Dunnart: A Constraint-Based Network Diagram
Authoring Tool

Tim Dwyer, Kim Marriott, and Michael Wybrow

Clayton School of Information Technology, Monash University, 3800, Australia
{Tim.Dwyer,Kim.Marriott,Michael.Wybrow}@infotech.monash.edu.au

Abstract. We present a new network diagram authoring tool, Dunnart, that pro-
vides continuous network layout. It continuously adjusts the layout in response
to user interaction, while still maintaining the layout style and, where reasonable,
the current layout topology. The diagram author uses placement constraints, such
as alignment and distribution, to tailor the layout style and can guide the layout
by repositioning diagram components or rerouting connectors. The key to the
flexibility of our approach is the use of topology-preserving constrained graph
layout.

1 Introduction

Producing well laid out network diagrams is not easy and extremely tedious for any
but the simplest networks. While automatic graph layout algorithms can provide high-
quality layout [4], in many situations users would like the ability to interactively control
and fine-tune the layout with similar flexibility to that provided in standard diagram au-
thoring tools. Although some general purpose diagramming tools, such as Microsoft
Visidﬂg and OmnigrafﬂeE provide automatic graph layout, the integration of graph lay-
out into these tools is quite unsatisfactory. Similar concerns apply to the network layout
tool yEdE The issue is that these tools use static graph layout algorithms which are
not well-matched to the inherently interactive nature of diagramming tools. They pro-
vide only “once off” graph layout and allow little flexibility for the author to tailor the
resulting layout by, say, requiring that certain nodes are aligned.

We believe that a better model for integrating automatic graph layout into diagram-
ming tools is continuous network layout. In this model the graph-layout engine runs
continuously to improve the layout in response to user interaction. The author uses
placement constraints, such as alignment and distribution, to tailor the layout style and
can guide the layout by repositioning diagram components or rerouting connectors. Im-
portantly, layout should be fast enough to allow the diagram author to immediately see
the effect of their changes. Thus, continuous network layout requires efficient dynamic
graph layout techniques that support placement constraints.

Continuous network layout was introduced in GLIDE [13]. However, the spring-
based layout algorithm used by GLIDE was not robust or powerful enough to truly

! “Layout Assistant for Visio”, Tom Sawyer Soft., http://www. tomsawyer.com/lav/
2 “Omnigraffle”, The Omni Group, http: //www.omnigroup.com/omnigraffle/
3 “yEd”, yWorks, http://www.yworks.com/products/yed/

L.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 420431] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

http://www.tomsawyer.com/lav/
http://www.omnigroup.com/omnigraffle/
http://www.yworks.com/products/yed/

Dunnart: A Constraint-Based Network Diagram Authoring Tool 421

support the model. Here we present a new network diagram authoring tool, Dunnartﬂ
that provides continuous network layout and which uses a recently developed topology
preserving constrained graph layout algorithm [7]]. This provides considerably more
robust and powerful automatic layout than is possible with unconstrained optimisation
techniques such as those underlying GLIDE.

Dunnart supports a variety of different layout styles, arbitrary clusters of nodes, and
placement tools such as alignment, distribution and separation. Dunnart’s layout engine
continuously adjusts the layout in response to user interaction, ensuring that the diagram
remains “tidy” by, for instance, removing object overlap, while still maintaining the
layout style and user imposed placement constraints. Figure [I] illustrates the use of
Dunnart.

One of the most interesting innovations in Dunnart is a simple, readily understood
physical metaphor for layout adjustment: Poly-line connectors and cluster boundaries
act like rubber-bands, trying to shrink in length and hence straighten. Like physical
rubber-bands, the connectors and cluster boundaries are impervious in that nodes and
other connectors cannot pass through them. This means that layout adjustment pre-
serves the general structure of the network drawing, i.e. its topology, and so changes
are smooth and predictable. Changes to the topology only occur as the result of explicit
direction by the author and for common user editing actions, such as moving objects
during direct manipulation or resizing a node, the diagram topology is preserved.

Usability concerns have guided the design of Dunnart from its beginning and we
have carefully considered the design of the constraint-based placement tools including
how to provide adequate feedback about constraint interaction (especially in the case
of inconsistency) and how to ensure that the diagram is not too cluttered by visual
representation of constraints (See Fig. 2). One important factor improving usability is
that layout adjustment occurs in real-time, providing immediate feedback about the
effect of user changes.

2 Related Work

Our work brings together research into constraint-based diagramming editors and re-
search into graph drawing. Since the very infancy of diagram authoring tools there has
been interest in allowing the author to specify persistent layout relationships on the di-
agram components, e.g. [8/12/14]]. Previous systems have explored constraint solving
techniques and user interaction for constraint-based placement tools. However, apart
from GLIDE [13]], these were not designed for network diagrams and none provided
automatic network layout in the sense that we are discussing.

GLIDE was the first constraint-based diagramming tool explicitly designed for net-
work diagrams. It introduced continuous network layout and provided high-level place-
ment constraints (called VOFs) which the author could add to control the layout and
which the layout engine endeavoured to satisfy during subsequent changes to the layout.
However GLIDE had two serious limitations. The first was a lack of robustness. GLIDE
used springs to approximately enforce layout constraints which effectively meant the
constraints were solved by minimising a goal function that contains an error term for

4 Dunnart, http: //www.dunnart.org/

http://www.dunnart.org/

422 T. Dwyer, K. Marriott, and M. Wybrow

Emnm(hs Ham Ba\ee
GmHemo(Sea\ ’“"‘"“‘“ wha\e

Gul
Brunnich's
Guillemot.

TGS,

et

(d) Final layout

(a) The author initially calls the
structural layout tool with organic
layout style. Note how various auto-
matic refinement constraints such as
non-overlap of nodes keep the layout
tidy.

(b) The author tries the layered lay-
out style. This generates a set of hor-
izontal alignment constraints with
separation constraints between them.
The separation constraints keep the
layers in order and enforce a min-
imum spacing (adjustable by the
user) between layers. The author has
added a vertical alignment constraint
to several nodes to improve the lay-
out.

(c) Unhappy with the result, the au-
thor now tries the flow layout style.
This generates style constraints re-
quiring that directed edges be down-
ward pointing. The minimum sepa-
ration between nodes connected by
directed edges can be adjusted us-
ing a slider. Note that the vertical
alignment constraint was maintained
when switching layout styles.

(d) Reasonably happy, the author
now fine-tunes the layout. They first
add two new horizontal alignment
constraints. They then cluster to-
gether three seal species and two
types of gull. As a result the position
of several nodes and edges are auto-
matically updated to remove overlap
with the clusters. Finally, the author
repositions the “Beluga” and “Arctic
Fox” nodes to improve the clarity of
the diagram.

Fig. 1. Example of interactive network layout with Dunnart. Network data from the Many Eyes
“Arctic food chain” visualisation, http: //www.many-eyes.com/.

Dunnart: A Constraint-Based Network Diagram Authoring Tool 423

(a) Guidelines are bold in the regions between (b) The six alignment constraints have hor-
attached objects and are significantly faded izontal separation constraints between them.
outside those regions. This helps to reduce The minimum separation distance may be ad-
clutter while still allowing the user to attach justed by dragging a handle on the separa-
objects to guidelines. The four vertical align- tion indicator. Note that three constraints are
ment constraints (represented by the guide- currently active (highlighted in red) while the
lines) are involved in a horizontal distribution other two have some slack. The grey band on
constraint which requires them to be equally the right edge of the page shows that a page-
spaced. The user is currently adjusting the dis- containment constraint is not satisfied. This re-
tribution spacing (about the highlighted guide- sults from the user indirectly pushing a shape
line) by dragging a handle on right-side of the outside the page while dragging another shape.
distribution indicator.

ey
VA Layrout Fropes =

[um=nt madz:
S5 gube 3man Tent

| s R
b |

Idezl exmnzeze | Tve=d il

B lan rrisshon

KInlvum eble = s3aziag

5

(c) Flow layout has been enabled, constrain- (d) The widgets in the “Layout Properties’
ing all directed edges to point downward. A window control the structural layout setting.
cycle of directed edges causes a constraint con- They also allow the user to adjust the ideal
flict. Dunnart drops one of the conflicting con- edge length, and toggle generation of non-
straints, and highlights this as well as the set of overlap and page-boundary constraints.
affected nodes.

Fig. 2. Screenshots showing the visual representations of constraints in Dunnart

each constraint. In the case of conflicting forces, such as, for example, alignment of
nodes in a network with springy connectors, the so called “constraints” would simply
not be satisfied, or worse, the whole system could become unstable and not converge
to a local minimum. The second limitation was that GLIDE provided little automatic
network layout. While it did allow the user to manually impose VOFs to control edge
length, when used in combination with other user-specified VOFs this led to conflicting
forces and unsatisfied constraints.

424 T. Dwyer, K. Marriott, and M. Wybrow

Our techniques for network layout draw upon recent research into graph drawing.
One relevant area of research is dynamic graph layout [2] which focuses on stable re-
layout of changing graphs, or interactive navigation of large graphs [10]. Most such
systems are based on unconstrained force-directed layout in which the forces between
nodes are modified in response to user interaction. However, in these systems the level
of user control over the layout is very limited (i.e., alignment or distribution of nodes
is not supported) and, because of the underlying optimisation techniques, it would be
difficult to provide more.

Our work is also related to collaborative graph-layout tools in which the user can
interact with the optimisation engine to improve the layout and escape local minima
by providing user hints [11]], such as repositioning a node. This is also true in the con-
tinuous network layout model, since user interaction can guide the layout engine away
from undesired local minima. The fundamental difference is that Dunnart is a generic
network diagramming tool, while collaborative graph layout is intended to allow the
user to improve the layout obtained with a single specialised layout engine. Thus, user
hints are quite restrictive and depend on the underlying layout algorithm. For example,
the systems of [[L11]] are built on top of a layered graph-drawing algorithm for directed
graphs, while the Giotto system [3]] is built on top of an orthogonal graph layout engine.

Dunnart is based upon so called constrained graph layout algorithms which perform
graph layout subject to various kinds of layout constraints [9.5]. It uses a recent algo-
rithm for topology preserving constrained graph layout [7] designed for dynamic graph
layout. This has previously been used for interactive visualisation of large networks [6].
Here we demonstrate its usefulness in a new application area: authoring.

3 Background: Constrained Graph Layout

In this section we briefly review the algorithm for topology preserving constrained
graph layout. It is described more fully in [7]. The algorithm works on network dia-
grams. These can contain: basic graphic shapes, such as rectangles and ellipses, which
are treated as rectangular nodes in the diagram; connectors, which form the edges in the
diagram and may be directed; and container shapes, which contain a set of nodes and
so specify node clusters in the diagram.
A layout for a network diagram gives a position for each node in the diagram and a
route for the paths, i.e. edge routes and cluster boundaries, in the network.
Constrained graph layout allows constraints on the placement of nodes. These are
required to be separation constraints in a single dimension] The layout must also sat-
isfy various refinement constraints to ensure that it is “tidy.” The refinement constraints
are:
— no two nodes overlap;

— the nodes inside the region defined by the boundary of each cluster are exactly the
nodes in the cluster;

5 Separation constraints have the form u + d < v or u + d = v where u and v are variables
representing horizontal or vertical position of a node and d is a constant giving the minimum
separation required between v and v.

Dunnart: A Constraint-Based Network Diagram Authoring Tool 425

— every path is valid and tight where a valid path is one in which no segment passes
through a node and a tight path is one in which the path “wraps” tightly around each
node corner in the path.

Topology-preserving constrained graph layout uses the P-stress (for path-stress) goal
function to measure the quality of a layout. P-stress modifies the standard stress func-
tion to penalise nodes that are too close together, but not nodes that are more than their
ideal distance apart, thus eliminating long range attraction which can cause issues in
highly constrained problems. P-stress also tries to make the length of each path in the
network no more than its ideal length. This has the effect of straightening edges and
making clusters more compact and circular in shape.

The basic algorithm to find a layout that minimises P-stress and which satisfies the
layout constraints is:

(1) Find a position for the nodes satisfying the layout constraints by projecting the cur-
rent position of the nodes on to the placement constraints and then using a greedy
heuristic to satisfy the non-overlap constraints and cluster containment constraints
(modeled using a rectangular box).

(2) Perform edge routing using an incremental poly-line connector routing algorithm
[15] to compute poly-line routes for each edge, which minimise edge length and
amount of bend. The cluster boundary is obtained using the convex hull of the
cluster.

(3) Optimise the layout by iteratively improving the current layout using gradient pro-
jection to reduce P-stress. This preserves the topology of the initial layout.

As noted previously, unlike force-directed layout, constrained graph layout techniques
ensure that the generated layouts really do satisfy all of the layout constraints (unless
the constraints are infeasible).

4 Dunnart

Dunnart is intended to be a generic diagramming tool that supports most diagram types,
including network diagrams. The original motivation for Dunnart was to explore usabil-
ity issues in constraint-based diagramming tools. Thus, usability has been a focus of its
design from the beginning. Feedback from its use—for constructing a wide variety of
diagrams including UML diagrams and biological networks—has greatly improved the
interface design. We now look at its more novel aspects.

A primary usability consideration was when and how much the layout engine should
change the layout in response to user interaction. Typically, when first constructing a
network diagram, the user will try different layout styles and, for each style, wants the
tool to automatically find a good layout. Then, once the basic layout and style is chosen,
the user will fine-tune the layout. During fine-tuning, it is important that changes made
by the layout engine are predictable and controllable by the author. To support these two
use cases, Dunnart provides two kinds of network layout: structural layout and layout
adjustment. We now look at these.

426 T. Dwyer, K. Marriott, and M. Wybrow

4.1 Structural Layout

Dunnart provides a structural layout tool which is free to completely rearrange the lay-
out so long as the user-specified placement constraints remain satisfied. It is explicitly
invoked by the author to re-layout the network. The other function of the structural lay-
out tool is to impose a layout style on the diagram. Dunnart currently provides three
layout styles: organic, flow and layered (shown in Fig. [I). It could be extended with
other layout styles. The only requirement is that the aesthetic constraints imposed by
the style must be able to be modelled using separation constraints so that the layout
aesthetic can be maintained in subsequent interaction.

Organic layout is the most basic style since it does not impose any style constraints.
It simply calls the constrained graph layout algorithm sketched in Sect. 3l Flow-style
layout is the same except that the tool adds style constraints ensuring that the start node
of each directed edge is above its end node.

Structural layout can also use external graph layout algorithms to find a layout and
determine the style constraints. As an example of this, structural layout with the layered
style uses the Graphvizﬁ library implementation of the Sugiyama algorithm. This deter-
mines a layer for each object in the network, the ordering of objects on each layer and
a routing for connectors through the layers which minimises crossings. An alignment
placement constraint is generated for each layer and a separation constraint between
each pair of layers keeps them a minimum distance apart and preserves the layer or-
der. Currently, existing placement constraints are initially ignored in this style and only
imposed in the subsequent layout adjustment step.

Style constraints behave like author specified placement constraints. Thus, the author
is free to modify the layout by removing style constraints. Using constraints to model
layout style is one of the reasons Dunnart is very flexible. It means that, unlike most pre-
vious diagramming tools, layout styles are not brittle and the author is free to tailor the
layout style by adding placement constraints to the diagram before calling the structural
layout tool, or by subsequently modifying the placement and style constraints.

4.2 Layout Adjustment

The second kind of automatic layout provided in Dunnart is called layout adjustment.
This supports fine-tuning of the layout and runs continuously during interaction.
Changes made by the layout engine during layout adjustment need to be predictable
and (reasonably) continuous. Consequently, we believe layout adjustment should pre-
serve the topology of the starting layout as far as possible.

We now describe how the layout is updated after the main kinds of user interaction
provided in Dunnart. For most interactions this has two steps. First, find a new feasible
layout satisfying the placement, style and refinement constraints that changes the topol-
ogy of the current layout as little as possible. Second, perform step (3) of the layout
algorithm (Sect. [3)) to optimise the layout while preserving its topology. Table [Tl gives
details of how the new feasible layout is found for different kinds of user interaction.
We make use of two techniques.

6 Graphviz, AT&T Research, http://www.graphviz.org/

http://www.graphviz.org/

Dunnart: A Constraint-Based Network Diagram Authoring Tool 427

Table 1. Computation of new feasible layout after common kinds of user interaction. Note that
this step is always followed by topology-preserving layout optimisation.

Add graphic object: Node repair followed by edge routing repair.

Delete graphic object: Edge routing repair.

Add connector: Automatically or manually route connector.

Delete connector: Nothing—layout remains feasible.

Add/modify cluster: Node repair followed by edge routing repair.

Delete cluster: Nothing—layout remains feasible.

Cut/Copy (to clipboard): Copy nodes to clipboard and perform edge routing repair. If cutting,
delete graphic objects and connectors.

Paste (from clipboard): Add nodes to canvas and perform node repair. Then perform edge
routing repair (based on connector routing in clipboard for pasted connectors).

Add a placement constraint: Node repair followed by edge routing repair. However, nodes that
have moved too far because of the placement behave as if cut and pasted.

Delete a placement constraint: Nothing—layout remains feasible.

The first is node position repair. This is done using step (1) of the layout algorithm
(Sect.[3) to compute new position for the nodes which satisfies the placement and style
constraints as well as the non-overlap and cluster containment constraints.

The second technique, which we call rubber-banding, is for repairing edge routes.
The issue is that the route may have become invalid because it now passes through a
graphic object or is no longer tight and so should be shortened by straightening and
merging some adjacent segments. As much as possible we want to preserve the current
route. Rubber-banding finds a new edge route by tracing the original connector path—
object corner by object corner—until the destination object is reached. At all stages the
connector acts like a rubber-band, fitting snugly around objects encountered so far on
the route. The rubber-banding implementation uses the connector routing algorithm to
dynamically route from the start object to the current object corner while preserving as
much of the previous route as possible. More exactly, the
last vertex in the route is removed from the route whenever
the bend angle around the vertex becomes 180° or more,
and routing proceeds from the preceding vertex.

Rubber-banding is also used for manual specification
of connector routes. Connectors are typically created by
specifying their start and end object, in which case auto-
matic connector routing is used to determine a shortest-
path route. However, the author is also free to specify the
topological route of a connector. The author starts froman gjg 3, Manual ~ connec-
object and then threads the connector through the objects tor routing. The author
to the destination object with rubber-banding computing “threads” the endpoint
the route to the current cursor location. This is shown in of the connector between
Fig. Bl the objects to specify the

The remaining user interactions are kinds of direct ma- topological route for the
nipulation of the diagram. A strength of Dunnart is that connector.
the layout engine is fast enough to provide “live” feed-
back during direct manipulation. With live feedback, all objects and connectors in the

428 T. Dwyer, K. Marriott, and M. Wybrow

Table 2. Implementation of user actions providing live feedback during manipulation

Dragging objects: Simply add terms to the goal function for each node v being manipulated of
form (y, — ya)? + (v — x4)? where (x4, y4) is the new desired position of node v.
Horizontal resizing of a node: The node to be resized is internally replaced by two artificial
nodes which correspond to the left and right boundary edges of the original node’s bounding
box. Separation constraints couched in terms of these nodes are generated to maintain non-
overlap between the bounding box and the other nodes. The width is changed by dragging the
two artificial nodes to the required width, and updating the appearance of the node.

Vertical resizing of a node: Analogous to horizontal resizing.

Simultaneous vertical and horizontal resizing of a node: Achieved by resizing in small hori-
zontal and vertical increments.

Tuning of goal function: The user can use sliders to change parameters of the goal function,
such as the desired edge length.

diagram have their position and routing updated immediately in response to user ma-
nipulation. Direct manipulation is guaranteed not to change the topology of the layout.
Details of the process—essentially achieved by performing step (3) of the layout algo-
rithm with a modified P-stress goal function—are given in Table

Clearly topology-preservation means that when dragging objects the author cannot
move objects through connectors or other objects, since this changes the topology. This
may make it difficult or impossible for the author to achieve their objective of, say,
snapping an object to an alignment guideline because the alignment guideline keeps
moving away from the object being dragged. For this reason, Dunnart allows the author
to temporarily escape from continuous layout adjustment during object dragging by
depressing a modifier key. This suspends any current layout activity and causes those
objects not being directly manipulated to maintain their current position. The user is
now free to move objects through connectors and other objects or to add or remove an
object from a container shape. This allows the user to quickly and easily modify the
topology of the diagram.

Depressing the modifier key also breaks the selected objects free from placement
and style constraints involving non-selected objects. Dunnart treats this as if the objects
have been cut and pasted into their new location. The only difference is that connec-
tors between the manipulated objects and non-manipulated objects are treated as new,
automatically routed connectors.

4.3 Understanding Constraints

Placement constraints are the primary method for the author to tailor the layout without
having to explicitly position objects. The placement tool sets up a persistent relation-
ship that is maintained in subsequent interaction until the author explicitly removes it
rather than a once-off position adjustment. Dunnart provides standard placement tools:
horizontal and vertical alignment and distribution, horizontal and vertical separation
(sequencing) that keeps objects a minimum distance apart horizontally or vertically
while preserving their relative ordering, and an “anchor” tool that allows the user to fix
the current position of a selected object or set of objects.

Dunnart: A Constraint-Based Network Diagram Authoring Tool 429

Table 3. Indicative running times on an average (Dual Core 2GHz) PC for various sized randomly
generated directed networks with flow style. For each graph we give the number of nodes and
edges. Note that the number of separation constraints imposing downward edges is | E|. We give
the time to find (a) a feasible layout after adding a new alignment constraint; and (b) the average
rate of layout updates during dragging of a random node and the time for the layout to converge
following the movement.

(a) Feasibility (b) Direct manipulation
|V| |E| Feasibility |V| |E| Layout Time to
repair frame rate converge
(seconds) (frames/sec) (seconds)
59 62 0.19 59 62 15.83 0.94
105 117 0.84 105 117 11.72 1.75
156 167 1.96 156 167 8.59 4.50
230276 5.16 230 276 221 7.26

Like most constraint-based diagramming tools, there is a graphical representation for
each placement relation in the diagram. A potential usability issue for constraint-based
layout tools that utilise such visual representations is that they clutter the diagram. To re-
duce clutter we have chosen to use an explicit visual representation only for user-created
placement constraints and some style constraints but not for refinement constraints since
the objects themselves and their behaviour during manipulation provide sufficient feed-
back. To further reduce clutter, the visual representation for constraints is by default very
faded, leaving the actual diagram components clearly visible (see Fig.[2).

Another well-known usability issue of constraint-based layout tools is that users can
find it difficult to understand interaction between the constraints. Immediate feedback
during direct manipulation helps this considerably since it allows the author to quickly
notice unexpected interaction between the objects being manipulated and other parts of
the diagram. As a more sophisticated way to understand constraint interaction, Dunnart
also provides a query tool dubbed “Information Mode.” This tool finds the path of con-
straints between two objects and illustrates this to the user by highlighting the relevant
constraint indicators.

The extreme kind of unexpected interaction between constraints is when the author
tries to perform an action which will give rise to inconsistent constraints. For instance:
the author may try to add a downward pointing connector which creates a cycle of down-
ward edges; try to apply a placement tool which gives rise to an inconsistent constraint;
or use the modifier key to move an object to an infeasible position. To allow the author
to understand the problem, Dunnart highlights the placement and style constraints and
objects associated with the subset of separation constraints causing the inconsistency.

5 Performance

One of the most important requirements of Dunnart is that the layout algorithms are fast
enough for interactive layout. Table[3(a) lists for network diagrams of various sizes the
time taken to complete node position and edge routing repair after the addition of a new
alignment constraint. Up to a few seconds are required to layout networks of around

430 T. Dwyer, K. Marriott, and M. Wybrow

250 nodes. We have found that the dominating cost of this process is finding the initial
connector routing.

Perhaps more interesting, is the speed of topology-preserving layout adjustment, es-
pecially during direct manipulation. Table B[b) shows the average number of layout
updates per second while the user drags a random node slowly to the four corners of
the screen and back to the centre. It also shows the time taken for the layout to con-
verge, once the user has stopped dragging the object. As expected, because the layout
optimisation algorithm generally starts from a solution close to the optimal solution
it converges quite quickly, allowing real-time feedback during manipulation of graphs
with up to 100-150 nodes. It is worth noting that layout occurs in separate thread so
that Dunnart is still responsive while layout adjustment is taking place. Furthermore,
layout adjustment typically finds a near optimal solution very rapidly, and the majority
of time is spent moving nodes only very slightly.

6 Conclusion

We have described Dunnart, a new network diagram authoring tool that provides pow-
erful automatic graph layout, yet still allows the user total layout flexibility. Topology
preserving constrained graph layout provides predictable behaviour during editing and
allows the author to use placement constraints to control and improve the layout.

The underlying graph layout engine is fast enough to provide live update of the
layout during direct manipulation for networks with up to 100 nodes. This is more than
sufficient for the kind of diagrams that are typically created with interactive authoring
tools. For larger networks we believe that a combination of fast layout techniques (for
an overview layout) and topology preserving constrained graph layout (for the detailed
view) is the right approach [6].

There are a number of extensions to Dunnart that we intend to investigate. One is
orthogonal connector routing. We want to explore further use of Dunnart in particular
application areas, such as biological networks and concept maps.

References

1. Bohringer, K.-F., Paulisch, E.N.: Using constraints to achieve stability in automatic graph
layout algorithms. In: CHI 1990: Proceedings of the SIGCHI conference on Human Factors
in Computing Systems, pp. 43-51. ACM Press, New York (1990)

2. Brandes, U., Wagner, D.: A bayesian paradigm for dynamic graph layout. In: DiBattista, G.
(ed.) GD 1997. LNCS, vol. 1353, pp. 236-247. Springer, Heidelberg (1997)

3. Bridgeman, S.S., Fanto, J., Garg, A., Tamassia, R., Vismara, L.: InteractiveGiotto: An al-
gorithm for interactive orthogonal graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS,
vol. 1353, pp. 303-308. Springer, Heidelberg (1997)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice-Hall, Inc., Englewood Cliffs (1999)

5. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for separa-
tion constraint layout of graphs. IEEE Transactions on Visualization and Computer Graph-
ics 12(5), 821-828 (2006)

11.

12.

13.

14.

15.

Dunnart: A Constraint-Based Network Diagram Authoring Tool 431

. Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P.J., Woodward, M., Wybrow, M.: Explo-

ration of networks using overview+detail with constraint-based cooperative layout. In: IEEE
Transactions on Visualization and Computer Graphics (InfoVis 2008) (to appear, 2008)

. Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: GD

2008. LNCS. Springer, Heidelberg (to appear, 2009)

. Gleicher, M.: Briar: A constraint-based drawing program. In: CHI 1992: Proceedings of the

SIGCHI conference on Human Factors in Computing Systems, pp. 661-662. ACM Press,
New York (1992)

. He, W., Marriott, K.: Constrained graph layout. Constraints 3, 289-314 (1998)
. Huang, M.L., Eades, P., Lai, W.: Online visualization and navigation of global web structures.

The International Journal of Software Engineering and Knowledge Engineering 13(1), 27-52
(2003)

do Nascimento, H.A.D., Eades, P.: User hints for directed graph drawing. In: Mutzel, P.,
Jiinger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 205-219. Springer, Heidelberg
(2002)

Nelson, G.: Juno, a constraint-based graphics system. In: SIG-GRAPH 1985 Conference
Proceedings. ACM Press, New York (1985)

Ryall, K., Marks, J., Shieber, S.M.: An interactive constraint-based system for drawing
graphs. In: ACM Symposium on User Interface Software and Technology, pp. 97-104 (1997)
Sutherland, L.E.: Sketchpad: A Man-Machine Graphical Communication System. Ph.D. the-
sis, Massachusetts Institute of Technology (1963)

Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Healy, P.,
Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 446-457. Springer, Heidelberg (2006)

	Dunnart: A Constraint-Based Network Diagram Authoring Tool
	Introduction
	Related Work
	Background: Constrained Graph Layout
	Dunnart
	Structural Layout
	Layout Adjustment
	Understanding Constraints

	Performance
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

