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Abstract. We present a polynomial-time algorithm for c-planarity test-
ing of clustered graphs with fixed plane embedding and such that every
cluster induces a subgraph with at most two connected components.

1 Introduction

Clustered planarity (or shortly, c-planarity) has recently become an intensively
studied topic in the area of graph and network visualization. In many situations
one needs to visualize a complicated inner structure of graphs and networks.
Clustered graphs provide a possible model of such a visualization, and as such
they find applications in many practical problems, e.g., management information
systems, social networks or VLSI design tools [5]. However, from the theoretical
point of view, the computational complexity of deciding c-planarity is still an
open problem and it is regarded as one of the challenges of contemporary graph
drawing.

A clustered graph is a pair (G, C), where G = (V, E) is a graph and C is a
family of subsets of V (called clusters), with the property that each two clusters
are either disjoint or in inclusion. We always assume that the vertex set V is
in C, and we call it the root cluster. We say that a clustered graph (G, C) is
clustered-planar (or shortly c-planar), if the graph G has a planar drawing such
that we may assign to every cluster X ∈ C a compact simply connected region of
the plane which contains precisely the vertices of X and whose boundary crosses
every edge of G at most once (see Sect. 2 for the precise definition).

It is well known that planar graphs can be recognized in polynomial (even
linear) time. For c-planarity, determining the time-complexity of the decision
problem remains open; only partial results are known. If every cluster of (G, C)
induces a connected subgraph of G, then the c-planarity of (G, C) can be tested in
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linear time by an algorithm of Dahlhaus [3], which improves upon a polynomial
algorithm of Feng et al. [5]. Several generalizations of this result are known:
c-planarity testing is polynomial for clustered graphs in which all disconnected
clusters form a single chain in the cluster hierarchy [7], for clustered graphs
in which for every disconnected cluster X , the parent cluster and all the sibling
clusters of X are connected [7], and for clustered graphs where every disconnected
cluster X has connected parent cluster, with the additional assumption that each
component of X is adjacent to a vertex not belonging to the parent of X [6].

Another approach to c-planarity testing is to consider flat clustered graphs,
which are clustered graphs in which all non-root clusters are disjoint. Even in
this restricted setting, the complexity of c-planarity testing is unknown. However,
polynomial-time algorithms exist for special types of flat clustered graphs, e.g.,
if the underlying graph is a cycle and the clusters are arranged in a cycle [2], if
the underlying graph is a cycle and the clusters are arranged into an embedded
plane graph [1], or if the underlying graph is a cycle and the clusters contain at
most three vertices [9]. Even for these very restricted settings, the algorithms
are quite non-trivial.

Suppose an embedding of the underlying graph is fixed. Does the c-planarity
testing become easier? This question was already addressed in [4], who provide a
linear algorithm for flat clustered graphs with a prescribed embedding in which
all faces have size at most five.

In this paper, we also deal with clustered graphs (G, C), for which the em-
bedding of G is fixed. In this setting, we obtain a polynomial algorithm for
c-planarity of clustered graphs in which each cluster induces a subgraph with at
most two connected components.

Theorem 1. There is a polynomial time algorithm for deciding c-planarity of a
clustered graph (G, C), where G is a plane graph and every cluster of C induces
a subgraph of G with at most two connected components.

In this extended abstract, we present a simplified version of the algorithm which
assumes that the cluster hierarchy is flat. We also omit some of the proofs.

2 Preliminaries

We follow standard terminology on finite simple loopless plane graphs. A plane
graph is an ordered pair G = (V, E), where V is a finite set of points in the plane
(called vertices) and E is a set of Jordan arcs (called edges), such that every
edge connects two distinct vertices of G and avoids any other vertex, every pair
of vertices is connected by at most one edge, and no two edges intersect, except
in a possible common endpoint.

If G = (V, E) is a plane graph and X ⊆ V is a set of vertices, we let X denote
the set V \ X and we let G[X ] denote the subgraph of G induced by X .

Two plane graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if there is
a continuous bijection f of the plane with continuous inverse such that V ′ =
{f(v) : v ∈ V } and E′ = {f [e] : e ∈ E} (where f [e] is the set {f(x) : x ∈ e}).
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The algorithm we will present in this paper expects a representation of a
plane graph as part of its input. Since the algorithm does not need to make a
distinction between isomorphic plane graphs, we may represent a plane graph
G by a data structure which identifies G uniquely up to isomorphism. We may
identify the isomorphism class of G by specifying, for every vertex of G, the
cyclic order of edges and faces incident to v, and by specifying the outer face of
G. The isomorphism class of a plane graph can be thus represented by a data
structure whose size is polynomial in |V |.

Let G = (V, E) be a plane graph. A cluster set on G is a set C ⊆ P(V (G))
such that for all X, Y ∈ C, either X and Y are disjoint or they are in inclusion;
the pair (G, C) is called a plane clustered graph. The elements of C are called
clusters. We assume that the set V (G) is always in C, and we call it the root
cluster. A cluster that does not contain any other cluster as a subset is called
minimal.

Clusters are naturally ordered by inclusion. The set V (G) is the maximum
of this ordering. A cluster is called connected if it induces in G a connected
subgraph and disconnected otherwise. A component of a cluster X ∈ C is a
maximal set X1 ⊆ X such that G[X1] is a connected subgraph of G[X ].

We say that a plane clustered graph (G, C) is connected (or 2-connected, or
disconnected) if the graph G is connected (or 2-connected, or disconnected). Let
us remark that some earlier papers use the term ‘connected clustered graph’ to
denote a clustered graph in which every cluster is connected; we break with this
convention for the sake of consistency of our definitions.

In this paper, we consider clustered graphs (G, C) in which every disconnected
cluster in C has exactly two components. We will call such a pair (G, C) a 2-
component clustered graph.

For a plane clustered graph (G, C), a clustered planar embedding is a mapping
embc that assigns to every cluster X ∈ C a compact simply connected planar
region embc(X) (called the cluster region of X) whose boundary γ(X) is a closed
Jordan curve (called the cluster boundary of X), such that

– for each vertex v ∈ V and each cluster X ∈ C, v is in embc(X) if and only if
v ∈ X ,

– for each cluster X ∈ C, the cluster boundary γ(X) does not contain any
vertex from V ,

– for every two clusters X and Y , the regions embc(X) and embc(Y ) are dis-
joint (in inclusion) if and only if X and Y are disjoint (in inclusion, respec-
tively), and

– for every edge e ∈ E and every cluster X ∈ C, the edge e crosses the cluster
boundary of X at most once.

A plane clustered graph is called clustered planar (shortly c-planar) if it allows
a clustered planar embedding.

When testing c-planarity, we adopt the approach first used in [5] of adding
extra edges to the underlying graph in order to make each cluster connected.
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Definition 1. Let (G, C) be a plane clustered graph. Let c be a cycle in G whose
vertices all belong to a cluster X ∈ C. We say that c is a hole of the cluster X,
if the interior region of c contains a vertex not belonging to X.

Clearly, a plane clustered graph with a hole is not c-planar. On the other hand,
it is known [5] that a plane clustered graph without holes whose clusters are all
connected is c-planar. For a given plane clustered graph (G, C) the existence of
a hole can be determined in polynomial time [5].

Definition 2. Let G be a plane graph. A candidate edge of G is a simple curve
e �∈ E such that (V, E ∪ {e}) is a plane graph. A candidate set is a set S of
candidate edges of G such that (V, E ∪ S) is a plane graph. We use the notation
G ∪ e and G ∪ S as a shorthand for (V, E ∪ {e}) and (V, E ∪ S) respectively.

We say that two candidate edges e and e′ are isomorphic if G ∪ e and G ∪ e′

are isomorphic plane graphs.

Note that a pair of vertices u, v of a plane graph G may be connected by two
distinct non-isomorphic candidate edges. On the other hand, it is not hard to see
that a plane graph on n vertices has at most O(n2) non-isomorphic candidate
edges.

The following theorem reduces c-planarity testing to searching for a specific
set of candidate edges. It was proved in an equivalent version by Feng et al. [5].

Theorem 2. A plane clustered graph (G, C) is c-planar if and only if there exists
a candidate set S with the following properties:

1. (G ∪ S, C) has no hole,
2. every cluster X of C induces a connected subgraph in G ∪ S.

A set S of candidate edges satisfying the above conditions is called a satura-
tor1. A set S that satisfies the first condition will be called a partial saturator.
We say that a candidate edge e saturates a cluster X , if e connects a pair of
vertices belonging to different components of X . A saturator S is minimal if no
proper subset of S is a saturator. Note that every candidate edge from a mini-
mal saturator S saturates a cluster from C. Moreover, if X is a cluster with two
components that does not contain any disconnected subcluster, then a minimal
saturator S has exactly one candidate edge saturating X .

Definition 3. If e is a candidate edge of a plane clustered graph (G, C) such that
(G, C) is c-planar if and only if (G ∪ e, C) is c-planar, then the edge e is called
harmless. Similarly, a candidate set S is harmless provided (G, C) is c-planar if
and only if (G ∪ S, C) is c-planar.

Note that if (G, C) is a c-planar clustered graph, then a candidate set is harmless
if and only if it is a subset of a saturator of (G, C). On the other hand, if (G, C)
is not c-planar, then any candidate set is harmless.

Let us now present several simple but useful lemmas, whose proofs are omitted
due to space constraints.
1 Note that this definition of saturator differs slightly from that of some other papers—

here, candidate edges are already embedded.



Clustered Planarity 125

Lemma 1. Let (G, C) be a plane clustered graph without holes, let X ∈ C be a
cluster which is minimal and connected. Then (G, C) is c-planar if and only if
(G, C \ {X}) is c-planar.

The next lemma shows that c-planarity testing of 2-component graphs can be
reduced to c-planarity testing of 2-component connected plane clustered graphs.

Lemma 2. If there is a polynomial time algorithm for deciding c-planarity for
connected 2-component plane clustered graphs, then there is a polynomial time al-
gorithm for deciding c-planarity for arbitrary 2-component plane clustered graphs.

The following lemma allows us to reduce c-planarity testing of a connected
graph to an equivalent instance of c-planarity where the underlying graph is
2-connected.

Lemma 3. Let (G, C) be a connected plane clustered graph with at least three
vertices which is not 2-connected. There is a polynomial-time transformation
which constructs a plane clustered graph (G′, C′) such that G′ is connected, G′

has fewer components of 2-connectivity than G, (G′, C′) is c-planar if and only
if (G, C) is c-planar, and there is a bijection f between C and C′ such that for
every cluster X ∈ C, the graph G[X ] has the same number of components as the
graph G′[f(X)].

Thanks to Lemma 3, a connected 2-component plane c-planarity instance (G, C)
can be polynomially transformed into an equivalent 2-connected 2-component
instance (G′, C′). To achieve this, we simply perform repeatedly the transforma-
tion described in Lemma 3, until the resulting graph has only one 2-connected
component.

Combining Lemma 2 and Lemma 3, we see that to decide the c-planarity of
2-component plane graphs, it is sufficient to provide an algorithm that decides
c-planarity of 2-connected 2-component plane graph. This is an important tech-
nical simplification, because in a 2-connected plane graph, the boundary of every
face is a cycle, and a candidate edge in every inner face is uniquely determined
(up to isomorphism) by its end-vertices and the face where it should be drawn.

Unfortunately, if F is the outer face of G, a pair of vertices of F may still be
connected by two non-isomorphic candidate edges belonging to F (see Fig. 1).
To avoid this technical nuisance, we will restrict the set of candidate edges. Let
(G, C) be a 2-connected plane clustered graph, let f ∈ E(G) be an edge which
connects a pair of vertices u, v ∈ V (G), with the following properties:

– f appears on the boundary of the outer face of G,
– every non-root cluster contains at most one of the two vertices u, v.

Such an edge f exists, otherwise the boundary of the outer face would be a hole
of a non-root cluster. We say that a candidate edge e of G is properly drawn if f
is on the boundary of the outer face of G∪ e. Note that every candidate edge in
an inner face of G is properly drawn, while a pair of non-adjacent vertices on the
boundary of the outer face may be connected by two non-isomorphic candidate
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u
v

this candidate edge
is properly drawn

this candidate edge
is not properly drawn

Fig. 1. Two candidate edges connecting the same pair of vertices in the outer face

edges, exactly one of which is properly drawn. Thus, a properly drawn candidate
edge is uniquely determined (up to isomorphism) by its pair of endpoints and
the face where it should be embedded.

It can be shown that if a 2-connected plane clustered graph is c-planar, then
it has a saturator that only contains properly drawn candidate edges.

3 The Algorithm

In this section, we present our algorithm deciding the c-planarity of 2-component
plane clustered graphs. As mentioned in the introduction, we will only deal with
the restricted setting of flat clustered graph, i.e., the clustered graphs where all
the non-root clusters are minimal.

Our aim is to find a polynomial algorithm deciding the c-planarity of plane
2-connected 2-component flat clustered graph (G, C).

To achieve this, we will present a polynomial-time procedure FIND-EDGE
which, when presented with a 2-component 2-connected hole-free plane clustered
graph (G, C) as an input, will either determine that (G, C) is not c-planar, or it
will output a harmless candidate edge e that saturates a cluster X ∈ C. Observe
that such a candidate edge e cannot create a hole in G ∪ e, because both its
endpoints belong to different components of X by assumption, and there is
no other non-root cluster containing the endpoints of e. This is the main reason
why the flat clustered graphs are much easier to deal with than general clustered
graphs.

If the procedure FIND-EDGE outputs a harmless candidate edge e, it does
not necessarily mean that (G, C) is c-planar. However, since e is harmless, we
know that (G, C) is c-planar if and only if (G ∪ e, C) is c-planar. We may then
call FIND-EDGE again on the input (G∪e, C), to determine that (G∪e, C) (and
hence also (G, C) ) is not c-planar, or to find another harmless edge. Since every
candidate edge output by the FIND-EDGE procedure saturates a cluster from
C, after at most |C| invocations of FIND-EDGE we will either obtain a saturator
of (G, C) or determine that (G, C) is not c-planar.

The FIND-EDGE algorithm maintains a set P of permitted edges. In the
beginning, the set P is initialized to contain all the properly drawn candidate
edges that saturate a cluster from C. In the first phase of the algorithm, called the
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pruning phase, the algorithm iteratively removes some candidate edges from P ,
using a set of pruning rules, which will be described in Subsection 3.1. The
pruning rules guarantee that if (G, C) has a saturator, then it also has a saturator
which is a subset of P .

When the set P cannot be further pruned, the algorithm performs the follow-
ing triviality checks, described in detail in Subsection 3.2:

– if there a disconnected cluster that cannot be saturated by any of the per-
mitted edges, then (G, C) is not c-planar,

– if there is a disconnected cluster saturated by a unique permitted edge e ∈ P ,
then e is harmless,

– if there is a permitted edge e that does not cross any other permitted edge,
then e is harmless.

If any of the above conditions is satisfied, the algorithm outputs the correspond-
ing solution and stops. Otherwise, it distinguishes two cases:

1. If there is a disconnected cluster X ∈ C and a face F of G such that every
permitted edge saturating X appears in the face F , then the algorithm
performs a subroutine LOCATE-IN-FACE, which will output a harmless
permitted edge inside F and stop. This subroutine, together with a brief
sketch of its proof, is presented in Subsection 3.3.

2. If the previous case does not apply, it can be shown that any permitted edge
is harmless. The algorithm then performs a subroutine called OUTPUT-
ANYTHING which outputs an arbitrary permitted edge and stops. The
proof of its correctness is sketched in Subsection 3.4.

Before we describe the main parts of the algorithm in greater detail, we need
some more terminology.

Let G be a 2-connected plane graph. Let a, b, c, d be a quadruple of distinct
vertices on the boundary of a face F of G. We say that the pair ab crosses the
pair cd in F , if the four vertices appear on the boundary of F in the cyclic order
acbd. If e and f are two candidate edges of a 2-connected clustered graph (G, C),
we say that e crosses f if the two candidate edges belong to the same face F of
G and the endpoints of e cross with the endpoints of f . For two sets of vertices
X and Y , we say that X crosses Y in face F , if there are vertices a, b ∈ X and
c, d ∈ Y such that ab crosses cd in the face F .

Most of our arguments rely on the following basic properties of connected
subgraphs of 2-connected plane graphs:

– If G is a 2-connected plane graph, and X and Y are disjoint sets of vertices
such that G[X ] and G[Y ] are both connected, then X and Y do not cross in
any face of G.

– Let G be a 2-connected plane graph. Let X , Y and Z be disjoint sets of
vertices, each of them inducing a connected subgraph of G. Then G has at
most two faces that contain vertices of all the three sets on their boundary.

The proof of these properties are omitted from this extended abstract.
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3.1 The Pruning Phase

In the pruning phase, the algorithm FIND-EDGE iteratively restricts the set
P of permitted candidate edges. In the beginning of the pruning phase, the set
P is initialized to contain all the properly drawn candidate edges that saturate
at least one cluster. Note that every permitted edge e ∈ P saturates a unique
cluster X ∈ C, since we assume that C is flat. A permitted edge that saturates
X will be called an X-edge.

If X is a minimal cluster, and if e and e′ are two X-edges, we say that e and
e′ are equivalent, if for every permitted edge f ∈ P that is not an X-edge, the
edge f crosses e if and only if it crosses e′.

Throughout the pruning phase, the set P will satisfy the following three in-
variants.

– For each cluster X and each face F , all the X-edges that belong to F form a
vertex-disjoint union of complete bipartite subgraphs; these complete bipar-
tite subgraphs will be called X-bundles (or just bundles, if X is clear from
the context). Two X-edges from different bundles do not cross (see Fig. 2).

– If X and Y are distinct clusters, then if an X-edge e crosses two Y -edges f
and f ′, then f and f ′ belong to the same bundle.

– If (G, C) is c-planar, then it has a saturator that is a subset of P .

In the beginning, when P contains all the properly drawn candidate edges that
saturate some cluster from C, the three invariants above are satisfied. In fact, if
F is a face that contains at least one X-edge, then all the X-edges in F form a
complete bipartite graph. Thus, each face has at most one X-bundle.

To prune the set P , we apply the following two rules.

– If, for a cluster X , there is a permitted edge that crosses all the X-edges,
then remove from P each edge that crosses all the X-edges.

– Let e = uv and e′ = u′v be two X-edges that belong to the same face F and
that share a common vertex v. If e and e′ are equivalent, remove from P all
the X-edges in F incident to u′.

It can be proven that an arbitrary application of one of the rules above preserves
all the invariants. The algorithm applies the pruning rules in arbitrary order,
reducing the number of permitted edges in each step, until it reaches the situation
when none of the rules is applicable. Let us remark that in the general (i.e., non-
flat) situation, the pruning is slightly more complicated: there are four pruning
rules instead of two, and the rules have assigned priorities which are taken into
account when the algorithm selects which rule to apply.

F

X

Fig. 2. A face F with two bundles of X-edges
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3.2 Triviality Checks

When there is no rule applicable to the set P of permitted edges, the prun-
ing phase ends. The FIND-EDGE algorithm then proceeds with three types of
triviality checks, described below.

First, the algorithm checks whether there is a cluster X that is not saturated
by any permitted edge. If this is the case, the algorithm concludes that the
clustered graph (G, C) is not c-planar and stops. This is a correct conclusion,
since if (G, C) were c-planar, then by the last invariant there would have to be a
saturator made of permitted edges, which is clearly impossible.

As the next triviality check, the algorithm tries to find a cluster X , such that
the set P contains a single X-edge e. If such a cluster X is found, the algorithm
outputs e as a harmless edge and stops. This is again a correct output, since by
the last invariant, if G is c-planar, then it has a saturator S which is a subset
of P . Necessarily, S contains the edge e. This implies that e is harmless.

In the last type of triviality check, the algorithm looks for a permitted edge e
that does not cross any permitted edge belonging to a different cluster. If such
an edge e is found, the algorithm outputs e as a harmless edge and stops. This
is again easily seen to be a correct output.

If none of the triviality checks succeeds, the algorithm counts, for each clus-
ter X , the number of faces of G that contain at least one X-edge. We will say
that a cluster X is one-faced if all the X-edges belong to a single face of G, X
is two-faced if all the X-edges appear in the union of two distinct faces, and X
is many-faced otherwise.

If there is a one-faced cluster X whose permitted edges belong to a face F ,
then the algorithm performs a subroutine LOCATE-IN-FACE to find a harmless
permitted edge in F . This subroutine is described in the next subsection.

If there is no one-faced cluster, it can be shown that all the clusters are two-
faced, and that any permitted edge is harmless. The algorithm then outputs an
arbitrary permitted edge and stops. The main arguments involved in proving
the correctness of this step are sketched in Subsection 3.4.

3.3 LOCATE-IN-FACE

Assume that we are given a set P of permitted edges satisfying all the invariants
described in Subsection 3.1. Assume furthermore than none of the pruning rules
is applicable to P , and none of the triviality checks has succeeded.

For a face F , we say that a cluster X is an F -cluster, if all the X-edges belong
to F . We say that a vertex of X is active, if it is incident to at least one X-edge.

Assume that F is a face with at least one F -cluster. Using our assumptions
about P , we are able to deduce the following facts:

– If X is an F -cluster, and Y is a cluster that has a permitted edge which
crosses a permitted edge of X , then Y is also an F -cluster.

– If X is an F -cluster with two components X1 and X2, then each component
Xi has at most two active vertices. It follows that X has either four permitted
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X1

X2

X1

X2

X1

X2

Fig. 3. Possible configurations of permitted edges of an F -cluster X

Fig. 4. Mutual positions of permitted edges of two crossing F -clusters

edges which all belong to a single bundle, or X has exactly two permitted
edges (see Fig. 3; recall that due to the triviality checks, each cluster has at
least two permitted edges).

Let X be an arbitrary F -cluster, let X1 and X2 be its two components. From
the triviality checks, we know that every X-edge is crossed by a permitted edge
of another cluster. Let Y �= X be a cluster whose permitted edge crosses an X-
edge, and let Y1 and Y2 be its two components. Note that a set Yi may not cross
with the set Xj on the boundary of F , because these two sets induce connected
subgraphs of G. Recall also, that no Y -edge may intersect all the X-edges (and
vice versa), because it would have been pruned.

Putting all these facts together, we conclude that the mutual position of the
X-edges and Y -edges corresponds to one of the situations depicted on Fig. 4.

Note that all the configurations of Fig. 4 exhibit a ‘mirror symmetry’. To make
this observation rigorous, we define a ‘symmetry mapping’ σ on the set of all the
F -active vertices as follows: let X be an arbitrary F -cluster, with components
X1 and X2. If a component Xi contains two active vertices x and x′, then we
define σ(x) = x′ and σ(x′) = x. If Xi contains only one active vertex x, then we
put σ(x) = x. We then extend the mapping σ to the set of X-edges in a natural
way: for an X-edge e with endpoints x and y, we define σ(e) to be the X-edge
with endpoints σ(x) and σ(y).

The mapping σ has the following properties:

– For an F -cluster X and an X-edge e, σ(e) is an X-edge different from e.
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– If X and Y are F -clusters, an X-edge e crosses a Y -edge f if an only if σ(e)
crosses σ(f).

– An X-edge e is harmless if and only if σ(e) is harmless.

From these properties, it can be easily deduced that if an F -cluster X has only
two permitted edges, then both these edges are harmless.

Furthermore, it is possible to show that if there is at least one F -cluster in a
face F , then there is also an F -cluster that has only two permitted edges.

The procedure LOCATE-IN-FACE is then easy to describe: as an input, the
procedure expects a face F for which there is at least one F -cluster. The proce-
dure then finds an F -cluster X that has only two permitted edges, and outputs
any X-edge as a harmless edge.

3.4 OUTPUT-ANYTHING

If, after the end of the pruning phase, each cluster has permitted edges in at
least two distinct faces, and if none of the triviality checks is applicable, we can
show that the set P of permitted edges has the following properties:

– For each cluster X , there are exactly two faces of G that contain the X-edges.
– All the X-edges that appear in the same face are equivalent.
– If X and Y are distinct clusters, and if an X-edge crosses a Y -edge, then all

the X-edges and all the Y -edges appear in the same pair of faces, and every
Y -edge crosses all the X-edges in its face.

– Let S ⊆ P be a minimal saturator of permitted edges. For each edge e ∈ S
find an arbitrary permitted edge e that saturates the same cluster as e and
appears in a different face than e. The set S = {e : e ∈ S} is another minimal
saturator of permitted edges.

From these properties, we may deduce that every permitted edge e ∈ P is
harmless. The procedure OUTPUT-ANYTHING simply outputs an arbitrary
permitted edge and stops.

This completes the description of the simplified version of the FIND-EDGE
algorithm. It is clear that the algorithm runs in polynomial time.

4 Concluding Remarks

We have shown that c-planarity of 2-component plane clustered graphs can be
determined in polynomial time. This result raises several related open problems.

Problem 1. What is the complexity of the c-planarity problem for 2-component
graphs (G, C) if the embedding of G is not prescribed?

Problem 2. What is the complexity of deciding the c-planarity of clustered graphs
with O(1) components per cluster?

Problem 3. What if we relax the 2-component assumption by allowing the graph
G to have arbitrarily many components, and only restricting the number of
components of the non-root clusters?
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