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Abstract. Motivated by applications of social network analysis and of Web-
search clustering engines, we describe an algorithm and a system for the display
and the visual analysis of two graphs G1 and G2 such that each Gi is defined
on a different data set with its own primary relationships and there are secondary
relationships between the vertices of G1 and those of G2. Our main goal is to
compute a drawing of G1 and G2 that makes clearly visible the relations be-
tween the two graphs by avoiding their crossings, and that also takes into account
some other important aesthetic requirements like number of bends, area, and as-
pect ratio. Application examples and experiments on the system performances
are also presented.

1 Introduction

The visual analysis of complex data sets is one of the most natural applications of graph
drawing technologies (see, e.g., [2–4]). A typical application scenario consists of a set of
data (nodes) and one or more relationships among these data (each relationship is a set
of edges); therefore one is given one or more graphs on the same set of nodes. Both each
graph must be visualized in a readable way and possible similarities among the different
graphs must be easily detected by looking at the different drawings. This scenario has,
for example, motivated a rich body of papers and systems about simultaneous graph
embeddings and visualizations of evolving graphs (see, e.g., [7, 13–16]).

Recently, Collins and Carpendale [8] proposed a new research direction devoted to
the visual comparison and analysis of heterogeneous data sets. The input consists of n
sets of data D1, D2, . . . , Dn, such that for each Di a distinct set of primary relation-
ships (i.e., a distinct graph) is defined; also, there are secondary relationships which
model semantic connections between data belonging to different sets. The visualization
consists of a set of n drawings (one for each graph) on top of which the edges that repre-
sent the secondary relationships are displayed. Collins and Carpendale present a system,
called VISLINK, where each graph is drawn on a distinct plane and the secondary rela-
tionships are links between these planes (see Fig. 1(a) for a schematic illustration). The
work by Collins and Carpendale extends a previous work by Schneiderman and Aris
where multi-plane views with inter-plane edges are used to visualize different semantic
substrates of a same graph [19](see Fig. 1(b) for an illustration).
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(a) (b)

Fig. 1. Schematic illustrations of a visualization (a) adopted by VisLink, (b) using different se-
mantic substrates of a same network. In both the visualizations the drawing on each plane has
been computed without taking into account the relationships with the other. This may cause many
crossings between inter-sets relationships.

Motivated by applications of social network analysis and of Web search clustering
engines, we elaborate on the concepts by Collins and Carpendale by studying the fol-
lowing problem: We are given two graphs G1 and G2 and a function that defines a set
of secondary relationships by mapping some of the vertices of G1 to some other ver-
tices of G2; we aim at visually analyzing and interacting both with G1, G2 and with
their secondary relationships. We observe that the systems described in [8, 19] follow
the common approach of drawing each graph independently of each other. As a result,
the secondary edges may be difficult to read as they can have many crossings. Our main
goal is to design a system where the two drawings are computed by taking into account
the edge-crossing minimization of the secondary edges. We focus on one-to many re-
lationships between G1 and G2, i.e., vertices of G1 are associated with disjoint subsets
of vertices of G2. The main contributions of the paper are the following:

– We introduce the concept of one-to-many matched graphs and define drawing con-
ventions for these graphs in a strong and non-strong model. Both drawings require
the secondary relationships between the graphs not to cross each other (Sect. 2).

– We describe a system that computes strong and non-strong one-to-many matched
drawings of the input graphs by also taking into account the optimization of impor-
tant aesthetic requirements. Furthermore, the system provides the user with several
interaction functionalities that make it possible to analyze the drawings at differ-
ent levels of details by collapsing/expanding clusters and by filtering information
with the definition of node/edge thresholds (Sect. 3). Our drawing approach com-
bines orthogonal drawings in the topology driven approach with circular drawing
algorithms, and adopts an edge bundling technique to reduce the visual complexity
introduced by some links.

– We show the effectiveness of the system by presenting application examples
(Sect. 4), and an experimental study on the system performances (Sect. 5).

We finally remark that the problem of drawing two matched planar graphs G1 and
G2 with one-to-one secondary relationships between them have been originally studied
in [11], where it is required that the drawing of each Gi is planar and that the secondary
edges are represented as non-intersecting horizontal segments.
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2 One-to-Many Matched Graphs and Drawings

We assume familiarity with basic concepts of graph planarity and graph drawing [10].
If G is a graph, we denote by Γ (G) a drawing of G. Γ (G) is an orthogonal drawing if
each edge is drawn as a chain of horizontal and vertical segments. A bend in Γ (G) is a
point of an edge shared by a horizontal and a vertical segment of the edge. A drawing
Γ (G) is a circular drawing if there is a circle passing through all vertices and each
edge is drawn as a straight-line segment. In the following, if G = (V, E) is a graph and
V ′ ⊆ V we denote by G(V ′) the subgraph of G induced by the vertices of V ′.

Let G1 = (V1, E1) and G2 = (V2, E2) be two distinct graphs. We say that 〈G1, G2〉
is a pair of one-to-many matched graphs if: (i) Each vertex u of G1 is associated with a
subset M(u) = {v1, v2, . . . , vk} of vertices of G2, which we call the cluster of u in G2;
(ii) the set of clusters {M(u) ⊆ V2 : u ∈ V1} is a partition of V2, i.e.,

⋃
u∈V1

M(u) =
V2 and

⋂
u∈V1

M(u) = ∅.
Let 〈G1, G2〉 be a pair of one-to-many matched graphs, and let Γ (G1), Γ (G2) be

drawings of G1 and G2, respectively. We say that 〈Γ (G1), Γ (G2)〉 is a one-to-many
matched drawing if the following properties hold: (P1) The bounding boxes of Γ (G1)
and Γ (G2) do not intersect. (P2) For each vertex u of G1, cluster M(u) in Γ (G2) is
bounded by a rectangular region R(u) such that: (i) G(M(u)) is completely contained
in R(u); (ii) each vertex v ∈ V2 \ M(u) is outside R(u); (iii) each edge of G2 inter-
sects the boundary of R(u) at most once. (P3) For each vertex u of G1, there exists a
simple curve �(u) that connects the geometric shape pu representing u in Γ (G1) to the
boundary of R(u) in Γ (G2), in such a way that

⋂
u∈V1

�(u) = ∅.
In the paper, simple curves �(u) are referred to as matching connections. Property

(P3) guarantees that there is no intersection between distinct matching connections.
A one-to-many matched drawing is said to be strong if the centers of the vertices of
Γ (G1) have distinct y-coordinates and regions R(u) are vertically ordered in Γ (G2)
according to the positions of the corresponding vertices in Γ (G1). More formally, if
u1, u2 ∈ V1 and pu1 is above pu2 in Γ (G1), then R(u1) is completely above R(u2) in
Γ (G2). In the paper, a one-to-many matched drawing that is not strong will be referred
to as a non-strong one-to-many matched drawing. Figure 2 shows two examples of one-
to-many matched drawings for the same pair of graphs. The one in Fig. 2(b) is a strong
one-to-many matched drawing.

3 The System MOM

In this section we present a system for the display and the visual analysis of one-to-
many matched drawings. We call our system MOM1. Let 〈G1, G2〉 be a pair of one-
to-many matched graphs to be visualized. MOM displays the drawing of G1 to the left
of the drawing of G2, according to the following main criteria: (C1) It assumes that
a drawing Γ (G1) is given as part of the input or that it can be computed using some
classical graph drawing algorithm. (C2) It concentrates on the computation of Γ (G2),
while trying to optimize a certain number of aesthetic criteria, other than guarantee-
ing that 〈Γ (G1), Γ (G2)〉 is a one-to-many matched drawing. (C3) Once Γ (G2) has

1 MOM stands for Matched One-to-Many graphs.
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Fig. 2. (a) A (non-strong) one-to-many matched drawing of a pair of matched graphs. (b) A strong
one-to-many matched drawing for the same pair of graphs.

been computed, it draws the matching connections and provides the user with a set of
interaction functionalities for the visual analysis of the resulting drawing.

Criterion (C1) is motivated by several application scenarios that we had in mind
during the design of the system. In these applications G1 is often a graph whose entities
represent geographic locations and therefore their position is either fixed or strongly
constrained (examples are given in Sect. 4). About (C2), we focus on well recognized
aesthetic criteria like number of crossings, number of bends, drawing area. Since the
optimization of these criteria typically leads to an NP-hard problem, we propose some
heuristics based on engineered versions of popular graph drawing algorithms, which are
able to deal with the constraints of a one-to-many matched drawing. As an additional
aesthetic criterion we require that 〈Γ (G1), Γ (G2)〉 is computed in such a way that the
matching connections can be always drawn without intersecting the edges of G2. When
G2 is a dense graph, Γ (G2) may have a high visual complexity, which makes it difficult
to read the drawing at a whole, independently of the applied drawing strategy. This is
the motivation for (C3).

3.1 Drawing Algorithm

Our drawing strategy for Γ (G2) combines different drawing conventions. We use or-
thogonal drawings for the layout of the rectangular regions R(u) and their connections.
Circular drawings are used to represent G(M(u)) inside R(u). Finally, in order to sim-
plify the visual complexity, we adopt a bundling operation for the edges connecting
a vertex inside a region R(u) to vertices outside R(u); to avoid ambiguity, we use a
“confluent-like” representation for these edges, as explained later. The algorithms used
for the different drawing conventions have been engineered in order to deal with a cer-
tain number of constraints. In the following we describe in detail the steps performed
by our drawing algorithm. We denote by Vi and Ei the set of vertices and edges of Gi,
respectively (i ∈ {1, 2}).

Step 1: Planarization. The goal of this step is to compute a suitable planar embedding of
the graph consisting of “cluster vertices” and their interconnections, possibly replacing
edge crossings with dummy vertices. More precisely, let u1, u2, . . . , un be the vertices
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Fig. 3. (a) A graph G2. (b) The graph G′
2 used in Step 1 plus the wheel gadget (black node and

dashed bold edges) adopted to guarantee (E1); the wheel gadget is removed at the end of Step 1.

of G1 in the top-to-bottom order2 they appear in Γ (G1), and let G′
2 be the graph ob-

tained from G2 by collapsing each cluster M(ui) into a single vertex v(ui) (1 ≤ i ≤ n),
called a cluster vertex. In G′

2 edges connecting vertices in the same cluster M(u) dis-
appear, while an edge connecting a vertex in M(ui) to a vertex in M(uj) (i �= j) is
transformed to a corresponding edge between v(ui) and v(uj). We aim at computing
a planar embedding Ψ of G′

2 that satisfies the following two conditions: (E1) Cluster
vertices v(u1), v(u2), . . . , v(un) appear counterclockwise in this order on the external
face of Ψ ; (E2) If v ∈ M(ui) in G2 and if e1, . . . , ek are edges of G2 incident to v,
then the edges corresponding to e1, . . . , ek in G′

2 appear consecutively (not necessarily
in this order) around v(ui) in Ψ . Condition (E1) will guarantee Property (P3), i.e., the
possibility of routing the matching connections without crossings among them; it also
avoids crossings between matching edges and the edges of G2. Condition (E2) makes it
possible to simplify the links between the outside and the inside of each region R(ui) in
the final drawing and to bundle these links as it will be explained in Step 3. To force (E2)
we further transform G′

2 by attaching to v(ui) a vertex v′ for each vertex v ∈ M(ui)
connected to vertices outside M(ui), and by replacing the edges e1, . . . , ek that are in-
cident to v with corresponding edges e′1, . . . , e

′
k connected to v′. Vertex v′ is called the

image of v.
On G′

2 we apply a standard planarization algorithm based on first extracting a max-
imal planar subgraph and then on iteratively reinserting the discarded edges by com-
puting shortest paths in the dual graph and by replacing edge crossings with dummy
vertices [10]. To force (E1), we use a “wheel gadget” of uncrossable edges that will be
removed at the end of the planarization phase. Figure 3 shows an example of a graph
G′

2 and the wheel gadget used to guarantee (E1).
Notice that, quadratic and linear-time algorithms for planarity testing and edge rein-

sertion within the above described embedding constraints have been also proposed in
[1, 17]. Our planarization phase takes O(|E2|(c + |V2|) log(c + |V2|)) time, where c is
the number of edge crossings in the final embedding of G′

2.

2 If ui and uj have the same y-coordinate, they are ordered from right to left.
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Step 2: Orthogonalization and Compaction. Once a planar embedding Ψ of G′
2 (with

possible cross vertices) has been found, an orthogonal drawing of G′
2 that preserves

Ψ is computed. The basic idea is to use an orthogonal drawing algorithm that deals
with arbitrary vertex degree and that allows for vertex size customization. Indeed, we
want that v(ui) is drawn as a box big enough to host all vertices of M(ui). To this
aim, the system uses the network flow based drawing algorithm described in [9], which
represents a good heuristic both in terms of bend minimization and in terms of area
drawing compaction. Denoted by B(v(ui)) the box representing vertex v(ui), we draw
B(v(ui)) as a square of a certain size ri. In the final drawing we place a circle of radius
ρi inside B(v(ui)) and equi-distribute along its perimeter the vertices of M(ui). To
determine ρi, we fix a minimum distance δ we want to guarantee between any two
vertices of M(ui) and we set ρi = δ · |M(ui)|/2π. We choose ri to be larger enough
than ρi so that it is possible to route the edges connecting vertices inside B(v(ui)) with
the outside. Each square B(v(ui)) will correspond to region R(ui) in the final drawing.
Also, in order to guarantee the properties of a one-to-many matched drawing, we add a
certain number of constraints as described below.

If one wants to compute a strong one-to-many matched drawing, then all vertices
v(u1), v(u2), . . . , v(un) are temporarily connected in this order to form a simple cy-
cle C that becomes the new boundary for the external face. Then the following angle
and bend constraints on the vertices and edges of C are imposed: Each edge of C con-
necting v(ui) to v(ui+1) (1 ≤ i ≤ n − 1) is constrained to be straight-line in the
drawing, while the edge of C connecting v(un) to v(u1) is constrained to turn always
in the left direction while moving from v(un) to v(u1). Each angle formed at a vertex
v(ui) on the external face is set to be of 180 degrees. These constraints guarantee that
v(u1), v(u2), . . . , v(un) are encountered from top-to-bottom in the final drawing and
that they are all visible from left. Once a drawing has been computed the edges of C
are removed. If one wants to compute a (not necessarily strong) one-to-many matched
drawing, then we still construct cycle C, but we only impose the constraint that the
edges of C turn in the left direction or go straight while moving along C counter-
clockwise. Finally, in order to correctly perform the next step (i.e., the edge bundling
operation), we also require that for each image vertex v′ attached to a vertex v(ui),
there is no other edge incident to v′ from the same direction of edge (v(ui), v′).

All the orthogonalization constraints described above are translated into constraints
on the flow network of the algorithm in [9]. The orthogonalization and compaction
phases take O((|V1||V2| + c)2 log(|V1||V2| + c)) time, where c is still the number of
cross vertices in the embedding Ψ .
Step 3: Edge Bundling. This step removes each image vertex v′ and creates in its place
a “confluent-like” structure for the edges incident to v′. Namely, let v be the vertex of
the original graph that has v′ as its image and let M(ui) be the cluster that contains
v. Let e′1, . . . , e

′
k be the edges incident to v′ other than edge (v′, v(ui)). We want that

v′ is no longer present in the final drawing and that the edges e′1, . . . , e
′
k are replaced

by the edges e1, e2, . . . , ek that were originally connected to v. To simplify the final
drawing however, we bundle the edges e1, e2, . . . , ek from v to v′; this edge bundle
follows the drawing of e from the boundary of R(ui) to v′ and then it divides in k
branches at v′ using splines, as shown in Fig. 4(a). It is important to remark that the
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Fig. 4. (a) Illustration of Step 3. The image vertex v′ is removed and its incident edges are replaced
by a “confluent-like” structure. The dashed curve is the part of edge bundle that will be drawn
in Step 4. (b) Illustration of Step 4. The black vertices inside R(ui) denote the vertices whose
relative circular ordering is fixed according to their corresponding external connections.

edge bundling operation guarantees that for each vertex v inside a region R(ui) there
will be at most one link (a bundle of edges) incident to v from the outside of R(ui).
Since these links must be routed around the circular drawing representing G(M(ui)),
this property strongly simplifies the visual complexity introduced by these connections.
The edge bundling step takes O(|E2|) time.
Step 4: Circular Drawing Computation. At the end of the previous step, we have
a partial drawing of G2 such that for each cluster vertex v(ui) there is a correspond-
ing rectangular region R(ui) and some edges incident to the boundary of R(ui) at
certain points p1, p2, . . . , pk. To complete the drawing of G2 we construct a circular
drawing for each G(M(ui)), and then connect pj to its corresponding vertex vj of
M(ui) (1 ≤ j ≤ k). See Fig. 4(b) for an illustration. In order to avoid crossings be-
tween links (pj , vj), we force the circular order of vertices vj to be consistent with
the circular order of points p1, p2, . . . , pk around R(ui), i.e., if p1, p2, . . . , pk occur
clockwise in this order around R(ui) then we force v1, v2, . . . , vk to occur clockwise
in this order in the circular drawing. Conversely, all vertices of M(ui) distinct from
vj (1 ≤ j ≤ k) can be placed everywhere in the circular ordering (these vertices are
not connected to vertices outside R(ui)). In other words, if Vfix = {v1, v2, . . . , vk}
and Vfree = M(ui) \ Vfix, we want to find a “good” circular order for the vertices of
M(ui) such that the relative order of the vertices of Vfix is fixed; our goal is the mini-
mization of the number of edge crossings, which is however an NP-Hard problem [18].
To solve it, we designed a variation of the heuristic described by Baur and Brandes [5],
which has been experimentally shown to produce better results in terms of crossing
reduction than previous heuristics for computing circular drawings, and that has been
successfully adopted for the layout of two-level networks that are similar to the clus-
tered structure of G2 [6]. We also recall that faster but less effective circular drawing
algorithms in terms of edge crossings have been described in [20]. The heuristic by Baur
and Brandes computes an ordering of the vertices on a straight line �, assuming that all
edges are drawn on the same half-plane determined by �. In terms of edge crossings this
model is equivalent to place the vertices on a circle and to draw the edges as straight-line
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segments. At the end of this placement greedy heuristic, a post-processing step, called
circular sifting is applied to further reduce the number of edge crossings if possible.
The idea is to iteratively swapping a vertex with its successor vertex in the linear order
on � and recording the change in crossing count; the vertex is then placed in the position
that corresponds to its local optimal. Denoted by n and m the number of vertices and
the number of edges of the input graph, respectively, the placement greedy heuristic
can be performed in O((n+m) log n) time, while repositioning each vertex once in the
circular sifting phase can be done in O(nm) time (see [5]).

Our variation of the algorithm in [5] works as follows. The placement greedy heuris-
tic performs analogously to the one of Baur and Brandes, but it assumes that the ver-
tices of Vfix are already placed on � in a preassigned order; therefore the placement
decisions are restricted to the vertices of Vfree. The circular sifting phase is modified
so that swaps between vertices both belonging to Vfix are not allowed. Once the circu-
lar ordering of the vertices of M(ui) has been computed, the algorithm equi-distributes
these vertices on a circle inside R(ui) and rotates this circle in order to reduce the total
length of the connections (pj , vj) (1 ≤ j ≤ k), which are routed as polygonal chains of
vertical and horizontal segments. The circular drawing computation over all cluster ver-
tices takes O(|V1|((|V2| + |E2|) log |V2| + |V2||E2|)) time (recall that |V1| corresponds
to the number of cluster vertices).
Step 5: Drawing of Matching Edges. This step is simply performed by routing the
matching edges as polygonal chains from the location of a vertex ui of Γ (G1) to the
boundary of the corresponding region R(ui) in Γ (G2). Since the circular ordering of
the regions on the external face of Γ (G2) is consistent with the top-down ordering of the
corresponding vertices in Γ (G1), this can be done without crossing between matching
edges. Also, in a strong one-to-many matched drawing, each matching edge can be
routed with at most two bends.

Time Complexity. The next theorem summarizes the discussion about the drawing
algorithm implemented in MOM . To simplify the time complexity of this algorithm,
the statement of the theorem assumes that |V1| is bounded by a constant. This appears
as a reasonable assumption if |V1| 	 |V2|.

Theorem 1. Let 〈G1, G2〉 be a pair of one-to-many matched graphs such that G1 =
(V1, E1) and G2 = (V2, E2). Let Γ (G1) be any drawing of G1. There exists a polyno-
mial-time algorithm that computes a one-to-many matched drawing 〈Γ (G1), Γ (G2)〉
(either in the strong or in the non-strong model) with the additional property that the
matching edges can be drawn without intersecting any vertex and edge of Γ (G2). Also,
if |V1| is bounded by a constant, and denoted by N the number N = |V2| + c, where c
is the number of inter-cluster edge crossings in Γ (G2), then the time complexity of the
drawing algorithm is: O((|E2|N + N2) log N).

3.2 Interaction Functionalities

In order to facilitate the visual analysis of the computed one-to-many matched draw-
ings, we equipped our system with a certain number of interaction functionalities, other
than conventional zooming and translation primitives. We briefly describe them in the
following.



Visual Analysis of One-to-Many Matched Graphs 141

Cluster Expansion/Contraction: By default, all cluster regions R(u) in Γ (G2) are
expanded, i.e., the whole subgraph inside each R(u) is displayed by the system. In
order to compact the drawing and/or to hide some details, the user can decide to con-
tract a certain number of clusters by simply clicking on them. A cluster contraction
redraws the cluster as a small box and hides its content. Every cluster can be expanded
or contracted an infinite number of times without any restriction. After a cluster ex-
pansion/contraction, the drawing is automatically re-compacted by the system, but the
orthogonal shape of the drawing remains unchanged, so to avoid that the user mental
map is lost. Contracting clusters can be useful to get an overview of the inter-cluster
relations before analyzing the intra-cluster ones.

Cluster Filtering: If the user is interested in focusing on some of the clusters, she
can select them and hide the remaining clusters and their connections. After such an
operation, the user can also decide to re-compact the remaining part of the drawing
to save space if possible. When the drawing of Γ (G2) has many clusters and/or many
inter-cluster links, the cluster filtering primitive can help to explore the graph structure
portion by portion.

Edge Filtering: Our system allows the representation of edge weighted graphs. This
means that a weight can be assigned to each edge of G1 and of G2. When a graph is too
dense, the user can sparsify the links by setting an edge visibility threshold. All links
having the weight below the given threshold are not shown by the system. Again, the
drawing is re-compacted if required.

Edge/Vertex Highlighting: Moving the mouse over a certain vertex or cluster region,
the user can decide to highlight all edges incident to that vertex or to that cluster region.
A tooltip with information about the selected vertex is also displayed. This helps to
get local information on the drawing. Furthermore, moving the mouse over an edge,
a tooltip that displays the labels of its end-vertices is shown. This helps when just a
portion of the selected edge fits in the current view.

4 Application Examples

One-To-Many matched graphs occur in several applications contexts. Here we briefly
present an example on social network analysis. Another application example on Web
search clustering engines is described in [12].

Our example focuses on the co-authorship network of the last Symposium on Graph
Drawing, GD 2007. G1 is the graph having European countries as vertices and edges
between countries that cooperated in co-authoring some papers. Each edge has a weight
equal to the number of papers resulting from the cooperation of the connected countries.
The drawing Γ (G1) is a simple straight-line drawing, where each vertex is placed at a
fixed location on a geographic map. Graph G2 represents authors and their cooperations
in the articles. Figure 5 shows a one-to-many matched drawing in the strong model.
The drawing gives an overview of the network structure, which reveals the number
of contributing authors for each country and a relevant level of cooperation among
the different countries. Looking inside a country, it is possible to see its different sub-
communities. For example, it is easy to recognize two sub-communities in Greece, in
Italy, and in Czech Republic, several communities in Germany, and one big community
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Fig. 5. A one-to-many matched drawing showing the European co-authorship network of GD
2007

in Spain. Selecting an author in a country, all her connections with other authors are
highlighted by the system. In the figure, author “Kaufmann” inside Germany is selected,
and the system highlights (in bold red color) his connections with other authors, three
in Greece and one in Italy. Moving the mouse over one of the bold red edges, it is
displayed a tooltip that reports the labels of its end-vertices. Figure 6 shows an example
of edge and vertex filtering on the previous drawing, which makes it easier to focus on
specific relationships. Namely, the edges of Γ (G1) has been filtered so that only those
edges with a weight greater than 1 are shown. The vertices of Γ (G2) have been filtered
in such a way that only the countries having some incident links in Γ (G1) are shown
(i.e., Germany, Italy, and The Netherlands). Then, cluster Germany has been contracted
to focus on the interplay between Italy and The Netherlands. After the vertex filtering
and contraction operations, Γ (G2) is recomputed so to become more compact without
destroying the user’s mental map. In the figure, the connections of author “Meijer” are
highlighted in bold red.

5 System Performances

We have tested our system in order to measure its performances. Our main goal was
to measure the running time and some important aesthetic requirements, like number
of crossings, number of bends, drawing area, and aspect ratio (width/height). We com-
pared the algorithm for strong one-to-many matched drawings against the algorithm for
non-strong one-to-many matched drawings, so to understand the trade-off between the



Visual Analysis of One-to-Many Matched Graphs 143

Fig. 6. The same one-to-many matched graphs of Fig. 5 after some edge and vertex filtering

results of the two algorithms. A strong drawing greatly helps in the readability of the
matching between G1 and G2, but we expect that a strong drawing has worst values for
some aesthetics (e.g., aspect ratio and number of bends) than for a non-strong drawing.

The focus is on the drawing of G2, because we are assuming that a drawing Γ (G1)
is given as part of the input or that it is computed with some classical drawing algo-
rithm. For the experiments we used a test suite of instances for G2, with given num-
ber of cluster vertices. We generated 240 graphs in total, 5 graphs for each sample.
A sample is obtained by fixing number of vertices, number of clusters, and density
(number of edges/number of vertices). The number of vertices is a value in the set
{100, 400, 700, 1000}, the number of clusters is a value in {5, 10, 15, 20}, and the den-
sity is a value in {1, 1.5, 2}. Each graph was generated at random, by assuming that
10% of the edges are inter-cluster edges and that 90% of the edges are intra-cluster
edges. The experiments have been executed under the Windows 2003 server OS, on an
Intel Pentium IV with 3.0GHz and 2GB of RAM.

The charts of the experimental results are omitted for reasons of space and can be
found in [12]. As for the running time, the computation of strong drawings is slightly
slower than for non-strong drawings (in the average, it requires about 10% more). In
general, both types of computations take a few seconds for graphs up to 400 vertices
and low density values. Graphs with the highest density and 700 vertices are computed
in a few minutes, while the computations may require up to 30 minutes for the hard-
est instances of our test suite, i.e., graphs with 1000 vertices and density 2. About the
area and the aspect ratio, since in a strong one-to-many matched drawing every two
cluster regions are constrained to stay one below the other, strong drawings have a
worst aspect ratio but smaller area than non-strong drawings, which have aspect ratio
close to 1. About the number of bends, strong drawings present in the average 11−12%
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of bends more than non-strong drawings, which are caused by their greater number of
constraints. Finally, as already observed, the number of crossings is independent of the
two drawing algorithms, and as expected it rapidly increases with the graph density.
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