop through-
put. Hence, when a collector node is about to send its batched data, the
network state is moved back to testbed for accurately measuring the bulk trans-
fer throughput on real hardware. Note that this checkpoint can be imported
into testbed multiple times, repeating the same scenario, resulting in several
throughput measurements.

The rest of this paper is structured as follows. After introducing our check-
pointing approach and its application areas in Section 2, we implement it in
Section 3. The approach is evaluated in Section 4. Finally, we review related
work in Section 5, and conclude the paper in Section 6.

2 Sensornet Checkpointing

Sensornet checkpointing is mechanism for extracting network state from both
real and simulated networks. A network checkpoint consists of the set of all
sensor node states. Extracted node states can be stored local to each node for
offline processing, such as in external flash. When network execution is finished,
node states are extracted from external flash to be analyzed. Node state can
also be transferred online to outside the network via radio or serial port. A
network rollback, the opposite of checkpointing, restores a previously extracted
state to the network. Both checkpointing and rolling back network state can
be performed at any time, and is synchronous: states from all network nodes
are extracted and restored at the same time. During checkpoint and rollback
operations, the network is frozen, so the operations are nonintrusive to regular
network execution. Figure 1 demonstrates network checkpointing.

Sensornet Checkpointing 345

Fig. 1. Checkpointing freezes all nodes in the network at a given point in time. The
state of all network nodes can be either stored on the individual nodes for offline
processing, or directly downloaded to an external server.

Although sensornet checkpointing is a general mechanism, in this paper we
focus only on online checkpointing via wired connections. Freezing and unfreez-
ing networks is implemented by serial port commands that stop respectively
start node execution. Individual node states are transferred only when the en-
tire network is frozen. Checkpoints could be transferred over radio links for use
in deployed networks without wired connections. In this paper we only consider
transferring network state between testbeds and simulation.

Node state can be analyzed to extract detailed execution details, such as
internal log messages, past radio events, or energy consumption estimates. A
node state can also be altered before rolling back the network state. By altering
a node state, the node can be reconfigured or injected with faults.

Checkpointing is performed on both simulated and real networks, and a net-
work checkpoint can be rolled back to either simulation or testbed. Hence, by
checkpointing in one domain and rolling back to another, we transfer the net-
work state between the domains, for example from testbed to simulation. Since
checkpointing is performed non-intrusively (all nodes are frozen), we benefit from
advantages associated with both simulation and testbed. For example, we can
use powerful visualization and debugging tools available only in simulation on a
network state extracted from testbed.

Network checkpointing can be integrated into testbed software. The software
periodically checkpoints the network, and stores the state to a database. The
checkpointing period is application specific, and may range from seconds to
hours. By rolling back the same network state several times, testbed runs can be
repeated. This is useful for rapidly evaluating interesting phases during a network
lifetime. For example, this approach can be used to measure how many radio
packets are required to re-establish all network routes after a node malfunction,
or the time to transfer bulk data through a network.

When migrating an application from simulation to testbed, checkpointing can
be used to study and compare results of the different application phases. In a data
collection network, the first application phase is to setup sink routes on all collec-
tor nodes. Later application phases include collectors sending sink-oriented data,

346 F. Österlind et al.

and repairing broken links. By executing only the setup phase in both simulation
and testbed, and compare the two resulting network states, a developer can make
sure that this phase works as expected in testbed. We see several sensor network
applications that benefit from sensornet checkpointing: visualization, repeating
testbed experiments, protocol tuning, fault injection, simulation model validation,
and debugging.

Testbed visualization. Checkpoints contain application execution details of all
nodes in the network. By rolling back a testbed checkpoint to simulation, infor-
mation such as node-specific routing tables, memory usage, and radio connec-
tions can be visualized using regular simulation tools. The traditional approach
for testbed visualization is to instrument sensor network applications to out-
put relevant execution details, for example by printing the current node energy
consumption on the serial port. This may have a significant impact on the ap-
plication, for example by affecting event ordering. The application impact of
visualization via sensornet checkpointing is lower since the network is frozen
when the execution details are extracted.

Repeated testbed experiments Testbed software can be customized to checkpoint
the network when it is about to enter a pre-determined interesting phase. By
rolling back the network state, interesting phases can be repeated in testbed,
enabling targeted evaluations. Advantages of using checkpointing for evaluations
are less test output variance, and faster test iterations. We get less variance in
test results since the same network setup is used repeatedly. The test iterations
are shorter because the network repeats only the evaluated execution phase.

Automated protocol tuning. Repeated testbed experiments can be extended by
modifying parameters between each test run. In simulation, parameters can be
modified using regular simulation tools. Techniques for automatically tuning pa-
rameters, such as reinforcement learning, are often used in simulation only due
to the many iterations needed. With checkpointing, we enable use of reinforce-
ment learning in testbeds: initial learning is performed in simulation, and the
system is further trained in testbed.

Fault injection in testbed. Fault injection is a powerful technique for robustness
evaluations. To inject errors in a testbed, a testbed checkpoint is rolled back to
simulation. Errors are injected in simulation, for example processor clock skews,
dropped radio packets, or rebooted sensor nodes. The network state is then
again checkpointed and moved back to testbed. Fault injection helps us answer
questions starting with “what would happen if. . . ”.

Simulation model validation. Step-by-step comparisons of testbed and simula-
tion execution help us validate and tune simulation models.

Debugging testbeds. Debugging is a challenging task in wireless sensor net-
works [17, 27]. Debugging nodes is difficult due to the distributed nature of
sensor networks in combination with the limited memory and communication
bandwidth of each sensor node. Moreover, debugging approaches that depend

Sensornet Checkpointing 347

dB

testbed nodes

hierarchical testbed software

checkpointing

ethernet

checkpointing SW

subservers

serial/USB

Fig. 2. The checkpointing software is hierarchical and connects the main server to all
testbed nodes

on radio communication may be too intrusive, or may not even work in a faulty
network. In contrast, simulation is well suited for debugging sensor networks. In
simulation, a developer has full control of the entire network, can stop and restart
the simulation, and can perform node-specific source-level debugging. Sensornet
checkpointing can be used for debugging in simulation, whereas regular network
execution is on real hardware. When an error is discovered in testbed, the net-
work is checkpointed and rolled back to simulation. Simulation tools may help
expose the error cause. In addition, if the testbed is periodically checkpointed,
an earlier checkpoint rolled back to simulation may re-trigger the testbed error
in simulation.

3 Implementation

We implement checkpointing support on Contiki [3] and the Tmote Sky sen-
sor nodes [16]. The Tmote Sky is equipped with a MSP430F1611 processor
with 10Kb RAM, 1Mb external flash, and an IEEE 802.15.4 Chipcon CC2420
packet radio [2]. The sensor nodes communicate using the serial port. The node
checkpointing implementation consists of a single process that handles received
commands, and forwards state requests to device drivers. The process is exe-
cuted in a thread separate from the surrounding Contiki. The thread has a 128
byte stack, which is not included in the node state. We use Contiki’s cooper-
ative multi-threading library, however, the checkpointing process does not rely
on Contiki-specific functionality. Hence, the node checkpointing implementation
should be easily ported to other sensor network operating systems.

Devices support checkpointing by implementing two functions: one for ex-
tracting device state and one for restoring device state. We implement state
support in four different devices: the LEDs, the radio, the microcontroller hard-
ware timers, and the memory device handling RAM.

See Figure 2 for an overview of the testbed checkpointing software. We im-
plement the subserver on the ASUS WL-500G Premium wireless router [6]. The

348 F. Österlind et al.

Tmote Sky sensor nodes are connected to the routers’ USB ports, and each router
is connected via ethernet to the local network. The routers run OpenWRT [13], a
Linux distribution for embedded devices. For accessing sensor node serial ports,
we use the Serial to Network Proxy (ser2net) application [19]. ser2net is an open
source application for forwarding data between sockets and serial ports.

For checkpointing simulated networks, we use the Contiki network simula-
tor COOJA [14]. COOJA is equipped with the MSP430 emulator MSPSim [5].
MSPSim supports emulating Tmote Sky sensors. Note that checkpointing is per-
formed via serial ports both in real and simulated networks.

3.1 Network State

We define network state as the set of all node states. Node state consists of:

Firmware. The firmware programmed on each node, i.e. the compiled program
code. Unless the program is altered during run-time, the firmware does not need
to be included in the node state.

External flash. The 1mb external flash. Unless the external flash is altered during
run-time, it does not to be included in the node state.

Memory. The 10kb RAM memory. Memory state captures stack and variables.

Timer system. Hardware timers, both configuration and current timer values.
Note that software timers are included in the memory state.

LEDs. The node’s light-emitting diodes: on or off.

Radio. The CC2420 radio state includes whether the radio is in listen mode, or
turned off. We do not include CC2420 chip buffers in the radio state.

Although our definition of node state can be extended with more devices, the
definition is in accordance to the needs we observed during this work. The defi-
nition should be easy to extend to include more components.

3.2 Communication Protocol

The communication protocol between the checkpointing software and the sensor
nodes consists of three asynchronous phases: freeze node, execute commands,
and finally unfreeze node. The three phases are asynchronous for better inter-
node synchronization: all nodes are frozen before the execute command phase is
started on any of the nodes. Similarly, the unfreeze node phase is not initiated
on any node until the execute commands has finished on all nodes.

The freeze node phase is initiated by sending a single byte command to a
node. The checkpointing process, executing in the serial port interrupt, imme-
diately performs two tasks: it disables interrupts and stops hardware timers.
The node then enters the execute command phase. The execute command phase

Sensornet Checkpointing 349

consists of the sensor node handling commands from the checkpointing software.
Two commands are available: SET STATE, and GET STATE. The SET STATE
command prepares the node to receive node state. The GET STATE command
instructs the node to serialize and transmit its current state. When the node has
finished handling commands, the unfreeze phase is initiated. This phase again
starts hardware timers and enables interrupts.

Since the checkpointing process is executed in the serial port interrupt handler,
regular node execution is disabled until the node is unfrozen. A limitation of this
implementation is that the serial port interrupt has to wait for other currently
executing interrupt handlers to finish. Hence, a node stuck in another interrupt
handler cannot be checkpointed.

3.3 Checkpointing Thread

Checkpointing runs in its own thread. The checkpointing thread preempts the
operating system to perform a checkpoint. The node state includes the operat-
ing system stack, but not the checkpointing thread stack. When restoring node
memory, we do not overwrite the checkpointing thread stack.

When the checkpointing process exists after rolling back memory state, the op-
erating system is changed including the program counter (PC) and stack pointer
(SP). Figure 3 shows an overview of how the operating system memory is re-
stored from the checkpointing thread. Figure 4 contains pseudo code of the serial
port interrupt handler, the checkpointing process, and device driver checkpoint-
ing support.

3.4 Node State in Simulation

Simulated nodes extract and restore state using the same checkpointing process
as real nodes. Since simulated nodes emulate the same sensor node firmware as
real nodes, the same checkpointing software can be used to interact with both
real and simulated nodes.

thread memory
GET_STATE

sw()

t

OS exec OS exec cont.

serial data handler

sw()

node frozen

Checkpointing

OS memory OS memory

sw()

t

OS exec

serial data handler

sw()

"new" OS exec

SET_STATE

node frozen

thread memory
Checkpointing

Fig. 3. The checkpointing process is run in a separate thread to enable checkpoints of
the operating system stack memory. Left: after checkpointing node memory, control is
returned to the OS. Right: after rolling back node memory, the operating system has
changed.

350 F. Österlind et al.

/* INTERRUPT HANDLER: Serial data */
handle_serial_data(char c)

freeze_system(); /* Disable timers, interrupts */
sw(checkpointing_process); /* Switch to checkpointing thread (BLOCKS) */
unfreeze_system(); /* Enable timers, interrupts */

/* Checkpointing process blocking reads serial data */
checkpointing_process()

cmd = READ_COMMAND(serial_stream);
if (cmd CHECKPOINT)
foreach DEVICE

DEVICE_get(serial_stream);

if (cmd ROLLBACK)
foreach DEVICE

DEVICE_set(serial_stream);

if (cmd not UNFREEZE)
repeat;

/* Devices drivers handle their own state */
mem_set(serial_stream)

mem[] = read(serial_stream, mem_size);

radio_get(serial_stream)
write(serial_stream, radio_state[], radio_size);

Fig. 4. Checkpointing pseudo code

3.5 Hierarchical Network Freezing

The main server is able to directly communicate with all individual testbed
sensor nodes via ser2net. To improve checkpointing synchronization – avoiding
parts of the network still executing after other nodes have frozen – we modify
the ser2net application to allow sending freeze and unfreeze commands to all
nodes connected to a single router. For this purpose, we use ser2net’s control
port, used for allowing remote control to active ser2net connections. We add
support for two new commands: freeze all and unfreeze all. Both commands act
on all connected sensor nodes.

3.6 Lost Serial Data

Serial data bytes are sometimes lost when copying state to and from multiple
nodes simultaneously. To avoid this problem, we copy state to at maximum one
node per subserver. This increases the overall time to transfer network state.
It does not, however, affect the inter-node synchronization since all nodes are
frozen during the execute command phase. In our current implementation, no
CRC check is used to ensure that checkpointed state was transferred correctly.
Apart from lost data byte, we have not observed transmission errors in our
experiments.

3.7 Hardware Timer Bug

We encountered what appears to be an undocumented MSP430 hardware bug
in the timer system during the implementation. In Contiki, the 16-bit hardware

Sensornet Checkpointing 351

Timer A is configured for continuous compare mode. A compare register is con-
figured and continuously incremented to generate a periodic clock pulse which
drives the software time. According to the MSP430 User’s Guide, the interrupt
flag is set high when the timer value counts to the compare register.

While stress testing our system with incoming serial data, we observed that
occasionally the timer interrupt was set high before the timer value incremented
to equal the compare register, i.e. the timer interrupt handler could start exe-
cuting before the configured time. A workaround to the problem is modifying the
Timer A interrupt handler to blocking wait until the timer value reaches the
compare register if, and only if, the timer value is equal to the compare register
minus 1. Although we have not observed it, we expect similar behavior from
Timer B.

4 Evaluation

We evaluate the sensornet checkpointing intrusiveness by checkpointing a data
collection network. Furthermore, we evaluate testbed repeatability by rolling
back a single network state and comparing multiple test runs. Finally, we re-
port on the synchronization error of our implementation when checkpointing a
network.

In this work, there are several artifacts of our experimental setup that in-
fluence results. We checkpoint all nodes sequentially, which can be a time-
consuming operation in large networks. Furthermore, we transfer the state
uncompressed: checkpointing requires copying more than 10kb per node. Using
relatively simple techniques, we could reduce the checkpoint state transfer times.
Since the memory is the major part of node state, and since most of the memory
is often unchanged between checkpoints, diff-based techniques may significantly
reduce node state size. A similar approach is using run-time compression al-
gorithms on the nodes. To evaluate the impact of compression, we run-length
encode a number of checkpointed node states. Run-length encoding eliminates
long runs of zero-initialized memory. The average size of run-length encoded
node states was 7559 bytes, a 26% reduction in size. Note that in this evalua-
tion we only run-length encode node state offline – to use compression or diff-
based techniques on real nodes, the node checkpointing process needs additional
functionality.

4.1 Intrusiveness: Checkpointing a Data Collection Network

To evaluate the impact of checkpointing a testbed, we implement a simple data
collection network. The single-hop network consists of 5 collector nodes and
a sink. We perform checkpointing on the collector nodes only. Each collector
node samples sensor data, and transmits it via radio to the sink. The sampling
intervals, however, differ between the collector nodes. The different send rates
for the 5 nodes are: 5, 4, 3, 2, and 1 times per second.

The sink node counts the received radio packets from each collector node.
Each radio packet has a sequence number reset at every test run. When the sink

352 F. Österlind et al.

receives a radio packet from collector node 1 with a sequence number equal to
or above 150, it decides the test run completed, and logs the test run results.
Note that the sink may not have received all 150 radio packets from node 1 to
end the test; some radio packets may have been lost in transmission.

We checkpoint the network at different rates during each test run. Check-
pointing consists of freezing the network, downloading network state, and finally
unfreezing the network. Each test run takes approximately 30 seconds network
execution, i.e. without the overhead of checkpointing.

We vary the checkpointing interval on the data collection network. With our
test setup, checkpointing less than once every 5 seconds had no impact on the
transmitted radio packets. When checkpointing more often, we see an increase in
lost radio packets. We believe this is due to the high checkpointing rate combined
with not storing radio chip buffers: checkpointing when the sensor node radio
chip is communicating may cause a radio packet to be dropped. Figure 5 shows
the checkpointing impact on the data collection network. Note that Node 1
transmits a packet every second, and Node 5 transmits a packet every 5 seconds.

We believe the observed checkpointing impact on radio communication can be
lessened by including radio chip buffers in the radio state. The current implemen-
tation clears the CC2420 radio chip buffers, but includes the radio driver state. If
the node is checkpointed when the radio driver has copied only the first half of a
radio packet, the radio chip buffers will be empty when rolled back, whereas the ra-
dio driver will keep copying the second half of the radio packet. The CC2420 radio
chip buffers can be accessed via the radio driver. By including these in the radio
state, a radio driver can be checkpointed while communicating with the CC2420
without destroying packet data. However, note also that checkpointing as often as
every second is not neccessary in any of the applications discussed in Section 2.

 0

 50

 100

 150

 200

Node 1

Node 2

Node 3

Node 4

Node 5

S
en

so
r

da
ta

 r
ec

ei
ve

d
by

 s
in

k

No checkpointing
Checkpointing every 2 seconds

Checkpointing every second

Fig. 5. Checkpointing has little impact on the data collection network, even when
checkpointing every second

Sensornet Checkpointing 353

4.2 Repeatability: Restoring State of a Pseudo-random Network

For evaluating testbed repeatability, we implement a pseudo-random testbed
network with 10 sensor nodes. Each node broadcasts radio packets at pseudo-
random intervals, on the order of seconds. A radio sniffer outside the testbed
records any received packets from the 10 nodes.

During the testbed execution we checkpoint the network once. The network
state is then repeatedly rolled back to the network 10 times. The radio sniffer
records and timestamps any received packets during a test run. The timestamp
resolution is milliseconds. We compare the radio sniffer logs of each test run
to evalute testbed repeatability. We perform two experiments using the testbed
setup: with and without radio Clear-Channel Assessement (CCA).

By analyzing the sniffer logs, we see that the network execution was repeated
when the network state was rolled back, i.e. the ordering of radio packets received
by the sniffer node was the same for all test runs. With CCA enabled, we observe
that not all packets were transmitted in every test run. This is due to the CCA
check failing, an event occasionally occurring in a real testbed. Using the unique
sequence number of each received packet, we can calculate the average arrival time
of each packet. Figure 6 shows the average number of packets received in a test
run, and each packet arrival time deviation from mean as measured by the sniffer
node. The arrival times are recorded at a laptop connected to the sniffer node. The
deviation hence includes scatter from both the sniffer node and the laptop.

4.3 Case Study: Testbed Synchronization

Sensornet checkpointing captures the state of all nodes in a network. For syn-
chronous checkpointing, all nodes must be checkpointed at the same network
time. We freeze the entire network execution during time-consuming checkpoint-
ing operations. Hence, checkpointing synchronization error depends on when the
freeze (and unfreeze) commands are received and handled by the different nodes.

 0

 20

 40

 60

 80

 100

Without CCA With CCA

R
ec

ei
ve

d
pa

ck
et

s
(%

)

 90

 95

 100

Without CCA With CCA

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-100 -50 0 50 100

R
ec

ei
ve

d
pa

ck
et

s
(%

)

Deviation from mean (ms)

Fig. 6. Left: during the experiment without Clear-Channel Assessment (CCA), each
node repeatedly transmitted the same radio packets to the sink. During the experiment
with CCA, however, some packets were not retransmitted: the network behavior dif-
fered due to the radio surroundings. Right: the packet reception times, as measured by
the sink, differs on the order of milliseconds showing that the pseudo-random network
is repeated.

354 F. Österlind et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

S
yn

ch
ro

ni
za

tio
n

er
ro

r
(m

s)

Network size (nodes)

centralized
distributed

Fig. 7. Freezing and unfreezing nodes directly from subservers (distributed), as opposed
to from the main server (centralized), significantly improves the synchronization: With
30 nodes distributed on 4 subservers, the synchronization error is less than 0.5 ms

In our implementation, checkpointing is performed via node serial ports. We
reduce the network freeze synchronization error in two ways. First, node freeze
commands are one-byte messages. Since freeze commands are sent out sequen-
tially to each node, shorter commands results in better synchronization. Second,
freeze commands originate close to the testbed nodes: at the subservers, mini-
mizing message delivery time scatter.

We evaluate how network size affects checkpointing synchronization error.
To measure synchronization error we use sensor node hardware timers. Each
node dedicates a 32768Hz timer to the evaluation. The checkpointing software,
connected to the testbed, continually freezes and unfreezes the testbed. Each
time the network is frozen, the current hardware timer value of each node is
extracted. Two consecutive node timer values are used to calculate the last test
run duration: the network execution time as observed by the node itself.

We define the synchronization error of a test run as the maximum difference
between all collected node durations. Hence, with perfect synchronization all
nodes would report the same times during a test run, and the synchronization
error would be zero. To avoid serialization effects, the order of which nodes
are frozen and unfrozen each test run is random, as is the delay between each
freeze and unfreeze command. We measure synchronization error on a testbed
consisting of up to 30 nodes. The nodes are distributed on 4 subservers (10
+ 9 + 8 + 3). See Figure 7 for the synchronization errors. In the distributed
approach, the checkpointing software sends a single freeze command to each sub-
server, and the subservers forward the command to all connected nodes. In the
centralized approach, the checkpointing software directly sends a command to
each node.

Sensornet Checkpointing 355

The distributed approach is visibly more scalable and provides a significantly
lower synchronization error than the centralized approach. With 30 testbed
nodes the average synchronization error is 0.44 ms with the distributed approach,
and 2.67 ms with the centralized approach.

5 Related Work

Distributed checkpointing and rollback is a standard technique for failure recov-
ery in distributed systems [1,4] and is used e.g. in file systems [18], databases [20],
and for playback of user actions [10]. Inspired by the substantial body of work in
checkpointing, we use the technique to improve realism in sensor network simula-
tion and repeatability in sensor network testbeds. To the best of our knowledge,
we are the first to study distributed checkpointing with rollback in the context
of wireless sensor networks.

Sensor network testbeds is a widely used tool for performing controlled ex-
periments with sensor networks, both with stationary and mobile nodes [7,25].
Our work is orthogonal in that our technique can be applied to existing testbeds
without modification. There is a body of work on sensor network simulators.
TOSSIM [11] simulates the TinyOS sensor network operating system. Avrora [22]
emulates AVR-based sensor node hardware.

A number of sensor network simulators allow a mixture of simulated nodes
and testbed nodes. This technique is often called hybrid simulation [12,15,23,24].
Although hybrid simulation is designed to increase the realism by running parts
of the network in a testbed, repeatability is affected negatively. Our work is
originally based on the idea of hybrid simulation, but we identify key problems
with hybrid simulation and show that synchronous checkpointing lessens the
effects of these problems.

Several techniques for debugging and increasing visibility have been proposed
for sensor networks. Sensornet checkpointing can be used as an underlying tool
when implementing debugging and visibility, and can be combined with several
of the existing tools.

NodeMD [9] uses checkpoints on individual nodes for detecting thread-level
software faults. The notion of checkpoints is used differently in NodeMD: check-
points are used by threads to signal correct execution. NodeMD furthermore
stores logs in a circular buffer used to debug the node when an error has been
detected. Sensornet checkpointing can be combined with many the features in
NodeMD: a node-level error detected by NodeMD can trigger a network-wide
checkpoint, and the circular buffers can be used as an efficient way to transfer
messages between testbed and simulation.

6 Conclusions

We implement checkpointing for sensor networks. Our approach enables transfer-
ring network state between simulation and testbed. Several applications benefit
from the approach, such as fault injection and testbed debugging. We show that

356 F. Österlind et al.

sensor network checkpointing enables repeatable testbed experiments and non-
intrusive testbed execution details.

Acknowledgments

This work was partly financed by VINNOVA, the Swedish Agency for Innovation
Systems. This work has been partially supported by CONET, the Cooperating
Objects Network of Excellence, funded by the European Commission under FP7
with contract number FP7-2007-2-224053.

References

1. Chandy, K., Lamport, L.: Distributed snapshots: determining global states of dis-
tributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

2. Chipcon AS. CC2420 Datasheet (rev. 1.3) (2005)
3. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating

system for tiny networked sensors. In: Workshop on Embedded Networked Sensors,
Tampa, Florida, USA (November 2004)

4. Elnozahy, E., Alvisi, L., Wang, Y., Johnson, D.: A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys 34(3), 375–408
(2002)

5. Eriksson, J., Dunkels, A., Finne, N., Österlind, F., Voigt, T.: Mspsim – an exten-
sible simulator for msp430-equipped sensor boards. In: Langendoen, K.G., Voigt,
T. (eds.) EWSN 2007. LNCS, vol. 4373. Springer, Heidelberg (2007)

6. ASUSTek Computer Inc. (visited 2008-09-25), http://www.asus.com/
7. Johnson, D., Stack, T., Fish, R., Flickinger, D.M., Stoller, L., Ricci, R., Lepreau,

J.: Mobile Emulab: A Robotic Wireless and Sensor Network Testbed. In: IEEE
INFOCOM (2006)

8. Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., Elliott, C.: Experimental
Evaluation of Wireless Simulation Assumptions. In: Proceedings of the ACM/IEEE
International Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM 2004), October 2004, pp. 78–82 (2004)

9. Krunic, V., Trumpler, E., Han, R.: NodeMD: Diagnosing node-level faults in remote
wireless sensor systems. In: MOBISYS 2007, San Juan, Puerto Rico (June 2007)

10. Laadan, O., Baratto, R., Phung, D., Potter, S., Nieh, J.: Dejaview: a personal vir-
tual computer recorder. In: Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, Stevenson, Washington, USA, pp. 279–292 (2007)

11. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation
of entire tinyos applications. In: Proceedings of the first international conference on
Embedded networked sensor systems, Los Angeles, California, USA, pp. 126–137
(2003)

12. Lo, S., Ding, J., Hung, S., Tang, J., Tsai, W., Chung, Y.: SEMU: A Framework of
Simulation Environment for Wireless Sensor Networks with Co-simulation Model.
In: Cérin, C., Li, K.-C. (eds.) GPC 2007. LNCS, vol. 4459, pp. 672–677. Springer,
Heidelberg (2007)

13. OpenWRT. OpenWRT Wireless Freedom (visited 2008-09-25),
http://openwrt.org/

http://www.asus.com/
http://openwrt.org/

Sensornet Checkpointing 357

14. Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor
network simulation with cooja. In: Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network Applications (SenseApp
2006), Tampa, Florida, USA (November 2006)

15. Park, S., Savvides, A., Srivastava, M.B.: SensorSim: a simulation framework for
sensor networks. In: Proceedings of the 3rd ACM international workshop on Mod-
eling, analysis and simulation of wireless and mobile systems, pp. 104–111 (2000)

16. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low power wireless
research. In: Proc. IPSN/SPOTS 2005, Los Angeles, CA, USA (April 2005)

17. Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sym-
pathy for the sensor network debugger. In: SenSys 2005: Proceedings of the 3rd
international conference on Embedded networked sensor systems, San Diego, Cal-
ifornia, USA, pp. 255–267 (2005)

18. Rosenblum, M., Ousterhout, J.: The design and implementation of a log structured
file system. In: SOSP 1991: Proceedings of the 13th ACM Symposium on Operating
System Principes, Pacific Grove, Califonia, USA (1991)

19. ser2net application. Serial to Network Proxy (ser2net) (visited 2008-09-25),
http://ser2net.sourceforge.net/

20. Son, S.H., Agrawala, A.K.: Distributed checkpointing for globally consistent states
of databases. IEEE Transactions on Software Engineering 15(10), 1157–1167 (1989)

21. Takai, M., Martin, J., Bagrodia, R.: Effects of Wireless Physical Layer Modeling
in Mobile Ad Hoc Networks. In: Proceedings of MobiHoc 2001 (October 2001)

22. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: Proceedings of the 4th international symposium on Infor-
mation processing in sensor networks (IPSN) (April 2005)

23. Watson, D., Nesterenko, M.: Mule: Hybrid Simulator for Testing and Debugging
Wireless Sensor Networks. In: Workshop on Sensor and Actor Network Protocols
and Applications (2004)

24. Wen, Y., Wolski, R.: Simulation-based augmented reality for sensor network de-
velopment. In: Proceedings of the 5th international conference on Embedded net-
worked sensor systems, pp. 275–288 (2007)

25. Werner-Allen, G., Swieskowski, P., Welsh, M.: MoteLab: a wireless sensor network
testbed. In: Fourth International Symposium on Information Processing in Sensor
Networks, 2005. IPSN 2005, pp. 483–488 (2005)

26. Woehrle, M., Plessl, C., Beutel, J., Thiele, L.: Increasing the reliability of wireless
sensor networks with a distributed testing framework. In: EmNets 2007: Proceed-
ings of the 4th workshop on Embedded networked sensors, pp. 93–97. ACM Press,
New York (2007)

27. Yang, J., Soffa, M.L., Selavo, L., Whitehouse, K.: Clairvoyant: a comprehensive
source-level debugger for wireless sensor networks. In: Proceedings of the 5th in-
ternational conference on Embedded networked sensor systems, pp. 189–203 (2007)

http://ser2net.sourceforge.net/

SRCP: Simple Remote Control for Perpetual
High-Power Sensor Networks

Navin Sharma, Jeremy Gummeson, David Irwin, and Prashant Shenoy

University of Massachusetts, Amherst
Department of Computer Science

{nksharma,gummeson,irwin,shenoy}@cs.umass.edu

Abstract. Remote management is essential for wireless sensor networks
(WSNs) designed to run perpetually using harvested energy. A natural
division of function for managing WSNs is to employ both an in-band
data plane to sense, store, process, and forward data, and an out-of-band
management plane to remotely control each node and its sensors. This
paper presents SRCP, a Simple Remote Control Protocol that forms the
core of an out-of-band management plane for WSNs. SRCP is motivated
by our target environment: a perpetual deployment of high-power, ag-
gressively duty-cycled nodes capable of handling high-bandwidth sensor
data from multiple sensors. The protocol runs on low-power always-on
control processors using harvested energy, distills an essential set of prim-
itives, and uses them to control a suite of existing management functions
on more powerful main nodes. We demonstrate SRCP’s utility by pre-
senting a case study that (i) uses it to control a broad spectrum of
management functions and (ii) quantifies its efficacy and performance.

1 Introduction

Perpetual wireless sensor networks (WSNs) consist of nodes that harvest en-
vironmental energy (e.g., solar, wind, thermal, vibration) to indefinitely sus-
tain data collection, storage, processing, and transmission without physical in-
teraction1. Perpetual operation is ideal for WSNs composed of nodes that are
time-consuming to construct and deploy. However, the long lifetime of perpetual
WSNs elevates the importance of remote management functionality. Effective
remote management has three characteristics:

– Visibility. A sensor node is visible if its state is known or can be queried.
High visibility permits simple, direct monitoring of each node with high ac-
curacy, while low visibility forces complex, indirect monitoring based on col-
lected sensor data, past node states, or neighbor states. Visibility is essential

1 This research was supported in part by an UMass President’s Science and Technol-
ogy award and NSF grants CNS-0626873, CNS-0615075, CNS-0520729, and EEC-
0313747. We also acknowledge Deepak Ganesan for providing us feedback on early
versions of this work.

U. Roedig and C.J. Sreenan (Eds.): EWSN 2009, LNCS 5432, pp. 358–374, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks 359

(a) Management Plane Overview (b) Power Consumption

Fig. 1. Our prototype (a) uses a management plane. Power states are shown in (b)
from a typical sunny summer day and cloudy winter day.

for discovering the software bugs or hardware faults that impair WSN op-
eration; recent work proposes elevating low-cost visibility to a fundamental
WSN design principle [21].

– Accessibility. A sensor node is accessible if its state is known or can be
queried, and can also be altered. High accessibility permits simple, direct re-
mote node maintenance, including altering application-level software, kernel-
level software, and hardware states (e.g., power states). Low accessibility
increases the scope of problems that require physical access to a node.

– Interactivity. A sensor node is interactive if its state is both visible and
accessible with tolerable latency. High interactivity permits a controller to
react to visible changes in the WSN by accessing a node and changing its
state, and quickens the upgrade-test-debug development cycle required to
produce robust software. Low interactivity limits the WSN’s capability to
adapt its operation to unexpected operational or environmental changes, and
slows or impairs the software development cycle.

Visibility, accessibility, and interactivity are highly correlated with a node’s duty
cycle, since a controller is unable to query or alter state while a node is powered
down. As a result, simultaneously satisfying all three characteristics is challeng-
ing for resource-constrained WSNs. Previous approaches primarily address only
a single aspect of remote management using in-band techniques that share a sin-
gle wireless channel and node processor between both management-centric and
data-centric tasks [11,18,20,21,23,24]. In-band approaches are invasive: they con-
sume limited resources that interfere with the primary tasks of sensing, storing,
processing, and transmitting data.

Out-of-band management isolates management tasks on a separate always-on
control processor and radio attached to each node. The approach divides WSN
functions between a data plane that senses, stores, processes, and transmits
data, and a management plane that ensures continuous visibility, accessibility,
and interactivity. The division takes advantage of the natural distinction between

360 N. Sharma et al.

control traffic (short infrequent interaction) and data traffic (bulk data transfer).
Out-of-band management is also a common technique for diagnosing and repair-
ing node failures in other distributed systems, such as networks and data centers.
While the energy costs of using a separate per-node control processor and radio
preclude out-of-band management in some scenarios, the approach is well-suited
for high-power WSNs that handle data from one or more high-bandwidth sensor
streams and engage in computationally-intensive processing.

Examples of such high-power sensor applications include networks of weather
sensing radars [14] and camera networks [19]. Our target application is moni-
toring river ecologies using a diverse array of connected sensors, including un-
derwater camera, hydrophone, water quality, geologic imaging, and temperature
sensors. Since high-power WSNs already require enough harvested energy to sup-
port a powerful node platform (e.g., an iMote2, Gumstix, or embedded PC-class
node), it is feasible to continuously operate a less powerful control processor
and radio that uses a small fraction of the main node’s power (e.g., a TinyNode,
TelosB, or MicaZ mote) and has a minimal impact on the data plane’s operation.

To illustrate, Figure 1(a) provides an overview of our prototype’s management
plane, which uses a Tinynode with an XE1205 radio as the control processor and
a Gumstix [1] with a PXA-based microcontroller and commodity 802.11b WiFi
radio as the high-power main node. The XE1205’s long range (1.43 miles at
4.8kbps [6]) makes it particularly attractive for out-of-band management. Im-
portantly, the Tinynode control processor is also able to control the sensors
directly without consuming additional energy by powering the main node. Fig-
ure 1(b) shows average energy production from an attached 4”x8” solar panel
on a typical sunny summer day and cloudy winter day compared with the proto-
type’s average energy consumption in different power states. The measurements
demonstrate that even on a worst-case cloudy winter day the control processor
is able to remain on continuously using a small amount of buffered energy from
a battery, while the main node must remain mostly off due to the high energy
cost of operating its processor, radio, and sensors.

Contributions. This paper presents SRCP, a Simple Remote Control Protocol
for use on low-power control processors and radios that forms the core of a non-
invasive out-of-band management plane for perpetual high-power WSNs. A key
design principle of SRCP is to expose a narrow set of management primitives
without defining management services; as a result, much of its power derives
from connecting controllers to existing management functions provided by high-
power hardware platforms and their software. SRCP’s narrow set of primitives
is able to unify a broad spectrum of management functions. In particular, we
show that the protocol is able to monitor the health of the network at fine
granularities (1 update every 250 milliseconds for a 5 hop network), support
interactive debugging sessions using a low-bandwidth radio (less than 2 second
latency per directive), and non-invasively transfer bulk software updates using
a DTN routing protocol.

SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks 361

2 Related Work

In-band Management. In-band techniques improve visibility, accessibility,
and interactivity within the confines of a node’s energy constraints and duty
cycle, and are orthogonal to SRCP, which assumes an always-on control proces-
sor and radio.

Sympathy [18] and PCP [21] improve visibility indirectly by correlating lack
of sensor data from a node with failure and then diagnosing the root cause by
traversing a decision tree of likely possibilities. NodeMD addresses visibility, by
using a runtime detection system to detect faults, and interactivity, by catching
many faults before they disable the system and enabling a debug mode [11].
Clairvoyant [24] and Marionette [23] also improve interactivity by enabling in-
teractive debugging. In contrast, SRCP is able to connect operators to existing
debuggers available for commodity OSes, such as GDB, to enable interactive
debugging of data plane software.

Dissemination techniques for efficiently updating node software, including
Trickle [13] and Deluge [10], improve accessibility. Since we target high-power
WSNs using complete network stacks for SRCP, more general communication
techniques, such as end-to-end TCP connections or DTN-style store-and-forward
paradigms, are possible for both disseminating data plane software updates and
transmitting sensor data. Finally, SNMS recognizes the importance of separating
the management plane from the data plane by decoupling them to the extent
possible using an in-band approach and implementing a broad set of management
services [20]; SRCP completely decouples the two planes and provides narrow
primitives for connecting to existing management services.

Out-of-band Management. Out-of-band management is a necessity in sen-
sor testbeds that support multiple experiments over time, as in MoteLab [22]
or Trio [7]. These testbeds utilize a back-channel or control processor to pro-
vide continuous visibility and access to nodes. However, the main purpose of
the back-channel is to enforce the testbed’s scheduling policies, ensuring that
no experiment monopolizes testbed resources, and to deploy experiment-specific
software. Perhaps most related to SRCP is the Deployment Support Network
(DSN), which mitigates the need for a wired back-channel in testbeds by attach-
ing a separate battery-powered control processor and radio, called a DSN-node,
to each main testbed node [8].

In contrast to DSN, our target application is a perpetual deployment, which
warrants a focus on a simple protocol suitable for low-power control processors
and radios that adaptations to DSN-node software do not easily address. DSN-
nodes implement common testbed services, such as event logging, interactive
debugging, and software distribution, whereas SRCP is protocol-centric and sim-
ply enables remote access to software services and low-level hardware functions
that already exist for high-power nodes. The choice of radio for DSN highlights
the different focus: DSN-nodes use Bluetooth for their backbone wireless net-
work while we choose the XE1205. The XE1205 is a low-power, long-range, and
low-bandwidth radio that allows our management plane to operate over longer

362 N. Sharma et al.

distances than short-range Bluetooth radios, decreasing both the incidence of
network partitions due to control processor failure—since it may be possible to
“hop over” failed nodes—and the available bandwidth for the management plane.
The XE1205 is also not invasive: it minimally impacts node energy consumption
and eliminates traffic conflicts with a shorter range main node radio.

While SRCP does assume dual-radio/dual-processor nodes, previous work on
these systems focuses primarily on dynamically assigning tasks to components
to adjust the energy/performance ratio on specific hardware platforms [3,5,16].
SRCP’s focus is more narrow but also more general: it defines a simple proto-
col that is a foundation for remote management of a broad range of hardware
platforms with control processors. In particular, Leap is a hardware/software
architecture using two battery-powered processors and radios that shares our
focus on high-power WSNs [16]. Leap and SRCP share a common goal but a
different focus: SRCP is a simple, extensible, and hardware-independent proto-
col that distills a small set of core remote management functions for always-on
control processors, while Leap combines a hardware platform that supports fine-
grained energy monitoring with algorithms for dynamically scheduling tasks to
processors to minimize energy consumption.

3 SRCP: A Simple Remote Control Protocol

SRCP is inspired by SNMP, a standard for managing network-attached devices.
SNMP’s primary use is monitoring wired network devices, while SRCP’s primary
use is monitoring and controlling wireless network devices using an external
control processor. Figure 2 shows an overview of SRCP’s node architecture and
software artifacts. Each control processor runs an instance of an SRCP agent
that implements the protocol. A slave agent also runs on each main node and
interacts with its agent to permit interaction with the main node’s software
services.

SRCP is a basis for both out-of-network and in-network control. With out-of-
network control, an SRCP controller injects protocol messages into the manage-
ment plane from a well-connected base station within range of at least one agent.
For example, the controller may disseminate protocol messages that power down
all main nodes during uninteresting periods (e.g., at night in a camera network),
or power up main nodes on-demand during interesting periods of plentiful energy
(e.g., to apply synchronized software updates or initiate immediate sensor data
collection and transmission).

With in-network control, one agent issues protocol messages to another agent
to control its behavior. For example, an agent for a node with a full buffer of
sensor data could issue a control message to activate an upstream node in order
to transmit the data and free buffer space for additional sensing. The use of
SRCP for in-network control requires inter-node cooperation to ensure that the
decisions made by agents using their local knowledge result in acceptable global
WSN-wide outcomes that efficiently use energy, network, processing, and storage
resources. While the protocol does support in-network control, techniques for

SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks 363

Controller
(Basestation) Internet

Slave Agent
(Main Node)

Agent
(Control Processor)

Battery Level

Slave Agent
(Main Node)

Agent
(Control Processor)

Battery Level

Control Command:
Update Sensing rate
Read Battery Level

Camera
...

Slave Agent
(Main Node)

Agent
(Control Processor)

Battery Level

Fig. 2. An SRCP agent runs on each control processor and a slave agent runs on each
main node

inter-node cooperation are outside the scope of this paper; instead, we focus on
out-of-network control using a controller running at a base station.

3.1 Protocol

The protocol is based on short control messages, which may be fragmented into
one or more transmitted packets. Each message is sent by an SRCP controller to
one and only one agent, and directs the agent to take a specific action at a node
that produces an outcome. The one-to-one communication paradigm is simple
and enables management of each node as a distinct entity, rather than in-band
approaches that expose WSNs as a single aggregate. Upon message receipt, the
agent invokes the specified action and then transmits a response message to the
controller that encapsulates an acknowledgement of control message receipt, an
indication of the action’s success or failure, and an action-specific payload that
encodes a description of its outcome.

A key goal of SRCP is to separate remote management primitives from spe-
cific remote management services; the primitives are general enough to serve as
a foundation for monitoring any hardware platform or controlling any software
on the main node. As a result, SRCP is extensible since some actions require
hardware or software support from the main node or attached sensors that may
vary across platforms. Developers register hardware-related actions (Execution
and State) prior to deployment by defining a unique index number and link-
ing the action’s logic to the implementation at compile time, while controllers
are able to register other actions (Conditional and Connection) in situ post-
deployment.

3.2 Primitives

The protocol distills actions into four fundamental classes of remote manage-
ment primitives: Executions, States, Conditionals, and Connections. Each class
consists of one or more distinct actions, where the controller and agent associate
each action with a unique integer index. Control messages include this index,
which also identifies the message class, as part of the message payload to direct
the agent to act on a specific Execution, State, Conditional, or Connection.

364 N. Sharma et al.

Executions. An execution is an action that affects the operational state of
the main node or any attached sensors. In particular, executions make visible
hardware/software control of the main node and attached sensors that would
otherwise not be available when the main node is inactive and powered down.
For instance, our reference implementation includes an execution action that
directs the slave agent to invoke an arbitrary process on the main node and re-
turn its standard output and standard error in a response message. If the main
node OS supports fine-grained resource control (e.g., Resource Containers [4] or
PixieOS tickets [15]), then execution actions may also dynamically control node
energy, CPU, memory, or bandwidth usage. Other examples include:

– Power-on Main Node; Power-off Main Node; Sleep Main Node (ACPI S3);
Hibernate Main Node (ACPI S4); Power-on Main Radio; Low-power Main
Radio; Power-off Main Radio; Main Node Process Execution; Main Node File
Transfer; Take Picture; Transfer Picture to Flash; Main Node Alive Ping;
Reboot Main Node Standard Kernel; Reboot Main Node Clean Kernel;

The payload of the control message includes its index along with execution-
specific data, while the payload of the response message includes details of the
execution’s outcome.

States. Actions may read, and in some cases write, state variables stored by
the control processor using its limited on-board memory. SRCP divides state
variables into two categories: environmental states and management states. The
value of environmental state, such as the current battery level, is dictated by
the environment and is read-only, while the value of management state, such as
a routing table entry, is writeable remotely using a control message. Examples
of environmental and management states include:

– Environmental States. Battery Energy Level; Solar Power Production;
Platform Power Consumption; Main Node Reboot Counter; Control Proces-
sor Reboot Counter; Current Time;

– Management States. Voltage Level; Flash Memory (via JTAG); Main
Node Processor Registers (via JTAG); Routing Table Entry; Conditional
Period; Environmental State Update Period;

The agent automatically monitors and updates the value of environmental states
at a predefined time granularity. The payload of a state-based control message
includes its index, a flag indicating a read or write operation, and a value if
applicable. The response message payload includes the value of the state and
any acknowledgements.

Conditionals. In some cases, it is necessary for an agent to react immediately
to local conditions or at a prespecified time. A Conditional action invokes an
execution or state-based action based on a condition. The condition is a boolean
expression composed of environmental or management states and boolean op-
erators. The protocol supports two conditional types: one-time and continuous.

SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks 365

A one-time Conditional action executes a single time when a condition is true,
while a continuous Conditional action executes every time a condition is true
every configurable time period. The controller is able to use control messages
to dynamically add, remove, or modify an action’s condition. The payload of a
Conditional control message includes an index, a flag indicating whether to set
a new condition or delete an existing one, an Execution or State action to exe-
cute, and the condition. The response message simply acknowledges the action’s
success or failure. Note that once a conditional is set, the controller will receive
asynchronous response messages associated with its Execution or State actions.

Connections. Long-lived interactive sessions between a controller and a main
node require reliable end-to-end communication not possible using short con-
trol messages. To accommodate interactive sessions, the agent forwards packets
marked as connection actions directly to its slave agent. These packets are opaque
to the agent and are only interpreted by the slave agent; the intent is to support
network layer tunneling and end-to-end connections between the controllers and
slave agents, which may both implement complete network stacks.The payload
of a connection packet includes its index along with opaque data interpreted by
the slave agent (e.g., TCP packets). The payload of the response message in-
cludes its index along with opaque data interpreted by the controller (e.g., TCP
acknowledgements).

4 Implementation

We have written a reference implementation of SRCP 2. While the protocol
is platform-independent, the reference implementation is intended for a mote-
class control processor with a Linux-capable main node and supports an agent
for TinyOS and a slave agent for Linux. The implementation utilizes hardware
features (e.g., JTAG, numerous power states) that require a compatible hardware
platform, although its core functions are portable to other platforms utilizing a
TinyOS-based control processor and Linux-based main node.

4.1 Hardware Prototype

Since many of the protocol’s functions interact with specific hardware features
of the main node and sensors, we built a hardware prototype (Figure 3(a))
that fully utilizes it. The prototype is a general-purpose node platform for high-
power WSNs; it uses a Tinynode control processor with a low-power MSP430
microcontroller, 512Kb of on-board flash, and an XE1205 radio. The XE1205
radio is attractive for out-of-band management since it does not interfere with
the data plane’s 802.11b radio, and is able to trade bandwidth for range. The
measured range of the radio has been shown to be 2.3 kilometeres (1.43 miles)
at a bandwidth of 4.8kbps, exceeding the range of the Mica2 or Telos by at least
a factor of 4 [6]. Additionally, we also evaluated the implementation on TelosB
motes using the more capable CC2420 radio.
2 http://lass.cs.umass.edu/

http://lass.cs.umass.edu/

366 N. Sharma et al.

(a) Hardware Prototype (b) Block Diagram

Fig. 3. A photograph (a) and a block diagram (b) of our hardware prototype

The prototype uses a Gumstix with a PXA-based microcontroller and a com-
modity 802.11b WiFi radio for the main node. The Gumstix runs a instance of
Linux that supports standard Linux utilities. We attach the CMUCam3 imag-
ing sensor as a representative example of a high-bandwidth sensor [19]. The
prototype also includes external flash for additional Gumstix storage and a real-
time clock that the Gumstix and Tinynode use to periodically synchronize their
notion of time. Figure 3(b) shows a block diagram of the prototype. Communi-
cation between the Tinynode’s agent and the Gumstix’s slave agent occurs over
a serial RS-232 connection. The main powerboard regulates charging from en-
ergy produced by a SPE-350-6 SolarWorld solar panel, stores it in 3.7V Ultralife
rechargeable battery with a capacity of 6.1 Amp-hours, and distributes it to the
Tinynode, Gumstix, and CMUCam3 sensor. The materials for each prototype
node cost approximately $650.

To increase management flexibility, the Tinynode is capable of independently
controlling functions on the Gumstix, its WiFi radio, and the CMUCam3 sensor.
A modular hardware platform, such as our prototype or LEAP [16], is a useful
paradigm for high-power WSNs, since they allow a controller to independently
power and operate each component. Our experiences demonstrate that SRCP
is flexible enough to support a range of functions on different devices in such a
platform.

4.2 Software Prototype

The SRCP reference implementation, described below, includes an agent written
in NesC for TinyOS, a slave agent written in C for Linux, and a simple controller
for a base station written in C.

– Agent. The agent implements the protocol from Section 3 and supports the
example Execution and State actions from that section. We discuss details
of network communication in our prototype (e.g., routing, packet format) in
Section 4.3.

SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks 367

– Slave Agent. The slave agent runs on Linux and integrates with the TinyOS
serial forwarder to send and receive control messages from the agent. In ad-
dition to interpreting Connection messages, the slave agent includes support
for specific Execution actions that integrate with software supported by the
node. For instance, our implementation includes support for executing pro-
cesses and receiving standard error and out using control messages, and
direct file transmission over the management plane. Both actions are suit-
able for short-lived interactions (e.g., quick process execution or small files),
or as a “last resort” for connecting to the main nodes when communication
via WiFi is impossible. As discussed in Section 5, our slave agent also in-
corporates a DTN routing reference implementation for disseminating bulk
software updates and gathering sensor data.

– Controller. The controller includes a management shell and GUI dashboard
to manually inject control messages and view their responses. Designing poli-
cies that dynamically adjust the WSN’s behavior based on both environmen-
tal conditions and data requirements is the subject of future work. The base
station includes both an 802.11b WiFi radio for data plane communication
and a root Tinynode with an XE1205 radio running an agent connected
over an RS-232 serial link. The controller integrates with the TinyOS serial
forwarder to forward control messages over the serial link to a “first-hop”
SRCP agent that routes them to their destination using the XE1205 radio.

IP Tunneling. To support TCP/IP flows between a controller and slave agent
using Connection messages, both include a Control Message/IP proxy for estab-
lishing IP tunnels. The proxy (i) captures egress IP packets, fragments them into
control or response messages, and forwards them to its agent for transmission
over the management plane and (ii) reassembles ingress control messages into
IP packets and injects them into the network stack.

The proxy currently utilizes the Linux Netfilter library for capturing egress
packets from the network stack and Linux raw sockets for injecting ingress
packets back into the network stack, although we are exploring the benefits
of TUN/TAP-based implementation. We assign the base station and Gumstix
nodes an IP address in the 172.16.0.0/16 subnet; the proxy then uses standard
iptables rules to capture all packets destined for the subnet for tunneling. While
SRCP could use the an implementation of 6LoWPAN to forward IPv6 packets
without tunneling them, the XE1205 radio does not support 6LoWPAN’s stan-
dard 127 byte packet size [17]. 6LoWPAN is not necessary for our prototype
since the control processor does not serve as a connection end-point, and the
Gumstix main node supports a complete network stack.

Since long-range radios cannot sustain high bit rates, the proxy includes an
implementation of Van Jacobson header compression (IPcomp) from RFC 1144
to reduce the length of TCP/IP from 40 bytes to 1 or 2 bytes on average. IPcomp
is useful for reducing overhead in interactive sessions composed of a series of
small packet transmissions (e.g., ASCII characters), where TCP/IP headers can
consume up to 50% of a TCP packet’s size. Section 5 quantifies the effect of
IPcomp on interactivity. Additionally, we used suggestions from RFC 3150 to

368 N. Sharma et al.

set TCP parameters for low speed and unreliable lengths (e.g., lowering TCP
Maximum Segment Size (MSS) from its default of 1500 bytes).

4.3 Management Plane Communication

A radio for out-of-band management values transmission range and energy effi-
ciency over bandwidth, since disconnected nodes impede visibility, accessibility,
and interactivity. The XE1205 radio we choose for our prototype imposes limita-
tions on the maximum possible packet size: the radio does not reliably support
packets larger than 28 bytes (the default AM packet size in TinyOS) due to a 16
byte send/receive FIFO buffer that requires 50 μsec to empty3. As a result, our
implementation imposes limits on header sizes and does not provide a reliable
transport protocol, as discussed below.

Packet Format. Each control message packet includes a minimal header with
fields for a message identifier, a sender’s identifier, a destination’s identifier, a
fragment number, a message length, and a time-to-live value. Each identifier
uniquely identifies the message, sender, and destination; the destination uses
the fragment number and message length to reassemble the message; the time-
to-live value defaults to the network’s diameter and ensures that the network
eventually drops packets that cannot reach their destination. We use 2 bytes for
the message length field and a single byte for the remaining fields. Thus, our
implementation uses 7 bytes out of each 28 byte packet for headers (25%) and
21 bytes for the payload (75%). The sender identifier, destination identifier, and
time-to-live fields must increase to scale the protocol to networks larger than
255 nodes or with a diameter greater than 255.

Reliable Communication. While agents acknowledge messages using re-
sponses, as described in Section 3.1, the controller and agent do not acknowl-
edge packets end-to-end, since acknowledgements at each level of the network
stack consume bandwidth. The implementation uses only simple link-layer ac-
knowledgments provided by TinyOS’s AM abstraction to ensure reliable per-hop
packet transmission. An agent retransmits each packet if it does not receive a
link-layer acknowledgement within timeout t, and after k retransmissions it drops
the packet. Without end-to-end packet acknowledgements, the loss of a single
packet prevents the delivery of an entire control or response message. As a re-
sult, the implementation limits many control and response messages to a single
packet, although the size of some messages, such as an encoded outcome in a
response message, may be an arbitrary length.

Routing. Finally, agents must be able to route packets from the controller to
the packet’s destination. Our implementation assigns each agent a simple static
identifier, and agents forward any received packet with a destination identifier
that does not match its own to the next hop. Each agent maintains a routing
table as special management states. To determine the next hop, the agent looks
up the destination identifier in its set of management states, and interprets the

3 The time taken to empty the buffer 3 times per single packet reception or transmis-
sion results in unacceptable loss rates.

SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks 369

value as the next hop identifier. The controller is able to alter routes dynami-
cally using State actions, although we have not explored dynamic approaches to
routing.

5 Evaluation

We evaluate SRCP with a case study that exemplifies the actions we envision a
WSN controller using to manage a network, and quantifies SRCP’s performance
along three axis: visibility, interactivity, and accessibility.

Visibility. Wachs et al. define a visibility metric as the energy required to
diagnose a failure [21]. Table 1 reports microbenchmarks of the CPU time and
energy cost to a Tinynode in our prototype to execute an action from each
class, and demonstrates that individual actions are non-invasive and impose little
energy cost on the data plane. The primary energy cost derives from keeping the
control processor active (see Figure 1(b)) and not from executing individual
actions.

Since enough energy exists to continuously operate SRCP’s control proces-
sor and radio, an energy-centric visibility metric is not appropriate. Instead,
SRCP’s primary constraint is management plane network bandwidth; as a re-
sult, we define visibility as the rate (messages/second) at which a controller
is able to observe changes in the state of the network. The frequency of node
health updates is a direct measure of visibility since they expedite the discovery
of anomalies or failures.

In Figure 4(a), we observe the loss rate for node health updates as a function
of their send rate. For the experiment, we use a configuration of 5 nodes in a
simple chain topology, where each node is 15 meters from its neighbors. Each
node uses a Conditional action that reports battery level and pings the main node

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

U
pd

at
e

Lo
ss

 R
at

e
(%

)

Health Update Interval (msec)

5 Hops
4 Hops
3 Hops
2 Hops
1 Hop

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

O
bs

er
ve

d
H

ea
lth

 U
pd

at
e

In
te

rv
al

 (
m

se
c)

Health Update Interval (msec)

5 Hops
4 Hops
3 Hops
2 Hops
1 Hop

Expected

(a) (b)

Fig. 4. Measurements of the percentage of update losses (a) using Conditional actions
to monitor node health over a range of intervals for different network sizes. The observed
health update interval (b) is the interval between health updates seen at the controller.

370 N. Sharma et al.

Table 1. Max shows the maximum number of times the Tinynode command could be
executed based on our prototype’s battery with capacity 81, 360 joules

Primitive Command Power (μjoules) Max
Execution Wakeup Gumstix 0.551 1.47x1011

Set Conditional Wakeup Gumstix in 5 minutes 0.580 1.40x1011

Read State Sensing rate 13.92 5.84x109

Write State Sensing rate 13.97 5.82x109

Connection Transmit 28 byte packet 0.560 1.45x1011

for liveness; note that the health updates could include any of the management
or environmental states listed in Section 4. The x-axis shows the health update
interval for each node and the y-axis shows the percentage of updates lost in the
management plane and not delivered to the controller. The result demonstrates
that the prototype is able to sustain an update interval of 250 milliseconds in a 5
hop network without experiencing significant losses due to network congestion,
allowing a controller to detect any node anomalies (e.g., low battery level, failed
main node) at a 250 millisecond granularity. In Figure 4(b), we plot, for the same
experiment, the observed average health update interval seen at the controller,
demonstrating that the observed rate is close to the expected interval even when
experiencing congestion-related losses.

Our results indicate that the management plane should be able to monitor a
network of N nodes at an interval of 250N/5 == 50N milliseconds; for a network
of 100 nodes this translates to an update interval of 5 seconds. In practice, we
expect the controller to observe the entire WSN at a coarse granularity and focus
in on specific regions with a finer granularity once an anomaly is detected.

Interactivity. Operators must diagnose and repair problems in the data plane
that impair operation. Rather than indirectly diagnosing a problem, as in Sympa-
thy [18], SRCP uses Connection actions to enable interactive debugging sessions
on the main node. As with visibility, the primary constraint is network band-
width. Figure 5(a) measures the latency for a representative interactive GDB
session using a set of common debugging commands over both Telnet and SSH
with and without IPcomp in a 5 hop network 4. Since the XE1205 radio prevents
packet sizes greater than 28 bytes, we also show results using TelosB motes with
a CC2420 radio to study the impact of larger packet sizes on latency.

The measurements show that interactive sessions using Telnet and IPcomp are
possible for both radios. However, the XE1205’s 28 byte packet size limitation
prevents tolerable interactive sessions for SSH with or without IPcomp. IPcomp
has a significant impact on both Telnet and SSH, improving latency by at least
a factor of 2 for all commands. Figure 5(b) shows total bytes sent and received

4 The communication cost of the remote GDB protocol, which transfers individual
assembly instructions, consumes enough network bandwidth to prevent tolerable
interactive sessions.

SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks 371

Print

Break
Step
Continue
Next
Backtrace

 50

te
ln

et
−

un
co

m
p

te
ln

et
−

co
m

p

ss
h−

un
co

m
p

ss
h−

co
m

p

te
ln

et
−

un
co

m
p

te
ln

et
−

co
m

p

ss
h−

un
co

m
p

ss
h−

co
m

p

L
at

en
cy

(s
ec

on
ds

)

Radio/IPComp
TelosB−CC Tinynode−XE

 40

 30

 20

 10

 0

 60

Step

Next
Backtrace
Print

Break

Continue

 0

 3,500

se
nt

−
un

co
m

p

se
nt

−
co

m
p

re
cv

−
un

co
m

p

re
cv

−
co

m
p

se
nt

−
un

co
m

p

se
nt

−
co

m
p

re
cv

−
un

co
m

p

re
cv

−
co

m
p

B
yt

es
 T

ra
ns

m
itt

ed

Protocol
Telnet SSH

 2,500

 2,000

 1,500

 1,000

 500

 3,000

(a) Latency for GDB (b) Bytes Sent/Received for GDB

Fig. 5. Telnet sessions using IPcomp and 100 byte packets on the CC2420 radio perform
best for interactive GDB debugging sessions (a). IPcomp has a factor of 2 impact on
total bytes transmitted (b).

for both sessions. In the best case—Telnet with IPcomp—the interactive latency
is less than 3 seconds for each command for the XE1205 and less than a second
for the TelosB. Figure 6(a) shows that the session latency increases modestly
with the number of network hops; extrapolating the trend indicates that a 30
hop network path should experience sub-10sec latency for the total session with
the XE1205 using Telnet/IPcomp.

Accessibility. Once an operator diagnoses a problem using an interactive de-
bugging session it may be necessary to update the node’s software. SRCP enables
accessibility at each level of a node’s hardware/software stack. At the lowest level,
our implementation interacts with the Gumstix JTAG controller to provide re-
mote access and control of its hardware, as proposed in [9].

The SRCP agent uses an execution action to expose remote access to JTAG
through a set of 4 GPIO pins; in a conventional setting, these GPIO pins would
connect to a PC through a USB or parallel-port JTAG connector. JTAG inte-
gration enables two capabilities: (i) direct control to read and write processor
registers, including the instruction register, and clock the CPU and (ii) direct
reading and writing of Flash memory. The first capability is useful for running
hardware diagnostics on nodes without an operational OS, while the second ca-
pability is useful as a “last resort” for reading the state of flash off a failed node
or writing flash directly to reconfigure a failed node from scratch (e.g., install a
new bootloader/minimal kernel). Our microbenchmarks show that it takes 205.3
seconds to write the Gumstix’s 163kB uBoot bootloader to Flash one word at a
time in a single hop network.

At the next level of the stack, our implementation integrates with the Gum-
stix’s uBoot bootloader to implement a SafeBoot mechanism as an Execution
action. SafeBoot allows the controller to select either a “safe” kernel or a stan-
dard kernel when rebooting a node. The safe kernel is preloaded on Flash and
is read-only, while the controller may update and modify the standard kernel to
upgrade drivers or propagate patches. To initiate SafeBoot, the SRCP agent sets

372 N. Sharma et al.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6

La
te

nc
y

(s
ec

on
ds

)

Number of Hops

XE-NoComp (28 byte packets)
XE-IPComp (28 byte packets)

CC-NoComp (100 byte packets)
CC-IPComp (100 byte packets)

 0

 50

 100

 150

 200

 1 2 3 4 5

La
te

nc
y

(s
ec

)

Number of Hops

5MB-TCP
5MB-DTN
1MB-TCP
1MB-DTN
6KB-TCP
6KB-DTN

6KB-XE1205

(a) (b)

Fig. 6. Latency for interactive sessions increases modestly with the number of network
hops (a). We use DTN (b) to opportunistically and non-invasively transfer bulk software
updates in the data plane.

a GPIO pin on the Gumstix prior to applying power; the mechanism requires a
minor modification to uBoot to check the pin state prior to boot to determine
the appropriate kernel. A controller may also use the SafeBoot mechanism or
the reboot mechanism in conjunction with Conditional actions to implement
watchdog or grenade timers that periodically bring nodes to a clean state.

At application-level, our slave agent incorporates the reference implemen-
tation of DTN2 for non-invasive bulk software updates [2]. Software updates
represent the one area where the management plane, due to bandwidth limita-
tions, leverages the data plane for tasks that are not data-centric. Rather than
requiring the controller to coordinate activation of every upstream node to up-
date a downstream node’s software using direct TCP connections, which would
impact the operation of the data plane, we use DTN to opportunistically route
data as main nodes become active. Figure 6(b) compares the latency to transfer
different size files over DTN and TCP in the data plane and using an SRCP
Execution action in the management plane. The benchmark demonstrates that
the management plane is not suitable for software updates or other bulk data
transfers (6kb takes 38sec over a single hop), and that, while not performing as
well as TCP, DTN is a useful tool for non-invasive bulk data transfer over the
management plane (5MB takes 200sec over 5 hops).

6 Conclusion

The energy demands of emerging high-power WSNs permit non-invasive out-
of-band management through an always-on control processor powered by har-
vested energy. SRCP enables the paradigm using agents to monitor or change
a node’s operational, environmental, and management state and connect to its
software services. Our evaluation shows that SRCP’s primitives unify a broad
range of management functions, and its performance is acceptable and non-
invasive.

SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks 373

References

1. Gumstix (accessed, February 2008), http://www.gumstix.com
2. Delay Tolerant Networking Research Group (accessed, February 2008),

http://www.dtnrg.org/wiki/Code
3. Bahl, P., Adya, A., Padhye, J., Walman, A.: Reconsidering Wireless Systems

with Multiple Radios. SIGCOMM Computer Communications Review 34(5), 39–46
(2004)

4. Banga, G., Druschel, P., Mogul, J.C.: Resource Containers: A New Facility for
Resource Management in Server Systems. In: Proceedings of the Symposium on
Operating System Design and Implementation, February 1999, pp. 45–58. New
Orleans, Louisiana (1999)

5. Draves, R., Padhye, J., Zill, B.: Routing in Multi-Radio, Multi-Hop Wireless Mesh
Networks. In: Proceedings of the International Conference on Mobile Computing
and Networking, September 2004, pp. 114–128 (2004)

6. Dubois-Ferriére, H., Fabre, L., Meier, R., Metrailler, P.: TinyNode: A Compre-
hensive Platform for Wireless Sensor Network Applications. In: Proceedings of the
International Conference on Information Processing in Sensor Networks, Nashville,
Tennessee, April 2006, pp. 358–365 (2006)

7. Dutta, P., Hui, J., Jeong, J., Kim, S., Sharp, C., Taneja, J., Tolle, G., Whitehouse,
K., Culler, D.: Trio: Enabling Sustainable and Scalable Outdoor Wireless Sensor
Network Deployments. In: Proceedings of the International Conference on Informa-
tion Processing in Sensor Networks Nashville, Tennessee, April 2006, pp. 407–415
(2006)

8. Dyer, M., Beutel, J., Kalt, T., Oehen, P., Thiele, L., Martin, K., Blum, P.: Deploy-
ment Support Network - a Toolkit for the Development of WSNs. In: Proceedings
of the European Conference on Wireless Sensor Networks (January 2007)

9. Eberle, H., Wander, A., Gura, N.: Testing Systems Wirelessly. In: Proceedings of
the IEEE VLSI Test Symposium, pages 335 (April 2004)

10. Hui, J.W., Culler, D.: The Dynamic Behavior of a Data Dissemination Protocol for
Network Programming At Scale. In: Proceedings of the Conference on Embedded
Networked Sensor Systems, Baltimore, Maryland, November 2004, pp. 81–94 (2004)

11. Krunic, V., Trumpler, E., Han, R.: NodeMD: Diagnosing Node-Level Faults in
Remote Wireless Sensor Systems. In: Proceedings of the International Conference
on Mobile Systems, Applications, and Services, San Juan, Puerto Rico, June 2007,
pp. 43–56 (2007)

12. Levis, P., Brewer, E., Culler, D., Gay, D., Madden, S., Patel, N., Polastre, J.,
Shenker, S., Szewczyk, R., Woo, A.: The Emergence of a Networking Primitive in
Wireless Sensor Networks. Communications of the ACM 51(7) (July 2008)

13. Levis, P., Patel, N., Culler, D.E., Shenker, S.: Trickle: A Self-Regulating Algorithm
for Code Propagation and Maintenance in Wireless Sensor Networks. In: Proceed-
ings of the Symposium on Networked System Design and Implementation, San
Francisco, California, March 2004, pp. 15–28 (2004)

14. Li, M., Yan, T., Ganesan, D., Lyons, E., Shenoy, P., Venkataramani, A., Zink,
M.: Multi-User Data Sharing in Radar Sensor Networks. In: Proceedings of the
Conference on Embedded Networked Sensor Systems, Raleigh, November 2007,
pp. 247–260 (2007)

15. Lorincz, K., Chen, B.-r., Waterman, J., Werner-Allen, G., Welsh, M.: Resource
Aware Programming in the Pixie OS. In: Proceedings of the Conference on Em-
bedded Networked Sensor Systems (2008)

http://www.gumstix.com
http://www.dtnrg.org/wiki/Code

374 N. Sharma et al.

16. McIntire, D., Ho, K., Yip, B., Singh, A., Wu, W., Kaiser, W.J.: Low Power Energy
Aware Processing (LEAP) Embedded Networked Sensor System. In: Proceedings
of the International Conference on Information Processing in Sensor Networks,
Nashville, Tennessee, April 2006, pp. 449–457 (2006)

17. Mulligan, G.: The 6LoWPAN Architecture. In: Proceedings of the Workshop on
Embedded Networked Sensor, June 2007, pp. 78–82 (2007)

18. Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sym-
pathy for the Sensor Network Debugger. In: Proceedings of the Conference on
Embedded Networked Sensor Systems, San Diego, California, November 2005, pp.
255–267 (2005)

19. Rowe, A., Rosenberg, C., Nourbakhsh, I.: A Low Cost Embedded Color Vision
System. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, October 2002, pp. 208–213 (2002)

20. Tolle, G., Culler, D.: Design of an Application-Cooperative Management System for
Wireless Sensor Networks. In: Proceedings of the European Workshop on Wireless
Sensor Networks, January 2005, pp. 121–132 (2005)

21. Wachs, M., Choi, J.I., Lee, J.W., Srinivasan, K., Chen, Z., Jain, M., Levis, P.:
Visibility: A New Metric for Protocol Design. In: Proceedings of the Conference on
Embedded Networked Sensor Systems Raleigh, November 2007, pp. 73–86 (2007)

22. Werner-Allen, G., Swieskowski, P., Welsh, M.: MoteLab: A Wireless Sensor Net-
work Testbed. In: roceedings of the International Conference on Information Pro-
cessing In Sensor Networks, Los Angeles, California, April 2005, pp. 483–488 (2005)

23. Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta,
P., Culler, D.: Marionette: Using RPC for Interactive Development and Debugging
of Wireless Embedded Networks. In: Proceedings of the International Conference
on Information Processing in Sensor Networks, Nashville, Tennessee, April 2006,
pp. 416–423 (2006)

24. Yang, J., Soffa, M.L., Selavo, L., Whitehouse, K.: Clairvoyant: A Comprehensive
Source-Level Debugger for Wireless Sensor Networks. In: Proceedings of the Con-
ference on Embedded Networked Sensor Systems, Raleigh, November 2007, pp.
189–203 (2007)

Author Index

Anastasi, Giuseppe 199
Aoun, Marc 150

Basten, Twan 53
Benenson, Zinaida 263
Bulusu, Nirupama 327
Buratti, Chiara 1

Catalano, Julien 150
Cerpa, Alberto 279
Cha, Hojung 247
Conti, Marco 199
Corke, Peter 296
Corporaal, Henk 53
Cugola, Gianpaolo 69

Dang, Thanh 327
Di Francesco, Mario 199
Dimitriou, Tassos 263
Dudys, Matthew 279
Dunkels, Adam 312, 343

Eriksson, Joakim 312, 343

Fabbri, Flavio 1
Feng, Wu-chi 327
Fernandes, Leonardo L. 216
Finne, Niclas 312, 343
Freiling, Felix C. 263
Frey, Hannes 86
Fu, Xing 33

Geilen, Marc 53
Giannetsos, Thanassis 263
Giusti, Alessandro 166
Gummeson, Jeremy 358
Gupchup, Jayant 183

Handziski, Vlado 17
Hauer, Jan-Hinrich 17
Heinzelman, Wendi 134
Hoes, Rob 53
Hu, Wen 296

Ingelrest, François 118
Irwin, David 358
Iwanicki, Konrad 102

Jedermann, Reiner 232
Jha, Nitish 33
Jiang, Lun 279

Kamthe, Ankur 279
Kim, Yungeun 247
Krontiris, Ioannis 263

Lang, Walter 232

Migliavacca, Matteo 69
Murphy, Amy L. 166, 216
Musăloiu-E., Răzvan 183

Na, Keewook 247

Österlind, Fredrik 312, 343
Overs, Leslie 296

Palopoli, Luigi 166
Park, Seungweon 327
Passerone, Roberto 166
Picco, Gian Pietro 166
Pind, Kristen 86

Schaefer, Gunnar 118
Sharma, Navin 358
Shenoy, Prashant 358
Shih, Wen Chan 296
Szalay, Alex 183

Terzis, Andreas 183
Tham, Chen-Khong 53
Tsiftes, Nicolas 312, 343

van der Stok, Peter 150
van Steen, Maarten 102
Verdone, Roberto 1
Vetterli, Martin 118
Voigt, Thiemo 312, 343

Wang, Xiaodong 33
Wang, Xiaorui 33
Wolisz, Adam 17

Xing, Guoliang 33

Yang, Ou 134
Yeow, Wai-Leong 53

	Title Page
	Preface
	Organization
	Table of Contents
	Performance and Quality of Service
	Area Throughput of an IEEE 802.15.4 Based Wireless Sensor Network
	Introduction
	Related Works
	Assumptions and Reference Scenario
	The Link Model

	Evaluation of the Area Throughput
	Joint MAC/Connectivity Probability of Success
	Area Throughput

	The IEEE 802.15.4 MAC Protocol
	Numerical Results
	Conclusions
	References

	Experimental Study of the Impact of WLAN Interference on IEEE 802.15.4 Body Area Networks
	Introduction
	Experimental Setup
	Measurement Platform
	Additional Hardware
	Metrics

	Baseline Measurements
	Low Interference
	Controlled 802.11b Interference

	Urban Measurement Campaign
	Transmission Failures
	Correlation with 802.11b/g Traffic

	Evaluation of Selected Aspects
	Cross-Channel Quality Correlation
	Prediction of the Link Quality Degradation

	Related Work
	Conclusions and Future Work
	References

	Flow-Based Real-Time Communication in Multi-Channel Wireless Sensor Networks
	Introduction
	Related Work
	Flow-Based Channel Allocation
	Problem Formulation
	Proof of NP-Completeness
	Disjoint Paths Search Algorithm

	Power-Efficient Real-Time Routing
	Real-Time Forwarding
	Neighborhood Management

	Design of Baseline Algorithms
	Performance Evaluation
	Simulation Setup
	Different Transmission Deadlines
	Different Data Rates
	Different Number of Data Flows
	Different Network Densities

	Conclusion
	References

	QoS Management for Wireless Sensor Networks with a Mobile Sink
	Introduction
	Related Work
	Configuring a WSN with QoS Requirements
	Routing-Tree Construction
	QoS Optimisation

	Adapting the Routing Tree
	Minimal-Cost Reconstruction
	Improving the Quality

	Reconfiguring Node Parameters
	Optimisation Strategies
	Practical Details

	Experiments
	Simulation Overview
	Tree Reconstruction
	Parameter Optimisation
	Quality/Cost Trade-Offs
	Multiple Moves

	Conclusions and Future Work
	References

	Routing
	A Context and Content-Based Routing Protocol for Mobile Sensor Networks
	Introduction
	Context and Content-Based Routing
	The API
	The Protocol in General
	Forwarding
	Routing

	Evaluation
	The Default Scenario
	The Impact of Credits and Beaconing Interval vs. Speed
	Density of Nodes and Area of the Network
	Static Scenario and Multiple Recipients Per Message

	Related Work
	Conclusion
	References

	Dynamic Source Routing versus Greedy Routing in a Testbed Sensor Network Deployment
	Introduction
	Protocol Implementations
	Dynamic Source Routing
	Greedy Routing

	Experimental Setup
	Controlling the Experiments
	Measuring Time

	Results
	Intuition from Path Accumulation Diagrams
	Evaluating the Static Case
	Evaluating a Dynamic Scenario

	Conclusion
	Our Present Findings
	Open Research Directions

	References

	Multi-hop Cluster Hierarchy Maintenance in Wireless Sensor Networks: A Case for Gossip-Based Protocols
	Introduction
	Background and RelatedWork
	Problem Formulation
	PriorWork

	Gossip-Based Hierarchy Maintenance
	Principal Idea
	Update Vector
	Basic Label Operations
	Maintaining Routing Tables
	Synthesizing and Maintaining Labels

	Experimental Evaluation
	Protocol Implementations
	Experimental Setup
	Experimental Results

	Conclusions
	References

	Potentials of Opportunistic Routing in Energy-Constrained Wireless Sensor Networks
	Introduction
	Routing in Wireless Ad Hoc and Sensor Networks
	Opportunistic Routing for Data Gathering
	Anypath Routing
	Anypath Routing for Data Gathering

	Coordinated Anypath Routing
	Receiver Coordination
	Coordinated Anypath Routing for Data Gathering
	Theoretical Bounds
	Simulation Results

	Minimizing Energy Consumption
	Implementation Issues
	Simulation Results

	Conclusion and Perspectives
	References

	Coordination and Synchronization
	A Better Choice for Sensor Sleeping
	Introduction
	Motivation and Background
	Sleeping at Different Layers Individually and Simultaneously
	Sleeping at the Routing Layer
	Sleeping at the MAC Layer
	Sleeping at Both Routing and MAC Layers

	Simulations and Discussions
	Performance of Single Layer Sleeping
	Performance Comparisons of Individual Layer Sleeping
	Performance of Sleeping at Both Layers

	Conclusions
	References

	Distributed Task Synchronization in Wireless Sensor Networks
	Introduction
	Time Synchronization Versus Task Synchronization
	Related Work
	Tick Interrupt Alignment (TIA)
	General Overview
	Timer Functionality
	Aligning the Timer Interrupts

	Coexistence of TIA and Time Synchronization
	Tick to Task Mapping
	Implementation and Practical Aspects
	The Target Platform
	FreeRTOS
	Time Synchronization
	Tick Interrupt Alignment Practical Implementation
	Task Synchronization
	Testing Procedure and Results

	Conclusion and Future Work
	References

	Solving the Wake-Up Scattering Problem Optimally
	Introduction
	System Model and Solution Algorithm
	Spatial Partitioning
	Computation of the Optimal Schedule

	Optimal vs. Distributed: Evaluation
	Using and Extending the Model
	Related Work
	Conclusions and Future Work
	References

	Sundial: Using Sunlight to Reconstruct Global Timestamps
	Introduction
	Problem Description
	Recovering Global Timestamps
	Problems in Timestamp Reconstruction
	A Test Case

	Solution
	Robust Global Timestamp Reconstruction (RGTR)
	Sundial

	Evaluation
	Ground Truth
	Reconstructing Global Timestamps Using Sundial
	Impact of Segment Length
	Day Correction

	Related Work
	Conclusion
	References

	Data Collection
	An Analytical Study of Reliable and Energy-Efficient Data Collection in Sparse Sensor Networks with Mobile Relays
	Introduction
	Related Work
	SystemModel
	Discovery Phase Analysis
	Data Transfer Phase Analysis
	Joint Discovery and Data Transfer

	Results
	Discovery Phase
	Data Transfer
	Energy Efficiency

	Conclusions
	References

	MVSink: Incrementally Building In-Network Aggregation Trees
	Introduction
	MVSink
	System Model
	Basic Definitions
	Protocol Operation
	Largest Set Heuristic
	Best Local Gain Heuristic
	Affinity Based Heuristics

	Evaluation
	Improvement over Shortest Paths Tree
	Reducing Transmission Cost
	Overhead Evaluation

	Related Work
	Conclusion
	References

	The Minimum Number of Sensors – Interpolation of Spatial Temperature Profiles in Chilled Transports
	Wireless Sensors in Cool Chain Management
	Required Number of Sensors
	Source and Destination Points
	Definition of Interpolation Error

	Experimental Data
	Time Correction

	Methods for Spatial Interpolation
	Inverse Distance Weighting
	Kriging
	Kriging with Spatial Trends

	Comparison of Interpolation Errors
	Comparison with Linear Curve Fitting

	The Number of Required Sensors
	Plausibility Testing Based on the Kriging Variance
	Summary and Conclusion
	References

	Security
	Acoustic Sensor Network-Based Parking Lot Surveillance System
	Introduction
	System Overview
	Acoustic Source Localization System
	Distributed Acoustic Source Localization
	Improving Accuracy on Detection Time
	Handling Lengthy Event Source
	Improving Detection Accuracy on the Edge
	Map-Based Correction

	Surveillance Camera System
	Evaluation
	Experiment Setup
	Preliminary Experiments
	Radio Congestion
	Acoustic Source Localization Accuracy
	Overall System Accuracy
	Response Time
	Discussion

	Conclusion
	References

	Cooperative Intrusion Detection in Wireless Sensor Networks
	Introduction
	Related Work
	Contributions

	SystemModel
	Sensor Nodes and Communication
	Attacker Model
	Alert Module

	The Intrusion Detection Problem
	Conditions for Solving Intrusion Detection
	Sufficient Conditions for Solving IDP
	Necessary and Sufficient Conditions for Solving IDP
	Byzantine Agreement vs. Intrusion Detection
	Solving IDP in a Weaker System Model

	A Cooperative Intrusion Detection Algorithm
	Initialization Phase
	Voting Phase
	Publish Key Phase
	Exposing the Attacker
	External Ring Reinforcement Phase

	Simulation Results
	Implementation
	Memory and Computational Requirements
	Experiments

	Conclusions and Future Work
	References

	SCOPES: Smart Cameras Object Position Estimation System
	Introduction
	System Description
	Hardware and Software Infrastructure
	Algorithms

	Performance Evaluation of SCOPES
	Objective Functions
	Simulation and Analysis
	Experimental Deployment
	Experimental Results

	Improving SCOPES Using Node Coordination
	Clustering Algorithm
	Distributed Coordination and Scheduling
	Performance Evaluation

	Comparisons with Previous Work
	Conclusion and Future Work
	References

	secFleck: A Public Key Technology Platform for Wireless Sensor Networks
	Introduction
	A Brief Introduction to the RSA Algorithm
	Platform Architecture
	Hardware Module
	Software Module

	Performance Evaluation
	Asymmetric Key (RSA) Operations
	Symmetric Key (XTEA) Operations
	The Financial Cost of secFleck

	Case Studies
	Symmetric Session Key Encryption/Decryption
	Sensor Node Symmetric Session Key Request/Assignment Operation
	Group Key Establishment Operation
	Secure Software Update Protocol
	Backward Secrecy and Forward Secrecy
	Secure Remote Procedure Calls

	Related Work
	Conclusion and Future Work
	References

	Evaluation and Management
	Accurate Network-Scale Power Profiling for Sensor Network Simulators
	Introduction
	Related Work
	Simulation-Based Network-Scale Power Profiling
	Contiki Power Profiler
	COOJA
	MSPSim
	A Network-Scale Power Profiler

	Evaluation
	Case Study: Data Collection with CoReDac
	Case Study: Low Power Probing
	Case Study: X-MAC
	Power Profiling Accuracy

	Conclusions
	References

	DHV: A Code Consistency MaintenanceProtocol for Multi-hop Wireless Sensor Networks
	Introduction
	Related Work
	Design Philosophy and Assumptions
	Design Philosophy
	Assumptions

	TheDHVProtocol
	Message Formats
	Suppression Mechanism

	Implementation
	Experimental Design and Analysis
	Goals and Metrics
	Methodology
	Experimental Results

	Discussion
	Conclusion
	References

	Sensornet Checkpointing: Enabling Repeatability in Testbeds and Realism in Simulations
	Introduction
	Sensornet Checkpointing
	Implementation
	Network State
	Communication Protocol
	Checkpointing Thread
	Node State in Simulation
	Hierarchical Network Freezing
	Lost Serial Data
	Hardware Timer Bug

	Evaluation
	Intrusiveness: Checkpointing a Data Collection Network
	Repeatability: Restoring State of a Pseudo-random Network
	Case Study: Testbed Synchronization

	Related Work
	Conclusions
	References

	SRCP: Simple Remote Control for Perpetual High-Power Sensor Networks
	Introduction
	Related Work
	SRCP: A Simple Remote Control Protocol
	Protocol
	Primitives

	Implementation
	Hardware Prototype
	Software Prototype
	Management Plane Communication

	Evaluation
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

