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Preface

The 16th International Symposium on Graph Drawing (GD 2008) was held in
Hersonissos, near Heraklion, Crete, Greece, September 21-24, 2008, and was
attended by 91 participants from 19 countries.

In response to the call for papers the Program Committee received 83 sub-
missions, each describing original research and/or a system demonstration. Each
submission was reviewed by at least three Program Committee members and the
reviewer’s comments were returned to the authors. Following extensive discus-
sions, the committee accepted 31 long papers and 8 short papers. In addition,
10 posters were accepted and displayed at the conference site. Each poster was
granted a two-page description in the conference proceedings.

Two invited speakers, Jesper Tegnér from Karolinska Institute (Monday)
and Roberto Tamassia from Brown University (Tuesday), gave fascinating talks
during the conference. Professor Tegnér focused on the challenges and opportu-
nities posed by the discovery, analysis, and interpretation of biological networks
to information visualization, while Prof. Tamassia showed how graph drawing
techniques can be used as an effective tool in computer security and pointed to
future research directions in this area.

Following what is now a tradition, the 15th Annual Graph Drawing Contest
was held during the conference, also including a Graph Drawing Challenge to
the conference attendees. A report is included in the conference proceedings.

Many people contributed to the success of GD 2008. First of all, special thanks
to the authors of submitted papers, demos, and posters. Many thanks to the
members of the Program Committee and the external referees who worked dili-
gently to select only the best of the submitted papers. The Organizing Commit-
tee worked tirelessly in the months leading to the crucial final four days: Emilio
Di Giacomo was a great Publicity Chair; Theano Apostolidi, Kiriaki Kaiserli,
Maria Prevelianaki, and Vassilis Tsiaras carried a large part of the work regard-
ing local organization and management of the conference. Also, many thanks to
the student volunteers who helped in many ways during the conference.

The conference was organized and supported by the Institute of Computer
Science (ICS)-FORTH and the Computer Science Department of the University
of Crete. GD 2008 also received generous support from our sponsors: Tom Sawyer
Software (Gold Sponsor), and OTE, ILOG, and Virtual Trip (Silver Sponsors).

The 17th International Symposium on Graph Drawing (GD 2009) will be
held September 23-25, 2009 in Chicago, USA, co-chaired by David Eppstein and
Emden R. Gansner.

November 2008 Toannis G. Tollis
Maurizio Patrignani
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Networks in Biology — From Identification, Analysis to
Interpretation

Jesper Tegnér

Institutionen for Medicin
Karolinska Universitetssjukhuset
Solna, Stockholm
jesper.tegner@ki.se

Abstract. Over the last decade networks has become a unifying language in bi-
ology. Yet we are only in the beginning of understanding their significance for
biology and their medical applications. I will talk about the diversity of biolog-
ical networks composed either of genes, proteins, metabolites, or cells and the
associated methods for finding these graphs in the data. Next I will provide an
overview of different methods of analysis and what kind of insights that have
been obtained. During the talk I will highlight current challenging problems re-
quiring computational skills with respect to identification, analysis, algorithms,
visualization and software.

1.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, p. 1, 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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Roberto Tamassia®, Bernardo Palazzi!+?3, and Charalampos Papamanthou!

! Brown University, Department of Computer Science, Providence, RI, USA
{rt,bernardo, cpap}@cs.brown.edu
2 Roma TRE University, Rome, Italy
palazzi@dia.uniroma3.it
3 ISCOM Italian Ministry of Economic Development-Communications, Rome, Italy

Abstract. With the number of devices connected to the internet growing rapidly
and software systems being increasingly deployed on the web, security and pri-
vacy have become crucial properties for networks and applications. Due the
complexity and subtlety of cryptographic methods and protocols, software archi-
tects and developers often fail to incorporate security principles in their designs
and implementations. Also, most users have minimal understanding of security
threats. While several tools for developers, system administrators and security
analysts are available, these tools typically provide information in the form of
textual logs or tables, which are cumbersome to analyze. Thus, in recent years,
the field of security visualization has emerged to provide novel ways to display
security-related information so that it is easier to understand. In this work, we
give a preliminary survey of approaches to the visualization of computer security
concepts that use graph drawing techniques.

1 Introduction

As an increasing number of software applications are web-based or web-connected, se-
curity and privacy have become critical issues for everyday computing. Computer sys-
tems are constantly being threatened by attackers who want to compromise the privacy
of transactions (e.g., steal credit card numbers) and the integrity of data (e.g., return
a corrupted file to a client). Therefore, computer security experts are continuously de-
veloping methods and associated protocols to defend against a growing number and
variety of attacks. The development of security tools is an ongoing process that keeps
on reacting to newly discovered vulnerabilities of existing software and newly deployed
technologies.

Both the discovery of vulnerabilities and the development of security protocols can
be greatly aided by visualization. For example, a graphical representation of a complex
multi-party security protocol can give experts better intuition of its execution and se-
curity properties. In current practice, however, computer security analysts read through

This work has been presented at the 2008 Symposium on Graph Drawing in
a invited talk dedicated to the memory of Paris C. Kanellakis, a prominent
computer scientist and Brown faculty member who died with his family in
an airplane crash in December 1995. His unbounded energy and outstanding
scholarship greatly inspired all those who interacted with him.

LG. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 2413]2009.
(© Springer-Verlag Berlin Heidelberg 2009
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large logs produced by applications, operating systems, and network devices. The visual
inspection of such logs is quite cumbersome and often unwieldy, even for experts. Moti-
vated by the growing need for automated visualization methods and tools for computer
security, the field of security visualization has recently emerged as an interdisciplinary
community of researchers with its own annual meeting (VizSec).

In this paper, we give a preliminary survey of security visualization systems that use
graph drawing methods. Thanks to their versatility, graph drawing techniques are one
of the main approaches employed in security visualization. Indeed, not only computer
networks are naturally modeled as graphs, but also data organization (e.g., file systems)
and vulnerability models (e.g., attack trees) can be effectively represented by graphs.
In the rest of this paper, we specifically overview graph drawing approaches for the
visualization of the following selected computer security concepts:

1. Network Monitoring. Monitoring network activity and identifying anomalous be-
havior, such as unusually high traffic to/from certain hosts, helps identifying several
types of attacks, such as intrusion attempts, scans, worm outbreaks, and denial of
service.

2. Border Gateway Protocol (BGP). BGP manages reachability between hosts in
different autonomous systems, i.e., networks under the administrative control of
different Internet Service Providers. Understanding the evolution of BGP routing
patterns over time is very important to detect and correct disruptions in Internet
traffic caused by router configuration errors or malicious attacks.

3. Access Control. Access to resources on a computer system or network is regulated
by policies and enforced through authentication and authorization mechanisms. It
is critical to protect systems not only from unauthorized access by outside attackers
but also from accidental disclosure of private information to legitimate users. Ac-
cess control systems and their associated protocols can be very complex to manage
and understand. Thus, it is important to have tools for analyzing and specifying
policies, identifying the possibility of unauthorized access, and updating permis-
sions according to desired goals.

4. Trust Negotiation. Using a web service requires an initial setup phase where the
client and server enter into a negotiation to determine the service parameters and
cost by exchanging credentials and policies. Trust negotiation is a protocol that
protects the privacy of the client and server by enabling the incremental disclosure
of credentials and policies. Planning and executing an effective trust negotiation
strategy can be greatly aided by tools that explore alternative scenarios and show
the consequences of possible moves.

5. Attack Graphs. A typical strategy employed by an attacker to compromise a sys-
tem is to follow a path in a directed graph that models vulnerabilities and their
dependencies. After an initial successful attack to a part of a system, an attacker
can exploit one vulnerability after the other and reach the desired goal. Tools for
building and analyzing attack graphs help computer security analysts identify and
fix vulnerabilities.

In Table[T] we show the graph drawing methods used by the systems surveyed in this
paper.
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Table 1. Graph drawing methods used in the security visualization systems surveyed in this paper

Force-Directed Layered Bipartite Circular Treemap 3D

Network Monitoring [9] 12} 14, 21]] (L4 24]  [20]
BGP (19 (19 [18]
Access Control [13] [10]
Trust Negotiation [23]
Attack Graphs (L6l 117]

2 Network Monitoring

Supporting Intrusion Detection by Graph Clustering and Graph Drawing [21)]. In this
paper, the authors use a combination of force-directed drawing, graph clustering, and
regression-based learning in a system for intrusion detection (see Fig.[I(a)). The system
consists of modules for the following functions: packet collection, graph construction
and clustering, graph layout, regression-based learning, and event generation.

The authors model the computer network with a graph where the nodes are com-
puters and the edges are communication links with weight proportional to the network
traffic on that link. The clustering of the graph is performed with a simple iterative
method. Initially, every node forms its own cluster. Next, nodes join clusters that al-
ready have most of their neighbors. A force-directed approach is used to place clusters
and nodes within the clusters. Since forces are proportional to the weights of the edges,
if there is a lot of communication between two hosts, their nodes are placed close to
each other. Also, in the graph of clusters, there is an edge between clusters A and B if
there is at least one edge between some node of cluster A and some node of cluster B.
The layout of the graph of clusters and of each cluster are computed using the classic
force-directed spring embedder method [6].

Various features of the clustered graph (including statistics on the node degrees, num-
ber of clusters, and internal/external connectivity of clusters) are used to describe the
current state of network traffic and are summarized by a feature vector. Using test traffic
samples and a regression-based strategy, the system learns how to map feature vectors
to intrusion detection events. The security analyst is helped by the visualization of the
clustered graph in assessing the severity of the intrusion detection events generated by
the system.

Graph-Based Monitoring of Host Behavior for Network Security [12)]. In this paper, the
authors show how to visualize the evolution over time of the volume and type of network
traffic using force-directed graph drawing techniques (see Fig. [I(D)). Since there are
different types of traffic protocols (HTTP, FTP, SMTP, SSH, etc.) and multiple time
periods, this multi-dimensional data set is modeled by a graph with two types of nodes:
dimension nodes represent traffic protocols and observation nodes represent the state
of a certain host in a given time interval. Edges are also of two types: trace edges link
observation nodes of consecutive time intervals and attraction edges link observation
nodes with dimension nodes and have weight proportional to the traffic of that type.
The layout of the above graph is computed starting with a fixed placement of the
dimension nodes and then executing a modified version of the Fruchterman-Reingold
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Fig.1. (a) Force-directed clustered drawing for intrusion detection (thumbnail of image
from [21])). (b) Evolution of network traffic over time (thumbnail of image from [12]]): dimension
nodes represent types of traffic and observation nodes represent the state of a host at a given time.

force-directed algorithm [8] that aims at achieving uniform edge lengths. The authors
show how intrusion detection alerts can be associated with visual patterns in the layout
of the graph.

A Visual Approach for Monitoring Logs [9]. This paper (see Fig. presents a tech-
nique to visualize log entries obtained by monitoring network traffic. The log entries are
basically vectors whose elements correspond to features of the network traffic, includ-
ing origin IP, destination IP, and traffic volume. The authors build a weighted similarity
graph for the log entries using a simple distance metric for two entries given by the sum
of the differences of the respective elements. The force-directed drawing algorithm of
[3]] is used to compute a drawing of the similarity graph of the entries.

A Visualization Methodology for Characterization of Network Scans [[I4)]. This work
considers network scans, often used as the preliminary phase of an attack. The authors
develop a visualization system that shows the relationships between different network
scans (see Fig.[2(b)). The authors set up a graph where each node represents a scan and
the connection between them is weighted according to some metric (similarity measure)
that is defined for the two scans. Features taken into consideration for the definition of
the similarity measure include the origin IP, the destination IP and the time of the con-
nection. To avoid displaying a complete graph, the authors define a minimum weight
threshold, below which edges are removed. The LinLog force directed layout method
[13] is used for the visualization of this graph. In the drawing produced, sets of sim-
ilar scans are grouped together, thus facilitating the visual identification of malicious
scans.

VisFlowConnect: NetFlow Visualizations of Link Relationships for Security Situational
Awareness [24)]. In this work, the authors apply a simple bipartite drawing technique
to provide a visualization solution for network monitoring and intrusion detection (see
Fig. B(@)). The nodes, representing internal hosts and external domains, are placed on
three vertical lines. The external domains that send traffic to some internal host are
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&
l..%. J v
(a) (b)

Fig. 2. (a) Similarity graph of log entries (thumbnail of image from [9]]). (b) Similarity graph of
network scans (thumbnail of image from [14]).

placed on the left line. The domains of the internal hosts are placed on the middle
line. The external domains that receive traffic from some internal host are placed on
the right line. Each edge represents a network flow, which is a sequence of related
packets transmitted from one host to another host (e.g., a TCP packet stream). Ba-
sically, the layout represents a tripartite graph. The vertical ordering of the domains
along each line is computed by the drawing algorithm with the goal of minimizing
crossings.

The tool uses a slider to display network flows at various time intervals and provides
three views. In the global view, the entire tripartite graph is displayed to show all the
communication between internal and external hosts. In the internal view and domain
view, the tool isolates certain parts of the network, such as internal senders and internal
receivers, and correspondingly displays a bipartite graph. The domain view and inter-
nal view are easier to analyze and provide more details on the network activity being
visualized but on the other hand, the global view produces a high-level overview of the
network flows. The authors apply the tool in various security-related scenarios, such as
virus outbreaks and denial-of-service attacks.

Home-Centric Visualization of Network Traffic for Security Administration [[I]]. In this
paper the authors use a matrix display combined with a simple graph drawing method
in order to visualize the traffic between domains in network and external domains (see
Fig.[3(b)). To visualize the internal network, the authors use a square matrix: each entry
of the matrix corresponds to a host of the internal network. External hosts are repre-
sented by squares placed outside the matrix, with size proportional to the traffic sent or
received. Straight-line edges represent traffic between internal and external hosts and
can be colored to denote the predominant direction of the traffic (outgoing, incoming,
or bidirectional). The placement of the squares arranges hosts of the same class A, B
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Fig. 3. (a) Global view of network flows using a tripartite graph layout: nodes represent external
domains (on the left and right) and internal domains (in the middle) and edges represent network
flows (packet streams) between domains (thumbnail of image from [24]). (b) Visualization of
internal vs. external hosts using a matrix combined with a straight-line drawing. Internal hosts
correspond to entries of the matrix while external hosts are drawn as squares placed around the
matrix. The size of the square for an external host is proportional to the amount of traffic from/to
that host (thumbnail of image from [T)).

or C network along the same vertical line and attempts to reduce the number of edge
crossings. Further details on the type of traffic can be also displayed in this tool. For
example, vertical lines inside each square indicate ports with active traffic. This system
can be used to visually identify traffic patterns associated with common attacks, such
as virus outbreaks and network scans.

EtherApe: A Live Graphical Network Monitor Tool [20]. This tool shows traffic cap-
tured on the network interface (in a dynamic fashion) or optionally reads log files like
PCAP (Fig.[d(a)). A simple circular layout places the hosts around a circle and repre-
sents network traffic between hosts by straight-line edges between them. Each protocol
is distinguished by a different color and the width of an edge shows the amount of
traffic. This tool allows to quickly understand the role of a host in the network and
the changes in traffic patterns over time. Beyond the graphical representation, it is also
possible to display detailed traffic statistics of active ports.

RUMINT [4]. This system (named after RUMor INTelligence) is a free tool for net-
work and security visualization (Fig. [#(D)). It takes captured traffic as input and vi-
sualizes it in various unconventional ways. The most interesting visualization related
to graph drawing is a parallel plot that allows one to see at a glance how multiple
packet fields are related. An animation feature allows to analyze various trends over
time.
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Fig. 4. (a) Traffic monitoring with Etherape (thumbnail of image from [20]). (b) Visualization of
an NMAP scan with RUMINT (thumbnail of image from [4])).

3 Border Gateway Protocol

BGP Eye: A New Visualization Tool for Real-Time Detection and Analysis of BGP
Anomalies [19)]. In this paper, the authors present a visualization tool, called BGP Eye,
that provides a real-time status of BGP activity with easy-to-read layouts (Fig.3). BGP
Eye is a tool for root-cause analysis of BGP anomalies. Its main objective is to track the
healthiness of BGP activity, raise an alert when an anomaly is detected, and indicate its
most probable cause. BGP Eye allows two different types of BGP dynamics visualiza-
tion: internet-centric view and home-centric view. The internet-centric view studies the
activity among ASes (autonomous systems) in terms of BGP events exchanged. The
home-centric view has been designed to understand the BGP behavior from the per-
spective of a specific AS. The inner ring contains the routers of the customer AS and
the outer ring contains their peer routers, belonging to other ASes. In the outer layer, the
layout method groups together routers belonging to the same AS and uses a placement
algorithm for the nodes to reduce the distance between connected nodes.

VAST: Visualizing Autonomous System Topology [[I8]. This tool (Fig. uses 3D
straight-line drawings to display the BGP interconnection topology of ASes with the
goal of allowing security researchers to extract quickly relevant information from raw
routing datasets. VAST employs a quad-tree to show per-AS information and an octo-
tree to represent relationships between multiple ASes. Routing anomalies and sensitive
points can be quickly detected, including route leakage events, critical Internet infras-
tructure and space hijacking incidents. The authors have also developed another tool,
called Flamingo, that uses the same graphical engine as VAST but is used for real-time
visualization of network traffic.
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Fig. 6. (a) Some large autonomous systems in the internet visualized with VAST (thumbnail of
image from [18]]). (b) In BGPlay, nodes represent autonomous systems and paths are sequences
of autonomous systems to be traversed to reach the destination (thumbnail of image from [3])).

BGPlay: A system for visualizing the interdomain routing evolution [15]]. BGPlay and
iBGPlay (Fig.[6(b)) provide animated graphs of the BGP routing announcements for a
certain IP prefix within a specified time interval. Both visualization tools are targeted to
Internet service providers. Each nodes represents an AS and paths are used to indicate
the sequence of ASes needed to be traversed to reach a given destination. BGPlay shows
paths traversed by IP packets from several probes spread over the Internet to the chosen
destination (prefix). iBGPlay shows data privately collected by one ISP. The ISP can
obtain from iBGPlay visualizations of outgoing paths from itself to any destination.
The drawing algorithm is a modification of the force-directed approach that aims at
optimizing the layout of the paths.

4 Access Control

Information Visualization for Rule-based Resource Access Control [13]. In this pa-
per, the authors provide a visualization solution for managing and querying rule-based
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(b)

Fig.7. (a) Visualization of permissions in the NTFS file system with TrACE (thumbnail of im-
age from [10]). (b) Drawing of the trust-target graph generated by a trust negotiation session
(thumbnail of image from [23])).

access control systems. They develop a tool, called RubaViz, which makes it easy to an-
swer questions like “What group has access to which files during what time duration?”.
RubaViz constructs a graphs whose nodes are subjects (people or processes), groups,
resources, and rules. Directed edges go from subjects/groups to rules and from rules to
resources to display allowed accesses. The layout is straight-line and upward.

Effective Visualization of File System Access-Control [[I0]. This paper presents a tool,
called TrACE, for visualizing file permissions in the NTFES file system (Fig. [7(a)).
TrACE allows a user or administrator to gain a global view of the permissions in a
file system, thus simplifying the detection and repair of incorrect configurations lead-
ing to unauthorized accesses. In the NTFES file system there are three types of permis-
sions: (a) explicit permissions are set by the owner of each group/user; (b) inherited
permissions are dynamically inherited from the explicit permissions of the ancestor
folders; and (c) effective permissions are obtained by combining the explicit and in-
herited permissions. The tool uses a treemap layout to draw the file system tree
and colors the tiles with a palette denoting various access levels. The size of a tile in-
dicates how much the permissions of a folder/file differ from those of its parent and
children. Advanced properties, such as a break of inheritance at some folder, are also
graphically displayed. The tool makes is easy to figure out which explicit and inherited
permissions of which nodes affect the effective permissions of a given node in the file
system tree.

5 Trust Negotiation

Visualization of Automated Trust Negotiation [23]]. In this paper, the authors use a lay-
ered upward drawing to visualize automated trust negotiation (ATN) (Fig. [7(b)). In a
typical ATN session, the client and server engage in a protocol that results in the col-
laborative and incremental construction of a directed acyclic graph, called trust-target
graph, that represents credentials (e.g., a proof that a party has a certain role in an
organization) and policies indicating that the disclosure of a credential by one party is
subject to the prior disclosure of a set of credentials by the other party [22]. A tool based
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on the Grappa system [2]], a Java port of Graphviz [7], is used to generate successive
drawings of the trust-target graph being constructed in an ATN session.

6 Attack Graphs

Multiple Coordinated Views for Network Attack Graphs [16|] This paper describes a
tool for visualizing attack graphs (Fig. §). Given a network and a database of known
vulnerabilities that apply to certain machines of the network, one can construct a di-
rected graph where each node is a machine (or group of machines) and an edge denotes
how a successful attack on the source machine allows to exploit a vulnerability on the
destination machine. Since attack graphs can be rather large and complex, it is essential
to use automated tools to analyze them. The tool presented in this paper clusters ma-
chines in order to reduce the complexity of the attack graph (e.g., machines that belong
to the same subnet may be susceptible to the same attack). The Graphviz tool [[7] is used
to produce a layered drawing of the clustered attack graph. Similar layered drawings for
attack graphs are proposed in [17].

Fig. 8. Visualization of an attack graph (thumbnail of image from [16]))

7 Conclusions

In this paper, we have presented a preliminary survey of security visualization meth-
ods that use graph drawing techniques. The growing field of security and privacy offers
many opportunities to graph drawing researchers to develop new drawing methods and
tools. In computer and network security applications, the input to the visualization sys-
tem is often a large multidimensional and temporal data set. Moreover, the layout needs
to support color, labels, variable node shape/size and edge thickness. In most of the
security visualization papers we have reviewed, either simple layout algorithms have
been implemented (e.g., spring embedders) or open-source software has been used (e.g.,
Graphviz). In order to make a larger collection of sophisticated graph drawing tech-
niques available to computer security researchers, it is important for the graph drawing
community to develop and distribute reliable software implementations.
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Abstract. We describe a method for producing a greedy embedding of any n-
vertex simple graph G in the hyperbolic plane, so that a message M between
any pair of vertices may be routed by having each vertex that receives M pass it
to a neighbor that is closer to M’s destination. Our algorithm produces succinct
drawings, where vertex positions are represented using O(log n) bits and distance
comparisons may be performed efficiently using these representations.

1 Introduction

Viewing network routing as an algorithmic problem, we are given an n-vertex graph
G representing a communication network, where each vertex in G is a computational
agent, and the edges in GG represent communication channels. The routing problem is
to set up an efficient means to support message passing between the vertices in G.

There is a recent non-traditional approach to solving the routing problem, which can
be viewed as new and exciting application of graph drawing. In this new approach,
called geometric routing [2I7ITO01U12]] or geographic routing [8]], the graph G is drawn
in a geometric metric space S in the standard way, so that vertices are drawn as points
in § and each edge is drawn as the loci of points along the shortest path between its
two endpoints. For example, if S is the Euclidean plane, R?, then edges would be
drawn as straight line segments in this approach. Routing is then performed by having
any vertex v holding a message destined for a node w use a simple policy involving
only the coordinates of v and w and the coordinates and topology of v’s neighbors to
determine the neighbor of v to which v should forward the message. It is important to
note that even in applications where the vertices of G come with pre-defined geometric
coordinates (e.g., GPS coordinates of smart sensors), the drawing of G need not take
these coordinates into consideration.

Perhaps the simplest routing policy imaginable is the greedy one:

— If a vertex v receives a message M with destination w, v should forward M to any
neighbor of v in G that is closer than v to w.

We are interested in this paper in greedy drawings of arbitrary graphs, that is, draw-
ings for which greedy routing is always successful. Unfortunately, greedy routing
doesn’t always work. For example, it is not uncommon for geometric graph embeddings

L.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 14425 2000.
(© Springer-Verlag Berlin Heidelberg 2009
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to have “lakes” and “voids” that make greedy routing impossible in some cases [[17].
Indeed, in any fixed-dimensional Euclidean space, a star with sufficiently many leaves
cannot be embedded so that all paths are greedy. Thus, in order to find greedy drawing
schemes for arbitrary connected graphs, we must consider drawings in non-Euclidean
spaces.

Following Papadimitriou and Ratajczak [17], we say that a distance decreasing path
from v to w in a geometric embedding of G is a path (vy,ve, ..., v) such that v = vy,
w = v, and d(v;, w) > d(viy1,w), fori = 1,2,... k — 1. A greedy embedding of
a graph G in a geometric metric space S is a drawing of GG in S such that a distance
decreasing path exists between every pair of vertices in G.

Prior Related Work. Early papers on geometric routing include work by Bose et al. [2],
who extract a planar subgraph of GG, embed it, and then route a message from v to w
by marching around the faces intersected by the line segment vw using a subdivision
traversal algorithm of Kranakis et al. [9]. Karp and Kung [7]] introduce a hybrid scheme,
which combines a greedy routing strategy with face routing. Similar hybrid schemes
were subsequently studied by several other researchers [10/11/12].

Rao et al. [18] introduce the idea of drawing a graph using virtual coordinates and
doing a pure greedy routing strategy with that drawing, although they make no the-
oretical guarantees. Papadimitriou and Ratajczak [17] continue this line of work on
greedy drawings, studying greedy schemes that are guaranteed to work, and they con-
jecture that Euclidean greedy drawings exist for any graph containing a 3-connected
planar spanning subgraph. They present a greedy drawing algorithm for embedding 3-
connected planar graphs in R? based on a specialization of Steinitz’s Theorem for cir-
cle packings, albeit with a non-standard metric. Dhandapani [4] provides an existence
proof that two-dimensional Euclidean greedy drawings of triangulations are always pos-
sible, but he does not provide a polynomial-time algorithm to find them. Chen ez al. [3]
study methods for producing two-dimensional Euclidean greedy drawings for graphs
containing power diagrams, and Lillis and Pemmaraju [[14] provide similar methods for
graphs containing Delaunay triangulations. It is not clear whether either of these greedy
drawings in Euclidean spaces run in polynomial time, however. Nevertheless, Leighton
and Moitra [13] have recently given a polynomial-time algorithm for producing two-
dimensional Euclidean greedy drawings of 3-connected planar graphs. The correspond-
ing two-dimensional problem for greedy drawings of arbitrary graphs in non-Euclidean
geometries also has a solution, in that Kleinberg [[8] provides a polynomial-time algo-
rithm for embedding any graph in the hyperbolic plane so as to allow for greedy routing
using the standard metric for hyperbolic space.

The Importance of Succinctness. Unfortunately, all of the algorithms mentioned above
for producing greedy embeddings, including the hyperbolic-space solution of Klein-
berg [8] and the Euclidean-space solution of Leighton and Moitra [13]], contain a hidden
drawback that makes them ill-suited for the motivating application of geometric rout-
ing. Namely, each of the greedy embeddings mentioned above use vertex coordinates
with representations requiring £2(n log n) bits in the worst case. Thus, these greedy ap-
proaches to geometric routing have the same space usage as traditional routing table
approaches. Since the raison d’étre for greedy embeddings is to improve and simplify
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traditional routing schemes, if embeddings are to be useful for geometric routing pur-
poses, they should be succinct, that is, they should use vertices with representations
having a number of bits that is polylogarithmic in n and the should allow for efficient
distance comparisons using these representations.

We are, in fact, not the first to make this observation. Muhammad [[16] specifically
addresses succinctness, observing that a method based on extracting a planar subgraph
of the routing network G and performing a hybrid greedy/face-routing algorithm in this
embedding can be implemented using only O(logn) bits for each vertex coordinate,
since planar graphs can be drawn in O(n) x O(n) grids [53120]. For non-Euclidean
spaces, Maymounkov [15] provides a greedy drawing method for three-dimensional
hyperbolic space using vertices that can be represented with O(log2 n) bits. His work
leaves open the existence of succinct greedy embeddings for two-dimensional non-
Euclidean spaces, however, as well as whether there are succinct non-Euclidean greedy
embeddings that use only O(log n) bits per vertex.

Our Results. In this paper, we settle both questions of whether there are succinct greedy
embeddings in two-dimensional non-Euclidean spaces and whether the vertices in such
embeddings can be represented using an asymptotically optimal number of bits. In par-
ticular, we show that any n-vertex connected graph can be drawn in the hyperbolic plane
with coordinates that can be represented using O(logn) bits so as to support greedy
geometric routing between any pair of vertices, using a standard distance metric for
hyperbolic space. Our scheme is constructive, runs in polynomial time, and allows the
distance between any two vertices to be calculated efficiently from our representation of
their coordinates. In addition, our greedy drawing scheme is based on the combination
of a number of graph drawing and data structuring techniques.

2 Autocratic Weight-Balanced Trees

One of the new data structuring techniques we use in our greedy drawing scheme is a
data structure that we call autocratic weight-balanced binary trees. These are first and
foremost weight-balanced binary trees, which store weighted items at their leaves so
that the depth of each item of weight w; is O(log W/w;), where W is the sum of all
weights. Just as important, however, is that they are autocratic, by which we mean that
the distance from any leaf v to any other leaf w is strictly greater than the distance from
the root to w, where tree distance is measured by simple path length. Of course, this
autocratic property implies that such binary trees are not proper, in that we allow for
some internal nodes in such trees to have only one child. The challenge, of course, is to
have a structure that is both autocratic and weight-balanced.

It turns out that there is a fairly simple method for turning any weight-balanced
binary tree into an autocratic weight-balanced tree. So suppose we are given an ordered
collection of k items with weights {w1,ws, ..., wg}, such that each w; > 1. If we
store these items at the leaves of a binary tree T', we say that T' is weight-balanced if
the depth of each item i is O(log W/w;), where W = > w;. There are several existing
schemes for producing a weight-balanced binary tree so that an inorder listing of the
items stored at its leaves preserves the given order (e.g., see [0]).
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Fig. 1. Converting a weight-balanced binary tree into an autocratic weight-balanced binary tree

Suppose, then, that T" is such an ordered weight-balanced tree, and let r denote the
root of T'. To convert T into an autocratic weight-balanced tree, 7", we replace the edge
connecting each leaf v to its parent with a path of length 1 + dp(r, parent(v)), where
dr (v, w) denotes the length of the path from v to w in the tree T'. That is, we insert a
number of “dummy” nodes between each leaf and its parent that is equal to the depth
of its parent. (See Fig.[1l)

This transformation increases the depth of each leaf in 7" by less than a factor of two
and it keeps the depth of all other nodes in 7" unchanged. Thus, if the depth of a leaf stor-
ing item 4 in T was previously at most ¢ log W/w;, for some constant ¢, then the depth
of the corresponding leaf in 7" is less than 2¢log W/w;, which is still O(log W/w;).
Given that T" was weight-balanced, this implies that 7" is a weight-balanced tree. More
importantly, we have the following lemma.

Lemma 1. The above transformation of a weight-balanced tree 'I' produces an auto-
cratic weight-balanced tree T".

Proof. We have already observed that the tree T is weight-balanced. So we have yet
to show that 7" is autocratic. First, observe that, by a simple induction argument, if u is
an ancestor in 7" of a leaf v, then in T” we have the following:

drp (ua U) = dT(Tv’U) + dT(U,’U) -1

In particular, dv (r,v) = 2dr(r,v) — 1. Let v and w be two leaves in T”. Furthermore,
let u be the least common ancestor of v and w in 7”. Then

dp (v, w) = dpr (u,v) + dps (u, w)
=dp(r,v) +dr(u,v) — 1 + dp(r,w) + dp(u,w) — 1
= 2dy(r,w) + 2dp(u,v) — 2
> 2dr(r,w) > dp(r,w).

Thus, 7" is an autocratic weight-balanced tree. O

Therefore, we have a way of constructing for any ordered set of weighted items an
autocratic weight-balanced tree for that set. We will use such data structures as auxiliary
components in the structures we discuss next.
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Fig. 2. The heavy path decomposition of a tree. Three heavy paths are shown; the remaining 17
nodes form degenerate length-0 heavy paths. Nodes are labelled with their subtree sizes.

3 Heavy Path Decompositions

Let T be a rooted ordered tree of arbitrary degree and depth having n nodes. Sleator
and Tarjan [21] describe a scheme, which we call the heavy path decomposition, for
decomposing 7" into a hierarchical collection of paths (see also [[19] for an alternative
path decomposition scheme with similar properties). Their scheme works as follows.
For each node v in T', let n(v) denote the number of descendents in the subtree rooted
at v, including v itself. For each child-to-parentedge, e = (v, w) in T, label e as a heavy
edge if n(v) > n(w)/2. Otherwise, label e as a light edge. Connected components of
heavy edges form paths, called heavy paths, which may in turn have many incident light
edges. As a degenerate case, we also consider the zero-length path consisting of a single
node in 7" incident only to light edges as a heavy path.

Note that the size of a subtree at least doubles every time we traverse a light edge
from a child to a parent. (See Fig.[2l) Thus, if we compress every heavy path in T to a
single “super” node, preserving the relative order of the nodes, then we define a tree, 2,
of depth O(log n). Of course, the nodes in Z can have arbitrary degree. Nevertheless,
for data structuring purposes, following Alstrup et al. [[1]], we may replace each vertex
v in Z having d children vy, va, . . ., vg with a weight-balanced binary tree that uses the
n(v;) values as weights. The useful property of this substitution is that any leaf-to-root
path P in the resulting binary tree, Z”, will have length O(log n), since the lengths of
the subpaths of P in the weight-balanced binary trees traversed in P form a telescoping
sum that adds up to O(log n).

In our case, we use autocratic weight-balanced binary trees for the substitutions of
high-degree super nodes in Z, so as to define a binary tree of depth O(logn). This
construction will prove essential for our greedy embedding scheme. Before we present
this geometric embedding, however, we first present a combinatorial greedy embedding
in a completely contrived metric space, which we will subsequently show how to turn
into a greedy embedding in the hyperbolic plane using the standard hyperbolic metric.

4 Greedy Embeddings in the Dyadic Tree Metric Space

Let GG be a graph with n vertices and m edges for which we wish to construct a succinct
greedy embedding. We show in this section how to produce a combinatorial greedy
embedding in a contrived space we call the dyadic tree metric space.
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We may consider the infinite binary tree, 3, to be an abstract metric space, in which
the distance between any two tree nodes is just the number of edges on the shortest path
between them. But there is another natural metric that can be formed on the same tree
by embedding it into the dyadic rational numbers (Fig.[3] left), that is, rational numbers
with denominators that are powers of two. Let f be the map from B to the open interval
(0,1) that maps the root of the tree to 1/2, and that maps the children of a node x at
level i of the tree to f(x) 4+ 27'~2; thus, the children of the root map to the dyadic
rational numbers 1/4 and 3/4, the grandchildren of the root map to 1/8, 3/8,5/8, 7/8,
and so on. We define the dyadic metric on 5 as the metric in which the distance between
two tree nodes x and y is | f(z) — f(y)|.

We will show that any graph may be greedily embedded into an ad-hoc metric space
that combines these two tree metrics; we call it the dyadic tree metric space. A point in
this space is represented by a pair (z, y), where = and y are nodes in the infinite binary
tree, B, and where x must be an ancestor of y (possibly equal to y itself). We define the
distance between two points (x, y) and (z’,y’) in the dyadic tree metric space to be the
sum of the tree distance between z and =’ and of the dyadic distance | f(y) — f(y')|. The
dyadic tree metric space can be represented as an infinite binary tree representing the x
coordinates of each of its points, in which each tree node contains an interval of dyadic
rational numbers; this interval of numbers is split into two halves at the two children of
each node. This representation is depicted in Fig.[3] right.

Our embedding begins with us finding a spanning tree 7" of G, choosing a root ar-
bitrarily, and producing a heavy path decomposition of 7'. For technical reasons we
require that each node in a nontrivial heavy path of the decomposition have at least one
child that is not in the path; we add dummy nodes to 7" if necessary, after forming the
path decomposition, to ensure that this is true.

We orient the light edges for each heavy path P so that they are all on the same side
of P and we orient the light edges incident upon the same vertex. We then compress
each heavy path into a super node, using the orientation of edges around the vertices
of each heavy path to determine the ordering of children for each node in the resulting
tree, Z. If a super node in Z is the right child of its parent, we make the left-to-right
ordering of children be the same as the ordering from parent to child in the heavy path;
if, on the other hand, it is the left child of its parent, we make the left-to-right ordering
of children be the same as the ordering from child to parent in the heavy path.

Next, we form groups of the nodes in Z that have the same parent in 7. We form
a weight-balanced binary tree for each these groups. Furthermore, within each group,
we form a weight-balanced binary tree of the nodes in the group. Concatenating these
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Fig. 4. Our two-level weight-balanced strategy for placing the children of the nodes on a heavy
path. The groups of children for each heavy path node are assigned to subtrees in a weight-
balanced way (gray shaded areas), and then within each subtree the individual children are placed
using a second level of weight balancing. The third step of child placement, in which we make the
subtree between the root (representing the heavy path) and its children autocratic, is not shown.

two levels of weight-balanced trees forms a single weight-balanced tree connecting the
node in Z to each of its children; we apply the transformation described earlier to make
this tree autocratic. The first three steps, in which we form a weight-balanced tree of the
groups and a weight-balanced tree within each group, and then concatenate these two
levels of weight-balanced trees to form a single binary tree for all children of the node
in Z, are depicted in Fig.

This construction of an autocratic weight-balanced tree for each node in Z can be
used to embed Z into the infinite binary tree, 3. The root of Z may be placed at the root
of B, and the children of each node v in Z are placed under that node in the positions
of B corresponding to their positions in the autocratic weight-balanced tree constructed
for v. We observe that, in this way, all nodes of Z are placed at most O(logn) levels
deep; for, due to the weight balancing, the distance in B between any node w and its
parent v is proportional to the difference in the logarithms of the weights of the subtrees
rooted at v and w, and along any path of Z these differences add in a telescoping series
to O(logn).

We have embedded Z into the infinite binary tree, 13; hence, we are now ready to
embed T itself into the dyadic tree metric. To do so, we must determine a pair (z, y) of
coordinates for any node v of T’; both = and y must be nodes of B, and = must be an
ancestor of y. The x coordinate of v is simply the node of 53 at which the heavy path of
v is placed. The y coordinate of v is the least common ancestor in B of the placements
of all the children of v. This calculation is the reason we required v to have at least one
child; for leaf nodes of T, we instead set y = x. Due to our two-level weight balancing
strategy, two nodes of T" that belong to the same heavy path (and that therefore share the
same x coordinate) will have different y coordinates, for their children will be placed
within disjoint subtrees of the infinite binary tree, B.

Lemma 2. The above embedding of T into the dyadic tree metric space is greedy.

Proof. Any directed path in T consists of edges that, when translated into the dyadic
tree metric space, have three types: edges from a node to the parent heavy path in Z,
edges within a heavy path, and edges from a node to a child heavy path in Z. We must
show that edges of each type lead to a node that is closer to the terminus of the path.
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For the edges that go from a node to the parent heavy path or to a child heavy path,
this is straightforward: the contribution of the x-coordinates to the distance to the termi-
nus decreases by one at each step, due to the autocratic property of our weight-balanced
trees, more than offsetting any possible increase in the contribution of the y-coordinates.

For the edges that remain within a heavy path, the x coordinates remain unchanged
and do not lead to any increase or decrease of the distance to the terminus. The y
coordinates are linearly ordered by the map f from infinite binary tree nodes to dyadic
rationals, and our weight-balanced trees were chosen to be consistent with this linear
ordering; therefore, any step along the heavy path, either towards a node of the path
that is the ancestor of the terminus or towards the topmost node of the path and the edge
leading to the parent node in Z, decreases the distance to the terminus. O

5 Succinct Greedy Embedding in the Hyperbolic Plane

We have shown that any tree T" (and any graph G by choosing a spanning tree of G)) may
be greedily and succinctly embedded into a dyadic tree metric space. To complete our
greedy embedding, it remains to show that this space may be embedded, independently
of our original graph (but depending on a parameter D determined by the number of
vertices of the graph), into the hyperbolic plane in such a way that the greedy property
of the embedding of 7" is preserved. That is, although the distances themselves in the
hyperbolic plane may differ from those in the dyadic tree metric space, composing our
embedding of 7" into the dyadic tree metric space with our embedding of the dyadic
tree metric space should yield a greedy embedding of T into the hyperbolic plane.

Due to the existence of this embedding, we may reinterpret the succinct coordinates
computed for the embedding of a graph into the dyadic tree metric space as also being
coordinates for a subset of points in the hyperbolic plane.

Our overall strategy will be to embed the infinite binary tree, B, into the hyperbolic
plane in such a way that any edge has length D 4+ O(1) and crosses a buffer zone of
width D, bounded by two hyperbolic lines (Fig.[3). The buffer zones for different edges
will be disjoint from each other. Thus, any two nodes of the tree that have tree distance &
units apart will have hyperbolic distance at least Dk (because any path between the two
nodes must cross k buffer zones) and at most (D +O(1))k (there exists a path following
tree edges with that length). In our application, all tree paths will have O(logn) edges;
thus, by choosing D = (2(logn) we may guarantee that the order relation between
any two distinct tree distances remains unchanged by this hyperbolic embedding. Any
point (z, y) of the dyadic tree metric will be placed near the embedding of tree node x,

AW £

Fig. 5. Disjoint buffer zones of width D are crossed by each edge of an embedding of 13 into the
hyperbolic plane, so that tree distance and hyperbolic distance closely approximate each other
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Fig. 6. Top-down placement of node x of 3 and point (x, y) of the dyadic tree metric space into
the hyperbolic plane, shown in a Poincaré disk model centered at «

and this placement will ensure the greediness of any edge whose endpoints belong to
different paths of our heavy path decomposition.

Next, we place nodes of the infinite binary tree, B, into the hyperbolic plane, with
the buffer zones described above. Although this placement is conceptual rather than
algorithmic, we may view it as being performed in a top down traversal of the tree, so
that when node z is placed we will already know the location of its parent, the buffer
zone separating x from its parent, and a line connecting it to its parent and on which
it must be placed. We place z itself on this line in such a way that the boundary of the
parental buffer zone forms one of the seven sides of an ideal regular heptagon—a figure
in the hyperbolic plane formed by seven lines that are asymptotic to each other but never
intersect, such that the angle subtended by each line as viewed from z is equal. Figure[6]
shows this placement, in a Poincaré disk model of the hyperbolic plane centered at x;
the parental buffer zone is the topmost shaded region in the figure and the vertical line
through x is the one connecting it to its parent node. The large arcs depict hyperbolic
lines forming the heptagon described above.

In the case where x is the right child of its parent, so that the upper nodes of the
heavy path represented by = have children in its left subtree and the lower nodes of
the heavy path have children in the right subtree, shown in the figure, we place the left
subtree within the halfplane bounded by the heptagon side one step counterclockwise
from the parent, and the right subtree within the halfplane bounded by the heptagon
side three steps counterclockwise from the parent, as shown in the figure. In the case
where z is its parent’s left child, we reverse the figure, placing the right subtree within
the halfplane one step clockwise from the parent and the left subtree within the half-
plane three steps clockwise from the parent. In either case, we draw lines connecting
x to its child nodes, at angles of 27/7 and 67/7 from the angle of the line connect-
ing x to its parent (the solid straight lines of the figure). We use the heptagon edges as
the outer boundaries of buffer zones between x and its children, and we set the inner
boundaries of the buffer zones to be hyperbolic lines perpendicular to the lines con-
necting z to its children, at distance D from the outer boundaries of the buffer zones.
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Fig. 7. Mlustration for proof of greediness of our embedding (not to scale)

With this information determined, we may continue to place the children of x in the
same way.

We are finally ready to describe the mapping of the dyadic tree metric space into
the hyperbolic plane. Recall that each point of the dyadic tree metric space consists of a
pair (x, y) where x and y are nodes of 3, = a parent of y. We draw small circles of equal
radius centered at each point where we have placed a node of 5—the precise radius is
unimportant as long as it is small enough that the circles are disjoint from the buffer
zones. Then, given a point (z, y) of the dyadic tree metric space, we draw a hyperbolic
line segment from z to y (the dotted straight line in the figure), and place (x,y) at the
point where this line segment intersects the circle centered at x. In the case x = vy,
which happens in our construction only for leaves, we instead place (x, x) at the point
where the line segment from z to its parent intersects the circle centered at x.

Theorem 1. For sufficiently large values of D, the embedding of G formed by compos-
ing the embedding from G into the dyadic tree metric space and the embedding of the
dyadic tree metric space into the hyperbolic plane is greedy.

Proof. We show that, for every edge e of the chosen spanning tree, and every possible
terminus v of a path using e, that traveling along e reduces the distance to the terminus.
We assume that the starting endpoint of e is placed at point (z,y) of the dyadic tree
metric, the ending endpoint is placed at point (z’,y’), and that these points are mapped
as described above to the hyperbolic plane. We distinguish several cases.

First, if z # 2/, let k = O(logn) be the tree distance from 2’ to the destination.
Then, due to the autocratic property of our weight-balanced placement of heavy paths
into the dyadic tree metric, x is at tree distance at least £ + 1 from the destination.
As discussed above, due to the buffer zones of our construction, (z,y) is at hyperbolic
distance at least (k + 1)D from the destination, while (z’,y’) is at hyperbolic distance
at most k(D 4+ O(1)). By choosing D sufficiently large (a constant times log n), we can
guarantee that the former distance is larger than the latter and that this step is greedy.

Second, if x = z’ and the eventual destination also has the same value of z, the
result follows from the fact that our embedding places the nodes of any heavy path
consecutively over an arc of less than half of a circle. Such an embedding is greedy for
any path, no matter how the nodes are distributed within the arc.
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Third, if x = 2’ and the eventual destination is reached via the parent of x, the step
is greedy for the same reason as in the second case: the nodes that are mapped to = form
a heavy path placed in order along an arc of less than half the circle, with the node of
the arc closest to the parent being the apex of the heavy path.

The most complicated case is the fourth: z = 2’ and the eventual destination z has
x'" as a proper descendant of . The closest point to z on the circle surrounding z onto
which (z,y) and (2’,y’) are both mapped is the hyperbolic point represented by the
coordinates (x, z); the distance to z from other points on the circle can be calculated
as a monotonic function of the arc length between those other points and (z, z). Thus,
moving around the circle towards (z, z) is a greedy step. Unfortunately, the point (z, )
may not be a node of the heavy path; rather, the node of the heavy path from which z
descends may be some other nearby point (z,y’"). We must show that any step along
the heavy path towards this point is greedy.

In most cases, it is straightforward to show that this step is greedy: a step around the
circle towards (z, z) is also a step towards (x,y”), which as we have argued immedi-
ately above is greedy. The only possible exception occurs when 3’ = y” and when the
true closest point on the circle to z, that is, (x, z), lies on the arc of the circle between
y and y’. In this case we must show that (z,y’) and (x, z) are closer in arc length than
(z,y) and (x, z), for then the greediness of the step will follow from the monotonicity
of the distance to z as a function of arc length.

Let y be the least common ancestor in the binary tree of the two disjoint subtrees
containing y and y’. Let A be the inner boundary of the buffer zone adjacent to ¢ that
contains ¢/, let C be the inner boundary of the buffer zone adjacent to ¢ that contains
y, and let B be the edge of the regular ideal heptagon adjacent to y that separates
A from C. Figure [] illustrates this notation. These three hyperbolic lines may not be
symmetrically placed relative to x, due to the asymmetry of the placement of the two
subtrees relative to the parent at each node x. However, the distances from z to A and
to C' are within O(1) of each other, and B is closer to x by a distance of D — O(1).
It is a basic property of hyperbolic geometry that the angle that an object subtends,
as viewed from a fixed point of view =z, is inversely proportional to an exponential
function of the distance of the object from z. Thus, B will subtend an angle, as viewed
from z, that is larger than the angles subtended by A and C by a factor exponential
in D — O(1). In particular, for sufficiently large D (larger than some fixed constant, a
weaker requirement than the one above that D = 2(log n)), both A and C will subtend
smaller angles than the angle subtended by B. Then, any point behind line A, and in
particular the point z, will form an arc from (z,y’) to (z, z) that is shorter than the arc
from (x,y) to (x, z). The greediness of the step from (x, y) to (x,y’) follows from the
monotonicity of the distance to z as a function of arc length. O
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Abstract. We show an algorithm to construct greedy drawings of every given
triangulation.

1 Introduction

In a greedy routing setting, a node forwards packets to a neighbor that is closer to
the destination’s geographic location. Different distance metrics define different mean-
ings for the word “closer”, and consequently define different routing algorithms for the
packet delivery. The most used and studied metric is of course the Euclidean distance.

The efficiency of the greedy routing algorithms strongly relies on the geographic co-
ordinates of the nodes. This is a drawback of such algorithms, for the following reasons:
(i) Nodes of the network have to know their locations, hence they have to be equipped
with GPS devices, which are expensive and increase the energy consumption of the
nodes; (ii) geographic coordinates are independent of the network obstructions, i.e. ob-
stacles making the communication between two close nodes impossible, and, more in
general, they are independent of the network topology; this could lead to situations in
which the communication fails because a void has been reached, i.e., the packet has
reached a node whose neighbors are all farther from the destination than the node itself.

A brilliant solution to such weaknesses has been proposed by Rao et al. who in [9]
proposed a scheme in which nodes decide virtual coordinates and then apply the greedy
routing algorithm relying on such coordinates rather than on the real geographic ones.
Since virtual coordinates do not need to reflect the nodes actual positions, they can be
suitably chosen to guarantee that the greedy routing algorithm delivers packets with
high probability. Experiments have shown that such an approach strongly improves the
reliability of greedy routing [9/8]. Further, it has been proved that virtual coordinates
guarantee greedy routing to work for every connected topology when they can be cho-
sen in the hyperbolic plane [3]], and that some modifications of the routing algorithm
guarantee that Euclidean virtual coordinates can be chosen so that the packet delivery
always succeeds [[1], even if the coordinates need to be locally computed [2].
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informative di grandi dimensioni e data streams” and by the Italian Ministry of Research,
Grant number RBIPO6BZWS, project FIRB “Advanced tracking system in intermodal freight
transportation”.
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Subsequent to the Rao et al. paper [9], an intense research effort has been devoted
to determine on which network topologies the Euclidean greedy routing with virtual
coordinates is guaranteed to work. From a graph-theoretic point of view, the problem
is as follows: Which are the graphs that admit a greedy embedding, i.e., a straight-line
drawing I such that, for every pair of nodes v and v, there exists a distance-decreasing
path in I'? A path (vg, vy, . .., vy) is distance-decreasing if d(v;, vm) < d(Vi—1,Vm),
fort =1,..., m. In [8] Papadimitriou and Ratajczak conjectured the following:

Conjecture 1. (Papadimitriou and Ratajczak [8)]) Every triconnected planar graph ad-
mits a greedy embedding.

Papadimitriou and Ratajczak showed that K, 551 has no greedy embedding, for k > 1.
As a consequence, both the triconnectivity and the planarity are necessary, because
there exist planar non-triconnected graphs, such as K5 11, and non-planar triconnected
graphs, such as K3 16, that do not admit any greedy embedding. Further, they observed
that, if a graph G has a greedy embedding, then any graph containing G as a spanning
subgraph has a greedy embedding. It follows that Conjecture [Il extends to all graphs
which are spanned by a triconnected planar graph. Related to such an observation, they
proved that every triconnected graph not containing a K3 3-minor has a triconnected
planar spanning subgraph.

For a few classes of triconnected planar graphs the conjecture is easily shown to
be true, for example graphs with a Hamiltonian path and Delaunay Triangulations. At
SODA’08 [3]], Dhandapani proved the conjecture for the first non-trivial class of tri-
connected planar graphs, namely he showed that every triangulation admits a greedy
embedding. The proof of Dhandapani is probabilistic, namely the author proves that
among all the Schnyder drawings of a triangulation [[10], there exists a drawing which
is greedy. Although such a proof is elegant, relying at the same time on an old Com-
binatorial Geometry theorem, known as the Knaster-Kuratowski-Mazurkievicz Theo-
rem [6], and on standard Graph Drawing techniques, as the Schnyder realizers [10]]
and the canonical orderings of a triangulation [4], it does not lead to an embedding
algorithm.

In this paper we show an algorithm for constructing greedy drawings of triangu-
lations. The algorithm relies on a different and maybe more intuitive approach with
respect to the one used in [3]]. We define a simple class of graphs, called binary cac-
tuses, and we provide an algorithm to construct a greedy drawing of any binary cactus.
Finally, we show how to find, for every triangulation, a binary cactus spanning it. It
is clear that the previous statements imply an algorithm for constructing greedy draw-
ings of triangulations. Namely, consider any triangulation G, apply the algorithm to
find a binary cactus S spanning G, and then apply the algorithm to construct a greedy
drawing of S. As already observed, adding edges to a greedy drawing leaves the draw-
ing greedy, hence S can be augmented to G, obtaining the desired greedy drawing
of G.

Theorem 1. Given a triangulation G, there exists an algorithm to compute a greedy
drawing of G.
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(b)

Fig. 1. (a) A binary cactus S. (b) The block-cutvertex tree of S. White (resp. black) circles repre-
sent C-nodes (resp. B-nodes).

2 Preliminaries

A graph G is connected if every pair of vertices of G is connected by a path. A cutver-
tex is a vertex whose removal increases the number of connected components of G. A
connected graph is biconnected if it has no cutvertices. The maximal biconnected sub-
graphs of a graph are its blocks. Each edge of G falls into a single block of G, while
cutvertices are shared by different blocks. The block-cutvertex tree, or BC-tree, of a
connected graph G is a tree with a B-node for each block of GG and a C-node for each
cutvertex of GG. Edges in the BC-tree connect each B-node p to the C-nodes associated
with the cutvertices in the block of .

The BC-tree of G may be thought as rooted at a specific block . When the BC-tree
7 of a graph G is rooted at a certain block v, we denote by G () the subgraph of G
induced by all vertices in the blocks contained in the subtree of 7 rooted at p. In a
rooted BC-tree 7 of a graph G, for each B-node 1 we denote by r(u) the cutvertex
of G parent of y in 7. If p is the root of 7, i.e., u = v, then we let r(u) denote any
non-cutvertex node of the block associated with p. In the following, unless otherwise
specified, each considered BC-tree is meant to be rooted at a certain B-node v such that
the block associated with v has at least one vertex () which is not a cutvertex. It is
not difficult to see that such a block exists in every planar graph.

A rooted triangulated binary cactus S, in the following simply called binary cactus,
is a connected graph such that (see Fig[I): (i) the block associated with each B-node of
T is either an edge or a triangulated cycle, i.e., a cycle (r(u), ur,usg, ..., up) triangu-
lated by the edges from (1) to each of uy, ua, . .., up; (i) every cutvertex is shared by
exactly two blocks of S.

A planar drawing of a graph is a mapping of each vertex to a distinct point of the
plane and of each edge to a Jordan curve between its endpoints such that no two edges
intersect except, possibly, at common endpoints. A planar drawing of a graph deter-
mines a circular ordering of the edges incident to each vertex. Two drawings of the same
graph are equivalent if they determine the same circular ordering around each vertex. A
planar embedding is an equivalence class of planar drawings. A planar drawing parti-
tions the plane into topologically connected regions, called faces. The unbounded face
is the outer face. The outer face of a graph G is denoted by f(G). A chord of a graph
G is an edge connecting two non-adjacent vertices of f(G). A graph together with a
planar embedding and a choice for its outer face is called plane graph. A plane graph is
a triangulation when all its faces are triangles. A plane graph is internally-triangulated



An Algorithm to Construct Greedy Drawings of Triangulations 29

up)

B; pi i
i Wiy~

(a)

Fig. 2. (a) Illustration for Properties 1-3 of I'. (b) Base case of the algorithm. The light and dark
shaded region represents R(I") (the angle of R(I") at p™ is «). The dark shaded region represents
the intersection of W (p*, a/2) with the circle delimited by C.

when all its internal faces are triangles. An outerplane graph is a plane graph such that
all its vertices are incident to the outer face. A Hamiltonian cycle of a graph G is a sim-
ple cycle passing through all vertices of G. Notice that a biconnected outerplane graph
has only one Hamiltonian cycle, the one delimiting its outer face.

3 Greedy Drawing of a Binary Cactus

In this section, we give an algorithm to compute a greedy drawing of a binary cactus S.
Such a drawing is constructed by a bottom-up traversal of the BC-tree 7 of S.

Consider the root p of a subtree of 7 corresponding to a block of S, consider the &
children of 1, which correspond to cutvertices of .S, and consider the children of such
cutvertices, say {1, i42, - - - , ig. Notice that each C-node child of y is parent of exactly
one B-node p; of 7, by definition of binary cactus. For each ¢ = 1, ..., k, inductively
assume to have a drawing I; of S(u;) satisfying the following properties. Let c; and
B; be any two angles less than 7 /4 such that 3; > «;. Refer to Fig. 2la.

— Property 1. T’; is a greedy drawing.

— Property 2. I; is entirely contained inside a region R([;) delimited by an arc
(@i, b;) of a circumference C' and by two segments (p}, a;) and (p}, b;), such that
pY is a point of C' and the diameter through p} cuts (a;, b;) in two arcs of the same

—

length. The angle a;p}b; is ;.

— Property 3. Consider the tangent ¢(p;) to C' in p}. Consider two half-lines /5 and
I% incident to p}, lying on the opposite part of C' with respect to ¢(p;), and forming
angles equal to 3; with ¢(p}). Denote by W (p}) the wedge centered at p}, delimited
by [5 and [3, and not containing C'. Then, for every vertex v in S(u;) and for every
point p internal to W (p;), a distance-decreasing path (v = vg,v1,...,v = r(y;))
from v to () exists in I; such that d(v;,p) < d(vj_1,p) forj=1,....1L

In the base case, block p has no child. Denote by (r(un) = ug,u1,...,un—1) the
block of S corresponding to p. If b = 2, i.e., i corresponds to an edge, draw such an
edge as a vertical segment, with u; above ug. A region R(I;) can be easily constructed,
for every angles o and 3, with 8 > q, satisfying the above properties. If A > 2, i.e.,
u corresponds to a triangulated cycle of S, place r(u) at any point p* and consider a
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wedge W (p*, a/2) that has an angle equal to «/2, that is incident to r(u), and that is
bisected by the vertical half-line incident to r(u) and directed upward (see Fig. 2lb).
Denote by p/, and pj the intersection points of the half-lines delimiting W (p*, ct/2)
with a circumference C' through r(u), properly intersecting the border of W (p*, a/2)
twice. Denote by A the arc of C between p/, and pj, not containing p*. Consider points
P, = Po,P1,--.,Pn = p, on A such that the distance between any two consecutive
points p; and p; 1 is the same. Place vertex u; at point p;, fori =1,2,...,h — 1.

We show that the constructed drawing I satisfies Property 1. Consider any two
vertices u; and uj, with ¢ < j. If ¢ = 0, then ugp and u; are joined by an edge,
which provides a distance-decreasing path among them. Otherwise, we claim that path
(us, Uit1, - .., uj) is distance-decreasing. In fact, foreach ! = 4,7 +1,...,j — 2, an-
gle ujuy 1w, is greater than 7/2, because triangle (u;, w41, u;) is inscribed in less than
half a circumference with ;1 as middle point. Hence, (uy, uj) is the longest side of tri-
angle (w;, w41, u;) and d(uzy1, u;) < d(ug, u;) follows. Drawing I” satisfies Property
2 by construction. In order to prove that I” satisfies Property 3, we have to show that, for
every vertex u;, with ¢ > 1, and for every point p in W (p*), d(uo, p) < d(u;,p). How-
ever, angle pp*p; is at least 3+ (5 — ), which is more than 7 /2. It follows that segment
pp; is the longest side of triangle (p, p*, p;), thus proving that d(ug, p) < d(u;, p).

Now suppose p is a node of 7 having k children. We show how to construct a
drawing I" of S(u) satisfying Properties 1-3 with parameters « and (3. Denote by
(r(u) = wo,u1,-..,un—1) the block of S corresponding to u. Consider any circum-
ference C' with center c. Let p* be the point of C' with smallest y-coordinate. Consider
wedges W (p*, a) and W (p*, a/2) with angles « and «/2, respectively, incident to
p* and such that the diameter of C' through p* is their bisector. Region R(I") is the
intersection region of W (p*, ) with the closed circle delimited by C.

Consider a circumference C” with center ¢ intersect/ir_lé the two lines delimiting
W (p*, a/2) in two points p/, and pj such that angle p/,cp;, = 3c/2. Denote by p/
the intersection point between C’ and (c, p*). Observe that angle m = 3a/4. De-
note by A the arc of C’ delimited by p/, and p; not containing p’. Consider points
pl, = Do,p1,-..,Pn = P, on A such that the distance between any two consecu-
tive points p; and p; 1 is the same. Observe that, for each i = 0,1,...,h — 1, angle
pml = ?2’2‘

First, we draw the block of S corresponding to 1. As in the base case, place vertex
up = r(p) atp* and, fori = 1,2, ..., h — 1, place u; at point p,. Recursively construct
a drawing I; of S(y;) satisfying Properties 1-3 with ;; = 25 and 3; = 3.

We are going to place each drawing I'; of S(u;) together with the drawing of the
block of S corresponding to y, thus obtaining a drawing I" of S(u). Not all & nodes u;
are cutvertices of S. However, with a slight abuse of notation, we suppose that block
S(;) has to be placed at node u;. Refer to Fig[3l Consider point p; and its “neighbors”
pi—1 and p;41. Consider lines ¢(p;—1) and t(p;+1) tangent to C’ through p;_; and
pi+1, respectively. Further, consider circumferences C;_1 and C;;; centered at p;_;
and p; 41, respectively, and passing through p;. Moreover, consider lines h;_1 and h;11
through p; and tangent to C;_1 and C; 1, respectively. For each point p;, consider two
half-lines ¢} and ¢} incident to p;, cutting C’ twice, and forming angles 3; = 3 with
t(p;). Denote by W (p;) the wedge delimited by ¢} and ¢} and containing c.
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Fig. 3. Lines and circumferences in the construction of I". The shaded region is R;.

We place I inside the bounded region R; intersection of the half-plane H'~! de-
limited by h;_; and not containing C;_1, of the half-plane H**! delimited by h;, 1 and
not containing C;41, of W(p;_1), of W(p;41), and of the circle delimited by C.

First, we show that R; is “large enough” to contain I, namely we claim that there
exists an isosceles triangle 7" that has an angle larger than o; = 1360;1 incident to p; and
that is completely contained in R;. Such a triangle will have the further feature that the
angle incident to p; is bisected by the half-line /; incident to ¢ and passing through p;.

Lines h;_1 and h;11 are both passing through p;; we prove that they have different
slopes and we compute the angles they form at pl Line hZ 1 forms an angle of 7/2 with
segment p;_1p;; angle cﬁ?i\,l isequalto 5 — 4h,smce pchl 1= 2h * and since triangle
(pi—1,c pl) is isosceles. Hence, the angle delimited by hz 1 and l;ism—7/2 — (] —
Zz) = ', - Analogously, the angle between [; and h; 1 is 4h Hence, the 1ntersect10n of
Hi—1 and H*Lis a wedge W (p;, by 1, hit1) centered at p;, with an angle of 3%, and
bisected by [;. We claim that each of t2 L and tﬁ“ cuts the border of W (p;, hi—1, hit1)
twice. The angle between ¢(p;—1) and p;_1p; is ig, namely the angle between ¢(p;—1)
and cpZ 1 is /2, and angle ¢p;_1p; is § — 3% The angle between t(pl 1) and t5 1 is
B = by construction. Hence, the angle between t’ L and Pi_1pi 18 4h 22‘ = 22‘
Since the slope of both h;_; and h;;1 with respect to p;_1p; is greater than 3“ and
less than T — gh, namely the slope of h;_; and h;4; with respect to p;_1p; is g and

+ 2h’ respectively (notice that & < /4 and h > 2), then 7,"2 ! intersects both hi_1
and hi+1. It can be analogously proved that tzfrl intersects h;_; and h;y;. It follows
that the intersection of Hi=%, H**! W (p;_1), and W (p;+1) contains a triangle T" as
required by the claim (the angle of T" incident to p; is g;’: ). Considering circumference
C does not invalidate the existence of T', since C is concentric with C’ and has a bigger
radius, hence 7" can be chosen sufficiently small so that it completely lies inside C.

Now I’; can be placed inside T, by scaling I'; down till it fits inside T' (see Fig. @l a).
The scaling always allows I’; to be placed inside T, since the angle of R(I;) incident

topis a; = 16h, that is smaller than the angle of 7" incident to p;, which is 2"‘ In
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Fig.4. (a) Placement of I" inside R;. Region R(I") is the darkest, triangle 7" is composed of
R(I") and of the second darkest region, R; is composed of T" and of the light shaded region. (b)
Illustration for the proof of Lemmal[ll

particular, we choose to place I; inside T" so that /; bisects the angle of R(I;) incident
to p;. This concludes the construction of I'. We have the following lemmata.

Lemma 1. The closed wedge W (p*) is completely contained inside the open wedge
W (p;), for eachi =0,1,..., h.

Proof: Consider any point p;. Observe that p; is contained inside the wedge W (p*)
obtained by reflecting W (p*) with respect to ¢(p*). Namely, p; is contained inside
W (p*, «/2), which is in turn contained inside W (p*), since /2 < 7 — 2[3, as a con-
sequence of the fact that 7/4 > 3 > «. Hence, in order to prove the lemma, it suffices
to show that the absolute value of the slope of each of t% and #} is less than the absolute
value of the slope of the half-lines delimiting W (p*). Such latter half-lines form angles
of 3, by construction, with the z-axis.

The slope of ti can be computed by summing up the slope of ¢} with respect to t(p;)
with the slope of ¢(p; ). The former slope is equal to 3; = 8 %, by construction. Recalling
that ¢(p;) is the tangent to A in p;, the slope of ¢(p;) is bounded by the maximum
among the slopes of the tangents to points of A. Such a maximum is clearly achieved
at p/, and p; and is equal to 3c/4. Namely, refer to Fig. b and consider the horizontal
lines h(c) and h(p),) through ¢ and p/,, respectively, that are traversed by radius (¢, pl, ).
Such a radius forms angles of 7/2 with #(p’,); hence, the slope of ¢(p/,), that is equal
to the angle between t(p/,) and h(p,), is /2 minus the angle «, between h(p!,) and
(¢, p). Angle «, is the alternate interior of the angle between h(c) and (¢, pl,), which
is complementary to the half of angle gz-c;b, which is equal to 3a /2, by construction.
It follows that , is equal to 7 — and the slope of t(p},) is 3.

Hence, the slope of L‘Z is at most 4 + 8h, which is less than «, since h > 2, and
hence less than /3. Analogously, the slope of ¢4 is less than /3, and the lemma follows. [

Corollary 1. Point p* is inside the open wedge W (p;), foreachi =1,2,... h.

Lemma 2. For every pair of indices © and j such that 1 < i < j < k, the drawing of
S(u;) is contained inside W (p;) and the drawing of S(p;) is contained inside W (p;).

Proof: If S(u;) and S(u;) are consecutive, i.e., the cutvertices parents of .S(u;) and
S(u;) are u; and u; and j = ¢ + 1, then the statement is true by construction. Suppose
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S(u;) and S(u;) are not consecutive. Consider the triangle T; delimited by (p*, p;), by

%, and by the line through p* and p}. T; contains the triangle delimited by (p*, p;+1),
by té“, and by the line through p* and p;, which in turn contains the triangle delimited
by (p*,pi+2), by t52, and by the line through p* and pj. Repeating such an argument
shows that T contains the triangle T);_; delimited by (p*, pj_l), by t%_l, and by the
line through p* and pj. By construction, I'; lies inside 7;_1, and the lemma follows. [J

We prove that the constructed drawing I” satisfies Properties 1-3.

Property 1. We show that, for every pair of vertices w; and ws, there exists a distance-
decreasing path between them in I'. If both w; and ws are internal to the same
graph S(u;), the property follows by induction. If one of w; and we, say w1, is
() and the other one, say wo, is a node in S(u;) then, by Property 3, there exists

a distance-decreasing path (wy = vg,v1, ..., = r(u;)) from ws to r(p;) such
that, for every point p in W (p;), d(v;,p) < d(vj_1,p), for j = 1,2,...,1. By
Corollary [l p* is contained inside W (p;). Hence path (ws = vg,v1,...,v =

r(p; ), w1 = r(w)) is a distance-decreasing path between w; and ws. If wy belongs
to S(u;) (possibly w1 = wu;) and wo belongs to S(u;) (possibly wa = u;) then
suppose, w.l.o.g., that j > 7. We show the existence of a distance-decreasing path
P in I', composed of three subpaths P;, P2, and Ps. By Property 3, I'; is such
that there exists a distance-decreasing path P; = (w1 = vg,v1,...,0 = (1))
from w; to 7(u;) such that, for every point p in W(p;), d(v;,p) < d(vj—1,p),
forj = 1,2,...,1. By Lemma[l drawing I';, and hence vertex wo, is contained
inside W (p;), hence path P; decreases the distance from w2 at every vertex. Path
Pa = (u; = r(i), Wit1,- - ., u; = r(p;)) is easily shown to decrease the distance
from wo at every vertex. In fact, foreachl = 7,94+ 1,...,j — 2, angle ulmj
is greater than 7 /2, because triangle (u;, u;41, ;) is inscribed in less than half a
circumference with ;1 as middle point. Angle u;u;, ws is strictly greater than
um;j, hence it is the biggest angle in triangle (u;, w41, w2) and d(uj41, we) <
d(u;,ws) follows. By induction, there exists a distance-decreasing path Ps from
r(uj) to we, thus obtaining a distance-decreasing path P from w; to ws.

Property 2. Such a property holds for I" by construction.

Property 3. Consider any node v in S(u;) and any point p internal to W (p*). By
Lemmall] p is internal to W (p;). By induction, there exists a distance-decreasing
path (v = vg,v1,...,v = r(g;)) such that d(v;,p) < d(vj—1,p), for j =
1,2,...,1. Hence, path (v = vg,v1,...,u = r(u;),vi41 = r(u)) is a distance-
decreasing path such that d(vj,p) < d(vj_1,p), for j = 1,2,...,1+ 1, if and
only if d(r(u),p) < d(r(u;),p). However, angle prm,ui) is at least 8 + (’; -
3), which is more than /2. Hence, (p,7(u;)) is the longest side of triangle

(p,7(1), 7(;)), thus proving that d(r(u), p) < d(r(us),p), and Property 3 holds

for I'.

When the induction on 7 is performed with y = v, we obtain a greedy drawing of .S,
thus proving the following:

Theorem 2. There exists an algorithm that constructs a greedy drawing of any binary
cactus.
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4 Spanning a Triangulation with a Binary Cactus

In this section we prove the following theorem:

Theorem 3. Given a triangulation G, there exists a spanning subgraph S of G such
that S is a binary cactus.

Consider any triangulation G. We are going to construct a binary cactus S spanning G.
First, we outline the algorithm to construct .S. Such an algorithm has several steps. At
the first step, we choose a vertex w incident to f(G) and we construct a triangulated
cycle C composed of w and all its neighbors. We remove u and its incident edges from
G, obtaining a biconnected internally-triangulated plane graph G*. At the beginning of
each step after the first one, we suppose to have already constructed a binary cactus .S
whose vertices are a subset of the vertices of G (at the beginning of the second step,
S coincides with C'r), and to have a set G of subgraphs of G (at the beginning of
the second step, G* is the only graph in G). Each of such subgraphs is biconnected,
internally-triangulated, has an outer face whose vertices already belong to S, and has
internal vertices. All such internal vertices do not belong to S and each vertex of G
not belonging to S' is internal to a graph in G. Only one of the graphs in G may have
chords (at the beginning of the second step, G* is such a graph). During each step,
we perform the following two actions: (1) We partition the only graph G¢ of G with
chords, if any, into several biconnected internally-triangulated chordless plane graphs;
we remove G'¢ from G and we add to G all graphs with internal vertices into which G
has been partitioned; (2) we choose a graph GG; from G, we choose a vertex u incident
to the outer face of GG; and already belonging to exactly one block of .S, and we add
to S a block composed of u and of all its neighbors internal to G;. We remove u and
its incident edges from G, obtaining a biconnected internally-triangulated plane graph
G7. We remove G; from G and we add G to G. The algorithm stops when G is empty.
Now we give the details of the above outlined algorithm. At the first step of the algo-
rithm, choose any vertex u incident to f(G). Consider the neighbors (u1, usg, . . ., u;) of
w in clockwise order around it. Since G is a triangulation, C' = (u, u1, us, ..., u;) is a
cycle. Let Cr be the triangulated cycle obtained by adding to C' the edges connecting u
to its neighbors. Let S = Cp. Remove vertex u and its incident edges from G, obtain-
ing a biconnected internally-triangulated graph G*. If G* has no internal vertex, then
all the vertices of G belong to S and we have a binary cactus spanning G. Otherwise,
let G = {G*}. For each graph G; € G, consider the vertices incident to f(G,;). Each of
such vertices can be either forbidden for G; or assigned to G;. A vertex w is forbidden
for G; if the choice of not introducing in S any new block incident to w and spanning a
subgraph of G; has been done. Conversely, a vertex w is assigned to G; if a new block
incident to w and spanning a subgraph of GG; could be introduced in S. For example, w
is forbidden for G; if there exist two blocks of S sharing w as a cutvertex. At the end
of the first step of the algorithm, choose any two vertices incident to f(G*) as the only
forbidden vertices for G*. All other vertices incident to f(G™*) are assigned to G*. At
the beginning of the i-th step, with ¢ > 2, we assume that each of the following holds:

— Invariant A: Graph S is a binary cactus spanning all and only the vertices that are
not internal to any graph in G.
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Invariant B: Each graph in G is biconnected, internally-triangulated, and has inter-

nal vertices.

Invariant C: Only one of the graphs in G may have chords.

Invariant D: No internal vertex of a graph G; € G belongs to a graph G; € G.

Invariant E: For each graph G; € G, all vertices incident to f(G;) are assigned to

G, except for two vertices, which are forbidden.

— Invariant F: Each vertex v incident to the outer face of a graph in G is assigned to
at most one graph G, € G. The same vertex is forbidden for all graphs G, € G
such that v is incident to f(G,) and G, # G,,.

— Invariant G: Each vertex assigned to a graph in G belongs to exactly one block

of S.

Such invariants clearly hold after the first step of the algorithm.

Action 1: If all graphs in G are chordless, go to Action 2. Otherwise, by Invariant
C, only one of the graphs in G, say G¢, may have chords. We use such chords to
partition G¢ into k biconnected, internally-triangulated, chordless graphs G¢,, with
j=1,2,... k. Consider the biconnected outerplane subgraph O¢ of G¢ induced by
the vertices incident to f(G¢). To each internal face f of O¢ delimited by a cycle ¢, a
graph G, is associated such that G7, is the subgraph of G induced by the vertices of
c or inside c. Before replacing G with graphs Gé in G, we show how to decide which
vertices incident to the outer face of a graph G‘é are assigned to G‘é and which vertices
are forbidden for Gé. Since each graph Gé is univocally associated with a face of O¢
(namely the face of O¢ delimited by the cycle that delimits f (Gé)), in the following we
assign vertices to the faces of O¢ and we forbid vertices for the faces of O, meaning
that if a vertex is assigned to (forbidden for) a face of O¢ delimited by a cycle c then it
is assigned to (resp. forbidden for) graph G7, whose outer face is delimited by c.

We want to assign the vertices incident to f(O¢) to faces of O¢ so that the following
properties are satisfied. Property 1: No forbidden vertex is assigned to any face of O¢.
Property 2: No vertex is assigned to more than one face of O¢; Property 3: Each face
of O¢ has exactly two incident vertices which are forbidden for it; all other vertices of
the face are assigned to it.

By Invariant E, G¢ has two forbidden vertices. We construct an assignment of ver-
tices to faces of O¢ in some steps. Let p be the number of chords of O¢. Consider the
Hamiltonian cycle O of Oc, and assign all vertices of O%, but for the two forbidden
vertices, to the only internal face of O%. At the ¢-th step, 1 < ¢ < p, we insert into
Oio_1 a chord of Oc, obtaining a graph O%. This is done so that Properties 1-3 are
satisfied by O}; (with Oic instead of O¢). After all p chords of O¢ have been inserted,
O%, = O¢, and we have an assignment of vertices to faces of O satisfying Properties
1-3. Properties 1-3 are clearly satisfied by the assignment of vertices to faces of O2.
Inductively assume Properties 1-3 are satisfied by the assignment of vertices to faces
of O '. Let (uq,up) be the chord that is inserted at the i-th step. Chord (u,, u;) parti-
tions a face f of Oé?l into two faces f1 and fo. By Property 3, two vertices uj and u3
incident to f are forbidden for it and all other vertices incident to f are assigned to it.
For each face of O, different from f; and f», assign and forbid vertices as in the same
face in 0271. Assign and forbid vertices for f; and f5 as follows.
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— If vertices u, and wuy are the same vertices of u] and u3, assign to each of f; and
f2 all vertices incident to it, except for u, and u;. No forbidden vertex has been
assigned to any face of O%, (Property 1). Vertices u,, and u;, have not been assigned
to any face. All vertices assigned to f belong to exactly one of f; and f5 and so
they have been assigned to exactly one face (Property 2). The only vertices of f;
(resp. of f3) not assigned to it are u, and up, while all other vertices are assigned
to such a face (Property 3).

— If vertices u, and u; are both distinct from « and w5 and both u] and 3 are in the
same of f1 and f2, say in fi, assign to f; all vertices incident to it, except for u} and
u3, and assign to f3 all vertices incident to it, except for u, and u,. No forbidden
vertex has been assigned to any face of O, (Property 1). Vertices u, and u;, have
been assigned to exactly one face. All other vertices assigned to f belong to exactly
one of f1 and f5 and so they have been assigned to exactly one face (Property 2).
The only vertices of f; (resp. of f2) not assigned to it are u} and u (resp. u, and
up), while all other vertices are assigned to such a face (Property 3).

— If vertices u, and u;, are both distinct from «] and 5 and one of v} and u3, say uj,
is in f; while the other one, say u3, is in f2, assign to f; all vertices incident to it,
except for uj and u,, and assign to f> all vertices incident to it, except for u3 and
up. No forbidden vertex has been assigned to any face of O (Property 1). Vertices
u, and up have been assigned to exactly one face. All other vertices assigned to
f belong to exactly one of f; and f> and so they have been assigned to exactly
one face (Property 2). The only vertices of f; (resp. of f2) not assigned to it are
u} and u, (resp. u5 and up), while all other vertices are assigned to such a face
(Property 3).

— If one of vertices u] and u3 coincides with one of u,, and us, say uj coincides with
Uq, and the other one, say u3, is in one of f; and fa, say in f;, assign to f; all
vertices incident to it, except for u3 and u,, and assign to f» all vertices incident to
it, except for u, and u,. No forbidden vertex has been assigned to any face of Oé
(Property 1). Vertex u, has not been assigned to any face and vertex u; has been
assigned to exactly one face. All other vertices assigned to f belong to exactly one
of f1 and f5 and so they have been assigned to exactly one face (Property 2). The
only vertices of f; (resp. of f2) not assigned to it are u3 and u, (resp. u, and up),
while all other vertices are assigned to such a face (Property 3).

Graph G¢ is removed from G. All graphs Gé having internal vertices are added to G.
It is easy to see that Invariants A—G are satisfied after Action 1.

Action 2: After Action 1 all graphs in G are chordless. There is at least one graph G
in G, otherwise the algorithm would have stopped before Action 1. By Invariant B,
G, has internal vertices. Choose any vertex u incident to f(G;) and assigned to G;.
Since G; is biconnected and has internal vertices, f(G;) has at least three vertices.
Since each graph in G has at most two forbidden vertices (by Invariant E), a vertex u
assigned to G; exists. Consider all the neighbors (uy,us, ..., wu;) of u internal to G;,
in clockwise order around u. Since G is biconnected, chordless, internally triangulated,
and has internal vertices, then [ > 1. If | = 1 then let Cr be edge (u, u1 ). Otherwise, let
C7 be the triangulated cycle obtained by adding to cycle (u, w1, uso, ..., u;) the edges
connecting v to its neighbors. Add C'r to S. Remove u and its incident edges from G,
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obtaining a graph G}. Assign to G all vertices incident to f(G}), except for the two
vertices forbidden for ;. Remove G; from G and insert G, if it has internal vertices,
in G. It is easy to see that Invariants A—G are satisfied after Action 2.

When the algorithm stops, i.e., when there is no graph in G, by Invariant A graph S
is a binary cactus spanning all vertices of G, hence proving Theorem[3l

5 Conclusions

In this paper we have shown an algorithm for constructing greedy drawings of triangu-
lations. The algorithm relies on two main results. The first one states that every binary
cactus admits a greedy drawing. The second result, that may be of its own interest, is
that, for every triangulation G, there exists a binary cactus S spanning G.

After this paper was submitted, the authors realized that a slight modification of the
two main arguments, presented in Sect.[3land[] proves Conjecture[Il Namely, it can be
shown that every triconnected planar graph can be spanned by a rooted non-triangulated
binary cactus, i.e. a connected graph such that the block associated with each B-node
of 7 is either an edge or a cycle and every cutvertex is shared by exactly two blocks. A
greedy drawing of such a graph can be constructed by the drawing algorithm presented
for rooted triangulated binary cactuses (the proof that the drawings constructed by the
algorithm are greedy is slightly more involved due to the absence of edges (r(u), u;),
fori = 2,3,---,h — 2). However, two reviewers of our paper made us aware that the
conjecture has been positively settled by Leighton and Moitra in a paper to appear at
FOCS’08 [7]. The approach used by Leighton and Moitra is surprisingly similar to ours.
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Abstract. A nonplanar graph G is near-planar if it contains an edge
e such that G — e is planar. The problem of determining the crossing
number of a near-planar graph is exhibited from different combinatorial
viewpoints. On the one hand, we develop min-max formulas involving ef-
ficiently computable lower and upper bounds. These min-max results are
the first of their kind in the study of crossing numbers and improve the
approximation factor for the approximation algorithm given by Hlinény
and Salazar (Graph Drawing GD 2006). On the other hand, we show
that it is NP-hard to compute a weighted version of the crossing number
for near-planar graphs.

1 Introduction

Crossing number minimization is one of the fundamental optimization problems
in the sense that it is related to various other widely used notions. Besides its
mathematical interest, there are numerous applications, most notably those in
VLSI design [I)8I9], in combinatorial geometry and even in number theory, see,
e.g, [16]. We refer to [I0/15] and to [I8] for more details about diverse applications
of this important notion.

A nonplanar graph G is near-planar if it contains an edge e such that G — e
is planar. Such an edge e is called a planarizing edge. It is easy to see that near-
planar graphs can have arbitrarily large crossing number. However, it seems that
computing the crossing number of near-planar graphs should be much easier
than in unrestricted cases. This is supported by a less known, but particularly
interesting result of Riskin [I4], who proved that the crossing number of a 3-
connected cubic near-planar graph G can be computed easily as the length of a
shortest path in the geometric dual graph of the planar subgraph G—x—y, where
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xy € FE(G) is the edge whose removal yields a planar graph. Riskin asked if a
similar correspondence holds in more general situations, but this was disproved
by Mohar [I3] (see also [5]). Another relevant paper about crossing numbers of
near-planar graphs was published by Hlinény and Salazar [6].

In this paper we show that several generalizations of Riskin’s result are in-
deed possible. We provide efficiently computable upper and lower bounds on the
crossing number of near-planar graphs in a form of min-max relations. These
relations can be extended to the non-3-connected case and even to the case of
weighted edges. As far as we know, these results are the first of their kind in the
study of crossing numbers. It is shown that they generalize and improve some
known results and we foresee that generalizations and further applications are
possible.

On the other hand, we show that computing the crossing number of weighted
near-planar graphs is NP-hard. This discovery is a surprise and brings more
questions than answers.

Drawings and crossings. A drawing of a graph G is a representation of G in the
Euclidean plane R? where vertices are represented as distinct points and edges
by simple polygonal arcs joining points that correspond to their endvertices. A
drawing is clean if the interior of every arc representing an edge contains no
points representing the vertices of G. If interiors of two arcs intersect or if an arc
contains a vertex of G in its interior we speak about crossings of the drawing.
More precisely, a crossing of a drawing D is a pair ({e, f},p), where e and f
are distinct edges and p € R? is a point that belongs to interiors of both arcs
representing e and f in D. If the drawing is not clean, then the arc of an edge
e may contain in its interior a point p € R? that represents a vertex v of G. In
such a case, the pair ({v,e},p) is also referred to as a crossing of D.

The number of crossings of D is denoted by cr(D) and is called the crossing
number of the drawing D. The crossing number cr(G) of a graph G is the
minimum cr(D) taken over all clean drawings D of G. When each edge e of G
has a weight w, € N, the weighted crossing number wcr(D) of a clean drawing
D is the sum ) we - wy over all crossings ({e, f},p) in D. The weighted crossing
number wer(G) of G is the minimum wcr(D) taken over all clean drawings D of
G. Of course, if all edge-weights are equal to 1, then wer(G) = cr(G).

We shall discuss both, the weighted and unweighted crossing number. Most
of the results are treated for the general weighted case. However, some results
hold only in the unweighted case or are too technical to state for the weighted
case. For a graph we shall assume that it is unweighted (i.e., all edge-weights are
equal to 1) unless stated explicitly or when it is clear from the context that it is
weighted.

A clean drawing D with cr(D) = 0 is also called an embedding of G. By a
plane graph we refer to a planar graph together with a fixed embedding in the
Euclidean plane. We shall identify a plane graph with its image in the plane.

Dual and facial distances. Let Gy be a plane graph and let xz,y be two of its
vertices. A simple (polygonal) arc 7 : [0, 1] — R? is an (z, y)-arc if v(0) = z and
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~v(1) = y. If ~(¢) is not a vertex of Gy for every ¢, 0 < t < 1, then we say that
is clean. For an (z,y)-arc v we define the crossing number of v with Gy as

cr(y,Go) = |{t | ¥(t) € Gp and 0 < ¢ < 1}. (1)

This definition extends to the weighted case as follows. If the graph Gy is
weighted and the edge xy realized by an (z,y)-arc v also has weight wy,, then
each crossing of y with an edge e contributes wy,-w. towards the value cr(y, Go),
and each crossing ({v, zy}, p) of zy with a vertex of Gy contributes 1 (indepen-
dently of the edge-weights).

Using this notation, we define the dual distance

d*(z,y) = min{cr(y,Go) | v is a clean (z, y)-arc}.
We also introduce a similar quantity, the facial distance between x and y:
d'(x,y) = min{cr(y,Go) | v is an (x,y)-arc}.

It should be observed at this point that the value d’'(z,y) is independent of
the weights — since all weights are integers, we can replace each crossing of an
edge with a crossing through an incident vertex and henceforth replace weight
contributions simply by counting the number of crossings.

Let G , be the geometric dual graph of Go — = — y. Then d*(z,y) is equal
to the distance in G} , between the two vertices corresponding to the faces of
Gy — x — y containing x and y. Of course, in the weighted case the distances
are determined by the weights of their dual edges. This shows that d*(z,y) can
be computed in linear time by using known shortest path algorithms for planar
graphs. Similarly, one can compute d’(x, y) in linear time by using the vertex-face
incidence graph (see [12]).

Clearly, d'(x,y) < d*(z,y). Note that d* and d’ depend on the embedding
of Gy in the plane. However, if Gy is (a subdivision of) a 3-connected graph,
then this dependency disappears since G has essentially a unique embedding.
To compensate for this dependence, we define dfj(z,y) (and dj(x,y)) as the
minimum of d*(z,y) (resp. d'(z,y)) taken over all embeddings of Gy in the
plane.

Overview of results. The following proposition is clear from the definition of d*:

Proposition 1. If Gy is a weighted planar graph and z,y € V(Gy), then
cr(Go + zy) < di(z,y).

This result shows that the value d(z,y) is of interest. Gutwenger, Mutzel, and
Weiskircher [5] provided a linear-time algorithm to compute dj(x,y). In Sect.
we study df(z,y) from a combinatorial point of view and obtain a min-max
characterization that results very useful.

Riskin [T4] proved the following strengthening of Proposition [l in a special
case when GG is 3-connected and cubic:
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Theorem 1 ([14]). If Gy is a 3-connected cubic planar graph, then
ex(Go + 2y) = i ).

Riskin asked in [I4] if Theorem [[lextends to arbitrary 3-connected planar graphs.
One of the authors [I3] has shown that this is not the case: for every integer
k, there exists a 5-connected planar graph Go and two vertices z,y € V(Gy)
such that cr(Go + zy) < 11 and d§(z,y) > k. See also Gutwenger, Mutzel, and
Weiskircher [5] for an alternative construction.

However, several extensions of Theorem [I] are possible, and some of them are
presented throughout this paper. In particular, we show how to deal with graphs
that are not 3-connected, and what happens when we allow vertices of arbitrary
degrees.

Theorem 2. If Gy is a weighted planar graph and z,y € V(Gy), then
dy(z,y) < cr(Go + zy) < djj(x,y).

The proof of this result is given in Sect. Bl

If Gy is a cubic graph, then for every planar embedding of Gy, d'(x,y) =
d*(z,y). Therefore, dj,(x,y) = df(z,y), and Theorem [ implies Theorem [Il

Theorem [ is also the main ingredient to improve the approximation factor
in the algorithm of Hlinény and Salazar [6]; see Corollary Bl

A key idea in our results is to show that df(z,y) (respectively dj(z,y)) is
closely related to the maximum number of edge-disjoint (respectively vertex-
disjoint) cycles that separate x and y. The notion of the separation has to be
understood in a certain strong sense that is introduced in Sect. 2l This result
yields a dual expression for dj (respectively dj,) and is used to show that dj(z,y)
is closely related to the crossing number of Gy + zy, while dj(z,y) is in the
same way related to the minor crossing number, mcr(Go + zy), a version of the
crossing number that works well with minors; see Bokal et al. [2].

Finally, we show in Sect. Bl that computing the crossing number of weighted
near-planar graphs is NP-hard. Our reduction uses weights that are not poly-
nomially bounded, and therefore it does not imply NP-hardness for unweighted
graphs.

Intuition. To understand the difficulty in computing the crossing number of a
near-planar graph, let us consider the graph shown in Fig. [ (taken from [13]),
where the subgraph inside each of the “darker” triangles is a sufficiently dense
triangulation that requires many crossings when crossed by an arc. By drawing
the vertex x in the outside, we see that this graph is near-planar. The drawing
in Fig. [[l shows that its crossing number is at most 11, but it is also clear that
d*(z,y) can be made as large as we want.

This construction can be generalized such that a similar redrawing as made
there for z is necessary also for y (in order to bring these two vertices “close to-
gether”). At the first sight this seems like the only possibility which may happen
— to “flip” a part of the graph containing x and to “flip” a part containing y.
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Fig. 1. The graph Q

And maybe some repetition of such changes may be needed. If this would be the
only possibility of making the crossing number smaller than the one coming from
the planar drawing of Gy, this would most likely give rise to a polynomial time
algorithm for computing the crossing number of near-planar graphs. However,
the authors can construct examples, in which additional complications arise.

Despite these examples and despite our NP-hardness result for the weighted
case, the following question may still have a positive answer:

Problem 1. Is there a polynomial time algorithm which would determine the
crossing number of Gy + zy if Gy is an unweighted 3-connected planar graph?

2 Planar Separations and the Dual Distance

Let Gg be a planar graph, z,y distinct vertices of Gy, and let @ be a subgraph
of Gog — x — y. We say that @ planarly separates vertices x and y if for every
embedding of Gy in the plane, x and y lie in the interiors of distinct faces of the
induced embedding of Q.

Let @ be a subgraph of G. A Q-bridge in G is a subgraph of G that is either
an edge not in @ but with both ends in @ (and its ends also belong to the
bridge), or a connected component of G — V(Q) together with all edges (and
their endvertices in @) which have one end in this component and the other end
in Q. Let B be an @Q-bridge. Vertices of BN Q are vertices of attachment of B
(shortly attachments).

Let C be a cycle in Go — z — y. Let B, and B, be the C-bridges in Gg
containing z and vy, respectively. Two C-bridges B and B’ are said to overlap
if either (i) C' contains four vertices a,a’,b,b’ in this order such that a and b
are attachments of B and a’,b’ are attachments of B’, or (ii) B and B’ have
(at least) three vertices of attachment in common. We define the overlap graph
O(Gy, C) of C-bridges (see [12]) as the graph whose vertices are the bridges of C,
and two vertices are adjacent if the two bridges overlap on C. Since Gy is planar,
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the overlap graph is bipartite. Distinct C-bridges are weakly overlapping if they
are in the same connected component of O(Gp, C), and in that component they
belong to distinct bipartite classes. The following result follows easily from the
definitions.

Lemma 1. A cycle C C Gy — x — y planarly separates x and y if and only if
B, and By are weakly overlapping C-bridges.

Tutte [I7] characterized when G + zy is non-planar, i.e., when cr(Go +zy) > 1
by proving

Theorem 3 (Tutte [17]). Let x,y be vertices of a planar graph Go. Then
Go + xy is non-planar if and only if Go — x —y contains a cycle C' such that the
C-bridges of G containing x and y, respectively, are overlapping.

Let us observe that Gy + xy is non-planar if and only if Gg — = — y planarly
separates z and y. Therefore, the next lemma is closely related to Theorem [3]

Lemma 2. If Q C Gy —x —y planarly separates x and y, then there is a cycle
C C Q that planarly separates x and y.

The proof of this lemma is not hard but slightly technical, and we defer it to the
full version of this paper.

For a plane graph Gy, a sequence Q1, ..., Q of edge-disjoint cycles of Gy is
nested if for i = 1,...,k —1, all edges of the cycle ;41 lie in the exterior of @Q;.

Lemma 3. Suppose that C and D are edge-disjoint cycles that planarly separate
vertices x and y. Then there exist nested cycles C1,Cy C C' U D that planarly
separate x and y.

Again, the proof is deferred for the full version of the paper.

Lemma 4. Let Gy be a plane graph. If Q1,...,Q are edge-disjoint cycles of Gg
that planarly separate vertices x and y of Gy, then there are nested edge-disjoint
cycles QY ..., Q) such that UF_ | E(Q}) C Uk, E(Q;) and such that Q},...,Q)
planarly separate x and y.

Proof. The proof follows rather easily by applying Lemma [3] consecutively on
pairs of cycles @;,Q;. One has to make sure that after finitely many steps we
get a collection of nested cycles. This is done as follows. First we apply the
lemma in such a way that one of the cycles in the family has none of the edges
of the other k — 1 cycles in its interior. After this is done, we repeat the process
with the remaining k£ — 1 cycles. a

After this preparation, we are ready to discuss a dual expression for the dual
distance, both for the 3-connected and for the general case.

Theorem 4. Let Gy be a planar graph and x,y € V(G). If r is an integer, then
the following statements are equivalent:
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(a) r < dj(z,y).

(b) There exists a family of r edge-disjoint cycles Q1,...,Q, that planarly
separate x and y.

(c) There exists a family of r nested cycles Q1,...,Q, that planarly separate
x and y.

Equivalence of (b) and (c) follows from Lemma [ It is also clear from the defi-
nitions (cf. Lemma [I]) that (b) implies (a). The proof of the reverse implication
that (a) yields (b) is by induction and also gives an efficient algorithm for find-
ing dj(z,y) nested cycles planarly separating = and y. Let us observe that for
3-connected graphs, the maximum number of nested cycles can be determined
by a simple “greedy” process.

Corollary 1. The value of di(x,y) is equal to the mazimum number of edge-
disjoint cycles that planarly separate x and y.

The above dual expression for df(x,y) is a min-max relation which offers an
extension to the weighted case. Suppose that the edges of Gy + zy are weighted
and that all weights are positive integers. Then we can replace each edge e # zy
by w, parallel edges (each of weight 1). Let Gy be the resulting unweighted graph.
It is easy to argue that d§(Go,x,y) is equal to d (GO, Z,Y) - Way. By Corollary
[[ this value can be interpreted as the maximum number of edge-disjoint cycles
planarly separating « and y in Gj.

3 Facial Distance

In this section we shall prove Theorem Pl First, we need a dual expression for
d'(x,y) which can be viewed as a surface version of Menger’s Theorem.

Proposition 2. Let Gy be a plane graph and z,y € V(Go) where y lies on the
boundary of the exterior face. Let v be the maximum number of vertexr-disjoint
cycles, Q1, ..., Qy, contained in Go—x—y, such that fori=1,...,r, x € int(Q;)
and y € ext(Q;). Then d'(x,y) =r.

Proof. Since every (z,y)-arc intersects every @Q;, we conclude that d'(z,y) > r.
The converse inequality is proved by induction on d’(z,y). There is nothing to
show if d'(x,y) = 0. Let F' be the subgraph of Gy containing all vertices and
edges that are cofacial with z. Then F contains a cycle @ such that z € int(Q)
and y € ext(Q). Delete all vertices and edges of F' except x, and let G; be the
resulting plane graph. It is easy to see that df; (z,y) = dg, (2,y) — 1. By the
induction hypothesis, G; has d’GO (z,y) — 1 disjoint cycles that contain x in their
interior and y in the exterior. By adding @ to this family, we get d’'(x,y) such
cycles. This shows that d'(z,y) < r. O

The cycles Q1,...,Q, in Proposition [2] all contain x in their interior and y in
their exterior. Therefore, they behave essentially like cycles on a cylinder that
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separate the two boundary components of the cylinder. Hence they are nested
cycles separating x and y.

The main result of this section, Theorem [2 involves the minimum facial dis-
tance taken over all embeddings of Gy in the plane. If Gy is 3-connected, then
d'(z,y) is the same for every embedding of Gy, and Proposition [2 yields a dual
expression for the facial distance. For general graphs, we need a similar concept
as used in the previous section.

Let Go be a graph and z,y € V(Gy). Then we define p(z, y, Go) as the largest
integer r for which there exists a collection of r vertex-disjoint cycles Q1, ..., Q)
in G — x — y such that for every i = 1,...,r, x and y belong to distinct weakly
overlapping bridges of @;. It is convenient to realize that it may be required that
the bridges containing z and y indeed overlap (not only weakly overlap), so we
get an extension of Tutte’s Theorem [3

Lemma 5. Let v = p(x,y,Go). Then there exists a collection of r wvertex-
disjoint cycles Q1,...,Q, in Go —x — y such that for every i = 1,...,r, x
and y belong to distinct overlapping bridges of Q;.

Proof. For i = 1,...,r, let B} (resp. Bj) be the Q;-bridge in Gy containing
z (resp. y). Note that every other cycle Q; (j # i) is contained either in B
or in B;. Therefore we can define a linear order < on {Q1,...,Q,} by setting
Qi < Q; if and only if Q; C B;. By adjusting indices, we may assume that
Q1 <Q2 < <Q.

The proof method used in particular by Tutte in [I7] is to change each cycle
Qi by rerouting it through the Q;-bridges distinct from B. and B in such a
way that the two bridges with respect to the new cycle still weakly overlap, but
contain more vertices. The actual goal is to minimize the number ¢ of edges
that are neither on the cycle nor in one of these two bridges. If B: and ij do
not overlap but are weakly overlapping, it is possible to decrease t. It follows
that after a series of changes, that do not affect any of the other cycles, the
“big” bridges B and Bj, overlap. We refer to [7] and to [11] for an algorithmic
treatment showing that these changes can be made in linear time. a

The following lemma, whose proof is deferred to the full paper, is the analogue
of Theorem [41

Lemma 6. d()(l‘?y) = p(xvya GO)
We are ready for the proof of Theorem

Proof. (of Theorem[2). It has been shown before that cr(Go+2zy) < di(x,y). The
heart of the proof is to show that df,(z,y) is a lower bound on cr(Gp + zy). Let
r = dj(z,y). Lemmas [ and [6 show that there are r vertex-disjoint Q1,...,Q,
such that for every i = 1,...,r, x and y belong to distinct overlapping bridges
of Q;. Let us denote these overlapping @Q;-bridges B? and B; as we did above.
To simplify the notation in the sequel, we define Qy = {z} and Q.1 = {y}.
Since B! and B; overlap, one of the following cases occurs:
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(i) There are paths P;", Py~ C Bj joining Q; with Q;;1, and there are paths
P, Py C B! joining @Q; with Q;_1 such that the ends of these pairs of paths
on (; interlace.

(ii) When the bridges B! and B; have precisely three vertices of attachment,
they may overlap only because their attachments a, b, c on Q; coincide. In that
case, we have paths P;", P", P;" in B} (resp. paths P;", Py , Py in B.) joining
a,b, c with Q41 (resp. Q;—1).

If Case (i) occurs, let S* be the union of the paths P;” and P, and let R’
be the union of the paths P;t and P;". If Case (ii) occurs, we define S* and R’
similarly, as the union of the three paths in (ii) certifying the overlapping.

Suppose that we have a clean drawing of Gy + zy in the plane. If two cycles
@; and @Q;4+1 intersect, then they make at least two crossings, and we declare
one of them to be a crossing of type i, and the other one a crossing of type i+ 1.
If two edges of the same cycle @; cross, we declare that crossing to be of type @
as well. If an edge e ¢ E(Q1 U---UQ,) UR US"UR™1U S (including the
possibility that e = zy) crosses an edge of @Q;, we also declare the crossing to be
of type i. Finally, if two edges, e € E(Q;—1 U S*) and f € E(Qi+1 U R") cross,
we also say that the crossing is of type 7. Observe that by this definition, none
of the crossings is of two different types (but for some of the crossings, the type
may not have been specified).

Our goal is to show that for every ¢ = 1,...,r, there is a crossing of type i.
This will show that there are at least r crossings, so the theorem holds.

Suppose, reductio ad absurdum, that there is no crossing of type i (1 < <r).
Then Q; does not cross itself and both x and y are in the interior of @; (say)
since the edge xy does not cross ;. Moreover, Q; is not crossed by any of the
other cycles @;. Suppose now that Q;—1 and ;41 are both inside @); (or both
outside). Then it is easy to see that a crossing of type ¢ occurs between an edge
e € B(Q;_1US?% and an edge f € E(Q;y1 U RY). This shows that one of Q; 1
and @;11 is inside, while the other one is outside @);. We may assume that Q;11
is inside and @Q;_; is outside @;. There is a path from @;_1 to = that is disjoint
from V(Q;) and does not use edges in S% or in R*~!. This path must clearly cross
Q;, and yields a crossing of type ¢. This contradiction completes the proof. O

As a corollary we get a generalization of Riskin’s Theorem [l

Corollary 2. If the graph Go—x—y has mazimum degree 3, then cr(Go+xy) =
di(z,y) = dy(z,y). In particular, the crossing number of G+ xy is computable
in linear time.

Another corollary is an approximation formula for the crossing number of near-
planar graphs if the maximum degree is bounded.

Corollary 3. If the graph Gy — x — y has mazimum degree A, then djy(z,y) <
cr(Go +ay) < Fdy(z,y).

Proof. Observe that dfj(z,y) < ?dé(m,y) because there are at most g edge-

disjoint cycles through any vertex and d§(x,y) is defined by a collection of
d§(z,y) nested cycles (c.f. Theorem H). O
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Corollary Bl is an improvement of a theorem of Hlinény and Salazar [6] who
proved analogous result with the factor A instead of A/2.

A graph G is said to be d-aper if G has a vertex v of degree at most d such
that G — v is planar. Let us observe that every near-planar graph is essentially
2-apex (subdivide the “non-planar” edge).

Problem 2. Is there a result similar to Corollary [ for 3-apex cubic graphs?

4 The Minor Crossing Number and d’

Structural graph theory based on the Robertson and Seymour theory of graph
minors gives powerful results in relation to topological realizations of graphs.
However, it does not work well with crossing numbers. To overcome this defi-
ciency, Bokal et al. [2] introduced a related notion of the minor crossing number,
mcr(G), which is defined as the minimum of cr(H) taken over all graphs H that
contain G as a minor.

It is easy to see that mcr(Go + zy) < dj(x,y). However, a proof along similar
lines as the proof of Theorem [2] shows even more intimate relationship.

Theorem 5. mcr(Go + zy) = dj(x,y).

5 NP-Hardness of wcr(:) for Near-Planar Graphs

Consider the following decision problem:

WEIGHTED CROSSING NUMBER
Input: G, k, where G is an edge-weighted graph and k& > 0.
Question: Is wer(G) < k7

This problem is NP-complete because it generalizes the problem CROSSING
NUMBER , which is NP-complete [3]. We will see that this problem remains
NP-complete when restricted to near-planar graphs. We will use the notation
[n] ={1,...,n}.

Let a1, ..., ay, be natural numbers, and let S = Zie[n] a;. We define the edge-
weighted graph G(ay,...,a,) as follows (Fig. 2)):

— its vertices are uq, ..., U, and vi,...,Uy;
— there is a Hamiltonian cycle @ = uj ug -+ - up v1 V2 - - - v, 1, each edge with
weight S?;
— there are edges e; = u;v; with weight a; for each i € [n];
It is easy to note that G(aq,...,a,) — u1v, planar, and hence G(aq,...,a,)
is near-planar. For any subset of indices I C [n], let o7 := ), ; a;. Consider

a clean drawing Dy of G such that wer(G) = wer(Dp). It is easy to see that
no edge of ) participates in a crossing, and therefore each edge e; is contained
either in the interior or in the exterior of the simple closed curve defined by Q.
Using that all the edges in the interior (or the exterior) of @ must cross each
other, we can show the following property.
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Uy Us U3 Up_o  Up_1 Uy

Un Un—1 Un—2 U3 U2 1

Fig. 2. The graph G(a1,...,an) with the cycle @ bolder

Lemma 7. It holds that

2-wer(G(ay, ..., apn)) = Imclg {(01)2 + (U[n]\I)Q} — Z a?.

i€[n]

Lemma 8. It holds

wer(G(a, ... an,)) = S%/4 — Z a?/2

i€[n]
if and only if there exists I C [n] such that o = op,\; = S/2.

Proof. Note that

Irgl[g] {(01)2 + (U[n]\j)Q} > min{A?+B* | A+B=S5,A>0,B>0} = 5%/2,

and there is equality if and only if there is some I C [n] such that o7 = op,\; =
S/2. The result then follows from Lemma[7l O

Theorem 6. The problem WEIGHTED CROSSING NUMBER is NP-complete for
near-planar graphs.

Proof. A standard planarizing argument shows that the problem WEIGHTED
CROSSING NUMBER is in NP. To show NP-hardness, consider the following NP-
complete problem [4].

PARTITION
Input: natural numbers a4, ..., a,.
Question: is there I C [n] such that }_,c; ai = > e @7

Consider the function ¢ that maps the input ai, ..., a, for PARTITION into the
input
Glay,...,a,), S%/4 — Z a?/2

i€[n]

for WEIGHTED CROSSING NUMBER . Clearly, ¢ can be computed in polynomial
time. Because of Lemma [§ both problems have the same answer. Therefore we
have a polynomial time reduction from PARTITION to WEIGHTED CROSSING
NUMBER that only uses near-planar graphs. ad
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Cubic Graphs Have Bounded Slope Parameter*
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Abstract. We show that every finite connected graph G with maximum degree
three and with at least one vertex of degree smaller than three has a straight-line
drawing in the plane satisfying the following conditions. No three vertices are
collinear, and a pair of vertices form an edge in G if and only if the segment con-
necting them is parallel to one of the sides of a previously fixed regular pentagon.
It is also proved that every finite graph with maximum degree three permits a
straight-line drawing with the above properties using only at most seven different
edge slopes.

1 Introduction

A drawing of a graph G is a representation of its vertices by distinct points in the plane
and the edges by continuous arcs connecting the corresponding endpoints, not passing
through any other point corresponding to a vertex. In a straight-line drawing [8], the
edges are represented by (possibly crossing) segments. If it leads to no confusion, we
make no notational or terminological distinction between the vertices (edges) of G and
the points (arcs) representing them.

There are several widely known parameters of graphs measuring how far G is from
being planar. For instance, the thickness of G is the smallest number of its planar sub-
graphs whose union is G [[14]]. The geometric thickness of G is the smallest number
of crossing-free subgraphs of a straight-line drawing of GG, whose union is G [11]].
The slope number of G is the minimum number of distinct edge slopes in a straight-
line drawing of G [16]]. It follows directly from the definitions that the thickness of
any graph is at most as large as its geometric thickness, which, in turn, cannot ex-
ceed its slope number. For many interesting results about these parameters, consult
[3l6l4ISI7I9UT2115]).

The slope parameter of a graph was defined by Ambrus, Barat, and P. Hajnal [1]], as
follows. By abusing the usual terminology, we say that the slope of a line ¢ in the xy-
plane is the smallest angle o € [0, 7) such that £ can be rotated into a position parallel
to the z-axis by a clockwise turn through «. Given a set of points P in the plane and a
set of slopes X, define G(P, X)) as the graph on the vertex set P, in which two vertices

* Research supported by grants from NSF, NSA, PSC-CUNY and the Hungarian Research Foun-
dation OTKA.

L.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 50460] 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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p,q € P are connected by an edge if and only if the slope of the line pq belongs to 3.
The slope parameter s(G) of G is the size of the smallest set of slopes X' such that G
is isomorphic to G(P, X) for a suitable set of points P in the plane. This definition was
motivated by the fact that all connections (edges) in an electrical circuit (graph) G can
be easily realized by the overlay of s(G) finely striped electrically conductive layers.

The slope parameter, s(G), is closely related to the three other graph parameters
mentioned before. For instance, for triangle-free graphs, s(G) is at least as large as
the slope number of G, the largest of the three quantities above. On the other hand, it
sharply differs from them in the sense that the slope parameter of a complete graph on
n vertices is one, while the thickness, the geometric thickness, and the slope number of
K, tend to infinity as n — oo. Jamison [10] proved that the slope number of K, is n.

Any graph G of maximum degree two splits into vertex disjoint cycles, paths, and
possibly isolated vertices. Hence, for such graphs we have s(G) < 3. In contrast, as
was shown by Barit et al. [2]], for any d > 5, there exist graphs of maximum degree d,
whose slope parameters are arbitrarily large.

A graph is said to be cubic if the degree of each of its vertices is at most three. A
cubic graph is subcubic if each of its connected components has a vertex of degree
smaller than three.

The aim of this note is to prove

Theorem 1. Every cubic graph has slope parameter at most seven.

We will refer to the angles im /5, 0 < i < 4, as the five basic slopes. In Sect. 2, we prove
the following statement, which constitutes the first step of the proof of Theorem 1.

Theorem 2. Every subcubic graph has slope parameter at most five. Moreover, this can
be realized by a straight-line drawing such that no three vertices are on a line and each
edge has one of the five basic slopes.

Using the fact that in the drawing guaranteed by Theorem 2 no three vertices are
collinear, we can also conclude that the slope number of every subcubic graph is at
most five. In [[12]], however, it was shown that this number is at most four and for cubic
graphs it is at most five. This was improved for connected cubic graphs in [[13] to four.

2 Proof of Theorem 2

The proof is by induction on the number of vertices of the graph. Clearly, the statement
holds for graphs with fewer than three vertices. Let n be fixed and suppose that we
have already established the statement for graphs with fewer than n vertices. Let G be
a subcubic graph of n vertices. We can assume that G is connected, otherwise we can
draw each of its connected components separately and translate the resulting drawings
through suitable vectors.

To obtain a drawing of GG, we have to find proper locations for its vertices. At each
inductive step, we start with a drawing of a subgraph of G satisfying the conditions
and extend it by adding a vertex. At a given stage of the procedure, for any vertex v
that has already been added, consider the (basic) slopes of all edges adjacent to v that
have already been drawn, and let sl(v) denote the set of integers 0 < i < 5 mod 5
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for which i7/5 is such a slope. That is, at the beginning sl(v) is undefined, then it gets
defined, and later it may change (expand). Analogously, for any edge uv of GG, denote
by sl(uv) the integer 0 < 4 < 5 mod 5 for which the slope of uv is im /5.

Case 1: G has a vertex of degree one. Assume without loss of generality, that v is a
vertex of degree one, and let w denote its only neighbor. Deleting v from G, the degree
of w in the resulting graph G’ is at most rwo. Therefore, by the induction hypothesis,
G’ has a drawing meeting the requirements. As w has degree at most mwo, there is a
basic slope & such that no other vertex of G’ lies on the line ¢ of slope o that passes
through w. Draw all five lines of basic slopes through each vertex of G’. These lines
intersect £ in finitely many points. We can place v at any other point of /, to obtain a
proper drawing of G.

From now on, assume that G has no vertex of degree one.

Case 2: G has no cycle that passes through a vertex of degree two. Since G is subcubic,
it contains a vertex w of degree two such that G is the union of two graphs, G; and
G2, having only vertex w in common. Both G; and G5 are subcubic and have fewer
than n vertices, so by the induction hypothesis both of them have a drawing satisfying
the conditions. Translate the drawing of G5 so that the points representing w in the two
drawings coincide. Since w has degree one in both G; and G2, by a possible rotation
of G2 about w through an angle that is a multiple of 7/5, we can achieve that the two
edges adjacent to w are not parallel. By scaling G2 from w, if necessary, we can also
achieve that the slope of no segment between a vertex of G \ w and a vertex of G2 \ w
is a basic slope. Thus, the resulting drawing of G’ meets the requirements.

Case 3: G has a cycle passing through a vertex of degree two. If G itself is a cycle, we
can easily draw it. If it is not the case, let C' be a shortest cycle which contains a vertex
of degree two. Let ug, u1, .. ., ur denote the vertices of C, in this order, such that wg
has degree two and w, has degree three. The indices are understood mod k + 1, that
is, for instance, ur+1 = up. It follows from the minimality of C' that u; and u; are not
connected by an edge of G’ whenever |i — j| > 1.

Since G'\ C'is subcubic, by assumption, it permits a straight-line drawing satisfying
the conditions. Each u; has at most one neighbor in G \ C'. Denote this neighbor by ¢,
if it exists. For every ¢ for which ¢; exists, we place u; on a line passing through ¢;. We
place the u;’s one by one, “very far” from G \ C, starting with u;. Finally, we arrive at
uo, which has no neighbor in G \ C, so that it can be placed at the intersection of two
lines of basic slope, through u; and wug, respectively. We have to argue that our method
does not create “unnecessary” edges, that is, we never place two independent vertices
in such a way that the slope of the segment connecting them is a basic slope. In what
follows, we make this argument precise.

We determine the locations of wug,uq, ..., u; by using the below described PROCE-
DURE(G, C, ug, u1, ), where G is our subcubic graph, C is the shortest cycle passing
through a vertex of degree two, uy is such a vertex, u; is a neighbor of uy on C, whose
degree is three, and  is a real parameter. Note that PROCEDURE(G, C, ug, u1, x) is a
nondeterministic algorithm, as we have more than one choice at certain steps. (However,
it is very easy to make it deterministic.)
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Fig. 1. The four possible locations of u;

PROCEDURE(G, C, ug, u1, )

— STEP 0. Since G\ C'is subcubic, it has a representation with the five basic slopes.
Take such a representation, scaled and translated in such a way that ¢; (which exists
since the degree of u; is three) is at the origin, and all other vertices are within unit
distance from it.

For any i, 2 < i < k, for which u; does not have a neighbor in G \ C, let ¢,
be any unoccupied point closer to the origin than 1, such that the slope of none of
the lines connecting ¢; to ¢1,t2,...t;—1 or to any other already embedded point of
G \ C is a basic slope.

For any point p and for any ¢ mod 5, let ;(p) denote the line with ith basic slope,
im /5, passing through p. Let ¢; stand for ¢;(O), where O denotes the origin.

We will place u, . .., us recursively, so that u; is placed on ¢;(t;), for a suitable 3.
Once the position of u; has already been fixed on some ¢;(¢; ), define ind(u; ), the index
of u;, to be i. (Again, the indices are taken mod 5. Thus, for example, | — /| > 2 is
equivalent to saying that ¢ # ¢’ and 7 # ¢’ =1 mod 5.) Start with u;. The degree of
t; in G\ C is at most rwo, so that at the beginning the set sl(¢1) (defined in the first
paragraph of this section) has at most two elements. Let [ ¢ sl(¢;). Direct the line ¢;(t1)
arbitrarily, and place u; on it at distance x from ¢; in the positive direction. (According
to this rule, if x < 0, then w; is placed on ¢;(¢1) at distance |z| from ¢; in the negative
direction.)

Suppose that u1, us, . . ., u;—1 have been already placed and that u;_; lies on the line
£ (t;—1), that is, we have ind(u;—1) = [.

— STEP i. We place u; at one of the following four locations (see Fig. 1):

(1) the intersection of ¢;41(¢;) and ;4o (u;—1);

(2) the intersection of ¢;42(t;) and ¢;43(u;—1);

(3) the intersection of ¢;_1(¢;) and £;_o(u;—1);

(4) the intersection of ¢;_o(t;) and ¢;_3(u;—1).

Choose from the above four possibilities so that the edge u;¢; is not parallel to any
other edge already drawn and adjacent to ¢;, i.e., before adding the edge u;t; to the
drawing, sl(t;) did not include si(u;t;).

It follows directly from (1)—(4) that the edge w;u;—; is not parallel to any other
edge already drawn and adjacent to u;_;. That is, before adding the edge u;u;_; to
the drawing, we had sl(u;u;—1) ¢ sl(u;—1). Avoiding for u;t; the slopes of the edges
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already incident to ¢;, leaves available two of the choices (1), (2), (3), (4). Some simple
geometric calculations show that, for any possible location of u;, we have

1.60u;_1—4 < 2cos (g) Oui_1—4 < Ou; < 2cos (g) Oui_1+4 < 1.70u;_1+4.
Thus, if || > 50, then we obtain by induction that
1.50u;_1 < Ou;. (D)

Here, we used that z — 1 < Owu; and that, by the induction hypothesis, Ou; is strictly
increasing for j < i, therefore, we have v — 1 < Ou;_1.

We have to verify that the above procedure does not produce “unnecessary” edges,
that is, the following statement is true.

Claim 1. Suppose that |x| > 50.
(1) The slope of u;u; is not a basic slope, forany j < i — 1.
(ii) The slope of u;v is not a basic slope, for anyv € V(G \ C).

Proof. (i) Suppose that the slope of u;u; is a basic slope for some j < ¢ — 1. By
repeated application of inequality (I), we obtain that Ou; > 1.5"77Ou; > 20u;. On
the other hand, if u;u; has a basic slope, then easy geometric calculations show that
Ou; < 2cos (§) Ouj +4 < 20u;, a contradiction.

(i1) Suppose for simplicity that ¢;u; has slope 0, i.e., it is horizontal. By the construc-
tion, no vertex v of G\ C determines a horizontal segment with ¢;, but all of them are
within distance 2 from ¢;. As Ou; > x — 1, segment vu; is almost, but not exactly
horizontal. That is, we have 0 < |Zt;u;v| < /5, contradiction. O

Suppose that STEP 0, STEP 1, ..., STEP k have already been completed. It remains to
determine the position of uy. We need some preparation.

Claim 2. There exist two integers 0 < [,I' < 5 with [l —'| > 2 mod 5 such that
starting the PROCEDURE with ind(uy1) = I and with ind(uy) = U/, we can continue so
that ind(us) is the same.

Proof. Suppose that the degrees of ¢; and t2 in G \ C' are two, that is, there are two
forbidden lines for both u; and us. In the other cases, when the degree of t; or the
degree of t9 is less than two, or when ¢; = £9, the proof is similar, but simpler. We can
place uy on ¢;(t;) for any [ ¢ sl(t1). Therefore, we have three choices, two of which,
lo(t1) and £g(t1), are not consecutive, so that o — (] > 2.

The vertex ug cannot be placed on ¢,,(t2) for any m € sl(t2), so there are three
possible lines for us: €5 (t2), £y (t2), £2(t2), say. For any fixed location of u;, we can
place uy on at least two of the lines {,;(t2), £, (t2), and £, (t2). Therefore, at least one of
them, £,.(t2), say, can be used for both locations of u;. |

Claim 3. We can place the vertices uq,us,...,u; using the PROCEDURE so that
lind(u1) —ind(uk)] > 2 mod 5.

Proof. By Claim 2, there are two placements of the vertices of C'\ {uo, uy }, denoted by
U1, U, . .., ug—1 and by uj, ub, ..., uj_; such that |[ind(uq) — ind(u})| > 2 mod 5,
and ind(u;) = ind(u}) for all ¢ > 2. That is, we can start placing the vertices on



Cubic Graphs Have Bounded Slope Parameter 55

Fig. 2. The four possible locations of ug

two nonneighboring lines so that from the second step of the PROCEDURE we use the
same lines. We show that we can place wuy such that uq and ug, or u} and uy are on
nonneighboring lines. Having placed w1 (or uj_ ), we have four choices for ind(uy).
Two of them can be ruled out by the condition ind(uy) ¢ sl(tx). We still have two
choices. Since u; and v are on nonneighboring lines, there is only one line which is
neighboring of both of them. Therefore, we still have at least one choice for ind(uy)
such that |ind(u1) — ind(ug)| > 2 or |ind(u})) — ind(ug)| > 2. O

— STEP k+1.Leti = ind(uq), j = ind(uy), and assume, by Claim 3, that | —j| > 2
mod 5. Consider the lines ¢;_1 (u1) and ;11 (u1). One of them, ¢, (u1 ), say, does
not separate the vertices of G \ C from uy, the other one does.

Place uy at the intersection of ¢; 1 (u1) and £;(uy,).

Claim 4. Suppose that |x| > 50.
(i) The slope of ugu; is not a basic slope, for any 1 < j < k.
(ii) The slope of ugv is not a basic slope, for anyv € V(G \ C).

Proof. (i) Denote by uy41 the intersection of £;11(O) and ¢;(ux). Suppose that the
slope of ugu; is a basic slope for some 1 < j < k. As in the proof of Claim 1, by
repeated application of inequality [ we obtain that Oug1 > 1.5**1770u; > 20u;.
On the other hand, by an easy geometric argument, if the slope of ugu; is a basic slope,
then Ouyy1 < 2cos (g) Ou; + 4 < 20u;, a contradiction, provided that || > 50.
(ii) For any vertex v € G\ C, the slope of the segment ugv is strictly between i7 /5
and (i + 1) /5, therefore, it is not a basic slope. See Fig. 2. This concludes the proof
of the claim and hence Theorem 2. (]

3 Proof of Theorem 1

First we note that if G is connected, then Theorem 1 is an easy corollary to Theorem 2.
Indeed, delete any vertex, and then put it back using two extra directions. If G is not
connected, the only problem that may arise is that these extra directions can differ for
different components. We will define a family of drawings for each component of G,
depending on a parameter ¢, and then choose the values of these parameters in such a
way that the extra directions will coincide.

Suppose that G is a cubic graph. If a connected component is not 3-regular then, by
Theorem 2, it can be drawn using the five basic slopes. If a connected component is a
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complete graph K4 on four vertices, then it can also be drawn using the basic slopes. For
the sake of simplicity, suppose that we do not have such components, ie. each connected
component G, ..., G™ of G is 3-regular and none of them is isomorphic to K.

First we concentrate on G*. Let C be a shortest cycle in G'. We distinguish two
cases.

Case 1: C is not a triangle. Denote by uo, . . ., uy, the vertices of C, and let ¢y be the
neighbor of ug not belonging to C'. Delete the edge ugtg, and let G be the resulting
graph.

Case 2: C is a triangle. Then every vertex of C has precisely one neighbor that does
not belong to C. If all these neighbors coincide, then G is a complete graph on four
vertices, contradicting our assumption. So one vertex of C, wug, say, has a neighbor #¢
which does not belong to C' and which is not adjacent to the other two vertices, u; and
us, of C. Delete the edge uot, and let G be the resulting graph.

Observe that in both cases, uy and ¢y are not connected in G*. Indeed, suppose for
a contradiction that they are connected. In the first case, G ! would contain the triangle
ugukto, contradicting the minimality of C. In the second case, the choice of uy would
be violated.

There will be exactly two edges with extra directions, upu; and uptg. The slope of
uguy will be very close to a basic slope and the slope of ugty will be decided at the end,
but we will show that almost any choice will do.

For any real x and £ > 0, define MODIFIEDPROCEDURE(G, C, ug, u1, x, €), as fol-
lows. Let STEPS 0,1,...,k be identical to the corresponding STEPS of PROCEDU-
RE(G, C,ug,u1, ).

— STEP k + 1. If there is a segment, determined by the vertices of G \ C, of slope
im/5+eorin/5— e, forany 0 < i < 5, then STOP. In this case, we say that € is
1-bad for G.

Otherwise, when ¢ is 1-good, let i = ind(u1) and j = ind(uy). We can assume
that | — j| > 2 mod 5. Consider the lines ¢;_1(u1) and ¢;11(u1). One of them
does not separate the vertices of G \ C from uy, the other one does.

If ¢;_1(uq) separates G\ C from uy, then place ug at the intersection of ;1 (u1)
and the line through uy, with slope i7/5 + €. If ;41 (u1 ) separates G \ C from uy,
then place ug at the intersection of ¢;_1(u1) and the line through uj with slope
/b —e.

Since STEPS 0, ...,k are identical in MODIFIEDPROCEDURE(G, C, ug, u1,, ) and
in PROCEDURE(G, C, ug, u1, ), the Claims 1, 2, and 3 also hold for the MODIFIED-
PROCEDURE.

Moreover, it is easy to see that the analogue of Claim 4 also holds with an identical
proof, provided that ¢ is sufficiently small: 0 < ¢ < 1/100.

Claim 4°. Suppose that |x| > 50 and 0 < £ < 1/100.

(1) The slope of uou; is not a basic slope, for any 1 < j < k.

(ii) The slope of ugv is not a basic slope, for anyv € V(G \ C). O
Perform MODIFIEDPROCEDURE(G, C, ug, u1, z, ) for a fixed €, and observe how the
drawing changes as x varies. For any vertex u; of C, let u;(x) denote the position of
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u;, as a function of x. For every i, the function w;(x) is linear, that is, u; moves along a
line as x varies.

Claim 5. If ¢ is 1-good, then with finitely many exceptions, for every value of x, MODI-
FIEDPROCEDURE(G, C, ug, u1, , €) produces a proper drawing of G.

Proof. Claims 1, 2, 3, and 4’ imply Claim 5 for |z| > 50. Let u and v be two vertices
of G. Since u(z) and v(z) are linear functions, their difference, uv(x), is also linear.

If uv is an edge of G, then the direction of wwv(x) is the same for all |z| > 50.
Therefore, it is the same for all values of x, with the possible exception of one value,
for which uwv(z) = 0 holds.

If uv is not an edge of G, then the slope of uw(z) is not a basic slope for any
|z| > 50. Therefore, with the exception of at most five values of z, the slope of uv(z)
is never a basic slope, nor does uv(z) = 0 hold. O

Take a closer look at the relative position of the endpoints of the missing edge, uo(x)
and to(z). Since tg € G\ C, to = to(x) is the same for all values of x. The position
of ug = up(x) is a linear function of . Let ¢ be the line determined by the function
ug(x). If £ passes through t, then we say that ¢ is 2-bad for G. If ¢ is 1-good and it
is not 2-bad for G, then we say that it is 2-good for G. If ¢ is 2-good, then by varying
x we can achieve almost any slope for the edge tgug. This will turn out to be crucially
important, because we want to attain that these slopes coincide in all components.

Claim 6. Suppose that the values 0 < €,6 < 1/100 are 1-good for G. Then at least one
of them is 2-good for G.

Proof. Suppose, for simplicity, that ind(u1) = 0, ind(uy) = 2, and that u; and uy, are
in the right half-plane (of the vertical line through the origin). The other cases can be
settled analogously. To distinguish between MODIFIEDPROCEDURE(G, C, ug, U1, T, €)
and MODIFIEDPROCEDURE(G, C, ug, u1, T, §), let u§ () denote the position of uq ob-
tained by the first procedure and u$(z) its position obtained by the second. Let ¢ and
¢° denote the lines determined by the functions u§(z) and uf(x). Suppose that  is very
large. Since, by (1), we have uy(2)O > 1.5u1(2)O, both u§(x) and uf(x) are above
the line £ /19. On the other hand, if < 0 is very small (i.e., if [x| is very big), both
ug(z) and uf(z) lie below the line £, /1o. It follows that the slopes of ¢ and ¢° are
larger than 7 /10, but smaller than 7 /5.

Suppose that neither € nor § is 2-good. Then both ¢ and ¢ pass through t,. That is,
for a suitable value of x, we have uf§(x) = to. We distinguish two cases.

Case 1: u§(x) = to = ug(z). Then, as z varies, the line determined by uy () coincides
with #5(tp). Consequently, tg and uy are connected in G 1 a contradiction.

Case 2: uf(z) = to # u(z). In order to get a contradiction, we try to determine the po-
sition of wuf(x). Considering STEP k + 1 in both MODIFIEDPROCEDURE
(G, C,ug,u,x,e) and in MODIFIEDPROCEDURE(G, C, ug, u1, x, §), we can conclude
that uy (z) lies on £y (to), ud(z) lies on £1(uy(x)), therefore, u(x) lies on ¢1(t). On
the other hand, uj () lies on £, and, by assumption, £ passes through to. However, we
have shown that ¢° and 1 (t) have different slopes, therefore, ug(x) must be at their

intersection point, so we have ug(x) =uj(z) = to.
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Considering again STEP k + 1 in MODIFIEDPROCEDURE(G, C, ug, u1, z, ) and in
MODIFIEDPROCEDURE(G, C, ug, u1, T, §), we can conclude that the point u(z) =
to = u§(x) belongs to both £, (uy(z)) and £s(uy(z)). This contradicts our assumption
that u () is different from uf(x) = to = u§(x). O

By Claim 5, for every ¢ < 1/100 and with finitely many exceptions for every value of
&, MODIFIEDPROCEDURE(G, C, ug, u1, , €) produces a proper drawing of GG. When
we want to add the edge wuoto, the slope of ug(z)tgp may coincide with the slope of
u(z)u' (), for some u,u’ € G. The following statement guarantees that this does not
happen “too often”. We use a(u) to denote the slope of a vector u.

Claim 7. Let u(x) and v(x): R — R? be two linear functions, and let £(u) and {(v)
denote the lines determined by u(x) and v(x). Suppose that for some r1 < xz <
x3, the vectors w,v do not vanish and that their slopes coincide, that is, a(u(x1)) =
a(v(zr1)), a(u(ze)) = a(v(x)), and a(u(xs)) = a(v(xs)). Then £(u) and £(v) must
be parallel.

Proof. If ¢(u) passes through the origin, then for every value of z, u(z) has the same
slope. In particular, a(v(z1)) = a(v(x2)) = a(v(zs)). Therefore, £(v) also passes
through the origin and is parallel to (). (In fact, we have £(u) = £(v).) We can argue
analogously if ¢(u) passes through the origin. Thus, in what follows, we can assume
that neither ¢(u) nor £(v) passes through the origin.

Suppose that a(u(z1)) = a(v(z1)), a(u(z2)) = a(v(ze)), and a(u(zs)) =
a(v(zs)). For any z, define w(x) as the intersection point of ¢(v) and the line con-
necting the origin to u(z), provided that they intersect. Clearly, v(z) = w(z) for
x = m1,T2,xs, and u(x) and w(x) have the same slope for every x. The transfor-
mation u(x) — w(x) is a projective transformation from #(u) to £(v), therefore, it
preserves the cross ratio of any four points. That is, for any =, we have

(u(z1), u(s); u(zs), u(x)) = (w(z1), w(zz); w(rs), w(z)).
Since both u(z) and v(x) are linear functions, we also have

(w(@1), w(w2); u(es), u(z)) = (v(z1), v(22); V(23), V().

Hence, we can conclude that v(z) = w(z) for all z. However, this is impossible, unless
£(u) and ¢(v) are parallel. Indeed, suppose that ¢(«) and £(v) are not parallel, and set
z in such a way that u(x) is parallel to £(v). Then w(zx) cannot have the same slope as
u(x), a contradiction. O

Suppose that € is 2-good and let us fix it. As above, let u§(x) be the position of ug ob-
tained by MODIFIEDPROCEDURE(G, C, ug, u1, Z, €), and let £° be the line determined
by ug(z). B

Suppose also that there exist two independent vertices of G, u,u’ # ug, such that
the line determined by uu/(z) is parallel to ¢. Then we say that ¢ is 3-bad for G. If &
is 2-good and it is not 3-bad for G, then we say that it is 3-good for G.

It is easy to see that, for any 0 < £,6 < 1/100, £ and ¢¢ are not parallel, therefore,
for any fixed u, v/, there is at most one value of e for which the line determined by
uu’(z) is parallel to £¢. Thus, with finitely many exceptions, all values 0 < & < 1/100
are 3-good.
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Summarizing, we have obtained the following.

Claim 8. Suppose that ¢ is 3-good for G. With finitely many exceptions, for every value
of ¥, MODIFIEDPROCEDURE(G, C, ug, u1, , €) gives a proper drawing of G*. O

Now we are in a position to complete the proof of Theorem 1. Proceed with each of the
components as described above for G. For any fixed i, let uf v} be the edge deleted
from G, and denote the resulting graphs by G*, ..., G™. Let 0 < ¢ < 1/100 be fixed
in such a way that ¢ is 3-good for all graphs G, ..., G™. This can be achieved, in
view of the fact that there are only finitely many values of € which are not 3-good.
Perform MODIFIEDPROCEDURE(G?, C%, u{, u’, x%, €). Now the line ¢ determined by
all possible locations of u}, does not pass through tJ.

Note that when MODIFIEDPROCEDURE(G?, C, ul, ul, 2%, ) is executed, then apart
from edges with basic slopes, we use an edge with slope r7/5 £ ¢, for some integer r
mod 5. By using rotations through 7/5 and a reflection, if necessary, we can achieve
that each component G is drawn using the basic slopes and one edge of slope .

It remains to set the values of x; and draw the missing edges ujv{. Since the line
¢* determined by the possible locations of u} does not pass through t}, by varying the
value of x%, we can attain any slope for the missing edge tjuj, except for the slope
of /¢, By Claim 8, with finitely many exceptions, all values of x* produce a proper
drawing of G*. Therefore, we can choose z!, 2%, . .., 2™ so that all segments t{u}, have
the same slope and every component G is properly drawn using the same seven slopes.
Translating the resulting drawings through suitable vectors gives a proper drawing of
G, this completes the proof of Theorem 1.

4 Concluding Remarks

In the proof of Theorem 1, the slopes we use depend on the graph G. However, the
proof shows that one can simultaneously embed all cubic graphs using only seven fixed
slopes.

It is unnecessary to use |xz| > 50, in every step, we could pick any x, with finitely
many exceptions.

It seems to be only a technical problem that we needed fwo extra directions in the
proof of Theorem 1. We believe that one extra direction would suffice.

The most interesting problem that remains open is to decide whether the number of
slopes needed for graphs of maximum degree four is bounded.
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Abstract. We study the existence of unimaximal subsequences in se-
quences of pairs of integers, e.g., the subsequences that have exactly one
local maximum in each component of the subsequence. We show that
every sequence of 112 n?(n? — 1) + 1 pairs has a unimaximal subsequence
of length n. We prove that this bound is tight. We apply this result to
the problem of the largest complete graph with a 3D rectangle visibility

representation and improve the upper bound from 55 to 50.

1 Introduction

A 3D rectangle visibility drawing represents vertices by axis-aligned rectangles
lying in planes parallel to the xy-plane. Edges correspond to the z-parallel visibil-
ity among these rectangles. This type of graph drawing was studied, for example,
in [TU2I516I7IS].

We continue in the study of the maximum size of a complete graph with a 3D
rectangle visibility representation. The representation of Koo given by Rote and
Zelle (included in [§]) provides the best known lower bound. On the other hand,
Bose et al. [2] showed that no complete graph with 103 or more vertices has
such a representation. This result was then improved to 56 by Fekete et al. [J.
Their proof is based on the analysis of unimaximal subsequences in sequences of
rectangle coordinates.

A sequence x1, xa, .. . of distinct integers is called unimazximal if it has exactly
onelocal maximum, i.e., foralli, j, kwithi < j < kwehavex; > min{x;, x}. The
following lemma (attributed by Chung [3] to V. Chvéatal and J.M. Steele, among
others) summarizes the most important properties of unimaximal sequences.

Lemma 1. For all n > 1, in every sequence of (g) + 1 distinct integers, there
ezists a unimazimal subsequence of length n. On the other hand, there exists a se-
quence of (g) distinct integers that has no unimazimal subsequence of length n.

The notion of unimaximality can be generalized to sequences of pairs:

Definition 1. A sequence (z1,y1), (z2,y2), ... of pairs of integers is called uni-
maximal if it is unimaximal in both components, i. e., if both sequences x1, 2, . ..
and y1,y2, ... are unimazrimal.

L.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 61]66] 2009.
© Springer-Verlag Berlin Heidelberg 2009
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If we apply the previous lemma twice on a sequence of pairs then we can see

that every sequence of ((3)2+1) +1= én‘* pairs has a unimaximal subsequence
of length n. In fact, the result of Fekete et al. [I] is based on this fact. We show
in this paper that we can improve this bound to [,n?(n* — 1)+ 1 if we consider
both components of a sequence of pairs together. This result allows us to improve
the upper bound on the size of the largest complete graph with a 3D rectangle
visibility representation from 55 to 50.

2 Upper Bound

The definition of a unimaximal sequence requires distinct values in the sequence.
Therefore both components of a unimaximal sequence of pairs must contain
distinct values[] Hence we consider only sequences with this property in the
sequel.

We show that every sufficiently long sequence of pairs contains a unimaximal
subsequence of a given length. The following relations turn out to be useful in
the analysis of this problem.

Definition 2. Let (z1,y1), (z2,y2),. .. be a sequence of pairs of integers. We say
that two pairs (zi,v:), (x,y;5),1 < j have a / -relation if x; < x; and y; < y;.
The pairs have a \-relation if z; > x; and y; > y;.

If both relations are forbidden then our problem becomes a simple consequence
of the Erdés-Szekeres theorem [4].

Lemma 2. If a sequence of (n — 1)? + 1 pairs of integers doesn’t contain pairs
with /- and \,-relations then it has a unimazimal subsequence of length n.

Proof. Let ((x;,v:)); be a sequence of length (n — 1)? + 1. The sequence (z;);
contains a monotone subsequence (z;;); of length n according to the Erdds-
Szekeres theorem. The sequence (y;;); is monotone as well because the original
sequence doesn’t have pairs with 27~ and \\\-relations, e.g., if the sequence
(wi;); is increasing then (y;;); is decreasing and vice versa.

Hence the subsequence ((z;;,¥i;))j—; is unimaximal. O

Lemma 3 shows how the situation changes if only one relation is forbidden.

Lemma 3. If a sequence of fn = (n — 1)n(2n — 1) + 1 pairs of integers

doesn’t contain pairs with a \-relation then it has a unimaximal subsequence
of length n.

Proof. The lemma holds for n = 1. Let’s suppose that it holds for n = k € IN and
let P = ((x;, yz))fgl be a sequence that doesn’t contain pairs with a \\\ -relation.
Let S be the set of pairs (z,y) such that P contains a unimaximal subsequence

! Both components (z;); and (y;); of ((xi,:)); must contain distinct values, but it
may happen that z; = y;.
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of length k starting at (z,y). We know that every sequence of length fy, contains
at least one such a subsequence. Therefore |S| > fri1 — fr +1=Kk*+ 1.

If there are two pairs (z;,;), (¥j,y;),¢ < j in S that have a " -relation then
we can prepend (z;,y;) to the unimaximal subsequence of length k starting at
(xj,y;) and obtain a unimaximal subsequence of length &k + 1.

On the other hand, if there are no pairs in S that have a /”-relation then
S contains a unimaximal subsequence of length k + 1 according to the previous
lemma. Hence the lemma holds also for n = &k + 1. O

The idea of the previous proof can be reused to analyze sequences with both
relations allowed.

Theorem 1. For all n € IN, in every sequence of g, = 112n2(n2 — 1)+ 1 pairs
of integers, there exists a unimazimal subsequence of length n.

Proof. We proceed in the same way as in the previous proof. The theorem holds
for n = 1. Let’s suppose that it holds for n = k € IN and let P = ((z;,v:))i
be a sequence of length giy1. Let E be the set of pairs (z,y) such that P
contains a unimaximal subsequence of length & ending at (z,y). We know that
every sequence of length gi contains at least one such a subsequence. Therefore
|E| > g1 — gk + 1= fria-

If there are two pairs (z;, i), (z;,Y;),% < j in E that have a \\\-relation then
we can append (z;,y;) to the unimaximal subsequence of length %k ending at
(4, ;) and obtain a unimaximal subsequence of length k + 1.

On the other hand, if there are no pairs in E that have a \\\-relation then
FE contains a unimaximal subsequence of length k& 4 1 according to the previous
lemma. Hence the theorem holds also for n = &k + 1. O

3 Lower Bound

This section shows that the bounds derived in the previous section are tight.

Lemma 4. For alln > 1 there exists a sequence P, of (n—1)? pairs of integers
that

— doesn’t contain pairs with /- and \-relations,
— has no unimazximal subsequence of length n.

(n—1)?

Proof. According to the Erdés-Szekeres theorem there exists a sequence (x;);
that doesn’t contain a monotone subsequence of length n. The sequence P, =
((z4, —xi))gzzl)z clearly doesn’t contain pairs with /- and \\\ -relations.

A unimaximal subsequence of P, (or any other sequence that doesn’t con-
tain pairs with 27~ and \\\-relations) must be monotone in both components.
Therefore P,, cannot have a unimaximal subsequence of length n because other-
wise (z;); would contain a monotone subsequence of this length. O

Let P = ((x;,¥:)): be a sequence of pairs of integers and m € IN. We denote the
sequence ((z; +m,y; +m)); by P+ m in the sequel.
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Lemma 5. For alln > 1 there exists a sequence @y, of §(n—1)n(2n — 1) pairs
of integers that

— doesn’t contain pairs with a \\-relation,
— has no unimaximal subsequence of length n.

Proof. Let P;,i =2,...,n be the sequences from the previous lemma. Let P/ =
P; + m;. The shifts m; are selected such that for all n > ¢ > j > 2 the pairs
from P/ have to pairs in PJ’» /-relations. Finally, let @),, be a concatenation of
the sequences P/, ..., Pj.

The length of @, is > ,(i — 1) = {(n— 1)n(2n —1).

@, doesn’t contain a \\-relation because this relation is not present among
pairs from the individual subsequences P/ and there are ,J’-relations among
pairs from the different subsequences.

Let U be a unimaximal subsequence of @,, and k be the minimal index such
that U contains a pair (z,y) from P}. Each pair from P/, I > k has a /" -relation
to (x,y). If (z;,¥;) and (x;,y;), ¢ < j are two pairs from a fixed P/, | > k then
they cannot be both in U because the triple (z;,v:), (z;,¥;), (z,y) is unimaximal
only if (z;,y;) has a ”-relation to (z;,y;), but this cannot happen due to the
definition of P/.

Therefore U contains at most one pair from each P/, [ > k and at most
k — 1 pairs from P} (P} has no unimaximal subsequence of length k). Hence
Ul < (n—k)4+ (k—1) = n—1 and @, has no unimaximal subsequence of
length n. O

P, Q2
4 N\

Ve N\
Pn_ 1 Qn— 1
Vi N\

P, Qn
(a) (b)

Fig. 1. Construction of (a) @, and (b) R,

Lemmas 4 and 5 provide the lower bounds that match the upper bounds given
by Lemmas 2 and 3. Finally, the following theorem shows that the bound in
Theorem 1 is tight as well.

Theorem 2. For all n > 1 there exists a sequence R, of 112 n?(n? — 1) pairs of
integers that has no unimazximal subsequence of length n.

Proof. The proof is very similar to the proof of the previous lemma.
Let Q;,4 = 2,...,n be the sequences from the previous lemma. Let Q) =
Q; + m;. The shifts m; are selected such that for all 2 < i < j < n the pairs
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from @) have to pairs in Q; \N\-relations. Finally, let R,, be a concatenation of
the sequences Q5, ..., Q.

The length of Ry, is Y1, 4 (i — 1)i(2i — 1) = ,n?*(n® — 1).

Let U be a unimaximal subsequence of R,, and k be the minimal index such
that U contains a pair (z,y) from Q}. (z,y) has a \\-relation to each pair from

1 U> kI (z4,y;) and (z5,y;), @ < j are two pairs from a fixed @Q}, [ > k then
they cannot be both in U because the triple (z,y), (z:,¥:), (z;,y;) is unimaximal
only if (z;,y;) has a \\\-relation to (z;,y;), but this cannot happen due to the
definition of Q.

Therefore U contains at most one pair from each @}, [ > k and at most
k — 1 pairs from @}, (@) has no unimaximal subsequence of length k). Hence
Ul < (mn—k)+ (k—1) = n—1 and R, has no unimaximal subsequence of
length n. ]

4 Application in 3D Rectangle Visibility Graphs

Fekete et al. [I] showed that every 3D rectangle visibility representation can be
described using integer 4-tuples that denote perpendicular distances of sides of
individual rectangles to the origin. They also proved the following lemma.

Lemma 6. In a representation of Ks by five rectangles ((e;, ni, w;, $;))3_y, it is
impossible that both sequences (n;)2_; and (s;)5_; are unimazimal.

Lemma 6 and Theorem 1 allow us to improve the best known upper bound on the
size of the largest complete graph with a 3D rectangle visibility representation.

Theorem 3. No complete graph K, has a 3D rectangle visibility representation
forn > 51.

Proof. Let’s assume we have a representation of K, with n > 51 rectangles
(€i,m,w;, ;). Theorem 1 implies that the sequence ((n;, s;))3L; has a unimax-
imal subsequence (n},s}); of length 5. Remove the rectangles not associated
with the subsequence. The five remaining rectangles represent K5, but this con-
tradicts the previous lemma because both sequences (n})?_; and (s})?_; are

unimaximal. 0O

5 Conclusion

We show that every sequence of |;n*(n? — 1) + 1 pairs of integers has a uni-
maximal subsequence of length n. On the other hand, there are sequences of
112 n?(n? — 1) pairs that do not contain such a sequence.

The analysis of unimaximal sequences of pairs allows us to improve the best
known upper bound on the size of the largest complete graph with a 3D rectangle
visibility representation from 55 to 50. The original bound by Fekete el al. [I] is
also based on the study of unimaximal subsequences in the sequences of rectangle
coordinates but they consider each coordinate independently. It remains an open

problem how to analyze all four coordinates together to obtain a better bound.
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Abstract. A visibility representation of a graph G is to represent the nodes of G
with non-overlapping horizontal line segments such that the line segments repre-
senting any two distinct adjacent nodes are vertically visible to each other. If G is
a plane graph, i.e., a planar graph equipped with a planar embedding, a visibility
representation of GG has the additional requirement of reflecting the given planar
embedding of G. For the case that GG is an n-node four-connected plane graph,
we give an O(n)-time algorithm to produce a visibility representation of G with
height at most [ 5] + 2 [\/ ”;21 . To ensure that the first-order term of the up-

per bound is optimal, we also show an n-node four-connected plane graph G, for
infinite number of n, whose visibility representations require heights at least .

1 Introduction

Unless clearly specified otherwise, all graphs in the present article are simple, i.e., hav-
ing no self-loops and multiple edges. A visibility representation of a planar graph rep-
resents the nodes of the graph by non-overlapping horizontal line segments such that,
for any nodes v and v adjacent in the graph, the line segments representing « and v are
vertically visible to each other. Observe that if (G; is a subgraph of G5 on the save node
set, then any visibility representation of G5 is also a visibility representation of Gj.
Therefore, we may assume without loss of generality that the input graph is maximally
planar. Let G be an n-node plane triangulation, i.e., a maximally planar graph equipped
with a planar embedding. A visibility representation of GG has an additional requirement
of reflecting the given planar embedding of G. Figure 1(b), for instance, is a visibility
representation of the four-connected plane graph shown in Fig. 1(a). Under the conven-
tional restriction of placing the endpoints of horizontal line segments on the integral grid
points, any visibility representation of G requires width no more than 3n — 7 and height
no more than n — 1. Otten and van Wijk [7] gave the first known algorithm for con-
structing a visibility representation for any GG. Rosenstiehl and Tarjan [8] and Tamassia
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(b)

Fig. 1. (a) A four-connected plane triangulation G. (b) A visibility representation of G.

and Tollis [9] independently gave algorithms to compute a visibility representation of G
with height at most 2n — 5. Their work initiated a decade of competition on minimizing
the width and height of the output visibility representation. All these algorithms run in
linear time. In particular, the results of Fan, Lin, Lu, and Yen [2] and Zhang and He [16]
are optimal in that the upper bounds differ from the best known lower bounds by very
small constants.

The present article focuses on four-connected plane GG. The O(n)-time algorithm
of Kant and He [5] provides the optimal upper bound n — 1 on the width. The best
previously known upper bound on the height, ensured by the O(n)-time algorithm of
Zhang and He [12], is [*"|. In the present article, we obtain the following result with

4
an improved upper bound on the required height.

Theorem 1. For any n-node four-connected plane graph G, it takes O(n) time to con-
struct a visibility representation of G with height at most Pﬂ +2 [\/"521

Table 1 compares our upper bound with previous results. All algorithms shown in Ta-
ble 1 run in O(n) time. Our algorithm follows the approach of Zhang and He [10, 15—
17], originating from Rosenstiehl and Tarjan [8] and Tamassia and Tollis [9], that re-
duces the problem of computing a visibility representation for G with small height to
finding an appropriate st-ordering of G. To find such an st-ordering of GG, we resort to
three linear-time obtainable node orderings:

— four-canonical orderings of four-connected plane graphs (Kant and He [5]),
— consistent orderings of ladder graphs (Zhang and He [15-17]), and
— post-orderings of canonical ordering spanning trees (He, Kao, and Lu [3]).

Our result is near optimal in that we can construct an n-node four-connected plane
graph, for infinite number of n, whose visibility representations require heights at least
(’ﬂ . That is, the first-order term of our upper bound is optimal.

The remainder of the paper is organized as follows. Section 2 gives the preliminaries.
Section 3 describes and analyzes our algorithm. Section 4 ensures that the first-order
term of our upper bound on height is optimal. Section 5 concludes the paper.
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Table 1. Previous upper bounds and our result for any n-node plane graph G

general G four-connected G
width height width height
Otten and van Wijk [7] 3n—7 n—1
Rosenstiehl and Tarjan [8], o — 5
Tamassia and Tollis [9]
Kant [4] 1%7%5°]
Kant and He [5] n—1
Lin, Lu, and Sun [6] | 222
Zhang and He [10] (11551
Zhang and He [14] [ %]
Zhang and He [11, 13] | 132 |
Zhang and He [12] Hﬂ
Zhang and He [15, 17] ar2fvnl g +2lyVy]
Zhang and He [16] T +0(1)
Fan, Lin, Lu, and Yen [2] |5 -2
This paper [5]+2 N"Eﬂ

2 Preliminaries

2.1 Ordering and st-Ordering

Let G be an n-node plane graph. An ordering of G is a one-to-one mapping o from the
nodes of G to {1,2,...,n}. A path of G is o-increasing if o(u) < o(v) holds for any
nodes u and v such that u precedes v in the path. Let length(G, o) denote the maximum
of the lengths of all o-increasing paths in G. For instance, if G and ¢ are as shown in
Fig. 1(a), then one can verify that (1,2,5,6,8) is a o-increasing path with maximum
length. Therefore, length(G, o) = 4.

Let s and ¢ be two distinct external nodes of G. An st-ordering [1] of G is an ordering
o of GG such that

- o(s)=1,0(t) =n,and
— each node v of G other than s and ¢ has neighbors v and w in G with o(u) <
o(v) < o(w).

An example is shown in Fig. 1(a): the node labels form an st-ordering for the graph.
The following lemma reduces the problem of minimizing the height of visibility rep-
resentation of G to that of finding an st-ordering o of G with minimum length(G, o).
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Lemma 1 (See[2,8-10,15,17]). If G admits an st-ordering o for two distinct external
nodes s and t of G, then it takes O(n) time to obtain a visibility representation of G
with height exactly length(G, o).

For instance, if G and o are as shown in Fig. 1(a), then a visibility representation for
G with height at most length(G, o) = 4, as shown in Fig. 1(b), can be found in linear
time.

2.2 Four-Canonical Ordering

Let G be an n-node four-connected plane triangulation. Let v1, vs, and v,, be the ex-
ternal nodes of GG in counterclockwise order. Since G is a four-connected plane trian-
gulation, G has exactly one internal node adjacent to both vy and v,,. Let v, be the
internal node adjacent to ve and v, in G. A four-canonical ordering [5] of G is an
ordering ¢ in G such that

= @(v1) =1, ¢(v2) = 2, $(vn—1) =n — 1, ¢(v,) = n, and
— each node v of G other than vy, ve, v,_1 and v, has neighbors u, v/, w and w’ in

G with ¢(u') < p(u) < ¢(v) < d(w) < P(w').

An example is shown in Fig. 2(a): the node labels form a four-canonical ordering of the
four-connected plane triangulation.

Lemma 2 (Kant and He [5]). It takes O(n) time to compute a four-canonical ordering
for any n-node G.

2.3 Consistent Ordering of Ladder Graph

Let L be an fg] -node path. Let R be an VQLJ -node path. Let X consist of edges with
one endpoint in L and the other endpoint in R. Let (L, R, X') denote the n-node graph
LURUX.We say that (L, R, X) is a ladder graph [15,17] if LURU X is outerplanar.
A ladder graph is shown in Fig. 3(a).

An ordering o of ladder graph (L, R, X) is consistent [15, 17] with respect to an
outerplanar embedding £ of (L, R, X) if L (respectively, R) forms a o-increasing path
in clockwise (respectively, counterclockwise) order according to £. See Fig. 3(a) for an
example: The node labels form a consistent ordering of the ladder graph with respect to

the displayed outerplanar embedding.

Lemma 3 (He and Zhang [15,17]). Let (L, R, X) be an n-node ladder graph. It
takes O(n) time to compute a consistent ordering o of (L, R, X') with respect to any
given outerplanar embedding of (L, R, X) such that length((L, R, X),0) < [7] +

2
2[\/5] -1

For technical reason, we need a consistent ordering with additional properties, as stated
in the next lemma, which is also illustrated by Fig. 3(a).

Lemma 4. Let (L, R, X) be an n-node ladder graph. It takes O(n) time to compute a
consistent ordering o of (L, R, X) with respect to any given outerplanar embedding £
of (L, R, X) such that



Visibility Representations of Four-Connected Plane Graphs 71

Fig. 2. (a) A four-canonical ordering ¢ of the four-connected plane triangulation G. (b) G, is the
subgraph induced by the nodes v with 1 < ¢(v) < 4 and Gr is the subgraph induced by the
nodes v with 5 < ¢(v) < 8. (c) The counterclockwise post-ordering 'z, of T, and the clockwise
post-ordering ¥r of Tr.

- o(l)=1,0(r1) =2 and
— length((L, R, X),0) <[] +2 ’V\/n;f"

where {1 (respectively, r1) is the first (respectively, last) node of L (respectively, R) in
clockwise order around the external boundary of (L, R, X) with respect to .

Proof. Let L' = L\ {{1}. Let " = R\ {r1}. Let X’ = X \ {{1,7r1}. Clearly,
(L', R', X") is a ladder graph of n — 2 nodes. Let o’ be the consistent ordering of
(L', R', X") with respect to £ ensured by Lemma 3. We have

length((L', R, X"),0") < F;_‘ +2 ’V\/n ; 2-‘ - 2.

Let o be the ordering of (L, R, X') such that
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(a) (b)

Fig. 3. (a) A consistent ordering of a ladder graph (L, R, X) with respect to the displayed outer-
planar embedding. (b) H* = LU RU X", where X* = X U {(vz2,vs)}.

- o) =1,0(r1) =2, and
- o(u) = ¢’ (u) + 2 holds for each node u other than ¢; and 1.

One can easily verify that the lemma holds.

3  Ouwur Algorithm

Let G be the input n-node four-connected plane triangulation. According to Lemma 1, it
suffices to describe our algorithm for computing an st-ordering o for G in the following
four steps.

3.1 Step1
Let ¢ be a four-canonical ordering of G ensured by Lemma 2.

— Let G, be the subgraph of (7 induced by the nodes v with 1 < ¢(v) < [7].
— Let G be the subgraph of G induced by the nodes v with [ | < ¢(v) < n.

Figure 2(b) illustrates this step, which runs in O(n) time. Observe that each edge of G
not in G, UG R has one endpoint on the external boundary of Gz, and the other endpoint
on the external boundary of Gg.

3.2 Step2

For eachi = 1,2,...,n, let v; denote the node of G with ¢(v;) = 4. It follows from
the definition of ¢ that vy, vo, and v,, are the external nodes of G.

— Foreachi=2,3,..., Wﬂ,let 7(%) be the index j with j < ¢ such that v, is the first
neighbor of v; in GG, in counterclockwise order around v;. Let T}, be the spanning
tree of GG, rooted at v such that each Ur(q) 1S the parent of v; in T Let ¢y, be the
counterclockwise post-ordering of 7T7..



Visibility Representations of Four-Connected Plane Graphs 73

- Foreachi= [4|+1,[%]+2,...,n—1,let w(i) be the index j with j > i such
that v; is the first neighbor of v; in G in clockwise order around v;. Let T'r be the
spanning tree of GG rooted at vy, such that each vy ;) is the parent of v; in Tr. Let
1 be the clockwise post-ordering of 1.

Figure 2(c) illustrates this step, which runs in O(n) time. As a matter of fact, 77, is the
canonical ordering spanning tree of G'1, with respect to ¢, as defined by He, Kao, and
Lu [3].

Lemma 5. ¢, (v2) = 1, ¥p(v1) = [ 4], Yr(vn—1) = 1, and p(vs) = | 5 |.

Proof. Since ¢ is a four-canonical ordering of G, if (vg,v;) with ¢ > 3 is an edge of
(1, then v; has to have a neighbor v, with 2 # k < ¢ in G.. Observe that vs is the node
immediately succeeding v; in counterclockwise order around the external boundary of
(1. One can verify that vy cannot be the first neighbor of v; in G, in counterclockwise
order around v;. That is, we have 7(¢) # 2. Since vy cannot be the parent of v; in 17,
v2 has to be a leaf of T7,. By the relative position between vy and vy, it is clear that v
is the first node in the counterclockwise post-ordering of 77, i.e., ¥y, (v2) = 1.

One can prove ¢ g(v,—1) = 1 analogously, where v,, (respectively, v,,—1, ¥r, Tr,
and G'r) plays the role of vy (respectively, vs, 11, T, and G). Since v is the root of
Ty, and 1y, is a post-ordering of T, we have ¢, (v1) = |7 ]. Since vy, is the root of Tg

and ¢ is a post-ordering of T, we have g (v,) = MLJ .

3.3 Step3
Let L, R, and X be defined as follows.

— Let L be the path (¢4, {3, ..., L[, /2)), where ¢; is the node of G, with ¢, (¢;) = i.

- Let Rbe the path (r1,72,...,7|,/2|), where r; is the node of G g with ¢ g(r;) = i.

- Let X = X*\ {(ve,v,)}, where X* consists of the edges of G with one endpoint
in L and the other endpoint in R.

Figure 3(a) illustrates Lemma 5 and this step, which runs in O(n) time. Figure 3(b)
shows the corresponding L U R U X*.

Lemma 6. (L, R, X) is an n-node ladder graph.

Proof. Consider any edge (¢;, ;) of X. By definition of ¢, ¢; has to be on the exter-
nal boundary of G, and r; has to be on the external boundary of G'r. By definition
of T, ¢; is either a leaf of T, or on the rightmost path of 7. By definition of vy, if
liy, iy, ... L, with i3 = 1 are the nodes on the external boundary of G', in counter-
clockwise order, then 71 < 4o < --- < 4,. Similarly, by definition of T, r; is either
a leaf of T or on the leftmost path of T. By definition of v, if 7, ,7j,,...,7;,
with j; = 1 are the nodes on the external boundary of G in clockwise order, then
J1 < ja2 < --- < jq. Since G is a plane graph and the edges of X do not cross one an-
other in G, the edges of X do not cross one another in (L, R, X). Therefore, (L, R, X)
is outerplanar.



74 C.-Y. Chen, Y.-F. Hung, and H.-I. Lu

3.4 Step4

Let H = (L, R, X). Lemma 6 ensures that H is an n-node ladder graph. Consider the
outerplanar embedding £ of H such that

li, Loy Lrnya]s T in/2)s T in/2)—15 -+ 5 T1

are the nodes in clockwise order around the external boundary of . Let the output o of
our algorithm be the consistent ordering of H with respect to £ ensured by Lemma 4.
Figure 3(a) illustrates this step, which also runs in O(n) time.

Lemma 7. The O(n)-time obtainable o is an st-ordering of G with o(ve) = 1 and
max(o(v1),0(v,)) = n.

Proof. We first show that vy, is an st-ordering of G1.. Let ¢ be an index with 2 <
i < [%]. Let k be the index such that ¢, is the parent of ¢; in T},. Since )y, is a post-
ordering of T, we know that ¢, is a neighbor of ¢; in G, with i < k. Let j be the index
such that ¢; is the neighbor of ¢; in G, immediately succeeding £;, in counterclockwise
order around ¢;. Recall that ¢ is the first neighbor of ¢; in G, with ¢(¢) < ¢(£;)
in counterclockwise order around /¢;. Since ¢ is a four-canonical ordering of G, we
also have ¢(¢;) < ¢(¢;). Since vy, is the counterclockwise post-ordering of T7,, we
have (¢;) < ¥(¢;), i.e., j < i. Since ¢; and ¢} are two neighbors of ¢; in G, with
j < i <k, we know that ¢y, is an st-ordering of Gi1.. It can be proved analogously that
g is an st-ordering of G g.

Since o is a consistent ordering of H with respect to £, we know that 1 <7 < j <
(7] implies o(¢;) < o(¢;) and 1 < i < j < || implies o(r;) < o(r;). We have the
following observations.

— Since ty, is an st-ordering of G, foreachi = 1,..., [ — 1, ¢; has a neighbor
l, in G, with i < k. Since GG, is a subgraph of G, ¢y, is a neighbor of ¢; in G with
o(l;) < o(ly).

- Since ¢, is an st-ordering of G, for each i = 2,..., [ ], ¢; has a neighbor ¢; in
G, with j < i. Since G, is a subgraph of G, we know that /; is a neighbor of ¢; in
G with O'(fj) < O'(EZ)

- Since ¢ is an st-ordering of G, foreachi = 1,..., || — 1, r; has a neighbor
r in Gg with i < k. Since G is a subgraph of G, we know that ry, is a neighbor
of r; in G with o(r;) < o(rg).

- Since ¥ is an st-ordering of G, foreachi = 2,...,| 7 |, r; has a neighbor r; in
Gr with j < i. Since G is a subgraph of G, we know that r; is a neighbor of r;
in G with o(r;) < o(r;).

According to the above observations, it suffices to ensure that edges (¢1,71) and
(¢rny21,7|ns2)) belong to G. By Lemma 5, {1 = va, 11 = U1, {121 = v1, and
T|n/2| = Vn.Since v1 and vy, are external nodes of the plane triangulation G, we know
that (€1, /21,7 n/2)) = (v1,vn) is an edge of G. By definition of four-canonical order-
ing ¢, we know that v,,_1 is adjacent to vo. Therefore, (¢1,71) = (v2,v,—1) is an edge
of G.

Figure 1(a) shows the resulting st-ordering o of G computed by our algorithm.
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3.5 Proving Theorem 1

Proof. Note that vy, va, and v,, are the external nodes of G. By Lemmas 1 and 7, it
suffices to ensure
n

length(G,U)Sb—‘%-Q \/n;2 ) (D

By Step 4 and Lemmas 4 and 6, we have

length(H, o) < W;—‘ +2 \/n;Q . 2)

Let H* = LURUX*. Thatis, H* = HU{(va,vy,)}, as illustrated by Fig. 3(a) and 3(b).
By definition of ¢ and Lemma 5, we have o(v2) = 1 and o(v,,) > max; o(r;). There-
fore, any o-increasing path of H* containing edge (v, v, ) contains exactly one node
of R, i.e., v,, and thus has length at most [72‘] . It follows from Inequality (2) that

n—2
. 3
o .
To prove Inequality (1), it remains to show that if P is a o-increasing path of G, then
there is a o-increasing path () of H* such that the length of () is no less than that of P.

For each edge (u,v) of P with o(u) < o(v), let Q(u,v) be the o-increasing path of
H* defined as follows.

length(H*,0) < F;_‘ +2

- If u = ¢; and v = rj, then let Q(u,v) = (u,v), which is a o-increasing path
of X*.

- Ifu = r; and v = ¢;, then let Q(u,v) = (u,v), which is a o-increasing path
of X*.

- Ifu=¢;and v = ¢, then by o(¢;) < o(¢;) we know ¥,(¢;) < 1 (¢;) and thus
i < j.Let Q(u,v) = (¢;,lit1,...,¥¢;). Since o is a consistent ordering of H with
respect to &, Q(u, v) is a o-increasing path of L.

- Ifu =r; and v = 7}, then by o(r;) < o(r;) we know Yr(r;) < g(r;) and thus
i < j.LetQ(u,v) = (ri,Ti+1,...,7;). Since o is a consistent ordering of H with
respect to &, Q(u, v) is a o-increasing path of R.

Let @ be the union of Q(u,v) for all edges (u,v) of P. Since each Q(u,v) is a o-
increasing path of H*, so is (). The length of () is no less than that of P. That is, we
have

length(G, o) < length(H™, o). 4)

Since Inequality (1) is immediate from Inequalities (3) and (4), the lemma is proved.

4 A Lower Bound

Let plane graph Ny, be defined recursively as follows.

— Let N; be the four-node internally triangulated plane graph with four external nodes.
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Nit1

(a)

Dy 1

Dy,

(b)

Fig. 4. (a) A four-connected plane graph N1 and its relation with Ny. (b) A visibility represen-
tation Dy1 of N1 and its relation with Dy,.

— Let Ny, be obtained from Ny, by adding four nodes and twelve edges in the way
as shown in Fig. 4(a).

One can easily verify that each Ny with £ > 1 is indeed four-connected. The following
lemma ensures that the the upper bound provided by Theorem 1 has an optimal first-
order term.

Lemma 8. All visibility representations of Ny, have heights at least 2k.

Proof. We prove the lemma by induction on k. The lemma holds trivially for k = 1. As-
sume for a contradiction that N, admits a visibility representation Dy with height
no more than 2k + 1. Let Dj, be obtained from Dy 1 by deleting all the horizontal
segments representing those four external nodes of Nj_;. Since Dy has to reflect the
planar embedding of Ny, Dy, is a visibility representation of V. Since the external
nodes of Ny, are internal in Ny, the horizontal segments of Dy, representing the
external nodes of Ny 1 have to wrap Dy, completely. That is, Dy, must have a hori-
zontal segment above Dy, and a horizontal segment below Dj,. Therefore, the height of
Dy is at least two more than that of Dy,. It follows that the height of Dy, is at most
2k — 1, contradicting the inductive hypothesis. Since Ny cannot admit a visibility
representation with height less than 2% + 2, the lemma is proved.
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Concluding Remarks

It would be of interest to close the ©(/n) gap between the upper and lower bounds on
the required height for the visibility representation of any n-node four-connected plane
graph. We conjecture that the ©(/n) term in our upper bound can be reduced to O(1).
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The Topology of Bendless Three-Dimensional
Orthogonal Graph Drawing

David Eppstein

Computer Science Department, University of California, Irvine
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Abstract. We define an xyz graph to be a spatial embedding of a 3-regular graph
such that the edges at each vertex are mutually perpendicular and no three points
lie on an axis-parallel line. We describe an equivalence between xyz graphs and
3-face-colored polyhedral maps, under which bipartiteness of the graph is equiv-
alent to orientability of the map. We show that planar graphs are xyz graphs if
and only if they are bipartite, cubic, and three-connected. It is NP-complete to
recognize xyz graphs, but we show how to do this in time O(n2"/2).

1 Introduction

Consider a point set V in R3 (such as the vertices of an axis-aligned cube) with the
property that every axis-parallel line in R® contains either zero or two points of V.
V forms the vertices of a cubic (that is, 3-regular) graph, in which each vertex v is
connected to the other points that lie on the three axis-parallel lines through v. We call
such a graph an xyz graph. Figure[Il depicts three examples.

Fig. 1. Three xyz graphs

In contrast to past work on three-dimensional orthogonal drawing with bends [2,/3116,
8L19,115,[18,[19.120]], an xyz graph provides a simple form of bendless three-dimensional
orthogonal drawing. In xyz graphs, edges may cross, but edge crossings may be distin-
guished visually from vertices by whether the edges stop or pass through them.

In three-dimensional layout of parallel processing intercommunication networks [JS]],
xyz graphs provide a layout in which all connected pairs of processors have an open
line of sight between each other. As we show, even-dimensional cube-connected-cycles
networks, highly regular graphs used in parallel processing [[16], have xyz graph layouts.

LG. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 7889] 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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These graphs also have an unexpected connection to topological graph theory and
graph coloring: any xyz graph corresponds to a three-coloring of the faces of an embed-
ding of a graph on a 2-manifold. Such face-colored embeddings arise naturally from the
GEM (graph-embedded map) representation of manifold embeddings of graphs [4].

In this paper, we prove an equivalence between xyz graphs and certain 3-face-colored
cell complexes, which we call xyz surfaces. As we show, an xyz graph is bipartite if and
only if the corresponding xyz surface is orientable. We show that it is NP-complete to
recognize xyz graphs, and we show how to find xyz graph embeddings in time O(nZ"/ 2);
however, planar xyz graphs may be recognized in linear time. Due to space consider-
ations we omit many results, details and proofs; we invite readers to find these in the
longer version of this paper at http://arxiv.org/abs/0709.4087.

2 Topology of xyz Graphs

If C is a collection of cycles in an undirected graph G, we may define a cell complex
with a point for each vertex, a line segment for each edge, and a disk for each cycle. For
instance, if G is the graph of a cube, and C is the set of four-cycles in G, the resulting
cell complex consists of the vertices, edges, and facets of a geometric cube. However,
complexes may be defined independently of any spatial embedding. If the following
conditions are satisfied, the cell complex is a 2-manifold (without boundary) or map:

1. Each edge of G belongs to exactly two cycles of C.
2. Ateach vertex v of G, one can reach any incident edge from any other incident edge
by a chain of edge-face-edge steps in which each edge and face is incident to v.

Cubic graphs automatically satisfy the second condition. The complex defined from G
and C is an embedding of G onto a manifold, and the cycles of C are its faces. We define
an xyz surface to be an embedding of a cubic graph G with the following properties:

1. Any two faces intersect in either a single edge of G or the empty set.
2. The faces of C can be assigned three colors such that no two faces sharing an edge
have the same color.

An embedded graph satisfying the first property is called polyhedral [14]. Polyhedral
embeddings of non-cubic graphs may include faces that intersect in a single vertex, but

Fig. 2. Three xyz surfaces, each with the topology of the torus. In each case, the torus is depicted
as cut and unrolled into a rectangle; the corresponding topological surface is formed by gluing
opposite pairs of rectangle edges.
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this cannot happen in a cubic graph. Craft and White [7] study a similar 3-coloring
condition on orientable cubic maps without the polyhedral condition.

Theorem 1. G is an xyz graph if and only if G can be embedded as an xyz surface.

Proof. Let G be an xyz graph, and let C consist of the cycles in G that lie in an axis-
parallel plane. Each edge of G belongs to two such cycles, so, C forms an embedding of
G onto a manifold. The cycles of C can be colored according to the coordinate planes
they are parallel to. The cycles of G in any single coordinate plane are disjoint, so if
two cycles intersect, the intersection must lie on the axis-parallel line formed by the
intersection of the two planes containing the cycles, and consists of the edge of G that
lies on that same line, fulfilling the requirements of an xyz surface.

Conversely, suppose that G is embedded as an xyz surface, with cycle set C. Let X,
Y, and Z be the three color classes of C, and let the faces in C be numbered fy, f1, .. ..
Each vertex v in G is incident to exactly three faces: f; in X, f; in Y, and f; in Z for
some I, j, k. We assign v the three-dimensional coordinates (i, j, k). If two vertices u and
v are adjacent, they share the two coordinates determined by the two faces containing
edge uv, and lie on an axis-parallel line of the embedding of G into R3. If two vertices
are not adjacent, they can lie on at most one face of C and therefore have at most one
coordinate in common. Thus, the three axis-parallel lines through each embedded vertex
v each contain only v and one of its neighbors so the embedding forms an xyz graph. 0O

The three xyz graphs in Fig. [[lcorrespond to xyz surfaces that are (left to right) a projec-
tive plane resembling the Roman surface, a spherical map combinatorially equivalent
to a polyhedron with three hexagonal facets and six quadrilaterals, and an embedding
of the Pappus graph on a torus. Figure 2] depicts three xyz surfaces, all tori. The left-
most is the Pappus graph again, the middle surface has 12 faces, 24 vertices, and 36
edges, and the right surface is a torus embedding of the 64-vertex four-dimensional
cube-connected cycles network.

Theorem[I] can be used to embed any xyz graph into an j x 7 x j grid: Each face of
an xyz graph must have even length, at least four, because it alternates between edges
parallel to two coordinate axes. Thus, any color class of an xyz surface coloring has at
most n/4 faces: each vertex belongs to one face of that color, but each face contains
at least four vertices. Each face provides a value for one of the coordinates in the grid
embedding, so the number of distinct values for each coordinate is at most n/4. How-
ever this bound is tight only for the cube: any other xyz surface has a face with more
than four vertices, and a color class with fewer than n/4 faces, leading to an embedding
with fewer than n/4 distinct values in one of the coordinates. For many graphs, per-
muting the coordinates forms multiple xyz graph embeddings that differ geometrically,
although they are combinatorially and topologically equivalent, and smaller grids may
sometimes be obtained by using equal coordinate values for multiple faces of the same
color. We do not consider problems of choosing coordinate values in order to improve
the graph drawing in this paper, but such problems are a natural subject for future work.

As we show in the full version, every xyz graph is triangle-free and 3-vertex-connec-
ted. We conclude this section with an interesting connection between bipartiteness and
topology. An orientation of a map can be described as a choice of cyclic order on each
face of the map such that the two face cycles shared by any edge pass through it in
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opposite directions. A surface is orientable if graphs embedded on it may be oriented;
the sphere and torus are orientable, while the projective plane is not.

Theorem 2. Let G be a graph embedded onto an xyz surface. Then G is bipartite if and
only if the surface is orientable.

We omit the proof. 2-manifolds may be classified by their orientability and their Euler
characteristic |V | — |E| + |C|, so by Theorem[2lone may determine the topology of any
xyz surface by counting faces and testing bipartiteness.

3 Algorithms for xyz Embedding

As we now show, there exist efficient algorithms to determine whether an embedded
surface is an xyz surface, or whether a partition of the edges of a graph into three perfect
matchings can be used as the three parallel classes of edges in an xyz graph. However,
it is not so easy to find an xyz graph representation for an initially unlabeled graph.

Theorem 3. Let G be a connected undirected n-vertex graph, and let C be a collection
of cycles in G. Then in time O(n) we may determine whether C is the set of cycles of an
xyz surface embedding of G, and if so construct an xyz graph representation of G.

Proof. We first check that G is cubic and that C covers each edge of G twice. Next,
we assign arbitrary index numbers to the cycles in C. Each edge has an associated pair
of index numbers, which we order lexicographically. We sort the edges of G accord-
ing to this lexicographic ordering by two passes of bucket sorting and verify that each
consecutive pair of edges in the sorted order has a different pair of faces.

To test 3-colorability of the cycles in C, we store a set of the available colors for each
cycle (initially, all three colors for each cycle) and a list L of cycles that have only one
remaining color. When we color a cycle we remove that color from the available colors
of all cycles that share an edge with it, and update L whenever that removal causes
an adjacent cycle to have only one remaining available color. We begin by choosing
arbitrarily two cycles that share an edge, and assigning arbitrarily two different colors
to those two cycles. Then, while L remains nonempty, we remove a cycle from L, and
assign it the one color that is available to it.

If this process terminates with a 3-coloring of all faces in C, we have found an xyz
surface representation for G. Conversely, suppose that G has an xyz surface represen-
tation: we argue that this process will necessarily find a correct 3-coloring of all faces.
To show this, permute the colors of the representation if necessary so that they match
the colors chosen for the two faces at the start of the algorithm. Every color choice
subsequent to that is forced, so the algorithm can neither choose an incorrect color for a
face nor eliminate the correct color for any face; the only way it could fail to 3-color all
faces would be to terminate with L empty before coloring all faces. But if f is any face
of C, let p be any path connecting a vertex of the shared edge of the first two colored
faces with any vertex of f. At any stage in the algorithm until f has been colored, let v
be the vertex of p that is closest along the path to the first two colored faces, and that is
incident to an uncolored face f’; then the two differently-colored neighboring faces of
f" at v would force f’ to belong to L. Thus, L cannot be empty until f is colored, and
the algorithm cannot until all faces are colored. O
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Corollary 1. Let G be a connected undirected n-vertex graph, and let E|, E», E3 be a
partition of the edges of G into three matchings. Then in time O(n) we may determine
whether there is an xyz graph representation of G in which E; is the set of edges parallel
to the ith coordinate axis.

Proof. For each pair E; and E;, E; UE] is a disjoint union of cycles; we let C be the set
of cycles formed in this way for all three pairs of matchings, and apply Theorem[38 O

Lemma 1. Let G be a biconnected cubic graph. Then there are at most 2212 parti-
tions of the edges of G into three perfect matchings, and these partitions may be listed
in time O(2"/?).

Proof. We compute an st-numbering of G [12]; that is, an ordering of the vertices of
G in which each vertex, except for the ones at the start and the end of the sequence,
has a neighbor that occurs earlier in the sequence and a neighbor that occurs later in
the sequence. We define a split vertex to be one with one previous neighbor and two
later neighbors, and a merge vertex to be one with two previous neighbors and one later
neighbor. If there are k split vertices there would be 3 + 2k + (n — k— 2) edges, as the
first vertex in the st-numbering is the earlier endpoint of three edges, the split vertices
are each the earlier endpoint of two edges, the n — k — 2 merge vertices are each the
earlier endpoint of only one edge, and the final vertex in the sr-numbering is the earlier
endpoint of no edges. Observing that the graph has 3n/2 edges total and solving for k,
we find that there must be exactly (n —2)/2 split vertices.

To list all partitions, we then perform a backtracking algorithm in which we assign
the edges to partitions in order by their earlier endpoints in the st-numbering; once we
make an assignment for an edge e we recursively list all partitions for edges occurring
later in this ordering before backtracking and trying an alternative assignment for e (if
an alternative exists). If this backtracking process ever reaches a contradictory state in
which no possible assignment is available from an edge, it backtracks without recursing.

At the initial vertex of the st-numbering, the backtracking algorithm has no choices
to make: it can partition the incident edges into three disjoint subsets in only one way.
At the final vertex, there is again no choice to make, because all incident edges must
already have been partitioned. And at each merge vertex, there is no choice to make,
because there are two incident edges which must already have been placed into two sets
of the partition, and the third incident edge can only go in the third set of the partition.
Thus, the only branch points of this backtracking algorithm are the split vertices, at
which the two edges for which the vertex is the earlier endpoint must be assigned to the
two remaining partition sets, in either of two different ways.

Since the algorithm makes a binary choice at each of (n—2)/2 levels of its recursion,
its total time is O(2"/2). The number of partitions listed is at most the number of leaves
in a binary tree of height (n — 2)/2, which is 2("~2)/2, O

Greg Kuperberg (personal communication) has pointed out that the prisms over n/2-
gons form biconnected cubic graphs with Q(Z"/ 2) partitions into three perfect match-
ings, showing that this bound is tight to within a constant factor.

Theorem 4. We can test whether a given unlabeled graph is an xyz graph, and if so
find an xyz graph representation of it, in time 0(n2"/ 2).
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Proof. We list all partitions into matchings using Lemma [l and test whether any of
them can be used to define an xyz graph representation using Corollary [11 a

An implementation of our algorithms for listing all partitions of a cubic graph into
perfect matchings and for testing whether a given graph is an xyz graph is available
online at http://www.ics.uci.edu/~eppstein/PADS/xyzGraph.py.

4 Cayley and Symmetric Graphs

A Cayley graph is a graph having as its vertices the members of a finite group, and its
edges determined by a subset of generators for that group; there is an edge from g to gs
whenever g is a group element and s is one of the chosen generators. For instance, the
cube-connected cycles network CCC,, of importance in parallel processing [16], is a
Cayley graph for the group of operations on n-bit binary words generated by single-bit
rotations of the word and flips of the first bit of the word [[L]. The cube-connected cycles
of order three cannot be an xyz graph, as it is not triangle-free, but we have already seen
(Fig. 2 right) that the cube-connected cycles of order four is an xyz graph.

Theorem 5. Let n be any even number greater than or equal to four. Then the cube-
connected cycles network CCC,, is an xyz graph.

We omit the proof. We have not determined whether the cube-connected cycles of odd
order greater than three may be an xyz graph.

Another important cubic Cayley graph is that of the symmetric group of permutations
on four elements, generated by transpositions of adjacent elements. This graph forms
the skeleton permutohedron, the convex hull of the 24 permutations of (1,2,3,4) in the
three-dimensional subspace x +y 4z +w = 10 of R* [13]. Moving each permutation
to the position of its inverse causes the edges to fall into three parallel classes, and if
we then transform the drawing affinely so that these three classes are perpendicular, the
result is an xyz graph. Figure[3shows the permutohedron, the resulting xyz drawing, and
another xyz drawing in which we have permuted the coordinate values manually to re-
duce the number of crossings. A different Cayley graph for the same symmetric group,
generated by the permutations (12)(3)(4), (13)(2)(4), and (14)(2)(3), is the 24-vertex
symmetric graph shown in Fig. Bl Higher dimensional permutohedra have too many
edges per vertex to be xyz graphs, but a different Cayley graph for the symmetric group
Sy, generated by a permutation that swaps the first two elements and another permuta-
tion that rotates all but the first element, is an xyz graph whenever n is an odd number
greater than three. For n = 5 this graph forms the skeleton of a uniform polyhedron, the
truncated dodecadodecahedron (Fig.H), which has 30 square faces, 12 decagonal faces,
and 12 star-shaped faces with ten vertices per face, interpenetrating each other to form a
complex surface. The 3-face-coloring by which the truncated dodecadodecahedron can
be recognized as an xyz surface coincides with the partition of its faces into different
shapes.

Next, consider the points (x,y,z) in the k x k X k grid for which x4 y+zis 0 or 1 (mod
k). They form an xyz graph that is symmetric: that is, its symmetries act transitively
on incident vertex-edge pairs. For k = 3 this produces the Pappus graph. The graph
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Nl

Fig. 3. The permutohedron (left) and two xyz drawings of the corresponding Cayley graph (cen-
ter and right). The center drawing is formed by connecting pairs of permutohedron vertices that
differ by swapping consecutive coordinates and affinely transforming so that the edges are per-
pendicular; the right drawing permutes the values of each coordinate to realize the Cayley graph
as the skeleton of an orthogonal polyhedron.

F3; shown on the left of Fig. [Slis the Dyck graph, a 32-vertex symmetric cubic graph
embedded by the same construction with k = 4. (Here F,, refers to the unique n-vertex
cubic symmetric graph as listed in the Foster census [17]].) Visible near the equatorial
plane of the Dyck graph drawing are a number of six-vertex cycles that are not faces
of the corresponding xyz surface (they use edges parallel to all three coordinate axes,
while the surface faces are restricted to axis-parallel planes); this pattern persists for
larger k, and if one analogously forms an infinite xyz graph from the points in a three-
dimensional grid with coordinates summing to O or 1, the result is isomorphic as a graph
to the hexagonal tiling of the plane [11]].

A different construction for cubic symmetric xyz graphs is possible, based on the
infinite tiling of the plane by regular hexagons. Three-color the hexagons of this tiling,
choose a rhombus with angles of /3 and 27/3, having its vertices at the centers of tiles
that are all the same color, and form a torus by gluing opposite sides of this rhombus
together. The result, as shown in Fig. Bl center, is an xyz surface. The graph embedded
on this surface is symmetric, because we can transform any incident vertex-edge pair
into any other such pair by a combination of translations and rotations by an angle
of /3. When n = 184> for some ¢, one can form an n-vertex symmetric graph using
both of the constructions above, either by forming a torus from a rhombus containing
n/2 hexagons, with sides parallel to the edges of the hexagonal tiling, or by using the
points congruent to 0 or 1 in a 3¢ X 3¢ x 3¢ grid. Both graphs formed in this way
are isomorphic, but (except for k = 1) the xyz graph embeddings resulting from these
constructions are inequivalent: the xyz surface resulting from the k X k x k grid has fewer
faces with more vertices per face. For instance the 72-vertex cubic symmetric graph F7,
forms an xyz surface with 18 12-vertex faces (a 6 x 6 x 6 grid) or with 36 6-vertex faces
(a rhombus containing 36 hexagons).

Figure [3] right, shows another cubic symmetric graph, Fy, that does not fit into
either of these constructions. Fyg is the double cover of the regular dodecahedron; that
is, it is the bipartite graph formed by making two copies of each dodecahedron vertex,
colored black and white, and connecting the white copy of each vertex to the black
copy of each of its neighbors. Its xyz graph representation has faces of three types: two
decagons formed as the double covers of a pair of opposite dodecahedron faces, two
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Fig. 4. The truncated dodecadodecahedron, from Wikimedia Commons, originally uploaded to
Wikipedia by Tom Ruen in October 2005 and created using Robert Webb’s Great Stella software
(http://www.software3d.com/Stella.html). The vertices and edges of this shape form a Cayley
graph for the symmetric group S5, with generators (12)(3)(4)(5) and (1)(2345); the faces in the
figure are 3-colored, giving an xyz surface representation of the graph.

&5
Fy
'F“ . B

Fig. 5. Left and right: the Dyck graph F3; and the double cover of the dodecahedron Fyy, two
cubic symmetric graphs drawn as xyz graphs. Center: Construction of cubic xyz surfaces as toric
quotients of the three-colored hexagonal tiling.

more decagons formed from the double cover of the equator between those two faces,
and ten octagons formed as the boundary of a pair of adjacent dodecahedron faces that
lie on opposite sides of the equator. There are six ways of choosing two opposite faces
from which the decagons are formed, and once that choice is made there remain two
ways of choosing the octagons to form an xyz surface, so Fy9, viewed as a labeled graph,
has 12 combinatorially distinct xyz surface representations.

We applied our implementation of an xyz graph embedding algorithm to the Foster
census of symmetric cubic graphs and did not find any other xyz graphs of this type
on 56 or fewer vertices.

5 Planar and Nonplanar Graphs

We may exactly characterize the planar xyz graphs.
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Fig. 6. An embedding of K3 3 in the projective plane with one hexagonal face and three quadri-
lateral faces (left) and a GEM representation of the embedding (right). From [10]].

Theorem 6. Let G be a planar graph. Then G is an xyz graph if and only if G is bipar-
tite, cubic, and 3-connected. If it is an xyz graph it has a unique representation as an
xyz surface, up to permutation of the face colors of the surface.

Corollary 2. We may test in linear time whether a planar graph G is an xyz graph.

The xyz graph formed from the points (x,y,z) in the k X k x k grid for which x+y+z
is 0 or 1 (mod k) has 2k? vertices and 3k> edges but only 3k faces (one per axis-aligned
plane) so its Euler characteristic is 3k — k. If G and G’ are xyz graphs, with designated
vertices v and V', we may form the connected sum of G and G’ by aligning the two
graphs in R? so that v and v/ coincide (and so that no pairs of vertices, one from G and
one from G’, lie on an axis-parallel line unless both vertices in the pair are adjacent to
v and V') and then by removing v and v/, leaving in their place a non-vertex point where
the lines through three edges cross. The 14-vertex planar graph in the center of Fig. [I]
can be viewed in this way as a connected sum of two cubes. In terms of xyz surfaces,
the connected sum operation can be viewed as cutting the two surfaces by a small disk
surrounding each of v and v/, and gluing the three faces surrounding this hole on one
surface to the faces of corresponding colors surrounding the hole on the other surface,
to form a handle connecting the two surfaces. By forming connected sums of tori and
projective planes (the xyz graphs on the left and right of Fig. [l respectively), we may
form xyz surfaces of any topological type.

An alternative construction allows arbitrary surfaces to be represented as xyz sur-
faces: the graph encoded map (GEM, Fig. [6) [4,[10]. Let G be any graph embedded
on a 2-manifold in such a way that each face of the embedding is a topological disk
bounded by a simple cycle of G. A flag of this embedding is a triple of a vertex, edge,
and face that are all incident to each other, and the graph encoded map M of this em-
bedding is a 3-edge-colored cubic graph, having a vertex for each flag of the embedding
of G. Two vertices of M are adjacent if the corresponding two flags differ only in a ver-
tex, differ only in an edge, or differ only in a face; the edge coloring of M determines
which type of difference each edge of M represents. M itself can be embedded on the
same surface, with a 2k-cycle for each vertex of degree k in G or each face in G that
is surrounded by k edges, and a 4-cycle for each edge of G. These cycles form an xyz
surface, in which the color of a face in the GEM is determined by whether it represents
a vertex, face, or edge in G, so M is an xyz graph.
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Fig.7. A graph that can be embedded on the torus as an xyz surface in two different ways

The 32-vertex graph shown in Fig. [/l has two different torus embeddings, showing
that the uniqueness of xyz surface representations for planar graphs does not directly
generalize to other surfaces. The colored region of the figure shows a rectangle that can
be glued to itself in a brick wall pattern to form a torus; vertices are repeated outside
the colored rectangle to show the graph edges that cross the glued rectangle boundaries.
This ambiguously-embeddable graph plays a key role in our NP-completeness proof in
Sect.

6 Complexity of xyz Graph Recognition

We show that recognizing xyz graphs is NP-complete, via a reduction from graph 3-
colorability, using pieces of surfaces to represent the vertices to be 3-colored and the
edges that connect them; these pieces are linked together using connected sum opera-
tions. The edge gadget is based on two copies of the graph of Fig.[7] connected to each
other and the vertex gadgets by narrow tubes. We represent the choice of a color for a
vertex by the choice of which coordinate axis to make parallel to certain edges of the
vertex gadget. We omit the details for lack of space.

Theorem 7. It is NP-complete, given an undirected graph G, to determine whether G
can be represented as an xyz graph.

7 Conclusions

We have studied examples, algorithms, topology, and complexity of xyz graph drawing.
Our investigation opens up several avenues for further research:

— In our construction of an xyz graph from an xyz surface, we may permute the coordi-
nate values associated with each face, giving drawings with different appearances
for a single xyz surface representation (Fig. B). How difficult is it, given an xyz
surface, to find a permutation of coordinate values that minimizes the number of
crossings?

— In some cases it may be possible to reduce the volume of the grid into which an xyz
graph is embedded by allowing multiple faces of an xyz surface to share the same
coordinate value. How difficult is it to find the minimum volume xyz graph drawing
of a given xyz surface?



88

D. Eppstein

Fig. 8. A point set such that lines in three parallel families each contain zero or exactly two points,
and the cubic graph derived from it. This graph is not an xyz graph, as it contains triangles.

— The rightmost drawing of the permutohedron in Fig. 3 shows it as the boundary

of an orthogonal polyhedron (perhaps suitable for the design of a building). How
difficult is it to determine whether such a representation exists for a given bipartite
3-connected cubic planar graph?

Our reduction from graph coloring to xyz graph recognition produces graphs of high
genus, but recognizing xyz graphs is easy in the case of genus zero (planar graphs).
Is there an efficient algorithm for recognizing xyz graphs of bounded genus?

For Cayley graphs with one self-inverse and one non-self-inverse generator, the
difficulty in finding xyz graph representations is linked to the need to indepen-
dently orient each cycle formed by the non-self-inverse generator. However, as
these graphs are highly symmetric, it seems natural to hope that these cycles may
be oriented in a symmetric way that avoids the need for testing all orientations of
all cycles. Is there a Cayley graph that may be represented as an xyz graph only by
orienting its cycles asymmetrically?

Kuperberg’s example of the prism shows that our algorithm for testing xyz graph
representability using all partitions of the graph into three matchings cannot be im-
proved, unless we avoid some partitions. However, for the prism itself, there are
many partitions that can safely be avoided: for an xyz graph representation, we can-
not use any partition into three matchings that uses three different orientations in a
single quadrilateral. One can also devise similar conditions that restrict the match-
ings in hexagons and other short cycles of a given graph. Can one take advantage of
these forbidden configurations to eliminate some partitions into matchings earlier
in the algorithm and reduce its running time?

In our discussion of graphs represented by the points with coordinates summing to
Oor1inak x k x k grid, we briefly referred to a similar construction of an infinite
xyz graph in an infinite three-dimensional grid, isomorphic to the hexagonal tiling
of the plane, a graph treated in more detail in another paper [L1]. To what extent can
the correspondence between xyz graphs and xyz surfaces be generalized to infinite
graphs? What is the most appropriate way of handling the infinite chains of edges
parallel to a single coordinate plane that can arise in the infinite case?

If a planar point set intersects any line parallel to the sides of an equilateral triangle
in either zero or two points, we may define a cubic graph from it analogously to the
three-dimensional definition of xyz graphs; any xyz graph has a planar projection of
this type. However, these planar three-orientation graphs are more general than xyz
graphs; Fig. [§] shows a graph of this type that is not an xyz graph. To what extent
may our theory be extended to these graphs?
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Abstract. As graphics processors become powerful, ubiquitous and eas-
ier to program, they have also become more amenable to general purpose
high-performance computing, including the computationally expensive
task of drawing large graphs. This paper describes a new parallel anal-
ysis of the multipole method of graph drawing to support its efficient
GPU implementation. We use a variation of the Fast Multipole Method
to estimate the long distance repulsive forces in force directed layout.
We support these multipole computations efficiently with a k-d tree con-
structed and traversed on the GPU. The algorithm achieves impressive
speedup over previous CPU and GPU methods, drawing graphs with
hundreds of thousands of vertices within a few seconds via CUDA on an
NVIDIA GeForce 83800 GTX.

1 Introduction

Automatic graph layout algorithms convert the topology of vertex adjacency
into the geometry of vertex position. These layouts usually represent vertices as
points or icons in two or three dimensions connected by edges represented by
lines or arcs. Automatic graph drawing has many important applications in in-
formation visualization, software engineering, database, web design, networking,
VLSI circuit design, social network analysis, cartography, bioinformatics and the
organization of visual interfaces for many other domains [4]. Growth in infor-
mation technology and data processing has increased the size and complexity
of graph datasets, posing the problem of drawing large graphs with millions of
nodes that demand the consideration of new scalable parallel approaches.

Classical force directed algorithms [7 O 12| 22] layout graphs of hundreds of
vertices, but run in O(|V|? 4 |E|) time and do not scale well for larger graphs.
Approximate force directed techniques [I3), 14} [I8] 20, [32] perform better, using
a multilevel approach based on a graph hierarchy, where smaller coarser graph
levels guide the initial drawing of progressively larger, finer levels of the graph
hierarchy. The class of algorithms based on linear algebra [21], 23] are even faster.
They perform best on grid-like regular graphs but can condense features on other
graph types (e.g. with many biconnected components) [19, 2], 23].

These state-of-the-art algorithms for straight line graph drawing can still run
too slow on modern graphs, e.g. six minutes for a graph of 143,437 nodes [I§].
Other approaches work efficiently but with uneven layout quality across graph
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type, e.g. extremely fast ACE[23] and HDE[2I] methods work best only on quasi-
grids. To address both limitations, this paper reworks the general-graph quality
of approximated force directed layout into a form that can be efficiently processed
on the GPU to layout hundreds of thousands of nodes within a few seconds. Our
GPU implementation of the fast multipole multilevel method (FM?) is more
than 20x faster than the latest reported CPU version [I§].

We parallelize a potential field based multilevel algorithm that uses only mul-
tipole expansions (no local expansions) to approximate long distance forces.
This combines Barnes-Hut [3] and fast multipole methods (FMM) [I6]. The
FMM approach has proven error bounds and better asymptotic complexity,
whereas Barnes-Hut is popular due to its simplicity and a low associated con-
stant factor of implementation [I5]. Their hybrid enjoys good error bounds and
an O(|V|log |[V| + E) time complexity with low constant factor, and yeilds high
quality layouts that represent both local and global structures well, even for
graphs deemed challenging [19].

The modern graphics processing unit (GPU) was initially designed for raster-
based videogame graphics, but its marked improvement in performance and
programmability has generated considerable interest in it as a high-performance
computing platform [27, [29]. However, GPU programming remains challenging,
and its performance relies on the ability to decompose a task into concurrent
identical data-parallel instruction threads with limited support for stacks or
recursion, and managing their access patterns to the various kinds of memory
(shared, local, CPU, etc.). The contributions of this paper are the systems-level
design and deployment of an efficient manycore graph drawing algorithm and
to show that the acceleration of multipole-based layout justifies the challenges
posed by the GPU’s architecture and programming.

The main challenge of FMM processing on a single-instruction multiple-data
(SIMD) processor (such as a GPU) is managing a shared spatial hierarchy. The k-
d tree has been a popular choice for particle simulation [8] 2] as its size complexity
is distribution independent [31], but does not map easily to the GPU’s SIMD
programming model. We combine the CPU and GPU to construct the tree,
using the GPU for fast median selection so the CPU can construct a balanced
k-d tree with O(log N) depth that keeps force calculation within O(N log N).
We traverse the structure entirely on the GPU, using an efficient “stackless”
k-d tree representation, where each node has a pair of pointers, one pointing
to the first child and the other to the next node (in pre-order traversal order).
Each processor of a data-parallel SIMD processor can efficiently traverse such a
hierarchy by simply following one of two pointers [6], [10].

2 Related Work

The Fast Multipole Multilevel Method (FM?) produces pleasing layouts in the gen-
eral case and is relatively fast [I8]. It combines a multilevel spatial partitioning with
a multipole approximation of all pairs repulsive forces, specifically Greengard’s
FMM algorithm [16]. Our new GPU version uses only the multipole expansion
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coefficients and not the local expansion coefficients to approximating repulsive
forces. We show that these multipole expansion coefficients alone are sufficient to
produce high quality layout and the added complexity of working with local expan-
sion coefficients is unnecessary. Our GPU implementation is 20 x — 60 x faster than
the preveious CPU implementations of FM?3. Another improvement over the pre-
vious CPU FM? implementation [I8] is that we use a k-d tree instead of quad tree
for force calculations, motivated by GPU architecture as elaborated in Sec. [£.1]

Our implementation is more than 30% faster than a previous GPU multi-
level force directed graph layout method [I1]. That method approximated the
all-pairs repulsive force with a center of gravity multipole acceptance criteria,
which when compared to FM? has a larger aggregate error that can even become
unbounded for unstructured distributions [28]. Our approach’s time complexity,
O(|V|log |V | + |E|), improves their’s, O(|V|*5 + | E|).

Others have implemented general-purpose FMM on the GPU [30, [I7]. Their
approaches differ from ours as they include all FMM steps, most of which are un-
necessary for graph drawing. Our approach utilizes the k-d tree which outperforms
their quadtree, and we focus specifically on the issue of GPU tree construction.

3 Algorithm

Multilevel layout methods significantly reduce running times by converging to
the optimal layout in fewer iterations [I8, 23| 20] 14, 13, [32]. This approach
recursively coarsens an input graph G° to produce a series of smaller graphs
G'...G*, until the size of the coarsened graph falls below a threshold. An initial
layout is first computed iteratively for the coarsest graph G*. The converged
vertex positions of a level i graph G are used as the initial vertex positions of
the next finer level i — 1 graph G*~!, which should relax into a converged state
after a few iterations. This continues until the layout for the finest graph (the
input), G°, is obtained.

We use the multilevel method shown in Algorithm [l The ComputeLayout step
is the most expensive with runtime complexity of O(|V|log|V|+ |E|), and is ac-
celerated by the GPU. The remaining functions are linear O(|V'|) and computed
on the CPU.

3.1 Coarsening

The function CoarsenGraph coarsens by maximal independent set (MIS) filtra-
tion, which has the advantage of being simple, efficient and produces a filtration
controlled by the geometry of the graph [I4] [13]. The vertex subset S C V is
an independent set of a graph G = (V| E) if no two elements of S are con-
nected by an edge. A maximal independent set filtration of G is a family of sets
V=Vo>V!I>...>V* >0, such that each V* is an independent set of V¢~ 1.

Calculating optimal independent sets is a NP-Complete problem, though an
efficient 2-approximation exists. An independent set .S of a set V' can be computed
by repeatedly deleting a vertex v € V and adding it to S and removing all vertices
adjacent to v from V, until V' is empty. The set S is the desired independent set.
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Algorithm 1. Overall Algorithm

Input: G = (V, E) with random initial placements
Output: G = (V' E) with final placements
initialization;
graph G° — G;
threshold «— 50;
1 «— 0;
while |V?| > threshold do
graph G «— CoarsenGraph(G');
1e—11+1
end
while ¢ > 0 do
ComputeLayout(G*) ; /* via the GPU */
if i > 1 then
InterpolatelnitialPositions(G*™')
end
pe— 11— 1
end
return G°

3.2 Interpolation

The function InterpolatelnitialPositions derives the starting positions of vertices
in G’ from the positions of vertices in the converged layout of G**!, using a
relaxation method [I1]. Each vertex v € V' is initially placed at the position
of its parent vertex v’ € V1. Then several iterations (we used a maximum of
50) of a form of graph Laplacian move each vertex to an average of its current
position, p;, and that of its neighbors N;,

1
P = . 1
p 9 deg E pj (1)
JEN,;

3.3 Force Calculation

For each graph G, the function ComputeLayout iteratively calculates and applies
forces until it converges. The coarsest graph G* typically requires 300 iterations,
but this number decays rapidly for finer graphs and in most cases the finest
graph G needs zero iterations to converge. The pseudocode for one iteration is
given in Algorithm

3.4 Force Model

As in the force directed algorithm [12], we assume that the vertices of a graph
G(V, E) are charged particles that repel each other with an inverse-square law,
and the edges are springs that contract with a non-physical but effective force [I8]
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Algorithm 2. Force Calculation Algorithm

Input: G = (V, E) with initial placements
Output: G = (V' E) with final placements
kdTree «— construct K DTree(V)
Spawn |V| threads on the GPU ; /* Thread i calculates force on v; */
foreach thread ¢ do
force «— calculate Repulsion(v;, kdTree)
force «— force + calculateAttraction(v;, E)
Send calculated force values to CPU in an array
end
; /* Done on the CPU to avoid global synchronization on the GPU x/
forall v; do
moveVertex(v;, force)
end
return G

F = d*log(d/d") (2)
where d and d’ are the actual and desired lengths of the edge.

3.5 Multipole Calculation

The most expensive step in force directed graph drawing is the all-pair repulsive
force calculations. Although the force calculations may be quite complex in the
near-field (when two vertices are very close to each other), force calculations
are well-behaved in the far-field. In particular, if a vertex is sufficiently far from
a set of charges, we may compute the aggregate effect of the charges on that
vertex, and need not resort to computing every interaction. Greengard [16] first
demonstrated how potential field based approximations can be used to find the
far-field forces using quad trees. The idea is to construct a tree based spatial
partition of particles and then evaluate multipole expansions using this tree.

Theorem 1. (Multipole Expansion)Suppose that m charges of strengths q; are
located at points z;, fori = 1...m, with center zg and |z; — zo| < r. Then for any
z € C with |z — 29| > r, the potential (z) induced by the charges is given by

D(z) = Qlog(z — 20) +Z (3)
k=1

Z—Zo

where Q = Y. ¢q; and ar = Y. —qi(z; — 20)*/k. As force is the negative of the
gradient of the potential, the force that acts on a particle of unit charge at position
z is given by (Re(?'(2)), —Im(P'(2))).

Instead of summing up an infinite series for (3], only a constant number p of
terms are calculated. The resulting truncated Laurent series is called p-term
multipole expansion. We choose p = 4 as it is sufficient to keep the error of the
approximation less than 1072 [1§].
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As the k-d tree is constructed, the coefficients of this multipole expansion are
calculated and stored for each node using ([B)). The center of a k-d tree node is
the geometric center of the rectangular region it represents, and the radius used
is the radius of a circle circumscribing this rectangular region. Each node in the
k-d tree thus maintains a collection of charges (vertices of the graph) lying in its
rectangular regions. Let G(V, E) be a graph and K be the k-d tree of the vertices
of G. Let n be a node of K with center zy and radius r. Let {v;,va,...,v;} be the
set of vertices of graph G that are contained in k-d tree node n. To calculate the
approximate repulsive force on each vertex v € V located at z, K is traversed
from the root node. At a node n, if the distance between zg and z is greater than r,
then the approximate repulsive force between v and vertices v;{i = 1, ..., k} are
calculated using [@B]). Otherwise, if n is an internal node, the process is repeated
for its children, and if n is a leaf node, the exact repulsive forces are calculated.

4 GPU Implementation

4.1 Processing the K-D Tree

Unlike the more traditional quadtree used in n-body simulation, we used a k-d
tree [5]. Aluru et al.[I] has shown that the running time of adaptive FMM using
quad tree [I6] depends on the particle distribution and cannot be bounded in
number of particles. In order to remedy this and guarantee O(|V |log|V|) running
time complexity, [18] uses complicated tree thinning and balancing techniques.
These techniques do not translate into efficient GPU implementation because
of the lack of recursion (no unbounded stack) and dynamic memory allocation.
Since the k-d tree is a density decomposition tree and not a spatial decomposition
tree, it does not suffer from distribution dependent running time [31].

The CUDA GPU programming model has a complex memory hierarchy and
one has to keep in mind multiple factors to achieve good performance [26]. The k-
d tree is traversed by all of the GPU threads and all the threads need the vertex
position data for near field and attractive force calculations. Thus these data
structures are passed to the GPU in texture memory, which is cached yielding
higher bandwidth from k-d tree node locality. In our implementation, the k-d tree
is constructed for the first four iterations and then for every twentieth iteration,
because it changes only slightly in each later iteration and these changes do not
significantly impact force calculations.

T

A
8 O

S

¥ ¥

Fig.1. A “stackless” k-d tree pre-threaded with first child (blue) and next neighbor
(red) pointers
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Traversal. Stackless traversal of the k-d tree on the GPU is achieved by a
structure shown in Fig. 1 Each node of the tree has two pointers. The blue
(success) pointer indicates its first child whereas the red (failure) pointer points
to its next neighboring node. This tree threading allows the streaming SIMD
GPU processing to parse a hierarchical data structure efficiently [0, [10]. The
data parallel SIMD architecture of the GPU requires that when control flow
reaches a condition, if some processors follow one side of the condition and the
rest of the processors follow the other side of the condition, then all of the
processors need to evaluate both sides of the condition, zeroing out the result of
the side not used by each processor. Tree threading allows the processors instead
to simply follow one of two pointers, replacing conditional control flow with data
indirection which is fully supported by the GPU.

Construction. A k-d tree is constructed recursively. Each node of a k-d tree
divides the set of vertices it represents V, into two equal sets by splitting along
a chosen dimension. (In our implementation, the splitting dimension alternates
between the two axes.) This bisection is achieved by a radix selection algorithm
[24] whose worst case time complexity is O(]V]). The process of finding the
median and splitting the set of vertices is applied recursively until a node has less
than threshold number of vertices (four, in our implementation). The multipole
expansion coefficients from (B]) of each node are calculated as the k-d tree is
constructed. This median splitting approach generates a balanced k-d tree in
O(|V1]log|V]|) time.

The radix selection algorithm is faster on the GPU for arrays of large size. In
our configuration, the crossover array size, for which the GPU radix selection is
faster than a well tuned CPU implementation, is 50,000, and we use the CPU
for smaller arrays. We implemented radix selection using efficient GPU scan
primitives [29] (which have also been used for GPU radix sort [25]).

4.2 Radix Selection with Prefix Scan

Radix select is the selection analog of the radix sort algorithm. It is recursive
and selects the key (vertex coordinate in our case) whose rank is m, from an
array A[l...n] of n keys. The array is split at position s, into two sub-arrays
based on the most significant bit: A[l...s] contains all keys with 0 as the most
significant bit, and A[s+1...n] contains all keys with 1 as the most significant
bit. Then the next significant bit is considered. This goes on recursively until
the key with rank m is found.

To carry out the split at each level of recursion in parallel, each thread needs
to copy a different input key A[i] to the split array. The address of each key
Ali], is the number of keys in A[1...7 — 1] whose most significant bit is 0. The
array of these counts is called the prefix sum of A, denoted here as B[l...n]
such that B[i] = >, _; A[j]. We compute this prefix sum on the GPU using an
efficient O(n) CUDA prefix scan implementation [29]. This work-efficient scan
of n elements requires two passes over the array: reduce and down-sweep. Each
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requires log(n) parallel steps. The amount of work is cut in half at each step,
resulting in an overall work complexity of O(n).

4.3 Compressed Sparse Row Representation

We use a compressed sparse row (CSR) format, essentially a sparse matrix data
structure [29], for representing the edges of the graph in GPU texture memory.
It avoids conditional statements and thus makes the implementation fast. Let 4
be a vertex of graph G such that 4 has k edges (4,71), (i, j2)---(4, jx ). Then the
graphs adjacency list is represented by 2 arrays:

1. Edge-value: For each vertex i, this array stores vertices {j1, j2...jx} i.e. the
adjacency list of i.

2. Edge-index: Edge-Index|[i-1] and Edge-Index][i] store the beginning and end-
ing of the adjacency list of vertex 4.

For each vertex i, a GPU processing thread uses this CSR representation to
calculate the attractive forces due to its incident edges. This parallel computation
is not perfectly load-balanced as the work done by each thread depends on the
degree of the vertex it is handling. Processing the edges instead of the vertices
would rectify this, but would require either atomic operations for adding up all
the forces on a single vertex, or a prefix sum to add up the forces calculated by
different threads, and neither option is very efficient.

The edge-value array is accessed frequently by each thread, and so is placed
in the cached texture memory of the GPU. The edge-index array is accessed
only twice per thread with negligible gain from caching, and so is placed in plain
read-write GPU memory.

5 Results

The algorithm was tested on a single core 2.21 GHz AMD Athlon(tm) 64 Pro-
cessor running Windows XP, with an NVIDIA GeForce 8800 GTX card pro-
grammed via the CUDA (Compute Unified Device Architecture) programming
model, compiled by a C compiler with language extensions [26]. Both CPU and
GPU implementations used single precision floating point.

The algorithm was tested on a variety of graphs extensively used in graph
drawing research to support comparisons [I8], 19 [33]. Figure [ shows selected
layouts and their associated run times. The layouts of all the tested artificial and
real-world graphs resemble those produced by FM? [I8]. Like FM?, our algorithm
is able to display the regularity of six-ary trees, the symmetry of spider and flower
graphs and the global structure of snowflake graphs.

Figure[Bshows for various graphs the speedup our implementation achieves over
FM? and over the GFDL force directed layout GPU implementation [I1]. It shows
our implementation to be 1.3x — 4 faster than GFDL and 20x — 60x faster than
CPU implementation of FM?. Figure @] demonstrates the scalability of our GPU
implementation. Its running time is largely a factor of graph size, though dependent
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4elt: 1.58s, final512: 4.50s, crack: 0.937s, flower B: 0.547s, sierpinski 08:
14,588v, 40,176e 74,752v, 10,240v, 30,380e 9,030v, 131,241e 0.984s, 9,843v,
261,120e 19,683e

y \ e

fe pwt: 2.48s, fe ocean: 12.07s, besstk31: 1.31s, besstk32: 1.99s, besstk33: 0.968s,
36,463v, 143,437v, 35,586v, 44,609v, 8,738v, 291,583e
144,794e 409,593e 572,913e 985,046e
\\‘:l e
T \'-\ fj_ -
- P l‘: -

e

snowflakes C: add32: 1.40s, grid rnd 100:

1.94s, 97,001v, 10,000v, 22,000e 55,987v, 55,986e 4,960v, 9,462¢  1.72s, 9,497v,
97,000e 17,849¢

Fig. 2. Layouts of various graphs computed with out approach, indicated by name,
running time (in seconds), followed by the numbers of vertices and edges

on the number of iterations needed to resolve vertex placement at each level of the
graph hierarchy. Thus the large 6-ary tree required significantly more iterations (by
a factor of five) to reach a planar embedding than did the others.

We recorded the running time of the major parts of the algorithm for both
the CPU and the GPU implementations. Table [Il shows the result for a few
graphs. The CPU implementation spends on an average nearly 85.5% of CPU
cycles in calculating the forces and this step is clearly the performance bottle-
neck. The GPU implementation reduces the time spent in calculating forces by
7-40 times (depending upon the size of the graph). One disadvantage of the GPU
implementation is that lots of cycles are wasted in copying data back and forth
between the GPU and the CPU. GPU implementation spends 18%-25% of the
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Table 1. Running time (in seconds) comparing total and component run times on
CPU (numerator) v. GPU (denominator)

Graph

V]

|E|

Total

Coarsening

Data Trans.

Tree Const.

Force Calc.

besstk33

8,738

291,583

1.63 / 0.968

0.0 /0.0

0.032 / 0.141

0.095 / 0.096

1.48 ] 0.242

4elt

14,588

40,176

7.23 / 1.58

0.0 /0.0

0.172 / 0.375

0.516 / 0.375

5.92 / 0.672

crack

10,240

30,380

3.51 / 0.937

0.0 /0.0

0.080 / 0.172

0.456 / 0.203

2.81 /0.449

final512

74,752

261,120

81.55 / 4.50

0.25 / 0.25

0.260 / 0.828

3.39 / 1.49

73.8 / 1.932

fe_ocean

143,437

409,593

90.9 / 12.07

41 /41

1.30 / 1.50

5.20 / 3.89

83.0 / 2.48

running time in data movement as compared to 2%-3% time spent by the CPU
implementation on the same. Time for constructing the k-d tree is nearly same
in the CPU and GPU implementations, for graphs with less than 50,000 vertices.
For larger graphs, k-d tree construction is more than 30% faster on the GPU.
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6 Conclusions and Future Work

The parallel algorithm described in this paper makes graph drawing significantly
faster without compromising layout quality, improving previous fast implemen-
tations that were limited to grid-like graphs. The speedup obtained shows that
it is now possible to draw general graphs with hundreds of thousands of nodes
within a few seconds via the GPU. We also showed that for the purpose of graph
drawing multipole expansions suffice, and local expansions in FMM should be
best avoided due to their the high constant factor.

The optimized layout of each graph required the hand tuning of a number
of parameters, as automatic inference of these optimal parameters remains an
open research problem. Further algorithm improvements may be possible. In-
creasing CPU-GPU bandwidth may lower the 50,000-node limit where the GPU
outpaced the CPU on median finding, and further load balancing may improve
force calculation.

Acknowledgments

This work is supported by the NSF under the grant #0534485, and by NVIDIA
Corp.

References

[1] Aluru, S., Prabhu, G.M., Gustafson, J.: Truly distribution-independent algorithms
for the n-body problem. In: Proc. Supercomputing, pp. 420-428 (1994)

[2] Appel, A.W.: An efficient program for many-body simulation. STAM J. Sci. &
Stat. Comp. 6(1), 85-103 (1985)

[3] Barnes, J., Hut, P.: A hierarchical o(n log n) force-calculation algorithm. Na-
ture 324(6096), 446-449 (1986)

[4] Batini, C.: Applications of graph drawing to software engineering (abstract).
SIGACT News 24(1), 57 (1993)

[5] Bentley, J.L.: Multidimensional binary search trees used for associative searching.
CACM 18(9), 509-517 (1975)

[6] Carr, N.A., Hoberock, J., Crane, K., Hart, J.C.: Fast gpu ray tracing of dynamic
meshes using geometry images. In: Proc. Graphics Interface, pp. 203-209 (2006)

[7] Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM
Trans. Graph. 15(4), 301-331 (1996)

[8] Dikaiakos, M.D., Stadel, J.: A performance study of cosmological simulations on
message-passing and shared-memory multiprocessors. In: Intl. Conf. on Super-
computing, pp. 94-101 (1996)

[9] Eades, P.A.: A heuristic for graph drawing. Congressus Numerantium 42, 149-160
(1984)

[10] Foley, T., Sugerman, J.: Kd-tree acceleration structures for a GPU raytracer. In:
Proc. Graphics Hardware, pp. 15-22 (2005)

[11] Frishman, Y., Tal, M.-A.: Multi-level graph layout on the gpu. IEEE Trans. Vis.
Comp. Graph. 13(6), 1310-1319 (2007)



[12]

[13]

[14]

[15]

[16]
[17]
18]

[19]

[20]

[21]

22]
[23]
[24]
[25]
[26]

[27]

28]
[20]
30]
31)
32]

[33]

Rapid Multipole Graph Drawing on the GPU 101

Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Software - Practice and Experience 21(11), 1129-1164 (1991)

Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to
force-directed layouts of large graphs. Comput. Geom. Theory Appl. 29(1), 3-18
(2004)

Gajer, P., Kobourov, S.G.: GRIP: Graph dRawing with intelligent placement. In:
Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222-228. Springer, Heidelberg
2001

E}ram)a, A.Y., Kumar, V., Sameh, A.: Scalable parallel formulations of the Barnes-
Hut method for n-body simulations. In: Proc. Supercomputing, pp. 439-448
(1994)

Greengard, L.F.: The rapid evaluation of potential fields in particle systems. Ph.D.
thesis, Yale, New Haven, CT, USA (1987)

Gumerov, N.A., Duraiswami, R.: Fast multipole methods on graphics processors.
J. Comp. Physics 227, 8290-8313 (2008)

Hachul, S., Jinger, M.: Large-graph layout with the fast multipole multilevel
method. Tech. rep., Zentrum fiir Angewandte Informatik Koln (December 2005)
Hachul, S., Junger, M.: An experimental comparison of fast algorithms for drawing
general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843,
pp. 235-250. Springer, Heidelberg (2006)

Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. In:
Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183-196. Springer, Heidelberg
(2001)

Harel, D., Koren, Y.: Graph drawing by high dimensional embedding. In:
Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528. Springer, Hei-
delberg (2002)

Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7-15 (1989)

Koren, Y., Carmel, L., Harel, D.: ACE: a fast multiscale eigenvectors computation
for drawing huge graphs (2001)

Mahmoud, H.M.: Sorting: A Distribution Theory, chap. High Qulaity Ambient
Occlusion. Wiley Interscience, Hoboken (2000)

NVIDIA: CUDA data parallel primitives library,

http://www.gpgpu.org/developer/cudpp/

NVIDIA: CUDA programming guide (2007),

http://developer.nvidia.com/object/cuda.html

Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-Wesley,
Reading (2005)

Sarin, V.: Analyzing the error bounds of multipole-based treecodes. In: Proc.
Supercomputing, p. 19 (1998)

Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for gpu com-
puting. In: Proc. Graphics Hardware, August 2007, pp. 97-106 (2007)

Stock, M.J., Gharakhani, A.: Toward efficient gpu-accelerated n-body simulations.
In: 46th ATAA Aerospace Sciences Meeting & Exhibit (2008)

Uhlmann, J.K.: Enhancing multidimensional tree structures by using a bi-linear
decomposition. Natl. Tech. Info. Sve. ADA229756 (1990)

Walshaw, C.: A multilevel algorithm for force-directed graph drawing. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 171-182. Springer, Heidelberg (2001)
Walshaw, C.: Graph collection (2007),
staffweb.cms.gre.ac.uk/~wc06/partition/


http://www.gpgpu.org/developer/cudpp/
http://developer.nvidia.com/object/cuda.html
staffweb.cms.gre.ac.uk/~wc06/partition/
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Abstract. We present a linear algorithm for c-planarity testing of clus-
tered graphs, in which every cluster has at most four outgoing edges.

1 Introduction

Clustered planarity is one of the challenges of contemporary Graph Drawing.
It arises naturally when we want to draw the graph with further constraints
on embedding of the vertices. This includes for example visualizing a computer
network with the computers of the same department, faculty and institution
being grouped together. Another application is in designing an integrated circuit
with the connectors of each components being close to each other and the logical
parts of the circuit being grouped together. There are many other applications
including visualizations of process interaction, social networks etc.

The concept of the clustered graph—a graph equipped with a system of sub-
sets of vertices (called clusters), that can be recursive— was first introduced
by Feng et al. in [7]. In the same paper they also proved that clustered pla-
narity (shortly c-planarity) can be tested in polynomial time for c-connected
clustered graphs (where each cluster induces a connected subgraph of the un-
derlying graph). This was later improved by Dahlhaus [4] to a linear time al-
gorithm. The paper [7] also contains a useful characterization of the c-planar
graphs: Graph is c-planar if and only if there is a set of edges (usually called
a saturator) that can be added to this graph to obtain a c-connected c-planar
clustered graph.

Since then many algorithms for testing the c-planarity were based on searching
for a saturator. These include an O(n?)-time algorithm for ”almost” c-connected
clustered graphs by Gutwenger et al. in [9/10]. An efficient algorithm for clusters
with cyclic structure on a cycle was developed in [3]. The case of disjoint clusters
on an embedded graph with small faces was recently addressed in [5]. Very similar
result was at the same time independently published by Jelinkovd et al. [12].
The paper [12] also contains an O(n?)-time algorithm for clusters of size at most
three on a rib-Eulerian graph. This is an Eulerian graph that is obtained from
a constant size 3-connected graph by multiplying and then subdividing edges.

* Supported by grant 201/05/H014 of the Czech Science Foundation.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 102 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Another approach is to mimic the original proof of Feng et al. [7] where the
behavior of the connected clusters is described by special trees. In this way a
slight generalization to extrovert clustered graphs was given by Goodrich et al.
[8]. In an extrovert clustered graph the parent cluster of any disconnected cluster
is connected and every component of any disconnected cluster is incident to an
edge which leads outside of its parent cluster.

We should also mention that every c-planar graph can be drawn by straight
lines with clusters represented by convex polygons [6]. Another interesting con-
tribution is the characterization of completely connected clustered graphs (where
each subgraph induced by a cluster and its complement are connected) [I]: A
completely connected clustered graph is c-planar if and only if the underlying
graph is planar. More results on c-planarity can be found in [2]. Despite the
number of results the complexity of testing the c-planarity for general instances
remains open.

In this paper we focus on the situation where the number of outgoing edges of
each cluster is small. We notice that in this case the behavior of the clusters can
be simulated by special graphs, no matter whether the subgraph induced by the
cluster is connected or not. We use these ideas to develop a linear time algorithm
to test such graphs for c-planarity. As far as we know this is the first algorithm
that can be used in the cases where the underlying graph is not connected at all
or has very few edges in total. In particular we prove the following theorem:

Theorem 1. Clustered planarity can be decided in linear time for instances,
where each cluster has at most 4 outgoing edges.

Section 2lis devoted to the basic definitions. We also show there that if there is a
cluster with no outgoing edges, then the instance could be split into an instance
formed by the subclusters of the cluster and one formed by the rest. In Section[3]
we show how to replace the clusters by special graphs with the same behavior
and prove that this does not affect the c-planarity. The algorithm is described
in Section [} together with the proofs of the correctness and the running time.
In Section [Bl we show that the approach cannot be generalized this way to the
case of five or more outgoing edges.

2 Preliminaries

Let S, denote the set of all permutations of the set {1,2,...,7}. A permutation
7w € S, is represented by r-tuple (w(1)...7(r)).

Regarding the graph notations, we follow the standard notation on finite loop-
less graphs. A graph is an ordered pair G = (V| E), where V is the set of vertices
and E is the set of edges i.e. pairs of vertices. We simply write uv instead of {u, v}
for edges. If U C V, then G[U] is the induced subgraph of G on vertices U and
G\ U = G[V \ U]. Let n denote the number of vertices |V| of the graph G.

A cluster set on the graph G = (V, E) is a set C C P(V(G)) such that for all
C,D € C, either C' and D are disjoint or they are in inclusion; the pair (G,C)
is called a clustered graph. The elements of C are called clusters. A clustered
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planar embedding of (G,C) is a planar embedding emb of G together with a
mapping emb, that assigns to every cluster C € C a planar region emb.(C)
whose boundary is a closed Jordan curve and such that

— for each vertex v € V and every cluster C' € C, it holds that emb(v) €
emb.(C) if and only if v € C,

— for every two clusters C' and D, the regions emb.(C) and emb.(D) are disjoint
(in inclusion) if and only if C' and D are disjoint (in inclusion, respectively),
and

— for every edge e € E and every cluster C € C the curve emb(e) crosses the
boundary of emb.(C') at most once.

A clustered graph is called clustered planar (shortly c-planar) if it allows a
clustered planar embedding.
The following observation is a trivial consequence of the definition:

Remark 1. A pair (G,0) is c-planar if and only if the graph G is planar.

We say that C € C is a cluster of the bottom-most level if there is no C' € C
such that ¢’ C C.

An edge e = uv is an outgoing edge of a cluster C' if u € C,v € V' \ C or vice
versall Let r(C) = {e = wvle € E,u € C,v € V \ C}| denote the number of
outgoing edges of a cluster C. If the cluster is clear from context we will just use
notation r instead of r(C).

Lemma 1. If C has no outgoing edges then (G,C) is c-planar if and only if
(G\ C,C1) and (G[C],Cq) are c-planar, where C; = {A\C|A € C,A# C,AD
CU{A|AeC,ANC =0} and Co ={B|Be€(C,B+# C,B C C}.

Proof. The direction from left to right is easy, we just omit from the embedding
the parts that are no longer necessary.

So suppose that we have a c-planar embedding emb; of (G \ C,C;) and a
c-planar embedding embs of (G[C],Cz). Take an arbitrary point x in the plane,
such that for all clusters A € C; the following holds: z lies inside the region
(emb1).(A) if and only if C C A. Suppose that there is neither vertex nor edge
of G\ C nor border of a cluster of C; in distance less than € from x in emb;. Now
shrink the embedding embs so that it fits into the $-disc centered in z. Then
take this disc as the embedding of C.

It is easy to check that we obtain a c-planar embedding of (G, C), since the
embeddings emb; and embs cross neither each other nor the embedding of C,
the inclusions of the clusters are preserved and the embedding of the cluster
C contains exactly the embedding of the vertices, edges and clusters it should
contain. ]

! Such an edge is called edge incident with C in [TBI7I9] and extrovert edge in [8].
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Fig. 1. The test graph T and the graph T& from Definition [T]

3 Replacement of Clusters by Graphs

Through this section we suppose, that we have some fixed cluster C' € C of
bottom-most level, that has at most 4 outgoing edges. Having Lemma[Ilin hand
we assume that 1 <r =r(C) < 4.

We denote the outgoing edges by {ey, ..., e, }. We also suppose that e; = v;w;
for all 4, where v; € C and w; € V' \ C' (maybe w; = w; or v; = v; for some
i # ).

We denote by T the following test graph T = ({uo, u1, u2, ug, uq }, {uou, ugus,
UU3, UQUg, U Uz, UsU3, Uslg, Ugty }) (see Fig. [).

Definition 1. We say that the cluster C' admits a permutation = € S, if and
only if the graph T created from T U G[C] by adding edges vy, 1 <i <1 is
planar.

Lemma 2. If the cluster C' admits the permutation m € S, then there exists
a planar embedding of the graph TE such that the vertices of C' are embedded
inside and the vertex ug outside the cycle uq, ... ,uq,uy of T. Moreover we can
prescribe this cycle to be oriented clockwise in the embedding.

Proof. First we take some planar embedding of the graph T7. Now we take
the edges incident with ug in the clockwise order wou;, , uoti,, Uolis, Yo, . For
every uou; and uou; two consecutive of them (either {4, j} = {ix, ix+1} for some
k=1,2o0r 3 or {i,j} = {i1,i4}) we can draw a new curve from wu; to u; along
the curve u;ug and then ugu; so that it does not cross any other edge and area
surrounded by the curves u;ug, uou; and the new curve contains no vertex (see
Fig. ).

Suppose for a contradiction that some of the newly drawn curves connects
two non-adjacent vertices, for example u; and uz (the case of us and ug being
similar). Since the new curves connect u; to at most one of the vertices us and
uq and we drew two curves from each u;, we also connected us and uy. But
this means that the newly drawn curves together with the original edges form
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Fig. 2. Situation from the proof of Lemma [2

a planar embedding of K35, which is a contradiction. So we know that all the
curves that we drew newly connect two already adjacent vertices of the cycle.

Now we take these newly drawn curves as the embedding of the edges of the
cycle. Then there is just ug inside the cycle and it remains to change the outer
face to one of the newly obtained empty triangles, such that the vertex uy will
be on the boundary of the outer face.

If the cycle is embedded in wrong direction, then we take the axis symmetry
of the embedding. O

Lemma 3. If (G,C) is c-planar, then C admits some permutation.

Proof. We suppose that (G,C) is c-planar and we fix a planar embedding emb.
Let f be the boundary of embc(C) (so f is a closed Jordan curve). Now we can
start in an arbitrary point of this curve and move along this curve in the clock-
wise direction and we cross the edges e, ea, ..., e, in some order e;,,€,,...,€;..
Denote the crossing points as Py, Pa,. .., P. (in the same order). If » < 4 then
we can choose new points P41,...,Ps in such a way, that we meet the points
Py, ..., Py in this order when we move along the curve f in the clockwise direc-
tion and all these points are distinct.

Now we consider the planar embedding emb’ of G[C] which corresponds to
the embedding emb of the graph G, place new vertices uq, ..., uq to the points
Py, ..., Py and a vertex ug outside of the region bounded by the curve f. Clearly
we can add edges (u1,vi,),- .., (ur, v;,) and embed these edges on curves which
corresponded to edges ey, ..., e, inside of the region embc(C) and we can also
add edges (u1,us2), (u2,us), (us,us) and (ug,u1) and embed them on the curve
f in such a way that these edges may intersect only in vertices uy, us, u3 or uy.
It is clear that we can add edges (ug,u1), ..., (ug, us) and embed them in such a
way that these edges will be outside of the region bounded by f and every two
edges will cross only in the vertex wug.

This way we obtain a planar embedding of the graph TZ where 7= (a;, ... a;,).
Thus C' admits the permutation . a

Lemma 4. If the cluster C admits a permutation m = (a1az . ..a,) then it also
admits permutations (aray ...ar—1) and (arar_1...az1).
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Proof. We obtain the planar embedding of 72,6 = (a,a;...a,—1) from the
planar embedding of T7 simply by relabeling the vertices such that u; becomes
ug, Ug becomes ugz, uz becomes uy and uy becomes u; and if 7 < 4 then it is
necessary to replace the edge v,,ur+1 by a new edge v,, u; which goes along the
edges Vg, Ur41, Ur41Ur+2, - - -, st such that it doesn’t cross any other edge.
For r > 3 the second part can be done similarly — it is enough to relabel such
that u; becomes uz and usg becomes u; and if » = 4 then we use the first part
to achieve permutation (a,a,—1...a1). For r < 3 the first part also proves the
second part. a

We can now define a relation ~’ on the permutations from the set

Sy by (aras...a.) ~' (aray...ar—1) and (a10z2...a.) ~' (ara,—1...a1). If we
take ~ to be the transitive closure of ~/, then it is easy to show that ~ is also
reflexive and symetric. Thus ~ is an equivalence. We will sometimes call the
equivalence classes of this equivalence circular permutations The sets S1, Sa, S3
have just one equivalence class under ~ while the set Sy is partitioned into fol-
lowing three equivalence classes (they can be distinguished by the number that
is ”opposite” to the number 1):

52 = {(1324), (3241), (2413), (4132), (4231), (1423), (3142), (2314)},

S3 = {(1234), (2341), (3412), (4123), (4321), (1432), (2143), (3214)},
S = {(1243), (2431), (4312), (3124), (3421), (1342), (2134), (4213)}.

Definition 2. We define the corresponding graph for cluster C as follows (see
Fig[3).

1. If r <3 and C' admits some permutation, then the corresponding graph for
Cis R,.

2. If there is a labeling of the outgoing edges such that C' admits permutations
from S2,83, S} then the corresponding graph for C with this labeling is R3>*.

3. If there is a labeling of the outgoing edges such that C' admits a permutation
from S2 and from S3, but no permutation from Si then the corresponding
graph for C with this labeling is R33.

4. If there is a labeling of the outgoing edges such that C' admits a permutation
from S3%, but no permutation from S3 U S§ then the corresponding graph for
C with this labeling is R3.

Clearly, if » < 3 then the cluster C' has unique corresponding graph. Since the
sets 57,53, and S} form a decomposition of S4, from Lemma [ we know that
the cluster C' admits all permutations from some non-empty combination of sets
52,53, and Si.

If the cluster C' admits just permutations from the set S} then by relabeling
of edge ey by e; and incident vertices vo by v; and we by w; (if i = 2 we don’t
need to do it) we get labeling of the cluster C' which admits only permutations
from the set S7. So the cluster C has unique corresponding graph.
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Fig. 3. The graphs Ri, R2, R3, R¥*, R?® and R?

If the cluster C' admits just permutations from two distinct sets S§ and S
then we make similar relabeling of outgoing edges and incident vertices such that
resulting relabeling makes the cluster C' admit just permutations from the sets
S% and S and the cluster C has unique corresponding graph.

As a consequence we get the following corollary.

Corollary 1. If C admits a permutation then there is a labeling of outgoing
edges of C' such that C' has a corresponding graph with this labeling.

For the rest of the paper we will use this new labeling.

Definition 3. Let C' be a cluster of the bottom-most level with outgoing edges
€1,... 6. wherel <r <4 e; =v;w; for alli, where v; € C and w; € V\C'. Let R
be a corresponding graph to the cluster C' in this labeling. Then a replacement of
cluster C by a corresponding graph R in (G, C) is a clustered graph (G',C’) such
that G' is created from (G \ C)U R by unification of w1, ..., w, with s1,...,8,
(respectively) and C' is created from C \ {C} by replacing every C' 2 C by
(C'"\NCYU(V(R)\ {s1,---,8})-

Proposition 1. Let (G',C’) be the replacement of cluster C' by a corresponding
graph R. Then (G,C) is c-planar if and only if (G',C’) is c-planar.

Proof. (”=":) We suppose that (G,C) is c-planar and we fix some planar em-
bedding emb. Without loss of generality we can suppose that embe(C) is a
disc (because this region is homeomorphic to a disc). Suppose that the edges
€1,...,er cross the boundary of embe(C) in (clockwise) order e;,,...,e;, and
without loss of generality i1 = 1.

If r < 4 then we simply remove cluster C' with edges ey, ..., e, and draw the
graph R, corresponding to C' in a such way, that we identify vertex s; with w;
for all 4 € {1,...,7} and all other vertices of R, draw inside emb¢(C') in such
a way, that edges of R, don’t cross any other edge of original graph nor other
edge of R,. This is clearly possible, it is enough to draw the edges outside the
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Fig. 4. Situation from the proof of Proposition [l part ”<")

disc embe(C') along the deleted edges eq, . .., e, and inside embe(C) we can draw
edges (or parts of edges) as noncrossing segments. This embedding of G’ shows
that (G',C’) is c-planar.

If the corresponding graph for C' is R23* then we can construct a c-planar
embedding of C” in the same way as for r < 4.

If the corresponding graph for C is R then the ordered set (i1, io,i3,%4) must
be equal to (1,3,2,4) or (1,4,2,3) because C admits only permutations from S?
(otherwise we could find a permutation 7 ¢ S7 such that TZ is planar which is
a contradiction). Now we delete the cluster C' and add the graph R? in such a
way that all the vertices of R? will be inside the disc embc(C) and we identify
vertices s; with w; for all i € {1,...,4} and any edge of R? will not cross any
original edge nor any new edge of R?. This is also clearly possible, it is enough
to draw the edges outside the disc embe(C) along the deleted edges e, ..., e
and inside emb¢ (C) we can draw the edges (or parts of the edges) as noncrossing
segments. This embedding of G’ shows that (G',C’) is c-planar.

If the corresponding graph for cluster C' is R23 then we continue similarly as
in the previous cases. The ordered set (i1,19,13,74) must be equal to (1,3,2,4),
(1,4,2,3), (1,2,3,4) or (1,4,3,2) so again it is easy to replace the vertices and
the edges of C' by the graph R?® by identifying the vertices s; with w; for all
i € {1,...,4} which proves that (G’,(’) is c-planar again.

(7<=":) Suppose we have a c-planar embedding of (G',C’). Moreover suppose
that in the case R = R? there is nothing embedded in any interior face of R.
This can be easily achieved in a similar way as in the proof of Lemmal[2l We take
an arbitrary spanning tree of the graph R and let s¢ denote its arbitrary vertex
different from s1,...,s,. Now draw the r curves connecting sy to s1,S2,..., S,
along the unique paths connecting the vertices in the tree, so that they do not
cross each other nor anything in the embedding, except possibly for the edges
of R. Then remove the original edges of R.

Now take some € such that there are no edges, vertices nor clusters embedded
in distance less than e from sg, except for the curves incident with sg. Denote
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by O, the circle of radius € with center sg. Suppose P; is the last intersection of
the curve sgs; with O.. We can assume, that € is so small, that if we label these
curves clockwise $9Si, , S0Siy, - - - » S0S4, as they leave sg, then P;,, P;,, ..., P; are
the points P; in the clockwise order along O.. (We can assume, that each curve
in the embedding is formed by finitely many straight line segments and circular
arcs.)

By case analysis we show, that C' admits the permutation © = (i1i3...4%,).
This is clear if R = Ry, R, R3 or R33*. The graph R3\{s1, ..., s4} is 3-connected
so the order of the edges is given in this case (up to the equivalence ~) and
the permutation 7 is in S7. If R = R?® and 7 € S}, then by connecting the
neigbouring edges we obtain a planar embedding of K33 — a contradiction.

So we take the planar embedding of T guaranteed by Lemma [2 and remove
the vertex ug. We can take a homeomorphic copy of this embedding of T \
{uop}, in which the cycle uy,us,us, us, u; coincides with a circle O, and the
vertices ui,us, ..., u, are embedded at the points P;,, P;,, ..., P; , respectively.
We replace the interior of O, by such an embedding.

We are ready to describe an embedding of (G,C). For every 4 the concate-
nation of the curve vyu; = Pr;) and Pr(;)sy(;) forms an embedding of the
edge vy (;Wr(;) that crosses no other edge of G’ or G[C]. Moreover, it crosses the
boundary of each cluster of C’ at most once, since there were no cluster bound-
aries inside O, curve Pr(;)sr(;) was drawn along some edges of R and among
them only the one incident with s;(;; could cross some cluster boundary and
also at most once, because we started with a c-planar embedding of (G',C’). It
remains to take O, as the boundary of the cluster C. It only crosses the edges
w;v;. Furthermore, since curve s; P; (recall that s; = w;) lies completely outside
O, (except for P;), while P;v; lies completely inside O, (except for P;), O, crosses
the edge w;v; exactly once (in the point P;). There are no other crossings, since
they would have to be in the original c-planar embedding of (G',C") too. O

4 The Algorithm

The algorithm is described in Fig.

Proposition 2. The algorithm correctly decides c-planarity for instances, where
each cluster has at most 4 outgoing edges.

Proof. We first prove by the mathematical induction that for every 0 < i < |C|,
the pair (G, C;) is defined and c-planar if and only if (G,C) is c-planar. This is
certainly true for 7 = 0. Now suppose that this is true for every i’ < ¢ and let us
prove it for 4.

In the case r(C') = 0 we have two possibilities. Either G;_1[C] is not planar,
then also G is not planar and (G;—1,C;—1) is definitely not c-planar. Then the
algorithm correctly rejects (and G;,C; is not defined for j > ). Or G;—1[C] is
planar and by Lemma [l and Remark [l pair (G;_1,C;—1) is c-planar if and only
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Input: Graph G and cluster set C, where each cluster has at most 4 outgoing edges.
Task: Accept (G, C) if and only if (G, C) is clustered planar.

1. Set Go := G,Co =C.
2. For i:=1 to |C]| do:
(a) Let C be some cluster on the bottom-most level in C;—1.
(b) If r(C) =0 then
i. If G;—1[C] is planar then set
Gi = Gi_1 \C
Ci ={A\C|A€Cia1 \{C},;,ADC}U{A|A€Cim1,AD2C }
ii. else REJECT.
(c) else
i. For each permutation 7w € S, ¢y test whether C' admits 7 (whether T¢
is planar)
ii. If C' admits no permutation, then REJECT.
iii. Let (G, C;) be the replacement of cluster C' by the corresponding graph
iIl (Gi_l,Ci_l).
3. If G| is planar then ACCEPT, otherwise REJECT (Ci¢| = 0).

Fig. 5. An overview of the algorithm

if (G4,C;) is, since {B|B € C\ {C}, B C C'} is empty (C is on the bottom-most
level).

Now consider the case 1 < r(C) < 4. If C admits no permutation, then by
Lemma Bl the pair (G;_1,C;_1) is not c-planar and the algorithm correctly rejects
(and does not define G;,C; for j > 4). Otherwise C has a corresponding graph
by Corollary[lland from the Proposition [l we know that (G;—1,C;—1) is c-planar
if and only if (G;,C;) is c-planar.

Since |C;| = |Ci—1] — 1 whenever defined, we have |C|¢|| = 0 and thus Cj¢) = 0
if Ci¢| is defined. But then (G|c|,Cic|) = (G|c|,0) is c-planar if and only if G|¢|
is planar due to Remark [Il which completes the proof. a

Proposition 3. The algorithm works in time O(n).

Proof. The cycle is executed at most |C| times, in each time we delete one cluster
or reject. When we omit a planarity testing, complexity of each step of cycle in
the algorithm is bounded by constant. We add constant number of vertices and
if we have a suitable representation of clusters (for example tree representation)
we can find cluster on the bottom-most level in constant time too. And then
for these operations we need |C| in complexity time. The algorithm touches each
vertex at most three times, when we add, test, and remove it. For vertices which
we added later we paid before, by constant in each iteration. And for the original
vertices we need extra n for planarity testing. Each vertex from the original graph
we touch only once, because if we touch it we remove it or reject whole graph.
Since |C| is bounded by O(n), the complexity of our algorithm is O(n). i
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Dy D,

Fig. 6. Two clusters with 5 outgoing edges that cannot be represented by any connected
graph

5 The Limits of the Approach

Let us consider clusters with more than 4 outgoing edges. Definition [I] Lemmas
and M easily generalize to this case as well as Lemma [Bl The problem with
the generalization is that there are disconnected clusters with 5 outgoing edges
that admit a combination of permutations which cannot be represented by a
connected graph. In particular it can be shown that the two clusters from Fig.
have this property.

Let us try to formalize the result. Consider a graph R that is supposed to
be corresponding to some cluster C. Hence it has some distinguished vertices
81, .- -,8. of degree 1 that are supposed to be identified with the vertices of G\ C
when the cluster C is replaced by R in a graph G. Let R' = V(R)\ {s1,..., 8}
We say that the graph R admits a permutation 7, if the cluster R’ of the clustered
graph (R,{R'}) admits a permutation .

Proposition 4. There is no connected graph that admits the same number of
permutations as the cluster Dy from Fig. [@.

Proof. We will count the circular permutations. In total there are 12 circular per-
mutations on 5 elements, each representing 10 (standard) permutations. Observe
first that D; admits 8 circular permutations. Now assume for a contradiction
that there is a connected graph R (with distinguished vertices si,...,s5) that
admits also 8 circular permutations.

We observe that whenever we take a subgraph @ of the graph R, s1,...,s5 €
V(Q), then the graph @ admits at least the same number of permutations, since
we can just ommit the unnecessary parts from the appropriate embedding. Now
consider a subtree T of R with leaves of T" being exactly the vertices s1, ..., s5.
It is clear that R has such a subgraph since R is connected.

Since T has 5 leaves, it has at most 3 vertices of degree at least 3 — either
it has 3 vertices of degree 3, or one of degree 3 and one of degree 4, or just one
of degree 5. It is not hard to check that in the first two cases 7" admits 4 and 6
circular permutations, respectively. Thus in this cases R cannot admit 8 circular
permutations. The tree with just one vertex of degree 5 (among the vertices of
degree at least 3) admits all 12 circular permutations. Thus we know that T
must be some subdivision of K 5.
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If R contains no path connecting two different branches of T', then clearly R

admits the same permutations as T i.e. all 12 circular permutations. On the other
hand, if R contains a path between two branches of T', then there is another tree

T/

subgraph of R, that has one vertex of degree 4 and one vertex of degree 3.

But this means that R admits at most 6 permutations — a contradiction. g
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Abstract. Deciding c-planarity for a given clustered graph C = (G, T)
is one of the most challenging problems in current graph drawing re-
search. Though it is yet unknown if this problem is solvable in polynomial
time, latest research focused on algorithmic approaches for special classes
of clustered graphs. In this paper, we introduce an approach to solve the
general problem using integer linear programming (ILP) techniques. We
give an ILP formulation that also includes the natural generalization of c-
planarity testing—the mazimum c-planar subgraph problem—and solve
this ILP with a branch-and-cut algorithm. Our computational results
show that this approach is already successful for many clustered graphs
of small to medium sizes and thus can be the foundation of a practically
efficient algorithm that integrates further sophisticated ILP techniques.

1 Introduction

Drawing clustered graphs is a prevalent problem in practical applications of
graph drawing, e.g., to group nodes into departments, as well as in graph theory,
since the occurring graph theoretical problems are in particular challenging, even
in simplified special cases. A clustered graph C = (G, T) is formally defined as a
graph G = (V, E) together with a rooted tree T, the inclusion tree of C, where
the leaves of T' are the vertices of (G. Each node v of T represents a cluster of
the vertices V' (v) of G that are leaves of the subtree rooted at v.

In a drawing of a clustered graph, the clusters themselves are drawn as simple
regions, e.g., rectangles, and special aesthetic criteria on the drawing need to be
met to guarantee readability. In particular, we call a drawing c-planar, if there
are neither edge—edge nor edge-region crossings and the drawing of a cluster v
is contained in the interior of the region of a cluster p if and only if p lies on the
path from v to the root of T. A c-planar clustered graph is a clustered graph
for which a c-planar drawing exists.

Though c-planarity has been intensively studied in the past years, the com-
plexity of deciding c-planarity is still unknown. Instead of considering the general
problem, latest research focused on special classes of clustered graphs. Besides
the well known results by Feng et al. [§] and Dahlhaus [4] for c-connected clus-
tered graphs, i.e., clustered graphs where the vertices V(u) of each cluster u
induce a connected graph, various classes of non-c-connected clustered graphs

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 114 2009.
© Springer-Verlag Berlin Heidelberg 2009
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have been studied [TO/3J9IG/II]. In contrast to this, we tackle the general c-
planarity problem in this paper by presenting the foundation of an ILP-based
approach consisting of an ILP formulation and a branch-and-cut algorithm.

In order to draw not necessarily c-planar clustered graphs, Di Battista et
al. [B] adapted the topology-shape-metrics approach to clustered graphs and
described a planarization-based method for crossing minimization. This method
first computes a c-planar subgraph C’, and then reinserts the deleted edges
successively into a c-planar embedding of C’, so that only a small number of
crossings is produced. Our ILP approach also solves the first problem of this
c-planarization approach, i.e., finding a c-planar subgraph of maximum size:

Definition 1 (Maximum C-planar Subgraph Problem (MCPSP)). Given
a clustered graph C = (G = (V, E),T) find a c-planar clustered graph C' = (G’ =
(V,E",T) with E' C E such that E' has mazimum cardinality.

Obviously, MCPSP is NP-hard, since the maximum planar subgraph problem is
already NP-hard. This paper is organized as follows. Section 2] presents our ILP
formulation for MCPSP and a branch-and-cut algorithm for solving the ILP; an
experimental evaluation of this algorithm is given in Sect. Bl

2 ILP and Branch-and-Cut

In the following, let C = (G = (V, E),T) be the given clustered graph with edge
set E. For a cluster v in C let E(v) denote the edge set induced by the vertices
V(v) in cluster v, and let E(7) denote the edge set induced by the vertices in
V)=V \V().

We say a c-connected clustered graph is completely connected if, for each non-
root cluster v, the subgraph by V() is connected. For our formulation we need
the following result by Cornelsen and Wagner [2]:

Theorem 1. A clustered graph is c-planar if and only if it is a subgraph of a
c-planar completely connected clustered graph. A completely connected clustered
graph C' = (G, T) is c-planar if and only if its underlying graph G is planar.

Our central concept for the formulation then is to (a) augment the given clustered
graph such that it becomes completely connected, and (b) to ensure that the
resulting graph, disregarding the cluster structure, is planar:

Corollary 1. C* is a maximum c-planar subgraph of C if and only if it is
the largest subgraph with the property that there exists a completely connected
clustered graph C” such that (a) C* is its subgraph and (b) the underlying graph
of €’ is planar. If C* = C, C is c-planar.

In the following we will hence concentrate on finding such a completely connected
solution graph C' = (G' = (V,E'),T).
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2.1 The ILP Formulation

We define the set F' as the complement of E, i.e., F' are the potential edges for
the augmentation. This allows us to introduce our two variables

Te,ys € {0,1} Veec E,f€F (1)

which are 1 if the corresponding edge is contained in the solution graph, and 0
otherwise. Then we can write the objective function as

max Y e 3oy 2)

ecE fer

We want to maximize the number of original edges in the solution and use as few
augmenting edges as possible. In order for the latter criterion to not interfere
with the main optimization goal, we restrict its influence by the introduction of
€= %’i; due to Euler’s formula this guarantees that the second term in (2] does
not grow larger that 0.1.

We have two sets of constraints: the first set guarantees that the solution
graph C’ is completely connected; the second set ensures planarity of G'.

Connectivity Constraints. A cut set W|A with W CV and A C E in the graph
G = (V,E) is defined as the set of edges in A that are incident to exactly one
vertex of W. A graph is connected if and only if the cardinality of W|E is at
least 1 for any () 2 W C V. We define the connectivity constraints as:

doowe+ Y oyl WeTVEe{nrh, VO£ W CV(E)\{we} (3)

e€W|E(£) FEW|F(E)

While the case £ € T only guarantees c-connectivity, the additional constraints
with £ ¢ T are necessary to ensure complete connectivity. We use W C V(€) \
{we} for some fixed we € V(€) instead of W C V(£) to avoid redundancy.

Kuratowski Constraints. In order to guarantee that the solution graph is planar
we use Kuratowski constraints as introduced for the maximum planar subgraph
problem [I2]. These constraints are based on Kuratowski’s theorem [I4] which
states that a graph is planar if and only if it does not contain a subdivision of K5
or K3 3. We call these subdivisions Kuratowski subdivisions, and represent them
by their edge sets. Let K be the set of all Kuratowski subdivisions in (V, EUF).
For any K € K, the solution graph will not contain all edges of K, as this would
contradict its planarity. We hence formulate the Kuratowski constraints as

> ae+ > y <|K[-1 VK€K (4)

eeK ecK

Theorem 2. The ILP

{maxee —€Zye, subject to @), @), and (IZI)}

eclE ecF

solves the maximum c-planar subgraph problem. If x, = 1 for all e € E, the
given clustered graph is c-planar.
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2.2 Branch-and-Cut

Both constraint sets contain an exponential number of constraints and hence it
is not applicable to generate all constraints in advance. We solve the ILP within
a branch-and-cut framework: we start with a small subset of constraints, drop
the integrality constraints, and apply cutting-plane algorithms to add additional
constraints as required. The problem of identifying such cuts after obtaining a
fractional solution of the partial LP-relaxation is called separation problem.

Separation. Separating the connectivity constraints can be done in polynomial
time by computing minimum cuts on the graph, using the fractional solution as
edge capacities. On the other hand, there are no known polynomial algorithms
for the Kuratowski constraint separation, and we have to resort to a heuristic
routine, similar to the ones described in [I2]: we round the fractional solution to
an integer solution, which we can interpret as our support graph S, and search for
Kuratowski subdivisions in S. For any such subdivision K we can test whether
the current fractional solution violates the constraint induced by K.
Traditional planarity test algorithms can extract a single Kuratowski subdi-
vision per run; in our experiments we use the extended test algorithm presented
in [I] which extracts multiple different subdivisions in linear time. Note that we
separate all cut constraints before separating any Kuratowski constraints.

Branching and Primal Heuristic. If we have a fractional solution, but cannot
find any violated constraints, we have to resort to branching. In such cases good
LP-based heuristics become crucial, to prune nodes early in the branch-and-
bound tree. Our heuristic works as follows: We start by computing a spanning
tree recursively for each cluster in a bottom-up scheme on T, using the frac-
tional solution as negative weights. Merging all these minimum spanning trees,
we obtain a c-connected and c-planar spanning tree R. We sort the remaining
edges based on their fractional values, and iteratively try to add them to R in
decreasing order. This can be done in polynomial time, since planarity testing of
a c-connected clustered graph is polynomial. We obtain a maximal c-connected,
c-planar subgraph R that implies a c-planar subgraph of C.

3 Computational Experiments and Discussion

We report on the results of our experimental evaluation. The main intention of
this short study is to point out the feasibility of our approach, without giving
attention to speed-up techniques like strong preprocessing and heuristics, column
generation, etc. We implemented our approach within the Open Graph Drawing
Framework (www.ogdf.net) using the branch-and-cut framework ABacus [13]
with CPLEX 9.0 as LP-solver. The experiments were run on a 2.33GHz Intel
Xeon with 2GB RAM per process and a time limit of 30 minutes per instance.

In addition to solving the MCPSP, we also experimented with a variant were
only c-planarity is tested; in this case no maximum c-planar subgraph needs to
be computed and subproblems are pruned as soon as their dual bound proves
that an original edge would have to be deleted.


www.ogdf.net

118 M. Chimani et al.

compl.  Clusters Vertices Fdges
# inst. c-plan. c-con. con. min avg maxr Mar  MaxT

Planar graphs 1815 1494 25 2 3 4 9 29 30
Non-planar graphs 116 0 3 0 3 52 9 26 30

1000

100 £

g 1wl Running time (sec)
E’ 1 min avg 95% maz
g P-Sub 0.01 49 9.6 1460.9
ER NP-Sub 0.01 40.9 18.7 1456.5
P-CP1 0.01 4.3 6.1 249.9

0.01

0.001

Number of Edges

Fig. 1. (top) Properties of the benchmark instances. (bottom) Average runtime per-
formance of the branch-and-cut algorithm. P-Sub and NP-Sub are running times for
solving the MCPSP on the (non-)planar graphs, respectively. P-CP1 denotes the run-
time for the c-planarity test on the instances with underlying planar graphs. 95%
denotes the 95%-percentile.

Benchmark Set. We created a benchmark set based on the Rome graphs [7] by
generating cluster hierarchies on top of each graph of the library. The library
contains planar and non-planar graphs; key properties are shown in Table[|(top).
We create a cluster structure by randomly picking vertices in a cluster v,
starting with the root cluster, and after each pick, a random decision is made
if a new cluster is generated with the vertices picked so far, up to a maximum
number of 9 clusters. We restrict the maximum cluster tree depth to two levels (in
addition to the root cluster), the number of edges to 30, and divide the created
clustered graphs into two groups depending on the planarity of the underlying
graph. The benchmark set can be found at lsll-www.cs.uni-dortmund.de/
people/klein/clusterbenchmarks08.zip.

Results and Discussion. Figure[[[bottom-left) shows the resulting running times
required by our approach, relative to the graph size; the table on the bottom
right summarizes the runtime performance of the instances, depending on the
planarity of the underlying graph. We see that restricting the computation to
pure c-planarity testing by pruning leads to decreases in the overall average
computation time, but does not necessarily need to speed up the computation for
each instance, because subproblems containing the maximum c-planar subgraph
may be pruned, which extends the search in the branch tree.

Our main observation is that the performance on most of the test graphs is
promising: only 2 non-planar and 17 planar graphs could not be solved within
the time limit; the 95%-percentile shows that long running cases are extremely
rare. The average running time of the c-connected clustered graphs is below
0.02 seconds, indicating that the ILP performs well on this polynomial time
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solvable class. We therefore conjecture that the ILP may be useful as a tool
when developing c-planarity tests for special graph classes, as the ILP may give
hints on the classes’ hardness.

Conclusion and Future Work. We introduced the Maximum C-planar Subgraph
Problem and presented an ILP formulation together with a branch-and-cut
approach to solve it to optimality. Our brief experimental evaluation showed
the general feasibility of the concept. We believe that our branch-and-cut ap-
proach can be improved to also cope with harder instances, which is part of
our future work, especially by using stronger heuristics and preprocessing to
reduce the search space, as well as pricing instead of adding all possible vari-
ables in advance. Encouraged by the results on the c-connected graphs, we also
plan to perform a closer investigation of the behavior of our branch-and-cut
approach with regard to other polynomial time solvable classes of clustered
graphs.
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Abstract. We present a polynomial-time algorithm for c-planarity test-
ing of clustered graphs with fixed plane embedding and such that every
cluster induces a subgraph with at most two connected components.

1 Introduction

Clustered planarity (or shortly, c-planarity) has recently become an intensively
studied topic in the area of graph and network visualization. In many situations
one needs to visualize a complicated inner structure of graphs and networks.
Clustered graphs provide a possible model of such a visualization, and as such
they find applications in many practical problems, e.g., management information
systems, social networks or VLSI design tools [5]. However, from the theoretical
point of view, the computational complexity of deciding c-planarity is still an
open problem and it is regarded as one of the challenges of contemporary graph
drawing.

A clustered graph is a pair (G,C), where G = (V, E) is a graph and C is a
family of subsets of V' (called clusters), with the property that each two clusters
are either disjoint or in inclusion. We always assume that the vertex set V is
in C, and we call it the root cluster. We say that a clustered graph (G,C) is
clustered-planar (or shortly c-planar), if the graph G has a planar drawing such
that we may assign to every cluster X € C a compact simply connected region of
the plane which contains precisely the vertices of X and whose boundary crosses
every edge of G at most once (see Sect. [2 for the precise definition).

It is well known that planar graphs can be recognized in polynomial (even
linear) time. For c-planarity, determining the time-complexity of the decision
problem remains open; only partial results are known. If every cluster of (G,C)
induces a connected subgraph of G, then the c-planarity of (G,C) can be tested in
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** Supported by project MSM0021620838 of the Czech Ministry of Education.
*** Supported by grant 1M0545 of the Czech Ministry of Education.
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linear time by an algorithm of Dahlhaus [3], which improves upon a polynomial
algorithm of Feng et al. [B]. Several generalizations of this result are known:
c-planarity testing is polynomial for clustered graphs in which all disconnected
clusters form a single chain in the cluster hierarchy [7], for clustered graphs
in which for every disconnected cluster X, the parent cluster and all the sibling
clusters of X are connected [7], and for clustered graphs where every disconnected
cluster X has connected parent cluster, with the additional assumption that each
component of X is adjacent to a vertex not belonging to the parent of X [6].

Another approach to c-planarity testing is to consider flat clustered graphs,
which are clustered graphs in which all non-root clusters are disjoint. Even in
this restricted setting, the complexity of c-planarity testing is unknown. However,
polynomial-time algorithms exist for special types of flat clustered graphs, e.g.,
if the underlying graph is a cycle and the clusters are arranged in a cycle [2], if
the underlying graph is a cycle and the clusters are arranged into an embedded
plane graph [I], or if the underlying graph is a cycle and the clusters contain at
most three vertices [9]. Even for these very restricted settings, the algorithms
are quite non-trivial.

Suppose an embedding of the underlying graph is fixed. Does the c-planarity
testing become easier? This question was already addressed in [4], who provide a
linear algorithm for flat clustered graphs with a prescribed embedding in which
all faces have size at most five.

In this paper, we also deal with clustered graphs (G,C), for which the em-
bedding of G is fixed. In this setting, we obtain a polynomial algorithm for
c-planarity of clustered graphs in which each cluster induces a subgraph with at
most two connected components.

Theorem 1. There is a polynomial time algorithm for deciding c-planarity of a
clustered graph (G,C), where G is a plane graph and every cluster of C induces
a subgraph of G with at most two connected components.

In this extended abstract, we present a simplified version of the algorithm which
assumes that the cluster hierarchy is flat. We also omit some of the proofs.

2 Preliminaries

We follow standard terminology on finite simple loopless plane graphs. A plane
graph is an ordered pair G = (V, E), where V is a finite set of points in the plane
(called wvertices) and E is a set of Jordan arcs (called edges), such that every
edge connects two distinct vertices of G and avoids any other vertex, every pair
of vertices is connected by at most one edge, and no two edges intersect, except
in a possible common endpoint.

If G = (V, E) is a plane graph and X C V is a set of vertices, we let X denote
the set V'\ X and we let G[X] denote the subgraph of G induced by X.

Two plane graphs G = (V, FE) and G’ = (V', E’) are isomorphic if there is
a continuous bijection f of the plane with continuous inverse such that V' =
{f(v):veV}and E' = {f[e]: e € E} (where fle] is the set {f(x): z € e}).
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The algorithm we will present in this paper expects a representation of a
plane graph as part of its input. Since the algorithm does not need to make a
distinction between isomorphic plane graphs, we may represent a plane graph
G by a data structure which identifies G uniquely up to isomorphism. We may
identify the isomorphism class of G by specifying, for every vertex of G, the
cyclic order of edges and faces incident to v, and by specifying the outer face of
G. The isomorphism class of a plane graph can be thus represented by a data
structure whose size is polynomial in |V].

Let G = (V, E) be a plane graph. A cluster set on G is a set C C P(V(G))
such that for all X,Y € C, either X and Y are disjoint or they are in inclusion;
the pair (G,C) is called a plane clustered graph. The elements of C are called
clusters. We assume that the set V(G) is always in C, and we call it the root
cluster. A cluster that does not contain any other cluster as a subset is called
minimal.

Clusters are naturally ordered by inclusion. The set V(G) is the maximum
of this ordering. A cluster is called connected if it induces in G a connected
subgraph and disconnected otherwise. A component of a cluster X € C is a
maximal set X; C X such that G[X1] is a connected subgraph of G[X].

We say that a plane clustered graph (G,C) is connected (or 2-connected, or
disconnected) if the graph G is connected (or 2-connected, or disconnected). Let
us remark that some earlier papers use the term ‘connected clustered graph’ to
denote a clustered graph in which every cluster is connected; we break with this
convention for the sake of consistency of our definitions.

In this paper, we consider clustered graphs (G, C) in which every disconnected
cluster in C has exactly two components. We will call such a pair (G,C) a 2-
component clustered graph.

For a plane clustered graph (G, C), a clustered planar embedding is a mapping
emb. that assigns to every cluster X € C a compact simply connected planar
region emb.(X) (called the cluster region of X) whose boundary v(X) is a closed
Jordan curve (called the cluster boundary of X), such that

— for each vertex v € V and each cluster X € C, v is in emb.(X) if and only if
ve X,

— for each cluster X € C, the cluster boundary v(X) does not contain any
vertex from V,

— for every two clusters X and Y, the regions emb.(X) and emb.(Y') are dis-
joint (in inclusion) if and only if X and Y are disjoint (in inclusion, respec-
tively), and

— for every edge e € E and every cluster X € C, the edge e crosses the cluster
boundary of X at most once.

A plane clustered graph is called clustered planar (shortly c-planar) if it allows
a clustered planar embedding.

When testing c-planarity, we adopt the approach first used in [5] of adding
extra edges to the underlying graph in order to make each cluster connected.
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Definition 1. Let (G,C) be a plane clustered graph. Let ¢ be a cycle in G whose
vertices all belong to a cluster X € C. We say that ¢ is a hole of the cluster X,
if the interior region of ¢ contains a vertex not belonging to X.

Clearly, a plane clustered graph with a hole is not c-planar. On the other hand,
it is known [5] that a plane clustered graph without holes whose clusters are all
connected is c-planar. For a given plane clustered graph (G, C) the existence of
a hole can be determined in polynomial time [5].

Definition 2. Let G be a plane graph. A candidate edge of G is a simple curve
e & E such that (V,E U {e}) is a plane graph. A candidate set is a set S of
candidate edges of G such that (V, EUS) is a plane graph. We use the notation
GUe and GU S as a shorthand for (V,EU{e}) and (V, EUS) respectively.

We say that two candidate edges e and €' are isomorphic if GUe and G U €’
are isomorphic plane graphs.

Note that a pair of vertices u,v of a plane graph G may be connected by two
distinct non-isomorphic candidate edges. On the other hand, it is not hard to see
that a plane graph on n vertices has at most O(n?) non-isomorphic candidate
edges.

The following theorem reduces c-planarity testing to searching for a specific
set of candidate edges. It was proved in an equivalent version by Feng et al. [5].

Theorem 2. A plane clustered graph (G,C) is c-planar if and only if there exists
a candidate set S with the following properties:

1. (GUS,C) has no hole,
2. every cluster X of C induces a connected subgraph in G U S.

A set S of candidate edges satisfying the above conditions is called a satura-
torfl. A set S that satisfies the first condition will be called a partial saturator.
We say that a candidate edge e saturates a cluster X, if e connects a pair of
vertices belonging to different components of X. A saturator S is minimal if no
proper subset of S is a saturator. Note that every candidate edge from a mini-
mal saturator S saturates a cluster from C. Moreover, if X is a cluster with two
components that does not contain any disconnected subcluster, then a minimal
saturator S has exactly one candidate edge saturating X.

Definition 3. Ife is a candidate edge of a plane clustered graph (G,C) such that
(G,C) is c-planar if and only if (G Ue,C) is c-planar, then the edge e is called
harmless. Similarly, a candidate set S is harmless provided (G,C) is c-planar if
and only if (GU S,C) is c-planar.

Note that if (G,C) is a c-planar clustered graph, then a candidate set is harmless
if and only if it is a subset of a saturator of (G,C). On the other hand, if (G,C)
is not c-planar, then any candidate set is harmless.

Let us now present several simple but useful lemmas, whose proofs are omitted
due to space constraints.

! Note that this definition of saturator differs slightly from that of some other papers—
here, candidate edges are already embedded.



Clustered Planarity 125

Lemma 1. Let (G,C) be a plane clustered graph without holes, let X € C be a

cluster which is minimal and connected. Then (G,C) is c-planar if and only if
(G,C\ {X}) is c-planar.

The next lemma shows that c-planarity testing of 2-component graphs can be
reduced to c-planarity testing of 2-component connected plane clustered graphs.

Lemma 2. If there is a polynomial time algorithm for deciding c-planarity for
connected 2-component plane clustered graphs, then there is a polynomial time al-
gorithm for deciding c-planarity for arbitrary 2-component plane clustered graphs.

The following lemma allows us to reduce c-planarity testing of a connected
graph to an equivalent instance of c-planarity where the underlying graph is
2-connected.

Lemma 3. Let (G,C) be a connected plane clustered graph with at least three
vertices which is not 2-connected. There is a polynomial-time transformation
which constructs a plane clustered graph (G',C’) such that G’ is connected, G’
has fewer components of 2-connectivity than G, (G',C') is c-planar if and only
if (G,C) is c-planar, and there is a bijection f between C and C' such that for
every cluster X € C, the graph G[X] has the same number of components as the

graph G'[f(X)].

Thanks to Lemma 3] a connected 2-component plane c-planarity instance (G, C)
can be polynomially transformed into an equivalent 2-connected 2-component
instance (G’,C’). To achieve this, we simply perform repeatedly the transforma-
tion described in Lemma [3] until the resulting graph has only one 2-connected
component.

Combining Lemma 2] and Lemma [3] we see that to decide the c-planarity of
2-component plane graphs, it is sufficient to provide an algorithm that decides
c-planarity of 2-connected 2-component plane graph. This is an important tech-
nical simplification, because in a 2-connected plane graph, the boundary of every
face is a cycle, and a candidate edge in every inner face is uniquely determined
(up to isomorphism) by its end-vertices and the face where it should be drawn.

Unfortunately, if F' is the outer face of GG, a pair of vertices of F' may still be
connected by two non-isomorphic candidate edges belonging to F' (see Fig. [I]).
To avoid this technical nuisance, we will restrict the set of candidate edges. Let
(G,C) be a 2-connected plane clustered graph, let f € E(G) be an edge which
connects a pair of vertices u,v € V(G), with the following properties:

— f appears on the boundary of the outer face of G,
— every non-root cluster contains at most one of the two vertices u, v.

Such an edge f exists, otherwise the boundary of the outer face would be a hole
of a non-root cluster. We say that a candidate edge e of G is properly drawn if f
is on the boundary of the outer face of G U e. Note that every candidate edge in
an inner face of G is properly drawn, while a pair of non-adjacent vertices on the
boundary of the outer face may be connected by two non-isomorphic candidate
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this candidate edge
is properly drawn
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this candidate edge
is not properly drawn

Fig. 1. Two candidate edges connecting the same pair of vertices in the outer face

edges, exactly one of which is properly drawn. Thus, a properly drawn candidate
edge is uniquely determined (up to isomorphism) by its pair of endpoints and
the face where it should be embedded.

It can be shown that if a 2-connected plane clustered graph is c-planar, then
it has a saturator that only contains properly drawn candidate edges.

3 The Algorithm

In this section, we present our algorithm deciding the c-planarity of 2-component
plane clustered graphs. As mentioned in the introduction, we will only deal with
the restricted setting of flat clustered graph, i.e., the clustered graphs where all
the non-root clusters are minimal.

Our aim is to find a polynomial algorithm deciding the c-planarity of plane
2-connected 2-component flat clustered graph (G,C).

To achieve this, we will present a polynomial-time procedure FIND-EDGE
which, when presented with a 2-component 2-connected hole-free plane clustered
graph (G,C) as an input, will either determine that (G, C) is not c-planar, or it
will output a harmless candidate edge e that saturates a cluster X € C. Observe
that such a candidate edge e cannot create a hole in G U e, because both its
endpoints belong to different components of X by assumption, and there is
no other non-root cluster containing the endpoints of e. This is the main reason
why the flat clustered graphs are much easier to deal with than general clustered
graphs.

If the procedure FIND-EDGE outputs a harmless candidate edge e, it does
not necessarily mean that (G,C) is c-planar. However, since e is harmless, we
know that (G,C) is c-planar if and only if (G U e,C) is c-planar. We may then
call FIND-EDGE again on the input (GUe,C), to determine that (GUe,C) (and
hence also (G,C) ) is not c-planar, or to find another harmless edge. Since every
candidate edge output by the FIND-EDGE procedure saturates a cluster from
C, after at most |C| invocations of FIND-EDGE we will either obtain a saturator
of (G,C) or determine that (G,C) is not c-planar.

The FIND-EDGE algorithm maintains a set P of permitted edges. In the
beginning, the set P is initialized to contain all the properly drawn candidate
edges that saturate a cluster from C. In the first phase of the algorithm, called the



Clustered Planarity 127

pruning phase, the algorithm iteratively removes some candidate edges from P,
using a set of pruning rules, which will be described in Subsection Bl The
pruning rules guarantee that if (G, C) has a saturator, then it also has a saturator
which is a subset of P.

When the set P cannot be further pruned, the algorithm performs the follow-
ing triviality checks, described in detail in Subsection

— if there a disconnected cluster that cannot be saturated by any of the per-
mitted edges, then (G,C) is not c-planar,

— if there is a disconnected cluster saturated by a unique permitted edge e € P,
then e is harmless,

— if there is a permitted edge e that does not cross any other permitted edge,
then e is harmless.

If any of the above conditions is satisfied, the algorithm outputs the correspond-
ing solution and stops. Otherwise, it distinguishes two cases:

1. If there is a disconnected cluster X € C' and a face F' of G such that every
permitted edge saturating X appears in the face F', then the algorithm
performs a subroutine LOCATE-IN-FACE, which will output a harmless
permitted edge inside F' and stop. This subroutine, together with a brief
sketch of its proof, is presented in Subsection

2. If the previous case does not apply, it can be shown that any permitted edge
is harmless. The algorithm then performs a subroutine called OUTPUT-
ANYTHING which outputs an arbitrary permitted edge and stops. The
proof of its correctness is sketched in Subsection [3.4]

Before we describe the main parts of the algorithm in greater detail, we need
some more terminology.

Let G be a 2-connected plane graph. Let a,b, ¢,d be a quadruple of distinct
vertices on the boundary of a face F' of G. We say that the pair ab crosses the
pair cd in F, if the four vertices appear on the boundary of F' in the cyclic order
acbd. If e and f are two candidate edges of a 2-connected clustered graph (G, C),
we say that e crosses f if the two candidate edges belong to the same face F' of
G and the endpoints of e cross with the endpoints of f. For two sets of vertices
X and Y, we say that X crosses Y in face F, if there are vertices a,b € X and
¢,d € Y such that ab crosses cd in the face F.

Most of our arguments rely on the following basic properties of connected
subgraphs of 2-connected plane graphs:

— If G is a 2-connected plane graph, and X and Y are disjoint sets of vertices
such that G[X] and G[Y] are both connected, then X and Y do not cross in
any face of G.

— Let G be a 2-connected plane graph. Let X, Y and Z be disjoint sets of
vertices, each of them inducing a connected subgraph of G. Then G has at
most two faces that contain vertices of all the three sets on their boundary.

The proof of these properties are omitted from this extended abstract.
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3.1 The Pruning Phase

In the pruning phase, the algorithm FIND-EDGE iteratively restricts the set
P of permitted candidate edges. In the beginning of the pruning phase, the set
P is initialized to contain all the properly drawn candidate edges that saturate
at least one cluster. Note that every permitted edge e € P saturates a unique
cluster X € C, since we assume that C is flat. A permitted edge that saturates
X will be called an X -edge.

If X is a minimal cluster, and if e and ¢’ are two X-edges, we say that e and
e’ are equivalent, if for every permitted edge f € P that is not an X-edge, the
edge f crosses e if and only if it crosses ¢’.

Throughout the pruning phase, the set P will satisfy the following three in-
variants.

— For each cluster X and each face F', all the X-edges that belong to F' form a
vertex-disjoint union of complete bipartite subgraphs; these complete bipar-
tite subgraphs will be called X -bundles (or just bundles, if X is clear from
the context). Two X-edges from different bundles do not cross (see Fig. ).

— If X and Y are distinct clusters, then if an X-edge e crosses two Y-edges f
and f’, then f and f’ belong to the same bundle.

— If (G,C) is c-planar, then it has a saturator that is a subset of P.

In the beginning, when P contains all the properly drawn candidate edges that
saturate some cluster from C, the three invariants above are satisfied. In fact, if
F' is a face that contains at least one X-edge, then all the X-edges in F' form a
complete bipartite graph. Thus, each face has at most one X-bundle.

To prune the set P, we apply the following two rules.

— If, for a cluster X, there is a permitted edge that crosses all the X-edges,
then remove from P each edge that crosses all the X-edges.

— Let e = uv and €’ = v'v be two X-edges that belong to the same face F and
that share a common vertex v. If e and ¢’ are equivalent, remove from P all
the X-edges in F incident to u'.

It can be proven that an arbitrary application of one of the rules above preserves
all the invariants. The algorithm applies the pruning rules in arbitrary order,
reducing the number of permitted edges in each step, until it reaches the situation
when none of the rules is applicable. Let us remark that in the general (i.e., non-
flat) situation, the pruning is slightly more complicated: there are four pruning
rules instead of two, and the rules have assigned priorities which are taken into
account when the algorithm selects which rule to apply.

X

Fig. 2. A face F' with two bundles of X-edges
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3.2 Triviality Checks

When there is no rule applicable to the set P of permitted edges, the prun-
ing phase ends. The FIND-EDGE algorithm then proceeds with three types of
triviality checks, described below.

First, the algorithm checks whether there is a cluster X that is not saturated
by any permitted edge. If this is the case, the algorithm concludes that the
clustered graph (G,C) is not c-planar and stops. This is a correct conclusion,
since if (G,C) were c-planar, then by the last invariant there would have to be a
saturator made of permitted edges, which is clearly impossible.

As the next triviality check, the algorithm tries to find a cluster X, such that
the set P contains a single X-edge e. If such a cluster X is found, the algorithm
outputs e as a harmless edge and stops. This is again a correct output, since by
the last invariant, if G is c-planar, then it has a saturator S which is a subset
of P. Necessarily, S contains the edge e. This implies that e is harmless.

In the last type of triviality check, the algorithm looks for a permitted edge e
that does not cross any permitted edge belonging to a different cluster. If such
an edge e is found, the algorithm outputs e as a harmless edge and stops. This
is again easily seen to be a correct output.

If none of the triviality checks succeeds, the algorithm counts, for each clus-
ter X, the number of faces of G that contain at least one X-edge. We will say
that a cluster X is one-faced if all the X-edges belong to a single face of G, X
is two-faced if all the X-edges appear in the union of two distinct faces, and X
is many-faced otherwise.

If there is a one-faced cluster X whose permitted edges belong to a face F,
then the algorithm performs a subroutine LOCATE-IN-FACE to find a harmless
permitted edge in F'. This subroutine is described in the next subsection.

If there is no one-faced cluster, it can be shown that all the clusters are two-
faced, and that any permitted edge is harmless. The algorithm then outputs an
arbitrary permitted edge and stops. The main arguments involved in proving
the correctness of this step are sketched in Subsection [3.41

3.3 LOCATE-IN-FACE

Assume that we are given a set P of permitted edges satisfying all the invariants
described in Subsection Bl Assume furthermore than none of the pruning rules
is applicable to P, and none of the triviality checks has succeeded.
For a face F', we say that a cluster X is an F'-cluster, if all the X-edges belong
to F'. We say that a vertex of X is active, if it is incident to at least one X-edge.
Assume that F is a face with at least one F-cluster. Using our assumptions
about P, we are able to deduce the following facts:

— If X is an F-cluster, and Y is a cluster that has a permitted edge which
crosses a permitted edge of X, then Y is also an F-cluster.

— If X is an F-cluster with two components X; and X5, then each component
X; has at most two active vertices. It follows that X has either four permitted
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Fig. 4. Mutual positions of permitted edges of two crossing F-clusters

edges which all belong to a single bundle, or X has exactly two permitted
edges (see Fig. B recall that due to the triviality checks, each cluster has at
least two permitted edges).

Let X be an arbitrary F-cluster, let X; and X be its two components. From
the triviality checks, we know that every X-edge is crossed by a permitted edge
of another cluster. Let Y # X be a cluster whose permitted edge crosses an X-
edge, and let Y7 and Y5 be its two components. Note that a set Y; may not cross
with the set X; on the boundary of F', because these two sets induce connected
subgraphs of G. Recall also, that no Y-edge may intersect all the X-edges (and
vice versa), because it would have been pruned.

Putting all these facts together, we conclude that the mutual position of the
X-edges and Y-edges corresponds to one of the situations depicted on Fig. [l

Note that all the configurations of Fig. [ exhibit a ‘mirror symmetry’. To make
this observation rigorous, we define a ‘symmetry mapping’ ¢ on the set of all the
F-active vertices as follows: let X be an arbitrary F-cluster, with components
X1 and Xs. If a component X; contains two active vertices  and z’, then we
define o(z) = 2’ and o(2’) = z. If X; contains only one active vertex z, then we
put o(z) = x. We then extend the mapping o to the set of X-edges in a natural
way: for an X-edge e with endpoints x and y, we define o(e) to be the X-edge
with endpoints o(z) and o(y).

The mapping ¢ has the following properties:

— For an F-cluster X and an X-edge e, o(e) is an X-edge different from e.
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— If X and Y are F-clusters, an X-edge e crosses a Y-edge f if an only if o(e)
crosses o(f).
— An X-edge e is harmless if and only if o(e) is harmless.

From these properties, it can be easily deduced that if an F-cluster X has only
two permitted edges, then both these edges are harmless.

Furthermore, it is possible to show that if there is at least one F-cluster in a
face F', then there is also an F-cluster that has only two permitted edges.

The procedure LOCATE-IN-FACE is then easy to describe: as an input, the
procedure expects a face F' for which there is at least one F'-cluster. The proce-
dure then finds an F-cluster X that has only two permitted edges, and outputs
any X-edge as a harmless edge.

3.4 OUTPUT-ANYTHING

If, after the end of the pruning phase, each cluster has permitted edges in at
least two distinct faces, and if none of the triviality checks is applicable, we can
show that the set P of permitted edges has the following properties:

— For each cluster X, there are exactly two faces of G that contain the X-edges.

— All the X-edges that appear in the same face are equivalent.

— If X and Y are distinct clusters, and if an X-edge crosses a Y-edge, then all
the X-edges and all the Y-edges appear in the same pair of faces, and every
Y-edge crosses all the X-edges in its face.

— Let S C P be a minimal saturator of permitted edges. For each edge e € S
find an arbitrary permitted edge e that saturates the same cluster as e and
appears in a different face than e. The set S = {e: e € S} is another minimal
saturator of permitted edges.

From these properties, we may deduce that every permitted edge e € P is
harmless. The procedure OUTPUT-ANYTHING simply outputs an arbitrary
permitted edge and stops.

This completes the description of the simplified version of the FIND-EDGE
algorithm. It is clear that the algorithm runs in polynomial time.

4 Concluding Remarks

We have shown that c-planarity of 2-component plane clustered graphs can be
determined in polynomial time. This result raises several related open problems.

Problem 1. What is the complexity of the c-planarity problem for 2-component
graphs (G, C) if the embedding of G is not prescribed?

Problem 2. What is the complexity of deciding the c-planarity of clustered graphs
with O(1) components per cluster?

Problem 3. What if we relax the 2-component assumption by allowing the graph
G to have arbitrarily many components, and only restricting the number of
components of the non-root clusters?
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Abstract. Motivated by applications of social network analysis and of Web-
search clustering engines, we describe an algorithm and a system for the display
and the visual analysis of two graphs GGi and G2 such that each G; is defined
on a different data set with its own primary relationships and there are secondary
relationships between the vertices of (G1 and those of GG2. Our main goal is to
compute a drawing of G1 and G2 that makes clearly visible the relations be-
tween the two graphs by avoiding their crossings, and that also takes into account
some other important aesthetic requirements like number of bends, area, and as-
pect ratio. Application examples and experiments on the system performances
are also presented.

1 Introduction

The visual analysis of complex data sets is one of the most natural applications of graph
drawing technologies (see, e.g., [2-4]). A typical application scenario consists of a set of
data (nodes) and one or more relationships among these data (each relationship is a set
of edges); therefore one is given one or more graphs on the same set of nodes. Both each
graph must be visualized in a readable way and possible similarities among the different
graphs must be easily detected by looking at the different drawings. This scenario has,
for example, motivated a rich body of papers and systems about simultaneous graph
embeddings and visualizations of evolving graphs (see, e.g., [7, 13-16]).

Recently, Collins and Carpendale [8] proposed a new research direction devoted to
the visual comparison and analysis of heterogeneous data sets. The input consists of n
sets of data Dy, Ds, ..., D,, such that for each D; a distinct set of primary relation-
ships (i.e., a distinct graph) is defined; also, there are secondary relationships which
model semantic connections between data belonging to different sets. The visualization
consists of a set of n drawings (one for each graph) on top of which the edges that repre-
sent the secondary relationships are displayed. Collins and Carpendale present a system,
called VISLINK, where each graph is drawn on a distinct plane and the secondary rela-
tionships are links between these planes (see Fig. 1(a) for a schematic illustration). The
work by Collins and Carpendale extends a previous work by Schneiderman and Aris
where multi-plane views with inter-plane edges are used to visualize different semantic
substrates of a same graph [19](see Fig. 1(b) for an illustration).

* Research partially supported by the MIUR Project “MAINSTREAM: Algorithms for Massive
Information Structures and Data Streams”.

1.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 133 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Schematic illustrations of a visualization (a) adopted by VisLink, (b) using different se-
mantic substrates of a same network. In both the visualizations the drawing on each plane has
been computed without taking into account the relationships with the other. This may cause many
crossings between inter-sets relationships.

Motivated by applications of social network analysis and of Web search clustering
engines, we elaborate on the concepts by Collins and Carpendale by studying the fol-
lowing problem: We are given two graphs GG; and G2 and a function that defines a set
of secondary relationships by mapping some of the vertices of G; to some other ver-
tices of G'2; we aim at visually analyzing and interacting both with G1, G2 and with
their secondary relationships. We observe that the systems described in [8, 19] follow
the common approach of drawing each graph independently of each other. As a result,
the secondary edges may be difficult to read as they can have many crossings. Our main
goal is to design a system where the two drawings are computed by taking into account
the edge-crossing minimization of the secondary edges. We focus on one-to many re-
lationships between (G1 and G, i.e., vertices of (G; are associated with disjoint subsets
of vertices of G2. The main contributions of the paper are the following:

— We introduce the concept of one-to-many matched graphs and define drawing con-
ventions for these graphs in a strong and non-strong model. Both drawings require
the secondary relationships between the graphs not to cross each other (Sect. 2).

— We describe a system that computes strong and non-strong one-to-many matched
drawings of the input graphs by also taking into account the optimization of impor-
tant aesthetic requirements. Furthermore, the system provides the user with several
interaction functionalities that make it possible to analyze the drawings at differ-
ent levels of details by collapsing/expanding clusters and by filtering information
with the definition of node/edge thresholds (Sect. 3). Our drawing approach com-
bines orthogonal drawings in the topology driven approach with circular drawing
algorithms, and adopts an edge bundling technique to reduce the visual complexity
introduced by some links.

— We show the effectiveness of the system by presenting application examples
(Sect. 4), and an experimental study on the system performances (Sect. 5).

We finally remark that the problem of drawing two matched planar graphs G; and
G, with one-to-one secondary relationships between them have been originally studied
in [11], where it is required that the drawing of each G; is planar and that the secondary
edges are represented as non-intersecting horizontal segments.
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2  One-to-Many Matched Graphs and Drawings

We assume familiarity with basic concepts of graph planarity and graph drawing [10].
If G is a graph, we denote by I'(G) a drawing of G. I'(G) is an orthogonal drawing if
each edge is drawn as a chain of horizontal and vertical segments. A bend in I'(G) is a
point of an edge shared by a horizontal and a vertical segment of the edge. A drawing
I'(G) is a circular drawing if there is a circle passing through all vertices and each
edge is drawn as a straight-line segment. In the following, if G = (V, E) is a graph and
V' C V we denote by G(V') the subgraph of G induced by the vertices of V.

Let G1 = (V4, E1) and G2 = (Va, E9) be two distinct graphs. We say that (G1, G2)
is a pair of one-to-many matched graphs if: (i) Each vertex u of Gi1 is associated with a
subset M (u) = {v1,va,..., v} of vertices of G2, which we call the cluster of u in Ga;
(44) the set of clusters {M (u) C V5 : u € V1 } is a partition of V2, i.e., M(u) =
Va and (), ey, M (u) = 0.

Let (G1, G2) be a pair of one-to-many matched graphs, and let I'(G1), I'(G2) be
drawings of G and Go, respectively. We say that (I'(G1),I'(G2)) is a one-to-many
matched drawing if the following properties hold: (P1) The bounding boxes of I'(G1)
and I'(G2) do not intersect. (P2) For each vertex u of G, cluster M (u) in I'(Gz) is
bounded by a rectangular region R(u) such that: (i) G(M (u)) is completely contained
in R(u); (i7) each vertex v € V2 \ M (u) is outside R(u); (4i7) each edge of G2 inter-
sects the boundary of R(u) at most once. (P3) For each vertex u of G, there exists a
simple curve ¢(u) that connects the geometric shape p,, representing u in I'(G1) to the
boundary of R(u) in I'(G'2), in such a way that (0, oy, £(u) = 0.

In the paper, simple curves ¢(u) are referred to as matching connections. Property
(P3) guarantees that there is no intersection between distinct matching connections.
A one-to-many matched drawing is said to be strong if the centers of the vertices of
I'(G4) have distinct y-coordinates and regions R(u) are vertically ordered in I'(G)
according to the positions of the corresponding vertices in I'(G1). More formally, if
u1,uz € V4 and py, is above p,,, in I'(G1), then R(uq) is completely above R(u2) in
I'(G2). In the paper, a one-to-many matched drawing that is not strong will be referred
to as a non-strong one-to-many matched drawing. Figure 2 shows two examples of one-
to-many matched drawings for the same pair of graphs. The one in Fig. 2(b) is a strong
one-to-many matched drawing.

ueVy

3 The System MOM

In this section we present a system for the display and the visual analysis of one-to-
many matched drawings. We call our system MOM!. Let (G, G2) be a pair of one-
to-many matched graphs to be visualized. MOM displays the drawing of G to the left
of the drawing of G5, according to the following main criteria: (C1) It assumes that
a drawing I'(G) is given as part of the input or that it can be computed using some
classical graph drawing algorithm. (C2) It concentrates on the computation of I'(G2),
while trying to optimize a certain number of aesthetic criteria, other than guarantee-
ing that (I'(G1), I'(G2)) is a one-to-many matched drawing. (C3) Once I'(G2) has

! MOM stands for Matched One-to-Many graphs.
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Fig. 2. (a) A (non-strong) one-to-many matched drawing of a pair of matched graphs. (b) A strong
one-to-many matched drawing for the same pair of graphs.

been computed, it draws the matching connections and provides the user with a set of
interaction functionalities for the visual analysis of the resulting drawing.

Criterion (C1) is motivated by several application scenarios that we had in mind
during the design of the system. In these applications GG; is often a graph whose entities
represent geographic locations and therefore their position is either fixed or strongly
constrained (examples are given in Sect. 4). About (C2), we focus on well recognized
aesthetic criteria like number of crossings, number of bends, drawing area. Since the
optimization of these criteria typically leads to an NP-hard problem, we propose some
heuristics based on engineered versions of popular graph drawing algorithms, which are
able to deal with the constraints of a one-to-many matched drawing. As an additional
aesthetic criterion we require that (I"(G1), I'(G2)) is computed in such a way that the
matching connections can be always drawn without intersecting the edges of G2. When
G4 is a dense graph, I'(G2) may have a high visual complexity, which makes it difficult
to read the drawing at a whole, independently of the applied drawing strategy. This is
the motivation for (C3).

3.1 Drawing Algorithm

Our drawing strategy for I'(G3) combines different drawing conventions. We use or-
thogonal drawings for the layout of the rectangular regions R(u) and their connections.
Circular drawings are used to represent G(M (u)) inside R(u). Finally, in order to sim-
plify the visual complexity, we adopt a bundling operation for the edges connecting
a vertex inside a region R(u) to vertices outside R(u); to avoid ambiguity, we use a
“confluent-like” representation for these edges, as explained later. The algorithms used
for the different drawing conventions have been engineered in order to deal with a cer-
tain number of constraints. In the following we describe in detail the steps performed
by our drawing algorithm. We denote by V; and E; the set of vertices and edges of G,
respectively (i € {1,2}).

Step 1: Planarization. The goal of this step is to compute a suitable planar embedding of
the graph consisting of “cluster vertices” and their interconnections, possibly replacing
edge crossings with dummy vertices. More precisely, let u;, us, . . ., u, be the vertices
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Fig. 3. (a) A graph G2. (b) The graph G5 used in Step 1 plus the wheel gadget (black node and
dashed bold edges) adopted to guarantee (E1); the wheel gadget is removed at the end of Step 1.

of G in the top-to-bottom order? they appear in I'(G1), and let G% be the graph ob-
tained from G+ by collapsing each cluster M (u;) into a single vertex v(u;) (1 < i < n),
called a cluster vertex. In G, edges connecting vertices in the same cluster M (u) dis-
appear, while an edge connecting a vertex in M (u;) to a vertex in M (u;) (i # j) is
transformed to a corresponding edge between v(u;) and v(u;). We aim at computing
a planar embedding ¥ of G} that satisfies the following two conditions: (E1) Cluster
vertices v(u1),v(u2), ..., v(u,) appear counterclockwise in this order on the external
face of ¥; (E2) If v € M (u;) in Gy and if e1, . .., ey are edges of G incident to v,
then the edges corresponding to ey, . . ., ey in G, appear consecutively (not necessarily
in this order) around v(u;) in ¥. Condition (E1) will guarantee Property (P3), i.e., the
possibility of routing the matching connections without crossings among them; it also
avoids crossings between matching edges and the edges of GG5. Condition (E2) makes it
possible to simplify the links between the outside and the inside of each region R(u;) in
the final drawing and to bundle these links as it will be explained in Step 3. To force (E2)
we further transform G by attaching to v(u;) a vertex v’ for each vertex v € M (u;)

connected to vertices outside M (u;), and by replacing the edges ey, . . ., ) that are in-
cident to v with corresponding edges €/, .. ., e}, connected to v’. Vertex v’ is called the
image of v.

On G, we apply a standard planarization algorithm based on first extracting a max-
imal planar subgraph and then on iteratively reinserting the discarded edges by com-
puting shortest paths in the dual graph and by replacing edge crossings with dummy
vertices [10]. To force (E1), we use a “wheel gadget” of uncrossable edges that will be
removed at the end of the planarization phase. Figure 3 shows an example of a graph
G, and the wheel gadget used to guarantee (E1).

Notice that, quadratic and linear-time algorithms for planarity testing and edge rein-
sertion within the above described embedding constraints have been also proposed in
[1,17]. Our planarization phase takes O(| E2|(c + |V2|) log(c + |V2])) time, where ¢ is
the number of edge crossings in the final embedding of GY.

% If w; and u; have the same y-coordinate, they are ordered from right to left.



138 E. Di Giacomo et al.

Step 2: Orthogonalization and Compaction. Once a planar embedding ¥ of G, (with
possible cross vertices) has been found, an orthogonal drawing of G, that preserves
¥ is computed. The basic idea is to use an orthogonal drawing algorithm that deals
with arbitrary vertex degree and that allows for vertex size customization. Indeed, we
want that v(u;) is drawn as a box big enough to host all vertices of M (u;). To this
aim, the system uses the network flow based drawing algorithm described in [9], which
represents a good heuristic both in terms of bend minimization and in terms of area
drawing compaction. Denoted by B(v(u;)) the box representing vertex v(u;), we draw
B(v(u;)) as a square of a certain size r;. In the final drawing we place a circle of radius
pi inside B(v(u;)) and equi-distribute along its perimeter the vertices of M (u;). To
determine p;, we fix a minimum distance 6 we want to guarantee between any two
vertices of M (u;) and we set p; = 6 - | M (u;)|/27. We choose r; to be larger enough
than p; so that it is possible to route the edges connecting vertices inside B(v(u;)) with
the outside. Each square B(v(u;)) will correspond to region R(u;) in the final drawing.
Also, in order to guarantee the properties of a one-to-many matched drawing, we add a
certain number of constraints as described below.

If one wants to compute a strong one-to-many matched drawing, then all vertices
v(ug),v(uz),...,v(uy,) are temporarily connected in this order to form a simple cy-
cle C that becomes the new boundary for the external face. Then the following angle
and bend constraints on the vertices and edges of C' are imposed: Each edge of C con-
necting v(u;) to v(u;q1) (1 < ¢ < m — 1) is constrained to be straight-line in the
drawing, while the edge of C' connecting v(uy,) to v(uq) is constrained to turn always
in the left direction while moving from v(u,,) to v(u1). Each angle formed at a vertex
v(u;) on the external face is set to be of 180 degrees. These constraints guarantee that
v(ug),v(uz),...,v(uy,) are encountered from top-to-bottom in the final drawing and
that they are all visible from left. Once a drawing has been computed the edges of C
are removed. If one wants to compute a (not necessarily strong) one-to-many matched
drawing, then we still construct cycle C, but we only impose the constraint that the
edges of C' turn in the left direction or go straight while moving along C' counter-
clockwise. Finally, in order to correctly perform the next step (i.e., the edge bundling
operation), we also require that for each image vertex v’ attached to a vertex v(u;),
there is no other edge incident to v’ from the same direction of edge (v(u;), v’).

All the orthogonalization constraints described above are translated into constraints
on the flow network of the algorithm in [9]. The orthogonalization and compaction
phases take O((|V1]|Va| + ¢)?log(|V1||Va| + ¢)) time, where c is still the number of
cross vertices in the embedding V.

Step 3: Edge Bundling. This step removes each image vertex v’ and creates in its place
a “confluent-like” structure for the edges incident to v’. Namely, let v be the vertex of
the original graph that has v’ as its image and let M (u;) be the cluster that contains
v. Let €}, ..., e}, be the edges incident to v’ other than edge (v, v(w;)). We want that
v’ is no longer present in the final drawing and that the edges €1, . . ., e}, are replaced
by the edges ey, eq, ..., ex that were originally connected to v. To simplify the final
drawing however, we bundle the edges €1, es, ..., e, from v to v’; this edge bundle
follows the drawing of e from the boundary of R(u;) to v’ and then it divides in k
branches at v’ using splines, as shown in Fig. 4(a). It is important to remark that the
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Fig. 4. (a) Tllustration of Step 3. The image vertex v’ is removed and its incident edges are replaced
by a “confluent-like” structure. The dashed curve is the part of edge bundle that will be drawn
in Step 4. (b) Illustration of Step 4. The black vertices inside R(u;) denote the vertices whose
relative circular ordering is fixed according to their corresponding external connections.

edge bundling operation guarantees that for each vertex v inside a region R(u;) there
will be at most one link (a bundle of edges) incident to v from the outside of R(u;).
Since these links must be routed around the circular drawing representing G(M (u;)),
this property strongly simplifies the visual complexity introduced by these connections.
The edge bundling step takes O(| Es|) time.

Step 4: Circular Drawing Computation. At the end of the previous step, we have
a partial drawing of G5 such that for each cluster vertex v(u;) there is a correspond-
ing rectangular region R(u;) and some edges incident to the boundary of R(u;) at
certain points p1, pa, . .., pg. To complete the drawing of G2 we construct a circular
drawing for each G(M (u;)), and then connect p; to its corresponding vertex v; of
M(u;) (1 < j < k). See Fig. 4(b) for an illustration. In order to avoid crossings be-
tween links (p;,v;), we force the circular order of vertices v; to be consistent with
the circular order of points pi,pa,...,pr around R(u;), i.e., if p1,pa,...,pr occur
clockwise in this order around R(u;) then we force vy, va, ..., vy to occur clockwise
in this order in the circular drawing. Conversely, all vertices of M (u;) distinct from
vj (1 < j < k) can be placed everywhere in the circular ordering (these vertices are
not connected to vertices outside R(u;)). In other words, if Vi = {v1,v9,..., 05}
and Vipee = M(u;) \ Vi, we want to find a “good” circular order for the vertices of
M (u;) such that the relative order of the vertices of V;, is fixed; our goal is the mini-
mization of the number of edge crossings, which is however an NP-Hard problem [18].
To solve it, we designed a variation of the heuristic described by Baur and Brandes [5],
which has been experimentally shown to produce better results in terms of crossing
reduction than previous heuristics for computing circular drawings, and that has been
successfully adopted for the layout of two-level networks that are similar to the clus-
tered structure of G2 [6]. We also recall that faster but less effective circular drawing
algorithms in terms of edge crossings have been described in [20]. The heuristic by Baur
and Brandes computes an ordering of the vertices on a straight line ¢, assuming that all
edges are drawn on the same half-plane determined by £. In terms of edge crossings this
model is equivalent to place the vertices on a circle and to draw the edges as straight-line
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segments. At the end of this placement greedy heuristic, a post-processing step, called
circular sifting is applied to further reduce the number of edge crossings if possible.
The idea is to iteratively swapping a vertex with its successor vertex in the linear order
on ¢ and recording the change in crossing count; the vertex is then placed in the position
that corresponds to its local optimal. Denoted by n and m the number of vertices and
the number of edges of the input graph, respectively, the placement greedy heuristic
can be performed in O((n +m) log n) time, while repositioning each vertex once in the
circular sifting phase can be done in O(nm) time (see [5]).

Our variation of the algorithm in [5] works as follows. The placement greedy heuris-

tic performs analogously to the one of Baur and Brandes, but it assumes that the ver-
tices of Vy;, are already placed on ¢ in a preassigned order; therefore the placement
decisions are restricted to the vertices of V... The circular sifting phase is modified
so that swaps between vertices both belonging to V;, are not allowed. Once the circu-
lar ordering of the vertices of M (u;) has been computed, the algorithm equi-distributes
these vertices on a circle inside R(u;) and rotates this circle in order to reduce the total
length of the connections (p;,v;) (1 < j < k), which are routed as polygonal chains of
vertical and horizontal segments. The circular drawing computation over all cluster ver-
tices takes O(|V1|((|Va| + | E2]) log |Va| + |V2|| E2]|)) time (recall that |V; | corresponds
to the number of cluster vertices).
Step 5: Drawing of Matching Edges. This step is simply performed by routing the
matching edges as polygonal chains from the location of a vertex u; of I'(G1) to the
boundary of the corresponding region R(u;) in I'(G2). Since the circular ordering of
the regions on the external face of I'(G) is consistent with the top-down ordering of the
corresponding vertices in I'(G1), this can be done without crossing between matching
edges. Also, in a strong one-to-many matched drawing, each matching edge can be
routed with at most two bends.

Time Complexity. The next theorem summarizes the discussion about the drawing
algorithm implemented in M OM. To simplify the time complexity of this algorithm,
the statement of the theorem assumes that |V;| is bounded by a constant. This appears
as a reasonable assumption if |V;| < |Va].

Theorem 1. Ler (G1,G2) be a pair of one-to-many matched graphs such that G, =
(Vi, E1) and Gy = (Va, Es). Let I'(G1) be any drawing of G1. There exists a polyno-
mial-time algorithm that computes a one-to-many matched drawing (I'(G1), I'(G2))
(either in the strong or in the non-strong model) with the additional property that the
matching edges can be drawn without intersecting any vertex and edge of I'(G3). Also,
if |V1| is bounded by a constant, and denoted by N the number N = |Va| + ¢, where ¢
is the number of inter-cluster edge crossings in I'(G3), then the time complexity of the
drawing algorithm is: O((|E2|N + N?)log N).

3.2 Interaction Functionalities

In order to facilitate the visual analysis of the computed one-to-many matched draw-
ings, we equipped our system with a certain number of interaction functionalities, other
than conventional zooming and translation primitives. We briefly describe them in the
following.
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Cluster Expansion/Contraction: By default, all cluster regions R(u) in I'(G3) are
expanded, i.e., the whole subgraph inside each R(u) is displayed by the system. In
order to compact the drawing and/or to hide some details, the user can decide to con-
tract a certain number of clusters by simply clicking on them. A cluster contraction
redraws the cluster as a small box and hides its content. Every cluster can be expanded
or contracted an infinite number of times without any restriction. After a cluster ex-
pansion/contraction, the drawing is automatically re-compacted by the system, but the
orthogonal shape of the drawing remains unchanged, so to avoid that the user mental
map is lost. Contracting clusters can be useful to get an overview of the inter-cluster
relations before analyzing the intra-cluster ones.

Cluster Filtering: If the user is interested in focusing on some of the clusters, she
can select them and hide the remaining clusters and their connections. After such an
operation, the user can also decide to re-compact the remaining part of the drawing
to save space if possible. When the drawing of I"(G2) has many clusters and/or many
inter-cluster links, the cluster filtering primitive can help to explore the graph structure
portion by portion.

Edge Filtering: Our system allows the representation of edge weighted graphs. This
means that a weight can be assigned to each edge of (G; and of G5. When a graph is too
dense, the user can sparsify the links by setting an edge visibility threshold. All links
having the weight below the given threshold are not shown by the system. Again, the
drawing is re-compacted if required.

Edge/Vertex Highlighting: Moving the mouse over a certain vertex or cluster region,
the user can decide to highlight all edges incident to that vertex or to that cluster region.
A tooltip with information about the selected vertex is also displayed. This helps to
get local information on the drawing. Furthermore, moving the mouse over an edge,
a tooltip that displays the labels of its end-vertices is shown. This helps when just a
portion of the selected edge fits in the current view.

4 Application Examples

One-To-Many matched graphs occur in several applications contexts. Here we briefly
present an example on social network analysis. Another application example on Web
search clustering engines is described in [12].

Our example focuses on the co-authorship network of the last Symposium on Graph
Drawing, GD 2007. G; is the graph having European countries as vertices and edges
between countries that cooperated in co-authoring some papers. Each edge has a weight
equal to the number of papers resulting from the cooperation of the connected countries.
The drawing I'(G1) is a simple straight-line drawing, where each vertex is placed at a
fixed location on a geographic map. Graph G4 represents authors and their cooperations
in the articles. Figure 5 shows a one-to-many matched drawing in the strong model.
The drawing gives an overview of the network structure, which reveals the number
of contributing authors for each country and a relevant level of cooperation among
the different countries. Looking inside a country, it is possible to see its different sub-
communities. For example, it is easy to recognize two sub-communities in Greece, in
Italy, and in Czech Republic, several communities in Germany, and one big community
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Fig.5. A one-to-many matched drawing showing the European co-authorship network of GD
2007

in Spain. Selecting an author in a country, all her connections with other authors are
highlighted by the system. In the figure, author “Kaufmann” inside Germany is selected,
and the system highlights (in bold red color) his connections with other authors, three
in Greece and one in Italy. Moving the mouse over one of the bold red edges, it is
displayed a tooltip that reports the labels of its end-vertices. Figure 6 shows an example
of edge and vertex filtering on the previous drawing, which makes it easier to focus on
specific relationships. Namely, the edges of I"(G1) has been filtered so that only those
edges with a weight greater than 1 are shown. The vertices of I'(G2) have been filtered
in such a way that only the countries having some incident links in I'(G1) are shown
(i.e., Germany, Italy, and The Netherlands). Then, cluster Germany has been contracted
to focus on the interplay between Italy and The Netherlands. After the vertex filtering
and contraction operations, I"'(G2) is recomputed so to become more compact without
destroying the user’s mental map. In the figure, the connections of author “Meijer” are
highlighted in bold red.

5 System Performances

We have tested our system in order to measure its performances. Our main goal was
to measure the running time and some important aesthetic requirements, like number
of crossings, number of bends, drawing area, and aspect ratio (width/height). We com-
pared the algorithm for strong one-to-many matched drawings against the algorithm for
non-strong one-to-many matched drawings, so to understand the trade-off between the
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Fig. 6. The same one-to-many matched graphs of Fig. 5 after some edge and vertex filtering

results of the two algorithms. A strong drawing greatly helps in the readability of the
matching between G; and G2, but we expect that a strong drawing has worst values for
some aesthetics (e.g., aspect ratio and number of bends) than for a non-strong drawing.

The focus is on the drawing of G2, because we are assuming that a drawing I"(G1)
is given as part of the input or that it is computed with some classical drawing algo-
rithm. For the experiments we used a test suite of instances for G5, with given num-
ber of cluster vertices. We generated 240 graphs in total, 5 graphs for each sample.
A sample is obtained by fixing number of vertices, number of clusters, and density
(number of edges/number of vertices). The number of vertices is a value in the set
{100, 400, 700, 1000}, the number of clusters is a value in {5, 10, 15, 20}, and the den-
sity is a value in {1,1.5,2}. Each graph was generated at random, by assuming that
10% of the edges are inter-cluster edges and that 90% of the edges are intra-cluster
edges. The experiments have been executed under the Windows 2003 server OS, on an
Intel Pentium IV with 3.0GHz and 2GB of RAM.

The charts of the experimental results are omitted for reasons of space and can be
found in [12]. As for the running time, the computation of strong drawings is slightly
slower than for non-strong drawings (in the average, it requires about 10% more). In
general, both types of computations take a few seconds for graphs up to 400 vertices
and low density values. Graphs with the highest density and 700 vertices are computed
in a few minutes, while the computations may require up to 30 minutes for the hard-
est instances of our test suite, i.e., graphs with 1000 vertices and density 2. About the
area and the aspect ratio, since in a strong one-to-many matched drawing every two
cluster regions are constrained to stay one below the other, strong drawings have a
worst aspect ratio but smaller area than non-strong drawings, which have aspect ratio
close to 1. About the number of bends, strong drawings present in the average 11 —12%
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of bends more than non-strong drawings, which are caused by their greater number of
constraints. Finally, as already observed, the number of crossings is independent of the
two drawing algorithms, and as expected it rapidly increases with the graph density.
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Abstract. In this paper we study how two planar embeddings of the same bicon-
nected graph can be morphed one into the other while minimizing the number of
elementary changes.

1 Introduction

A useful feature of a graph drawing editor is the possibility of selecting a certain face
of the drawing and of promoting it to be the external face (see, e.g., [9]). In order to
preserve the mental map, the user would like that the editor executed such an operation
by performing a few changes to the drawing.

The above operation is just an example of a topological feature that would be useful
to have at disposal from an editor. More generally, it would be interesting to have an
editor allowing the user to look at a drawing and to specify in some way, e.g. pointing
at vertices or edges, a new embedding. Such an embedding could be even requested
at a more abstract level, asking the editor to go to one with minimum depth, or with
minimum radius, etc. Again, the editor should transform the current embedding into
the new one smoothly, i.e. with the minimum number of changes.

A similar problem occurs when, keeping the topology unchanged, an editor has to
geometrically morph a drawing into another one, specified in some way from the user.
In this case the operations that the editor can perform are topology-preserving transla-
tions and scaling of objects. The user would like to see a geometric morphing with the
minimum number of intermediate snapshots.

The existence of a geometric morphing between two drawings was addressed sur-
prisingly long ago. Cairns proved in 1944 that between any two straight-line drawings
of a triangulated planar graph there exists a morph in which any intermediate drawing
is straight-line planar [7]. This was extended to general planar graphs by Thomassen
in 1983 [19]. The first algorithms to find such morphings were proposed by Floater
and Gotsman for triangulations [12] and by Gotsman and Surazhsky for general plane
graphs [[13]]. While the search for a geometric morph between two given drawings of a
planar graph with a polynomial number of steps and with a bounded size of the needed
grid is still open, some recent studies address the problem for the special cases of or-
thogonal drawings [15l6] and arbitrary plane drawings [11].
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Fig. 1. A sequence of flips and skips transforming an embedding

We study the morphing between two drawings from the topological perspective and
we call it topological morphing. There are many ways to state the problem, ranging
from the family of graphs, to the operations that an editor can perform, their complete-
ness, their ability to capture changes that are “natural” for the user, and to the metrics
that distinguish a good from a bad morphing. This work starts from the following ba-
sic hypotheses. (i) We consider biconnected planar graphs, since such graphs are the
building block of several graph drawing methodologies. (ii)) We consider operations
that move in one step entire blocks of the drawing, that are identified by some connec-
tivity features. Namely, using a term that is common in planarity testing literature, we
call flip the operation that allows to “flip” a component around its separation pair. Also,
borrowing the term from the common rope skipping game played by children, we call
skip the operation that allows to move the external face by “skipping” an entire com-
ponent without modifying the combinatorial embedding. (iii) The metric is the number
of performed operations. Namely, we have that a topological morphing is “good” if
the editor performs it with a few flips and skips. Intuitively, the fewer operations are
performed, the better the user preserves the mental map.

As an example, suppose that the graph is embedded as shown in Fig.[Tla and that the
user would like to obtain the embedding in Fig.[Ild. A minimum sequence of operations
that leads to Fig.[Ild consists of flipping the component separated by the starred vertices
of Fig.[Ila, then by skipping the component separated by the starred vertices of Fig.[Ilb,
and finally by skipping the edge separated by the starred vertices of Fig.[Tlc.

We present the following results. Let G be a biconnected planar graph and denote
by (I, f) one of its combinatorial embeddings I" with f as external face. Suppose
that pair (I, f1) is the current topology and that (I, f2) represents a target topology
chosen by the user. (1) In Sect. [2l we show that if both flips and skips are allowed the
general problem of morphing (I, f1) into (I3, f2) with the minimum number of flips
and skips is NP-complete. Motivated by such a result we tackle several more restricted
problems. (2) Suppose that I} = I and that only skips are allowed. In Sect. 3] we
give a linear time algorithm to move the external face from f; to fo with the minimum
number of skips. (3) In Sect. ] we show that the topological morphing problem can be
efficiently solved if G' does not have parallel triconnected components. (4) In Sect.
we show that the problem is fixed-parameter tractable. Basic definitions are in Sect.
while concluding remarks are in Sect.
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2 Basic Concepts

In this section we define the flip and skip operations and their properties. The proofs of
the lemmas and theorems can be found in [/1]].

We assume familiarity with planarity and connectivity of graphs. A planar drawing
of a graph is a mapping of its vertices to distinct points of the plane and of its edges
to non-intersecting open Jordan curves between their end-points. A graph is planar if
it has a planar drawing. A planar drawing partitions the plane into faces (topologically
connected regions). The unbounded face is the external face. Two planar drawings of a
graph G are equivalent if they determine the same circular ordering of the edges around
each vertex. An equivalence class of planar drawings is a combinatorial embedding of
G. A planar embedding is a pair (I, f), where I is a combinatorial embedding and f
is the external face.

The SPOR-tree T of a biconnected graph G describes the arrangement of its tricon-
nected components. We assume familiarity with SPQR-trees. For details see [10].

Let G be a biconnected planar graph and let 7 be the SPQR-tree of G. A planar
embedding (I, f) of G can be represented by a labeling of 7. Namely, I" is described by
the combinatorial embedding of the skeleton of each node in 7', which can be succinctly
represented by labeling each R-node with a Boolean value and each P-node with a
circular ordering of its adjacent nodes, as described in [3]].

In order to account for the external face f in the SPQR-tree 7, we introduce the
following definitions. A node u of 7 is an allocation node of a face f of I" either if
w is a Q-node incident to f or if there exist no virtual edge e of skel(u) such that
pertinent(e) contains all the edges of f. Observe that if y is an allocation node of
f, then there is exactly one face f,, in skel(p) such that all the pertinent graphs of
its virtual edges contain at least one edge of f. Face f, is the representative of f in
skel(w). In the following, we will denote by f both a face of I" and its representative
face in the skeleton of one of its allocation nodes. We say that f belongs to all its
allocation nodes. The set of all the allocation nodes of f are a subtree of 7, called the
allocation tree of f. Figure[2la shows examples of allocation trees.

Property 1. The allocation tree of a face f is the subtree of 7 whose leaves are the
Q-nodes corresponding to the edges of f.

The external face of I" can be provided by specifying its allocation tree in 7 The fol-
lowing lemma shows how adjacent nodes in 7 share exactly two faces.

Lemma 1. Let j11 and po be two adjacent nodes of an SPQR-tree T. There are exactly
two faces [’ and f" of I that belong both to p; and to . In skel(u) (skel(us2)) f'
and f" share edge e(12) (e(u1)). If p1 (p2) is not an S-node, then e(uz) (e(p1)) is the
only edge shared by ' and " in skel(p1) (skel(p2)).

Now we define the flip and skip operations and we show how they change the embed-
ding of a planar graph. Let G be a planar graph, and let (I, f) be one of its embeddings.
Let (u,v) be a split pair of G and let G; be a set of topologically contiguous maximal
split components of G w.r.t. (u,v) such that G; does not contain all the edges of f.
We define the flip operation on (I, f) with respect to G1: flip((I, f),G1) = (I"", )



148 P. Angelini et al.

(a) (b)

Fig. 2. SPQR-tree of the graph of Fig.[Il (a) The light gray ellipse circles the allocation tree of
the external face of Fig.[Tla. The dark Gray ellipse circles the allocation tree of the external face
of Fig.[Tld. (b) The skip path and the corresponding track graph of the two faces.

where I is obtained from I" by reversing the adjacency lists of all the vertices of G,
but for u and v, and by reversing the order of the edges of (G; in the adjacency lists of
w and v. Face f’ is determined as follows. If at least one of w and v is not in f, then
f' = f. Otherwise, f’ is the unique face of I’ containing both the edges belonging to f
and not belonging to G; and some edge of G1 not belonging to f. As an example, see
the flip applied to the embedding of Fig.[Tla that yields the embedding of Fig.[Ilb.

We add the constraint that a flip operation cannot be performed if Gy contains f
because a flipping of the entire external structure of the graph around an internal com-
ponent is undesirable from a comprehension point of view.

The following property describes three basic features of the flip operation and is
trivial to prove.

Property 2. (a) flip(flip((I', f),G1),G1) = (I, f). (b) If G is a path, then flip({T,
[),G1) = (L, f). (¢) If G — Gy is a path, then flip(([, f),G1) = (I, f), where I is
I" with reversed adjacency lists.

Let (I, f1) be a planar embedding of G and I be a “target” combinatorial embedding
of G. Itis easy to see that there always exists a sequence of flip operations that leads from
(I, f1) to (Is, f2) for some choice of fo in I's. We denote by F((I7, f1), (I%, f2))
the minimum number of flips to obtain (I, f2) from (I, f2) for any fo.

Now we define the skip operation, which provides the ability to modify the external
face of an embedding. Let G be a planar graph, and let (I, f1) be one of its planar
embeddings. Let (u,v) be a split pair of G incident to faces f1 and f2 in I'. Skip
is defined as follows: skip((I, f1), f2) = (I, f2). It is easy to see that there exists
a sequence of skip operations that leads from (I, f1) to (I, f2) for any choice of fo
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in I". As an example, see the skip applied to the embedding of Fig.[lb that yields the
embedding of Fig.[Ilc. We denote by S((I', f1), (I, f2)) the minimum number of skips
to obtain (I, f) from (I, f1).

Given two planar embeddings (I, fi) and (I, f2) of a graph G, one could ask
which is the minimum number of flip and skip operations for obtaining (I, f2) from
(I, f1). We denote by FS((I, f1), (I'2, f2)) such a number.

Property 3. FS((I', f1), {12, f2)) < F(({I, f1), (I3, f3)) + S({I%, f3), (T2, f2)).

Lemma 2. Thevaluesof F((I', f1), {(I2, f2)), S{I1, f1), (I, f2)), and FS({I, f1),
(I'y, f2)) are O(n), where n is the number of vertices of G.

Unfortunately, given a biconnected planar graph G and two of its planar embeddings
(I't, f1) and (I, f3), the problem of transforming (I, f1) into (I'z, f2) with the min-
imum number of flip/skip operations is NP-complete.

Theorem 1. Let G be a biconnected planar graph and let (I, f1) and (Is, f2) be
two planar embeddings of G. Both computing FS({I1, f1), {I2, f2)) and computing
F({I1, f1), (I3, f2)) is NP-complete.

3 Linearity of the Case with Fixed Combinatorial Embedding

Let G be a biconnected planar graph, and let (I, f;) and (I, f2) be two planar embed-
dings of G. In this section, we show how to compute the value of S((I, f1), (I, f2)).
First, we need to introduce the following lemma whose proof is given in [[1]].

Lemma 3. Let G be a biconnected planar graph and let T be the SPQR-tree of G. Let
(I, f1) and (I, f2) be two planar embeddings of G. If there exists an R-node v of T
such that skel(p) contains both f1 and fo, then S((I, f1), (T, f2)) is the length of the
shortest path from f1 to fo on the dual of skel(u).

Let 7 be the SPQR-tree of GG and let 77 and 75 be the allocation trees of f; and fs,
respectively. The value of S = S((I, f1), (I, f2)) can be easily computed when 73 N
T3 # ). If this is true we have to tackle three cases: 7y N 73 = {u}, 71 N T2 = {u, v},
and 73 N 73 = {p1, p2, - - ., g . Conversely, the case 73 N 73 = ) is more complex.

Case 7; N7 = {p}. In this case p is the only node of 7 whose skeleton contains both
f1 and fo. If i is an S-node, then G is a cycle and so S = 1. If p is a P-node, since a
skip operation can move the external face from f; to any face of skel(u), we have that
S = 1. Finally, if i is an R-node, by Lemma[3] S is the length of the shortest path on
the dual of skel(u) from f7 to fa.

Case 7, N T = {p, v}. Observe that, in this case,  and v are adjacent in 7, and hence
they cannot be both P-nodes or both S-nodes. Also, by Lemmalll f; and f, are adjacent
in both skel(u) and skel(v). Hence, we have that S = 1. Notice that, if one of the two
nodes, say y, is an S-node, then all edges in skel(u) are real edges, but for e(v).

Case 71 N T = {u1, pa, - - ., pir }» with k > 3. As this case is more involved, we treat
it separately in the following lemma, the proof of which is left out of this extended
abstract.
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Lemma 4. Let 77 and T3 be the allocation tree of two faces f1 and fo of a graph G.
IfTiNTy = T3 T3 = {p1, 2y .-, piic} , with k > 3, then T3 is a star graph whose
central node is an S-node.

By Lemmald] and since f1 and f belong to the same S-node, it follows that S = 1.

If 7; N73 = (b, the computation of S is not trivial; however, we provide a linear time
algorithm, called SKIPONLY, to solve this problem. The algorithm is described below.
We define skip path sp(fi, f2) in 7 the (unique) shortest path in 7 between a node of
71 and a node of 75 (see Fig. Plb). Since a skip operation can only move the external
face from skel () to skel(v), with u adjacent to v, the following Property holds.

Property 4. Any sequence of skip operations that moves the external face from f; to fo
must traverse all the nodes of the skip path between 77 and 7.

In order to compute the sequence of skip operations to move the external face from f;
to fo with S steps, we define a weighted track graph [3] Track(f1, f2) (see Fig.2lb).
The nodes of Track(f1, f2) are faces of the skeletons of the nodes in sp(f1, f2). In
particular, let {1, ... i} be the nodes in sp(f1, f2), where f; is the external face of
skel(p1), while fo is a face of skel(u). Faces f1 and fy are nodes of T'rack(f1, f2).
For each node ;, ¢ = 2,...,k, Track(f1, f2) contains two nodes, called f;tand f;",
corresponding to the two faces of skel(u;) adjacent to the virtual edge representing
wi—1 in skel(p;). Notice that such faces also correspond to the two faces of skel(;—1)
adjacent to the virtual edge representing p; in skel(u;—1). Node f; belongs to level 1,
nodes fil and f;", fori = 2,..., k, belong to level 4, and node f5 belongs to level k& + 1.

We insert in T'rack(f1, f2) two types of edges, called horizontal edges, connecting
nodes of the same level, and vertical edges, connecting nodes of adjacent levels. More
precisely, horizontal edges are (f;", fil), fori =2,...,k, with weight 1, while vertical
edgesare, fori =2,....k— 1, (fi', fixa'), (fi", fisr)s (fi7 fira®), (Fi", fis1"). and
edges (f1, f2'). (fu. f2"). (fi', f2). (fi", fo).

Consider a vertical edge (f;", fﬂﬁl), with s;, ;41 € {l,r}, spanning levels 4 and
1+ 1. If i, is a P-node, then the weight is either O or 1, depending on the fact that virtual
edges corresponding to p; and ;41 are consecutive or not in the circular ordering of
the nodes. If p; is an S-node, then the weight is either 0 or 1, depending on whether
S$1 = S92 or not. Finally, if x; is an R-node the weight is the length of the shortest path
on the dual of skel(u;) from f;" to ff, ;.

The weight of an edge (f’, f”) in Track(f1, f2) represents the number of skip op-
erations needed to move the external face from [ to f”. Weight 1 assigned to an hori-
zontal edge (f;", f;') represents the possibility to skip the virtual edge representing /i,
in skel(p;—1).

Theorem 2. Let G be a biconnected planar graph, and let (I, f1) and (T, f3) be two
planar embeddings of G. If only skip operations are allowed, then there exists an algo-
rithm to compute S((I', f1), (I, f2)) in linear time.

Proof sketch. Consider the shortest path sp(f1, f2) on Track(f1, f2) from f1 to fo
computed by Algorithm SKIPONLY. The proof is based on the fact that any sequence
of skip operations leading from f; to fo, by Property [ must traverse all the levels of
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Track(f1, f2), and hence can not be shorter than the sequence identified by sp(f1, f2).
Regarding the computational complexity, since the needed operations on the SPQR-tree
7T and the sizes of involved structures are linear, it is possible to show that Algorithm
SKIPONLY can be implemented to run in linear time [[1]]. O

4 Linearity of the Case without P-Nodes

In this section we show that if 7 does not contain P-nodes, the problem of computing
FS({I1, f1), Iy, f2)) can be solved in linear time. For simplicity, the algorithm de-
scribed in this section only considers a subset of the possible flip operations. Namely,
given an S-node p, although a legitimate flip operation may concern the split compo-
nents of any split pair of ©, we only consider flip operations that concern split com-
ponents of maximal split pairs of p. Intuitively, this corresponds to flipping a single
neighbor v of p or all the neighbors of p with the exception of v. At the end of the
section we handle the general case.

In order to compute FS({I1, f1), (I2, f2)) when 7 does not contain P-nodes, we
first assign a label in {turned,unturned} to each node p of 7. Intuitively, the
label of node p indicates whether some transformation is needed on the skeleton of
1 in order to obtain I from I'y. If i is a Q-node, then p is labeled unturned. If
w is an R-node, p is labeled unturned if it has the same Boolean value in both the
labellings representing I} and I, and turned otherwise. Finally, if 1 is an S-node, it
is labeled unturned (turned) if the majority of its adjacent R-nodes is unturned
(turned). In case of a tie, we give p an arbitrary label, unless u is an internal S-node of
the skip path sp. In this case, we give p a label that is different from one of its adjacent
R-nodes in sp.

Second, we suitably extend the labeling from the nodes to the edges. An edge e inci-
dent to a Q-node is labeled unturned. Otherwise, e is labeled unturned (turned)
if its incident nodes have the same label (a different label). The number of turned
edges of 7 corresponds to the minimum number of flips to be performed on I'; in order
to obtain Iy, that is F ({171, f1), (I2, f2)). In particular, each turned edge e identifies
a split pair, which, since 7 has not P-nodes, identifies in its turn two split components
(1 and G2. Any minimum sequence of flips that transforms 77 into I contains either
flip({I"’, f"), G1) or flip({I"", f"), G2), for some suitable I, I"'", f’, and f”'.

A trivial case is when the intersection of the two allocation trees 77 and 75 of f; and
f2 is non-empty. In such a case, since f; and f; belong to the same skeleton, there is
no flip that can help to reduce the number of skips, and the trivial algorithm that first
performs all flips and then all skips uses FS({I1, f1), (I'», f2)) operations. Since, in
general, a flip operation may modify the distance between two faces (and hence modify
the number of needed skips), in order to compute FS((I1, f1), (I3, f2)) we have to
consider the case in which flip and skip operations are allowed to be alternated.

We propose an algorithm, called NOPARALLEL, to compute FS({I1, f1), (I, f2))
when 73 N 73 = () and 7 does not contain P-nodes. Such an algorithm is similar to
Algorithm SKIPONLY. The weights of the edges of graph T'rack( f1, f2) are modified in
order to take into account the possibility of performing some flip operations in advance
in order to reduce the number of skip operations. Namely, consider two nodes p; and
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i+ of the skip path sp, which are adjacent through the turned edge e, and consider a
skip operation on ;1. Such a skip operation has the effect of transferring the external
face from f! 1 to fI', or vice versa. The same effect is obtained by flipping ;41 with
respect to j;. Therefore, we set to 0 the weight of the horizontal edge linking f} L to
fiy1 in graph Track(f1, f2) and call shortcut such an edge. Using a shortcut in the
shortest path from f; to fs corresponds to performing a flip in advance and saving a
skip operation.

The sequence of skip and flip operations that transform (I}, f1) into (I, f2) is given
by the edges of a suitably selected weighted shortest path p from f; to fo in graph
Track(f1, f2) as follows. First, perform the flip operations corresponding to the short-
cuts that are traversed by p, while the external face is still f;. Second, perform the
skip operations corresponding to the non-shortcuts edges of p. Finally, perform the flip
operations corresponding to all the other turned edges, while the external face is fs.

Observe that graph T'rack(f1, f2) may admit more than one weighted shortest path
from f7 to fo. Suppose that the last node of the skip path sp is a turned (unturned)
R-node . Also suppose that a weighted shortest path p; from f; to fo uses an even
(odd) number of shortcuts. By performing the corresponding flip operations in advance,
while f; is the external face, the embedding of node  will be reversed an even (odd)
number of times, i.e., i will end up turned. Hence, in order to obtain [, according
to Property 2] we would need to perform a final flip operation with respect to an edge
belonging to f5. In this case, by using an equal cost weighted shortest path p, from f;
to fo that traverses an odd (even) number of horizontal edges whose weight is 0 we
would save the last flip. Hence, we need to compute, for any intermediate node f of
Track(f1, f2), the two weighted shortest path from f; to f, if both exist, using an odd
and even number of shortcuts. This computation can be performed in linear time and,
since all other operations can be performed in linear time, the following theorem holds.

Theorem 3. Let G be a biconnected planar graph, and let (I, f1) and (I, f2) be two
planar embeddings of G. Let T be the SPQR-tree of G. If T does not contain P-nodes
then FS((I'1, f1), (I2, f2)) can be efficiently computed in linear time.

Now we show how to modify Algorithm NOPARALLEL in order to handle the gen-
eral case in which a flip operation may concern the split component of any split pair
of an S-node p. Intuitively, this corresponds to allow flipping with a single operation
an arbitrary number of consecutive neighbors of ;. The general idea is to modify the
SPQR-tree 7 of G, relaxing the constraint that S-nodes can not be adjacent. Namely,
for any maximal sequence o; = v1,vs, ...,V of consecutive R-nodes with the same
label adjacent to 1, we add an S-node p; adjacent to i and move o; from the adjacency
list of p to that of u;. The label of p; is the same as the one of ;. The label of y is
computed as for Algorithm NOPARALLEL.

5 Fixed Parameter Tractability of the General Case

Since transforming (I, f1) into (I3, f2) is NP-complete when G is an arbitrary bi-
connected planar graph, in this section we study the fixed parameter tractability of the
problem when the structure of G is of limited complexity.
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Let 7 be the SPQR-tree of a biconnected planar graph G and let (I, f1) and (I, f2)
be two planar embeddings of G. We present an algorithm that computes
FS({I1, f1), (I, f2)) in O(n? x 2kTh) time, where k and h are two parameters that
describe the arrangement of P-nodes in 7 and their relationships with S-nodes.

We first describe how to handle P-nodes, which are responsible for the NP-hardness
of the general problem, with a fixed parameter tractability approach. Recall that the
embedding of the skeleton of each P-node pp is described in the labeled SPQR-trees
representing I and I by two circular sequences of virtual edges o; and o2, respec-
tively. As shown in [1]], the problem of morphing with the minimum number of flips o
into o is equivalent to the sorting by reversal problem (SBR), which has been proved
to be NP-hard in both cases of linear and circular sequences [8I17]. In fact, sorting vir-
tual edges is equivalent to sorting integer numbers, where a flip of [ contiguous edges
corresponds to a reversal of [ contiguous elements of the sequence.

The fixed parameter approach is based on the fact that SBR problem can be solved
in polynomial time, both in its linear and in its circular formulation, when each number
has a sign and the reversal of [ contiguous elements also changes their signs [14/18l16].
Indeed, when the virtual edges of a P-node correspond to components that have to be
reordered and suitably “flipped”, then the problem of morphing o into o2 can be mod-
eled as an instance of signed SBR problem, hence admitting a polynomial time solution.
For example, if all nodes adjacent to the P-node are R-nodes, then the problem of find-
ing the minimum number of flips that sort them is polynomial. Unfortunately, some
virtual edges, as for example those corresponding to paths, do not need to be flipped
in a specific way. If k£ such virtual edges are present, we conventionally assign to them
all combinations of signs, and apply 2% times the signed SBR polynomial algorithm.
In fact, there exists an assignment of signs that make it possible to find the minimum
number of flips that order a mixed signed/unsigned sequence [2].

Let 7 be the SPQR-tree of GG and let 7; and 75 be the allocation trees of f; and fo,
respectively. We concentrate on the case when 7; N 73 = () that is the most complex.

In order to compute FS((I71, f1), (I2, f2)) each node of T is labeled as turned,
unturned, or neutral. We order them based on their distance from sp. First, start-
ing from the farthest ones, we label nodes that are not in sp with the strategy described
below. Second, we label nodes of sp with a different strategy. Consider the current unla-
beled node p not in sp. Observe that 1 has all labeled adjacent nodes with the exception
of the node that links y to sp. If 11 is an R-node, then we label . based on its embedding
as described in Algorithm NOPARALLEL. If x4 is a Q-node, we label y neutral. If u
is an S-node, we assign p the label of the majority of its non-neutral labeled adjacent
nodes. In case of a tie, we label u neutral. If u is a P-node, denote by ¢ and o the
two circular sequences representing the embedding of w in I} and I'5. While labeling
1, we also compute the flips that are needed to transform ¢ into o2. Observe that, since
the external face can not be internal to a subgraph that is flipped, o; and o2 are actually
linear sequences as far as flip operations are concerned. In particular, we denote by o7}
and o), the two linear sequences obtained from oy and o9, respectively, by removing
the virtual edge e corresponding to the node that links x to sp and starting from the
virtual edge following e in the sequence. Let k£ be the number of neutral elements
of o{ and of. We assign all possible combinations of turned and unturned values
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to them, and compute 2" times the linear signed SBR distance d from o} to 0%, and
the analogous distance d from o} to o5, where o) is obtained from o, by reversing the
order and changing the signs. If d < d (d > d, d = d, respectively) we assign p the
label unturned (turned, neutral, respectively).

Now we describe how to assign labels to the elements of the skip path sp = p1, o,

.y i, from 77 to 75. Nodes in sp are never labeled neutral. If we have h P-nodes
in sp, we consider for them all the combinations of the two possible values turned and
unturned, and we repeat 2" times the computation that follows. R-nodes and S-nodes
of sp are labeled as described in Sect.[dl Analogously to Algorithm NOPARALLEL, we
extend the labeling to the edges of 7. In particular, an edge is labeled turned if it
links a turned node to an unturned one and such nodes are not P-nodes, other-
wise is labeled unturned. We construct a weighted track graph Track(f1, f2) as in
Algorithm NOPARALLEL where P-nodes were not present, and we describe how to set
the weights of the edges exiting nodes fil and f] corresponding to a P-node p; of sp.
All other weights are set as described in Sect.[dl Denote by o1 and o5 the two circu-
lar sequences representing the embedding of y; in I and I'». From o; we obtain the
linear sequence ¢} (¢7) ending with (starting with, respectively) the virtual edge corre-
sponding to z1;_1. Intuitively, sequence o (o7) corresponds to the configuration of the
parallel component when the external face is f! (f7'). Analogously, from o5 we obtain
the linear sequence o, (%) ending with (starting with, respectively) the virtual edge
corresponding to f;41. Our aim is to set the weight of each vertical edge (f7, ff,,).
for s, t € {l,}, as the minimum number of operations needed to transform o5 into o.
Observe that, when the external face is moved from f7 to another face f; of skel(p;) in
I}, we obtain a new linear sequence o with the same circular order as o7. Namely, o]
is obtained from ¢ by opening it between the two virtual edges adjacent to f. Hence,
when computing the minimum number of operations needed to transform o¢ into o,
we have to consider the possibility to first transforming o7 into another linear sequence
o} with the same circular order, that can be done by performing one skip operation, and
then transforming o7 into ¢ with the minimum number of flips, that can be done by
applying the signed SBR algorithm. In order to do this, observe that all nodes adjacent
to p; in 7 are labeled as turned, unturned, or neutral. Let k£ be the number of
nodes adjacent to p; and labeled neutral. As described above, we consider all pos-
sible assignments of turned and unturned values to such nodes, and we compute
2% times the linear signed SBR distance from o7 to ob. The weight of vertical edge
(f5, 1t +1) is the minimum of such n; x 2k values, where n; is the number of nodes
adjacent to u; in 7. The weight of an horizontal edge for a P-node is 1.

The remaining part of the algorithm strictly follows the lines of Algorithm NOPAR-
ALLEL. Namely, we compute the minimum weight path from f; to f2 in Track(f1, f2)
and, based on such a path, we decide the sequence of skip and flip operations to be
performed. Again, if Track(f1, f2) admits more than one minimum weight path, we
choose among such paths taking into account the number of shortcuts traversed, corre-
sponding to flip operations that are convenient to be performed in advance.

Here we analyze the computational complexity of the algorithm. All the operations,
except those involving P-nodes, can be performed in linear time. For each P-node p;
not belonging to the skip path, the computation of the minimum number of flips that are
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needed to transform o4 into o9 can be performed in O(n; x 2’“), where n; is the number
of neighbors of p; in 7. Observe that computing the minimum SBR distance can be
done in linear time [4]], while actually finding the sequence of operations that yield that
minimum can be done in time O(n 2 \/log(n)) time [T8]. Hence, when considering the
2 assignments, we only compute the distance and then, when the optimal assignment
has been found, we perform the algorithm for finding the actual sequence of flips. For
each P-node p belonging to sp, the computation of the minimum number of flips that
are needed to transform o5 into o can be performed in O(n? x 2¥). Namely, we have
to consider the 2* assignments of signs to the & neutral neighbors of y; and the
possibility to transform o¢ into ¢ by first moving the external face to each of the n;
faces of skel(y;) in I'1 and then performing the computation of the signed linear SBR
distance in linear time. Since such a computation has to be performed for each of the
2" assignments of labels to the h P-nodes of sp, the global computational complexity
of the algorithm is O(2" x Y7, (n? x 2¥+1)), which is equal to O(n? x 25+"), since
the total number of neighbors of all the P-nodes is less or equal than the total number
of edges of 7, that is O(n). Based on the above discussion we have:

Theorem 4. Let G be a biconnected planar graph, let (I, f1) and (I, f2) be two
planar embeddings of G. Let T be the SPQR-tree of G, let k be the maximum num-
ber of neutral S-nodes adjacent to a P-node in T, and let h be the number of P-
nodes in the skip path sp(f1, f2). If both flip and skip operations are allowed, then
FSUI, f1), (I, f2)) can be computed in O(n? x 2F+") time.

6 Conclusions

Preserving the user mental map while coping with ever-changing information is a com-
mon goal of the Graph Drawing and the Information Visualization areas. The informa-
tion represented, in fact, may change with respect to three different levels of abstraction:
(1) structural changes may modify the graph that the user is inspecting; (ii) topological
changes may affect the way the same graph is embedded on the plane; and (iii) drawing
changes may map the same embedded graph to differently positioned graphic objects.
A large body of literature has been devoted to structural changes, addressing the rep-
resentation models and techniques in the so-called dynamic and on-line settings. Also,
much research effort has been devoted to manage drawing changes, where the target is
to preserve the mental map by morphing the picture while avoiding intersections and
overlappings. On the contrary, to our knowledge, no attention at all has been devoted to
topological changes, that is, changes of the embedding of a graph in the plane.

In this paper we addressed the topological morphing problem. Namely, the problem
of morphing a topology into another one with a limited number of changes. This paper
leaves many open problems. (1) Primitives. We considered two topological primitives,
called flip and skip. It would be important to enrich such a set with other operations
that can be considered “natural” for the user perception. (2) Connectivity. It is easy to
extend the results presented in Sect. 3] to simply connected graphs. However, the other
presented results are deeply related to biconnectivity. There is a lot of space here for
further investigation. (3) We gave the same weight to the operations performed by the
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morphing. However, other metrics are possible. One could weight an operation as a non-
decreasing function of the moved edges or of the thickness of the moved component.

As a final remark we underline how usually the Computational Biology field looks
at Graph Drawing as a tool. In this paper it happened the opposite. In fact, Theorems/[Il
and @l exploit Computational Biology results.
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Abstract. We present a linear-time algorithm for solving the simultaneous em-
bedding problem with fixed edges (SEFE) for a planar graph and a pseudoforest
(a graph with at most one cycle) by reducing it to the following embedding prob-
lem: Given a planar graph G, a cycle C' of G, and a partitioning of the remaining
vertices of G, does there exist a planar embedding in which the induced subgraph
on each vertex partite of G \ C'is contained entirely inside or outside C'? For the
latter problem, we present an algorithm that is based on SPQR-trees and has lin-
ear running time. We also show how we can employ SPQR-trees to decide SEFE
for two planar graphs where one graph has at most two cycles and the intersec-
tion is a pseudoforest in linear time. These results give rise to our hope that our
SPQR-tree approach might eventually lead to a polynomial-time algorithm for
deciding the general SEFE problem for two planar graphs.

1 Introduction

Many practical graph drawing applications demand planar embeddings of a graph that
yield additional constraints. One natural application is in obtaining simultaneous draw-
ings of a set of related planar graphs. This is useful in the areas of bioinformatics,
social sciences and software engineering. A single drawing can be insufficient in de-
picting complex interrelationships of different models of a system. Instead, multiple
drawings may be required, each from a different perspective. The challenge is to pre-
serve the “mental map” of the common structures in each layout so that the scientist can
easily navigate between the different diagrams. To do this, common vertices and edges
are placed and drawn equally in each drawing. This can be modeled via embedding
constraints.

Various embedding constraints have already been studied in [2\5l6]; Gutwenger et
al. [12] apply SPQR-trees to efficiently decide if a graph has a combinatorial embedding
with respect to a set of hierarchical constraints modeling grouping and fixed orders of
edges around a vertex. We instead address a problem that cannot be modeled by any
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of the previous approaches. Given a planar graph G, a cycle C' C G, and a partition
P of all vertices of G \ C, we ask whether there is a planar embedding of G where
all vertices v € p for some part p € P lie completely inside or outside C. We give an
efficient decision algorithm using SPQR-trees that can be used to solve a simultaneous
embedding problem.

Given a set of planar graphs {G1,G3,...,G,} on the same vertex set, a simul-
taneous embedding with fixed edges (SEFE) of {G;} are planar drawings I'; of G,
i € [1..n], such that all vertices and all edges belonging to two graphs G; and G are
drawn identically in the corresponding drawings I and I;. SEFE and its variant of
simultaneous geometric embedding (SGE) with planar straight-line drawings as well
as the other variations of simultaneous embedding have become an important branch
within the field of graph drawing. It is known that deciding SEFE is NP-complete for
three graphs [11]] while deciding SGE is NP-hard for two graphs [8]. The complexity
of deciding SEFE for two graphs is still open.

Many approaches have been made to decide the problem for some classes of graph
pairs [41709010]. Frati [10] showed that trees and planar graphs always have a SEFE.
Fowler et al. [9]] improved this result to show that forests, circular caterpillars (removal
of all degree-1 vertices yields a cycle), K4, and subgraphs of K3-multiedges (an edge
(z,y) with any number of edges with z or y as endpoints) are the only graphs to always
have a SEFE with any planar graph. Their drawing algorithms are based upon using
an optimal Euclidean shortest path algorithm [[13]]. We also apply this technique in our
algorithms.

In this paper we examine the pairs of a planar graph GG; with a pseudoforest Ga.
A SEFE is not always guaranteed unless all non-cycle edges of G4 are incident to
the cycle, i.e., the pseudoforest happens to be a circular caterpillar. However, we show
that SEFE for such pairs can be decided in polynomial time by presenting an efficient
decision algorithm. We further discuss efficient decision algorithms for the case that
G2 contains two cycles and G N G is a pseudoforest. We think that our approach is
promising in that it may eventually lead to a general polynomial time decision algorithm
for testing SEFE of two graphs.

2 Preliminaries

Given some planar drawing I of a planar graph G, a cycle C' in G forms a Jordan
curve that splits the plane into two connected components. One is bounded by C' and
the other is unbounded as given by the Jordan curve theorem [14]. We say that some
vertex v € G\ C lies in the interior (exterior) of C if it is mapped to a position in the
bounded (unbounded) component.

A combinatorial embedding of a planar graph G is defined as a clockwise ordering
of the incident edges for each vertex with respect to a crossing-free drawing of G in
the Euclidean plane. A planar embedding is a combinatorial embedding together with
a fixed external face.

A block is a maximal 2-connected subgraph of a graph G. If G is 2-connected, the
SPQR-tree T of G represents its decomposition into 3-connected components compris-
ing serial, parallel, and 3-connected structures [3]]. The respective structure is given by a
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skeleton graph associated with each tree node which is either a cycle (S-node), a bundle
of parallel edges (P-node), or a 3-connected simple graph (R-node); Q-nodes serve as
representatives for the edges of G.

If G is 2-connected and planar, its SPQR-tree 7 represents all combinatorial embed-
dings of G. In particular, a combinatorial embedding of G uniquely defines a combi-
natorial embedding of each skeleton in 7, and fixing the combinatorial embedding of
each skeleton uniquely defines a combinatorial embedding of G.

Given two planar graphs G; = (V, E7) and G2 = (V, E5) on the same vertex set V,
a simultaneous embedding with fixed edges (SEFE) consists of planar drawings I'; of
G, i € [1,2], such that each vertex is mapped to the same point in the plane for I'; and
I'; and each edge in G N G2 is represented by the same simple curve in the plane for
both drawings.

3 A Planar Graph, a Cycle, and a Partition

In this section, we consider the following graph embedding problem. Given a planar
graph G = (V, E), acycle C = (Vo,Ec) C G, and a partition P of V' \ V¢, de-
cide whether G has a planar drawing such that all vertices of each part in P either lie
completely inside or outside of C'; see Algorithm[Il

The input partition P or the planar embeddings of the graph may force two vertices
to be on the same side of the cycle (either both inside or both outside). We call this
situation a same-side constraint. On the other hand, by examining all embeddings of the
graph we may reveal that two vertices must be positioned on opposite sides of the cycle
(one inside and one outside). We refer to this situation as an opposite-side constraint.
The idea of the algorithm is to find all such constraints and then check whether all these
constraints can be satisfied at once, i.e., whether a planar embedding with the required
property exists.

The following algorithm uses an SPQR-tree 7 to examine all embeddings of the
block of graph G containing the given cycle C. Each skeleton of a node of 7 may
lead to constraints prohibiting some of the possible embeddings as discussed above.
We use an auxiliary graph H containing all of the vertices of the original graph to
maintain the occuring constraints. Same-side constraints are represented by green edges
and opposite-side constraints by red edges.

We say that H is 2-colorable if its vertices can be colored with two colors, say red
and green, in such a way that both endpoints of a green edge have the same color and
both endpoints of a red edge have different color.

As cycles are 2-connected, the given cycle C' is contained in a single block B of
graph G. All other blocks are either completely inside or outside of C' in all planar
drawings of G. Hence, we get one same-side constraint for all vertices of each block
B’ # B. We can now assume to deal with a 2-connected graph G and its SPQR-tree 7
that represents all planar embeddings of G together with some cycle C C G.Letv € T
be some node of the SPQR-tree, S be its skeleton and e € S be any skeleton edge. If
the expansion graph of e includes any edge of C, we call e a cycle edge. We consider
the different possibilities for v in turn.
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Algorithm 1. Deciding the embeddability of parts respecting a cycle

Input: Planar graph G = (V, E), cycle C = (Vo, Ec) C G, partition P of V' \ V¢
Output: Returns YES if and only if G has a planar embedding such that all induced
subgraphs of each p € P lie on one side of C'
Let H = (V,0)
for all parts p € P do
Construct path in H with green edges of all vertices in p

Block B := Biconnected component of G containing C
for all blocks B’ # B do
Construct path in H with green edges of all vertices in B’
Tree 7 := SPQR-tree of B
for all nodes 1 € T do
if skeleton S of p has at least two cycle edges then
Cycle C” := cycle consisting of all cycle edges in S
if 1 is R-node then
Expand all non-cycle edges in .S
Construct path in H with green edges of all vertices inside C”
Construct path in H with green edges of all vertices outside C’
if there exist vertex v in the interior of C' and vertex w in the exterior of C’

then
Add red edge to H between v and w

if 1 is P-node then
for all edges e in S\ C’ do
Construct path in H with green edges of all vertices in the expansion

graph of e

if H is 2-colorable then
return YES

else
return NO

If S contains exactly one cycle edge e, then the edges belonging to the skeleton of
all the other vertices must lie on the same side of C. When regarding the node of 7°
belonging to e, all these vertices are contained in the expansion graph of a single edge
that is not a cycle edge. Repeating this process, if necessary, we get a 7 -node that
has more than one cycle edge but also has a single non-cycle edge containing all of
the vertices from above. When dealing with this 7 -node, the necessary auxiliary graph
augmentation to handle this same-side constraint is performed.

If S contains two or more cycle edges, then these cycle edges comprise a cycle in S.
If S also contains non-cycle edges, v is a P-node or an R-node.

1. In an S-node this can only occur if all edges of the skeleton are cycle edges. In
this situation there is nothing to be done as this does not lead to any same-side
constraints or opposite-side constraints.

2. Let v be a P-node (see Fig.[T). All the vertices occurring in an expansion graph of
any other edge in S are forced to be on one side of the cycle C.
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cycle edges

other edge e

Fig. 1. Cycle edges in the skeleton of a P-node lead to same-side constraints: all vertices in the
expansion graph of a non-cycle edge e are on the same side of the cycle

exterior edges —_—

interior edges

cycle edges

Fig. 2. Cycle edges in the skeleton of an R-node yield two same-side and one opposite-side con-
straints: All vertices in the expansion graphs of the interior component are on one side of the
cycle while all vertices of the exterior component are on the other side

3. Having v as an R-node (see Fig. @) is the most involved. The skeleton S of v
is a 3-connected graph and has hence a unique embedding (besides mirroring and
choosing the outer face). The cycle edges split S into two halves: the interior and the
exterior components of .S. All vertices belonging to all expansion graphs of edges
of one side must be on one side of the cycle in the final embedding. Neither pair
of vertices w; and wy being the interior and the exterior components, respectively,
may end up on the same side of the cycle. Hence, we get two same-side constraints
(between all vertices in the interior and exterior components, respectively) and one
opposite-side constraint (the edges from the interior and the exterior components
must be separated).

Theorem 1. Algorithm[Il has a runtime of O(|V|) and works correctly, i.e., it returns
YES if and only if the input graph G has a planar embedding & such that for eachp € P
all vertices in p lie on one side of C' in E.

Proof. Obviously, the first two for-loops including the construction of 7" require only
O(]V]) time, thus add only O(|V|) green edges to H. The third loop iterates over all
nodes ;1 € 7 and expands some non-cycle edges. Observe that—for all nodes y—the
expansion graphs of these non-cycle edges do not share any edge, and thus no vertex
except for vertices on the cycle C. Therefore, the whole for-loop takes O(|V]) time,
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and we add only O(|V|) green and red edges to H. Since the size of H is linear in |V|,
we can check if H is 2-colorable using breadth-first-search in O(|V|) time.

We next show that the algorithm works correctly. First, assume that the algorithm
returns NO. Then the constructed auxiliary graph H is not 2-colorable. This means that
two vertices v and w in H are connected by two paths: one containing an odd number
of red edges and one containing an even number. This implies that v and w must lie
on the same side of C' (due to the path with even number of red edges), as well as on
opposite sides (path with odd number of red edges). Hence, G has no such embedding.

Next assume that the algorithm returns YES in which H is 2-colorable. We pick one
of the two colors to lie in the interior of C' and one to lie on the outside. The choice
of embeddings for every P-node and every R-node implies an embedding £ for G. For
each such node in 7, we can choose an embedding that satisfies the given choice of
interior and exterior of C'. In each P-node, the vertices that belong to the expansion
graph of one of the parallel edges are connected by green edges in H, thus, they lie on
the same side in £. In each R-node, the vertices on both sides of the cycle are connected
by green edges, respectively, while a single edge between these sets forbids both parts
to lie on the same side. Finally, green edges between the vertices of the input partition
yield that these vertices lie on the same side of C'. a

4 A Planar Graph, a Pseudoforest, and a Decision

In this section, we apply Algorithm [I] to solve the following open problem in simul-
taneous embedding: Given a planar graph GG; and a pseudoforest G2, find an efficient
algorithm to decide whether the pair {G1, G2} has an SEFE; see Algorithm[2] For a
few special cases of G2 the situation becomes trivial as described by the next theorem.

Theorem 2 (Fowler et al. [9]). Let Gy be a planar graph and G5 be a forest or a
circular caterpillar. Then G1 and G2 have a SEFE.

Next, we consider the more general case of a pseudoforest containing a cycle C' in
which not all non-cycle edges are incident to C. We see by the next theorem that the
case is also trivial if C is not in the intersection of GG; and G5.

Theorem 3. Let G = (V, E1) be a planar graph and G5 = (V, Es) be a pseudoforest
with a cycle C. If C is not in G1 N G, then the pair has a SEFE.

Proof. Letedge e € C \ G;. Create a planar drawing of I'; of G; in the plane using
any suitable graph drawing algorithm (e.g. [[1]). We construct a planar drawing I% of
G that, together with I, creates a SEFE of G; and Gbs.

Draw all vertices and all edges of G1 NG5 in I in the same way as in I guarantee-
ing a simultaneous drawing. We still must draw all edges of G5\ G without introducing
any crossings in 5. As e is not part of (G1, it has not been drawn in I yet. We draw all
edges of G2 \ G in I'; one after another with e as the last edge. The order of the other
edges can be chosen arbitrarily.

To do this we use an optimal Euclidean shortest path algorithm [13]]. We apply the
modification as done by Fowler et al. [9] in their drawing algorithms. A distance ¢ is
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always maintained between the shortest path and any line segment corresponding to
previous part of I'». This allows subsequent edges to be routed as need be in between
any pair of non-incident edges that would otherwise be touching. Applying this algo-
rithm adds at most O(|V|) edge bends for each new edge (as new bends hide old bends
as argued in [9]) so that the final complexity of the drawing is O(|V'|?) giving an overall
running time of O(|V'|? log |V|).

As G4 has only one cycle C and e is part of C, G2 \ {e} is a forest. Any drawing of
any subgraph of G5 \ {e} has exactly one face. Hence, starting with the partial drawing
of I it is always possible to insert a route for the edges not yet drawn maintaining
planarity. Even, in the last step, when edge e is inserted, the partial drawing of I has
exactly one face and thus, e can be safely inserted into /5. Then I'» is completed and
{F17F2} 1saSEFE 0f{G17G2}. O

Due to Theorems[2land[Bwe assume G5 to have exactly one cycle C' in the intersection
G1 N G4. By construction G is planar. However, to ensure a SEFE of G; and G5 we
must embed (7 in such a way that the cycle C' does not separate any pair of vertices
that are adjacent in Ga. On the other hand, as G2 \ C'is a forest, this condition suffices
to guarantee a SEFE of the pair {G1, G2}

Theorem 4. Let G1 = (V, E1) be a planar graph and G2 = (V| Es) be a pseudoforest
each on n vertices with a cycle C C G1 N Go. G1 and G2 have a SEFE if and only
if there exists a planar drawing of G1 such that for all edges e = {v,w} € G2 \ Gy
either both v and w lie inside or both lie outside of C.

Proof. Assume first that G has a planar drawing I} with the described property. We
create a planar drawing I of G that, together with I, yields a SEFE of G; and
G2. Draw all vertices and all edges of G; N G5 in I, in the same way as in 7. As
C C G1 N Ga, the cycle is now present in 5. We draw all remaining edges of G2 \ G
next by using the same approach of the proof of Theorem[3l

We start with the edges e that have one endpoint in the exterior of C' in I73. Due to
the condition on I, both endpoints of e are in the exterior of C' or one endpoint is on
C'. As we have just drawn C' and all vertices in the same way as in I, this condition
also holds for the partial drawing of I>. As G2 \ G is a forest there is a way to route e
without introducing crossings: Imagine C' and its interior as one big vertex. The partial
drawing I then has exactly one face. This also holds for edges connecting the exterior
of C' with C'itself. The same argument holds for all the edges in the interior of C' as well
as the edges connecting the interior with C'. Hence, by construction we have a planar
drawing I of G that, together with I, yields a SEFE of G and Gb.

Now let GG; be without a planar drawing with the described property. Assume G and
G2 have a SEFE. By definition there exist planar drawings I of G;, i € [1,2], such
that the intersection G; NG is drawn in the same way in both I} and 1. As G; has no
planar drawing with the described property, there exists an edge e = {v,w} € G2 \ C
such that v lies in the interior of C' and w lies in the exterior of C in I;. As vertices
v and w and cycle C' are part of G; N G2, the same condition holds for 1. But this
means that e cannot be routed in I without introducing a crossing in I, which is a
contradiction to our assumption. Hence, G; and G5 have no SEFE. a
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Algorithm 2. Deciding SEFE for planar graph and pseudoforest pair

Input: Planar graph GG; and pseudoforest G>.
Output: YES if and only if {G1, G2} has a SEFE.
if G2 contains no cycle then
Return YES.
Cycle C' :=the only cycle of G>
if C ¢ G; then
Return YES.
Partition P = {P, | v € G1 \ C} := trivial partition of G1 \ C
for all edges {v,w} of G2 \ C do
UNION P, and P,.

Run Algorithm [ with input (G4, C, P).
Return output of Algorithm[l

We use the previously discussed results to create an efficient algorithm deciding the
problem mentioned in the beginning of this section.

Theorem 5. Algorithm 2l works correctly, i.e., it returns YES if and only if {G1, G2}
has a SEFE. Moreover, it has a linear runtime.

Proof. Assume first that the algorithm returns YES, which is by one of three statements.
The first returns YES if Go contains no cycle. But then Theorem[2 states that {G1, G2}
has a SEFE. The second statement returns YES if cycle C' is not completely part of G .
Theorem[3lguarantees that G and G2 have a SEFE in this situation. The last instruction
is that the run of Algorithm[returns YES. Algorithm[Ilchecks whether graph G can be
embedded in the plane such that all partition sets of P lie completely inside or outside
C. By the construction of P, this is equivalent to saying that both endpoints of every
edge of G \ C lie both inside or both outside C. Then Theorem [ yields a SEFE of
G 1 and GQ.

Assume next, that the algorithm returns NO, which implies Algorithm[lreturned NO.
Hence, G has no planar drawing with the property of Theorem [ which implies that
(1 and G4 are without a SEFE.

The proposed runtime O(|V]) follows directly from the complexity analysis of
Algorithm/[Tl a

5 A Planar Graph, a Path, and a Cyclic Edge Order

In this section, we consider two embedding problems with requirements on the cyclic
order of some of the edges around a vertex = or two vertices x and y that can be used
to decide some special SEFE problems in Section[6

In the first problem, = and y are two distinct vertices connected by a path p. Let e,
and e}, be the first and last edges on p incident to x and y, respectively, where {e,, e}
and {e/,, e; } are distinct edges also incident to  and y. We want to ensure that the order
of these edges around x and y (amongst other possible incident edges) in a combinato-
rial embedding I” of GG is consistent with an embedding of a graph in which x and y are
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connected by the three edge-disjoint paths p, p, = €q, ..., €L, andp, = ep, . .., ej. This
implies that either the cyclic order around z is e, €4, e, and around y is e;,, €}, €], or
both orders are reversed. It suffices to test only one possibility, since we can generate a
combinatorial embedding with the reversed orders simply by mirroring the embedding.

Let B, = {ep,eq,ep} and E, = {e},, e;,e,}. We observe that—if not all edges
in E; U E are in the same block—such a required combinatorial embedding always
exists; in this case, z or y is a cut vertex. We can insert the embedding of one block
B’ into a face of an embedding of the other block B (mirroring the embedding of B’
if necessary) so that the requirements on the embedding are met. On the other hand, if
all the edges in F, U E, are contained in a single block B, it is sufficient to test a few
simple conditions in the SPQR-tree 7 of B. The necessary and sufficient conditions are
given in the lemma below.

Lemma 1. G has a combinatorial embedding I" such that the cyclic order induced by
I"on E, is ey, €4, €, and the cyclic order induced on E, is e}, ¢, e;, if and only if

1. there is no block B of G containing all edges in £, U Ey; or
2. there is a block B containing E, U E,;, and its SPQR-tree T has neither
(a) a P-node whose skeleton contains three distinct edges e1, e, e3 such that e,
and e;, are contained in the expansion graph of e1, e, and e}, in the expansion
graph of ea, and ey, and e/, in the expansion graph of es; nor
(b) an R-node whose skeleton has a combinatorial embedding such that ey, e,,
ey, are in the expansion graphs of three distinct skeleton edges €,, €4, €y, in this
cyclic order, and e;,, el,, e, are in the expansion graphs of three distinct skeleton
!/

edges €,,, €, €, in this cyclic order.

These conditions can be checked in linear time, since constructing an SQPR-tree and
determining for each edge ¢ € E, U E, in the expansion graphs of which skeleton
edges it is contained, requires only linear time, and there are only two combinatorial
embeddings of each R-node’s skeleton.

In the second embedding problem, we consider a planar graph G' with a vertex z
and four distinct edges e,, €/, ey, e}, incident to z. We want to decide if there exists an
embedding I" of G that induces a cyclic order on these four edges in which e, and €,
(and thus also e, and e}) are consecutive. The motivation for this problem is similar as
for the first problem, where p is an empty path and thus = and y are identical. In this
case, deciding if a feasible combinatorial embedding of G exists is even easier. We only
need to consider only R-node skeletons containing x in which x is incident to at least
four skeleton edges. This gives the following lemma whose conditions can be verified
in linear time:

Lemma 2. G has a combinatorial embedding I" such that the cyclic order induced by
I'on E, = {eq, €, ey, €} } is such that e, and €., are consecutive, if and only if either

1. no block of G contains all edges in E,; or

2. there is a block B containing all edges in E,, and its SPQOR-tree contains no R-node
whose skeleton S contains x and the edges in E,, are in the expansion graphs of four
distinct skeleton edges E, = €q, €,,, €, €}, such that there exists a combinatorial
embedding of S that induces a cyclic order on the edges in E, in which &, and el
are not consecutive.
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6 Two Planar Graphs with Restrictions and a Decision

We now consider how this approach of using SPQR-trees might be extended to address
more general decision problems for deciding whether a pair of graphs has a SEFE. We
examine pairs of planar graphs GG; and G2 where we restrict both the number and the
arrangement of cycles in G and in G; N Ga.

G1 N G is a forest: We start with a more general version of Theorem [3] where we
have a larger number of cycles in G2 but still the intersection is a forest.

Theorem 6. Ler Gi = (V, Ey) be a planar graph and Go = (V, E3) be a planar
graph where all cycles C; C Ga,i € [1..k|, are pairwise disjoint. If no C; is contained
in G1 N Ga, then the pair {G1, G2} has a SEFE.

Proof (sketch). We adapt the proof of Theorem[3l When drawing G5, remove one edge
e; from each C; \ G; and draw the rest of G2, which is a forest. Then insert one edge
e; after another in the same way as done with edge e in the proof of Theorem [3 As
all cycles are disjoint and no further cycles exist, this method can be applied without
introducing any crossings in the drawing of Ga. O

Next, we discuss the case where (G2 contains exactly two cycles that either touch in
exactly one point or share a common path. With the ideas developed in Section[3] we
can handle this situation efficiently.

Theorem 7. The SEFE decision problem for two planar graphs Gy and G2 where G
contains exactly two cycles and G1 N G4 is a forest can be decided in linear time.

Proof (sketch). Let Cy and C3 be the two cycles of Gy. If C; N Cy = (), the case is
trivial as given by Theorem [0l As G2 contains no more cycles, C; N C5 is a path p
with endpoints  and y; see Fig.[3l A planar embedding of GG can force the outgoing
edges of z and y to have a specific order leading to the situation in Fig.[Blb) in G5 that
prevents a SEFE of G; and G5. However, if G has an embedding that allows the right
cyclic order for both x and y as in Fig.[Bla), then a SEFE can be achieved. All other
edges of G5 can be drawn without introducing crossings as in the proof of Theorem [4]
Lemma [I] gives a linear time check to determine whether G has an embedding such

(b)

Fig. 3. The two cycles C and C> drawn without and with crossings. The respective clockwise
ordering of the edges incident to x and y differ.
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Algorithm 3. Deciding SEFE for restricted planar graph pair

Input: Planar graphs G; and G2 where G contains exactly two cycles and G1 N G2 is a
pseudoforest but not a forest.
Output: YES if and only if {G1, G2} has a SEFE.

Cycle C' :=the only cycle of G1 N G2
Partition P = {P, | v € G1 \ C} := trivial partition of G1 \ C
for all edges {v,w} of G2 \ C do
UNION P, and P,.
Run Algorithm [ with input (G4, C, P).
Return output of Algorithm [T}

that the cyclic order for the three outgoing edges corresponds to the paths shown in
Fig. Bl Lemma ] handles the degenerate case for x = y, also determinable in linear
time. O

G1 N G4 is a pseudoforest: Assume now that both G; and G2 are planar graphs
in which G5 contains exactly two cycles C; and Cy of which only one, say Ci, is
contained in G; N G2. When removing one edge of Cy \ G we are in the situation
described in Section[l This correlation allows us to construct a new decision algorithm
based on Algorithm [21 We start by generalizing Theorem ] which we use as the key
ingredient to Algorithm[3]

Theorem 8. Ler G1 = (V, En) be a planar graph and Gy = (V, Es) be a planar graph
with exactly two cycles C1 and Co where C1 C G1 N Gq and Cy € G1 N Go. Gy and
G4 have a SEFE if and only if there exists a planar drawing of G such that for all
edges e = {v,w} € G2\ Gy either both v and w lie inside or both lie outside of C1.

Theorem [§] can be proved by using Theorem [ to determine whether {G1, G2 \ {e}}
has a SEFE. In an SEFE of this smaller pair, edge e = {v, w} can be inserted if and
only if both endpoints v and w lie on the same side of C'.

It is easy to see that Algorithm 3] works correctly. We can imitate the proof of cor-
rectness of Algorithm 2] (see Theorem [B) where this time Theorem [§] plays the role of
Theorem [l

7 Concluding Remarks and Future Applications

We have shown how to use SPQR-trees in the context of simultaneous embedding with
fixed edges by presenting several new decision algorithms for some classes of graph
pairs. Clearly, much future works remains, but overall this approach of using SPQR-
trees seems promising in potentially yielding a polynomial-time decision algorithm for
deciding whether two graphs have a SEFE, if one exists.
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Graph Simultaneous Embedding Tool,
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Abstract. Problems in simultaneous graph drawing involve the lay-
out of several graphs on a shared vertex set. This paper describes a
Graph Simultaneous Embedding Tool, GraphSET, designed to allow the
investigation of a wide range of embedding problems. GraphSET can
be used in the study of several variants of simultaneous embedding in-
cluding simultaneous geometric embedding, simultaneous embedding with
fized edges and colored simultaneous embedding with the vertex set par-
titioned into color classes. The tool has two primary uses: (i) studying
theoretical problems in simultaneous graph drawing through the pro-
duction of examples and counterexamples and (ii) producing layouts of
given classes of graphs using built-in implementations of known algo-
rithms. GraphSET along with movies illustrating its utility are available
at http://graphset.cs.arizona.edul

1 Introduction

Drawing multiple graphs simultaneously is a problem motivated by its appli-
cations in bioinformatics, social sciences, and software engineering. The large
networks defined by multiple relationships make using a single layout impracti-
cal. Instead, such networks can be viewed from different perspectives according
to the particular structure, behavior, or scale of interest. When looking for com-
mon patterns and substructures among the heterogeneous representations of the
same data it is essential to preserve the “mental map” of the user. A natural way
to accomplish this is to have common vertices and edges laid out in a similar
manner throughout the various layouts.

Simultaneous embedding problems are difficult to solve and require extensive
manipulation of different instances in order to gain insight. A useful tool is one
that allows for the dynamic manipulation of common vertices while accounting
for how the edge crossings in each graph can change. In addition, having the
ability to visualize each graph separately or as a whole while simultaneously
manipulating each graph can allow one to solve complex problems. Finally, hav-
ing built-in implementations of algorithms related to simultaneous embedding
can also aid in further research.
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Fig. 1. An overview of the GraphSET system

Our Graph Simultaneous Embedding Tool, GraphSET meets the above goals,
allowing the manipulation of up to eight graphs simultaneously with the capa-
bility of displaying each graph separately in its own window. This is an essential
feature that has enabled us to solve several simultaneous embedding problems.

A related tool is the Interactive Multi-User System for Simultaneous Graph
Drawing [15]. It only considers simultaneous geometric embedding of two graphs
and the emphasis is on collaboration with the aid of the DiamondTouch device
[3]. Another related tool that can be used to obtain simultaneous drawings of
graphs using force-directed methods is described in [5].

2 System Architecture

Figure [1 gives a high-level overview of the system architecture of GraphSET.
The user can introduce commands using the GUT (menus, dialog boxes, toolbar,
etc.) or directly manipulating the view (Graph Editor). When the user makes
modifications, they are done in the document (graph data structures, applica-
tion settings, etc.) and those changes are reflected on every active view of the
document. When the modifications are done from the view (such as moving a
vertex) the document is modified and reflected back in all active views. The
document can be loaded/saved in the file system. Algorithms are called from
the document. Some algorithms (such as drawing or recognition) only reflect
temporary modifications directly in the view (animation, for example).

Dashed boxes represent plugin components that include customized views
(such as a 3D view we have used for studying 3D morphing). The other dashed
box corresponds to third-party libraries that can be hooked into the algorithms
module via a proxy. For example, we have proxies for LEDA [16] and OGDF
(the Open Graph Drawing Framework available at http://www.ogdf .net). Al-
gorithms from these libraries are called through these proxies. Overlapping boxes
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Fig. 2. Example of a simultaneous geometric embedding of five paths: blue path is
solid in (a), red is dashed in (b), green is dash-dotted in (c), cyan is light-solid in (d)
and yellow is light-dashed in (e). The SGE of all 5 paths is shown in (f).

represent several views of the same type in the document. This allows for the dif-
ferent graph views in which to work with a simultaneous embedding; see Fig.
Features like toggling the grid, snapping, and visibility of a given edge set are
properties of the graph editor view allowing each to have individual settings.

3 Preliminaries

We begin with a few definitions to clarify the various problems of interest.

Two n-vertex graphs G1(Vi, E1) and Ga(Va, Es) have a simultaneous embed-
ding with mapping if, given a bijection f : V; — V5, each graph can be drawn
in the plane R? without crossings such that for all v € V4 and f(v) € Vo, v and
f(v) are represented by the same point in their respective drawings. If f is not
given, but this can be done for some bijection, then G; and G2 are simultane-
ously embeddable without mapping. Unless indicated otherwise, a simultaneous
embedding (SE) refers to one with mapping.

A simultaneous geometric embedding (SGE) consists of a simultaneous em-
bedding in which only straight-line edges are used. Simultaneous embedding with
fized edges (SEFE) is less restricted since edges are drawn with simple curves and
common, or fized edges, use the same curve. Clearly, SGE C SEFE C SE.

The problem of colored simultaneous embedding (CSE) is a generalization of
simultaneous embedding with mapping in which each V; is strictly partitioned
into k colors with respect to a k-coloring of a pointset P. Each vertex of a given
color can be mapped to a point of the same color. When k = n this is equivalent
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Fig. 3. Layouts of ULP trees: (a) caterpillar, (b) radius-2 star, and (c) degree-3 spider

to simultaneous embedding with mapping, and when k£ = 1, to simultaneous
embedding without mapping. Figure [2 is an example of five 5-colored paths on
ten vertices in which there are 5 - 25 = 160 possible mappings, one of which is
shown.

Finding simultaneous embeddings with paths drawn monotonically uses a
restricted form of planarity, called level planarity. Only one of the Cartesian co-
ordinates is allowed to change when attempting to find a crossings-free drawing.

An undirected level graph G(V, E, ¢) has a labeling ¢ : V — [1..k] assigning
each vertex to one of k levels so that ¢(u) # ¢(v) for every edge (u,v). This
prevents any pair of adjacent vertices from being in the same level. In a level
drawing all the vertices of the same level share the same y-coordinate, placed
along a horizontal track, and each edge is drawn strictly y-monotone. If G can
still be drawn planarly, then G is level planar, otherwise, G is level non-planar.
Any level planar drawing with bends has one without bends [4]. Hence, adding
edge bends does not affect the level planarity of a graph.

If G is level planar over all possible labelings, then G is unlabeled level planar
(ULP). In [6], ULP trees were characterized as consisting of three classes of trees:
(i) caterpillars (the removal of vertices that have degree-1 yields a path or an
empty graph); (ii) radius-2 stars (any number of paths of length one or two that
all share a common endpoint), and (iii) degree-3 spiders (three paths that share
a common endpoint); see Fig. Bl

4 Applications

In this section, we describe several successful uses of GraphSET. First, we discuss
how GraphSET has been used in working with ULP trees [6] and a related
problem on colored trees. Second, we consider a pair of trees whose union is
homeomorphic to complete graph K, for n > 3 for which there is a pair without
a SGE [10]. Third, we discuss how GraphSET has aided in verifying gadgets of
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Fig. 4. Layouts of (a) a 25-level caterpillar and (b) a 6-level caterpillar

reductions used to show that deciding whether a graph pair has a SGE is NP-
hard and whether a graph triple has a SEFE is NP-complete [7l9]. Finally, we
show how GraphSET can be used to find CSE counterexamples, as in [2].

4.1 Unlabeled Level Planar Trees

When there are more vertices than levels, caterpillars are the only class of trees
that remains ULP. This allows GraphSET to draw any caterpillar without cross-
ings; see Fig. @l When there is exactly one vertex per level, GraphSET can also
provide level planar layouts of the other two classes of ULP trees; see Fig. Bl

GraphSET also implements the ULP recognition algorithms that highlight the
ULP trees by their class. If the graph is not ULP, a subgraph homeomorphic to
one of the forbidden ULP trees is highlighted as the user modifies the graph;
see Fig. [0 GraphSET has been instrumental in determining correct and imple-
mentable algorithms for these purposes. Movies of the tool demonstrating all the
ULP tree algorithms can be found at http://ulp.cs.arizona.edu.

4.2 Colored Level Planar Trees

Our tool has the feature of allowing the user to snap and lock vertices to tracks
in order to investigate not only unlabeled level planar graphs but the planarity
of multiple level graphs being simultaneously embedded. Tracks can be colored
so that only vertices of that color can be snapped to that track.

As an example of this utility, we consider the open problem of whether a
3-colored tree-path pair always has a SGE. One approach is to attempt to layout
the path monotonically. Here each colored track has one vertex of its color.
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Fig. 5. Layouts of (a) a 30-level radius-2 star and (b) a 20-level degree-3 spider

The idea is to find an algorithm to swap vertices between tracks of the same
color until the 3-colored tree becomes level planar. This is not always possible if
the tracks are colored sequentially as in Fig. [[(a). However, if the tracks are col-
ored randomly, then it may be possible to find a sequence of swaps in going from
a level non-planar assignment as in Fig.[[{b) to a level planar one as in Fig. [(c).
Even in the worst case of sequentially colored tracks there may be relatively few
interchanges of colored tracks needed so that a CSE then becomes possible. This
would then correspond to paths consisting of relatively few monotonic segments
that may have a SGE.
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Fig. 6. ULP recognition algorithms highlighting a caterpillar, a radius-2 star, and a
degree-3 spider (a) and the forbidden trees T7, Ts, and Ty (b)
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Fig. 7. This 3-colored tree (vertices 1-3 are blue, 4-7 red and 8-10 green) is level non-
planar for sequentially colored tracks (tracks 1-3 are blue and solid, tracks 4-7 are red
and dashed, tracks 8-10 are green and dash-dotted) as in (a), but may or may not be
level planar for randomly colored tracks as in (b) and (c), respectively

4.3 Simultaneous Geometric Embedding of Pairs of Trees

In this section, we consider the simultaneous geometric embedding of two trees
T1(V, E1) and Ty(V, E3) on n? —2n+2 vertices whose union contains a subgraph
homeomorphic to the complete graph K,, on n vertices for a given n > 3. Both
T and T, have a root vertex labeled ‘0’ that is adjacent to the remaining n — 1
vertices of V' labeled ‘17, ‘2’ ... ‘n — 1’. In each tree, these n — 1 vertices have
n — 2 leaves so that each non-leaf vertex has degree n — 1. Leaves are labeled i, j
for i, € [1.n — 1] and ¢ # j. In Ty the vertex labeled ¢ € [1..n — 1] has leaves
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Fig. 8. A pair of trees whose union is homeomorphic to K5 (a) in which one tree has
red edges (dashed) and the other has blue edges (solid) with a SGE shown in (b)
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labeled i, j for j € [1..n — 1] such that ¢ # j. Similarly, in T the vertex labeled
j € [1..n — 1] has leaves labeled i, j for ¢ € [1..n — 1] such that i # j.

The tool is especially useful in this case given that the user can have different
windows for each graph. GraphSET maintains the crossing count within each
graph while ignoring the crossings of edges from different graphs. Figure[§ shows
two trees for the case of n = 5 on 17 vertices that illustrates a schema to generate
a layout that works up to n = 6. When n > 6, we found that the root vertex
labeled ‘0’ could no longer be centrally located, but rather had to be on the
convex hull of the simultaneous embedding. For large values of n these tree pairs
do not have a simultaneous geometric embedding, as shown by Geyer et al. [10].
It is unknown what is the smallest value of n that forces a crossing; for example,
the case n = 8 is open.

4.4 Gadgets for Planar 3-SAT Reductions

GraphSET supports multiple edges with different colors. These edges may in-
clude bends and can be treated as a single edge (for fixed edges) or as different
edges (for multi-graphs). An application of this is the manipulation of gadgets
for Planar 3-SAT reductions.

In [9] Gassner et al. proved that SEFE is NP-Complete for three graphs.
The proof is a reduction using clause gadgets and literal gadgets; see Fig. [0(a).
There are two possible embeddings for each literal gadget and these embeddings
correspond to true or false values in the matching literals. The argument is that
a drawing of the clause without crossings is only possible if one of the literals
is true. In the drawing this implies that we can only get rid of a crossing by
flipping a literal gadget (changing the embedding of the gadget).
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Fig. 9. Gadget for a clause with 3 literals (a) and a SEFE of the gadget in (b)
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Fig. 10. Five colored paths (blue path is solid, red is dashed, green is dash-dotted,
cyan is light-solid and yellow is light-dashed) without a SEFE in (a) and after some
swaps among vertices of the same color in (b) have a SGE in (c). The split window
shows the cyan path for each step.

GraphSET is useful in exhibiting problems in the gadget construction by
finding initially less than obvious embeddings that may break the argument;
see for example Fig. @(b). With the aid of GraphSET the correct reduction was
found [7]. The flipping/rotation and the cut/paste operations included in the
tool are essential in constructing and manipulating these kinds of gadgets.

4.5 Colored Simultaneous Embeddings

GraphSET was used to build a counterexample of five 5-colored paths on five
distinctly colored vertices without a SGE to show that there does not exist a
universal pointset for 5-colored paths [2]. One open CSE problem is whether there
exists four paths on four colors that do not always have a SGE. We illustrate
the difficulty of this problem with a potential alternate counterexample of five
5-colored paths not using distinctly colored vertices with Figs. [2 and Here
the five 5-colored paths are on ten vertices in which each path has two vertices of
the same color corresponding to its endpoints. As given in Fig. [[0(a) a crossing
will always occur regardless of the placement of vertices. This is due to the fact
that each pair of vertices with the same color is connected by four edges of the
other colors. This means that when each of these vertex pairs are contracted
they form the example of five paths on five colors in [2].

However, vertices of the same color can exchange adjacencies. The tool lets
one swap the adjacency lists between two vertices of the same color in one
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Fig. 11. Three cycles whose union forms a K7 with no common edges in (a) and the
corresponding SGE in (b)

of the graphs. A series of such swaps in the five graphs results in Fig. [0(b),
which has the SGE in Fig. [[0(c). While this is not the counterexample we are
after, it illustrates the utility of GraphSET when attempting to construct such
counterexamples.

Another open CSE problem in which GraphSET is very useful is shown in
Fig. [[di(a). One starts with an arrangement of three cycles whose union forms a
K7. In general, any odd prime p has a decomposition into (p—1)/2 cycles whose
union forms a K, in which each edge in the union is in exactly one cycle. This is
of interest because the three 6-colored cycles whose union forms a K3 3 without
a SGE given in [2] are constructed so that each edge in the union belongs to two
of the three paths. This forces one of the cycles to have a self crossing.

It is an open problem to find a set of cycles without any common edges that
do not have a SGE. While this example for K7 has a SGE shown in Fig. [I{b),
this requires several small angles between pairs of incident edges along the same
cycle. We conjecture for sufficiently large p that such a SGE no longer exists.

5 Implementation

GraphSET is a stand-alone Windows application written in C++ that can be
downloaded from http://graphset.cs.arizona.edu, where the source code is
also available. GraphSET can also run under Linux and MacOS using wine.
GraphSET contains other related algorithms for graph drawing as support
for the previous applications. This includes implementation of the PQ-tree data
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Fig. 12. A random labeled tree (a) made proper (b) with a level planar embedding (c)

structure and the planarity testing algorithm by Booth and Lueker [I] . The
level planarity testing and embedding algorithms by Healy et al. [I1I12] are
also available. These algorithms require the graph to be proper, i.e., there are
only edges between vertices in consecutive levels. When the graph is non-proper,
GraphSET adds dummy vertices along edges; see Fig. The runtime for these
algorithms is O(|V'|?) provided the graph is proper.

6 Conclusions and Future Work

We presented GraphSET, a tool that has been valuable in studying problems
related to simultaneous embedding. We hope that other researchers interested
in these problems will find this tool useful.

While currently GraphSET only includes the recognition and drawing algo-
rithms for ULP trees, we plan to incorporate algorithms for all ULP graphs. We
foresee using this tool in the research of minimal level non-planar (MLNP) pat-
terns; the first step is to implement MLNP patterns recognition algorithms for
trees [8]. We also plan to incorporate the faster O(|V|log|V|) level planarity
testing and embedding algorithms by Jiinger, Leipert and Mutzel [I3/14].
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Abstract. We find arbitrarily large finite sets S of points in general position in
the plane with the following property. If the points of .S are equitably 2-colored
(i.e., the sizes of the two color classes differ by at most one), then there is a
polygonal line consisting of straight-line segments with endpoints in S, which
is Hamiltonian, non-crossing, and alternating (i.e., each point of .S is visited ex-
actly once, every two non-consecutive segments are disjoint, and every segment
connects points of different colors).

We show that the above property holds for so-called double-chains with each
of the two chains containing at least one fifth of all the points. Our proof is con-
structive and can be turned into a linear-time algorithm. On the other hand, we
show that the above property does not hold for double-chains in which one of the
chains contains at most /= 1/29 of all the points.

1 Introduction

1.1 Previous Results

One of the basic problems in geometric graph theory is to decide if a given graph can
be drawn on a given planar point set using pairwise non-crossing straight-line edges.
In a more demanding version, the points and the vertices of the graph are colored and
each vertex has to be placed in a point of the same color (see the survey [5] for further
references). Interesting and non-trivial questions arise already if we want to embed a
2-colored path on a 2-colored point set. The authors of several papers have focused
on embeddings of so-called alternating paths, which are paths with no monochromatic
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edge. Since the colors on a 2-colored alternating path must alternate along the path, a
2-colored point set S may admit a Hamiltonian alternating path only if the coloring of
S is equitable, i.e., the sizes of the color classes differ by at most one.

Let S be an equitably 2-colored set of points in general position in the plane. It
is known that if the two color classes of S can be separated by a line then there is
a non-crossing Hamiltonian alternating path on S [1]. The same result holds if one
of the color classes is exactly the set of vertices of the convex hull [1]. Kaneko et
al. [6] proved that any equitably 2-colored set S of at most 12 points or of 14 points
admits a non-crossing Hamiltonian alternating path. On the other hand, Kaneko et al. [6]
gave examples of equitably 2-colored sets S of n points admitting no non-crossing
Hamiltonian alternating path for any n > 12, n # 14.

The above result on sets with color classes separated by a line easily implies that any
equitably 2-colored set S of size n admits a non-crossing alternating path on at least n/2
points of S. It is an open problem if this lower bound can be improved to n/2 + f(n),
where f(n) is unbounded (see also the book [3]]). On the other hand, there are equitably
2-colored sets admitting no non-crossing alternating path of length more than ~ 2n/3
[247]. This upper bound is proved for certain colorings of sets in convex position. The
above general lower bound n/2 can be slightly improved to /2 + 2(1/n/ logn) for
sets in convex position [7]].

In this paper we find arbitrarily large “universal” sets for which any equitable 2-
coloring admits a non-crossing Hamiltonian alternating path. We prove the “universal-
ity” for so-called double-chains with each chain containing at least one fifth of all the
points. Double-chains were first considered in [4].

1.2 Our Results

A convex or a concave chain is a finite set of points in the plane lying on the graph of
a strictly convex or a strictly concave function, respectively. A double-chain (Cy, Cs)
consists of a convex chain C; and a concave chain C5 such that each point of C lies
strictly below every line determined by C'; and similarly, each point of C lies strictly
above every line determined by C> (see Fig. [I). Note that we allow different sizes of
the chains C; and Cs.

Let (C4, C2) be a double-chain, and let p1, po, . . ., pr, € C1UC5 be distinct points of
C U C5. The polygonal line p1ps . . . pi consisting of the k — 1 straight-line segments
P1P2, P2P3, - - -, Pk—1Pk 1S shortly called the path pips .. .pk. The path pips ... pg is

® ¢ ¢ 0 © o

o e
o © C o
0 o C

Fig. 1. An equitably 2-colored double-chain (C1, C2)
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non-crossing if any two non-consecutive segments in it are disjoint. The path p1ps . . . pi
is Hamiltonian (for the double-chain (C1, C3)) if it visits all the points of C; UC5 (i.e.,
k= [Cy| + |Ca).

Suppose that the points of a double-chain (C7, C5) are colored by two colors. Then
a path p1p2 ... py is alternating if the endpoints of each segment are colored by dif-
ferent colors. A path on Cy U Cy is a good path if it is non-crossing, Hamiltonian and
alternating.

An equitable 2-coloring of a double-chain (C7, C5) is a coloring of Cy U C5 by two
colors such that the sizes of the color classes differ by at most one. We use black and
white as the colors in the colorings. Here is our main result:

Theorem 1. Ler (C1, C2) be a double-chain whose points are colored by an equitable
2-coloring, and let |C;| > L} (|C1| + |Cs|) for i = 1,2. Then (Cy, C2) has a good path.
Moreover, a good path on (Cy, Cs) can be found in linear time.

On the other hand, we show that double-chains with highly unbalanced sizes of chains
do not admit a good path for some equitable 2-colorings:

Theorem 2. Ler (C, C2) be a double-chain whose points are colored by an equitable
2-coloring, and let Cy be periodic with the following period of length 16: 2 black, 4
white, 6 black and 4 white points. If |C1| > 28(|C2| + 1), then (C4,C2) has no good
path.

2 Proof of Theorem 1]

This section contains only the proof for double-chains with an even number of points.
The proof for the odd number of points can be found in the Appendix.

The main idea of our proof is to cover the chains C; by a special type of pairwise
non-crossing paths, so called hedgehogs, and then to connect these hedgehogs into a
good path by adding some edges between C and Cs.

2.1 Notation Used in the Proof

For i = 1,2, let b; be the number of black points of C; and let w; := |C;| — b; denote
the number of white points of C;.

Since the coloring is equitable, we may assume that b; > w; and ws > bs. Then
black is the major color of C1 and the minor color of Cs, and white is the major color
of Cy and the minor color of C. Points in the major color, i.e., black points on C and
white points on Cs, are called major points. Points in the minor color are called minor
points.

Points on each C; are linearly ordered according to the z-coordinate. An interval of
C; is a sequence of consecutive points of C;. An inner point of an interval [ is any point
of I which is neither the leftmost nor the rightmost point of 1.

A body D is a non-empty interval of a chain C; (¢ = 1, 2) such that all inner points of
D are major. If the leftmost point of D is minor, then we call it a head of D. Otherwise
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Fig. 2. A hedgehog in Cy
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00-hedgehogs 10-hedgehogs
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11-hedgehogs 01-hedgehogs

Fig. 3. Types of hedgehogs (sketch)

D has no head. If the rightmost point of D is minor, then we call it a tail of D. Otherwise
D has no tail. If a body consists of just one minor point, this point is both the head and
the tail.

Bodies are of the following four types. A 00-body is a body with no head and no tail.
A 11-body is a body with both head and tail. The bodies of remaining two types have
exactly one endpoint major and the other one minor. We will call the body a 10-body or
a 01-body if the minor endpoint is a head or a tail, respectively.

Let D be a body on C;. A hedgehog (built on the body D C () is a non-crossing
alternating path H with vertices in C; satisfying the following three conditions: (1) H
contains all points of D, (2) H contains no major points outside of D, (3) the endpoints
of H are the first and the last point of D. A hedgehog built on an «/3-body is an a -
hedgehog (o, B = 0,1). If a hedgehog H is built on a body D, then D is the body of
H and the points of H that do not lie in D are spines. Note that each spine is a minor
point. All possible types of hedgehogs can be seen on Fig. 3 (for better lucidity, we will
draw hedgehogs with bodies on a horizontal line and spines indicated only by a “peak”
from now on).

On each C);, maximal intervals containing only major points are called runs. Clearly,
runs form a partition of major points. For ¢« = 1,2, let r; denote the number of runs
in Cl

2.2 Proofin the Even Case

Throughout this subsection, (C, C3) denotes a double-chain with |Cy| + |Cs| even.
Since the coloring is equitable, we have by + by = w; + ws. Set

A::bl—wlzwg—bg.
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First we give a lemma characterizing collections of bodies on a chain C; that are
bodies of some pairwise non-crossing hedgehogs covering the whole chain C;.

Lemma 3. Let i € {1,2}. Let all major points of C; be covered by a set D of pairwise
disjoint bodies. Then the bodies of D are the bodies of some pairwise non-crossing
hedgehogs covering the whole C; if and only if A = dog — di11, where dy,, is the
number of aa-bodies in D.

Proof. An af3-hedgehog containing ¢ major points contains (¢t — 1) + « + ( minor
points. It follows that the equality A = dgg — d11 is necessary for the existence of a
covering of C; by disjoint hedgehogs built on the bodies of D.

Suppose now that A = dyg — dy1. Let F' be the set of minor points on C; that
lie in no body of D, and let M be the set of the mid-points of straight-line segments
connecting pairs of consecutive major points lying in the same body. It is easily checked
that |F'| = |M|. Clearly F' U M is a convex or a concave chain. Now it is easy to
prove that there is a non-crossing perfect matching formed by |F'| = | M| straight-line
segments between F' and M (for the proof, take any segment connecting a point of F’
with a neighboring point of M, remove the two points, and continue by induction); see

Fig. @

Fig. 4. A non-crossing matching of minor points and midpoints (in C1)

If f € F is connected to a point m € M in the matching, then f will be a spine
with edges going from it to those two major points that determined m. Obviously, these
spines and edges define non-crossing hedgehogs with bodies in D and with all the
required properties. a

The following three lemmas and their proofs show how to construct a good path in some
special cases.

Lemma 4. If A > max{ry,rs} then (Cy,C3) has a good path.

Proof. Leti € {1,2}. Since r; < A < max(b;,w;), the runs in C; may be partitioned
into A 00-bodies. By Lemma [3] these 00-bodies may be extended to pairwise non-
crossing hedgehogs covering C;. This gives us 2A hedgehogs on the double-chain.
They may be connected into a good path by 2A — 1 edges between the chains in the
way shown in Fig. O

Lemma 5. Ifry = ro then (C1, C2) has a good path.
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Ca

Fig. 5. 00-hedgehogs connected to a good path

Proof. Setr := 1y = ry. If r < A then we may apply Lemma[dl Thus, let r > A.

Suppose first that A > 1. We cover each run on each C; by a single body whose
type is as follows. On C; we take A 00-bodies followed by (r — A) 10-bodies. On
Cy we take (from left to right) (A — 1) 00-bodies, (r — A) 01-bodies, and one 00-
body. By Lemmal[3] the r bodies on each C; can be extended to hedgehogs covering C;.
Altogether we obtain 27 hedgehogs. They can be connected to a good path by 2r — 1
edges between C1 and C5 (see Fig.[d).

W

Fig. 6. A good pathinthecase r1 =r2 > A >1

Suppose now that A = 0. We add one auxiliary major point on each C; as follows.
On (1, the auxiliary point extends the leftmost run on the left. On Cs, the auxiliary
point extends the rightmost run on the right. This does not change the number of runs
and increases A to 1. Thus, we may proceed as above. The good path obtained has the
two auxiliary points on its ends. We may remove the auxiliary points from the path,
obtaining a good path for (Cy, C5). O

A singleton s € C; is an inner point of C; (i = 1, 2) such that its two neighbors on C;
are colored differently from s.

Lemma 6. Suppose that C1 has no singletons and Cs can be covered by r1 —1 pairwise
disjoint hedgehogs. Then (C1, C3) has a good path.

Proof. For simplicity of notation, set 7 := r1. We denote the » — 1 hedgehogs on Cy
by Py, P, ..., P._; in the left-to-right order in which the bodies of these hedgehogs
appear on Cs. For technical reasons, we enlarge the leftmost run of C'; from the left by
an auxiliary major point o.
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Our goal is to find r hedgehogs Hy, Ha, ..., H, on C; U {o} such that they may
be connected with the hedgehogs P;, P, ..., P._; into a good path. For each j =
1,...,r, the body of the hedgehog H; will be denoted by D;. Foreachj = 1,...,r, D;
covers the j-th run of C; U {c} (in the left-to-right order). We now finish the definition
of the bodies D; by specifying for each D; if it has a head and/or a tail. The body D,
is without head. For j > 1, D; has a head if and only if P;_; has a tail. The last body
D, is without tail and D;, j < r, has a tail if and only if P; has a head.

Gy
Cs

Fig.7. A good path in the case of no singletons on C

It follows from Lemma [3] that we may add or remove some minor points on C; U
{o} so that Dy,..., D, can then be extended to pairwise non-crossing hedgehogs
Hy, ..., H, covering the “new” C;. More precisely, there is a double-chain (Cf, Cs)
such that Dy, ..., D, can be extended to pairwise non-crossing hedgehogs Hy, ..., H,
covering C}, where either C| = C1 U {0} or C] is obtained from C; U {¢'} by adding
some minor (white) points on the left of C; U{c} (say) or C] is obtained from C; U{c}
by removal of some minor (white) points lying in none of the bodies D1, ..., D,. Then
the concatenation H1 Py HoP» - - - H._1 P._1 H, shown in Fig. []] gives a good path on
(C1, Cs). This good path starts with the point o. Removal of o from it gives a good
path P for the double-chain (C] \ {c}, C2). The endpoints of P have different colors.
Thus, P covers the same number of black and white points. Black points on P are the
|C1|J2FICZ| black points of (Cy, C2). Thus, P covers exactly |C| + |C2| points. It fol-
lows that |C] \ {o'}| = |C4| and thus C] \ {o} = C1. The path P is a good path on the
double-chain (Cy, C5). m]

The following lemma will be used to find a covering needed in Lemmal6]

Lemma 7. Suppose that |C;| > k, r; < k and A < k for some i € {1,2} and for some
integer k. Then C; can be covered by k pairwise disjoint hedgehogs.

Proof. The idea of the proof is to start with the set D of |C;| bodies, each of them
being a single point, and then gradually decrease the number of bodies in D by joining
some of the bodies together. We see that A = dyg — d11, where d, is the number of
aa-bodies in D. If we join two neighboring 00-bodies to one 00-body and withdraw a
single-point 11-body from D (to let the minor point become a spine) at the same time,
the difference between the number of 00-bodies and the number of 11-bodies remains
the same and |D| decreases by two. We can reduce |D| by one while preserving the
difference dog — di11 by joining a 00-body with a neighboring single-point 11-body into
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a 01- or a 10-body. Similarly we can join a 01- or a 10-body with a neighboring (from
the proper side) single-point 11-body into a new 11-body to decrease | D| by one as well.
When we are joining two 00-bodies, we choose the single-point 11-body to remove in
such a way to keep as many single-point 11-bodies adjacent to 00-bodies as possible.
This guarantees that we can use up to r; of them for heads and tails.

We start with joining neighboring 00-bodies and we do this as long as |[D| > k + 1
and dgo > r;. Note that by the assumption A < k, we will have enough single-point
11-bodies to do that. When we end, one of the following conditions holds: |D| = k,
|D| = k + 1 or dygp = r;. In the first case we are done. If |D| = k + 1, we just add one
head or one tail (we can do this since dog + d11 = |D| = k+ 1 > dgp — d11 + 1, which
implies dy; > 0). If dgp = 7, then each run is covered by just one 00-body. We need
to add |D| — k heads and tails. We have enough single-point 11-bodies to do that since
d11 = |D| — doo = |D| — r; > |D| — k. On the other hand, r; — d1; = A > 0, so the
number of heads and tails needed is at most r;. Therefore, all the single-point 11-bodies
are adjacent to 00-bodies and we can use them to form heads and tails.

In all cases we get a set D of k bodies. Now we can apply Lemma 3 to obtain k
pairwise disjoint hedgehogs covering C;. O

By a contraction we mean removing a singleton with both its neighbors and putting a
point of the color of its neighbors in its place instead. It is easy to verify that if there is
a good path in the new double-chain obtained by this contraction, it can be expanded to
a good path in the original double-chain.

Now we can prove our main theorem in the even case.

Proof of Theoreml[ll(even case). Without loss of generality we may assume that r; >
r9. In the case r; = 72, we get a good path by Lemmal[3l In the case A > rq, we get a
good path by Lemmad] Therefore, the only case leftis r; > ra, 11 > A.

If there is a singleton on C'1, we make a contraction of it. By this we decrease
by one and both r5 and A remain unchanged. If now 1 = ry or 11 = A, we again
get a good path, otherwise we keep making contractions until one of the previous cases
appears or there are no more singletons to contract.

If there is no more singleton to contract on Cy and still 7y > 7o and r; > A, we try
to cover C by 1 — 1 pairwise disjoint paths. Before the contractions, |Cy| > |C41| did
hold and by the contractions we could just decrease |C |, therefore it still holds.

All the maximal intervals on the chain C; (with possible exception of the first and
the last one) have now length at least two, which implies that r; < |C;1| + 1. Hence
|Ca| > Kj}l > ry — 1, so we can create r; — 1 pairwise disjoint hedgehogs covering
C5 using Lemma[Zl Then we apply Lemma [6] and expand the good path obtained by
Lemmal@lto a good path on the original double-chain.

There is a straightforward linear-time algorithm for finding a good path on (C7, Cs)
based on the above proof. O

3 Unbalanced Double-Chains with No Good Path

In this section we prove Theorem[2l Let (C7, C3) be a double-chain whose points are
colored by an equitable 2-coloring, and let C'y be periodic with the following period: 2
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black, 4 white, 6 black and 4 white points. Let |C7| > 28(|Cs| 4+ 1). We want to show
that (C4, C2) has no good path.

Suppose on the contrary that (C,C2) has a good path. Let Py, Ps, ..., P, denote
the maximal subpaths of the good path containing only points of C. Since between
every two consecutive paths F;, P; in the good path there is at least one point of Cs, we
have ¢t < |C3| 4 1. In the following we think of C as of a cyclic sequence of points on
the circle. Note that we get more intervals in this way. TheoremPlnow directly follows
from the following theorem.

Theorem 8. Ler C be a set of points on a circle periodically 2-colored with the fol-
lowing period of length 16: 2 black, 4 white, 6 black and 4 white points. Suppose that
all points of Cy are covered by a set of t non-crossing alternating and pairwise disjoint
paths Py, Py, ..., P,. Thent > |C1|/28.

Proof. Each maximal interval spanned by a path P; on the circle is called a base. Let
b(P;) denote the number of bases of P;. A path with one base only is called a leaf. We
consider the following special types of edges in the paths. Long edges connect points
that belong to different bases. Short edges connect consecutive points on C;. Note that
short edges cannot be adjacent to each other. A maximal subpath of a path P; spanning
two subintervals of two different bases and consisting of long edges only is called a
zig-zag. A path is separated if all of its edges can be crossed by a line. Note that each
zig-zag is a separated path. A maximal separated subpath of P; that contains an endpoint
of P; and spans one interval only is a rainbow. We find all the zig-zags and rainbows
in each P;, 1 = 1,2,...,t. Note that two zig-zags, or a zig-zag and a rainbow, are
either disjoint or share an endpoint. A branch is a maximal subpath of P; that spans two
intervals and is induced by a union of zig-zags.

For each path P; that is not a leaf construct the following graph G;. The vertices
of G; are the bases of P;. We add an edge between two vertices for each branch that
connects the corresponding bases. If G; has a cycle (including the case of a “2-cycle”),
then one of the corresponding branches consists of a single edge that lies on the convex
hull of P;. We delete such an edge from P; and don’t call it a branch anymore. By
deleting a corresponding edge from each cycle of G; we obtain a graph G, which is a
spanning tree of G;. The branch graph G is a union of all graphs G.

Let £ denote the set of leaves and B the set of branches. Let P = { Py, Pa, ..., P;}.

Observation 1. The branch graph G' is a forest with components G',. Therefore,

Bl= Y (b(P)—1).

i,PiQ,C

The branches and rainbows in P; do not necessarily cover all the points of P;. Each point
that is not covered is adjacent to a deleted long edge and to a short edge that connects
this point to a branch or a rainbow. It follows that between two consecutive branches
(and between a rainbow and the nearest branch) there are at most two uncovered points,
that are endpoints of a common deleted edge. By an easy case analysis it can be shown
that this upper bound can be achieved only if one of the nearest branches consists of a
single zig-zag.
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In the rest of the paper, a run will be a maximal monochromatic interval of any color.
In the following we will count the runs that are spanned by the paths P;. The weight of
a path P, w(P), is the number of runs spanned by P. If P spans a whole run, it adds
one unit to w(P). If P partially spans a run, it adds half a unit to w(P).

Observation 2. The weight of a zig-zag or a rainbow is at most 1.5. A branch consists
of at most two zig-zags, hence it weights at most three units.

Lemma 9. A path P; that is not a leaf weights at most 3.5k + 3.5 units where k is the
number of branches in P;.

Proof. According to the above discussion, for each pair of uncovered points that are
adjacent on P; we can join one of them to the adjacent branch consisting of a single
zig-zag. To each such branch we join at most two uncovered points, hence its weight
increases by at most one unit to at most 2.5 units. The number of the remaining uncov-
ered points is at most k + 1. Therefore, w(P;) < 3k+3+0.5-(k+1) = 3.5k+3.5. O

Lemma 10. A leaf weights at most 3.5 units.

Proof. Let L be a leaf spanning at least two points. Consider the interval spanned by L.
Cut this interval out of C; and glue its endpoints together to form a circle. Take a line [
that crosses the first and the last edge of L. Note that the line ! doesn’t separate any of
the runs. Exactly one of the arcs determined by [ contains the gluing point ~.

Each of the ending edges of L belongs to a rainbow, all of whose edges cross (. It
follows that if L has only one rainbow, then this rainbow covers the whole leaf L and
w(L) < 1.5. Otherwise L has exactly two rainbows, R; and R,. We show that Ry and
R5 cover all edges of L that cross the line /. Suppose there is an edge s in L that crosses
[ and does not belong to any of the rainbows R;, Rs. Then one of these rainbows, say
Ry, is separated from ~y by s. Then the edge of L that is the second nearest to R; also
has the same property as the edge s. This would imply that R; spans two whole runs,
a contradiction. It follows that all the edges of L that are not covered by the rainbows
are consecutive and connect adjacent points on the circle. There are at most three such
edges; at most one connecting the points adjacent to -y, the rest of them being short on
C1. But this upper bound of three cannot be achieved since it would force both rainbows
to span two whole runs. Therefore, there are at most two edges and hence at most one
point in L uncovered by the rainbows. The lemma follows. g

Lemma 11. |L] >}, p . (0(P) —2) +2.

Proof. The number of runs in C is at least 4. By Lemma[IQ] if all the paths P; are
leaves, then at least 2 of them are needed to cover C and the lemma follows.

If not all the paths are leaves, we order the paths so that all the leaves come at the
end of the ordering. The path P; spans b(P;) bases. Shrink these bases to points. These
points divide the circle into b(P;) arcs each of which contains at least one leaf. If Py
is not a leaf then continue. The path P, spans b(P,) intervals on one of the previous
arcs. Shrink them to points. These points divide the arc into b(P2) + 1 subarcs. At
least b(P,) — 1 of them contain leaves. This increased the number of leaves by at least
b(P2) — 2. The case of P;, i > 2, is similar to P5. The lemma follows by induction. O
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Corollary 12. |B| < |P| — 2.

Proof. Combining Lemma[I1] and Observation[Il we get the following:

Bl= > b(P)—1)= > (b(P)-2)+[P|—[L]+2-2<|P|-2.
i, PidL i, PidL
O

Now we are in position to finish the proof of Theorem[8] If the whole C is covered by
the paths P;, then Zzzl w(P;) > lc;ll . Therefore,

|C1] < 4-(3.5|B| +3.5(|P| — |£]) +3.5|L]) < 4-7|P| =28|P|.

Acknowledgment

We thank Jakub Cerny for his active participation at the earlier stages of our discussions.

References

1. Abellanas, M., Garcia, J., Hernandez, G., Noy, M., Ramos, P.: Bipartite embeddings of trees
in the plane. Discrete Appl. Math. 93, 141-148 (1999)

2. Abellanas, M., Garcia, J., Hurtado, F., Tejel, J.: Caminos alternantes (in Spanish). In: Proc. X
Encuentros de Geometria Computacional, Sevilla, pp. 7-12 (2003) (English version available
on Ferran Hurtado’s web page)

3. Brass, P, Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Heidelberg
(2005)

4. Garcia, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free subgraphs of K.
Comput. Geom. 16, 211-221 (2000)

5. Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane - a survey.
In: Aronov, B., et al. (eds.) Discrete and computational geometry, The Goodman-Pollack
Festschrift. Algorithms Comb., vol. 25, pp. 551-570. Springer, Heidelberg (2003)

6. Kaneko, A., Kano, M., Suzuki, K.: Path coverings of two sets of points in the plane. Pach,
J. (ed.), Towards a Theory of Geometric Graphs, Contemporary Mathematics 342, 99-111
(2004)

7. Kyncl, J., Pach, J., Téth, G.: Long Alternating Paths in Bicolored Point Sets. In: Pach, J. (ed.)
GD 2004. LNCS, vol. 3383, pp. 340-348. Springer, Heidelberg (2005); Also to appear in a
special volume of Discrete Mathematics honouring the 60th birthday of M. Simonovits

Appendix: Proof in the Odd Case

In this appendix we prove Theorem [Tl for the case when |Cy| + |Cs| is odd. We set
A = wy — by and proceed similarly as in the even case. On several places in the proof
we will add one auxiliary point w to get the even case (its color will be chosen to
equalize the numbers of black and white points). We will be able to apply one of the
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Lemmas [4Hg] to obtain a good path. The point w will be at some end of the good path
and by removing w we obtain a good path for (C7, C5).

Without loss of generality we may assume that vy > r5. In the case r; = ro, we add
an auxiliary major point w, which is placed either as the left neighbor of the leftmost
major point on C or as the right neighbor of the rightmost major point on C5. Then we
get a good path by Lemma 5] and the removal of w gives us a good path for (Cy, C5).

In the case A > r1, we add an auxiliary point w to the same place and we get a good
path by Lemmaldl Again, the removal of w gives us a good path for (C1, Cs).

Now, the only case left is r; > 79, 71 > A. If there are any singletons on C1,
we make the contractions exactly the same way as in the proof of the even case. If
Lemma [ or Bl needs to be applied, we again add an auxiliary point w and proceed as
above.

If there is no more singleton to contract on Cy and still 1 > ro and r; > A, we have
|Co| > Kj}l > r1 — 1 as in the proof of the even case and we can use Lemmal[7]to get
r1 — 1 pairwise disjoint hedgehogs covering C>. Now we need to consider two cases:
(1) If by +be > wq +we, then we find a good path for (C1, C2) in the same way as in the
proof of Lemmal[fl except we do not add the auxiliary point o. (2) If by + bo < wy + w2,
we add an auxiliary point w as the right neighbor of the rightmost major point on C'.
The number r; didn’t change so Lemmalf] gives us a good path. Again, the removal of
w gives us a good path for (Cy, Cs).

There is a straightforward linear-time algorithm for finding a good path on (C7, C5)
based on the above proof. O
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Abstract. We introduce a new force-directed model for computing graph lay-
out. The model bridges the two more popular force directed approaches — the
stress and the electrical-spring models — through the binary stress cost function,
which is a carefully defined energy function with low descriptive complexity al-
lowing fast computation via a Barnes-Hut scheme. This allows us to overcome
optimization pitfalls from which previous methods suffer. In addition, the binary
stress model often offers a unique viewpoint to the graph, which can occasion-
ally add useful insight to its topology. The model uniformly spreads the nodes
within a circle. This helps in achieving an efficient utilization of the drawing area.
Moreover, the ability to uniformly spread nodes regardless of topology, becomes
particularly helpful for graphs with low connectivity, or even with multiple con-
nected components, where there is not enough structure for defining a readable
layout.

1 Introduction

A popular approach to drawing graphs is based on measuring the quality of the layout
through a formal cost function. The layout of the graph is formed by an optimization
algorithm that finds a local minimum of the cost function. This family of algorithms is
known in the graph drawing literature as force-directed algorithms; see, e.g., [3114].

Broadly speaking, force-directed cost functions (also known as energies) define a de-
sired layout based on either the electric-spring metaphor or on a stress function. Electric
spring functions liken the graph to a physical system where nodes correspond to electri-
cally charged particles, and edges correspond to springs with zero rest length. Repulsive
electric forces ensure that nodes are well separated, while attractive spring forces tend to
shorten edges and pack closely connected components. Two well known early versions
of this scheme are by Eades [4] and by Fruchterman and Reingold [6].

The stress function relates a nice drawing to good isometry. We have an ideal target
distance d;; for every pair of nodes i and j. Given a 2-D layout, where node ¢ is placed
at point p;, the stress function is:

> wiy (lps = psll = dig)? (1)
1<J

We desire a layout that minimizes this function, thereby best realizing the target dis-
tances. Here, the distance d;; is typically the graph-theoretical distance between nodes
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¢ and j. The normalization constant w;; equals d;ja. The function () appeared earlier
as the stress function in multidimensional scaling [2], where it was applied to graph
drawing [16]. It became a popular graph drawing tool by Kamada and Kawai [13]].

Both electric-spring and stress approaches enjoy successful implementations and of-
fer pleasing layouts to many graphs. In terms of layout appearance, there are distinct
differences between the models, though they are hard to define. As for computational
aspects, the two approaches induce different optimization processes, and each has a
unique advantage. Electric-spring models have the advantage of a lower descriptive
complexity compared to the stress model. This is because all repulsive forces are uni-
form, whereas attractive forces involve only the |FE| pairs of adjacent nodes. On the
other hand, the stress function requires encoding a different target distance for each
node pair. This fundamental difference bounds stress models to quadratic space com-
plexity, while efficient implementations of electric-spring models scale to larger graphs.

On the other hand, the stress function has a mild landscape, which allows utilizing
powerful optimization techniques such as majorization [7]. This way, good minima are
usually achieved regardless of the initial positions. This is untrue for the electric-spring
models, which induce an intricate landscape as repulsive forces make the energy go to
infinity when nodes overlap. This causes serious convergence problems even for mod-
erately sized graphs. Past works [9/11/19] used sophisticated initialization techniques
through multilevel approximation to overcome these problems.

In this work we introduce the binary-stress model (bStress) for drawing graphs. Com-
putationally, it is able to merge the advantages of both the electric-spring model and the
stress model. Namely, it offers a low descriptive complexity, thus being scalable to very
large graphs. At the same time, it is similar in its form to the known stress function,
thus enabling the use of the majorization optimization scheme.

As for the quality of the layout, bStress frequently offers a unique perspective to
the graph structure. More than other models, bStress emphasizes uniform spread of the
nodes within a circular drawing area. This may lead to distinctive layouts, which can
serve as useful addition to those produced by other algorithms. Moreover, the empha-
sis on uniform spread is advantageous for graphs with low connectivity, whose struc-
ture alone is not capable of defining a good layout. For example, bStress will naturally
handle graphs with multiple connected components by packing all connected compo-
nents together without requiring any post-processing or special treatment that alterna-
tive methods require. In addition, bStress is suitable for drawing large graphs, not only
because of its improved scalability, but also because it achieves good area utilization
that is important for placing a large number of nodes.

2 Basic Notions

We are seeking a layout for a graph G(V = {1,...,n}, E), where the position of node
iis p; = (i, y;). Sometimes, we will refer to the vectors x,y € R™, which represent
all x- or y-coordinates, respectively. Notice that while this work addresses the more
common case of 2-D layouts, as usual with force-directed algorithms, extensions to
3-D are naturally possible.
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23

Fig. 1. A Layout of 1024 points that minimizes G (p), by scattering the points within a circle

3 The Binary Stress Model

One of the earliest cost functions involved in defining a nice layout strives to shorten
the squared edge lengths:

Hp)= > lpi—pil® 2)

(1,)EE

However, minimizing H (p) on its own is not sufficient for defining a useful layout, as
nothing prevents all nodes from collapsing at a single point. Thus, Tutte [[18] and Hall
[10] augmented H (p) with simple constraints that prevented the formation of trivial
layouts. Nonetheless, both solutions tend to generate layouts with very uneven sparsity,
where many nodes are overcrowded together. Moreover, Tutte’s and Hall’s methods fail
to produce adequate layouts for graphs of low connectivity such as tree-like graphs.

A hypothetical possible way to make H (p) working for general graphs, is to lay
out the graph over a grid and then minimize H (p) while requiring that each node is
positioned at a unique grid cell. This will ensure a uniform spread of the nodes and
prevent nodes from getting too close to each other. However, practical implementation
of such a strategy would be quite complicated. The primary issue is that constraining
positions to grid cells transforms the problem into integer optimization, which would
be much harder to solve and less scalable.

We avoid integer optimization by adopting a continuous relaxation of the grid layout
strategy. The relaxation is based on the following cost function:

Gp)= Y (lpi—pill — 1) 3)

i£jEV

This function strives to place all nodes such that their pairwise distances are uniform.
Notice that G(p) is independent of the graph structure. The minimum of G(p), as we
have found experimentally, will position the nodes almost uniformly within a circle. For
example, consider Fig.[Il where 1024 nodes are positioned so as to minimize G(p).

The function G(p) gives us the necessary tool to combat the over dense areas which
are typical to minimization of H (p). Thus, the binary stress function for computing a
layout of a graph is defined as a linear combination of the two functions:
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Bp)= Y lpi—pil>+a > (Ipi —psl - 1)? (4)
(i,5)€E i#jEV
The first term relates the layout to the graph structure by ensuring that edges are short,
whereas the second term makes the nodes spread uniformly within a circle. The constant
« (discussed later) controls the balance between the two terms.
Our experience shows that bStress results in useful layouts for wide families of
graphs. However, before we dwell into the quality of layouts generated by the bStress
model, we would like to discuss computational aspects.

4 Minimizing the Binary Stress Function

The bStress function ) is structured as a sum of two stress functions (Eq. (1)), one
with target distances equal to 0, and the other with target distances equal to 1. This is
the reason for choosing the “binary stress”” name. Though, the particular value of 1 has
no influence on the resulting layout and any other positive value could be used as well.

As sum of stress functions, the majorization optimization technique can be exploited
to optimizing bStress. Derivation of the stress majorization was given by Gansner et al.
[7]. The process used here is as follows:

Let us define two n x n matrices, L and M. The matrix L is the Laplacian of graph
G, whose associated quadratic form is the sum of squared edge lengths H (p). The other
matrix, M, is associated with a quadratic form that bounds G(p):

-1 (i,j) € E [ # ]

. . _1 v ‘7

L= Zk;ﬁiLikZ:j ) Mi,j:{n_uij
0 otherwise

We also define two vectors, b”, bY € R"™, which sum all cosines and sines associated
with each node:

Ti— Ty Yi = Yj

by = ! , b= ’ 3
; (@i, yi) — (2, 95)l ; (@i, yi) — (5, 95) |

Given a current placement p(t) = (z(t), y(t)), an improved placement p(t + 1) =

(z(t+1),y(t+1)), which lowers B(p), is computed by solving the system of equations:

(M + OéL)Z‘(t + 1) = bw(t), (M + aL)y(t + 1) — by(t) (6)

Now, let us consider computational complexity. The number of entries in matrix L is
n-+|E|. The other matrix — M — is, strictly speaking, dense. However its highly uniform
structure makes it sparse for practical purposes. Typical to the stress majorization pro-
cess is solving (@) by using the conjugate gradient method, which accesses (M +«L) as
a linear operator. Thus, all we need to ensure is that the product (M +«L)x, can be com-
puted efficiently. This is indeed the case, as L is sparse, and (Mz); = nx; — 3, z;,
which is computed in a constant time after precomputing > 5 Tj- Thus, the product
(M 4 aL)x, is computed in time O(n + |E|).
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Fig.2. A quad-tree hierarchical space decomposition

The more challenging operation is the computation of the b* and b¥ vectors of Eq.
([@). This essentially involves computing the angles formed by all node pairs. Here we
follow several recent graph drawing works [9/11117] and use the Barnes-Hut scheme [[1]]
for approximating the O(n?) interactions in practically O(nlogn) time. Thus, we use
a hierarchical geometric decomposition of the drawing area through a quad-tree data
structure. The whole area is assigned to a square (or, a rectangle). Then, each square
is subsequently partitioned into four identical squares, till each node is lying within a
unique leaf square. See Fig.[2lfor an illustration.

Computation of b¥ and b} is based on a top-bottom traversal of the quad-tree. Let v
be a quad-tree vertex corresponding to square s with side length [. We compare [ to d
- the distance between node ¢ and the center of square s. If I/d > 6, then we continue
the traversal recursively with the four children of v. Otherwise, we halt the traversal
while taking the approximation that all graph nodes lying within square s are at the
same location, and thus can be processed at once. Our default value for 6 is 0.5.

In order to give a flavor of actual running times, we report our experience with
graphs of varying sizes in Table [1l Times were measured on a Pentium 4 PC. We let
the majorization process run for 200 iterations, while it was terminated earlier once
lp(t+1)—p@®)||/llp(¥)]] < 0.001. Overall running time is divided among the two com-
ponents of the algorithm: (1) solving Eq. (@) through the conjugate gradients iterative
process. (2) Computing b* and b¥ (Eq. (@) using a Barnes-Hut approximation. The ta-
ble shows that the Barnes-Hut approximation is indeed closely following an O(n logn)
running time. The conjugate gradient component takes (n + | F|) time per internal it-
eration, but the number of those iterations is less consistent. Since the Barnes-Hut cal-
culation is independent of the number edges, as graphs become denser the conjugate
gradient component becomes more significant (see graphs ‘plustk10’ and ‘gearbox’).
Wall-clock measured running times are not directly comparable across different papers,
due to differences in platforms and code optimization. However, we believe that the
ability of bStress to lay out of 100,000 nodes in a few minutes, places it among the
more efficient graph drawing techniques.

5 Results and Implementation Details

The binary stress model is based on unique principles, which in many cases lead to lay-
outs quite different than those produced by other algorithms. Hence, a key to assessing
the utility of the new model is a qualitative analysis of typical results. In the following
subsections we discuss various aspects of bStress through concrete layout examples.
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Table 1. Running time characteristics for graphs of varying sizes. We measure times for the
two components of the algorithm: a conjugate gradient solver, and Barnes-Hut approximation of
vectors b” and bY. The last two columns show the dependency of running time with graph size.
Graphs are taken from [12].

name nodes edges iterations conjugate gradient Barnes-Hut 10°x  10°%x
time/it (sec.) time/it (sec.) Clg‘i‘:f i‘i‘;“:
nopoly 10774 30034 133 0.019 0.182 0.477 4.181
skirt 12598 91961 109 0.082 0.272 0.784 5.264
tuma?2 12992 20925 13 0.015 0.238 0.454 4.462
poli large 15575 17468 200 0.106 0.305 3.199 4.666
powersim 15838 36430 200 0.045 0.357 0.869 5.366
ncvxqp9 16554 22493 200 0.023 0.405 0.598 5.797
Ipll 32460 147788 200 0.408 0.763 2261 5212
finance256 37376 130560 200 0.192 0.749 1.145 4.385
beircuit 68902 153328 200 0.328 1.874 1.476 5.621
plustk10 80676 2114154 159 5.169 2.125 2.355 5.367
Ford2 100196 222246 33 0.582 2.230 1.806 4.450
gearbox 107624 3250488 200 5.874 3.317 1.749 6.124
lung2 109460 273646 137 0.272 3.477 0.710 6.304

5.1 Balancing the System

Recall that bStress is parametrized by «, which controls the balance between uniform
spread and structure preservation. As o grows, the model will prefer shortening edges
over uniformly spreading the nodes. This can significantly influence the appearance of
the layout. For example, in Fig.Blwe show two layouts of the same graph, one computed
with o« = 1 and the other with = 1000. When « is low (=1), the model emphasizes
uniform spread, thus nodes are well separated and visible. On the other hand, when «
is high (=1000), the model cares mostly about exposing the graph’s structure through
shortening edges. Thus, the different hubs that form the graph are clearly shown.

Notice that G(p) = >, cy (lpi — pjll — 1)? contains about 7° /2 terms, whereas
the other part of bStress, H(p) = >_; ;e [IPi — pj |2, contains only |E| terms. Thus,
G(p) becomes more and more dominant as n?/|E| grows. This is undesirable, as it
makes the determination of parameter « less stable across varying graphs. To offset
some of this phenomenon, our experience shows that as |F|/n grows, it is beneficial
to overweight H(p) over G(p). In other words, for sparse graphs, there is no much
structure in the graph and it is reasonable to pay much attention to uniform spread.
However, for denser graphs, there is much structure to be captured from the connectivity
information. Combining these considerations, we learned that a sensible choice to « is
c - n, for some positive constant c. Hence, the bStress model becomes:

Bp)= > lpi—pil*+c-n > (lpi —psll - 1)? 7

(i,5)€E i#jEV
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Fig. 3. Two bStress layouts of a graph with 1933 nodes and 2043 edges. Setting o = 1 achieves
better separation of nodes and improved area utilization. However, some may prefer c = 1000,
for the better abstraction of the graph’s structure.

Focusing on values of c is easier than focusing on values of «. In fact, our experi-
ments show that ¢ = 1 is a universally reasonable choice, being our default value. In
some cases, better results are obtained with lower values of c.

There is another implication to the value of ¢, beyond layout appearance. We have
found that the majorization optimization process may encounter bad local minima when
c is too low. To avoid this, we first run the algorithm with higher values of ¢, and then
use the resulting layout for seeding a process with a lower c value. That is, a typical run
would start with ¢=100, and then restart with c=1. Usually, the number of majorization
iterations after restarting the run is relatively low thanks to the improved initialization.

5.2 Drawing Trees

Prior adaptation of the H (p) function to drawing graphs [10/I8] could not handle trees
and tree-like graphs adequately. The major issue was the inability to prevent many nodes
from collapsing at the same location, thus resulting in a highly imbalanced layout with
much unused area and a few overcrowded locations. Such an issue does not exist with
bStress, as could be evident from the drawing of a tree-like graph given in Fig.[3l In
fact, as graphs become sparser, results of bStress look increasingly different than those
computed by alternative models such as the aforementioned stress and electric-spring
models. This is because, the lack of sufficient connectivity information let the uniform
spread component, G(p), be more dominant in shaping the layout.

As an example, in Fig.[dH3] we present the drawings of two trees, which are derived
from an Internet map and a BGP connectivity map. Results of bStress are compared to
the results of the stress function. The known stress model seems to be better at exposing
the decomposition of the tree, whereas bStress achieves more uniform node distribution.
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Fig. 4. Comparing stress to bStress in drawing an Internet map tree (|V'|=9227, |E|= 9226)
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Fig. 5. Comparing stress to bStress in drawing a BGP connectivity tree (|V'|=3487, | E|= 3486)

The uniform spread achieved by bStress becomes particularly useful when the number
of nodes is large making area utilization a high priority.
5.3 Disconnected Graphs

Most force-directed methods cannot directly handle disconnected graphs. For exam-
ple, the stress model requires defining the distance between each two nodes, which is
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Fig. 6. A graph with 11 connected components (|V'|=333, |E|=397)

not naturally defined for disconnected nodes. Likewise, the electric spring model as-
sumes only repulsive forces among connected components, ultimately pushing them
away from each other till infinity. Certainly, various modifications to those models can
enable working with disconnected graphs. Most notably, each connected component
can be drawn separately, and later a smart packing algorithm squeezes all components
within the drawing area [3]].

Interestingly, bStress handles disconnected graphs exactly the same way it handles
connected graphs. Thus, unlike other methods, it does not require any modification or
postprocessing when addressing disconnectivity. This is thanks to the uniform spread
model (G(p)), which strives for a fairly uniform node distribution, regardless of con-
nectivity. A small artificial example is brought in Fig.|6l where we draw a graph with 11
connected components. As can be seen, bStress could pack all components efficiently
together within a circle, while no two components overlap, and each component is dawn
reasonably. A larger, more realistic example is given in Fig.[7] where we show a graph
consisting of many Internet traces. The graph contains 3743 connected components,
which are all packed pretty well within the layout.

5.4 Filling a Circle

A notable feature of bStress is packing the graph within a circle. Admittedly, the cir-
cular shape of the layout is not a design goal but rather an outcome of the chosen cost
function. However, filling the interior of the circle is indeed a design goal of the bStress
model. In some cases this can lead to surprisingly looking layouts. For example, some
layouts would be expected to lie on the periphery of a circle. However, bStress will
“insist” on filling the circle with some of the nodes, due to the strict uniform spread re-
quirement. This might look odd at first, but we argue that it has an advantage of enabling
a better distinction between individual nodes.

We demonstrate this in Fig.[8] First simple example is a (topological) circle, which is
twisted in order to spread nodes within the interior. Another example is the finan512
graph, which became a standard example in works aimed at drawing large graphs.
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Fig.7. An Internet map with 3743 connected components (|V |=33552, | E|=29809). Node colors
indicate some known ISPs.

Previous works (e.g., [13/19]) placed all nodes on or close to the perimeter of a cir-
cle. On the other hand, bStress fills the interior of the circle. This enables a better view
of the local details of this large graph, at the price of an inferior exhibition of sym-
metries. At this point, we would like to clarify that while frequently the outline of the
layout is circular, this is not always the case; for example consider Fig.

5.5 Distorting the Layout

The uniform spread component, G(p), induces layouts where the periphery is denser
than the central area. This effect can be seen in Fig. [l Let us take a polar coordinates
viewpoint, where the origin is the layout center. We observe that nodes are uniformly
spread across different angular coordinates, but less so across different radial coordi-
nates. Thus, we propose the following correction as an optional postprocessing phase.

We denote the layout density (or, sparsity) around node ¢ by d;. This way d; = 0
for the densest possible area, while d; is large when there is a lot of free area around 1.
One way to measure d; is to set it to the average distance between 7 and its top k closest
nodes in the layout. In our implementation, we compute a relative neighborhood graph
(RNG), and define d; as the average length of edges adjacent to 7 in the RNG.

We sort all nodes by their radial coordinates, which are distances from the center.
Then, we smooth the computed densities, by averaging densities of nodes with similar
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™ N A
1000-circle (|V|=1000, | E|= 1000) finan512 (|V'|=74752, | E|= 261120)

Fig. 8. bStress tends to fill the interior of a circle

Fig. 9. The gearbox graph [12] (]V'|=107624, | E|=3250488)

radial coordinates; see Sec. 6 of [§] for a similar procedure. Finally, for each node 4,
which comes immediately after node j in the sorted order, we modify the gap in radial
coordinates between 4 and j by multiplying it by 1/d;. Thus, we shrink gaps in sparse
areas, while widening gaps in dense areas.



204 Y. Koren and A. Civril

e iiitite,, et tiiii.
........ - % . b t bans
pR el N, .

no distortion with distortion

Fig. 10. The effect of post-processing the layout of a 32 x 32 grid with a radial distortion that
makes node distribution more uniform

We include this distortion in our default settings, as it takes a negligible time, and
occasionally leads to a modest improvement of layout appearance. A simple example is
a square grid, whose layout improves when applying the distortion as shown in Fig.

6 Conclusions

The binary stress model leads to unique graph layouts characterized by uniform distri-
bution of nodes within a circular area. This is particularly beneficial for large graphs,
where efficient utilization of the drawing area becomes vital. In addition, the model
is capable of producing decent layouts even for graphs with low connectivity, where
scant adjacency information cannot define a useful layout on its own. Computationally,
it combines some of the benefits of both the stress and the electric-spring model, fa-
cilitating a simple, yet effective optimization procedure that scales well for very large
graphs. We believe that it should coexist as a viable option along more familiar models.
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Efficient Node Overlap Removal Using a Proximity
Stress Model
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Abstract. When drawing graphs whose nodes contain text or graphics, the non-
trivial node sizes must be taken into account, either as part of the initial layout or
as a post-processing step. The core problem is to avoid overlaps while retaining
the structural information inherent in a layout using little additional area. This
paper presents a new node overlap removal algorithm that does well by these
measures.

1 Introduction

Most existing symmetric graph layout algorithms treat nodes as points. In practice,
nodes usually contain labels or graphics that need to be displayed. Naively incorporating
this can lead to nodes that overlap, causing information of one node to occlude that of
others. If we assume that the original layout conveys significant aggregate information
such as clusters, the goal of any layout that avoids overlaps should be to retain the
“shape” of the layout based on point nodes.

The simplest and, in some sense, the best solution is to scale up the drawing [23]
while preserving the node size until the nodes no longer overlap. This has the advan-
tage of preserving the shape of the layout exactly, but can lead to inconveniently large
drawings. In general, overlap removal is typically a trade-off between preserving the
shape and limiting the area, with scaling at one extreme.

Many techniques to avoid overlapping nodes have been devised. One approach is to
make the node size part of the model of the layout algorithm. It is assumed that whatever
structure that would have been exposed using point nodes will still be evident in these
more general layouts. Various authors [2l[13L21126]] have extended the spring-electrical
model [4.[7] to take into account node sizes, usually as increased repulsive forces. Node
overlap removal can also be built into the stress model [19] by specifying the ideal
edge length to avoid overlap along the graph edges. Such heuristics, however, cannot
guarantee all overlaps will be removed, so they rely on overly large repulsive forces, or
the type of post-processing step considered next.

An alternative approach is to remove overlaps as a post-processing step after the
graph is laid out. Here the trade-off between layout size and preserving the graph’s
shape is more explicit. A number of such algorithms have been proposed. For example,
the Voronoi cluster busting algorithm [10,22]] works by iteratively forming a Voronoi
diagram from the current layout and moving each node to the center of its Voronoi cell
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until no overlaps remain. Although roughly maintaining relative node positions, the
overall affect is to lose much of the layout structure.

Another group of post-processing algorithms is based on maintaining the orthogonal
ordering [25] of the initial layout as a way to preserve its shape. A force scan algorithm
and variants were proposed [14}[17,121,125] based on these constraints. More recently,
Marriott et al. [3l23]] have presented a quadratic programming algorithm which removes
node overlaps while minimizing node displacement and keeping the orthogonal order-
ing. An orthogonal ordering invariant is fairly effective at preserving structure, but it
still cannot ensure that relative proximity relations between nodes are preserved, while
at other times, it is too restrictive. Also, some of these algorithm require, in practice,
separate horizontal and vertical passes which often results in a layout with a distorted
aspect ratio (e.g., Fig. 2l bottom right).

In this paper, we discuss (Sect. 2) metrics for the similarity between two layouts
which we believe better quantifies the desired outcome of overlap removal than min-
imized displacement or such simpler measures as aspect ratio or edge ratio. We then
present (Sect.[3) a node overlap removal algorithm based on a proximity graph of the
nodes in the original layout. In Sect. ] we evaluate our algorithm and others using the
proposed similarity measures.

In the following, we use G = (V, E) to denote an undirected graph, with V' the set of
nodes (vertices) and E edges. We use |V| and | E| for the number of vertices and edges,
respectively. We let x; represent the current coordinates of vertex ¢ in Euclidean space.

2 Measuring Layout Similarity

The outcome of an overlap removal algorithm should be measured in two aspects. The
first aspect is the overall bounding box area: we want to minimize the area taken by the
drawing after overlap removal. The second aspect is the change in relative positions.
Here we want the new drawing to be as “close” to the original as possible. It is this
aspect that is hard to quantify.

One way to measure the similarity of two layouts is to measure the distance between
all pairs of vertices in the original and the new layout. If the two layouts are similar,
then these distances should match, subject to scaling. This is known as Frobenius metric
in the sensor localization problem [5]]. However, calculating all pairwise distances is
expensive for large graphs, both in CPU time and in the amount of memory, so instead
we form a Delaunay triangulation (DT) of the original graph, then measure the distance
between vertices along the edges of the triangulation for the original and new layouts.
If 2° and 2 denote the original and the new layout, and Ep is the set of edges in the
triangulation, we calculate the ratio of the edge length

s = a5l . .
Tij = ||I.E)_l.g)||v {Z7J}GEP7

then define a measure of the dissimilarity as the normalized standard deviation
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Y {ijteEp (rj—7)2
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oaise(z°, ) = - 7

1
T = Bp| Z Tij
{i,j}€EP
is the mean ratio. The reason we measure the edge length ratio along edges of the
proximity graph, rather than along edges of the original graph, is that if the original
graph is not rigid, then even if two layouts of the same graph have the same edge lengths,
they could be completely different. For example, think of the graph of a square, and a
new layout of the same graph in the shape of a non-square rhombus. These two layouts
may have exactly the same edge lengths, but are clearly different. The rigidity of the
triangulation avoids this problem.

Notice that ogis,(°, ) is not symmetric with regard to which layout comes first. Fur-
thermore, in theory, this non-symmetric version could class a layout and a foldover of it
(e.g., a square grid with one half folded over the other) as the same. We can symmetrize
it by defining the dissimilarity between layout = and 2° as (g5 (2°, ) +0qist (z, 2°)) /2.
This also resolves the “foldover problem”. The symmetric version may be more appro-
priate if we are comparing two unrelated layouts. Since, however, we are comparing a
layout derived from an existing layout, we feel that the asymmetric version is adequate.

An alternative measure of similarity is to calculate the displacement of vertices of
the new layout from the original layout [3]. Clearly a new layout derived from a shift,
scaling and rotation should be considered identical. Therefore we modify the straight
displacement calculation by discounting the aforementioned transformations. This is
achieved by finding the optimal scaling, shift and rotation that minimize the displace-
ment. The optimal displacement is then a measure of dissimilarity.

We define the displacement dissimilarity as

where

0 . 02
Odisp (27, ) = Minyep2 g rer Z lrTz; +p— ;% (1)
=%
where 7 is the scaling, 0 the rotation with 7" = T'(6) its rotation matrix, and p € R? is

the translation. Solving this is a known problem in Procrustes analysis [[1}[11] and the
solution (the Procrustes statistic) is

oaisp (@0, 7) = Tr(X°X°") — (Tr((XTX°X°" X)2 )2 Tr(X7X), ()

where X is a matrix with columns z; — #, X is a matrix with columns 29 — z°, and

7 and 20 are the centers of gravity of the new and original layout. In the above we do
not consider shearing, since we believe a layout derived from shearing of the original
should not be considered identical to the latter.

3 A Proximity Stress Model for Node Overlap Removal

Our goal now is to remove overlaps while preserving the shape of the initial layout
by maintaining the proximity relations. To do this, we first set up a rigid “scaffolding”
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structure so that while vertices can move around, their relative positions are maintained.
This scaffolding is constructed using a proximity graph [18]]. Here again, we work with
the Delaunay triangulation.

Once we form a DT, we check every edge in it and see if there are any node overlaps
along that edge. Let w; and h; denote the half width and height of the node 4, and z9(1)
and 29 (2) the current X and Y coordinates of this node. If i and j form an edge in the
DT, we calculate the overlap factor of these two nodes

. w; +w; i 1
- | 1. 3
i = max (mm (x?(l)—xg(l) x?(Q)—J:?Q)) ) 3)

For nodes that do not overlap, ¢; = 1. For nodes that do overlap, such overlaps can be
removed if we expand the edge by this factor. Therefore we want to generate a layout
such that an edge in the proximity graph has the ideal edge length close to ||z — 9||.
In other words, we want to minimize the following stress function

> wij (|l — ]| — dy) )

(i,j)€EP

Here dij = sjj||«) — «7]| is the ideal distance for the edge {4, j}, sjj is a scaling factor
related to the overlap factor t;; (see (@), wij = 1/]|d;||? is a scaling factor, and Ep is the
set of edges of the proximity graph. We call @) the proximity stress model in obvious
analogy with the standard stress model [19]

> wi (i = | — i), (5)
i#]
where dj; is the graph theoretical distance between vertices ¢ and j, and wj; is a weight
factor, typically 1/d;;>.

Because DT is a planar graph, which has no more than 3|V| — 3 edges, the above
stress function has no more than 3|V| — 3 terms. Furthermore, because DT is rigid, it
provides a good scaffolding that constrains the relative position of the vertices and helps
to preserve the global structure of the original layout.

It is important that we do not attempt to remove overlaps in one iteration by using the
above model with s;; = ¢;;. Imagine the situation of a regular mesh graph, with one node
1 of particularly large size that overlaps badly with its nearby nodes, but the other nodes
do not overlap with each other. Suppose nodes ¢ and j form an edge in the proximity
graph, and they overlap. If we try to make the length of the edge equal ¢;;[| 29 — x? I, we
will find that #;; is a number much larger than 1, and the optimum solution to the stress
model is to keep all the other vertices at or close to their current positions, but move the
large node 7 outside of the mesh, at a position that does not cause overlap. This is not
desirable because it destroys the original layout. Therefore we damp the overlap factor
by setting

sij = min(tij, Smax) (6)
and try to remove overlaps a little at a time. Here sy, > 1 is a number limiting the

amount of overlap we are allowed to remove in one iteration. We found that s,,,4, = 1.5
works well.
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Fig. 1. (a): A graph layout where nodes 2 and 4 overlap. (b): the proximity graph (Delaunay
triangulation) of the current layout. No two nodes linked by an edge of the proximity graph
overlap.

After minimizing (), we arrive at a layout that may still have node overlaps. We
then regenerate the proximity graph using DT and calculate the overlap factor along the
edges of this graph, and redo the minimization. This forms an iterative process that ends
when there are no more overlaps along the edges of the proximity graph.

For many graphs, the above algorithm yields a drawing that is free of node overlaps.
For some graphs, however, especially those with nodes having extreme aspect ratios,
node overlaps may still occur. Such overlaps happen for pairs of nodes that are not near
each other, and thus do not constitute edges of the proximity graph. Fig. [[(a) shows
the drawing of a graph after minimizing () iteratively, so that no more node overlap is
found along the edges of the Delaunay triangulation. Clearly, node 2 and node 4 still
overlap. If we plot the Delaunay triangulation (Fig. [[(b)), it is seen that nodes 2 and 4
are not neighbors in the proximity graph, which explains the overlap. To overcome this
situation, once the above iterative process has converged so that no more overlaps are
detected over the DT edges, we apply a scan-line algorithm [3]] to find all overlaps, and
augment the proximity graph with additional edges, where each edge consists of a pair
of nodes that overlap. We then re-solve (). This process is repeated until the scan-line
algorithm finds no more overlaps.

We call this algorithm PRISM (PRoxImity Stress Model). Concerning its complexity,
Delaunay triangulation can be computed in O(|V [log(|V])) time [6}[12L20]. The scan-
line algorithm can be implemented to find all the overlaps in O(I|V|(log|V'| + 1)) time
[3l], where [ is the number of overlaps. Because we only apply the scan-line algorithm
after no more node overlaps are found along edges of the proximity graph, [ is usually
a very small number, hence this step can be considered as taking time O(|V'|log|V]).

The proximity stress model @), like the standard stress model @), can be solved
using the stress majorization technique [8] with a conjugate gradient algorithm. Because
we use DT as our proximity graph and it has no more than 3|V’ | — 3 edges, each iteration
of the conjugate gradient algorithm takes a time of O(|V]).

Overall, therefore, PRISM takes O(t(mk|V |+ |V|log|V|)) time, where ¢ is the total
number of iterations in the two main loops, m is the average number of stress ma-
jorization iterations, and k the average number of iterations for the conjugate gradient
algorithm.
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4 Numerical Results

To evaluate the PRISM algorithm and other overlap removal algorithms, we apply them
as a post-processing step to a selection of graphs from the Graphviz [9] test suite.
This suite, part of the Graphvi z source distribution, contains many graphs from users.
As such, these are good examples of the kind of graphs actually being drawn.

Our baseline algorithm is Scalable Force Directed Placement (SFDP) [16], a multi-
level, spring-electrical algorithm. Using the layout of SFDP, we then apply one of the
overlap removal algorithms to get a new layout that has no node overlaps, and compare
the new layout with the original in terms of dissimilarity and area.

In Table [1L we list the 14 test graphs, the number of vertices and edges, as well
as CPU timd] for PRISM and three other overlap removal algorithms. The graphs are
selected randomly with the criteria that a graph chosen should be connected, and is
of relatively large size. We compared PRISM with an implementation in Graphviz
of the solve VPSC algorithm [3]4, hereafter denoted as VPSC, as well as VORO, the
Voronoi cluster busting algorithm [[10,22]]. The final algorithm is the ODNLS algorithm
of Li et al. [21]], which relies on varied edge lengths in a spring embedder.

The initial layout by SFDP is scaled so that the average edge length is 1 inch. From
the table, it is seen that PRISM is usually faster, particularly for large graphs on which
it scales much better. The others are slow for large graphs, with VORO the slowest.

Table [2l compares the dissimilarities and drawing area of the four overlap removal
algorithms. The smaller the dissimilarities and area, the better. The ODNLS algorithm
performs best in terms of smaller dissimilarity, followed by PRISM, VPSC and VORO.
In terms of area, PRISM and VPSC are pretty close, and both are better than ODNLS
and VORO, which can give extremely large drawings. Indeed, in terms of area, scaling
outperformed ODNLS and VORO in 20%-30% of the examples.

Comparing PRISM with VPSC, Table 2l shows that PRISM gives smaller dissimilar-
ities most of the time. The two dissimilarity measures, 0g4;s; and og;sp, are generally
correlated, except for ngk10 4 and root. Based on 04,5, VPSC is better for these
two graphs, while based on o4;s,, PRISM is better. The first row in Fig. [2] shows the
original layout of ngk10 4, as well as the result after applying PRISM and VPSC.
Through visual inspection, we can see that PRISM preserved the proximity relations of
the original layout well. VPSC “packed” the labels more tightly, but it tends to line up
vertices horizontally and vertically, and also produces a layout with aspect ratio quite
different from the original graph. It seems that o4;; is not as sensitive in detecting dif-
ferences in aspect ratio. This is evident in drawings of the root graph (Fig.[2 second
row). VPSC clearly produced a drawing that is overly stretched in the vertical direction,
but its o4;s; is actually smaller than that of PRISM! Consequently, we conclude that
Odisp May be a better dissimilarity measure.

The fact that VPSC can produce very tall and thin, or very short and wide, layouts is
not surprising, and has been observed often in practice. VPSC works in the vertical and

ALl timings were derived on a 4 processor, 3.2 GHz Intel Xeon CPU, with 8.16 GB of memory,
running Linux.

2 A stand alone version of solve VPSC by the authors of this algorithm has also been tried but
was found to offer no advantage over VPSC. VPSC itself was also contributed originally by
the same authors to Graphviz.
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Table 1. Comparing the CPU time (in seconds) of several overlap removal algorithms. Initially
the layout is scaled to an average edge length of 1 inch.

Graph  |V| |E| PRISM VPSC VORO ODNLS
b100 1463 5806 144 14.85 350.7 2589
b102 302 611 0.14 010 436 57

bl24 79 281 003 001 002 05

bl43 135 366 004 001 047 13
badvoro 1235 1616 0.54 71.15 351.51 73.6

mode 213 269 0.09 009 215 2.1
ngk10 4 50 100 001 000 002 0.14

NaN 76 121 001 001 011 027

dpd 36 108 001 001 002 0.1

root 1054 1083 0.89 7.81 398.49 46.9

rowe 43 68 000 000 004 0.1

size 47 55 001 000 006 0.09

unix 41 49 001 000 004 0.07

xx 302 611 013 010 819 567

Table 2. Comparing the dissimilarities and area of overlap removal algorithms. Results shown
are odisi, Oaisp and area. Area is measured with a unit of 10° square points. Initially the layout is
scaled to an average length of 1 inch.

Graph PRISM VPSC VORO ODNLS
Odist Odisp AI€a Odist Odisp aAl€Ad Odist Odisp aAI€a Odist Odisp area
b100 0.74 0.38 14.05 0.76 0.72 1891 - - - 0.33 0.20 1.02E3

b102 044 025 245 058 0.8 271 0.8 03 31.79 030 0.16 53.13
bl24 0.65 037 1.04 0.78 0.73 091 0.86 0.39 1342 0.33 0.19 14.79
b143 059 035 1.5 0.78 0.83 2.16 099 045 2291 0.49 0.34 23.79
badvoro 0.34 0.15 12.58 0.61 0.75 13.85 2.29 0.65 3.01E3 0.31 0.26 318.66
mode 0.59 037 0.79 1.02 0.77 1.29 097 0.54 10.84 0.38 0.27 49.45
ngkl0 4 0.41 0.16 0.33 0.39 03 0.25 048 0.26 052 022 0.13 230
NaN 04 02 072 054 0.65 0.71 0.56 028 5.04 0.26 0.15 5.10
dpd  0.34 0.18 025 051 04 0.18 048 032 045 037 029 1.30
root 071 0.3 1699 0.6 0.75 17.68 4.09 0.94 6.93E9 0.29 0.22 950.01
rowe 033 0.14 0.22 044 031 0.19 049 026 095 0.27 0.12 2.10
size 037 02 047 077 0.74 04 062 035 127 032 020 4.14
unix 0.39 023 0.39 051 0.67 036 0.6 035 085 026 0.13 2.35
XX 042 0.25 396 0.57 0.82 39 0.97 034 5883 0.29 0.14 74.00

horizontal directions alternatively, each time trying to remove overlaps while minimiz-
ing displacement. As a result, when starting from a layout with severe node overlaps,
it may move vertices significantly along one direction to resolve the overlaps, creating
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root+PRISM root+VPSC

é
|
i
!

Fig. 2. Divergence of dissimilarity measures: for both graphs, o4;s: estimates that VPSC gives
layout closer to the original, while ¢4;s;, predicts the opposite

badvoro badvoro+PRISM badvoro+VPSC

mode mode+PRISM mode+VPSC

Fig. 3. Comparing PRISM and VPSC on two graphs. Original layouts are scaled to have an aver-
age edge length that equals 4 times the label size.
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Fig. 5. Close-up view of the center-left part of Fig. d]

drawings with extreme aspect ratios. In fact, for 9 out of 14 test graphs, VPSC produces
layouts with extreme aspect ratios. PRISM does not suffer from this problem.

We experimented with layouts initially scaled sufficiently so that relatively fewer
nodes overlap. For example, when initial layouts were scaled to give an average edge
length equal to 4 times the average node size, we found that the performance of VPSC
was improved. Nevertheless it still suffered from extreme aspect ratio on at least 5 out
of the 14 graphs. Figure 3] shows two of these graphs.
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Overall, quantitative and visual comparison of the drawings of these 14 graphs, as
well as drawings for graphs in the complete Graphvi z test suite (a total of 204 graphs
in March 2008), shows that PRISM performs very well, and is overall better and faster
than VPSC and VORO. The ODNLS algorithm preserves similarity somewhat better
than PRISM, but at much higher costs in term of speed and area.

As a demonstration of the scalability of PRISM, we consider its application to a
large graph. This is a tree from the Mathematics Genealogy Project [24]. Each node is
a mathematician, and an edge from node ¢ to node j means that j is the first supervisor
of 7. The graph is disconnected and consists of thousands of components. Here we con-
sider the second largest component with 11766 vertices. This graph took 31 seconds to
layout using SFDP, and 15 seconds post-processing using PRISM for overlap removal.
Important mathematicians (those with the most offspring) and important edges (those
that lead to the largest subtrees) are highlighted with larger nodes and thicker edges.
Figure 4 gives the overall layout, which shows that PRISM preserved the tree structure
of the layout very well after node overlap removal. Figure [3] gives a close up view of
the details of a small area in the center-left part of Fig. [l Additional drawings of this
and other components of the Mathematics Genealogy Project graph, including that of
the largest component, are available [15]].

5 Conclusions and Future Work

A number of algorithms have been proposed for removing node overlaps in undirected
graph drawings. For graphs that are relatively large with nontrivial connectivities, these
algorithms often fail to produce satisfactory results, either because the resulting drawing
is too large (e.g., scaling, VORO, ODNLS), or the drawing becomes highly skewed
(e.g., VPSC). In addition, many of them do not scale well with the size of the graph in
terms of computational costs. The main contribution of this paper is a new algorithm for
removing overlaps that is both highly effective and efficient. The algorithm is shown to
produce layouts that preserve the proximity relations between vertices, and scales well
with the size of the graph. It has been applied to graphs of tens of thousands of vertices,
and is able to give aesthetic, overlap-free drawings with compact area in seconds, which
is not feasible with any algorithm known to us.

It is possible that algorithms such as VPSC, which rely on separate passes in the X
and Y directions, might be improved by randomizing which overlaps are removed in
which pass or by gradually removing overlaps using many alternating X and Y passes.
This would, however, further increase their computational cost, which is already much
higher than the algorithm proposed in this paper.

For future work, we would like to extend the overlap removal algorithm to deal with
edge node overlaps. We would also like to explore the possibility of using the proximity
stress model for packing disconnected components.
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Abstract. In numerous application areas, general undirected graphs
need to be drawn, and force-directed layout appears to be the most fre-
quent choice. We present an extensive experimental study showing that,
if the goal is to represent the distances in a graph well, a combination of
two simple algorithms based on variants of multidimensional scaling is
to be preferred because of their efficiency, reliability, and even simplic-
ity. We also hope that details in the design of our study help advance
experimental methodology in algorithm engineering and graph drawing,
independent of the case at hand.

1 Introduction

Graph drawing is concerned with the geometric representation of graphs. For
general undirected graphs, force-directed and energy-based layout algorithms
are commonly used, because they are often easy to implement and experience
shows that they can result in undistorted and readable layouts which reveal
structural features such as local clustering and symmetry [3].

Based on experimental evidence presented in this paper, we argue that approx-
imate classical scaling with subsequent stress reduction should be used instead.
The requirements leading to this argument are:

1. quality: pairwise distances between vertices are represented well,
2. scalability: the algorithm scales to very large graphs, and
3. simplicity: the algorithm is easy to understand and implement.

Note that the quality criterion is implicit on force-directed algorithms. Classical
scaling and stress minimization are instances of the general concept of Mul-
tidimensional Scaling (MDS, see [I§] for comprehensive references). MDS of
graph-theoretic distances has been used early on for automatic layout of social
networks [16], without explicit reference in the well-known algorithm of Kamada
and Kawai [15], and in the wider context of data analysis (e.g.,[5/I0]), but the use
of advanced MDS algorithms well-known in other fields has gained momentum
only after Gansner, Koren, and North applied majorization to stress minimiza-
tion in graph drawing [12]. Stress minimization is generally assumed to be the

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 218 2009.
© Springer-Verlag Berlin Heidelberg 2009
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method of choice for drawing general graphs, because of its intuitive and adapt-
able objective function and the visually pleasing layouts obtained. Yet, it is often
found to be difficult to implement efficiently, and the presence of local minima
is a serious concern.

Our study provides an assessment of layout quality and efficiency, and also
yields a recommendation on how to implement the method to achieve reliabil-
ity, efficiency, and simplicity at the same time. While a considerable number
of experimental studies have been conducted to assess graph drawing criteria
and algorithm performance, only two are closely related [2/13]. However, these
compare implementations of suites of related algorithms which are treated as
black boxes. The combination of our in-depth study with these more general
comparisons provides additional support for our conclusion.

A methodological contribution of our study is the design of experiments
along explicit hypotheses about the performance of algorithms. These guided
our choice of experiments and structure argumentation.

The remainder of this paper is organized as follows: In Sect. 2] background
on the relevant MDS variants and their application to graph drawing is given.
The main hypotheses are stated in Sect. Bl The experimental setup is described
in Sect. [ and the actual experiments in Sect. Bl Section [ discusses results with
regard to our hypotheses. We conclude with a summary in Sect. [7

2 Multidimensional Scaling

Let V ={1,...,n} be the set of n objects and let D € R"*™ be a square matrix
of dissimilarities d;; for each pair of objects 7,7 € V. MDS yields a matrix
X = [x1,...,1,]T € R"*? of d-dimensional positions z1, ..., z, € R? such that

||$Z — 33]” ~ di]‘ for all Z,j eV (1)

is met as closely as possible; in our experiments, d = 2 throughout. We leave this
somewhat informal for the moment and make it more precise in the following
two subsections, where we describe the objective functions typically considered
to assess compliance with (). Straightforward implementations of these run in
O(n?) time, but we will discuss more efficient algorithms in Section Al

Classical Scaling. The first approach to achieve () is based on linear algebra
and is referred to as classical or inner-product scaling. Let D € R™*"™ be defined
as above, and let D) be matrix D with all entries squared. Classical scaling is
based on a matrix B € R"*" of pseudo products b;; with

_ 1 2 1 S 2 1 S 2 1 S 2
R CRIDSLE LN o) @
s=1 r=1 r,s=1

or equivalently, written in matrix form, by double-centering D with B =
—%JnD(Q)Jm where J,, = I,, — }L . (17112) € R™*™ [, being the identity matrix
and 1,, € R" the all-ones vector of length n.
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(a) classical (b) g=2

Fig. 1. Example drawings for the 1138bus graph. Drawing (a) is generated with classical
scaling, drawings (b)—(e) with distance scaling and weights w;; = d;.

Let v1...,v, € R"™™ and Ay > --- > A, € R be the sequence of eigenvec-
tors and corresponding eigenvalues of B. Two-dimensional coordinates are then
obtained by setting the configuration matrix X € R"*2 to be

X = [\/Am, \/Am] , (3)

which is optimal [IJthe mismatch between the pseudo inner-products derived
from the d;;’s in () and the inner products x7 z;, namely

strain(X) = |B - XXT | = > (byy —alay)” . (4)
(2%
The advantage of this approach is that it gives analytic solutions which are

essentially unique and optimal with respect to strain. A major drawback is the
detour via inner products, sometimes leading to degenerate solutions.

Distance Scaling. Instead of achieving () by fitting inner products b;; and 2 z;,
coordinates can be computed by directly fitting distances ||z; — x;|| to dissimi-
larities d;;. This leads to the objective function

stress(X) = Zwij (dij — [l — z;])* ()
i,

where w;; > 0 weights the contribution of pair 7, j; frequently, w;; = dfj for some
q € R. Since there is no known method for directly computing a configuration X
with minimal stress, the standard approach is iterative numerical optimization.

Graph Drawing and MDS. Most applications of MDS to graph drawing set the
desired distances to be the shortest-path distances in the graph, which often
spread nodes well over the drawing and display symmetries and clusterings.
While classical scaling was used for graph drawing [5]and made scalable to
large graphs only recently [4l6], the distance scaling approach is pioneered much
earlier [16]. Kamada and Kawai [I5] used a layout energy equivalent to the
objective function introduced independently by McGee [19] more than twenty
years earlier (there termed work). In the framework of the more general weighted
MDS, it corresponds to setting w;; = d;]? in Eq. (@) Other weighting schemes
and dissimilarities are discussed in [5lf7]. Fig. 0l shows some example drawings.
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3 Hypotheses

A combination of theoretical properties, previous experience, popular beliefs,
and preliminary tests, led us to formulate and test the hypotheses below. These
shall not be read as if they were results, but serve to focus attention and are
formulated in such a way that they can be tested with algorithmic experiments.
We therefore conducted a series of experiments described in the next section.
See Section [f] for a discussion of the results.

The first hypothesis basically rules out force-directed methods.

Hypothesis 1. For graph drawing representing graph-theoretic distances it is
most appropriate to model this representation explicitly in the objective function.

Given their objectives, both classical and distance scaling should represent
graph-theoretic distances well in a geometric layout, and thus be useful for graph
drawing. Because of the more direct influence on the objective function and a
concave weighting of distance representation errors, it seems plausible that dis-
tance scaling would be the more suitable variant for graph drawing. While it is
almost commonplace that classical scaling is better at representing global struc-
ture whereas distance scaling is better at representing fine details [5], we do not
know of any systematic evaluation. We therefore provide experimental evidence
for the following.

Hypothesis 2. Distance scaling compares favorably with classical scaling in
terms of layout quality, because local details are represented better.

In our experience, based on many conversations with implementors and users
of graph drawing systems, a main reservation against distance scaling is its as-
sumed non-scalability, due to a multiude of local minima and high computational
demand. The next two hypotheses focus on how to ensure that the layouts pro-
duced by implementations of distance scaling are actually those supporting HIl

Hypothesis 3. Distance scaling is susceptible to poor local minima, because it
1s highly dependent on the initial layout.

Hypothesis 4. Classical scaling provides excellent initial layouts for distance
scaling, because the better representation of large distances helps to avoid poor
local minima.

If HA holds, we have complicated matters even more, because two demanding
problems have to be solved rather than one. The final two hypotheses therefore
regard the possibility of computing the initial and final layout efficiently.

Hypothesis 5. Classical scaling layouts of very large graphs can be approxi-
mated efficiently using PivotMDS.

Hypothesis 6. Distance scaling is practical even on very large graphs.



222 U. Brandes and C. Pich

Table 1. Test set of graphs used in Experiments 1-3. n, m, D denote the number of
nodes, the number of edges, and the diameter, respectively. The two rightmost columns
contain plots for distance distributions and the 10 largest eigenvalues of B.

[name [ n[ m[description [ D[{dij} [)\1 ,,,,, 10
finite element mesh describing adjacencies between faces . |

516 516| 729|in a triangulation 61 FU—
network of high-voltage power distribution in the United Imll |

1138bus |1138| 1458 States. 31| alllh.._ | ...
matrix derived from Quebec hydroelectric power sys- Imlll |

qh882 882| 2856|tem’s small signal model 31 .|||I |II|. Il-. .....
finite-difference model of shallow wave equations in At- ||||||||||| |

plat1919 |1919|15240|lantic/Indian Ocean 431 |
social network in the city of Esslingen in the 19th cen- ||| |

esslingen1|2075| 4769 |tury 15 allll... (T
circle in which each node is adjacent to its 3 left and - ||

sw0 500| 1500(right neighbors 84 | | P
graph sw0, each edge rediretced randomly with proba- |||||| |

sw002 500| 1500|bility 0.02 o7| il | Nins...._
graph sw0, each edge rediretced randomly with proba- || |I

swol 500| 1500 |bility 0.1 10| allll.___| HlHp..

btree 1023| 1022|complete binary tree of height 10 18] cooeen .||I||||||||, |"....,,,

protl 3025| 3629|largest component of protein interaction network 27 ...|I||||||||I| ,,,,,,,,,,,, ||I||Il|.,

4 Experimental Design

Data. The experiments were run on a set of test graphs described in Table [II
The graphs were selected large enough to allow for extrapolation of the results
to very large graphs, but also small enough to allow for, the exact computation
of stress as given by (@) in a large number of experiments.

Note that the eigenvalues of the matrices B associated with each graph indi-
cate the intrinsic dimensionality of the original distances d;;. If, say, two dimen-
sions suffice to reconstruct all the d;;’s exactly, such that the strain criterion is
zero, then A\; > Ay > A3 = --- = X\, = 0, and inversely, few large and many
(near-) zero eigenvalues indicate the existence of a good low-dimensional layout.

Environment. We implemented all MDS algorithms and speed-up techniques
ourselves to avoid bias due to coding, system, or timing. The algorithms were
implemented in Java using Sun’s SDK 1.6.0 and the yFiles 2.5.0.1 graph library
(www.yworks.com). All experiments were run on a standard 1.4 GHz Compaq
NX 7000 notebook with 512 MB of RAM, using Windows XP Service Pack 2.

Implementation. A simple and convenient way of implementing classical scaling
is by constructing matrix B in ([2]) and computing its two extremal eigenvalues
A1, A2 and eigenvectors v1, vo by power iteration.

The problem of drawing graphs with fixed edge lengths is AN'P-hard in gen-
eral [9], and for distance scaling no analytic solution is known, so layouts have to
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be computed iteratively. In Kruskal’s original proposal [I7], stress is evaluated for
the current positions, and new positions are computed by gradient descent; this
is also done in [I5T920] with gradient terms specific to the weights w;;. These
approaches were superseded by majorization [I8], which generates a sequence of
layouts with decreasing stress and can handle arbitrary weights w;; > 0. In our
experiments we use a “local iteration” with node-by-node updates [12].

5 Experiments

The first experiments is to provides evidence for which method yields better lay-
outs in principle (disregarding efficiency, ease of implementation, reliability, etc.),
when graph-theoretic distances are to be represented by Euclidean distances. We
use the following shorthand notation for the involved approaches:

— random: node coordinates drawn uniformly at random from (0, 1),
— fm3: fast multipole multilevel method [13],

— grip: multilevel force-directed layout method [I1],

hde: high dimensional embedder [I4] (50 pivots),

cmds classical scaling.

Experiment 1 (Layout approach). All test graphs are laid out with cmds,
distance scaling with unweighted and weighted stress, fm3, hde, and grip.

For convenience, most implementations of iterative layout algorithms start from
a random initial configuration. It is, however, widely known that smart initializa-
tion is preferable. We here compare different initialization strategies for distance
scaling and evaluate the resulting stress. Before the iteration all initial solutions
X are scaled such that 37, . ||z — 2| = 32, ; dij.

Experiment 2 (Distance scaling and initialization). All test graphs are
laid out using each of the following layout algorithms: random, fm3, hde, grip,
cmds, and then minimizing weighted stress using local iteration.

Classical scaling has running time at least quadratic in the number of nodes n
for constructing distance matrix D € R™*™ and decomposing the derived matrix
B € R™* ™. Quick estimates for the eigenvectors vy, vy corresponding to A1, Ao
are obtained by using only parts of D by selecting a subset W C V of k < n
pivot or landmark nodes and taking only k - n rather than n? distances into
account. Once W is constructed, two approaches for this are considered:

— Pivot MDS [4] uses the singular value decomposition of a rectangular matrix:
Let Dy € R™* be the matrix of k columns of distances from nodes in W,
e.g. in k breadth-first searches. Then the right singular vectors uy, ug of C' =
—%JnD,(f)J;c are estimates for the eigenvectors vi,vs of B = —éJnD(Q)Jn.

— Landmark MDS [22] places nodes in W by classical MDS. The each node in
V' \ W is placed based on its k distances to nodes in W.
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The k pivots should be well-scattered over the graph; intuitively, this is to
represent as much of the full distance information D as possible. Assuming that
W contains k — 1 selected nodes, our strategies to determine the k-th pivot are

— maxmin: argmax;cy\y minjew d;j, the node farthest from W
— random: with uniform probability, from W;
— mixed: with maxmin, if & is even, with random otherwise;

combining them with the two estimation approaches above leads to six strategies.
Let X,Y € R™*2 be the estimate and the actual solution, each centered at
the origin. To find out how similar X is to Y we use the Procrustes statistic

R =1- (tr(XTYYTX)1/2)2 / (tr (XTX) -t (YTY)) (6)

minimized by the Procrustes rotation P € R?>*? (see [21] for its formula) which,
applied to each row in X, optimally dilates, scales, rotates, and reflects X to
fit Y. It can be shown that 0 < R? < 1; if R?> = 0, X and Y can be perfectly
matched, if R? = 1, they cannot be matched by any P € R?*? at all.

Experiment 3 (Approximating classical scaling). For each test graph, clas-
sical scaling is approzimated using 6 strategies { maxmin, random, mixed} x {land-
mark, pivot}, and compared to the exact solutions using the Procrustes statistic.

Experiments 2] and [B] were repeated 25 times, and to control for biases due to
the internal representation of graphs and matrices, we used as many instances
of each graph, each with randomly permuted vertices and edges.

Distance scaling by stress minimization is mostly used for improving the repre-
sentation of local details; setting w;; = di_j2 assigns large weight to the represen-
tation of small distances and vice versa. Initializing distance scaling with cmds,
we hope that large distances are fitted well; the subsequent fitting of smaller
distances and local details is achieved by discarding the large distances from the
stress term to be minimized, which we dub sparse stress

stress(X) = > wy(diy — [l — a5]) (7)
{i.jres
where S C V x V is a set of node pairs involved in the iteration, with |S| €
O(n). In our experiments we use local neighborhoods obtained by terminating
the breadth-first searches after & neighbors have been found.

Experiment 4 (Sparse stress minimization). For each of the test graphs
the initial classical scaling configuration is subjected to sparse stress minimiza-
tion using only local neighborhoods.

We use another collection of larger graphs to examine the scalability of initial-
ization and sparse stress minimization. Unlike the test graphs used earlier, their
size prohibits methods using the full square matrices. The results are assessed
visually with respect to the information known a priori.

Experiment 5 (Very large graphs). Large graphs are laid out first using an
approximation to classical scaling and then sparse stress minimization.
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Fig. 3. Upper row: The majorization process with different initializations random, fm3,
hde, grip, cmds after 0, 30, 60 iterations. Lower row: Number of iterations vs. stress. The
bars indicate the range of values, the dots the median value, in 25 runs.

6 Results

Layout Quality. To assess layout quality both visually and quantitatively, aligned
layouts and the distributions of layout distances are shown in Fig. 2] for each of
the possible distance values between pairs of vertices, i.e. for values ranging
from 1 to the diameter of the respective graph. The classical scaling layouts
were generated with random initial positions and used as initial configurations
for distance scaling. Initialization is further studied in Exp. 2

The drawings for graphs qh882, 1138bus seem to confirm HIl and HEL using
weights w;; = deQ helps to display local structures hidden by classical scaling or
unweighted distance scaling. For regular structures 516, plat1919, sw0, distance
scaling does not improve the quality of local representation. In a few cases clas-
sical scaling represents the overall structure better, such as the known clustering
of esslingenl into two densely connected parts.

In general, HIl and H2 can be accepted at least for graphs for which graph-
theoretic distance is well representable in low dimensions. However, none of
the MDS variants seems to be capable of representing both smaller and larger
distances for small diameter graphs and other special types of graphs like btree.
In such cases the MDS objective functions for distance representations is not
always useful as an aesthetic criterion; see Section [1 for a discussion.

Initialization. For independence of graph size and distances we divide the stress
by ZZ ;Wi d?j, which allows for comparison between stress computations even
for different graphs. We have carried out the iterative majorization process 25
times for each graph (with permuted edge list) and for each of the five initial
placements.

The results of Exp. [ are displayed in Fig. Bl which shows stress values over
the majorization process for distance scaling, with weights w;; = d;]? For almost
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(a) 1138bus (b) esslingenl (c) btree

Fig. 4. Procrustes statistics measuring how well Pivot MDS (red) or Landmark MDS
(blue) estimate the exact solution of classical scaling. Plotted are the median values of
25 runs with different node permutations, for k € {3,...,120} pivots.

all graphs we have tested, basically the same ranking resulted, with random being
worst, followed by fm3, grip, hde. Initially, cmds solutions tend to have higher
values, but overtakes the other initializations after some iterations.

All experiments indicate that H3 is valid for all types of graphs. Since large
distances and thus global structures are represented well, classical scaling gives
excellent initial configurations for distance scaling.

The bandwidth of stress values we observed for cmds-initialized layouts was
almost always negligible, whereas stress values vary largely for all other meth-
ods in the 25 runs. Classical scaling gives reproducible initial configurations
throughout, which are also robust against permutation of the input. All these
observations support Hj] Interestingly, btree is the only graph for which classical
scaling resulted in some variation; we attribute this to the multiple occurrence
of equal eigenvalues of matrix B (see Table[I]).

Scalability. We computed estimates for the solution to classical scaling for all
graphs, again in 25 runs with random node permutations. In each run, three sets
of pivots were grown from k = 3 to 120 (following maxmin, random, and mixed)
and used for Pivot MDS and Landmark MDS. The plots for the median values
of three selected graphs are shown in Fig. [l

For regular graphs like sw0, 516, the pivoting strategy is not crucial. In all
other cases Pivot MDS is superior to Landmark MDS, regardless of the pivoting
strategy. For Pivot MDS, the maxmin strategy performs better than random and
slightly better than mixed. The corresponding plots seem to converge to zero
faster and more smoothly than those for Landmark MDS. Once again, graph
btree seems to be different from the others; estimating the full classical scaling
solution appears to be unstable, no matter what pivoting strategy is used. Our
observations indicate that HZ is valid.

We have conducted further experiments considering scalability, but omit them
here due to space restrictions. One suite of experiments applies Pivot MDS to
graphs with millions of nodes; we have observed that even those huge graphs, for
which the full classical scaling is impractical, are laid out well with it, provided
that two dimensions suffice, and, conversely, that increasing the number of pivots
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(a) Pivot MDS (b) sparse stress minim. (c) original

Fig.5. Drawings for a large graph representing the street network in Germany
(4044 153 nodes, 9564 235 edges, diameter 1059)

does not improve layout quality if the graph is of higher intrinsic dimensionality;
see also Sect. [l

Another suite of experiments indicates that, technically, stress minimization
scales even to very large graphs, but that HA is valid only with the limitation
that an appropriate sparsification scheme must be available.

7 Conclusion

We have studied different graph-layout approaches that aim at representing
graph-theoretic distances by Euclidean distances. Our experiments suggest that
minimization of weighted stress, an objective function that models the desired
aesthetic properties explicitly, is to be preferred over force-directed placement.
The recommended method for weighted stress minimization is to initialize with a
fast approximation of classical scaling [4] and subsequent iterative improvement
using localized stress reduction [I2]. Both phases are easy to implement, but the
second can be time-consuming. Approximation via sparse stress makes the algo-
rithm scale to very large graphs, but further research on reliable sparsification
schemes is needed.

The distance-based approach yields poor results on certain classes of graphs,
which include small worlds and other graphs with many shortcuts or low diame-
ter, and scale-free graphs with highly skewed degree distributions, large 1-shells,
or other forms of structural imbalance. Some success has been obtained with
stress weighting schemes based on graph invariants, but good characterizations
of problematic graphs are missing and matching layout algorithms need to be
developed further.

Using a hypotheses-based experimental design, we hope to foster clarity and
reproducibility of our results, and to contribute to experimental evaluation of
graph drawing algorithms in general.
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Abstract. Constrained graph layout is a recent generalisation of force-directed
graph layout which allows constraints on node placement. We give a constrained
graph layout algorithm that takes an initial feasible layout and improves it while
preserving the topology of the initial layout. The algorithm supports poly-line
connectors and clusters. During layout the connectors and cluster boundaries act
like impervious rubber-bands which try to shrink in length. The intended applica-
tion for our algorithm is dynamic graph layout, but it can also be used to improve
layouts generated by other graph layout techniques.

1 Introduction

A core requirement of dynamic graph layout is stability of layout during changes to
the graph so as to preserve the user’s mental model of the graph. One natural require-
ment to achieve this is to preserve the topology of the current layout during layout
changes. While topology preservation has been used for dynamic layout based on orth-
ogonal graph layout, its use in force-directed approaches to dynamic layout is much
less common.

Constrained graph layout [12)3]4] is a recent generalisation of the force-directed
model for graph layout. Like force-directed methods, these techniques find a layout
minimising a goal function such as the standard stress goal function which tries to place
all pairs of nodes their ideal (graph-theoretic) distance apart. However, unlike force
directed methods, constrained graph layout algorithms allow the goal to be minimised
subject to placement constraints on the nodes. In this paper we detail a constrained
graph layout algorithm that preserves the topology of the initial layout. The primary
motivation for our development of this algorithm was to support dynamic layout but it
can also be used to improve layouts generated by other graph layout techniques such as
planarisation techniques [11]].

Our algorithm supports network diagrams with poly-line connectors and arbitrary
node clusters. It ensures that the nodes do not overlap and that additional constraints on
the layout—such as alignment and downward pointing edges—remain satisfied. During
layout optimisation the paths, i.e poly-line connectors and cluster boundaries, act like
rubber-bands, trying to shrink in length and hence, in the case of connectors, straighten.
Like physical rubber bands, the paths are impervious and do not allow nodes and other

1.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 230 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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paths to pass through them. Thus, the

British
initial layout topology is preserved. Isles

i - t
F1gure II].shows example layouts ob \oiang | United BGrirteaain
tained with our algorithm. Kingdom

Extending constrained graph lay- Scotland
Republic /Northern

out to handle topology preserva- of Ireland | raland Wales | England

tion is conceptually quite natural
since topology preservation can (a) Euler diagram
be regarded as a kind of con-
straint. However, it was not possible
to straightforwardly extend existing
constrained graph layout algorithms
to preserve topology. One issue is
that previous algorithms were based
on functional majorization whose
use relied on particular properties of
the stress goal function.

The main technical innovations
in our new algorithm are fourfold.
First, we utilise a new goal func-
tion, P-stress, that encodes the rub-
ber band metaphor, measuring the
stretch of paths as well as trying to
place objects a minimum distance
apart. Importantly, the P-stress is

(b) Metabolic pathway

o R Fig. 1. Example layouts obtained with the topology
bend-.p ointinvariantin t'he sense. that preserving constrained graph layout algorithm. In
merging two consecutive collinear the metabolic pathway, three vertical alignment con-
segments in a path does not change  gtraints have been added to improve the layout.

the value of the goal function. This

aids convergence since it means that

the goal function behaves continuously as paths change during optimisation. Second,
we utilise gradient projection rather than functional majorization. This approach is
generic in the choice of goal function and so can be used to minimise P-stress. Third,
we give a novel algorithm for updating paths in a layout given that nodes are moved in a
single dimension. This maintains the relative order of nodes and paths in that dimension
and so preserves the initial topology. The final innovation is our uniform treatment of
connector routes and cluster boundaries as impervious paths. This allows our algorithm
to handle arbitrary clusters.

The algorithm for topology preserving constrained graph layout given here under-
pins two dynamic graph layout applications we have developed. The first is a network
diagram authoring tool, Dunnart, which uses the algorithm to provide continuous layout
adjustment during user interaction [5]]. The second is a network diagram browser which
uses the algorithm to update the layout of a detailed view of part of the network as the
user changes the focus node or collapses or expands node clusters [6]. The contribution
of this paper is to detail the algorithm.
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2 Related Work

There has been considerable interest in developing techniques for stable graph layout
that preserve the user’s mental model of the graph [14]]. These techniques are quite
specialised to the underlying layout algorithms. The standard approach for supporting
stability in force-directed approaches is to simply add a “stay force” on each node so
that it does not move unnecessarily, e.g. [9]. Stable dynamic layout has also been studied
for orthogonal graph layout, e.g. [2]. There, stability is preserved by trying to preserve
the current bend points and angles. This has the effect of preserving the layout topology.
Finally, in the case of Sugiyama-style layered layout stability is achieved by preserving
the current horizontal and vertical ordering between nodes, e.g. [15]. Our approach
is the first that we are aware of to base stability on topology preservation in a force-
directed style layout. It has the advantage over stay forces that the layout is better able
to adjust to changes while still preserving the original structure.

Orthogonal graph layout algorithms typically feature a refinement step that attempts
to shorten edges while preserving edge crossing topology [8]. However, the approach
is very specific to orthogonal drawings. Another method, [[1], used a force directed ap-
proach but only handled abstract graphs with point nodes and straight-line edges. Most
closely related is our earlier extension to constrained stress majorization that preserves
layout topology while trying to straighten bends in poly-line connectors [7]]. This works
by introducing dummy nodes in each connector at all possible bend points and adding
constraints to ensure a minimum separation between objects and bend-points. Unfor-
tunately, our experience with this algorithm was that straightening bends sometimes
meant that connector length was increased and that the algorithm did not scale to mod-
erately sized networks because of the large number of dummy nodes. Even worse it
did not always converge because the goal function was not bend-point invariant. The
algorithm given here is considerably simpler, convergent and faster.

3 Problem Definition

A graph G = (V, E, C) consists of a set of nodes V', a set of edges E C V x V, and a
set of node clusters C' C pV'. We let width(v) and height(v) give the width and height
of the bounding rectangle, r,,, of each node v € V.

A 2-D drawing of a graph is specified by a tuple (z,y, P) where (z,,y,) gives
the centre position for each node v € V and P is a set of paths specifying the edge
routings and cluster boundaries. A path is a piecewise linear path through a sequence
of points p1,...,pr where each point is either the center or one of the corners of a
node’s bounding rectangle and represented by a pair (v,7) where v € V and i €
{Centre,TL,TR, BL, BR}). In the case of a path giving the routing for an edge
e = (s,t) € E, p; is the centre of node s and py, the centre of node ¢ while the other
points are node bounding rectangle corners. In the case that the path is for a cluster
boundary, all points must correspond to node bounding rectangle corners and p; = py.

Separation constraints are inequality or equality constraints over pairs of position
variables in either the horizontal or vertical axes of the drawing, e.g. for a pair of nodes
u,v € V we might define a separation constraint over their z—positions: x,, + g < x,
where g specifies a minimum spacing between them.
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(a) Invalid (b) Not tight (c) Feasible

Fig. 2. Example of incorrect (a,b) and correct (c) paths

A feasible drawing of a graph (see Fig.[2) is one in which:

all separation constraints are satisfied;

no two node rectangles overlap;

the nodes inside the region defined by the boundary of each cluster c are exactly
the nodes in ¢;

every path p € P is valid and tight.

A valid path is one in which no segment passes through a node rectangle, except the
first and last segments in a path corresponding to an edge which must terminate at the
centre of rectangles as specified above. A fight path is one where every bend (described
by three consecutive points a, b, ¢ in the path) is wrapped around the rectangle r,, asso-
ciated with the bend point b = (v, 7). That is, the points a, b, ¢ in order must constitute
a turn in the same direction as the points a, b, v in order, and the points b, ¢, v must also
constitute a turn in the same direction.

A common strategy for finding aesthetically pleasing drawings of graphs is to define
a cost function over the positions of the nodes and then to minimise this cost function
by adjusting these positions. In our case we are also interested in the lengths of paths.
Therefore, we use a novel cost function P-stress which also takes the paths P of the
layout into consideration:

3" wuw (o — 1@ va)s o,y + 3w, (Il — Ly) ™)

u<veV peP
where (2)T is z if z > 0 and 0 otherwise and w, = %, wuy = d?lw'

The first component of P-stress is a modification Sf the stress function used in the
stress majorization [[10] and Kamada and Kawai [13]] layout methods. This considers the
ideal distance d,,,, between each pair of nodes which is proportional to the graph theo-
retic distance, i.e. shortest path, between the nodes. However, unlike the stress function,
nodes that are more than their ideal distance apart are not penalised, thus eliminating
long range attraction since this can cause issues in highly constrained problems.

The second component of P-stress tries to make the length of each path p in the
network, no more than its ideal length L,,. The ideal length of the route for an edge
e is simply a fixed constant while the desired length of the boundary for cluster c is
2,/m Y e width(v)height(v) (i.e. the ideal length is proportional to the perimeter of
the circle of the same area as that of the constituent nodes). This second component is
purely attractive, otherwise minimising P-stress could potentially increase bends.
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Note that P-stress is bend-point invariant in the sense that merging two consecutive
collinear segments in a path does not change the P-stress of layout since the overall
path length does not change. This is important for convergence of the layout algorithm.

4 Minimising P-Stress Using Gradient Projection

Our layout problem is, therefore, given a feasible layout for a graph to find a new
layout that is feasible, has the same topology as the original layout, and which locally
minimises P-stress. In this section we give an algorithm to do this. An example of its
operation is shown in Fig.

Our algorithm works by alternately adjusting horizontal and vertical positions of all
nodes to incrementally reduce P-stress. This makes the computation of the new po-
sitions considerably simpler than if both dimensions were considered together. Con-
strained stress majorization [4] also uses a similar approach to reduce stress. However,
the useful Cauchy-Schwarz based expansion of the stress function into horizontal and
vertical quadratic forms which strictly (upper-)bound the goal function, is no longer
easily derived for P-stress. Instead, at each iteration we use a quadratic approxima-
tion based on the second order Taylor series expansion of P-stress around the current
horizontal position x and compute a descent vector —g and step size « from the first
and second derivatives of this quadratic to compute a new position d for the horizontal
position variables. We then use the function project-x to project d onto the horizon-
tal constraints necessary to avoid overlap and to preserve topology and any other user
specified separation constraints, C';, on the horizontal variables. Next we perform an
analogous operation to compute a new position for the vertical position variables y.
The high-level algorithm is thus:

procedure gradient-projection-x(z,y, P, C')
g < VgP-stress(x,y, P)
H « V2P-stress(z, y, P)
gTg
@ gTHg
d—x—ag
return project-x(z,y, P, d, C)
procedure improve(z, y, P, Cy, Cy)
(=',y', P') « (z,y, P)
repeat
(x, P") « gradient-projection-x(z,y, P, Cy)
(y, P) « gradient-projection-y(z,y, P", Cy)
until |P-stress(x’,y', P') — P-stress(x, y, P)| sufficiently small
return (z,y, P)

Before giving details of projection we must make precise what we mean by topol-
ogy preservation. Considering just the horizontal case, since the vertical is symmetrical,
we say that a horizontal adjustment of the nodes from feasible layout L to feasible L’
is topology preserving if no node or line segment moves through another node or line
segment. More exactly, let M and M’ be the layouts obtained from L and L', respec-
tively, by infinitesimally reducing the height of each node’s bounding rectangle and
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(a) Initial placement (b) After minimising P-stress

Fig. 3. Example of how our layout algorithm improves the network layout by reducing P-stress
(which shortens edge routes) while preserving the topology of the initial layout

appropriately modifying the paths. This means that rectangles whose top and bottom
were aligned in the original layout now have a infinitesimal vertical separation between
them. Then for any height h we must have that scanning left to right along the horizontal
line y = h encounters exactly the same sequence of edges, clusters and nodes in both
M and M’ where an edge is encountered whenever the line intersects a path segment
for the edge, a cluster is encountered whenever the line intersects a path segment for
its boundary and a node is encountered when the line intersects the node’s bounding
rectangle.

5 Topology Preserving Projection

The heart of the layout algorithm are the procedures project-x and project-y which per-
form a projection operation in the specified axis. We shall focus on project-x: procedure
project-y is symmetric. The call project-x(x,y, P, d, C') returns a new z position and
paths (z’, P’) s.t layout (x’,y, P’) is feasible and preserves the topology of (z,y, P)
while ensuring 2’ is as close as possible to the desired position d. It has three main
steps:

(1) Generate separation constraints C™° to ensure non-overlap of nodes and topology
constraints 7'C' to ensure topology preservation.
(2) Project donto SC = C' U C™ giving . This is achieved by solving the quadratic
program:
rr‘;vin Z (zy — dy)? subject to SC

(3) Update the path routing P to give P’ by moving the nodes smoothly from z to T
appropriately adjusting the paths as the nodes move in order to satisfy the topology
constraints 7'C'.

In Step 2 of project-x we solve the quadratic program using the incremental active-set
procedure solveQPSC given in [4]. Like most active-set methods it is difficult to prove
that this has polynomial running time, but in practice it is very fast, as indicated by our
experimental results. We now look at Steps 1 and 3 in more detail.

Non-overlap and topological constraints are generated for a horizontal move using
a top-to-bottom scan of the drawing. At each step we keep the list of currently open
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node bounding rectangles and path line segments. To do so we process the vertical
opening and closings of each rectangle OR, C'R and line segment OS, C'S of the given
routing in order from top to bottom and, when two such events occur at the same vertical
position, then with precedence:

— OS before C'S so that horizontal segments are handled properly

— CR before OR to avoid unnecessary non-overlap constraints (assuming no zero
height rectangles)

— (CS before OR, C R before OS, OS before OR, and C'R before C'S to ensure all

possible segment/rectangle interactions are considered.

For each rectangle opening (i.e. the top of each
rectangle) we add to C™° a separation constraint be- -
tween the rectangle and its immediate left and right w
neighbours in the list of open rectangles at that y-
position (the scan position). Each separation con-
straint has the form z,, + s < z,, over the x positions -
of nodes u and v and preserves the relative horizon- u
tal ordering of u and v and prevents the nodes from |
overlapping, where s = (width(u) + width(v))/2.

The scan also generates fopology constraints be-
tween nodes and paths which ensure that the paths

Fig.4.  Constraints
during a vertical

generated
scan. There
one constraint

remain tight and valid. There are two types of is

topology constraints: straight constraints—between
anode w and a path segment wv which ensures that
the path remains valid, i.e. the node does not over-

separation
Tu + 5 (width(u) + width(v)) <
T, to prevent overlap, three bend
constraints (the construction for
the constraint ensuring the path

lap the path segment and bend constraints associ-
ated with a bend point between two consecutive line
segments uv and vw which ensures that the path re-
mains tight around the bend point v.

Both kinds of topology constraint give rise to a
linear inequality over the three variables corresponding to u, v and w enforcing that the
rectangle r,, associated with node w must be to the right or left of a line between the
corners of two nodes u and v. We write this in the standard form ., +g®x, +p(x, —x4,)
where & is either < or >. For straight constraints 0 < p < 1 while for bend constraints
p > 1. For instance, in the case of the bend constraint enforcing that the path remains
tight around the bend point v in Fig. @ we have that

remains tight around v is shown)
and three straight constraints at the
places where the segments s and ¢
may potentially bend.

YTl — YyBR (

Y7L — YyBR

TTL 2 TyBR XTyTL — TyBR)
where ©,ro = x,, — width(w)/2 etc. This can be rewritten into the standard form.
The procedures for creating each type of constraint is given in Fig.

If | P| denotes the number of path segments, the worst case complexity of Step 1
of project-x is O(|V'|(|P| + log|V])) and up to O(|V]) non-overlap constraints and
O(|P||V|) topological constraints can be generated.

We now consider Step 3 of project-x. This is performed by procedure move (Fig.[6).
This updates the paths by moving the nodes horizontally from the initial feasible solution
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procedure createStraight Constraint (s, w,y, TC)
% for segment s = uv and node w at scan pos y
P (Y —yu)/ (Yo — yu)
Tp — Tu + P(Tv — Tu)
leftOf «— xw < xp
corner «— if y < y., then if leftOf then BR else BL
else if leftOf then TR else TL
offset(w) «— width(w)/2 (-ve if leftOf)
g < offset(u) + p(offset(v) — offset(u)) — offset(w)
TC «— TC U {TopologyConstraint (straight, w,v,w, p, g,leftOf)}
procedure create BendConstraint (b, TC')
% for bend point b = (v, 1), between segments ab and bc
if 7 is the centre of v then return
if existing bend constraint ¢ on b then remove ¢
leftOf — i € {TR, BR}
if [ya — ys| > |y» — yc| then
P (Ye — ¥a)/(yp — Ya)
g < offset(a) + p(offset(b) — offset(a)) — offset(c)
t «— TopologyConstraint (bend, a, b, c,p, g,leftOf)
else
P (Wa—ye)/(yo — ye)
g < offset(c) + p(offset(b) — offset(c)) — offset(a)
t «— TopologyConstraint(bend, c, b, a,p, g,leftOf)
TC — TCU{t}

Fig. 5. The procedures for creating straight constraints and bend constraints are used in both the
initial scan to set up topology constraints and by the procedure satisfy (Fig. [B). The function
TopologyConstraint creates a constraint of the form z., + g < zy + p(zv — x4,) if leftOf (or >
otherwise).

x for which the routing is correct towards x detecting violated topology constraints as
they move. A violated bend constraint indicates that consecutive segments have become
aligned and can be replaced with a single segment. A violated straight constraint indicates
that a single segment needs be split into two new segments with a new bend point.

The maximum horizontal move -y that can be made along the line = a + (b — a)
from a to b without violating topology constraint ¢ is determined by solving the linear
equation associated with the constraint. For example, if ¢ is the constraint z,,+g < x,+
p(z, —z,,) then the maximum safe move is obtained by substituting x; = a; +v(b; —a;)
for each node ¢ and solving for ~:

fe! Gy — g — Gy + play, — ay)

’Y:ﬂ_bu—au—i—p(au—bu—&—bv—av)—&—aw—bw

The iterative process of finding the next such constraint and updating the paths P is
accomplished in the move procedure, Fig.

Note that the satisfy procedure shown in Fig.[6 which satisfies a topology constraint
by either merging or splitting segments, must transfer or replace other bend and straight
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procedure satisfy(t, TC, P)
TC —TC\ {t}
if ¢ is a bend constraint over points a, b, c then
% b = (v,1) is the bend point of ¢
replace segments ab and bc in P with new segment ac
createStraight Constraint (ac, v, by)
else % t is a straight constraint over u, v, w
replace segment uw in P with segments uv and vw
transfer straight constraints on ww to either uv or vw
createBendConstraint (u)
createBendConstraint(v)
procedure move(x,z, TC, P)
repeat
a— (1
tx «— None
fort € TC
% t is a Topology Constraint over u, v, w with constants p, g
a— @y —g— ay + play — ay)
b by — au +p(au — bu + by — av) + aw — buw
if a8 < ab then
a—a, B b tx—t
z—z+ 5(Z—2)
if tx # None then satisfy(t, TC, P)
until g =1

Fig. 6. The procedure satisfy(t, T'C, P) satisfies a topology constraint t € 7°C' that is at equality,
by modifying P with a valid and tight system of segments. Procedure move(zx, z, TC, P) up-
dates the path P by moving nodes in one dimension from position x to Z to satisfy the topology
constraints 7'C'.

constraints associated with the affected segments. The detail is not shown, but an ex-
ample of the difficult edge case of a horizontal path segment is shown in Fig.

The move procedure used for updating the paths to preserve validity and topology
can also be thought of as a kind of active-set process, and as such it is difficult to prove
that it is polynomial. Again, however, please see our results section for actual running
times which indicate that running times scale fairly well with the number of topology
constraints generated. Note that the number of bend constraints is exactly the number
of bend points in P, and the number of straight constraints—while the worst case is
O(|P||V'|)—is limited by only generating constraints for segments which are visible in
the axis of movement from a given rectangle open/close.

Theorem 1. Let (x,y, P) be a feasible layout with respect to the separation constraints
Cy and Cy in the x and y dimensions, respectively. Then project-x(z,y, P, d, Cy) returns
a new x position and paths (x', P') s.t layout (z',y, P’) is feasible and preserves the
topology of (x,y, P) while ensuring x' is as close as possible to the desired position d.

Proof. (Sketch) Any feasible and topology preserving layout must satisfy SC' = C U
C™°. Step 2 ensures that = is the projection of d onto SC, so it is the closest node
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0. 0O O
[1 DB []

QD I/ R | I
Fig. 7. The result of each iteration of move is shown for a path with a horizontal segment. The
iterations progress from left to right. The node v is required to move to the right relative to the
other nodes. The four central nodes are shown slightly separated for clarity, but we assume that the
boundaries of these nodes are actually touching—hence creating, initially, a horizontal segment.
The small circles represent bend points, while the °-’s represent straight topology constraints.

Note that, to properly preserve topology as the segments are split to satisfy a straight constraint,
the remaining straight constraints must be transferred to the correct sub-segments.

position that satisfies SC. Furthermore, one can prove by induction that the satisfy
procedure returns updated paths P’ that are topology preserving, tight and valid.

6 Finding a Feasible Topology

We can apply our topology preserving layout adjustment to a layout obtained by any

graph drawing algorithm, assuming the generated layout is feasible as defined in §3l

Although not the primary focus of this paper we have also developed an algorithm to

find an initial feasible layout. This has two main steps:

(1) Perform standard stress majorization to find an initial position for the nodes. A
position for the nodes satisfying the constraints is found by projecting this position
on to the user specified separation constraints and then using a greedy heuristic to
satisfy the non-overlap constraints and cluster containment constraints. We use the
approach sketched in [4].

(2) Edge routing is performed using the incremental poly-line connector routing library
libavoid [16] to compute poly-line routes for each edge, which minimise edge
length and amount of bend. An initial cluster boundary is obtained by taking the
convex hull of the nodes in the cluster.

We note that the edge routing library has been extended to handle clusters and finds

routes for edges that do not unnecessarily pass through clusters. It also performs “nudg-

ing” on the final routes to separate paths with shared sub-routes.

7 Experimental Results

Table [I] gives some indicative run-times on various size graphs for finding an initial
layout using the two-step algorithm given above, then using the topology-preserving
constrained graph layout algorithm to find a locally optimal layout. The topology-
preserving constrained graph layout algorithnﬂ is quite fast with less than two seconds

! Implemented as part of the Adaptagrams project. http: //adaptagrams.sf.net/
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Table 1. Indicative running times for layout on an average (1GHz) PC for various size randomly
generated directed networks with constraints imposing downward pointing edges. All times are
in seconds.

For each graph we give the number of nodes
and edges. The number of separation constraints
imposing downward edges is |E|. We give the
time to find an initial feasible layout (Step 1
and Step 2) from a random starting configura-
tion; and then to optimise the result using the
topology preserving constrained graph layout al-
gorithm. Optimisation algorithms were set to
terminate when the change in P-stress or stress
was < 107°.

|V| |E| Feasible layout Optimise Total
Step 1 Step 2
49 51 0.08 0.11 0.06 0.17
93 105022 050 0.24 0.74
128 144051 1.02 0.5 1.57
144 156 092 131 045 1.76
169 1950.83 197 0.82 2.79
199 238 1.31 294 145 4.39
343 4872.65 13.94 1.89 15.83

required to layout networks of around 350 nodes. We have found that the main cost
for each iteration is computation of the descent vector and step size. We also note that
our experience with the algorithm in interactive applications is that it provides real-time
updating of layout for graphs with up to 100 nodes.

Computing an initial layout is more expensive, and the dominating cost in finding
the initial layout is finding the initial connector routing.

8 Conclusion

We have presented a constrained graph layout algorithm that preserves the topology of the
initial layout. It supports network diagrams with poly-line connectors and arbitrary node
clusters. It ensures that nodes do not overlap and that additional placement constraints
on the layout remain satisfied. The algorithm is fast enough to support real-time layout
of networks with up to 100 nodes in two dynamic graph layout applications we have
developed: a network diagram authoring tool and a network diagram browser. While the
primary motivation for our development of the algorithm was to support dynamic layout
it can also be used to improve layouts generated by other graph layout techniques.

One of the strengths of the algorithm is that it can be straightforwardly modified
to work with other goal function, so long as the second derivative is computable and
the goal function is bend-point invariant. We plan to explore other goal functions. We
also plan to explore generalising the algorithm to handle arbitrary linear constraints, not
only separation constraints. As part of this we plan to modify the algorithm to perform
minimization in both dimensions at once, rather than separately.
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Abstract. We study two embedding problems for upward planar digraphs. Both
problems arise in the context of drawing sequences of upward planar digraphs
having the same set of vertices, where the location of each vertex is to remain
the same for all the drawings of the graphs. We develop a method, based on the
notion of book embedding, that gives characterization results for embeddability
as well as testing and drawing algorithms.

1 Introduction

In the upward point-set embeddability problem with mapping the input is an upward
planar digraph G with n vertices, a set .S of n distinct points in the plane, and a mapping
@ from the vertices of G to the points of S. The desired output is an upward planar
drawing of G with the vertices located at the points of S assigned by the mapping. Not
all instances of this problem admit a solution, as shown in Fig. [I(a)] (there is no choice
of upward direction with respect to which the location of vertex 1 is lowest).

(b)

Fig. 1. (a) An upward planar digraph G, a set S of points, and a mapping of the vertices to the
points of S such that an upward point-set embedding of G on S does not exist. (b) Two upward
planar digraphs whose union is acyclic but that do not admit an upward consistent simultaneous
embedding.
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sive information structures and data streams”, and by NSERC.
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In the upward consistent simultaneous embeddability problem the input is a sequence
of upward planar digraphs that have the same vertex set. The desired output is a set S
of points in the plane and a mapping from the vertices to the points such that all the
digraphs have an upward point-set embedding on S with respect to a common, upward
direction. Clearly, a solution exists only if the union of the digraphs is acyclic. However,
this condition is not sufficient: the union of the two digraphs of Fig. [I(b)]is acyclic, yet,
as can be checked by straightforward case analysis, there is no simultaneous upward
embedding with respect to a common direction.

Note that in the first problem, referred to as the point-set embeddability problem for
short, the desired locations of the vertices are specified by € in the problem input, and
only one graph is given. In the second problem, referred to as the simultaneous em-
beddability problem for short, the locations for the vertices are to be computed, and
several graphs are given in the input. These problems arise in the context of computing
drawings for a set or sequence of graphs under two different scenarios. In the first sce-
nario, the graphs are specified one at a time, and the vertex locations for the drawing
of the first graph determine the vertex locations for all the remaining drawings. Hence
for each graph after the initial one, the locations for its drawings are specified. This
gives rise to the point-set embeddability problem. An example of this scenario is pro-
vided by the visual analysis of self-modifiable code, based on computing a sequence of
drawings whose edges are defined at run-time (see, e.g., [9]). In the second scenario,
the graphs are all known from the outset. This gives rise to the simultaneous embed-
dability problem. This scenario occurs, for example, in the visual comparison of several
phylogenetic trees proposed for the same organisms.

1.1 Summary of Main Results

Our first main result, of interest on its own, provides a tool for obtaining the others.
Namely, in Sect.[3] we prove that a planar st-digraph together with any given topologi-
cal numbering p admits an upward topological book embedding such that the ordering
of the vertices along the spine is p. The number of spine crossings per edge is at most
2n — 4, which is asymptotically worst-case optimal (n is the number of vertices).

For the point-set embeddability problem, we characterize in Sect. ] those instances
that admit a solution, providing an O(n?)-time drawing algorithm that produces at most
2n — 3 bends per edge, which is worst-case asymptotically optimal. Then in Sect. [5lwe
give an O(n?)-time testing algorithm.

For the simultaneous embedding problem, in Sect. |6l we give a combinatorial char-
acterization of instances that admit a solution.

1.2 Related Results

Both the embeddability problems we consider have mainly been studied for planar undi-
rected graphs. In that case, Halton [9]] proved that every instance of the point-set em-
beddability problem has a solution. Pach and Wenger [13]] showed that solutions can
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require (2(n) bends per edge and showed how to construct drawings with at most O(n)
bends per edge. See [1]] for recent extensions and improvements. See Frati, Kaufmann,
and Kobourov [3] for an extensive survey of simultaneous embeddability problems.
Simultaneous embeddability for upward planar digraphs has been recently undertaken
in [6]], but for two digraphs, and without the requirement for the same choice of upward
direction.

For book embeddings, see, e.g., [416] for the notion of an upward planar drawing
where the vertices are aligned along a spine in a specified order, and edges are drawn
as monotone curves that can cross the line. See [1] for results on book embeddings of
undirected planar graphs.

For reasons of space, some proofs have been omitted and can be found in [7]].

2 Preliminaries

We assume familiarity with basic graph drawing terminology [2/12]. A digraph is a
directed graph. Let G be a digraph and let u, v be any two vertices of G; (u, v) denotes
the directed edge from u to v. A topological ordering of a planar digraph G with n
vertices is a mapping p of its vertices to distinct integers such that for every edge (u, v)
we have p(u) < p(v). A topological numbering is a topological ordering where the
vertices are mapped to integers 1, ..., n. Let v and v be two vertices of a digraph with a
given topological numbering p; if p(u) < p(v) we say that u precedes v. A topological
numbering of a planar digraph with n vertices can be computed in O(n) time using
standard graph search techniques [3].

A drawing of a digraph G’ maps each vertex of G to a distinct point in the plane and
each edge (u,v) of G to a simple Jordan curve oriented from the point representing
u to the point representing v. A drawing of a digraph is planar if no two edges cross
each other. A planar drawing I" of a digraph G partitions the plane into topologically
connected regions called the faces. The unbounded face is called the external face. A
planar drawing of a digraph is upward if all of its edges are monotonically increasing
in a common direction which is called the upward direction of the drawing. A digraph
that admits an upward planar drawing is said to be upward planar. Let I" be an upward
planar drawing of an upward planar digraph G. I" induces two linear lists of incoming
and outgoing edges incident on each vertex v of G. An upward planar embedding of an
upward planar digraph G is an equivalence class of upward planar drawings that induce
the same two linear lists for each vertex of G and define the same external face. An
upward planar digraph G with a given upward planar embedding is called an upward
planar embedded digraph.

An st-digraph is a biconnected acyclic digraph with exactly one source s and ex-
actly one sink ¢, and such that (s, t) is an edge of the digraph. A planar st-digraph is
an st-digraph that is planar and embedded with vertices s and ¢ on the boundary of the
external face. A planar st-digraph is said to be maximal if all its faces are triangles, i.e.
the boundary of each face has exactly three vertices and three edges. Given any planar
st-digraph G' with n vertices along with a topological ordering of its vertices, by using
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standard visit techniques, one can augment G by adding edges in O(n) time such that
the resulting digraph has the same vertex set as (5, is a maximal planar st-digraph, and
preserves the given topological ordering. Hence from now on, we assume without loss
of generality that planar st-digraphs are maximal.

Lemma 1. [3] Let G be a planar acyclic digraph. G is upward planar if and only if it
is the spanning subgraph of a planar st-digraph.

A planar st-digraph that includes G as a spanning subgraph is called an including pla-
nar st-digraph of G.

3 Upward Topological Book Embeddings

An upward topological book embedding of a planar st-digraph G is an upward pla-
nar drawing I" of G such that: (i) The vertices of I" lie on an oriented line called the
spine of I'; (i) Each edge (u, v) of G is represented in I” as a sequence of semi-circles
c1,Ca,. ..k such that consecutive semi-circles lie on different half-planes and share
a point along the spine, called a spine crossing of the edge. An example of an up-
ward topological book embedding with the spine oriented according to increasing y-
coordinate is given in Fig. 2l In the figure, edge (5, 7) consists of the concatenation of
three semi-circles and has two spine crossings, while edge (1, 3) does not have spine
crossings.

In this section we show that for any given topological numbering p, a planar st-
digraph always admits an upward topological book embedding such that a vertex v
precedes a vertex w along the spine if and only if p(v) < p(w). We call this type of
drawing a p-constrained upward topological book embedding. This can be viewed as a
constrained counterpart of [14].

Fig. 2. An upward topological book embedding of the maximal planar st-digraph in Fig.
The vertices are ordered along the spine according to the indices of the vertices in Fig.[3(a)} The
drawing is computed by using the drawing algorithm of Theorem [l
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3.1 Dual Digraph and k-Facial Subgraph

Let G be a maximal planar st-digraph. For each edge e = (u,v) of G, we denote by
left(e) (resp. right(e)) the face to the left (resp. right) of e in G. Let s* be the face
right((s,t)), and let t* be the face left((s,t)). In the rest of this section we assume
that ¢* is the external face of GG. Faces s* and ¢* are highlighted in Fig. Let G be a
maximal planar st-digraph. The dual of G is the planar st-digraph denoted as G* such
that: (i) G* has a vertex for each face of G; (ii) G* has anedge ¢* = (left(e), right(e)),
for every edge e # (s, ¢) of G; (iil) G* has source s, sink ¢*, and it has edge (s*,¢*) on
its external face. Figure [3(b)| depicts with dashed edges the dual digraph of the digraph
of Fig.

Fig. 3. (a) A planar st-digraph G with a topological numbering of its vertices. (b) Planar st-
digraph G (solid) and its dual (dashed). The vertices of the dual are numbered according to a
topological numbering. (c) The 5-facial subgraph of the maximal planar st-digraph in (a).

Property 1. Let G be a maximal planar st-digraph and let G* be the dual digraph of G.
Graph G™* is a planar st-digraph (without multiple edges) with source s* and sink ¢*.

Let G be a maximal planar st-digraph and let G* be the dual of G. Let {v; = s*,v3,

..,U = t*} be the set of vertices of G* where the indices are given according to a
topological numbering of G*. See, for example, Fig.[3(b)] where the vertices of the dual
are numbered according to a topological numbering. By definition of dual st-digraph, a
vertex v; of G* (1 < ¢ < r) corresponds to a face of G; in the remainder of this section
vy both the vertex of the dual digraph G* and its corresponding face in the primal
digraph G. Let V}, be the subset of the vertices of G that belong to faces v}, v3, ..., v}.
The subgraph of GG induced by the vertices in V}, is called the k-facial subgraph of G
and is denoted as G. Face vj is called the k-th face of G. Figure for example,

shows the 5-facial subgraph of the maximal planar st-digraph depicted in Figure

Lemma 2. [6] Let G be a maximal planar st-digraph with r faces, let Gy_1 be the
(k—1)~facial subgraph of G (2 < k < r) and let G}, be the k-facial subgraph of G. Let
vy be the k-th face of G consisting of edges (w,w'), (w',w"), and (w,w"). One of the
Jollowing statements holds. (S1): (w,w') and (w',w") are edges of the external face
of Gi—1; (w,w") is an edge of the external face of Gy. (S2): (w,w") is an edge of the
external face of Gi—1; (w,w') and (w',w"") are edges of the external face of G,
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Lemma 3. [6] Let G be a maximal planar st-digraph with r faces and let Gy, be the
k-facial subgraph of G (1 < k < r). Gy, is a planar st-digraph.

3.2 p-Constrained Upward Topological Book Embeddings

Let I" be an upward topological book embedding of a planar st-digraph G, let A be
the spine of ", and let p; and py be two vertices or two spine-crossings of I". Assume
without loss that A is vertical. The notation p; < ps means that p; precedes p, along
the spine of I". We denote with (p;,p2) a semi-circle in I” (either an edge or a portion
of an edge) with antipodal points p; and ps such that p; < p2. We say that any point p
of A is covered if there exists a semi-circle (p1, p2) in the half-plane on the right-hand
side of A such that p; < p < po. Otherwise, we say that p is visible. For example,
vertex 3 of Fig.2lis covered while vertex 4 is visible.

Let p1, p2 be two points on the spine of I'. We say that segment p;po is a maximal
covered segment if every point p such that p; < p < po is covered and there are no other
segments q; g2 With g1 < p; < pa < g9 such that this same property holds. Similarly,
p1p2 is a maximal visible segment if all of its points are visible and it is not a subset
of another visible segment. For example, segment p;p, in Fig. [2]is a maximal visible
segment. Let v be a point of A that represents a vertex of G. We say that v has an upper
pocket if there exists a maximal visible segment p;po such that: (i) v < p; < po, (i) no
semi-circle (either in the left or in the right half-plane defined by A) has an end-point in
p1p2, and (iii) there is no vertex u such that v < u < p; < po. For example, segment
p1p2 in Fig.2lis the upper pocket of vertex 5 but it is not the upper pocket of vertex 4.
Similarly the lower pocket of a vertex v in I" is defined by considering maximal visible
segments below v. Segment p1p- in Fig.Rlis the lower pocket of vertex 6.

Theorem 1. Let G be a maximal planar st-digraph and let p be a topological number-
ing of G. G admits a p-constrained upward topological book embedding with at most
2n — 4 spine crossings per edge, which is asymptotically worst-case optimal. Also, such
a p-constrained upward topological book embedding can be computed in O(n?) time.

Proof. We compute a p-constrained upward topological book embedding I'* of G by
maintaining the following invariant properties: (I7): Every vertex has a lower pocket
and an upper pocket. (I2): For every maximal covered segment pipo, there exists a
vertex v of G such that p; < v < pa.

We proceed by induction on the number of internal faces of G.

Base Case: Refer to Fig.[4(a)} Suppose G has exactly one internal face v* and let {s, t, w}
be the vertices of the boundary of face v*. Let A be a vertical line in the plane. Draw s,
t and w along A such that s < w < t. Draw edges (s, t), (s, w) and (w, t) as the semi-
circles (s,t), (s,w) and (w,t) respectively, in the half-plane on the left-hand side of
A. By construction, the resulting drawing is a p-constrained upward topological book
embedding. Also, segment sw is a lower pocket for w and an upper pocket for s, while
segment wt is an upper pocket for w and a lower pocket for ¢. The upper pocket for ¢ and
the lower pocket for s are the half lines above ¢ and below s, respectively. Thus Property
I; holds. Property I holds since there are no covered segments in this case.
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() (b) (c) (d)

Fig. 4. Four steps of the algorithm in the proof of Theorem [l applied to the digraph in Fig. 3(a)]

Inductive case: Suppose by induction that a p-constrained upward topological book
embedding of G satisfying Properties I; and I> can be computed when G has k — 1
faces and assume that G has k faces (k > 1). Let G* be the dual of G and let {vi =
s*,v3,...,vf = t*} be the vertex set of G*, where the indices are given according to
a topological numbering of G*. Also, let Gj_1 be the (k — 1)-facial subgraph of G.
By definition and by Lemma[3l Gj_1 is a planar st-digraph with exactly & — 1 inter-
nal faces. By the inductive hypothesis there exists a p-constrained upward topological
book embedding F,ffl of G, satisfying Properties I and I5. Since G has k internal
faces, the k-facial subgraph of G is G itself. Let v}, be the k-th face of G consisting
of edges (w, w'), (w',w”), and (w, w") (see also Fig.@). Let A be the spine of I} .
We show how to compute a p-constrained upward topological book embedding I of
@ satisfying Properties I; and I, by adding face v} to I'y_,. We distinguish two cases
depending on whether the k-th face of G satisfies Statement S; or Statement S of
Lemmal2l

Statement Sy of Lemmal2lholds. Refer to Fig. i(d) where v}, is face v} and we need to
insert edge (1,5). Let j be the number of vertices between w and w’ along A. Suppose
j = 1. Since w, w’ and w" are on the external face of G_1, by Property I there
are no endpoints of semi-circles on segments ww’ and w’w”. Choose two arbitrary
points p and p’ such that w < p < w’ < p’ < w”. Draw edge (w,w") as three semi-
circles (w, p),(p, p'),(p’, w"), respectively in the half-planes on the left hand-side, right
hand-side, and left hand-side of A. The resulting drawing I'? is a p-constrained upward
topological book embedding of GG. Also, Property I holds, since wp is an upper pocket
for w and a lower pocket for w’ and p’w” is an upper pocket for w’ and a lower pocket
for w”. Furthermore, pp’ is a maximal covered segment and indeed w is such that
p < w < p’. Thus, Property I5 holds.

If the number of vertices between w and w” along Ais j = h — 1 (2 < h < n) then
edge (w,w”) can be added to I , such that the resulting drawing is a p-constrained
upward topological book embedding satisfying Properties I; and I5. Assume j = h.
Let p be the point of A above w such that wp is the upper pocket of w.
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Two cases are possible: (i) p is the point representing vertex w’; (ii) p is an endpoint
of a semi-circle (p, p’) in the half-plane on the right-hand side of A. We can deal with
cases (i) and (ii) at once, since case (i) can be seen as a special instance of case (ii),
where p and p’ coincide with vertex w. Thus, suppose case (ii) holds and let (g, ¢)
be a semi-circle of I'f ;| in the half plane on the right-hand side of A. Points ¢ and
¢’ cannot be such that ¢ < p < ¢’ since every point of wp must be visible from the
right-hand side, and they cannot be such that p < ¢ < p’ < ¢ since in this case
there would be a crossing between semi-circles (g, ¢’) and (p, p’). Therefore, pp’ is a
maximal covered segment of I'/_,. Hence, by Property I, there must exist a vertex v
of Gi_1 such that p < v < p’in I'}_,. Also, by Property I, there exists a point p” of
A such that p’p” is the upper pocket of v. Let p and p’ be arbitrary points of A such that
w<p<p<p <p <p'

We draw edge (w,w"”) by splitting it into two edges: An edge from w to p’ and
an edge from p’ to w”. Since there are exactly h — 1 vertices between p’ and w”,
edge (p/,w”) can be added to I , so that the resulting drawing is a p-constrained
upward topological book embedding satisfying Properties I; and . Notice that, as a
consequence of Property I, there must exist a point p”’ with o’ < p” such that p/'p”
is an upper pocket for p’, which means that the first semi-circle of edge (p', w") is in
the half-plane on the left hand-side of A. Now, draw edge (w,p’) as two semi-circles
(w, p) and (p, p') in the half planes on the left-hand side and on the right-hand side of A,
respectively. Semi-circles (w, p) and (p, p’) do not cross any other semi-circle of Iy .
Also, Properties I; and I5 hold for w and v. Indeed, segment wp is an upper pocket for
w and a lower pocket for v while segment p’p” is an upper pocket for v. Property I,
holds for v as segment pp’ is a maximal covered segment and v is such that p < v < p'.
Therefore, the semi-circles we have drawn preserve planarity and respect Properties I;
and I5. It follows that edge (w,w) has been drawn as a monotone curve from w to
w” formed by a sequence of semi-circles ¢y, co, . . . cap+1 such that consecutive semi-
circles lie on different half-planes, share only a spine crossing along A, do not cross
other semi-circles and Properties /; and I2 hold. The resulting drawing I is thus a p-
constrained upward topological book embedding of G satisfying Properties I; and I5.

Statement So of Lemmal2lholds. Refer also to Fig.[A(b)land Fig.[4(c)| Let v be the vertex
of G—1 having the largest number in the topological numbering such that p(v) < p(w’).
Let p1p2 be the upper pocket of v. Draw vertex w’ such that p; < w’ < ps. Segment
p1w’ is both the new upper pocket of v and the lower pocket of w’ while segment w’po
is the upper pocket of w’. Thus, the drawing is a p-constrained upward topological book
embedding satisfying Properties I; and I. Draw edge (w, w’) by the same technique as in
the previous case. The same reasoning proves that the resulting drawing is a p-constrained
upward topological book embedding satisfying Properties I; and I5. The same argument
applies to edge (w’, w"). The final drawing is thus a p-constrained upward topological
book embedding of G satisfying Properties I; and Io.

It remains to prove the time complexity of the algorithm and the number of spine
crossings per edge of the drawing. The dual digraph of G and a topological numbering
of its vertices can be computed in linear time. Indeed, by Property [I the dual of G
is a planar st-digraph without multiple edges. Also, each edge (u, v) is drawn by the
algorithm so that for every vertex w with © < w < v there are exactly two spine
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crossings p1 and ps with p; < w < po. It follows that the number of spine crossings
per edge is at most 2(n — 2) = 2n — 4; we also remark that £2(n) bends are known
to be necessary for constructing topological book embeddings with a fixed ordering
of undirected planar graphs [1]]. Finally, the time complexity of the described drawing
algorithm is O(m - n) that is equal to O(n?) since G is a planar graph.

4 Upward Point-Set Embeddability with a Given Mapping ¢

We first study the special case that the points of S are collinear and that the input graph
is a planar st-digraph, and then study general upward planar digraphs and points in
general position.

4.1 Collinear Points and Planar st-Digraphs

Assume without loss that py, ..., p, are vertically aligned. We associate each point p;
of S with an integer in the set {1,...,n} such that point p; is given integer k if p; is
the k-th point of .S that we encounter moving along the increasing y-direction. We also
consistently assign numbers to the vertices v1, ..., v,: If point p; = $(v;) has been
given integer k, then also v; is given integer k. See Fig.[5(a)| for an example. We call
such a numbering of the vertices of G the ®-numbering of G and we call ®-number
of v; the number assigned to vertex v;. We say that mapping & induces a topological
numbering of G if the ¢-numbering of G is also a topological numbering of GG. For
example, the #-numbering of Fig. [5(a) does not induce a topological numbering of G.

The characterization almost immediately follows from the result in Sect. [3]concern-
ing p-constrained upward topological embeddability and from the observation that the
y-coordinates of the vertices in an upward planar drawing induce a topological number-
ing of the graph.

Lemma 4. Let G be an upward planar digraph with n vertices, S = {p1,...,pn}
a set of vertically aligned points and ¢ a mapping from G to S. Let I' be an upward
topological book embedding of G such that: (i) the maximum number of spine crossings
per edge of I is k; (ii) for every pair of vertices u and v of G such that u < v along
the spine of I, the @-number of u is smaller than the ®-number of v. Then G admits an
upward point-set embedding on S consistent with @, with at most k + 1 bends per edge.

Theorem 2. Let G be a planar st-digraph with n vertices; let S be a set of n distinct
collinear points in the plane; let @ be a mapping from G to S. G admits an upward
point-set embedding on S consistent with D if only if D induces a topological numbering
of G. Also, such an upward point-set embedding of G on S can be computed in O(n?)
time with at most 2n — 3 bends per edge, which is asymptotically worst-case optimal.

4.2 Points in General Position and Upward Planar Digraphs

In this section we extend Theorem [2] by characterizing when mapping ¢ guarantees
the upward point-set embeddability of a (not necessarily st-) upward planar digraph G
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e

(@) (b)

Fig.5. (a) A planar st-digraph G, a set S of distinct collinear points in the plane and the &-
numbering of G. (b) A digraph G and a set S of points in the plane. Mapping ¢ induces a
topological numbering of G on £, whereas it does not induce a topological numbering of G on £'.

on a set S of (not necessarily collinear) points. Let ¢ be a directed line. We denote as
Se = {p},...,p.,} the collinear set of points obtained by orthogonally projecting .S
onto /; we assume that the direction of ¢ is such that when projecting .S on ¢ no two
projected points coincide. Also, let ¢, be the mapping from G to .S, that associates
each vertex v of G with the projection of ¢(v) on £. We say that mapping @ induces
a topological numbering of G on ¢ if mapping @, induces a topological numbering of
G. For example, Fig. 5(b)] shows the digraph G, the set S and the mapping ¢ from
G to S defined by associating every vertex of G with the point of S having the same
index; also, two directed lines £ and ¢’ are depicted such that @ induces a topological
numbering on ¢ while it does not induce a topological numbering on £’

Theorem 3. Let G be an upward planar digraph with n vertices, S a set of n distinct
points in the plane, and ® a mapping from G to S. G admits an upward point-set
embedding consistent with @ if and only if there exists an including planar st-digraph
G’ of G and a directed line { such that ® induces a topological numbering of G' on {.
Also, such an upward point-set embedding of G on S can be computed in O(n?) time
with at most 2n — 3 bends per edge, which is asymptotically worst-case optimal.

We remark that the number of bends per edge stated in Theorem 3limproves by a con-
stant factor the best known upper bound of 3n + 2 for the point-set embeddability with
mapping of undirected planar graphs (Theorem 4 of [[1]).

5 Testing Upward Point-Set Embeddability

Theorem 3 naturally raises the question about how to efficiently test whether an upward
planar digraph G with n vertices admits an upward point-set embedding consistent
with a given mapping ¢ on a set S of n distinct points. By Theorem[3] it suffices to test
whether there exist an including planar st-digraph G’ of G and a directed line ¢ such
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that @ induces a topological numbering of G’ on ¢. Therefore, we consider every di-
rected line ¢ such that @ induces a distinct @,-numbering. For each such &,-numbering,
we check whether it is a topological numbering of G and, if so, we verify whether
there exists an including planar st-digraph of G that preserves it. The following lemma
strongly relies on results by [[10l11] concerning level planarity testing and embedding;
its proof is omitted from this abstract.

Lemma 5. Let p be a $;-numbering. There exists an O(n)-time algorithm that tests
whether p is a topological numbering of G and, if so, whether there exists an including
planar st-digraph of G that preserves p.

To compute all possible @,-numberings we must consider all possible directed lines
such that the orthogonal projections of the points on these lines produce different per-
mutations of the points. This is equivalent to computing the well-known circular se-
quence of permutations associated with point set .S (see, e.g. [8]).

Lemma 6. [8] Let S be a set of n distinct points in the plane. The circular sequence of
permutations associated with S has cardinality O(n?) and can be computed in O(n?)
time.

Theorem 4. Let G be an upward planar digraph, S = {p1,...,pn} a set of n distinct
points in the plane, and ® a mapping from G to S. There exists an O(n?)-time algorithm
that tests whether G admits an upward point-set embedding on S consistent with ®.

6 Upward Consistent Simultaneous Embeddability

The following theorem characterizes the upward simultaneous embeddability of a se-
quence of upward planar digraphs with respect to the same direction.

Theorem 5. A sequence G1, Go, ..., Gy of distinct upward planar digraphs sharing
the same vertex set admits an upward consistent simultaneous embedding with respect
to the same direction if and only if there exists a sequence G', G, ..., G}, such that:

(i) G/, is an including planar st-digraph of G;, and (ii) Ule G, is acyclic.

Proof. 1f the sequence G, G, . . . , G, admits the desired embedding, then each draw-
ing is an upward planar drawing of G; (1 < ¢ < k) and has an including planar st-
digraph by Lemma Il Since all drawings have the same direction of upwardness, the
union of these planar st-digraphs is acyclic.

Let n be the number of vertices in each graph of the sequence and let G’ be the
union digraph, that is G’ = Uf:l G. Assume that G’ is acyclic and let p be a topo-
logical numbering of G’. Note that p is a topological numbering of each G. Compute
a p-constrained upward topological book embedding for each G by using Theorem Il
Define a set of n distinct points in the plane having consecutive y-coordinates from 1 to
n. Define a mapping & that associates every vertex of G, having number A in the topo-
logical numbering with the point of S having y-coordinate equal to h. By Theorem[3]
each G has an upward point-set embedding consistent with & such that the edges are
monotonically increasing with the y-direction.
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Open Problems

We conclude with three open problems: (1) For upward point-set embedding with a
given mapping, minimize the total number of bends; (2) Improve the time complexity
in Theorem [} and (3) Design a fast test for upward simultaneous embeddability with
respect to the same direction (we have linear time results for the case of switch-regular
digraphs).
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Abstract. In this paper, we present a dynamic algorithm that checks if a single-
source embedded digraph is upward planar in the presence of edge insertions and
edge deletions. Let Gy be an upward planar single-source embedded digraph and
let G’¢, be a single-source embedded digraph obtained by updating Gy. We show
that the upward planarity of G’¢, can be checked in O(logn) amortized time when
the external face is fixed.

1 Introduction

Assume we have a solution of a graph theoretic problem P on a graph G. A dynamic
graph algorithm tries to solve P after G is updated in less time than recomputing P from
scratch [S]. Dynamic graph algorithms are useful when a graph has discrete changes like
the addition or deletion of vertices or edges. A practical example of a dynamic graph
algorithm is the maintenance shortest paths in a communication network as links are
added or deleted.

In this paper, we present a dynamic algorithm to check if a single-source embedded
digraph remains upward planar after an edge is inserted or deleted. An planar embed-
ding is an equivalence class of planar drawings for a graph G, such that each drawing
of this class has the same circular order of edges around each vertex of G. A graph G
with a given planar embedding is denoted by G and we call it an embedded digraph. A
digraph G is upward planar if it has a planar drawing with all edges pointing monotoni-
cally upward [6]]. It is NP-hard to test if a digraph G is upward planar [9]], hence upward
planarity testing is either done for a fixed embedding [3l7], or for special classes of di-
graphs like single-source digraphs [[10i4]], series-parallel digraphs [8]], and outer planar
digraphs [[L1].

Let G be an upward planar embedded digraph with the single-source sg. We let G:p/
be an embedded digraph with the single-source s/, such that G/, is obtained from G
by performing one of the following update operations:

— insert-edge(e,u,v): Insert an edge e = (u,v) between two existing vertices in Gy.

— attach-vertex(e,u,v): Add a new vertex and insert an edge between an existing
vertex and the new vertex.

— delete-edge(e): Delete the edge e from G,. We also delete a vertex if it results in
no incident edge.

1.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 254 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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An update operation is illegal if the resulting digraph is not single-source. In case
of an edge insertion, this happens if an edge ¢ = (u,v) is inserted between existing
vertices such that v = sg, or when edge ¢ = (u,v) is inserted between a new vertex u
and v # sg. An edge deletion is illegal if an edge e = (u,v) is deleted such that G/¢/
becomes disconnected.

It is generally believed that upward planar drawings of a digraph are more compre-
hensible to humans. Hence, it is reasonable to say that a non-upward planar digraph H
is more readable if the largest possible subgraph of H is drawn in an upward planar
fashion. In this paper, we present a dynamic algorithm to test the upward planarity of
Gip,. Our dynamic algorithm can be used to compute a maximal upward planar subgraph
for a single-source digraph H by incrementally building an upward planar embedding
of H and discarding a new edge if it results in a non-upward planar embedded digraph.

In the remainder of this section, we define some basic terminology and review some
relevant results. In Sec. 2l we discuss how to obtain a bimodal and embedded G,,.
In Sec. Bl we give a characterization of upward planarity of G’¢/ with respect to the
update operations. In Sec.[] we present our algorithm and its complexity analysis. We
conclude by identifying some related open problems.

1.1 Preliminaries

We assume basic familiarity with graph theory. Let G be a graph. We denote the set
of vertices of G by V(G) and we denote the set of edges of G by E(G). In a digraph,
a source vertex has only outgoing edges, a sink vertex has only incoming edges, and
an internal vertex has both incoming and outgoing edges. A planar drawing I" divides
the plane into non-overlapping regions called faces; the unique unbounded region is
called the external face and each bounded region is called an internal face. The facial
boundary of a face f is the path enclosing f in the clockwise direction, all drawings
of an embedded graph have the same set of facial boundaries. An embedded digraph
Gy is bimodal when ¢ (v) can be partitioned into two sets of consecutive incoming and
outgoing edges for every vertex v € Gy.

In an embedded digraph G, an angle is a triplet (e;,v,ez) such that the edges are
incident to the vertex v and edge e; is immediately before edge e, in ¢ (v). A vertex v is
incident to the angle (e, v,e¢) when e is the only edge incident to v. A switch (e1,v,ez) is
an angle with both e; and e, pointing either toward or away from v: it is a sink-switch
when e and e, point toward v and it is a source-switch when e and e, point away from
v [[7]]. Switches were originally defined as nodes in an embedded biconnected digraph
by Bertolazzi et al. 3], however Didimo generalized their concept to general embedded
digraphs by defining them as angles [7].

We now show that both G and Gip, have at most one sink-switch incident to a vertex
v inside a particular face. This allows us to refer to a vertex v incident to a sink-switch
(e1,v,e3) in a face f as sink-switch v incident to face f for simplicity and clarity.

Lemma 1. Let Gy be an upward planar embedded digraph with a single source sg,
and let Gip, be the bimodal embedded digraph with a single source s¢ obtained after
adding an edge in Gy. Both Gy and G, have at most one sink-switch incident to a
vertex v inside a particular face.



256 A. Rextin and P. Healy

The face-sink graph F of G is an undirected graph such that the vertices of F* are the
faces of G and all vertices of G that are incident to a sink-switch; an edge (f,v) isin F
if face f is incident to a sink-switch on a vertex vin G. Bertolazzi et al. [4] presented an
O(n)-time algorithm to test the upward planarity of a single-source embedded digraph
Gy . This algorithm is based on the following theorem:

Theorem 1 (Bertolazzi et al. [4]). Let Gy be a embedded digraph with a single-source
sG. Gy is upward planar with face h as the external face if and only if the following
conditions are satisfied.

1. The face-sink graph F of Gy is a forest.

2. F has exactly one tree T with no internal vertices, while all other trees have exactly
one internal vertex.

3. T contains the node corresponding to face h and s¢ is incident to face h in Gy.

2 Maintaining Planarity and Bimodality

Theorem [ requires a embedded single-source digraph, however bimodality is a neces-
sary condition for upward planarity and hence G:p, will have more chances to be upward
planar if it is already bimodal and planar. In this section, we see how a bimodal embed-
ded digraph G’¢/ can be obtained after G4 is updated. The embedded digraph Gy will
remain bimodal and planar after an edge is deleted, hence we only study the case when
an edge is inserted.

When an edge is inserted, a planar and bimodal embedded digraph Gip, can be ob-
tained, if it exists, by using the techniques of Bertolazzi et al. [2]] and Tamassia [12].
Tamassia described a technique to incrementally build a planar embedding: it checks if
an edge can be added to the current embedded graph without introducing a crossing in
O(logn) time and it then adds the new edge to the current embedded graph in O(logn)
amortized time [[12]]. A technique for constructing a bimodal embedding of a digraph ¢
was discussed by Bertolazzi et al. [2]]. It works by splitting all vertices of ¢ with at least
2 incoming edges and at least 2 outgoing edges into a vertex v, with all the incoming
edges of v and a vertex v, with all the outgoing edges of v, and adding the edge (v, vp).
We call the vertices that are split as split-vertices and we call the resulting digraph as
the split-digraph ¢ . Bertolazzi et al. showed that ¢ has a planar bimodal embedding if
and only if 4 has a planar embedding. We get a planar and bimodal embedded 9y by
merging back the split vertices in a planarly embedded % [2].

We obtain a bimodal and planarly embedded G’d)/, if it exists, by maintaining a cor-
responding planarly embedded split-digraph GN(];. Figure [[l shows an embedded digraph
Gy and its corresponding split-digraph G~q;. A vertex v in G has two corresponding ver-

tices 7, and 7, in G if it is a split-vertex, and it has one corresponding vertex ¥ otherwise.
If v is a split-vertex, we let ¥/, represent the vertex in G with all corresponding outgoing
edges of v, and we let ¥, represent the vertex in G with all corresponding incoming
edges of v. We define a function o : V(G) — V(G), such that o(v) = ¥, when v is a split-

vertex and o(v) = v otherwise. Similarly, we define function i : V(G) — V(G), such
that i(v) = 7, when v is a split-vertex and i(v) = ¥ otherwise. We also define a function
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Fig. 1. An embedded digraph G (a); and its embedded split digraph Gé b)

e : E(G) — E(G), which maps the edges in G to their corresponding edges in G. When
we want to add an edge e = (u,v) in G, we first try to add the edge € = (o(u),i(v)) in
Gq;. The embedded digraph Gﬁp, is not planar or bimodal if & cannot be added in Gd; us-
ing Tamassia’s method. Lets assume that we get a planar G/ & with € inserted between

€1 and ¢é; at o(u), and € inserted between eN’1 and e~’2 at i(u). In this case, we get a planar
and bimodal Gy, by adding e between e~ (¢1) and ¢! (€2) at u, and adding e between

e~!(€}) and e~ (¢}) at v. Figure[llshows that we can bimodally add the edge (vs,v4) in
G, but not the edge (v4,vs).

The split-digraph G~q; takes O(n) space. If the addition of edge e makes a vertex v
a split-vertex then we will need to construct the corresponding ¥, and 7 in Gq;. This
can be done in constant time because there will be either one incoming edge or one
outgoing edge incident to v before the new edge is added. Hence we have the following
lemma.

Lemma 2. Let Gy be an upward planar embedded digraph and let e be an edge that
we want to insert in Gy. We can perform the following two operations.

1. Check if an edge e can be added to Gy such that the resulting graph has a bimodal
and planar embedding in O(logn) time.

2. If the previous test is true then we can obtain a planar and bimodal embedded
digraph G:p, in O(logn) amortized time.

The insertion of an edge e = (u,v) bisects an angle oy, = {e;,u,e;) at vertex u into
two new angles (ej,u,e) and (e,u,e;). The new edge e similarly bisects the angle
o, at vertex v into two new angles. The insert-face f is divided into two new faces
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/1 and f> when a new edge e = (u,v) is inserted when both u and v already exist.
Let the facial boundary of f be wo,eq, ... e, u,ey,...,ej,v,ejr,... e, wp = wo. After
e is inserted, let (e;,u,ey) and (e;,v,e;) be the angles that are bisected at u and v re-
spectively, then fi has the facial boundary e,u,ey,...,e;,v,e and f, has the boundary
W0,€0,- .- U, e,V ... ex, Wr = wq. If both u and v exist and ¢, is not a switch then either
Jf1 or f> will have a sink-switch at v. We assume, without the loss of generality, that the
new sink-switch will be created at f1. Similarly, when a new edge ¢ = (u,v) is inserted
in f and one of the vertices is new, then the facial boundary of f will change. Let the

facial boundary of f be wy,eq,...,e;, W, ej,..., e, wi = wg, such that w’ is the existing
vertex and (e;,w’, ey ) is the angle bisected at w'. After e is inserted, the facial boundary
will change to wg, eq, ..., e, W, e,w” e,w ... e, wi = wpy, where w” is the new vertex.

Hence, we can maintain the facial boundaries in a linked list which can be updated in
constant time by keeping pointers to nodes in the linked list.

3 Maintaining Upward Planarity

In this section, we characterize the upward planarity of G/,, after an update operation.
We will only study the case of inserting an edge because Gip, remains upward planar
when an edge is deleted. We will however need to update our datastructures when an
edge is deleted, this is discussed in the next section. We assume that G, is bimodal and
planar because we construct it by using the method described in Sec. Ifl

Let F be the face-sink graph corresponding to G and let F’ be the face-sink graph
corresponding to Gip,. Since Gy is upward planar, F will satisfy Theorem [l Further,
Gﬁp, will be upward planar if and only if F’ satisfies Theorem [Il In this section, we
show that we can check if F’ satisfies Theorem [ by considering a small subset of F’.
This will lead to an efficient dynamic single-source upward planarity testing algorithm,
which is presented in the next section.

We first present some definitions that will be used later in this section. An edge e is
inserted in one particular face of G4, which we call the insert-face and denote it by f.
Every face g in Gy has a corresponding vertex gin F. Let Ty = (VTf , ETf) be the tree that
contains f, i.e. the vertex corresponding to f. Let T be a tree in F, we define faces(T)
to be the set of faces such that a face g is in faces(T) if and only if g € V(T'). We also
define a set of vertices, denoted by nodes(T), that contains all vertices of Gy that are in
V(T). Let T denote the tree of F with no internal vertices, and let Hg , denote the set of
faces in G that are incident to the single-source sg. Then Hg, N faces(T) is the set of
all possible external faces in an upward planar drawing of G.

Our results in this section rely on observing how F changes into F’. We define a tree
T: to be different from a tree T if it has at least one different vertex or one different
edge. We claim that either F \ F’ = {Ty} or F \ F’ = 0. This is because a tree T in
F will transform to a new tree 7’ in F’ only if a new sink-switch is added in a face
g € faces(T) or a sink-switch is removed from g or when g is divided into two new
faces. This can happen only for the insert-face f, hence at most Ty will be transformed
by the edge insertion.

We now have a closer look at the structure of T¢. If we traverse f in the clockwise
direction, we will encounter some vertices that are incident to a sink-switch in f. Let
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‘Tl\‘,\ /(,

(b)

Fig. 2. The tree Ty with respect to face f such that both u and v already exist (a); and the tree Ty
with respect to face f when only u is the existing vertex (b)

W = {wi,wz,...,w;} be all such vertices. We define a subtree 7; as the part of Ty that
is reachable from f through the vertex w;, where 1 <i <[. We call w; € T; the access-
vertex of T; with respect to f. This is shown in Fig. 2] for both type of edge insertions
discussed in Sec. [Il When both end vertices of e = (u,v) already exist in G, then the
partitioning of Ty is shown in Fig. the access-vertex for T,...,T; is between u
and v in the clockwise direction, the access-vertex of Tj,1,...,T} is between v and u
in the clockwise direction, the access-vertex of 7; is v, and the access-vertex of T; is u.
Note that 7; and 7; will be empty subgraphs if u and v are not incident to a sink-switch
in f. When e = (u,v) has one existing vertex u then the partitioning is shown in Fig.
the access-vertex at u ( if it exists) is 7;, and the access-vertices for Ti,..., T} are
encountered as we traverse f in the clockwise direction after u.

The next lemma is easily derived from the illegal operations described in Sec.[Iland
the fact that Gip, is bimodal.

Lemma 3. If edge e = (u,v) is added in Gy such that both u and v already exist, then
oy, the bisected angle at v, cannot be a source-switch.

Proof. Assume that v is incident to a source-switch in f. We know from Sec. [I] that
v # s hence v has at least one incoming edge. This implies that G, is not bimodal,
which is a contradiction. d

We now come to the main results of this section, presented as a series of theorems. We
divide the analysis into two main cases: Ty # T and Ty = T. When Ty # T, the tree T
is in F/ and all other trees in F/ N F have one internal vertex. In this case, G’¢/ will be
upward planar if all trees of F’\ F have one internal vertex. The single internal vertex
of Ty is denoted by wr, when Ty # 7. On the other hand, all trees in F' N F have one
internal vertex when 7y = T'. In this case, G:p, will be upward planar if F’\ F has one

tree T with no internal vertex, all other trees trees in F’ \ F have exactly one internal
vertex and faces(T) mHGip’ # 0.
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In some cases, Gip, will always be upward planar, the next theorem analyze these
cases.

Theorem 2. Let Gy be an upward planar embedded digraph with a single source sg
and a face-sink graph F. If we insert an edge e = (u,v) in the face f € Gy, then G:p,
will be upward planar if one of the following conditions is true.

1. Both u and v already exist, such that o, is a sink-switch and oy, is either a source-
switch or oy, is a non-switch angle;

2. u is the new vertex;,

3. vis the new vertex and o, is either a source-switch or a non-switch angle.

We analyze the remaining cases by looking at the different possibilities for ¢y, and ¢, .
Both ¢y, and ¢, can either be a sink-switch, a source-switch, or they can be a non-
switch angle. If the new edge is added between two existing vertices, then we know
from Lemma [3] that ¢, cannot be a source-switch. The case when ¢, is a sink-switch
and ¢, is either a source-switch or when ¢, is a non-switch angle is already discussed in
Theorem 2] Hence we need to analyze when ¢, is a sink-switch or a non-switch angle,
while @, is any type of angle. These cases are discussed in Theorem [3 and Theorem
Hl Theorem [3] discusses the case when ¢, is not a switch while ¢, can be any type of
angle. The only case left for both end-vertices to be already existing is when both o,
and o, are sink-switches, which is discussed in Theorem 4]

Theorem 3. Let Gy be an upward planar embedded digraph with a single source sg
and a face-sink graph F. If we insert an edge e = (u,v) in the face f € Gy such that
both u and v exists and o, is not a switch then G’¢/ will be upward planar if and only if
one of the following is true.

1. If Ty # T then wr, € nodes(Tj1U...UTy).
2. If Ty =T then s is incident to at least one face in faces(Tj11U...UTy).

While o, can either be a sink-switch, or, a source-switch, or not a switch.

Proof. The tree Ty is transformed into two new trees 7; and %5, such that
V(%) = V(T] UTQ...TJ')

E(7)=E(MUT,...T)) U{(fi,w1)U...(f1,w;)})

V(%) =V(Tj1UTj2... Tr)
E(P)=E(Tj1UTja... T)U{(f2,wjs1)U...(f2,w)})

where w; is the access node for subtree 7;. When u is a sink-switch in f, there will also
be a third tree
T =(V(T),E(T)).

We may observe that v is an internal vertex that is part of 7] and u is an internal vertex
of Z3 (when Z5 exists). All possible cases are shown in Fig.[3l
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Fig.3. Cases of Theorem[3l u and v already exist, oy, is source-switch and ¢, is not a switch (a);
u and v already exist, o, is not a switch and ¢, is sink-switch (b); u and v already exist, o, is a
sink-switch and o, is not a switch (c)

If: If 7y # T and wr, € nodes(Tj1...UTy) then each tree in F”\ F has one internal
vertex and Gip, is upward planar in this case. Similarly, if Ty = T then each of the
generated new trees has one internal vertex except 7. Again, Gip, is upward planar
because according to our assumption faces(-7) ﬂHG;) L #£0.

Only if: We show this by proving the contrapositive. If Ty # T and wr, € {h,....T;}
then F’ has two trees % and T that have no internal vertices. Similarly, if Ty = T and
s is not incident to a face in faces(Tj;1...UT) then 5 has no internal vertex but
faces(P) mHGfp, = (. Hence G:p/ will not be upward planar. O

Theorem 4. Let Gy be an upward planar embedded digraph with a single source sg
and a face-sink graph F. We insert an edge e = (u,v) in the face f € Gy, such that both
u and v already exists. If both o, and a, are sink-switches in f then G’¢/ will be upward
planar if and only if one of the following is true.

1. If Ty # T then wr, € nodes(TyU...UTy).
2. If Ty =T then s is incident to at least one face in faces(TyU...UT)

When one of the end-vertices is a new vertices for the new edge e = (u,v), then the case
when u is the new vertex and when v is the new vertex and ¢, is a sink-switch is already
discussed in Theorem2l The only remaining case is discussed in Theorem 3]

Theorem 5. Let Gy be an upward planar embedded digraph with a single source s¢
and a face-sink graph F. We insert an edge e = (u,v) in the face f € Gy, such that v is
a new vertex and oy, is a sink-switch, then G:p, will be upward planar if and only if one
of the following is true.
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1. If Ty # T then wr, € nodes(TyU...UTy).
2. If Ty = T then s is incident to at least one face in faces(TyU...UTy).

4 Algorithm and Time Complexity

We now present our algorithm for testing the upward planarity of a bimodal and pla-
narly embedded G:p/ with a fixed external face and discuss its complexity. The input to
the algorithm is Gy, the upward planar embedded digraph; e, the edge to be added or
deleted; and G¢g, the embedded split-digraph corresponding to Gy. It first constructs a
bimodal and planar G/, if it exists. If we delete the edge e then the resulting G;), will
also be upward planar. The rest of the algorithm checks if G/,, satisfies the conditions
of theorems from the previous section. The algorithm is shown in Algorithm[il

We now show that dynamic upward planarity testing based on Theorem [l requires
Q(n) time when we allow the external face to change and do not transform G,. We
show it by assuming that Gﬁp, is non-upward planar with £ as its external face, where &

was the external face of Gy. The digraph G:p, will be upward planar if there is a face
g# h,suchthat g € HG:p' N faces(T"), where T" is the tree in F’ with no internal vertex.
Recall that HG/W denotes the set of faces that are incident to the single-source in G’d),. In
order to find an alternative external face g in o(n) time, we dynamically maintain HG;) )
by making appropriate additions or deletions in Hg, because recomputing HG;) , from

scratch will take O(n) time. Now, if the new edge e = (u,v) is between a new vertex u
and an existing vertex v = sg, then Hg = {f}. This results in a contradiction because

removing the old faces will take O(n) time. Hence it is not possible to design an efficient
dynamic upward planarity testing algorithm for single-source embedded digraphs using
Theorem[1l

We recall from Sec. 2l that finding a planar and bimodal G, requires O(logn) amor-
tized time. We can check that an insertion satisfies Theorem 2l in constant time. Let p
represent the unique internal vertex wr, of Ty when Ty 7 T and represent the external

face h of Gy when Ty = T. The overall time complexity of Algorithm [I depends on
how efficiently we can check if u is in a particular subtree of Ty. The location of u can
be easily be determined in O(n) time by traversing the nodes of T, but then the time
complexity of Algorithm [I] will equal running the algorithm of Bertolazzi et al. from
scratch. We propose instead an O(1)-time method. We maintain a directed version of
F by rooting each tree T € F at its unique internal vertex or vertex corresponding to
the external face, and then orienting all edges toward the root. Each vertex v # u will
have exactly one outgoing edge and if v = u then it has no outgoing edge. Let out(v)
represent the outgoing edge for a vertex v and let p(v) be the target node for out(v).
Note that, p(f) is always an access-vertex w; for a subtree 7;.

We can check if tt is in a subtree satisfying Theorems[3l [ or[Qlby finding the relative
location of p(f) in the facial boundary of f. This is done by maintaining a linked
list Ly for every face f € Gy, such that every vertex v € f has a corresponding real
number Lz [v]. We construct Ly = {L¢[v1],...,L¢[v]} such that: L¢[v;] < L¢[vi}1], where
vi,..., Vg are consecutive vertices on the facial boundary of f in the clockwise direction.
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Algorithm 1. Dynamic Upward Planarity Test(Gy,e= (u,v), (N}q;)

: Find a planar and bimodal embedding of G', Gy,
if we cannot find a planar and bimodal G/,, then
Return False
end if
if delete the edge e then
Return True
: end if
: if Both u and v already exist and ¢, is sink-switch; or u is a new vertex; or v is a new vertex
and oy, is not sink-switch then
9:  Return True
10: end if
1 g =wr, wheanyéTand/,L:hwhean:f"
12: if u and v exist and ¢, is not a switch and y € {TjH so-., Ty} then
13:  Return True
14: else if u and v exist and both ¢, and o, are sink-switches and p € {T,...,T;} then
15: Return True
16: else if vis a new vertex and o, is a sink-switch and u € {T1,...,T; } then
17:  Return True
18: else
19: Return False
20: end if

e A T i S e

When the insertion of e = (u,v) divides f into f; and f>, we divide Ly to get Ly, and
Ly, such that L[u] and L[v] are present in both of them. We also maintain pointers from
each vertex incident to a face f to its entry in Ly. When we insert an edge e such
that a new vertex v; is added, we can choose a sufficiently small &, letting Ly[v;] =
L¢[vj_1] + €. However, this can result in difficulties associated with high precision real
numbers and hence increase the time complexity in comparing two elements of Ly.
Instead, we suggest using the algorithm by Bender e al. to assign Ls[v;] in O(logn)
amortized time [1]. The algorithm by Bender et al. maintains a dynamic list and allows
a user to compare the order of any two elements in the list. This is done by assigning
tags of O(logn) bits to each element in the list. Hence, any Ly[v;] and L¢[v;] can be
efficiently compared. The following lemma shows that Ly can be used to efficiently
check if u is in the required subtree. This technique will also work when Ly is divided
into two new lists Ly, and Ly, because the algorithm of Bender et al. assigns a tag by
locally relabeling a subset of a list.

Lemma 4. We can check the conditions of Theorems[3| Il in constant time.

Proof. Theorem H]and Bt We need to check if p(f) € {wi,...,wi}, this will be true if
p(f) # wi. Hence p(f) € {wi,....,wi} and G, will be upward planar if and only if

Ly[p(f)] # Lylul. i
Theorem 3t We can see from Fig. 3] that we need to check if p(f) € {wji1,..., Wi}

We have the following 2 cases, based on the fact that p(f) should be between v and u
in the clockwise direction in order to satisfy the theorem.
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1. W}[le]n Ly[v] < L¢[u] then p(f) € {wjs1,...,wi} will be true if Ly[v] < Ly[p(f)] <
Lf ul.
2. When L¢[u] < L¢[v] then p(f) € {wji1,...,wi} will be true if either Ly[p(f)] <
Lylu] < Lyv] or Ly[u] < Lg[v] < Ly [p(f)]-
]

We have yet to show that we maintain the correct orientation of the edges of F in the
presence of updates. The following two lemmas shows that we can do this in constant
time. We define the splitting of a vertex f with respect to the new edge e = (u,v) as the
creation of two new vertices fi and f>, such that fi has edges of f to and fromwy,...,w;
and f> has all edges of f to and from wj1,...,w;. We also define the merging of a
vertex f| and a vertex f, as the creation of a new vertex f, such that f has all outgoing
edges and incoming edges of both f; and f>. We need to split f when as a result of edge
insertion the face f splits into f; and f>, and we need merging when two faces f; and
/> combine to form the face f. Splitting and merging f can be done by splitting and
merging the adjacency list of f.

Lemma 5. Let Gy be an upward planar embedded digraph with a single-source sg.
If we add a new edge e to create an embedded digraph G’¢/ with a single source s¢
such that Gip, is upward planar with the same external face Gy then we can update F
in constant time.

The deletion of an edge e will either merge two faces f| and f; in Gy to form a face
fin Gip,, or when one of the end vertices of e has a degree of 1 and is incident to a
single face f then the facial boundary of f will change. Moreover, we let oy, and o,
represent the angle that is created at u and v respectively as a result of the edge deletion.
We say that with the deletion of an edge e from Gy, F' will change to the face-sink
graph F'. Let T} be the tree in F” that contains f. T]ﬁ, is formed by merging trees in a set
M C F,|.#| > 1 and making some local changes in this merged tree. F' will always
satisfy Theorem[Il When all trees in .# have one internal vertex then the resulting tree
Tf/ will also have exactly one internal vertex. However, if .# contains T, the tree in F
with no internal vertex, then T]i will also have no internal vertex. We let i’ denote either

the internal vertex in T; or the vertex / that corresponds to the external tree.

Lemma 6. Let Gy be an upward planar embedded digraph with a single-source sg. If
we delete an edge e = (u,v) to create an embedded digraph G:p, with a single source
Sg' then we can update F in constant time.

Hence we conclude that Algorithm [T] will take O(logn)-time leading to the following
theorem.

Theorem 6. Let Gy be an upward planar embedded digraph with a single-source s¢.
If we add or delete an edge e to create an embedded digraph G’¢/ with a single source

Sg' then we can check the upward planarity of G’¢/ in O(logn) when the external face is
fixed.
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Open Problems

As further work, we want to investigate if there is a dynamic upward planarity testing
algorithm for embedded digraphs that allows for the external face to change. Moreover,
it will be interesting to investigate the optimality of our algorithm. Our algorithm may
also be relevant to finding a maximum upward planar subgraph of a single-source em-
bedded digraph and we intend investigating this. A slightly more difficult open problem
is to develop a dynamic upward planarity testing algorithm for a single-source digraph
over all its embeddings.
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Abstract. There are several scenarios in which a given drawing of a
graph is to be modified subject to preservation constraints. Examples
include shape simplification, sketch-based, and dynamic graph layout.
While the orthogonal ordering of vertices is a natural and frequently
called for preservation constraint, we show that, unfortunately, it results
in severe algorithmic difficulties even for the simplest graphs. More pre-
cisely, we show that orthogonal-order preserving rectilinear and uniform
edge length drawing is N'P-hard even for paths.

1 Introduction

In several scenarios, a graph drawing algorithm receives as input not only a
graph, but also an initial (possibly partial) drawing. The task is to redraw the
graph while maintaining selected features of the input drawing. Examples of this
kind are embedding-constrained graph layout, shape simplification, sketch-based
drawing, and dynamic graph layout.

A cartographic application of particular interest is the simplification of lines.
Given a polygonal path, the task is to generate a simpler representation of the
path, for instance by omitting vertices [8, [12] (level of detail) or by restricting
the allowable types of segments [I5] [T4] (schematization).

Note that line simplification is also the base case in the design of schematic
metro maps, where admissible slopes may be restricted and few bends are de-
sired. Maintaining a user’s mental map by preserving the orthogonal ordering [9]
of stations and landmarks seems particularly appropriate in this scenario and
has been tried, e.g., in [7]. For layout stability [3] and similarity [5] the relative
position of vertices, strongly related to the orthogonal ordering, is considered,
used [13] and tested [4] helpfull. Alternative constraints include preservation of
the cyclic ordering of neighbors [I6] and distance from original positions using
various metrics |15, [14].

For two different drawing conventions we show that orthogonal ordering is N'P-
hard to preserve, even for paths. This is in contrast to the direction-restricted
models studied in [I5] and [I4], where paths or vertices must be within a given
distance (according to the Fréchet or Euclidean metric) of the original and the
number of bends can be minimized in polynomial time. For orthogonal-order pre-
serving graph drawing, even the decision problems in the rectilinear and equal
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edge-length model are ANP-hard. The former implies, e.g., that bend-minimum
orthogonal layout is hard under ordering constraints. The latter is also interest-
ing, since drawing with given edge lengths is hard for general graphs [I0], but easy
for trees (see, e.g., [2]). With orthogonal ordering constraints, the problem is hard
even for paths.

After some preliminaries, we treat the rectilinear case in Sect. [l and the equal
edge-length case in Sect. @l For convenience, we give additional illustrations of
gadgets in an appendix.

2 Preliminaries

We are interested in redrawing simple undirected paths P = (vq,...,v,) using
straight line edges. An original geometric position (x,,¥,) in the plane is given
for each vertex v € P. Let (x,,y.) be the position of a vertex v in the resulting
layout. By preserving the orthogonal ordering of the vertices we mean that if for
two vertices v;, v; it is zv, < Tu; (Yo, < yo;) in the original layout, z;, < 7,
(1, < y,,) holds also for the resulting layout. '

For a (sub)-path P of [ > 1 edges we call the area between the vertical line
through P’s rightmost vertex and the one through the leftmost vertex the a-
range of P, and analogously the area between the horizontal line through P’s
highest vertex and the one through the lowest vertex P’s y-range.

For the A"P-hardness proofs in this paper we use reductions from MONOTONE
3-SAT. In MONOTONE 3-SAT each clause contains exactly three literals either
all negated or all non-negated. The problem is known to be N"P-hard [11]. Let T
be an instance of the MONOTONE 3-SAT-problem with Boolean variables X =
{z1... 2y} and clauses C' = {C1,Cy, ..., Ck}.

3 Rectilinear Drawings

The first problem we address is the following:

Orthogonal-order preserving rectilinear drawing problem: Given a gr-
aph in the plane, we want to decide whether we can draw each edge either
horizontally or vertically, changing neither the horizontal nor the vertical
order of endpoints, without introducing any intersection other than the com-
mon endpoint of two incident edges and keeping the edge-length positive for
each edge.

Choosing the direction of an edge can force the direction of other edges.
Figure [Tl shows how an edge e; can force the direction of another edge e;. More
formal: We say an edge e; pulls another edge e; horizontally, if e; lies completely
within e;’s y-range, hence, to keep the vertical order of endpoints, e; has to be
horizontal if e; is horizontal. This of course also means that e; cannot be drawn
horizontally if e; is vertical and we say e; pushes e; vertically. Analogously we
say an edge e; pulls another edge e; vertically, if e; lies within e;’s x-range
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e .‘%\. .\eJ.

(a) e; pulls e; horizontally (b) e; pulls e; vertically and
and e; pushes e; vertically e; pushes e; horizontally

Fig. 1. Forcing to have the same direction

and therefore also e; pushes e; horizontally. We use this to construct the main
elements of a gadget for the A/P-hardness proof.

Given a path P = (eq, eq, e3) of three edges as shown in Fig. 2 If there is a
horizontal edge with one endpoint in the z-range of e; and one endpoint in the
z-range of es, at least one of P’s edges has to be drawn horizontally and we call
P with the horizontal edge a horizontal decision unit. Analogously, if there is a
vertical edge with one endpoint in the y-range of e; and one in the y-range of
e3 at least one of P’s edges has to be drawn vertically and we call P with the
vertical edge a wvertical decision unit. We will later use these decision units to
represent the 3-SAT clauses.

*—o
(a) horizontal decision unit (b) vertical decision unit

Fig. 2. Decision units

In Fig. B two edges e; # e; are linked by a third edge [ # e;, e;. We call [ the
horizontal link for e; and ej, if e; pulls [ horizontally and [ pushes e; horizontally
such that e;, e; and [ are all horizontal if ¢; is horizontal (see Fig.[3(a)). Of course
this also means that if e; is vertical, also | and e; must be vertical. A vertical
link is defined correspondingly and shown in Fig. We will use these links
for variables which occur in more the one clause.

3.1 Unions of Paths

We now use the described edge-dependency elements to create a gadget for a
given instance of MONOTONE 3-SAT to prove the following:

Theorem 1. The orthogonal-order preserving rectilinear drawing problem is
NP-hard for unions of paths.
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Fig. 3. Possible links [ for e; and e;

For a given instance I of MONOTONE 3-SAT we create a union of paths as
follows. Each variable will have several corresponding edges. For each positive
clause C; we place a horizontal decision unit U (C;) on the diagonal of the drawing
and for each negative clause C; we place a vertical one U(C;) as shown in
Fig.[d The horizontal and vertical edges of the decision units can be placed on a
horizontal and a vertical line near the borders of the drawing. The diagonal edges
in the decision units correspond to the literals in the decision unit’s clause. We
then place a variable path (e1, ..., e,) (see Fig.[) on the diagonal of the drawing
with n edges corresponding to the n variables in X. For each diagonal edge in a
horizontal decision unit we add a positive link between this edge and the edge in
the variable path corresponding to the same variable and for each diagonal edge
in a vertical decision unit we do the same with a negative link. Because of the
links an edge in the variable path is horizontal in a valid orthogonal drawing if
an edge corresponding to the same variable is drawn horizontally in a horizontal
decision unit and vertical if drawn vertically in a vertical decision unit. We set
a variable true if the corresponding edge is drawn horizontally in the variable
path and false, if it is drawn vertically, such that for a valid drawing all clauses
are satisfied and all other variables can be chosen arbitrary.

Analogously to this, setting the variables such that all clauses are satisfied
will also induce a valid drawing, hence the edges in S can be drawn orthogonally
without intersections keeping the horizontal and vertical order of their endpoints
if and only if I is satisfiable. Thus the problem is proven to be N"P-hard.

The gadget is quite special but we can change it to a gadget with totally
ordered vertices, i.e., no two vertices have the same z- or y-coordinates. In the
horizontal decision units we used horizontal edges e, that we can move away
from their horizontal line, but force them to be later drawn horizontally again,
by attaching at one endpoint a small edge es like shown in Fig. [5(a)| es lies
in ep’s z-range and ey, in ey’s y-range such that the only possibility of avoiding
intersections is to draw e, horizontally and ey vertically. Since e, must be drawn
horizontally, still at least one of the diagonal edges in the decision unit must be
drawn horizontally as well. We place es’s endpoint that is not incident to e, such
that no vertex lies in ef’s x-range, so ey cannot pull any other edge vertically.
Because the horizontal edges of the decision units are placed near the borders
of the drawing we can easily guarantee that ey does not lie in any other edge’s
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Fig. 4. Union of paths for a MONOTONE 3-SAT-instance I
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M
(a) e, and ey (b) ey and ey

Fig. 5. Decision units without horizontal or vertical edges

y-range, so it cannot push other edges vertically. The strategy for the vertical
decision units is the same and shown in Fig. After also making sure, that
no two vertices of different horizontal (vertical) links for the same edge in the
variable path lie on the same vertical (horizontal) line for example by making
each horizontal link shorter than the one exactly above it (likewise for vertical
links), we have a gadget with total ordering that is drawable if and only if the
special gadget was drawable. Thus the problem is proven to be A/P-hard also

for unions of paths with totally ordered vertices.

3.2 Single Path

Theorem 2. Orthogonal-order preserving rectilinear drawing is N'P-hard for

paths.
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Fig. 6. Single path for the instance I

Fig. 7. l. is connecting two positive links

To show N P-hardness also for paths we have to connect the edges. We add
horizontal and vertical edges connecting the decision units and the links for dif-
ferent decision units (see Fig.[f]). They have no effect on the drawability because
edges which are already horizontal or vertical cannot pull other edges. Addition-
ally the horizontal and vertical edges added here do not lie in the range of any
edge not yet horizontal or vertical and therefore cannot push other edges. Links
belonging to the same decision unit are also connected. We take a closer look
at these connecting edges. For two incident edges e/, e; in the same horizontal
decision unit and the edges e;, e; in the variable path corresponding to the same
variables, let e;; and e;;; be the positive links. (See Fig. [ll) For e; and e; not
incident let e, be connecting the positive links. If e} and e} are both drawn hor-
izontally they pull e, (as well as e;; and e;; of course) horizontally. If e, e;
or even both edges are vertical, e, can still be drawn horizontally. Furthermore e,
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can pull all edges e;41...e;_1 vertically so we draw it vertically if and only if
all edges e; . ..e; must be vertical anyway and horizontally otherwise. The edges
connecting the links have no effect on drawability. The edges in the union of
paths are also kept in the connected path, hence the path is not drawable, if the
union of paths had not been drawable.

With the connecting edges we again have vertices with the same z- or y-
coordinates, but because they have no effect on drawability we can just slightly
turn each horizonal or vertical line with two or more vertices. It can be turned
back without conflicts when redrawing the path such that the new connected
path is drawable if and only if the old one was. The problem is N"P-hard also
for paths with double-totally ordered vertices.

4 Drawings with Uniform Edge Lengths

Orthogonal-order preserving equal edge lengths drawing problem:
Given a graph in the plane, we want to decide whether we can draw each
edge with length one changing neither the horizontal nor the vertical order
of the edges’ endpoints and without introducing any intersection other than
the common endpoint of two connected edges.

The constraint that all edges have length one may be exploited tp force some
of them to be drawn horizontally or vetically. We can use the concept of linking
edges like in the previous section. Edge e; in Fig. forces e; to be drawn
horizontally, because otherwise it would not be short enough to have the same
length as e;. We can also define decision units. In the example in Fig. the
path P = {e1, ea,e3} must have length 3 and the only possibility of achieving
this is to draw the framing edges horizontally and vertically to give the path the
room of a 1 x 2-rectangle in which the longest possible path monotone in x— and
y—direction has length 3. It is easy to see that one edge of P has to be drawn
horizontally and the other two edges vertically.

Let a horizontal decision unit be a 3-edge-path monotone in z- and y- direction
contained into a 1x2-rectangle while a vertical decision unit is also a 3-edge-path
monotone in z- and y- direction, but contained into a 2x1-rectangle

P =

e
1]

..

o—o o—o
———" 9

(a) e; forcing e; (b) Three possible drawings

Fig. 8.
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4.1 Unions of Paths

We now use these edge-dependency elements to create a gadget for a given
instance of MONOTONE 3-SAT to prove the following:

Theorem 3. The orthogonal-order preserving equal edge lengths drawing prob-
lem is N'P-hard for unions of paths.

For a given instance I of MONOTONE 3-SAT we create a union of paths as
follows. Like in the proof for the rectilinear graph drawing we place decision
units for the clauses with edges corresponding to the variables in the clause. For
each positive clause we place a horizontal decision unit and for each negative
clause we place a vertical one. Similar to the gadget in Sect. Bl we arrange the
decision units on the diagonal such that all vertical and all horizontal decision
units lie next to each other without being connected. The framing rectangle
edges can be placed on an almost horizontal and an almost vertical line near the
borders of the drawing. For each variable in a negative clause that also occurs
in a positive clause we add a link between the edge in the vertical and the
edge in the horizontal decision unit such that both edges are horizontal if drawn
horizontally in the horizontal decision unit and vertical if drawn vertically in
the vertical decision unit (see Fig.[@). In a valid drawing there is no edge drawn
horizontally in a horizontal decision unit linked to an edge drawn vertically in a
vertical decision unit. We choose the variable corresponding to an edge horizontal
in a horizontal decision unit true and to an edge vertical in a vertical decision
unit false. With this all clauses are satisfied and the other variables can be set
arbitrarily.

For a given solution of I we can create a valid drawing as follows: For each
positive clause we choose one of the variables set true and draw the corresponding
edge in the corresponding decision unit horizontally, the other edges in this
decision unit we draw vertically. From each negative clause we also choose one
variable set false and draw the corresponding edge in the corresponding decision
unit vertically and the other edges horizontally. Now all decision units have a

Fig. 9. The union of paths for the instance I from Sect. BT
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(a) special case (b) total ordering

Fig. 10. Intraclause links

valid drawing. The links have a valid drawing, too, because the linked edges
are both either horizonal or vertical such that the link can have length one.
The union of paths can be drawn with equal edge lengths without intersections
keeping the horizontal and vertical order of their endpoints if and only if I is
satisfiable. Thus the problem is proven to be A’P-hard. Note that we did not use
horizontal or vertical edges and with our arrangement of decision units we can
guarantee total ordering by additionally avoiding links on the same horizontal
or vertical line like we did in Sect. [311

4.2 Single Path

Theorem 4. The orthogonal-order preserving equal edge lengths drawing is
NP-hard for paths.

To show A'P-hardness also for paths we have to add connecting edges and prove
that they have no effect on the drawability. We guarantee this by making sure
that the connected path stays drawable if the union of paths had been drawable.
To make it easier to connect the path segments, we copy the decision units such
that each copy has exactly one link to one copy of another decision unit. For
countpeq(e) being the number of times the variable corresponding to e occurs
in a negative clause and count,,s(e) the number of times it occurs in a positive
clause, each vertical decision unit U must have ) | ., count,,s(e) copies and each
horizontal decision unit U’ must have ) .., county.y(e) copies. The copies are
placed next to each other on the diagonal and linked such that each copy has to
be drawn equally (see Fig. . We refer to these linking edges as intraclause
links.

An interclause link between a copy of a horizontal and a vertical decision
unit lies within a 2x2-rectangle. We first connect the link to two inner anchor
vertices outside of this rectangle. We take a close look at the case where the
third edge of a vertical decision unit is linked with the second edge of a vertical
decision unit (see Fig. [[I]). For the eight combinations of possible drawings of
the decision units, except for one combination the anchor vertices lie exactly
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Fig. 12. Outer anchor vertices

at the same distance from the border of the horizontal decision units’s y-range
and always at the same distance from the border of the vertical decision units’s
z-range. Because of the one exception, we connect the inner anchor vertices to
outer anchor vertices that can always be placed each at the same y-coordinates
with a clause anchor vertex for the horizontal decision unit and at the same z-
coordinates with a clause anchor point of the positive decision unit (see Fig.[I2).
This guarantees, that we can later connect these parts of the path, without
having an effect on the drawability.

It is possible to move the horizontal decision unit and possible intraclause
links by one edge length. Whenever we have to cross the z- or y-range between
the outer anchor vertices when connecting other parts of the path, we can use
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a connector like shown in Fig. [[2] and outside the ranges edges that are either
horizontal or vertical with length already 1. Analogously for any interclause link
such anchor points can be defined because only one of the decision units has to be
movable by at least one edge length. Thus the union of paths can be connected
to a path, that stays drawable, if the unions of paths was drawable.

We can also achieve total ordering for a single path. Before connecting the
union of paths in the special case, we changed it by copying and linking the
clauses. To guarantee that the copies of the decision units for the same clause
are all drawn in the same way, we used intraclause links with vertices on the same
horizontal and vertical line with the vertices of the decision units (Fig.[L0(a)). We
now have to link the copies without using vertices with equal x- or y-coordinates.
We can do this by using shorter and longer links as shown in Fig. on both
sides of the units. The shorter links I1,1] and I3,15 are pulled by e; and ez but
also push them, such that eq,ly,l] and €] must always have the same direction,
just as es,ls, 15 and ef. The longer links Iy and 15 pull e; and e} and are also
pushed by them, hence also es, lo, 15 and e/, all have the same direction and the
two copies have to be drawn in the same way. We now have a new union of
paths that is drawable if and only if the old one had been drawable as well. We
connect the paths exactly like in Sect. and turn the horizontal and vertical
lines through more than one vertex like in Sect. Bl The connecting edges are
always drawable and do not force any other edge, while the edges of the union of
paths are still contained, hence the path is drawable if and only if the union of
paths had been drawable. The problem is A"P-hard also for a single path with
totally ordered vertices along each axis.
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Generalizing the Shift Method for Rectangular Shaped
Vertices with Visibility Constraints*
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Abstract. In this paper we present a generalization of the shift method algo-
rithm [4l6] to obtain a straight-line grid drawing of a triconnected graph, where
vertex representations have a certain specified size. We propose vertex representa-
tions having a rectangular shape. Additionally, one may demand maintainance of
the criterion of strong visibility, that is, any possible line segment connecting two
adjacent vertices cannot cross another vertex’ representation. We prove that the
proposed method produces a straight-line grid drawing of a graph in linear time
with an area bound, that is only extended by the size of the rectangles, compared
to the bound of the original algorithm.

1 Introduction

The shift method [4] is a well-known method among several approaches to obtain a stan-
dard straight-line representation of planar graphs in the graph drawing literature [2/719].
Given a triangulated graph, the original algorithm calculates coordinates for each vertex
on an 2D integer grid such that the final drawing has a quadratic area bound. A linear
time variant is presented in [3]], [6] provides a version for triconnected graphs, [S] for
biconnected graphs.

The approach presented in the following sections is related to a version of the shift
method given in [[L], which allows square vertex representations. In this paper, the shift
method for triconnected graphs [6] is generalized to have rectangular shaped vertex
representations. Furthermore, we demand that the criterion of strong visibility between
adjacent vertices is satisfied, that is, any possible line segment connecting two adjacent
vertices does not cross another vertex’ representation. To maintain the strong visibility
criterion in the shift method, additional shifts have to be introduced. The main contribu-
tion is to prove that the proposed method produces a grid drawing with an area quadratic
in the sum of number of vertices and the sizes of the vertex representations.

The generalized shift method can be used to draw clustered graphs having planar
quotient graphs [8]. Other possible applications include drawing graphs that have ar-
bitrary vertex representations by using the minimal bounding box, or drawing graphs
with labeled vertices, where the positions of a vertex and its label are not known, but
only the size of the region into which they are allowed to be drawn.

* This work was supported by DFG Research Training Group GK-1042 “Explorative Analysis
and Visualization of Large Information Spaces”, University of Konstanz.
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Fig. 1. Vertex representations. Left: singleton Vj, = {v}. Right: |[V4| > 1.

2 Preliminaries

Let G = (V, E) be a graph withn = |V| and m = |E|. A graph is called planar if it has
a crossing-free drawing in the plane. A plane graph is a planar graph with a fixed cyclic
ordering of edges incident to each vertex and a fixed outer face. A plane graph divides
the plane into which it is drawn into connected regions called faces. A triconnected
graph is a graph where the removal of any pair of vertices does not disconnect the
graph.

Let G be a triconnected plane graph. Let 7 = (V1,Va,...,Vk), K < n, be a lmc-
ordering of G as presented in [6]. It is shown that every triconnected plane graph has
a Imc-ordering, and it can be computed in linear time. Let G,k < K, be the graph
induced by V3 U - - - U V}; according to 7, particularly G x = G. We denote by Cy(G},)
the boundary of the outer face of G¥.

Vertices are represented as rectangles rotated by 45 degrees. For all v € V, vertex
lengths [;(v) and [,.(v) are given according to the side lengths of a vertex representation,
as illustrated in Fig[ll Let I(v) = I;(v)+1,-(v). Let P,(v), P-(v), Py(v) and P;(v) be the
left, right, bottom and top corners of v’s representation, with P;(v) = (x;(v), 4 (v)),
etc. As illustrated in Figll] we represent a set Vi, = {v},...,v.},j > 1, as a chain of
the single vertices, where [P,.(vi), P(vi™)],1 < i < j, are horizontally aligned with
distance two. Let {(Vi) = >, oy 1(v), L(Vi) = D v, Li(v), and 1-(V}) accordingly.
Let B(V}) be the minimal bounding box of the representation of Vj. For a singleton
Vi = {vi}, the corner points of B(V},) are exactly the corner points of vj. To obtain a
grid drawing, we assume without loss of generality that /;(v), [, (v) € INg forallv € V
and both are even.

For vertex representations having an area, as the representation given above, we can
define the criterion of strong visibility for graph drawing algorithms:

Definition 1 (Strong visibility). Let v,w € V. Then v is strongly visible fo w, if any
line segment connecting a point within the representation of v to a point within the
representation of w does not cross the representation of any other vertex uw € V with
u # v, w.

Let P, and P; be two grid points on an integer grid and let p(P;, P») be the intersec-
tion point of the straight-line segment with slope +1 through P; and the straight-line
segment with slope —1 through P. In the algorithm, vertices will be placed according
to 1; hence the rotation of vertex representations by 45 degrees. Let L(v) be a set of
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Fig. 2. Installing vertex v. Left: Gr_1. Right: Gj.

dependent vertices of v, that will later on contain the vertices which have to be rigidly
moved with v when v itself is moved.

3 Algorithm

The algorithm starts by drawing G2. We place Vi = {v],v?} and Vz with coordinates
Py(v}) < (0,0), Pu(v?)  (I(Va)+max{li(v}), 1 (v3)}+2-|Va], 0) and Py (B(V2)) —
p (P (v1), P, (v?)). The sets of dependent vertices are initialized with L(v) «— {v}
for v € G5. We proceed by placing the next set Vj, in the Imc-ordering into G4, one
by one, starting with V5. Let Cp (Gg—1) = w1, ..., ws, w1 = vy and w; = v9. Assume
that following conditions hold for G_1, k > 3 :

CD 2z (w;) < 2y (wig1), 1 <i<t—1.

(C2) each straight-line segment (P, (w;), P, (wit+1)), 1 < ¢ < t — 1, has either
slope +1,0 or —1.

(C3) every vertex in G—1 is strongly visible to its adjacent vertices in G_1.

Obviously, these conditions hold for the initial Graph G>. When inserting Vy, letwy, . . .,
Wpy Wpt1, - - -, Wy, - - ., Wy be the vertices on Cop(Gr—1), where w,, is the leftmost and
wyq the rightmost adjacent vertex of Vj, in Gj,—1. Similar to [316]], install V;, = {v,i, e
v!} by applying the following steps, see Fig Dl

Step 1. forall v € UZ pr1 L(w;) do z(v) — z(v) + (Vi) + [Vi|

Step 2. forall v € UZ:q (w;) do z(v) — z(v) + (Vi) + 1, (Vi) + 2 |[Vi| + A
Step 3. Pi(B(Vi)) < p(Pr (wp) , Fr (wg))

Step4. Forone j/,1 < j' < SetL(U‘;i/) — { (U =p+1 L(w ))};
for all other j/ # j/,1 < j" < jset L(v] ) — {vl }

Actually, if Vj is not a singleton, the bottom corner of B(V}) is placed too low
by |Vi| — 1. Nevertheless, this is sufficient since every vertex in Vj, is separated by
distance two, and therefore the lowest possible bottom corner of any v € V}, is at least
|Vi| — 1 higher than P, (B(V};)). Assume for the moment that A = 0 in step 2. Then all
conditions are satisfied for G, if {wpt1,...,we—1} # 0, see [8]. However, if there are
no inner vertices between wy, and w, on the outer face of Gy_1, and ;(wy), I (wq) # 0,
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condition (C3) is violated in G, by placing V;, in steps 1 to 4, as wy is not strongly
visible to w, anymore after insertion. Since step 1 will be omitted in this case, the
problem can only be addressed by introducing an extra shift A in step 2, thus placing
Vi high enough in step 3 such that the strong visibility between w, and w, is not
violated in Gi,.. The following Lemma shows how much extra shift is needed, when in-
stalling V.

Lemma 1. Let Vi, = {vi}. Let {wps1,...,we—1} = 0 and l;(wp),l,(wy) # 0. Then
wyp will be strongly visible to wq in Gy, if an extra shift amount A is added in step 2
with

Ui (wyp)-le(w . .
[2 . ll(wpl)(-&-li)()wqg-i-?r)(wq)—‘ if [Pr(wp), Pr(wg)] has slope +1 in G_1

L (wp)-lr(wg)— . .
A= [2e o il i [P (wy), Pulw,)] has slope 0 in Gy

Li(wp) 1y (wg . .
[2 . ll(wpgilrgwpgﬂz(wq)—‘ if [Pr(wp), Pr(wg)] has slope —1 in Gi_1

Proof. Let 6 be the height, with which v, must be lifted upwards to guarantee strong
visibility. Assume [P, (wy,), P,(w,)] has slope +1 in Gj_1, as illustrated in Fig 3 (left).
The gray rectangle indicates the position of vy in G, without introducing an extra shift.
Let 6,y = V2 - [P-(w,), P/(w,)]. Observe that § is largest, if 6,, has the smallest
possible value, and that at the same time 6,, > {;(wg). Thus, assume 6,4 = I;(wy). By
the theorem on intersecting lines, we have

5 Iy (wq) _ li(wp) - [wg|r

W(wy) ~ U(wy) + Lwg) + 1 (wg) 0 Liwy) + li(wg) + Lo(w,)

It is easy to see that ¢ is analogous, if the line segment [P, (wy), P(w,)] has slope —1
in Gg—1. Assume [P, (wp), P;(wq)] has slope 0 in Gi_1, as shown in Fig[3] (right). In
this case, P (wp) and Pj(wq,) are separated by a horizontal line segment with length
two. Assume that [;(wp) < I.(wy), then

_ ll(wp) ll(“’;n)/2 +1 lr(wq)_ll(“’p)
6+1= z (2 y (z,(q)upzl/2+2+zr(wq)/2 : 2
_ bwp)-tr(wg)—
S 0 = (w44

The same value is obtained, if {;(w,) > I,.(w,). Overall, if an extra shift A = [26] is
introduced, vy, is lifted by at least 6, and hence w,, and w, will be strongly visible to
each other in Gy,. a

Observe that, if V}, is not a singleton, we have to add 2- (|Vi|—1) to A, since Py(B(V%))
is |Vi| — 1 lower than the bottom corner of a singleton vy, as indicated in Fig[3l Note
also that, if A is an odd number, it has to be increased by one to maintain the grid
drawing property.

4 Analysis

The following theorems state the bounds for the drawing area of the proposed method,
and its time complexity.
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Fig. 3. Geometry for the case {wpy1, ..., wq—1} = 0. Left: slope +1. Right: slope 0.

Theorem 1. The total grid area of a drawing of a triconnected plane graph G = (V, E)
with given vertex lengths 1;(v),l.(v),v € V produced by the proposed method is in

O (IVI+ X ey 1)".

Proof. The width of the initial layout of G2 is clearly bounded by 2 - |Va| + Az +
S22 1(Vi), with Ay = max(l;(v}),1,(v?)). Whenever a set Vj, is added, the width
increases by 2 - |Vi| + Ay + 1(V}), where Ay, denotes the extra shift in step k. Thus,
the total width is bounded by 2 - [V + 32, oy 1(v) + 1, A,

Assume that all V4,2 < k£ < K, are singleton, and that, instead of shifting ex-
actly with A = [2§] when installing V},, we shift with either max(l;(w,), l-(wg)) or
min(l;(wp), I (wq)). If [Pr(wp), Pr(wg)] has slope +1 in Gj—1 and

1. Li(wp) > 0pg + 1r(wy) 6 < li(wp)/2, A= 1(wp)
2. Ir(wq) < li(wp) < bpg + lr(wg) N o<1y (wq)/Q en A=l (wq)
3. L(wg) > Li(wp) + 6pg 6 <lI, (wq)/2 A =1, (wg)
4. Lj(wp) < lp(wg) < li(wp) + bpg 6 < li(wp)/2, A= j(wp)
are sufficient to maintain strong visibility. If [P, (w, ), P,(w,)] has slope —1 in G_1,

the bounds are analogous. If [P, (wy,), P;(wq)] has slope 0, 6 is bounded by max (I; (w,),
I (wq))/2, therefore we assume to shift with the maximum length in this case. To find
an upper bound for Y | A we use amortized analysis.

Consider the part of > A which is contributed due to shifting with the maximum
length of /;(w,) and I,(wy), i.e. cases 1 and 3, and the case where the slope of
[Pr(wp), Pi(wg)] is 0. It is easy to see that, after one of these cases occured on one
side of a vertex v at step k, the length of v on the same side only contributes to another
extra shift at step k' > k as the minimum length of the two adjacent vertices of V.
Hence, this part of ) | A is bounded by ), -y I(v).

For determining the part of » . A which is contributed due to shifting with the mini-
mum length, let each vertex v have two amounts left (v) and right(v), that it can spend
to support one extra shift on its left side and one on its right side. Set left(v) < ,.(v)
and right(v) < {;(v). Let w, and w, be the neighbors of V; on the outer face of
Gi—1 at step k with {wpy1,...,we—1} = 0. Assume [P, (wy), P;(wg)] has slope +1
in G—1. Since in this case w, was inserted later than wy,, it cannot have spent left (w,),
because otherwise there would be an inner vertex between w, and w, on the outer
face. If min{l;(wy), I (wq)} = I (w,), then w, pays for the extra shift with left(w,).
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Suppose now that min{l;(w,), I (wq)} = li(wp). If w, has not used right (w,,) so far,
then it just pays for the shift. If on the other hand right(w,) has already been spent
(e.g. to insert wy), then wy uses left(wq) = l.(wq) > Ui(wy) to pay the extra shift.
The payment is analogous if [P, (wy), P;(w,)] has slope —1 in G_1. Thus, the total
amount of extra shift is sufficiently paid, and this part of > A is therefore also bounded
by > ,cv [(v). The additional amount of extra shift which is contributed, if V; are not
singleton, is clearly bounded by 2- >, (|[Vi| — 1) <2 |V].

Since G = G satisfies condition (c2), the height of the drawing is bounded by half
of its width plus the part of vertices v{ and v7 beneath the x-axis. 0

If the strong visibility constraint has not to be maintained, the drawing area is exactly
(l(vi);rl(vf) + 2w> v (max(lr(vé),lz(vf)) + w),w _ \V\—2+Z£2 l(‘;),since no extra
shift is needed in this case. It remains an open problem to give a worst-case scenario
and sharp area bound if strong visibility has to be guaranteed.

The linear time implementation of the original shift method [3] can easily be ex-
tended to our problem. Since the determination of the extra shift amount takes only
constant time, the overall asymptotic complexity is not changed.

Theorem 2. Given a triconnected plane graph G = (V,E),n = |V
method can be implemented with running time O(n).

, the proposed
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Placing Text Boxes on Graphs*

A Fast Approximation Algorithm for Maximizing Overlap
of a Square and a Simple Polygon

Sjoerd van Hagen and Marc van Kreveld

Department of Information and Computing Sciences
Utrecht University, The Netherlands

Abstract. In this paper we consider the problem of placing a unit
square on a face of a drawn graph bounded by n vertices such that the
area of overlap is maximized. Exact algorithms are known that solve this
problem in O(n?) time. We present an approximation algorithm that—
for any given € > 0—places a (1+¢)-square on the face such that the area
of overlap is at least the area of overlap of a unit square in an optimal
placement. The algorithm runs in O(i nlog?® n) time. Extensions of the
algorithm solve the problem for unit discs, using O( loi(\% 9n log? n) time,
and for bounded aspect ratio rectangles of unit area, using O( 512 nlog? n)

time.

1 Introduction

The annotation of drawn graphs comes in different forms. Vertices can be la-
beled with their name or index, edges may be labeled with extra information, or
faces of the embedded graph may receive a label. The analogy with cartographic
label placement is clear: Here we have point feature labels, linear feature labels,
and areal feature labels. Areal features are for instance lakes, national parks,
provinces, and countries.

A related cartographic question is that of annotating regions of a map with
extra information instead of names. These can be text boxes, pie charts, his-
tograms, or other diagrams that show statistics about that region. If the anno-
tation does not fit inside the region, it must obviously overlap parts of other
regions. To achieve the best possible association of the correct region and the
annotation, it is desirable to have the largest possible overlap in area of the
annotation and that region. A possible positive side effect is that not too much
of the region boundaries is covered by the annotation, and if more regions are
annotated, that their annotations usually do not overlap.

One can abstract an annotation by a rectangle, square, or circle of some given
size, which represents the bounding shape of the annotation. A region on a map
is typically a simple polygon (although sometimes it has holes). The algorithmic

* This research is partially funded by the Netherlands Organisation for Scientific Re-
search (NWO) under BRICKS/FOCUS grant number 642.065.503.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 284 ‘ 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Some Graph Drawing Window

me: Agraj
Vertices: 27

J

Fig. 1. Left, annotation of two faces by text boxes. Right, annotation in the outer face
of a drawn graph.

question that arises is: How do we compute the placement of a simple shape with
a simple polygon to maximize area of overlap efficiently? Van Kreveld et al. [16]
studied this problem (along with some related problems) in the context of placing
diagrams on maps. It was shown that the maximum overlap placement of a unit
square on a simple polygon P with n vertices can be computed in O(n?) time.
It was also shown that the placement problem with one degree of freedom—for
example, the y-coordinate of the top of the unit square is fixed—can be solved
in O(nlogn) time.

The faces of a drawn graph are also simple polygons, and the annotation of
a face is the same problem as the annotation of a region on a map. Hence, the
problem we address in this paper is motivated by both automated cartography
and graph drawing. Figure [Il gives two examples where faces are annotated,
and maximizing overlap with a face appears reasonable for the best text box
positioning. Annotation—or label placement—has been studied in the context
of graph drawing various times, see for instance [G[7JT4/19].

If one considers a quadratic time solution to the area of overlap maximization
problem to be too slow, there are several approaches to deal with this. Firstly,
one can argue that faces in typical graphs do not have large complexity, so an
algorithm that takes time quadratic in the number of vertices of the face is
no problem. In some cases this is obviously true, like drawings of triangulated
graphs. In other cases it is not true, like drawings of trees with a few additional
edges or other sparse planar graphs.

Secondly, one can make realistic input assumptions that allows one to show
that for inputs satisfying those assumptions, a provably more efficient solution
exists. This idea has led to a large body of research in computational geometry.
For our problem, this idea does not seem to work. For standard definitions of
realistic input polygons [8I20/T5], the so-called placement space of a unit square
remains combinatorially quadratic in size.

Thirdly, one can use approximation. For example, one could try to find the
unit square placement that has area overlap with P of at least ¢ - A, for some
fixed ¢ < 1, where A is the area of overlap of the optimal placement. Then we
have a c-approximation algorithm (which is the optimal algorithm if ¢ = 1).
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An approximation scheme is an algorithm that, for any ¢ > 0, computes a
placement with area overlap of at least (1—¢)- A. Approximation algorithms and
approximation schemes only make sense if they are significantly more efficient
than the corresponding exact algorithm.

It appears hard to develop a subquadratic time approximation algorithm for
our problem, due to the fact that the optimal overlap can be very close to 0.
However, we can show that if the overlap is at least some constant A > 0, then
we can compute a placement that guarantees an overlap of (1 —e¢) - A, for any
fixed € > 0. The algorithm runs in O( nlog? n) time. Note that assuming that
the area of overlap is at least a constant is in a sense a realistic assumption: For
instances where the optimal overlap is very small, the solution to the problem
is not suitable for a good annotation anyway.

We solve our problem via a detour. We show that for any fixed § > 0, we can
compute a placement of a square of size 1 4+ § whose area of overlap with the
simple polygon P is at least Aqpt, where Agpe is the maximum area of overlap
that can be achieved for the placement of a unit square. When we shrink the
(1+49)-square to a unit square, we can lose an area of overlap of at most 26 + 62.
Hence, given € > 0 and A > 0, we choose § = A - €/3 and compute a placement
of a (14 d)-square with the algorithm we present in this paper. Any unit square
inside the (1 + 6)-square we found will have area of overlap at least (1 —¢) - Aopt,
so this implies a (1 — ¢)-approximation algorithm.

Our algorithm can be extended to compute the placement of a unit disc with
maximum area of overlap approximately in O(log(\}/ 2 nlog®n) time, again as-

suming that the area of overlap is at least some constant. We note that for
this case, no exact algorithm exists at all, due to the algebraic complexity of
maximizing the analytic form of the area-of-overlap function. The algorithm
can also be extended to place a unit area rectangle with bounded aspect ratio
in O( 2 nlog n) time (for rectangles with fized aspect ratio one can use the
algorlthm for squares after scaling). This can be useful for elastic labels, an ab-
straction for text boxes of a fixed length text where the width of the text box is
also free proposed by Iturriaga and Lubiw [T2/T3].

In computational geometry, there is a large body of research on optimal match-
ing of two shapes [21I]. One measure for similarity is the area of overlap, and
hence, research has been done on maximizing this measure under various trans-
formations. For translations only, Mount et al. [I7] gave a O((nm)?) time algo-
rithm for the maximum overlap of a simple n-gon and a simple m-gon. For two
convex polygons, an ((n + m)log(n + m)) time algorithm exists [2].

There are also several papers that use approximation to find a unit square or
disc that covers the maximum number of points of a given point set [OJI0]. A
main difference with our problem is that we optimize a (continuous) area measure
instead of a (discrete) point count measure. Other related research is on finding
a largest area rectangle inside a simple polygon, for which Daniels et al. [5] give
an O(n log? n) time algorithm, and finding the largest similar copy of a convex
polygon inside a simple polygon [I]. This would correspond to scaling such that
the annotation just fits inside the face. For text boxes this implies changing the
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PNQ

N

Fig. 2. Example of a simple polygon P intersecting a square @Q); the area of intersection
can be decomposed into trapezoids

font size, which may not be desirable. Finally, there are many papers on the
topic of label placement in the algorithms and automated cartography research
fields, but it is beyond the scope of this paper to review them.

We start with a brief description of the quadratic time exact algorithm from
[I7/16] in Sect.since we will need ideas from it. In Sect. 3l we present the approx-
imation algorithm. We first give a version whose running time is O(! nlog®n).
Then we show how to use Jordan sorting to improve the total running time
to O(i nlog? n). We present the extension for circles and bounded aspect ratio
rectangles in Sect. @l Concluding remarks are given in Sect.

2 An Exact Quadratic-Time Algorithm

In this section we sketch the approach from [I7JI6] to compute an exact solution
to the maximum overlap placement of a unit square on a simple polygon. It
is based on the fact that there are quadratically many combinatorially distinct
placements of a square @ on a simple polygon P.

The combinatorially distinct placements of @ on P are described by the differ-
ent pairs of edges—one from ) and one from P—that can intersect. We use the
top right corner of @) as a reference point ¢ to characterize the possible positions
of @. When the pairs of intersecting edges are fixed, the reference point still has
a little freedom to move, see Fig. 2l As long as the intersecting edges of P and
@ remain the same, changing the position of ¢ will change the area of P N @,
but in a prescribed manner. We can express the area of PN @ as a quadratic
function in the z- and y-coordinates of the reference point q. Specifically, it has
the form:

ar® +bry+cy? +dr+ey+ f .

This is true because the overlap can be decomposed into a set of trapezoids
whose vertices change linearly in z and y, see Fig.[2l Therefore the area changes
as a quadratic function. If () were a circle, the area-of-overlap function would
have a non-constant description involving square roots, and maximizing the area
of overlap would not be possible exactly.
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Fig. 3. The 1-dimensional problem of placing a unit square to maximize area of overlap.
The first four positions where the area-of-overlap function changes are shown.

Suppose the reference point ¢ and therefore the square @) translates in the
plane. The quadratic function giving the area of overlap stops to be valid when
the pairs of edges of @ and P that intersect change. Then a different quadratic
function will describe the area of overlap, that is, the coefficients a,b,c,d, e, f
are different. This happens when:

— an edge of () passes over a vertex of P, or
— a vertex of @ passes over an edge of P.

Let IT be the subdivision obtained from all positions of ¢ where an edge of @
coincides with a vertex of P, or vice versa. II is called the placement space of
@ with respect to P. In each face of II, some fixed quadratic function describes
the area of overlap of () and P.

Theorem 1. (Adapted from [I7J16]) Given a simple polygon P withn edges and
a square Q, the placement space of Q@ with respect to P can be constructed in
O(nlogn+ N) time, where N = O(n?) is the number of combinatorially distinct
placements.

It can also be shown that the quadratic function that is valid in each cell of
II can be computed in quadratic time by a suitable traversal of the cells of I1.
Given IT and the quadratic function for each cell, we can compute the placement
of @ that maximizes the area of overlap in O(N) = O(n?) time.

In case we are only interested in square placements where the reference point
is restricted to lie on a given line, the placement space is 1-dimensional and
there are only O(n) combinatorially distinct placements, see Fig. Bl The optimal
placement can now be solved by a sweep of the square with its reference point
on the line, and updating the quadratic function. Since we must sort the O(n)
events where the quadratic function changes, this takes O(nlogn) time.

3 An Approximation Algorithm

In this section we compute a placement of a (1 4 €)-square on a simple polygon
P with n vertices so that the area of overlap is at least the maximum area of
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Fig. 4. If the optimal unit square intersects the split line ¢, then one of the 1/e sweeps
will consider (1 + €)-squares (like the one shown dotted) that contains it

overlap of a unit square and P. The solution is based on divide-and-conquer,
where dividing gives rise to running the 1-dimensional exact algorithm for a
(1 + €)-square a number of times. The algorithm will at some point consider a
(14 ¢€)-square that contains the unit square in its optimal placement. This leads
to the desired approximation guarantee.

Divide-and-conquer. The divide-and-conquer algorithm chooses vertical lines to
partition the simple polygon into pieces. This will give vertical slabs in the plane.
Every split will guarantee that the number of vertices in the interior of the slab is
at least halved. So we determine the median of the z-coordinates of the vertices
and choose a vertical line ¢ through this vertex.

We would like to create two subpolygons and recurse on them, but it may be
that the optimal unit square intersects ¢, and we must take this possibility into
account. This is done by running the 1-dimensional algorithm 1+1/e times The
1-dimensional algorithm is run with the reference point g of the (1 + €)-square
on ¢, and on vertical lines at distances ¢,2¢,3¢,...,1 4+ € to the right of £, see
Fig. @ We observe:

Observation 1. If the optimal unit square intersects £, then at least one of the
1+ 1/e sweeps with a (1 + €)-square will give a position where a (1 + €)-square
contains the optimal unit square.

1 'With slight abuse of notation, we assume that 1 + 1/e is an integer, but technically
we should use rounding. Asymptotically the running time is not affected.
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4 £ W4

Fig. 5. Splitting a simple polygon by a line and repairing the parts into two simple
polygons

Hence, in O(! nlogn) time, we find a (1 4 €)-square whose area of intersection
with P is at least as large as the optimal unit square that intersects £.

Splitting the polygon. Now we can divide the problem into two subproblems by
splitting the simple polygon. We may split the polygon into more than two parts,
but we can repair the situation while using only vertices on the splitting line, see
Fig. B The resulting polygons may have edges that coincide on the split lines,
but this degeneracy does not influence the algorithm. It is standard to perform
such a split and repair in O(nlogn) time. Observe that the number of vertices
interior to each of the resulting slabs is at least halved. The divide-and-conquer
algorithm will find a (1 4 €)-square strictly left of ¢ recursively, a (1 + €)-square
strictly right of ¢ recursively, and a (14 €)-square that intersects £. The one with
largest area of overlap with P is returned.

Recall that a 1-dimensional sweep has two types of events: An edge of @
passes over a vertex of P, or a vertex of () passes over an edge of P. In a slab,
a subpolygon of P has interior vertices and boundary vertices. We call an edge
of P that intersects a slab short if it has an endpoint that is an interior vertex,
and we call it long if both endpoints are boundary vertices. Long edges cross
the slab completely. The divide-and-conquer algorithm takes care of halving the
number of interior vertices, and therefore the number of short edges is bounded
as well. But the number of long edges can become large, and these also give
rise to events in the 1-dimensional sweeps. Ultimately, the divide-and-conquer
algorithm bottoms out when a slab has no more interior vertices, or when its
width is at most unit. The final O(n) slabs may all be crossed by a linear number
of edges, leading to an algorithm that takes at least quadratic time in the worst
case.

Free splits. To control the number of long edges in recursive subproblems, we
use the concept of free splits, introduced by Patterson and Yao to prove bounds
on the size of binary space partitions [I§]. We will take measures to eliminate
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Fig. 6. After splitting along /¢, the free split along ez is done in the left part, and then
free splits along e; in the bottom left polygon and along ez in the top left polygon.
Two free splits are performed in the right part as well. In the right figure, the sweeps
are shown by dashed segments parallel to es.

long edges when they appear after a split with a line ¢, so that there are no long
edges when we choose a next split line.

Let S be a slab with no long edges. We determine the median z-coordinate
of the interior vertices, which defines a vertical split line ¢, and perform 1+ 1/e
sweeps as described above. Then we split the simple polygon P into two polygons
Biete and Pigne, as described above as well. For each resulting polygon, say, Peft,
we determine the long edges e, ..., e from bottom to top, see Fig. [6l We use
these edges to partition Pes further, also in a divide-and-conquer fashion. So we
select ey, /21, perform a number of sweeps parallel to this edge and then split Pleg
at e[y 21 into two subpolygons that are handled recursively. Since the diameter
of a unit square is v/2, we must now perform up to v/2/¢ sweeps with ¢ on lines
that are a distance € apart, see Fig.[6l Free splits are performed in the same way
as splits along vertical lines; no additional cases occur.

Running time. To prove an upper bound on the running time of the algorithm,
we first observe that the number of free splits is O(nlogn) throughout the whole
algorithm. This is standard; see for instance Chapter 10 in [3], or [4UIg].

Lemma 1. Assume that a slab contains m interior vertices and no long edges.
The time needed to perform the vertical split and all necessary free splits is
O(i mlog? m), including the time for the sweeps.
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Proof. We already argued that the vertical split takes O(} mlogm) time. We
may have created O(m) long edges while doing this. For each free split, each of
the O(m) interior and boundary vertices appears in only one of the two new poly-
gons that is created. Each vertex creates an event in O(i logm) 1-dimensional
sweeps, because the recursion depth of the free splits is O(logm). Hence, the
O(i m) sweeps due to free splits encounter O(i mlogm) events together, lead-
ing to O(! mlog? m) time for all free splits. |

The lemma can be used to prove an O(i nlog® n) time bound for the approxi-
mation problem: The recurrence that describes the efficiency of the algorithm is
given by T'(n) = 2-T(n/2) + O(} nlog?n) for n > 1 (and T(1) = O(1)), which
solves to O(! nlog®n) time. However, we can remove a logarithmic factor.

Jordan sorting. We next improve the overall running time to O(i nlog? n) by
applying Jordan sorting to the 1-dimensional problems. Jordan sorting is a linear
time algorithm which, given a simple polygon and a line, sorts their intersection
points along the line [I1].

The 1-dimensional sweep algorithm to find the (1 + €)-square that has the
largest area of overlap with P takes O(nlogn) time due to the sorting of the
events. If the events were sorted, we could update the quadratic function in
constant time because at most three trapezoids can appear or disappear during
an event. We only have to perform some simple additions to the coefficients
a,b,c,d,e, and f based on these changed trapezoids to get the new quadratic
function that is valid. This fact was already used in [I6] to generate the placement
space with all quadratic functions.

To obtain a sorted list of events, recall that there are two types of events: an
edge of ) crosses an vertex of P, and a vertex of () passes a edge of P. The
former type will be obtained in sorted order by pre-sorting and maintaining two
sorted lists, the second type by Jordan sorting.

For the first type, we perform preprocessing for the algorithm by sorting all
vertices of P by z-coordinate into a list L., and also by y-coordinate into a list
L,. Whenever we perform a split, by a vertical line or a free split, we traverse
each list and generate two new sorted lists for the two subproblems that appear.
This will take time linear in the length of the list, which is linear in the number
vertices in the slab or trapezoid that is split.

For the second type, we compute the event just before performing the 1-
dimensional sweep. We perform Jordan sorting four times, once for each path of
a vertex of @; this path is a line segment. We merge these sorted lists into one,
and also merge them with the events of the first type. In total, we need six list
merges to obtain all events in sorted order. Hence, a 1-dimensional sweep can
be performed in linear time.

Summarizing the results of this section, we conclude:

Theorem 2. Given a simple polygon P with n vertices and a constant € > 0, an
O(i nlog? n) time algorithm exists that computes a placement of an azis-aligned
square with side length 1+ € of which the area of overlap with P is at least the
area of overlap of any axis-aligned unit square with P.
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4 Extensions to Circles and Rectangles

Suppose we wish to place a circular annotation on a region of a map or a face
drawn graph, like a pie chart. We can adapt the approximation algorithm given
in previous section to this case. The idea is to choose a suitable integer k, and
adapt the algorithm for squares to work for regular k-gons.

We will use a regular k-gon that is inside a diameter (1 4 €)-disc but outside
a (1 + §)-disc. Instead of performing 1-dimensional sweeps with a distance ¢ in
between, we must use a distance of €¢/2 in between. Finally, we need to maintain
k sorted lists that give the order in which the edges of the regular k-gon will
cross the vertices of subpolygons of P. The extensions are straightforward.

It is well known that the choice k = ©(1/+/¢) satisfies our requirement of
approximating a disc well enough. Following the analysis for the square case, we
notice that merging k sorted lists with O(nk) events in total takes O(nk log k)
time. Hence, we conclude:

Theorem 3. Given a simple polygon P with n vertices and a constant € > 0,
an O(loge(\}ge) nlog? n) time algorithm exists that computes a placement of a disc
with diameter 1 + € of which the area of overlap with P is at least the area of
overlap of any unit disc with P.

Next we discuss the extension to placing an axis-aligned rectangle with aspect
ratio 7 : 1 or less and unit area (assuming r > 1). If the aspect ratio were
fixed, we could simply scale the input so that the problem reduces to placing an
axis-aligned square. Our algorithm will test a fixed number of aspect ratios (de-
pending on € and r), scale the input appropriately, and run the square placement
algorithm. We will asume that » = O(1) since this will be true in any practical
context.

Suppose that the optimal unit area rectangle is Rop¢. Then we wish to find a
rectangle with area at most 1 + €, aspect ratio at most r : 1, and that has area
of overlap with P that is at least as much as the area of overlap of Ryp;. We
must make sure to that our algorithm tries some rectangle during a sweep that
contains the optimal rectangle Rope.

We will try the following rectangle widths (or heights): (14 2¢), (14 5%), (1+
€),(L+ £),... and the corresponding heights (resp. widths) to get an area of
1 + €; these corresponding heights (resp. widths) increase by less than e/(5r).
We continue until the first value greater than /(1 + €)r.

One of the rectangles we try will be larger by €/(5r) in height and width
than Rope but at most larger by 2¢/(5r). If the optimal rectangle Ropt has size
h x (1/h), then 1 < h < y/r, and a rectangle of size (h + 2¢) x ((1/h) + 2) has
area less than 1 +e.

If we run the 1-dimensional sweeps with lines at distance €/(5r) in between,
then we will encounter a rectangle with the desired properties that contains Ropt.
Since r is assumed to be constant, we run the algorithm for squares O(1/¢) times.
We conclude:

Theorem 4. Given a simple polygon P with n vertices, a constant € > 0, and a
value r > 1, an O(El2 nlog2 n) time algorithm exists that computes a placement
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of an axis-aligned rectangle with area 1 + € and aspect ratio bounded by r : 1 of
which the area of overlap with P is at least the area of overlap of any axis-aligned
unit area rectangle and aspect ratio bounded by r : 1 (assuming r = O(1)).

5 Concluding Remarks

We have studied the problem of annotating a region on a map or a face of a
drawn graph by a square, circular, or rectangular shape while maximizing the
area of overlap. This will give a good association between the face and the shape,
may avoid unnecessary covering of edges by the annotation, and if more faces are
annotated, may help to avoid overlap of different annotations. It was known that
the problem can be solved in O(n?) time if the face has n boundary vertices. We
showed that a placement of a shape that is larger by a factor 1 + € can be found
in O(nlog? n) time that has at least the area of overlap of the optimal placement
of the original shape (ignoring factors depending on the constant ¢ > 0).

With the same approach, we can compute a placement whose length of overlap
with the boundary of the face is minimized. For this problem to make sense, we
must restrict the space of all placements somehow, otherwise the optimum can
lie fully outside the face. We can for instance require that the center of the
shape lies inside the proper face. For each combinatorially distinct placement,
the length of overlap changes linearly in the coordinates of the reference point,
but otherwise, the solution approach is the same, and we get the same running
time bounds.

The main open problems are improvements in the running time. Firstly, we
suspect that it must be possible to remove one log-factor from the running time,
but it is even conceivable that both log-factors can be removed. For the disc and
rectangle versions, we may be able to improve the dependency on ¢, or generalize
to rectangles of unbounded aspect ratio.
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Abstract. In this paper, we consider the problem of removing overlaps
of labels in a given layout by changing locations of some of the over-
lapping labels, and present a new method for the problem based on a
packing approach, called multi-sphere scheme. More specifically, we study
two new variations of the label overlap problem, inspired by real world
applications, and provide a solution to each problem. Our new approach
is very flexible to support various operations such as translation, trans-
lation with direction constraints, and rotation. Further, our method can
support labels with arbitrary shapes in both 2D and 3D layout settings.
Our extensive experimental results show that our new approach is very
effective for removing label overlaps.

1 Introduction

Graph Drawing has been extensively studied over the last twenty years due
to its popular application for visualization in VLSI layout, computer networks,
software engineering, social networks and bioinformatics. As a result, many algo-
rithms and method are available. Note that most algorithms in Graph Drawing
deal with abstract graph layout, where each node is represented as a point.
However, in many real world applications, nodes may have labels with different
size and shape. For example, some nodes have very long text labels or large
images, and they can be represented as boxes or circles as in UML diagrams.
Consequently, direct use of layout algorithm for abstract graph often leads to
overlapping of nodes (i.e. labels) in the resulting visualization.

In order to visualize graphs with different node sizes, the following three steps
approach is used in general: (1) a reasonably good initial layout is created us-
ing a graph layout algorithm without considering node size; (2) labels of nodes
are added in the layout; (3) the post processing step to remove node overlap-
ping is performed. The problem of removing node overlaps has been well studied

* This research was partially supported by Research Fellowships of the Japan Society
for the Promotion of Science for Young Scientists and a Scientific Grant in Aid from
the Ministry of Education, Science, Sports and Culture of Japan.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 296 ‘ 2009.
© Springer-Verlag Berlin Heidelberg 2009



Removing Node Overlaps Using Multi-sphere Scheme 297

by the Graph Drawing community. These can be classified into three different
approaches: force-directed method [BIGJIITT], Voronoi Diagram method [BIIT],
and constrained optimization method [412]. Further, they differ in their opti-
mization criteria considered. The variations of Force Scan algorithm based on
the force-directed method [6J9] preserves orthogonal ordering, the top-down and
left-right relationship between nodes. Note that the problem of transforming a
given layout of a graph with overlapping rectangular nodes into a minimum area
layout without node overlapping which preserves the orthogonal order is proved
as NP-complete [6]. The constrained optimization techniques using a quadratic
programming approach minimizes the total change of node positions while sat-
isfying non-overlap constraints [4/12]. Note that most of the methods solve the
problem of overlap removal of rectangular labels with translation only.

We present a new method for removing overlap of labels based on multi-sphere
scheme [§], a general algorithmic framework for solving the problem of packing
objects both in two and three dimensions. Based on this scheme, each label
in a given layout is approximated by a set of circles or spheres and a penalty
function of the overlap between two labels is introduced. By minimizing the
penalty function using a quasi-Newton method [I0], we compute a layout of
the set of circles or spheres as an approximate solution to the original problem.
Our new approach is very flexible, and has the following three advantages over
previous work:

1. Our approach can handle labels with arbitrary shapes. Note that previous
methods can deal with only rectangular labels. However, in our approach, we
can treat any non-rectangular-shaped labels by approximating each of them as
a set of circles. We can also place given labels inside a specified area with a
non-rectangular boundary.

2. Our algorithm can use three types of operation: translation, translation with
direction constraints (i.e. move along the specified line), and rotation. Note that
the previous methods deal with only translation.

3. Our method can be used for both 2D and 3D layouts. Note that previous study
can only deal with 2D layout.

In order to demonstrate our three advantages, we consider two new variations
of the label overlap problem, each inspired by real world applications, and design
an algorithm for each problem setting. More specifically, we consider following
two types of label overlap removal problems.

Problem 1: Rectangular Label with Direction-Constrained Translation

Input: A set of overlapping rectangles, where each rectangle is located on its
initial position with a specified direction constraints (i.e. a line segment) in the
plane.

Output: A set of new positions of rectangles such that no two rectangles overlap
and the change of new positions from the initial positions is small, where the
new position of each rectangle is obtained by restricted translation along the
specified direction only.
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Problem 2: 8D Multi-attribute Label with Translation and Rotation

Input: A set of overlapping spiked sphere (i.e. a sphere with several small cones
on its surface), where each spiked sphere is located on its initial position in the
3D space.

Output: A set of new positions of spiked spheres in 3D such that no two spiked
spheres overlap and the change of new positions from the initial positions is
small, where the new position of each spiked sphere is obtained by both trans-
lation and rotation in 3D.

Problem 1 appears in applications such as placing labels of street names in
a road map layout [2]. Problem 2 appears in applications such as visualization
of network data with multiple attributes in three dimensions. For example, a
spiked sphere was used to represent an author of the Information Visualization
community, where each sphere represents an author, the size of sphere repre-
sents the number of research papers published by the author in the conference
proceedings, and the length of each spike attached to the sphere represents spe-
cial attributes such as the number of papers in specific research area [3]. We
implemented our algorithm and evaluated with two different types of data sets.
Our extensive experimental results show that our new approach is very fast and
effective for removing label overlaps. For the full version of this paper, see [7].

2 Algorithm Based on Multi-sphere Scheme

In the multi-sphere scheme, we first approximate each label by a set of spheres,
and then search for positions of all the spheres that minimize an appropriate
penalty function. Approximating objects by spheres makes it easy to check col-
lisions of objects and handle rotations of objects by arbitrary angles.

To find a layout of sets of spheres, we formulate penalized rigid sphere set
packing problem of as an unconstrained optimization program and apply an
algorithm RIGIDQN, which moves the labels simultaneously and modifies the
entire layout gradually. Given an initial layout of labels, where the labels are
approximated by sphere sets, RIGIDQN returns a locally optimal layout com-
puted by applying the quasi-Newton method to the penalized rigid sphere set
packing problem. Although we do not use an explicit criteria to minimize the
total change between the initial and final layouts, RIGIDQN obtains the final po-
sitions of labels are close to the initial positions in most cases because RIGIDQN
moves sphere sets gradually.

We formulate the penalized rigid sphere set packing problem for R¢, which
asks to move a collection O = {0y, ..., O, } of m objects so that no two objects
overlap each other. Each object O, consists of n; spheres {S;1,. .., Sin, }- Let ¢;;
be the vector that represents the center of spheres S;;, r;; be the radius of S;; and
N=3" n;.Weletr;, = Z;L:1 ci;j/ni, which represents the center of O;. For a
set S of points, let 9S be the boundary of S, and int(S) = S\ S be the interior
of S. After translating object O by a translation vector v € RY, the resulting
object is described as O @v = {x +v | * € O}. The penetration depth [I] of two
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shapes S and T is defined by 6(S,T) = min{||z| | int(S)N(T @ x) = 0, = € R?},
where ||| denotes the Euclidean norm. Let A;(x,v) : RPN - R (i =1,...,m)
be a motion function that moves a point € R? by \; variables v € R For
a set of points S C R?, let A;(S,v) = {A;(z,v) | ¢ € S}. For simplicity, we
let ¢;j(v) = Ai(cij,v) and S;5(v) = A;(Si;,v). The penalized rigid sphere set
packing problem is formally defined by

ng Nk

. . . — pen
minimize Fpen(v) - z : Z Z Ukl

1<i<k<m j=11[=1

(1)

subject to v = (v1,...,v,,) € REZ=1A
v, eRM, i=1,...,m,
where f70(v) = [6(Si;(vi), Ski(vy)]* denotes the penetration penalty of two

spheres S;; and Si;. This problem is an unconstrained nonlinear program. If the
motion functions ¢;;(v) of the centers of objects are chosen to be differentiable,
Fyen is also differentiable and we can apply the quasi-Newton method to (). In
this paper, we consider following two types of motions.

Translations with a Fized Direction in 2D for Problem 1. We first consider the
case where object O; is allowed to translate only in a prescribed direction in R2,
but not allowed to rotate. Assume that the reference point r; of object O; lies
on a line d; + t;e;, where d;, e; € R? are given and ¢; is a variable. Then

8Cij(ti) 8/1 (CZ]7 ) -

Ai(x,t;) =x —r; +d; +tie, = e;.
(x,t;))=x —r; +d; +te ot, o, e

Translations and Rotations in 3D for Problem 2. We next consider the case
where each object O; in R3 is allowed to translate and rotate around its ref-
erence point r;. Let (x;,9;, %) be the translation vector, (¢;,6;,1;) be the
z-z-z Euler angles, and Rs3(¢i, 0;,%;) be the rotation matrix. Given variables
vi = (i, vi, 2, 6i, 03, 10:) 7, we define the resulting position of a point € R3
after the motion by A;(x,v;) = R3(¢s, 0:,0:)(x — ;) + (x4, vi, 2)" + 5. Then,

dcij(vi) Ocij(vi)  OR3(¢i,0i,1:)

— T .
axi - (1,0, 0) 9 8¢z - a¢z (C’L] TZ)'

The other derivatives of ¢;;(v;) with respective to y;, 2, 8;, and ; can be cal-
culated analogously.

3 Experimental Results

We conducted computational experiments of RIGIDQN by generating instances
of both Problems 1 and 2 randomly. We implemented RIGIDQN in C++, com-
piled it by GCC 4.1 and conducted experiments on a PC with an AMD Sempron
3000+ 1.8 GHz processor and 450 MB memory. We adopted a quasi-Newton
method package L-BFGS [10].
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Fig. 1. An example of a road map layout with 147 labels (fiabe1 = 100, £gria = 150)

The data set of Problem 1 was generated as follows. We first start with a
square with size lmap X fmap which consists of four lines as a drawing area,
where we set £, = 10000, and place a square grid on the square, where the
minimum distance between two grid lines is £giq. Next we draw horizontal and
vertical line segments one after another on the grid lines. Then, we draw some
slanted line segments by choosing two arbitrary points in the drawing. Finally,
we place a rectangle in the middle of each line segment in the drawing, where
the height of a rectangle is £1a16) and the length of a rectangle varies over a range
[501abel; 1041ab01]. For example, Fig. [(a) shows an initial layout with labels for
Llabel = 100, where a line segment represents an edge (i.e. street) and a rectangle
represents a label (i.e. street name). Figure [[(a) is generated for fgiq = 150,
which has 147 labels and 4818 circles. See Fig. [[((b) for the resulting layout. It
took 0.43 seconds for Fig. dI(b).

To observe the influence of the density of the road map layout and the number
of labels on the efficiency of our algorithm, we varied two parameters £}, and
Lgria from 100 to 1000 with a step size 50 and from 50 to 1000 with a step
size 50, respectively, and conducted experiments. For each setting, we generated
100 instances and applied RIGIDQN to them. We observed that our algorithm
removed almost all overlaps in less than one second for the instances for {414 >
201abc1- For details on the experimental results, see [7].

For the data set of Problem 2, we created instances which resemble the spiked
spheres used in [3]. We generated an instance as follows. A spiked sphere has
a sphere of radius 10 together with attached 10 spikes. Each spike consists of
20 spheres and the length varies on a range [10,70]. To create an instance, we
place the spiked spheres randomly in a cube with edge length 300, where the
number of spiked spheres is a parameter. See Fig. [2] for magnified pictures of the
initial layout and the resulting layout of an instance with 100 spiked spheres.
We can see a spiked sphere in Fig. Pfa) penetrating another spiked sphere, and
the removal of overlap in Fig. 2(b). RIGIDQN run in 1.7 seconds for Fig. 2(b).

To observe the influence of the number of spiked spheres on the efficiency of
our algorithm, we varied the number of spiked spheres from 50 to 250 with a step
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Fig. 2. Magnified figures of an instance with 100 labels of Problem 2

size 50, generated 10 instances for each setting, and measured the computation
time. We observed that our algorithm removed almost all overlaps in less than
10 seconds for the instances with the number of spikes spheres less than or equal
to 200. For details on the experimental results, see [7].
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Abstract. A graph is 1-planar if it can be drawn on the plane so that each edge
is crossed by no more than one other edge. A non-1-planar graph G is minimal
if the graph G — e is 1-planar for every edge e of G. We construct two infinite
families of minimal non-1-planar graphs and show that for every integer n > 63,
there are at least 2~ non-isomorphic minimal non-1-planar graphs of order
n. It is also proved that testing 1-planarity is NP-complete. As an interesting con-
sequence we obtain a new, geometric proof of NP-completeness of the crossing
number problem, even when restricted to cubic graphs. This resolves a question
of Hlinény.

1 Introduction

A graph is 1-immersed in the plane if it can be drawn in the plane so that each edge is
crossed by no more than one other edge. A graph is 1-planar if it can be 1-immersed
into the plane. It is easy to see that if a graph has 1-immersion in which two edges e, f
with a common endvertex cross, then the drawing of e and f can be changed so that
these two edges no longer cross. Consequently, we may assume that adjacent edges are
never crossing each other and that no edge is crossing itself. We take this assumption as
a part of the definition of 1-immersions since this limits the number of possible cases
when discussing 1-immersions.

The notion of 1-immersion of a graph was introduced by Ringel [L1] when trying
to color the vertices and faces of a plane graph so that adjacent or incident elements
receive distinct colors.

Little is known about 1-planar graphs. Borodin [112]] proved that every 1-planar graph
is 6-colorable. Some properties of maximal 1-planar graphs are considered in [12]. It
was shown in [3]] that every 1-planar graph is acyclically 20-colorable. The existence
of subgraphs of bounded vertex degrees in 1-planar graphs is investigated in [[7]. It was
shown in [4l5] that a 1-planar graph with n vertices has at most 4n — 8 edges and that
this upper bound is tight. In the paper [6] it was observed that the class of 1-planar
graphs is not closed under the operation of edge contraction.

* This work was done while the first author visited Simon Fraser University.
** Supported in part by ARRS (Slovenia), P1-0297, and by NSERC (Canada).
*** On leave from Dept. Math., University of Ljubljana, Ljubljana, Slovenia.
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Much less is known about non-1-planar graphs. The basic question is how to recog-
nize 1-planar graphs. This problem is clearly in NP, but it is not clear at all if there is a
polynomial time recognition algorithm. We shall answer this question by proving that
1-planarity testing problem is NP-complete.

The recognition problem is closely related to the study of minimal obstructions for
1-planarity. A graph G is said to be a minimal non-1-planar graph (MN-graph, for
short) if G is not 1-planar, but G — e is 1-planar for every edge e of G. An obvious qu-
estion is:

How many MN-graphs are there? Is their number finite? If not, can they be charac-
terized?

The answer to the first question is not hard: there are infinitely many. This was first
proved in [10]. Here we present two additional simple arguments implying the same
conclusion.

Example 1. Let G be a graph such that and t = [cr(G)/|E(G)|] — 1 > 1, where cr(G)
denotes the crossing number of G. Let G be the graph obtained from G by replacing
each edge of G by a path of length ¢. Then |E(G,)| = ¢|E(G)| < cr(G) = cr(Gy).
This implies that G; is not 1-planar. However, G; contains an MN-subgraph H. Clearly,
H contains at least one subdivided edge of G in its entirety, so |V (H)| > t. Since ¢ can
be arbitrarily large, this shows that there are infinitely many MN-graphs.

Example 2. Let K € {K5, K33} be one of Kuratowski graphs. For each edge xy €
E(K), let Ly, be a 5-connected triangulation of the plane and u, v be adjacent vertices
of L, whose degree is at least 6. Let Lfvy = Lgy — uv. Now replace each edge xy of
K with L;y by identifying  with u and y with v. It is not hard to see that the resulting
graph G is not 1-planar (since two of graphs L/, must “cross each other”, but that is
not possible since they come from 5-connected triangulations). Again, one can argue
that they contain large MN-graphs.

The paper [10] and the above examples prove the existence of infinitely many MN-
graphs but do not give any concrete examples. In [[10], two specific MN-graphs of order
7 and 8, respectively, are given. One of them, the graph K7 — E(K3), is the unique
7-vertex MN-graph and since all 6-vertex graphs are 1-planar, the graph K7 — E(K3)
is the MN-graph with the minimum number of vertices. Surprisingly enough, the two
MN-graphs in [10] are the only explicit MN-graphs known in the literature.

The main problem when trying to construct 1-planar graphs is that we have no char-
acterization of 1-planar graphs. The set of 1-planar graphs is not closed under taking
minors, so 1-planarity can not be characterized by forbidding some minors.

In the present paper we construct two explicit infinite families of MN-graphs and,
correspondingly, we give two different approaches how to prove that a graph has no
plane 1-immersion.

In Sect. [2] we construct MN-graphs based on the Kuratowski graph K3 3. To ob-
tain the MN-graphs, we replace six edges of K33 by some special subgraphs. The
non-1-planarity of the obtained MN-graphs follows from the nonplanarity of K3 3.
Using these MN-graphs, we show that for every integer n > 63, there are at least
2454 non-isomorphic minimal non-1-planar graphs of order n. In Sect.[3|we describe
a class of 3-connected planar graphs that have no plane 1-immersions with at least one
crossing point (PN-graphs, for short). Every 3-connected PN-graph has a unique plane
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1-immersion, namely, the unique plane embedding of the graph. Hence, if a 1-planar
graph GG contains as a subgraph a PN-graph H, then in every plane 1-immersion of
G the subgraph H is 1-immersed in the plane in the same way. Having constructions
of PN-graphs, we can construct 1-planar and non-1-planar graphs with some desired
properties: 1-planar graphs that have exactly £ > 0 different plane 1-immersions; MN-
graphs, etc.

In Sect. d we construct MN-graphs based on PN-graphs. Each of these MN-graphs
G has as a subgraph a PN-graph H and the unique plane 1-immersion of H prevents to
draw the remaining part of G on the plane when trying to obtain a plane 1-immersion
of G.

Despite the fact that minimal obstructions for 1-planarity (i.e., the MN-graphs) have
diverse structure, and despite the fact that discovering 1-immersions of specific graphs
can be very tricky, it turned out to be a hard problem to establish hardness of 1-planarity
testing. A solution is outlined in Sect. Bl where we show that 1-planarity testing is
NP-complete, see Theorem [4l The proof is geometric in the sense that the reduction
is from 3-colorability of planar graphs (or similarly, from planar 3-satisfiability). As
an interesting consequence we obtain a new, geometric proof of NP-completeness of
the crossing number problem, even when restricted to cubic graphs. Hardness of the
crossing number problem for cubic graphs was established recently by Hlinény [9],
who asked if one can prove this result by a reduction from an NP-complete geometric
problem instead of the Optimal Linear Arrangement problem used in his proof.

2 MN-Graphs Based on the Graph K3 3

Two cycles of a graph are adjacent if they share a common edge. If a graph G is drawn in
the plane, then we say that a vertex x lies inside (resp. outside) a non-self-intersecting
embedded cycle C, if x lies in the interior (resp. exterior) of C, and does not lie on
C'. Having two embedded adjacent cycles C' and C’, we say that C' lies inside (resp.
outside) C" if every point of C either lies inside (resp. outside) C’ or lies on C’. We
assume that in 1-immersions, adjacent edges do not cross each other and no edge crosses
itself. Thus, every 3-cycle of a 1-immersed graph is embedded in the plane. Hence,
given a 3-cycle of a 1-immersed graph, we can speak about its interior and exterior.

In what follows, throughout the paper, given a 1-immersion of a graph, when we
speak about vertices, paths and cycles of the graph, we usually mean (the exact meaning
will be always clear from the context) immersed vertices, paths and cycles of the 1-
immersed graph.

Now we begin describing a family of MN-graphs based on the graph K3 3.

By a link L(x,y) connecting two vertices  and y we mean any of the graphs shown
in Fig.[Mwhere {z, 2z} = {z, y}.

By an A-chain of length n > 2 we mean the graph shown in Fig. [2(a). By a B-
chain of length n > 2 we mean the graph shown in Fig.[2{c) and every graph obtained
from this graph in the following way: for some integers hi, ha, ..., h, where ¢ > 1
and 1 < h; < hy < -+ < hy < n—2,forevery: = 1,2,...,t, we replace the
subgraph at the left of Fig. Rle) by the subgraph shown at the right of the figure. Note
that, by definition, A- and B-chains have length at least 2. We say that the chains in
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Figs.[2((a) and (c) connect the vertices v(0) and v(n) which are called the end vertices
of the chain. Two chains are adjacent if they share a common end vertex. The A-chain
in Fig. Pla) and the B-chain in Fig. 2l(c) will be designated in later figures by a single
directed (broken) edge, as shown in Figs. 2(b) and (d), respectively, where the arrow
points to the end vertex incident with the base link. The vertices v(0), v(1),...,v(n)
are the core vertices of the chains.

v(0)
v(l) v(0) v(l) v(0)
1
Xv(2) \ v(2)
J \ @ @
1
I
v(n—2) ! v(n—2) v(h+1) v(h+1)
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vin—1) v(n—1) e
® (e
n
(a) ()
Fig. 2.

By a chain graph we mean the graph obtained from K5 3 as shown in Fig.[3(a), where
the three A-chains and three B-chains can have arbitrary lenghts > 2. The vertices 2(1),
£2(2), and (2(3) are the base vertices of the chain graph. The edges joining the vertex
{2 to the base vertices are called the {2-edges.

We will show that every chain graph is an MN-graph.

Lemma 1. If G is a chain graph and e € E(G), then the graph G — e is 1-planar.

Proof. 1t is easy to see that G — e is 1-planar for every (2-edge e. Let us now consider
a plane embedding f of G — 2 of Fig.[Bla) after we delete the vertex 2. If e is not an
2-edge, then, because of the symmetry, it suffices to prove that G — e is 1-planar for
every edge e belonging to the A- or B-chain incident to £2(2). Figs.[B(b) and (c) show
how f can be modified to obtain a 1-immersion of G — e for every edge e belonging to
the chains incident to £2(2) (the edge e is represented by the dotted line). ]
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We are not aware of a simple argument showing that a chain graph G is not 1-planar.
We prove it by reductio ad absurdum — assuming that G has a 1-immersion , we show
that ¢ has the following properties that eventually yield a contradiction. If IT and II’ are
nonadjacent A- and B-chain, respectively, then for every 3-cycle C' of II the following
holds: The core vertices of 1’ either all lie inside or all lie outside C'. If all core vertices
of IT' lie inside (resp. outside) C, then at most one vertex of II’ lies outside (resp.
inside) C. If IT and IT’ are nonadjacent A- and B-chain, respectively, then IT does not
cross IT' in . The 2-edges do not cross all three edges of a link incident to the same
core vertex of the link. The proof of these properties is deferred for the full paper.

The following theorem shows how chain graphs can be used to construct exponen-
tially many nonisomorphic MN-graphs of order n.

Theorem 1. For every integer n. > 63, there are at least 2~ 4 non-isomorphic MN-
graphs of order n.

Proof. The A-chain of length ¢ has 3t + 2 vertices and a B-chain of length ¢ has 4t +
1 vertices. Consider a chain graph whose three A-chains have length 2, 2, and ¢ >
2, respectively, and whose B-chains have length 2, 3, and ¢ > 4, respectively. The
graph has 35 + 3¢ + 4t vertices. One can apply the modification shown in Fig. 2{e)
to an arbitrary subset of the links of the B-chains of the graph, and thus obtain 2¢~!
nonisomorphic chain graphs of order 35 + 3¢ + 4t, where ¢ > 2 and ¢ > 4. We claim
that for every integer n > 63, there are integers 2 < ¢ < 5 and ¢ > 4 such that
n = 35+ 3¢+ 4t. Indeed, if m = 0,1,2,3 (mod 4), put £ = 3,2, 5, 4, respectively.
If n = 35+ 3¢ + 4t, where 2 < ¢ < 5, then t > n/4 — 50/4. Hence, there are at least
21-% non-isomorphic chain graphs of order n > 63. Since every chain graph is an
MN-graph, the theorem follows.

3 PH-Graphs

By a proper 1-immersion of a graph we mean a 1-immersion with at least one crossing
point. Let us recall that a PN-graph is a planar graph that does not have proper 1-
immersions. In this section we describe a class of PN-graphs and construct some graphs
of the class. They will be used in Sect. @ to construct MN-graphs.
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Two disjoint edges vw and v'w’ of a graph are paired if the four vertices v, w, v’, w'’
are all four vertices of two adjacent 3-cycles. For every cycle C of a graph denote by
N(C) the set of all vertices of the graph not belonging to C' but adjacent to vertices
of C.

Consider a 3-connected plane graph. By a basic k-cycle of the graph we mean the
boundary cycle of a k-gonal face of the embedding. By a nontriangular basic cycle we
mean every basic k-cycle, k > 4.

Theorem 2. Suppose that a 3-connected plane graph G satisfies the following
conditions:

(C1) Every vertex has degree at least 4 and at most 6.

(C2) Every edge belongs to at least one 3-cycle.

(C3) Every 3-cycle is basic.

(C4) Every 3-cycle is adjacent to at most one other 3-cycle.

(CS) No vertex belongs to three mutually edge-disjoint 3-cycles.

(C6) Every 4-cycle is either basic or is the boundary of two adjacent triangular faces.

(C7) For every 3-cycle C, any two vertices of V(G) \ (V(C) U N(C)) are connected
by 4 edge-disjoint paths not passing through the vertices of C.

(C8) If an edge vw of a nontriangular basic cycle C' is paired with an edge v'w' of a
nontriangular basic cycle C', then C and C' have no vertices in common and any
two vertices a and a’ of C and C’, respectively, such that {a,a'} Z {v,w,v',w'}
are non-adjacent and are not connected by a path a, b, a’ of length 2, where b does
not belong to C and C'.

(C9) G does not contain the subgraphs shown in Fig. |l (in this figure, 4-valent (resp.
5-valent) vertices of G are encircled (resp. encircled twice)).

Then G has no proper 1-immersion.

The proof of Theorem[2]is long and will be given in the full paper.

AN

XX

Fig.4.

Denote by A the class of all 3-connected plane graphs G satisfying the conditions
(C1)—(C9) of Theorem[2l In the full paper we show how to construct graphs of the class
A. Figure 8] shows two graphs of A, one of which (in Fig. 5l(a)) will be used in Sect. @]
to construct MN-graphs. To simplify checking conditions (C1)—(C9) we construct the
graphs to be symmetrical so that, for example, to check the condition (C7) we need to
consider only two 3-cycles of a graph.
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Fig. 5.

4 MN-Graphs Based on PN-Graphs

In this section we construct MN-graphs based on the PN-graphs G,, described in Sect.[3l

Denote by S,,,, m > 2, the graph shown in Fig. [0l The graph has m + 1 cycles of
length 12m — 2 labelled by By, By, ..., By, as shown in the figure. The vertices of By
are called the central vertices of S,, and are labelled by 1,2, ..., 12m — 2 (see Fig.[6).
For every central vertex x € {1,2,...,12m—2}, denote by 2* the vertex 6m — 1 +x if
z€{l,2,...,6m—1} and the vertex x — (6m—1) if x € {6m,6m+1,...,12m—2}.
In S, any pair {x,z*} of central vertices is connected by a central path P(z,xz*) of
length 6m — 3 with 6m — 4 two-valent vertices.

Fig. 6.

For any integers m > 4 and n > 0, denote by &,,,(n) the set of all (12m — 2)-tuples

ni,Na, ..., N12m—2 of nonnegative integers such that ny +ns+- - - +nj2m—2 = n. For
every A € ®,,,(n), denote by S,,(\) the graph obtained from S, if for every central
vertex x € {1,2,...,12m — 2}, we replace the 8 edges marked by transverse stroke in

Fig.[l(a) by 8(1+n,) new edges marked by transverse stroke in Fig.[Z(b) (here x+1 = 1
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for x = 12m — 2). The graph S,,,(A\) hasm —2  (12m — 2)-cycles By, B1, ..., Bm—3
and three (12m — 2 + n)-cycles By, —2, Bi—1, Bm; all the m + 1 cycles are depicted
in Fig.[Z(b) in thick line.

We want to show that for every m > 4 and for every A € &,,(n), n > 0, the graph
S () is an MN-graph.

Lemma 2. The graph S,,(\) — e, where m > 4, A € &, (n), is 1-planar for every
edge e.

Proof. If we delete an edge of a central path, then the remaining 6m — 2 central paths,
each with 6m — 3 edges, can be 1-immersed inside By in Fig. |6l If we delete one
of the edges depicted in Fig. [8(a) in thick line, then the central path P(x,x*) can be
drawn outside By with 6m — 3 crossing points as shown in the figure (where the path is
depicted in thin line) and then the remaining 6m — 2 central paths can be 1-immersed
inside By. If we delete one of the two edges depicted in Fig. [§(a) in dotted line, then
Fig.[8(b) shows how to place the central vertex  so that the path P(z, 2*) can be drawn
outside By with 6m — 3 crossing points and then the remaining 6 — 2 central paths
can be 1-immersed inside By. |

Lemma 3. The graph obtained from the graph Sy, ()\), where m > 4 and \ € &,,(n),
by deleting the two-valent vertices of all central paths is a PN-graph.

Theorem 3. The graph S,,,(\), where m > 4 and A € ®,,(n), is not 1-planar.

The proofs of Lemmal[3land Theorem Bl are deferred for the full paper.

We have shown that every graph S,,,(\), where m > 4 and A € @,,(n), is an MN-
graph (the graph has order (5m — 1)(12m — 2) + 5n). Clearly, graphs S,,, (A1) and
Smy(A2), where Ay € @,,,, (n1) and Ao € P, (n3), are nonisomorphic for m; # mo
and for m; = mg and ny # no.

n+12m—3)

Corollary 1. Forany integers m > 4 andn > 0, there are at least 2(12;%2) ( 19m—3

non-isomorphic MN-graphs Sy, (X\), where A € @, (n).
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Proof. It is well known that |®,,(n)| = ("T,2™5). The automorphism group of the

graph S,,, is the automorphism group of a regular (12m — 2)-gonal, that is, the dihedral
group D19, —2 of order 2(12m — 2). Now the claim follows. [ |

5 Testing 1-Immersibility Is Hard

In this section we prove that it is NP-complete to decide if a given input graph is 1-
immersible. This shows that it is extremely unlikely that there exists a nice classification
of MN-graphs.

The reduction showing completeness for the class NP is from 3-colorability of planar
graphs. It is worth mentioning that our method also yields a similar reduction of planar
3-colorability to the problem of computing the crossing number of cubic graphs. NP-
completeness of the crossing number problem on cubic graphs was proved recently by
Hlinény [9]. The author has observed in [9]] that his proof is non-geometric and asked for
an accessible proof based on geometric reduction. Our construction, correspondingly
adapted, in particular answers the question of Hlinény.

Theorem 4. [t is NP-complete to decide if a given graph is 1-immersible in the plane.

Proof (sketch). Since 1-immersions can be represented combinatorially, it is clear that
1-immersability is in NP. To prove its completeness, we shall make a reduction from
a known NP-complete problem, that of 3-colorability of planar graphs of maximum
degree at most four [8]].

Let G be a given planar graph of maximum degree 4 whose 3-colorability is to be
tested. We shall show how to construct, in polynomial time, a related graph G such that
G is 1-immersible if and only if GG is 3-colorable. We may assume that Gy has no
vertices of degree less than three.

The construction of G involves replacement of each vertex v of G by a vertex-
block L,, and replacement of each edge uv € E(Gy) by an edge-block F.,,, which is
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Fig.9.

henceforth attached to L,, and L,,. Each building block has constant size, so the whole
construction can be carried over in linear time. The building blocks L, and F},, are
1-planar but there is very little flexibility among their 1-immersions. They are pasted
together so that their 1-immersions influence each other in such a way that globally
consistent choices exist if and only if G has a 3-coloring.

The vertex block essentially consists of a PN-graph L together with several sub-
divided edges, called legs. The legs can “pass through” L in a unique way since the
number of degree-two vertices on the legs (the lengths of the legs) allow crossing it
through a part of L that is not too dense. The legs are connecting vertices of L in a way
as shown in Fig.[0 where they are represented by thin lines. Where the legs attach to the
“boundary”, there is an additional crossing edge, which can be turned outside to cross
the leg in the edge-block instead. Each edge-block contains three legs that correspond
to three colors 1,2,3, and we say that the leg i is active if it is crossed by the additional
edge at the boundary part of the edge-block. A leg ¢ that is active at the connection of
L,, and F,, corresponds to the choice of color ¢ for the vertex u of G. The construc-
tion is made in such a way that an active leg ¢ cannot be active at the other end of the
edge-block (so we have proper coloring), that around w at least one leg is active, and
that being active in the edge-block F,v, the ith leg is also active in other edge-blocks
Fy, for other edges uw of Gy incident with u. The details are cumbersome and are
left for the full version of the paper. |
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Abstract. Given n points in d-dimensional space, we would like to connect the
points with straight line segments to form a connected graph whose edges use d
pairwise perpendicular directions. We prove that there exists at most one such set
of directions. For d = 2 we present an algorithm for computing these directions
(if they exist) in O(n?) time.

1 Introduction

Given a set V' of n points in d-dimensional space, we would like to connect the points
of V' with straight line segments to form a connected rectilinear graph G. A rectilinear
graph is an embedded straight-line graph such that any two edges in the graph are
either parallel or perpendicular. We define the orientation of such a graph as the set of
d pairwise perpendicular directions used by its edges. Two orientations are said to be
different if there is a direction e in one of them and a direction ¢’ in the other such that
e and ¢’ are neither the same nor perpendicular. We say that an orientation O allows
for a connected rectilinear graph on V if there exists such a graph G that uses V' as its
vertices and has orientation O.

At the Canadian Conference on Computational Geometry in 2007, Therese Biedl
asked whether a given set of points in the plane can be the vertex set of two rectilinear
polygons that have different orientations. In this paper we show that the answer is no,
and more generally, for a set V of points in R? there exists at most one orientation
that allows for a connected rectilinear graph on V. Figure [Tl shows an example of two
rectilinear graphs on the same point set, but note that G’ is not connected.

G 9 9 el

Fig. 1. Two rectilinear graphs with the same vertex set, but different orientations

* Supported by the Netherlands Organisation for Scientific Research (NWO) through the project
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A special case of this problem has been considered by Fekete and Woeginger [4]].
They show that for a set of points that have rational coordinates in the plane at most one
orientation is possible. Problems on rectilinear polygons have been studied extensively.
O’Rourke [10] proves that there is at most one way to connect a given point set into a
rectilinear polygon that makes a 90° turn at each vertex, and gives a simple algorithm
to compute it. On the other hand, if turns of 180° are allowed, Rappaport [12] shows
that the problem is NP-hard. Durocher and Kirkpatrick [[1] study the problem of finding
a collection of rectilinear tours that use the given points as vertices, where the tours are
allowed to have different orientations. They prove that this is NP-hard as well.

A number of papers address the problem of drawing a graph on a fixed point set. For
example, Pach and Wenger [11] show that to make such a graph planar, a linear number
of bends per edge may be necessary. Efrat et al. [3] study the possibility of drawing a
crossing-free graph with circular arcs as edges. Rectilinear graphs also received a lot
of attention from a graph drawing perspective. Vijayan and Wigderson [13[] show how
to embed an abstract graph with an additional “direction” associated to each edge as a
rectilinear graph in O(n?) time; Hoffman and Kriegel [[7] improve this to O(n) time.
Garg and Tamassia [6] show that without such associated directions, it is NP-hard to
decide if a graph has a rectilinear embedding.

The remainder of the paper is organised as follows. In Sec.[2] we show that any point
set allows for a connected rectilinear graph in at most one orientation. Then, in Sec.[3]
we discuss the related algorithmic question of finding such an orientation for a point set
in the plane. We conclude in Sec. 4l

2 Existence of Orientations

In this section, we prove that a point set cannot be the vertex set of two differently
oriented rectilinear graphs. We first study the situation in the plane, then we extend
the result to any dimension. We use several algebraic concepts, which we try to define
briefly when we use them, but we refer to the full version [9] for a more complete and
formal discussion.

2.1 Points in the Plane

Let V be a set of points in the plane, and let X and Y be the sets of all z-coordinates
and y-coordinates of the vertices in V' respectively. Assume w.l.o.g. that min(X) =
min(Y) = 0. In this section for convenience we are going to refer to an orientation
using the slope on one of its directions since the orientation is uniquely defined by it.
Suppose for a contradiction that there are two connected differently oriented rectilinear
graphs G and G’ on V. Assume w.l.o.g. that the edges of G are axis-aligned and G’ has
edges of slopes s and — i

Let Q(s) be the field generated by adjoining s to Q; that is, the smallest subfield
of R that contains both Q and s. Consider the vector space Q(s)(X U Y'); that is, the
set of all sums of products of an element from Q(s) and an element from X or Y.
Let E = (eq,...,ex) be a basis for this vector space. We can now denote this vector
space by Q(s)(E) = Q(s){e1,...,er). We now have X, Y C Q(s)(E) so we can
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write z; = Zj xije; for all z; € X, and y; = Zj yije; for all y; € Y, where
zij, yi; € Q(s). We use [Q(s) : Q] to denote the degree of the extension of field Q(s)
over QQ, which is defined as the dimension of Q(s) as a vector space over Q. We consider
the following cases:

[Q(s) : Q] = 1: s is rational.
[Q(s) : Q] < oo s is algebraic over Q.
[Q(s) : Q] = oo: s is transcendental over Q.

In fact, the rational case follows directly from the algebraic case since rational num-
bers are also algebraic, but we have separated them to allow the reader to follow the
main argument without needing too much algebraic machinery yet.

Rational Slopes. When s is rational, Q(s) = Q, therefore z;;,y;; € Q. We can assume
w.l.o.g. that z;;, y;; € Z and that their greatest common divisor (GCD) is 1 (if not, scale
the input by the appropriate factor). Now x;,y; are elements of the Z-module Z(E);
that is, the set of all sums of integer multiples of elements from E. Consider any pair of
vertices v, v’ € V, and the horizontal and vertical distances Az and Ay between them.
These vertices are connected by a path vy, v, . . ., vy, in G, where v; = v and v, = v'.
Denote by (Ax;, Ay;) the horizontal and vertical distance between v; and v;41. We
know that there exists a path in G’ from v; to v; 11, see Fig.[2l This path uses edges with
slope s or — !, so when following this path we move over distances (a, sa) or (sb, —b).
Since all vertex coordinates are in Z(E), we know that a,b € Z(E). In total we move
from v; to v;+1 over a distance (a; + sb;, sa; —b;) where a;, b; € Z{F). Since G is axis-
parallel, every edge between two points v; and v;; is either horizontal or vertical. If it
is horizontal, Ay; = sa; — b; = 0, thus Ax; = a; + sb; = a; + s%a; = (1 + 52)a;. If it
is vertical, then Axz; = a; + sb; = 0, thus Ayi =sa;—b; = —82bi —b; = —(]. +82)bi.

Now write Az; = Zj Azije; and Ay; = Zj Ay;je;, and also write a; = Zj a;je;
and b; = ), bize;. Clearly Az;j, Ayij,a5,b;; € Z. Since the elements of E are
linearly independent over Q, it follows that Az;; = (1+ s?)a;; for horizontal segments
and Ay;; = —(1 + s?)b;; for vertical segments for all , j.

Now s% € Q, so we can write s> = p/q with p and ¢ co-prime. This means that
Azi; = (14+p/q)aij = (p+4q)aij/qor Ay;; = —(p+¢)bi;/q. Since g does not divide
p+q (unlessitis 1), p+q¢isin Z and divides Az;; and Ay;;. Since Az = 37, ; Az;je;,
it follows that p + ¢ divides Az, and similarly Ay. So, any two vertices v and v’ are a
Z(E)-multiple of p 4+ ¢ away from each other in both horizontal and vertical direction,
which contradicts the fact that all their coordinates had GCD 1.

G/

G

Fig. 2. For any edge of G, there is also a path in G’ connecting its vertices
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Algebraic Slopes. When s is algebraic over Q, the argument described in the previous
section still goes through when we replace all instances of Q by Q(s) and Z by Ogs).
Here Oqs) is the ring of integers of Q(s), which consists of all algebraic integers that
are in Q(s). Intuitively, the ring of integers Og,) behaves towards the field Q(s) as Z
behaves towards Q. Every element of Q(s) can be written as p/q, where p, ¢ € Ogyy)-
Every element of Oq,) can be written as the product of a finite sequence of irreducible
elements of Ogq,), though this factorisation is not necessarily unique. This means we
can divide out common divisors in OQ(S), and that we can have irreducible fractions

p/qin Q(s).

Transcendental Slopes. When s is transcendental, every element w € Q(s) can be
written in the form .
Zogzgh wis

Zogl'gh' w'y s

for some h, h' € N, and w;, w'y € Q. Assume w.l.0.g. that we can write

2 : l 2 : l
Tij = Tij1S and Yij = Yiji s

0<I<h 0<i<h

where h € N and x;;1, yi51 € Z (otherwise scale the input).

Now ;j,yi; € Z(s,...,s"). Assume h > 2 (if it is smaller, just add some 0’s to
the descriptions of the coordinates). We now also know that (1 + s2) € Z(s, ..., s").
Assume w.l.o.g. that not all of z;;,y;; can be written as (1 + s*)w for some w €
Z{s,...,s") (otherwise divide everything by (1 + s2)).

However, in the same way as before, we argue that Az;; = (14 52)ai_,» for hori-
zontal segments and Ay;; = —(1 + s?)b;; for vertical segments for all 7, j, where now
aij, bij € Z(s,...,s"). This clearly contradicts our assumption. Thus we arrive at the
following theorem:

Theorem 1. Given a set of points in the plane, there can be at most one orientation
that allows for a connected rectilinear graph that has these points as its vertices.

2.2 Points in Higher Dimensions

Let V be a set of n points in R?. We will show that there is at most one orientation
that allows for a connected rectilinear graph that uses V' as its vertex set. Suppose for
a contradiction there are two connected rectilinear graphs G and G’ on V. And let E
be the orientation of G and E’ be the orientation of G'. Let e € E and ¢’ € E’ be two
distinct directions that are not perpendicular.

Let « be a plane spanned by e and ¢’. Let V,, be the projection of V' on «, and let
G, and G/, be the projections of G and G’ on «. We ignore any duplicate points in
Ve and edges that were reduced to single points in G,, and G/,. Note that G, and G7,
are still connected graphs. Moreover, since « contains e, all edges of G, map either to
an edge in « parallel to e, or to one perpendicular to e, so GG, is a rectilinear graph.
Similarly, G, is a rectilinear graph. However, these are two graphs on the same vertex
set in 2-dimensional space, which is not possible by Theorem[Il We have proven the
following theorem:
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Theorem 2. Given a set of points in R?, there exists at most one orientation that allows
for a connected rectilinear graph that has these points as its vertices.

3 Finding the Right Orientation

We now discuss the algorithmic side of the problem: given a set V' of points in the
plane, can we find a slope s such that the graph on V' with edges of slope s and —
connected? A trivial approach takes O(n? log n) time. Consider all pairs of points and
the line segment connecting them, and sort those segments by slope. For each slope that
has at least n — 1 segments (together with its perpendicular slope), we can test whether
they form a connected graph in linear time. Note that the most expensive step here is
sorting the directions: a long-standing open problem is whether this can be done any
faster than in O(n? logn) time [3].

However, it is not necessary to sort all directions, since many of them are uninter-
esting. Namely, since our graph has to be connected, an arbitrary point p has to share
an edge with at least one other point of V. Thus we only need to consider n — 1 (pos-
sibly non-distinct) directions obtained by connecting p to all other points in V. Now
consider the problem in dual space. Our set of points becomes a set of lines, our slope
an z-coordinate, and two points are connected by a line segment of slope s if the two
corresponding lines intersect at x-coordinate s. We sweep two vertical lines (at x = — i
and z = s) simultaneously over the dual plane, and keep track of the intersection points
on those lines. The arrangement of the lines can be computed in O(n?) time [2]. We can
inspect the potentially interesting slopes, and process the events in between in O(n?)
time in total. The details are not hard, and can be found in the full version [9].

Deciding whether there is an orientation that allows for a planar rectilinear graph
(a simple polygon, for example) on a given set of points is NP-hard: Since there is at
most one possible orientation, we can use the algorithm sketched above to find it. Then
we can take the maximal rectilinear graph in that orientation. However, now we need to
decide whether this graph has a non-crossing subgraph, which is NP-complete [8].

4 Conclusion

We have proven that given a point set in R, there exists at most one orientation such that
the maximal rectilinear graph on the points in that orientation is connected. However,
finding this orientation remains an interesting challenge. We have shown that this can be
done in O(n?) time for a 2-dimensional point set, but we see no reason for this bound
to be tight. Furthermore, finding such an orientation in higher dimensions is still open.
We have also shown that deciding whether the points can be connected into a planar
rectilinear graph is NP-hard.
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3-Regular Non 3-Edge-Colorable Graphs with
Polyhedral Embeddings in Orientable Surfaces*
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Abstract. The Four Color Theorem is equivalent with its dual form
stating that each 2-edge-connected 3-regular planar graph is 3-edge-
colorable. In 1968, Griinbaum conjectured that similar property holds
true for any orientable surface, namely that each 3-regular graph with
a polyhedral embedding in an orientable surface has a 3-edge-coloring.
Note that an embedding of a graph in a surface is called polyhedral if its
geometric dual has no multiple edges and loops. We present a negative
solution of this conjecture, showing that for each orientable surface of
genus at least 5, there exists a 3-regular non 3-edge-colorable graph with
a polyhedral embedding in the surface.

1 Introduction

Edge-coloring of cubic (3-regular) graphs is an important topic in graph theory
and theoretical computer science. By Tait [I1], a cubic planar graph is 3-edge-
colorable if an only if its geometric dual is 4-colorable. Since geometric dual of
a 2-edge-connected planar cubic graph is a planar triangulation, the Four Color
Theorem (see [2]) is equivalent to the statement that every 2-edge-connected
planar cubic graph has a 3-edge-coloring.

Nonplanar cubic graphs do not need to be 3-edge-colorable. The best know
example is the Petersen graph (see Fig. [)). In fact, by Holyer [§], the problem
to decide whether a cubic graph is 3-edge-colorable is NP-complete.

An embedding of a graph in a surface is called polyhedral if its dual has no
multiple edges and loops. In 1968, Griinbaum [7] presented a conjecture that
each 3-regular graph with a polyhedral embedding in an orientable surface has
a 3-edge-coloring. If this is true, it would generalize the dual form of the Four
Color Theorem for any orientable surface.

In this paper we disprove the Griinbaum’s conjecture and for every orientable
surface of genus at least 5, we construct non 3-edge-colorable cubic graphs with
a polyhedral embedding in the surface.

Note that Petersen graph has a polyhedral embedding in projective plane.
Thus Griinbaum’s conjecture has a sense only for orientable surfaces. More de-
tails about this conjecture and related results can be found in [II3/4I12]. Basic
facts about embeddings of graphs into surfaces can be found in [5J6].

* Supported by grant VEGA 2/7037/7 and by A. v. Humboldt Fellowship.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 319 2009.
© Springer-Verlag Berlin Heidelberg 2009



320 M. Kochol

(a) (b)

Fig. 1.

2 Snarks and Superposition

By a snark we mean a cubic graph without a 3-edge-coloring. It is well known
(see, e.g., [10]) that any cubic graph with a bridge (1-edge-cut) is a snark. Such
snarks are considered to be trivial. A nontrivial snark is the Petersen graph (see
Fig. 0.

Suppose v is a vertex of a graph G. Let G’ arise from G in the following
process. Replace v by a graph H, so that each edge e of H having one end v has
one end from H,. If e is a loop having both ends v, then both ends of e become
vertices of H,. Then G’ is called v-superposition or a vertex superposition of G.

Suppose e is an edge of G with ends u and v. Let G’ arises from G in the
following process. Replace e by a graph H, having at least two vertices, i.e., we
delete e, pick up two distinct vertices u’, v' of H. and identify v’ with u and
v with v. Then G’ is called an e-superposition or an edge superposition of G.
Furthermore, if H. is a snark, then G’ is called a strong e-superposition or a
strong edge superposition of G.

We say that a graph G’ is a (strong) superposition of G if G’ arises from
G after finitely many vertex and (strong) edge superpositions. The following
statement was proved in [10, Lemma 4.4] (see [910] for more details).

Lemma 1. Let G be a snark and G’ be a strong superposition of G. Furthermore,
suppose that G’ is cubic. Then G’ is a snark.

3 Constructions

Clearly, a graph has an embedding in an orientable surface of genus n if and
only if it has an embedding in the plane with n handles. In parts (a) and (b) of
Fig. [l are embeddings of the Petersen graph in the torus and in the plane with
one handle, respectively. (If we identify the opposite segments of the square in
part (b) of Fig. [l we get a handle on the plane.)

Replacing edge e by another copy of Petersen graph we get graph Gig from
Fig. 2 Replacing in G1g the vertices of degree 5 by paths of length 2, we get a
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cubic graph G indicated in Fig.[8l By Lemmalll G is a snark. The boundary of
the infinite face fj is a circuit, composed from paths P; and P, with ends u and
v. The following holds true.

(1) any two faces f;, f;, i,j € {1,...,8}, share at most one edge,
(2) the infinite face fp share exactly two edges with each f;, i € {1,...,8} so
that P, and P, contain exactly one of them.

Properties (1) and (2) are important. We can take a nonpolyhedral embedding
of a snark in an orientable surface, and replacing some of its edges by copies
of G and some vertices by suitable graphs, we can get snarks with polyhedral
embeddings in orientable surface. By replacing an edge of a copy of G, we identify
the ends of e by u and v, respectively. For example, in Fig. @is a snark constructed
in [4, Fig. 8]. Let us note that this is not a polyhedral embedding in the torus,
because the pairs of faces a1, as and by, by have two edges in common (i.e., its
geometric dual has two pairs of parallel edges). In order to remove this obstacle,
we replace edges e; and ey by two copies of G and we get graph Ggg indicated
in Fig. Bl Replacing in Ggg the vertices of degree 5 by paths of length 2 we get
the graph indicated in Fig.[6l By Lemmal[ll this is a snark. Furthermore, by (1)
and (2), any two faces of this graph have at most one edge in common (i.e., the
pairs of faces a1, a2 and by, by are “separated” by the copies of graph G). Thus
the geometric dual has no parallel edges and loops, i.e., we have a polyhedral
embedding of a snark in orientable surface of genus 5.
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In order to get snarks with embeddings in orientable surfaces of genus > 5,
it suffices to replace a vertex of degree 5 from Ggg by suitable graphs with
embeddings in a plane with handles. For example, consider the three vertices of
the graph from Fig. [f] contained inside of the disc C' indicated by dotted line.
Replacing them by the graph indicated in Fig. [l we get a snark with polyhedral
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embedding in surface of genus 7. This snarks is a strong superposition of the
snark from Fig. @l In this way we can prove the following statement.

Theorem 1. For any orientable surface of genus > 5, there exists a 3-reqular
non-3-edge-colorable graph with a polyhedral embedding in this surface.
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Abstract. A binary tanglegram is a pair (S,T') of binary trees whose
leaf sets are in one-to-one correspondence; matching leaves are connected
by inter-tree edges. For applications, for example in phylogenetics, it is
essential that both trees are drawn without edge crossings and that the
inter-tree edges have as few crossings as possible. It is known that finding
a drawing with the minimum number of crossings is NP-hard and that
the problem is fixed-parameter tractable with respect to that number.

We prove that under the Unique Games Conjecture there is no
constant-factor approximation for general binary trees. We show that
the problem is hard even if both trees are complete binary trees. For
this case we give an O(n3)-time 2-approximation and a new and simple
fixed-parameter algorithm. We show that the maximization version of
the dual problem for general binary trees can be reduced to a version of
MaxCurT for which the algorithm of Goemans and Williamson yields a
0.878-approximation.

1 Introduction

In this paper we are interested in drawing so-called tanglegrams [16], that is,
pairs of trees whose leaf sets are in one-to-one correspondence. The need to
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2007.
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(a) arbitrary drawing (b) drawing of our 2-approximation

Fig. 1. A binary tanglegram showing two evolutionary trees for pocket gophers [9]

visually compare pairs of trees arises in applications such as the analysis of
software projects, phylogenetics, or clustering. In the first application, trees may
represent package-class-method hierarchies or the decomposition of a project into
layers, units, and modules. The aim is to analyze changes in hierarchy over time
or to compare human-made decompositions with automatically generated ones.
Whereas trees in software analysis can have nodes of arbitrary degree, trees from
our second application, that is, (rooted) phylogenetic trees, are binary trees. This
makes binary tanglegrams an interesting special case, see Fig. 1. Hierarchical
clusterings, our third application, are usually visualized by a binary tree-like
structure called dendrogram, where elements are represented by the leaves and
each internal node of the tree represents the cluster containing the leaves in its
subtree. Pairs of dendrograms stemming from different clustering processes of
the same data can be compared visually using tanglegrams.

In this paper we consider binary tanglegrams if not stated otherwise. From
the application point of view it makes sense to insist that (a) the trees under
consideration are drawn plane (namely, without edge crossings), (b) each leaf of
one tree is connected by an additional edge to the corresponding leaf in the other
tree, and (c) the number of crossings among the additional edges is minimized. As
in the bioinformatics literature (e.g., [13,16]), we call this the tanglegram layout
(TL) problem; Fernau et al. [7] refer to it as two-tree crossing minimization.
Note that we are interested in the minimum number of crossings for visualization
purposes. The number is not intended to be a tree-distance measure. Examples
for such measures are nearest-neighbor interchange and subtree transfer [3].

Related problems. In graph drawing the so-called two-sided crossing mini-
mization problem (2SCM) is an important problem that occurs when computing
layered graph layouts. Such layouts have been introduced by Sugiyama et al. [17]
and are widely used for drawing hierarchical graphs. In 25CM, vertices of a bi-
partite graph are to be placed on two parallel lines (layers) such that vertices
on one line are incident only to vertices on the other line. As in TL the objective
is to minimize the number of edge crossings provided that edges are drawn as
straight-line segments. In one-sided crossing minimization (1SCM) the order of
the vertices on one of the layers is fixed. Even 1SCM is NP-hard [6]. In contrast
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to TL, a vertex in 1ISCM or 25CM can have several incident edges and the lin-
ear order of the vertices in the non-fixed layer is not restricted by the internal
structure of a tree. The following is known about 1SCM. The median heuristic
of Eades and Wormald [6] yields a 3-approximation and a randomized algorithm
of Nagamochi [14] yields an expected 1.4664-approximation. Dujmovié et al. [4]
gave an FPT algorithm that runs in O*(1.4664%) time, where k is the minimum
number of crossings in any 2-layer drawing of the given graph that respects the
vertex order of the fixed layer. The O*(-)-notation ignores polynomial factors.

Previous work. Dwyer and Schreiber [5] studied drawing a series of tangle-
grams in 2.5 dimensions, i.e., the trees are drawn on a set of stacked two-
dimensional planes. They considered a one-sided version of TL by fixing the
layout of the first tree in the stack, and then, layer-by-layer, computing the leaf
order of the next tree in O(n? logn) time each. Fernau et al. [7] showed that TL is
NP-hard and gave a fixed-parameter algorithm that runs in O*(c¥) time, where
¢ is a constant estimated to be 1024 and k is the minimum number of crossings
in any drawing of the given tanglegram. They showed that the problem can be
solved in O(nlog? n) time if the leaf order of one tree is fixed. This improves the
result of Dwyer and Schreiber [5]. They also made the simple observation that
the edges of the tanglegram can be directed from one root to the other. Thus
the existence of a planar drawing can be verified using a linear-time upward-
planarity test for single-source directed acyclic graphs [1]. Later, apparently not
knowing these previous results, Lozano et al. [13] gave a quadratic-time algo-
rithm for the same special case, to which they refer as planar tanglegram layout.
Holten and van Wijk [10] presented a visualization tool for general tanglegrams
that heuristically reduces crossings (using the barycenter method for 1SCM on
a per-level base) and draws inter-tree edges in bundles (using Bézier curves).

Our results. Let us call the restriction of TL to (complete) binary trees the
(complete) binary TL problem. We first analyze the complexity of binary TL,
see Sect. 2. We show that binary TL is essentially as hard as the MINUNCUT
problem. If the (widely accepted) Unique Games Conjecture holds, it is NP-hard
to approximate MINUNCUT—and thus TL—within any constant factor [12]. This
motivates us to consider complete binary TL. It turns out that this special case
has a rich structure. We start our investigation by giving a new reduction from
MAX2SAT that establishes the NP-hardness of complete binary TL.

The main result of this paper is a simple recursive factor-2 approximation
algorithm for complete binary TL, see Sect. 3. It runs in O(n?) time and extends
to d-ary trees. Our algorithm can also process general binary tanglegrams—
without guaranteeing any approximation ratio. It works very well in practice
and is quite fast when combined with a branch-and-bound procedure [15].

Next we consider a dual problem: maximize the number of edge pairs that do
not cross. We show that this problem (for general binary trees) can be reduced
to a version of MAXCUT for which the algorithm of Goemans and Williamson
yields a 0.878-approximation.
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Finally, we investigate the parameterized complexity of complete binary TL.
Our parameter is the number k of crossings in an optimal drawing. We give a
new FPT algorithm for complete binary TL that is much simpler and faster than
the FPT algorithm for general binary TL by Fernau et al. [7]. The running time
of our algorithm is O(4Fn?), see Sect. 4. An interesting feature of the algorithm
is that the parameter does not drop in each level of the recursion.

Formalization. We denote the set of leaves of a tree T by L(T). We are given
two rooted trees S and T with n leaves each. We require that S and T are
uniquely leaf-labeled, that is, there are bijective labeling functions Ag : L(S) — A
and A\r : L(T) — A, where A is a set of labels, for example, A = {1,...,n}. These
labelings define a set of new edges {uv | uw € L(S), v € L(T), As(u) = Ap(v)},
the inter-tree edges. The TL problem consists of finding plane drawings of S
and T that minimize the number of induced crossings of the inter-tree edges,
assuming that edges are drawn as straight-line segments. We insist that the
leaves in L(S) are placed on the line = 0 and those in L(T') on the line x = 1.
The trees S and T themselves are drawn to the left of x = 0 and to the right
of x = 1, respectively. For an example see Fig. 1. Given uniquely leaf labeled
trees S and T, we denote the resulting instance of TL by (S, T').

The TL problem is purely combinatorial: Given a tree T', we say that a linear
order of L(T') is compatible with T if for each node v of T the nodes in the
subtree of v form an interval in the order. Given a permutation 7 of {1,...,n},
we call (4, j) an inversion in 7 if ¢ < j and 7(z) > 7(j). For fixed orders o of L(.5)
and 7 of L(T') we define the permutation 7, ,, which for a given position in 7
returns the position in ¢ of the leaf having the same label. Now the TL problem
consists of finding an order ¢ of L(S) compatible with S and an order 7 of L(T')
compatible with 7" such that the number of inversions in 7, , is minimum.

2 Complexity

In this section we consider the complexity of binary TL, which Fernau et al. [7]
have shown to be NP-complete for general binary tanglegrams. We strengthen
their findings in two ways. First, we show that it is unlikely that an efficient
constant-factor approximation for general binary TL exists. Second, we show
that TL remains hard even when restricted to complete binary tanglegrams.

We start by showing that binary TL is essentially as hard as the MINUNCUT
problem. This relates the existence of a constant-factor approximation for TL to
the Unique Games Conjecture (UGC) by Khot [11]. The UGC became famous
when it was discovered that it implies optimal hardness-of-approximation results
for problems such as MAXCUT and VERTEXCOVER, and forbids constant factor-
approximation algorithms for problems such as MINUNCUT and SPARSESTCUT.
We reduce the MINUNCUT problem to the TL problem, which, by the result
of Khot and Vishnoi [12], makes it unlikely that an efficient constant-factor
approximation for TL exists.

The MINUNCUT problem is defined as follows. Given an undirected graph
G = (V,E), find a partition (V1,V2) of the vertex set V' that minimizes the
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number of edges that are not cut by the partition, that is, miny, v,) {uv € E :
u,v € V4 or u,v € Vo}|. Note that computing an optimal solution to MINUNCUT
is equivalent to computing an optimal solution to MAXCUT. Nevertheless, the
MINUNCUT problem is more difficult to approximate.

Theorem 1. Under the Unique Games Conjecture it is NP-hard to approximate
the TL problem for general binary trees within any constant factor.

Proof. As mentioned above we reduce from the MINUNCUT problem. Our re-
duction is similar to the one in the NP-hardness proof by Fernau et al. [7].

Consider an instance G = (V, E) of the MINUNCUT problem. We construct
a TL instance (S, T) as follows. The two trees S and T are identical and there
are three groups of edges connecting leaves of S to leaves of T'. For simplicity we
define multiple edges between a pair of leaves. In the actual trees we can replace
each such leaf by a binary tree with the appropriate number of leaves.

Suppose V' = {v1,v3,...,v,}, then both S and T are constructed as follows
There is a backbone path (vi,vi,v3,v3,..., 05,02, a) from the root node v{ to o
leaf a. Additionally, there are leaves lg(v]) and Ip(v]) attached to each node v
fori € {1,...,n} and j € {1,2} in S and T, respectlvely The edges form the
following three groups.

Group A contains n'! edges connecting ls(a) with Ir(a).

Group B contains for every v; € V n” edges connecting lg(v}) with I (v?), and
n" edges connecting lg(v?) with I7(v}).

Group C contains for every v;v; € E a smgle edge from Is(v}) to lr(vj).

Next we show how to transform an optimal solution of the MINUNCUT instance
into a solution of the corresponding TL instance. Suppose that in the optimal
partition (V{*, V") of G there are k edges that are not cut. Then we claim that
there exists a drawing of (S, T) such that k- n'! + O(n'?) pairs of edges cross. It
suffices to draw, for each vertex v; € Vi* (v; € V5"), the leaves ls( 1) and I (v?)
above (below) the backbones, and the nodes ls(v?) and I7(v}) below (above)
the backbones. It remains to count: there are k - n'' A-C crossings, no A-B
crossings, O(n'%) B-C crossings, and O(n*) C—C crossings.

Now suppose there exists an a-approximation algorithm for the TL problem
with some constant a. Applying this algorithm to the instance (S,T") defined
above yields a drawing D(S,T) with at most a - k-n'!t +O(n'?) crossings. Let us
assume that n is much larger than a. We show that from such a drawing D(S,T)
we would be able to reconstruct a cut (V1, V2) in G with at most a-k edges uncut.
First, observe that if a node lg(v}) is drawn above (below) the backbone in

D(S,T), then l7(v?) must be drawn on the same side of the backbone, otherwise
it would result in nls A-B crossings. Slrnllarly ls(v?) must be on the same side as
I7(v}). Then observe that if a node lg(v}) is drawn above (below) the backbone
in D(S7 T), then lg(v?) must be drawn below (above) the backbone, otherwise
there would be O(n'?) B-B crossings. Finally, observe that if we interpret the
set of vertices v; for which Ig(v}) is drawn above the backbone as a set V; of a
partition of G, then this partition leaves at most « - k edges from E uncut.



Drawing (Complete) Binary Tanglegrams 329

Hence, an a-approximation for the TL problem provides an a-approximation
for the MINUNCUT problem, which contradicts the UGC. a

The above negative result for (general) binary TL is our motivation to investi-
gate the complexity of complete binary TL. It turns out that even this special
case is hard. Unlike Fernau et al. [7] who show hardness of binary TL by a reduc-
tion from MAXCUT using extremely unbalanced trees, we use a quite different
reduction from a variant of MAX2SAT (see full version for the proof [2]).

Theorem 2. The TL problem is NP-hard even for complete binary tanglegrams.

3 Approximation

We now present our main result, a 2-approximation algorithm for complete bi-
nary TL that runs in O(n?®) time. The idea is to split a given tanglegram recur-
sively at the roots of the two trees into two subinstances, each again consisting
of a pair of complete binary trees. Let (S,T) be a subinstance of (Sy,Tp) with
subtrees S C Sy and T' C T rooted at nodes vg € Sy and vy € Ty, respectively
(see Fig. 2). When treating (S, T, we use the following pieces of information.

Firstly, associated with vg and vy we have labels /g and ¢ that indicate
what choices in the recursion so far led to the current subinstances. A label is a
bit string that represent the choices (swap/do not swap children) made at each
node, from the first recursive step to the current one (see Fig. 3).

We also assign labels to some other subtrees of (Sy, Tp) apart from S and T.
Given a leaf v € To\ T, we define the largest T-avoiding tree of v to be the largest
complete binary subtree of Ty that contains v, but not T'. Largest S-avoiding
trees are defined analogously for leaves in Sy. Each largest S- or T-avoiding tree
receives a label in the same way as S and T'. Note that the labels of the avoiding
trees are relative to the labels of vg and v, that is, a different subinstance leads
to different labels. If we refer (in the context of a subinstance (S, T')) to the label
of a leaf v € Ty, we mean the label of the largest T-avoiding tree of v.

Secondly, since S and T are part of a larger tree, some leaves of S may not
have the matching leaf in 7' (and vice versa). This means that at some previous
step such leaves were matched to leaves in some other subtrees, above or below
(S, T). We do not know exactly to which leaves they are matched, but we do
know, for each leaf, the label of the subtree that contains the matching leaf.

At each level of the recursion we have to choose between one out of four con-
figurations. Let the current subinstance be given by (S,T) = ((S1, S2), (T1,12)).
At each node vg on the left side, we must choose between having S; above S,
or the other way around. On the right side for vy, there are also two different
ways of placing 77 and T5. For each of the four configurations we invoke the
algorithm twice recursively: for the top half and for the bottom half. We return
the configuration with the smallest number of crossings.

When counting the crossings that a configuration creates, we distinguish two
types: current-level and lower-level crossings.
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Fig. 2. Context of subinstance  Fig.3. Labels for a particular subinstance (S, T).
(S, Ty = ((S1,852), (T1,T2)) The numbers at the nodes show the choices taken
(swap/do not swap children) that led to S and T
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Fig. 4. Different types of current-level crossings. Type (d) is considered current-level
only if the right leaves of the crossing edges have different labels, that is, if £7/ # €.
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Current-level crossings are crossings that can be avoided at this level by choos-
ing one of the four configurations for the subtrees, independently of the choices
to be done elsewhere in the recursion. Figure 4 illustrates the four different types.
For type (d), we remark that crossings are considered to be current-level only
if the largest S- and T-avoiding trees that contain the endpoints of the edges
outside S and T' are different. Crossings of type (d) where that is not the case
cannot be counted at this point. We call them indeterminate crossings.

Lower-level crossings are crossings that appear based on choices taken by
solving the subinstances of S and T recursively. We cannot do anything about
them at this level, but we know their exact number after solving the subinstances.

Here is a sketch of the algorithm.

1. For all four choices of arranging {S1, S2} and {71, T}, compute the total
number of lower-level crossings recursively. Before each recursive call (S;, T)),
we assign proper labels to some of the leaves of S and T, as follows. All leaves
in S; that connect to T3_; (that is, Ty if j = 2, T5 otherwise) get the label
{7 with a 0 or 1 appended depending on whether 7T} is above or below T5_;.
Then we do the analogue for all leaves of T); connected to S3_;.
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2. For each choice (S;,Tj) compute the number of current-level crossings (de-
tails below).

3. Return the choice that has the smallest sum of lower-level and current-level
crossings.

The labels are needed to propagate as much information as possible to the
smaller subinstances. For example, even though at this stage of the recursion it
is clear that the leaves of, say T5_;, are above the leaves of the subtrees below T',
once we recurse into the top subinstance, this information will be lost, implying
that what was a current-level crossing at this stage, will become an indeterminate
crossing later. The labeling allows to prevent this loss of information.

The number of current-level crossings can be computed in linear time as fol-
lows. We go through all inter-tree edges incident to leaves of S and put each
edge into one of at most O(logn) different classes, depending on the labels of
the endpoints outside S. Then we repeat the same for T'. This takes linear time.
Depending on where the largest S- or T-avoiding trees go (above or below), all
edge pairs belonging to a specific pair of labels do or do not intersect. Hence we
can count the total number of current-level crossings by multiplying the cardi-
nalities of the O(log2 n) pairs of classes whose edges all intersect each other.

The running time of the algorithm satisfies the recurrence T'(n) < 8T'(n/2) +
O(n), which solves to T'(n) = O(n?). We now prove that the algorithms yields a
2-approximation. In the full version [2] we show that our analysis is tight.

Theorem 3. Given a complete binary tanglegram (So, To) withn inter-tree edges,
the recursive algorithm computes in O(n?) time a drawing of (So, To) that has at
most twice as many crossings as an optimal drawing.

Proof sketch. Fix an optimal drawing é§ of (Sg,Tp). The algorithm tries, for a
given subinstance (S,T) of (Sp,To), all four possible layouts of S = (S1,S2)
and T = (11,T3). Assume that in 6, (S,T) is drawn as ((S1,S2), (11, 12)). We
distinguish between four different areas for the endpoints of the edges: above
(S,T),in (S1,T1), in (S2,T»), and below (S, T'). We number these regions from 0
to 3 (see Fig. 5(a)). This allows us to classify the edges into 16 groups (two of
which, 0-0 and 3-3, are not relevant). We denote the number of i—j edges, that
is, edges from area i to area j, by n;; (for 4,5 € {0,1,2,3}). Figures 5(b) and 5(c)
show the 14 relevant groups of edges.

The only edge crossings that our recursive algorithm cannot take into account
are the indeterminate crossings, which occur when the two edges connect to
leaves above or below (S,T) that are in the same largest S- or T-avoiding tree.
This is the case if both leaves have the same label. Such crossings cannot be
predicted from the current subinstance because they depend on the relative
position of the other two endpoints of the edges. We can, however, bound the
number of these crossings.

We observe that any crossing of that type at the current subinstance was, in
some previous step of the recursion, a crossing between two 1-2 edges or two
2—1 edges. We can upper-bound the number of these crossings by ("212) + (";1)
Let caig be the number of crossings in the solution produced by the algorithm,
and let copty be the number of crossings of 6. Then
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Fig. 5. For an instance ((S1, S2), (T1,72)) the locations of the edge endpoints are di-
vided into four areas (numbered 0-3); each edge is classified accordingly (a). This
defines 14 groups of relevant edges, where n;; denotes the number of i—j edges (b & c).

n n
Calg < Copt + ( 212) + ( 51) < Copt + (n3y +13y)/2. (1)

Since our (sub)trees are complete, we have nig + nia + n13 = ne1 + n21 + N31
and ngy + no2 + np3z = N1o + Nog + n3g. These two equalities yield nios < ngp —
nig + n21 + n31 and ngr — nig < ngy + N3, respectively, and thus we obtain
n12 < Nao + N3g + N2 + n31 or, equivalently, n%Q < nya - (neo + N30 + no1 + na1).

It is easy to verify that all the terms on the right-hand side of the last inequal-
ity count crossings that cannot be avoided and must be present in the optimal
solution as well. Hence nf, < copt, and symmetrically n3; < copt. Plugging this
into (1) yields calg < 2 - copt- O

General binary trees. Our recursive algorithm can also be applied to general,
non-complete tanglegrams. Then, however, the approximation factor does not
hold any more. Nollenburg et al. [15] have evaluated several heuristics for TL;
our recursive algorithm turned out to be a successful method for both complete
and general binary tanglegrams.

Generalization to d-ary trees. The algorithm can also be generalized to
complete d-ary trees. The recurrence relation of the running time changes to
T(n) < d-(d)?-T(n/d) + O(n) since we need to consider all d! subtree order-
ings of both trees, each triggering d subinstances of size n/d. This resolves to
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T(n) = O(n*t?1°24(4)) At the same time the approximation factor increases
d
to 1+ (5).

Maximization version. Instead of the original TL problem, we now consider
the dual problem TL* of maximizing the number of pairs of edges that do not
cross. The tasks of finding optimal solutions for these problems are equivalent,
but from the perspective of approximation it makes quite a difference which
of the two problems we consider. Now we do not assume that we draw binary
trees. Instead, if an internal node has more than two children, we assume that
we may only choose between a given permutation of the children and the reverse
permutation obtained by flipping the whole block of children.

In contrast to the TL problem, which is hard to approximate as we have shown
in Theorem 1, the TL* problem has a constant-factor approximation algorithm.
We show this (see full version [2]) by reducing TL* to a constrained version of
the MAXCUT problem, which can be approximately solved with the semidefinite
programming rounding algorithm of Goemans and Williamson [8].

Theorem 4. There exists a 0.878-approximation for the TL* problem.

4 Fixed-Parameter Tractability

We consider the following parameterized problem. Given a complete binary TL
instance (S, T) and a non-negative integer k, decide whether there exists a TL of
S and T with at most k induced crossings. Our algorithm for this problem uses a
labeling strategy, just as our algorithm in Sect. 3. However, here we do not select
the subinstance that gives the minimum number of lower-level crossings, but we
consider all subinstances and recurse on them. Thus, our algorithm traverses a
search tree of branching factor 4. For the search tree to have bounded height,
we need to ensure that whenever we go to a subinstance, the parameter value
decreases at least by one. For efficient bookkeeping we consider current-level
crossings only. At first sight this seems problematic: if a subinstance does not
incur any current-level crossings, the parameter will not drop. The following key
lemma—which does not hold for general binary trees—shows that there is a way
out. It says that if there is a subinstance without current-level crossings, then
we can ignore the other three subinstances and do not have to branch.

Lemma 1. Let (S,T) be a complete binary TL instance, and let vg be a node
of S and vy a node of T such that vs and vy have the same distance to their
respective root. Further, let (S1,S2) be the subtrees incident to vg and let (Ty,Ts)
be the subtrees incident to vr. If the subinstance ((S1,S2), (Th,T2)) does not in-
cur any current-level crossings, then each of the subinstances ((S1,52), (T2, T1)),
((S2,51), (T1,T2)), and {(S2,S1), (T2,T1)) has at least as many crossings as
((S1, S2), (T1,T2)), for any fized ordering of the leaves of S1, Sa, Th and Ts.

Proof. If the subinstance ((S1,S2),(T1,T%2)) does not incur any current-level
crossings, there are no edges between S7; and T> or between S; and T;. We
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(a) {(S1,52), (T1, T2)) (b) ((S2,51), (T2, T1)) (¢) {(S1,S2), (T2, T1))

Fig. 6. Edge types and crossings of the instance (S, T’

only consider the first case; the second is symmetric. We categorize the inter-
tree edges originating from the four subtrees according to their destination—see
Fig. 6(a)—and denote the numbers of edges of the various types by n11, na1, noo,
l1, l2, r1, and r5. Since we consider complete binary trees, we obtain l; = r1+ns1,
re =l +no1, and 71 + n11 = Iz + noo.

We fix an ordering o of the leaves of the subtrees Sy, So, T, T>. We first com-
pare the number of crossings in ((S1, S2), (T1,T%2)) with the number of crossings
in ((S2,51), (T2,T1)), see Fig. 6(b). The subinstance ((S1, S2), (T1,T2)) can have
at most na1 (n11+mn22) crossings that do not occur in ((Se, S1), (T2, T1)). However,
<(SQ, Sl)7 (TQ, T1)> has at least [; (ZQ +noy +n22) +Ilsn11 +’I"2(’I"1 +n91 +n11)—|—r1n22
crossings that do not appear in ((S1, S2), (T1,T2)). Plugging in the above equal-
ities for [; and 7y, we get (Tl —|—n21)(l2 +no1 + 7L22) +lonqiq + (lz + ngl)(Tl +no1 +
nll) + ringg > 7?,21(7111 + 7”[,22). Thus, the subinstance <(SQ, Sl), (T27T1)> has at
least as many crossings with respect to o as ((S1, S2), (T1,T2)) has.

Next, we compare the number of crossings in ((Si1,S2), (T1,T2)) with the
number of crossings in ((S1,S2), (T, T1)), see Fig. 6(c). Now the number of
additional crossings of ((S1,S2), (T1,T2)) is at most na1n9e, and the subinstance
<(Sl, Sz), (TQ, T1)> has at least (Tl + nll)(TQ + n22) + rong1 crossings more. With
the equality 71 + n11 = la + nos and the inequality 75 + noe > no; we get
(r1 + n11)(r2 + nog) + rena1 > nognar. Thus, the subinstance ((S1,.52), (T2, T1))
has at least as many crossings with respect to o as ((S1,52), (11, T2)) has.

By symmetry, the same holds for ((Sz,S1), (T1,T2)). O

Thus, to decompose the instance into four subinstances we spend O(n?) time.
Therefore we spend O(4%n?) time to produce all leaves of our bounded-height
search tree (omitting details). At each leaf of the search tree, we obtain a cer-
tain layout of (S,T), and the accumulated number of current-level crossings is
at most k. This, however, does not mean that the total number of crossings is
at most k since we did not keep track of the indeterminate crossings. There-
fore, at each leaf we still need to check how many crossings the corresponding
layout has. This can be done in O(nlogn) time. If one of the leaves yields at
most k crossings, the algorithm outputs “Yes” and the layout; otherwise it out-
puts “No”.
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Theorem 5. The algorithm sketched above solves the parameterized version of
complete binary TL in O(4kn?) time.
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Abstract. The metro-line crossing minimization (MLCM) problem was
recently introduced as a response to the problem of drawing metro maps
or public transportation networks, in general. According to this problem,
we are given a planar, embedded graph G = (V, E) and a set L of simple
paths on G, called lines. The main task is to place the lines on GG, so that
the number of crossings among pairs of lines is minimized.

Our main contribution is two polynomial time algorithms. The first
solves the general case of the MLCM problem, where the lines that tra-
verse a particular vertex of G are allowed to use any side of it to either
“enter” or “exit”, assuming that the endpoints of the lines are located
at vertices of degree one. The second one solves more efficiently the re-
stricted case, where only the left and the right side of each vertex can be
used.

To the best of our knowledge, this is the first time where the general
case of the MLCM problem is solved. Previous work was devoted to the
restricted case of the MLCM problem under the additional assumption
that the endpoints of the lines are either the topmost or the bottommost
in their corresponding vertices, i.e., they are either on top or below the
lines that pass through the vertex. Even for this case, we improve a
known result of Asquith et al. from O(|E|*/?|L|*) to O(|V|(|E| + |L])).

1 Introduction

A metro map can be modeled as a tuple (G, L), which consists of a connected
graph G = (V| E), referred to as the underlying network, and a set L of simple
paths on G. The nodes of G correspond to train stations, an edge connecting
two nodes implies that there exists a railway track connecting them, whereas
the paths illustrate the lines connecting terminal stations. Then, the process of
constructing a metro map consists of a sequence of steps. Initially, one has to
draw the underlying network nicely. Then, the lines have to be properly added

* This work has been funded by the project PENED-2003. PENED-2003 is co - funded
by the European Social Fund (75%) and Greek National Resources (25%).

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 336 ‘ 2009.
© Springer-Verlag Berlin Heidelberg 2009
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into the visualization and, finally, a labeling of the map has to be performed
over the most important features.

In the graph drawing and computational geometry literature, the focus so far
has been nearly exclusively on the first and the third step. Closely related to the
first step are the works of Hong et al. [5], Merrick and Gudmundsson [6], Nol-
lenburg and Wolff [7] and Stott and Rodgers [§]. The map labeling problem has
also attracted the interest of several researchers. An extensive bibliography on
map labeling is maintained on-line by Strijk and Wolff [9]. Interestingly enough,
the intermediate problem of adding the line set into the underlying network was
recently introduced by Benkert et al. [3], followed by [2]. Since crossings within a
visualization are often considered as the main source of confusion, the main goal
is to draw the lines, so that they cross each other as few times as possible. This
problem is referred to as the metro-line crossing minimization problem (MLCM).

1.1 Problem Definition

The input of the metro-line crossing minimization problem consists of a con-
nected, embedded, planar graph G = (V,E) and a set L = {l3,ls...l5} of
simple paths on G, called lines. We will refer to G as the underlying network
and to the nodes of G as stations. We also refer to the endpoints of each line as
its terminals. In this paper, we study the case where all line terminals are located
at stations of degree one, which are referred to as terminal stations. Stations of
degree greater than one are referred to as internal stations. The stations are rep-
resented as particular shapes (usually as rectangles but in general as polygons).
The sides of each station that each line may use to either “enter” or “exit” the
station are also specified as part of the input. Motivated by the fact that a line
cannot make a 180° turn within a station, we do not permit a line to use the
same side of a station to both “enter” and “exit”.

The output of the MLCM problem should specify an ordering of the lines at
each side of each station, so that the number of crossings is minimized.

Each line [; consists of a sequence of edges e; = (v, v1),---,€q = (Vg—1,V4)-
Stations vy and vy are the terminals of line [;. Equivalently, we say that [;
terminates or has terminals at vy and vg. By |l;| we denote the length of line [;.

Each line that traverses a station u has to touch two of the sides of u at
some points (one when it “enters” u and one when it “exits” u). These points are
referred to as tracks (see the dark-gray colored bullets on the boundary of each
station in Fig.[IH)). In general, we may permit tracks to all sides of each station,
(see Fig. [[a). In the case where the stations are represented as rectangles, this
model is referred to as the 4-side model. In the general case where the stations
are represented as polygons of at most k sides, this model is referred to as the
k-side model. A more restricted model, referred to as the 2-side model, is the one
where 1) the stations are represented as rectangles and ii) all lines that traverse
a station may use only its left and right side (see Fig. [ID).

A particularly interesting case that arises under the 2-side model is the one
where the lines that terminate at a station occupy its topmost and bottommost
tracks, in the following referred to as top and bottom station ends, respectively
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Fig. 1. The underlying network is the gray colored graph

(see Fig.[[H). This is to emphasize that the line terminates at that station. The
variant of the MLCM problem that fulfills this restriction is referred to as the
metro-line crossing minimization problem with station ends (MLCM-SE). If ad-
ditionally, the information whether a line terminates at a top or at a bottom
station end in its terminal station is specified as part of the input, the corre-
sponding problem is referred to as metro-line crossing minimization problem with
fized station ends (MLCM-FizedSE).

A further refinement of the MLCM problem concerns the location of the
crossings among pairs of lines. If the relative order of two lines changes between
two consecutive stations, then the two lines must intersect between these stations
(see Fig. [[H). We call this an edge crossing. As opposed to an edge crossing, a
station crossing occurs inside a station. For aesthetic reasons, we want to avoid
station crossings whenever this is possible (e.g. in the case of 4-side model this
is not always feasible; see Fig. [Ial).

1.2 Previous Work and Our Results

The first results on the MLCM problem were presented by Benkert et al. in
[3], who devised a dynamic-programming algorithm that runs in O(|L|?) time
for the restricted case where the crossings are minimized along a single edge
of G. Bekos et al. [2] proved that the MLCM-SE problem is NP-complete even
in the case where the underlying network is a path. They also proved that the
MLCM-FixedSE problem can be solved in O(|V| + logdZLill [;]), in the case
where the underlying network is a tree of degree d. Extending the work of Bekos
et al., Asquith et al. [1] proved that the MLCM-FixedSE problem is also solvable
in polynomial time in the case where the underlying network is an arbitrary
planar graph. The time complexity of their algorithm was O(|E|%/?|L|?). They
also proposed an integer linear program which solves the MLCM-SE problem.
This paper is structured as follows: In Section [2, we present a polynomial
time algorithm, which runs in O((|E| + |L|?)|E|) time for the MLCM prob-
lem under the k-side model, assuming that the line terminals are located at
stations of degree one. To the best of our knowledge no results are currently
known regarding this general model. In Section [, we present a faster algorithm
for the special case of 2-side restriction. The time complexity of the proposed
algorithm is O(|V||E| 4+ Zml |I;])- It can also be employed to solve the MLCM-

1=

FixedSE problem, which drastically improves the running time of the algorithm
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of Asquith et al. [I] from O(|E|*/2|L|?) to O(|V||E| + |V]|L|). We conclude in
Section ] with open problems and future work.

2 The MLCM Problem under the k-Side Model

To simplify the description of our algorithm and to make the accompanying
figures simpler, we restrict our presentation to the MLCM problem under the 4-
side model, i.e., we assume that each station is represented as a rectangle and we
permit tracks to all four sides of each station. Our algorithm for the case of k-side
model is identical, since it is based on recursion over the edges of the underlying
network. Recall that all line terminals are located at stations of degree one, the
lines can terminate at any track of their terminal stations, and, finally, the sides
of each station that each line may use to either “enter” or “exit” are specified
as part of the input. We further assume that an internal station always exists
within the underlying network, otherwise the problem can be solved trivially.

The basic idea of our algorithm is to decompose the underlying network by
removing an arbitrary edge out of the edges that connect two internal stations
(and, consequently, appropriately partitioning the set of lines that traverse this
edge ), then recursively solve the subproblem and, finally, derive a solution of
the initial problem by i) re-inserting the removed edge and ii) connecting the
partitioned lines along the re-inserted edge.

2.1 Base of Recursion

The base of the recursion corresponds to the case of a graph G p consisting of a
“central station” u containing no terminals and a particular number of terminal
stations, say v1,v2 ...vq, incident to u (see Fig. Zd). To cope with this case, we
first group all lines that have exactly the same terminals into a single line, which
is referred to as bundle. The notion of bundles corresponds to the fact that lines
with same terminals are drawn in a uniform fashion, i.e., occupying consecutive
tracks at their common stations. So, in an optimal solution once a bundle is
drawn, it can be safely replaced by its corresponding lines without affecting the
optimality of the solution. In Fig. Bd lines belonging to the same bundle have
been drawn with the same type of non-solid line. Note that single lines are also
treated as bundles in order to maintain a uniform terminology (refer to the solid
lines of Fig.[2d). Then, the number of bundles of each terminal station is bounded
by the degree of the “central station” w.

In order to route the bundles along the edges of Gg, we will make use of the
Euler tour numbering that was proposed by Bekos et al. [2]. Let v be a terminal
station of Gp. The Euler tour numbering of the terminal stations v, ve, ..., vg
of Gp with respect to v is a function ETN,, : {v1,v2,...,vq} — {0,1,...,d — 1}.
More precisely, given a terminal station v of G, we number all terminal stations
of Gp according to the order of first appearance when moving clockwise along
the external face of Gp starting from station v, which is assigned the zero value.
Note that such a numbering is unique with respect to v and we refer to it as
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Fig. 2. Illustration of the base of the recursion. The numbering of the lines is arbitrary.

the Euler tour numbering starting from station v or simply as ETN,. Also, note
that the computation of only one numbering is enough in order to compute the
corresponding Euler tour numberings from any other terminal station of Gp,
since ETN,/ (w) = (ETN, (w) — ETN,(v')) mod d.

Our approach is outlined as follows: We first sort in ascending order the
bundles at each terminal station v based on the Euler tour numbering ETN,, of
their destinations (see Fig. [2al). This implies the desired ordering of the bundles
along the side of each terminal station that is incident to the “central station” u.
We will denote by BND(v) the ordered set of bundles of each terminal station v.
Then, we pass these bundles from each terminal station to the “central station”
u along their common edge without introducing any crossings (see Fig. Bh)). This
will also imply an ordering of the bundles at each side of the “central station” u.
To complete the routing procedure, it remains to connect equal bundles in the
interior of the “central station” w, which may imply crossings (see Fig. [2d). Note
that only necessary station crossings are created, since the underlying network
is planar and from the Euler tour numbering it follows that no edge crossings
will eventually occur. So, the optimality of the solution follows trivially.

2.2 Description of the Recursive Algorithm

Having specified the base of the recursion, we now proceed to describe our recur-
sive algorithm in detail. Let e = (v, w) be an edge which connects two internal
stations v and w of the underlying network. If no such edge exists, then the
problem can be solved by employing the algorithm of the base of the recursion.

Let L. be the set of lines that traverse e. Any line l.; € L. originates from
a terminal station, passes through a sequence of edges, then enters station v,
traverses edge e, exits station w and, finally, passes through a second sequence
of edges until it terminates at another terminal station. Let p: E x L — N be a
function, such that p(e,!) denotes the position of edge e along line . Formally,

L. = {le,lyle,27~-~7le,|Le|}7 where [.; denotes the i-th line of L.. Since each
line of L. consists of a sequence of edges, set L, can be written in the form
_ le.s .

{lei=el; e, ... e’;il e e}(fgl eLyi k= ple,lei), i =1,2,...,|L|}. We

proceed by removing edge e from the underlying network and by inserting two
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Fig. 3. Illustration of the removal of an edge that connects two internal stations

new terminal stations ¢7 and ¢ incident to the stations v and w, respectively
(see the dark-gray colored stations of the right drawing of Fig.B]). Let G* = (VU
{t2,t¥}, (E — {e}) U{(v,t?), (t¥,w)}) be the new underlying network obtained
in this manner.

Since the edge e has been removed from the underlying network, the lines of
L. cannot traverse it any more. So, we force them to terminate at ¢t. and t¥, as
it is depicted in the right drawing of Fig. Bl This is done by splitting the set L.
into two new sets LY and LY (see Fig.[]), which are formally defined as follows:

- LY = {eé)i ez) e];;l (v,t2); k=ple,leq), i =1,2,...,|Le|}

— Ly ={(tv,w) eft el = (e le), i =1,2,.. ., |Le|}}

e, ezt )

The new set of lines that it is obtained after the removal of the edge e is
L* = (L—L.)U(LYULY). Observe that the removal of edge e from the underlying
network may disconnect it. In the case where G* is connected, we recursively
solve the MLCM problem on (G*, L*). Otherwise, since G* was obtained from
G by the removal of a single edge, it has exactly two connected components, say
G7 and G5. Let L(G7) denotes the lines of L* induced by Gf. In this case, we
recursively solve the MLCM problem on (GF, L(GY)) and (G5, L(G3)).

The recursion will lead to a solution of (G*, L*). Part of the solution consists
of two ordered sets of bundles BND(t?) and BND(t¥) at each of the terminal
stations ¢ and tY, respectively. Recall that, in the base of the recursion, all lines
in a bundle have exactly the same terminals. In the recursive step, a bundle
corresponds to a set of lines whose relative positions cannot be determined. In
order to obtain a solution of (G, L), we restore the removed edge e and remove
the terminal stations ¢? and tY. The bundles BND(¢Y) and BND(t¥) of ¢¥ and t¥
have also to be connected appropriately along the edge e. Note that the order
of the bundles of t¥ and t¥ is equal to those of v and w, due to the base of the
recursion. Thus, the removal of 2 and t¥ will not produce unnecessary crossings.

We now proceed to describe the procedure of connecting the ordered bundle
sets BND(tY) and BND(t¥) along edge e. We say that a bundle is of size k iff
it contains exactly k lines. We also say that two bundles are equal iff they
contain the same set of lines, i.e., the parts of the lines that each bundle contains
correspond to the same set of lines. First, we connect all equal bundles. Let
b € BND(¢?) and &’ € BND(t?) be two equal bundles. The connection of b and b’
will result into a new bundle which i) contains the lines of b (or equivalently of
b') and ii) its terminals are the terminals of b and o’ that do not participate in
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Fig. 4. Splitting the largest bundle. Note that no equal bundles exist.

the connection. Note that a bundle is specified as a set of lines and a pair of
stations, that correspond to its terminals. When the connection of b and b’ is
completed, we remove both b and b’ from BND(tY) and BND(t¥).

If both BND(¢?) and BND(t¥) are empty, all bundles are connected. In the case
where they still contain bundles, we determine the largest in size bundle, say
bmaz, of BND(t¥) U BND(t¥). W.lLo.g. we assume that b,,., € BND(t¥) (see the
left drawing of Fig. H). Since by,q, is the largest bundle among the bundles of
BND(#Y) U BND(t¥) and all equal bundles have been removed from both BND(tY)
and BND(t?), bya contains at least two lines that belong to different bundles of
BND(t¥). So, it can be split into smaller bundles, each of which contains a set of
lines belonging to the same bundle in BND(t¥) (see the right drawing of Fig. []).
Also, the order of the new bundles in BND(t?) should follow the order of their
corresponding bundles in BND(¢¥) in order to avoid unnecessary crossings (refer
to the order of the bundles within the dotted rectangle of Fig. ). In particular,
the information that a bundle was split should be propagated to all stations that
this bundle traverses, i.e., splitting a bundle is not a local procedure that takes
place along a single edge but it requires greater effort. Note that the crossings
between lines of b,,,4, and bundles in BND(¢¥) cannot be avoided. In addition, no
crossings among lines of b4, occur.

We repeat these two steps (i.e. connection of equal bundles and splitting the
largest bundle) until both BND(¢%) and BND(t¥) are empty. Since we always split
the largest bundle into smaller ones, this guarantees that our algorithm regarding
the connection of the bundles along the edge e will eventually terminate.

Theorem 1. Given a graph G = (V, E) and a set of lines L on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
4-side model can be solved in O((|E| + |L|?)|E|) time.

Proof. The base of the recursion trivially takes O(|V] + Ziill |;]), or simply,
O(|JV||L|) total time. The complexity of our algorithm is actually determined
by the connection of the bundles along a particular edge, which is performed at
most O(]E|) times, since we always remove an edge that connects two internal
stations. The previous steps of our algorithm (i.e., the construction of graph G*
and the necessary recursive calls) need a total of O((|V|+ |E|)|E|+ |V ||L|) time.

In order to connect equal bundles, we initially sort the lines of BND(t¥) using
counting sort [4] in O(]L| + |L.|) time, assuming that the lines are numbered
from 1 to |L|, and we store them in an array, say B, such that the i-th numbered
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line occupies the i-th position of B. Then, all equal bundles can be connected by
performing a single pass over the lines of each bundle of BND(¢¥). Note that, given
a line [ that belongs to a particular bundle of BND(¢Y), say b, we can determine in
constant time to which bundle of BND(¢t¥) it belongs by employing array B. So,
in a total of O(|b]) time, we decide whether b is equal to one of the bundles of
BND(tY), which yields into an O(]L.|) total time for all bundles of BND(¢?). Thus,
the connection of equal bundles can be accomplished in O(|L| + |L.|) time.

Having connected all equal bundles, the largest bundle is then determined
in O(|me|) time, where m, = BND(¢¥) U BND(¢). Using counting sort, we can
split the largest bundle in O(|L| + |L.|) time. The propagation of the splitting of
the largest bundle needs O(|V||L.|) time. The connection of the equal bundles
and the splitting of the largest bundle will take place at most O(]L|) times.
Since |me| < 2|L| and |L.| < |L|, the total time needed for our algorithm is
O((1E| + [VI|LI)|E| + [V]|L])-

Note that the above straight-forward analysis can be improved by a factor
of |V|. This is accomplished by propagating the splitting of each bundle only
to its endpoints (i.e., not to all stations that each individual bundle traverses).
This immediately implies that some stations of G may still contain bundles after
the termination of the algorithm. So, we now need an extra post-processing step
to fix this problem. We use the fact that the terminals of G do not contain
bundles, since they are always at the endpoints of each bundle, when it is split.
This suggests that we can split —up to lines— all bundles at stations incident
to the terminal stations. We continue in the same manner until all bundles
are eventually split. Note that this extra step needs a total of O(|E||L|) time
and consequently does not affect the total complexity, which is now reduced to
O((IV|+|E|+|L|?)|E|+|V]|L|). Since G is connected, |E| > |V|—1 and therefore
our algorithm needs O((|E| 4 |L|?)|E|) time, as desired. 0

Corollary 1. Given a graph G = (V, E) and a set of lines L on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
k-side model can be solved in O((|E| + |L|?)|E|) time.

3 The MLCM Problem under the 2-Side Model

In this section, we adopt the scenario of Section 2l under the 2-side model, i.e.,
we study the MLCM problem assuming that each station is represented as a
rectangle and we permit tracks to the left and the right side of each station, i.e.,
one of the rectangle’s sides is devoted to “incoming” edges/lines while the other
is devoted to “outgoing” edges/lines (see Fig. Bal). This assumption, combined
with the fact that we do not permit a line to use the same side of a station to
both “enter” and “exit”, implies that all lines should be x-monotone.

Since the lines are z-monotone, we refer to the leftmost (rightmost) terminal
of each line as its origin (destination). We also say that a line uses the left side
of a station to enter it and the right side to exit it. Furthermore, we refer to the
edges incident to the left (right) side of each station w in the embedding of G as
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Fig. 5. (a) Incoming/outgoing edges of u. (b) Construction of graph G’ when G consists
of a single internal station u. (c¢) An edge numbering of G.

incoming (outgoing) edges of station u (see Fig. Bal). For each station u of G, the
embedding of G also specifies an order of both the incoming and outgoing edges
of u. We denote these orders by E;,(u) and E,,:(u), respectively (see Fig. [al).

A key component of our algorithm is a numbering of the edges of G, i.e.,
a function EN : F — {1,2,...,|E|}. In order to obtain this numbering, we first
construct a directed graph G’ = (V’/, E’), as follows: For each edge e € E of G, we
introduce a new vertex v in G’ (refer to the black-colored bullets of Figures [Bhl
and [Bd). Therefore, |V'| = |E|. Also, for each pair of edges e; and e;11 of G that
are consecutive in that order in Fj,(u) or E,yu:(u), where uw € V is an internal
station of G, we introduce an edge (ve,,ve,,,) in G’ (refer to the black-colored
solid edges of Fig. Bh]). Finally, we introduce an edge connecting the vertex of G’
associated with the last edge of E;,(u) to the vertex of G’ associated with the
first edge of Fout(u) (refer to the black-colored dashed edge of Fig. [Bh). Then,
|E'| = O(]E|). An illustration of the proposed construction is depicted in Fig. Bd
Note that all edges of G’ are either directed “downward” or “left-to-right” w.r.t.
an internal station. Thus there exist no cycles within the constructed graph (no
“right-to-left” edges exist to form cycles). The desired numbering of the edges of
G is then implied by performing a topological sorting on G’ (see Fig. Bd).

Since each line is a sequence of edges, it can be expressed as a sequence of
numbers based on the edge numbering EN: E — {1,2,...,|E|}. We refer to the
sequence of numbers assigned to each line as its numerical representation. Note
that the numerical representation of each line is sorted in ascending order.

Let [ and I’ be two lines that share a common path of the underlying network
G.Letalsoay...arci...cpbi...bpand g1 ...gqc1...Cmh1 ... hy be their numer-
ical representations, respectively, where the subsequence cycs ... ¢y, corresponds
to their common path. Then, [ and !” inevitably cross iff (ay —gq) X (b1 —h1) <0
(see Fig. [Ga). Note that their crossing can be placed along any edge of their
common path. This is because we aim to avoid unnecessary station crossings.

Consider now two lines [ and [’ that share only a single internal station u of
G. We assume that u is incident to —at least— four edges, say el, €2, €2 and e?,
where el and e2 are incoming edges of u, whereas e3 and e outgoing. We further
assume that [ enters u using el and exits u using e?. Similarly, I’ enters u using
e2 and exits u using €3 (see Fig.[6h)). Then, [ and I’ form a station crossing which
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(a) Edge crossing. (b) Station crossing.

Fig. 6. Crossings that cannot be avoided. Note that in Fig. Bal ar < g4 < h1 < b1,
whereas in Fig. [60] EN(e}) < EN(e2) < EN(e3) < EN(e}).

cannot be avoided iff (EN(el) —EN(e2)) x (EN(e?) —EN(e?)) < 0. In this case, the
crossing of [ and [’ can only be placed in the interior of station u.

Our intention is to construct a solution where only crossings that cannot be
avoided are present. We will draw the lines of GG incrementally by appropriately
iterating over the stations of G and by extending the lines from previously it-
erated stations to the next station. Assuming that the edges of G are directed
from left to right in the embedding of G, we first perform a topological sorting
of the stations of GG. Note that since all edges are directed from left to right,
the graph does not contain cycles (no right to left edges exist to form cycles)
and therefore a topological order exists. We consider the stations of G in their
topological order. This ensures that whenever we consider the next station, its
incoming lines have already been routed up to its left neighbors. Let u be the
next station in the order. We distinguish the following cases:

Case (a) : indegree(u) =0 (i.e. terminal station,).
A station u with indegree(u) = 0 corresponds to a station which only con-
tains the origins of some lines. In this case, we simply sort in ascending order
these lines lexicographically with respect to their numerical representations.
This implies the desired ordering of the lines along the right side of station
u. It also ensures that these lines do not cross along their first common path.

Case (b) : indegree(u) > 0.
Let el,e2,..., e be the incoming edges of station u, where k = indegree(u)
and e!, = (uj,u), i = 1,...,k. W.lLo.g. we assume that EN(e!,) < EN(el),
Vi < j. The lines that enter u from el will occupy the topmost tracks of the
left side of station u. Then, the lines that enter u from e? will occupy the
next available tracks and so on. This ensures that the lines that enter u from
different edges will not cross with each other, when entering u.

Let Li be the lines that ente