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Preface

The 16th International Symposium on Graph Drawing (GD 2008) was held in
Hersonissos, near Heraklion, Crete, Greece, September 21-24, 2008, and was
attended by 91 participants from 19 countries.

In response to the call for papers the Program Committee received 83 sub-
missions, each describing original research and/or a system demonstration. Each
submission was reviewed by at least three Program Committee members and the
reviewer’s comments were returned to the authors. Following extensive discus-
sions, the committee accepted 31 long papers and 8 short papers. In addition,
10 posters were accepted and displayed at the conference site. Each poster was
granted a two-page description in the conference proceedings.

Two invited speakers, Jesper Tegnér from Karolinska Institute (Monday)
and Roberto Tamassia from Brown University (Tuesday), gave fascinating talks
during the conference. Professor Tegnér focused on the challenges and opportu-
nities posed by the discovery, analysis, and interpretation of biological networks
to information visualization, while Prof. Tamassia showed how graph drawing
techniques can be used as an effective tool in computer security and pointed to
future research directions in this area.

Following what is now a tradition, the 15th Annual Graph Drawing Contest
was held during the conference, also including a Graph Drawing Challenge to
the conference attendees. A report is included in the conference proceedings.

Many people contributed to the success of GD 2008. First of all, special thanks
to the authors of submitted papers, demos, and posters. Many thanks to the
members of the Program Committee and the external referees who worked dili-
gently to select only the best of the submitted papers. The Organizing Commit-
tee worked tirelessly in the months leading to the crucial final four days: Emilio
Di Giacomo was a great Publicity Chair; Theano Apostolidi, Kiriaki Kaiserli,
Maria Prevelianaki, and Vassilis Tsiaras carried a large part of the work regard-
ing local organization and management of the conference. Also, many thanks to
the student volunteers who helped in many ways during the conference.

The conference was organized and supported by the Institute of Computer
Science (ICS)-FORTH and the Computer Science Department of the University
of Crete. GD 2008 also received generous support from our sponsors: Tom Sawyer
Software (Gold Sponsor), and OTE, ILOG, and Virtual Trip (Silver Sponsors).

The 17th International Symposium on Graph Drawing (GD 2009) will be
held September 23-25, 2009 in Chicago, USA, co-chaired by David Eppstein and
Emden R. Gansner.

November 2008 Ioannis G. Tollis
Maurizio Patrignani
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Walter Didimo Università degli Studi di Perugia
Peter Eades NICTA and University of Sydney
David Eppstein University of California, Irvine
Robert Gentleman Fred Hutchinson Cancer Research Center
Seok-Hee Hong NICTA and University of Sydney
Michael Kaufmann Universität Tübingen
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Networks in Biology – From Identification, Analysis to
Interpretation

Jesper Tegnér

Institutionen för Medicin
Karolinska Universitetssjukhuset

Solna, Stockholm
jesper.tegner@ki.se

Abstract. Over the last decade networks has become a unifying language in bi-
ology. Yet we are only in the beginning of understanding their significance for
biology and their medical applications. I will talk about the diversity of biolog-
ical networks composed either of genes, proteins, metabolites, or cells and the
associated methods for finding these graphs in the data. Next I will provide an
overview of different methods of analysis and what kind of insights that have
been obtained. During the talk I will highlight current challenging problems re-
quiring computational skills with respect to identification, analysis, algorithms,
visualization and software.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Graph Drawing for Security Visualization∗

Roberto Tamassia1, Bernardo Palazzi1,2,3, and Charalampos Papamanthou1

1 Brown University, Department of Computer Science, Providence, RI, USA
{rt,bernardo,cpap}@cs.brown.edu

2 Roma TRE University, Rome, Italy
palazzi@dia.uniroma3.it

3 ISCOM Italian Ministry of Economic Development-Communications, Rome, Italy

Abstract. With the number of devices connected to the internet growing rapidly
and software systems being increasingly deployed on the web, security and pri-
vacy have become crucial properties for networks and applications. Due the
complexity and subtlety of cryptographic methods and protocols, software archi-
tects and developers often fail to incorporate security principles in their designs
and implementations. Also, most users have minimal understanding of security
threats. While several tools for developers, system administrators and security
analysts are available, these tools typically provide information in the form of
textual logs or tables, which are cumbersome to analyze. Thus, in recent years,
the field of security visualization has emerged to provide novel ways to display
security-related information so that it is easier to understand. In this work, we
give a preliminary survey of approaches to the visualization of computer security
concepts that use graph drawing techniques.

1 Introduction

As an increasing number of software applications are web-based or web-connected, se-
curity and privacy have become critical issues for everyday computing. Computer sys-
tems are constantly being threatened by attackers who want to compromise the privacy
of transactions (e.g., steal credit card numbers) and the integrity of data (e.g., return
a corrupted file to a client). Therefore, computer security experts are continuously de-
veloping methods and associated protocols to defend against a growing number and
variety of attacks. The development of security tools is an ongoing process that keeps
on reacting to newly discovered vulnerabilities of existing software and newly deployed
technologies.

Both the discovery of vulnerabilities and the development of security protocols can
be greatly aided by visualization. For example, a graphical representation of a complex
multi-party security protocol can give experts better intuition of its execution and se-
curity properties. In current practice, however, computer security analysts read through

∗ This work has been presented at the 2008 Symposium on Graph Drawing in
a invited talk dedicated to the memory of Paris C. Kanellakis, a prominent
computer scientist and Brown faculty member who died with his family in
an airplane crash in December 1995. His unbounded energy and outstanding
scholarship greatly inspired all those who interacted with him.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 2–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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large logs produced by applications, operating systems, and network devices. The visual
inspection of such logs is quite cumbersome and often unwieldy, even for experts. Moti-
vated by the growing need for automated visualization methods and tools for computer
security, the field of security visualization has recently emerged as an interdisciplinary
community of researchers with its own annual meeting (VizSec).

In this paper, we give a preliminary survey of security visualization systems that use
graph drawing methods. Thanks to their versatility, graph drawing techniques are one
of the main approaches employed in security visualization. Indeed, not only computer
networks are naturally modeled as graphs, but also data organization (e.g., file systems)
and vulnerability models (e.g., attack trees) can be effectively represented by graphs.
In the rest of this paper, we specifically overview graph drawing approaches for the
visualization of the following selected computer security concepts:

1. Network Monitoring. Monitoring network activity and identifying anomalous be-
havior, such as unusually high traffic to/from certain hosts, helps identifying several
types of attacks, such as intrusion attempts, scans, worm outbreaks, and denial of
service.

2. Border Gateway Protocol (BGP). BGP manages reachability between hosts in
different autonomous systems, i.e., networks under the administrative control of
different Internet Service Providers. Understanding the evolution of BGP routing
patterns over time is very important to detect and correct disruptions in Internet
traffic caused by router configuration errors or malicious attacks.

3. Access Control. Access to resources on a computer system or network is regulated
by policies and enforced through authentication and authorization mechanisms. It
is critical to protect systems not only from unauthorized access by outside attackers
but also from accidental disclosure of private information to legitimate users. Ac-
cess control systems and their associated protocols can be very complex to manage
and understand. Thus, it is important to have tools for analyzing and specifying
policies, identifying the possibility of unauthorized access, and updating permis-
sions according to desired goals.

4. Trust Negotiation. Using a web service requires an initial setup phase where the
client and server enter into a negotiation to determine the service parameters and
cost by exchanging credentials and policies. Trust negotiation is a protocol that
protects the privacy of the client and server by enabling the incremental disclosure
of credentials and policies. Planning and executing an effective trust negotiation
strategy can be greatly aided by tools that explore alternative scenarios and show
the consequences of possible moves.

5. Attack Graphs. A typical strategy employed by an attacker to compromise a sys-
tem is to follow a path in a directed graph that models vulnerabilities and their
dependencies. After an initial successful attack to a part of a system, an attacker
can exploit one vulnerability after the other and reach the desired goal. Tools for
building and analyzing attack graphs help computer security analysts identify and
fix vulnerabilities.

In Table 1, we show the graph drawing methods used by the systems surveyed in this
paper.
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Table 1. Graph drawing methods used in the security visualization systems surveyed in this paper

Force-Directed Layered Bipartite Circular Treemap 3D

Network Monitoring [9, 12, 14, 21] [1, 4, 24] [20]
BGP [19] [19] [18]

Access Control [13] [10]
Trust Negotiation [23]

Attack Graphs [16, 17]

2 Network Monitoring

Supporting Intrusion Detection by Graph Clustering and Graph Drawing [21]. In this
paper, the authors use a combination of force-directed drawing, graph clustering, and
regression-based learning in a system for intrusion detection (see Fig. 1(a)). The system
consists of modules for the following functions: packet collection, graph construction
and clustering, graph layout, regression-based learning, and event generation.

The authors model the computer network with a graph where the nodes are com-
puters and the edges are communication links with weight proportional to the network
traffic on that link. The clustering of the graph is performed with a simple iterative
method. Initially, every node forms its own cluster. Next, nodes join clusters that al-
ready have most of their neighbors. A force-directed approach is used to place clusters
and nodes within the clusters. Since forces are proportional to the weights of the edges,
if there is a lot of communication between two hosts, their nodes are placed close to
each other. Also, in the graph of clusters, there is an edge between clusters A and B if
there is at least one edge between some node of cluster A and some node of cluster B.
The layout of the graph of clusters and of each cluster are computed using the classic
force-directed spring embedder method [6].

Various features of the clustered graph (including statistics on the node degrees, num-
ber of clusters, and internal/external connectivity of clusters) are used to describe the
current state of network traffic and are summarized by a feature vector. Using test traffic
samples and a regression-based strategy, the system learns how to map feature vectors
to intrusion detection events. The security analyst is helped by the visualization of the
clustered graph in assessing the severity of the intrusion detection events generated by
the system.

Graph-Based Monitoring of Host Behavior for Network Security [12]. In this paper, the
authors show how to visualize the evolution over time of the volume and type of network
traffic using force-directed graph drawing techniques (see Fig. 1(b)). Since there are
different types of traffic protocols (HTTP, FTP, SMTP, SSH, etc.) and multiple time
periods, this multi-dimensional data set is modeled by a graph with two types of nodes:
dimension nodes represent traffic protocols and observation nodes represent the state
of a certain host in a given time interval. Edges are also of two types: trace edges link
observation nodes of consecutive time intervals and attraction edges link observation
nodes with dimension nodes and have weight proportional to the traffic of that type.

The layout of the above graph is computed starting with a fixed placement of the
dimension nodes and then executing a modified version of the Fruchterman-Reingold
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(a) (b)

Fig. 1. (a) Force-directed clustered drawing for intrusion detection (thumbnail of image
from [21]). (b) Evolution of network traffic over time (thumbnail of image from [12]): dimension
nodes represent types of traffic and observation nodes represent the state of a host at a given time.

force-directed algorithm [8] that aims at achieving uniform edge lengths. The authors
show how intrusion detection alerts can be associated with visual patterns in the layout
of the graph.

A Visual Approach for Monitoring Logs [9]. This paper (see Fig. 2(a)) presents a tech-
nique to visualize log entries obtained by monitoring network traffic. The log entries are
basically vectors whose elements correspond to features of the network traffic, includ-
ing origin IP, destination IP, and traffic volume. The authors build a weighted similarity
graph for the log entries using a simple distance metric for two entries given by the sum
of the differences of the respective elements. The force-directed drawing algorithm of
[3] is used to compute a drawing of the similarity graph of the entries.

A Visualization Methodology for Characterization of Network Scans [14]. This work
considers network scans, often used as the preliminary phase of an attack. The authors
develop a visualization system that shows the relationships between different network
scans (see Fig. 2(b)). The authors set up a graph where each node represents a scan and
the connection between them is weighted according to some metric (similarity measure)
that is defined for the two scans. Features taken into consideration for the definition of
the similarity measure include the origin IP, the destination IP and the time of the con-
nection. To avoid displaying a complete graph, the authors define a minimum weight
threshold, below which edges are removed. The LinLog force directed layout method
[15] is used for the visualization of this graph. In the drawing produced, sets of sim-
ilar scans are grouped together, thus facilitating the visual identification of malicious
scans.

VisFlowConnect: NetFlow Visualizations of Link Relationships for Security Situational
Awareness [24]. In this work, the authors apply a simple bipartite drawing technique
to provide a visualization solution for network monitoring and intrusion detection (see
Fig. 3(a)). The nodes, representing internal hosts and external domains, are placed on
three vertical lines. The external domains that send traffic to some internal host are
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(a) (b)

Fig. 2. (a) Similarity graph of log entries (thumbnail of image from [9]). (b) Similarity graph of
network scans (thumbnail of image from [14]).

placed on the left line. The domains of the internal hosts are placed on the middle
line. The external domains that receive traffic from some internal host are placed on
the right line. Each edge represents a network flow, which is a sequence of related
packets transmitted from one host to another host (e.g., a TCP packet stream). Ba-
sically, the layout represents a tripartite graph. The vertical ordering of the domains
along each line is computed by the drawing algorithm with the goal of minimizing
crossings.

The tool uses a slider to display network flows at various time intervals and provides
three views. In the global view, the entire tripartite graph is displayed to show all the
communication between internal and external hosts. In the internal view and domain
view, the tool isolates certain parts of the network, such as internal senders and internal
receivers, and correspondingly displays a bipartite graph. The domain view and inter-
nal view are easier to analyze and provide more details on the network activity being
visualized but on the other hand, the global view produces a high-level overview of the
network flows. The authors apply the tool in various security-related scenarios, such as
virus outbreaks and denial-of-service attacks.

Home-Centric Visualization of Network Traffic for Security Administration [1]. In this
paper the authors use a matrix display combined with a simple graph drawing method
in order to visualize the traffic between domains in network and external domains (see
Fig. 3(b)). To visualize the internal network, the authors use a square matrix: each entry
of the matrix corresponds to a host of the internal network. External hosts are repre-
sented by squares placed outside the matrix, with size proportional to the traffic sent or
received. Straight-line edges represent traffic between internal and external hosts and
can be colored to denote the predominant direction of the traffic (outgoing, incoming,
or bidirectional). The placement of the squares arranges hosts of the same class A, B
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(a) (b)

Fig. 3. (a) Global view of network flows using a tripartite graph layout: nodes represent external
domains (on the left and right) and internal domains (in the middle) and edges represent network
flows (packet streams) between domains (thumbnail of image from [24]). (b) Visualization of
internal vs. external hosts using a matrix combined with a straight-line drawing. Internal hosts
correspond to entries of the matrix while external hosts are drawn as squares placed around the
matrix. The size of the square for an external host is proportional to the amount of traffic from/to
that host (thumbnail of image from [1]).

or C network along the same vertical line and attempts to reduce the number of edge
crossings. Further details on the type of traffic can be also displayed in this tool. For
example, vertical lines inside each square indicate ports with active traffic. This system
can be used to visually identify traffic patterns associated with common attacks, such
as virus outbreaks and network scans.

EtherApe: A Live Graphical Network Monitor Tool [20]. This tool shows traffic cap-
tured on the network interface (in a dynamic fashion) or optionally reads log files like
PCAP (Fig. 4(a)). A simple circular layout places the hosts around a circle and repre-
sents network traffic between hosts by straight-line edges between them. Each protocol
is distinguished by a different color and the width of an edge shows the amount of
traffic. This tool allows to quickly understand the role of a host in the network and
the changes in traffic patterns over time. Beyond the graphical representation, it is also
possible to display detailed traffic statistics of active ports.

RUMINT [4]. This system (named after RUMor INTelligence) is a free tool for net-
work and security visualization (Fig. 4(b)). It takes captured traffic as input and vi-
sualizes it in various unconventional ways. The most interesting visualization related
to graph drawing is a parallel plot that allows one to see at a glance how multiple
packet fields are related. An animation feature allows to analyze various trends over
time.
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(a) (b)

Fig. 4. (a) Traffic monitoring with Etherape (thumbnail of image from [20]). (b) Visualization of
an NMAP scan with RUMINT (thumbnail of image from [4]).

3 Border Gateway Protocol

BGP Eye: A New Visualization Tool for Real-Time Detection and Analysis of BGP
Anomalies [19]. In this paper, the authors present a visualization tool, called BGP Eye,
that provides a real-time status of BGP activity with easy-to-read layouts (Fig. 5). BGP
Eye is a tool for root-cause analysis of BGP anomalies. Its main objective is to track the
healthiness of BGP activity, raise an alert when an anomaly is detected, and indicate its
most probable cause. BGP Eye allows two different types of BGP dynamics visualiza-
tion: internet-centric view and home-centric view. The internet-centric view studies the
activity among ASes (autonomous systems) in terms of BGP events exchanged. The
home-centric view has been designed to understand the BGP behavior from the per-
spective of a specific AS. The inner ring contains the routers of the customer AS and
the outer ring contains their peer routers, belonging to other ASes. In the outer layer, the
layout method groups together routers belonging to the same AS and uses a placement
algorithm for the nodes to reduce the distance between connected nodes.

VAST: Visualizing Autonomous System Topology [18]. This tool (Fig. 6(a)) uses 3D
straight-line drawings to display the BGP interconnection topology of ASes with the
goal of allowing security researchers to extract quickly relevant information from raw
routing datasets. VAST employs a quad-tree to show per-AS information and an octo-
tree to represent relationships between multiple ASes. Routing anomalies and sensitive
points can be quickly detected, including route leakage events, critical Internet infras-
tructure and space hijacking incidents. The authors have also developed another tool,
called Flamingo, that uses the same graphical engine as VAST but is used for real-time
visualization of network traffic.
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Fig. 5. Internet-centric view and home-centric view in BGP Eye (thumbnails of images from [19])

(a) (b)

Fig. 6. (a) Some large autonomous systems in the internet visualized with VAST (thumbnail of
image from [18]). (b) In BGPlay, nodes represent autonomous systems and paths are sequences
of autonomous systems to be traversed to reach the destination (thumbnail of image from [5]).

BGPlay: A system for visualizing the interdomain routing evolution [5]. BGPlay and
iBGPlay (Fig. 6(b)) provide animated graphs of the BGP routing announcements for a
certain IP prefix within a specified time interval. Both visualization tools are targeted to
Internet service providers. Each nodes represents an AS and paths are used to indicate
the sequence of ASes needed to be traversed to reach a given destination. BGPlay shows
paths traversed by IP packets from several probes spread over the Internet to the chosen
destination (prefix). iBGPlay shows data privately collected by one ISP. The ISP can
obtain from iBGPlay visualizations of outgoing paths from itself to any destination.
The drawing algorithm is a modification of the force-directed approach that aims at
optimizing the layout of the paths.

4 Access Control

Information Visualization for Rule-based Resource Access Control [13]. In this pa-
per, the authors provide a visualization solution for managing and querying rule-based
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(a) (b)

Fig. 7. (a) Visualization of permissions in the NTFS file system with TrACE (thumbnail of im-
age from [10]). (b) Drawing of the trust-target graph generated by a trust negotiation session
(thumbnail of image from [23]).

access control systems. They develop a tool, called RubaViz, which makes it easy to an-
swer questions like “What group has access to which files during what time duration?”.
RubaViz constructs a graphs whose nodes are subjects (people or processes), groups,
resources, and rules. Directed edges go from subjects/groups to rules and from rules to
resources to display allowed accesses. The layout is straight-line and upward.

Effective Visualization of File System Access-Control [10]. This paper presents a tool,
called TrACE, for visualizing file permissions in the NTFS file system (Fig. 7(a)).
TrACE allows a user or administrator to gain a global view of the permissions in a
file system, thus simplifying the detection and repair of incorrect configurations lead-
ing to unauthorized accesses. In the NTFS file system there are three types of permis-
sions: (a) explicit permissions are set by the owner of each group/user; (b) inherited
permissions are dynamically inherited from the explicit permissions of the ancestor
folders; and (c) effective permissions are obtained by combining the explicit and in-
herited permissions. The tool uses a treemap layout [11] to draw the file system tree
and colors the tiles with a palette denoting various access levels. The size of a tile in-
dicates how much the permissions of a folder/file differ from those of its parent and
children. Advanced properties, such as a break of inheritance at some folder, are also
graphically displayed. The tool makes is easy to figure out which explicit and inherited
permissions of which nodes affect the effective permissions of a given node in the file
system tree.

5 Trust Negotiation

Visualization of Automated Trust Negotiation [23]. In this paper, the authors use a lay-
ered upward drawing to visualize automated trust negotiation (ATN) (Fig. 7(b)). In a
typical ATN session, the client and server engage in a protocol that results in the col-
laborative and incremental construction of a directed acyclic graph, called trust-target
graph, that represents credentials (e.g., a proof that a party has a certain role in an
organization) and policies indicating that the disclosure of a credential by one party is
subject to the prior disclosure of a set of credentials by the other party [22]. A tool based
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on the Grappa system [2], a Java port of Graphviz [7], is used to generate successive
drawings of the trust-target graph being constructed in an ATN session.

6 Attack Graphs

Multiple Coordinated Views for Network Attack Graphs [16] This paper describes a
tool for visualizing attack graphs (Fig. 8). Given a network and a database of known
vulnerabilities that apply to certain machines of the network, one can construct a di-
rected graph where each node is a machine (or group of machines) and an edge denotes
how a successful attack on the source machine allows to exploit a vulnerability on the
destination machine. Since attack graphs can be rather large and complex, it is essential
to use automated tools to analyze them. The tool presented in this paper clusters ma-
chines in order to reduce the complexity of the attack graph (e.g., machines that belong
to the same subnet may be susceptible to the same attack). The Graphviz tool [7] is used
to produce a layered drawing of the clustered attack graph. Similar layered drawings for
attack graphs are proposed in [17].

Fig. 8. Visualization of an attack graph (thumbnail of image from [16])

7 Conclusions

In this paper, we have presented a preliminary survey of security visualization meth-
ods that use graph drawing techniques. The growing field of security and privacy offers
many opportunities to graph drawing researchers to develop new drawing methods and
tools. In computer and network security applications, the input to the visualization sys-
tem is often a large multidimensional and temporal data set. Moreover, the layout needs
to support color, labels, variable node shape/size and edge thickness. In most of the
security visualization papers we have reviewed, either simple layout algorithms have
been implemented (e.g., spring embedders) or open-source software has been used (e.g.,
Graphviz). In order to make a larger collection of sophisticated graph drawing tech-
niques available to computer security researchers, it is important for the graph drawing
community to develop and distribute reliable software implementations.
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Abstract. We describe a method for producing a greedy embedding of any n-
vertex simple graph G in the hyperbolic plane, so that a message M between
any pair of vertices may be routed by having each vertex that receives M pass it
to a neighbor that is closer to M ’s destination. Our algorithm produces succinct
drawings, where vertex positions are represented using O(log n) bits and distance
comparisons may be performed efficiently using these representations.

1 Introduction

Viewing network routing as an algorithmic problem, we are given an n-vertex graph
G representing a communication network, where each vertex in G is a computational
agent, and the edges in G represent communication channels. The routing problem is
to set up an efficient means to support message passing between the vertices in G.

There is a recent non-traditional approach to solving the routing problem, which can
be viewed as new and exciting application of graph drawing. In this new approach,
called geometric routing [2,7,10,11,12] or geographic routing [8], the graph G is drawn
in a geometric metric space S in the standard way, so that vertices are drawn as points
in S and each edge is drawn as the loci of points along the shortest path between its
two endpoints. For example, if S is the Euclidean plane, R2, then edges would be
drawn as straight line segments in this approach. Routing is then performed by having
any vertex v holding a message destined for a node w use a simple policy involving
only the coordinates of v and w and the coordinates and topology of v’s neighbors to
determine the neighbor of v to which v should forward the message. It is important to
note that even in applications where the vertices of G come with pre-defined geometric
coordinates (e.g., GPS coordinates of smart sensors), the drawing of G need not take
these coordinates into consideration.

Perhaps the simplest routing policy imaginable is the greedy one:

– If a vertex v receives a message M with destination w, v should forward M to any
neighbor of v in G that is closer than v to w.

We are interested in this paper in greedy drawings of arbitrary graphs, that is, draw-
ings for which greedy routing is always successful. Unfortunately, greedy routing
doesn’t always work. For example, it is not uncommon for geometric graph embeddings
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to have “lakes” and “voids” that make greedy routing impossible in some cases [17].
Indeed, in any fixed-dimensional Euclidean space, a star with sufficiently many leaves
cannot be embedded so that all paths are greedy. Thus, in order to find greedy drawing
schemes for arbitrary connected graphs, we must consider drawings in non-Euclidean
spaces.

Following Papadimitriou and Ratajczak [17], we say that a distance decreasing path
from v to w in a geometric embedding of G is a path (v1, v2, . . . , vk) such that v = v1,
w = vk, and d(vi, w) > d(vi+1, w), for i = 1, 2, . . . , k − 1. A greedy embedding of
a graph G in a geometric metric space S is a drawing of G in S such that a distance
decreasing path exists between every pair of vertices in G.

Prior Related Work. Early papers on geometric routing include work by Bose et al. [2],
who extract a planar subgraph of G, embed it, and then route a message from v to w
by marching around the faces intersected by the line segment vw using a subdivision
traversal algorithm of Kranakis et al. [9]. Karp and Kung [7] introduce a hybrid scheme,
which combines a greedy routing strategy with face routing. Similar hybrid schemes
were subsequently studied by several other researchers [10,11,12].

Rao et al. [18] introduce the idea of drawing a graph using virtual coordinates and
doing a pure greedy routing strategy with that drawing, although they make no the-
oretical guarantees. Papadimitriou and Ratajczak [17] continue this line of work on
greedy drawings, studying greedy schemes that are guaranteed to work, and they con-
jecture that Euclidean greedy drawings exist for any graph containing a 3-connected
planar spanning subgraph. They present a greedy drawing algorithm for embedding 3-
connected planar graphs in R3 based on a specialization of Steinitz’s Theorem for cir-
cle packings, albeit with a non-standard metric. Dhandapani [4] provides an existence
proof that two-dimensional Euclidean greedy drawings of triangulations are always pos-
sible, but he does not provide a polynomial-time algorithm to find them. Chen et al. [3]
study methods for producing two-dimensional Euclidean greedy drawings for graphs
containing power diagrams, and Lillis and Pemmaraju [14] provide similar methods for
graphs containing Delaunay triangulations. It is not clear whether either of these greedy
drawings in Euclidean spaces run in polynomial time, however. Nevertheless, Leighton
and Moitra [13] have recently given a polynomial-time algorithm for producing two-
dimensional Euclidean greedy drawings of 3-connected planar graphs. The correspond-
ing two-dimensional problem for greedy drawings of arbitrary graphs in non-Euclidean
geometries also has a solution, in that Kleinberg [8] provides a polynomial-time algo-
rithm for embedding any graph in the hyperbolic plane so as to allow for greedy routing
using the standard metric for hyperbolic space.

The Importance of Succinctness. Unfortunately, all of the algorithms mentioned above
for producing greedy embeddings, including the hyperbolic-space solution of Klein-
berg [8] and the Euclidean-space solution of Leighton and Moitra [13], contain a hidden
drawback that makes them ill-suited for the motivating application of geometric rout-
ing. Namely, each of the greedy embeddings mentioned above use vertex coordinates
with representations requiring Ω(n logn) bits in the worst case. Thus, these greedy ap-
proaches to geometric routing have the same space usage as traditional routing table
approaches. Since the raison d’être for greedy embeddings is to improve and simplify
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traditional routing schemes, if embeddings are to be useful for geometric routing pur-
poses, they should be succinct, that is, they should use vertices with representations
having a number of bits that is polylogarithmic in n and the should allow for efficient
distance comparisons using these representations.

We are, in fact, not the first to make this observation. Muhammad [16] specifically
addresses succinctness, observing that a method based on extracting a planar subgraph
of the routing network G and performing a hybrid greedy/face-routing algorithm in this
embedding can be implemented using only O(log n) bits for each vertex coordinate,
since planar graphs can be drawn in O(n) × O(n) grids [5,20]. For non-Euclidean
spaces, Maymounkov [15] provides a greedy drawing method for three-dimensional
hyperbolic space using vertices that can be represented with O(log2 n) bits. His work
leaves open the existence of succinct greedy embeddings for two-dimensional non-
Euclidean spaces, however, as well as whether there are succinct non-Euclidean greedy
embeddings that use only O(log n) bits per vertex.

Our Results. In this paper, we settle both questions of whether there are succinct greedy
embeddings in two-dimensional non-Euclidean spaces and whether the vertices in such
embeddings can be represented using an asymptotically optimal number of bits. In par-
ticular, we show that any n-vertex connected graph can be drawn in the hyperbolic plane
with coordinates that can be represented using O(log n) bits so as to support greedy
geometric routing between any pair of vertices, using a standard distance metric for
hyperbolic space. Our scheme is constructive, runs in polynomial time, and allows the
distance between any two vertices to be calculated efficiently from our representation of
their coordinates. In addition, our greedy drawing scheme is based on the combination
of a number of graph drawing and data structuring techniques.

2 Autocratic Weight-Balanced Trees

One of the new data structuring techniques we use in our greedy drawing scheme is a
data structure that we call autocratic weight-balanced binary trees. These are first and
foremost weight-balanced binary trees, which store weighted items at their leaves so
that the depth of each item of weight wi is O(logW/wi), where W is the sum of all
weights. Just as important, however, is that they are autocratic, by which we mean that
the distance from any leaf v to any other leaf w is strictly greater than the distance from
the root to w, where tree distance is measured by simple path length. Of course, this
autocratic property implies that such binary trees are not proper, in that we allow for
some internal nodes in such trees to have only one child. The challenge, of course, is to
have a structure that is both autocratic and weight-balanced.

It turns out that there is a fairly simple method for turning any weight-balanced
binary tree into an autocratic weight-balanced tree. So suppose we are given an ordered
collection of k items with weights {w1, w2, . . . , wk}, such that each wi ≥ 1. If we
store these items at the leaves of a binary tree T , we say that T is weight-balanced if
the depth of each item i is O(logW/wi), where W =

∑
i wi. There are several existing

schemes for producing a weight-balanced binary tree so that an inorder listing of the
items stored at its leaves preserves the given order (e.g., see [6]).
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Fig. 1. Converting a weight-balanced binary tree into an autocratic weight-balanced binary tree

Suppose, then, that T is such an ordered weight-balanced tree, and let r denote the
root of T . To convert T into an autocratic weight-balanced tree, T ′, we replace the edge
connecting each leaf v to its parent with a path of length 1 + dT (r, parent(v)), where
dT (v, w) denotes the length of the path from v to w in the tree T . That is, we insert a
number of “dummy” nodes between each leaf and its parent that is equal to the depth
of its parent. (See Fig. 1.)

This transformation increases the depth of each leaf in T by less than a factor of two
and it keeps the depth of all other nodes in T unchanged. Thus, if the depth of a leaf stor-
ing item i in T was previously at most c logW/wi, for some constant c, then the depth
of the corresponding leaf in T ′ is less than 2c logW/wi, which is still O(logW/wi).
Given that T was weight-balanced, this implies that T ′ is a weight-balanced tree. More
importantly, we have the following lemma.

Lemma 1. The above transformation of a weight-balanced tree T produces an auto-
cratic weight-balanced tree T ′.

Proof. We have already observed that the tree T ′ is weight-balanced. So we have yet
to show that T ′ is autocratic. First, observe that, by a simple induction argument, if u is
an ancestor in T of a leaf v, then in T ′ we have the following:

dT ′(u, v) = dT (r, v) + dT (u, v)− 1.

In particular, dT ′(r, v) = 2dT (r, v)− 1. Let v and w be two leaves in T ′. Furthermore,
let u be the least common ancestor of v and w in T ′. Then

dT ′(v, w) = dT ′(u, v) + dT ′(u,w)
= dT (r, v) + dT (u, v)− 1 + dT (r, w) + dT (u,w)− 1
= 2dT (r, w) + 2dT (u, v)− 2
≥ 2dT (r, w) > dT ′(r, w).

Thus, T ′ is an autocratic weight-balanced tree. ��

Therefore, we have a way of constructing for any ordered set of weighted items an
autocratic weight-balanced tree for that set. We will use such data structures as auxiliary
components in the structures we discuss next.
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Fig. 2. The heavy path decomposition of a tree. Three heavy paths are shown; the remaining 17
nodes form degenerate length-0 heavy paths. Nodes are labelled with their subtree sizes.

3 Heavy Path Decompositions

Let T be a rooted ordered tree of arbitrary degree and depth having n nodes. Sleator
and Tarjan [21] describe a scheme, which we call the heavy path decomposition, for
decomposing T into a hierarchical collection of paths (see also [19] for an alternative
path decomposition scheme with similar properties). Their scheme works as follows.
For each node v in T , let n(v) denote the number of descendents in the subtree rooted
at v, including v itself. For each child-to-parent edge, e = (v, w) in T , label e as a heavy
edge if n(v) > n(w)/2. Otherwise, label e as a light edge. Connected components of
heavy edges form paths, called heavy paths, which may in turn have many incident light
edges. As a degenerate case, we also consider the zero-length path consisting of a single
node in T incident only to light edges as a heavy path.

Note that the size of a subtree at least doubles every time we traverse a light edge
from a child to a parent. (See Fig. 2.) Thus, if we compress every heavy path in T to a
single “super” node, preserving the relative order of the nodes, then we define a tree, Z ,
of depth O(log n). Of course, the nodes in Z can have arbitrary degree. Nevertheless,
for data structuring purposes, following Alstrup et al. [1], we may replace each vertex
v in Z having d children v1, v2, . . . , vd with a weight-balanced binary tree that uses the
n(vi) values as weights. The useful property of this substitution is that any leaf-to-root
path P in the resulting binary tree, Z ′′, will have length O(log n), since the lengths of
the subpaths of P in the weight-balanced binary trees traversed in P form a telescoping
sum that adds up to O(log n).

In our case, we use autocratic weight-balanced binary trees for the substitutions of
high-degree super nodes in Z , so as to define a binary tree of depth O(log n). This
construction will prove essential for our greedy embedding scheme. Before we present
this geometric embedding, however, we first present a combinatorial greedy embedding
in a completely contrived metric space, which we will subsequently show how to turn
into a greedy embedding in the hyperbolic plane using the standard hyperbolic metric.

4 Greedy Embeddings in the Dyadic Tree Metric Space

Let G be a graph with n vertices and m edges for which we wish to construct a succinct
greedy embedding. We show in this section how to produce a combinatorial greedy
embedding in a contrived space we call the dyadic tree metric space.
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Fig. 3. The dyadic rational numbers (left) and a schematic of the dyadic tree metric space (right)

We may consider the infinite binary tree, B, to be an abstract metric space, in which
the distance between any two tree nodes is just the number of edges on the shortest path
between them. But there is another natural metric that can be formed on the same tree
by embedding it into the dyadic rational numbers (Fig. 3, left), that is, rational numbers
with denominators that are powers of two. Let f be the map from B to the open interval
(0, 1) that maps the root of the tree to 1/2, and that maps the children of a node x at
level i of the tree to f(x) ± 2−i−2; thus, the children of the root map to the dyadic
rational numbers 1/4 and 3/4, the grandchildren of the root map to 1/8, 3/8, 5/8, 7/8,
and so on. We define the dyadic metric on B as the metric in which the distance between
two tree nodes x and y is |f(x)− f(y)|.

We will show that any graph may be greedily embedded into an ad-hoc metric space
that combines these two tree metrics; we call it the dyadic tree metric space. A point in
this space is represented by a pair (x, y), where x and y are nodes in the infinite binary
tree, B, and where x must be an ancestor of y (possibly equal to y itself). We define the
distance between two points (x, y) and (x′, y′) in the dyadic tree metric space to be the
sum of the tree distance between x and x′ and of the dyadic distance |f(y)−f(y′)|. The
dyadic tree metric space can be represented as an infinite binary tree representing the x
coordinates of each of its points, in which each tree node contains an interval of dyadic
rational numbers; this interval of numbers is split into two halves at the two children of
each node. This representation is depicted in Fig. 3, right.

Our embedding begins with us finding a spanning tree T of G, choosing a root ar-
bitrarily, and producing a heavy path decomposition of T . For technical reasons we
require that each node in a nontrivial heavy path of the decomposition have at least one
child that is not in the path; we add dummy nodes to T if necessary, after forming the
path decomposition, to ensure that this is true.

We orient the light edges for each heavy path P so that they are all on the same side
of P and we orient the light edges incident upon the same vertex. We then compress
each heavy path into a super node, using the orientation of edges around the vertices
of each heavy path to determine the ordering of children for each node in the resulting
tree, Z . If a super node in Z is the right child of its parent, we make the left-to-right
ordering of children be the same as the ordering from parent to child in the heavy path;
if, on the other hand, it is the left child of its parent, we make the left-to-right ordering
of children be the same as the ordering from child to parent in the heavy path.

Next, we form groups of the nodes in Z that have the same parent in T . We form
a weight-balanced binary tree for each these groups. Furthermore, within each group,
we form a weight-balanced binary tree of the nodes in the group. Concatenating these
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Fig. 4. Our two-level weight-balanced strategy for placing the children of the nodes on a heavy
path. The groups of children for each heavy path node are assigned to subtrees in a weight-
balanced way (gray shaded areas), and then within each subtree the individual children are placed
using a second level of weight balancing. The third step of child placement, in which we make the
subtree between the root (representing the heavy path) and its children autocratic, is not shown.

two levels of weight-balanced trees forms a single weight-balanced tree connecting the
node in Z to each of its children; we apply the transformation described earlier to make
this tree autocratic. The first three steps, in which we form a weight-balanced tree of the
groups and a weight-balanced tree within each group, and then concatenate these two
levels of weight-balanced trees to form a single binary tree for all children of the node
in Z , are depicted in Fig. 4.

This construction of an autocratic weight-balanced tree for each node in Z can be
used to embed Z into the infinite binary tree, B. The root of Z may be placed at the root
of B, and the children of each node v in Z are placed under that node in the positions
of B corresponding to their positions in the autocratic weight-balanced tree constructed
for v. We observe that, in this way, all nodes of Z are placed at most O(log n) levels
deep; for, due to the weight balancing, the distance in B between any node w and its
parent v is proportional to the difference in the logarithms of the weights of the subtrees
rooted at v and w, and along any path of Z these differences add in a telescoping series
to O(log n).

We have embedded Z into the infinite binary tree, B; hence, we are now ready to
embed T itself into the dyadic tree metric. To do so, we must determine a pair (x, y) of
coordinates for any node v of T ; both x and y must be nodes of B, and x must be an
ancestor of y. The x coordinate of v is simply the node of B at which the heavy path of
v is placed. The y coordinate of v is the least common ancestor in B of the placements
of all the children of v. This calculation is the reason we required v to have at least one
child; for leaf nodes of T , we instead set y = x. Due to our two-level weight balancing
strategy, two nodes of T that belong to the same heavy path (and that therefore share the
same x coordinate) will have different y coordinates, for their children will be placed
within disjoint subtrees of the infinite binary tree, B.

Lemma 2. The above embedding of T into the dyadic tree metric space is greedy.

Proof. Any directed path in T consists of edges that, when translated into the dyadic
tree metric space, have three types: edges from a node to the parent heavy path in Z ,
edges within a heavy path, and edges from a node to a child heavy path in Z . We must
show that edges of each type lead to a node that is closer to the terminus of the path.
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For the edges that go from a node to the parent heavy path or to a child heavy path,
this is straightforward: the contribution of the x-coordinates to the distance to the termi-
nus decreases by one at each step, due to the autocratic property of our weight-balanced
trees, more than offsetting any possible increase in the contribution of the y-coordinates.

For the edges that remain within a heavy path, the x coordinates remain unchanged
and do not lead to any increase or decrease of the distance to the terminus. The y
coordinates are linearly ordered by the map f from infinite binary tree nodes to dyadic
rationals, and our weight-balanced trees were chosen to be consistent with this linear
ordering; therefore, any step along the heavy path, either towards a node of the path
that is the ancestor of the terminus or towards the topmost node of the path and the edge
leading to the parent node in Z , decreases the distance to the terminus. ��

5 Succinct Greedy Embedding in the Hyperbolic Plane

We have shown that any tree T (and any graphG by choosing a spanning tree of G) may
be greedily and succinctly embedded into a dyadic tree metric space. To complete our
greedy embedding, it remains to show that this space may be embedded, independently
of our original graph (but depending on a parameter D determined by the number of
vertices of the graph), into the hyperbolic plane in such a way that the greedy property
of the embedding of T is preserved. That is, although the distances themselves in the
hyperbolic plane may differ from those in the dyadic tree metric space, composing our
embedding of T into the dyadic tree metric space with our embedding of the dyadic
tree metric space should yield a greedy embedding of T into the hyperbolic plane.

Due to the existence of this embedding, we may reinterpret the succinct coordinates
computed for the embedding of a graph into the dyadic tree metric space as also being
coordinates for a subset of points in the hyperbolic plane.

Our overall strategy will be to embed the infinite binary tree, B, into the hyperbolic
plane in such a way that any edge has length D + O(1) and crosses a buffer zone of
width D, bounded by two hyperbolic lines (Fig. 5). The buffer zones for different edges
will be disjoint from each other. Thus, any two nodes of the tree that have tree distance k
units apart will have hyperbolic distance at least Dk (because any path between the two
nodes must cross k buffer zones) and at most (D+O(1))k (there exists a path following
tree edges with that length). In our application, all tree paths will have O(log n) edges;
thus, by choosing D = Ω(log n) we may guarantee that the order relation between
any two distinct tree distances remains unchanged by this hyperbolic embedding. Any
point (x, y) of the dyadic tree metric will be placed near the embedding of tree node x,

Fig. 5. Disjoint buffer zones of width D are crossed by each edge of an embedding of B into the
hyperbolic plane, so that tree distance and hyperbolic distance closely approximate each other
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Fig. 6. Top-down placement of node x of B and point (x, y) of the dyadic tree metric space into
the hyperbolic plane, shown in a Poincaré disk model centered at x

and this placement will ensure the greediness of any edge whose endpoints belong to
different paths of our heavy path decomposition.

Next, we place nodes of the infinite binary tree, B, into the hyperbolic plane, with
the buffer zones described above. Although this placement is conceptual rather than
algorithmic, we may view it as being performed in a top down traversal of the tree, so
that when node x is placed we will already know the location of its parent, the buffer
zone separating x from its parent, and a line connecting it to its parent and on which
it must be placed. We place x itself on this line in such a way that the boundary of the
parental buffer zone forms one of the seven sides of an ideal regular heptagon—a figure
in the hyperbolic plane formed by seven lines that are asymptotic to each other but never
intersect, such that the angle subtended by each line as viewed from x is equal. Figure 6
shows this placement, in a Poincaré disk model of the hyperbolic plane centered at x;
the parental buffer zone is the topmost shaded region in the figure and the vertical line
through x is the one connecting it to its parent node. The large arcs depict hyperbolic
lines forming the heptagon described above.

In the case where x is the right child of its parent, so that the upper nodes of the
heavy path represented by x have children in its left subtree and the lower nodes of
the heavy path have children in the right subtree, shown in the figure, we place the left
subtree within the halfplane bounded by the heptagon side one step counterclockwise
from the parent, and the right subtree within the halfplane bounded by the heptagon
side three steps counterclockwise from the parent, as shown in the figure. In the case
where x is its parent’s left child, we reverse the figure, placing the right subtree within
the halfplane one step clockwise from the parent and the left subtree within the half-
plane three steps clockwise from the parent. In either case, we draw lines connecting
x to its child nodes, at angles of 2π/7 and 6π/7 from the angle of the line connect-
ing x to its parent (the solid straight lines of the figure). We use the heptagon edges as
the outer boundaries of buffer zones between x and its children, and we set the inner
boundaries of the buffer zones to be hyperbolic lines perpendicular to the lines con-
necting x to its children, at distance D from the outer boundaries of the buffer zones.
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Fig. 7. Illustration for proof of greediness of our embedding (not to scale)

With this information determined, we may continue to place the children of x in the
same way.

We are finally ready to describe the mapping of the dyadic tree metric space into
the hyperbolic plane. Recall that each point of the dyadic tree metric space consists of a
pair (x, y) where x and y are nodes of B, x a parent of y. We draw small circles of equal
radius centered at each point where we have placed a node of B—the precise radius is
unimportant as long as it is small enough that the circles are disjoint from the buffer
zones. Then, given a point (x, y) of the dyadic tree metric space, we draw a hyperbolic
line segment from x to y (the dotted straight line in the figure), and place (x, y) at the
point where this line segment intersects the circle centered at x. In the case x = y,
which happens in our construction only for leaves, we instead place (x, x) at the point
where the line segment from x to its parent intersects the circle centered at x.

Theorem 1. For sufficiently large values of D, the embedding of G formed by compos-
ing the embedding from G into the dyadic tree metric space and the embedding of the
dyadic tree metric space into the hyperbolic plane is greedy.

Proof. We show that, for every edge e of the chosen spanning tree, and every possible
terminus v of a path using e, that traveling along e reduces the distance to the terminus.
We assume that the starting endpoint of e is placed at point (x, y) of the dyadic tree
metric, the ending endpoint is placed at point (x′, y′), and that these points are mapped
as described above to the hyperbolic plane. We distinguish several cases.

First, if x �= x′, let k = O(log n) be the tree distance from x′ to the destination.
Then, due to the autocratic property of our weight-balanced placement of heavy paths
into the dyadic tree metric, x is at tree distance at least k + 1 from the destination.
As discussed above, due to the buffer zones of our construction, (x, y) is at hyperbolic
distance at least (k + 1)D from the destination, while (x′, y′) is at hyperbolic distance
at most k(D+O(1)). By choosing D sufficiently large (a constant times logn), we can
guarantee that the former distance is larger than the latter and that this step is greedy.

Second, if x = x′ and the eventual destination also has the same value of x, the
result follows from the fact that our embedding places the nodes of any heavy path
consecutively over an arc of less than half of a circle. Such an embedding is greedy for
any path, no matter how the nodes are distributed within the arc.
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Third, if x = x′ and the eventual destination is reached via the parent of x, the step
is greedy for the same reason as in the second case: the nodes that are mapped to x form
a heavy path placed in order along an arc of less than half the circle, with the node of
the arc closest to the parent being the apex of the heavy path.

The most complicated case is the fourth: x = x′ and the eventual destination z has
x′′ as a proper descendant of x. The closest point to z on the circle surrounding x onto
which (x, y) and (x′, y′) are both mapped is the hyperbolic point represented by the
coordinates (x, z); the distance to z from other points on the circle can be calculated
as a monotonic function of the arc length between those other points and (x, z). Thus,
moving around the circle towards (x, z) is a greedy step. Unfortunately, the point (x, z)
may not be a node of the heavy path; rather, the node of the heavy path from which z
descends may be some other nearby point (x, y′′). We must show that any step along
the heavy path towards this point is greedy.

In most cases, it is straightforward to show that this step is greedy: a step around the
circle towards (x, z) is also a step towards (x, y′′), which as we have argued immedi-
ately above is greedy. The only possible exception occurs when y′ = y′′ and when the
true closest point on the circle to z, that is, (x, z), lies on the arc of the circle between
y and y′. In this case we must show that (x, y′) and (x, z) are closer in arc length than
(x, y) and (x, z), for then the greediness of the step will follow from the monotonicity
of the distance to z as a function of arc length.

Let ŷ be the least common ancestor in the binary tree of the two disjoint subtrees
containing y and y′. Let A be the inner boundary of the buffer zone adjacent to ŷ that
contains y′, let C be the inner boundary of the buffer zone adjacent to ŷ that contains
y, and let B be the edge of the regular ideal heptagon adjacent to ŷ that separates
A from C. Figure 7 illustrates this notation. These three hyperbolic lines may not be
symmetrically placed relative to x, due to the asymmetry of the placement of the two
subtrees relative to the parent at each node x. However, the distances from x to A and
to C are within O(1) of each other, and B is closer to x by a distance of D − O(1).
It is a basic property of hyperbolic geometry that the angle that an object subtends,
as viewed from a fixed point of view x, is inversely proportional to an exponential
function of the distance of the object from x. Thus, B will subtend an angle, as viewed
from x, that is larger than the angles subtended by A and C by a factor exponential
in D − O(1). In particular, for sufficiently large D (larger than some fixed constant, a
weaker requirement than the one above that D = Ω(log n)), both A and C will subtend
smaller angles than the angle subtended by B. Then, any point behind line A, and in
particular the point z, will form an arc from (x, y′) to (x, z) that is shorter than the arc
from (x, y) to (x, z). The greediness of the step from (x, y) to (x, y′) follows from the
monotonicity of the distance to z as a function of arc length. ��
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Abstract. We show an algorithm to construct greedy drawings of every given
triangulation.

1 Introduction

In a greedy routing setting, a node forwards packets to a neighbor that is closer to
the destination’s geographic location. Different distance metrics define different mean-
ings for the word “closer”, and consequently define different routing algorithms for the
packet delivery. The most used and studied metric is of course the Euclidean distance.

The efficiency of the greedy routing algorithms strongly relies on the geographic co-
ordinates of the nodes. This is a drawback of such algorithms, for the following reasons:
(i) Nodes of the network have to know their locations, hence they have to be equipped
with GPS devices, which are expensive and increase the energy consumption of the
nodes; (ii) geographic coordinates are independent of the network obstructions, i.e. ob-
stacles making the communication between two close nodes impossible, and, more in
general, they are independent of the network topology; this could lead to situations in
which the communication fails because a void has been reached, i.e., the packet has
reached a node whose neighbors are all farther from the destination than the node itself.

A brilliant solution to such weaknesses has been proposed by Rao et al. who in [9]
proposed a scheme in which nodes decide virtual coordinates and then apply the greedy
routing algorithm relying on such coordinates rather than on the real geographic ones.
Since virtual coordinates do not need to reflect the nodes actual positions, they can be
suitably chosen to guarantee that the greedy routing algorithm delivers packets with
high probability. Experiments have shown that such an approach strongly improves the
reliability of greedy routing [9,8]. Further, it has been proved that virtual coordinates
guarantee greedy routing to work for every connected topology when they can be cho-
sen in the hyperbolic plane [5], and that some modifications of the routing algorithm
guarantee that Euclidean virtual coordinates can be chosen so that the packet delivery
always succeeds [1], even if the coordinates need to be locally computed [2].
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Subsequent to the Rao et al. paper [9], an intense research effort has been devoted
to determine on which network topologies the Euclidean greedy routing with virtual
coordinates is guaranteed to work. From a graph-theoretic point of view, the problem
is as follows: Which are the graphs that admit a greedy embedding, i.e., a straight-line
drawing Γ such that, for every pair of nodes u and v, there exists a distance-decreasing
path in Γ ? A path (v0, v1, . . . , vm) is distance-decreasing if d(vi, vm) < d(vi−1, vm),
for i = 1, . . . ,m. In [8] Papadimitriou and Ratajczak conjectured the following:

Conjecture 1. (Papadimitriou and Ratajczak [8]) Every triconnected planar graph ad-
mits a greedy embedding.

Papadimitriou and Ratajczak showed that Kk,5k+1 has no greedy embedding, for k ≥ 1.
As a consequence, both the triconnectivity and the planarity are necessary, because
there exist planar non-triconnected graphs, such as K2,11, and non-planar triconnected
graphs, such as K3,16, that do not admit any greedy embedding. Further, they observed
that, if a graph G has a greedy embedding, then any graph containing G as a spanning
subgraph has a greedy embedding. It follows that Conjecture 1 extends to all graphs
which are spanned by a triconnected planar graph. Related to such an observation, they
proved that every triconnected graph not containing a K3,3-minor has a triconnected
planar spanning subgraph.

For a few classes of triconnected planar graphs the conjecture is easily shown to
be true, for example graphs with a Hamiltonian path and Delaunay Triangulations. At
SODA’08 [3], Dhandapani proved the conjecture for the first non-trivial class of tri-
connected planar graphs, namely he showed that every triangulation admits a greedy
embedding. The proof of Dhandapani is probabilistic, namely the author proves that
among all the Schnyder drawings of a triangulation [10], there exists a drawing which
is greedy. Although such a proof is elegant, relying at the same time on an old Com-
binatorial Geometry theorem, known as the Knaster-Kuratowski-Mazurkievicz Theo-
rem [6], and on standard Graph Drawing techniques, as the Schnyder realizers [10]
and the canonical orderings of a triangulation [4], it does not lead to an embedding
algorithm.

In this paper we show an algorithm for constructing greedy drawings of triangu-
lations. The algorithm relies on a different and maybe more intuitive approach with
respect to the one used in [3]. We define a simple class of graphs, called binary cac-
tuses, and we provide an algorithm to construct a greedy drawing of any binary cactus.
Finally, we show how to find, for every triangulation, a binary cactus spanning it. It
is clear that the previous statements imply an algorithm for constructing greedy draw-
ings of triangulations. Namely, consider any triangulation G, apply the algorithm to
find a binary cactus S spanning G, and then apply the algorithm to construct a greedy
drawing of S. As already observed, adding edges to a greedy drawing leaves the draw-
ing greedy, hence S can be augmented to G, obtaining the desired greedy drawing
of G.

Theorem 1. Given a triangulation G, there exists an algorithm to compute a greedy
drawing of G.
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Fig. 1. (a) A binary cactus S. (b) The block-cutvertex tree of S. White (resp. black) circles repre-
sent C-nodes (resp. B-nodes).

2 Preliminaries

A graph G is connected if every pair of vertices of G is connected by a path. A cutver-
tex is a vertex whose removal increases the number of connected components of G. A
connected graph is biconnected if it has no cutvertices. The maximal biconnected sub-
graphs of a graph are its blocks. Each edge of G falls into a single block of G, while
cutvertices are shared by different blocks. The block-cutvertex tree, or BC-tree, of a
connected graph G is a tree with a B-node for each block of G and a C-node for each
cutvertex of G. Edges in the BC-tree connect each B-node μ to the C-nodes associated
with the cutvertices in the block of μ.

The BC-tree of G may be thought as rooted at a specific block ν. When the BC-tree
T of a graph G is rooted at a certain block ν, we denote by G(μ) the subgraph of G
induced by all vertices in the blocks contained in the subtree of T rooted at μ. In a
rooted BC-tree T of a graph G, for each B-node μ we denote by r(μ) the cutvertex
of G parent of μ in T . If μ is the root of T , i.e., μ = ν, then we let r(μ) denote any
non-cutvertex node of the block associated with μ. In the following, unless otherwise
specified, each considered BC-tree is meant to be rooted at a certain B-node ν such that
the block associated with ν has at least one vertex r(ν) which is not a cutvertex. It is
not difficult to see that such a block exists in every planar graph.

A rooted triangulated binary cactus S, in the following simply called binary cactus,
is a connected graph such that (see Fig 1): (i) the block associated with each B-node of
T is either an edge or a triangulated cycle, i.e., a cycle (r(μ), u1, u2, . . . , uh) triangu-
lated by the edges from r(μ) to each of u1, u2, . . . , uh; (ii) every cutvertex is shared by
exactly two blocks of S.

A planar drawing of a graph is a mapping of each vertex to a distinct point of the
plane and of each edge to a Jordan curve between its endpoints such that no two edges
intersect except, possibly, at common endpoints. A planar drawing of a graph deter-
mines a circular ordering of the edges incident to each vertex. Two drawings of the same
graph are equivalent if they determine the same circular ordering around each vertex. A
planar embedding is an equivalence class of planar drawings. A planar drawing parti-
tions the plane into topologically connected regions, called faces. The unbounded face
is the outer face. The outer face of a graph G is denoted by f(G). A chord of a graph
G is an edge connecting two non-adjacent vertices of f(G). A graph together with a
planar embedding and a choice for its outer face is called plane graph. A plane graph is
a triangulation when all its faces are triangles. A plane graph is internally-triangulated
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Fig. 2. (a) Illustration for Properties 1–3 of Γ . (b) Base case of the algorithm. The light and dark
shaded region represents R(Γ ) (the angle of R(Γ ) at p∗ is α). The dark shaded region represents
the intersection of W (p∗, α/2) with the circle delimited by C.

when all its internal faces are triangles. An outerplane graph is a plane graph such that
all its vertices are incident to the outer face. A Hamiltonian cycle of a graph G is a sim-
ple cycle passing through all vertices of G. Notice that a biconnected outerplane graph
has only one Hamiltonian cycle, the one delimiting its outer face.

3 Greedy Drawing of a Binary Cactus

In this section, we give an algorithm to compute a greedy drawing of a binary cactus S.
Such a drawing is constructed by a bottom-up traversal of the BC-tree T of S.

Consider the root μ of a subtree of T corresponding to a block of S, consider the k
children of μ, which correspond to cutvertices of S, and consider the children of such
cutvertices, say μ1, μ2, . . . , μk. Notice that each C-node child of μ is parent of exactly
one B-node μi of T , by definition of binary cactus. For each i = 1, . . . , k, inductively
assume to have a drawing Γi of S(μi) satisfying the following properties. Let αi and
βi be any two angles less than π/4 such that βi ≥ αi. Refer to Fig. 2.a.

– Property 1. Γi is a greedy drawing.
– Property 2. Γi is entirely contained inside a region R(Γi) delimited by an arc

(ai, bi) of a circumference C and by two segments (p∗i , ai) and (p∗i , bi), such that
p∗i is a point of C and the diameter through p∗i cuts (ai, bi) in two arcs of the same

length. The angle âip∗i bi is αi.
– Property 3. Consider the tangent t(p∗i ) to C in p∗i . Consider two half-lines l∗1 and
l∗2 incident to p∗i , lying on the opposite part of C with respect to t(p∗i ), and forming
angles equal to βi with t(p∗i ). Denote by W (p∗i ) the wedge centered at p∗i , delimited
by l∗1 and l∗2, and not containing C. Then, for every vertex v in S(μi) and for every
point p internal to W (p∗i ), a distance-decreasing path (v = v0, v1, . . . , vl = r(μi))
from v to r(μi) exists in Γi such that d(vj , p) < d(vj−1, p) for j = 1, . . . , l.

In the base case, block μ has no child. Denote by (r(μ) = u0, u1, . . . , uh−1) the
block of S corresponding to μ. If h = 2, i.e., μ corresponds to an edge, draw such an
edge as a vertical segment, with u1 above u0. A region R(Γi) can be easily constructed,
for every angles α and β, with β ≥ α, satisfying the above properties. If h > 2, i.e.,
μ corresponds to a triangulated cycle of S, place r(μ) at any point p∗ and consider a
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wedge W (p∗, α/2) that has an angle equal to α/2, that is incident to r(μ), and that is
bisected by the vertical half-line incident to r(μ) and directed upward (see Fig. 2.b).
Denote by p′a and p′b the intersection points of the half-lines delimiting W (p∗, α/2)
with a circumference C through r(μ), properly intersecting the border of W (p∗, α/2)
twice. Denote by A the arc of C between p′a and p′b not containing p∗. Consider points
p′a = p0, p1, . . . , ph = p′b on A such that the distance between any two consecutive
points pi and pi+1 is the same. Place vertex ui at point pi, for i = 1, 2, . . . , h− 1.

We show that the constructed drawing Γ satisfies Property 1. Consider any two
vertices ui and uj , with i < j. If i = 0, then u0 and uj are joined by an edge,
which provides a distance-decreasing path among them. Otherwise, we claim that path
(ui, ui+1, . . . , uj) is distance-decreasing. In fact, for each l = i, i + 1, . . . , j − 2, an-
gle ̂ulul+1uj is greater than π/2, because triangle (ul, ul+1, uj) is inscribed in less than
half a circumference with ul+1 as middle point. Hence, (ul, uj) is the longest side of tri-
angle (ul, ul+1, uj) and d(ul+1, uj) < d(ul, uj) follows. Drawing Γ satisfies Property
2 by construction. In order to prove that Γ satisfies Property 3, we have to show that, for
every vertex ui, with i ≥ 1, and for every point p in W (p∗), d(u0, p) < d(ui, p). How-
ever, angle p̂p∗pi is at least β+(π

2−
α
4 ), which is more than π/2. It follows that segment

ppi is the longest side of triangle (p, p∗, pi), thus proving that d(u0, p) < d(ui, p).
Now suppose μ is a node of T having k children. We show how to construct a

drawing Γ of S(μ) satisfying Properties 1–3 with parameters α and β. Denote by
(r(μ) = u0, u1, . . . , uh−1) the block of S corresponding to μ. Consider any circum-
ference C with center c. Let p∗ be the point of C with smallest y-coordinate. Consider
wedges W (p∗, α) and W (p∗, α/2) with angles α and α/2, respectively, incident to
p∗ and such that the diameter of C through p∗ is their bisector. Region R(Γ ) is the
intersection region of W (p∗, α) with the closed circle delimited by C.

Consider a circumference C′ with center c intersecting the two lines delimiting

W (p∗, α/2) in two points p′a and p′b such that angle p̂′acp
′
b = 3α/2. Denote by p′

the intersection point between C′ and (c, p∗). Observe that angle p̂′ap
′p′b = 3α/4. De-

note by A the arc of C′ delimited by p′a and p′b not containing p′. Consider points
p′a = p0, p1, . . . , ph = p′b on A such that the distance between any two consecu-
tive points pi and pi+1 is the same. Observe that, for each i = 0, 1, . . . , h − 1, angle
p̂icpi+1 = 3α

2h .
First, we draw the block of S corresponding to μ. As in the base case, place vertex

u0 = r(μ) at p∗ and, for i = 1, 2, . . . , h− 1, place ui at point pi. Recursively construct
a drawing Γi of S(μi) satisfying Properties 1–3 with αi = 3α

16h and βi = 3α
8h .

We are going to place each drawing Γi of S(μi) together with the drawing of the
block of S corresponding to μ, thus obtaining a drawing Γ of S(μ). Not all h nodes ui

are cutvertices of S. However, with a slight abuse of notation, we suppose that block
S(μi) has to be placed at node ui. Refer to Fig 3. Consider point pi and its “neighbors”
pi−1 and pi+1. Consider lines t(pi−1) and t(pi+1) tangent to C′ through pi−1 and
pi+1, respectively. Further, consider circumferences Ci−1 and Ci+1 centered at pi−1
and pi+1, respectively, and passing through pi. Moreover, consider lines hi−1 and hi+1
through pi and tangent to Ci−1 and Ci+1, respectively. For each point pi, consider two
half-lines ti1 and ti2 incident to pi, cutting C′ twice, and forming angles βi = 3α

8h with
t(pi). Denote by W (pi) the wedge delimited by ti1 and ti2 and containing c.
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Fig. 3. Lines and circumferences in the construction of Γ . The shaded region is Ri.

We place Γi inside the bounded region Ri intersection of the half-plane Hi−1 de-
limited by hi−1 and not containing Ci−1, of the half-plane Hi+1 delimited by hi+1 and
not containing Ci+1, of W (pi−1), of W (pi+1), and of the circle delimited by C.

First, we show that Ri is “large enough” to contain Γi, namely we claim that there
exists an isosceles triangle T that has an angle larger than αi = 3α

16h incident to pi and
that is completely contained in Ri. Such a triangle will have the further feature that the
angle incident to pi is bisected by the half-line li incident to c and passing through pi.

Lines hi−1 and hi+1 are both passing through pi; we prove that they have different
slopes and we compute the angles they form at pi. Line hi−1 forms an angle of π/2 with
segment pi−1pi; angle ̂cpipi−1 is equal to π

2−
3α
4h , since p̂icpi−1 = 3α

2h and since triangle
(pi−1, c, pi) is isosceles. Hence, the angle delimited by hi−1 and li is π − π/2− (π

2 −
3α
4h ) = 3α

4h . Analogously, the angle between li and hi+1 is 3α
4h . Hence, the intersection of

Hi−1 and Hi+1 is a wedge W (pi, hi−1, hi+1) centered at pi, with an angle of 3α
2h , and

bisected by li. We claim that each of ti−1
2 and ti+1

1 cuts the border of W (pi, hi−1, hi+1)
twice. The angle between t(pi−1) and pi−1pi is 3α

4h , namely the angle between t(pi−1)
and cpi−1 is π/2, and angle ̂cpi−1pi is π

2 −
3α
4h . The angle between t(pi−1) and ti−1

2 is
βi = 3α

8h by construction. Hence, the angle between ti−1
2 and pi−1pi is 3α

4h −
3α
8h = 3α

8h .
Since the slope of both hi−1 and hi+1 with respect to pi−1pi is greater than 3α

8h and
less than π − 3α

8h , namely the slope of hi−1 and hi+1 with respect to pi−1pi is π
2 and

π
2 + 3α

2h , respectively (notice that α ≤ π/4 and h ≥ 2), then ti−1
2 intersects both hi−1

and hi+1. It can be analogously proved that ti+1
1 intersects hi−1 and hi+1. It follows

that the intersection of Hi−1, Hi+1, W (pi−1), and W (pi+1) contains a triangle T as
required by the claim (the angle of T incident to pi is 3α

2h ). Considering circumference
C does not invalidate the existence of T , since C is concentric with C′ and has a bigger
radius, hence T can be chosen sufficiently small so that it completely lies inside C.

Now Γi can be placed inside T , by scaling Γi down till it fits inside T (see Fig. 4.a).
The scaling always allows Γi to be placed inside T , since the angle of R(Γi) incident
to p is αi = 3α

16h , that is smaller than the angle of T incident to pi, which is 3α
2h . In
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Fig. 4. (a) Placement of Γ inside Ri. Region R(Γ ) is the darkest, triangle T is composed of
R(Γ ) and of the second darkest region, Ri is composed of T and of the light shaded region. (b)
Illustration for the proof of Lemma 1.

particular, we choose to place Γi inside T so that li bisects the angle of R(Γi) incident
to pi. This concludes the construction of Γ . We have the following lemmata.

Lemma 1. The closed wedge W (p∗) is completely contained inside the open wedge
W (pi), for each i = 0, 1, . . . , h.

Proof: Consider any point pi. Observe that pi is contained inside the wedge W (p∗)
obtained by reflecting W (p∗) with respect to t(p∗). Namely, pi is contained inside
W (p∗, α/2), which is in turn contained inside W (p∗), since α/2 < π − 2β, as a con-
sequence of the fact that π/4 > β ≥ α. Hence, in order to prove the lemma, it suffices
to show that the absolute value of the slope of each of ti1 and ti2 is less than the absolute
value of the slope of the half-lines delimiting W (p∗). Such latter half-lines form angles
of β, by construction, with the x-axis.

The slope of ti1 can be computed by summing up the slope of ti1 with respect to t(pi)
with the slope of t(pi). The former slope is equal to βi = 3α

8h , by construction. Recalling
that t(pi) is the tangent to A in pi, the slope of t(pi) is bounded by the maximum
among the slopes of the tangents to points of A. Such a maximum is clearly achieved
at p′a and p′b and is equal to 3α/4. Namely, refer to Fig. 4.b and consider the horizontal
lines h(c) and h(p′a) through c and p′a, respectively, that are traversed by radius (c, p′a).
Such a radius forms angles of π/2 with t(p′a); hence, the slope of t(p′a), that is equal
to the angle between t(p′a) and h(p′a), is π/2 minus the angle αa between h(p′a) and
(c, p′a). Angle αa is the alternate interior of the angle between h(c) and (c, p′a), which

is complementary to the half of angle p̂′acp
′
b, which is equal to 3α/2, by construction.

It follows that αa is equal to π
2 −

3α
4 and the slope of t(p′a) is 3α

4 .
Hence, the slope of ti1 is at most 3α

4 + 3α
8h , which is less than α, since h ≥ 2, and

hence less than β. Analogously, the slope of ti2 is less than β, and the lemma follows. �

Corollary 1. Point p∗ is inside the open wedge W (pi), for each i = 1, 2, . . . , h.

Lemma 2. For every pair of indices i and j such that 1 ≤ i < j ≤ k, the drawing of
S(μj) is contained inside W (pi) and the drawing of S(μi) is contained inside W (pj).

Proof: If S(μi) and S(μj) are consecutive, i.e., the cutvertices parents of S(μi) and
S(μj) are ui and uj and j = i + 1, then the statement is true by construction. Suppose
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S(μi) and S(μj) are not consecutive. Consider the triangle Ti delimited by (p∗, pi), by
ti2, and by the line through p∗ and p′b. Ti contains the triangle delimited by (p∗, pi+1),
by ti+1

2 , and by the line through p∗ and p′b, which in turn contains the triangle delimited
by (p∗, pi+2), by ti+2

2 , and by the line through p∗ and p′b. Repeating such an argument
shows that Ti contains the triangle Tj−1 delimited by (p∗, pj−1), by tj−1

2 , and by the
line through p∗ and p′b. By construction, Γj lies inside Tj−1, and the lemma follows. �
We prove that the constructed drawing Γ satisfies Properties 1–3.

Property 1. We show that, for every pair of vertices w1 and w2, there exists a distance-
decreasing path between them in Γ . If both w1 and w2 are internal to the same
graph S(μi), the property follows by induction. If one of w1 and w2, say w1, is
r(μ) and the other one, say w2, is a node in S(μi) then, by Property 3, there exists
a distance-decreasing path (w2 = v0, v1, . . . , vl = r(μi)) from w2 to r(μi) such
that, for every point p in W (pi), d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l. By
Corollary 1, p∗ is contained inside W (pi). Hence path (w2 = v0, v1, . . . , vl =
r(μi), w1 = r(μ)) is a distance-decreasing path between w1 and w2. If w1 belongs
to S(μi) (possibly w1 = ui) and w2 belongs to S(μj) (possibly w2 = uj) then
suppose, w.l.o.g., that j > i. We show the existence of a distance-decreasing path
P in Γ , composed of three subpaths P1,P2, and P3. By Property 3, Γj is such
that there exists a distance-decreasing path P1 = (w1 = v0, v1, . . . , vl = r(μi))
from w1 to r(μi) such that, for every point p in W (pi), d(vj , p) < d(vj−1, p),
for j = 1, 2, . . . , l. By Lemma 2, drawing Γj , and hence vertex w2, is contained
inside W (pi), hence path P1 decreases the distance from w2 at every vertex. Path
P2 = (ui = r(μi), ui+1, . . . , uj = r(μj)) is easily shown to decrease the distance
from w2 at every vertex. In fact, for each l = i, i + 1, . . . , j − 2, angle ̂ulul+1uj

is greater than π/2, because triangle (ul, ul+1, uj) is inscribed in less than half a
circumference with ul+1 as middle point. Angle ̂ulul+1w2 is strictly greater than

̂ulul+1uj , hence it is the biggest angle in triangle (ul, ul+1, w2) and d(ul+1, w2) <
d(ul, w2) follows. By induction, there exists a distance-decreasing path P3 from
r(μj) to w2, thus obtaining a distance-decreasing path P from w1 to w2.

Property 2. Such a property holds for Γ by construction.
Property 3. Consider any node v in S(μi) and any point p internal to W (p∗). By

Lemma 1, p is internal to W (pi). By induction, there exists a distance-decreasing
path (v = v0, v1, . . . , vl = r(μi)) such that d(vj , p) < d(vj−1, p), for j =
1, 2, . . . , l. Hence, path (v = v0, v1, . . . , vl = r(μi), vl+1 = r(μ)) is a distance-
decreasing path such that d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l + 1, if and

only if d(r(μ), p) < d(r(μi), p). However, angle ̂pr(μ)r(μi) is at least β + (pi
2 −

3α
8 ), which is more than π/2. Hence, (p, r(μi)) is the longest side of triangle

(p, r(μ), r(μi)), thus proving that d(r(μ), p) < d(r(μi), p), and Property 3 holds
for Γ .

When the induction on T is performed with μ = ν, we obtain a greedy drawing of S,
thus proving the following:

Theorem 2. There exists an algorithm that constructs a greedy drawing of any binary
cactus.
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4 Spanning a Triangulation with a Binary Cactus

In this section we prove the following theorem:

Theorem 3. Given a triangulation G, there exists a spanning subgraph S of G such
that S is a binary cactus.

Consider any triangulation G. We are going to construct a binary cactus S spanning G.
First, we outline the algorithm to construct S. Such an algorithm has several steps. At
the first step, we choose a vertex u incident to f(G) and we construct a triangulated
cycle CT composed of u and all its neighbors. We remove u and its incident edges from
G, obtaining a biconnected internally-triangulated plane graph G∗. At the beginning of
each step after the first one, we suppose to have already constructed a binary cactus S
whose vertices are a subset of the vertices of G (at the beginning of the second step,
S coincides with CT ), and to have a set G of subgraphs of G (at the beginning of
the second step, G∗ is the only graph in G). Each of such subgraphs is biconnected,
internally-triangulated, has an outer face whose vertices already belong to S, and has
internal vertices. All such internal vertices do not belong to S and each vertex of G
not belonging to S is internal to a graph in G. Only one of the graphs in G may have
chords (at the beginning of the second step, G∗ is such a graph). During each step,
we perform the following two actions: (1) We partition the only graph GC of G with
chords, if any, into several biconnected internally-triangulated chordless plane graphs;
we remove GC from G and we add to G all graphs with internal vertices into which GC

has been partitioned; (2) we choose a graph Gi from G, we choose a vertex u incident
to the outer face of Gi and already belonging to exactly one block of S, and we add
to S a block composed of u and of all its neighbors internal to Gi. We remove u and
its incident edges from Gi, obtaining a biconnected internally-triangulated plane graph
G∗

i . We remove Gi from G and we add G∗
i to G. The algorithm stops when G is empty.

Now we give the details of the above outlined algorithm. At the first step of the algo-
rithm, choose any vertex u incident to f(G). Consider the neighbors (u1, u2, . . . , ul) of
u in clockwise order around it. Since G is a triangulation, C = (u, u1, u2, . . . , ul) is a
cycle. Let CT be the triangulated cycle obtained by adding to C the edges connecting u
to its neighbors. Let S = CT . Remove vertex u and its incident edges from G, obtain-
ing a biconnected internally-triangulated graph G∗. If G∗ has no internal vertex, then
all the vertices of G belong to S and we have a binary cactus spanning G. Otherwise,
let G = {G∗}. For each graph Gi ∈ G, consider the vertices incident to f(Gi). Each of
such vertices can be either forbidden for Gi or assigned to Gi. A vertex w is forbidden
for Gi if the choice of not introducing in S any new block incident to w and spanning a
subgraph of Gi has been done. Conversely, a vertex w is assigned to Gi if a new block
incident to w and spanning a subgraph of Gi could be introduced in S. For example, w
is forbidden for Gi if there exist two blocks of S sharing w as a cutvertex. At the end
of the first step of the algorithm, choose any two vertices incident to f(G∗) as the only
forbidden vertices for G∗. All other vertices incident to f(G∗) are assigned to G∗. At
the beginning of the i-th step, with i ≥ 2, we assume that each of the following holds:

– Invariant A: Graph S is a binary cactus spanning all and only the vertices that are
not internal to any graph in G.
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– Invariant B: Each graph in G is biconnected, internally-triangulated, and has inter-
nal vertices.

– Invariant C: Only one of the graphs in G may have chords.
– Invariant D: No internal vertex of a graph Gi ∈ G belongs to a graph Gj ∈ G.
– Invariant E: For each graph Gi ∈ G, all vertices incident to f(Gi) are assigned to
Gi, except for two vertices, which are forbidden.

– Invariant F: Each vertex v incident to the outer face of a graph in G is assigned to
at most one graph Gv ∈ G. The same vertex is forbidden for all graphs Gv ∈ G
such that v is incident to f(Gv) and Gv �= Gv.

– Invariant G: Each vertex assigned to a graph in G belongs to exactly one block
of S.

Such invariants clearly hold after the first step of the algorithm.

Action 1: If all graphs in G are chordless, go to Action 2. Otherwise, by Invariant
C, only one of the graphs in G, say GC , may have chords. We use such chords to
partition GC into k biconnected, internally-triangulated, chordless graphs Gj

C , with
j = 1, 2, . . . , k. Consider the biconnected outerplane subgraph OC of GC induced by
the vertices incident to f(GC). To each internal face f of OC delimited by a cycle c, a
graph Gj

C is associated such that Gj
C is the subgraph of GC induced by the vertices of

c or inside c. Before replacing GC with graphs Gj
C in G, we show how to decide which

vertices incident to the outer face of a graph Gj
C are assigned to Gj

C and which vertices
are forbidden for Gj

C . Since each graph Gj
C is univocally associated with a face of OC

(namely the face of OC delimited by the cycle that delimits f(Gj
C)), in the following we

assign vertices to the faces of OC and we forbid vertices for the faces of OC , meaning
that if a vertex is assigned to (forbidden for) a face of OC delimited by a cycle c then it
is assigned to (resp. forbidden for) graph Gj

C whose outer face is delimited by c.
We want to assign the vertices incident to f(OC) to faces of OC so that the following

properties are satisfied. Property 1: No forbidden vertex is assigned to any face of OC .
Property 2: No vertex is assigned to more than one face of OC ; Property 3: Each face
of OC has exactly two incident vertices which are forbidden for it; all other vertices of
the face are assigned to it.

By Invariant E, GC has two forbidden vertices. We construct an assignment of ver-
tices to faces of OC in some steps. Let p be the number of chords of OC . Consider the
Hamiltonian cycle O0

C of OC , and assign all vertices of O0
C , but for the two forbidden

vertices, to the only internal face of O0
C . At the i-th step, 1 ≤ i ≤ p, we insert into

Oi−1
C a chord of OC , obtaining a graph Oi

C . This is done so that Properties 1–3 are
satisfied by Oi

C (with Oi
C instead of OC ). After all p chords of OC have been inserted,

Op
C = OC , and we have an assignment of vertices to faces of OC satisfying Properties

1–3. Properties 1–3 are clearly satisfied by the assignment of vertices to faces of O0
C .

Inductively assume Properties 1–3 are satisfied by the assignment of vertices to faces
of Oi−1

C . Let (ua, ub) be the chord that is inserted at the i-th step. Chord (ua, ub) parti-
tions a face f of Oi−1

C into two faces f1 and f2. By Property 3, two vertices u∗
1 and u∗

2
incident to f are forbidden for it and all other vertices incident to f are assigned to it.
For each face of Oi

C different from f1 and f2, assign and forbid vertices as in the same
face in Oi−1

C . Assign and forbid vertices for f1 and f2 as follows.
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– If vertices ua and ub are the same vertices of u∗
1 and u∗

2, assign to each of f1 and
f2 all vertices incident to it, except for ua and ub. No forbidden vertex has been
assigned to any face of Oi

C (Property 1). Vertices ua and ub have not been assigned
to any face. All vertices assigned to f belong to exactly one of f1 and f2 and so
they have been assigned to exactly one face (Property 2). The only vertices of f1
(resp. of f2) not assigned to it are ua and ub, while all other vertices are assigned
to such a face (Property 3).

– If vertices ua and ub are both distinct from u∗
1 and u∗

2 and both u∗
1 and u∗

2 are in the
same of f1 and f2, say in f1, assign to f1 all vertices incident to it, except for u∗

1 and
u∗

2, and assign to f2 all vertices incident to it, except for ua and ub. No forbidden
vertex has been assigned to any face of Oi

C (Property 1). Vertices ua and ub have
been assigned to exactly one face. All other vertices assigned to f belong to exactly
one of f1 and f2 and so they have been assigned to exactly one face (Property 2).
The only vertices of f1 (resp. of f2) not assigned to it are u∗

1 and u∗
2 (resp. ua and

ub), while all other vertices are assigned to such a face (Property 3).
– If vertices ua and ub are both distinct from u∗

1 and u∗
2 and one of u∗

1 and u∗
2, say u∗

1,
is in f1 while the other one, say u∗

2, is in f2, assign to f1 all vertices incident to it,
except for u∗

1 and ua, and assign to f2 all vertices incident to it, except for u∗
2 and

ub. No forbidden vertex has been assigned to any face of Oi
C (Property 1). Vertices

ua and ub have been assigned to exactly one face. All other vertices assigned to
f belong to exactly one of f1 and f2 and so they have been assigned to exactly
one face (Property 2). The only vertices of f1 (resp. of f2) not assigned to it are
u∗

1 and ua (resp. u∗
2 and ub), while all other vertices are assigned to such a face

(Property 3).
– If one of vertices u∗

1 and u∗
2 coincides with one of ua and ub, say u∗

1 coincides with
ua, and the other one, say u∗

2, is in one of f1 and f2, say in f1, assign to f1 all
vertices incident to it, except for u∗

2 and ua, and assign to f2 all vertices incident to
it, except for ua and ub. No forbidden vertex has been assigned to any face of Oi

C

(Property 1). Vertex ua has not been assigned to any face and vertex ub has been
assigned to exactly one face. All other vertices assigned to f belong to exactly one
of f1 and f2 and so they have been assigned to exactly one face (Property 2). The
only vertices of f1 (resp. of f2) not assigned to it are u∗

2 and ua (resp. ua and ub),
while all other vertices are assigned to such a face (Property 3).

Graph GC is removed from G. All graphs Gj
C having internal vertices are added to G.

It is easy to see that Invariants A–G are satisfied after Action 1.

Action 2: After Action 1 all graphs in G are chordless. There is at least one graph Gi

in G, otherwise the algorithm would have stopped before Action 1. By Invariant B,
Gi has internal vertices. Choose any vertex u incident to f(Gi) and assigned to Gi.
Since Gi is biconnected and has internal vertices, f(Gi) has at least three vertices.
Since each graph in G has at most two forbidden vertices (by Invariant E), a vertex u
assigned to Gi exists. Consider all the neighbors (u1, u2, . . . , ul) of u internal to Gi,
in clockwise order around u. Since G is biconnected, chordless, internally triangulated,
and has internal vertices, then l ≥ 1. If l = 1 then let CT be edge (u, u1). Otherwise, let
CT be the triangulated cycle obtained by adding to cycle (u, u1, u2, . . . , ul) the edges
connecting u to its neighbors. Add CT to S. Remove u and its incident edges from Gi,
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obtaining a graph G∗
i . Assign to G∗

i all vertices incident to f(G∗
i ), except for the two

vertices forbidden for Gi. Remove Gi from G and insert G∗
i , if it has internal vertices,

in G. It is easy to see that Invariants A–G are satisfied after Action 2.
When the algorithm stops, i.e., when there is no graph in G, by Invariant A graph S

is a binary cactus spanning all vertices of G, hence proving Theorem 3.

5 Conclusions

In this paper we have shown an algorithm for constructing greedy drawings of triangu-
lations. The algorithm relies on two main results. The first one states that every binary
cactus admits a greedy drawing. The second result, that may be of its own interest, is
that, for every triangulation G, there exists a binary cactus S spanning G.

After this paper was submitted, the authors realized that a slight modification of the
two main arguments, presented in Sect. 3 and 4, proves Conjecture 1. Namely, it can be
shown that every triconnected planar graph can be spanned by a rooted non-triangulated
binary cactus, i.e. a connected graph such that the block associated with each B-node
of T is either an edge or a cycle and every cutvertex is shared by exactly two blocks. A
greedy drawing of such a graph can be constructed by the drawing algorithm presented
for rooted triangulated binary cactuses (the proof that the drawings constructed by the
algorithm are greedy is slightly more involved due to the absence of edges (r(μ), ui),
for i = 2, 3, · · · , h − 2). However, two reviewers of our paper made us aware that the
conjecture has been positively settled by Leighton and Moitra in a paper to appear at
FOCS’08 [7]. The approach used by Leighton and Moitra is surprisingly similar to ours.
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Abstract. A nonplanar graph G is near-planar if it contains an edge
e such that G − e is planar. The problem of determining the crossing
number of a near-planar graph is exhibited from different combinatorial
viewpoints. On the one hand, we develop min-max formulas involving ef-
ficiently computable lower and upper bounds. These min-max results are
the first of their kind in the study of crossing numbers and improve the
approximation factor for the approximation algorithm given by Hliněný
and Salazar (Graph Drawing GD 2006). On the other hand, we show
that it is NP-hard to compute a weighted version of the crossing number
for near-planar graphs.

1 Introduction

Crossing number minimization is one of the fundamental optimization problems
in the sense that it is related to various other widely used notions. Besides its
mathematical interest, there are numerous applications, most notably those in
VLSI design [1,8,9], in combinatorial geometry and even in number theory, see,
e.g, [16]. We refer to [10,15] and to [18] for more details about diverse applications
of this important notion.

A nonplanar graph G is near-planar if it contains an edge e such that G − e
is planar. Such an edge e is called a planarizing edge. It is easy to see that near-
planar graphs can have arbitrarily large crossing number. However, it seems that
computing the crossing number of near-planar graphs should be much easier
than in unrestricted cases. This is supported by a less known, but particularly
interesting result of Riskin [14], who proved that the crossing number of a 3-
connected cubic near-planar graph G can be computed easily as the length of a
shortest path in the geometric dual graph of the planar subgraph G−x−y, where
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xy ∈ E(G) is the edge whose removal yields a planar graph. Riskin asked if a
similar correspondence holds in more general situations, but this was disproved
by Mohar [13] (see also [5]). Another relevant paper about crossing numbers of
near-planar graphs was published by Hliněný and Salazar [6].

In this paper we show that several generalizations of Riskin’s result are in-
deed possible. We provide efficiently computable upper and lower bounds on the
crossing number of near-planar graphs in a form of min-max relations. These
relations can be extended to the non-3-connected case and even to the case of
weighted edges. As far as we know, these results are the first of their kind in the
study of crossing numbers. It is shown that they generalize and improve some
known results and we foresee that generalizations and further applications are
possible.

On the other hand, we show that computing the crossing number of weighted
near-planar graphs is NP-hard. This discovery is a surprise and brings more
questions than answers.

Drawings and crossings. A drawing of a graph G is a representation of G in the
Euclidean plane R2 where vertices are represented as distinct points and edges
by simple polygonal arcs joining points that correspond to their endvertices. A
drawing is clean if the interior of every arc representing an edge contains no
points representing the vertices of G. If interiors of two arcs intersect or if an arc
contains a vertex of G in its interior we speak about crossings of the drawing.
More precisely, a crossing of a drawing D is a pair ({e, f}, p), where e and f
are distinct edges and p ∈ R2 is a point that belongs to interiors of both arcs
representing e and f in D. If the drawing is not clean, then the arc of an edge
e may contain in its interior a point p ∈ R2 that represents a vertex v of G. In
such a case, the pair ({v, e}, p) is also referred to as a crossing of D.

The number of crossings of D is denoted by cr(D) and is called the crossing
number of the drawing D. The crossing number cr(G) of a graph G is the
minimum cr(D) taken over all clean drawings D of G. When each edge e of G
has a weight we ∈ N, the weighted crossing number wcr(D) of a clean drawing
D is the sum

∑
we ·wf over all crossings ({e, f}, p) in D. The weighted crossing

number wcr(G) of G is the minimum wcr(D) taken over all clean drawings D of
G. Of course, if all edge-weights are equal to 1, then wcr(G) = cr(G).

We shall discuss both, the weighted and unweighted crossing number. Most
of the results are treated for the general weighted case. However, some results
hold only in the unweighted case or are too technical to state for the weighted
case. For a graph we shall assume that it is unweighted (i.e., all edge-weights are
equal to 1) unless stated explicitly or when it is clear from the context that it is
weighted.

A clean drawing D with cr(D) = 0 is also called an embedding of G. By a
plane graph we refer to a planar graph together with a fixed embedding in the
Euclidean plane. We shall identify a plane graph with its image in the plane.

Dual and facial distances. Let G0 be a plane graph and let x, y be two of its
vertices. A simple (polygonal) arc γ : [0, 1]→ R2 is an (x, y)-arc if γ(0) = x and
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γ(1) = y. If γ(t) is not a vertex of G0 for every t, 0 < t < 1, then we say that γ
is clean. For an (x, y)-arc γ we define the crossing number of γ with G0 as

cr(γ,G0) = |{t | γ(t) ∈ G0 and 0 < t < 1}|. (1)

This definition extends to the weighted case as follows. If the graph G0 is
weighted and the edge xy realized by an (x, y)-arc γ also has weight wxy, then
each crossing of γ with an edge e contributes wxy ·we towards the value cr(γ,G0),
and each crossing ({v, xy}, p) of xy with a vertex of G0 contributes 1 (indepen-
dently of the edge-weights).

Using this notation, we define the dual distance

d∗(x, y) = min{cr(γ,G0) | γ is a clean (x, y)-arc}.

We also introduce a similar quantity, the facial distance between x and y:

d′(x, y) = min{cr(γ,G0) | γ is an (x, y)-arc}.

It should be observed at this point that the value d′(x, y) is independent of
the weights – since all weights are integers, we can replace each crossing of an
edge with a crossing through an incident vertex and henceforth replace weight
contributions simply by counting the number of crossings.

Let G∗
x,y be the geometric dual graph of G0 − x − y. Then d∗(x, y) is equal

to the distance in G∗
x,y between the two vertices corresponding to the faces of

G0 − x − y containing x and y. Of course, in the weighted case the distances
are determined by the weights of their dual edges. This shows that d∗(x, y) can
be computed in linear time by using known shortest path algorithms for planar
graphs. Similarly, one can compute d′(x, y) in linear time by using the vertex-face
incidence graph (see [12]).

Clearly, d′(x, y) ≤ d∗(x, y). Note that d∗ and d′ depend on the embedding
of G0 in the plane. However, if G0 is (a subdivision of) a 3-connected graph,
then this dependency disappears since G0 has essentially a unique embedding.
To compensate for this dependence, we define d∗0(x, y) (and d′0(x, y)) as the
minimum of d∗(x, y) (resp. d′(x, y)) taken over all embeddings of G0 in the
plane.

Overview of results. The following proposition is clear from the definition of d∗:

Proposition 1. If G0 is a weighted planar graph and x, y ∈ V (G0), then
cr(G0 + xy) ≤ d∗0(x, y).

This result shows that the value d∗0(x, y) is of interest. Gutwenger, Mutzel, and
Weiskircher [5] provided a linear-time algorithm to compute d∗0(x, y). In Sect. 2
we study d∗0(x, y) from a combinatorial point of view and obtain a min-max
characterization that results very useful.

Riskin [14] proved the following strengthening of Proposition 1 in a special
case when G0 is 3-connected and cubic:
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Theorem 1 ([14]). If G0 is a 3-connected cubic planar graph, then

cr(G0 + xy) = d∗0(x, y).

Riskin asked in [14] if Theorem 1 extends to arbitrary 3-connected planar graphs.
One of the authors [13] has shown that this is not the case: for every integer
k, there exists a 5-connected planar graph G0 and two vertices x, y ∈ V (G0)
such that cr(G0 + xy) ≤ 11 and d∗0(x, y) ≥ k. See also Gutwenger, Mutzel, and
Weiskircher [5] for an alternative construction.

However, several extensions of Theorem 1 are possible, and some of them are
presented throughout this paper. In particular, we show how to deal with graphs
that are not 3-connected, and what happens when we allow vertices of arbitrary
degrees.

Theorem 2. If G0 is a weighted planar graph and x, y ∈ V (G0), then

d′0(x, y) ≤ cr(G0 + xy) ≤ d∗0(x, y).

The proof of this result is given in Sect. 3.
If G0 is a cubic graph, then for every planar embedding of G0, d′(x, y) =

d∗(x, y). Therefore, d′0(x, y) = d∗0(x, y), and Theorem 2 implies Theorem 1.
Theorem 2 is also the main ingredient to improve the approximation factor

in the algorithm of Hliněný and Salazar [6]; see Corollary 3.
A key idea in our results is to show that d∗0(x, y) (respectively d′0(x, y)) is

closely related to the maximum number of edge-disjoint (respectively vertex-
disjoint) cycles that separate x and y. The notion of the separation has to be
understood in a certain strong sense that is introduced in Sect. 2. This result
yields a dual expression for d∗0 (respectively d′0) and is used to show that d∗0(x, y)
is closely related to the crossing number of G0 + xy, while d′0(x, y) is in the
same way related to the minor crossing number, mcr(G0 + xy), a version of the
crossing number that works well with minors; see Bokal et al. [2].

Finally, we show in Sect. 5 that computing the crossing number of weighted
near-planar graphs is NP-hard. Our reduction uses weights that are not poly-
nomially bounded, and therefore it does not imply NP-hardness for unweighted
graphs.

Intuition. To understand the difficulty in computing the crossing number of a
near-planar graph, let us consider the graph shown in Fig. 1 (taken from [13]),
where the subgraph inside each of the “darker” triangles is a sufficiently dense
triangulation that requires many crossings when crossed by an arc. By drawing
the vertex x in the outside, we see that this graph is near-planar. The drawing
in Fig. 1 shows that its crossing number is at most 11, but it is also clear that
d∗(x, y) can be made as large as we want.

This construction can be generalized such that a similar redrawing as made
there for x is necessary also for y (in order to bring these two vertices “close to-
gether”). At the first sight this seems like the only possibility which may happen
– to “flip” a part of the graph containing x and to “flip” a part containing y.
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x

y

Fig. 1. The graph Qk

And maybe some repetition of such changes may be needed. If this would be the
only possibility of making the crossing number smaller than the one coming from
the planar drawing of G0, this would most likely give rise to a polynomial time
algorithm for computing the crossing number of near-planar graphs. However,
the authors can construct examples, in which additional complications arise.

Despite these examples and despite our NP-hardness result for the weighted
case, the following question may still have a positive answer:

Problem 1. Is there a polynomial time algorithm which would determine the
crossing number of G0 + xy if G0 is an unweighted 3-connected planar graph?

2 Planar Separations and the Dual Distance

Let G0 be a planar graph, x, y distinct vertices of G0, and let Q be a subgraph
of G0 − x − y. We say that Q planarly separates vertices x and y if for every
embedding of G0 in the plane, x and y lie in the interiors of distinct faces of the
induced embedding of Q.

Let Q be a subgraph of G. A Q-bridge in G is a subgraph of G that is either
an edge not in Q but with both ends in Q (and its ends also belong to the
bridge), or a connected component of G − V (Q) together with all edges (and
their endvertices in Q) which have one end in this component and the other end
in Q. Let B be an Q-bridge. Vertices of B ∩Q are vertices of attachment of B
(shortly attachments).

Let C be a cycle in G0 − x − y. Let Bx and By be the C-bridges in G0
containing x and y, respectively. Two C-bridges B and B′ are said to overlap
if either (i) C contains four vertices a, a′, b, b′ in this order such that a and b
are attachments of B and a′, b′ are attachments of B′, or (ii) B and B′ have
(at least) three vertices of attachment in common. We define the overlap graph
O(G0, C) of C-bridges (see [12]) as the graph whose vertices are the bridges of C,
and two vertices are adjacent if the two bridges overlap on C. Since G0 is planar,
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the overlap graph is bipartite. Distinct C-bridges are weakly overlapping if they
are in the same connected component of O(G0, C), and in that component they
belong to distinct bipartite classes. The following result follows easily from the
definitions.

Lemma 1. A cycle C ⊆ G0 − x − y planarly separates x and y if and only if
Bx and By are weakly overlapping C-bridges.

Tutte [17] characterized when G0 +xy is non-planar, i.e., when cr(G0 +xy) ≥ 1
by proving

Theorem 3 (Tutte [17]). Let x, y be vertices of a planar graph G0. Then
G0 + xy is non-planar if and only if G0− x− y contains a cycle C such that the
C-bridges of G containing x and y, respectively, are overlapping.

Let us observe that G0 + xy is non-planar if and only if G0 − x − y planarly
separates x and y. Therefore, the next lemma is closely related to Theorem 3.

Lemma 2. If Q ⊆ G0 − x− y planarly separates x and y, then there is a cycle
C ⊆ Q that planarly separates x and y.

The proof of this lemma is not hard but slightly technical, and we defer it to the
full version of this paper.

For a plane graph G0, a sequence Q1, . . . , Qk of edge-disjoint cycles of G0 is
nested if for i = 1, . . . , k− 1, all edges of the cycle Qi+1 lie in the exterior of Qi.

Lemma 3. Suppose that C and D are edge-disjoint cycles that planarly separate
vertices x and y. Then there exist nested cycles C1, C2 ⊆ C ∪ D that planarly
separate x and y.

Again, the proof is deferred for the full version of the paper.

Lemma 4. Let G0 be a plane graph. If Q1, . . . , Qk are edge-disjoint cycles of G0
that planarly separate vertices x and y of G0, then there are nested edge-disjoint
cycles Q′

1, . . . , Q
′
k such that ∪k

i=1E(Q′
i) ⊆ ∪k

i=1E(Qi) and such that Q′
1, . . . , Q

′
k

planarly separate x and y.

Proof. The proof follows rather easily by applying Lemma 3 consecutively on
pairs of cycles Qi, Qj. One has to make sure that after finitely many steps we
get a collection of nested cycles. This is done as follows. First we apply the
lemma in such a way that one of the cycles in the family has none of the edges
of the other k− 1 cycles in its interior. After this is done, we repeat the process
with the remaining k − 1 cycles. ��

After this preparation, we are ready to discuss a dual expression for the dual
distance, both for the 3-connected and for the general case.

Theorem 4. Let G0 be a planar graph and x, y ∈ V (G). If r is an integer, then
the following statements are equivalent:
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(a) r ≤ d∗0(x, y).
(b) There exists a family of r edge-disjoint cycles Q1, . . . , Qr that planarly

separate x and y.
(c) There exists a family of r nested cycles Q1, . . . , Qr that planarly separate

x and y.

Equivalence of (b) and (c) follows from Lemma 4. It is also clear from the defi-
nitions (cf. Lemma 1) that (b) implies (a). The proof of the reverse implication
that (a) yields (b) is by induction and also gives an efficient algorithm for find-
ing d∗0(x, y) nested cycles planarly separating x and y. Let us observe that for
3-connected graphs, the maximum number of nested cycles can be determined
by a simple “greedy” process.

Corollary 1. The value of d∗0(x, y) is equal to the maximum number of edge-
disjoint cycles that planarly separate x and y.

The above dual expression for d∗0(x, y) is a min-max relation which offers an
extension to the weighted case. Suppose that the edges of G0 + xy are weighted
and that all weights are positive integers. Then we can replace each edge e �= xy
by we parallel edges (each of weight 1). Let G̃0 be the resulting unweighted graph.
It is easy to argue that d∗0(G0, x, y) is equal to d∗0(G̃0, x, y) · wxy. By Corollary
1, this value can be interpreted as the maximum number of edge-disjoint cycles
planarly separating x and y in G̃0.

3 Facial Distance

In this section we shall prove Theorem 2. First, we need a dual expression for
d′(x, y) which can be viewed as a surface version of Menger’s Theorem.

Proposition 2. Let G0 be a plane graph and x, y ∈ V (G0) where y lies on the
boundary of the exterior face. Let r be the maximum number of vertex-disjoint
cycles, Q1, . . . , Qr, contained in G0−x−y, such that for i = 1, . . . , r, x ∈ int(Qi)
and y ∈ ext(Qi). Then d′(x, y) = r.

Proof. Since every (x, y)-arc intersects every Qi, we conclude that d′(x, y) ≥ r.
The converse inequality is proved by induction on d′(x, y). There is nothing to
show if d′(x, y) = 0. Let F be the subgraph of G0 containing all vertices and
edges that are cofacial with x. Then F contains a cycle Q such that x ∈ int(Q)
and y ∈ ext(Q). Delete all vertices and edges of F except x, and let G1 be the
resulting plane graph. It is easy to see that d′G1

(x, y) = d′G0
(x, y) − 1. By the

induction hypothesis, G1 has d′G0
(x, y)− 1 disjoint cycles that contain x in their

interior and y in the exterior. By adding Q to this family, we get d′(x, y) such
cycles. This shows that d′(x, y) ≤ r. ��

The cycles Q1, . . . , Qr in Proposition 2 all contain x in their interior and y in
their exterior. Therefore, they behave essentially like cycles on a cylinder that
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separate the two boundary components of the cylinder. Hence they are nested
cycles separating x and y.

The main result of this section, Theorem 2, involves the minimum facial dis-
tance taken over all embeddings of G0 in the plane. If G0 is 3-connected, then
d′(x, y) is the same for every embedding of G0, and Proposition 2 yields a dual
expression for the facial distance. For general graphs, we need a similar concept
as used in the previous section.

Let G0 be a graph and x, y ∈ V (G0). Then we define ρ(x, y,G0) as the largest
integer r for which there exists a collection of r vertex-disjoint cycles Q1, . . . , Qr

in G− x− y such that for every i = 1, . . . , r, x and y belong to distinct weakly
overlapping bridges of Qi. It is convenient to realize that it may be required that
the bridges containing x and y indeed overlap (not only weakly overlap), so we
get an extension of Tutte’s Theorem 3.

Lemma 5. Let r = ρ(x, y,G0). Then there exists a collection of r vertex-
disjoint cycles Q1, . . . , Qr in G0 − x − y such that for every i = 1, . . . , r, x
and y belong to distinct overlapping bridges of Qi.

Proof. For i = 1, . . . , r, let Bi
x (resp. Bi

y) be the Qi-bridge in G0 containing
x (resp. y). Note that every other cycle Qj (j �= i) is contained either in Bi

x

or in Bi
y. Therefore we can define a linear order ≺ on {Q1, . . . , Qr} by setting

Qi ≺ Qj if and only if Qj ⊆ Bi
y. By adjusting indices, we may assume that

Q1 ≺ Q2 ≺ · · · ≺ Qr.
The proof method used in particular by Tutte in [17] is to change each cycle

Qi by rerouting it through the Qi-bridges distinct from Bi
x and Bi

y in such a
way that the two bridges with respect to the new cycle still weakly overlap, but
contain more vertices. The actual goal is to minimize the number t of edges
that are neither on the cycle nor in one of these two bridges. If Bi

x and Bi
y do

not overlap but are weakly overlapping, it is possible to decrease t. It follows
that after a series of changes, that do not affect any of the other cycles, the
“big” bridges Bi

x and Bi
y overlap. We refer to [7] and to [11] for an algorithmic

treatment showing that these changes can be made in linear time. ��

The following lemma, whose proof is deferred to the full paper, is the analogue
of Theorem 4.

Lemma 6. d′0(x, y) = ρ(x, y,G0).

We are ready for the proof of Theorem 2.

Proof. (of Theorem 2). It has been shown before that cr(G0+xy) ≤ d∗0(x, y). The
heart of the proof is to show that d′0(x, y) is a lower bound on cr(G0 + xy). Let
r = d′0(x, y). Lemmas 5 and 6 show that there are r vertex-disjoint Q1, . . . , Qr

such that for every i = 1, . . . , r, x and y belong to distinct overlapping bridges
of Qi. Let us denote these overlapping Qi-bridges Bi

x and Bi
y as we did above.

To simplify the notation in the sequel, we define Q0 = {x} and Qr+1 = {y}.
Since Bi

x and Bi
y overlap, one of the following cases occurs:
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(i) There are paths P+
1 , P+

2 ⊆ Bi
y joining Qi with Qi+1, and there are paths

P−
1 , P−

2 ⊆ Bi
x joining Qi with Qi−1 such that the ends of these pairs of paths

on Qi interlace.
(ii) When the bridges Bi

x and Bi
y have precisely three vertices of attachment,

they may overlap only because their attachments a, b, c on Qi coincide. In that
case, we have paths P+

1 , P+
2 , P+

3 in Bi
y (resp. paths P−

1 , P−
2 , P−

3 in Bi
x) joining

a, b, c with Qi+1 (resp. Qi−1).
If Case (i) occurs, let Si be the union of the paths P−

1 and P−
2 and let Ri

be the union of the paths P+
1 and P+

2 . If Case (ii) occurs, we define Si and Ri

similarly, as the union of the three paths in (ii) certifying the overlapping.
Suppose that we have a clean drawing of G0 + xy in the plane. If two cycles

Qi and Qi+1 intersect, then they make at least two crossings, and we declare
one of them to be a crossing of type i, and the other one a crossing of type i+1.
If two edges of the same cycle Qi cross, we declare that crossing to be of type i
as well. If an edge e /∈ E(Q1 ∪ · · · ∪Qr) ∪ Ri ∪ Si ∪ Ri−1 ∪ Si+1 (including the
possibility that e = xy) crosses an edge of Qi, we also declare the crossing to be
of type i. Finally, if two edges, e ∈ E(Qi−1 ∪ Si) and f ∈ E(Qi+1 ∪ Ri) cross,
we also say that the crossing is of type i. Observe that by this definition, none
of the crossings is of two different types (but for some of the crossings, the type
may not have been specified).

Our goal is to show that for every i = 1, . . . , r, there is a crossing of type i.
This will show that there are at least r crossings, so the theorem holds.

Suppose, reductio ad absurdum, that there is no crossing of type i (1 ≤ i ≤ r).
Then Qi does not cross itself and both x and y are in the interior of Qi (say)
since the edge xy does not cross Qi. Moreover, Qi is not crossed by any of the
other cycles Qj . Suppose now that Qi−1 and Qi+1 are both inside Qi (or both
outside). Then it is easy to see that a crossing of type i occurs between an edge
e ∈ E(Qi−1 ∪ Si) and an edge f ∈ E(Qi+1 ∪ Ri). This shows that one of Qi−1
and Qi+1 is inside, while the other one is outside Qi. We may assume that Qi+1
is inside and Qi−1 is outside Qi. There is a path from Qi−1 to x that is disjoint
from V (Qi) and does not use edges in Si or in Ri−1. This path must clearly cross
Qi, and yields a crossing of type i. This contradiction completes the proof. ��

As a corollary we get a generalization of Riskin’s Theorem 1.

Corollary 2. If the graph G0−x−y has maximum degree 3, then cr(G0+xy) =
d′0(x, y) = d∗0(x, y). In particular, the crossing number of G0 + xy is computable
in linear time.

Another corollary is an approximation formula for the crossing number of near-
planar graphs if the maximum degree is bounded.

Corollary 3. If the graph G0 − x − y has maximum degree Δ, then d′0(x, y) ≤
cr(G0 + xy) ≤ Δ

2 d
′
0(x, y).

Proof. Observe that d∗0(x, y) ≤ Δ
2 d

′
0(x, y) because there are at most Δ

2 edge-
disjoint cycles through any vertex and d∗0(x, y) is defined by a collection of
d∗0(x, y) nested cycles (c.f. Theorem 4). ��
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Corollary 3 is an improvement of a theorem of Hliněný and Salazar [6] who
proved analogous result with the factor Δ instead of Δ/2.

A graph G is said to be d-apex if G has a vertex v of degree at most d such
that G − v is planar. Let us observe that every near-planar graph is essentially
2-apex (subdivide the “non-planar” edge).

Problem 2. Is there a result similar to Corollary 2 for 3-apex cubic graphs?

4 The Minor Crossing Number and d′

Structural graph theory based on the Robertson and Seymour theory of graph
minors gives powerful results in relation to topological realizations of graphs.
However, it does not work well with crossing numbers. To overcome this defi-
ciency, Bokal et al. [2] introduced a related notion of the minor crossing number ,
mcr(G), which is defined as the minimum of cr(H) taken over all graphs H that
contain G as a minor.

It is easy to see that mcr(G0 + xy) ≤ d′0(x, y). However, a proof along similar
lines as the proof of Theorem 2 shows even more intimate relationship.

Theorem 5. mcr(G0 + xy) = d′0(x, y).

5 NP-Hardness of wcr(·) for Near-Planar Graphs

Consider the following decision problem:

Weighted Crossing Number

Input: G, k, where G is an edge-weighted graph and k > 0.
Question: Is wcr(G) ≤ k?

This problem is NP-complete because it generalizes the problem Crossing

Number , which is NP-complete [3]. We will see that this problem remains
NP-complete when restricted to near-planar graphs. We will use the notation
[n] = {1, . . . , n}.

Let a1, . . . , an be natural numbers, and let S =
∑

i∈[n] ai. We define the edge-
weighted graph G(a1, . . . , an) as follows (Fig. 2):

– its vertices are u1, . . . , un and v1, . . . , vn;
– there is a Hamiltonian cycle Q = u1 u2 · · ·un v1 v2 · · · vn u1, each edge with

weight S2;
– there are edges ei = uivi with weight ai for each i ∈ [n];

It is easy to note that G(a1, . . . , an) − u1vn planar, and hence G(a1, . . . , an)
is near-planar. For any subset of indices I ⊆ [n], let σI :=

∑
i∈I ai. Consider

a clean drawing D0 of G such that wcr(G) = wcr(D0). It is easy to see that
no edge of Q participates in a crossing, and therefore each edge ei is contained
either in the interior or in the exterior of the simple closed curve defined by Q.
Using that all the edges in the interior (or the exterior) of Q must cross each
other, we can show the following property.
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u1 u2 u3 un−2 un−1 un

vn vn−1 vn−2 v3 v2 v1

Fig. 2. The graph G(a1, . . . , an) with the cycle Q bolder

Lemma 7. It holds that

2 · wcr(G(a1, . . . , an)) = min
I⊆[n]

{
(σI)

2 +
(
σ[n]\I

)2
}
−
∑

i∈[n]

a2
i .

Lemma 8. It holds

wcr(G(a1, . . . , an)) = S2/4 −
∑

i∈[n]

a2
i /2

if and only if there exists I ⊂ [n] such that σI = σ[n]\I = S/2.

Proof. Note that

min
I⊆[n]

{
(σI)

2 +
(
σ[n]\I

)2
}
≥ min{A2+B2 | A+B = S, A ≥ 0, B ≥ 0} = S2/2,

and there is equality if and only if there is some I ⊂ [n] such that σI = σ[n]\I =
S/2. The result then follows from Lemma 7. ��

Theorem 6. The problem Weighted Crossing Number is NP-complete for
near-planar graphs.

Proof. A standard planarizing argument shows that the problem Weighted

Crossing Number is in NP. To show NP-hardness, consider the following NP-
complete problem [4].

Partition

Input: natural numbers a1, . . . , an.
Question: is there I ⊂ [n] such that

∑
i∈I ai =

∑
i∈[n]\I ai?

Consider the function φ that maps the input a1, . . . , an for Partition into the
input

G(a1, . . . , an), S2/4 −
∑

i∈[n]

a2
i /2

for Weighted Crossing Number . Clearly, φ can be computed in polynomial
time. Because of Lemma 8 both problems have the same answer. Therefore we
have a polynomial time reduction from Partition to Weighted Crossing

Number that only uses near-planar graphs. ��
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Cubic Graphs Have Bounded Slope Parameter�
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Abstract. We show that every finite connected graph G with maximum degree
three and with at least one vertex of degree smaller than three has a straight-line
drawing in the plane satisfying the following conditions. No three vertices are
collinear, and a pair of vertices form an edge in G if and only if the segment con-
necting them is parallel to one of the sides of a previously fixed regular pentagon.
It is also proved that every finite graph with maximum degree three permits a
straight-line drawing with the above properties using only at most seven different
edge slopes.

1 Introduction

A drawing of a graph G is a representation of its vertices by distinct points in the plane
and the edges by continuous arcs connecting the corresponding endpoints, not passing
through any other point corresponding to a vertex. In a straight-line drawing [8], the
edges are represented by (possibly crossing) segments. If it leads to no confusion, we
make no notational or terminological distinction between the vertices (edges) of G and
the points (arcs) representing them.

There are several widely known parameters of graphs measuring how far G is from
being planar. For instance, the thickness of G is the smallest number of its planar sub-
graphs whose union is G [14]. The geometric thickness of G is the smallest number
of crossing-free subgraphs of a straight-line drawing of G, whose union is G [11].
The slope number of G is the minimum number of distinct edge slopes in a straight-
line drawing of G [16]. It follows directly from the definitions that the thickness of
any graph is at most as large as its geometric thickness, which, in turn, cannot ex-
ceed its slope number. For many interesting results about these parameters, consult
[3,6,4,5,7,9,12,15].

The slope parameter of a graph was defined by Ambrus, Barát, and P. Hajnal [1], as
follows. By abusing the usual terminology, we say that the slope of a line  in the xy-
plane is the smallest angle α ∈ [0, π) such that  can be rotated into a position parallel
to the x-axis by a clockwise turn through α. Given a set of points P in the plane and a
set of slopes Σ, define G(P,Σ) as the graph on the vertex set P , in which two vertices

� Research supported by grants from NSF, NSA, PSC-CUNY and the Hungarian Research Foun-
dation OTKA.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 50–60, 2009.
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p, q ∈ P are connected by an edge if and only if the slope of the line pq belongs to Σ.
The slope parameter s(G) of G is the size of the smallest set of slopes Σ such that G
is isomorphic to G(P,Σ) for a suitable set of points P in the plane. This definition was
motivated by the fact that all connections (edges) in an electrical circuit (graph) G can
be easily realized by the overlay of s(G) finely striped electrically conductive layers.

The slope parameter, s(G), is closely related to the three other graph parameters
mentioned before. For instance, for triangle-free graphs, s(G) is at least as large as
the slope number of G, the largest of the three quantities above. On the other hand, it
sharply differs from them in the sense that the slope parameter of a complete graph on
n vertices is one, while the thickness, the geometric thickness, and the slope number of
Kn tend to infinity as n→∞. Jamison [10] proved that the slope number of Kn is n.

Any graph G of maximum degree two splits into vertex disjoint cycles, paths, and
possibly isolated vertices. Hence, for such graphs we have s(G) ≤ 3. In contrast, as
was shown by Barát et al. [2], for any d ≥ 5, there exist graphs of maximum degree d,
whose slope parameters are arbitrarily large.

A graph is said to be cubic if the degree of each of its vertices is at most three. A
cubic graph is subcubic if each of its connected components has a vertex of degree
smaller than three.

The aim of this note is to prove

Theorem 1. Every cubic graph has slope parameter at most seven.

We will refer to the angles iπ/5, 0 ≤ i ≤ 4, as the five basic slopes. In Sect. 2, we prove
the following statement, which constitutes the first step of the proof of Theorem 1.

Theorem 2. Every subcubic graph has slope parameter at most five. Moreover, this can
be realized by a straight-line drawing such that no three vertices are on a line and each
edge has one of the five basic slopes.

Using the fact that in the drawing guaranteed by Theorem 2 no three vertices are
collinear, we can also conclude that the slope number of every subcubic graph is at
most five. In [12], however, it was shown that this number is at most four and for cubic
graphs it is at most five. This was improved for connected cubic graphs in [13] to four.

2 Proof of Theorem 2

The proof is by induction on the number of vertices of the graph. Clearly, the statement
holds for graphs with fewer than three vertices. Let n be fixed and suppose that we
have already established the statement for graphs with fewer than n vertices. Let G be
a subcubic graph of n vertices. We can assume that G is connected, otherwise we can
draw each of its connected components separately and translate the resulting drawings
through suitable vectors.

To obtain a drawing of G, we have to find proper locations for its vertices. At each
inductive step, we start with a drawing of a subgraph of G satisfying the conditions
and extend it by adding a vertex. At a given stage of the procedure, for any vertex v
that has already been added, consider the (basic) slopes of all edges adjacent to v that
have already been drawn, and let sl(v) denote the set of integers 0 ≤ i < 5 mod 5
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for which iπ/5 is such a slope. That is, at the beginning sl(v) is undefined, then it gets
defined, and later it may change (expand). Analogously, for any edge uv of G, denote
by sl(uv) the integer 0 ≤ i < 5 mod 5 for which the slope of uv is iπ/5.

Case 1: G has a vertex of degree one. Assume without loss of generality, that v is a
vertex of degree one, and let w denote its only neighbor. Deleting v from G, the degree
of w in the resulting graph G′ is at most two. Therefore, by the induction hypothesis,
G′ has a drawing meeting the requirements. As w has degree at most two, there is a
basic slope σ such that no other vertex of G′ lies on the line  of slope σ that passes
through w. Draw all five lines of basic slopes through each vertex of G′. These lines
intersect  in finitely many points. We can place v at any other point of , to obtain a
proper drawing of G.

From now on, assume that G has no vertex of degree one.

Case 2: G has no cycle that passes through a vertex of degree two. Since G is subcubic,
it contains a vertex w of degree two such that G is the union of two graphs, G1 and
G2, having only vertex w in common. Both G1 and G2 are subcubic and have fewer
than n vertices, so by the induction hypothesis both of them have a drawing satisfying
the conditions. Translate the drawing of G2 so that the points representing w in the two
drawings coincide. Since w has degree one in both G1 and G2, by a possible rotation
of G2 about w through an angle that is a multiple of π/5, we can achieve that the two
edges adjacent to w are not parallel. By scaling G2 from w, if necessary, we can also
achieve that the slope of no segment between a vertex of G1 \w and a vertex of G2 \w
is a basic slope. Thus, the resulting drawing of G meets the requirements.

Case 3: G has a cycle passing through a vertex of degree two. If G itself is a cycle, we
can easily draw it. If it is not the case, let C be a shortest cycle which contains a vertex
of degree two. Let u0, u1, . . . , uk denote the vertices of C, in this order, such that u0
has degree two and u1 has degree three. The indices are understood mod k + 1, that
is, for instance, uk+1 = u0. It follows from the minimality of C that ui and uj are not
connected by an edge of G whenever |i− j| > 1.

Since G \C is subcubic, by assumption, it permits a straight-line drawing satisfying
the conditions. Each ui has at most one neighbor in G \ C. Denote this neighbor by ti,
if it exists. For every i for which ti exists, we place ui on a line passing through ti. We
place the ui’s one by one, “very far” from G \ C, starting with u1. Finally, we arrive at
u0, which has no neighbor in G \ C, so that it can be placed at the intersection of two
lines of basic slope, through u1 and uk, respectively. We have to argue that our method
does not create “unnecessary” edges, that is, we never place two independent vertices
in such a way that the slope of the segment connecting them is a basic slope. In what
follows, we make this argument precise.

We determine the locations of u0, u1, . . . , uk by using the below described PROCE-
DURE(G,C, u0, u1, x), where G is our subcubic graph, C is the shortest cycle passing
through a vertex of degree two, u0 is such a vertex, u1 is a neighbor of u0 on C, whose
degree is three, and x is a real parameter. Note that PROCEDURE(G,C, u0, u1, x) is a
nondeterministic algorithm, as we have more than one choice at certain steps. (However,
it is very easy to make it deterministic.)
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u u
u

i-1

ui

i-1

ui

ui-1

ui

ui-1

i

Fig. 1. The four possible locations of ui

PROCEDURE(G,C, u0, u1, x)

– STEP 0. Since G \ C is subcubic, it has a representation with the five basic slopes.
Take such a representation, scaled and translated in such a way that t1 (which exists
since the degree of u1 is three) is at the origin, and all other vertices are within unit
distance from it.

For any i, 2 ≤ i ≤ k, for which ui does not have a neighbor in G \ C, let ti
be any unoccupied point closer to the origin than 1, such that the slope of none of
the lines connecting ti to t1, t2, . . . ti−1 or to any other already embedded point of
G \ C is a basic slope.

For any point p and for any i mod 5, let i(p) denote the line with ith basic slope,
iπ/5, passing through p. Let i stand for i(O), where O denotes the origin.

We will place u1, . . . , uk recursively, so that uj is placed on i(tj), for a suitable i.
Once the position of uj has already been fixed on some i(tj), define ind(uj), the index
of uj , to be i. (Again, the indices are taken mod 5. Thus, for example, |i − i′| ≥ 2 is
equivalent to saying that i �= i′ and i �= i′ ± 1 mod 5.) Start with u1. The degree of
t1 in G \ C is at most two, so that at the beginning the set sl(t1) (defined in the first
paragraph of this section) has at most two elements. Let l /∈ sl(t1). Direct the line l(t1)
arbitrarily, and place u1 on it at distance x from t1 in the positive direction. (According
to this rule, if x < 0, then u1 is placed on l(t1) at distance |x| from t1 in the negative
direction.)

Suppose that u1, u2, . . ., ui−1 have been already placed and that ui−1 lies on the line
l(ti−1), that is, we have ind(ui−1) = l.

– STEP i. We place ui at one of the following four locations (see Fig. 1):
(1) the intersection of l+1(ti) and l+2(ui−1);
(2) the intersection of l+2(ti) and l+3(ui−1);
(3) the intersection of l−1(ti) and l−2(ui−1);
(4) the intersection of l−2(ti) and l−3(ui−1).
Choose from the above four possibilities so that the edge uiti is not parallel to any
other edge already drawn and adjacent to ti, i.e., before adding the edge uiti to the
drawing, sl(ti) did not include sl(uiti).

It follows directly from (1)–(4) that the edge uiui−1 is not parallel to any other
edge already drawn and adjacent to ui−1. That is, before adding the edge uiui−1 to
the drawing, we had sl(uiui−1) /∈ sl(ui−1). Avoiding for uiti the slopes of the edges
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already incident to ti, leaves available two of the choices (1), (2), (3), (4). Some simple
geometric calculations show that, for any possible location of ui, we have

1.6Oui−1−4 < 2 cos
(π

5

)
Oui−1−4 < Oui < 2 cos

(π

5

)
Oui−1+4 < 1.7Oui−1+4.

Thus, if |x| ≥ 50, then we obtain by induction that

1.5Oui−1 < Oui. (1)

Here, we used that x − 1 < Ou1 and that, by the induction hypothesis, Ouj is strictly
increasing for j < i, therefore, we have x− 1 < Oui−1.

We have to verify that the above procedure does not produce “unnecessary” edges,
that is, the following statement is true.

Claim 1. Suppose that |x| ≥ 50.
(i) The slope of uiuj is not a basic slope, for any j < i− 1.
(ii) The slope of uiv is not a basic slope, for any v ∈ V (G \ C).

Proof. (i) Suppose that the slope of uiuj is a basic slope for some j < i − 1. By
repeated application of inequality (1), we obtain that Oui > 1.5i−jOuj > 2Ouj . On
the other hand, if uiuj has a basic slope, then easy geometric calculations show that
Oui < 2 cos

(
π
5

)
Ouj + 4 < 2Ouj , a contradiction.

(ii) Suppose for simplicity that tiui has slope 0, i.e., it is horizontal. By the construc-
tion, no vertex v of G \ C determines a horizontal segment with ti, but all of them are
within distance 2 from ti. As Oui > x − 1, segment vui is almost, but not exactly
horizontal. That is, we have 0 < |∠tiuiv| < π/5, contradiction. �
Suppose that STEP 0, STEP 1, . . . , STEP k have already been completed. It remains to
determine the position of u0. We need some preparation.

Claim 2. There exist two integers 0 ≤ l, l′ < 5 with |l − l′| ≥ 2 mod 5 such that
starting the PROCEDURE with ind(u1) = l and with ind(u1) = l′, we can continue so
that ind(u2) is the same.

Proof. Suppose that the degrees of t1 and t2 in G \ C are two, that is, there are two
forbidden lines for both u1 and u2. In the other cases, when the degree of t1 or the
degree of t2 is less than two, or when t1 = t2, the proof is similar, but simpler. We can
place u1 on l(t1) for any l /∈ sl(t1). Therefore, we have three choices, two of which,
α(t1) and β(t1), are not consecutive, so that |α− β| ≥ 2.

The vertex u2 cannot be placed on m(t2) for any m ∈ sl(t2), so there are three
possible lines for u2: x(t2), y(t2), z(t2), say. For any fixed location of u1, we can
place u2 on at least two of the lines x(t2), y(t2), and z(t2). Therefore, at least one of
them, x(t2), say, can be used for both locations of u1. �
Claim 3. We can place the vertices u1, u2, . . . , uk using the PROCEDURE so that
|ind(u1)− ind(uk)| ≥ 2 mod 5.

Proof. By Claim 2, there are two placements of the vertices of C \{u0, uk}, denoted by
u1, u2, . . . , uk−1 and by u′

1, u
′
2, . . . , u

′
k−1 such that |ind(u1)− ind(u′

1)| ≥ 2 mod 5,
and ind(ui) = ind(u′

i) for all i ≥ 2. That is, we can start placing the vertices on
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ku
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uk+1uuk
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uk
uk+1

u0

0

0 0

Fig. 2. The four possible locations of u0

two nonneighboring lines so that from the second step of the PROCEDURE we use the
same lines. We show that we can place uk such that u1 and uk, or u′

1 and uk are on
nonneighboring lines. Having placed uk−1 (or u′

k−1), we have four choices for ind(uk).
Two of them can be ruled out by the condition ind(uk) /∈ sl(tk). We still have two
choices. Since u1 and u′

1 are on nonneighboring lines, there is only one line which is
neighboring of both of them. Therefore, we still have at least one choice for ind(uk)
such that |ind(u1)− ind(uk)| ≥ 2 or |ind(u′

1)− ind(uk)| ≥ 2. �

– STEP k+1. Let i = ind(u1), j = ind(uk), and assume, by Claim 3, that |i−j| ≥ 2
mod 5. Consider the lines i−1(u1) and i+1(u1). One of them, i+1(u1), say, does
not separate the vertices of G \ C from uk, the other one does.
Place u0 at the intersection of i+1(u1) and i(uk).

Claim 4. Suppose that |x| ≥ 50.
(i) The slope of u0uj is not a basic slope, for any 1 < j < k.
(ii) The slope of u0v is not a basic slope, for any v ∈ V (G \ C).

Proof. (i) Denote by uk+1 the intersection of i+1(O) and i(uk). Suppose that the
slope of u0uj is a basic slope for some 1 < j < k. As in the proof of Claim 1, by
repeated application of inequality 1, we obtain that Ouk+1 > 1.5k+1−jOuj > 2Ouj .
On the other hand, by an easy geometric argument, if the slope of u0uj is a basic slope,
then Ouk+1 < 2 cos

(
π
5

)
Ouj + 4 < 2Ouj , a contradiction, provided that |x| ≥ 50.

(ii) For any vertex v ∈ G \ C, the slope of the segment u0v is strictly between iπ/5
and (i + 1)π/5, therefore, it is not a basic slope. See Fig. 2. This concludes the proof
of the claim and hence Theorem 2. �

3 Proof of Theorem 1

First we note that if G is connected, then Theorem 1 is an easy corollary to Theorem 2.
Indeed, delete any vertex, and then put it back using two extra directions. If G is not
connected, the only problem that may arise is that these extra directions can differ for
different components. We will define a family of drawings for each component of G,
depending on a parameter ε, and then choose the values of these parameters in such a
way that the extra directions will coincide.

Suppose that G is a cubic graph. If a connected component is not 3-regular then, by
Theorem 2, it can be drawn using the five basic slopes. If a connected component is a
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complete graphK4 on four vertices, then it can also be drawn using the basic slopes. For
the sake of simplicity, suppose that we do not have such components, ie. each connected
component G1, . . . , Gm of G is 3-regular and none of them is isomorphic to K4.

First we concentrate on G1. Let C be a shortest cycle in G1. We distinguish two
cases.

Case 1: C is not a triangle. Denote by u0, . . . , uk the vertices of C, and let t0 be the
neighbor of u0 not belonging to C. Delete the edge u0t0, and let Ḡ be the resulting
graph.

Case 2: C is a triangle. Then every vertex of C has precisely one neighbor that does
not belong to C. If all these neighbors coincide, then G1 is a complete graph on four
vertices, contradicting our assumption. So one vertex of C, u0, say, has a neighbor t0
which does not belong to C and which is not adjacent to the other two vertices, u1 and
u2, of C. Delete the edge u0t0, and let Ḡ be the resulting graph.

Observe that in both cases, uk and t0 are not connected in G1. Indeed, suppose for
a contradiction that they are connected. In the first case, G1 would contain the triangle
u0ukt0, contradicting the minimality of C. In the second case, the choice of u0 would
be violated.

There will be exactly two edges with extra directions, u0u1 and u0t0. The slope of
u0u1 will be very close to a basic slope and the slope of u0t0 will be decided at the end,
but we will show that almost any choice will do.

For any real x and ε > 0, define MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε), as fol-
lows. Let STEPS 0, 1, . . . , k be identical to the corresponding STEPS of PROCEDU-
RE(Ḡ, C, u0, u1, x).

– STEP k + 1. If there is a segment, determined by the vertices of G \ C, of slope
iπ/5 + ε or iπ/5− ε, for any 0 ≤ i < 5, then STOP. In this case, we say that ε is
1-bad for Ḡ.

Otherwise, when ε is 1-good, let i = ind(u1) and j = ind(uk). We can assume
that |i − j| ≥ 2 mod 5. Consider the lines i−1(u1) and i+1(u1). One of them
does not separate the vertices of G \ C from uk, the other one does.

If i−1(u1) separates G\C from uk, then place u0 at the intersection of i+1(u1)
and the line through uk with slope iπ/5 + ε. If i+1(u1) separates G \ C from uk,
then place u0 at the intersection of i−1(u1) and the line through uk with slope
iπ/5− ε.

Since STEPS 0, . . . , k are identical in MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) and
in PROCEDURE(Ḡ, C, u0, u1, x), the Claims 1, 2, and 3 also hold for the MODIFIED-
PROCEDURE.

Moreover, it is easy to see that the analogue of Claim 4 also holds with an identical
proof, provided that ε is sufficiently small: 0 < ε < 1/100.

Claim 4’. Suppose that |x| ≥ 50 and 0 < ε < 1/100.
(i) The slope of u0uj is not a basic slope, for any 1 < j < k.
(ii) The slope of u0v is not a basic slope, for any v ∈ V (Ḡ \ C). �

Perform MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) for a fixed ε, and observe how the
drawing changes as x varies. For any vertex ui of C, let ui(x) denote the position of
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ui, as a function of x. For every i, the function ui(x) is linear, that is, ui moves along a
line as x varies.

Claim 5. If ε is 1-good, then with finitely many exceptions, for every value of x, MODI-
FIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) produces a proper drawing of Ḡ.

Proof. Claims 1, 2, 3, and 4’ imply Claim 5 for |x| ≥ 50. Let u and v be two vertices
of Ḡ. Since u(x) and v(x) are linear functions, their difference, uv(x), is also linear.

If uv is an edge of Ḡ, then the direction of uv(x) is the same for all |x| ≥ 50.
Therefore, it is the same for all values of x, with the possible exception of one value,
for which uv(x) = 0 holds.

If uv is not an edge of Ḡ, then the slope of uv(x) is not a basic slope for any
|x| ≥ 50. Therefore, with the exception of at most five values of x, the slope of uv(x)
is never a basic slope, nor does uv(x) = 0 hold. �
Take a closer look at the relative position of the endpoints of the missing edge, u0(x)
and t0(x). Since t0 ∈ Ḡ \ C, t0 = t0(x) is the same for all values of x. The position
of u0 = u0(x) is a linear function of x. Let  be the line determined by the function
u0(x). If  passes through t0, then we say that ε is 2-bad for Ḡ. If ε is 1-good and it
is not 2-bad for Ḡ, then we say that it is 2-good for Ḡ. If ε is 2-good, then by varying
x we can achieve almost any slope for the edge t0u0. This will turn out to be crucially
important, because we want to attain that these slopes coincide in all components.

Claim 6. Suppose that the values 0 < ε, δ < 1/100 are 1-good for Ḡ. Then at least one
of them is 2-good for Ḡ.

Proof. Suppose, for simplicity, that ind(u1) = 0, ind(uk) = 2, and that u1 and uk are
in the right half-plane (of the vertical line through the origin). The other cases can be
settled analogously. To distinguish between MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε)
and MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, δ), let uε

0(x) denote the position of u0 ob-
tained by the first procedure and uδ

0(x) its position obtained by the second. Let ε and
δ denote the lines determined by the functions uε

0(x) and uδ
0(x). Suppose that x is very

large. Since, by (1), we have uk(x)O > 1.5u1(x)O, both uε
0(x) and uδ

0(x) are above
the line π/10. On the other hand, if x < 0 is very small (i.e., if |x| is very big), both
uε

0(x) and uδ
0(x) lie below the line π/10. It follows that the slopes of ε and δ are

larger than π/10, but smaller than π/5.
Suppose that neither ε nor δ is 2-good. Then both ε and δ pass through t0. That is,

for a suitable value of x, we have uε
0(x) = t0. We distinguish two cases.

Case 1: uε
0(x) = t0 = uk(x). Then, as x varies, the line determined by uk(x) coincides

with 2(t0). Consequently, t0 and uk are connected in G1, a contradiction.

Case 2: uε
0(x) = t0 �= uk(x). In order to get a contradiction, we try to determine the po-

sition of uδ
0(x). Considering STEP k + 1 in both MODIFIEDPROCEDURE

(Ḡ, C, u0, u1, x, ε) and in MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, δ), we can conclude
that u1(x) lies on 1(t0), uδ

0(x) lies on 1(u1(x)), therefore, uδ
0(x) lies on 1(t0). On

the other hand, uδ
0(x) lies on δ, and, by assumption, δ passes through t0. However, we

have shown that δ and 1(t0) have different slopes, therefore, uδ
0(x) must be at their

intersection point, so we have uδ
0(x) = uε

0(x) = t0.
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Considering again STEP k + 1 in MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) and in
MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, δ), we can conclude that the point uδ

0(x) =
t0 = uε

0(x) belongs to both ε(uk(x)) and δ(uk(x)). This contradicts our assumption
that uk(x) is different from uδ

0(x) = t0 = uε
0(x). �

By Claim 5, for every ε < 1/100 and with finitely many exceptions for every value of
x, MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) produces a proper drawing of Ḡ. When
we want to add the edge u0t0, the slope of u0(x)t0 may coincide with the slope of
u(x)u′(x), for some u, u′ ∈ Ḡ. The following statement guarantees that this does not
happen “too often”. We use α(u) to denote the slope of a vector u.

Claim 7. Let u(x) and v(x): R → R2 be two linear functions, and let (u) and (v)
denote the lines determined by u(x) and v(x). Suppose that for some x1 < x2 <
x3, the vectors u,v do not vanish and that their slopes coincide, that is, α(u(x1)) =
α(v(x1)), α(u(x2)) = α(v(x2)), and α(u(x3)) = α(v(x3)). Then (u) and (v) must
be parallel.

Proof. If (u) passes through the origin, then for every value of x, u(x) has the same
slope. In particular, α(v(x1)) = α(v(x2)) = α(v(x3)). Therefore, (v) also passes
through the origin and is parallel to (u). (In fact, we have (u) = (v).) We can argue
analogously if (u) passes through the origin. Thus, in what follows, we can assume
that neither (u) nor (v) passes through the origin.

Suppose that α(u(x1)) = α(v(x1)), α(u(x2)) = α(v(x2)), and α(u(x3)) =
α(v(x3)). For any x, define w(x) as the intersection point of (v) and the line con-
necting the origin to u(x), provided that they intersect. Clearly, v(x) = w(x) for
x = x1, x2, x3, and u(x) and w(x) have the same slope for every x. The transfor-
mation u(x) → w(x) is a projective transformation from (u) to (v), therefore, it
preserves the cross ratio of any four points. That is, for any x, we have

(u(x1),u(x2); u(x3),u(x)) = (w(x1),w(x2); w(x3),w(x)) .

Since both u(x) and v(x) are linear functions, we also have

(u(x1),u(x2); u(x3),u(x)) = (v(x1),v(x2); v(x3),v(x)) .

Hence, we can conclude that v(x) = w(x) for all x. However, this is impossible, unless
(u) and (v) are parallel. Indeed, suppose that (u) and (v) are not parallel, and set
x in such a way that u(x) is parallel to (v). Then w(x) cannot have the same slope as
u(x), a contradiction. �
Suppose that ε is 2-good and let us fix it. As above, let uε

0(x) be the position of u0 ob-
tained by MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε), and let ε be the line determined
by uε

0(x).
Suppose also that there exist two independent vertices of Ḡ, u, u′ �= u0, such that

the line determined by uu′(x) is parallel to ε. Then we say that ε is 3-bad for Ḡ. If ε
is 2-good and it is not 3-bad for Ḡ, then we say that it is 3-good for Ḡ.

It is easy to see that, for any 0 < ε, δ < 1/100, ε and δ are not parallel, therefore,
for any fixed u, u′, there is at most one value of ε for which the line determined by
uu′(x) is parallel to ε. Thus, with finitely many exceptions, all values 0 < ε < 1/100
are 3-good.
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Summarizing, we have obtained the following.

Claim 8. Suppose that ε is 3-good for Ḡ. With finitely many exceptions, for every value
of x, MODIFIEDPROCEDURE(Ḡ, C, u0, u1, x, ε) gives a proper drawing of G1. �
Now we are in a position to complete the proof of Theorem 1. Proceed with each of the
components as described above for G1. For any fixed i, let ui

0v
i
0 be the edge deleted

from Gi, and denote the resulting graphs by Ḡ1, . . . , Ḡm. Let 0 < ε < 1/100 be fixed
in such a way that ε is 3-good for all graphs Ḡ1, . . . , Ḡm. This can be achieved, in
view of the fact that there are only finitely many values of ε which are not 3-good.
Perform MODIFIEDPROCEDURE(Ḡi, Ci, ui

0, u
i
1, x

i, ε). Now the line i determined by
all possible locations of ui

0 does not pass through ti0.
Note that when MODIFIEDPROCEDURE(Ḡi, Ci, ui

0, u
i
1, x

i, ε) is executed, then apart
from edges with basic slopes, we use an edge with slope rπ/5 ± ε, for some integer r
mod 5. By using rotations through π/5 and a reflection, if necessary, we can achieve
that each component Ḡi is drawn using the basic slopes and one edge of slope ε.

It remains to set the values of xi and draw the missing edges ui
0v

i
0. Since the line

i determined by the possible locations of ui
0 does not pass through ti0, by varying the

value of xi, we can attain any slope for the missing edge ti0u
i
0, except for the slope

of i. By Claim 8, with finitely many exceptions, all values of xi produce a proper
drawing of Gi. Therefore, we can choose x1, x2, . . . , xm so that all segments ti0u

i
0 have

the same slope and every component Gi is properly drawn using the same seven slopes.
Translating the resulting drawings through suitable vectors gives a proper drawing of
G, this completes the proof of Theorem 1.

4 Concluding Remarks

In the proof of Theorem 1, the slopes we use depend on the graph G. However, the
proof shows that one can simultaneously embed all cubic graphs using only seven fixed
slopes.

It is unnecessary to use |x| ≥ 50, in every step, we could pick any x, with finitely
many exceptions.

It seems to be only a technical problem that we needed two extra directions in the
proof of Theorem 1. We believe that one extra direction would suffice.

The most interesting problem that remains open is to decide whether the number of
slopes needed for graphs of maximum degree four is bounded.
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Unimaximal Sequences of Pairs in Rectangle
Visibility Drawing

Jan Štola
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Abstract. We study the existence of unimaximal subsequences in se-
quences of pairs of integers, e.g., the subsequences that have exactly one
local maximum in each component of the subsequence. We show that
every sequence of 1

12n2(n2 − 1) + 1 pairs has a unimaximal subsequence
of length n. We prove that this bound is tight. We apply this result to
the problem of the largest complete graph with a 3D rectangle visibility
representation and improve the upper bound from 55 to 50.

1 Introduction

A 3D rectangle visibility drawing represents vertices by axis-aligned rectangles
lying in planes parallel to the xy-plane. Edges correspond to the z-parallel visibil-
ity among these rectangles. This type of graph drawing was studied, for example,
in [1,2,5,6,7,8].

We continue in the study of the maximum size of a complete graph with a 3D
rectangle visibility representation. The representation of K22 given by Rote and
Zelle (included in [8]) provides the best known lower bound. On the other hand,
Bose et al. [2] showed that no complete graph with 103 or more vertices has
such a representation. This result was then improved to 56 by Fekete et al. [1].
Their proof is based on the analysis of unimaximal subsequences in sequences of
rectangle coordinates.

A sequence x1, x2, . . . of distinct integers is called unimaximal if it has exactly
one localmaximum, i. e., for all i, j, kwith i < j < kwehavexj > min{xi, xk}. The
following lemma (attributed by Chung [3] to V. Chvátal and J.M. Steele, among
others) summarizes the most important properties of unimaximal sequences.

Lemma 1. For all n > 1, in every sequence of
(
n
2

)
+ 1 distinct integers, there

exists a unimaximal subsequence of length n. On the other hand, there exists a se-
quence of

(
n
2

)
distinct integers that has no unimaximal subsequence of length n.

The notion of unimaximality can be generalized to sequences of pairs:

Definition 1. A sequence (x1, y1), (x2, y2), . . . of pairs of integers is called uni-
maximal if it is unimaximal in both components, i. e., if both sequences x1, x2, . . .
and y1, y2, . . . are unimaximal.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 61–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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If we apply the previous lemma twice on a sequence of pairs then we can see
that every sequence of

((n
2)+1
2

)
+ 1 ≈ 1

8n
4 pairs has a unimaximal subsequence

of length n. In fact, the result of Fekete et al. [1] is based on this fact. We show
in this paper that we can improve this bound to 1

12n
2(n2 − 1) + 1 if we consider

both components of a sequence of pairs together. This result allows us to improve
the upper bound on the size of the largest complete graph with a 3D rectangle
visibility representation from 55 to 50.

2 Upper Bound

The definition of a unimaximal sequence requires distinct values in the sequence.
Therefore both components of a unimaximal sequence of pairs must contain
distinct values.1 Hence we consider only sequences with this property in the
sequel.

We show that every sufficiently long sequence of pairs contains a unimaximal
subsequence of a given length. The following relations turn out to be useful in
the analysis of this problem.

Definition 2. Let (x1, y1), (x2, y2), . . . be a sequence of pairs of integers. We say
that two pairs (xi, yi), (xj , yj), i < j have a ↗↗-relation if xi < xj and yi < yj.
The pairs have a ↘↘-relation if xi > xj and yi > yj.

If both relations are forbidden then our problem becomes a simple consequence
of the Erdős-Szekeres theorem [4].

Lemma 2. If a sequence of (n− 1)2 + 1 pairs of integers doesn’t contain pairs
with ↗↗- and ↘↘-relations then it has a unimaximal subsequence of length n.

Proof. Let ((xi, yi))i be a sequence of length (n − 1)2 + 1. The sequence (xi)i

contains a monotone subsequence (xij )j of length n according to the Erdős-
Szekeres theorem. The sequence (yij )j is monotone as well because the original
sequence doesn’t have pairs with ↗↗- and ↘↘-relations, e.g., if the sequence
(xij )j is increasing then (yij )j is decreasing and vice versa.

Hence the subsequence ((xij , yij ))n
j=1 is unimaximal. ��

Lemma 3 shows how the situation changes if only one relation is forbidden.

Lemma 3. If a sequence of fn = 1
6 (n − 1)n(2n − 1) + 1 pairs of integers

doesn’t contain pairs with a ↘↘-relation then it has a unimaximal subsequence
of length n.

Proof. The lemma holds for n = 1. Let’s suppose that it holds for n = k ∈ IN and
let P = ((xi, yi))

fk+1
i=1 be a sequence that doesn’t contain pairs with a↘↘-relation.

Let S be the set of pairs (x, y) such that P contains a unimaximal subsequence

1 Both components (xi)i and (yi)i of ((xi, yi))i must contain distinct values, but it
may happen that xi = yj .
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of length k starting at (x, y). We know that every sequence of length fk contains
at least one such a subsequence. Therefore |S| ≥ fk+1 − fk + 1 = k2 + 1.

If there are two pairs (xi, yi), (xj , yj), i < j in S that have a ↗↗-relation then
we can prepend (xi, yi) to the unimaximal subsequence of length k starting at
(xj , yj) and obtain a unimaximal subsequence of length k + 1.

On the other hand, if there are no pairs in S that have a ↗↗-relation then
S contains a unimaximal subsequence of length k + 1 according to the previous
lemma. Hence the lemma holds also for n = k + 1. ��

The idea of the previous proof can be reused to analyze sequences with both
relations allowed.

Theorem 1. For all n ∈ IN, in every sequence of gn = 1
12n

2(n2 − 1) + 1 pairs
of integers, there exists a unimaximal subsequence of length n.

Proof. We proceed in the same way as in the previous proof. The theorem holds
for n = 1. Let’s suppose that it holds for n = k ∈ IN and let P = ((xi, yi))i

be a sequence of length gk+1. Let E be the set of pairs (x, y) such that P
contains a unimaximal subsequence of length k ending at (x, y). We know that
every sequence of length gk contains at least one such a subsequence. Therefore
|E| ≥ gk+1 − gk + 1 = fk+1.

If there are two pairs (xi, yi), (xj , yj), i < j in E that have a ↘↘-relation then
we can append (xj , yj) to the unimaximal subsequence of length k ending at
(xi, yi) and obtain a unimaximal subsequence of length k + 1.

On the other hand, if there are no pairs in E that have a ↘↘-relation then
E contains a unimaximal subsequence of length k + 1 according to the previous
lemma. Hence the theorem holds also for n = k + 1. ��

3 Lower Bound

This section shows that the bounds derived in the previous section are tight.

Lemma 4. For all n > 1 there exists a sequence Pn of (n−1)2 pairs of integers
that

– doesn’t contain pairs with ↗↗- and ↘↘-relations,
– has no unimaximal subsequence of length n.

Proof. According to the Erdős-Szekeres theorem there exists a sequence (xi)
(n−1)2

i=1
that doesn’t contain a monotone subsequence of length n. The sequence Pn =
((xi,−xi))

(n−1)2

i=1 clearly doesn’t contain pairs with ↗↗- and↘↘-relations.
A unimaximal subsequence of Pn (or any other sequence that doesn’t con-

tain pairs with ↗↗- and ↘↘-relations) must be monotone in both components.
Therefore Pn cannot have a unimaximal subsequence of length n because other-
wise (xi)i would contain a monotone subsequence of this length. ��

Let P = ((xi, yi))i be a sequence of pairs of integers and m ∈ IN. We denote the
sequence ((xi + m, yi + m))i by P + m in the sequel.
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Lemma 5. For all n > 1 there exists a sequence Qn of 1
6 (n− 1)n(2n− 1) pairs

of integers that

– doesn’t contain pairs with a ↘↘-relation,
– has no unimaximal subsequence of length n.

Proof. Let Pi, i = 2, . . . , n be the sequences from the previous lemma. Let P ′
i =

Pi + mi. The shifts mi are selected such that for all n ≥ i > j ≥ 2 the pairs
from P ′

i have to pairs in P ′
j ↗↗-relations. Finally, let Qn be a concatenation of

the sequences P ′
n, . . . , P

′
2.

The length of Qn is
∑n

i=2(i− 1)2 = 1
6 (n− 1)n(2n− 1).

Qn doesn’t contain a ↘↘-relation because this relation is not present among
pairs from the individual subsequences P ′

i and there are ↗↗-relations among
pairs from the different subsequences.

Let U be a unimaximal subsequence of Qn and k be the minimal index such
that U contains a pair (x, y) from P ′

k. Each pair from P ′
l , l > k has a↗↗-relation

to (x, y). If (xi, yi) and (xj , yj), i < j are two pairs from a fixed P ′
l , l > k then

they cannot be both in U because the triple (xi, yi), (xj , yj), (x, y) is unimaximal
only if (xi, yi) has a ↗↗-relation to (xj , yj), but this cannot happen due to the
definition of P ′

l .
Therefore U contains at most one pair from each P ′

l , l > k and at most
k − 1 pairs from P ′

k (P ′
k has no unimaximal subsequence of length k). Hence

|U | ≤ (n − k) + (k − 1) = n − 1 and Qn has no unimaximal subsequence of
length n. ��

Pn

Pn−1

P2

↗↗

↘↘↗↗

↗↗ ↘↘

↘↘

Q2

Qn−1

Qn
(a) (b)

Fig. 1. Construction of (a) Qn and (b) Rn

Lemmas 4 and 5 provide the lower bounds that match the upper bounds given
by Lemmas 2 and 3. Finally, the following theorem shows that the bound in
Theorem 1 is tight as well.

Theorem 2. For all n > 1 there exists a sequence Rn of 1
12n

2(n2 − 1) pairs of
integers that has no unimaximal subsequence of length n.

Proof. The proof is very similar to the proof of the previous lemma.
Let Qi, i = 2, . . . , n be the sequences from the previous lemma. Let Q′

i =
Qi + mi. The shifts mi are selected such that for all 2 ≤ i < j ≤ n the pairs
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from Q′
i have to pairs in Q′

j ↘↘-relations. Finally, let Rn be a concatenation of
the sequences Q′

2, . . . , Q
′
n.

The length of Rn is
∑n

i=2
1
6 (i− 1)i(2i− 1) = 1

12n
2(n2 − 1).

Let U be a unimaximal subsequence of Rn and k be the minimal index such
that U contains a pair (x, y) from Q′

k. (x, y) has a ↘↘-relation to each pair from
Q′

l, l > k. If (xi, yi) and (xj , yj), i < j are two pairs from a fixed Q′
l, l > k then

they cannot be both in U because the triple (x, y), (xi, yi), (xj , yj) is unimaximal
only if (xi, yi) has a ↘↘-relation to (xj , yj), but this cannot happen due to the
definition of Q′

l.
Therefore U contains at most one pair from each Q′

l, l > k and at most
k − 1 pairs from Q′

k (Q′
k has no unimaximal subsequence of length k). Hence

|U | ≤ (n − k) + (k − 1) = n − 1 and Rn has no unimaximal subsequence of
length n. ��

4 Application in 3D Rectangle Visibility Graphs

Fekete et al. [1] showed that every 3D rectangle visibility representation can be
described using integer 4-tuples that denote perpendicular distances of sides of
individual rectangles to the origin. They also proved the following lemma.

Lemma 6. In a representation of K5 by five rectangles ((ei, ni, wi, si))5i=1, it is
impossible that both sequences (ni)5i=1 and (si)5i=1 are unimaximal.

Lemma 6 and Theorem 1 allow us to improve the best known upper bound on the
size of the largest complete graph with a 3D rectangle visibility representation.

Theorem 3. No complete graph Kn has a 3D rectangle visibility representation
for n ≥ 51.

Proof. Let’s assume we have a representation of Kn with n ≥ 51 rectangles
(ei, ni, wi, si). Theorem 1 implies that the sequence ((ni, si))51i=1 has a unimax-
imal subsequence (n′

i, s
′
i)i of length 5. Remove the rectangles not associated

with the subsequence. The five remaining rectangles represent K5, but this con-
tradicts the previous lemma because both sequences (n′

i)
5
i=1 and (s′i)

5
i=1 are

unimaximal. ��

5 Conclusion

We show that every sequence of 1
12n

2(n2 − 1) + 1 pairs of integers has a uni-
maximal subsequence of length n. On the other hand, there are sequences of
1
12n

2(n2 − 1) pairs that do not contain such a sequence.
The analysis of unimaximal sequences of pairs allows us to improve the best

known upper bound on the size of the largest complete graph with a 3D rectangle
visibility representation from 55 to 50. The original bound by Fekete el al. [1] is
also based on the study of unimaximal subsequences in the sequences of rectangle
coordinates but they consider each coordinate independently. It remains an open
problem how to analyze all four coordinates together to obtain a better bound.
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4. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2,
463–470 (1935)
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Graphs with Near Optimal Heights
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Abstract. A visibility representation of a graph G is to represent the nodes of G
with non-overlapping horizontal line segments such that the line segments repre-
senting any two distinct adjacent nodes are vertically visible to each other. If G is
a plane graph, i.e., a planar graph equipped with a planar embedding, a visibility
representation of G has the additional requirement of reflecting the given planar
embedding of G. For the case that G is an n-node four-connected plane graph,
we give an O(n)-time algorithm to produce a visibility representation of G with

height at most
⌈

n
2

⌉
+ 2

⌈√
n−2

2

⌉
. To ensure that the first-order term of the up-

per bound is optimal, we also show an n-node four-connected plane graph G, for
infinite number of n, whose visibility representations require heights at least n

2 .

1 Introduction

Unless clearly specified otherwise, all graphs in the present article are simple, i.e., hav-
ing no self-loops and multiple edges. A visibility representation of a planar graph rep-
resents the nodes of the graph by non-overlapping horizontal line segments such that,
for any nodes u and v adjacent in the graph, the line segments representing u and v are
vertically visible to each other. Observe that if G1 is a subgraph of G2 on the save node
set, then any visibility representation of G2 is also a visibility representation of G1.
Therefore, we may assume without loss of generality that the input graph is maximally
planar. Let G be an n-node plane triangulation, i.e., a maximally planar graph equipped
with a planar embedding. A visibility representation of G has an additional requirement
of reflecting the given planar embedding of G. Figure 1(b), for instance, is a visibility
representation of the four-connected plane graph shown in Fig. 1(a). Under the conven-
tional restriction of placing the endpoints of horizontal line segments on the integral grid
points, any visibility representation of G requires width no more than 3n−7 and height
no more than n − 1. Otten and van Wijk [7] gave the first known algorithm for con-
structing a visibility representation for any G. Rosenstiehl and Tarjan [8] and Tamassia

� Corresponding author. This author also holds a joint appointment in the Graduate Institute of
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Fig. 1. (a) A four-connected plane triangulation G. (b) A visibility representation of G.

and Tollis [9] independently gave algorithms to compute a visibility representation of G
with height at most 2n−5. Their work initiated a decade of competition on minimizing
the width and height of the output visibility representation. All these algorithms run in
linear time. In particular, the results of Fan, Lin, Lu, and Yen [2] and Zhang and He [16]
are optimal in that the upper bounds differ from the best known lower bounds by very
small constants.

The present article focuses on four-connected plane G. The O(n)-time algorithm
of Kant and He [5] provides the optimal upper bound n − 1 on the width. The best
previously known upper bound on the height, ensured by the O(n)-time algorithm of
Zhang and He [12], is

⌈ 3n
4

⌉
. In the present article, we obtain the following result with

an improved upper bound on the required height.

Theorem 1. For any n-node four-connected plane graph G, it takes O(n) time to con-

struct a visibility representation of G with height at most
⌈

n
2

⌉
+ 2

⌈√
n−2

2

⌉
.

Table 1 compares our upper bound with previous results. All algorithms shown in Ta-
ble 1 run in O(n) time. Our algorithm follows the approach of Zhang and He [10, 15–
17], originating from Rosenstiehl and Tarjan [8] and Tamassia and Tollis [9], that re-
duces the problem of computing a visibility representation for G with small height to
finding an appropriate st-ordering of G. To find such an st-ordering of G, we resort to
three linear-time obtainable node orderings:

– four-canonical orderings of four-connected plane graphs (Kant and He [5]),
– consistent orderings of ladder graphs (Zhang and He [15–17]), and
– post-orderings of canonical ordering spanning trees (He, Kao, and Lu [3]).

Our result is near optimal in that we can construct an n-node four-connected plane
graph, for infinite number of n, whose visibility representations require heights at least⌈

n
2

⌉
. That is, the first-order term of our upper bound is optimal.

The remainder of the paper is organized as follows. Section 2 gives the preliminaries.
Section 3 describes and analyzes our algorithm. Section 4 ensures that the first-order
term of our upper bound on height is optimal. Section 5 concludes the paper.
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Table 1. Previous upper bounds and our result for any n-node plane graph G

general G four-connected G

width height width height

Otten and van Wijk [7] 3n − 7 n − 1

Rosenstiehl and Tarjan [8],
Tamassia and Tollis [9]

2n − 5

Kant [4]
⌊ 3n−6

2

⌋

Kant and He [5] n − 1

Lin, Lu, and Sun [6]
⌊ 22n−24

15

⌋

Zhang and He [10]
⌈ 15n

16

⌉

Zhang and He [14]
⌊ 5n

6

⌋

Zhang and He [11, 13]
⌊ 13n−24

9

⌋

Zhang and He [12]
⌈ 3n

4

⌉

Zhang and He [15, 17] 4n
3 + 2 �

√
n� 2n

3 + 2
⌈√

n
2

⌉

Zhang and He [16] 2n
3 + O(1)

Fan, Lin, Lu, and Yen [2]
⌊ 4n

3

⌋
− 2

This paper
⌈

n
2

⌉
+ 2

⌈√
n−2

2

⌉

2 Preliminaries

2.1 Ordering and st-Ordering

Let G be an n-node plane graph. An ordering of G is a one-to-one mapping σ from the
nodes of G to {1, 2, . . . , n}. A path of G is σ-increasing if σ(u) < σ(v) holds for any
nodes u and v such that u precedes v in the path. Let length(G, σ) denote the maximum
of the lengths of all σ-increasing paths in G. For instance, if G and σ are as shown in
Fig. 1(a), then one can verify that (1, 2, 5, 6, 8) is a σ-increasing path with maximum
length. Therefore, length(G, σ) = 4.

Let s and t be two distinct external nodes ofG. An st-ordering [1] ofG is an ordering
σ of G such that

– σ(s) = 1, σ(t) = n, and
– each node v of G other than s and t has neighbors u and w in G with σ(u) <
σ(v) < σ(w).

An example is shown in Fig. 1(a): the node labels form an st-ordering for the graph.
The following lemma reduces the problem of minimizing the height of visibility rep-

resentation of G to that of finding an st-ordering σ of G with minimum length(G, σ).
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Lemma 1 (See [2, 8–10, 15, 17]). If G admits an st-ordering σ for two distinct external
nodes s and t of G, then it takes O(n) time to obtain a visibility representation of G
with height exactly length(G, σ).

For instance, if G and σ are as shown in Fig. 1(a), then a visibility representation for
G with height at most length(G, σ) = 4, as shown in Fig. 1(b), can be found in linear
time.

2.2 Four-Canonical Ordering

Let G be an n-node four-connected plane triangulation. Let v1, v2, and vn be the ex-
ternal nodes of G in counterclockwise order. Since G is a four-connected plane trian-
gulation, G has exactly one internal node adjacent to both v2 and vn. Let vn−1 be the
internal node adjacent to v2 and vn in G. A four-canonical ordering [5] of G is an
ordering φ in G such that

– φ(v1) = 1, φ(v2) = 2, φ(vn−1) = n− 1, φ(vn) = n, and
– each node v of G other than v1, v2, vn−1 and vn has neighbors u, u′, w and w′ in

G with φ(u′) < φ(u) < φ(v) < φ(w) < φ(w′).

An example is shown in Fig. 2(a): the node labels form a four-canonical ordering of the
four-connected plane triangulation.

Lemma 2 (Kant and He [5]). It takes O(n) time to compute a four-canonical ordering
for any n-node G.

2.3 Consistent Ordering of Ladder Graph

Let L be an
⌈

n
2

⌉
-node path. Let R be an

⌊
n
2

⌋
-node path. Let X consist of edges with

one endpoint in L and the other endpoint in R. Let (L,R,X) denote the n-node graph
L∪R∪X . We say that (L,R,X) is a ladder graph [15, 17] if L∪R∪X is outerplanar.
A ladder graph is shown in Fig. 3(a).

An ordering σ of ladder graph (L,R,X) is consistent [15, 17] with respect to an
outerplanar embedding E of (L,R,X) if L (respectively, R) forms a σ-increasing path
in clockwise (respectively, counterclockwise) order according to E . See Fig. 3(a) for an
example: The node labels form a consistent ordering of the ladder graph with respect to
the displayed outerplanar embedding.

Lemma 3 (He and Zhang [15, 17]). Let (L,R,X) be an n-node ladder graph. It
takes O(n) time to compute a consistent ordering σ of (L,R,X) with respect to any
given outerplanar embedding of (L,R,X) such that length((L,R,X), σ) ≤

⌈
n
2

⌉
+

2
⌈√

n
2

⌉
− 1.

For technical reason, we need a consistent ordering with additional properties, as stated
in the next lemma, which is also illustrated by Fig. 3(a).

Lemma 4. Let (L,R,X) be an n-node ladder graph. It takes O(n) time to compute a
consistent ordering σ of (L,R,X) with respect to any given outerplanar embedding E
of (L,R,X) such that
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Fig. 2. (a) A four-canonical ordering φ of the four-connected plane triangulation G. (b) GL is the
subgraph induced by the nodes v with 1 ≤ φ(v) ≤ 4 and GR is the subgraph induced by the
nodes v with 5 ≤ φ(v) ≤ 8. (c) The counterclockwise post-ordering ψL of TL and the clockwise
post-ordering ψR of TR.

– σ(1) = 1, σ(r1) = 2, and

– length((L,R,X), σ) ≤
⌈

n
2

⌉
+ 2

⌈√
n−2

2

⌉
,

where 1 (respectively, r1) is the first (respectively, last) node of L (respectively, R) in
clockwise order around the external boundary of (L,R,X) with respect to E .

Proof. Let L′ = L \ {1}. Let R′ = R \ {r1}. Let X ′ = X \ {1, r1}. Clearly,
(L′, R′, X ′) is a ladder graph of n − 2 nodes. Let σ′ be the consistent ordering of
(L′, R′, X ′) with respect to E ensured by Lemma 3. We have

length((L′, R′, X ′), σ′) ≤
⌈n

2

⌉
+ 2

⌈√
n− 2

2

⌉

− 2.

Let σ be the ordering of (L,R,X) such that
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Fig. 3. (a) A consistent ordering of a ladder graph (L, R, X) with respect to the displayed outer-
planar embedding. (b) H∗ = L ∪ R ∪ X∗, where X∗ = X ∪ {(v2, v8)}.

– σ(1) = 1, σ(r1) = 2, and
– σ(u) = σ′(u) + 2 holds for each node u other than 1 and r1.

One can easily verify that the lemma holds.

3 Our Algorithm

Let G be the input n-node four-connected plane triangulation. According to Lemma 1, it
suffices to describe our algorithm for computing an st-ordering σ for G in the following
four steps.

3.1 Step 1

Let φ be a four-canonical ordering of G ensured by Lemma 2.

– Let GL be the subgraph of G induced by the nodes v with 1 ≤ φ(v) ≤
⌈

n
2

⌉
.

– Let GR be the subgraph of G induced by the nodes v with
⌈

n
2

⌉
< φ(v) ≤ n.

Figure 2(b) illustrates this step, which runs in O(n) time. Observe that each edge of G
not in GL∪GR has one endpoint on the external boundary of GL and the other endpoint
on the external boundary of GR.

3.2 Step 2

For each i = 1, 2, . . . , n, let vi denote the node of G with φ(vi) = i. It follows from
the definition of φ that v1, v2, and vn are the external nodes of G.

– For each i = 2, 3, . . . ,
⌈

n
2

⌉
, let π(i) be the index j with j < i such that vj is the first

neighbor of vi in GL in counterclockwise order around vi. Let TL be the spanning
tree of GL rooted at v1 such that each vπ(i) is the parent of vi in TL. Let ψL be the
counterclockwise post-ordering of TL.
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– For each i =
⌈

n
2

⌉
+ 1,

⌈
n
2

⌉
+ 2, . . . , n− 1, let π(i) be the index j with j > i such

that vj is the first neighbor of vi in GR in clockwise order around vi. Let TR be the
spanning tree of GR rooted at vn such that each vπ(i) is the parent of vi in TR. Let
ψR be the clockwise post-ordering of TR.

Figure 2(c) illustrates this step, which runs in O(n) time. As a matter of fact, TL is the
canonical ordering spanning tree of GL with respect to φ, as defined by He, Kao, and
Lu [3].

Lemma 5. ψL(v2) = 1, ψL(v1) =
⌈

n
2

⌉
, ψR(vn−1) = 1, and ψR(vn) =

⌊
n
2

⌋
.

Proof. Since φ is a four-canonical ordering of G, if (v2, vi) with i ≥ 3 is an edge of
GL, then vi has to have a neighbor vk with 2 �= k < i in GL. Observe that v2 is the node
immediately succeeding v1 in counterclockwise order around the external boundary of
GL. One can verify that v2 cannot be the first neighbor of vi in GL in counterclockwise
order around vi. That is, we have π(i) �= 2. Since v2 cannot be the parent of vi in TL,
v2 has to be a leaf of TL. By the relative position between v2 and v1, it is clear that v2
is the first node in the counterclockwise post-ordering of TL, i.e., ψL(v2) = 1.

One can prove ψR(vn−1) = 1 analogously, where vn (respectively, vn−1, ψR, TR,
and GR) plays the role of v1 (respectively, v2, ψL, TL, and GL). Since v1 is the root of
TL and ψL is a post-ordering of TL, we have ψL(v1) =

⌈
n
2

⌉
. Since vn is the root of TR

and ψR is a post-ordering of TR, we have ψR(vn) =
⌊

n
2

⌋
.

3.3 Step 3

Let L, R, and X be defined as follows.

– Let L be the path
(
1, 2, . . . , �n/2�

)
, where i is the node of GL with ψL(i) = i.

– Let R be the path
(
r1, r2, . . . , r	n/2


)
, where ri is the node of GR with ψR(ri) = i.

– Let X = X∗ \ {(v2, vn)}, where X∗ consists of the edges of G with one endpoint
in L and the other endpoint in R.

Figure 3(a) illustrates Lemma 5 and this step, which runs in O(n) time. Figure 3(b)
shows the corresponding L ∪R ∪X∗.

Lemma 6. (L,R,X) is an n-node ladder graph.

Proof. Consider any edge (i, rj) of X . By definition of φ, i has to be on the exter-
nal boundary of GL and rj has to be on the external boundary of GR. By definition
of TL, i is either a leaf of TL or on the rightmost path of TL. By definition of ψL, if
i1 , i2 , . . . , ip with i1 = 1 are the nodes on the external boundary of GL in counter-
clockwise order, then i1 < i2 < · · · < ip. Similarly, by definition of TR, rj is either
a leaf of TR or on the leftmost path of TR. By definition of ψR, if rj1 , rj2 , . . . , rjq

with j1 = 1 are the nodes on the external boundary of GR in clockwise order, then
j1 < j2 < · · · < jq . Since G is a plane graph and the edges of X do not cross one an-
other in G, the edges of X do not cross one another in (L,R,X). Therefore, (L,R,X)
is outerplanar.
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3.4 Step 4

Let H = (L,R,X). Lemma 6 ensures that H is an n-node ladder graph. Consider the
outerplanar embedding E of H such that

1, 2, . . . , �n/2�, r	n/2
, r	n/2
−1, . . . , r1

are the nodes in clockwise order around the external boundary of H . Let the output σ of
our algorithm be the consistent ordering of H with respect to E ensured by Lemma 4.
Figure 3(a) illustrates this step, which also runs in O(n) time.

Lemma 7. The O(n)-time obtainable σ is an st-ordering of G with σ(v2) = 1 and
max(σ(v1), σ(vn)) = n.

Proof. We first show that ψL is an st-ordering of GL. Let i be an index with 2 ≤
i <

⌈
n
2

⌉
. Let k be the index such that k is the parent of i in TL. Since ψL is a post-

ordering of TL, we know that k is a neighbor of i in GL with i < k. Let j be the index
such that j is the neighbor of i in GL immediately succeeding k in counterclockwise
order around i. Recall that k is the first neighbor of i in GL with φ(k) < φ(i)
in counterclockwise order around i. Since φ is a four-canonical ordering of G, we
also have φ(j) < φ(i). Since ψL is the counterclockwise post-ordering of TL, we
have ψ(j) < ψ(i), i.e., j < i. Since j and k are two neighbors of i in GL with
j < i < k, we know that ψL is an st-ordering of GL. It can be proved analogously that
ψR is an st-ordering of GR.

Since σ is a consistent ordering of H with respect to E , we know that 1 ≤ i < j ≤⌈
n
2

⌉
implies σ(i) < σ(j) and 1 ≤ i < j ≤

⌊
n
2

⌋
implies σ(ri) < σ(rj). We have the

following observations.

– Since ψL is an st-ordering of GL, for each i = 1, . . . ,
⌈

n
2

⌉
− 1, i has a neighbor

k in GL with i < k. Since GL is a subgraph of G, k is a neighbor of i in G with
σ(i) < σ(k).

– Since ψL is an st-ordering of GL, for each i = 2, . . . ,
⌈

n
2

⌉
, i has a neighbor j in

GL with j < i. Since GL is a subgraph of G, we know that j is a neighbor of i in
G with σ(j) < σ(i).

– Since ψR is an st-ordering of GR, for each i = 1, . . . ,
⌊

n
2

⌋
− 1, ri has a neighbor

rk in GR with i < k. Since GR is a subgraph of G, we know that rk is a neighbor
of ri in G with σ(ri) < σ(rk).

– Since ψR is an st-ordering of GR, for each i = 2, . . . ,
⌊

n
2

⌋
, ri has a neighbor rj in

GR with j < i. Since GR is a subgraph of G, we know that rj is a neighbor of ri

in G with σ(rj) < σ(ri).

According to the above observations, it suffices to ensure that edges (1, r1) and
(�n/2�, r	n/2
) belong to G. By Lemma 5, 1 = v2, r1 = vn−1, �n/2� = v1, and
r	n/2
 = vn. Since v1 and vn are external nodes of the plane triangulation G, we know
that (�n/2�, r	n/2
) = (v1, vn) is an edge of G. By definition of four-canonical order-
ing φ, we know that vn−1 is adjacent to v2. Therefore, (1, r1) = (v2, vn−1) is an edge
of G.

Figure 1(a) shows the resulting st-ordering σ of G computed by our algorithm.
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3.5 Proving Theorem 1

Proof. Note that v1, v2, and vn are the external nodes of G. By Lemmas 1 and 7, it
suffices to ensure

length(G, σ) ≤
⌈n

2

⌉
+ 2

⌈√
n− 2

2

⌉

. (1)

By Step 4 and Lemmas 4 and 6, we have

length(H,σ) ≤
⌈n

2

⌉
+ 2

⌈√
n− 2

2

⌉

. (2)

Let H∗ = L∪R∪X∗. That is, H∗ = H∪{(v2, vn)}, as illustrated by Fig. 3(a) and 3(b).
By definition of σ and Lemma 5, we have σ(v2) = 1 and σ(vn) ≥ maxj σ(rj). There-
fore, any σ-increasing path of H∗ containing edge (v2, vn) contains exactly one node
of R, i.e., vn, and thus has length at most

⌈
n
2

⌉
. It follows from Inequality (2) that

length(H∗, σ) ≤
⌈n

2

⌉
+ 2

⌈√
n− 2

2

⌉

. (3)

To prove Inequality (1), it remains to show that if P is a σ-increasing path of G, then
there is a σ-increasing path Q of H∗ such that the length of Q is no less than that of P .
For each edge (u, v) of P with σ(u) < σ(v), let Q(u, v) be the σ-increasing path of
H∗ defined as follows.

– If u = i and v = rj , then let Q(u, v) = (u, v), which is a σ-increasing path
of X∗.

– If u = ri and v = j , then let Q(u, v) = (u, v), which is a σ-increasing path
of X∗.

– If u = i and v = j , then by σ(i) < σ(j) we know ψL(i) < ψL(j) and thus
i < j. Let Q(u, v) = (i, i+1, . . . , j). Since σ is a consistent ordering of H with
respect to E , Q(u, v) is a σ-increasing path of L.

– If u = ri and v = rj , then by σ(ri) < σ(rj) we know ψR(ri) < ψR(rj) and thus
i < j. Let Q(u, v) = (ri, ri+1, . . . , rj). Since σ is a consistent ordering of H with
respect to E , Q(u, v) is a σ-increasing path of R.

Let Q be the union of Q(u, v) for all edges (u, v) of P . Since each Q(u, v) is a σ-
increasing path of H∗, so is Q. The length of Q is no less than that of P . That is, we
have

length(G, σ) ≤ length(H∗, σ). (4)

Since Inequality (1) is immediate from Inequalities (3) and (4), the lemma is proved.

4 A Lower Bound

Let plane graph Nk be defined recursively as follows.

– LetN1 be the four-node internally triangulated plane graph with four external nodes.
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(b)

(a)

Dk

Nk+1

Nk

Dk+1

Fig. 4. (a) A four-connected plane graph Nk+1 and its relation with Nk . (b) A visibility represen-
tation Dk+1 of Nk+1 and its relation with Dk .

– Let Nk+1 be obtained from Nk by adding four nodes and twelve edges in the way
as shown in Fig. 4(a).

One can easily verify that each Nk with k ≥ 1 is indeed four-connected. The following
lemma ensures that the the upper bound provided by Theorem 1 has an optimal first-
order term.

Lemma 8. All visibility representations of Nk have heights at least 2k.

Proof. We prove the lemma by induction on k. The lemma holds trivially for k = 1. As-
sume for a contradiction that Nk+1 admits a visibility representation Dk+1 with height
no more than 2k + 1. Let Dk be obtained from Dk+1 by deleting all the horizontal
segments representing those four external nodes of Nk+1. Since Dk+1 has to reflect the
planar embedding of Nk+1, Dk is a visibility representation of Nk. Since the external
nodes of Nk are internal in Nk+1, the horizontal segments of Dk+1 representing the
external nodes of Nk+1 have to wrap Dk completely. That is, Dk+1 must have a hori-
zontal segment above Dk and a horizontal segment below Dk. Therefore, the height of
Dk+1 is at least two more than that of Dk. It follows that the height of Dk is at most
2k − 1, contradicting the inductive hypothesis. Since Nk+1 cannot admit a visibility
representation with height less than 2k + 2, the lemma is proved.
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5 Concluding Remarks

It would be of interest to close the Θ(
√
n) gap between the upper and lower bounds on

the required height for the visibility representation of any n-node four-connected plane
graph. We conjecture that the Θ(

√
n) term in our upper bound can be reduced to O(1).
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The Topology of Bendless Three-Dimensional
Orthogonal Graph Drawing

David Eppstein
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Abstract. We define an xyz graph to be a spatial embedding of a 3-regular graph
such that the edges at each vertex are mutually perpendicular and no three points
lie on an axis-parallel line. We describe an equivalence between xyz graphs and
3-face-colored polyhedral maps, under which bipartiteness of the graph is equiv-
alent to orientability of the map. We show that planar graphs are xyz graphs if
and only if they are bipartite, cubic, and three-connected. It is NP-complete to
recognize xyz graphs, but we show how to do this in time O(n2n/2).

1 Introduction

Consider a point set V in R3 (such as the vertices of an axis-aligned cube) with the
property that every axis-parallel line in R3 contains either zero or two points of V .
V forms the vertices of a cubic (that is, 3-regular) graph, in which each vertex v is
connected to the other points that lie on the three axis-parallel lines through v. We call
such a graph an xyz graph. Figure 1 depicts three examples.

Fig. 1. Three xyz graphs

In contrast to past work on three-dimensional orthogonal drawing with bends [2,3,6,
8, 9, 15, 18, 19, 20], an xyz graph provides a simple form of bendless three-dimensional
orthogonal drawing. In xyz graphs, edges may cross, but edge crossings may be distin-
guished visually from vertices by whether the edges stop or pass through them.

In three-dimensional layout of parallel processing intercommunication networks [5],
xyz graphs provide a layout in which all connected pairs of processors have an open
line of sight between each other. As we show, even-dimensional cube-connected-cycles
networks, highly regular graphs used in parallel processing [16], have xyz graph layouts.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 78–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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These graphs also have an unexpected connection to topological graph theory and
graph coloring: any xyz graph corresponds to a three-coloring of the faces of an embed-
ding of a graph on a 2-manifold. Such face-colored embeddings arise naturally from the
GEM (graph-embedded map) representation of manifold embeddings of graphs [4].

In this paper, we prove an equivalence between xyz graphs and certain 3-face-colored
cell complexes, which we call xyz surfaces. As we show, an xyz graph is bipartite if and
only if the corresponding xyz surface is orientable. We show that it is NP-complete to
recognize xyz graphs, and we show how to find xyz graph embeddings in time O(n2n/2);
however, planar xyz graphs may be recognized in linear time. Due to space consider-
ations we omit many results, details and proofs; we invite readers to find these in the
longer version of this paper at http://arxiv.org/abs/0709.4087.

2 Topology of xyz Graphs

If C is a collection of cycles in an undirected graph G, we may define a cell complex
with a point for each vertex, a line segment for each edge, and a disk for each cycle. For
instance, if G is the graph of a cube, and C is the set of four-cycles in G, the resulting
cell complex consists of the vertices, edges, and facets of a geometric cube. However,
complexes may be defined independently of any spatial embedding. If the following
conditions are satisfied, the cell complex is a 2-manifold (without boundary) or map:

1. Each edge of G belongs to exactly two cycles of C.
2. At each vertex v of G, one can reach any incident edge from any other incident edge

by a chain of edge-face-edge steps in which each edge and face is incident to v.

Cubic graphs automatically satisfy the second condition. The complex defined from G
and C is an embedding of G onto a manifold, and the cycles of C are its faces. We define
an xyz surface to be an embedding of a cubic graph G with the following properties:

1. Any two faces intersect in either a single edge of G or the empty set.
2. The faces of C can be assigned three colors such that no two faces sharing an edge

have the same color.

An embedded graph satisfying the first property is called polyhedral [14]. Polyhedral
embeddings of non-cubic graphs may include faces that intersect in a single vertex, but

Fig. 2. Three xyz surfaces, each with the topology of the torus. In each case, the torus is depicted
as cut and unrolled into a rectangle; the corresponding topological surface is formed by gluing
opposite pairs of rectangle edges.
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this cannot happen in a cubic graph. Craft and White [7] study a similar 3-coloring
condition on orientable cubic maps without the polyhedral condition.

Theorem 1. G is an xyz graph if and only if G can be embedded as an xyz surface.

Proof. Let G be an xyz graph, and let C consist of the cycles in G that lie in an axis-
parallel plane. Each edge of G belongs to two such cycles, so, C forms an embedding of
G onto a manifold. The cycles of C can be colored according to the coordinate planes
they are parallel to. The cycles of G in any single coordinate plane are disjoint, so if
two cycles intersect, the intersection must lie on the axis-parallel line formed by the
intersection of the two planes containing the cycles, and consists of the edge of G that
lies on that same line, fulfilling the requirements of an xyz surface.

Conversely, suppose that G is embedded as an xyz surface, with cycle set C. Let X ,
Y , and Z be the three color classes of C, and let the faces in C be numbered f0, f1, . . ..
Each vertex v in G is incident to exactly three faces: fi in X , f j in Y , and fk in Z for
some i, j,k. We assign v the three-dimensional coordinates (i, j,k). If two vertices u and
v are adjacent, they share the two coordinates determined by the two faces containing
edge uv, and lie on an axis-parallel line of the embedding of G into R3. If two vertices
are not adjacent, they can lie on at most one face of C and therefore have at most one
coordinate in common. Thus, the three axis-parallel lines through each embedded vertex
v each contain only v and one of its neighbors so the embedding forms an xyz graph. ��

The three xyz graphs in Fig. 1 correspond to xyz surfaces that are (left to right) a projec-
tive plane resembling the Roman surface, a spherical map combinatorially equivalent
to a polyhedron with three hexagonal facets and six quadrilaterals, and an embedding
of the Pappus graph on a torus. Figure 2 depicts three xyz surfaces, all tori. The left-
most is the Pappus graph again, the middle surface has 12 faces, 24 vertices, and 36
edges, and the right surface is a torus embedding of the 64-vertex four-dimensional
cube-connected cycles network.

Theorem 1 can be used to embed any xyz graph into an n
4 ×

n
4 ×

n
4 grid: Each face of

an xyz graph must have even length, at least four, because it alternates between edges
parallel to two coordinate axes. Thus, any color class of an xyz surface coloring has at
most n/4 faces: each vertex belongs to one face of that color, but each face contains
at least four vertices. Each face provides a value for one of the coordinates in the grid
embedding, so the number of distinct values for each coordinate is at most n/4. How-
ever this bound is tight only for the cube: any other xyz surface has a face with more
than four vertices, and a color class with fewer than n/4 faces, leading to an embedding
with fewer than n/4 distinct values in one of the coordinates. For many graphs, per-
muting the coordinates forms multiple xyz graph embeddings that differ geometrically,
although they are combinatorially and topologically equivalent, and smaller grids may
sometimes be obtained by using equal coordinate values for multiple faces of the same
color. We do not consider problems of choosing coordinate values in order to improve
the graph drawing in this paper, but such problems are a natural subject for future work.

As we show in the full version, every xyz graph is triangle-free and 3-vertex-connec-
ted. We conclude this section with an interesting connection between bipartiteness and
topology. An orientation of a map can be described as a choice of cyclic order on each
face of the map such that the two face cycles shared by any edge pass through it in
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opposite directions. A surface is orientable if graphs embedded on it may be oriented;
the sphere and torus are orientable, while the projective plane is not.

Theorem 2. Let G be a graph embedded onto an xyz surface. Then G is bipartite if and
only if the surface is orientable.

We omit the proof. 2-manifolds may be classified by their orientability and their Euler
characteristic |V |− |E|+ |C|, so by Theorem 2 one may determine the topology of any
xyz surface by counting faces and testing bipartiteness.

3 Algorithms for xyz Embedding

As we now show, there exist efficient algorithms to determine whether an embedded
surface is an xyz surface, or whether a partition of the edges of a graph into three perfect
matchings can be used as the three parallel classes of edges in an xyz graph. However,
it is not so easy to find an xyz graph representation for an initially unlabeled graph.

Theorem 3. Let G be a connected undirected n-vertex graph, and let C be a collection
of cycles in G. Then in time O(n) we may determine whether C is the set of cycles of an
xyz surface embedding of G, and if so construct an xyz graph representation of G.

Proof. We first check that G is cubic and that C covers each edge of G twice. Next,
we assign arbitrary index numbers to the cycles in C. Each edge has an associated pair
of index numbers, which we order lexicographically. We sort the edges of G accord-
ing to this lexicographic ordering by two passes of bucket sorting and verify that each
consecutive pair of edges in the sorted order has a different pair of faces.

To test 3-colorability of the cycles in C, we store a set of the available colors for each
cycle (initially, all three colors for each cycle) and a list L of cycles that have only one
remaining color. When we color a cycle we remove that color from the available colors
of all cycles that share an edge with it, and update L whenever that removal causes
an adjacent cycle to have only one remaining available color. We begin by choosing
arbitrarily two cycles that share an edge, and assigning arbitrarily two different colors
to those two cycles. Then, while L remains nonempty, we remove a cycle from L, and
assign it the one color that is available to it.

If this process terminates with a 3-coloring of all faces in C, we have found an xyz
surface representation for G. Conversely, suppose that G has an xyz surface represen-
tation: we argue that this process will necessarily find a correct 3-coloring of all faces.
To show this, permute the colors of the representation if necessary so that they match
the colors chosen for the two faces at the start of the algorithm. Every color choice
subsequent to that is forced, so the algorithm can neither choose an incorrect color for a
face nor eliminate the correct color for any face; the only way it could fail to 3-color all
faces would be to terminate with L empty before coloring all faces. But if f is any face
of C, let p be any path connecting a vertex of the shared edge of the first two colored
faces with any vertex of f . At any stage in the algorithm until f has been colored, let v
be the vertex of p that is closest along the path to the first two colored faces, and that is
incident to an uncolored face f ′; then the two differently-colored neighboring faces of
f ′ at v would force f ′ to belong to L. Thus, L cannot be empty until f is colored, and
the algorithm cannot until all faces are colored. ��



82 D. Eppstein

Corollary 1. Let G be a connected undirected n-vertex graph, and let E1, E2, E3 be a
partition of the edges of G into three matchings. Then in time O(n) we may determine
whether there is an xyz graph representation of G in which Ei is the set of edges parallel
to the ith coordinate axis.

Proof. For each pair Ei and E j, Ei∪E j is a disjoint union of cycles; we let C be the set
of cycles formed in this way for all three pairs of matchings, and apply Theorem 3. ��

Lemma 1. Let G be a biconnected cubic graph. Then there are at most 2(n−2)/2 parti-
tions of the edges of G into three perfect matchings, and these partitions may be listed
in time O(2n/2).

Proof. We compute an st-numbering of G [12]; that is, an ordering of the vertices of
G in which each vertex, except for the ones at the start and the end of the sequence,
has a neighbor that occurs earlier in the sequence and a neighbor that occurs later in
the sequence. We define a split vertex to be one with one previous neighbor and two
later neighbors, and a merge vertex to be one with two previous neighbors and one later
neighbor. If there are k split vertices there would be 3 + 2k +(n− k− 2) edges, as the
first vertex in the st-numbering is the earlier endpoint of three edges, the split vertices
are each the earlier endpoint of two edges, the n− k− 2 merge vertices are each the
earlier endpoint of only one edge, and the final vertex in the st-numbering is the earlier
endpoint of no edges. Observing that the graph has 3n/2 edges total and solving for k,
we find that there must be exactly (n−2)/2 split vertices.

To list all partitions, we then perform a backtracking algorithm in which we assign
the edges to partitions in order by their earlier endpoints in the st-numbering; once we
make an assignment for an edge e we recursively list all partitions for edges occurring
later in this ordering before backtracking and trying an alternative assignment for e (if
an alternative exists). If this backtracking process ever reaches a contradictory state in
which no possible assignment is available from an edge, it backtracks without recursing.

At the initial vertex of the st-numbering, the backtracking algorithm has no choices
to make: it can partition the incident edges into three disjoint subsets in only one way.
At the final vertex, there is again no choice to make, because all incident edges must
already have been partitioned. And at each merge vertex, there is no choice to make,
because there are two incident edges which must already have been placed into two sets
of the partition, and the third incident edge can only go in the third set of the partition.
Thus, the only branch points of this backtracking algorithm are the split vertices, at
which the two edges for which the vertex is the earlier endpoint must be assigned to the
two remaining partition sets, in either of two different ways.

Since the algorithm makes a binary choice at each of (n−2)/2 levels of its recursion,
its total time is O(2n/2). The number of partitions listed is at most the number of leaves
in a binary tree of height (n−2)/2, which is 2(n−2)/2. ��

Greg Kuperberg (personal communication) has pointed out that the prisms over n/2-
gons form biconnected cubic graphs with Ω(2n/2) partitions into three perfect match-
ings, showing that this bound is tight to within a constant factor.

Theorem 4. We can test whether a given unlabeled graph is an xyz graph, and if so
find an xyz graph representation of it, in time O(n2n/2).
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Proof. We list all partitions into matchings using Lemma 1, and test whether any of
them can be used to define an xyz graph representation using Corollary 1. ��

An implementation of our algorithms for listing all partitions of a cubic graph into
perfect matchings and for testing whether a given graph is an xyz graph is available
online at http://www.ics.uci.edu/∼eppstein/PADS/xyzGraph.py.

4 Cayley and Symmetric Graphs

A Cayley graph is a graph having as its vertices the members of a finite group, and its
edges determined by a subset of generators for that group; there is an edge from g to gs
whenever g is a group element and s is one of the chosen generators. For instance, the
cube-connected cycles network CCCn, of importance in parallel processing [16], is a
Cayley graph for the group of operations on n-bit binary words generated by single-bit
rotations of the word and flips of the first bit of the word [1]. The cube-connected cycles
of order three cannot be an xyz graph, as it is not triangle-free, but we have already seen
(Fig. 2, right) that the cube-connected cycles of order four is an xyz graph.

Theorem 5. Let n be any even number greater than or equal to four. Then the cube-
connected cycles network CCCn is an xyz graph.

We omit the proof. We have not determined whether the cube-connected cycles of odd
order greater than three may be an xyz graph.

Another important cubic Cayley graph is that of the symmetric group of permutations
on four elements, generated by transpositions of adjacent elements. This graph forms
the skeleton permutohedron, the convex hull of the 24 permutations of (1,2,3,4) in the
three-dimensional subspace x + y + z + w = 10 of R4 [13]. Moving each permutation
to the position of its inverse causes the edges to fall into three parallel classes, and if
we then transform the drawing affinely so that these three classes are perpendicular, the
result is an xyz graph. Figure 3 shows the permutohedron, the resulting xyz drawing, and
another xyz drawing in which we have permuted the coordinate values manually to re-
duce the number of crossings. A different Cayley graph for the same symmetric group,
generated by the permutations (12)(3)(4), (13)(2)(4), and (14)(2)(3), is the 24-vertex
symmetric graph shown in Fig. 5. Higher dimensional permutohedra have too many
edges per vertex to be xyz graphs, but a different Cayley graph for the symmetric group
Sn, generated by a permutation that swaps the first two elements and another permuta-
tion that rotates all but the first element, is an xyz graph whenever n is an odd number
greater than three. For n = 5 this graph forms the skeleton of a uniform polyhedron, the
truncated dodecadodecahedron (Fig. 4), which has 30 square faces, 12 decagonal faces,
and 12 star-shaped faces with ten vertices per face, interpenetrating each other to form a
complex surface. The 3-face-coloring by which the truncated dodecadodecahedron can
be recognized as an xyz surface coincides with the partition of its faces into different
shapes.

Next, consider the points (x,y,z) in the k×k×k grid for which x+y+z is 0 or 1 (mod
k). They form an xyz graph that is symmetric: that is, its symmetries act transitively
on incident vertex-edge pairs. For k = 3 this produces the Pappus graph. The graph
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Fig. 3. The permutohedron (left) and two xyz drawings of the corresponding Cayley graph (cen-
ter and right). The center drawing is formed by connecting pairs of permutohedron vertices that
differ by swapping consecutive coordinates and affinely transforming so that the edges are per-
pendicular; the right drawing permutes the values of each coordinate to realize the Cayley graph
as the skeleton of an orthogonal polyhedron.

F32 shown on the left of Fig. 5 is the Dyck graph, a 32-vertex symmetric cubic graph
embedded by the same construction with k = 4. (Here Fn refers to the unique n-vertex
cubic symmetric graph as listed in the Foster census [17].) Visible near the equatorial
plane of the Dyck graph drawing are a number of six-vertex cycles that are not faces
of the corresponding xyz surface (they use edges parallel to all three coordinate axes,
while the surface faces are restricted to axis-parallel planes); this pattern persists for
larger k, and if one analogously forms an infinite xyz graph from the points in a three-
dimensional grid with coordinates summing to 0 or 1, the result is isomorphic as a graph
to the hexagonal tiling of the plane [11].

A different construction for cubic symmetric xyz graphs is possible, based on the
infinite tiling of the plane by regular hexagons. Three-color the hexagons of this tiling,
choose a rhombus with angles of π/3 and 2π/3, having its vertices at the centers of tiles
that are all the same color, and form a torus by gluing opposite sides of this rhombus
together. The result, as shown in Fig. 5, center, is an xyz surface. The graph embedded
on this surface is symmetric, because we can transform any incident vertex-edge pair
into any other such pair by a combination of translations and rotations by an angle
of π/3. When n = 18q2 for some q, one can form an n-vertex symmetric graph using
both of the constructions above, either by forming a torus from a rhombus containing
n/2 hexagons, with sides parallel to the edges of the hexagonal tiling, or by using the
points congruent to 0 or 1 in a 3q× 3q× 3q grid. Both graphs formed in this way
are isomorphic, but (except for k = 1) the xyz graph embeddings resulting from these
constructions are inequivalent: the xyz surface resulting from the k×k×k grid has fewer
faces with more vertices per face. For instance the 72-vertex cubic symmetric graph F72

forms an xyz surface with 18 12-vertex faces (a 6×6×6 grid) or with 36 6-vertex faces
(a rhombus containing 36 hexagons).

Figure 5, right, shows another cubic symmetric graph, F40, that does not fit into
either of these constructions. F40 is the double cover of the regular dodecahedron; that
is, it is the bipartite graph formed by making two copies of each dodecahedron vertex,
colored black and white, and connecting the white copy of each vertex to the black
copy of each of its neighbors. Its xyz graph representation has faces of three types: two
decagons formed as the double covers of a pair of opposite dodecahedron faces, two
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Fig. 4. The truncated dodecadodecahedron, from Wikimedia Commons, originally uploaded to
Wikipedia by Tom Ruen in October 2005 and created using Robert Webb’s Great Stella software
(http://www.software3d.com/Stella.html). The vertices and edges of this shape form a Cayley
graph for the symmetric group S5, with generators (12)(3)(4)(5) and (1)(2345); the faces in the
figure are 3-colored, giving an xyz surface representation of the graph.

F18

F24
F42

F54

Fig. 5. Left and right: the Dyck graph F32 and the double cover of the dodecahedron F40, two
cubic symmetric graphs drawn as xyz graphs. Center: Construction of cubic xyz surfaces as toric
quotients of the three-colored hexagonal tiling.

more decagons formed from the double cover of the equator between those two faces,
and ten octagons formed as the boundary of a pair of adjacent dodecahedron faces that
lie on opposite sides of the equator. There are six ways of choosing two opposite faces
from which the decagons are formed, and once that choice is made there remain two
ways of choosing the octagons to form an xyz surface, so F40, viewed as a labeled graph,
has 12 combinatorially distinct xyz surface representations.

We applied our implementation of an xyz graph embedding algorithm to the Foster
census of symmetric cubic graphs [17] and did not find any other xyz graphs of this type
on 56 or fewer vertices.

5 Planar and Nonplanar Graphs

We may exactly characterize the planar xyz graphs.
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Fig. 6. An embedding of K3,3 in the projective plane with one hexagonal face and three quadri-
lateral faces (left) and a GEM representation of the embedding (right). From [10].

Theorem 6. Let G be a planar graph. Then G is an xyz graph if and only if G is bipar-
tite, cubic, and 3-connected. If it is an xyz graph it has a unique representation as an
xyz surface, up to permutation of the face colors of the surface.

Corollary 2. We may test in linear time whether a planar graph G is an xyz graph.

The xyz graph formed from the points (x,y,z) in the k× k× k grid for which x + y + z
is 0 or 1 (mod k) has 2k2 vertices and 3k2 edges but only 3k faces (one per axis-aligned
plane) so its Euler characteristic is 3k− k2. If G and G′ are xyz graphs, with designated
vertices v and v′, we may form the connected sum of G and G′ by aligning the two
graphs in R3 so that v and v′ coincide (and so that no pairs of vertices, one from G and
one from G′, lie on an axis-parallel line unless both vertices in the pair are adjacent to
v and v′) and then by removing v and v′, leaving in their place a non-vertex point where
the lines through three edges cross. The 14-vertex planar graph in the center of Fig. 1
can be viewed in this way as a connected sum of two cubes. In terms of xyz surfaces,
the connected sum operation can be viewed as cutting the two surfaces by a small disk
surrounding each of v and v′, and gluing the three faces surrounding this hole on one
surface to the faces of corresponding colors surrounding the hole on the other surface,
to form a handle connecting the two surfaces. By forming connected sums of tori and
projective planes (the xyz graphs on the left and right of Fig. 1 respectively), we may
form xyz surfaces of any topological type.

An alternative construction allows arbitrary surfaces to be represented as xyz sur-
faces: the graph encoded map (GEM, Fig. 6) [4, 10]. Let G be any graph embedded
on a 2-manifold in such a way that each face of the embedding is a topological disk
bounded by a simple cycle of G. A flag of this embedding is a triple of a vertex, edge,
and face that are all incident to each other, and the graph encoded map M of this em-
bedding is a 3-edge-colored cubic graph, having a vertex for each flag of the embedding
of G. Two vertices of M are adjacent if the corresponding two flags differ only in a ver-
tex, differ only in an edge, or differ only in a face; the edge coloring of M determines
which type of difference each edge of M represents. M itself can be embedded on the
same surface, with a 2k-cycle for each vertex of degree k in G or each face in G that
is surrounded by k edges, and a 4-cycle for each edge of G. These cycles form an xyz
surface, in which the color of a face in the GEM is determined by whether it represents
a vertex, face, or edge in G, so M is an xyz graph.
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Fig. 7. A graph that can be embedded on the torus as an xyz surface in two different ways

The 32-vertex graph shown in Fig. 7 has two different torus embeddings, showing
that the uniqueness of xyz surface representations for planar graphs does not directly
generalize to other surfaces. The colored region of the figure shows a rectangle that can
be glued to itself in a brick wall pattern to form a torus; vertices are repeated outside
the colored rectangle to show the graph edges that cross the glued rectangle boundaries.
This ambiguously-embeddable graph plays a key role in our NP-completeness proof in
Sect. 6.

6 Complexity of xyz Graph Recognition

We show that recognizing xyz graphs is NP-complete, via a reduction from graph 3-
colorability, using pieces of surfaces to represent the vertices to be 3-colored and the
edges that connect them; these pieces are linked together using connected sum opera-
tions. The edge gadget is based on two copies of the graph of Fig. 7 connected to each
other and the vertex gadgets by narrow tubes. We represent the choice of a color for a
vertex by the choice of which coordinate axis to make parallel to certain edges of the
vertex gadget. We omit the details for lack of space.

Theorem 7. It is NP-complete, given an undirected graph G, to determine whether G
can be represented as an xyz graph.

7 Conclusions

We have studied examples, algorithms, topology, and complexity of xyz graph drawing.
Our investigation opens up several avenues for further research:

– In our construction of an xyz graph from an xyz surface, we may permute the coordi-
nate values associated with each face, giving drawings with different appearances
for a single xyz surface representation (Fig. 3). How difficult is it, given an xyz
surface, to find a permutation of coordinate values that minimizes the number of
crossings?

– In some cases it may be possible to reduce the volume of the grid into which an xyz
graph is embedded by allowing multiple faces of an xyz surface to share the same
coordinate value. How difficult is it to find the minimum volume xyz graph drawing
of a given xyz surface?
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Fig. 8. A point set such that lines in three parallel families each contain zero or exactly two points,
and the cubic graph derived from it. This graph is not an xyz graph, as it contains triangles.

– The rightmost drawing of the permutohedron in Fig. 3 shows it as the boundary
of an orthogonal polyhedron (perhaps suitable for the design of a building). How
difficult is it to determine whether such a representation exists for a given bipartite
3-connected cubic planar graph?

– Our reduction from graph coloring to xyz graph recognition produces graphs of high
genus, but recognizing xyz graphs is easy in the case of genus zero (planar graphs).
Is there an efficient algorithm for recognizing xyz graphs of bounded genus?

– For Cayley graphs with one self-inverse and one non-self-inverse generator, the
difficulty in finding xyz graph representations is linked to the need to indepen-
dently orient each cycle formed by the non-self-inverse generator. However, as
these graphs are highly symmetric, it seems natural to hope that these cycles may
be oriented in a symmetric way that avoids the need for testing all orientations of
all cycles. Is there a Cayley graph that may be represented as an xyz graph only by
orienting its cycles asymmetrically?

– Kuperberg’s example of the prism shows that our algorithm for testing xyz graph
representability using all partitions of the graph into three matchings cannot be im-
proved, unless we avoid some partitions. However, for the prism itself, there are
many partitions that can safely be avoided: for an xyz graph representation, we can-
not use any partition into three matchings that uses three different orientations in a
single quadrilateral. One can also devise similar conditions that restrict the match-
ings in hexagons and other short cycles of a given graph. Can one take advantage of
these forbidden configurations to eliminate some partitions into matchings earlier
in the algorithm and reduce its running time?

– In our discussion of graphs represented by the points with coordinates summing to
0 or 1 in a k× k× k grid, we briefly referred to a similar construction of an infinite
xyz graph in an infinite three-dimensional grid, isomorphic to the hexagonal tiling
of the plane, a graph treated in more detail in another paper [11]. To what extent can
the correspondence between xyz graphs and xyz surfaces be generalized to infinite
graphs? What is the most appropriate way of handling the infinite chains of edges
parallel to a single coordinate plane that can arise in the infinite case?

– If a planar point set intersects any line parallel to the sides of an equilateral triangle
in either zero or two points, we may define a cubic graph from it analogously to the
three-dimensional definition of xyz graphs; any xyz graph has a planar projection of
this type. However, these planar three-orientation graphs are more general than xyz
graphs; Fig. 8 shows a graph of this type that is not an xyz graph. To what extent
may our theory be extended to these graphs?
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Abstract. As graphics processors become powerful, ubiquitous and eas-
ier to program, they have also become more amenable to general purpose
high-performance computing, including the computationally expensive
task of drawing large graphs. This paper describes a new parallel anal-
ysis of the multipole method of graph drawing to support its efficient
GPU implementation. We use a variation of the Fast Multipole Method
to estimate the long distance repulsive forces in force directed layout.
We support these multipole computations efficiently with a k-d tree con-
structed and traversed on the GPU. The algorithm achieves impressive
speedup over previous CPU and GPU methods, drawing graphs with
hundreds of thousands of vertices within a few seconds via CUDA on an
NVIDIA GeForce 8800 GTX.

1 Introduction

Automatic graph layout algorithms convert the topology of vertex adjacency
into the geometry of vertex position. These layouts usually represent vertices as
points or icons in two or three dimensions connected by edges represented by
lines or arcs. Automatic graph drawing has many important applications in in-
formation visualization, software engineering, database, web design, networking,
VLSI circuit design, social network analysis, cartography, bioinformatics and the
organization of visual interfaces for many other domains [4]. Growth in infor-
mation technology and data processing has increased the size and complexity
of graph datasets, posing the problem of drawing large graphs with millions of
nodes that demand the consideration of new scalable parallel approaches.

Classical force directed algorithms [7, 9, 12, 22] layout graphs of hundreds of
vertices, but run in O(|V |2 + |E|) time and do not scale well for larger graphs.
Approximate force directed techniques [13, 14, 18, 20, 32] perform better, using
a multilevel approach based on a graph hierarchy, where smaller coarser graph
levels guide the initial drawing of progressively larger, finer levels of the graph
hierarchy. The class of algorithms based on linear algebra [21, 23] are even faster.
They perform best on grid-like regular graphs but can condense features on other
graph types (e.g. with many biconnected components) [19, 21, 23].

These state-of-the-art algorithms for straight line graph drawing can still run
too slow on modern graphs, e.g. six minutes for a graph of 143,437 nodes [18].
Other approaches work efficiently but with uneven layout quality across graph
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type, e.g. extremely fast ACE[23] and HDE[21] methods work best only on quasi-
grids. To address both limitations, this paper reworks the general-graph quality
of approximated force directed layout into a form that can be efficiently processed
on the GPU to layout hundreds of thousands of nodes within a few seconds. Our
GPU implementation of the fast multipole multilevel method (FM3) is more
than 20× faster than the latest reported CPU version [18].

We parallelize a potential field based multilevel algorithm that uses only mul-
tipole expansions (no local expansions) to approximate long distance forces.
This combines Barnes-Hut [3] and fast multipole methods (FMM) [16]. The
FMM approach has proven error bounds and better asymptotic complexity,
whereas Barnes-Hut is popular due to its simplicity and a low associated con-
stant factor of implementation [15]. Their hybrid enjoys good error bounds and
an O(|V | log |V |+E) time complexity with low constant factor, and yeilds high
quality layouts that represent both local and global structures well, even for
graphs deemed challenging [19].

The modern graphics processing unit (GPU) was initially designed for raster-
based videogame graphics, but its marked improvement in performance and
programmability has generated considerable interest in it as a high-performance
computing platform [27, 29]. However, GPU programming remains challenging,
and its performance relies on the ability to decompose a task into concurrent
identical data-parallel instruction threads with limited support for stacks or
recursion, and managing their access patterns to the various kinds of memory
(shared, local, CPU, etc.). The contributions of this paper are the systems-level
design and deployment of an efficient manycore graph drawing algorithm and
to show that the acceleration of multipole-based layout justifies the challenges
posed by the GPU’s architecture and programming.

The main challenge of FMM processing on a single-instruction multiple-data
(SIMD) processor (such as a GPU) is managing a shared spatial hierarchy. The k-
d tree has been a popular choice for particle simulation [8, 2] as its size complexity
is distribution independent [31], but does not map easily to the GPU’s SIMD
programming model. We combine the CPU and GPU to construct the tree,
using the GPU for fast median selection so the CPU can construct a balanced
k-d tree with O(logN) depth that keeps force calculation within O(N logN).
We traverse the structure entirely on the GPU, using an efficient “stackless”
k-d tree representation, where each node has a pair of pointers, one pointing
to the first child and the other to the next node (in pre-order traversal order).
Each processor of a data-parallel SIMD processor can efficiently traverse such a
hierarchy by simply following one of two pointers [6, 10].

2 Related Work

The FastMultipole Multilevel Method (FM3) produces pleasing layouts in the gen-
eral case and is relatively fast [18]. It combines amultilevel spatial partitioningwith
a multipole approximation of all pairs repulsive forces, specifically Greengard’s
FMM algorithm [16]. Our new GPU version uses only the multipole expansion



92 A. Godiyal et al.

coefficients and not the local expansion coefficients to approximating repulsive
forces. We show that these multipole expansion coefficients alone are sufficient to
produce high quality layout and the added complexity of workingwith local expan-
sion coefficients is unnecessary. Our GPU implementation is 20×−60× faster than
the preveious CPU implementations of FM3. Another improvement over the pre-
vious CPU FM3 implementation [18] is that we use a k-d tree instead of quad tree
for force calculations, motivated by GPU architecture as elaborated in Sec. 4.1.

Our implementation is more than 30% faster than a previous GPU multi-
level force directed graph layout method [11]. That method approximated the
all-pairs repulsive force with a center of gravity multipole acceptance criteria,
which when compared to FM3 has a larger aggregate error that can even become
unbounded for unstructured distributions [28]. Our approach’s time complexity,
O(|V | log |V |+ |E|), improves their’s, O(|V |1.5 + |E|).

Others have implemented general-purpose FMM on the GPU [30, 17]. Their
approaches differ from ours as they include all FMM steps, most of which are un-
necessary for graph drawing. Our approach utilizes the k-d tree which outperforms
their quadtree, and we focus specifically on the issue of GPU tree construction.

3 Algorithm

Multilevel layout methods significantly reduce running times by converging to
the optimal layout in fewer iterations [18, 23, 20, 14, 13, 32]. This approach
recursively coarsens an input graph G0 to produce a series of smaller graphs
G1 . . . Gk, until the size of the coarsened graph falls below a threshold. An initial
layout is first computed iteratively for the coarsest graph Gk. The converged
vertex positions of a level i graph Gi are used as the initial vertex positions of
the next finer level i− 1 graph Gi−1, which should relax into a converged state
after a few iterations. This continues until the layout for the finest graph (the
input), G0, is obtained.

We use the multilevel method shown in Algorithm 1. The ComputeLayout step
is the most expensive with runtime complexity of O(|V | log |V |+ |E|), and is ac-
celerated by the GPU. The remaining functions are linear O(|V |) and computed
on the CPU.

3.1 Coarsening

The function CoarsenGraph coarsens by maximal independent set (MIS) filtra-
tion, which has the advantage of being simple, efficient and produces a filtration
controlled by the geometry of the graph [14, 13]. The vertex subset S ⊂ V is
an independent set of a graph G = (V,E) if no two elements of S are con-
nected by an edge. A maximal independent set filtration of G is a family of sets
V = V 0 ⊃ V 1 ⊃ . . . ⊃ V k ⊃ ∅, such that each V i is an independent set of V i−1.

Calculating optimal independent sets is a NP-Complete problem, though an
efficient 2-approximation exists. An independent set S of a set V can be computed
by repeatedly deleting a vertex v ∈ V and adding it to S and removing all vertices
adjacent to v from V, until V is empty. The set S is the desired independent set.



Rapid Multipole Graph Drawing on the GPU 93

Algorithm 1. Overall Algorithm

Input: G = (V, E) with random initial placements
Output: G = (V ′, E) with final placements
initialization;
graph G0 ←− G;
threshold ←− 50;
i ←− 0;
while |V i| ≥ threshold do

graph Gi+1 ←− CoarsenGraph(Gi);
i ←− i + 1

end
while i ≥ 0 do

ComputeLayout(Gi) ; /* via the GPU */
if i ≥ 1 then

InterpolateInitialPositions(Gi−1)
end
i ←− i − 1

end
return G0

3.2 Interpolation

The function InterpolateInitialPositions derives the starting positions of vertices
in Gi from the positions of vertices in the converged layout of Gi+1, using a
relaxation method [11]. Each vertex v ∈ V i is initially placed at the position
of its parent vertex v′ ∈ V i+1. Then several iterations (we used a maximum of
50) of a form of graph Laplacian move each vertex to an average of its current
position, pi, and that of its neighbors Ni,

pi =
1
2

⎛

⎝pi +
1

deg(i)

∑

j∈Ni

pj

⎞

⎠ . (1)

3.3 Force Calculation

For each graph Gi, the function ComputeLayout iteratively calculates and applies
forces until it converges. The coarsest graph Gk typically requires 300 iterations,
but this number decays rapidly for finer graphs and in most cases the finest
graph G0 needs zero iterations to converge. The pseudocode for one iteration is
given in Algorithm 2.

3.4 Force Model

As in the force directed algorithm [12], we assume that the vertices of a graph
G(V,E) are charged particles that repel each other with an inverse-square law,
and the edges are springs that contract with a non-physical but effective force [18]
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Algorithm 2. Force Calculation Algorithm

Input: G = (V, E) with initial placements
Output: G = (V ′, E) with final placements
kdTree ←− constructKDTree(V )
Spawn |V | threads on the GPU ; /* Thread i calculates force on vi */
foreach thread i do

force ←− calculateRepulsion(vi, kdTree)
force ←− force + calculateAttraction(vi, E)
Send calculated force values to CPU in an array

end
; /* Done on the CPU to avoid global synchronization on the GPU */
forall vi do

moveVertex(vi, force)
end
return G

F = d2 log(d/d′) (2)

where d and d′ are the actual and desired lengths of the edge.

3.5 Multipole Calculation

The most expensive step in force directed graph drawing is the all-pair repulsive
force calculations. Although the force calculations may be quite complex in the
near-field (when two vertices are very close to each other), force calculations
are well-behaved in the far-field. In particular, if a vertex is sufficiently far from
a set of charges, we may compute the aggregate effect of the charges on that
vertex, and need not resort to computing every interaction. Greengard [16] first
demonstrated how potential field based approximations can be used to find the
far-field forces using quad trees. The idea is to construct a tree based spatial
partition of particles and then evaluate multipole expansions using this tree.

Theorem 1. (Multipole Expansion)Suppose that m charges of strengths qi are
located at points zi, for i = 1 . . .m, with center z0 and |zi − z0| < r. Then for any
z ∈ C with |z − z0| > r, the potential Φ(z) induced by the charges is given by

Φ(z) = Q log(z − z0) +
∞∑

k=1

ak

(z − z0)k
(3)

where Q =
∑

qi and ak =
∑
−qi(zi − z0)k/k. As force is the negative of the

gradient of the potential, the force that acts on a particle of unit charge at position
z is given by (Re(Φ′(z)),−Im(Φ′(z))).

Instead of summing up an infinite series for (3), only a constant number p of
terms are calculated. The resulting truncated Laurent series is called p-term
multipole expansion. We choose p = 4 as it is sufficient to keep the error of the
approximation less than 10−2 [18].
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As the k-d tree is constructed, the coefficients of this multipole expansion are
calculated and stored for each node using (3). The center of a k-d tree node is
the geometric center of the rectangular region it represents, and the radius used
is the radius of a circle circumscribing this rectangular region. Each node in the
k-d tree thus maintains a collection of charges (vertices of the graph) lying in its
rectangular regions. Let G(V,E) be a graph and K be the k-d tree of the vertices
of G. Let n be a node of K with center z0 and radius r. Let {vi, v2, . . . , vk} be the
set of vertices of graph G that are contained in k-d tree node n. To calculate the
approximate repulsive force on each vertex v ∈ V located at z, K is traversed
from the root node. At a node n, if the distance between z0 and z is greater than r,
then the approximate repulsive force between v and vertices vi{i = 1, . . . , k} are
calculated using (3). Otherwise, if n is an internal node, the process is repeated
for its children, and if n is a leaf node, the exact repulsive forces are calculated.

4 GPU Implementation

4.1 Processing the K-D Tree

Unlike the more traditional quadtree used in n-body simulation, we used a k-d
tree [5]. Aluru et al.[1] has shown that the running time of adaptive FMM using
quad tree [16] depends on the particle distribution and cannot be bounded in
number of particles. In order to remedy this and guarantee O(|V |log|V |) running
time complexity, [18] uses complicated tree thinning and balancing techniques.
These techniques do not translate into efficient GPU implementation because
of the lack of recursion (no unbounded stack) and dynamic memory allocation.
Since the k-d tree is a density decomposition tree and not a spatial decomposition
tree, it does not suffer from distribution dependent running time [31].

The CUDA GPU programming model has a complex memory hierarchy and
one has to keep in mind multiple factors to achieve good performance [26]. The k-
d tree is traversed by all of the GPU threads and all the threads need the vertex
position data for near field and attractive force calculations. Thus these data
structures are passed to the GPU in texture memory, which is cached yielding
higher bandwidth from k-d tree node locality. In our implementation, the k-d tree
is constructed for the first four iterations and then for every twentieth iteration,
because it changes only slightly in each later iteration and these changes do not
significantly impact force calculations.

Fig. 1. A “stackless” k-d tree pre-threaded with first child (blue) and next neighbor
(red) pointers



96 A. Godiyal et al.

Traversal. Stackless traversal of the k-d tree on the GPU is achieved by a
structure shown in Fig. 1 Each node of the tree has two pointers. The blue
(success) pointer indicates its first child whereas the red (failure) pointer points
to its next neighboring node. This tree threading allows the streaming SIMD
GPU processing to parse a hierarchical data structure efficiently [6, 10]. The
data parallel SIMD architecture of the GPU requires that when control flow
reaches a condition, if some processors follow one side of the condition and the
rest of the processors follow the other side of the condition, then all of the
processors need to evaluate both sides of the condition, zeroing out the result of
the side not used by each processor. Tree threading allows the processors instead
to simply follow one of two pointers, replacing conditional control flow with data
indirection which is fully supported by the GPU.

Construction. A k-d tree is constructed recursively. Each node of a k-d tree
divides the set of vertices it represents V, into two equal sets by splitting along
a chosen dimension. (In our implementation, the splitting dimension alternates
between the two axes.) This bisection is achieved by a radix selection algorithm
[24] whose worst case time complexity is O(|V |). The process of finding the
median and splitting the set of vertices is applied recursively until a node has less
than threshold number of vertices (four, in our implementation). The multipole
expansion coefficients from (3) of each node are calculated as the k-d tree is
constructed. This median splitting approach generates a balanced k-d tree in
O(|V | log |V |) time.

The radix selection algorithm is faster on the GPU for arrays of large size. In
our configuration, the crossover array size, for which the GPU radix selection is
faster than a well tuned CPU implementation, is 50,000, and we use the CPU
for smaller arrays. We implemented radix selection using efficient GPU scan
primitives [29] (which have also been used for GPU radix sort [25]).

4.2 Radix Selection with Prefix Scan

Radix select is the selection analog of the radix sort algorithm. It is recursive
and selects the key (vertex coordinate in our case) whose rank is m, from an
array A[1 . . . n] of n keys. The array is split at position s, into two sub-arrays
based on the most significant bit: A[1 . . . s] contains all keys with 0 as the most
significant bit, and A[s+ 1 . . . n] contains all keys with 1 as the most significant
bit. Then the next significant bit is considered. This goes on recursively until
the key with rank m is found.

To carry out the split at each level of recursion in parallel, each thread needs
to copy a different input key A[i] to the split array. The address of each key
A[i], is the number of keys in A[1 . . . i− 1] whose most significant bit is 0. The
array of these counts is called the prefix sum of A, denoted here as B[1 . . . n]
such that B[i] =

∑
j<i A[j]. We compute this prefix sum on the GPU using an

efficient O(n) CUDA prefix scan implementation [29]. This work-efficient scan
of n elements requires two passes over the array: reduce and down-sweep. Each
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requires log(n) parallel steps. The amount of work is cut in half at each step,
resulting in an overall work complexity of O(n).

4.3 Compressed Sparse Row Representation

We use a compressed sparse row (CSR) format, essentially a sparse matrix data
structure [29], for representing the edges of the graph in GPU texture memory.
It avoids conditional statements and thus makes the implementation fast. Let i
be a vertex of graph G such that i has k edges (i, j1), (i, j2)...(i, jk). Then the
graphs adjacency list is represented by 2 arrays:

1. Edge-value: For each vertex i, this array stores vertices {j1, j2...jk} i.e. the
adjacency list of i.

2. Edge-index: Edge-Index[i-1] and Edge-Index[i] store the beginning and end-
ing of the adjacency list of vertex i.

For each vertex i, a GPU processing thread uses this CSR representation to
calculate the attractive forces due to its incident edges. This parallel computation
is not perfectly load-balanced as the work done by each thread depends on the
degree of the vertex it is handling. Processing the edges instead of the vertices
would rectify this, but would require either atomic operations for adding up all
the forces on a single vertex, or a prefix sum to add up the forces calculated by
different threads, and neither option is very efficient.

The edge-value array is accessed frequently by each thread, and so is placed
in the cached texture memory of the GPU. The edge-index array is accessed
only twice per thread with negligible gain from caching, and so is placed in plain
read-write GPU memory.

5 Results

The algorithm was tested on a single core 2.21 GHz AMD Athlon(tm) 64 Pro-
cessor running Windows XP, with an NVIDIA GeForce 8800 GTX card pro-
grammed via the CUDA (Compute Unified Device Architecture) programming
model, compiled by a C compiler with language extensions [26]. Both CPU and
GPU implementations used single precision floating point.

The algorithm was tested on a variety of graphs extensively used in graph
drawing research to support comparisons [18, 19, 33]. Figure 2 shows selected
layouts and their associated run times. The layouts of all the tested artificial and
real-world graphs resemble those produced by FM3 [18]. Like FM3, our algorithm
is able to display the regularity of six-ary trees, the symmetry of spider and flower
graphs and the global structure of snowflake graphs.

Figure 3 shows for various graphs the speedup our implementation achieves over
FM3 and over the GFDL force directed layout GPU implementation [11]. It shows
our implementation to be 1.3×−4× faster than GFDL and 20×−60× faster than
CPU implementation of FM3. Figure 4 demonstrates the scalability of our GPU
implementation. Its running time is largely a factor of graph size, thoughdependent
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4elt: 1.58s,
14,588v, 40,176e

final512: 4.50s,
74,752v,
261,120e

crack: 0.937s,
10,240v, 30,380e

flower B: 0.547s,
9,030v, 131,241e

sierpinski 08:
0.984s, 9,843v,

19,683e

fe pwt: 2.48s,
36,463v,
144,794e

fe ocean: 12.07s,
143,437v,
409,593e

bcsstk31: 1.31s,
35,586v,
572,913e

bcsstk32: 1.99s,
44,609v,
985,046e

bcsstk33: 0.968s,
8,738v, 291,583e

snowflakes C:
1.94s, 97,001v,

97,000e

spider B: 1.49s,
10,000v, 22,000e

tree 06 06: 24.6s,
55,987v, 55,986e

add32: 1.40s,
4,960v, 9,462e

grid rnd 100:
1.72s, 9,497v,

17,849e

Fig. 2. Layouts of various graphs computed with out approach, indicated by name,
running time (in seconds), followed by the numbers of vertices and edges

on the number of iterations needed to resolve vertex placement at each level of the
graph hierarchy. Thus the large 6-ary tree required significantlymore iterations (by
a factor of five) to reach a planar embedding than did the others.

We recorded the running time of the major parts of the algorithm for both
the CPU and the GPU implementations. Table 1 shows the result for a few
graphs. The CPU implementation spends on an average nearly 85.5% of CPU
cycles in calculating the forces and this step is clearly the performance bottle-
neck. The GPU implementation reduces the time spent in calculating forces by
7-40 times (depending upon the size of the graph). One disadvantage of the GPU
implementation is that lots of cycles are wasted in copying data back and forth
between the GPU and the CPU. GPU implementation spends 18%-25% of the
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Fig. 3. Speedup factors over GPU force directed layout (GFDL) and Fast Multilevel
Multipole Method (FMMM). The graphs are in increasing order of graph size.

Fig. 4. Running time vs. graph size for GPU accelerated FM3 layout

Table 1. Running time (in seconds) comparing total and component run times on
CPU (numerator) v. GPU (denominator)

Graph |V | |E| Total Coarsening Data Trans. Tree Const. Force Calc.
bcsstk33 8,738 291,583 1.63 / 0.968 0.0 / 0.0 0.032 / 0.141 0.095 / 0.096 1.48 / 0.242
4elt 14,588 40,176 7.23 / 1.58 0.0 / 0.0 0.172 / 0.375 0.516 / 0.375 5.92 / 0.672
crack 10,240 30,380 3.51 / 0.937 0.0 / 0.0 0.080 / 0.172 0.456 / 0.203 2.81 / 0.449
final512 74,752 261,120 81.55 / 4.50 0.25 / 0.25 0.260 / 0.828 3.39 / 1.49 73.8 / 1.932
fe ocean 143,437 409,593 90.9 / 12.07 4.1 / 4.1 1.30 / 1.50 5.20 / 3.89 83.0 / 2.48

running time in data movement as compared to 2%-3% time spent by the CPU
implementation on the same. Time for constructing the k-d tree is nearly same
in the CPU and GPU implementations, for graphs with less than 50,000 vertices.
For larger graphs, k-d tree construction is more than 30% faster on the GPU.
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6 Conclusions and Future Work

The parallel algorithm described in this paper makes graph drawing significantly
faster without compromising layout quality, improving previous fast implemen-
tations that were limited to grid-like graphs. The speedup obtained shows that
it is now possible to draw general graphs with hundreds of thousands of nodes
within a few seconds via the GPU. We also showed that for the purpose of graph
drawing multipole expansions suffice, and local expansions in FMM should be
best avoided due to their the high constant factor.

The optimized layout of each graph required the hand tuning of a number
of parameters, as automatic inference of these optimal parameters remains an
open research problem. Further algorithm improvements may be possible. In-
creasing CPU-GPU bandwidth may lower the 50,000-node limit where the GPU
outpaced the CPU on median finding, and further load balancing may improve
force calculation.

Acknowledgments

This work is supported by the NSF under the grant #0534485, and by NVIDIA
Corp.

References

[1] Aluru, S., Prabhu, G.M., Gustafson, J.: Truly distribution-independent algorithms
for the n-body problem. In: Proc. Supercomputing, pp. 420–428 (1994)

[2] Appel, A.W.: An efficient program for many-body simulation. SIAM J. Sci. &
Stat. Comp. 6(1), 85–103 (1985)

[3] Barnes, J., Hut, P.: A hierarchical o(n log n) force-calculation algorithm. Na-
ture 324(6096), 446–449 (1986)

[4] Batini, C.: Applications of graph drawing to software engineering (abstract).
SIGACT News 24(1), 57 (1993)

[5] Bentley, J.L.: Multidimensional binary search trees used for associative searching.
CACM 18(9), 509–517 (1975)

[6] Carr, N.A., Hoberock, J., Crane, K., Hart, J.C.: Fast gpu ray tracing of dynamic
meshes using geometry images. In: Proc. Graphics Interface, pp. 203–209 (2006)

[7] Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM
Trans. Graph. 15(4), 301–331 (1996)

[8] Dikaiakos, M.D., Stadel, J.: A performance study of cosmological simulations on
message-passing and shared-memory multiprocessors. In: Intl. Conf. on Super-
computing, pp. 94–101 (1996)

[9] Eades, P.A.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160
(1984)

[10] Foley, T., Sugerman, J.: Kd-tree acceleration structures for a GPU raytracer. In:
Proc. Graphics Hardware, pp. 15–22 (2005)

[11] Frishman, Y., Tal, M.-A.: Multi-level graph layout on the gpu. IEEE Trans. Vis.
Comp. Graph. 13(6), 1310–1319 (2007)



Rapid Multipole Graph Drawing on the GPU 101

[12] Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Software - Practice and Experience 21(11), 1129–1164 (1991)

[13] Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to
force-directed layouts of large graphs. Comput. Geom. Theory Appl. 29(1), 3–18
(2004)

[14] Gajer, P., Kobourov, S.G.: GRIP: Graph dRawing with intelligent placement. In:
Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222–228. Springer, Heidelberg
(2001)

[15] Grama, A.Y., Kumar, V., Sameh, A.: Scalable parallel formulations of the Barnes-
Hut method for n-body simulations. In: Proc. Supercomputing, pp. 439–448
(1994)

[16] Greengard, L.F.: The rapid evaluation of potential fields in particle systems. Ph.D.
thesis, Yale, New Haven, CT, USA (1987)

[17] Gumerov, N.A., Duraiswami, R.: Fast multipole methods on graphics processors.
J. Comp. Physics 227, 8290–8313 (2008)
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Abstract. We present a linear algorithm for c-planarity testing of clus-
tered graphs, in which every cluster has at most four outgoing edges.

1 Introduction

Clustered planarity is one of the challenges of contemporary Graph Drawing.
It arises naturally when we want to draw the graph with further constraints
on embedding of the vertices. This includes for example visualizing a computer
network with the computers of the same department, faculty and institution
being grouped together. Another application is in designing an integrated circuit
with the connectors of each components being close to each other and the logical
parts of the circuit being grouped together. There are many other applications
including visualizations of process interaction, social networks etc.

The concept of the clustered graph—a graph equipped with a system of sub-
sets of vertices (called clusters), that can be recursive— was first introduced
by Feng et al. in [7]. In the same paper they also proved that clustered pla-
narity (shortly c-planarity) can be tested in polynomial time for c-connected
clustered graphs (where each cluster induces a connected subgraph of the un-
derlying graph). This was later improved by Dahlhaus [4] to a linear time al-
gorithm. The paper [7] also contains a useful characterization of the c-planar
graphs: Graph is c-planar if and only if there is a set of edges (usually called
a saturator) that can be added to this graph to obtain a c-connected c-planar
clustered graph.

Since then many algorithms for testing the c-planarity were based on searching
for a saturator. These include an O(n2)-time algorithm for ”almost” c-connected
clustered graphs by Gutwenger et al. in [9,10]. An efficient algorithm for clusters
with cyclic structure on a cycle was developed in [3]. The case of disjoint clusters
on an embedded graph with small faces was recently addressed in [5]. Very similar
result was at the same time independently published by Jeĺınková et al. [12].
The paper [12] also contains an O(n3)-time algorithm for clusters of size at most
three on a rib-Eulerian graph. This is an Eulerian graph that is obtained from
a constant size 3-connected graph by multiplying and then subdividing edges.
� Supported by grant 201/05/H014 of the Czech Science Foundation.
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Another approach is to mimic the original proof of Feng et al. [7] where the
behavior of the connected clusters is described by special trees. In this way a
slight generalization to extrovert clustered graphs was given by Goodrich et al.
[8]. In an extrovert clustered graph the parent cluster of any disconnected cluster
is connected and every component of any disconnected cluster is incident to an
edge which leads outside of its parent cluster.

We should also mention that every c-planar graph can be drawn by straight
lines with clusters represented by convex polygons [6]. Another interesting con-
tribution is the characterization of completely connected clustered graphs (where
each subgraph induced by a cluster and its complement are connected) [1]: A
completely connected clustered graph is c-planar if and only if the underlying
graph is planar. More results on c-planarity can be found in [2]. Despite the
number of results the complexity of testing the c-planarity for general instances
remains open.

In this paper we focus on the situation where the number of outgoing edges of
each cluster is small. We notice that in this case the behavior of the clusters can
be simulated by special graphs, no matter whether the subgraph induced by the
cluster is connected or not. We use these ideas to develop a linear time algorithm
to test such graphs for c-planarity. As far as we know this is the first algorithm
that can be used in the cases where the underlying graph is not connected at all
or has very few edges in total. In particular we prove the following theorem:

Theorem 1. Clustered planarity can be decided in linear time for instances,
where each cluster has at most 4 outgoing edges.

Section 2 is devoted to the basic definitions. We also show there that if there is a
cluster with no outgoing edges, then the instance could be split into an instance
formed by the subclusters of the cluster and one formed by the rest. In Section 3
we show how to replace the clusters by special graphs with the same behavior
and prove that this does not affect the c-planarity. The algorithm is described
in Section 4, together with the proofs of the correctness and the running time.
In Section 5 we show that the approach cannot be generalized this way to the
case of five or more outgoing edges.

2 Preliminaries

Let Sr denote the set of all permutations of the set {1, 2, . . . , r}. A permutation
π ∈ Sr is represented by r-tuple (π(1) . . . π(r)).

Regarding the graph notations, we follow the standard notation on finite loop-
less graphs. A graph is an ordered pair G = (V,E), where V is the set of vertices
and E is the set of edges i.e. pairs of vertices. We simply write uv instead of {u, v}
for edges. If U ⊆ V , then G[U ] is the induced subgraph of G on vertices U and
G \ U = G[V \ U ]. Let n denote the number of vertices |V | of the graph G.

A cluster set on the graph G = (V,E) is a set C ⊆ P(V (G)) such that for all
C,D ∈ C, either C and D are disjoint or they are in inclusion; the pair (G, C)
is called a clustered graph. The elements of C are called clusters. A clustered
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planar embedding of (G, C) is a planar embedding emb of G together with a
mapping embc that assigns to every cluster C ∈ C a planar region embc(C)
whose boundary is a closed Jordan curve and such that

– for each vertex v ∈ V and every cluster C ∈ C, it holds that emb(v) ∈
embc(C) if and only if v ∈ C,

– for every two clusters C and D, the regions embc(C) and embc(D) are disjoint
(in inclusion) if and only if C and D are disjoint (in inclusion, respectively),
and

– for every edge e ∈ E and every cluster C ∈ C the curve emb(e) crosses the
boundary of embc(C) at most once.

A clustered graph is called clustered planar (shortly c-planar) if it allows a
clustered planar embedding.

The following observation is a trivial consequence of the definition:

Remark 1. A pair (G, ∅) is c-planar if and only if the graph G is planar.

We say that C ∈ C is a cluster of the bottom-most level if there is no C′ ∈ C
such that C′ ⊂ C.

An edge e = uv is an outgoing edge of a cluster C if u ∈ C, v ∈ V \ C or vice
versa.1 Let r(C) = |{e = uv|e ∈ E, u ∈ C, v ∈ V \ C}| denote the number of
outgoing edges of a cluster C. If the cluster is clear from context we will just use
notation r instead of r(C).

Lemma 1. If C has no outgoing edges then (G, C) is c-planar if and only if
(G \ C, C1) and (G[C], C2) are c-planar, where C1 = {A \ C|A ∈ C, A �= C,A ⊃
C} ∪ {A|A ∈ C, A ∩C = ∅} and C2 = {B|B ∈ C, B �= C,B ⊂ C}.

Proof. The direction from left to right is easy, we just omit from the embedding
the parts that are no longer necessary.

So suppose that we have a c-planar embedding emb1 of (G \ C, C1) and a
c-planar embedding emb2 of (G[C], C2). Take an arbitrary point x in the plane,
such that for all clusters A ∈ C1 the following holds: x lies inside the region
(emb1)c(A) if and only if C ⊆ A. Suppose that there is neither vertex nor edge
of G\C nor border of a cluster of C1 in distance less than ε from x in emb1. Now
shrink the embedding emb2 so that it fits into the ε

2 -disc centered in x. Then
take this disc as the embedding of C.

It is easy to check that we obtain a c-planar embedding of (G, C), since the
embeddings emb1 and emb2 cross neither each other nor the embedding of C,
the inclusions of the clusters are preserved and the embedding of the cluster
C contains exactly the embedding of the vertices, edges and clusters it should
contain. ��

1 Such an edge is called edge incident with C in [1,3,7,9] and extrovert edge in [8].
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u1 u2

u3u4
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vπ(3)

vπ(2)
vπ(1)
vπ(4)

u1 u2

u3u4

u0

Fig. 1. The test graph T and the graph T π
C from Definition 1

3 Replacement of Clusters by Graphs

Through this section we suppose, that we have some fixed cluster C ∈ C of
bottom-most level, that has at most 4 outgoing edges. Having Lemma 1 in hand
we assume that 1 ≤ r = r(C) ≤ 4.

We denote the outgoing edges by {e1, . . . , er}. We also suppose that ei = viwi

for all i, where vi ∈ C and wi ∈ V \ C (maybe wi = wj or vi = vj for some
i �= j).

We denote by T the following test graph T = ({u0, u1, u2, u3, u4}, {u0u1, u0u2,
u0u3, u0u4, u1u2, u2u3, u3u4, u4u1}) (see Fig. 1).

Definition 1. We say that the cluster C admits a permutation π ∈ Sr if and
only if the graph T π

C created from T ∪G[C] by adding edges uivπ(i), 1 ≤ i ≤ r is
planar.

Lemma 2. If the cluster C admits the permutation π ∈ Sr then there exists
a planar embedding of the graph T π

C such that the vertices of C are embedded
inside and the vertex u0 outside the cycle u1, . . . , u4, u1 of T . Moreover we can
prescribe this cycle to be oriented clockwise in the embedding.

Proof. First we take some planar embedding of the graph T π
C . Now we take

the edges incident with u0 in the clockwise order u0ui1 , u0ui2 , u0ui3 , u0ui4 . For
every u0ui and u0uj two consecutive of them (either {i, j} = {ik, ik+1} for some
k = 1, 2 or 3 or {i, j} = {i1, i4}) we can draw a new curve from ui to uj along
the curve uiu0 and then u0uj so that it does not cross any other edge and area
surrounded by the curves uiu0, u0uj and the new curve contains no vertex (see
Fig. 2).

Suppose for a contradiction that some of the newly drawn curves connects
two non-adjacent vertices, for example u1 and u3 (the case of u2 and u4 being
similar). Since the new curves connect u1 to at most one of the vertices u2 and
u4 and we drew two curves from each ui, we also connected u2 and u4. But
this means that the newly drawn curves together with the original edges form
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u0

u2u1

u4 u3

u2u1

u4 u3

u0

Fig. 2. Situation from the proof of Lemma 2

a planar embedding of K5, which is a contradiction. So we know that all the
curves that we drew newly connect two already adjacent vertices of the cycle.

Now we take these newly drawn curves as the embedding of the edges of the
cycle. Then there is just u0 inside the cycle and it remains to change the outer
face to one of the newly obtained empty triangles, such that the vertex u0 will
be on the boundary of the outer face.

If the cycle is embedded in wrong direction, then we take the axis symmetry
of the embedding. ��

Lemma 3. If (G, C) is c-planar, then C admits some permutation.

Proof. We suppose that (G, C) is c-planar and we fix a planar embedding emb.
Let f be the boundary of embC(C) (so f is a closed Jordan curve). Now we can
start in an arbitrary point of this curve and move along this curve in the clock-
wise direction and we cross the edges e1, e2, . . . , er in some order ei1 , ei2 , . . . , eir .
Denote the crossing points as P1, P2, . . . , Pr (in the same order). If r < 4 then
we can choose new points Pr+1, . . . , P4 in such a way, that we meet the points
P1, . . . , P4 in this order when we move along the curve f in the clockwise direc-
tion and all these points are distinct.

Now we consider the planar embedding emb′ of G[C] which corresponds to
the embedding emb of the graph G, place new vertices u1, . . . , u4 to the points
P1, . . . , P4 and a vertex u0 outside of the region bounded by the curve f . Clearly
we can add edges (u1, vi1), . . . , (ur, vir ) and embed these edges on curves which
corresponded to edges e1, . . . , er inside of the region embC(C) and we can also
add edges (u1, u2), (u2, u3), (u3, u4) and (u4, u1) and embed them on the curve
f in such a way that these edges may intersect only in vertices u1, u2, u3 or u4.
It is clear that we can add edges (u0, u1), . . . , (u0, u4) and embed them in such a
way that these edges will be outside of the region bounded by f and every two
edges will cross only in the vertex u0.

This way we obtain a planar embedding of the graph T π
C where π=(ai1 . . . air ).

Thus C admits the permutation π. ��

Lemma 4. If the cluster C admits a permutation π = (a1a2 . . . ar) then it also
admits permutations (ara1 . . . ar−1) and (arar−1 . . . a1).
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Proof. We obtain the planar embedding of T δ
C , δ = (ara1 . . . ar−1) from the

planar embedding of T π
C simply by relabeling the vertices such that u1 becomes

u2, u2 becomes u3, u3 becomes u4 and u4 becomes u1 and if r < 4 then it is
necessary to replace the edge varur+1 by a new edge varu1 which goes along the
edges varur+1, ur+1ur+2, . . . , u4u1 such that it doesn’t cross any other edge.

For r ≥ 3 the second part can be done similarly – it is enough to relabel such
that u1 becomes u3 and u3 becomes u1 and if r = 4 then we use the first part
to achieve permutation (arar−1 . . . a1). For r < 3 the first part also proves the
second part. ��

We can now define a relation ∼′ on the permutations from the set
Sr by (a1a2 . . . ar) ∼′ (ara1 . . . ar−1) and (a1a2 . . . ar) ∼′ (arar−1 . . . a1). If we
take ∼ to be the transitive closure of ∼′, then it is easy to show that ∼ is also
reflexive and symetric. Thus ∼ is an equivalence. We will sometimes call the
equivalence classes of this equivalence circular permutations The sets S1, S2, S3
have just one equivalence class under ∼ while the set S4 is partitioned into fol-
lowing three equivalence classes (they can be distinguished by the number that
is ”opposite” to the number 1):

S2
4 = {(1324), (3241), (2413), (4132), (4231), (1423), (3142), (2314)},

S3
4 = {(1234), (2341), (3412), (4123), (4321), (1432), (2143), (3214)},

S4
4 = {(1243), (2431), (4312), (3124), (3421), (1342), (2134), (4213)}.

Definition 2. We define the corresponding graph for cluster C as follows (see
Fig 3).

1. If r ≤ 3 and C admits some permutation, then the corresponding graph for
C is Rr.

2. If there is a labeling of the outgoing edges such that C admits permutations
from S2

4 , S
3
4 , S

4
4 then the corresponding graph for C with this labeling is R234

4 .
3. If there is a labeling of the outgoing edges such that C admits a permutation

from S2
4 and from S3

4 , but no permutation from S4
4 then the corresponding

graph for C with this labeling is R23
4 .

4. If there is a labeling of the outgoing edges such that C admits a permutation
from S2

4 , but no permutation from S3
4 ∪ S4

4 then the corresponding graph for
C with this labeling is R2

4.

Clearly, if r ≤ 3 then the cluster C has unique corresponding graph. Since the
sets S2

4 , S
3
4 , and S4

4 form a decomposition of S4, from Lemma 4 we know that
the cluster C admits all permutations from some non-empty combination of sets
S2

4 , S
3
4 , and S4

4 .
If the cluster C admits just permutations from the set Si

4 then by relabeling
of edge e2 by ei and incident vertices v2 by vi and w2 by wi (if i = 2 we don’t
need to do it) we get labeling of the cluster C which admits only permutations
from the set S2

4 . So the cluster C has unique corresponding graph.
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s1 s1s1

s1 s1 s1s2

s2
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s3
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s3 s4 s4s4

R1 R2 R3

R2,3,4
4 R2,3

4 R2
4

Fig. 3. The graphs R1, R2, R3, R
234
4 , R23

4 and R2
4

If the cluster C admits just permutations from two distinct sets Si
4 and Sj

4
then we make similar relabeling of outgoing edges and incident vertices such that
resulting relabeling makes the cluster C admit just permutations from the sets
S2

4 and S3
4 and the cluster C has unique corresponding graph.

As a consequence we get the following corollary.

Corollary 1. If C admits a permutation then there is a labeling of outgoing
edges of C such that C has a corresponding graph with this labeling.

For the rest of the paper we will use this new labeling.

Definition 3. Let C be a cluster of the bottom-most level with outgoing edges
e1, . . . , er where 1 ≤ r ≤ 4, ei = viwi for all i, where vi ∈ C and wi ∈ V \C. Let R
be a corresponding graph to the cluster C in this labeling. Then a replacement of
cluster C by a corresponding graph R in (G, C) is a clustered graph (G′, C′) such
that G′ is created from (G \ C) ∪ R by unification of w1, . . . , wr with s1, . . . , sr

(respectively) and C′ is created from C \ {C} by replacing every C′ ⊇ C by
(C′ \ C) ∪ (V (R) \ {s1, . . . , sr}).

Proposition 1. Let (G′, C′) be the replacement of cluster C by a corresponding
graph R. Then (G, C) is c-planar if and only if (G′, C′) is c-planar.

Proof. (”⇒”:) We suppose that (G, C) is c-planar and we fix some planar em-
bedding emb. Without loss of generality we can suppose that embC(C) is a
disc (because this region is homeomorphic to a disc). Suppose that the edges
e1, . . . , er cross the boundary of embC(C) in (clockwise) order ei1 , . . . , eir and
without loss of generality i1 = 1.

If r < 4 then we simply remove cluster C with edges e1, . . . , er and draw the
graph Rr corresponding to C in a such way, that we identify vertex si with wi

for all i ∈ {1, . . . , r} and all other vertices of Rr draw inside embC(C) in such
a way, that edges of Rr don’t cross any other edge of original graph nor other
edge of Rr. This is clearly possible, it is enough to draw the edges outside the
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s4
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Fig. 4. Situation from the proof of Proposition 1(part ”⇐”)

disc embC(C) along the deleted edges e1, . . . , er and inside embC(C) we can draw
edges (or parts of edges) as noncrossing segments. This embedding of G′ shows
that (G′, C′) is c-planar.

If the corresponding graph for C is R234
4 then we can construct a c-planar

embedding of C′ in the same way as for r < 4.
If the corresponding graph for C is R2

4 then the ordered set (i1, i2, i3, i4) must
be equal to (1, 3, 2, 4) or (1, 4, 2, 3) because C admits only permutations from S2

4
(otherwise we could find a permutation π /∈ S2

4 such that T π
C is planar which is

a contradiction). Now we delete the cluster C and add the graph R2
4 in such a

way that all the vertices of R2
4 will be inside the disc embC(C) and we identify

vertices si with wi for all i ∈ {1, . . . , 4} and any edge of R2
4 will not cross any

original edge nor any new edge of R2
4. This is also clearly possible, it is enough

to draw the edges outside the disc embC(C) along the deleted edges e1, . . . , e4
and inside embC(C) we can draw the edges (or parts of the edges) as noncrossing
segments. This embedding of G′ shows that (G′, C′) is c-planar.

If the corresponding graph for cluster C is R23
4 then we continue similarly as

in the previous cases. The ordered set (i1, i2, i3, i4) must be equal to (1, 3, 2, 4),
(1, 4, 2, 3), (1, 2, 3, 4) or (1, 4, 3, 2) so again it is easy to replace the vertices and
the edges of C by the graph R23

4 by identifying the vertices si with wi for all
i ∈ {1, . . . , 4} which proves that (G′, C′) is c-planar again.

(”⇐”:) Suppose we have a c-planar embedding of (G′, C′). Moreover suppose
that in the case R = R2

4 there is nothing embedded in any interior face of R.
This can be easily achieved in a similar way as in the proof of Lemma 2. We take
an arbitrary spanning tree of the graph R and let s0 denote its arbitrary vertex
different from s1, . . . , sr. Now draw the r curves connecting s0 to s1, s2, . . . , sr

along the unique paths connecting the vertices in the tree, so that they do not
cross each other nor anything in the embedding, except possibly for the edges
of R. Then remove the original edges of R.

Now take some ε such that there are no edges, vertices nor clusters embedded
in distance less than ε from s0, except for the curves incident with s0. Denote
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by Oε the circle of radius ε with center s0. Suppose Pi is the last intersection of
the curve s0si with Oε. We can assume, that ε is so small, that if we label these
curves clockwise s0si1 , s0si2 , . . . , s0sir as they leave s0, then Pi1 , Pi2 , . . . , Pir are
the points Pi in the clockwise order along Oε. (We can assume, that each curve
in the embedding is formed by finitely many straight line segments and circular
arcs.)

By case analysis we show, that C admits the permutation π = (i1i2 . . . ir).
This is clear if R = R1, R2, R3 or R234

4 . The graph R2
4\{s1, . . . , s4} is 3-connected

so the order of the edges is given in this case (up to the equivalence ∼) and
the permutation π is in S2

4 . If R = R23
4 and π ∈ S4

4 , then by connecting the
neigbouring edges we obtain a planar embedding of K3,3 — a contradiction.

So we take the planar embedding of T π
C guaranteed by Lemma 2 and remove

the vertex u0. We can take a homeomorphic copy of this embedding of T π
C \

{u0}, in which the cycle u1, u2, u3, u4, u1 coincides with a circle Oε and the
vertices u1, u2, . . . , ur are embedded at the points Pi1 , Pi2 , . . . , Pir , respectively.
We replace the interior of Oε by such an embedding.

We are ready to describe an embedding of (G, C). For every i the concate-
nation of the curve vπ(i)ui = Pπ(i) and Pπ(i)sπ(i) forms an embedding of the
edge vπ(i)wπ(i) that crosses no other edge of G′ or G[C]. Moreover, it crosses the
boundary of each cluster of C′ at most once, since there were no cluster bound-
aries inside Oε, curve Pπ(i)sπ(i) was drawn along some edges of R and among
them only the one incident with sπ(i) could cross some cluster boundary and
also at most once, because we started with a c-planar embedding of (G′, C′). It
remains to take Oε as the boundary of the cluster C. It only crosses the edges
wivi. Furthermore, since curve siPi (recall that si = wi) lies completely outside
Oε (except for Pi), while Pivi lies completely inside Oε (except for Pi), Oε crosses
the edge wivi exactly once (in the point Pi). There are no other crossings, since
they would have to be in the original c-planar embedding of (G′, C′) too. ��

4 The Algorithm

The algorithm is described in Fig. 5.

Proposition 2. The algorithm correctly decides c-planarity for instances, where
each cluster has at most 4 outgoing edges.

Proof. We first prove by the mathematical induction that for every 0 ≤ i ≤ |C|,
the pair (Gi, Ci) is defined and c-planar if and only if (G, C) is c-planar. This is
certainly true for i = 0. Now suppose that this is true for every i′ < i and let us
prove it for i.

In the case r(C) = 0 we have two possibilities. Either Gi−1[C] is not planar,
then also G is not planar and (Gi−1, Ci−1) is definitely not c-planar. Then the
algorithm correctly rejects (and Gj , Cj is not defined for j ≥ i). Or Gi−1[C] is
planar and by Lemma 1 and Remark 1 pair (Gi−1, Ci−1) is c-planar if and only
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Input: Graph G and cluster set C, where each cluster has at most 4 outgoing edges.
Task: Accept (G, C) if and only if (G, C) is clustered planar.

1. Set G0 := G, C0 := C.
2. For i := 1 to |C| do:

(a) Let C be some cluster on the bottom-most level in Ci−1.
(b) If r(C) = 0 then

i. If Gi−1[C] is planar then set
Gi := Gi−1 \ C
Ci := {A \ C|A ∈ Ci−1 \ {C}, A ⊇ C} ∪ {A|A ∈ Ci−1, A �⊇ C }

ii. else REJECT.
(c) else

i. For each permutation π ∈ Sr(C) test whether C admits π (whether T π
C

is planar)
ii. If C admits no permutation, then REJECT.
iii. Let (Gi, Ci) be the replacement of cluster C by the corresponding graph

in (Gi−1, Ci−1).
3. If G|C| is planar then ACCEPT, otherwise REJECT (C|C| = ∅).

Fig. 5. An overview of the algorithm

if (Gi, Ci) is, since {B|B ∈ C \ {C}, B ⊆ C} is empty (C is on the bottom-most
level).

Now consider the case 1 ≤ r(C) ≤ 4. If C admits no permutation, then by
Lemma 3 the pair (Gi−1, Ci−1) is not c-planar and the algorithm correctly rejects
(and does not define Gj , Cj for j ≥ i). Otherwise C has a corresponding graph
by Corollary 1 and from the Proposition 1 we know that (Gi−1, Ci−1) is c-planar
if and only if (Gi, Ci) is c-planar.

Since |Ci| = |Ci−1| − 1 whenever defined, we have |C|C|| = 0 and thus C|C| = ∅
if C|C| is defined. But then (G|C|, C|C|) = (G|C|, ∅) is c-planar if and only if G|C|
is planar due to Remark 1, which completes the proof. ��

Proposition 3. The algorithm works in time O(n).

Proof. The cycle is executed at most |C| times, in each time we delete one cluster
or reject. When we omit a planarity testing, complexity of each step of cycle in
the algorithm is bounded by constant. We add constant number of vertices and
if we have a suitable representation of clusters (for example tree representation)
we can find cluster on the bottom-most level in constant time too. And then
for these operations we need |C| in complexity time. The algorithm touches each
vertex at most three times, when we add, test, and remove it. For vertices which
we added later we paid before, by constant in each iteration. And for the original
vertices we need extra n for planarity testing. Each vertex from the original graph
we touch only once, because if we touch it we remove it or reject whole graph.
Since |C| is bounded by O(n), the complexity of our algorithm is O(n). ��
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D2D1

Fig. 6. Two clusters with 5 outgoing edges that cannot be represented by any connected
graph

5 The Limits of the Approach

Let us consider clusters with more than 4 outgoing edges. Definition 1, Lemmas
2 and 4 easily generalize to this case as well as Lemma 3. The problem with
the generalization is that there are disconnected clusters with 5 outgoing edges
that admit a combination of permutations which cannot be represented by a
connected graph. In particular it can be shown that the two clusters from Fig. 6
have this property.

Let us try to formalize the result. Consider a graph R that is supposed to
be corresponding to some cluster C. Hence it has some distinguished vertices
s1, . . . , sr of degree 1 that are supposed to be identified with the vertices of G\C
when the cluster C is replaced by R in a graph G. Let R′ = V (R) \ {s1, . . . , sr}.
We say that the graph R admits a permutation π, if the cluster R′ of the clustered
graph (R, {R′}) admits a permutation π.

Proposition 4. There is no connected graph that admits the same number of
permutations as the cluster D1 from Fig. 6.

Proof. We will count the circular permutations. In total there are 12 circular per-
mutations on 5 elements, each representing 10 (standard) permutations. Observe
first that D1 admits 8 circular permutations. Now assume for a contradiction
that there is a connected graph R (with distinguished vertices s1, . . . , s5) that
admits also 8 circular permutations.

We observe that whenever we take a subgraph Q of the graph R, s1, . . . , s5 ∈
V (Q), then the graph Q admits at least the same number of permutations, since
we can just ommit the unnecessary parts from the appropriate embedding. Now
consider a subtree T of R with leaves of T being exactly the vertices s1, . . . , s5.
It is clear that R has such a subgraph since R is connected.

Since T has 5 leaves, it has at most 3 vertices of degree at least 3 — either
it has 3 vertices of degree 3, or one of degree 3 and one of degree 4, or just one
of degree 5. It is not hard to check that in the first two cases T admits 4 and 6
circular permutations, respectively. Thus in this cases R cannot admit 8 circular
permutations. The tree with just one vertex of degree 5 (among the vertices of
degree at least 3) admits all 12 circular permutations. Thus we know that T
must be some subdivision of K1,5.
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If R contains no path connecting two different branches of T , then clearly R
admits the same permutations as T i.e. all 12 circular permutations. On the other
hand, if R contains a path between two branches of T , then there is another tree
T ′, subgraph of R, that has one vertex of degree 4 and one vertex of degree 3.
But this means that R admits at most 6 permutations — a contradiction. ��
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Abstract. Deciding c-planarity for a given clustered graph C = (G, T )
is one of the most challenging problems in current graph drawing re-
search. Though it is yet unknown if this problem is solvable in polynomial
time, latest research focused on algorithmic approaches for special classes
of clustered graphs. In this paper, we introduce an approach to solve the
general problem using integer linear programming (ILP) techniques. We
give an ILP formulation that also includes the natural generalization of c-
planarity testing—the maximum c-planar subgraph problem—and solve
this ILP with a branch-and-cut algorithm. Our computational results
show that this approach is already successful for many clustered graphs
of small to medium sizes and thus can be the foundation of a practically
efficient algorithm that integrates further sophisticated ILP techniques.

1 Introduction

Drawing clustered graphs is a prevalent problem in practical applications of
graph drawing, e.g., to group nodes into departments, as well as in graph theory,
since the occurring graph theoretical problems are in particular challenging, even
in simplified special cases. A clustered graph C = (G, T ) is formally defined as a
graph G = (V,E) together with a rooted tree T , the inclusion tree of C, where
the leaves of T are the vertices of G. Each node ν of T represents a cluster of
the vertices V (ν) of G that are leaves of the subtree rooted at ν.

In a drawing of a clustered graph, the clusters themselves are drawn as simple
regions, e.g., rectangles, and special aesthetic criteria on the drawing need to be
met to guarantee readability. In particular, we call a drawing c-planar, if there
are neither edge–edge nor edge–region crossings and the drawing of a cluster ν
is contained in the interior of the region of a cluster μ if and only if μ lies on the
path from ν to the root of T . A c-planar clustered graph is a clustered graph
for which a c-planar drawing exists.

Though c-planarity has been intensively studied in the past years, the com-
plexity of deciding c-planarity is still unknown. Instead of considering the general
problem, latest research focused on special classes of clustered graphs. Besides
the well known results by Feng et al. [8] and Dahlhaus [4] for c-connected clus-
tered graphs, i.e., clustered graphs where the vertices V (μ) of each cluster μ
induce a connected graph, various classes of non-c-connected clustered graphs

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 114–120, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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have been studied [10,3,9,6,11]. In contrast to this, we tackle the general c-
planarity problem in this paper by presenting the foundation of an ILP-based
approach consisting of an ILP formulation and a branch-and-cut algorithm.

In order to draw not necessarily c-planar clustered graphs, Di Battista et
al. [5] adapted the topology-shape-metrics approach to clustered graphs and
described a planarization-based method for crossing minimization. This method
first computes a c-planar subgraph C′, and then reinserts the deleted edges
successively into a c-planar embedding of C′, so that only a small number of
crossings is produced. Our ILP approach also solves the first problem of this
c-planarization approach, i.e., finding a c-planar subgraph of maximum size:

Definition 1 (Maximum C-planar Subgraph Problem (MCPSP)). Given
a clustered graph C = (G = (V,E), T ) find a c-planar clustered graph C ′ = (G′ =
(V,E′), T ) with E′ ⊆ E such that E′ has maximum cardinality.

Obviously, MCPSP is NP-hard, since the maximum planar subgraph problem is
already NP-hard. This paper is organized as follows. Section 2 presents our ILP
formulation for MCPSP and a branch-and-cut algorithm for solving the ILP; an
experimental evaluation of this algorithm is given in Sect. 3.

2 ILP and Branch-and-Cut

In the following, let C = (G = (V,E), T ) be the given clustered graph with edge
set E. For a cluster ν in C let E(ν) denote the edge set induced by the vertices
V (ν) in cluster ν, and let E(ν̄) denote the edge set induced by the vertices in
V (ν̄) = V \ V (ν).

We say a c-connected clustered graph is completely connected if, for each non-
root cluster ν, the subgraph by V (ν̄) is connected. For our formulation we need
the following result by Cornelsen and Wagner [2]:

Theorem 1. A clustered graph is c-planar if and only if it is a subgraph of a
c-planar completely connected clustered graph. A completely connected clustered
graph C = (G, T ) is c-planar if and only if its underlying graph G is planar.

Our central concept for the formulation then is to (a) augment the given clustered
graph such that it becomes completely connected, and (b) to ensure that the
resulting graph, disregarding the cluster structure, is planar:

Corollary 1. C∗ is a maximum c-planar subgraph of C if and only if it is
the largest subgraph with the property that there exists a completely connected
clustered graph C′ such that (a) C∗ is its subgraph and (b) the underlying graph
of C′ is planar. If C∗ = C, C is c-planar.

In the following we will hence concentrate on finding such a completely connected
solution graph C′ = (G′ = (V,E′), T ).
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2.1 The ILP Formulation

We define the set F as the complement of E, i.e., F are the potential edges for
the augmentation. This allows us to introduce our two variables

xe, yf ∈ {0, 1} ∀e ∈ E, f ∈ F (1)

which are 1 if the corresponding edge is contained in the solution graph, and 0
otherwise. Then we can write the objective function as

max
∑

e∈E

xe − ε
∑

f∈F

yf . (2)

We want to maximize the number of original edges in the solution and use as few
augmenting edges as possible. In order for the latter criterion to not interfere
with the main optimization goal, we restrict its influence by the introduction of
ε := 0.1

3n ; due to Euler’s formula this guarantees that the second term in (2) does
not grow larger that 0.1.

We have two sets of constraints: the first set guarantees that the solution
graph C′ is completely connected; the second set ensures planarity of G′.

Connectivity Constraints. A cut set W |A with W ⊆ V and A ⊆ E in the graph
G = (V,E) is defined as the set of edges in A that are incident to exactly one
vertex of W . A graph is connected if and only if the cardinality of W |E is at
least 1 for any ∅ �= W ⊂ V . We define the connectivity constraints as:

∑

e∈W |E(ξ)

xe +
∑

f∈W |F (ξ)

yf ≥ 1 ∀ν ∈ T, ∀ ξ ∈ {ν, ν̄}, ∀∅ �= W ⊆ V (ξ) \ {wξ} (3)

While the case ξ ∈ T only guarantees c-connectivity, the additional constraints
with ξ �∈ T are necessary to ensure complete connectivity. We use W ⊆ V (ξ) \
{wξ} for some fixed wξ ∈ V (ξ) instead of W ⊂ V (ξ) to avoid redundancy.

Kuratowski Constraints. In order to guarantee that the solution graph is planar
we use Kuratowski constraints as introduced for the maximum planar subgraph
problem [12]. These constraints are based on Kuratowski’s theorem [14] which
states that a graph is planar if and only if it does not contain a subdivision of K5
or K3,3. We call these subdivisions Kuratowski subdivisions, and represent them
by their edge sets. Let K be the set of all Kuratowski subdivisions in (V,E ∪F ).
For any K ∈ K, the solution graph will not contain all edges of K, as this would
contradict its planarity. We hence formulate the Kuratowski constraints as

∑

e∈K

xe +
∑

e∈K

ye ≤ |K| − 1 ∀K ∈ K. (4)

Theorem 2. The ILP
{

max
∑

e∈E

xe − ε
∑

e∈F

ye, subject to (1), (3), and (4)

}

solves the maximum c-planar subgraph problem. If xe = 1 for all e ∈ E, the
given clustered graph is c-planar.
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2.2 Branch-and-Cut

Both constraint sets contain an exponential number of constraints and hence it
is not applicable to generate all constraints in advance. We solve the ILP within
a branch-and-cut framework: we start with a small subset of constraints, drop
the integrality constraints, and apply cutting-plane algorithms to add additional
constraints as required. The problem of identifying such cuts after obtaining a
fractional solution of the partial LP-relaxation is called separation problem.

Separation. Separating the connectivity constraints can be done in polynomial
time by computing minimum cuts on the graph, using the fractional solution as
edge capacities. On the other hand, there are no known polynomial algorithms
for the Kuratowski constraint separation, and we have to resort to a heuristic
routine, similar to the ones described in [12]: we round the fractional solution to
an integer solution, which we can interpret as our support graph S, and search for
Kuratowski subdivisions in S. For any such subdivision K we can test whether
the current fractional solution violates the constraint induced by K.

Traditional planarity test algorithms can extract a single Kuratowski subdi-
vision per run; in our experiments we use the extended test algorithm presented
in [1] which extracts multiple different subdivisions in linear time. Note that we
separate all cut constraints before separating any Kuratowski constraints.

Branching and Primal Heuristic. If we have a fractional solution, but cannot
find any violated constraints, we have to resort to branching. In such cases good
LP-based heuristics become crucial, to prune nodes early in the branch-and-
bound tree. Our heuristic works as follows: We start by computing a spanning
tree recursively for each cluster in a bottom-up scheme on T , using the frac-
tional solution as negative weights. Merging all these minimum spanning trees,
we obtain a c-connected and c-planar spanning tree R. We sort the remaining
edges based on their fractional values, and iteratively try to add them to R in
decreasing order. This can be done in polynomial time, since planarity testing of
a c-connected clustered graph is polynomial. We obtain a maximal c-connected,
c-planar subgraph R that implies a c-planar subgraph of C.

3 Computational Experiments and Discussion

We report on the results of our experimental evaluation. The main intention of
this short study is to point out the feasibility of our approach, without giving
attention to speed-up techniques like strong preprocessing and heuristics, column
generation, etc. We implemented our approach within the Open Graph Drawing
Framework (www.ogdf.net) using the branch-and-cut framework Abacus [13]
with Cplex 9.0 as LP-solver. The experiments were run on a 2.33GHz Intel
Xeon with 2GB RAM per process and a time limit of 30 minutes per instance.

In addition to solving the MCPSP, we also experimented with a variant were
only c-planarity is tested; in this case no maximum c-planar subgraph needs to
be computed and subproblems are pruned as soon as their dual bound proves
that an original edge would have to be deleted.

www.ogdf.net
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compl. Clusters Vertices Edges
# inst. c-plan. c-con. con. min avg max max max

Planar graphs 1815 1494 25 2 3 4 9 29 30
Non-planar graphs 116 0 3 0 3 5.2 9 26 30
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min avg 95% max

P-Sub 0.01 4.9 9.6 1460.9
NP-Sub 0.01 40.9 18.7 1456.5
P-CPl 0.01 4.3 6.1 249.9

Fig. 1. (top) Properties of the benchmark instances. (bottom) Average runtime per-
formance of the branch-and-cut algorithm. P-Sub and NP-Sub are running times for
solving the MCPSP on the (non-)planar graphs, respectively. P-CPl denotes the run-
time for the c-planarity test on the instances with underlying planar graphs. 95%
denotes the 95%-percentile.

Benchmark Set. We created a benchmark set based on the Rome graphs [7] by
generating cluster hierarchies on top of each graph of the library. The library
contains planar and non-planar graphs; key properties are shown in Table 1(top).

We create a cluster structure by randomly picking vertices in a cluster ν,
starting with the root cluster, and after each pick, a random decision is made
if a new cluster is generated with the vertices picked so far, up to a maximum
number of 9 clusters. We restrict the maximum cluster tree depth to two levels (in
addition to the root cluster), the number of edges to 30, and divide the created
clustered graphs into two groups depending on the planarity of the underlying
graph. The benchmark set can be found at ls11-www.cs.uni-dortmund.de/
people/klein/clusterbenchmarks08.zip.

Results and Discussion. Figure 1(bottom-left) shows the resulting running times
required by our approach, relative to the graph size; the table on the bottom
right summarizes the runtime performance of the instances, depending on the
planarity of the underlying graph. We see that restricting the computation to
pure c-planarity testing by pruning leads to decreases in the overall average
computation time, but does not necessarily need to speed up the computation for
each instance, because subproblems containing the maximum c-planar subgraph
may be pruned, which extends the search in the branch tree.

Our main observation is that the performance on most of the test graphs is
promising: only 2 non-planar and 17 planar graphs could not be solved within
the time limit; the 95%-percentile shows that long running cases are extremely
rare. The average running time of the c-connected clustered graphs is below
0.02 seconds, indicating that the ILP performs well on this polynomial time

ls11-www.cs.uni-dortmund.de/people/klein/clusterbenchmarks08.zip
ls11-www.cs.uni-dortmund.de/people/klein/clusterbenchmarks08.zip
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solvable class. We therefore conjecture that the ILP may be useful as a tool
when developing c-planarity tests for special graph classes, as the ILP may give
hints on the classes’ hardness.

Conclusion and Future Work. We introduced the Maximum C-planar Subgraph
Problem and presented an ILP formulation together with a branch-and-cut
approach to solve it to optimality. Our brief experimental evaluation showed
the general feasibility of the concept. We believe that our branch-and-cut ap-
proach can be improved to also cope with harder instances, which is part of
our future work, especially by using stronger heuristics and preprocessing to
reduce the search space, as well as pricing instead of adding all possible vari-
ables in advance. Encouraged by the results on the c-connected graphs, we also
plan to perform a closer investigation of the behavior of our branch-and-cut
approach with regard to other polynomial time solvable classes of clustered
graphs.
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Abstract. We present a polynomial-time algorithm for c-planarity test-
ing of clustered graphs with fixed plane embedding and such that every
cluster induces a subgraph with at most two connected components.

1 Introduction

Clustered planarity (or shortly, c-planarity) has recently become an intensively
studied topic in the area of graph and network visualization. In many situations
one needs to visualize a complicated inner structure of graphs and networks.
Clustered graphs provide a possible model of such a visualization, and as such
they find applications in many practical problems, e.g., management information
systems, social networks or VLSI design tools [5]. However, from the theoretical
point of view, the computational complexity of deciding c-planarity is still an
open problem and it is regarded as one of the challenges of contemporary graph
drawing.

A clustered graph is a pair (G, C), where G = (V, E) is a graph and C is a
family of subsets of V (called clusters), with the property that each two clusters
are either disjoint or in inclusion. We always assume that the vertex set V is
in C, and we call it the root cluster. We say that a clustered graph (G, C) is
clustered-planar (or shortly c-planar), if the graph G has a planar drawing such
that we may assign to every cluster X ∈ C a compact simply connected region of
the plane which contains precisely the vertices of X and whose boundary crosses
every edge of G at most once (see Sect. 2 for the precise definition).

It is well known that planar graphs can be recognized in polynomial (even
linear) time. For c-planarity, determining the time-complexity of the decision
problem remains open; only partial results are known. If every cluster of (G, C)
induces a connected subgraph of G, then the c-planarity of (G, C) can be tested in
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linear time by an algorithm of Dahlhaus [3], which improves upon a polynomial
algorithm of Feng et al. [5]. Several generalizations of this result are known:
c-planarity testing is polynomial for clustered graphs in which all disconnected
clusters form a single chain in the cluster hierarchy [7], for clustered graphs
in which for every disconnected cluster X , the parent cluster and all the sibling
clusters of X are connected [7], and for clustered graphs where every disconnected
cluster X has connected parent cluster, with the additional assumption that each
component of X is adjacent to a vertex not belonging to the parent of X [6].

Another approach to c-planarity testing is to consider flat clustered graphs,
which are clustered graphs in which all non-root clusters are disjoint. Even in
this restricted setting, the complexity of c-planarity testing is unknown. However,
polynomial-time algorithms exist for special types of flat clustered graphs, e.g.,
if the underlying graph is a cycle and the clusters are arranged in a cycle [2], if
the underlying graph is a cycle and the clusters are arranged into an embedded
plane graph [1], or if the underlying graph is a cycle and the clusters contain at
most three vertices [9]. Even for these very restricted settings, the algorithms
are quite non-trivial.

Suppose an embedding of the underlying graph is fixed. Does the c-planarity
testing become easier? This question was already addressed in [4], who provide a
linear algorithm for flat clustered graphs with a prescribed embedding in which
all faces have size at most five.

In this paper, we also deal with clustered graphs (G, C), for which the em-
bedding of G is fixed. In this setting, we obtain a polynomial algorithm for
c-planarity of clustered graphs in which each cluster induces a subgraph with at
most two connected components.

Theorem 1. There is a polynomial time algorithm for deciding c-planarity of a
clustered graph (G, C), where G is a plane graph and every cluster of C induces
a subgraph of G with at most two connected components.

In this extended abstract, we present a simplified version of the algorithm which
assumes that the cluster hierarchy is flat. We also omit some of the proofs.

2 Preliminaries

We follow standard terminology on finite simple loopless plane graphs. A plane
graph is an ordered pair G = (V, E), where V is a finite set of points in the plane
(called vertices) and E is a set of Jordan arcs (called edges), such that every
edge connects two distinct vertices of G and avoids any other vertex, every pair
of vertices is connected by at most one edge, and no two edges intersect, except
in a possible common endpoint.

If G = (V, E) is a plane graph and X ⊆ V is a set of vertices, we let X denote
the set V \X and we let G[X ] denote the subgraph of G induced by X .

Two plane graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if there is
a continuous bijection f of the plane with continuous inverse such that V ′ =
{f(v) : v ∈ V } and E′ = {f [e] : e ∈ E} (where f [e] is the set {f(x) : x ∈ e}).
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The algorithm we will present in this paper expects a representation of a
plane graph as part of its input. Since the algorithm does not need to make a
distinction between isomorphic plane graphs, we may represent a plane graph
G by a data structure which identifies G uniquely up to isomorphism. We may
identify the isomorphism class of G by specifying, for every vertex of G, the
cyclic order of edges and faces incident to v, and by specifying the outer face of
G. The isomorphism class of a plane graph can be thus represented by a data
structure whose size is polynomial in |V |.

Let G = (V, E) be a plane graph. A cluster set on G is a set C ⊆ P(V (G))
such that for all X, Y ∈ C, either X and Y are disjoint or they are in inclusion;
the pair (G, C) is called a plane clustered graph. The elements of C are called
clusters. We assume that the set V (G) is always in C, and we call it the root
cluster. A cluster that does not contain any other cluster as a subset is called
minimal.

Clusters are naturally ordered by inclusion. The set V (G) is the maximum
of this ordering. A cluster is called connected if it induces in G a connected
subgraph and disconnected otherwise. A component of a cluster X ∈ C is a
maximal set X1 ⊆ X such that G[X1] is a connected subgraph of G[X ].

We say that a plane clustered graph (G, C) is connected (or 2-connected, or
disconnected) if the graph G is connected (or 2-connected, or disconnected). Let
us remark that some earlier papers use the term ‘connected clustered graph’ to
denote a clustered graph in which every cluster is connected; we break with this
convention for the sake of consistency of our definitions.

In this paper, we consider clustered graphs (G, C) in which every disconnected
cluster in C has exactly two components. We will call such a pair (G, C) a 2-
component clustered graph.

For a plane clustered graph (G, C), a clustered planar embedding is a mapping
embc that assigns to every cluster X ∈ C a compact simply connected planar
region embc(X) (called the cluster region of X) whose boundary γ(X) is a closed
Jordan curve (called the cluster boundary of X), such that

– for each vertex v ∈ V and each cluster X ∈ C, v is in embc(X) if and only if
v ∈ X ,

– for each cluster X ∈ C, the cluster boundary γ(X) does not contain any
vertex from V ,

– for every two clusters X and Y , the regions embc(X) and embc(Y ) are dis-
joint (in inclusion) if and only if X and Y are disjoint (in inclusion, respec-
tively), and

– for every edge e ∈ E and every cluster X ∈ C, the edge e crosses the cluster
boundary of X at most once.

A plane clustered graph is called clustered planar (shortly c-planar) if it allows
a clustered planar embedding.

When testing c-planarity, we adopt the approach first used in [5] of adding
extra edges to the underlying graph in order to make each cluster connected.
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Definition 1. Let (G, C) be a plane clustered graph. Let c be a cycle in G whose
vertices all belong to a cluster X ∈ C. We say that c is a hole of the cluster X,
if the interior region of c contains a vertex not belonging to X.

Clearly, a plane clustered graph with a hole is not c-planar. On the other hand,
it is known [5] that a plane clustered graph without holes whose clusters are all
connected is c-planar. For a given plane clustered graph (G, C) the existence of
a hole can be determined in polynomial time [5].

Definition 2. Let G be a plane graph. A candidate edge of G is a simple curve
e �∈ E such that (V, E ∪ {e}) is a plane graph. A candidate set is a set S of
candidate edges of G such that (V, E ∪ S) is a plane graph. We use the notation
G ∪ e and G ∪ S as a shorthand for (V, E ∪ {e}) and (V, E ∪ S) respectively.

We say that two candidate edges e and e′ are isomorphic if G ∪ e and G ∪ e′

are isomorphic plane graphs.

Note that a pair of vertices u, v of a plane graph G may be connected by two
distinct non-isomorphic candidate edges. On the other hand, it is not hard to see
that a plane graph on n vertices has at most O(n2) non-isomorphic candidate
edges.

The following theorem reduces c-planarity testing to searching for a specific
set of candidate edges. It was proved in an equivalent version by Feng et al. [5].

Theorem 2. A plane clustered graph (G, C) is c-planar if and only if there exists
a candidate set S with the following properties:

1. (G ∪ S, C) has no hole,
2. every cluster X of C induces a connected subgraph in G ∪ S.

A set S of candidate edges satisfying the above conditions is called a satura-
tor1. A set S that satisfies the first condition will be called a partial saturator.
We say that a candidate edge e saturates a cluster X , if e connects a pair of
vertices belonging to different components of X . A saturator S is minimal if no
proper subset of S is a saturator. Note that every candidate edge from a mini-
mal saturator S saturates a cluster from C. Moreover, if X is a cluster with two
components that does not contain any disconnected subcluster, then a minimal
saturator S has exactly one candidate edge saturating X .

Definition 3. If e is a candidate edge of a plane clustered graph (G, C) such that
(G, C) is c-planar if and only if (G ∪ e, C) is c-planar, then the edge e is called
harmless. Similarly, a candidate set S is harmless provided (G, C) is c-planar if
and only if (G ∪ S, C) is c-planar.

Note that if (G, C) is a c-planar clustered graph, then a candidate set is harmless
if and only if it is a subset of a saturator of (G, C). On the other hand, if (G, C)
is not c-planar, then any candidate set is harmless.

Let us now present several simple but useful lemmas, whose proofs are omitted
due to space constraints.
1 Note that this definition of saturator differs slightly from that of some other papers—

here, candidate edges are already embedded.
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Lemma 1. Let (G, C) be a plane clustered graph without holes, let X ∈ C be a
cluster which is minimal and connected. Then (G, C) is c-planar if and only if
(G, C \ {X}) is c-planar.

The next lemma shows that c-planarity testing of 2-component graphs can be
reduced to c-planarity testing of 2-component connected plane clustered graphs.

Lemma 2. If there is a polynomial time algorithm for deciding c-planarity for
connected 2-component plane clustered graphs, then there is a polynomial time al-
gorithm for deciding c-planarity for arbitrary 2-component plane clustered graphs.

The following lemma allows us to reduce c-planarity testing of a connected
graph to an equivalent instance of c-planarity where the underlying graph is
2-connected.

Lemma 3. Let (G, C) be a connected plane clustered graph with at least three
vertices which is not 2-connected. There is a polynomial-time transformation
which constructs a plane clustered graph (G′, C′) such that G′ is connected, G′

has fewer components of 2-connectivity than G, (G′, C′) is c-planar if and only
if (G, C) is c-planar, and there is a bijection f between C and C′ such that for
every cluster X ∈ C, the graph G[X ] has the same number of components as the
graph G′[f(X)].

Thanks to Lemma 3, a connected 2-component plane c-planarity instance (G, C)
can be polynomially transformed into an equivalent 2-connected 2-component
instance (G′, C′). To achieve this, we simply perform repeatedly the transforma-
tion described in Lemma 3, until the resulting graph has only one 2-connected
component.

Combining Lemma 2 and Lemma 3, we see that to decide the c-planarity of
2-component plane graphs, it is sufficient to provide an algorithm that decides
c-planarity of 2-connected 2-component plane graph. This is an important tech-
nical simplification, because in a 2-connected plane graph, the boundary of every
face is a cycle, and a candidate edge in every inner face is uniquely determined
(up to isomorphism) by its end-vertices and the face where it should be drawn.

Unfortunately, if F is the outer face of G, a pair of vertices of F may still be
connected by two non-isomorphic candidate edges belonging to F (see Fig. 1).
To avoid this technical nuisance, we will restrict the set of candidate edges. Let
(G, C) be a 2-connected plane clustered graph, let f ∈ E(G) be an edge which
connects a pair of vertices u, v ∈ V (G), with the following properties:

– f appears on the boundary of the outer face of G,
– every non-root cluster contains at most one of the two vertices u, v.

Such an edge f exists, otherwise the boundary of the outer face would be a hole
of a non-root cluster. We say that a candidate edge e of G is properly drawn if f
is on the boundary of the outer face of G∪ e. Note that every candidate edge in
an inner face of G is properly drawn, while a pair of non-adjacent vertices on the
boundary of the outer face may be connected by two non-isomorphic candidate
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u
v

this candidate edge
is properly drawn

this candidate edge
is not properly drawn

Fig. 1. Two candidate edges connecting the same pair of vertices in the outer face

edges, exactly one of which is properly drawn. Thus, a properly drawn candidate
edge is uniquely determined (up to isomorphism) by its pair of endpoints and
the face where it should be embedded.

It can be shown that if a 2-connected plane clustered graph is c-planar, then
it has a saturator that only contains properly drawn candidate edges.

3 The Algorithm

In this section, we present our algorithm deciding the c-planarity of 2-component
plane clustered graphs. As mentioned in the introduction, we will only deal with
the restricted setting of flat clustered graph, i.e., the clustered graphs where all
the non-root clusters are minimal.

Our aim is to find a polynomial algorithm deciding the c-planarity of plane
2-connected 2-component flat clustered graph (G, C).

To achieve this, we will present a polynomial-time procedure FIND-EDGE
which, when presented with a 2-component 2-connected hole-free plane clustered
graph (G, C) as an input, will either determine that (G, C) is not c-planar, or it
will output a harmless candidate edge e that saturates a cluster X ∈ C. Observe
that such a candidate edge e cannot create a hole in G ∪ e, because both its
endpoints belong to different components of X by assumption, and there is
no other non-root cluster containing the endpoints of e. This is the main reason
why the flat clustered graphs are much easier to deal with than general clustered
graphs.

If the procedure FIND-EDGE outputs a harmless candidate edge e, it does
not necessarily mean that (G, C) is c-planar. However, since e is harmless, we
know that (G, C) is c-planar if and only if (G ∪ e, C) is c-planar. We may then
call FIND-EDGE again on the input (G∪e, C), to determine that (G∪e, C) (and
hence also (G, C) ) is not c-planar, or to find another harmless edge. Since every
candidate edge output by the FIND-EDGE procedure saturates a cluster from
C, after at most |C| invocations of FIND-EDGE we will either obtain a saturator
of (G, C) or determine that (G, C) is not c-planar.

The FIND-EDGE algorithm maintains a set P of permitted edges. In the
beginning, the set P is initialized to contain all the properly drawn candidate
edges that saturate a cluster from C. In the first phase of the algorithm, called the
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pruning phase, the algorithm iteratively removes some candidate edges from P ,
using a set of pruning rules, which will be described in Subsection 3.1. The
pruning rules guarantee that if (G, C) has a saturator, then it also has a saturator
which is a subset of P .

When the set P cannot be further pruned, the algorithm performs the follow-
ing triviality checks, described in detail in Subsection 3.2:

– if there a disconnected cluster that cannot be saturated by any of the per-
mitted edges, then (G, C) is not c-planar,

– if there is a disconnected cluster saturated by a unique permitted edge e ∈ P ,
then e is harmless,

– if there is a permitted edge e that does not cross any other permitted edge,
then e is harmless.

If any of the above conditions is satisfied, the algorithm outputs the correspond-
ing solution and stops. Otherwise, it distinguishes two cases:

1. If there is a disconnected cluster X ∈ C and a face F of G such that every
permitted edge saturating X appears in the face F , then the algorithm
performs a subroutine LOCATE-IN-FACE, which will output a harmless
permitted edge inside F and stop. This subroutine, together with a brief
sketch of its proof, is presented in Subsection 3.3.

2. If the previous case does not apply, it can be shown that any permitted edge
is harmless. The algorithm then performs a subroutine called OUTPUT-
ANYTHING which outputs an arbitrary permitted edge and stops. The
proof of its correctness is sketched in Subsection 3.4.

Before we describe the main parts of the algorithm in greater detail, we need
some more terminology.

Let G be a 2-connected plane graph. Let a, b, c, d be a quadruple of distinct
vertices on the boundary of a face F of G. We say that the pair ab crosses the
pair cd in F , if the four vertices appear on the boundary of F in the cyclic order
acbd. If e and f are two candidate edges of a 2-connected clustered graph (G, C),
we say that e crosses f if the two candidate edges belong to the same face F of
G and the endpoints of e cross with the endpoints of f . For two sets of vertices
X and Y , we say that X crosses Y in face F , if there are vertices a, b ∈ X and
c, d ∈ Y such that ab crosses cd in the face F .

Most of our arguments rely on the following basic properties of connected
subgraphs of 2-connected plane graphs:

– If G is a 2-connected plane graph, and X and Y are disjoint sets of vertices
such that G[X ] and G[Y ] are both connected, then X and Y do not cross in
any face of G.

– Let G be a 2-connected plane graph. Let X , Y and Z be disjoint sets of
vertices, each of them inducing a connected subgraph of G. Then G has at
most two faces that contain vertices of all the three sets on their boundary.

The proof of these properties are omitted from this extended abstract.
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3.1 The Pruning Phase

In the pruning phase, the algorithm FIND-EDGE iteratively restricts the set
P of permitted candidate edges. In the beginning of the pruning phase, the set
P is initialized to contain all the properly drawn candidate edges that saturate
at least one cluster. Note that every permitted edge e ∈ P saturates a unique
cluster X ∈ C, since we assume that C is flat. A permitted edge that saturates
X will be called an X-edge.

If X is a minimal cluster, and if e and e′ are two X-edges, we say that e and
e′ are equivalent, if for every permitted edge f ∈ P that is not an X-edge, the
edge f crosses e if and only if it crosses e′.

Throughout the pruning phase, the set P will satisfy the following three in-
variants.

– For each cluster X and each face F , all the X-edges that belong to F form a
vertex-disjoint union of complete bipartite subgraphs; these complete bipar-
tite subgraphs will be called X-bundles (or just bundles, if X is clear from
the context). Two X-edges from different bundles do not cross (see Fig. 2).

– If X and Y are distinct clusters, then if an X-edge e crosses two Y -edges f
and f ′, then f and f ′ belong to the same bundle.

– If (G, C) is c-planar, then it has a saturator that is a subset of P .

In the beginning, when P contains all the properly drawn candidate edges that
saturate some cluster from C, the three invariants above are satisfied. In fact, if
F is a face that contains at least one X-edge, then all the X-edges in F form a
complete bipartite graph. Thus, each face has at most one X-bundle.

To prune the set P , we apply the following two rules.

– If, for a cluster X , there is a permitted edge that crosses all the X-edges,
then remove from P each edge that crosses all the X-edges.

– Let e = uv and e′ = u′v be two X-edges that belong to the same face F and
that share a common vertex v. If e and e′ are equivalent, remove from P all
the X-edges in F incident to u′.

It can be proven that an arbitrary application of one of the rules above preserves
all the invariants. The algorithm applies the pruning rules in arbitrary order,
reducing the number of permitted edges in each step, until it reaches the situation
when none of the rules is applicable. Let us remark that in the general (i.e., non-
flat) situation, the pruning is slightly more complicated: there are four pruning
rules instead of two, and the rules have assigned priorities which are taken into
account when the algorithm selects which rule to apply.

F

X

Fig. 2. A face F with two bundles of X-edges
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3.2 Triviality Checks

When there is no rule applicable to the set P of permitted edges, the prun-
ing phase ends. The FIND-EDGE algorithm then proceeds with three types of
triviality checks, described below.

First, the algorithm checks whether there is a cluster X that is not saturated
by any permitted edge. If this is the case, the algorithm concludes that the
clustered graph (G, C) is not c-planar and stops. This is a correct conclusion,
since if (G, C) were c-planar, then by the last invariant there would have to be a
saturator made of permitted edges, which is clearly impossible.

As the next triviality check, the algorithm tries to find a cluster X , such that
the set P contains a single X-edge e. If such a cluster X is found, the algorithm
outputs e as a harmless edge and stops. This is again a correct output, since by
the last invariant, if G is c-planar, then it has a saturator S which is a subset
of P . Necessarily, S contains the edge e. This implies that e is harmless.

In the last type of triviality check, the algorithm looks for a permitted edge e
that does not cross any permitted edge belonging to a different cluster. If such
an edge e is found, the algorithm outputs e as a harmless edge and stops. This
is again easily seen to be a correct output.

If none of the triviality checks succeeds, the algorithm counts, for each clus-
ter X , the number of faces of G that contain at least one X-edge. We will say
that a cluster X is one-faced if all the X-edges belong to a single face of G, X
is two-faced if all the X-edges appear in the union of two distinct faces, and X
is many-faced otherwise.

If there is a one-faced cluster X whose permitted edges belong to a face F ,
then the algorithm performs a subroutine LOCATE-IN-FACE to find a harmless
permitted edge in F . This subroutine is described in the next subsection.

If there is no one-faced cluster, it can be shown that all the clusters are two-
faced, and that any permitted edge is harmless. The algorithm then outputs an
arbitrary permitted edge and stops. The main arguments involved in proving
the correctness of this step are sketched in Subsection 3.4.

3.3 LOCATE-IN-FACE

Assume that we are given a set P of permitted edges satisfying all the invariants
described in Subsection 3.1. Assume furthermore than none of the pruning rules
is applicable to P , and none of the triviality checks has succeeded.

For a face F , we say that a cluster X is an F -cluster, if all the X-edges belong
to F . We say that a vertex of X is active, if it is incident to at least one X-edge.

Assume that F is a face with at least one F -cluster. Using our assumptions
about P , we are able to deduce the following facts:

– If X is an F -cluster, and Y is a cluster that has a permitted edge which
crosses a permitted edge of X , then Y is also an F -cluster.

– If X is an F -cluster with two components X1 and X2, then each component
Xi has at most two active vertices. It follows that X has either four permitted



130 V. Jeĺınek et al.

X1

X2

X1

X2

X1

X2

Fig. 3. Possible configurations of permitted edges of an F -cluster X

Fig. 4. Mutual positions of permitted edges of two crossing F -clusters

edges which all belong to a single bundle, or X has exactly two permitted
edges (see Fig. 3; recall that due to the triviality checks, each cluster has at
least two permitted edges).

Let X be an arbitrary F -cluster, let X1 and X2 be its two components. From
the triviality checks, we know that every X-edge is crossed by a permitted edge
of another cluster. Let Y �= X be a cluster whose permitted edge crosses an X-
edge, and let Y1 and Y2 be its two components. Note that a set Yi may not cross
with the set Xj on the boundary of F , because these two sets induce connected
subgraphs of G. Recall also, that no Y -edge may intersect all the X-edges (and
vice versa), because it would have been pruned.

Putting all these facts together, we conclude that the mutual position of the
X-edges and Y -edges corresponds to one of the situations depicted on Fig. 4.

Note that all the configurations of Fig. 4 exhibit a ‘mirror symmetry’. To make
this observation rigorous, we define a ‘symmetry mapping’ σ on the set of all the
F -active vertices as follows: let X be an arbitrary F -cluster, with components
X1 and X2. If a component Xi contains two active vertices x and x′, then we
define σ(x) = x′ and σ(x′) = x. If Xi contains only one active vertex x, then we
put σ(x) = x. We then extend the mapping σ to the set of X-edges in a natural
way: for an X-edge e with endpoints x and y, we define σ(e) to be the X-edge
with endpoints σ(x) and σ(y).

The mapping σ has the following properties:

– For an F -cluster X and an X-edge e, σ(e) is an X-edge different from e.
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– If X and Y are F -clusters, an X-edge e crosses a Y -edge f if an only if σ(e)
crosses σ(f).

– An X-edge e is harmless if and only if σ(e) is harmless.

From these properties, it can be easily deduced that if an F -cluster X has only
two permitted edges, then both these edges are harmless.

Furthermore, it is possible to show that if there is at least one F -cluster in a
face F , then there is also an F -cluster that has only two permitted edges.

The procedure LOCATE-IN-FACE is then easy to describe: as an input, the
procedure expects a face F for which there is at least one F -cluster. The proce-
dure then finds an F -cluster X that has only two permitted edges, and outputs
any X-edge as a harmless edge.

3.4 OUTPUT-ANYTHING

If, after the end of the pruning phase, each cluster has permitted edges in at
least two distinct faces, and if none of the triviality checks is applicable, we can
show that the set P of permitted edges has the following properties:

– For each cluster X , there are exactly two faces of G that contain the X-edges.
– All the X-edges that appear in the same face are equivalent.
– If X and Y are distinct clusters, and if an X-edge crosses a Y -edge, then all

the X-edges and all the Y -edges appear in the same pair of faces, and every
Y -edge crosses all the X-edges in its face.

– Let S ⊆ P be a minimal saturator of permitted edges. For each edge e ∈ S
find an arbitrary permitted edge e that saturates the same cluster as e and
appears in a different face than e. The set S = {e : e ∈ S} is another minimal
saturator of permitted edges.

From these properties, we may deduce that every permitted edge e ∈ P is
harmless. The procedure OUTPUT-ANYTHING simply outputs an arbitrary
permitted edge and stops.

This completes the description of the simplified version of the FIND-EDGE
algorithm. It is clear that the algorithm runs in polynomial time.

4 Concluding Remarks

We have shown that c-planarity of 2-component plane clustered graphs can be
determined in polynomial time. This result raises several related open problems.

Problem 1. What is the complexity of the c-planarity problem for 2-component
graphs (G, C) if the embedding of G is not prescribed?

Problem 2. What is the complexity of deciding the c-planarity of clustered graphs
with O(1) components per cluster?

Problem 3. What if we relax the 2-component assumption by allowing the graph
G to have arbitrarily many components, and only restricting the number of
components of the non-root clusters?
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Visual Analysis of One-to-Many Matched Graphs�

Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Pietro Palladino

Dipartimento di Ingegneria Elettronica e dell’Informazione,
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Abstract. Motivated by applications of social network analysis and of Web-
search clustering engines, we describe an algorithm and a system for the display
and the visual analysis of two graphs G1 and G2 such that each Gi is defined
on a different data set with its own primary relationships and there are secondary
relationships between the vertices of G1 and those of G2. Our main goal is to
compute a drawing of G1 and G2 that makes clearly visible the relations be-
tween the two graphs by avoiding their crossings, and that also takes into account
some other important aesthetic requirements like number of bends, area, and as-
pect ratio. Application examples and experiments on the system performances
are also presented.

1 Introduction

The visual analysis of complex data sets is one of the most natural applications of graph
drawing technologies (see, e.g., [2–4]). A typical application scenario consists of a set of
data (nodes) and one or more relationships among these data (each relationship is a set
of edges); therefore one is given one or more graphs on the same set of nodes. Both each
graph must be visualized in a readable way and possible similarities among the different
graphs must be easily detected by looking at the different drawings. This scenario has,
for example, motivated a rich body of papers and systems about simultaneous graph
embeddings and visualizations of evolving graphs (see, e.g., [7, 13–16]).

Recently, Collins and Carpendale [8] proposed a new research direction devoted to
the visual comparison and analysis of heterogeneous data sets. The input consists of n
sets of data D1, D2, . . . , Dn, such that for each Di a distinct set of primary relation-
ships (i.e., a distinct graph) is defined; also, there are secondary relationships which
model semantic connections between data belonging to different sets. The visualization
consists of a set of n drawings (one for each graph) on top of which the edges that repre-
sent the secondary relationships are displayed. Collins and Carpendale present a system,
called VISLINK, where each graph is drawn on a distinct plane and the secondary rela-
tionships are links between these planes (see Fig. 1(a) for a schematic illustration). The
work by Collins and Carpendale extends a previous work by Schneiderman and Aris
where multi-plane views with inter-plane edges are used to visualize different semantic
substrates of a same graph [19](see Fig. 1(b) for an illustration).
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(a) (b)

Fig. 1. Schematic illustrations of a visualization (a) adopted by VisLink, (b) using different se-
mantic substrates of a same network. In both the visualizations the drawing on each plane has
been computed without taking into account the relationships with the other. This may cause many
crossings between inter-sets relationships.

Motivated by applications of social network analysis and of Web search clustering
engines, we elaborate on the concepts by Collins and Carpendale by studying the fol-
lowing problem: We are given two graphs G1 and G2 and a function that defines a set
of secondary relationships by mapping some of the vertices of G1 to some other ver-
tices of G2; we aim at visually analyzing and interacting both with G1, G2 and with
their secondary relationships. We observe that the systems described in [8, 19] follow
the common approach of drawing each graph independently of each other. As a result,
the secondary edges may be difficult to read as they can have many crossings. Our main
goal is to design a system where the two drawings are computed by taking into account
the edge-crossing minimization of the secondary edges. We focus on one-to many re-
lationships between G1 and G2, i.e., vertices of G1 are associated with disjoint subsets
of vertices of G2. The main contributions of the paper are the following:

– We introduce the concept of one-to-many matched graphs and define drawing con-
ventions for these graphs in a strong and non-strong model. Both drawings require
the secondary relationships between the graphs not to cross each other (Sect. 2).

– We describe a system that computes strong and non-strong one-to-many matched
drawings of the input graphs by also taking into account the optimization of impor-
tant aesthetic requirements. Furthermore, the system provides the user with several
interaction functionalities that make it possible to analyze the drawings at differ-
ent levels of details by collapsing/expanding clusters and by filtering information
with the definition of node/edge thresholds (Sect. 3). Our drawing approach com-
bines orthogonal drawings in the topology driven approach with circular drawing
algorithms, and adopts an edge bundling technique to reduce the visual complexity
introduced by some links.

– We show the effectiveness of the system by presenting application examples
(Sect. 4), and an experimental study on the system performances (Sect. 5).

We finally remark that the problem of drawing two matched planar graphs G1 and
G2 with one-to-one secondary relationships between them have been originally studied
in [11], where it is required that the drawing of each Gi is planar and that the secondary
edges are represented as non-intersecting horizontal segments.
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2 One-to-Many Matched Graphs and Drawings

We assume familiarity with basic concepts of graph planarity and graph drawing [10].
If G is a graph, we denote by Γ (G) a drawing of G. Γ (G) is an orthogonal drawing if
each edge is drawn as a chain of horizontal and vertical segments. A bend in Γ (G) is a
point of an edge shared by a horizontal and a vertical segment of the edge. A drawing
Γ (G) is a circular drawing if there is a circle passing through all vertices and each
edge is drawn as a straight-line segment. In the following, if G = (V,E) is a graph and
V ′ ⊆ V we denote by G(V ′) the subgraph of G induced by the vertices of V ′.

Let G1 = (V1, E1) and G2 = (V2, E2) be two distinct graphs. We say that 〈G1, G2〉
is a pair of one-to-many matched graphs if: (i) Each vertex u of G1 is associated with a
subset M(u) = {v1, v2, . . . , vk} of vertices of G2, which we call the cluster of u in G2;
(ii) the set of clusters {M(u) ⊆ V2 : u ∈ V1} is a partition of V2, i.e.,

⋃
u∈V1

M(u) =
V2 and

⋂
u∈V1

M(u) = ∅.
Let 〈G1, G2〉 be a pair of one-to-many matched graphs, and let Γ (G1), Γ (G2) be

drawings of G1 and G2, respectively. We say that 〈Γ (G1), Γ (G2)〉 is a one-to-many
matched drawing if the following properties hold: (P1) The bounding boxes of Γ (G1)
and Γ (G2) do not intersect. (P2) For each vertex u of G1, cluster M(u) in Γ (G2) is
bounded by a rectangular region R(u) such that: (i) G(M(u)) is completely contained
in R(u); (ii) each vertex v ∈ V2 \M(u) is outside R(u); (iii) each edge of G2 inter-
sects the boundary of R(u) at most once. (P3) For each vertex u of G1, there exists a
simple curve (u) that connects the geometric shape pu representing u in Γ (G1) to the
boundary of R(u) in Γ (G2), in such a way that

⋂
u∈V1

(u) = ∅.
In the paper, simple curves (u) are referred to as matching connections. Property

(P3) guarantees that there is no intersection between distinct matching connections.
A one-to-many matched drawing is said to be strong if the centers of the vertices of
Γ (G1) have distinct y-coordinates and regions R(u) are vertically ordered in Γ (G2)
according to the positions of the corresponding vertices in Γ (G1). More formally, if
u1, u2 ∈ V1 and pu1 is above pu2 in Γ (G1), then R(u1) is completely above R(u2) in
Γ (G2). In the paper, a one-to-many matched drawing that is not strong will be referred
to as a non-strong one-to-many matched drawing. Figure 2 shows two examples of one-
to-many matched drawings for the same pair of graphs. The one in Fig. 2(b) is a strong
one-to-many matched drawing.

3 The System MOM

In this section we present a system for the display and the visual analysis of one-to-
many matched drawings. We call our system MOM1. Let 〈G1, G2〉 be a pair of one-
to-many matched graphs to be visualized. MOM displays the drawing of G1 to the left
of the drawing of G2, according to the following main criteria: (C1) It assumes that
a drawing Γ (G1) is given as part of the input or that it can be computed using some
classical graph drawing algorithm. (C2) It concentrates on the computation of Γ (G2),
while trying to optimize a certain number of aesthetic criteria, other than guarantee-
ing that 〈Γ (G1), Γ (G2)〉 is a one-to-many matched drawing. (C3) Once Γ (G2) has

1 MOM stands for Matched One-to-Many graphs.
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Fig. 2. (a) A (non-strong) one-to-many matched drawing of a pair of matched graphs. (b) A strong
one-to-many matched drawing for the same pair of graphs.

been computed, it draws the matching connections and provides the user with a set of
interaction functionalities for the visual analysis of the resulting drawing.

Criterion (C1) is motivated by several application scenarios that we had in mind
during the design of the system. In these applications G1 is often a graph whose entities
represent geographic locations and therefore their position is either fixed or strongly
constrained (examples are given in Sect. 4). About (C2), we focus on well recognized
aesthetic criteria like number of crossings, number of bends, drawing area. Since the
optimization of these criteria typically leads to an NP-hard problem, we propose some
heuristics based on engineered versions of popular graph drawing algorithms, which are
able to deal with the constraints of a one-to-many matched drawing. As an additional
aesthetic criterion we require that 〈Γ (G1), Γ (G2)〉 is computed in such a way that the
matching connections can be always drawn without intersecting the edges of G2. When
G2 is a dense graph,Γ (G2) may have a high visual complexity, which makes it difficult
to read the drawing at a whole, independently of the applied drawing strategy. This is
the motivation for (C3).

3.1 Drawing Algorithm

Our drawing strategy for Γ (G2) combines different drawing conventions. We use or-
thogonal drawings for the layout of the rectangular regions R(u) and their connections.
Circular drawings are used to represent G(M(u)) inside R(u). Finally, in order to sim-
plify the visual complexity, we adopt a bundling operation for the edges connecting
a vertex inside a region R(u) to vertices outside R(u); to avoid ambiguity, we use a
“confluent-like” representation for these edges, as explained later. The algorithms used
for the different drawing conventions have been engineered in order to deal with a cer-
tain number of constraints. In the following we describe in detail the steps performed
by our drawing algorithm. We denote by Vi and Ei the set of vertices and edges of Gi,
respectively (i ∈ {1, 2}).
Step 1: Planarization. The goal of this step is to compute a suitable planar embedding of
the graph consisting of “cluster vertices” and their interconnections, possibly replacing
edge crossings with dummy vertices. More precisely, let u1, u2, . . . , un be the vertices
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Fig. 3. (a) A graph G2. (b) The graph G′
2 used in Step 1 plus the wheel gadget (black node and

dashed bold edges) adopted to guarantee (E1); the wheel gadget is removed at the end of Step 1.

of G1 in the top-to-bottom order2 they appear in Γ (G1), and let G′
2 be the graph ob-

tained fromG2 by collapsing each clusterM(ui) into a single vertex v(ui) (1 ≤ i ≤ n),
called a cluster vertex. In G′

2 edges connecting vertices in the same cluster M(u) dis-
appear, while an edge connecting a vertex in M(ui) to a vertex in M(uj) (i �= j) is
transformed to a corresponding edge between v(ui) and v(uj). We aim at computing
a planar embedding Ψ of G′

2 that satisfies the following two conditions: (E1) Cluster
vertices v(u1), v(u2), . . . , v(un) appear counterclockwise in this order on the external
face of Ψ ; (E2) If v ∈ M(ui) in G2 and if e1, . . . , ek are edges of G2 incident to v,
then the edges corresponding to e1, . . . , ek in G′

2 appear consecutively (not necessarily
in this order) around v(ui) in Ψ . Condition (E1) will guarantee Property (P3), i.e., the
possibility of routing the matching connections without crossings among them; it also
avoids crossings between matching edges and the edges of G2. Condition (E2) makes it
possible to simplify the links between the outside and the inside of each region R(ui) in
the final drawing and to bundle these links as it will be explained in Step 3. To force (E2)
we further transform G′

2 by attaching to v(ui) a vertex v′ for each vertex v ∈ M(ui)
connected to vertices outside M(ui), and by replacing the edges e1, . . . , ek that are in-
cident to v with corresponding edges e′1, . . . , e

′
k connected to v′. Vertex v′ is called the

image of v.
On G′

2 we apply a standard planarization algorithm based on first extracting a max-
imal planar subgraph and then on iteratively reinserting the discarded edges by com-
puting shortest paths in the dual graph and by replacing edge crossings with dummy
vertices [10]. To force (E1), we use a “wheel gadget” of uncrossable edges that will be
removed at the end of the planarization phase. Figure 3 shows an example of a graph
G′

2 and the wheel gadget used to guarantee (E1).
Notice that, quadratic and linear-time algorithms for planarity testing and edge rein-

sertion within the above described embedding constraints have been also proposed in
[1, 17]. Our planarization phase takes O(|E2|(c + |V2|) log(c + |V2|)) time, where c is
the number of edge crossings in the final embedding of G′

2.

2 If ui and uj have the same y-coordinate, they are ordered from right to left.
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Step 2: Orthogonalization and Compaction. Once a planar embedding Ψ of G′
2 (with

possible cross vertices) has been found, an orthogonal drawing of G′
2 that preserves

Ψ is computed. The basic idea is to use an orthogonal drawing algorithm that deals
with arbitrary vertex degree and that allows for vertex size customization. Indeed, we
want that v(ui) is drawn as a box big enough to host all vertices of M(ui). To this
aim, the system uses the network flow based drawing algorithm described in [9], which
represents a good heuristic both in terms of bend minimization and in terms of area
drawing compaction. Denoted by B(v(ui)) the box representing vertex v(ui), we draw
B(v(ui)) as a square of a certain size ri. In the final drawing we place a circle of radius
ρi inside B(v(ui)) and equi-distribute along its perimeter the vertices of M(ui). To
determine ρi, we fix a minimum distance δ we want to guarantee between any two
vertices of M(ui) and we set ρi = δ · |M(ui)|/2π. We choose ri to be larger enough
than ρi so that it is possible to route the edges connecting vertices inside B(v(ui)) with
the outside. Each square B(v(ui)) will correspond to region R(ui) in the final drawing.
Also, in order to guarantee the properties of a one-to-many matched drawing, we add a
certain number of constraints as described below.

If one wants to compute a strong one-to-many matched drawing, then all vertices
v(u1), v(u2), . . . , v(un) are temporarily connected in this order to form a simple cy-
cle C that becomes the new boundary for the external face. Then the following angle
and bend constraints on the vertices and edges of C are imposed: Each edge of C con-
necting v(ui) to v(ui+1) (1 ≤ i ≤ n − 1) is constrained to be straight-line in the
drawing, while the edge of C connecting v(un) to v(u1) is constrained to turn always
in the left direction while moving from v(un) to v(u1). Each angle formed at a vertex
v(ui) on the external face is set to be of 180 degrees. These constraints guarantee that
v(u1), v(u2), . . . , v(un) are encountered from top-to-bottom in the final drawing and
that they are all visible from left. Once a drawing has been computed the edges of C
are removed. If one wants to compute a (not necessarily strong) one-to-many matched
drawing, then we still construct cycle C, but we only impose the constraint that the
edges of C turn in the left direction or go straight while moving along C counter-
clockwise. Finally, in order to correctly perform the next step (i.e., the edge bundling
operation), we also require that for each image vertex v′ attached to a vertex v(ui),
there is no other edge incident to v′ from the same direction of edge (v(ui), v′).

All the orthogonalization constraints described above are translated into constraints
on the flow network of the algorithm in [9]. The orthogonalization and compaction
phases take O((|V1||V2| + c)2 log(|V1||V2| + c)) time, where c is still the number of
cross vertices in the embedding Ψ .
Step 3: Edge Bundling. This step removes each image vertex v′ and creates in its place
a “confluent-like” structure for the edges incident to v′. Namely, let v be the vertex of
the original graph that has v′ as its image and let M(ui) be the cluster that contains
v. Let e′1, . . . , e

′
k be the edges incident to v′ other than edge (v′, v(ui)). We want that

v′ is no longer present in the final drawing and that the edges e′1, . . . , e
′
k are replaced

by the edges e1, e2, . . . , ek that were originally connected to v. To simplify the final
drawing however, we bundle the edges e1, e2, . . . , ek from v to v′; this edge bundle
follows the drawing of e from the boundary of R(ui) to v′ and then it divides in k
branches at v′ using splines, as shown in Fig. 4(a). It is important to remark that the



Visual Analysis of One-to-Many Matched Graphs 139

v

R u(    )i

e1 e2

e3

e4

e5

e

R u(    )i

e’1 e’2
e’3

e’4
e’5

v’e

v

(a)

v

2

p5

R ui(    )

p3

p4

v5

p

1

v3

v4

v2

p1

(b)

Fig. 4. (a) Illustration of Step 3. The image vertex v′ is removed and its incident edges are replaced
by a “confluent-like” structure. The dashed curve is the part of edge bundle that will be drawn
in Step 4. (b) Illustration of Step 4. The black vertices inside R(ui) denote the vertices whose
relative circular ordering is fixed according to their corresponding external connections.

edge bundling operation guarantees that for each vertex v inside a region R(ui) there
will be at most one link (a bundle of edges) incident to v from the outside of R(ui).
Since these links must be routed around the circular drawing representing G(M(ui)),
this property strongly simplifies the visual complexity introduced by these connections.
The edge bundling step takes O(|E2|) time.
Step 4: Circular Drawing Computation. At the end of the previous step, we have
a partial drawing of G2 such that for each cluster vertex v(ui) there is a correspond-
ing rectangular region R(ui) and some edges incident to the boundary of R(ui) at
certain points p1, p2, . . . , pk. To complete the drawing of G2 we construct a circular
drawing for each G(M(ui)), and then connect pj to its corresponding vertex vj of
M(ui) (1 ≤ j ≤ k). See Fig. 4(b) for an illustration. In order to avoid crossings be-
tween links (pj , vj), we force the circular order of vertices vj to be consistent with
the circular order of points p1, p2, . . . , pk around R(ui), i.e., if p1, p2, . . . , pk occur
clockwise in this order around R(ui) then we force v1, v2, . . . , vk to occur clockwise
in this order in the circular drawing. Conversely, all vertices of M(ui) distinct from
vj (1 ≤ j ≤ k) can be placed everywhere in the circular ordering (these vertices are
not connected to vertices outside R(ui)). In other words, if Vfix = {v1, v2, . . . , vk}
and Vfree = M(ui) \ Vfix, we want to find a “good” circular order for the vertices of
M(ui) such that the relative order of the vertices of Vfix is fixed; our goal is the mini-
mization of the number of edge crossings, which is however an NP-Hard problem [18].
To solve it, we designed a variation of the heuristic described by Baur and Brandes [5],
which has been experimentally shown to produce better results in terms of crossing
reduction than previous heuristics for computing circular drawings, and that has been
successfully adopted for the layout of two-level networks that are similar to the clus-
tered structure of G2 [6]. We also recall that faster but less effective circular drawing
algorithms in terms of edge crossings have been described in [20]. The heuristic by Baur
and Brandes computes an ordering of the vertices on a straight line , assuming that all
edges are drawn on the same half-plane determined by . In terms of edge crossings this
model is equivalent to place the vertices on a circle and to draw the edges as straight-line
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segments. At the end of this placement greedy heuristic, a post-processing step, called
circular sifting is applied to further reduce the number of edge crossings if possible.
The idea is to iteratively swapping a vertex with its successor vertex in the linear order
on  and recording the change in crossing count; the vertex is then placed in the position
that corresponds to its local optimal. Denoted by n and m the number of vertices and
the number of edges of the input graph, respectively, the placement greedy heuristic
can be performed in O((n+m) log n) time, while repositioning each vertex once in the
circular sifting phase can be done in O(nm) time (see [5]).

Our variation of the algorithm in [5] works as follows. The placement greedy heuris-
tic performs analogously to the one of Baur and Brandes, but it assumes that the ver-
tices of Vfix are already placed on  in a preassigned order; therefore the placement
decisions are restricted to the vertices of Vfree. The circular sifting phase is modified
so that swaps between vertices both belonging to Vfix are not allowed. Once the circu-
lar ordering of the vertices of M(ui) has been computed, the algorithm equi-distributes
these vertices on a circle inside R(ui) and rotates this circle in order to reduce the total
length of the connections (pj , vj) (1 ≤ j ≤ k), which are routed as polygonal chains of
vertical and horizontal segments. The circular drawing computation over all cluster ver-
tices takes O(|V1|((|V2|+ |E2|) log |V2|+ |V2||E2|)) time (recall that |V1| corresponds
to the number of cluster vertices).
Step 5: Drawing of Matching Edges. This step is simply performed by routing the
matching edges as polygonal chains from the location of a vertex ui of Γ (G1) to the
boundary of the corresponding region R(ui) in Γ (G2). Since the circular ordering of
the regions on the external face ofΓ (G2) is consistent with the top-down ordering of the
corresponding vertices in Γ (G1), this can be done without crossing between matching
edges. Also, in a strong one-to-many matched drawing, each matching edge can be
routed with at most two bends.

Time Complexity. The next theorem summarizes the discussion about the drawing
algorithm implemented in MOM . To simplify the time complexity of this algorithm,
the statement of the theorem assumes that |V1| is bounded by a constant. This appears
as a reasonable assumption if |V1| � |V2|.

Theorem 1. Let 〈G1, G2〉 be a pair of one-to-many matched graphs such that G1 =
(V1, E1) and G2 = (V2, E2). Let Γ (G1) be any drawing of G1. There exists a polyno-
mial-time algorithm that computes a one-to-many matched drawing 〈Γ (G1), Γ (G2)〉
(either in the strong or in the non-strong model) with the additional property that the
matching edges can be drawn without intersecting any vertex and edge of Γ (G2). Also,
if |V1| is bounded by a constant, and denoted by N the number N = |V2|+ c, where c
is the number of inter-cluster edge crossings in Γ (G2), then the time complexity of the
drawing algorithm is: O((|E2|N + N2) logN).

3.2 Interaction Functionalities

In order to facilitate the visual analysis of the computed one-to-many matched draw-
ings, we equipped our system with a certain number of interaction functionalities, other
than conventional zooming and translation primitives. We briefly describe them in the
following.
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Cluster Expansion/Contraction: By default, all cluster regions R(u) in Γ (G2) are
expanded, i.e., the whole subgraph inside each R(u) is displayed by the system. In
order to compact the drawing and/or to hide some details, the user can decide to con-
tract a certain number of clusters by simply clicking on them. A cluster contraction
redraws the cluster as a small box and hides its content. Every cluster can be expanded
or contracted an infinite number of times without any restriction. After a cluster ex-
pansion/contraction, the drawing is automatically re-compacted by the system, but the
orthogonal shape of the drawing remains unchanged, so to avoid that the user mental
map is lost. Contracting clusters can be useful to get an overview of the inter-cluster
relations before analyzing the intra-cluster ones.

Cluster Filtering: If the user is interested in focusing on some of the clusters, she
can select them and hide the remaining clusters and their connections. After such an
operation, the user can also decide to re-compact the remaining part of the drawing
to save space if possible. When the drawing of Γ (G2) has many clusters and/or many
inter-cluster links, the cluster filtering primitive can help to explore the graph structure
portion by portion.

Edge Filtering: Our system allows the representation of edge weighted graphs. This
means that a weight can be assigned to each edge of G1 and of G2. When a graph is too
dense, the user can sparsify the links by setting an edge visibility threshold. All links
having the weight below the given threshold are not shown by the system. Again, the
drawing is re-compacted if required.

Edge/Vertex Highlighting: Moving the mouse over a certain vertex or cluster region,
the user can decide to highlight all edges incident to that vertex or to that cluster region.
A tooltip with information about the selected vertex is also displayed. This helps to
get local information on the drawing. Furthermore, moving the mouse over an edge,
a tooltip that displays the labels of its end-vertices is shown. This helps when just a
portion of the selected edge fits in the current view.

4 Application Examples

One-To-Many matched graphs occur in several applications contexts. Here we briefly
present an example on social network analysis. Another application example on Web
search clustering engines is described in [12].

Our example focuses on the co-authorship network of the last Symposium on Graph
Drawing, GD 2007. G1 is the graph having European countries as vertices and edges
between countries that cooperated in co-authoring some papers. Each edge has a weight
equal to the number of papers resulting from the cooperation of the connected countries.
The drawing Γ (G1) is a simple straight-line drawing, where each vertex is placed at a
fixed location on a geographic map. Graph G2 represents authors and their cooperations
in the articles. Figure 5 shows a one-to-many matched drawing in the strong model.
The drawing gives an overview of the network structure, which reveals the number
of contributing authors for each country and a relevant level of cooperation among
the different countries. Looking inside a country, it is possible to see its different sub-
communities. For example, it is easy to recognize two sub-communities in Greece, in
Italy, and in Czech Republic, several communities in Germany, and one big community
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Fig. 5. A one-to-many matched drawing showing the European co-authorship network of GD
2007

in Spain. Selecting an author in a country, all her connections with other authors are
highlighted by the system. In the figure, author “Kaufmann” inside Germany is selected,
and the system highlights (in bold red color) his connections with other authors, three
in Greece and one in Italy. Moving the mouse over one of the bold red edges, it is
displayed a tooltip that reports the labels of its end-vertices. Figure 6 shows an example
of edge and vertex filtering on the previous drawing, which makes it easier to focus on
specific relationships. Namely, the edges of Γ (G1) has been filtered so that only those
edges with a weight greater than 1 are shown. The vertices of Γ (G2) have been filtered
in such a way that only the countries having some incident links in Γ (G1) are shown
(i.e., Germany, Italy, and The Netherlands). Then, cluster Germany has been contracted
to focus on the interplay between Italy and The Netherlands. After the vertex filtering
and contraction operations, Γ (G2) is recomputed so to become more compact without
destroying the user’s mental map. In the figure, the connections of author “Meijer” are
highlighted in bold red.

5 System Performances

We have tested our system in order to measure its performances. Our main goal was
to measure the running time and some important aesthetic requirements, like number
of crossings, number of bends, drawing area, and aspect ratio (width/height). We com-
pared the algorithm for strong one-to-many matched drawings against the algorithm for
non-strong one-to-many matched drawings, so to understand the trade-off between the
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Fig. 6. The same one-to-many matched graphs of Fig. 5 after some edge and vertex filtering

results of the two algorithms. A strong drawing greatly helps in the readability of the
matching between G1 and G2, but we expect that a strong drawing has worst values for
some aesthetics (e.g., aspect ratio and number of bends) than for a non-strong drawing.

The focus is on the drawing of G2, because we are assuming that a drawing Γ (G1)
is given as part of the input or that it is computed with some classical drawing algo-
rithm. For the experiments we used a test suite of instances for G2, with given num-
ber of cluster vertices. We generated 240 graphs in total, 5 graphs for each sample.
A sample is obtained by fixing number of vertices, number of clusters, and density
(number of edges/number of vertices). The number of vertices is a value in the set
{100, 400, 700, 1000}, the number of clusters is a value in {5, 10, 15, 20}, and the den-
sity is a value in {1, 1.5, 2}. Each graph was generated at random, by assuming that
10% of the edges are inter-cluster edges and that 90% of the edges are intra-cluster
edges. The experiments have been executed under the Windows 2003 server OS, on an
Intel Pentium IV with 3.0GHz and 2GB of RAM.

The charts of the experimental results are omitted for reasons of space and can be
found in [12]. As for the running time, the computation of strong drawings is slightly
slower than for non-strong drawings (in the average, it requires about 10% more). In
general, both types of computations take a few seconds for graphs up to 400 vertices
and low density values. Graphs with the highest density and 700 vertices are computed
in a few minutes, while the computations may require up to 30 minutes for the hard-
est instances of our test suite, i.e., graphs with 1000 vertices and density 2. About the
area and the aspect ratio, since in a strong one-to-many matched drawing every two
cluster regions are constrained to stay one below the other, strong drawings have a
worst aspect ratio but smaller area than non-strong drawings, which have aspect ratio
close to 1. About the number of bends, strong drawings present in the average 11−12%
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of bends more than non-strong drawings, which are caused by their greater number of
constraints. Finally, as already observed, the number of crossings is independent of the
two drawing algorithms, and as expected it rapidly increases with the graph density.
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Abstract. In this paper we study how two planar embeddings of the same bicon-
nected graph can be morphed one into the other while minimizing the number of
elementary changes.

1 Introduction

A useful feature of a graph drawing editor is the possibility of selecting a certain face
of the drawing and of promoting it to be the external face (see, e.g., [9]). In order to
preserve the mental map, the user would like that the editor executed such an operation
by performing a few changes to the drawing.

The above operation is just an example of a topological feature that would be useful
to have at disposal from an editor. More generally, it would be interesting to have an
editor allowing the user to look at a drawing and to specify in some way, e.g. pointing
at vertices or edges, a new embedding. Such an embedding could be even requested
at a more abstract level, asking the editor to go to one with minimum depth, or with
minimum radius, etc. Again, the editor should transform the current embedding into
the new one smoothly, i.e. with the minimum number of changes.

A similar problem occurs when, keeping the topology unchanged, an editor has to
geometrically morph a drawing into another one, specified in some way from the user.
In this case the operations that the editor can perform are topology-preserving transla-
tions and scaling of objects. The user would like to see a geometric morphing with the
minimum number of intermediate snapshots.

The existence of a geometric morphing between two drawings was addressed sur-
prisingly long ago. Cairns proved in 1944 that between any two straight-line drawings
of a triangulated planar graph there exists a morph in which any intermediate drawing
is straight-line planar [7]. This was extended to general planar graphs by Thomassen
in 1983 [19]. The first algorithms to find such morphings were proposed by Floater
and Gotsman for triangulations [12] and by Gotsman and Surazhsky for general plane
graphs [13]. While the search for a geometric morph between two given drawings of a
planar graph with a polynomial number of steps and with a bounded size of the needed
grid is still open, some recent studies address the problem for the special cases of or-
thogonal drawings [15,6] and arbitrary plane drawings [11].

� Work partially supported by MUR under Project “MAINSTREAM: Algoritmi per strutture
informative di grandi dimensioni e data streams.”
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Fig. 1. A sequence of flips and skips transforming an embedding

We study the morphing between two drawings from the topological perspective and
we call it topological morphing. There are many ways to state the problem, ranging
from the family of graphs, to the operations that an editor can perform, their complete-
ness, their ability to capture changes that are “natural” for the user, and to the metrics
that distinguish a good from a bad morphing. This work starts from the following ba-
sic hypotheses. (i) We consider biconnected planar graphs, since such graphs are the
building block of several graph drawing methodologies. (ii) We consider operations
that move in one step entire blocks of the drawing, that are identified by some connec-
tivity features. Namely, using a term that is common in planarity testing literature, we
call flip the operation that allows to “flip” a component around its separation pair. Also,
borrowing the term from the common rope skipping game played by children, we call
skip the operation that allows to move the external face by “skipping” an entire com-
ponent without modifying the combinatorial embedding. (iii) The metric is the number
of performed operations. Namely, we have that a topological morphing is “good” if
the editor performs it with a few flips and skips. Intuitively, the fewer operations are
performed, the better the user preserves the mental map.

As an example, suppose that the graph is embedded as shown in Fig. 1.a and that the
user would like to obtain the embedding in Fig. 1.d. A minimum sequence of operations
that leads to Fig. 1.d consists of flipping the component separated by the starred vertices
of Fig. 1.a, then by skipping the component separated by the starred vertices of Fig. 1.b,
and finally by skipping the edge separated by the starred vertices of Fig. 1.c.

We present the following results. Let G be a biconnected planar graph and denote
by 〈Γ, f〉 one of its combinatorial embeddings Γ with f as external face. Suppose
that pair 〈Γ1, f1〉 is the current topology and that 〈Γ2, f2〉 represents a target topology
chosen by the user. (1) In Sect. 2 we show that if both flips and skips are allowed the
general problem of morphing 〈Γ1, f1〉 into 〈Γ2, f2〉 with the minimum number of flips
and skips is NP-complete. Motivated by such a result we tackle several more restricted
problems. (2) Suppose that Γ1 = Γ2 and that only skips are allowed. In Sect. 3 we
give a linear time algorithm to move the external face from f1 to f2 with the minimum
number of skips. (3) In Sect. 4 we show that the topological morphing problem can be
efficiently solved if G does not have parallel triconnected components. (4) In Sect. 5
we show that the problem is fixed-parameter tractable. Basic definitions are in Sect. 2
while concluding remarks are in Sect. 6.
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2 Basic Concepts

In this section we define the flip and skip operations and their properties. The proofs of
the lemmas and theorems can be found in [1].

We assume familiarity with planarity and connectivity of graphs. A planar drawing
of a graph is a mapping of its vertices to distinct points of the plane and of its edges
to non-intersecting open Jordan curves between their end-points. A graph is planar if
it has a planar drawing. A planar drawing partitions the plane into faces (topologically
connected regions). The unbounded face is the external face. Two planar drawings of a
graph G are equivalent if they determine the same circular ordering of the edges around
each vertex. An equivalence class of planar drawings is a combinatorial embedding of
G. A planar embedding is a pair 〈Γ, f〉, where Γ is a combinatorial embedding and f
is the external face.

The SPQR-tree T of a biconnected graph G describes the arrangement of its tricon-
nected components. We assume familiarity with SPQR-trees. For details see [10].

Let G be a biconnected planar graph and let T be the SPQR-tree of G. A planar
embedding 〈Γ, f〉 of G can be represented by a labeling of T . Namely,Γ is described by
the combinatorial embedding of the skeleton of each node in T , which can be succinctly
represented by labeling each R-node with a Boolean value and each P-node with a
circular ordering of its adjacent nodes, as described in [5].

In order to account for the external face f in the SPQR-tree T , we introduce the
following definitions. A node μ of T is an allocation node of a face f of Γ either if
μ is a Q-node incident to f or if there exist no virtual edge e of skel(μ) such that
pertinent(e) contains all the edges of f . Observe that if μ is an allocation node of
f , then there is exactly one face fμ in skel(μ) such that all the pertinent graphs of
its virtual edges contain at least one edge of f . Face fμ is the representative of f in
skel(μ). In the following, we will denote by f both a face of Γ and its representative
face in the skeleton of one of its allocation nodes. We say that f belongs to all its
allocation nodes. The set of all the allocation nodes of f are a subtree of T , called the
allocation tree of f . Figure 2.a shows examples of allocation trees.

Property 1. The allocation tree of a face f is the subtree of T whose leaves are the
Q-nodes corresponding to the edges of f .

The external face of Γ can be provided by specifying its allocation tree in T Ṫhe fol-
lowing lemma shows how adjacent nodes in T share exactly two faces.

Lemma 1. Let μ1 and μ2 be two adjacent nodes of an SPQR-tree T . There are exactly
two faces f ′ and f ′′ of Γ that belong both to μ1 and to μ2. In skel(μ1) (skel(μ2)) f ′

and f ′′ share edge e(μ2) (e(μ1)). If μ1 (μ2) is not an S-node, then e(μ2) (e(μ1)) is the
only edge shared by f ′ and f ′′ in skel(μ1) (skel(μ2)).

Now we define the flip and skip operations and we show how they change the embed-
ding of a planar graph. Let G be a planar graph, and let 〈Γ, f〉 be one of its embeddings.
Let (u, v) be a split pair of G and let G1 be a set of topologically contiguous maximal
split components of G w.r.t. (u, v) such that G1 does not contain all the edges of f .
We define the flip operation on 〈Γ, f〉 with respect to G1: flip(〈Γ, f〉, G1) = 〈Γ ′, f ′〉
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Fig. 2. SPQR-tree of the graph of Fig. 1. (a) The light gray ellipse circles the allocation tree of
the external face of Fig. 1.a. The dark Gray ellipse circles the allocation tree of the external face
of Fig. 1.d. (b) The skip path and the corresponding track graph of the two faces.

where Γ ′ is obtained from Γ by reversing the adjacency lists of all the vertices of G1,
but for u and v, and by reversing the order of the edges of G1 in the adjacency lists of
u and v. Face f ′ is determined as follows. If at least one of u and v is not in f , then
f ′ = f . Otherwise, f ′ is the unique face of Γ ′ containing both the edges belonging to f
and not belonging to G1 and some edge of G1 not belonging to f . As an example, see
the flip applied to the embedding of Fig. 1.a that yields the embedding of Fig. 1.b.

We add the constraint that a flip operation cannot be performed if G1 contains f
because a flipping of the entire external structure of the graph around an internal com-
ponent is undesirable from a comprehension point of view.

The following property describes three basic features of the flip operation and is
trivial to prove.

Property 2. (a) flip(flip(〈Γ, f〉, G1), G1) = 〈Γ, f〉. (b) If G1 is a path, then flip(〈Γ,
f〉, G1) = 〈Γ, f〉. (c) If G −G1 is a path, then flip(〈Γ, f〉, G1) = 〈Γ , f〉, where Γ is
Γ with reversed adjacency lists.

Let 〈Γ1, f1〉 be a planar embedding of G and Γ2 be a “target” combinatorial embedding
ofG. It is easy to see that there always exists a sequence of flip operations that leads from
〈Γ1, f1〉 to 〈Γ2, f2〉 for some choice of f2 in Γ2. We denote by F(〈Γ1, f1〉, 〈Γ2, f2〉)
the minimum number of flips to obtain 〈Γ2, f2〉 from 〈Γ1, f2〉 for any f2.

Now we define the skip operation, which provides the ability to modify the external
face of an embedding. Let G be a planar graph, and let 〈Γ, f1〉 be one of its planar
embeddings. Let (u, v) be a split pair of G incident to faces f1 and f2 in Γ . Skip
is defined as follows: skip(〈Γ, f1〉, f2) = 〈Γ, f2〉. It is easy to see that there exists
a sequence of skip operations that leads from 〈Γ, f1〉 to 〈Γ, f2〉 for any choice of f2
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in Γ . As an example, see the skip applied to the embedding of Fig. 1.b that yields the
embedding of Fig. 1.c. We denote by S(〈Γ, f1〉, 〈Γ, f2〉) the minimum number of skips
to obtain 〈Γ, f2〉 from 〈Γ, f1〉.

Given two planar embeddings 〈Γ1, f1〉 and 〈Γ2, f2〉 of a graph G, one could ask
which is the minimum number of flip and skip operations for obtaining 〈Γ2, f2〉 from
〈Γ1, f1〉. We denote by FS(〈Γ1, f1〉, 〈Γ2, f2〉) such a number.

Property 3. FS(〈Γ1, f1〉, 〈Γ2, f2〉) ≤ F(〈Γ1, f1〉, 〈Γ2, f3〉) + S(〈Γ2, f3〉, 〈Γ2, f2〉).

Lemma 2. The values ofF(〈Γ1, f1〉, 〈Γ2, f2〉),S(〈Γ1, f1〉, 〈Γ1, f2〉), andFS(〈Γ1, f1〉,
〈Γ2, f2〉) are O(n), where n is the number of vertices of G.

Unfortunately, given a biconnected planar graph G and two of its planar embeddings
〈Γ1, f1〉 and 〈Γ2, f2〉, the problem of transforming 〈Γ1, f1〉 into 〈Γ2, f2〉 with the min-
imum number of flip/skip operations is NP-complete.

Theorem 1. Let G be a biconnected planar graph and let 〈Γ1, f1〉 and 〈Γ2, f2〉 be
two planar embeddings of G. Both computing FS(〈Γ1, f1〉, 〈Γ2, f2〉) and computing
F(〈Γ1, f1〉, 〈Γ2, f2〉) is NP-complete.

3 Linearity of the Case with Fixed Combinatorial Embedding

Let G be a biconnected planar graph, and let 〈Γ, f1〉 and 〈Γ, f2〉 be two planar embed-
dings of G. In this section, we show how to compute the value of S(〈Γ, f1〉, 〈Γ, f2〉).

First, we need to introduce the following lemma whose proof is given in [1].

Lemma 3. Let G be a biconnected planar graph and let T be the SPQR-tree of G. Let
〈Γ, f1〉 and 〈Γ, f2〉 be two planar embeddings of G. If there exists an R-node μ of T
such that skel(μ) contains both f1 and f2, then S(〈Γ, f1〉, 〈Γ, f2〉) is the length of the
shortest path from f1 to f2 on the dual of skel(μ).

Let T be the SPQR-tree of G and let T1 and T2 be the allocation trees of f1 and f2,
respectively. The value of S = S(〈Γ, f1〉, 〈Γ, f2〉) can be easily computed when T1 ∩
T2 �= ∅. If this is true we have to tackle three cases: T1 ∩ T2 = {μ}, T1 ∩ T2 = {μ, ν},
and T1 ∩ T2 = {μ1, μ2, . . . , μk}. Conversely, the case T1 ∩ T2 = ∅ is more complex.

Case T1 ∩ T2 = {μ}. In this case μ is the only node of T whose skeleton contains both
f1 and f2. If μ is an S-node, then G is a cycle and so S = 1. If μ is a P-node, since a
skip operation can move the external face from f1 to any face of skel(μ), we have that
S = 1. Finally, if μ is an R-node, by Lemma 3, S is the length of the shortest path on
the dual of skel(μ) from f1 to f2.
Case T1 ∩T2 = {μ, ν}. Observe that, in this case, μ and ν are adjacent in T , and hence
they cannot be both P-nodes or both S-nodes. Also, by Lemma 1, f1 and f2 are adjacent
in both skel(μ) and skel(ν). Hence, we have that S = 1. Notice that, if one of the two
nodes, say μ, is an S-node, then all edges in skel(μ) are real edges, but for e(ν).
Case T1 ∩ T2 = {μ1, μ2, . . . , μk}, with k ≥ 3. As this case is more involved, we treat
it separately in the following lemma, the proof of which is left out of this extended
abstract.
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Lemma 4. Let T1 and T2 be the allocation tree of two faces f1 and f2 of a graph G.
If T1 ∩ T2 = T3, T3 = {μ1, μ2, . . . , μk} , with k ≥ 3, then T3 is a star graph whose
central node is an S-node.

By Lemma 4 and since f1 and f2 belong to the same S-node, it follows that S = 1.
If T1 ∩T2 = ∅, the computation of S is not trivial; however, we provide a linear time

algorithm, called SKIPONLY, to solve this problem. The algorithm is described below.
We define skip path sp(f1, f2) in T the (unique) shortest path in T between a node of
T1 and a node of T2 (see Fig. 2.b). Since a skip operation can only move the external
face from skel(μ) to skel(ν), with μ adjacent to ν, the following Property holds.

Property 4. Any sequence of skip operations that moves the external face from f1 to f2
must traverse all the nodes of the skip path between T1 and T2.

In order to compute the sequence of skip operations to move the external face from f1
to f2 with S steps, we define a weighted track graph [3] Track(f1, f2) (see Fig. 2.b).
The nodes of Track(f1, f2) are faces of the skeletons of the nodes in sp(f1, f2). In
particular, let {μ1, . . . μk} be the nodes in sp(f1, f2), where f1 is the external face of
skel(μ1), while f2 is a face of skel(μk). Faces f1 and f2 are nodes of Track(f1, f2).
For each node μi, i = 2, . . . , k, Track(f1, f2) contains two nodes, called fi

l and fi
r,

corresponding to the two faces of skel(μi) adjacent to the virtual edge representing
μi−1 in skel(μi). Notice that such faces also correspond to the two faces of skel(μi−1)
adjacent to the virtual edge representing μi in skel(μi−1). Node f1 belongs to level 1,
nodes fi

l and fi
r, for i = 2, . . . , k, belong to level i, and node f2 belongs to level k+1.

We insert in Track(f1, f2) two types of edges, called horizontal edges, connecting
nodes of the same level, and vertical edges, connecting nodes of adjacent levels. More
precisely, horizontal edges are (fi

r, fi
l), for i = 2, . . . , k, with weight 1, while vertical

edges are, for i = 2, . . . , k − 1, (fi
l, fi+1

l), (fi
l, fi+1

r), (fi
r, fi+1

l), (fi
r, fi+1

r), and
edges (f1, f2

l), (f1, f2
r), (fk

l, f2), (fk
r, f2).

Consider a vertical edge (fsi

i , f
si+1
i+1 ), with si, si+1 ∈ {l, r}, spanning levels i and

i+1. If μi is a P-node, then the weight is either 0 or 1, depending on the fact that virtual
edges corresponding to μi and μi+1 are consecutive or not in the circular ordering of
the nodes. If μi is an S-node, then the weight is either 0 or 1, depending on whether
s1 = s2 or not. Finally, if μi is an R-node the weight is the length of the shortest path
on the dual of skel(μi) from f∗

i to f∗
i+1.

The weight of an edge (f ′, f ′′) in Track(f1, f2) represents the number of skip op-
erations needed to move the external face from f ′ to f ′′. Weight 1 assigned to an hori-
zontal edge (fi

r, fi
l) represents the possibility to skip the virtual edge representing μi

in skel(μi−1).

Theorem 2. Let G be a biconnected planar graph, and let 〈Γ, f1〉 and 〈Γ, f2〉 be two
planar embeddings of G. If only skip operations are allowed, then there exists an algo-
rithm to compute S(〈Γ, f1〉, 〈Γ, f2〉) in linear time.

Proof sketch. Consider the shortest path sp(f1, f2) on Track(f1, f2) from f1 to f2
computed by Algorithm SKIPONLY. The proof is based on the fact that any sequence
of skip operations leading from f1 to f2, by Property 4, must traverse all the levels of
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Track(f1, f2), and hence can not be shorter than the sequence identified by sp(f1, f2).
Regarding the computational complexity, since the needed operations on the SPQR-tree
T and the sizes of involved structures are linear, it is possible to show that Algorithm
SKIPONLY can be implemented to run in linear time [1]. ��

4 Linearity of the Case without P-Nodes

In this section we show that if T does not contain P-nodes, the problem of computing
FS(〈Γ1, f1〉, 〈Γ2, f2〉) can be solved in linear time. For simplicity, the algorithm de-
scribed in this section only considers a subset of the possible flip operations. Namely,
given an S-node μ, although a legitimate flip operation may concern the split compo-
nents of any split pair of μ, we only consider flip operations that concern split com-
ponents of maximal split pairs of μ. Intuitively, this corresponds to flipping a single
neighbor ν of μ or all the neighbors of μ with the exception of ν. At the end of the
section we handle the general case.

In order to compute FS(〈Γ1, f1〉, 〈Γ2, f2〉) when T does not contain P-nodes, we
first assign a label in {turned,unturned} to each node μ of T . Intuitively, the
label of node μ indicates whether some transformation is needed on the skeleton of
μ in order to obtain Γ2 from Γ1. If μ is a Q-node, then μ is labeled unturned. If
μ is an R-node, μ is labeled unturned if it has the same Boolean value in both the
labellings representing Γ1 and Γ2, and turned otherwise. Finally, if μ is an S-node, it
is labeled unturned (turned) if the majority of its adjacent R-nodes is unturned
(turned). In case of a tie, we give μ an arbitrary label, unless μ is an internal S-node of
the skip path sp. In this case, we give μ a label that is different from one of its adjacent
R-nodes in sp.

Second, we suitably extend the labeling from the nodes to the edges. An edge e inci-
dent to a Q-node is labeled unturned. Otherwise, e is labeled unturned (turned)
if its incident nodes have the same label (a different label). The number of turned
edges of T corresponds to the minimum number of flips to be performed on Γ1 in order
to obtain Γ2, that is F(〈Γ1, f1〉, 〈Γ2, f2〉). In particular, each turned edge e identifies
a split pair, which, since T has not P-nodes, identifies in its turn two split components
G1 and G2. Any minimum sequence of flips that transforms Γ1 into Γ2 contains either
flip(〈Γ ′, f ′〉, G1) or flip(〈Γ ′′, f ′′〉, G2), for some suitable Γ ′, Γ ′′, f ′, and f ′′.

A trivial case is when the intersection of the two allocation trees T1 and T2 of f1 and
f2 is non-empty. In such a case, since f1 and f2 belong to the same skeleton, there is
no flip that can help to reduce the number of skips, and the trivial algorithm that first
performs all flips and then all skips uses FS(〈Γ1, f1〉, 〈Γ2, f2〉) operations. Since, in
general, a flip operation may modify the distance between two faces (and hence modify
the number of needed skips), in order to compute FS(〈Γ1, f1〉, 〈Γ2, f2〉) we have to
consider the case in which flip and skip operations are allowed to be alternated.

We propose an algorithm, called NOPARALLEL, to compute FS(〈Γ1, f1〉, 〈Γ2, f2〉)
when T1 ∩ T2 = ∅ and T does not contain P-nodes. Such an algorithm is similar to
Algorithm SKIPONLY. The weights of the edges of graphTrack(f1, f2) are modified in
order to take into account the possibility of performing some flip operations in advance
in order to reduce the number of skip operations. Namely, consider two nodes μi and
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μi+1 of the skip path sp, which are adjacent through the turned edge e, and consider a
skip operation on μi+1. Such a skip operation has the effect of transferring the external
face from f l

i+1 to f r
i+1 or vice versa. The same effect is obtained by flipping μi+1 with

respect to μi. Therefore, we set to 0 the weight of the horizontal edge linking f l
i+1 to

f r
i+1 in graph Track(f1, f2) and call shortcut such an edge. Using a shortcut in the

shortest path from f1 to f2 corresponds to performing a flip in advance and saving a
skip operation.

The sequence of skip and flip operations that transform 〈Γ1, f1〉 into 〈Γ2, f2〉 is given
by the edges of a suitably selected weighted shortest path p from f1 to f2 in graph
Track(f1, f2) as follows. First, perform the flip operations corresponding to the short-
cuts that are traversed by p, while the external face is still f1. Second, perform the
skip operations corresponding to the non-shortcuts edges of p. Finally, perform the flip
operations corresponding to all the other turned edges, while the external face is f2.

Observe that graph Track(f1, f2) may admit more than one weighted shortest path
from f1 to f2. Suppose that the last node of the skip path sp is a turned (unturned)
R-node μ. Also suppose that a weighted shortest path p1 from f1 to f2 uses an even
(odd) number of shortcuts. By performing the corresponding flip operations in advance,
while f1 is the external face, the embedding of node μ will be reversed an even (odd)
number of times, i.e., μ will end up turned. Hence, in order to obtain Γ2, according
to Property 2, we would need to perform a final flip operation with respect to an edge
belonging to f2. In this case, by using an equal cost weighted shortest path p2 from f1
to f2 that traverses an odd (even) number of horizontal edges whose weight is 0 we
would save the last flip. Hence, we need to compute, for any intermediate node f of
Track(f1, f2), the two weighted shortest path from f1 to f , if both exist, using an odd
and even number of shortcuts. This computation can be performed in linear time and,
since all other operations can be performed in linear time, the following theorem holds.

Theorem 3. Let G be a biconnected planar graph, and let 〈Γ1, f1〉 and 〈Γ2, f2〉 be two
planar embeddings of G. Let T be the SPQR-tree of G. If T does not contain P-nodes
then FS(〈Γ1, f1〉, 〈Γ2, f2〉) can be efficiently computed in linear time.

Now we show how to modify Algorithm NOPARALLEL in order to handle the gen-
eral case in which a flip operation may concern the split component of any split pair
of an S-node μ. Intuitively, this corresponds to allow flipping with a single operation
an arbitrary number of consecutive neighbors of μ. The general idea is to modify the
SPQR-tree T of G, relaxing the constraint that S-nodes can not be adjacent. Namely,
for any maximal sequence σi = ν1, ν2, . . . , νk of consecutive R-nodes with the same
label adjacent to μ, we add an S-node μi adjacent to μ and move σi from the adjacency
list of μ to that of μi. The label of μi is the same as the one of σi. The label of μ is
computed as for Algorithm NOPARALLEL.

5 Fixed Parameter Tractability of the General Case

Since transforming 〈Γ1, f1〉 into 〈Γ2, f2〉 is NP-complete when G is an arbitrary bi-
connected planar graph, in this section we study the fixed parameter tractability of the
problem when the structure of G is of limited complexity.
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Let T be the SPQR-tree of a biconnected planar graphG and let 〈Γ1, f1〉 and 〈Γ2, f2〉
be two planar embeddings of G. We present an algorithm that computes
FS(〈Γ1, f1〉, 〈Γ2, f2〉) in O(n2 × 2k+h) time, where k and h are two parameters that
describe the arrangement of P-nodes in T and their relationships with S-nodes.

We first describe how to handle P-nodes, which are responsible for the NP-hardness
of the general problem, with a fixed parameter tractability approach. Recall that the
embedding of the skeleton of each P-node μP is described in the labeled SPQR-trees
representing Γ1 and Γ2 by two circular sequences of virtual edges σ1 and σ2, respec-
tively. As shown in [1], the problem of morphing with the minimum number of flips σ1
into σ2 is equivalent to the sorting by reversal problem (SBR), which has been proved
to be NP-hard in both cases of linear and circular sequences [8,17]. In fact, sorting vir-
tual edges is equivalent to sorting integer numbers, where a flip of l contiguous edges
corresponds to a reversal of l contiguous elements of the sequence.

The fixed parameter approach is based on the fact that SBR problem can be solved
in polynomial time, both in its linear and in its circular formulation, when each number
has a sign and the reversal of l contiguous elements also changes their signs [14,18,16].
Indeed, when the virtual edges of a P-node correspond to components that have to be
reordered and suitably “flipped”, then the problem of morphing σ1 into σ2 can be mod-
eled as an instance of signed SBR problem, hence admitting a polynomial time solution.
For example, if all nodes adjacent to the P-node are R-nodes, then the problem of find-
ing the minimum number of flips that sort them is polynomial. Unfortunately, some
virtual edges, as for example those corresponding to paths, do not need to be flipped
in a specific way. If k such virtual edges are present, we conventionally assign to them
all combinations of signs, and apply 2k times the signed SBR polynomial algorithm.
In fact, there exists an assignment of signs that make it possible to find the minimum
number of flips that order a mixed signed/unsigned sequence [2].

Let T be the SPQR-tree of G and let T1 and T2 be the allocation trees of f1 and f2,
respectively. We concentrate on the case when T1 ∩ T2 = ∅ that is the most complex.

In order to compute FS(〈Γ1, f1〉, 〈Γ2, f2〉) each node of T is labeled as turned,
unturned, or neutral. We order them based on their distance from sp. First, start-
ing from the farthest ones, we label nodes that are not in sp with the strategy described
below. Second, we label nodes of sp with a different strategy. Consider the current unla-
beled node μ not in sp. Observe that μ has all labeled adjacent nodes with the exception
of the node that links μ to sp. If μ is an R-node, then we label μ based on its embedding
as described in Algorithm NOPARALLEL. If μ is a Q-node, we label μ neutral. If μ
is an S-node, we assign μ the label of the majority of its non-neutral labeled adjacent
nodes. In case of a tie, we label μ neutral. If μ is a P-node, denote by σ1 and σ2 the
two circular sequences representing the embedding of μ in Γ1 and Γ2. While labeling
μ, we also compute the flips that are needed to transform σ1 into σ2. Observe that, since
the external face can not be internal to a subgraph that is flipped, σ1 and σ2 are actually
linear sequences as far as flip operations are concerned. In particular, we denote by σ′

1
and σ′

2 the two linear sequences obtained from σ1 and σ2, respectively, by removing
the virtual edge e corresponding to the node that links μ to sp and starting from the
virtual edge following e in the sequence. Let k be the number of neutral elements
of σ′

1 and σ′
2. We assign all possible combinations of turned and unturned values
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to them, and compute 2k times the linear signed SBR distance d from σ′
1 to σ′

2, and
the analogous distance d from σ′

1 to σ′
2, where σ′

2 is obtained from σ′
2 by reversing the

order and changing the signs. If d < d (d > d, d = d, respectively) we assign μ the
label unturned (turned, neutral, respectively).

Now we describe how to assign labels to the elements of the skip path sp = μ1, μ2,
. . . , μm from T1 to T2. Nodes in sp are never labeled neutral. If we have h P-nodes
in sp, we consider for them all the combinations of the two possible valuesturned and
unturned, and we repeat 2h times the computation that follows. R-nodes and S-nodes
of sp are labeled as described in Sect. 4. Analogously to Algorithm NOPARALLEL, we
extend the labeling to the edges of T . In particular, an edge is labeled turned if it
links a turned node to an unturned one and such nodes are not P-nodes, other-
wise is labeled unturned. We construct a weighted track graph Track(f1, f2) as in
Algorithm NOPARALLEL where P-nodes were not present, and we describe how to set
the weights of the edges exiting nodes f l

i and f r
i corresponding to a P-node μi of sp.

All other weights are set as described in Sect. 4. Denote by σ1 and σ2 the two circu-
lar sequences representing the embedding of μi in Γ1 and Γ2. From σ1 we obtain the
linear sequence σl

1 (σr
1) ending with (starting with, respectively) the virtual edge corre-

sponding to μi−1. Intuitively, sequence σl
1 (σr

1) corresponds to the configuration of the
parallel component when the external face is f l

i (f r
i ). Analogously, from σ2 we obtain

the linear sequence σl
2 (σr

2) ending with (starting with, respectively) the virtual edge
corresponding to μi+1. Our aim is to set the weight of each vertical edge (fs

i , f
t
i+1),

for s, t ∈ {l, r}, as the minimum number of operations needed to transform σs
1 into σt

2.
Observe that, when the external face is moved from fs

i to another face fi of skel(μi) in
Γ1, we obtain a new linear sequence σ∗

1 with the same circular order as σs
1. Namely, σ∗

1
is obtained from σ1 by opening it between the two virtual edges adjacent to f . Hence,
when computing the minimum number of operations needed to transform σs

1 into σt
2,

we have to consider the possibility to first transforming σs
1 into another linear sequence

σ∗
1 with the same circular order, that can be done by performing one skip operation, and

then transforming σ∗
1 into σt

2 with the minimum number of flips, that can be done by
applying the signed SBR algorithm. In order to do this, observe that all nodes adjacent
to μi in T are labeled as turned, unturned, or neutral. Let k be the number of
nodes adjacent to μi and labeled neutral. As described above, we consider all pos-
sible assignments of turned and unturned values to such nodes, and we compute
2k times the linear signed SBR distance from σ∗

1 to σt
2. The weight of vertical edge

(fs
i , f

t
i+1) is the minimum of such ni × 2k values, where ni is the number of nodes

adjacent to μi in T . The weight of an horizontal edge for a P-node is 1.
The remaining part of the algorithm strictly follows the lines of Algorithm NOPAR-

ALLEL. Namely, we compute the minimum weight path from f1 to f2 in Track(f1, f2)
and, based on such a path, we decide the sequence of skip and flip operations to be
performed. Again, if Track(f1, f2) admits more than one minimum weight path, we
choose among such paths taking into account the number of shortcuts traversed, corre-
sponding to flip operations that are convenient to be performed in advance.

Here we analyze the computational complexity of the algorithm. All the operations,
except those involving P-nodes, can be performed in linear time. For each P-node μi

not belonging to the skip path, the computation of the minimum number of flips that are
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needed to transform σ1 into σ2 can be performed in O(ni×2k), where ni is the number
of neighbors of μi in T . Observe that computing the minimum SBR distance can be
done in linear time [4], while actually finding the sequence of operations that yield that
minimum can be done in time O(n

3
2
√
log(n)) time [18]. Hence, when considering the

2k assignments, we only compute the distance and then, when the optimal assignment
has been found, we perform the algorithm for finding the actual sequence of flips. For
each P-node μ belonging to sp, the computation of the minimum number of flips that
are needed to transform σs

1 into σt
2 can be performed in O(n2

i × 2k). Namely, we have
to consider the 2k assignments of signs to the k neutral neighbors of μi and the
possibility to transform σs

1 into σt
2 by first moving the external face to each of the ni

faces of skel(μi) in Γ1 and then performing the computation of the signed linear SBR
distance in linear time. Since such a computation has to be performed for each of the
2h assignments of labels to the h P-nodes of sp, the global computational complexity
of the algorithm is O(2h ×

∑h
i=1(n

2
i × 2k+h)), which is equal to O(n2 × 2k+h), since

the total number of neighbors of all the P-nodes is less or equal than the total number
of edges of T , that is O(n). Based on the above discussion we have:

Theorem 4. Let G be a biconnected planar graph, let 〈Γ1, f1〉 and 〈Γ2, f2〉 be two
planar embeddings of G. Let T be the SPQR-tree of G, let k be the maximum num-
ber of neutral S-nodes adjacent to a P-node in T , and let h be the number of P-
nodes in the skip path sp(f1, f2). If both flip and skip operations are allowed, then
FS(〈Γ1, f1〉, 〈Γ2, f2〉) can be computed in O(n2 × 2k+h) time.

6 Conclusions

Preserving the user mental map while coping with ever-changing information is a com-
mon goal of the Graph Drawing and the Information Visualization areas. The informa-
tion represented, in fact, may change with respect to three different levels of abstraction:
(i) structural changes may modify the graph that the user is inspecting; (ii) topological
changes may affect the way the same graph is embedded on the plane; and (iii) drawing
changes may map the same embedded graph to differently positioned graphic objects.
A large body of literature has been devoted to structural changes, addressing the rep-
resentation models and techniques in the so-called dynamic and on-line settings. Also,
much research effort has been devoted to manage drawing changes, where the target is
to preserve the mental map by morphing the picture while avoiding intersections and
overlappings. On the contrary, to our knowledge, no attention at all has been devoted to
topological changes, that is, changes of the embedding of a graph in the plane.

In this paper we addressed the topological morphing problem. Namely, the problem
of morphing a topology into another one with a limited number of changes. This paper
leaves many open problems. (1) Primitives. We considered two topological primitives,
called flip and skip. It would be important to enrich such a set with other operations
that can be considered “natural” for the user perception. (2) Connectivity. It is easy to
extend the results presented in Sect. 3 to simply connected graphs. However, the other
presented results are deeply related to biconnectivity. There is a lot of space here for
further investigation. (3) We gave the same weight to the operations performed by the
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morphing. However, other metrics are possible. One could weight an operation as a non-
decreasing function of the moved edges or of the thickness of the moved component.

As a final remark we underline how usually the Computational Biology field looks
at Graph Drawing as a tool. In this paper it happened the opposite. In fact, Theorems 1
and 4 exploit Computational Biology results.
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Abstract. We present a linear-time algorithm for solving the simultaneous em-
bedding problem with fixed edges (SEFE) for a planar graph and a pseudoforest
(a graph with at most one cycle) by reducing it to the following embedding prob-
lem: Given a planar graph G, a cycle C of G, and a partitioning of the remaining
vertices of G, does there exist a planar embedding in which the induced subgraph
on each vertex partite of G \ C is contained entirely inside or outside C? For the
latter problem, we present an algorithm that is based on SPQR-trees and has lin-
ear running time. We also show how we can employ SPQR-trees to decide SEFE
for two planar graphs where one graph has at most two cycles and the intersec-
tion is a pseudoforest in linear time. These results give rise to our hope that our
SPQR-tree approach might eventually lead to a polynomial-time algorithm for
deciding the general SEFE problem for two planar graphs.

1 Introduction

Many practical graph drawing applications demand planar embeddings of a graph that
yield additional constraints. One natural application is in obtaining simultaneous draw-
ings of a set of related planar graphs. This is useful in the areas of bioinformatics,
social sciences and software engineering. A single drawing can be insufficient in de-
picting complex interrelationships of different models of a system. Instead, multiple
drawings may be required, each from a different perspective. The challenge is to pre-
serve the “mental map” of the common structures in each layout so that the scientist can
easily navigate between the different diagrams. To do this, common vertices and edges
are placed and drawn equally in each drawing. This can be modeled via embedding
constraints.

Various embedding constraints have already been studied in [2,5,6]; Gutwenger et
al. [12] apply SPQR-trees to efficiently decide if a graph has a combinatorial embedding
with respect to a set of hierarchical constraints modeling grouping and fixed orders of
edges around a vertex. We instead address a problem that cannot be modeled by any
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of the previous approaches. Given a planar graph G, a cycle C ⊂ G, and a partition
P of all vertices of G \ C, we ask whether there is a planar embedding of G where
all vertices v ∈ p for some part p ∈ P lie completely inside or outside C. We give an
efficient decision algorithm using SPQR-trees that can be used to solve a simultaneous
embedding problem.

Given a set of planar graphs {G1, G2, . . . , Gn} on the same vertex set, a simul-
taneous embedding with fixed edges (SEFE) of {Gi} are planar drawings Γi of Gi,
i ∈ [1..n], such that all vertices and all edges belonging to two graphs Gi and Gj are
drawn identically in the corresponding drawings Γi and Γj . SEFE and its variant of
simultaneous geometric embedding (SGE) with planar straight-line drawings as well
as the other variations of simultaneous embedding have become an important branch
within the field of graph drawing. It is known that deciding SEFE is NP-complete for
three graphs [11] while deciding SGE is NP-hard for two graphs [8]. The complexity
of deciding SEFE for two graphs is still open.

Many approaches have been made to decide the problem for some classes of graph
pairs [4,7,9,10]. Frati [10] showed that trees and planar graphs always have a SEFE.
Fowler et al. [9] improved this result to show that forests, circular caterpillars (removal
of all degree-1 vertices yields a cycle), K4, and subgraphs of K3-multiedges (an edge
(x, y) with any number of edges with x or y as endpoints) are the only graphs to always
have a SEFE with any planar graph. Their drawing algorithms are based upon using
an optimal Euclidean shortest path algorithm [13]. We also apply this technique in our
algorithms.

In this paper we examine the pairs of a planar graph G1 with a pseudoforest G2.
A SEFE is not always guaranteed unless all non-cycle edges of G2 are incident to
the cycle, i.e., the pseudoforest happens to be a circular caterpillar. However, we show
that SEFE for such pairs can be decided in polynomial time by presenting an efficient
decision algorithm. We further discuss efficient decision algorithms for the case that
G2 contains two cycles and G1 ∩ G2 is a pseudoforest. We think that our approach is
promising in that it may eventually lead to a general polynomial time decision algorithm
for testing SEFE of two graphs.

2 Preliminaries

Given some planar drawing Γ of a planar graph G, a cycle C in G forms a Jordan
curve that splits the plane into two connected components. One is bounded by C and
the other is unbounded as given by the Jordan curve theorem [14]. We say that some
vertex v ∈ G \ C lies in the interior (exterior) of C if it is mapped to a position in the
bounded (unbounded) component.

A combinatorial embedding of a planar graph G is defined as a clockwise ordering
of the incident edges for each vertex with respect to a crossing-free drawing of G in
the Euclidean plane. A planar embedding is a combinatorial embedding together with
a fixed external face.

A block is a maximal 2-connected subgraph of a graph G. If G is 2-connected, the
SPQR-tree T of G represents its decomposition into 3-connected components compris-
ing serial, parallel, and 3-connected structures [3]. The respective structure is given by a
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skeleton graph associated with each tree node which is either a cycle (S-node), a bundle
of parallel edges (P-node), or a 3-connected simple graph (R-node); Q-nodes serve as
representatives for the edges of G.

If G is 2-connected and planar, its SPQR-tree T represents all combinatorial embed-
dings of G. In particular, a combinatorial embedding of G uniquely defines a combi-
natorial embedding of each skeleton in T , and fixing the combinatorial embedding of
each skeleton uniquely defines a combinatorial embedding of G.

Given two planar graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex set V ,
a simultaneous embedding with fixed edges (SEFE) consists of planar drawings Γi of
Gi, i ∈ [1, 2], such that each vertex is mapped to the same point in the plane for Γ1 and
Γ2 and each edge in G1 ∩ G2 is represented by the same simple curve in the plane for
both drawings.

3 A Planar Graph, a Cycle, and a Partition

In this section, we consider the following graph embedding problem. Given a planar
graph G = (V,E), a cycle C = (VC , EC) ⊂ G, and a partition P of V \ VC , de-
cide whether G has a planar drawing such that all vertices of each part in P either lie
completely inside or outside of C; see Algorithm 1.

The input partition P or the planar embeddings of the graph may force two vertices
to be on the same side of the cycle (either both inside or both outside). We call this
situation a same-side constraint. On the other hand, by examining all embeddings of the
graph we may reveal that two vertices must be positioned on opposite sides of the cycle
(one inside and one outside). We refer to this situation as an opposite-side constraint.
The idea of the algorithm is to find all such constraints and then check whether all these
constraints can be satisfied at once, i.e., whether a planar embedding with the required
property exists.

The following algorithm uses an SPQR-tree T to examine all embeddings of the
block of graph G containing the given cycle C. Each skeleton of a node of T may
lead to constraints prohibiting some of the possible embeddings as discussed above.
We use an auxiliary graph H containing all of the vertices of the original graph to
maintain the occuring constraints. Same-side constraints are represented by green edges
and opposite-side constraints by red edges.

We say that H is 2-colorable if its vertices can be colored with two colors, say red
and green, in such a way that both endpoints of a green edge have the same color and
both endpoints of a red edge have different color.

As cycles are 2-connected, the given cycle C is contained in a single block B of
graph G. All other blocks are either completely inside or outside of C in all planar
drawings of G. Hence, we get one same-side constraint for all vertices of each block
B′ �= B. We can now assume to deal with a 2-connected graph G and its SPQR-tree T
that represents all planar embeddings of G together with some cycle C ⊆ G. Let ν ∈ T
be some node of the SPQR-tree, S be its skeleton and e ∈ S be any skeleton edge. If
the expansion graph of e includes any edge of C, we call e a cycle edge. We consider
the different possibilities for ν in turn.
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Algorithm 1. Deciding the embeddability of parts respecting a cycle

Input: Planar graph G = (V, E), cycle C = (VC , EC) ⊆ G, partition P of V \ VC

Output: Returns YES if and only if G has a planar embedding such that all induced
subgraphs of each p ∈ P lie on one side of C

Let H = (V, ∅)
for all parts p ∈ P do

Construct path in H with green edges of all vertices in p

Block B := Biconnected component of G containing C
for all blocks B′ �= B do

Construct path in H with green edges of all vertices in B′

Tree T := SPQR-tree of B
for all nodes μ ∈ T do

if skeleton S of μ has at least two cycle edges then
Cycle C′ := cycle consisting of all cycle edges in S
if μ is R-node then

Expand all non-cycle edges in S
Construct path in H with green edges of all vertices inside C′

Construct path in H with green edges of all vertices outside C′

if there exist vertex v in the interior of C′ and vertex w in the exterior of C′

then
Add red edge to H between v and w

if μ is P-node then
for all edges e in S \ C′ do

Construct path in H with green edges of all vertices in the expansion
graph of e

if H is 2-colorable then
return YES

else
return NO

If S contains exactly one cycle edge e, then the edges belonging to the skeleton of
all the other vertices must lie on the same side of C. When regarding the node of T
belonging to e, all these vertices are contained in the expansion graph of a single edge
that is not a cycle edge. Repeating this process, if necessary, we get a T -node that
has more than one cycle edge but also has a single non-cycle edge containing all of
the vertices from above. When dealing with this T -node, the necessary auxiliary graph
augmentation to handle this same-side constraint is performed.

If S contains two or more cycle edges, then these cycle edges comprise a cycle in S.
If S also contains non-cycle edges, ν is a P-node or an R-node.

1. In an S-node this can only occur if all edges of the skeleton are cycle edges. In
this situation there is nothing to be done as this does not lead to any same-side
constraints or opposite-side constraints.

2. Let ν be a P-node (see Fig. 1). All the vertices occurring in an expansion graph of
any other edge in S are forced to be on one side of the cycle C.
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cycle edges

other edge e

Fig. 1. Cycle edges in the skeleton of a P-node lead to same-side constraints: all vertices in the
expansion graph of a non-cycle edge e are on the same side of the cycle

cycle edges

interior edges

exterior edges

Fig. 2. Cycle edges in the skeleton of an R-node yield two same-side and one opposite-side con-
straints: All vertices in the expansion graphs of the interior component are on one side of the
cycle while all vertices of the exterior component are on the other side

3. Having ν as an R-node (see Fig. 2) is the most involved. The skeleton S of ν
is a 3-connected graph and has hence a unique embedding (besides mirroring and
choosing the outer face). The cycle edges split S into two halves: the interior and the
exterior components of S. All vertices belonging to all expansion graphs of edges
of one side must be on one side of the cycle in the final embedding. Neither pair
of vertices w1 and w2 being the interior and the exterior components, respectively,
may end up on the same side of the cycle. Hence, we get two same-side constraints
(between all vertices in the interior and exterior components, respectively) and one
opposite-side constraint (the edges from the interior and the exterior components
must be separated).

Theorem 1. Algorithm 1 has a runtime of O(|V |) and works correctly, i.e., it returns
YES if and only if the input graph G has a planar embedding E such that for each p ∈ P
all vertices in p lie on one side of C in E .

Proof. Obviously, the first two for-loops including the construction of T require only
O(|V |) time, thus add only O(|V |) green edges to H . The third loop iterates over all
nodes μ ∈ T and expands some non-cycle edges. Observe that—for all nodes μ—the
expansion graphs of these non-cycle edges do not share any edge, and thus no vertex
except for vertices on the cycle C. Therefore, the whole for-loop takes O(|V |) time,
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and we add only O(|V |) green and red edges to H . Since the size of H is linear in |V |,
we can check if H is 2-colorable using breadth-first-search in O(|V |) time.

We next show that the algorithm works correctly. First, assume that the algorithm
returns NO. Then the constructed auxiliary graph H is not 2-colorable. This means that
two vertices v and w in H are connected by two paths: one containing an odd number
of red edges and one containing an even number. This implies that v and w must lie
on the same side of C (due to the path with even number of red edges), as well as on
opposite sides (path with odd number of red edges). Hence, G has no such embedding.

Next assume that the algorithm returns YES in which H is 2-colorable. We pick one
of the two colors to lie in the interior of C and one to lie on the outside. The choice
of embeddings for every P-node and every R-node implies an embedding E for G. For
each such node in T , we can choose an embedding that satisfies the given choice of
interior and exterior of C. In each P-node, the vertices that belong to the expansion
graph of one of the parallel edges are connected by green edges in H , thus, they lie on
the same side in E . In each R-node, the vertices on both sides of the cycle are connected
by green edges, respectively, while a single edge between these sets forbids both parts
to lie on the same side. Finally, green edges between the vertices of the input partition
yield that these vertices lie on the same side of C. ��

4 A Planar Graph, a Pseudoforest, and a Decision

In this section, we apply Algorithm 1 to solve the following open problem in simul-
taneous embedding: Given a planar graph G1 and a pseudoforest G2, find an efficient
algorithm to decide whether the pair {G1, G2} has an SEFE; see Algorithm 2. For a
few special cases of G2 the situation becomes trivial as described by the next theorem.

Theorem 2 (Fowler et al. [9]). Let G1 be a planar graph and G2 be a forest or a
circular caterpillar. Then G1 and G2 have a SEFE.

Next, we consider the more general case of a pseudoforest containing a cycle C in
which not all non-cycle edges are incident to C. We see by the next theorem that the
case is also trivial if C is not in the intersection of G1 and G2.

Theorem 3. Let G1 = (V,E1) be a planar graph and G2 = (V,E2) be a pseudoforest
with a cycle C. If C is not in G1 ∩G2, then the pair has a SEFE.

Proof. Let edge e ∈ C \ G1. Create a planar drawing of Γ1 of G1 in the plane using
any suitable graph drawing algorithm (e.g. [1]). We construct a planar drawing Γ2 of
G2 that, together with Γ1, creates a SEFE of G1 and G2.

Draw all vertices and all edges of G1∩G2 in Γ2 in the same way as in Γ1 guarantee-
ing a simultaneous drawing. We still must draw all edges of G2\G1 without introducing
any crossings in Γ2. As e is not part of G1, it has not been drawn in Γ2 yet. We draw all
edges of G2 \G1 in Γ2 one after another with e as the last edge. The order of the other
edges can be chosen arbitrarily.

To do this we use an optimal Euclidean shortest path algorithm [13]. We apply the
modification as done by Fowler et al. [9] in their drawing algorithms. A distance ε is
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always maintained between the shortest path and any line segment corresponding to
previous part of Γ2. This allows subsequent edges to be routed as need be in between
any pair of non-incident edges that would otherwise be touching. Applying this algo-
rithm adds at most O(|V |) edge bends for each new edge (as new bends hide old bends
as argued in [9]) so that the final complexity of the drawing is O(|V |2) giving an overall
running time of O(|V |2 log |V |).

As G2 has only one cycle C and e is part of C, G2 \ {e} is a forest. Any drawing of
any subgraph of G2 \ {e} has exactly one face. Hence, starting with the partial drawing
of Γ2 it is always possible to insert a route for the edges not yet drawn maintaining
planarity. Even, in the last step, when edge e is inserted, the partial drawing of Γ2 has
exactly one face and thus, e can be safely inserted into Γ2. Then Γ2 is completed and
{Γ1, Γ2} is a SEFE of {G1, G2}. ��

Due to Theorems 2 and 3 we assume G2 to have exactly one cycle C in the intersection
G1 ∩ G2. By construction G1 is planar. However, to ensure a SEFE of G1 and G2 we
must embed G1 in such a way that the cycle C does not separate any pair of vertices
that are adjacent in G2. On the other hand, as G2 \ C is a forest, this condition suffices
to guarantee a SEFE of the pair {G1, G2}.

Theorem 4. Let G1 = (V,E1) be a planar graph and G2 = (V,E2) be a pseudoforest
each on n vertices with a cycle C ⊆ G1 ∩ G2. G1 and G2 have a SEFE if and only
if there exists a planar drawing of G1 such that for all edges e = {v, w} ∈ G2 \ G1
either both v and w lie inside or both lie outside of C.

Proof. Assume first that G1 has a planar drawing Γ1 with the described property. We
create a planar drawing Γ2 of G2 that, together with Γ1, yields a SEFE of G1 and
G2. Draw all vertices and all edges of G1 ∩ G2 in Γ2 in the same way as in Γ1. As
C ⊆ G1 ∩G2, the cycle is now present in Γ2. We draw all remaining edges of G2 \G1
next by using the same approach of the proof of Theorem 3.

We start with the edges e that have one endpoint in the exterior of C in Γ1. Due to
the condition on Γ1, both endpoints of e are in the exterior of C or one endpoint is on
C. As we have just drawn C and all vertices in the same way as in Γ1, this condition
also holds for the partial drawing of Γ2. As G2 \G1 is a forest there is a way to route e
without introducing crossings: Imagine C and its interior as one big vertex. The partial
drawing Γ2 then has exactly one face. This also holds for edges connecting the exterior
of C with C itself. The same argument holds for all the edges in the interior of C as well
as the edges connecting the interior with C. Hence, by construction we have a planar
drawing Γ2 of G2 that, together with Γ1, yields a SEFE of G1 and G2.

Now let G1 be without a planar drawing with the described property. Assume G1 and
G2 have a SEFE. By definition there exist planar drawings Γi of Gi, i ∈ [1, 2], such
that the intersection G1∩G2 is drawn in the same way in both Γ1 and Γ2. As G1 has no
planar drawing with the described property, there exists an edge e = {v, w} ∈ G2 \ C
such that v lies in the interior of C and w lies in the exterior of C in Γ1. As vertices
v and w and cycle C are part of G1 ∩ G2, the same condition holds for Γ2. But this
means that e cannot be routed in Γ2 without introducing a crossing in Γ2, which is a
contradiction to our assumption. Hence, G1 and G2 have no SEFE. ��
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Algorithm 2. Deciding SEFE for planar graph and pseudoforest pair

Input: Planar graph G1 and pseudoforest G2.
Output: YES if and only if {G1, G2} has a SEFE.

if G2 contains no cycle then
Return YES.

Cycle C := the only cycle of G2

if C � G1 then
Return YES.

Partition P = {Pv | v ∈ G1 \ C} := trivial partition of G1 \ C
for all edges {v, w} of G2 \ C do

UNION Pv and Pw.
Run Algorithm 1 with input (G1, C, P ).
Return output of Algorithm 1.

We use the previously discussed results to create an efficient algorithm deciding the
problem mentioned in the beginning of this section.

Theorem 5. Algorithm 2 works correctly, i.e., it returns YES if and only if {G1, G2}
has a SEFE. Moreover, it has a linear runtime.

Proof. Assume first that the algorithm returns YES, which is by one of three statements.
The first returns YES if G2 contains no cycle. But then Theorem 2 states that {G1, G2}
has a SEFE. The second statement returns YES if cycle C is not completely part of G1.
Theorem 3 guarantees thatG1 andG2 have a SEFE in this situation. The last instruction
is that the run of Algorithm 1 returns YES. Algorithm 1 checks whether graph G1 can be
embedded in the plane such that all partition sets of P lie completely inside or outside
C. By the construction of P , this is equivalent to saying that both endpoints of every
edge of G2 \ C lie both inside or both outside C. Then Theorem 4 yields a SEFE of
G1 and G2.

Assume next, that the algorithm returns NO, which implies Algorithm 1 returned NO.
Hence, G1 has no planar drawing with the property of Theorem 4, which implies that
G1 and G2 are without a SEFE.

The proposed runtime O(|V |) follows directly from the complexity analysis of
Algorithm 1. ��

5 A Planar Graph, a Path, and a Cyclic Edge Order

In this section, we consider two embedding problems with requirements on the cyclic
order of some of the edges around a vertex x or two vertices x and y that can be used
to decide some special SEFE problems in Section 6.

In the first problem, x and y are two distinct vertices connected by a path p. Let ep

and e′p be the first and last edges on p incident to x and y, respectively, where {ea, eb}
and {e′a, e′b} are distinct edges also incident to x and y. We want to ensure that the order
of these edges around x and y (amongst other possible incident edges) in a combinato-
rial embedding Γ of G is consistent with an embedding of a graph in which x and y are
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connected by the three edge-disjoint paths p, pa = ea, . . . , e
′
a, and pb = eb, . . . , e

′
b. This

implies that either the cyclic order around x is ep, ea, eb and around y is e′p, e
′
b, e

′
a or

both orders are reversed. It suffices to test only one possibility, since we can generate a
combinatorial embedding with the reversed orders simply by mirroring the embedding.

Let Ex = {ep, ea, eb} and Ey = {e′p, e′a, e′b}. We observe that—if not all edges
in Ex ∪ Ey are in the same block—such a required combinatorial embedding always
exists; in this case, x or y is a cut vertex. We can insert the embedding of one block
B′ into a face of an embedding of the other block B (mirroring the embedding of B′

if necessary) so that the requirements on the embedding are met. On the other hand, if
all the edges in Ex ∪ Ey are contained in a single block B, it is sufficient to test a few
simple conditions in the SPQR-tree T of B. The necessary and sufficient conditions are
given in the lemma below.

Lemma 1. G has a combinatorial embedding Γ such that the cyclic order induced by
Γ on Ex is ep, ea, eb and the cyclic order induced on Ey is e′p, e

′
b, e

′
a if and only if

1. there is no block B of G containing all edges in Ex ∪Ey; or
2. there is a block B containing Ex ∪ Ey , and its SPQR-tree T has neither

(a) a P-node whose skeleton contains three distinct edges e1, e2, e3 such that ep

and e′p are contained in the expansion graph of e1, ea and e′b in the expansion
graph of e2, and eb and e′a in the expansion graph of e3; nor

(b) an R-node whose skeleton has a combinatorial embedding such that ep, ea,
eb are in the expansion graphs of three distinct skeleton edges ẽp, ẽa, ẽb in this
cyclic order, and e′p, e

′
a, e

′
b are in the expansion graphs of three distinct skeleton

edges ẽ′p, ẽ
′
a, ẽ

′
b in this cyclic order.

These conditions can be checked in linear time, since constructing an SQPR-tree and
determining for each edge e ∈ Ex ∪ Ey in the expansion graphs of which skeleton
edges it is contained, requires only linear time, and there are only two combinatorial
embeddings of each R-node’s skeleton.

In the second embedding problem, we consider a planar graph G with a vertex x
and four distinct edges ea, e

′
a, eb, e

′
b incident to x. We want to decide if there exists an

embedding Γ of G that induces a cyclic order on these four edges in which ea and e′a
(and thus also eb and e′b) are consecutive. The motivation for this problem is similar as
for the first problem, where p is an empty path and thus x and y are identical. In this
case, deciding if a feasible combinatorial embedding of G exists is even easier. We only
need to consider only R-node skeletons containing x in which x is incident to at least
four skeleton edges. This gives the following lemma whose conditions can be verified
in linear time:

Lemma 2. G has a combinatorial embedding Γ such that the cyclic order induced by
Γ on Ex = {ea, e

′
a, eb, e

′
b} is such that ea and e′a are consecutive, if and only if either

1. no block of G contains all edges in Ex; or
2. there is a block B containing all edges in Ex, and its SPQR-tree contains no R-node

whose skeleton S containsx and the edges in Ex are in the expansion graphs of four
distinct skeleton edges Ẽx = ẽa, ẽ

′
a, ẽb, ẽ

′
b such that there exists a combinatorial

embedding of S that induces a cyclic order on the edges in Ẽx in which ẽa and ẽ′a
are not consecutive.
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6 Two Planar Graphs with Restrictions and a Decision

We now consider how this approach of using SPQR-trees might be extended to address
more general decision problems for deciding whether a pair of graphs has a SEFE. We
examine pairs of planar graphs G1 and G2 where we restrict both the number and the
arrangement of cycles in G2 and in G1 ∩G2.

G1 ∩ G2 is a forest: We start with a more general version of Theorem 3 where we
have a larger number of cycles in G2 but still the intersection is a forest.

Theorem 6. Let G1 = (V,E1) be a planar graph and G2 = (V,E2) be a planar
graph where all cycles Ci ⊆ G2, i ∈ [1..k], are pairwise disjoint. If no Ci is contained
in G1 ∩G2, then the pair {G1, G2} has a SEFE.

Proof (sketch). We adapt the proof of Theorem 3. When drawing G2, remove one edge
ei from each Ci \ G1 and draw the rest of G2, which is a forest. Then insert one edge
ei after another in the same way as done with edge e in the proof of Theorem 3. As
all cycles are disjoint and no further cycles exist, this method can be applied without
introducing any crossings in the drawing of G2. ��

Next, we discuss the case where G2 contains exactly two cycles that either touch in
exactly one point or share a common path. With the ideas developed in Section 5 we
can handle this situation efficiently.

Theorem 7. The SEFE decision problem for two planar graphs G1 and G2 where G2
contains exactly two cycles and G1 ∩G2 is a forest can be decided in linear time.

Proof (sketch). Let C1 and C2 be the two cycles of G2. If C1 ∩ C2 = ∅, the case is
trivial as given by Theorem 6. As G2 contains no more cycles, C1 ∩ C2 is a path p
with endpoints x and y; see Fig. 3. A planar embedding of G1 can force the outgoing
edges of x and y to have a specific order leading to the situation in Fig. 3(b) in G2 that
prevents a SEFE of G1 and G2. However, if G1 has an embedding that allows the right
cyclic order for both x and y as in Fig. 3(a), then a SEFE can be achieved. All other
edges of G2 can be drawn without introducing crossings as in the proof of Theorem 4.
Lemma 1 gives a linear time check to determine whether G1 has an embedding such

(a)

y

C2 \ C1

C1 ∩ C2

C1 \ C2

x

C1 ∩ C2

C1 \ C2

C2 \ C1

(b)

y

x

Fig. 3. The two cycles C1 and C2 drawn without and with crossings. The respective clockwise
ordering of the edges incident to x and y differ.
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Algorithm 3. Deciding SEFE for restricted planar graph pair

Input: Planar graphs G1 and G2 where G2 contains exactly two cycles and G1 ∩ G2 is a
pseudoforest but not a forest.

Output: YES if and only if {G1, G2} has a SEFE.

Cycle C := the only cycle of G1 ∩ G2

Partition P = {Pv | v ∈ G1 \ C} := trivial partition of G1 \ C
for all edges {v, w} of G2 \ C do

UNION Pv and Pw.
Run Algorithm 1 with input (G1, C, P ).
Return output of Algorithm 1.

that the cyclic order for the three outgoing edges corresponds to the paths shown in
Fig. 3. Lemma 2 handles the degenerate case for x = y, also determinable in linear
time. ��

G1 ∩ G2 is a pseudoforest: Assume now that both G1 and G2 are planar graphs
in which G2 contains exactly two cycles C1 and C2 of which only one, say C1, is
contained in G1 ∩ G2. When removing one edge of C2 \ G1 we are in the situation
described in Section 4. This correlation allows us to construct a new decision algorithm
based on Algorithm 2. We start by generalizing Theorem 4, which we use as the key
ingredient to Algorithm 3.

Theorem 8. Let G1 = (V,E1) be a planar graph and G2 = (V,E2) be a planar graph
with exactly two cycles C1 and C2 where C1 ⊆ G1 ∩ G2 and C2 �⊆ G1 ∩ G2. G1 and
G2 have a SEFE if and only if there exists a planar drawing of G1 such that for all
edges e = {v, w} ∈ G2 \G1 either both v and w lie inside or both lie outside of C1.

Theorem 8 can be proved by using Theorem 4 to determine whether {G1, G2 \ {e}}
has a SEFE. In an SEFE of this smaller pair, edge e = {v, w} can be inserted if and
only if both endpoints v and w lie on the same side of C1.

It is easy to see that Algorithm 3 works correctly. We can imitate the proof of cor-
rectness of Algorithm 2 (see Theorem 5) where this time Theorem 8 plays the role of
Theorem 4.

7 Concluding Remarks and Future Applications

We have shown how to use SPQR-trees in the context of simultaneous embedding with
fixed edges by presenting several new decision algorithms for some classes of graph
pairs. Clearly, much future works remains, but overall this approach of using SPQR-
trees seems promising in potentially yielding a polynomial-time decision algorithm for
deciding whether two graphs have a SEFE, if one exists.



168 J.J. Fowler et al.

References

1. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-
ica 10(1), 41–51 (1990)

2. Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Drawing database schemas. Soft-
ware: Practice and Experience 32(11), 1065–1098 (2002)

3. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Computing 25(5),
956–997 (1996)

4. Di Giacomo, E., Liotta, G.: A note on simultaneous embedding of planar graphs. In: EWCG
2005, pp. 207–210 (2005)

5. Dornheim, C.: Planar graphs with topological constraints. Journal on Graph Algorithms and
Applications 6(1), 27–66 (2002)
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Abstract. Problems in simultaneous graph drawing involve the lay-
out of several graphs on a shared vertex set. This paper describes a
Graph Simultaneous Embedding Tool, GraphSET, designed to allow the
investigation of a wide range of embedding problems. GraphSET can
be used in the study of several variants of simultaneous embedding in-
cluding simultaneous geometric embedding, simultaneous embedding with
fixed edges and colored simultaneous embedding with the vertex set par-
titioned into color classes. The tool has two primary uses: (i) studying
theoretical problems in simultaneous graph drawing through the pro-
duction of examples and counterexamples and (ii) producing layouts of
given classes of graphs using built-in implementations of known algo-
rithms. GraphSET along with movies illustrating its utility are available
at http://graphset.cs.arizona.edu.

1 Introduction

Drawing multiple graphs simultaneously is a problem motivated by its appli-
cations in bioinformatics, social sciences, and software engineering. The large
networks defined by multiple relationships make using a single layout impracti-
cal. Instead, such networks can be viewed from different perspectives according
to the particular structure, behavior, or scale of interest. When looking for com-
mon patterns and substructures among the heterogeneous representations of the
same data it is essential to preserve the “mental map” of the user. A natural way
to accomplish this is to have common vertices and edges laid out in a similar
manner throughout the various layouts.

Simultaneous embedding problems are difficult to solve and require extensive
manipulation of different instances in order to gain insight. A useful tool is one
that allows for the dynamic manipulation of common vertices while accounting
for how the edge crossings in each graph can change. In addition, having the
ability to visualize each graph separately or as a whole while simultaneously
manipulating each graph can allow one to solve complex problems. Finally, hav-
ing built-in implementations of algorithms related to simultaneous embedding
can also aid in further research.
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Fig. 1. An overview of the GraphSET system

Our Graph Simultaneous Embedding Tool, GraphSET meets the above goals,
allowing the manipulation of up to eight graphs simultaneously with the capa-
bility of displaying each graph separately in its own window. This is an essential
feature that has enabled us to solve several simultaneous embedding problems.

A related tool is the Interactive Multi-User System for Simultaneous Graph
Drawing [15]. It only considers simultaneous geometric embedding of two graphs
and the emphasis is on collaboration with the aid of the DiamondTouch device
[3]. Another related tool that can be used to obtain simultaneous drawings of
graphs using force-directed methods is described in [5].

2 System Architecture

Figure 1 gives a high-level overview of the system architecture of GraphSET.
The user can introduce commands using the GUI (menus, dialog boxes, toolbar,
etc.) or directly manipulating the view (Graph Editor). When the user makes
modifications, they are done in the document (graph data structures, applica-
tion settings, etc.) and those changes are reflected on every active view of the
document. When the modifications are done from the view (such as moving a
vertex) the document is modified and reflected back in all active views. The
document can be loaded/saved in the file system. Algorithms are called from
the document. Some algorithms (such as drawing or recognition) only reflect
temporary modifications directly in the view (animation, for example).

Dashed boxes represent plugin components that include customized views
(such as a 3D view we have used for studying 3D morphing). The other dashed
box corresponds to third-party libraries that can be hooked into the algorithms
module via a proxy. For example, we have proxies for LEDA [16] and OGDF
(the Open Graph Drawing Framework available at http://www.ogdf.net). Al-
gorithms from these libraries are called through these proxies. Overlapping boxes

http://www.ogdf.net
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Fig. 2. Example of a simultaneous geometric embedding of five paths: blue path is
solid in (a), red is dashed in (b), green is dash-dotted in (c), cyan is light-solid in (d)
and yellow is light-dashed in (e). The SGE of all 5 paths is shown in (f).

represent several views of the same type in the document. This allows for the dif-
ferent graph views in which to work with a simultaneous embedding; see Fig. 2.
Features like toggling the grid, snapping, and visibility of a given edge set are
properties of the graph editor view allowing each to have individual settings.

3 Preliminaries

We begin with a few definitions to clarify the various problems of interest.
Two n-vertex graphs G1(V1, E1) and G2(V2, E2) have a simultaneous embed-

ding with mapping if, given a bijection f : V1 �→ V2, each graph can be drawn
in the plane R2 without crossings such that for all v ∈ V1 and f(v) ∈ V2, v and
f(v) are represented by the same point in their respective drawings. If f is not
given, but this can be done for some bijection, then G1 and G2 are simultane-
ously embeddable without mapping. Unless indicated otherwise, a simultaneous
embedding (SE) refers to one with mapping.

A simultaneous geometric embedding (SGE) consists of a simultaneous em-
bedding in which only straight-line edges are used. Simultaneous embedding with
fixed edges (SEFE) is less restricted since edges are drawn with simple curves and
common, or fixed edges, use the same curve. Clearly, SGE ⊂ SEFE ⊂ SE.

The problem of colored simultaneous embedding (CSE) is a generalization of
simultaneous embedding with mapping in which each Vi is strictly partitioned
into k colors with respect to a k-coloring of a pointset P . Each vertex of a given
color can be mapped to a point of the same color. When k = n this is equivalent
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Fig. 3. Layouts of ULP trees: (a) caterpillar, (b) radius-2 star, and (c) degree-3 spider

to simultaneous embedding with mapping, and when k = 1, to simultaneous
embedding without mapping. Figure 2 is an example of five 5-colored paths on
ten vertices in which there are 5 · 25 = 160 possible mappings, one of which is
shown.

Finding simultaneous embeddings with paths drawn monotonically uses a
restricted form of planarity, called level planarity. Only one of the Cartesian co-
ordinates is allowed to change when attempting to find a crossings-free drawing.

An undirected level graph G(V,E, φ) has a labeling φ : V �→ [1..k] assigning
each vertex to one of k levels so that φ(u) �= φ(v) for every edge (u, v). This
prevents any pair of adjacent vertices from being in the same level. In a level
drawing all the vertices of the same level share the same y-coordinate, placed
along a horizontal track, and each edge is drawn strictly y-monotone. If G can
still be drawn planarly, then G is level planar, otherwise, G is level non-planar.
Any level planar drawing with bends has one without bends [4]. Hence, adding
edge bends does not affect the level planarity of a graph.

If G is level planar over all possible labelings, then G is unlabeled level planar
(ULP). In [6], ULP trees were characterized as consisting of three classes of trees:
(i) caterpillars (the removal of vertices that have degree-1 yields a path or an
empty graph); (ii) radius-2 stars (any number of paths of length one or two that
all share a common endpoint), and (iii) degree-3 spiders (three paths that share
a common endpoint); see Fig. 3.

4 Applications

In this section, we describe several successful uses of GraphSET. First, we discuss
how GraphSET has been used in working with ULP trees [6] and a related
problem on colored trees. Second, we consider a pair of trees whose union is
homeomorphic to complete graph Kn for n > 3 for which there is a pair without
a SGE [10]. Third, we discuss how GraphSET has aided in verifying gadgets of
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Fig. 4. Layouts of (a) a 25-level caterpillar and (b) a 6-level caterpillar

reductions used to show that deciding whether a graph pair has a SGE is NP-
hard and whether a graph triple has a SEFE is NP-complete [7,9]. Finally, we
show how GraphSET can be used to find CSE counterexamples, as in [2].

4.1 Unlabeled Level Planar Trees

When there are more vertices than levels, caterpillars are the only class of trees
that remains ULP. This allows GraphSET to draw any caterpillar without cross-
ings; see Fig. 4. When there is exactly one vertex per level, GraphSET can also
provide level planar layouts of the other two classes of ULP trees; see Fig. 5.

GraphSET also implements the ULP recognition algorithms that highlight the
ULP trees by their class. If the graph is not ULP, a subgraph homeomorphic to
one of the forbidden ULP trees is highlighted as the user modifies the graph;
see Fig. 6. GraphSET has been instrumental in determining correct and imple-
mentable algorithms for these purposes. Movies of the tool demonstrating all the
ULP tree algorithms can be found at http://ulp.cs.arizona.edu.

4.2 Colored Level Planar Trees

Our tool has the feature of allowing the user to snap and lock vertices to tracks
in order to investigate not only unlabeled level planar graphs but the planarity
of multiple level graphs being simultaneously embedded. Tracks can be colored
so that only vertices of that color can be snapped to that track.

As an example of this utility, we consider the open problem of whether a
3-colored tree-path pair always has a SGE. One approach is to attempt to layout
the path monotonically. Here each colored track has one vertex of its color.

http://ulp.cs.arizona.edu
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Fig. 5. Layouts of (a) a 30-level radius-2 star and (b) a 20-level degree-3 spider

The idea is to find an algorithm to swap vertices between tracks of the same
color until the 3-colored tree becomes level planar. This is not always possible if
the tracks are colored sequentially as in Fig. 7(a). However, if the tracks are col-
ored randomly, then it may be possible to find a sequence of swaps in going from
a level non-planar assignment as in Fig. 7(b) to a level planar one as in Fig. 7(c).
Even in the worst case of sequentially colored tracks there may be relatively few
interchanges of colored tracks needed so that a CSE then becomes possible. This
would then correspond to paths consisting of relatively few monotonic segments
that may have a SGE.

Fig. 6. ULP recognition algorithms highlighting a caterpillar, a radius-2 star, and a
degree-3 spider (a) and the forbidden trees T7, T8, and T9 (b)
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Fig. 7. This 3-colored tree (vertices 1-3 are blue, 4-7 red and 8-10 green) is level non-
planar for sequentially colored tracks (tracks 1-3 are blue and solid, tracks 4-7 are red
and dashed, tracks 8-10 are green and dash-dotted) as in (a), but may or may not be
level planar for randomly colored tracks as in (b) and (c), respectively

4.3 Simultaneous Geometric Embedding of Pairs of Trees

In this section, we consider the simultaneous geometric embedding of two trees
T1(V,E1) and T2(V,E2) on n2−2n+2 vertices whose union contains a subgraph
homeomorphic to the complete graph Kn on n vertices for a given n > 3. Both
T1 and T2 have a root vertex labeled ‘0’ that is adjacent to the remaining n− 1
vertices of V labeled ‘1’, ‘2’, . . . , ‘n− 1’. In each tree, these n− 1 vertices have
n− 2 leaves so that each non-leaf vertex has degree n− 1. Leaves are labeled i, j
for i, j ∈ [1..n − 1] and i �= j. In T1 the vertex labeled i ∈ [1..n − 1] has leaves

Fig. 8. A pair of trees whose union is homeomorphic to K5 (a) in which one tree has
red edges (dashed) and the other has blue edges (solid) with a SGE shown in (b)
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labeled i, j for j ∈ [1..n− 1] such that i �= j. Similarly, in T2 the vertex labeled
j ∈ [1..n− 1] has leaves labeled i, j for i ∈ [1..n− 1] such that i �= j.

The tool is especially useful in this case given that the user can have different
windows for each graph. GraphSET maintains the crossing count within each
graph while ignoring the crossings of edges from different graphs. Figure 8 shows
two trees for the case of n = 5 on 17 vertices that illustrates a schema to generate
a layout that works up to n = 6. When n > 6, we found that the root vertex
labeled ‘0’ could no longer be centrally located, but rather had to be on the
convex hull of the simultaneous embedding. For large values of n these tree pairs
do not have a simultaneous geometric embedding, as shown by Geyer et al. [10].
It is unknown what is the smallest value of n that forces a crossing; for example,
the case n = 8 is open.

4.4 Gadgets for Planar 3-SAT Reductions

GraphSET supports multiple edges with different colors. These edges may in-
clude bends and can be treated as a single edge (for fixed edges) or as different
edges (for multi-graphs). An application of this is the manipulation of gadgets
for Planar 3-SAT reductions.

In [9] Gassner et al. proved that SEFE is NP-Complete for three graphs.
The proof is a reduction using clause gadgets and literal gadgets; see Fig. 9(a).
There are two possible embeddings for each literal gadget and these embeddings
correspond to true or false values in the matching literals. The argument is that
a drawing of the clause without crossings is only possible if one of the literals
is true. In the drawing this implies that we can only get rid of a crossing by
flipping a literal gadget (changing the embedding of the gadget).

Fig. 9. Gadget for a clause with 3 literals (a) and a SEFE of the gadget in (b)
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Fig. 10. Five colored paths (blue path is solid, red is dashed, green is dash-dotted,
cyan is light-solid and yellow is light-dashed) without a SEFE in (a) and after some
swaps among vertices of the same color in (b) have a SGE in (c). The split window
shows the cyan path for each step.

GraphSET is useful in exhibiting problems in the gadget construction by
finding initially less than obvious embeddings that may break the argument;
see for example Fig. 9(b). With the aid of GraphSET the correct reduction was
found [7]. The flipping/rotation and the cut/paste operations included in the
tool are essential in constructing and manipulating these kinds of gadgets.

4.5 Colored Simultaneous Embeddings

GraphSET was used to build a counterexample of five 5-colored paths on five
distinctly colored vertices without a SGE to show that there does not exist a
universal pointset for 5-colored paths [2]. One open CSE problem is whether there
exists four paths on four colors that do not always have a SGE. We illustrate
the difficulty of this problem with a potential alternate counterexample of five
5-colored paths not using distinctly colored vertices with Figs. 2 and 10. Here
the five 5-colored paths are on ten vertices in which each path has two vertices of
the same color corresponding to its endpoints. As given in Fig. 10(a) a crossing
will always occur regardless of the placement of vertices. This is due to the fact
that each pair of vertices with the same color is connected by four edges of the
other colors. This means that when each of these vertex pairs are contracted
they form the example of five paths on five colors in [2].

However, vertices of the same color can exchange adjacencies. The tool lets
one swap the adjacency lists between two vertices of the same color in one
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Fig. 11. Three cycles whose union forms a K7 with no common edges in (a) and the
corresponding SGE in (b)

of the graphs. A series of such swaps in the five graphs results in Fig. 10(b),
which has the SGE in Fig. 10(c). While this is not the counterexample we are
after, it illustrates the utility of GraphSET when attempting to construct such
counterexamples.

Another open CSE problem in which GraphSET is very useful is shown in
Fig. 11(a). One starts with an arrangement of three cycles whose union forms a
K7. In general, any odd prime p has a decomposition into (p−1)/2 cycles whose
union forms a Kp in which each edge in the union is in exactly one cycle. This is
of interest because the three 6-colored cycles whose union forms a K3,3 without
a SGE given in [2] are constructed so that each edge in the union belongs to two
of the three paths. This forces one of the cycles to have a self crossing.

It is an open problem to find a set of cycles without any common edges that
do not have a SGE. While this example for K7 has a SGE shown in Fig. 11(b),
this requires several small angles between pairs of incident edges along the same
cycle. We conjecture for sufficiently large p that such a SGE no longer exists.

5 Implementation

GraphSET is a stand-alone Windows application written in C++ that can be
downloaded from http://graphset.cs.arizona.edu, where the source code is
also available. GraphSET can also run under Linux and MacOS using wine.

GraphSET contains other related algorithms for graph drawing as support
for the previous applications. This includes implementation of the PQ-tree data

http://graphset.cs.arizona.edu
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Fig. 12. A random labeled tree (a) made proper (b) with a level planar embedding (c)

structure and the planarity testing algorithm by Booth and Lueker [1] . The
level planarity testing and embedding algorithms by Healy et al. [11,12] are
also available. These algorithms require the graph to be proper, i.e., there are
only edges between vertices in consecutive levels. When the graph is non-proper,
GraphSET adds dummy vertices along edges; see Fig. 12. The runtime for these
algorithms is O(|V |2) provided the graph is proper.

6 Conclusions and Future Work

We presented GraphSET, a tool that has been valuable in studying problems
related to simultaneous embedding. We hope that other researchers interested
in these problems will find this tool useful.

While currently GraphSET only includes the recognition and drawing algo-
rithms for ULP trees, we plan to incorporate algorithms for all ULP graphs. We
foresee using this tool in the research of minimal level non-planar (MLNP) pat-
terns; the first step is to implement MLNP patterns recognition algorithms for
trees [8]. We also plan to incorporate the faster O(|V | log |V |) level planarity
testing and embedding algorithms by Jünger, Leipert and Mutzel [13,14].
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Abstract. We find arbitrarily large finite sets S of points in general position in
the plane with the following property. If the points of S are equitably 2-colored
(i.e., the sizes of the two color classes differ by at most one), then there is a
polygonal line consisting of straight-line segments with endpoints in S, which
is Hamiltonian, non-crossing, and alternating (i.e., each point of S is visited ex-
actly once, every two non-consecutive segments are disjoint, and every segment
connects points of different colors).

We show that the above property holds for so-called double-chains with each
of the two chains containing at least one fifth of all the points. Our proof is con-
structive and can be turned into a linear-time algorithm. On the other hand, we
show that the above property does not hold for double-chains in which one of the
chains contains at most ≈ 1/29 of all the points.

1 Introduction

1.1 Previous Results

One of the basic problems in geometric graph theory is to decide if a given graph can
be drawn on a given planar point set using pairwise non-crossing straight-line edges.
In a more demanding version, the points and the vertices of the graph are colored and
each vertex has to be placed in a point of the same color (see the survey [5] for further
references). Interesting and non-trivial questions arise already if we want to embed a
2-colored path on a 2-colored point set. The authors of several papers have focused
on embeddings of so-called alternating paths, which are paths with no monochromatic
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edge. Since the colors on a 2-colored alternating path must alternate along the path, a
2-colored point set S may admit a Hamiltonian alternating path only if the coloring of
S is equitable, i.e., the sizes of the color classes differ by at most one.

Let S be an equitably 2-colored set of points in general position in the plane. It
is known that if the two color classes of S can be separated by a line then there is
a non-crossing Hamiltonian alternating path on S [1]. The same result holds if one
of the color classes is exactly the set of vertices of the convex hull [1]. Kaneko et
al. [6] proved that any equitably 2-colored set S of at most 12 points or of 14 points
admits a non-crossing Hamiltonian alternating path. On the other hand, Kaneko et al. [6]
gave examples of equitably 2-colored sets S of n points admitting no non-crossing
Hamiltonian alternating path for any n > 12, n �= 14.

The above result on sets with color classes separated by a line easily implies that any
equitably 2-colored set S of size n admits a non-crossing alternating path on at least n/2
points of S. It is an open problem if this lower bound can be improved to n/2 + f(n),
where f(n) is unbounded (see also the book [3]). On the other hand, there are equitably
2-colored sets admitting no non-crossing alternating path of length more than ≈ 2n/3
[2,7]. This upper bound is proved for certain colorings of sets in convex position. The
above general lower bound n/2 can be slightly improved to n/2 + Ω(

√
n/ logn) for

sets in convex position [7].
In this paper we find arbitrarily large “universal” sets for which any equitable 2-

coloring admits a non-crossing Hamiltonian alternating path. We prove the “universal-
ity” for so-called double-chains with each chain containing at least one fifth of all the
points. Double-chains were first considered in [4].

1.2 Our Results

A convex or a concave chain is a finite set of points in the plane lying on the graph of
a strictly convex or a strictly concave function, respectively. A double-chain (C1, C2)
consists of a convex chain C1 and a concave chain C2 such that each point of C2 lies
strictly below every line determined by C1 and similarly, each point of C1 lies strictly
above every line determined by C2 (see Fig. 1). Note that we allow different sizes of
the chains C1 and C2.

Let (C1, C2) be a double-chain, and let p1, p2, . . . , pk ∈ C1∪C2 be distinct points of
C1 ∪ C2. The polygonal line p1p2 . . . pk consisting of the k − 1 straight-line segments
p1p2, p2p3, . . . , pk−1pk is shortly called the path p1p2 . . . pk. The path p1p2 . . . pk is

C1

C2

Fig. 1. An equitably 2-colored double-chain (C1, C2)
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non-crossing if any two non-consecutive segments in it are disjoint. The path p1p2 . . . pk

is Hamiltonian (for the double-chain (C1, C2)) if it visits all the points of C1 ∪C2 (i.e.,
k = |C1|+ |C2|).

Suppose that the points of a double-chain (C1, C2) are colored by two colors. Then
a path p1p2 . . . pk is alternating if the endpoints of each segment are colored by dif-
ferent colors. A path on C1 ∪ C2 is a good path if it is non-crossing, Hamiltonian and
alternating.

An equitable 2-coloring of a double-chain (C1, C2) is a coloring of C1 ∪C2 by two
colors such that the sizes of the color classes differ by at most one. We use black and
white as the colors in the colorings. Here is our main result:

Theorem 1. Let (C1, C2) be a double-chain whose points are colored by an equitable
2-coloring, and let |Ci| ≥ 1

5 (|C1|+ |C2|) for i = 1, 2. Then (C1, C2) has a good path.
Moreover, a good path on (C1, C2) can be found in linear time.

On the other hand, we show that double-chains with highly unbalanced sizes of chains
do not admit a good path for some equitable 2-colorings:

Theorem 2. Let (C1, C2) be a double-chain whose points are colored by an equitable
2-coloring, and let C1 be periodic with the following period of length 16: 2 black, 4
white, 6 black and 4 white points. If |C1| ≥ 28(|C2| + 1), then (C1, C2) has no good
path.

2 Proof of Theorem 1

This section contains only the proof for double-chains with an even number of points.
The proof for the odd number of points can be found in the Appendix.

The main idea of our proof is to cover the chains Ci by a special type of pairwise
non-crossing paths, so called hedgehogs, and then to connect these hedgehogs into a
good path by adding some edges between C1 and C2.

2.1 Notation Used in the Proof

For i = 1, 2, let bi be the number of black points of Ci and let wi := |Ci| − bi denote
the number of white points of Ci.

Since the coloring is equitable, we may assume that b1 ≥ w1 and w2 ≥ b2. Then
black is the major color of C1 and the minor color of C2, and white is the major color
of C2 and the minor color of C1. Points in the major color, i.e., black points on C1 and
white points on C2, are called major points. Points in the minor color are called minor
points.

Points on each Ci are linearly ordered according to the x-coordinate. An interval of
Ci is a sequence of consecutive points of Ci. An inner point of an interval I is any point
of I which is neither the leftmost nor the rightmost point of I .

A body D is a non-empty interval of a chain Ci (i = 1, 2) such that all inner points of
D are major. If the leftmost point of D is minor, then we call it a head of D. Otherwise
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Fig. 2. A hedgehog in C1

00-hedgehogs

01-hedgehogs

10-hedgehogs

11-hedgehogs

Fig. 3. Types of hedgehogs (sketch)

D has no head. If the rightmost point ofD is minor, then we call it a tail ofD. Otherwise
D has no tail. If a body consists of just one minor point, this point is both the head and
the tail.

Bodies are of the following four types. A 00-body is a body with no head and no tail.
A 11-body is a body with both head and tail. The bodies of remaining two types have
exactly one endpoint major and the other one minor. We will call the body a 10-body or
a 01-body if the minor endpoint is a head or a tail, respectively.

Let D be a body on Ci. A hedgehog (built on the body D ⊆ Ci) is a non-crossing
alternating path H with vertices in Ci satisfying the following three conditions: (1) H
contains all points of D, (2) H contains no major points outside of D, (3) the endpoints
of H are the first and the last point of D. A hedgehog built on an αβ-body is an αβ-
hedgehog (α, β = 0, 1). If a hedgehog H is built on a body D, then D is the body of
H and the points of H that do not lie in D are spines. Note that each spine is a minor
point. All possible types of hedgehogs can be seen on Fig. 3 (for better lucidity, we will
draw hedgehogs with bodies on a horizontal line and spines indicated only by a “peak”
from now on).

On each Ci, maximal intervals containing only major points are called runs. Clearly,
runs form a partition of major points. For i = 1, 2, let ri denote the number of runs
in Ci.

2.2 Proof in the Even Case

Throughout this subsection, (C1, C2) denotes a double-chain with |C1| + |C2| even.
Since the coloring is equitable, we have b1 + b2 = w1 + w2. Set

Δ := b1 − w1 = w2 − b2.
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First we give a lemma characterizing collections of bodies on a chain Ci that are
bodies of some pairwise non-crossing hedgehogs covering the whole chain Ci.

Lemma 3. Let i ∈ {1, 2}. Let all major points of Ci be covered by a set D of pairwise
disjoint bodies. Then the bodies of D are the bodies of some pairwise non-crossing
hedgehogs covering the whole Ci if and only if Δ = d00 − d11, where dαα is the
number of αα-bodies in D.

Proof. An αβ-hedgehog containing t major points contains (t − 1) + α + β minor
points. It follows that the equality Δ = d00 − d11 is necessary for the existence of a
covering of Ci by disjoint hedgehogs built on the bodies of D.

Suppose now that Δ = d00 − d11. Let F be the set of minor points on Ci that
lie in no body of D, and let M be the set of the mid-points of straight-line segments
connecting pairs of consecutive major points lying in the same body. It is easily checked
that |F | = |M |. Clearly F ∪ M is a convex or a concave chain. Now it is easy to
prove that there is a non-crossing perfect matching formed by |F | = |M | straight-line
segments between F and M (for the proof, take any segment connecting a point of F
with a neighboring point of M , remove the two points, and continue by induction); see
Fig. 4.

Fig. 4. A non-crossing matching of minor points and midpoints (in C1)

If f ∈ F is connected to a point m ∈ M in the matching, then f will be a spine
with edges going from it to those two major points that determined m. Obviously, these
spines and edges define non-crossing hedgehogs with bodies in D and with all the
required properties. ��
The following three lemmas and their proofs show how to construct a good path in some
special cases.

Lemma 4. If Δ ≥ max{r1, r2} then (C1, C2) has a good path.

Proof. Let i ∈ {1, 2}. Since ri ≤ Δ ≤ max(bi, wi), the runs in Ci may be partitioned
into Δ 00-bodies. By Lemma 3, these 00-bodies may be extended to pairwise non-
crossing hedgehogs covering Ci. This gives us 2Δ hedgehogs on the double-chain.
They may be connected into a good path by 2Δ − 1 edges between the chains in the
way shown in Fig. 5. ��

Lemma 5. If r1 = r2 then (C1, C2) has a good path.
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C2

C1

Fig. 5. 00-hedgehogs connected to a good path

Proof. Set r := r1 = r2. If r ≤ Δ then we may apply Lemma 4. Thus, let r > Δ.
Suppose first that Δ ≥ 1. We cover each run on each Ci by a single body whose

type is as follows. On C1 we take Δ 00-bodies followed by (r − Δ) 10-bodies. On
C2 we take (from left to right) (Δ − 1) 00-bodies, (r − Δ) 01-bodies, and one 00-
body. By Lemma 3, the r bodies on each Ci can be extended to hedgehogs covering Ci.
Altogether we obtain 2r hedgehogs. They can be connected to a good path by 2r − 1
edges between C1 and C2 (see Fig. 6).

· · · · · ·

C2

C1

Fig. 6. A good path in the case r1 = r2 > Δ ≥ 1

Suppose now that Δ = 0. We add one auxiliary major point on each Ci as follows.
On C1, the auxiliary point extends the leftmost run on the left. On C2, the auxiliary
point extends the rightmost run on the right. This does not change the number of runs
and increases Δ to 1. Thus, we may proceed as above. The good path obtained has the
two auxiliary points on its ends. We may remove the auxiliary points from the path,
obtaining a good path for (C1, C2). ��

A singleton s ∈ Ci is an inner point of Ci (i = 1, 2) such that its two neighbors on Ci

are colored differently from s.

Lemma 6. Suppose that C1 has no singletons and C2 can be covered by r1−1 pairwise
disjoint hedgehogs. Then (C1, C2) has a good path.

Proof. For simplicity of notation, set r := r1. We denote the r − 1 hedgehogs on C2
by P1, P2, . . . , Pr−1 in the left-to-right order in which the bodies of these hedgehogs
appear on C2. For technical reasons, we enlarge the leftmost run of C1 from the left by
an auxiliary major point σ.
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Our goal is to find r hedgehogs H1, H2, . . . , Hr on C1 ∪ {σ} such that they may
be connected with the hedgehogs P1, P2, . . . , Pr−1 into a good path. For each j =
1, . . . , r, the body of the hedgehogHj will be denoted byDj . For each j = 1, . . . , r, Dj

covers the j-th run of C1 ∪ {σ} (in the left-to-right order). We now finish the definition
of the bodies Dj by specifying for each Dj if it has a head and/or a tail. The body D1
is without head. For j > 1, Dj has a head if and only if Pj−1 has a tail. The last body
Dr is without tail and Dj , j < r, has a tail if and only if Pj has a head.

· · ·

C2

C1

Fig. 7. A good path in the case of no singletons on C1

It follows from Lemma 3 that we may add or remove some minor points on C1 ∪
{σ} so that D1, . . . , Dr can then be extended to pairwise non-crossing hedgehogs
H1, . . . , Hr covering the “new” C1. More precisely, there is a double-chain (C′

1, C2)
such that D1, . . . , Dr can be extended to pairwise non-crossing hedgehogs H1, . . . , Hr

covering C′
1, where either C′

1 = C1 ∪ {σ} or C′
1 is obtained from C1 ∪ {σ} by adding

some minor (white) points on the left of C1∪{σ} (say) or C′
1 is obtained from C1∪{σ}

by removal of some minor (white) points lying in none of the bodies D1, . . . , Dr. Then
the concatenation H1P1H2P2 · · ·Hr−1Pr−1Hr shown in Fig. 7 gives a good path on
(C′

1, C2). This good path starts with the point σ. Removal of σ from it gives a good
path P for the double-chain (C ′

1 \ {σ}, C2). The endpoints of P have different colors.
Thus, P covers the same number of black and white points. Black points on P are the
|C1|+|C2|

2 black points of (C1, C2). Thus, P covers exactly |C1| + |C2| points. It fol-
lows that |C′

1 \ {σ}| = |C1| and thus C′
1 \ {σ} = C1. The path P is a good path on the

double-chain (C1, C2). ��

The following lemma will be used to find a covering needed in Lemma 6.

Lemma 7. Suppose that |Ci| ≥ k, ri ≤ k and Δ ≤ k for some i ∈ {1, 2} and for some
integer k. Then Ci can be covered by k pairwise disjoint hedgehogs.

Proof. The idea of the proof is to start with the set D of |Ci| bodies, each of them
being a single point, and then gradually decrease the number of bodies in D by joining
some of the bodies together. We see that Δ = d00 − d11, where dαα is the number of
αα-bodies in D. If we join two neighboring 00-bodies to one 00-body and withdraw a
single-point 11-body from D (to let the minor point become a spine) at the same time,
the difference between the number of 00-bodies and the number of 11-bodies remains
the same and |D| decreases by two. We can reduce |D| by one while preserving the
difference d00− d11 by joining a 00-body with a neighboring single-point 11-body into
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a 01- or a 10-body. Similarly we can join a 01- or a 10-body with a neighboring (from
the proper side) single-point 11-body into a new 11-body to decrease |D| by one as well.
When we are joining two 00-bodies, we choose the single-point 11-body to remove in
such a way to keep as many single-point 11-bodies adjacent to 00-bodies as possible.
This guarantees that we can use up to ri of them for heads and tails.

We start with joining neighboring 00-bodies and we do this as long as |D| > k + 1
and d00 > ri. Note that by the assumption Δ ≤ k, we will have enough single-point
11-bodies to do that. When we end, one of the following conditions holds: |D| = k,
|D| = k + 1 or d00 = ri. In the first case we are done. If |D| = k + 1, we just add one
head or one tail (we can do this since d00 + d11 = |D| = k+ 1 ≥ d00− d11 +1, which
implies d11 > 0). If d00 = ri, then each run is covered by just one 00-body. We need
to add |D| − k heads and tails. We have enough single-point 11-bodies to do that since
d11 = |D| − d00 = |D| − ri ≥ |D| − k. On the other hand, ri − d11 = Δ ≥ 0, so the
number of heads and tails needed is at most ri. Therefore, all the single-point 11-bodies
are adjacent to 00-bodies and we can use them to form heads and tails.

In all cases we get a set D of k bodies. Now we can apply Lemma 3 to obtain k
pairwise disjoint hedgehogs covering Ci. ��
By a contraction we mean removing a singleton with both its neighbors and putting a
point of the color of its neighbors in its place instead. It is easy to verify that if there is
a good path in the new double-chain obtained by this contraction, it can be expanded to
a good path in the original double-chain.

Now we can prove our main theorem in the even case.

Proof of Theorem 1 (even case). Without loss of generality we may assume that r1 ≥
r2. In the case r1 = r2, we get a good path by Lemma 5. In the case Δ ≥ r1, we get a
good path by Lemma 4. Therefore, the only case left is r1 > r2, r1 > Δ.

If there is a singleton on C1, we make a contraction of it. By this we decrease r1
by one and both r2 and Δ remain unchanged. If now r1 = r2 or r1 = Δ, we again
get a good path, otherwise we keep making contractions until one of the previous cases
appears or there are no more singletons to contract.

If there is no more singleton to contract on C1 and still r1 > r2 and r1 > Δ, we try
to cover C2 by r1 − 1 pairwise disjoint paths. Before the contractions, |C2| ≥ |C1|

4 did
hold and by the contractions we could just decrease |C1|, therefore it still holds.

All the maximal intervals on the chain C1 (with possible exception of the first and
the last one) have now length at least two, which implies that r1 ≤ |C1|

4 + 1. Hence

|C2| ≥ |C1|
4 ≥ r1 − 1, so we can create r1 − 1 pairwise disjoint hedgehogs covering

C2 using Lemma 7. Then we apply Lemma 6 and expand the good path obtained by
Lemma 6 to a good path on the original double-chain.

There is a straightforward linear-time algorithm for finding a good path on (C1, C2)
based on the above proof. ��

3 Unbalanced Double-Chains with No Good Path

In this section we prove Theorem 2. Let (C1, C2) be a double-chain whose points are
colored by an equitable 2-coloring, and let C1 be periodic with the following period: 2
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black, 4 white, 6 black and 4 white points. Let |C1| ≥ 28(|C2|+ 1). We want to show
that (C1, C2) has no good path.

Suppose on the contrary that (C1, C2) has a good path. Let P1, P2, . . . , Pt denote
the maximal subpaths of the good path containing only points of C1. Since between
every two consecutive paths Pi, Pj in the good path there is at least one point of C2, we
have t ≤ |C2|+ 1. In the following we think of C1 as of a cyclic sequence of points on
the circle. Note that we get more intervals in this way. Theorem 2 now directly follows
from the following theorem.

Theorem 8. Let C1 be a set of points on a circle periodically 2-colored with the fol-
lowing period of length 16: 2 black, 4 white, 6 black and 4 white points. Suppose that
all points of C1 are covered by a set of t non-crossing alternating and pairwise disjoint
paths P1, P2, . . . , Pt. Then t > |C1|/28.

Proof. Each maximal interval spanned by a path Pi on the circle is called a base. Let
b(Pi) denote the number of bases of Pi. A path with one base only is called a leaf. We
consider the following special types of edges in the paths. Long edges connect points
that belong to different bases. Short edges connect consecutive points on C1. Note that
short edges cannot be adjacent to each other. A maximal subpath of a path Pi spanning
two subintervals of two different bases and consisting of long edges only is called a
zig-zag. A path is separated if all of its edges can be crossed by a line. Note that each
zig-zag is a separated path. A maximal separated subpath of Pi that contains an endpoint
of Pi and spans one interval only is a rainbow. We find all the zig-zags and rainbows
in each Pi, i = 1, 2, . . . , t. Note that two zig-zags, or a zig-zag and a rainbow, are
either disjoint or share an endpoint. A branch is a maximal subpath of Pi that spans two
intervals and is induced by a union of zig-zags.

For each path Pi that is not a leaf construct the following graph Gi. The vertices
of Gi are the bases of Pi. We add an edge between two vertices for each branch that
connects the corresponding bases. If Gi has a cycle (including the case of a “2-cycle”),
then one of the corresponding branches consists of a single edge that lies on the convex
hull of Pi. We delete such an edge from Pi and don’t call it a branch anymore. By
deleting a corresponding edge from each cycle of Gi we obtain a graph G′

i, which is a
spanning tree of Gi. The branch graph G′ is a union of all graphs G′

i.
Let L denote the set of leaves and B the set of branches. Let P = {P1, P2, . . . , Pt}.

Observation 1. The branch graph G′ is a forest with components G′
i. Therefore,

|B| =
∑

i,Pi /∈L
(b(Pi)− 1).

The branches and rainbows in Pi do not necessarily cover all the points of Pi. Each point
that is not covered is adjacent to a deleted long edge and to a short edge that connects
this point to a branch or a rainbow. It follows that between two consecutive branches
(and between a rainbow and the nearest branch) there are at most two uncovered points,
that are endpoints of a common deleted edge. By an easy case analysis it can be shown
that this upper bound can be achieved only if one of the nearest branches consists of a
single zig-zag.
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In the rest of the paper, a run will be a maximal monochromatic interval of any color.
In the following we will count the runs that are spanned by the paths Pi. The weight of
a path P , w(P ), is the number of runs spanned by P . If P spans a whole run, it adds
one unit to w(P ). If P partially spans a run, it adds half a unit to w(P ).

Observation 2. The weight of a zig-zag or a rainbow is at most 1.5. A branch consists
of at most two zig-zags, hence it weights at most three units.

Lemma 9. A path Pi that is not a leaf weights at most 3.5k + 3.5 units where k is the
number of branches in Pi.

Proof. According to the above discussion, for each pair of uncovered points that are
adjacent on Pi we can join one of them to the adjacent branch consisting of a single
zig-zag. To each such branch we join at most two uncovered points, hence its weight
increases by at most one unit to at most 2.5 units. The number of the remaining uncov-
ered points is at most k+1. Therefore,w(Pi) ≤ 3k+3+0.5 ·(k+1) = 3.5k+3.5. ��

Lemma 10. A leaf weights at most 3.5 units.

Proof. Let L be a leaf spanning at least two points. Consider the interval spanned by L.
Cut this interval out of C1 and glue its endpoints together to form a circle. Take a line l
that crosses the first and the last edge of L. Note that the line l doesn’t separate any of
the runs. Exactly one of the arcs determined by l contains the gluing point γ.

Each of the ending edges of L belongs to a rainbow, all of whose edges cross l. It
follows that if L has only one rainbow, then this rainbow covers the whole leaf L and
w(L) ≤ 1.5. Otherwise L has exactly two rainbows, R1 and R2. We show that R1 and
R2 cover all edges of L that cross the line l. Suppose there is an edge s in L that crosses
l and does not belong to any of the rainbows R1, R2. Then one of these rainbows, say
R1, is separated from γ by s. Then the edge of L that is the second nearest to R1 also
has the same property as the edge s. This would imply that R1 spans two whole runs,
a contradiction. It follows that all the edges of L that are not covered by the rainbows
are consecutive and connect adjacent points on the circle. There are at most three such
edges; at most one connecting the points adjacent to γ, the rest of them being short on
C1. But this upper bound of three cannot be achieved since it would force both rainbows
to span two whole runs. Therefore, there are at most two edges and hence at most one
point in L uncovered by the rainbows. The lemma follows. ��

Lemma 11. |L| ≥
∑

i,Pi /∈L(b(Pi)− 2) + 2.

Proof. The number of runs in C1 is at least 4. By Lemma 10, if all the paths Pi are
leaves, then at least 2 of them are needed to cover C1 and the lemma follows.

If not all the paths are leaves, we order the paths so that all the leaves come at the
end of the ordering. The path P1 spans b(P1) bases. Shrink these bases to points. These
points divide the circle into b(P1) arcs each of which contains at least one leaf. If P2
is not a leaf then continue. The path P2 spans b(P2) intervals on one of the previous
arcs. Shrink them to points. These points divide the arc into b(P2) + 1 subarcs. At
least b(P2) − 1 of them contain leaves. This increased the number of leaves by at least
b(P2)− 2. The case of Pi, i > 2, is similar to P2. The lemma follows by induction. ��
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Corollary 12. |B| ≤ |P| − 2.

Proof. Combining Lemma 11 and Observation 1 we get the following:

|B| =
∑

i,Pi /∈L
(b(Pi)− 1) =

∑

i,Pi /∈L
(b(Pi)− 2) + |P| − |L|+ 2− 2 ≤ |P| − 2.

��

Now we are in position to finish the proof of Theorem 8. If the whole C1 is covered by
the paths Pi, then

∑t
i=1 w(Pi) ≥ |C1|

4 . Therefore,

|C1| ≤ 4 · (3.5|B|+ 3.5(|P| − |L|) + 3.5|L|) < 4 · 7|P| = 28|P|.
��
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Appendix: Proof in the Odd Case

In this appendix we prove Theorem 1 for the case when |C1| + |C2| is odd. We set
Δ = w2 − b2 and proceed similarly as in the even case. On several places in the proof
we will add one auxiliary point ω to get the even case (its color will be chosen to
equalize the numbers of black and white points). We will be able to apply one of the
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Lemmas 4–6 to obtain a good path. The point ω will be at some end of the good path
and by removing ω we obtain a good path for (C1, C2).

Without loss of generality we may assume that r1 ≥ r2. In the case r1 = r2, we add
an auxiliary major point ω, which is placed either as the left neighbor of the leftmost
major point on C1 or as the right neighbor of the rightmost major point on C2. Then we
get a good path by Lemma 5 and the removal of ω gives us a good path for (C1, C2).

In the case Δ ≥ r1, we add an auxiliary point ω to the same place and we get a good
path by Lemma 4. Again, the removal of ω gives us a good path for (C1, C2).

Now, the only case left is r1 > r2, r1 > Δ. If there are any singletons on C1,
we make the contractions exactly the same way as in the proof of the even case. If
Lemma 4 or 5 needs to be applied, we again add an auxiliary point ω and proceed as
above.

If there is no more singleton to contract on C1 and still r1 > r2 and r1 > Δ, we have
|C2| ≥ |C1|

4 ≥ r1 − 1 as in the proof of the even case and we can use Lemma 7 to get
r1 − 1 pairwise disjoint hedgehogs covering C2. Now we need to consider two cases:
(1) If b1+b2 > w1+w2, then we find a good path for (C1, C2) in the same way as in the
proof of Lemma 6, except we do not add the auxiliary point σ. (2) If b1+b2 < w1 +w2,
we add an auxiliary point ω as the right neighbor of the rightmost major point on C1.
The number r1 didn’t change so Lemma 6 gives us a good path. Again, the removal of
ω gives us a good path for (C1, C2).

There is a straightforward linear-time algorithm for finding a good path on (C1, C2)
based on the above proof. ��
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Abstract. We introduce a new force-directed model for computing graph lay-
out. The model bridges the two more popular force directed approaches – the
stress and the electrical-spring models – through the binary stress cost function,
which is a carefully defined energy function with low descriptive complexity al-
lowing fast computation via a Barnes-Hut scheme. This allows us to overcome
optimization pitfalls from which previous methods suffer. In addition, the binary
stress model often offers a unique viewpoint to the graph, which can occasion-
ally add useful insight to its topology. The model uniformly spreads the nodes
within a circle. This helps in achieving an efficient utilization of the drawing area.
Moreover, the ability to uniformly spread nodes regardless of topology, becomes
particularly helpful for graphs with low connectivity, or even with multiple con-
nected components, where there is not enough structure for defining a readable
layout.

1 Introduction

A popular approach to drawing graphs is based on measuring the quality of the layout
through a formal cost function. The layout of the graph is formed by an optimization
algorithm that finds a local minimum of the cost function. This family of algorithms is
known in the graph drawing literature as force-directed algorithms; see, e.g., [3,14].

Broadly speaking, force-directed cost functions (also known as energies) define a de-
sired layout based on either the electric-spring metaphor or on a stress function. Electric
spring functions liken the graph to a physical system where nodes correspond to electri-
cally charged particles, and edges correspond to springs with zero rest length. Repulsive
electric forces ensure that nodes are well separated, while attractive spring forces tend to
shorten edges and pack closely connected components. Two well known early versions
of this scheme are by Eades [4] and by Fruchterman and Reingold [6].

The stress function relates a nice drawing to good isometry. We have an ideal target
distance dij for every pair of nodes i and j. Given a 2-D layout, where node i is placed
at point pi, the stress function is:

∑

i<j

wij (‖pi − pj‖ − dij)
2 (1)

We desire a layout that minimizes this function, thereby best realizing the target dis-
tances. Here, the distance dij is typically the graph-theoretical distance between nodes
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i and j. The normalization constant wij equals d−α
ij . The function (1) appeared earlier

as the stress function in multidimensional scaling [2], where it was applied to graph
drawing [16]. It became a popular graph drawing tool by Kamada and Kawai [13].

Both electric-spring and stress approaches enjoy successful implementations and of-
fer pleasing layouts to many graphs. In terms of layout appearance, there are distinct
differences between the models, though they are hard to define. As for computational
aspects, the two approaches induce different optimization processes, and each has a
unique advantage. Electric-spring models have the advantage of a lower descriptive
complexity compared to the stress model. This is because all repulsive forces are uni-
form, whereas attractive forces involve only the |E| pairs of adjacent nodes. On the
other hand, the stress function requires encoding a different target distance for each
node pair. This fundamental difference bounds stress models to quadratic space com-
plexity, while efficient implementations of electric-spring models scale to larger graphs.

On the other hand, the stress function has a mild landscape, which allows utilizing
powerful optimization techniques such as majorization [7]. This way, good minima are
usually achieved regardless of the initial positions. This is untrue for the electric-spring
models, which induce an intricate landscape as repulsive forces make the energy go to
infinity when nodes overlap. This causes serious convergence problems even for mod-
erately sized graphs. Past works [9,11,19] used sophisticated initialization techniques
through multilevel approximation to overcome these problems.

In this work we introduce the binary-stress model (bStress) for drawing graphs. Com-
putationally, it is able to merge the advantages of both the electric-spring model and the
stress model. Namely, it offers a low descriptive complexity, thus being scalable to very
large graphs. At the same time, it is similar in its form to the known stress function,
thus enabling the use of the majorization optimization scheme.

As for the quality of the layout, bStress frequently offers a unique perspective to
the graph structure. More than other models, bStress emphasizes uniform spread of the
nodes within a circular drawing area. This may lead to distinctive layouts, which can
serve as useful addition to those produced by other algorithms. Moreover, the empha-
sis on uniform spread is advantageous for graphs with low connectivity, whose struc-
ture alone is not capable of defining a good layout. For example, bStress will naturally
handle graphs with multiple connected components by packing all connected compo-
nents together without requiring any post-processing or special treatment that alterna-
tive methods require. In addition, bStress is suitable for drawing large graphs, not only
because of its improved scalability, but also because it achieves good area utilization
that is important for placing a large number of nodes.

2 Basic Notions

We are seeking a layout for a graph G(V = {1, . . . , n}, E), where the position of node
i is pi = (xi, yi). Sometimes, we will refer to the vectors x, y ∈ Rn, which represent
all x- or y-coordinates, respectively. Notice that while this work addresses the more
common case of 2-D layouts, as usual with force-directed algorithms, extensions to
3-D are naturally possible.



The Binary Stress Model for Graph Drawing 195

Fig. 1. A Layout of 1024 points that minimizes G(p), by scattering the points within a circle

3 The Binary Stress Model

One of the earliest cost functions involved in defining a nice layout strives to shorten
the squared edge lengths:

H(p) =
∑

〈i,j〉∈E

‖pi − pj‖2 (2)

However, minimizing H(p) on its own is not sufficient for defining a useful layout, as
nothing prevents all nodes from collapsing at a single point. Thus, Tutte [18] and Hall
[10] augmented H(p) with simple constraints that prevented the formation of trivial
layouts. Nonetheless, both solutions tend to generate layouts with very uneven sparsity,
where many nodes are overcrowded together. Moreover, Tutte’s and Hall’s methods fail
to produce adequate layouts for graphs of low connectivity such as tree-like graphs.

A hypothetical possible way to make H(p) working for general graphs, is to lay
out the graph over a grid and then minimize H(p) while requiring that each node is
positioned at a unique grid cell. This will ensure a uniform spread of the nodes and
prevent nodes from getting too close to each other. However, practical implementation
of such a strategy would be quite complicated. The primary issue is that constraining
positions to grid cells transforms the problem into integer optimization, which would
be much harder to solve and less scalable.

We avoid integer optimization by adopting a continuous relaxation of the grid layout
strategy. The relaxation is based on the following cost function:

G(p) =
∑

i�=j∈V

(‖pi − pj‖ − 1)2 (3)

This function strives to place all nodes such that their pairwise distances are uniform.
Notice that G(p) is independent of the graph structure. The minimum of G(p), as we
have found experimentally, will position the nodes almost uniformly within a circle. For
example, consider Fig. 1, where 1024 nodes are positioned so as to minimize G(p).

The function G(p) gives us the necessary tool to combat the over dense areas which
are typical to minimization of H(p). Thus, the binary stress function for computing a
layout of a graph is defined as a linear combination of the two functions:



196 Y. Koren and A. Çivril

B(p) =
∑

〈i,j〉∈E

‖pi − pj‖2 + α
∑

i�=j∈V

(‖pi − pj‖ − 1)2 (4)

The first term relates the layout to the graph structure by ensuring that edges are short,
whereas the second term makes the nodes spread uniformly within a circle. The constant
α (discussed later) controls the balance between the two terms.

Our experience shows that bStress results in useful layouts for wide families of
graphs. However, before we dwell into the quality of layouts generated by the bStress
model, we would like to discuss computational aspects.

4 Minimizing the Binary Stress Function

The bStress function (4) is structured as a sum of two stress functions (Eq. (1)), one
with target distances equal to 0, and the other with target distances equal to 1. This is
the reason for choosing the “binary stress” name. Though, the particular value of 1 has
no influence on the resulting layout and any other positive value could be used as well.

As sum of stress functions, the majorization optimization technique can be exploited
to optimizing bStress. Derivation of the stress majorization was given by Gansner et al.
[7]. The process used here is as follows:

Let us define two n× n matrices, L and M . The matrix L is the Laplacian of graph
G, whose associated quadratic form is the sum of squared edge lengths H(p). The other
matrix, M , is associated with a quadratic form that bounds G(p):

Li,j =

⎧
⎨

⎩

−1 〈i, j〉 ∈ E∑
k �=i Lik i = j

0 otherwise
, Mi,j =

{
−1 i �= j
n− 1 i = j

We also define two vectors, bx, by ∈ Rn, which sum all cosines and sines associated
with each node:

bx
i =

∑

j �=i

xi − xj

‖(xi, yi)− (xj , yj)‖
, by

i =
∑

j �=i

yi − yj

‖(xi, yi)− (xj , yj)‖
(5)

Given a current placement p(t) = (x(t), y(t)), an improved placement p(t + 1) =
(x(t+1), y(t+1)), which lowers B(p), is computed by solving the system of equations:

(M + αL)x(t + 1) = bx(t), (M + αL)y(t + 1) = by(t) (6)

Now, let us consider computational complexity. The number of entries in matrix L is
n+|E|. The other matrix – M – is, strictly speaking, dense. However its highly uniform
structure makes it sparse for practical purposes. Typical to the stress majorization pro-
cess is solving (6) by using the conjugate gradient method, which accesses (M+αL) as
a linear operator. Thus, all we need to ensure is that the product (M+αL)x, can be com-
puted efficiently. This is indeed the case, as L is sparse, and (Mx)i = nxi −

∑
j xj ,

which is computed in a constant time after precomputing
∑

j xj . Thus, the product
(M + αL)x, is computed in time O(n + |E|).
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Fig. 2. A quad-tree hierarchical space decomposition

The more challenging operation is the computation of the bx and by vectors of Eq.
(5). This essentially involves computing the angles formed by all node pairs. Here we
follow several recent graph drawing works [9,11,17] and use the Barnes-Hut scheme [1]
for approximating the O(n2) interactions in practically O(n logn) time. Thus, we use
a hierarchical geometric decomposition of the drawing area through a quad-tree data
structure. The whole area is assigned to a square (or, a rectangle). Then, each square
is subsequently partitioned into four identical squares, till each node is lying within a
unique leaf square. See Fig. 2 for an illustration.

Computation of bx
i and by

i is based on a top-bottom traversal of the quad-tree. Let v
be a quad-tree vertex corresponding to square s with side length l. We compare l to d
- the distance between node i and the center of square s. If l/d > θ, then we continue
the traversal recursively with the four children of v. Otherwise, we halt the traversal
while taking the approximation that all graph nodes lying within square s are at the
same location, and thus can be processed at once. Our default value for θ is 0.5.

In order to give a flavor of actual running times, we report our experience with
graphs of varying sizes in Table 1. Times were measured on a Pentium 4 PC. We let
the majorization process run for 200 iterations, while it was terminated earlier once
‖p(t+1)−p(t)‖/‖p(t)‖ < 0.001. Overall running time is divided among the two com-
ponents of the algorithm: (1) solving Eq. (6) through the conjugate gradients iterative
process. (2) Computing bx and by (Eq. (5)) using a Barnes-Hut approximation. The ta-
ble shows that the Barnes-Hut approximation is indeed closely following an O(n log n)
running time. The conjugate gradient component takes (n + |E|) time per internal it-
eration, but the number of those iterations is less consistent. Since the Barnes-Hut cal-
culation is independent of the number edges, as graphs become denser the conjugate
gradient component becomes more significant (see graphs ‘plustk10’ and ‘gearbox’).
Wall-clock measured running times are not directly comparable across different papers,
due to differences in platforms and code optimization. However, we believe that the
ability of bStress to lay out of 100,000 nodes in a few minutes, places it among the
more efficient graph drawing techniques.

5 Results and Implementation Details

The binary stress model is based on unique principles, which in many cases lead to lay-
outs quite different than those produced by other algorithms. Hence, a key to assessing
the utility of the new model is a qualitative analysis of typical results. In the following
subsections we discuss various aspects of bStress through concrete layout examples.
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Table 1. Running time characteristics for graphs of varying sizes. We measure times for the
two components of the algorithm: a conjugate gradient solver, and Barnes-Hut approximation of
vectors bx and by. The last two columns show the dependency of running time with graph size.
Graphs are taken from [12].

name nodes edges iterations conjugate gradient Barnes-Hut 106× 106×
time/it (sec.) time/it (sec.) C.G. time

|E|+n
B.H. time
n·log n

nopoly 10774 30034 133 0.019 0.182 0.477 4.181
skirt 12598 91961 109 0.082 0.272 0.784 5.264
tuma2 12992 20925 13 0.015 0.238 0.454 4.462
poli large 15575 17468 200 0.106 0.305 3.199 4.666
powersim 15838 36430 200 0.045 0.357 0.869 5.366
ncvxqp9 16554 22493 200 0.023 0.405 0.598 5.797
lpl1 32460 147788 200 0.408 0.763 2.261 5.212
finance256 37376 130560 200 0.192 0.749 1.145 4.385
bcircuit 68902 153328 200 0.328 1.874 1.476 5.621
plustk10 80676 2114154 159 5.169 2.125 2.355 5.367
Ford2 100196 222246 33 0.582 2.230 1.806 4.450
gearbox 107624 3250488 200 5.874 3.317 1.749 6.124
lung2 109460 273646 137 0.272 3.477 0.710 6.304

5.1 Balancing the System

Recall that bStress is parametrized by α, which controls the balance between uniform
spread and structure preservation. As α grows, the model will prefer shortening edges
over uniformly spreading the nodes. This can significantly influence the appearance of
the layout. For example, in Fig. 3 we show two layouts of the same graph, one computed
with α = 1 and the other with α = 1000. When α is low (=1), the model emphasizes
uniform spread, thus nodes are well separated and visible. On the other hand, when α
is high (=1000), the model cares mostly about exposing the graph’s structure through
shortening edges. Thus, the different hubs that form the graph are clearly shown.

Notice that G(p) =
∑

i�=j∈V (‖pi − pj‖ − 1)2 contains about n2/2 terms, whereas
the other part of bStress, H(p) =

∑
〈i,j〉∈E ‖pi − pj‖2, contains only |E| terms. Thus,

G(p) becomes more and more dominant as n2/|E| grows. This is undesirable, as it
makes the determination of parameter α less stable across varying graphs. To offset
some of this phenomenon, our experience shows that as |E|/n grows, it is beneficial
to overweight H(p) over G(p). In other words, for sparse graphs, there is no much
structure in the graph and it is reasonable to pay much attention to uniform spread.
However, for denser graphs, there is much structure to be captured from the connectivity
information. Combining these considerations, we learned that a sensible choice to α is
c · n, for some positive constant c. Hence, the bStress model becomes:

B(p) =
∑

〈i,j〉∈E

‖pi − pj‖2 + c · n
∑

i�=j∈V

(‖pi − pj‖ − 1)2 (7)
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α = 1 α = 1000

Fig. 3. Two bStress layouts of a graph with 1933 nodes and 2043 edges. Setting α = 1 achieves
better separation of nodes and improved area utilization. However, some may prefer α = 1000,
for the better abstraction of the graph’s structure.

Focusing on values of c is easier than focusing on values of α. In fact, our experi-
ments show that c = 1 is a universally reasonable choice, being our default value. In
some cases, better results are obtained with lower values of c.

There is another implication to the value of c, beyond layout appearance. We have
found that the majorization optimization process may encounter bad local minima when
c is too low. To avoid this, we first run the algorithm with higher values of c, and then
use the resulting layout for seeding a process with a lower c value. That is, a typical run
would start with c=100, and then restart with c=1. Usually, the number of majorization
iterations after restarting the run is relatively low thanks to the improved initialization.

5.2 Drawing Trees

Prior adaptation of the H(p) function to drawing graphs [10,18] could not handle trees
and tree-like graphs adequately. The major issue was the inability to prevent many nodes
from collapsing at the same location, thus resulting in a highly imbalanced layout with
much unused area and a few overcrowded locations. Such an issue does not exist with
bStress, as could be evident from the drawing of a tree-like graph given in Fig. 3. In
fact, as graphs become sparser, results of bStress look increasingly different than those
computed by alternative models such as the aforementioned stress and electric-spring
models. This is because, the lack of sufficient connectivity information let the uniform
spread component, G(p), be more dominant in shaping the layout.

As an example, in Fig. 4–5 we present the drawings of two trees, which are derived
from an Internet map and a BGP connectivity map. Results of bStress are compared to
the results of the stress function. The known stress model seems to be better at exposing
the decomposition of the tree, whereas bStress achieves more uniform node distribution.
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bStress stress

Fig. 4. Comparing stress to bStress in drawing an Internet map tree (|V |=9227, |E|= 9226)

bStress stress

Fig. 5. Comparing stress to bStress in drawing a BGP connectivity tree (|V |=3487, |E|= 3486)

The uniform spread achieved by bStress becomes particularly useful when the number
of nodes is large making area utilization a high priority.

5.3 Disconnected Graphs

Most force-directed methods cannot directly handle disconnected graphs. For exam-
ple, the stress model requires defining the distance between each two nodes, which is
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Fig. 6. A graph with 11 connected components (|V |=333, |E|=397)

not naturally defined for disconnected nodes. Likewise, the electric spring model as-
sumes only repulsive forces among connected components, ultimately pushing them
away from each other till infinity. Certainly, various modifications to those models can
enable working with disconnected graphs. Most notably, each connected component
can be drawn separately, and later a smart packing algorithm squeezes all components
within the drawing area [5].

Interestingly, bStress handles disconnected graphs exactly the same way it handles
connected graphs. Thus, unlike other methods, it does not require any modification or
postprocessing when addressing disconnectivity. This is thanks to the uniform spread
model (G(p)), which strives for a fairly uniform node distribution, regardless of con-
nectivity. A small artificial example is brought in Fig. 6, where we draw a graph with 11
connected components. As can be seen, bStress could pack all components efficiently
together within a circle, while no two components overlap, and each component is dawn
reasonably. A larger, more realistic example is given in Fig. 7, where we show a graph
consisting of many Internet traces. The graph contains 3743 connected components,
which are all packed pretty well within the layout.

5.4 Filling a Circle

A notable feature of bStress is packing the graph within a circle. Admittedly, the cir-
cular shape of the layout is not a design goal but rather an outcome of the chosen cost
function. However, filling the interior of the circle is indeed a design goal of the bStress
model. In some cases this can lead to surprisingly looking layouts. For example, some
layouts would be expected to lie on the periphery of a circle. However, bStress will
“insist” on filling the circle with some of the nodes, due to the strict uniform spread re-
quirement. This might look odd at first, but we argue that it has an advantage of enabling
a better distinction between individual nodes.

We demonstrate this in Fig. 8. First simple example is a (topological) circle, which is
twisted in order to spread nodes within the interior. Another example is the finan512
graph, which became a standard example in works aimed at drawing large graphs.
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Fig. 7. An Internet map with 3743 connected components (|V |=33552, |E|=29809). Node colors
indicate some known ISPs.

Previous works (e.g., [15,19]) placed all nodes on or close to the perimeter of a cir-
cle. On the other hand, bStress fills the interior of the circle. This enables a better view
of the local details of this large graph, at the price of an inferior exhibition of sym-
metries. At this point, we would like to clarify that while frequently the outline of the
layout is circular, this is not always the case; for example consider Fig. 9.

5.5 Distorting the Layout

The uniform spread component, G(p), induces layouts where the periphery is denser
than the central area. This effect can be seen in Fig. 1. Let us take a polar coordinates
viewpoint, where the origin is the layout center. We observe that nodes are uniformly
spread across different angular coordinates, but less so across different radial coordi-
nates. Thus, we propose the following correction as an optional postprocessing phase.

We denote the layout density (or, sparsity) around node i by di. This way di = 0
for the densest possible area, while di is large when there is a lot of free area around i.
One way to measure di is to set it to the average distance between i and its top k closest
nodes in the layout. In our implementation, we compute a relative neighborhood graph
(RNG), and define di as the average length of edges adjacent to i in the RNG.

We sort all nodes by their radial coordinates, which are distances from the center.
Then, we smooth the computed densities, by averaging densities of nodes with similar
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1000-circle (|V |=1000, |E|= 1000) finan512 (|V |=74752, |E|= 261120)

Fig. 8. bStress tends to fill the interior of a circle

Fig. 9. The gearbox graph [12] (|V |=107624, |E|=3250488)

radial coordinates; see Sec. 6 of [8] for a similar procedure. Finally, for each node i,
which comes immediately after node j in the sorted order, we modify the gap in radial
coordinates between i and j by multiplying it by 1/di. Thus, we shrink gaps in sparse
areas, while widening gaps in dense areas.
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no distortion with distortion

Fig. 10. The effect of post-processing the layout of a 32 × 32 grid with a radial distortion that
makes node distribution more uniform

We include this distortion in our default settings, as it takes a negligible time, and
occasionally leads to a modest improvement of layout appearance. A simple example is
a square grid, whose layout improves when applying the distortion as shown in Fig. 10.

6 Conclusions

The binary stress model leads to unique graph layouts characterized by uniform distri-
bution of nodes within a circular area. This is particularly beneficial for large graphs,
where efficient utilization of the drawing area becomes vital. In addition, the model
is capable of producing decent layouts even for graphs with low connectivity, where
scant adjacency information cannot define a useful layout on its own. Computationally,
it combines some of the benefits of both the stress and the electric-spring model, fa-
cilitating a simple, yet effective optimization procedure that scales well for very large
graphs. We believe that it should coexist as a viable option along more familiar models.
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Efficient Node Overlap Removal Using a Proximity
Stress Model
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Abstract. When drawing graphs whose nodes contain text or graphics, the non-
trivial node sizes must be taken into account, either as part of the initial layout or
as a post-processing step. The core problem is to avoid overlaps while retaining
the structural information inherent in a layout using little additional area. This
paper presents a new node overlap removal algorithm that does well by these
measures.

1 Introduction

Most existing symmetric graph layout algorithms treat nodes as points. In practice,
nodes usually contain labels or graphics that need to be displayed. Naively incorporating
this can lead to nodes that overlap, causing information of one node to occlude that of
others. If we assume that the original layout conveys significant aggregate information
such as clusters, the goal of any layout that avoids overlaps should be to retain the
“shape” of the layout based on point nodes.

The simplest and, in some sense, the best solution is to scale up the drawing [23]
while preserving the node size until the nodes no longer overlap. This has the advan-
tage of preserving the shape of the layout exactly, but can lead to inconveniently large
drawings. In general, overlap removal is typically a trade-off between preserving the
shape and limiting the area, with scaling at one extreme.

Many techniques to avoid overlapping nodes have been devised. One approach is to
make the node size part of the model of the layout algorithm. It is assumed that whatever
structure that would have been exposed using point nodes will still be evident in these
more general layouts. Various authors [2,13,21,26] have extended the spring-electrical
model [4,7] to take into account node sizes, usually as increased repulsive forces. Node
overlap removal can also be built into the stress model [19] by specifying the ideal
edge length to avoid overlap along the graph edges. Such heuristics, however, cannot
guarantee all overlaps will be removed, so they rely on overly large repulsive forces, or
the type of post-processing step considered next.

An alternative approach is to remove overlaps as a post-processing step after the
graph is laid out. Here the trade-off between layout size and preserving the graph’s
shape is more explicit. A number of such algorithms have been proposed. For example,
the Voronoi cluster busting algorithm [10, 22] works by iteratively forming a Voronoi
diagram from the current layout and moving each node to the center of its Voronoi cell
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until no overlaps remain. Although roughly maintaining relative node positions, the
overall affect is to lose much of the layout structure.

Another group of post-processing algorithms is based on maintaining the orthogonal
ordering [25] of the initial layout as a way to preserve its shape. A force scan algorithm
and variants were proposed [14, 17, 21, 25] based on these constraints. More recently,
Marriott et al. [3,23] have presented a quadratic programming algorithm which removes
node overlaps while minimizing node displacement and keeping the orthogonal order-
ing. An orthogonal ordering invariant is fairly effective at preserving structure, but it
still cannot ensure that relative proximity relations between nodes are preserved, while
at other times, it is too restrictive. Also, some of these algorithm require, in practice,
separate horizontal and vertical passes which often results in a layout with a distorted
aspect ratio (e.g., Fig. 2, bottom right).

In this paper, we discuss (Sect. 2) metrics for the similarity between two layouts
which we believe better quantifies the desired outcome of overlap removal than min-
imized displacement or such simpler measures as aspect ratio or edge ratio. We then
present (Sect. 3) a node overlap removal algorithm based on a proximity graph of the
nodes in the original layout. In Sect. 4, we evaluate our algorithm and others using the
proposed similarity measures.

In the following, we use G = (V, E) to denote an undirected graph, with V the set of
nodes (vertices) and E edges. We use |V | and |E| for the number of vertices and edges,
respectively. We let xi represent the current coordinates of vertex i in Euclidean space.

2 Measuring Layout Similarity

The outcome of an overlap removal algorithm should be measured in two aspects. The
first aspect is the overall bounding box area: we want to minimize the area taken by the
drawing after overlap removal. The second aspect is the change in relative positions.
Here we want the new drawing to be as “close” to the original as possible. It is this
aspect that is hard to quantify.

One way to measure the similarity of two layouts is to measure the distance between
all pairs of vertices in the original and the new layout. If the two layouts are similar,
then these distances should match, subject to scaling. This is known as Frobenius metric
in the sensor localization problem [5]. However, calculating all pairwise distances is
expensive for large graphs, both in CPU time and in the amount of memory, so instead
we form a Delaunay triangulation (DT) of the original graph, then measure the distance
between vertices along the edges of the triangulation for the original and new layouts.
If x0 and x denote the original and the new layout, and EP is the set of edges in the
triangulation, we calculate the ratio of the edge length

rij =
‖xi − xj‖
‖x0

i − x0
j‖

, {i, j} ∈ EP ,

then define a measure of the dissimilarity as the normalized standard deviation
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σdist(x0, x) =

√∑
{i,j}∈EP

(rij−r̄)2

|EP |

r̄
,

where

r̄ =
1
|EP |

∑

{i,j}∈EP

rij

is the mean ratio. The reason we measure the edge length ratio along edges of the
proximity graph, rather than along edges of the original graph, is that if the original
graph is not rigid, then even if two layouts of the same graph have the same edge lengths,
they could be completely different. For example, think of the graph of a square, and a
new layout of the same graph in the shape of a non-square rhombus. These two layouts
may have exactly the same edge lengths, but are clearly different. The rigidity of the
triangulation avoids this problem.

Notice that σdist(x0, x) is not symmetric with regard to which layout comes first. Fur-
thermore, in theory, this non-symmetric version could class a layout and a foldover of it
(e.g., a square grid with one half folded over the other) as the same. We can symmetrize
it by defining the dissimilarity between layout x and x0 as (σdist(x0, x)+σdist(x, x0))/2.
This also resolves the “foldover problem”. The symmetric version may be more appro-
priate if we are comparing two unrelated layouts. Since, however, we are comparing a
layout derived from an existing layout, we feel that the asymmetric version is adequate.

An alternative measure of similarity is to calculate the displacement of vertices of
the new layout from the original layout [3]. Clearly a new layout derived from a shift,
scaling and rotation should be considered identical. Therefore we modify the straight
displacement calculation by discounting the aforementioned transformations. This is
achieved by finding the optimal scaling, shift and rotation that minimize the displace-
ment. The optimal displacement is then a measure of dissimilarity.

We define the displacement dissimilarity as

σdisp(x0, x) = minp∈R2,θ,r∈R

∑

i∈V

‖rTxi + p− x0
i ‖2, (1)

where r is the scaling, θ the rotation with T = T (θ) its rotation matrix, and p ∈ R2 is
the translation. Solving this is a known problem in Procrustes analysis [1, 11] and the
solution (the Procrustes statistic) is

σdisp(x0, x) = Tr(X0X0T
)− (Tr((XT X0X0T

X)
1
2 )2Tr(XT X), (2)

where X is a matrix with columns xi − x̄, X0 is a matrix with columns x0
i − x̄0, and

x̄ and x̄0 are the centers of gravity of the new and original layout. In the above we do
not consider shearing, since we believe a layout derived from shearing of the original
should not be considered identical to the latter.

3 A Proximity Stress Model for Node Overlap Removal

Our goal now is to remove overlaps while preserving the shape of the initial layout
by maintaining the proximity relations. To do this, we first set up a rigid “scaffolding”
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structure so that while vertices can move around, their relative positions are maintained.
This scaffolding is constructed using a proximity graph [18]. Here again, we work with
the Delaunay triangulation.

Once we form a DT, we check every edge in it and see if there are any node overlaps
along that edge. Let wi and hi denote the half width and height of the node i, and x0

i (1)
and x0

i (2) the current X and Y coordinates of this node. If i and j form an edge in the
DT, we calculate the overlap factor of these two nodes

tij = max

(

min

(
wi + wj

|x0
i (1)− x0

j (1)| ,
hi + hj

|x0
i (2)− x0

j (2)|

)

, 1

)

. (3)

For nodes that do not overlap, tij = 1. For nodes that do overlap, such overlaps can be
removed if we expand the edge by this factor. Therefore we want to generate a layout
such that an edge in the proximity graph has the ideal edge length close to tij‖x0

i −x0
j‖.

In other words, we want to minimize the following stress function
∑

(i,j)∈EP

wij (‖xi − xj‖ − dij ) 2. (4)

Here dij = sij‖x0
i − x0

j‖ is the ideal distance for the edge {i, j}, sij is a scaling factor
related to the overlap factor tij (see (6)), wij = 1/||dij||2 is a scaling factor, and EP is the
set of edges of the proximity graph. We call (4) the proximity stress model in obvious
analogy with the standard stress model [19]

∑

i�=j

wij (‖xi − xj‖ − dij) 2, (5)

where dij is the graph theoretical distance between vertices i and j, and wij is a weight
factor, typically 1/dij

2.
Because DT is a planar graph, which has no more than 3|V | − 3 edges, the above

stress function has no more than 3|V | − 3 terms. Furthermore, because DT is rigid, it
provides a good scaffolding that constrains the relative position of the vertices and helps
to preserve the global structure of the original layout.

It is important that we do not attempt to remove overlaps in one iteration by using the
above model with sij = tij. Imagine the situation of a regular mesh graph, with one node
i of particularly large size that overlaps badly with its nearby nodes, but the other nodes
do not overlap with each other. Suppose nodes i and j form an edge in the proximity
graph, and they overlap. If we try to make the length of the edge equal tij‖x0

i − x0
j‖, we

will find that tij is a number much larger than 1, and the optimum solution to the stress
model is to keep all the other vertices at or close to their current positions, but move the
large node i outside of the mesh, at a position that does not cause overlap. This is not
desirable because it destroys the original layout. Therefore we damp the overlap factor
by setting

sij = min(tij, smax) (6)

and try to remove overlaps a little at a time. Here smax > 1 is a number limiting the
amount of overlap we are allowed to remove in one iteration. We found that smax = 1.5
works well.
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Fig. 1. (a): A graph layout where nodes 2 and 4 overlap. (b): the proximity graph (Delaunay
triangulation) of the current layout. No two nodes linked by an edge of the proximity graph
overlap.

After minimizing (4), we arrive at a layout that may still have node overlaps. We
then regenerate the proximity graph using DT and calculate the overlap factor along the
edges of this graph, and redo the minimization. This forms an iterative process that ends
when there are no more overlaps along the edges of the proximity graph.

For many graphs, the above algorithm yields a drawing that is free of node overlaps.
For some graphs, however, especially those with nodes having extreme aspect ratios,
node overlaps may still occur. Such overlaps happen for pairs of nodes that are not near
each other, and thus do not constitute edges of the proximity graph. Fig. 1(a) shows
the drawing of a graph after minimizing (4) iteratively, so that no more node overlap is
found along the edges of the Delaunay triangulation. Clearly, node 2 and node 4 still
overlap. If we plot the Delaunay triangulation (Fig. 1(b)), it is seen that nodes 2 and 4
are not neighbors in the proximity graph, which explains the overlap. To overcome this
situation, once the above iterative process has converged so that no more overlaps are
detected over the DT edges, we apply a scan-line algorithm [3] to find all overlaps, and
augment the proximity graph with additional edges, where each edge consists of a pair
of nodes that overlap. We then re-solve (4). This process is repeated until the scan-line
algorithm finds no more overlaps.

We call this algorithm PRISM (PRoxImity Stress Model). Concerning its complexity,
Delaunay triangulation can be computed in O(|V |log(|V |)) time [6, 12, 20]. The scan-
line algorithm can be implemented to find all the overlaps in O(l|V |(log|V |+ l)) time
[3], where l is the number of overlaps. Because we only apply the scan-line algorithm
after no more node overlaps are found along edges of the proximity graph, l is usually
a very small number, hence this step can be considered as taking time O(|V |log|V |).

The proximity stress model (4), like the standard stress model (5), can be solved
using the stress majorization technique [8] with a conjugate gradient algorithm. Because
we use DT as our proximity graph and it has no more than 3|V |−3 edges, each iteration
of the conjugate gradient algorithm takes a time of O(|V |).

Overall, therefore, PRISM takes O(t(mk|V |+ |V |log|V |)) time, where t is the total
number of iterations in the two main loops, m is the average number of stress ma-
jorization iterations, and k the average number of iterations for the conjugate gradient
algorithm.
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4 Numerical Results

To evaluate the PRISM algorithm and other overlap removal algorithms, we apply them
as a post-processing step to a selection of graphs from the Graphviz [9] test suite.
This suite, part of the Graphviz source distribution, contains many graphs from users.
As such, these are good examples of the kind of graphs actually being drawn.

Our baseline algorithm is Scalable Force Directed Placement (SFDP) [16], a multi-
level, spring-electrical algorithm. Using the layout of SFDP, we then apply one of the
overlap removal algorithms to get a new layout that has no node overlaps, and compare
the new layout with the original in terms of dissimilarity and area.

In Table 1, we list the 14 test graphs, the number of vertices and edges, as well
as CPU time1 for PRISM and three other overlap removal algorithms. The graphs are
selected randomly with the criteria that a graph chosen should be connected, and is
of relatively large size. We compared PRISM with an implementation in Graphviz
of the solve VPSC algorithm [3]2, hereafter denoted as VPSC, as well as VORO, the
Voronoi cluster busting algorithm [10,22]. The final algorithm is the ODNLS algorithm
of Li et al. [21], which relies on varied edge lengths in a spring embedder.

The initial layout by SFDP is scaled so that the average edge length is 1 inch. From
the table, it is seen that PRISM is usually faster, particularly for large graphs on which
it scales much better. The others are slow for large graphs, with VORO the slowest.

Table 2 compares the dissimilarities and drawing area of the four overlap removal
algorithms. The smaller the dissimilarities and area, the better. The ODNLS algorithm
performs best in terms of smaller dissimilarity, followed by PRISM, VPSC and VORO.
In terms of area, PRISM and VPSC are pretty close, and both are better than ODNLS
and VORO, which can give extremely large drawings. Indeed, in terms of area, scaling
outperformed ODNLS and VORO in 20%-30% of the examples.

Comparing PRISM with VPSC, Table 2 shows that PRISM gives smaller dissimilar-
ities most of the time. The two dissimilarity measures, σdist and σdisp, are generally
correlated, except for ngk10 4 and root. Based on σdist, VPSC is better for these
two graphs, while based on σdisp, PRISM is better. The first row in Fig. 2 shows the
original layout of ngk10 4, as well as the result after applying PRISM and VPSC.
Through visual inspection, we can see that PRISM preserved the proximity relations of
the original layout well. VPSC “packed” the labels more tightly, but it tends to line up
vertices horizontally and vertically, and also produces a layout with aspect ratio quite
different from the original graph. It seems that σdist is not as sensitive in detecting dif-
ferences in aspect ratio. This is evident in drawings of the root graph (Fig. 2, second
row). VPSC clearly produced a drawing that is overly stretched in the vertical direction,
but its σdist is actually smaller than that of PRISM! Consequently, we conclude that
σdisp may be a better dissimilarity measure.

The fact that VPSC can produce very tall and thin, or very short and wide, layouts is
not surprising, and has been observed often in practice. VPSC works in the vertical and

1 All timings were derived on a 4 processor, 3.2 GHz Intel Xeon CPU, with 8.16 GB of memory,
running Linux.

2 A stand alone version of solve VPSC by the authors of this algorithm has also been tried but
was found to offer no advantage over VPSC. VPSC itself was also contributed originally by
the same authors to Graphviz.
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Table 1. Comparing the CPU time (in seconds) of several overlap removal algorithms. Initially
the layout is scaled to an average edge length of 1 inch.

Graph |V | |E| PRISM VPSC VORO ODNLS
b100 1463 5806 1.44 14.85 350.7 258.9
b102 302 611 0.14 0.10 4.36 5.7
b124 79 281 0.03 0.01 0.02 0.5
b143 135 366 0.04 0.01 0.47 1.3

badvoro 1235 1616 0.54 71.15 351.51 73.6
mode 213 269 0.09 0.09 2.15 2.1

ngk10 4 50 100 0.01 0.00 0.02 0.14
NaN 76 121 0.01 0.01 0.11 0.27
dpd 36 108 0.01 0.01 0.02 0.1
root 1054 1083 0.89 7.81 398.49 46.9
rowe 43 68 0.00 0.00 0.04 0.1
size 47 55 0.01 0.00 0.06 0.09
unix 41 49 0.01 0.00 0.04 0.07
xx 302 611 0.13 0.10 8.19 5.67

Table 2. Comparing the dissimilarities and area of overlap removal algorithms. Results shown
are σdist, σdisp and area. Area is measured with a unit of 106 square points. Initially the layout is
scaled to an average length of 1 inch.

Graph PRISM VPSC VORO ODNLS
σdist σdisp area σdist σdisp area σdist σdisp area σdist σdisp area

b100 0.74 0.38 14.05 0.76 0.72 18.91 - - - 0.33 0.20 1.02E3
b102 0.44 0.25 2.45 0.58 0.8 2.71 0.8 0.3 31.79 0.30 0.16 53.13
b124 0.65 0.37 1.04 0.78 0.73 0.91 0.86 0.39 13.42 0.33 0.19 14.79
b143 0.59 0.35 1.5 0.78 0.83 2.16 0.99 0.45 22.91 0.49 0.34 23.79

badvoro 0.34 0.15 12.58 0.61 0.75 13.85 2.29 0.65 3.01E3 0.31 0.26 318.66
mode 0.59 0.37 0.79 1.02 0.77 1.29 0.97 0.54 10.84 0.38 0.27 49.45

ngk10 4 0.41 0.16 0.33 0.39 0.3 0.25 0.48 0.26 0.52 0.22 0.13 2.30
NaN 0.4 0.2 0.72 0.54 0.65 0.71 0.56 0.28 5.04 0.26 0.15 5.10
dpd 0.34 0.18 0.25 0.51 0.4 0.18 0.48 0.32 0.45 0.37 0.29 1.30
root 0.71 0.3 16.99 0.6 0.75 17.68 4.09 0.94 6.93E9 0.29 0.22 950.01
rowe 0.33 0.14 0.22 0.44 0.31 0.19 0.49 0.26 0.95 0.27 0.12 2.10
size 0.37 0.2 0.47 0.77 0.74 0.4 0.62 0.35 1.27 0.32 0.20 4.14
unix 0.39 0.23 0.39 0.51 0.67 0.36 0.6 0.35 0.85 0.26 0.13 2.35
xx 0.42 0.25 3.96 0.57 0.82 3.9 0.97 0.34 58.83 0.29 0.14 74.00

horizontal directions alternatively, each time trying to remove overlaps while minimiz-
ing displacement. As a result, when starting from a layout with severe node overlaps,
it may move vertices significantly along one direction to resolve the overlaps, creating
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Fig. 2. Divergence of dissimilarity measures: for both graphs, σdist estimates that VPSC gives
layout closer to the original, while σdisp predicts the opposite
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Fig. 3. Comparing PRISM and VPSC on two graphs. Original layouts are scaled to have an aver-
age edge length that equals 4 times the label size.
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Morley
Karney

Butler

Lobb

Ruan

Uhlenbeck

Jacob

Wolfowitz

Akst

Nandakumar

Gaer

Schreiner

Lockhart

Hensler
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Schuur

Trauth

Walker

Benkard

Bouwsma

Deal

Dubinsky

II

Guting

Lebow

Sell

Cross

Stoddard
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Cramer

Haddock

Rothmann

Jamison

Gage

Hawley

Simmons

Leahy

Jones

Pond

Burke

Mitchell

Holte

Dua

Mohammed

Schoenfeld

Adkins

Jajodia

Dorner
Hamaker

KwanZwick

Bahrampour

Johnson

Peters

Bogley

Perennec

Simmons

Thurber

Hemminger

Dean

Lin

Vrem

Lang

Pringle

Hollingsed

Phillips

Wu

Kangas

Hanes

Leen

Rodabaugh

Xu

Tenny

Gibson

Burton

Parr

Ritchey
Heo

Kallianpur

Blyth

Cohen

Dwyer

Golomb

Ismail

Hewitt

Heidel

Pitcher

Spencer

Larsen

Franks

Saari Urenko

Hulkower

Tien

Williams

Batterson
Narasimhan

Kleinerman

SedlacekAlho

Wheaton

Moore

Foreman

Larkin

Hsu

Aronszajn

Panitchpakdi

Jennings Lucas

Pedrick

Mulla

Gerlach

Perlis

Duffin

Feldman

Karlovitz

Patrick

Illusie

Porsching

Mangrad

Macon

Whipple

Winkler

Wheeler

Wasserman

Hines

Gompf

Cheney

Boyer

Fuller

Yun

Chen

Hollingsworth

Loepp

McDonald

Chaatit

Little

Chang

Yu

Clark

Cook

Menegatto

Packer

Riley

Boehm

Figà

Zelmanowitz

Beck

Gardner

Mayer

Brown

Kuo

Fischer

Gleason

Black

Dauns

Haimo

Holzsager

Quillen

Turyn

Farkas

Tsai

Holt

Kegley

Katz

Wadsworth

Glimm Newberger

Schlesinger

Soland

Levine

Kronk

Naimpally

Osborne

Mandrekar

Rosen

Salwicki

Shao

WhyburnRoss

Brawley

Mrówka

Hagan

Beidleman

Bernstein

Cover

Shore

Tataru

Kassof

Kunkel

Frank

Hinson

Kulich

Rezende

Trembinska

Wen

Butterworth

Dula

Holmgren

Kennedy

Martino

Andreucci

Chen

Jacobson

Stafford

Newenhizen

Xia

Snavely

Dietz

Haunsperger

Bauer
Hetzler

Ratliff Schuster

Lee

Rykken
Jones

Madden Doeff

Yan

O

Diller

Flynn

Mittenthal

Wang

Martin

Chaubell

Urbano

Horning

Molski

Raugel

Al

Thompson

Hoehn

Oliveira

Haught

Orrillo

Greenberg Odell

Smirnova

GabayKautz

Simpson

Muthukrishnan

Lewis

Li

Kowalsky

Gutschera

Martineau

Thwaites

Tyrer

Benjelloun

Kamran
Shaheen

Mallet

Gordon

Valentin
Deutsch

Seitelman

Wilson

Davis

Wilhelmsen

Effinger

Chang

Najfeld

Cartwright

Takigawa

Stead

Shannon

Fenceroy

Regala

Leader

Fan

Miller

Perakis

Atay

Paraskevopoulos

Lieberman

Wallenius

DeBranges

Eidswick

Griswold

Ross

Stewart

Whitmore

Guisse

Pierce

Sovereign

Kucan

Mazaud

Szaro

Anderson

Cullinane

Neveu

Bourgault

Salpukas

Kimber

York

Galup

Johnson

Benedetto

Caraballo

Fung

Gerges

Prokhorenkov

Pan

BaloghLauko

Pinter

Vadakkekurputh

Beshears

Solomyak

McGrail

Kim

Hardy

Butson

Cole

Baxendale

Bellenot

Gilliam

Laskowski

Kalliongis

Rosenthal

Putcha

Pettet

Peligrad

Tanyi

Hoffman

Weaver

Kannappan

Pozsgay

Wu

Nemeth

Newman

Paola

Mann

Pu

Montgomery

Baggett

Cohen

Curtis

Wilf

Sellers

Levow

Mandelbaum

Kuhn

Lyczak

AlbertsonBolmarcich

Hutchinson

German

Klingsberg Dayhoff

Beissinger

Simion

Donaghey

Gamble

Taylor

Schnibben

Teitloff

Jacobson

Hardell

Kosier

Gantos

Wenger

Guay

Spencer

Kapoor

Bellamy

McDonald

Mukherjee

Richards

Derr

Reis

Nyhoff

Costich

Myung

Zettel

Bhatia

Vandenboss

Venzke

Anderson

Camburn

Jones

Elsner

Kim

Anderson

Shaw

Showers

Natsheh

Agrawal

Staal

Ludington

McGrew

Nelson

Naik

Bailey

Dizaji

MartinezAbudiak

McKeon

Hewitt

Curtis

Li

Cho

Mikhalkin

Spencer

Sellami

Ozan

Lee

Wieczorek

Song

Park

Liu

Zhao

Jiao

Ko

Wang

Tomber

Fintushel

Akbulut

Blincoe

Puckett

Bernard

Williams

Johnson

Greever

Cabell

Haley

Bobo

Schatten

McCarthy

Thomas

Griffiths

Artola

Blumenthal

Akin

Kezlan

Johnson

HutchinsonPirtle Larson

Fair

Speers

Wright

Hedstrom

Taylor

Prince
Costa

Adams

Howe

StroudMoore

RandolphWard

Burdick

Rosenzweig

Mitchell

Vick

Perry

Harrison

Klemm
Kung

Lohuis

Terrell

Terrell

Hook

Rowlett

Rinne
Hyams

Beem

Wheeler

Hansen

Nelson

Pettus
Bryce

Capobianco

Frank

Alliston

Steelman

Mader

Wadsworth

Goggins

Frech

Young

Young

Singh

Anderson

Edwards Torrence

Shaker

Saiers

Bierstone

Fantham

Spatzier

Robinson

Adler

Behera

Burke

Campbell

Cheung

Cooper

Davies

Dawes

Franek

Gorelic

Jhu

Junqueira

Kaiser
Lam

Lightstone

Ma

Madan

Mahatabuddin

Milnes

Moodie

Moore

Phillips

Poulin

Qiao

Solin

Steketee

Steprans

Stoltenberg

Swett

Szeptycki

Wang

Watson

Weiss

Zemel

Scott

Johnson

Sanders

Altman

Oh

Mackiw

Grosvenor

Crane

Jones

Thompson

Blanchard

Linden

Weiss

Bennett

Bonnett
Creede

Tang

Zhao

Zhu

Aizley

Smith

Spickler

Bank

Trotter

Brown

Baouendi

Shultz

Moser

Schwingendorf

Ghosechowdhury

Yang
Bolstein

Klopfenstein

Li

Shulman

Kim

Sivaramakrishnan

Zhang
Shen Wong

Lin

Pheidas

Liu

Sun

Bagga

Hanges

Chang

Hwang

Roberts

Roberts
Himonas

Gantner

Mutchler

Williams

Brand
Eifler

Mack

Cline
Vogt

Patnaik

Marut

ShapiroLane Jensen

Verhey

Kim

Ferdinands

Goonetilleke

Joseph

Frohliger

Brumfiel

Ryan

Kannan

Maxey

Kim
Carothers

Friedman

Burkinshaw

Shannon

RitchieKovach

YoonRouch

DuChateau

Cohoon

Premadasa

Henderson

Xu

Lipshitz

Silverman

Moore

Scharlemann

Wilkerson

Elliott

Bardos

Tripathi

Kim

Latremoliere

Pardalos

Leal

Binns

Mummert

Lee

Brown
Chuan

Amrine

Schwennicke
Estrada

TannenbaumDeretsky

Putnam

Alspach
Kruse

Chinn

Fwu

SchulteLorica

Person

Eudave

Doll

Schultens

Kowng

MooreSamuelson

Nicholsen

Loustau

Wilson

Kazam

Psomopolous

Yamini

Hassanali

Grosen

Ware

Fahy

Li

Sturm

Pufendorf

Pyung

Zhu

Lustfield

Sanders

Bustoz

Byrnes

IV

Ji

Pitts

Bagley

Chen

Deng

Ding

Hendricks

You

Parks

Scheffer

Brakke

Morgan

Kohn

White

Solomon

Mackenzie

Chang

Perry

Sullivan

Steinke

Underwood

Chung

Lander Cheng
Messaoudene

Lawlor

Petrus

Chu

Gray

Campbell

Pukatzki

Roberson

Vaughn

Pages

Wright

Nelson

Smith

Woo

Williams

Hall

Rant

Johnson

Sadler

Harris

Rhee

Ho

Spiteri

Chin

Jiang

Zhu

Anderson

Lin

Nam

Nyenhuis

Zhou

Carter

Bermejo

Sertoz

Sharpe

Gentle

Lee

Akyildiz

Bailey

Hutchings

Hung

Hallet

Jorgensen

Carson

Heinicke

Stewart

Biggs

Cross

Page

Ascher

Austin

Carrell

Rosen

To

Abo

Hegde

Tuncali
Yang

Pollard

Bennett

Fiske

Delistathis

Pearl

Roark
NakaoKao Naylor

Doraiswamy

Dahlberg

Lagrange Poisson

Bauschke

Chun

Ding

Durnberger

Hare

Liu

Marshall

Qin

Samaratunga

Shi

Varga

Varma

Zhan

Dirichlet

Freedman

Fourier

Eisenstein

Brylawski

Mondschein

Abraham

Al

Barrett

Clarkson

Culwell

Deaton

Falbo

Fitzpatrick

Kowalik
Lumberg

Manougian

Northcutt

Reid

Smith

Sparkman

Sturtevant

Tucker

Walston

Williams

Bales

Ford

Frady

French

Hancasky

Kennedy

Lauer

Lin
Moreman

Ott

Reed

SmithCleave

Doren

White

Williams

Yang

Bennett

Bennett

Burns

II

Frawley

Kim

Williams

HerdmanHooker

Bryan

Easton

Edwards

Ford

Kurtz

Nuzman Uherka

Wayment

Burton

Ball

Miller

Peratt

Brod
Jones

Knight
McIntyre

Moody

Tree

Fuller
Reed

Straley

Hayes

Brady TzungGuglielmi

Blum

Akin

Golumbic

Ji

Valiant

Tolman

Costes

Cochran

Grinberg

Kearns

Nisnevich

Decatur

Roth

Majda

Stuart

Holen

McLaughlin

Bertozzi

Ozsvath

Szenes

Buchsbaum

Varadarajan

Hutchinson

Lawvere

Goldberg

Applegate

Feuer

Sridharan

Johnson

Littleford
Wu

Faires

Fraenkel

Seaton

Uiyyasathian

Bulancea

Keiter

Liu

Buchanan

Cojocaru

Huang

Huh

Cartwrigh

Brown
Polak

Karp

Rosenblum

Sankar

Neff

Gennart

Mehta

Dolgoarshinnykh
Kordzakhia

Klaff

Avramidou

Denne

Sedwick

Marino

Kulkarni

Namboodri

Kulkarni

Deshpande Alam

Medecin

Tsyganov

Gorsky

Han

Attar

Tassa

Mor

Borosh

Shaki
Yesha

Klein

Felzenbaum

Dyn

Balaban

Mantel

Rabinowitz

Lam

Cullen

Buoni

Bentley

Taylor

Hastings

Murthy

Gompa

Kim

Park

Rabbee

Isaacson

Song

Scott

Mohrmann

Doerstling
Ng

Kelley

Shah

Gross

Jonsson

Timofeyev

Roytburd

Adler

Ashmore

Eells

Wood

Gudmundsson

Chamberlin

Toledo

Burnette

Chen

Fearnley

Ferguson

Gill

Gillette

Lipschitz

Datta

Valente

Blanchette

Hoste

Kinyon

Lamoneda

Macura Matic

Wine

Cameron

El

Runckel

Thuong

Savage

Smith

Ackerson

Sr

Baskervill

Dupree

Steward

Hopper

Anders

Garner

Spikes

Perry

Sharp

Griffus

Poor

Lane

Daniels

Kuperberg

Milton
Doheny

DeLucia

Kuperberg

Clark
Stallings

Smith

Loubeau

Kurtz

Carlitz

Saltsman

Smiley

Curry

Yu

III
Choi

Minc

Rakovec

Pave Mramor

Montaldo

Mustafa

Parmar

Worth

Ryden

Bahy

Erdem

Katz

Mendivil

Lawser

Meyer

Susko

Stroud

Hong

Helversen

Lalley

Rogers

Mitsuma

Crofts

Tong

Balakrishnan

Krussel

Burstall

Haile

Goldberg

Li

Edler Mau

Marathe

Liu

Adams

Steel

Neeman

Schimmerling

Lord

Allendoerfer
Kobayashi

FlahertyParker

Lewellen

Bussian

Khadivi

LaDue

Withers

Green

Wertheimer

Brown

Crawford

Huthnance

Faulkner
Kuai

Meddin

Leeds

Martin

Pederson

Marcus

Kim

McIlwain

Shutters

Stromquist

Knudson

Branton

Libis

So

Kennedy

Harrington

Friedman

Zhou

Feldman

McAlpin

Vilms

Dubuc

Mukherjea

Krikorian

Atkin

Field

Hansen

Harpe

Stefan

Smith

Mohammed

Lemaire

Little

Penn

Goller

Rogerson

BairdWood

Glazebrook

Ferreira

Grove

Petersen

Møller

Markvorsen

Bendsøe

Nielsen

Brøns

Gæde
Larsen

Gross

Høst

Kristensen

VillemoesKnudsen

Franc

Vanderwinden

Ottarsson

Salavessa

Ratto

Valli

Doria

Small

Marriott

Bozhkov

Fardoun

Haack

HullingerVoss

Caballero

Morris

Dobbins

Curd

O

Selden

Ahre

Koray

Hartenstein

Higman

Mauldon

Cobb

Chang

Taylor

Gugenheim

Paechter
James

Warner

Sutherland

Steer

Ming

Rutter

Krishnarao
Tipple

Chan

Eccles
Thistlethwaite

Turi

Barcus

Guckenheimer

Sin

Ramakotaiah

Shelah

Kojman

Koszmider

Guzicki

Just

Zakrzewski

MarekKrawczyk

Sikorski

Rasiowa

Grzegorczyk

Janiczak

Ehrenfeucht

Brynski

Onyszkiewicz

Wisniewski

Zbierski

Krynicki

Apt Krajewski

Adamowicz

Dubiel

Sacks

Simpson

Swardson

Mañé

Karp

Livingston

Rice

Lafforgue

Benson

Kuntz

Hitchman

Blair

Bühler

Atela

Yu

MacNeille

Calkin

Mackey

Zuhong

Huang

Hsu

Lindblad

Low

Baek

Olsen

Slastikov

Reznikoff

Perez

Judice

Iwasawa

Liu

Feng

Wang

Li

Wang

Lazarev

Cao

Yim

PaulsColding
Liu

Shen

Chi
Dupre

Evans

Skau

Landstad

Lee

Giaquinto

May

Schack

Coll

Bidwell

Kaplan

Solel

Brenken

Jensen

Ge

Rørdam
Hansen

Vitulli

Wassermann

Burstein

PriceMikovsky

Schmutz

Graham

Lazebnik Zito

Yen

Wertheimer

Garfield

Block

Borwein

Bowen

Croke

Effros

Rosenberg

Komornicki

Weibull

Feng

Levins

Vembar

Benndorf

Griswold

Ganocy

Kunz

Packer

Welty

Ahmed

Navaratna

Emmert

Yu

Gee

Li

Li

Jin

Hong

Cheng

Thompson

Sarsour

Dillon

Kibler

Singh

Chen

Hass
Powell

Melvin

Handel

Alexander

Eisenlohr

Matveyev

Dona

Jones

Lu

Hubbuck

Adams

Wong

Bresenham

Betz

Guilford

Kelly

Thomas
Dickenson

Lassowsky

Harris

Cole

Mireault

Castro

Qiu

Shepardson

TalluriRaghavan

Epstein

Wang

SokolCroxton

Hashtroodi

Livadas

Itzkowitz

Laurent

Zhou
Mysore

Oliveira

Szatkiewicz

Luo

Tripp

Hamza

Graham

Tran

Royston

Lawes

Hoffman

Terentyev

Fabbri

Mantellini

Franca

Zampogni

Grigsby

O

PornputtkulWilliams

Wong

Walter

Riley

Hughes

Nelson

Staples

Scoy

Mitchell

Wang
Levine Cook

Grabiner

Comfort

Negrepontis

Dow

Kuratowski

Dienes

Ulmer

Magill

Sawyer

Melo

Rajagopalarao

Ginsburg

Peters

Noble

Blefko

Diamond

Jakel

Moore

Terasawa

Tsali

Woods

Broverman

Kodeih

Scribner

Abrams

Temte
Alligood

Kahn

Jordan

Ng

Hunt

Kitchens

Markley

Sinclair

Patterson

Gruendler

Newhouse

Cima

Goolsby

Gordon

Sullivan

Wilson

Bourdon

Oliveira
Trow

Bass

Tolle

Calvetti

Shields

Molinek

McNulty

Yang

Hung

Kwon

Hall

Auslander

Mann

Marczewski

Samuel

Putnam

Bari
Lee

Ashiq

Maqsood

Meyer

Brunner

Cashing

Smith

Scheick

Johnson

Sealey

Morris

Nicholson

Pepe

BrownCopes

Timourian

Nathan

Walker

Hsu
Shepardson

Batigne

III

Banerjee

Stallard

Resnikoff

Stuck

Robinson

Hucke

Rittgen

Höpfner

Pohl

Knaster

Kaiser

Chung

Mullineux

Nurlu

Brech

Hoorn

GefellerInfante

Schmid

Voepel

Parikh

Sibley

Douma

Kronmal

Xu

Stenlund

Grier

Grou

Smith

Cameron

Collins

Taylor

Robinson

Conder

Sehr

Fisher

JohnsonCohen

Law

Vidakovic

Thomas

Cottrill

Stover Farjoun

Forman

Feinerman

Kuchenbrod

Coven

Auroux
Dobranszky

Chasles

Mathas
Bardoe

Paun

Buvat

Bovykin

Aubin

Kunio

Johannes

Weinberg

Carrère

Russell

Rang

Culmer Chapin

Schwartz

Mandallena

Goodykoontz

Spitznagel

Berger

KoidanSchedler

Minichiello

Kenyon

Stanley

Lee

Deb

Kahn

Ounsy

Brown

Hummel

Bourbon

McDonald
Song

Zacharia

Mullen
Dymacek

Roselle

Marcone

McCooey

Obersnel

Bauer

Chan

Krasinkiewicz

Wilson

Stötzer

Krauss

Foster

Owen

Dudley

Kahlon

Crasswell

Guenther

Schulzer

Lear

Yang

Argabright

Asmar

Austin

Bund

Chaney
Chen

Coury

Erlebach
Ferguson

Frey

Froderberg

Keeler

Kitto

Lichtman

McMullen

Veiler

Miles

Moore

Ndakbo

Petrich
Putney

Roush

Runnion

Swift

Thompson

Vakil
Yap

Slagle

Stewart

Abdeljaouad

Colby

Floyd

Kurshan

Lindley Mochizuki

Seligson

Topp

Vinsonhaler

Williams

Renz

Dayawansa

SalehiXu

McRae

Meaney

Fish

Jones

Miller

Springsteel

Strong

Beebe

Cathey Miyata

Overton

Vucic

Kitto

Chapman

III

Ragozin

Wulbert

Rodriguez

Lawes

Feng

Yao

Zhong

Mabizela

Chu

Mahmoud

Lee

Park

Singler

Tennant

Mellor

Trace

Hopenwasser

Wedhorn

Rapoport

Neumann

Martinez

Dahlmeier

Kühl

Seibert

Durling

Koschorke

Wagner

Graff

Saracino

Térouanne

Richardson

Otto

Ligatti

Outassourt
Houakmi

Kabbaj

Hotchkiss

Hunt

Greenwood

Peile

Lander

Wells
Buczak

MacphersonRees

LischkaTeague

Penttila
Cohen

Covington

McSorley

Whelan

Halpenny

Stokes

Bending

Gomes

Gasquoine

Eaton

Metzger

Mozzochi

III

Halverson

Lee

Wong

Boyce

Li

Cassidy

From

Gryparis

Benes

Grispolakis

Herman

Mohamad

Fraughnaugh

Goodsell

Bender

Brady

Cohen

Brown

Layton

Wang

Oppenheimer

Etnyre

Cadavid

Coroian

McMorris

Diny

Myers

Margush

Peach

Dehon

Singh

Yang

Yen

Landman

Bechata

Boyer

Tsui

Xu

Archer

Dolan

Amin

Beetham

Bryson

Camm

Cappitt
Garside

Menick

Gibbon

Hoare

Howard

Howson

Jackson

Liggonah

McDonough

McDermott

Prince

Rowley
Rowlinson

Scott

Smith

Tobin

Ferraro

Tritter

Wichman

Woodhouse

Doyle

Bryant
Calvert

Omlin

Ferrucci

Hasssani

Duris

Zhornitskaya

Williams
Cox

Ikebe

Baker

Anderson KilgoreKang

Sun

Hahm

Rickman

Price

Smith

Weitkamp

Pappas

BrackinLegrand

Brown

Hirst Yu

Ferreira
Hatzikiriakou

Humphreys

Giusto

Bonawitz

Huang

Zhang

Jinghong

Schenck

Pitts

Liu

Stormer

Saks

Waiveris

Baloglou
FerreiraTrigos

Zhou

Masaveu

Widman

Raczkowski

Feyock

Southcott

Rieffel

Swick

Chu

Schlunt

Hsu

Grasman

Beck

Tessaro

Chipman

Sun

Pignani

Dalla

Patten

Gunnells

Sanders

Manderscheid

Greenberg

Pilyugin

Chernoff

Terry

Tang

Edwards

Yue

Woodson

Nkwanta

Widener

Slaman

Phillips

Wypasek

Arthurs

Grabbe

Kidwell

Carter

Reed

King

Fennell

Benz
Black

Weintraub

Winter

Potoczny

Anderson

Kaufman

Munoz

Brown

Li

Shell

Winicki

Zaslavsky

Shama
Orgad

Ladegaillerie
Contou

Perez

Oudom

Balavoine

Toure

GuediriLabbi

Wertheim

Alibert

Grothendieck

Guin

Lafontaine

Reiz

Verdier

Sidney

Cooper

Wu

Blanc

Long

Malek

Marker

Handron

Richardson

Macintyre

Mayer

Tan

Barnes

Molinari

Garland

Tourneau

Myers

Wesep

Wadge

Quaife

Zafrany

SomersEmamy

Yang

Wolfe
Olson

Strasen

Manders

Benson

Franco

Wong

Young

Nanda

Weiner

Weissler

Arvin

Laubenfels

Johnson

Gaffey

Walton

FarnellBarankin

Willoughby

Sussman

StengerO

Sioson
Pixley

Subrahmanyam

Astromoff

Pickett

Knoebel

Froemke

Kelenson

Dennis

Mills

NashLiere

Stanley

Corvo

Heilmayr

Green

Pearce

John

Hellerstein

Arens

Hrushovski

Tanaka

Vourtsanis

Weinstein

Cai

Calhoun

Bonet

Peterzil

Dumas

Hernandez
Dasgupta

Teti

John

Schlatter

Staddon

HowardJean

Demaree

Gallin

Resek

SugarZuckerman

Lovaglia

Boisdefre

Yildiz

Topuzu

Koosis Prosser

Sawatzy

Bear

Kallin

Singh

Starbird

He

Oncu

Weidner

Kaplan

Nordstrom

Apodaca

Giller

Menasco

Hughes

Ruberman

Schorow

Aitchison

Ouyang

Walker

Hirsch
Kania

RuanHerald

Taylor

Yu

Tong

Koh
Kraines

Kwack

Zumbrunn

Harle

Kiernan

Minovitch

Ogawa

Maynadier

Lundquist

Mabuchi

Markowitz

Balas

Morton

Wood

Yang

Zandi

Kim

Vila

Hasegawa

Smith

Jagy
Totaro

Grzegorczyk

Oldham

Li

Gomprecht

Guan

Huang

HwangWon

Laufer

Resnikoff

Patterson Coomes

Fleissner

Kraft

Rankin
Steck

Konijn

Cottle

Zhang

Biddle Wright

Pierce

Williams

Morris

Wolfe
Alderton

Daus

Steed
Wong

Pobanz Skarstedt

Coleman

Miles

Pollock

Singer

Sanchez

Noble

Nenadic

Latner

Pego

Droz
Thomann

Long
Palais

Dziurzynski

Lagha

Naso

Posner

O

Garraway

Insel

Potter Bewley

Haynor

Scull

Blackadar

Plastiras
Quint

Seifert

Erceg

Fox

Ayres

Barker

Marston

Hayes

Lewis

Danskin

Smith

Krabbe

Kipps

Buley

Smith

Goheen

III

Leipnik

Sion

Bledsoe

McMinn

Stenberg

Weihe

Bressler

Elliott

Cleveland

Peterson

Arnold

Pfaff

Chen

Dantzig

Fix

Hodges

SeidenHughes

Taylor

Jeeves

Ng

Putter

Chiang

Pyle

Tulloss

Dana

Kupka

Brauner

Blankenhorn
Green

Berg

Iorio

Renault

Williams
Avitzour

Kumjian

Beer

Megory

Exel Sheu

Wang

Loring

O

Schweitzer

Abadie

Nagy

Wang

Hajac

Kahng

Ladner
Epstein

Sasso

Lopez Perkins

Safi

Gay

Kopell

Shub

Palis
Byers

Dowling

Nitecki

Schneider

Shahshahani

Tomter

Cabral

Lacomba

Ong

III

Payne

Wan

Lopez

Schecter

Fried

Rassias

Rassias

Jewell

Langlois

Renegar

Saunders

Buffo

Kostlan

FriedmanGao

Bishop
Priest

Huang

Munoz

Rojas
Xuan

Boulis

Garten

Bernier

Nistor

Dykema

Germain

Nica

Shlyakhtenko

Walker

Hsu

Homer

Fisher

Wakerling

Amundson

Beauville

Anderson

Wilson

Hutchinson

Cam

Moore

Winston

Putnam

Robinson

Radner

Voiculescu

Feichtinger

Clay

Sawka

Strounine

Anton

Fischer

Betley

Page

Moulton
Kabanov

Limber

Rudolph

Woo

Cole

Birnbaum

Braga

Laska

Mike

Yhap Shenkin

Shim

Jin

Griffin Assadourin

Gans

Gurwood

Grotowski

Han Garza

Tonegawa

Liu
Lin

Yang

Nesi

Perna

Spencer

Paes

Marchesin

Chern

Bukiet

Jones

Kan

Furtado

Maesumi

Scheuermann

Jordan

Ossowski

Meth

Cohn

Lee

Schultz

Rodrigues

Engelberg

Laning

Mileti

Sukantamala

Shane

Shalen

Denes

Gostanian

Perlis

Harrow

Jacobs

Rosenberg

Keller

Koppel
Linfield

Fechter

Emerson

Flint

Lipton

LoweSternberg Tepedino

Redondo

Bruno

Filippas

FiroozyeRybka

Girao

Lu

Grabovsky

Killough

Connell

Hundal

Zumbrun

Li

Zeng

Schor

Dreifus

Surace

Sorets

Lima

Naddaf

Qian

Wang

Xu

Goodman

Bloch

Madden

Fryman

Bland

Bergner

Kim

Ragland

Pinezich

Dai

Malekpour

Curran

Clair

Bannon

Schucany

Adams

Iseri

Cao

Shore

Everitt

Walker

Dieudonné

Serre

Grossberg

Schwartz

Shults

Lessmann

Richeson
Kosler

Wang

Darboux

Yan

Cheng

Levine

O

Kline

Daniel

Denny

Curiel

Cruz
Gillette

Koul

Geertsema

Aiyar

Boza

Pessoa

James

Weerth

Dachs

Collins

Bjerve

Quang

Muron

Polovina

Viollaz

Chow

Wu

Vadiveloo

Brodsky

HammerstromMarcondes

Poggio

Wang

Iachan

Abramson

Holmes

Trosset

Jelihovschi

Faraway

Park

Mo

Zhang

Jin

Wang

Lorentziadis

Bajamonde

Shen

Wang

Kim

Jiang

Sakov
Ge

Hengartner

Ture

Cutler
Kipnis

Atkins

Sinha

Singh

Paik

YuanMiura

Azzam

Lo

Nair

Park

Wong

Taylor

Dabrowska Morita

Kim

Vallarino
Song

Koo

Chiang

Wiggins

Klotz

Ghosh

Thompson

Heilbron

Lopes

Sheyner

Ferguson

Abrams

Esary

Striebel

Wittenberg
Majone

Smiriga

Yang Gomberg

Stigler

Chao

Torgersen

Acosta

Hoyos

Lindae

Goria

Araujo

Traxler
Aalen

Balder

Moussatat

Caby

Chen

Swensen

Lo

Wang
Yatracos

Janssen

Chang
Gu

Schwartz

Fernandez

Yu
Bednarski

Chacko

Mikulski

Mehra

Bhuchongkul

Jogdeo

Hoyland

Bickel

Greenberg

Ramachandramurty
Gupta

Raghavachari

Doksum

Lawton

Hoadley

Bhattacharyya

Adichie

Gross

Hampel

Jaeckel

Stefansky

AnbarScholz

Guillier

Makani

Stuart

Jin

Davis

Bj

Carmichael

Loh

Sobel

Rojo
Sukhatme

D

Gokhale

Draper

Wilson

Gurland

Eudey

Agarwal

Sane

ReadSingh

Borgman

Marcus

Kulkarni

Davies

Clifford

Samuels

Oyelese

Ray

Greig

Green Tsiatis

Singh

Javitz

Darden

Yohai

Imhof

Aswad

Athanasopoulos

Kan

Gaspari

Lampe
Niamsup

Dai

Stajner

Chen

Gunnarsson

Young

StanclZemanek

Sansing

Tischer

Bousfield

Fletcher

Hoyle

Croom
Clemens

Bradley

Chand

Truitt
Westall

BoydThomson

Pope

Chen

Wang

Lominac

Kinch

Speece

Mitra

Mohamed

Elkhader

Goldston

Shafer

Lucas

Faigle

Peele

Molnar

Brook

Hinds

Drucker

Pellicciaro

Herwitz

Hilt
Deal

Showalter

Hannula

Raggi

Oppenheim

Troy

Jones

Cliff

Ralley

Solow

Groot

Hotelling

White

Calude

Mehlhorn

Mendelson

Palais

Sorbi

O
Braun

Althoen

Jani

Weld

Chen

Latch

Cobb

Kolb

Nagarkatte

Scholnick

Hurwitz

Searl

Danas
Misir

Arroyo

Goldstone

Mannucci

Yanofsky

Strassberg

Greenberger

Yan

Paisner

Carbone

Georgatos

Weiss

Masiello

Falley

Wisniewski

Benardete

Miller
Kim

Pogorzelski

Horowitz

Askanas Halpern

Subramaniam

Shipman

Mott

Srivastav

Ales

Sajna

Morris

III

Bucur

Zolesio

Cagnol

Raisbeck

Brooks

Chang

Zitarelli

Askitas

Dziri

Cea

Schmidt

Saber

Mesirov

Lamport

Eck

Drager

Ault

Terng

Wu

Bhattacharjee

Kamel

Swallow

Praeger

Armanios

Royle

Hollis

Shor

Budhiraja

Allen

Feighn

Wilson

PorterKatsuura

Pinneri

Tao

Gorman

Fiorini

Byer

Crato

Sweitzer

Kovacs

LaRiccia

III

Sommers

Frawley

Li

Minor

III Michael

Parr

Ulrich
Palachek

Bosmia

Lee
ThombsCha

Bao

Perera

Gerard

Polansky

Ernst

Pitblado

Chandra

Anderson

Gregory

Schach

Crofts

Dyer

Matlock

Stracener Boddie

Lester

Hsiao

Meeks

Haas

Chou
Yeh

Chow

Shyu

Borrego

Strickert

Li

Rousseeuw

Aarnes

Callahan

Patterson

Purcell

Rockoff

Sardinas

Schiller

Weinblatt

Young

Zaromp

Zaroodny

Betz

Knobelauch

AdkissonLovell

Papoulis

Woodard

Grant

Hartley

McDonough

Price

Gordon

Pownall

Remage

Busby

Kenschaft

Lutts

Vardi

Su

Gottschalk

Yang

Voce

Scobee

Skipper
Williams

Ko

Shallcross

Dietrich

Cho

Jensen

Wilson

Joly

Reeves

Sola

Mato

Naik

Jayaram

Bernadou

Kricker

Meda

Amillo

Powers

Fabiano

Miller Liu

Hill

Kang

Tadi

Spies Marrekchi

Huang

Borggaard

Zhang

Rubio

Stewart

Stanley
Hulsing

Lukesh

Fink

Grubb

Schmidt

II

Thoe

Westlund

Al

Welch

Wilcox

Qian

Martin

Gandy

Lu

Replogle

Myers

Angus

Vaysleb

WebsterWinkler

Biesterfeld

McArthur

John

Whitney

Cassorla

Shteingold

Ceccherini

Petrescu

Oliveira

Rudominer

Stallmann

Berger
Ralston

Popa

Lions

Hartz

Boisen

Kiltinen

Bridger

Ding

Du

Fisher

Green

Guan

Harada

Leighton
Luo

Marcos

Martsinkovsky

Menzin

Munroe

Newell Platzeck

Ramras
Smalø

Teter
Todorov

Williamson

Wilson

Zaks

AkinArtale

Boffi

Faber
Gabel

Gemeda

Gonzalez

Gover
Klucznik

Ko

Kulkarni

Maliakas

Miller

Sanchez
Srinivasan

Turner

Weyman

Winslow
Bode

Whitney

Zhang

Basu

Kao

Lee
Park

Sung

Wang

Ozeki

Boden

Gérard

Patry

Wu

Gottlieb

Kaminski

Humphrey

Oberste

Hubbard

Douady

Harper

Hemmati

Roe

Zuckerman

Dent

Arkowitz

Oversteegen

Rahman

Iooss

Maner

Gaal

Brouwer

Ghosh

Albert

Thomson

Alling

Luo
HwangGong

Taussig

Edwards

Gross

Zimmer

Sit

Rose Heifetz

Kumar

Ye

Kojima

Kennedy

Vasas

Lok

Suciu

Zhang

Steiner

Mao Guo

Leung

Ok

Hakim

Luttinger
Lee

Lisca

Yang

Leness

Lim

Li

Deloup

Joe

Beyer

Bradlow

Wagner

Chou

Kramer

Bourlioux

Carr

Limaye

Hong

Hooper

McCudden

Rodriguez

Snaith

Ferdinand
Marshall

Tran

Richey

Macchione

Muratore

Huang

Bienstock

Szechtman

Corlette

Rowland

Shepler

Doody

Leibon

Picciotto

Wagstrom

Doyle

Douthett

Karlov

Asher

Salinetti

Su

Shankar

Bernstein

Zhao

Sofronidis

Huang

Tamulis

Limperis

Pong

Schiffman

Devadoss

MacDonald

Quintero

Gurski

Edler

Dunfield

Tolmatz

Ozbagci

Wynne

Cao

Ensil

Ling

Boersema

Huef

Li

Demas

Lemire

Deslauriers

Molina

Overbay

Yu

Park

Tran

Nevins

Euler

Luecking

Mathur

Feist

Korf

Vaughn

Carlton

Cowieson

Brown

Harnik

Kreider

Howe

Barry

Tucker

Feustal
Sinal

Brown
Hoffman

Landraitis

HigginsonWeidenhofer
Berg

Gass

Marsh

RothCramton

Liepins

BurkhartGarnett

Atkinson

Wittbold

Welch

Sprouse

Wang

Miller

GutierrezDougherty

Hindman

Wood

O

Retta

Schwarz

Miller

Mulvey

Paul

Fife

Pelland Hidalgo

Huber Lee
Silberger

Johann

Horelick

Eisenberg

Kosorok

Brook

Huang

Lawton

Koo

II

Turner

Marchetto

Wimer

Miller

Borden

Piccione

Carter

Khan

Chen

Ahlbrandt

Borel

Lee

Papageorgiou

Cockburn

Graham

Zhu

Birmiwal

Wang

Boman

Jastrzebowski

Epelbaum Curtis

Zikan

Guu

Morton

Leichner

Carlyle

Matthews

Ait

Lien

Yu

Nishibata

Howard Viswanathan

Drachman

Chan

Bourgeois

Ferrari

Sun

III

Foisy

Odden

Carr

Nailor

Porter

Shin

Travers

Mueller

Bellis

Ghuman

Sirotine

Kearsley

Cheng

Mou

Poon

Wang

Wang

Zhou

Berggren

Fernandez

Chang

Garcia

Frisch

Suchower

Morgan

Okamoto

Seiferas

Goldfarb

Johnson

Addepalli

Chang

Yang

Huang

Barrett

Schwartz

Liu

Chang

Liu

Lawrence

Chen
Daras

Faro

Roy

Willms

Wicklin

Myers

Worfolk

Zhou Kullmann

Sheng

Meier
Stein

Hermiller

Huang

VeraPena

Solomon

Schleicher

Ma

Xu

Macarie

Zhang

Meyer

Tong

Du

Gasarch

Vanaja

Kweon

Liu

Lu

Hare

Park

Carney

Lubell

Qiang

Cho

Guijarro Kapovitch

McGowan

PlautSearleWilhelm

Gallinari
Keswani

Park

Guerin

James

Alvarez

Denny

Dodd

Haddad

Xu

Lee

Pleszkoch

Patrick

Testa

Osei

Kelly

Cox

Nirkhe

Farsi

Minami

Gould

Meylan

Vityaev

White Daw Cleary

Eaves

Crass

Wang

Zhou

Shors

Clanahan

Dadarlat

Benhenni

Myers

Hall

Debonis

Davis
Delahan

Passow

Knappenberger

Gao

Borzellino

Koh

Bisch

Radulescu

Boca

Andretta

Cunningham

Ly

Hauk

Domke

Ilyes

Matagrano

Brown

Narayanan

Majumdar

Harris

Muddana

Chu

Beale

Mouron

He

Bialostocki

Shu

Unnithan

Huth
Zhang

Villarreal

Alvarez

Doucet

Bishop
Issar

Jubran

Mesina

Ye

Harris

Gale

Shin

Nelson

Muntersbjorn

Bhatia
Hong

Xi

Millspaugh

Petkovsek

Hohmann
Jin

Zhou

ChenZhang

Huang

Meerdink

BloomsburgSchaal

Lotspeich

Burke

Mosher

Dondoshansky

Djordjevic

Lahiri

Wieand

Tiro Lee

Mingoti
Li

Funo

Popoviciu

Emir

Fitzpatrick

Golden

Gass

Hall

Gross

Garrett

Wang

Roussanov

Nelson

Kwean

Hagen

Mira

Johnstone

Koller

Halpern

Lai

Shachter

Siegmund

Bowker

Lele

Adak

Kozlov

ParkWang

Graves
Chan

Chuang
Kim

Shan

ZhangZhu

Wong

III

Betensky

Sigal

Loader

Venkatraman
Kuwana

Dupuis

Zhang

Teng

Tu

Zhang

Zhang

Feingold

Rabinowitz

Branson

Menon

Springer

Swarup

Mak

Wu

Lai

Geisser

Kamin

VolminkTerry

Bloch

Heisey

Karatzas

Rosamond

Adams

Kaye

Ling

Loui

Nesin

Pinkham

Pfenning

Owings

Shapiro

Sasaki

Herzog

Wiskott

Woo

Trudinger
Palmer

Bondy

Chan

Fischer

Wilson

Lau

Danielson

Devine

Lee

Yang

White

Iyengar

O

Kasum

Krajewski

Edwards

Zaidi

Harris

Horn

Currier

Kossak

Fora

Appelbaum

Tsai

Deliyanni

Dempster

Briggs

Blue

Zhou

Alexander

Namesnik

Dong

Ye

Liao

Park

Hardie

Paulin

Moran

Subbiah

Tan

Stitz

Fredericks

Biskup

Kaul

Safari

Booth

Cockroft

Yahya

Wei

Bull

Barnes Cross

Howie

Hughes

Clapham

Wilks

Titt

Pease

Avakian
Valentine

Gere

Canaday

Sealander

Wood

Moses
Dolciani

LeeGeorge

Olum

Yagi

Asprey

Sheung

Arakaki

Lewis

Allen

Muckenhoupt

Stover

Isaak

Plana

Narayan

Coster

Dilks

Akutowicz

Krule

Maier

Russo

Calhoun

Dahlin

Gautier

Malone

Pekara

Plachy

Rogers

Benharbit
Weber

Knight

Salazar

Abedi

Sedory

Noel

Wadleigh

Cecil

Jobe

Whitfield

Bedgood

Blondeau

Bruyr

Glover
Glynn

Woods

Gerneth

Clark

Butler

Cochell

Crawford

KcKown

Mark

McMillianMcKellips
Dooley

McKown

Taylor

Rall

Saks

Hall

Ahmad

Balakrishnan

Qian

Batiz

Hammons

Moore
Hsia

Durkin

Terrell

Milies

Evans

SandersJohn

Simone

Malghan

Grove

Hansen

Andersen

Léonard

Madsen

Mortensen

Pedersen

Hitchin

Houghton

Pedersen

Eilers

Johnsen

Pedersen

Crossley

Hale

Argyros

Dey

Jacobs

Leslie

Parberry

Tierney

Kahng

Zsidó

Ying

Forster Andre

Stillwell

Benveniste

Fabian

Weiner

Fernandes

Rao

Rajlich
McClosky

Kowalski

Coppotelli
Thiel

Miller

Brogan

Hass

Trampus

Portman

Hopper

Schwiebert

Kent

Davis

Tucker

Brooks
Beeson

Hutchinson

Wolf

Johnson

Goodman

Mansfield

Ogden

Rounds

Frabetti

Lih

Loday

Hu

Sussner

Moser

Crosby

Krishnamurthi

Zapata

Vanderbilt

Murray

Goncalves
Fernandes

Grasse

Chun

Cruickshank

Peschke

Montgomery

Fang

Wiens Heo

Zhou

Stiadle

Kopperman

Shirley

Aigner
Råde

Ko Bigelow

Menad

Preston

Ganske

Weber

Tang

Suciu

Stancu

Clarke

Johnson

Ray

Chae

Heyworth

Brown

HumphriesKuksov

Ýçen

Altenburg

MorianSteiger

Winter

Andrist

Farjami

Davenport

Anshelevich

Pickrell

Dai

Dang

Hu Liu

Brilleslyper

Hebey

Aubin

Gossett

Fahlberg

Radjavi

Kohli

Shukla

Walker

Naber

Pursch

Gubbi HarrisZhou

Song
Zhang

Ponomarenko

Hrusak

Rabus

Peralta

Sohoni

Osborn

Worthington McCulley

Donaldson

Ulrich

Vargas

Broussard

Marinov

IV

Irwin

Kaigh

Rose

Rooney

Dawes

Denman

Kuttler

Simmons

Krause

Spellman

Treisman

Tourniaire
Rin

Bosse

Ferguson

Xu

Movshovitz

Chou

Rulla

Lindstrom

Juan

Walkington

Koo

Babich

Finley

Brahm

Harms

Sullivan

Feng

McPhee

Rock

Guilfoyle

Powell

Pak

Smith

Patkowska

Sieklucki
Buckingham

Mintz

Nam

Lucke

Marlin

Badzioch

Spencer

Sharp

Cook

Atkinson

Atkinson

McKay
Gilbey

Saxl

Langworthy

Brydon

Mann
Cartwright

Camina

Bhattacharjee

Groves

Maund

Quick

Greenhill

Bamblett

Pantelidakis

Haigh

Traustason

Schneider

Lloyd

Tulley

Burns

Inyang

Sanderson Andreou Pipinos

Shareef

Cooper

McIsaac

Emmens

Ronse

Liebeck

Jones

Bruyns

Ramsay
Bhattacharya

Blackburn

Tompson

Möller
Tryer

Audu

Venkataraman

McIver

McNab

Behrendt

Vaughan

Britnell

Roney

Rutherford

Giudici
Tarzi

Archer

McLeish
Mosley

Johnson

Mellor

Bousbouras

Barbina

Nadas

Hamilton

Payne

Harkins
Wakefield

Cauchie

Williams

Law

Bamberg

Nochefranca

Raposa
Pasechnik

Hartley

Fang

Gamble

Li

Khayaty

Iranmanesh

Zhou

Lim
Cuaresma

Inglis

Lawther

Baddeley

Whiston

Rodgers

Hegedüs

Boos

Agnus

Naegel
Kleidman

Vauhkonen

Purvis

Brundan

Schaffer

Goodwin

Qian

Hungenahally

Wang

Heisterkamp

Liu

Momoh
JosephApine

Pantano

Hines

Trees

Guwal

Gomez

Nguyen

Maharjan

Schneider

Kujawa

Petalcorin

Eballe

Gray

Rashwan

Konnerth

Nuebling

Kamanou

Hong

He

Sawyer

Zeithoefler

Chen

Blumenstein

Ajoodanian
Ju

Hou

Cleveland

Perez

Ng

Pikovsky

Menguy

Hirschfeldt

Liu

Kamizono

Kou

Cadenillas
Xue

Lakner

Mokliatchouk

Wang

Yang

Cvitanic

Cox

Baldursson

Hedetniemi

Sather

Hyland

Bartholdi

Seltzer

Moss

McColm

Gupta

Stiffler

Tausworthe

Waksman

HurdSherman

Fuzak

Trachtenberg

Thoene

Bloom

Cohen

Taylor

Cheng

Rutan

Yovanof
Song

Walker

Mayhew

Millen

Courter

Schaffer

Breznay

Chueh

Fei

Kang

Kiem

Protsak

Sahni

Lopez

Gueorguieva

Hartzel

Lee

Palmer

Rousseau

Jacobson

Ratcliff

Agresti

Berger

Bose

Huang

Yan

Pergler

Sun

Bedenikovic

Saveliev

Zimmer

Johnson

Arslan

Pantilie

Olson

Brown

Baccam

Mylnikov

Stover

Smillie

Djadli

Cowles

Ramakrishnan

Rao

Orgun

Marquart

Augustine

Yakubu

Stefan

Misaghian

Lofaro

Zielinski

Lang

Wingard

Metzler

Martin

Huang

McClendon

Madan

Guha

Karoubi

Utikal

Timoney

Bernhard

Heilman

Matei

Smith

Baker

Gualtierotti

Chao

Frey

Christensen

Hucke

Perez

Selukar

Baldwin
Xiong

Kim

DasGupta

Mandal

Amirdjanova

Smith

Nutt

Abbud

Dorey

Nyman

Rhie

Stenson

Stenson

Ferland

Symancyk

Gorfin
Rhee

Wochels

Eszter

Gregory

Hasson

Halperin
Terry

Blumen

Stacy

Walker
Richardson

Siddiqui

Iqbal

Garren
Lu

Yun

Grady

Howe

Osborn

FukuokaMercuri

Velo

Ghebremichael

Mark

Sundaram

White

LePage

Ozawa

Hou

Eroh

Conlon

Brown

Fan

Tsai

Waller
Turnbull

Chaloner

Jeevanjee

MolitorTra

Bownik

Kong

Andersen

Hjelmborg

Larsen

Gomez

Anderson

Farley

Su

AbadieCerri

Quackenbush

Guelzow

Scholz

Huang

Kim

Moon

VanDerWoude

Solodovnikov

Meush

Zhang

Müller

Tangerman

Ahn

Bang

Chen

Lu

Yang

Cashy

Miller
Tsai

Notz

Nordstrom

Schirmer

Virga

Phy

Liu

Yu

Bennett

Bogner

Deng

Huff

Turner

Straus

Burry

Curtis

Chatterji

Pugh
Mersky

Washburn

Bachar
Cho

Gronbaek

Loeb

CulloughRosenfeld

Slobko

Spraglin

Kranjc

MorizumiUrner

Poon

Antoniak

Banos

Flanigan

Gilstein

Gray
Hall

Hong

Kuo

Maltz

Cardle

Melolidakis

Samaniego

III

Steele

Truelove

Yu

Laszlo
Welmers

Evans

Johnson

Rawat

Weiner

Becker

Dubrovsky

Freedman

Gordon

Jones

Kirousis

Kolaitis

Cutcheon

Phillips

Shochat

Smith

Tripodes

Jackson

Harabetian

MurphyPrue
Sun

Bernstein

GoldKugler

Jr

Balogun

Brizolis

Cayford

Dorn

Ewell

Gaddis

Hilliker

Kasdan

Krakowski

Motzkin

Neidleman

O

Sato

Schrot

Senge

Sherman
Soule

III
Wild

Marcus

Walker

Krishnan

Bakke

SikkoEnge
Rawdon

Thayer

Lischer

Rocca
Nardo

Bentley

Ledet

Wiseman

Bercovier

PlavchakFernandez

Kelly
Dimovski

O

Mihalik

SchuetzAl

Piotrowski

Charatonik

Kathman

Alonzo

McClelland
Nelson

Jeon

Park

Felcyn

Jalaluddin

Glover

Stemmons

JuedesBreutzmann

Lathrop

Hyeon

Minimair

Roh

Hausel

Hoffacker

Shimanski

Ward

Strojwas Zhuang

Huang

Dobcsanyi

Unger

Salamon

Seade

Poon

Oxbury

Dancer

Garcia

Scheinost

Gothen

Calderbank

Cruz

Chatterjee

Baldwin

Boalch

Feix

Sawon

Baier

Godement

Cartan

Korchagina

Kim

Srinivasan

Paiva

Zaidman

Thomas

Kollmer

Kitchen

Soofi

Jacobs

Lake

Lo

Bates

Clarke

Harper
Lee

Tygar

Wing

Berliner

Damon

Wong

Kindred

Knabe

Nettles

Zaremski

Detlefs

Lerner

Chen

Yee

Heydon
Guattery

Smith

Necula

Draves

Colby

Okasaki

Tarditi

Acharya

Shivers
Heintze

Nord

Lillibridge

Pierce

Morrisett

Stone

Minea

Campos

Jha

Zhao
Long

Burch

McMillan
Browne

Dill

Mishra

Sengers

Loyall

Weyhrauch

Reilly

Perkovic

Schuermann

Anderson

Freeman

Elliott

Michaylov

Dietzen

Bauer

Birkedal

Wagner

Wilson

Saraswat

Mulmuley

Campbell

Saibel

Brunner

Weng

Sankoh

James

Sklar

Castro

Basin

Capelle

Hoole

Abdelbar

Gustafson

Habibi

Moghadas

Razvan

Razani

Aghajani

Ruiz

Hurtubise

Huber

Zhang

Butler

Lippe

Alt

Poet
Lister

Ishiguro

Klamer

Roesch

Rector

Ahmed

Jong

Moti

Runnestrand

Bihari

Yunger

Arrow

Caicedo

Iwanowski

Blömer

Godau

Yap

Hough

Kaltofen

Zarikian

Lee

Thomason

Norman

Przebinda Allali

Buhrman

Klassen

Kaliszewski

Pollak

Barland
Thakur

Siegel

Topal

Johnson

Tang

Ingram

Burel

Paterson

McKeague

Pergher

Fanti

Vieira

FrancoLocci

Silva

Chang

Glover Hopkinson

Johnson

Martin

Stonitsch

Winters

Waller

Heath

Strain

Seda

Hardy

Salleh

Dakin

Ashley

Abd

Jones

Ellis

Harasani

Mosa

Aof

Shrimpton
Al

Mucuk

Tonks

Moore

Camerlo

Poleksic

Tighiouart

Mukherjee Chang

Kelley

Daugulis

Whitt

Shete

ZhengSriram

Chuang

Fisher

Glasner

Almgren

Ha

Demir

Schaeffer

Howard

Chou

Hemmer

Malraison

Jeang

Brent

Shieh

Tsai

Chern

Kuruc

Mesenbrink UnalSu Gardner

Horrocks

Tourkodimitris

Zhou

Bondarevsky

Pansu

Shang

Grau

Pei

Shao

Oprea

Chossat

Lukkarinen

Schinzel

Rocha

Lopes

Mendes

Crowley

Perez

Ben

Pilz

Bratteli

Garrett Silva

Spencer

Byers

Olson

Pohrer

Johnson

Stevens

CaviorMeter

Church

Fray

Menon

Wells

Long

Al

Howard

Reid

Anderson

Grimson

Dunning

Nash

Krabill

Williams

Hudson

Hodel
Vaughan

Barkauskas

Alexander

Edmonds

Lutz

Howard

Bridges

Altman

Thomas

Duran
Atalla

Hu

Yavin
Braden

Babson

Anderson

Baddoura

Scott

Adams

Fassett

Malone

Bernoulli

Icen

Baker

Hupert

Drutu

Kroll

Rumin

Rugina

LiKim

Havea

Tataram
Dima

BuzeteanuMalita

Streinu

Câmpeanu

Dediu

Arslanov
Shu

Grozea

Baroni
Baroni

Gluck

Weinberger

Renshaw

Pfaff

Katzenstein

Brandt

Bourdon

Wheeler

Lazzarini

Witherspoon

Kabak

Michelson

Hughes

Linden

Tebou

Haran

Park

Sad

Pacifico
Ávila

Ruas

Vargas

Barandarián

Paternain

Araújo

Iturriaga

Doering

Ruggiero

Carvalho

Craizer

Gómez

Enrich
Rovella

Beloqui

Vera

Catsigeras

Dias

Mora

Plaza

Labarca

Sambarino

Metzger

Romero

Díaz

Rocha

Malta

Pujals

Moreira

Camacho

Pinheiro

Colli

Gheiner

Martin

Morales

Martin

Sánchez

Ures

Reis

Duarte

ArroyoRodriguez

Tahzibi

Viana

Haab

Timotin

Alves

Costa Rios

Araújo

Castro

Horita

Baraviera

Bochi

Muniz Abdenur

Edwards

Smarandache

Sanabria

Kakiko

O

Watson

Dowling

Hales

Jones

Markarian

Chéritat

Bernoulli

Pavlicek

Ganesan

Gaussent

Leroy

Pelc

Lisan

Coleman

Umoh

Anthony

Smith

Weerakoon

Yu Hsu

Deraux

Stefansson

Peinado

Wilson

Riedl

Habermas

Konstantinou

Rodriguez

Brooks

Kaplan

Kalish

Yu

Archambault

Weiner
Monsour

Chan

Winnicki
Guo Lee

Karagrigoriou

Fleming

Lee

Wang

Chen

Hwang

Zhong

Wu

Belnap

Liouville

Wilkin

Adewale

Wang

Foltin

Bourguignon

Browne

Gavin

Houde

Bruasse

Dloussky

Korn

Ayad

Murray

Apostolov

Aubry

Baumann

Bismuth

Bonavero

Bonnafé

Bounaim

Caillau

Capdeboscq

Carron

Cresson

Iqbal

Wang

DepauwGoul

Fanaai

Fouquet

Hammouch

Harou

Holcman

Hubert

Jeannerod

Schmitt

Koseleff

Lafitte

Lejay

Lieberum

Livernet

Lukasiewicz

Luong

Maubon

Milisic

Mounoud

Mouton

Nang

Picaud

Péreyrol

Ramazan

Remy

Renaudin

Ricard

Robert

Rollin

Sei

Soufyane

Stolovitch

Smania

Vasseur

Vernicos

Ngoc

Zoonekynd

Jayasimha

Quiroga

Llewellyn

Atwell

Guy

Mushtaq

Robinson

Helffer

Alinhac

Cartier

Laumon

Margerin

Druel

Carette

HaissinskyBle

Dutour

Castillo

Ladhari

Jeanne

Marin

Lysenko

Chami

Royer

DerridjMir

ReiznerMoussa

Alabau

Siopsis

Ritchey

Kassel

Mitschi

Rosso

Jabir

Thys

Corel

Ospel

Halbout

Lo

Finan

Hernandez

Nyberg

Pekonen

Harris

Hughes

Moroianu

Ramis

Santos

Gonzalez

Kornelson

Zhang

Wambst

Nuss

Bennis
Kauffmann

Smith

Metcalf

Aberra

Harvey

Minear

Ambrose

Cropper

Chien

Mimna

Griffor

Kim

Cho

Kim

Yoon

Son

Nam

Zoubairi

Alejandro

Chaves

VanDieren

Rocha

Barros

Lustig

Luzzatto

Wilson

Blum

Green

Charatonik

Czuba

Duda

En

Holland

Krupski Mackowiak
Manka

Miklos

Mioduszewski
Nikiel

Omiljanowski

Prajs

Rakowski

Reichaw

Rudolf

Tomforde

Nussbaumer

Zaremba

Lehmacher

Lorensen

Wilding

Pimsner

Nicolescu

Derakhshan

Goodman

Stanley

Venkateswarlu

Rivertz

Tetali

McShine

Husband

Peron

Fletcher

Kim

Hrycay

Gagrat

Sharma

Hubbard

Hatcher

Lui

Yun

Montel

Gastinel
Gilbert

Daskalopoulos

Iusem

Puel

Belbahri

Borges

Brezinski

Chauvier

Eckertson LaBerge

Laforest

Yuan

McCarron

Murray

Besson

Kruskal

Bonnisseau

Kwon

Riera

Monico

Li Luo

Aregba
Hanouzet

Bryan

Che

Czarcinski

Felouzis

Hsu

Rondogiannis

Seaquist

Sellke

Yates

Ezell

Campbell

Markus

Nelson

Pinter

Staples

Jones

Haynes

Greenwell
Klerlein

Rayburn

Yu

Patching

Bahls

Profio

Paris

Harle

Young
Grant

Mann

Cuckle

Jalali

Dodd

Meloul

Rowlands

Smaill

Hodgetts
Narciso

Sundholm

Thompson

Hicks

Phillips

Asaeda

Malgrange

Rege Devi

Raines

Verovic

Jothilingam

Jinnah

Chawathe

Limaye

Bhatwadekar

Parimala

Chhawchharia

Choudhuri

Hodge

Hanson

Casey

Nikshych

Raviart

Zaldivar

Foster

Sim

Fraser

Harvey

Gaucher

Laszlo

Debarre

McNamaraBeck

Ashdown

Niemi

Wiebking

Zoracki

Kouada

Hegner

Fotso

Kupferschmid

Dziuban

Ech

Pedroso

Covey

Makuch

Johnson

Rugenstein

Lamy

Fisher

Miller

Bumble

Lampazzi

Rosa

Chen

Poddar

Zhang

Hsieh

Clemens

Schneiderman

Hodgkin

Löcherbach

McLean

Nadler

Brown

Miller

Meloon

Langmead

Rios

Sutton

Koelling

Hagerty

Yen

Celik

Chae

Lim
Minut

Baldridge

Argiris

Ayaragarnchanakul

Chiang

HillJadallah

Oh

Stawiska

Moar

Mauger

Caravone

Glenn

Hamdache

Lehner

Knauer

Anand

Wajs

Geunes

Schäfer

Goudon

Shepard

Fitting

Clingher

Álvarez

Stephens

Hatch

Narasimhan

Guiraud

Hoborski

Rosenblatt

Wilkosz

Pogorzelski

Rudnicki

Sto

GoWróbel

Pidekówna

Tryuk
Moszner

Kuczma

ZajtzBochenek

Jakubowicz

Topa

Siwek

Bieszk

Serafin

Kare
Vien

GawrylczykHy

Formella

G

Bielecki

TurskiMidura

Wo

Tabor

Grz

Brydak

Kordylewski
Smajdor

Matkowski

CzerwikRozmus

Luchter

Gancarzewicz

Suchanek
Bello

Opozda

Pogoda

Wolak

Rybicki

Al

Deszy

Konderak

Winiarska

Postawa
Pielichowski

Przybycin W

Zandecka

Czerni

Pasicki

Mikulski

D

Kozak

Ju

Witowicz

Robaszewska

Kucharzewski

W

Zhu

IV

O

Momken

Rentzmann

Heo

Acu

Adam

Agratini

Barbosu

Blaga

Catinas

Chiorean
Cismasiu

Ciupa

Cobzas

Diaconu

Dogaru

Dumitras
Dumitrescu

Dumitrescu Dünnbeil

Gavrea

Ong

Quinn

Zhong

Simonic

Marwaha

Jahandideh

Yahaghi

Nadathur

Felty

Hannan
Hodas

Chirimar

Liang

McDowell

Hovick

Hruska

Jones

Kaur

Norris

IIBhat

Celikkan

Fredette

Sims

Vaidhyanathan

Weigel

Leibniz

Tarui

Robinson

Phoa
Verity

Tan

Williams

Zhou

Bartoszek

Hodes

Luckham

Xiong

Jim
Jagadeesan

Riecke

Davidson

Mukhopadhyay

Bachmann

Perez

Jin

Lee
Dass

SunTanaydin

Shyamalkumar

Shui

Ruff

Dmochowski

Varshavsky

Yang

McCabe
Rodenberg

De

Wang

Hayes

Visarraga

Oh

Diao

Kesinger

Ozawa

Deligne

Wehrly

Wang

Yang

Baek

Turner

Caviness

Fulman

Shpigel

Svendsen

Ouaknine

Sezinando

Li

Marle

Blyth

Dodd

Chen

Snow

Delzant

Hyde

Loizeaux

Whitten

Su

Wang

Gat

Scanlon

Morris

Kwon

Isaia

Karwowski

Bulutoglu

Wong

Currie

Cookson

Hakulinen

Duch

Shi

Lee

Lin

Chao

Wei

Wang

Park

Shen

Zou

Wang

Huang

Gaffney

Lu

Chen

Johnson

Yandell

Fine

Chan

Yeo

Sim

Wu

Omori

Mouhab

Borghi

Tao

Qiu

Satagopan

Feng

Taam

II

III
Oca Cuervo

Giovinazzo

Ssembatya

Cho

Kim

Potter

Zheng

Qu

Yu

Yao
Dong

Kademan

Shih

YangLo

Kim

Huang

Chen

Wu

Thelen

Donohue

Willard

Smith

Mohammad

Lafont

McConnell

Friedman

Suwilo

Benoist

Chastkofsky

Katz

Buff

Snell

Kim

Lim

Chen

Zhang

Perrizo
Panda

McCann

Amirsoleymani

Ram

Hakimzadeh
Azarbod

Haraty

Scott

Pasali

Jorsten

Stark

Gopalan

III

Hirschowitz

Fong

Beattie

Barton

Ozmutlu

Aungst

Tu
Birgoren

Murthy Barreto

Krachni

Kohler

Baker
Hiller

Duflot
Mathai

Tuomela

Arponen Spiez

Ye

Auroux

Barros

Frey

Orden

Pavelich

Kuzmack

III

Teleman

Ashley

Robertson

Bilazarian
Itzikowitz

Haskins

Best

Ritter

Wasserman

Singleterry

Geiser

Young

Kahr

Feiner

Meleshuk

Minami

Wu

Shi

Egerstedt

Smith

Ho

Jackson

Ho

Hirschhorn

Peckova

Anderson

Emerson

Wituski

Parent

Kraft

Laue

Kirmayer

Machtey
Scrimshaw

MacQueen

Lowenthal

Marcus

Dorer

MacIntyre

Sukonick

Rosenthal

Wildius

Capozzoli

Hukle

Seppala

Tzimas

Lubarsky
Vayl

Wylie
Tan

Wu

Lataille

Riazati

Clark

Rosenthal

Lengyel

Smith

Civil

Chavent

Bamberger

Leung

Collino

Sili

Lippel

Malagutti

Melo

Santiago

Tavares

Lemos

Santos

Silva

Persiano

Vogel

Demailly

Goukasian

Boucksom

Noailles

Cadet

Bachelot

Vaugon

Darrigrand

FagetJouini

Faugeras

Gauthier

Verdière

Després

Hillairet

Laanaia

Laeng

Lagoutière

Cornet

Rocha

Michel

Mourrain Ruatta

Sottocornola

Maltsiniotis

Gauduchon

Allaire

Dora

Aïd

Muenzenberger

Biquard

Edelman

Combe

Wang

Ferland

Etgu

Gonzalez

Rivera

Recoder

Rasoanaivo

Patra

Farmer

Umland

Kapoulas

Messmer

Hersonsky

Hou

Krebes

Sorgo

Kantorovitz

Yousef

Hughes

Pei

Chan

Pankin

Magnanti

Nogin

Tiede

Fabrey

Tauer

Robbins

Sablik

Pawlikowska

Ger

Sunderland

Benkoski

Andar

Yi

Brown

Micha

Pop

Bumb

Morrell

Bumiller

Jenkins

Shields

Ryll

Cardenas

Mennella

Skoda

Nikodem

Fidytek

Gajda

Cholewa

Urban

Badora

Sikorska

Kulpa DomanskaSzostok

Telgarsky

Kaput

Hadfield

Li

Yoon

Gerdes

Buckwalter

Herzog

Buck

Back

Wang

Wallace

Lucchetti

Gros

Nembhard

Young

Boxwala

Guttag

Radcliffe

Wolf

Hickey

Bapat

Richardson

Miklau Gupta

Hulten

Bertrand

Liu

Anaya

Du

Mirani

Hoepfner

Khaoulani

Riou

Monvel

Anderson

Dennett

Stokke

Qian

Ho

Kapitza

Retzlaff

Perdomo

Schuette

Ionescu

Torii

Lebeau

Probert
Saxton

Warkentin

Symes

Baron

Krog

Martins

Bartlomiejczyk

Kim

Fernandez

Davison

Zsilinszky

Wang

Beslagi

Pambira

Lenz

Dahmani

Balakrishnan

Davaux

Yates

Schubert

Wichiramala

Hu

Brodzki

Torunczyk

Vu

Knighten

Walker

Bracho

Dobrowolski

Pav

Ray

Dada

Petruzzi

Eek

III

Chandramouli

Atluri

Martin
Marks

Ray

Khojasteh

Liu

Farkas

Johnson

Ning

Wu

Abusalim

Eiron

Kuonen

Nair

Oyet

Booth

Mills

Maze

Yun

Young

Guo
Bencivenga

Moraru

Jetzer

Xiong

New

Wei

Pisier

Gilbert

Stoustrup

Rangel

Luong

Arminjon

Li

Kjiri

Madrane

Kagabo

Ayari

Soumis

Zaoui

Gaboune

Desaulniers

Baouche

Zhou

Tomita

Benchakroun

Zhao

Messer

Kachani

Freund

Epelman

Araya

Hammond

Kowalski

Bonato

Solano

Pereira

Hwang

Chen

Richie

Kim

Oleson
Woodard

Kim

Ren Wang

Aelst

Croux

Molenberghs

Arnavut

Shi

McLendon

Dolich

Shashoua

Epstein

Hughey

Pavliotis

Kowalski

Lu

Viglione

Khouider

Barszcz

Siu

Jabuka

Alfaro

Reyes

Delgado

Falconi Peredo

Nowak

Legut

Viola

Smith

Mawhinney

George

Burris

Wilmut

Hines

Ong

Cartledge

Mansourati

Huang

Ramsay

III

Espinoza

Parwani

Cho

Lu

Getoor

Li

Chen

Tong

Liu

Tang

Tung

Ho

Spivakovsky

Shih

Lim

Ernst

Whittlesey

Vassilakis

Gatsonis

Dukic

Berman

Been

Daruwala

Berger

Li

Esedoglu

Even

Lynch

Servedio

Ding

Sandilya

Lipton

Viglas

Gum

Bahoura Park

Shaw

Jou

Even

Harrison

Stevens

Lewis

Dreyer

Young

Strle

Xu

Zhu

Wang

BrennemanXu

Zhang

Zhao

Short

Hou

Kvam

Svaiter

Drummond

Perez
Burachik

Sandoval

Otero

Miller

Macomber

Strawderman

Humpherys

Kolata

Frid

Emerson

Amla

Kaplan

Trefler

Petterson

Gamboa

Seier

House

Fouvry

Carmody

Hitchcock

Cooper

Momigliano

Penn
Polakow

Gupta

McCanne

Yelick

Raman

Im

ImielinskiHsu

Chomicki

Vadaparty

Viswanathan

Virmani

Abdulghani

Navas

Bonner

Evan

Lopes

Tan

Laredo

Cheng

Schneider

Araujo

Taylor

Kroll

Dunne

Lopresti

Vetterli

Xu

Walz

White

Aguilar

Pihlaja

Yu

Lin

Mancuso

Ozaydin

Smith

Wu

Toman

Dragotti

Lipski

DurfeeBoneh

Patel

Chajewska

Su

Hazell
Burgess Mitchell

Asadi

Freund

Shapiro

Govindaraju

Shmatikov

Walker

Pfeffer

Jones

Yang

Sahami

Grossberg

Chakraborty

Peot

Katz

Pradhan

Bensoussan

Tracz

Friedman

Lakshmanan

Leinster

Pardoux

Verrill

Ip

Fisher

Park

Kenney

Wolf

Hu

Hoang

Luenberger

Rutledge

Wong

Katiyar

Yun

Augustin

Hofer

Powell

Doran

Tymoczko

Nowick

Madhav

Chan

Sastry

Manevitz

Singer

Lipsett

Brenier

Knutson

Domingos

Fix

Hong

Moura

Ohring

Morales

Jerrum

Sabini

LaMarca

Nowak

Cohn

Dai

Chaudhuri

Tao

Stuart Du

Aruliah

Tilioua

Krekel

III

Sitter

Bingham

Zaiane

Han

Koperski

Berres

Fu

Gupta

Liu

Gemmell

Xie

Lu

Ross

Ortega

Tseng

Obradovic

Parker

Gburzynski

Ono

Olesinski

Srinivasan

Wu
Liu

Keleman

McCauley

Guan

Terry

Murat

Vukadinovic

Lin

Sun

Kung

Martell Yang

Weaver

Cui

Kamburowska

Williams

Kalantan

Witbooi

Just

Bedford

Wu

Li

Mao

Wang

Williams

Wei

Pitselis

Nicoleris

Angers

Hains

Foisy

Gopalakrishnan

Scott

Gurtas

Chung

Molina

Bailey

Ollis

Bilisoly

Rao

Cai

Stefanescu

Gulyas

Ding

Tsao

Tseng

McShane

Weirich

Smith

Li

Benzinger

Hafizogullari

Walker

Naumov

II

Borbely

Tzitzouris

Dobson

Crary

Lal

Wagner

Valiron

VilliersHuh

Xu

Kouba

Merdy

Rauch
Harcharras

Maurey

Abernethy

Arana

Oldson

Zhao

Charlesworth

Xia

Pei

Krause

Crouzeix

Delchamps

Stevens

Feat

Robert

Caro

Trihan

Cisinski

Bouffet

Duval

Sauloy

Dysman

Oliveira

Plotka

Kjos

Altafini
Mahajan

Celani

Johnson

Woods

Paz

Wormald

Robalewska

Duckworth

Assiyatun

Stewart

Roegen

Gnedbaye

Ayadi

Aboughazi

Fresse

Kleppner

Goichot

Cuvier

Kokkendorff

Simonsen

Duchemin

Jung

Zhu

Yang

Daniel

Bartoszynski

Malaugh

Raz

Kelly

Busch

Goel

Li

Natalini

Lopuhaa

Gupta

Pinzoni

McLeod

Burns

Moche

Bhaumik

DuPre

Sarmiento

Ramsey

Roltgen

Sundarapandian

Eberhardt

Lin

Sloan

Sastry

Brochero

Pestman

Carver

Eklund

Driscoll

Broussard

Sweeny

Nam

Cherniavsky

Czyba

Bouvier

Pan

Pereyra

Al

Drewniak

Ger

Smajdor

Korvola

Tartar

Sadowska

Wasowicz

Bailey

Caicedo

Charnigo

Fagan

Colmenárez

Szyszkowski

Frank

Goodrich Condon

Manber

Fowler

Swart

Greenberg

Tempero

Ciesielski

Jordan

Goyal

Leite

Calica
Morgan

Bach

Stump

Graves

Kalman Zierler

MacLaren

Henrich

Forrest

Wieting

Hahn

Series

Traczyk

Tan

Kiniry

Maczynski

Leeson

Naumovic

Song

Barthe

Suresh

ThakurRaman

Shastri

Sujatha

Zakraj

Pajor

Martineau

Bick

Gutierrez

Collins

Tomasgard

Piterbarg

Unterberger

Loeper

PrelleCherry

Rothstein
Epstein

Vallette

Ramchandran Gastpar

Rocha

Fleckinger

Torres

Haley

Demazure

Wei

Delort

Johnson

Karamouzis

Schochetman

Sen

Villard

Cook

Hoffman

Celiku

Lauda

Kobak

Roethig

Zhang

Koczkodaj

KullbackBell

Goldberg

Baker

Kova

Herley

Wang

Gabbay

Campillo

Snydal

Iwanik

Scorpan

Tuffley

Barchechat

Bonsdorff

Branco

Cruz

Downarowicz

Bich

Hayden

Moten

Jackson

Chen

Underwood

Murthy

Griffin

Smith

Allen Howe

Knoblock

Mendler

Stansifer

Krafft

Johnson

Privitera

Chan

Hauser

O

Muchnick

Harris

Darden

Anderson

Moriconi
III

Bruell

Tyson

Wang

Simon

Martin

Cofer

Pearson

Goubran

Xu

Mayne

Jones

Browning

Onshuus

Petrakos

Rao

Röhrig

Moll

Biles

Fisher

Leuze

Talbert

Whitley

Voss

Manganaris

Ortega

Hapanyengwi

Yang

Yoo

Pettey

Swamy

Lyng

Nordman

Prevo

Ul

Greenberg

Mei

Escareno

Dozias

Rosin

Al

Zhou

Ying

Patel

Jackson

Chang

Lacey

Talih

Aspelund

Cadigan

Slay

Houseman

Al

Sui

Hoensch

Fuxia

Li

Ni

Garland

Osterweil

Yu

Qu

Vengazhiyil

Schoderbek

Diao

Zingano

Lu

Zamfirescu

Zitkovic

Phipps

Heddy

Chiang

Garber

Marchese

Liechty

Anstrom

Caragea

Spitzner

Lehman

Itza

Jaggard

Zehna

Lee

BellisMarinenko

Altinger

Raynaud

Fu

Ferrante

Lubanski

Ustunel

Hendren

Wojciechowksa

Gallot

Gerber

Lee

Balding

Aubry

Assad

Courtois

Kennison

Harrold

Soffa
Liang

Sinha

Wang

Lee

Orlowska

Rauszer

Demers

Swaminathan

Kwong

Kallel

Schneider

Sharma

Lu

Villalpando

King

Kuntzmann

Jr

Huang

McCallum

Bokil

Mandolesi

Oehrtman

Alibegovic

Otieno

Moskowitz

Gerber

Givens

Hu

Sengupta

Dixon

Lee

Zárate

Lin

Liu
Xue

Britz

Czellar

Durand
Politano

Gambaudo

Demay

Laure

Wadih

Rossi

Signoret

PérouèmeRaffaï

Haragus

Lombardi

James

Charris

Ma

Mackaaij

Mazumdar

Hoffman

Khayyal

Bard

Rapport

Benchakrun

Polacsay

Cardona

Gratcheva

Yeganova

Dandurova

Yepremian

Chen

Rodrigues

Lopes

Kang

Crane

Moss

Beichl

Ikenaga

Lew

Webb

Mirkowska

Bartol

Tiuryn

Przymusinska

Vakarelov

Rudak

Soulé

Hairston

Tally

Chioma

Kern

Perry

Montgomery
Taft

Lindblad

DeMayo

Bisk

Hingston

Alexandre

Collin

Noorbaloochi

Weinstein

Kaiser

Ortega
Pauly

Bottacin

O

Wu

Svensson

Goulaouic

Ye

Boone

Dayanik

Sheppardson

Johnson Yi

Dong

Pang

Li

Zhang

Haimovich

Marini

Poritz

Negreiros

Greer

Gilbert

Welsh

Kocherlakota

Donnelly

Silva

Pixley

Kahn

Spiga

Miao

Pleban

Evans

Schaefer

MamaghaniRabii

Khanedani

Taghavi

Zafra

Bae

Calmès

Fennemore

Deaconu

Iancu

Soares

Chang

Deng

Tse Koschat

Tsui

Yan

Hamada
Wang

Chen

Chen

Miller

Sun

Anderson

Chipman Li

Moorhead
Tsung

Wu

Bérubé
Cheng

Gee

Privault

Bronsard

Matheus

Chicken

Anstreicher
Brixius

Lynch

Sahoo

Bagiella

Lim

Wu

Shi

Amini

Torres

Melnyk

Jacquet

Ykhlef

Bouzoubaa

Huynh

Bendhamane

Naulin

Bauderon

Bidoit

Langlais

Angeloni

Collins

Small

Bielawski

Dyson

Decreusefond

Leidy

Fu

Moore

Tang

Zabala

Nicoara

Shah

Cuaresma

Bond

Musuvathi

Parikh

Papi

Caianiello

Clark

Dinning

Gallo

Salkind

Pedersen

Bjørnstad

Schilling

Jeng

Levina

Kechris

Dordan

Quincampoix

Seube
Mattioli

Doyen

Cardaliaguet
Najman

Monrocq

Mullers

Gorre

Rossi

Lacoude

Pujal

Guidy

Maderner

Picq

Bern

Truchi Tiihonen

Desaint

Aguilar

Guido Drai

Boisgerault

Gomez

Ferchichi

Gauthier

Velikina

XuNiu

ReedRobinson

Dibner

Jungck

Coppola

Kavanagh
Johnson

Kulesza

Norden
Holmes

Roux

Schwartz

Souza

Battikh

Hamida

Hornbostel

Schlichting

Guglielmo

Moulin

Haddad

Bagchi

Micheas

Kim

Kesseler

Trucano
Bertram

Dmytrenko

Williford

Sunderland

Cartan

Sobel

Bagchi

Bloniarz
Bloom

Cosmadakis

Jaffe

Lynch

McCreight

Rackoff

Stockmeyer

Vilfan

Bhatta
MahantiPal

Roy

Sen

Burns

Fekete

Dhavale
Verma

Coan
DePrisco

Gawlick
Goldman

Jensen

Khazan

Luchangco Patt

Saias

Segala

Smith

Sogaard

Stark

Tuttle

Varghese

Welch

Donaldson

Hogstedt

Kreaseck Mitchell

Simon

Strout

Mahnic

Robic

Krishnamurthy

Cleve

Fu

Simon

Wilson

Akison

Zeng

Tiwari

Abu

Trahan

Luginbuhl

Atkinson

Das

Breazu

Bharali

Chu

Deutsch

Dsouza

Fujito

Fukuyama

Garay Grove

Kovoor

Lincoln

Moses

Obradovic

Popa

Ramaiyer

Roos

Sahuguet

Subrahmanyam
Suciu

Veeramachaneni

Weber

Crick

Lee

Jeffrey

Wu
Souto

Lee

Zic

Kuo

Tyler

Flanagan Lesley

Plunkett

Kosa

Rhee

Walter
Lee

Swaminathan

McCartney

Parwatikar

Chandranmenon

Venkatachary

Narendran

Sayeed

Shen

Mandal

Sundell

Lutz

Fernandez

Bourgeois

TennenholtzGuimaraes

Glenn

Golub

Ohori

Tajima

Seaton

Lunau

Kolesnikov

Dias

Parida

Koren

Silver

Ericson Casey

Teichman
Greenwald

Fernandes

Cherepinsky

Paxia

Antoniotti

Nascimento

Lesisz

Miller

Bilodeau

Green

Hitz

Neudauer

Obradovic

Horowitz

Namjoshi

Bartroff

Monk

Randall

Cahen

Gutt

Shende

GalperinRamachandran

Vijayan
Wigderson

North

Serpanos

Balasubramanian

Chmieliñski

MacWilliams

Gast
Barford

LewisTravis

Lewandowski

Chandler Mendleson

Arnon

LeBlanc

Cook

Chen

Jackson

O

Pruhs

Hunter

McClellan

Musser

Shapiro

Woodmansee

Leeming
Lewis

Papadopoulos

Martino

Polpitiya

Chimenti

Baer

Pinkert

AbdaliPetznick
Rubald

Wallace

Nicolas

Pujols

Lubet

Lange

Lecompte

Bounhoure

Chatzidakis

Heap

Bailey

Gatto

Rao

Klahr Honda
LeBlanc

Price

Relles

Schaller

Zeigler

Chou

Heindel

Horowitz

Li

Gai

Kang

Guven

Jung

Lin

Lee

Martin

Caprio

Morales

Roy

Sac

Barucq

Cavazzoni
Briani

Amadori

Plaza

Button

Bartocci

Gourdel

Mohan

Srivas

Grajek

Buescu

Malbos

Zimmermann

Bitran

Chiang

Rocha

Reinhold

Gluckman

Glaser

McWilliams

Yuh

Hogan

Hu

Kim

Sun

Fricker

Dam

Piwinger

Aganagic

Coulhon

Rao

Webber

Wisloski

LiYoung

Pilz

Subramanian

Abrahamson

Adachi

Bell

Bigelow

Mazancourt

Dobson

Agizy

Entriken

Fourer

Horvitz

Hu

Jackson

Karamardian

Klotz

Konno

Krishna

Leary

Maier

V

Nicholson

Perold

Pisa

Prindiville Rech

Scott

Stone

Thapa

Tovey
Slyke

Winkler

Wittrock
Wollmer

Gueroguieva

Coull

Capen

Bumrungsup

Amir

Vilamajó

Brady

Djang

Doherty

Duvall

Gallant

Goheen

Kaltenbach

Kaneko

McCallum

McCord

III

Ostrow

Rodriguez

Sacher

Singer
Stone

Yao

Krishnan

Beaver

Michalewicz

Olsen

Vytopil

Vasilevska

Wang

Curran

Andonie

Chigbu

Nelson

Chattopadhyay

Swamy

Chaudhuri

Yassini

Mansouri

Gascon

Meynard

Pacienza

Stahel

Voisin

Schmitt

Mease

Vogeler

Wasilewska

Dat

Knuckles

Hwang

Mancuso

Ingram

Hamedani

Kumar Kara

Mathieson

Boyett

Wittig

Geetha

Pasha

ChariMerkle

Taraporevala

Richard

Zhang

Kinateder

Gawarecki

Zhang

Henry

Ulm

Park

Koban
IlicJosifovska

Manevska

Ahmeti

Merry

Maron

Grz

R

Horowitz

Popa

Gordillo

Maechler

Ruckstuhl

Graf

Hulliger

Ronchetti

Myers

Rodrigues

Shen

Ma

Thiébaud

Meng

Mulry Reichman

Rosenthal

Taylor

Gheorghiciuc

Lu

Chao

Kurtzman

Zhou

Martinez

Grumbach

Waller

Abiteboul

Chandler

Connors

Giuliano

Kiel

Mager

Rovan

Vianu

Zaiddan

Strait

Datta

Germain

Stuffelbeam

Ravikishore

Lagrange

Moreira

Pécou

Courcelle

Miled

Kolev

Lawrence

Vohra

Dawlings

Gomes Marques

Saunders

Garba
Umar

Kopamu

SoaresRibeiro

Goshi

Wu

Hsu
Tzeng

Chen

Quirk

Seetharamamurthy
Krishnamurthy

Teodorescu

Yang

Ramanamurthy

Diharce

Smith

Anwar

Yuchuan

Lakshmi

Barchechat

Page

Brooks

Qiu

Millhiser

Vrdoljak

Thomas Tang

Laghribi

Ko

Guiraud

Lotker

Ramaro

Roth

St

Rai

Vahed

Kollar

Talham

Liggett

Seifer
Warfield

Stallworth

Franchi

Widtfeldt

Jacyna

Watson
Henrick

Kays

Newhall

Feng

Blanco

Natarajan

Supatgiat

Chen

Schlierf

Heather

Lambert

Nelson

Strauss

Hunt

Clark

Critchlow

LemonMantha

Banavar

Bracha

George

Rossberg

Tao
Yeh

Tinker

Hoggar

Hurt

Ismail

Keppler

Losada

Hernandez

Lamberton

Mezrag

Gabay

Anitescu

Chelluri

Bell

Antonic

PerloRedfern

Saitoti

Simmonds

Skelton

Holt

Duncan

Peragine

Zoli

Cubel

Kwon

Miles

Xie

Cox

Walton

Sudarsanacharyulu

Delmotte

Russ

Olk

Lübcke

BierbrauerWang

Scorza

May

Illanes

Florczak

Gaudens

Rao

Hernandez

Franjou

Muntean

Anisiu

Tian

Lawton

Parnas

Wu

Kamvysselis

Fricks

Mauceri

Esteban

Weber

Carmack Fox Dolev

Kumabe

Mourad

Mytilinaios

Duyckaerts
Burq

Gilbert
Mirchandani

Kutsyy

Lorenzon

Vidal

Orgogozo

Ngô
Boyer

Yaffe

Witte

Yip

Janiszewski

Lebesgue

Blau

Fajardo

Gorka

Moazzami

Dichterman

Duncan

Maidana

Kottman

Escardó
Smyth

Nanevski

Serea

Larose

Lampert

Grasman

Estan

Schultz

Encarnación

RameshBrazzaleBoldi

Capkun

ChavezRoerhl Gigli

Kirk

Nason

Christian

Hartke

Jonsson
Karas

Delbos

Menkens

Asok

Hwang

Fernández
Martins

Scárdua

Tomé

Neto

Medeiros

Mol

Kolenikov

Lagemann

Manco

Zhu

Dickson

Sanders

Stewart
Elling

Ganesh

Vanninathan

Tordeux

Zipkin

Mendelssohn

Yang

Brown

Henig

Selman

PozziEngström

Cobena

Cohen

Segoufin

Goetze

Mignet

Budzik

Wu

Scevenels

Chen

Daude

Nguyen

Wagner

Oliveira

Fries

Horwitz

Segerlind

Ousmane

Wimberly

Zheng

Maclaughlin

Li

Gu

Chen

Eppendahl

Mysior

Allen

Pellicer

BouakizChung

Shinde
Sinha

Monroe
Harnett

Bhattacharjee

BabichChiang

Matthews

Coughlin

Radu

Pan

Slaby

Kuester

Dube

Chang

ChenChoi

Chang

Yen

Svoronos

HarelNarula

SongLavin

Ferguson

Koenigsberg

Zhang

Lee

Dyker

Jiang

García

Minhajuddin

Couper

Diaz
Lakshman

Lobo
Valente

Shanno

Muller

Dyer

Dydak

Diaz

Sperber

Zelenko

Kovilyanskaya

Atwood

MooreNagora

Robson

Sievers

Sacks

Schwartz

Velrajan

Subramanian

Sekar

Chandra

Jeyanthi

Cheskidov

Pientka

Cervesato

Washburn

Sledge

Hall

Arbieto
Luzia

Passy
Tinchev

Daboussi

Hoeve

Boutry

Bottazzi

Aduen

Carlson

Long

Goubin

Frej

Gualtieri

Pfeifer

Park Enis

Greenland

Murphy

Delange

Santos

Sethi

Cameron

Baird

Miranda

Resch

Duckenfield

Lee

Suh

Park

IV

Tudor

Ghenciu

Vugrin

Hervas

Qiu

Raymon

Millan

Kim

Rajan

Chen

Harvey

Lathrom

Kellman

Myers

Atacik

Rios

WangCui

Segal

Pan

Miller
Kang

Yom

Faticoni

Dai

Suzuki

Cavalcanti

Mohsenipour

Herzog

Fulton

Koether

Hansen

Beauzamy

Witt

Levitt

Tyler

Ku

Candelaria

Mandal

Hora

Borwanker

Sorum
Hendrickson

Hwang

Quiring

Lin

Hodges

McCulloch

Lee

Bian

Cirstea

Gerber

Dreyer

Low

Duncan

Piper

Pourmahdian

Strausz

Kopylov

Bidwell

Perry

Mangalam

II

Durand

Stein

Visconti

Wagner

Oguntuase

Diop

Lin

Quadjovie

Ogouyandjou

Ezin
Ngakeu

Ogouyandjou

N

Nemade

Chellougui

Mehrotra

Hillier

Reghis

Belk

Dragomir

Horton

Hale

VanDeGrift

Vachani

Schneider

Eke

Donohue

Sane

Liang

Zarouf
Tahri

Elraichi

Beaucoup

Dégot

Hohl

Bécarie

Beley

Macovschi

Corvaisier

Bonnomet

Lévy

Bénozène

RoparsCassier

Chou
Guerre

Finet

Douek

Ralambo

Martel

Bonvalot
Lemberg

Planche

Cantor

Zahn

Yan

Bayle

Reviron

Zhu

Wei

Hill

Ledbetter

Bretti

Cavendish

Kennedy

Chun

Pacheco

Laurence

Guillet
Carter

Liu

Look

Ebensperger

Frey

Ellison

Hu

Lei

Butenko

Lichnérowicz

Liu

Delanoe

Delay

Bayard

Cheney

Picioroaga

Hindawi

Walukiewicz

Clark

Ma

Hosni

Rajia

Lauria

Martins

Neal

Morgado

Almeida

Geller

Yuhan

Choi

Kumar

Ali

Lammens

Haller
Chalupsky

Hexmoor

Campbell

Ismail

BurhansSantore

Thilikos

Ing

Rine

Furaidan

Redett

Payan

Myers

Majumdar

McColl

Meng

Ledbetter

Lin

Berger

Morgan

Li

Ma

Mallick

Sultana

Akhter

Tiskin

Kececioglu

Aider

Kirkpatrick

Martin

Salmasian

Onnis

Anderson

Milheiro

Malitz

Wang

Kim

Lee

Do

Lizama

Bossert

Kim
Lee

Eno

Czarnecki

Hopkins

Bird

Moore

Gonzalez

Lotito

Combs

Stone

Redl

George

Wan

Casey

Roubaud

Murray

Kitska

Shen

Hahn

Haiduc

Volkov

Song

Wang

Shi

Branscum

Suaray

Aashtiani

Templeton

Moghaddam

Nix

Knight

Hill
Wafy

Moran

Cha

Lee

Xu

Amit

Wang

Mierendorff
Vollaard

Stamm

Bauer

Orlik

Gortz

Yeganefar

Russo

Fard

Wise

Albrecht

Majumdar

Shafrir

Gabour

Pekoz

Quirk

Smith

Brislawn

Fourman

Qin

Huang

McAlister

Roeder

Rajan

Martin

Chiti

Salemkar

Zamsky

Khoury

May

Tseng

Loulergue
BamhaMerlin

Afilal

Moyal

Tripp

Jouni

Errami

Goodman

Celikler

Poliakovsky

Mirchandani

Huh

ZahranOzol Liang

Lins

Fogelsanger

Hong

Eswaran

Gao

Oudjit

Marin

Sawyer

Chamú

Lemke

Quint

Sepulveda

Fraser

Malo

Farzaneh

Gaddis

Baker

Wittner

Lei
Bielefeld

FisherFaught

Luo

Head

Joseph
Shao

Sohl

Trivedi

David Gutterman

Ravdin

Zhao

Wang

Whitehouse

Marrero

Byun

Martin

Lyuu

Passat

Salehi

Beyaz

Marowka

Woodruff

Tulloch

Goncalves

Bagnato

Durairajan

Chanduka

Hussein

Cutz

Ott

Haworth

Eklund

Ntantu

Kundu

Renze

Daugulis

Matthews

Rajaram

Quirk

Koralov

Coleson

Butruille
Tran

Corrias

Grenier

Roesch
Puel

Benamou

DurazoKittelson

Ritchie

Gillen

Bush

Thom

Chakrabarti

Lakhina

Salame

Kim

Moore

Monroe

Lin

Lin

Moller

Bharadwaj

Dubey

Rottenfußer

Förster

Hijazi

Zoeteweij

Ginoux

Marshall

Tomova

Marchesini

Zhao

Kysiak

Su

Nachman

Pe

Oliva

Chellas

Segerberg

Meyers

Tang

Katz

Atlas

Davies

Grayson

Ewald

Cartmell

Copeland

Quinsey

Blamey

Giaquinto

Almog

Bracho

McCarty

Bailin

Rosolini

Djedour

Zaki

Amiri

Rhefoulli

Wildberger

Young

Hebbar

Wenk

Heinrich

Lipshteyn

Laohakosol

Hogan

Karazeris

Baroni

Zenil

Parisse

Genestier

Saibi

Dammerman

Leach

Anderson

Takahahshi

Chung

Huh

Jeong

Lee

Ma

Todorovic

Bolker

Ghiggini

Fisher

Bojanczyk

Sanford

Ertekin

Chitrapu
Qian

WangNeill

Xu Liu
Padmanabhan

Sundararaghavan

Tsigas

Stepp

Borie

Hunsaker

Koldehofe

Vincent

Song

Liu

Bossavit

Lee

Chun

Mukerjee

Jakimovik

Bryant

Pacuit

Towsley

Morel

Rosales

Wilde

AvrielBerahas

Breiner

Gonen
Wahrman

Zang

Schweitzer

Rosa

Jellouli

Dass

Frey

Cetin

Elliott

Thorsen Schubert

Laquer

Daumer

Cirincione

Levin

Gapeyev

Møgelberg

Lee

Grollman

Geske

Rubinstein

Naik

Pavan

Sengupta

Chandler

CastilloKnupp

Xu

Robidoux
Justo

Kulshrestha

Hernandez

Krug

Nasatyr

Nowak

Ying

Jennison

Acrivos

Kapp

Anderson

Mar

Gray

McFarlanePickavanceMenziesMcAlpine

Feldman

Sankappanavar

Jeffers

Riedel

Bailey

Bodelon

Carter

Mersch

Maung

Ahn

Bird

Sano

Skidmore

Mascarenhas

Toader

Fan

Ginot

Johnson

Peng

Goranko

Day

Hwang

Nou

Hu

Simard

Fleischer

Jia

Tang

Juarez

Charbonnel

Schiro

Lewis

Myers

Hoerbelt

Schmidt

Meyerson

Vernon

Comella

Seidman

Buerk

Giambrone

Iwuoha

Borasi

Mitchell

Reiner

Gordon
Hollister

Frazier

Battaglia

Vecellio

Siskar

Xin

Bordignon

Han

Zhang

Yu

Interlando

Schäfer

Oty

Tsogka

Davis

Dac

Hung

Argyros

Nestoridis

Tsarpalias

Koumoullis

Kalamidas

ZachariadesMercourakis

Farmaki

Poulkou

Papanastassiou

Katseli Kyritsis

Kalavassis

Stratis

Demis

Athanassiadis
Kyriakouli

Sagias

Bleak

III

Alonso

Carballo

Vasquez

Leal

Muñoz

Meneses

Gomes

Calsamiglia

Lewiner

Nonato
Uesu

Auspitz

Castelo Lopes

Freitas

Pesco

Costakis

Bhargavan

Ricotta

Bessa

LimCazacu

Cazacu

Muresan

Kramer

Serb

Vernescu

Gaidici

ManoleIancu

Vlaic

Heinold

Kramer

Gansca

Mihoc

Tambulea

Micula Mihoc

Toader

Maruster

Toadere

Vladislav

Hoang

Kasa

Johnson

Vavpeti

Feng Duan

Sheffer

Song

Napp

Baudouin

Boulakia

Christodorescu

Bildea

Narasimhan

Guelman

Szalas

Ruengsinsub
Leerawat

Atserias

Hedden

Montalbán

Kardaras

Garuti

Du

Kong
Wang

Silkin

Hermann

Zhang

Romahi

Villaverde

Gill

Carlsen

Wang

Vigoda

YuFang

Choi

Dorney

Weinberg

Groisman

Castro

Gonçalves

Biernacki

Baker
O

Tan

Ordoñez

Myers

Bruguières

Calisal

Ross

Nowik

Mironov

Stewart

Dror

Wasil

Pearn

Nag Wang

Casco

Kumar

Chao

Sun

Kwon

Coy

Fu

Abbiw

Li

Frommer

Xiong

Li

Boyen

Guestrin

Lerner

Taskar

Nakrani

Eben

Regnier

Pinzón

Schiller

Cabbage

Das

Shattuck

Noubir

Wang

Wang

Klingenberg

Rousseau

Chaudhuri

Hafner

Wang

Sbai
Leroy

Ohn Parker

Sleewagen

Praet

Back Bardy

Barlet Bausch

Messaoud

Bouaziz
Kabbaj

Rémy

Ealy

Hée

Al

Ramjee

Holt

Xia

Gérardin

Port

Smedt

Roberts

Ionita

Bernard

Slivnik

BieliavskyDhooge

Chaibi

Novic

Crawford

Quarta

Kukavica

Zhou

Osses

Grenon

Conca

Fabre

Rodriguez

Shah

Willemse

Karno

Yih

Toumpakari

Hayes

Pasha
Fatemi

Ewing

Montgomery

Brin

Popovici

Lagnado

Peng

Zhai

Flavell

Field

B

PelgrinShu

Nankervis

Ervolina

ChangLi

Bois Suwa

Tashman

Bolley

Philippe

Sadkane

Aubry

Chartier

Lebaud

Nassiri

Turek

Gonzalez

Kucharski

Fletcher

Panttaja

Graham

Added

Added

Allione

Bacry

Balabane

Bellouquid

Coron

Bouche

Degond

Desvillettes

Ducomet

EmamiRad

Ghidouche
Golse

Lochak

Mardon

Masrour

Mokhtar

Mons

Peralta

Phung

Point

Paoli

PoupaudRingeisen

Santos

Sulem

Tatout

Tuomela

Mora

Rodríguez

Pascali

Tran

Gratie

Chiriac

Scurla
IonCatana

Zeron

Buhphang

Marinescu

Benkaza

Rozanova

Hitzler

Peterson

Höring

Huang

Lewis

Cowen

Gonzalez

Paulson

Ho

Andersson

Blanck

Eliasson

Hamrin

Palmgren

Hils

Sigstam

Rego

Allibert

Duc

Hargé

Zouaghi

Teller

Saliola

Sinha

Mayer
Stather

Carpenter
Ross

Mamone

Oostra

Ng

Andrew

Breitzman

Saniee

Saucedo

Atici

Navaratna

Sinh

Middleton

Grujic

Schiffmann

Yang

Palombaro

Hollingsworth

Dula

Buchanan

Porter

Keeran

Yoon

Hur

Janardhanan

Bender

Saenz

Ventre

Sinclair

Nash

Dujol

Hart

Park

Grosholz

Ortiz

Todd

Quang

SiqueiraHu

Kim

Sy

Liu

Wang

Speights

Sun

Lee
Ho

Zhang

Watkins

Beferull

Chrysafis

Demirciler

Hsu

Jiang

Lee

Lengwehasatit

Lin

Pan

Sagetong

SinghYoo

Horton

Caiado

Maingot

SrinivasamurthyXie

Chung

Ciancio

Buchin

Wilson

Cheng

Young

Fetnassi

Abakti

Djellit
Megrez

Besbas

Cardoulis

Serag

Thibodeaux

Nagy

Otero

Barrón

Silva

Canton

Janeja

Warner

Messine

Almeida

Yoon
Hamer

Abidin

Serazi
Rahal

Ren

Krebsbach

Wang

Pan

Ding

Goli

Truszczynski

Zhou

Grizzard

Tyner

Goran

Sandu

Sheng

Damian

Liu

Gavrea

Rostermundt

Weigand

HuangXu

Chow

Andrade

Schönenberger

Woodward

Pamula

Koropecki

Kelton

Thomas

Dib

Delahaye

Hamidi

Daenzer

Abreu

Beckmann

Gill

Leue

Feng

Stephens

Licata

Kischinhevsky

Granda

Ray

Healy

Skoda

Amunrud

Behrens

Jeppson

Mitchell

Pande

Pomfret

Wirt

McQueen

KirkwoodMoore

Chen

Inoue

Wang

Park

Gercken

Røysland

Andersen

Dahl

Michel

Cho

Proskin

Gordon Yegneswaran

Barbanel

May

Man

Moseman

Bhatnagar

Goda

McKinley

Tan

Jackson

Chen

Aafif

Lazar

Bose

Evans

Houh

Vandevoorde

Welborn

Zachary

Lago

Ratliff

Chatterjee

McCabe

Meissen

Nicholson

Schroeder

Maneva

Orna

Klein

Geanakoplos

Morris

Peretz

Lane

Komendantskaya

Kenton

Woodroofe

Belk

Girard

Zaidan

Paulo

Delampady

Fan

Lu

Oh

Sivaganesan

Loddo

White

Sotirov

Sherman

Poliak

Monteiro

Liu

Ioana

Clarelli

Serafini

Gal

D

Krzy

Hobot
B

Goebel

Radziszewski

Borówko

Dobrzycki

Zygmunt

Lewandowski

KrzyJakóbczyk

Jankowski

Stone

Behn

Zervos

Chuang

Cook
Gillette

Mavrogiannis

Kamath

Laurent

Zhang

Pal

Hickson

Tassone

Lin

Leong

Gal

Ng

Chen

Gryparis

Nikolov

Shnaidman

Xu

Zhang
Liang

Mitzenmacher

Mehta

Jin

Yang

Idwan

Drinea

Atanasov

Habib

Lee

Zhang

Shantanu

Kim

Yi

Gao Guo

Earl

Viglizzo

Xia

Li

Zhai

Vener

Marshall

Bak

Lin

Kim

Bogowski

Bucka

Burniak

Ciozda

Jab

Koczan

Stankiewicz

Stankiewicz

Wajler

Waniurski

Weso

Dascaliuc

Onica

Lu

Dutta Lee

Liu

Zhao

Gillette

Roe

Cong

Heller

Peterson

Castronovo

Dohlen

Li

Xing

Zhang

Zhou

Glackin

Johnson

Johnson

Wang

Soterwood

Salazar

Trippen

Webster

Marathe

McAtee

Wang

Anthappan

Pati

Jiminez

Chambers

Chivoret

Hu

Cho

Kim

Wu

Xiao

Zhang

Woo

Li

Hein

Kachmar

Ghorbel

Coviello

Zhang

Ellerman
Pinter

Krasucki

Ndjatou

Steinsvold

Hutchinson

Kelley

Chu

Techanie

Janes

Wang

Du

Fischer
Jenner

Clay

Romero

Couperus

Xu

Yue

Sheng

Sun

Yan

Chen

Andrei

Ou

Torres

TangWang

Zhang

Childers

Talay

Lu

Kokholm

Mosimann

Brzenk

Bandyopadhyay

Barrenetxea Vandewalle

Dubois
Ajdler

Makras

Phillips

Leitzel

Aranki

Kim

Might

Wang

Daniels

Martinez

Su

Attie

Dantas

Nguyen

Morrison

Lu

Shukla

Ghimire

Oliveira

Cheung

Balasundaram

Chaovalitwongse

Chou

Majumdar

Petrovic
Puri

Schonberg

Kozintsev

Pradhan

Yang

Grisvard

Cherruault

Mignot
Mignot

Yvon

Cioranescu

Lascaux

Kernévez

Boujot

Gagliardo

Newbury

Swinden

König

Brugmans

Rossijn

Moll

Lloyd

Kang

Vance

Hartman
Smith

Rivera

Borisuk

Beverly

Cerezo

Bardzell

Zhu

Chasen

Kang

Gokhale

Fast

Hammer

Goodwyn

Jaworski Schoenfeld

Saldanha

Haviv

Medvedev

Solak

Chopra

Chiang

Nguyen

Pierson

Brucker

Mears

Zhang

Richardson

Feng

Sommers

WladisChoi

Weng

Bardou

Chan

Gal

Sasyk

Cheng

Maximilien
Wan

Xing

Yolum

Yu

Hernández

Mitra

Iozzi

Breaz

Malheiro

Schmidt

Chen

Torrez

Gupta

Krandick

Ruslanov

Hoover

Shvalb

Monash

Boynton

Herbei

Kaklamanis

Christensen

Cour
Larsen

Odgaard

Rasmussen

Sánchez

Thomsen

Trangbæk
Beran

Cromme

Larsen

Rank

Laborde

Hu

Poje

Lewis

Mollard

Whitten

Laure

Marie

SoucarisZhang

BegueriBoutot

Anantharaman Elkik

Ganapathy

Vernon

Loeppky

Feldman

Jamieson

Hangelbroek

Kull
Badran

Marak
Peters

Refai
Mohammad

Stevens

DeGryse

Michail

Li

Gatard

Caprau

Liu

Goodrick

Pullagura

Marcial

Kirupaharan

Foster

Govind

Joo

Meckesheimer

Bibighaus

Kennedy

Conradie

Douligeris

Pettie

Górka

Christensen

Leal

Zatelli
Juriaans

Giuliani

Saraiva

Lobão

Ryu

Jonnalagadda

Rao

Dasgupta

Koester

Oliveira

Baykur

Bode

Usman

Keshari

Faria
Zhuang

Ichihara
Kitakubo

Takasawa

Yamashita

Mizushima

Rodgers Commander

Caine

Ayanides

Spielman

Guntupalli

Raulot

Kobeissi

Srivastava

Chowdhury

Lachaud

Alquie

Blache
Cornus

TemkineEdouard

Aubry

Islim

Perret

Cherdieu

Wielonsky
Deshommes

Danset

Hatakenaka

Blassiere

Sui
Denninghoff

Sadok

Hennert

Morice

Szabo

Conduché

Cheng

MacLean

Otwinowska

Sire

Dahlgren

Rodier

Rougemont

Lindell

Angelkot

Barnaart

Calkoen

Damen Göde

Oskamp
Fagaras

Ondaatje

Tonis

Constantinescu

Visinescu

Sistla

Dochtermann

Kahle

Sengar

Cattaneo

Chuang

Weiske

Williamson

Gamboa

Fu

Guo

Calkoen

Camphouse

Vugrin

Mensing

Wit

Simons Suerman

Swart
Vrolik

Wenckebach Galen

Fuller

Lal

Krone

Alew

Schröder

Schröder

Barkatou

Cluzeau

Seref

Craciun

Farcot

Gholami Rismanchian

Taheri

Hoorn

Kayvanfar

Nasrabadi

Sebastiani

Davarpanah

Eghdami
Sedghi

Aslam

Serooskerken

Ekama

Ermerins

He

Louder

Bernadou

Malcok

He

Silva

Elashoff

Singh

Eyster

Williamson

VanderzandenBlake

Wang
Kim

Yang

Dhar

Vasudaven

Mukherjee

Zhu

Lu

Cheng

Song Guo

Sanati

Chaudoir

Iyer

Goldvard

Mills

Walraven

Kocsard

Ma

Ranjan

Kweon

Agarwal

Braz
Li

Punyakanok

Zimak

Demeter

Guerrero

Allievi

ChanAkinturk

Kose

Piao

Wong

Ostafichuk

Andersson Varandas

Deny

Stoeckel

Chang

Iyenger

Niverthi

Swartz

Shao

Vlachou Papadoperakis

Paschos

Vasilonikolou

Winters

Maronna

Fraiman

Graciela

Ferretti

Ben
Bianco

Kelmansky
Adrover

Hernandez

Martínez
Villar

Svarc

Bergesio

Szabo

Liaskos

Griffiths

Somboonsavatdee

Bustamante

Smallen

Hayes

Sheridan

DeAngelis

Garner

Manivel

Asvanunt

Shmatov

Han

Simon

Naidu

Lynch

Smith

Xia

Paun

Kalyvianaki

Wissman

Cribari

Ishdorj

Senellart

Chen

Jiang

Mao

Merzifonluoglu

Bois

Ivanovski

Caubel

Maugendre

Russell

Purucker

Cai

Benzaken

Gursoy

Ozcan

Dunfield

Awasthi

Prévost

Lalement

Suh

Sivak

Budzik
Tyrala

Fechner

Aubriot

Desai

Gournay

Clerc

Siess

Morel

Venter

Friedman
Minh

Franklin

Sharma

Steffens

Sansò

Jamieson

Ozbay

Li

Delic

Bentz

Gu

Lee
An

Wohlever

Hsu

Pitsoulis

Roques

Chamberland

Nichols

Petrillo

Kushner

Rescher

Mattheou

Pruss

Puryear

Seibt

Carey

Golding
Brown

Marconi

Michalec

Owens

Richardson

Bashier

Collier

Schuldenfrei

Putz

Mayo

Schwartz

Hertz

Skyrms

Sosa

Silvers

Tapus

Staworko

Dwyer

Schweizer

VanderSchraaf

Harms

Alexander

Hill

Skrenes

Greco

Madhok

Strander

Gertler

McDermid McGrath

Fantl

Reed

Kawall

Marton Reed

Comesana

Matheson

Shieber

Pace

Ettinger

Hazlett

Turri

Hooper

Rhoda

Stolt

Anderson

Lu

Lu

Allsup

Azmi

Gégout

Eksioglu

Olaya

Golbeck

Reniers

Rogeon
Xu

Khoury

Barnhart

Miao

Balmus

Biesterfeldt

Groce

Duffy

Wehner

Wahl

Zhao

He

Reich

Jelgersma

Blanchard

Second

Dubois

Calle

Wiger

Cicho

Samulewicz

Gucht

Fatemi

D

Donno

Chinchuluun

McKenna

Fulina

Juteau

Chen

Loomis

Mueller

Yang

Cautis

Maruskin

Grant

Boginski

Hilali

Stadnicki

Juels

Steenberg

Fletcher

Takeda

Ferguson

Wang

Spraktes

Stern

Zemke

Glaeser

Coatmelec

Méhauté

Tessera

Bouhamidi

Chang

Choi

Jau

Shaikh

Porumbescu

Dalvi

Bisgaard

Laubinger

Alur
Burckhardt

Singla

Fig. 4. The second largest component from the Mathematics Genealogy Project
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Fig. 5. Close-up view of the center-left part of Fig. 4

drawings with extreme aspect ratios. In fact, for 9 out of 14 test graphs, VPSC produces
layouts with extreme aspect ratios. PRISM does not suffer from this problem.

We experimented with layouts initially scaled sufficiently so that relatively fewer
nodes overlap. For example, when initial layouts were scaled to give an average edge
length equal to 4 times the average node size, we found that the performance of VPSC
was improved. Nevertheless it still suffered from extreme aspect ratio on at least 5 out
of the 14 graphs. Figure 3 shows two of these graphs.
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Overall, quantitative and visual comparison of the drawings of these 14 graphs, as
well as drawings for graphs in the complete Graphviz test suite (a total of 204 graphs
in March 2008), shows that PRISM performs very well, and is overall better and faster
than VPSC and VORO. The ODNLS algorithm preserves similarity somewhat better
than PRISM, but at much higher costs in term of speed and area.

As a demonstration of the scalability of PRISM, we consider its application to a
large graph. This is a tree from the Mathematics Genealogy Project [24]. Each node is
a mathematician, and an edge from node i to node j means that j is the first supervisor
of i. The graph is disconnected and consists of thousands of components. Here we con-
sider the second largest component with 11766 vertices. This graph took 31 seconds to
layout using SFDP, and 15 seconds post-processing using PRISM for overlap removal.
Important mathematicians (those with the most offspring) and important edges (those
that lead to the largest subtrees) are highlighted with larger nodes and thicker edges.
Figure 4 gives the overall layout, which shows that PRISM preserved the tree structure
of the layout very well after node overlap removal. Figure 5 gives a close up view of
the details of a small area in the center-left part of Fig. 4. Additional drawings of this
and other components of the Mathematics Genealogy Project graph, including that of
the largest component, are available [15].

5 Conclusions and Future Work

A number of algorithms have been proposed for removing node overlaps in undirected
graph drawings. For graphs that are relatively large with nontrivial connectivities, these
algorithms often fail to produce satisfactory results, either because the resulting drawing
is too large (e.g., scaling, VORO, ODNLS), or the drawing becomes highly skewed
(e.g., VPSC). In addition, many of them do not scale well with the size of the graph in
terms of computational costs. The main contribution of this paper is a new algorithm for
removing overlaps that is both highly effective and efficient. The algorithm is shown to
produce layouts that preserve the proximity relations between vertices, and scales well
with the size of the graph. It has been applied to graphs of tens of thousands of vertices,
and is able to give aesthetic, overlap-free drawings with compact area in seconds, which
is not feasible with any algorithm known to us.

It is possible that algorithms such as VPSC, which rely on separate passes in the X
and Y directions, might be improved by randomizing which overlaps are removed in
which pass or by gradually removing overlaps using many alternating X and Y passes.
This would, however, further increase their computational cost, which is already much
higher than the algorithm proposed in this paper.

For future work, we would like to extend the overlap removal algorithm to deal with
edge node overlaps. We would also like to explore the possibility of using the proximity
stress model for packing disconnected components.
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Abstract. In numerous application areas, general undirected graphs
need to be drawn, and force-directed layout appears to be the most fre-
quent choice. We present an extensive experimental study showing that,
if the goal is to represent the distances in a graph well, a combination of
two simple algorithms based on variants of multidimensional scaling is
to be preferred because of their efficiency, reliability, and even simplic-
ity. We also hope that details in the design of our study help advance
experimental methodology in algorithm engineering and graph drawing,
independent of the case at hand.

1 Introduction

Graph drawing is concerned with the geometric representation of graphs. For
general undirected graphs, force-directed and energy-based layout algorithms
are commonly used, because they are often easy to implement and experience
shows that they can result in undistorted and readable layouts which reveal
structural features such as local clustering and symmetry [3].

Based on experimental evidence presented in this paper, we argue that approx-
imate classical scaling with subsequent stress reduction should be used instead.
The requirements leading to this argument are:

1. quality: pairwise distances between vertices are represented well,
2. scalability: the algorithm scales to very large graphs, and
3. simplicity: the algorithm is easy to understand and implement.

Note that the quality criterion is implicit on force-directed algorithms. Classical
scaling and stress minimization are instances of the general concept of Mul-
tidimensional Scaling (MDS, see [1,8] for comprehensive references). MDS of
graph-theoretic distances has been used early on for automatic layout of social
networks [16], without explicit reference in the well-known algorithm of Kamada
and Kawai [15], and in the wider context of data analysis (e.g.,[5,10]), but the use
of advanced MDS algorithms well-known in other fields has gained momentum
only after Gansner, Koren, and North applied majorization to stress minimiza-
tion in graph drawing [12]. Stress minimization is generally assumed to be the

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 218–229, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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method of choice for drawing general graphs, because of its intuitive and adapt-
able objective function and the visually pleasing layouts obtained. Yet, it is often
found to be difficult to implement efficiently, and the presence of local minima
is a serious concern.

Our study provides an assessment of layout quality and efficiency, and also
yields a recommendation on how to implement the method to achieve reliabil-
ity, efficiency, and simplicity at the same time. While a considerable number
of experimental studies have been conducted to assess graph drawing criteria
and algorithm performance, only two are closely related [2,13]. However, these
compare implementations of suites of related algorithms which are treated as
black boxes. The combination of our in-depth study with these more general
comparisons provides additional support for our conclusion.

A methodological contribution of our study is the design of experiments
along explicit hypotheses about the performance of algorithms. These guided
our choice of experiments and structure argumentation.

The remainder of this paper is organized as follows: In Sect. 2, background
on the relevant MDS variants and their application to graph drawing is given.
The main hypotheses are stated in Sect. 3. The experimental setup is described
in Sect. 4, and the actual experiments in Sect. 5. Section 6 discusses results with
regard to our hypotheses. We conclude with a summary in Sect. 7.

2 Multidimensional Scaling

Let V = {1, . . . , n} be the set of n objects and let D ∈ Rn×n be a square matrix
of dissimilarities dij for each pair of objects i, j ∈ V . MDS yields a matrix
X = [x1, . . . , xn]T ∈ Rn×d of d-dimensional positions x1, . . . , xn ∈ Rd such that

‖xi − xj‖ ≈ dij for all i, j ∈ V (1)

is met as closely as possible; in our experiments, d = 2 throughout. We leave this
somewhat informal for the moment and make it more precise in the following
two subsections, where we describe the objective functions typically considered
to assess compliance with (1). Straightforward implementations of these run in
Θ(n3) time, but we will discuss more efficient algorithms in Section 4.

Classical Scaling. The first approach to achieve (1) is based on linear algebra
and is referred to as classical or inner-product scaling. Let D ∈ Rn×n be defined
as above, and let D(2) be matrix D with all entries squared. Classical scaling is
based on a matrix B ∈ Rn×n of pseudo products bij with

bij = −1
2

(

d2
ij −

1
n

n∑

s=1

d2
is −

1
n

n∑

r=1

d2
rj +

1
n2

n∑

r,s=1

d2
rs

)

(2)

or equivalently, written in matrix form, by double-centering D(2) with B =
− 1

2JnD
(2)Jn, where Jn = In − 1

n ·
(
1n1T

n

)
∈ Rn×n, In being the identity matrix

and 1n ∈ Rn the all-ones vector of length n.
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(a) classical (b) q = 2 (c) q = 0 (d) q = −2 (e) q = −4

Fig. 1. Example drawings for the 1138bus graph. Drawing (a) is generated with classical
scaling, drawings (b)–(e) with distance scaling and weights wij = dq

ij .

Let v1 . . . , vn ∈ Rn×n and λ1 ≥ · · · ≥ λn ∈ R be the sequence of eigenvec-
tors and corresponding eigenvalues of B. Two-dimensional coordinates are then
obtained by setting the configuration matrix X ∈ Rn×2 to be

X =
[√

λ1v1,
√
λ2v2

]
, (3)

which is optimal [1]the mismatch between the pseudo inner-products derived
from the dij ’s in (2) and the inner products xT

i xj , namely

strain(X) = ‖B −XXT‖2 =
∑

i,j

(
bij − xT

i xj

)2
. (4)

The advantage of this approach is that it gives analytic solutions which are
essentially unique and optimal with respect to strain. A major drawback is the
detour via inner products, sometimes leading to degenerate solutions.

Distance Scaling. Instead of achieving (1) by fitting inner products bij and xT
i xj ,

coordinates can be computed by directly fitting distances ‖xi − xj‖ to dissimi-
larities dij . This leads to the objective function

stress(X) =
∑

i,j

wij (dij − ‖xi − xj‖)2 , (5)

where wij ≥ 0 weights the contribution of pair i, j; frequently, wij = dq
ij for some

q ∈ R. Since there is no known method for directly computing a configuration X
with minimal stress, the standard approach is iterative numerical optimization.

Graph Drawing and MDS. Most applications of MDS to graph drawing set the
desired distances to be the shortest-path distances in the graph, which often
spread nodes well over the drawing and display symmetries and clusterings.

While classical scaling was used for graph drawing [5]and made scalable to
large graphs only recently [4,6], the distance scaling approach is pioneered much
earlier [16]. Kamada and Kawai [15] used a layout energy equivalent to the
objective function introduced independently by McGee [19] more than twenty
years earlier (there termed work). In the framework of the more general weighted
MDS, it corresponds to setting wij = d−2

ij in Eq. (5) Other weighting schemes
and dissimilarities are discussed in [5,7]. Fig. 1 shows some example drawings.
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3 Hypotheses

A combination of theoretical properties, previous experience, popular beliefs,
and preliminary tests, led us to formulate and test the hypotheses below. These
shall not be read as if they were results, but serve to focus attention and are
formulated in such a way that they can be tested with algorithmic experiments.
We therefore conducted a series of experiments described in the next section.
See Section 6 for a discussion of the results.

The first hypothesis basically rules out force-directed methods.

Hypothesis 1. For graph drawing representing graph-theoretic distances it is
most appropriate to model this representation explicitly in the objective function.

Given their objectives, both classical and distance scaling should represent
graph-theoretic distances well in a geometric layout, and thus be useful for graph
drawing. Because of the more direct influence on the objective function and a
concave weighting of distance representation errors, it seems plausible that dis-
tance scaling would be the more suitable variant for graph drawing. While it is
almost commonplace that classical scaling is better at representing global struc-
ture whereas distance scaling is better at representing fine details [5], we do not
know of any systematic evaluation. We therefore provide experimental evidence
for the following.

Hypothesis 2. Distance scaling compares favorably with classical scaling in
terms of layout quality, because local details are represented better.

In our experience, based on many conversations with implementors and users
of graph drawing systems, a main reservation against distance scaling is its as-
sumed non-scalability, due to a multiude of local minima and high computational
demand. The next two hypotheses focus on how to ensure that the layouts pro-
duced by implementations of distance scaling are actually those supporting H1.

Hypothesis 3. Distance scaling is susceptible to poor local minima, because it
is highly dependent on the initial layout.

Hypothesis 4. Classical scaling provides excellent initial layouts for distance
scaling, because the better representation of large distances helps to avoid poor
local minima.

If H4 holds, we have complicated matters even more, because two demanding
problems have to be solved rather than one. The final two hypotheses therefore
regard the possibility of computing the initial and final layout efficiently.

Hypothesis 5. Classical scaling layouts of very large graphs can be approxi-
mated efficiently using PivotMDS.

Hypothesis 6. Distance scaling is practical even on very large graphs.
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Table 1. Test set of graphs used in Experiments 1–3. n, m,D denote the number of
nodes, the number of edges, and the diameter, respectively. The two rightmost columns
contain plots for distance distributions and the 10 largest eigenvalues of B.

name n m description D {dij} λ1,...,10

516 516 729
finite element mesh describing adjacencies between faces
in a triangulation 61

1138bus 1138 1458
network of high-voltage power distribution in the United
States. 31

qh882 882 2856
matrix derived from Quebec hydroelectric power sys-
tem’s small signal model 31

plat1919 1919 15240
finite-difference model of shallow wave equations in At-
lantic/Indian Ocean 43

esslingen1 2075 4769
social network in the city of Esslingen in the 19th cen-
tury 15

sw0 500 1500
circle in which each node is adjacent to its 3 left and
right neighbors 84

sw002 500 1500
graph sw0, each edge rediretced randomly with proba-
bility 0.02 27

sw01 500 1500
graph sw0, each edge rediretced randomly with proba-
bility 0.1 10

btree 1023 1022 complete binary tree of height 10 18

prot1 3025 3629 largest component of protein interaction network 27

4 Experimental Design

Data. The experiments were run on a set of test graphs described in Table 1.
The graphs were selected large enough to allow for extrapolation of the results
to very large graphs, but also small enough to allow for, the exact computation
of stress as given by (5) in a large number of experiments.

Note that the eigenvalues of the matrices B associated with each graph indi-
cate the intrinsic dimensionality of the original distances dij . If, say, two dimen-
sions suffice to reconstruct all the dij ’s exactly, such that the strain criterion is
zero, then λ1 ≥ λ2 > λ3 = · · · = λn = 0, and inversely, few large and many
(near-) zero eigenvalues indicate the existence of a good low-dimensional layout.

Environment. We implemented all MDS algorithms and speed-up techniques
ourselves to avoid bias due to coding, system, or timing. The algorithms were
implemented in Java using Sun’s SDK 1.6.0 and the yFiles 2.5.0.1 graph library
(www.yworks.com). All experiments were run on a standard 1.4 GHz Compaq
NX 7000 notebook with 512 MB of RAM, using Windows XP Service Pack 2.

Implementation. A simple and convenient way of implementing classical scaling
is by constructing matrix B in (2) and computing its two extremal eigenvalues
λ1, λ2 and eigenvectors v1, v2 by power iteration.

The problem of drawing graphs with fixed edge lengths is NP-hard in gen-
eral [9], and for distance scaling no analytic solution is known, so layouts have to
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be computed iteratively. In Kruskal’s original proposal [17], stress is evaluated for
the current positions, and new positions are computed by gradient descent; this
is also done in [15,19,20] with gradient terms specific to the weights wij . These
approaches were superseded by majorization [18], which generates a sequence of
layouts with decreasing stress and can handle arbitrary weights wij ≥ 0. In our
experiments we use a “local iteration” with node-by-node updates [12].

5 Experiments

The first experiments is to provides evidence for which method yields better lay-
outs in principle (disregarding efficiency, ease of implementation, reliability, etc.),
when graph-theoretic distances are to be represented by Euclidean distances. We
use the following shorthand notation for the involved approaches:

– random: node coordinates drawn uniformly at random from (0, 1),
– fm3: fast multipole multilevel method [13],
– grip: multilevel force-directed layout method [11],
– hde: high dimensional embedder [14] (50 pivots),
– cmds classical scaling.

Experiment 1 (Layout approach). All test graphs are laid out with cmds,
distance scaling with unweighted and weighted stress, fm3, hde, and grip.

For convenience, most implementations of iterative layout algorithms start from
a random initial configuration. It is, however, widely known that smart initializa-
tion is preferable. We here compare different initialization strategies for distance
scaling and evaluate the resulting stress. Before the iteration all initial solutions
X are scaled such that

∑
i,j ‖xi − xj‖ =

∑
i,j dij .

Experiment 2 (Distance scaling and initialization). All test graphs are
laid out using each of the following layout algorithms: random, fm3, hde, grip,
cmds, and then minimizing weighted stress using local iteration.

Classical scaling has running time at least quadratic in the number of nodes n
for constructing distance matrix D ∈ Rn×n and decomposing the derived matrix
B ∈ Rn×n. Quick estimates for the eigenvectors v1, v2 corresponding to λ1, λ2
are obtained by using only parts of D by selecting a subset W ⊂ V of k � n
pivot or landmark nodes and taking only k · n rather than n2 distances into
account. Once W is constructed, two approaches for this are considered:

– Pivot MDS [4] uses the singular value decomposition of a rectangular matrix:
Let Dk ∈ Rn×k be the matrix of k columns of distances from nodes in W ,
e.g. in k breadth-first searches. Then the right singular vectors u1, u2 of C =
− 1

2JnD
(2)
k Jk are estimates for the eigenvectors v1, v2 of B = − 1

2JnD
(2)Jn.

– Landmark MDS [22] places nodes in W by classical MDS. The each node in
V \W is placed based on its k distances to nodes in W .
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The k pivots should be well-scattered over the graph; intuitively, this is to
represent as much of the full distance information D as possible. Assuming that
W contains k − 1 selected nodes, our strategies to determine the k-th pivot are

– maxmin: argmaxi∈V \W minj∈W dij , the node farthest from W ;
– random: with uniform probability, from W ;
– mixed: with maxmin, if k is even, with random otherwise;

combining them with the two estimation approaches above leads to six strategies.
Let X,Y ∈ Rn×2 be the estimate and the actual solution, each centered at

the origin. To find out how similar X is to Y we use the Procrustes statistic

R2 = 1−
(
tr(XTY Y TX)1/2

)2 / (
tr
(
XTX

)
· tr
(
Y TY

))
(6)

minimized by the Procrustes rotation P ∈ R2×2 (see [21] for its formula) which,
applied to each row in X , optimally dilates, scales, rotates, and reflects X to
fit Y . It can be shown that 0 ≤ R2 ≤ 1; if R2 = 0, X and Y can be perfectly
matched, if R2 = 1, they cannot be matched by any P ∈ R2×2 at all.

Experiment 3 (Approximating classical scaling). For each test graph, clas-
sical scaling is approximated using 6 strategies {maxmin, random, mixed} × {land-
mark, pivot}, and compared to the exact solutions using the Procrustes statistic.

Experiments 2 and 3 were repeated 25 times, and to control for biases due to
the internal representation of graphs and matrices, we used as many instances
of each graph, each with randomly permuted vertices and edges.

Distance scaling by stress minimization is mostly used for improving the repre-
sentation of local details; setting wij = d−2

ij assigns large weight to the represen-
tation of small distances and vice versa. Initializing distance scaling with cmds,
we hope that large distances are fitted well; the subsequent fitting of smaller
distances and local details is achieved by discarding the large distances from the
stress term to be minimized, which we dub sparse stress

stress(X) =
∑

{i,j}∈S

wij(dij − ‖xi − xj‖2) , (7)

where S ⊆ V × V is a set of node pairs involved in the iteration, with |S| ∈
O(n). In our experiments we use local neighborhoods obtained by terminating
the breadth-first searches after k neighbors have been found.

Experiment 4 (Sparse stress minimization). For each of the test graphs
the initial classical scaling configuration is subjected to sparse stress minimiza-
tion using only local neighborhoods.

We use another collection of larger graphs to examine the scalability of initial-
ization and sparse stress minimization. Unlike the test graphs used earlier, their
size prohibits methods using the full square matrices. The results are assessed
visually with respect to the information known a priori.

Experiment 5 (Very large graphs). Large graphs are laid out first using an
approximation to classical scaling and then sparse stress minimization.
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Fig. 3. Upper row: The majorization process with different initializations random, fm3,
hde, grip, cmds after 0, 30, 60 iterations. Lower row: Number of iterations vs. stress. The
bars indicate the range of values, the dots the median value, in 25 runs.

6 Results

Layout Quality. To assess layout quality both visually and quantitatively, aligned
layouts and the distributions of layout distances are shown in Fig. 2 for each of
the possible distance values between pairs of vertices, i.e. for values ranging
from 1 to the diameter of the respective graph. The classical scaling layouts
were generated with random initial positions and used as initial configurations
for distance scaling. Initialization is further studied in Exp. 2.

The drawings for graphs qh882, 1138bus seem to confirm H1 and H2; using
weights wij = d−2

ij helps to display local structures hidden by classical scaling or
unweighted distance scaling. For regular structures 516, plat1919, sw0, distance
scaling does not improve the quality of local representation. In a few cases clas-
sical scaling represents the overall structure better, such as the known clustering
of esslingen1 into two densely connected parts.

In general, H1 and H2 can be accepted at least for graphs for which graph-
theoretic distance is well representable in low dimensions. However, none of
the MDS variants seems to be capable of representing both smaller and larger
distances for small diameter graphs and other special types of graphs like btree.
In such cases the MDS objective functions for distance representations is not
always useful as an aesthetic criterion; see Section 7 for a discussion.

Initialization. For independence of graph size and distances we divide the stress
by
∑

i,j wijd
2
ij , which allows for comparison between stress computations even

for different graphs. We have carried out the iterative majorization process 25
times for each graph (with permuted edge list) and for each of the five initial
placements.

The results of Exp. 2 are displayed in Fig. 3, which shows stress values over
the majorization process for distance scaling, with weights wij = d−2

ij For almost
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Fig. 4. Procrustes statistics measuring how well Pivot MDS (red) or Landmark MDS
(blue) estimate the exact solution of classical scaling. Plotted are the median values of
25 runs with different node permutations, for k ∈ {3, . . . , 120} pivots.

all graphs we have tested, basically the same ranking resulted, with random being
worst, followed by fm3, grip, hde. Initially, cmds solutions tend to have higher
values, but overtakes the other initializations after some iterations.

All experiments indicate that H3 is valid for all types of graphs. Since large
distances and thus global structures are represented well, classical scaling gives
excellent initial configurations for distance scaling.

The bandwidth of stress values we observed for cmds-initialized layouts was
almost always negligible, whereas stress values vary largely for all other meth-
ods in the 25 runs. Classical scaling gives reproducible initial configurations
throughout, which are also robust against permutation of the input. All these
observations support H4. Interestingly, btree is the only graph for which classical
scaling resulted in some variation; we attribute this to the multiple occurrence
of equal eigenvalues of matrix B (see Table 1).

Scalability. We computed estimates for the solution to classical scaling for all
graphs, again in 25 runs with random node permutations. In each run, three sets
of pivots were grown from k = 3 to 120 (following maxmin, random, and mixed)
and used for Pivot MDS and Landmark MDS. The plots for the median values
of three selected graphs are shown in Fig. 4.

For regular graphs like sw0, 516, the pivoting strategy is not crucial. In all
other cases Pivot MDS is superior to Landmark MDS, regardless of the pivoting
strategy. For Pivot MDS, the maxmin strategy performs better than random and
slightly better than mixed. The corresponding plots seem to converge to zero
faster and more smoothly than those for Landmark MDS. Once again, graph
btree seems to be different from the others; estimating the full classical scaling
solution appears to be unstable, no matter what pivoting strategy is used. Our
observations indicate that H5 is valid.

We have conducted further experiments considering scalability, but omit them
here due to space restrictions. One suite of experiments applies Pivot MDS to
graphs with millions of nodes; we have observed that even those huge graphs, for
which the full classical scaling is impractical, are laid out well with it, provided
that two dimensions suffice, and, conversely, that increasing the number of pivots
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(a) Pivot MDS (b) sparse stress minim. (c) original

Fig. 5. Drawings for a large graph representing the street network in Germany
(4 044 153 nodes, 9 564 235 edges, diameter 1 059)

does not improve layout quality if the graph is of higher intrinsic dimensionality;
see also Sect. 4.

Another suite of experiments indicates that, technically, stress minimization
scales even to very large graphs, but that H6 is valid only with the limitation
that an appropriate sparsification scheme must be available.

7 Conclusion

We have studied different graph-layout approaches that aim at representing
graph-theoretic distances by Euclidean distances. Our experiments suggest that
minimization of weighted stress, an objective function that models the desired
aesthetic properties explicitly, is to be preferred over force-directed placement.
The recommended method for weighted stress minimization is to initialize with a
fast approximation of classical scaling [4] and subsequent iterative improvement
using localized stress reduction [12]. Both phases are easy to implement, but the
second can be time-consuming. Approximation via sparse stress makes the algo-
rithm scale to very large graphs, but further research on reliable sparsification
schemes is needed.

The distance-based approach yields poor results on certain classes of graphs,
which include small worlds and other graphs with many shortcuts or low diame-
ter, and scale-free graphs with highly skewed degree distributions, large 1-shells,
or other forms of structural imbalance. Some success has been obtained with
stress weighting schemes based on graph invariants, but good characterizations
of problematic graphs are missing and matching layout algorithms need to be
developed further.

Using a hypotheses-based experimental design, we hope to foster clarity and
reproducibility of our results, and to contribute to experimental evaluation of
graph drawing algorithms in general.
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Abstract. Constrained graph layout is a recent generalisation of force-directed
graph layout which allows constraints on node placement. We give a constrained
graph layout algorithm that takes an initial feasible layout and improves it while
preserving the topology of the initial layout. The algorithm supports poly-line
connectors and clusters. During layout the connectors and cluster boundaries act
like impervious rubber-bands which try to shrink in length. The intended applica-
tion for our algorithm is dynamic graph layout, but it can also be used to improve
layouts generated by other graph layout techniques.

1 Introduction

A core requirement of dynamic graph layout is stability of layout during changes to
the graph so as to preserve the user’s mental model of the graph. One natural require-
ment to achieve this is to preserve the topology of the current layout during layout
changes. While topology preservation has been used for dynamic layout based on orth-
ogonal graph layout, its use in force-directed approaches to dynamic layout is much
less common.

Constrained graph layout [12,3,4] is a recent generalisation of the force-directed
model for graph layout. Like force-directed methods, these techniques find a layout
minimising a goal function such as the standard stress goal function which tries to place
all pairs of nodes their ideal (graph-theoretic) distance apart. However, unlike force
directed methods, constrained graph layout algorithms allow the goal to be minimised
subject to placement constraints on the nodes. In this paper we detail a constrained
graph layout algorithm that preserves the topology of the initial layout. The primary
motivation for our development of this algorithm was to support dynamic layout but it
can also be used to improve layouts generated by other graph layout techniques such as
planarisation techniques [11].

Our algorithm supports network diagrams with poly-line connectors and arbitrary
node clusters. It ensures that the nodes do not overlap and that additional constraints on
the layout—such as alignment and downward pointing edges—remain satisfied. During
layout optimisation the paths, i.e poly-line connectors and cluster boundaries, act like
rubber-bands, trying to shrink in length and hence, in the case of connectors, straighten.
Like physical rubber bands, the paths are impervious and do not allow nodes and other

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 230–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) Euler diagram

(b) Metabolic pathway

Fig. 1. Example layouts obtained with the topology
preserving constrained graph layout algorithm. In
the metabolic pathway, three vertical alignment con-
straints have been added to improve the layout.

paths to pass through them. Thus, the
initial layout topology is preserved.
Figure 1 shows example layouts ob-
tained with our algorithm.

Extending constrained graph lay-
out to handle topology preserva-
tion is conceptually quite natural
since topology preservation can
be regarded as a kind of con-
straint. However, it was not possible
to straightforwardly extend existing
constrained graph layout algorithms
to preserve topology. One issue is
that previous algorithms were based
on functional majorization whose
use relied on particular properties of
the stress goal function.

The main technical innovations
in our new algorithm are fourfold.
First, we utilise a new goal func-
tion, P-stress, that encodes the rub-
ber band metaphor, measuring the
stretch of paths as well as trying to
place objects a minimum distance
apart. Importantly, the P-stress is
bend-point invariant in the sense that
merging two consecutive collinear
segments in a path does not change
the value of the goal function. This
aids convergence since it means that
the goal function behaves continuously as paths change during optimisation. Second,
we utilise gradient projection rather than functional majorization. This approach is
generic in the choice of goal function and so can be used to minimise P-stress. Third,
we give a novel algorithm for updating paths in a layout given that nodes are moved in a
single dimension. This maintains the relative order of nodes and paths in that dimension
and so preserves the initial topology. The final innovation is our uniform treatment of
connector routes and cluster boundaries as impervious paths. This allows our algorithm
to handle arbitrary clusters.

The algorithm for topology preserving constrained graph layout given here under-
pins two dynamic graph layout applications we have developed. The first is a network
diagram authoring tool, Dunnart, which uses the algorithm to provide continuous layout
adjustment during user interaction [5]. The second is a network diagram browser which
uses the algorithm to update the layout of a detailed view of part of the network as the
user changes the focus node or collapses or expands node clusters [6]. The contribution
of this paper is to detail the algorithm.
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2 Related Work

There has been considerable interest in developing techniques for stable graph layout
that preserve the user’s mental model of the graph [14]. These techniques are quite
specialised to the underlying layout algorithms. The standard approach for supporting
stability in force-directed approaches is to simply add a “stay force” on each node so
that it does not move unnecessarily, e.g. [9]. Stable dynamic layout has also been studied
for orthogonal graph layout, e.g. [2]. There, stability is preserved by trying to preserve
the current bend points and angles. This has the effect of preserving the layout topology.
Finally, in the case of Sugiyama-style layered layout stability is achieved by preserving
the current horizontal and vertical ordering between nodes, e.g. [15]. Our approach
is the first that we are aware of to base stability on topology preservation in a force-
directed style layout. It has the advantage over stay forces that the layout is better able
to adjust to changes while still preserving the original structure.

Orthogonal graph layout algorithms typically feature a refinement step that attempts
to shorten edges while preserving edge crossing topology [8]. However, the approach
is very specific to orthogonal drawings. Another method, [1], used a force directed ap-
proach but only handled abstract graphs with point nodes and straight-line edges. Most
closely related is our earlier extension to constrained stress majorization that preserves
layout topology while trying to straighten bends in poly-line connectors [7]. This works
by introducing dummy nodes in each connector at all possible bend points and adding
constraints to ensure a minimum separation between objects and bend-points. Unfor-
tunately, our experience with this algorithm was that straightening bends sometimes
meant that connector length was increased and that the algorithm did not scale to mod-
erately sized networks because of the large number of dummy nodes. Even worse it
did not always converge because the goal function was not bend-point invariant. The
algorithm given here is considerably simpler, convergent and faster.

3 Problem Definition

A graph G = (V,E,C) consists of a set of nodes V , a set of edges E ⊆ V × V , and a
set of node clusters C ⊆ ℘V . We let width(v) and height(v) give the width and height
of the bounding rectangle, rv , of each node v ∈ V .

A 2-D drawing of a graph is specified by a tuple (x, y, P ) where (xv, yv) gives
the centre position for each node v ∈ V and P is a set of paths specifying the edge
routings and cluster boundaries. A path is a piecewise linear path through a sequence
of points p1, . . . , pk where each point is either the center or one of the corners of a
node’s bounding rectangle and represented by a pair (v, i) where v ∈ V and i ∈
{Centre, TL, TR,BL,BR}). In the case of a path giving the routing for an edge
e = (s, t) ∈ E, p1 is the centre of node s and pk the centre of node t while the other
points are node bounding rectangle corners. In the case that the path is for a cluster
boundary, all points must correspond to node bounding rectangle corners and p1 = pk.

Separation constraints are inequality or equality constraints over pairs of position
variables in either the horizontal or vertical axes of the drawing, e.g. for a pair of nodes
u, v ∈ V we might define a separation constraint over their x−positions: xu + g ≤ xv

where g specifies a minimum spacing between them.



Topology Preserving Constrained Graph Layout 233

(a) Invalid (b) Not tight (c) Feasible

Fig. 2. Example of incorrect (a,b) and correct (c) paths

A feasible drawing of a graph (see Fig. 2) is one in which:

– all separation constraints are satisfied;
– no two node rectangles overlap;
– the nodes inside the region defined by the boundary of each cluster c are exactly

the nodes in c;
– every path p ∈ P is valid and tight.

A valid path is one in which no segment passes through a node rectangle, except the
first and last segments in a path corresponding to an edge which must terminate at the
centre of rectangles as specified above. A tight path is one where every bend (described
by three consecutive points a, b, c in the path) is wrapped around the rectangle rv asso-
ciated with the bend point b = (v, i). That is, the points a, b, c in order must constitute
a turn in the same direction as the points a, b, v in order, and the points b, c, v must also
constitute a turn in the same direction.

A common strategy for finding aesthetically pleasing drawings of graphs is to define
a cost function over the positions of the nodes and then to minimise this cost function
by adjusting these positions. In our case we are also interested in the lengths of paths.
Therefore, we use a novel cost function P-stress which also takes the paths P of the
layout into consideration:

∑

u<v∈V

wuv

(
(duv − ||(xu, yu), (xv, yv)||)+

)2 +
∑

p∈P

wp

(
(||p|| − Lp)+

)2

where (z)+ is z if z ≥ 0 and 0 otherwise and wp = 1
L2

p
, wuv = 1

d2
uv

.

The first component of P-stress is a modification of the stress function used in the
stress majorization [10] and Kamada and Kawai [13] layout methods. This considers the
ideal distance duv between each pair of nodes which is proportional to the graph theo-
retic distance, i.e. shortest path, between the nodes. However, unlike the stress function,
nodes that are more than their ideal distance apart are not penalised, thus eliminating
long range attraction since this can cause issues in highly constrained problems.

The second component of P-stress tries to make the length of each path p in the
network, no more than its ideal length Lp. The ideal length of the route for an edge
e is simply a fixed constant while the desired length of the boundary for cluster c is
2
√
π
∑

v∈c width(v)height(v) (i.e. the ideal length is proportional to the perimeter of
the circle of the same area as that of the constituent nodes). This second component is
purely attractive, otherwise minimising P-stress could potentially increase bends.
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Note that P-stress is bend-point invariant in the sense that merging two consecutive
collinear segments in a path does not change the P-stress of layout since the overall
path length does not change. This is important for convergence of the layout algorithm.

4 Minimising P-Stress Using Gradient Projection

Our layout problem is, therefore, given a feasible layout for a graph to find a new
layout that is feasible, has the same topology as the original layout, and which locally
minimises P-stress. In this section we give an algorithm to do this. An example of its
operation is shown in Fig. 3.

Our algorithm works by alternately adjusting horizontal and vertical positions of all
nodes to incrementally reduce P-stress. This makes the computation of the new po-
sitions considerably simpler than if both dimensions were considered together. Con-
strained stress majorization [4] also uses a similar approach to reduce stress. However,
the useful Cauchy-Schwarz based expansion of the stress function into horizontal and
vertical quadratic forms which strictly (upper-)bound the goal function, is no longer
easily derived for P-stress. Instead, at each iteration we use a quadratic approxima-
tion based on the second order Taylor series expansion of P-stress around the current
horizontal position x and compute a descent vector −g and step size α from the first
and second derivatives of this quadratic to compute a new position d for the horizontal
position variables. We then use the function project-x to project d onto the horizon-
tal constraints necessary to avoid overlap and to preserve topology and any other user
specified separation constraints, Cx, on the horizontal variables. Next we perform an
analogous operation to compute a new position for the vertical position variables y.
The high-level algorithm is thus:

procedure gradient-projection-x(x, y, P, C)
g ← ∇xP-stress(x, y, P )
H ← ∇2

xP-stress(x, y, P )
α ← gT g

gT Hg

d ← x − αg
return project-x(x, y, P, d, C)

procedure improve(x, y, P, Cx, Cy)
(x′, y′, P ′) ← (x, y, P )
repeat

(x,P ′′) ← gradient-projection-x(x, y, P, Cx)
(y,P ) ← gradient-projection-y(x, y, P ′′, Cy)

until |P-stress(x′, y′, P ′) − P-stress(x, y, P )| sufficiently small
return (x, y, P )

Before giving details of projection we must make precise what we mean by topol-
ogy preservation. Considering just the horizontal case, since the vertical is symmetrical,
we say that a horizontal adjustment of the nodes from feasible layout L to feasible L′

is topology preserving if no node or line segment moves through another node or line
segment. More exactly, let M and M ′ be the layouts obtained from L and L′, respec-
tively, by infinitesimally reducing the height of each node’s bounding rectangle and
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(a) Initial placement (b) After minimising P-stress

Fig. 3. Example of how our layout algorithm improves the network layout by reducing P-stress
(which shortens edge routes) while preserving the topology of the initial layout

appropriately modifying the paths. This means that rectangles whose top and bottom
were aligned in the original layout now have a infinitesimal vertical separation between
them. Then for any height h we must have that scanning left to right along the horizontal
line y = h encounters exactly the same sequence of edges, clusters and nodes in both
M and M ′ where an edge is encountered whenever the line intersects a path segment
for the edge, a cluster is encountered whenever the line intersects a path segment for
its boundary and a node is encountered when the line intersects the node’s bounding
rectangle.

5 Topology Preserving Projection

The heart of the layout algorithm are the procedures project-x and project-y which per-
form a projection operation in the specified axis. We shall focus on project-x: procedure
project-y is symmetric. The call project-x(x, y, P, d, C) returns a new x position and
paths (x′, P ′) s.t layout (x′, y, P ′) is feasible and preserves the topology of (x, y, P )
while ensuring x′ is as close as possible to the desired position d. It has three main
steps:

(1) Generate separation constraints Cno to ensure non-overlap of nodes and topology
constraints TC to ensure topology preservation.

(2) Project d on to SC = C ∪ Cno giving x̄. This is achieved by solving the quadratic
program:

min
x

∑

vinV

(xv − dv)2 subject to SC

(3) Update the path routing P to give P ′ by moving the nodes smoothly from x to x̄
appropriately adjusting the paths as the nodes move in order to satisfy the topology
constraints TC.

In Step 2 of project-x we solve the quadratic program using the incremental active-set
procedure solveQPSC given in [4]. Like most active-set methods it is difficult to prove
that this has polynomial running time, but in practice it is very fast, as indicated by our
experimental results. We now look at Steps 1 and 3 in more detail.

Non-overlap and topological constraints are generated for a horizontal move using
a top-to-bottom scan of the drawing. At each step we keep the list of currently open
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node bounding rectangles and path line segments. To do so we process the vertical
opening and closings of each rectangle OR,CR and line segment OS,CS of the given
routing in order from top to bottom and, when two such events occur at the same vertical
position, then with precedence:

– OS before CS so that horizontal segments are handled properly
– CR before OR to avoid unnecessary non-overlap constraints (assuming no zero

height rectangles)
– CS before OR, CR before OS, OS before OR, and CR before CS to ensure all

possible segment/rectangle interactions are considered.

Fig. 4. Constraints generated
during a vertical scan. There
is one separation constraint
xu + 1

2 (width(u) + width(v)) ≤
xv to prevent overlap, three bend
constraints (the construction for
the constraint ensuring the path
remains tight around v is shown)
and three straight constraints at the
places where the segments s and t
may potentially bend.

For each rectangle opening (i.e. the top of each
rectangle) we add to Cno a separation constraint be-
tween the rectangle and its immediate left and right
neighbours in the list of open rectangles at that y-
position (the scan position). Each separation con-
straint has the form xu +s ≤ xv over the x positions
of nodes u and v and preserves the relative horizon-
tal ordering of u and v and prevents the nodes from
overlapping, where s = (width(u) + width(v))/2.

The scan also generates topology constraints be-
tween nodes and paths which ensure that the paths
remain tight and valid. There are two types of
topology constraints: straight constraints—between
a node w and a path segment uv which ensures that
the path remains valid, i.e. the node does not over-
lap the path segment and bend constraints associ-
ated with a bend point between two consecutive line
segments uv and vw which ensures that the path re-
mains tight around the bend point v.

Both kinds of topology constraint give rise to a
linear inequality over the three variables corresponding to u, v and w enforcing that the
rectangle rw associated with node w must be to the right or left of a line between the
corners of two nodes u and v. We write this in the standard form xw+g⊕xu+p(xv−xu)
where⊕ is either ≤ or≥. For straight constraints 0 < p ≤ 1 while for bend constraints
p > 1. For instance, in the case of the bend constraint enforcing that the path remains
tight around the bend point v in Fig. 4 we have that

xwTL ≥ xuBR +
ywTL − yuBR

yvT L − yuBR

(xvT L − xuBR)

where xwT L = xw − width(w)/2 etc. This can be rewritten into the standard form.
The procedures for creating each type of constraint is given in Fig. 5.

If |P | denotes the number of path segments, the worst case complexity of Step 1
of project-x is O(|V |(|P | + log |V |)) and up to O(|V |) non-overlap constraints and
O(|P ||V |) topological constraints can be generated.

We now consider Step 3 of project-x. This is performed by procedure move (Fig. 6).
This updates the paths by moving the nodes horizontally from the initial feasible solution
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procedure createStraightConstraint (s, w, y, TC)
% for segment s = uv and node w at scan pos y
p ← (y − yu)/(yv − yu)
xp ← xu + p(xv − xu)
leftOf ← xw < xp

corner ← if y < yw then if leftOf then BR else BL
else if leftOf then TR else TL

offset(w) ← width(w)/2 (-ve if leftOf )
g ← offset(u) + p(offset(v) − offset(u)) − offset(w)
TC ← TC ∪ {TopologyConstraint (straight , u, v, w, p, g, leftOf)}

procedure createBendConstraint (b, TC)
% for bend point b = (v, i), between segments ab and bc
if i is the centre of v then return
if existing bend constraint t on b then remove t
leftOf ← i ∈ {TR,BR}
if |ya − yb| > |yb − yc| then

p ← (yc − ya)/(yb − ya)
g ← offset(a) + p(offset(b) − offset(a)) − offset(c)
t ← TopologyConstraint (bend , a, b, c, p, g, leftOf)

else
p ← (ya − yc)/(yb − yc)
g ← offset(c) + p(offset(b) − offset(c)) − offset(a)
t ← TopologyConstraint (bend , c, b, a, p, g, leftOf)

TC ← TC ∪ {t}

Fig. 5. The procedures for creating straight constraints and bend constraints are used in both the
initial scan to set up topology constraints and by the procedure satisfy (Fig. 6). The function
TopologyConstraint creates a constraint of the form xw + g ≤ xu + p(xv − xu) if leftOf (or ≥
otherwise).

x for which the routing is correct towards x̄ detecting violated topology constraints as
they move. A violated bend constraint indicates that consecutive segments have become
aligned and can be replaced with a single segment. A violated straight constraint indicates
that a single segment needs be split into two new segments with a new bend point.

The maximum horizontal move γ that can be made along the line x = a + γ(b− a)
from a to b without violating topology constraint t is determined by solving the linear
equation associated with the constraint. For example, if t is the constraint xw+g ≤ xu+
p(xv−xu) then the maximum safe move is obtained by substituting xi = ai+γ(bi−ai)
for each node i and solving for γ:

γ =
α

β
=

aw − g − au + p(au − av)
bu − au + p(au − bu + bv − av) + aw − bw

The iterative process of finding the next such constraint and updating the paths P is
accomplished in the move procedure, Fig. 6.

Note that the satisfy procedure shown in Fig. 6, which satisfies a topology constraint
by either merging or splitting segments, must transfer or replace other bend and straight
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procedure satisfy(t, TC,P )
TC ← TC \ {t}
if t is a bend constraint over points a, b, c then

% b = (v, i) is the bend point of t
replace segments ab and bc in P with new segment ac
createStraightConstraint (ac, v, by)

else % t is a straight constraint over u, v, w
replace segment uw in P with segments uv and vw
transfer straight constraints on uw to either uv or vw
createBendConstraint(u)
createBendConstraint(v)

procedure move(x, x̄, TC, P )
repeat

α ← β ← 1
t∗ ← None
for t ∈ TC

% t is a Topology Constraint over u, v, w with constants p, g
a ← aw − g − au + p(au − av)
b ← bu − au + p(au − bu + bv − av) + aw − bw

if aβ < αb then
α ← a, β ← b, t∗ ← t

x ← x + α
β
(x̄ − x)

if t∗ �= None then satisfy(t, TC, P )
until α

β
= 1

Fig. 6. The procedure satisfy(t, TC, P ) satisfies a topology constraint t ∈ TC that is at equality,
by modifying P with a valid and tight system of segments. Procedure move(x, x̄, TC,P ) up-
dates the path P by moving nodes in one dimension from position x to x̄ to satisfy the topology
constraints TC.

constraints associated with the affected segments. The detail is not shown, but an ex-
ample of the difficult edge case of a horizontal path segment is shown in Fig. 7.

The move procedure used for updating the paths to preserve validity and topology
can also be thought of as a kind of active-set process, and as such it is difficult to prove
that it is polynomial. Again, however, please see our results section for actual running
times which indicate that running times scale fairly well with the number of topology
constraints generated. Note that the number of bend constraints is exactly the number
of bend points in P , and the number of straight constraints—while the worst case is
O(|P ||V |)—is limited by only generating constraints for segments which are visible in
the axis of movement from a given rectangle open/close.

Theorem 1. Let (x, y, P ) be a feasible layout with respect to the separation constraints
Cx andCy in thex and y dimensions, respectively. Then project-x(x, y, P, d, Cx) returns
a new x position and paths (x′, P ′) s.t layout (x′, y, P ′) is feasible and preserves the
topology of (x, y, P ) while ensuring x′ is as close as possible to the desired position d.

Proof. (Sketch) Any feasible and topology preserving layout must satisfy SC = Cx ∪
Cno. Step 2 ensures that x′ is the projection of d onto SC, so it is the closest node
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Fig. 7. The result of each iteration of move is shown for a path with a horizontal segment. The
iterations progress from left to right. The node v is required to move to the right relative to the
other nodes. The four central nodes are shown slightly separated for clarity, but we assume that the
boundaries of these nodes are actually touching—hence creating, initially, a horizontal segment.
The small circles represent bend points, while the ‘-’s represent straight topology constraints.
Note that, to properly preserve topology as the segments are split to satisfy a straight constraint,
the remaining straight constraints must be transferred to the correct sub-segments.

position that satisfies SC. Furthermore, one can prove by induction that the satisfy
procedure returns updated paths P ′ that are topology preserving, tight and valid.

6 Finding a Feasible Topology

We can apply our topology preserving layout adjustment to a layout obtained by any
graph drawing algorithm, assuming the generated layout is feasible as defined in §3.
Although not the primary focus of this paper we have also developed an algorithm to
find an initial feasible layout. This has two main steps:
(1) Perform standard stress majorization to find an initial position for the nodes. A

position for the nodes satisfying the constraints is found by projecting this position
on to the user specified separation constraints and then using a greedy heuristic to
satisfy the non-overlap constraints and cluster containment constraints. We use the
approach sketched in [4].

(2) Edge routing is performed using the incremental poly-line connector routing library
libavoid [16] to compute poly-line routes for each edge, which minimise edge
length and amount of bend. An initial cluster boundary is obtained by taking the
convex hull of the nodes in the cluster.

We note that the edge routing library has been extended to handle clusters and finds
routes for edges that do not unnecessarily pass through clusters. It also performs “nudg-
ing” on the final routes to separate paths with shared sub-routes.

7 Experimental Results

Table 1 gives some indicative run-times on various size graphs for finding an initial
layout using the two-step algorithm given above, then using the topology-preserving
constrained graph layout algorithm to find a locally optimal layout. The topology-
preserving constrained graph layout algorithm1 is quite fast with less than two seconds

1 Implemented as part of the Adaptagrams project. http://adaptagrams.sf.net/

http://adaptagrams.sf.net/
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Table 1. Indicative running times for layout on an average (1GHz) PC for various size randomly
generated directed networks with constraints imposing downward pointing edges. All times are
in seconds.

|V | |E| Feasible layout Optimise Total
Step 1 Step 2

49 51 0.08 0.11 0.06 0.17
93 105 0.22 0.50 0.24 0.74
128 144 0.51 1.02 0.55 1.57
144 156 0.92 1.31 0.45 1.76
169 195 0.83 1.97 0.82 2.79
199 238 1.31 2.94 1.45 4.39
343 487 2.65 13.94 1.89 15.83

For each graph we give the number of nodes
and edges. The number of separation constraints
imposing downward edges is |E|. We give the
time to find an initial feasible layout (Step 1
and Step 2) from a random starting configura-
tion; and then to optimise the result using the
topology preserving constrained graph layout al-
gorithm. Optimisation algorithms were set to
terminate when the change in P -stress or stress
was < 10−5.

required to layout networks of around 350 nodes. We have found that the main cost
for each iteration is computation of the descent vector and step size. We also note that
our experience with the algorithm in interactive applications is that it provides real-time
updating of layout for graphs with up to 100 nodes.

Computing an initial layout is more expensive, and the dominating cost in finding
the initial layout is finding the initial connector routing.

8 Conclusion

We have presented a constrained graph layout algorithm that preserves the topology of the
initial layout. It supports network diagrams with poly-line connectors and arbitrary node
clusters. It ensures that nodes do not overlap and that additional placement constraints
on the layout remain satisfied. The algorithm is fast enough to support real-time layout
of networks with up to 100 nodes in two dynamic graph layout applications we have
developed: a network diagram authoring tool and a network diagram browser. While the
primary motivation for our development of the algorithm was to support dynamic layout
it can also be used to improve layouts generated by other graph layout techniques.

One of the strengths of the algorithm is that it can be straightforwardly modified
to work with other goal function, so long as the second derivative is computable and
the goal function is bend-point invariant. We plan to explore other goal functions. We
also plan to explore generalising the algorithm to handle arbitrary linear constraints, not
only separation constraints. As part of this we plan to modify the algorithm to perform
minimization in both dimensions at once, rather than separately.
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Abstract. We study two embedding problems for upward planar digraphs. Both
problems arise in the context of drawing sequences of upward planar digraphs
having the same set of vertices, where the location of each vertex is to remain
the same for all the drawings of the graphs. We develop a method, based on the
notion of book embedding, that gives characterization results for embeddability
as well as testing and drawing algorithms.

1 Introduction

In the upward point-set embeddability problem with mapping the input is an upward
planar digraph G with n vertices, a set S of n distinct points in the plane, and a mapping
Φ from the vertices of G to the points of S. The desired output is an upward planar
drawing of G with the vertices located at the points of S assigned by the mapping. Not
all instances of this problem admit a solution, as shown in Fig. 1(a) (there is no choice
of upward direction with respect to which the location of vertex 1 is lowest).

(a) (b)

Fig. 1. (a) An upward planar digraph G, a set S of points, and a mapping of the vertices to the
points of S such that an upward point-set embedding of G on S does not exist. (b) Two upward
planar digraphs whose union is acyclic but that do not admit an upward consistent simultaneous
embedding.
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In the upward consistent simultaneous embeddability problem the input is a sequence
of upward planar digraphs that have the same vertex set. The desired output is a set S
of points in the plane and a mapping from the vertices to the points such that all the
digraphs have an upward point-set embedding on S with respect to a common, upward
direction. Clearly, a solution exists only if the union of the digraphs is acyclic. However,
this condition is not sufficient: the union of the two digraphs of Fig. 1(b) is acyclic, yet,
as can be checked by straightforward case analysis, there is no simultaneous upward
embedding with respect to a common direction.

Note that in the first problem, referred to as the point-set embeddability problem for
short, the desired locations of the vertices are specified by Φ in the problem input, and
only one graph is given. In the second problem, referred to as the simultaneous em-
beddability problem for short, the locations for the vertices are to be computed, and
several graphs are given in the input. These problems arise in the context of computing
drawings for a set or sequence of graphs under two different scenarios. In the first sce-
nario, the graphs are specified one at a time, and the vertex locations for the drawing
of the first graph determine the vertex locations for all the remaining drawings. Hence
for each graph after the initial one, the locations for its drawings are specified. This
gives rise to the point-set embeddability problem. An example of this scenario is pro-
vided by the visual analysis of self-modifiable code, based on computing a sequence of
drawings whose edges are defined at run-time (see, e.g., [9]). In the second scenario,
the graphs are all known from the outset. This gives rise to the simultaneous embed-
dability problem. This scenario occurs, for example, in the visual comparison of several
phylogenetic trees proposed for the same organisms.

1.1 Summary of Main Results

Our first main result, of interest on its own, provides a tool for obtaining the others.
Namely, in Sect. 3, we prove that a planar st-digraph together with any given topologi-
cal numbering ρ admits an upward topological book embedding such that the ordering
of the vertices along the spine is ρ. The number of spine crossings per edge is at most
2n− 4, which is asymptotically worst-case optimal (n is the number of vertices).

For the point-set embeddability problem, we characterize in Sect. 4 those instances
that admit a solution, providing an O(n2)-time drawing algorithm that produces at most
2n− 3 bends per edge, which is worst-case asymptotically optimal. Then in Sect. 5 we
give an O(n3)-time testing algorithm.

For the simultaneous embedding problem, in Sect. 6 we give a combinatorial char-
acterization of instances that admit a solution.

1.2 Related Results

Both the embeddability problems we consider have mainly been studied for planar undi-
rected graphs. In that case, Halton [9] proved that every instance of the point-set em-
beddability problem has a solution. Pach and Wenger [13] showed that solutions can
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require Ω(n) bends per edge and showed how to construct drawings with at most O(n)
bends per edge. See [1] for recent extensions and improvements. See Frati, Kaufmann,
and Kobourov [5] for an extensive survey of simultaneous embeddability problems.
Simultaneous embeddability for upward planar digraphs has been recently undertaken
in [6], but for two digraphs, and without the requirement for the same choice of upward
direction.

For book embeddings, see, e.g., [4,6] for the notion of an upward planar drawing
where the vertices are aligned along a spine in a specified order, and edges are drawn
as monotone curves that can cross the line. See [1] for results on book embeddings of
undirected planar graphs.

For reasons of space, some proofs have been omitted and can be found in [7].

2 Preliminaries

We assume familiarity with basic graph drawing terminology [2,12]. A digraph is a
directed graph. Let G be a digraph and let u, v be any two vertices of G; (u, v) denotes
the directed edge from u to v. A topological ordering of a planar digraph G with n
vertices is a mapping ρ of its vertices to distinct integers such that for every edge (u, v)
we have ρ(u) < ρ(v). A topological numbering is a topological ordering where the
vertices are mapped to integers 1, . . . , n. Let u and v be two vertices of a digraph with a
given topological numbering ρ; if ρ(u) < ρ(v) we say that u precedes v. A topological
numbering of a planar digraph with n vertices can be computed in O(n) time using
standard graph search techniques [3].

A drawing of a digraph G maps each vertex of G to a distinct point in the plane and
each edge (u, v) of G to a simple Jordan curve oriented from the point representing
u to the point representing v. A drawing of a digraph is planar if no two edges cross
each other. A planar drawing Γ of a digraph G partitions the plane into topologically
connected regions called the faces. The unbounded face is called the external face. A
planar drawing of a digraph is upward if all of its edges are monotonically increasing
in a common direction which is called the upward direction of the drawing. A digraph
that admits an upward planar drawing is said to be upward planar. Let Γ be an upward
planar drawing of an upward planar digraph G. Γ induces two linear lists of incoming
and outgoing edges incident on each vertex v of G. An upward planar embedding of an
upward planar digraph G is an equivalence class of upward planar drawings that induce
the same two linear lists for each vertex of G and define the same external face. An
upward planar digraph G with a given upward planar embedding is called an upward
planar embedded digraph.

An st-digraph is a biconnected acyclic digraph with exactly one source s and ex-
actly one sink t, and such that (s, t) is an edge of the digraph. A planar st-digraph is
an st-digraph that is planar and embedded with vertices s and t on the boundary of the
external face. A planar st-digraph is said to be maximal if all its faces are triangles, i.e.
the boundary of each face has exactly three vertices and three edges. Given any planar
st-digraph G with n vertices along with a topological ordering of its vertices, by using
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standard visit techniques, one can augment G by adding edges in O(n) time such that
the resulting digraph has the same vertex set as G, is a maximal planar st-digraph, and
preserves the given topological ordering. Hence from now on, we assume without loss
of generality that planar st-digraphs are maximal.

Lemma 1. [3] Let G be a planar acyclic digraph. G is upward planar if and only if it
is the spanning subgraph of a planar st-digraph.

A planar st-digraph that includes G as a spanning subgraph is called an including pla-
nar st-digraph of G.

3 Upward Topological Book Embeddings

An upward topological book embedding of a planar st-digraph G is an upward pla-
nar drawing Γ of G such that: (i) The vertices of Γ lie on an oriented line called the
spine of Γ ; (ii) Each edge (u, v) of G is represented in Γ as a sequence of semi-circles
c1, c2, . . . ck such that consecutive semi-circles lie on different half-planes and share
a point along the spine, called a spine crossing of the edge. An example of an up-
ward topological book embedding with the spine oriented according to increasing y-
coordinate is given in Fig. 2. In the figure, edge (5, 7) consists of the concatenation of
three semi-circles and has two spine crossings, while edge (1, 3) does not have spine
crossings.

In this section we show that for any given topological numbering ρ, a planar st-
digraph always admits an upward topological book embedding such that a vertex v
precedes a vertex w along the spine if and only if ρ(v) < ρ(w). We call this type of
drawing a ρ-constrained upward topological book embedding. This can be viewed as a
constrained counterpart of [14].

Fig. 2. An upward topological book embedding of the maximal planar st-digraph in Fig. 3(a).
The vertices are ordered along the spine according to the indices of the vertices in Fig. 3(a). The
drawing is computed by using the drawing algorithm of Theorem 1.



246 F. Giordano, G. Liotta, and S.H. Whitesides

3.1 Dual Digraph and k-Facial Subgraph

Let G be a maximal planar st-digraph. For each edge e = (u, v) of G, we denote by
left(e) (resp. right(e)) the face to the left (resp. right) of e in G. Let s∗ be the face
right((s, t)), and let t∗ be the face left((s, t)). In the rest of this section we assume
that t∗ is the external face of G. Faces s∗ and t∗ are highlighted in Fig. 3(a). Let G be a
maximal planar st-digraph. The dual of G is the planar st-digraph denoted as G∗ such
that: (i) G∗ has a vertex for each face of G; (ii) G∗ has an edge e∗ = (left(e), right(e)),
for every edge e �= (s, t) of G; (iii) G∗ has source s∗, sink t∗, and it has edge (s∗, t∗) on
its external face. Figure 3(b) depicts with dashed edges the dual digraph of the digraph
of Fig. 3(a).

(a) (b) (c)

Fig. 3. (a) A planar st-digraph G with a topological numbering of its vertices. (b) Planar st-
digraph G (solid) and its dual (dashed). The vertices of the dual are numbered according to a
topological numbering. (c) The 5-facial subgraph of the maximal planar st-digraph in (a).

Property 1. Let G be a maximal planar st-digraph and let G∗ be the dual digraph of G.
Graph G∗ is a planar st-digraph (without multiple edges) with source s∗ and sink t∗.

Let G be a maximal planar st-digraph and let G∗ be the dual of G. Let {v∗1 = s∗, v∗2 ,
. . . , v∗r = t∗} be the set of vertices of G∗ where the indices are given according to a
topological numbering of G∗. See, for example, Fig. 3(b), where the vertices of the dual
are numbered according to a topological numbering. By definition of dual st-digraph, a
vertex v∗i of G∗ (1 ≤ i ≤ r) corresponds to a face of G; in the remainder of this section
v∗i both the vertex of the dual digraph G∗ and its corresponding face in the primal
digraph G. Let Vk be the subset of the vertices of G that belong to faces v∗1 , v∗2 , . . . , v∗k.
The subgraph of G induced by the vertices in Vk is called the k-facial subgraph of G
and is denoted as Gk . Face v∗k is called the k-th face of G. Figure 3(c), for example,
shows the 5-facial subgraph of the maximal planar st-digraph depicted in Figure 3(a).

Lemma 2. [6] Let G be a maximal planar st-digraph with r faces, let Gk−1 be the
(k−1)-facial subgraph of G (2 ≤ k ≤ r) and let Gk be the k-facial subgraph of G. Let
v∗k be the k-th face of G consisting of edges (w, w′), (w′, w′′), and (w, w′′). One of the
following statements holds. (S1): (w, w′) and (w′, w′′) are edges of the external face
of Gk−1; (w, w′′) is an edge of the external face of Gk. (S2): (w, w′′) is an edge of the
external face of Gk−1; (w, w′) and (w′, w′′) are edges of the external face of Gk.
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Lemma 3. [6] Let G be a maximal planar st-digraph with r faces and let Gk be the
k-facial subgraph of G (1 ≤ k ≤ r). Gk is a planar st-digraph.

3.2 ρ-Constrained Upward Topological Book Embeddings

Let Γ be an upward topological book embedding of a planar st-digraph G, let Λ be
the spine of Γ , and let p1 and p2 be two vertices or two spine-crossings of Γ . Assume
without loss that Λ is vertical. The notation p1 < p2 means that p1 precedes p2 along
the spine of Γ . We denote with (p1, p2) a semi-circle in Γ (either an edge or a portion
of an edge) with antipodal points p1 and p2 such that p1 < p2. We say that any point p
of Λ is covered if there exists a semi-circle (p1, p2) in the half-plane on the right-hand
side of Λ such that p1 < p < p2. Otherwise, we say that p is visible. For example,
vertex 3 of Fig. 2 is covered while vertex 4 is visible.

Let p1, p2 be two points on the spine of Γ . We say that segment p1p2 is a maximal
covered segment if every point p such that p1 < p < p2 is covered and there are no other
segments q1q2 with q1 ≤ p1 < p2 ≤ q2 such that this same property holds. Similarly,
p1p2 is a maximal visible segment if all of its points are visible and it is not a subset
of another visible segment. For example, segment p1p2 in Fig. 2 is a maximal visible
segment. Let v be a point of Λ that represents a vertex of G. We say that v has an upper
pocket if there exists a maximal visible segment p1p2 such that: (i) v ≤ p1 < p2, (ii) no
semi-circle (either in the left or in the right half-plane defined by Λ) has an end-point in
p1p2, and (iii) there is no vertex u such that v < u ≤ p1 < p2. For example, segment
p1p2 in Fig. 2 is the upper pocket of vertex 5 but it is not the upper pocket of vertex 4.
Similarly the lower pocket of a vertex v in Γ is defined by considering maximal visible
segments below v. Segment p1p2 in Fig. 2 is the lower pocket of vertex 6.

Theorem 1. Let G be a maximal planar st-digraph and let ρ be a topological number-
ing of G. G admits a ρ-constrained upward topological book embedding with at most
2n−4 spine crossings per edge, which is asymptotically worst-case optimal. Also, such
a ρ-constrained upward topological book embedding can be computed in O(n2) time.

Proof. We compute a ρ-constrained upward topological book embedding Γ ρ of G by
maintaining the following invariant properties: (I1): Every vertex has a lower pocket
and an upper pocket. (I2): For every maximal covered segment p1p2, there exists a
vertex v of G such that p1 < v < p2.

We proceed by induction on the number of internal faces of G.

Base Case: Refer to Fig. 4(a). Suppose Ghas exactly one internal face v∗ and let{s, t, w}
be the vertices of the boundary of face v∗. Let Λ be a vertical line in the plane. Draw s,
t and w along Λ such that s < w < t. Draw edges (s, t), (s, w) and (w, t) as the semi-
circles (s, t), (s, w) and (w, t) respectively, in the half-plane on the left-hand side of
Λ. By construction, the resulting drawing is a ρ-constrained upward topological book
embedding. Also, segment sw is a lower pocket for w and an upper pocket for s, while
segment wt is an upper pocket for w and a lower pocket for t. The upper pocket for t and
the lower pocket for s are the half lines above t and below s, respectively. Thus Property
I1 holds. Property I2 holds since there are no covered segments in this case.
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(a) (b) (c) (d)

Fig. 4. Four steps of the algorithm in the proof of Theorem 1 applied to the digraph in Fig. 3(a)

Inductive case: Suppose by induction that a ρ-constrained upward topological book
embedding of G satisfying Properties I1 and I2 can be computed when G has k − 1
faces and assume that G has k faces (k > 1). Let G∗ be the dual of G and let {v∗1 =
s∗, v∗2 , . . . , v∗k = t∗} be the vertex set of G∗, where the indices are given according to
a topological numbering of G∗. Also, let Gk−1 be the (k − 1)-facial subgraph of G.
By definition and by Lemma 3, Gk−1 is a planar st-digraph with exactly k − 1 inter-
nal faces. By the inductive hypothesis there exists a ρ-constrained upward topological
book embedding Γ ρ

k−1 of Gk−1 satisfying Properties I1 and I2. Since G has k internal
faces, the k-facial subgraph of G is G itself. Let v∗k be the k-th face of G consisting
of edges (w, w′), (w′, w′′), and (w, w′′) (see also Fig. 4). Let Λ be the spine of Γ ρ

k−1.
We show how to compute a ρ-constrained upward topological book embedding Γ ρ of
G satisfying Properties I1 and I2, by adding face v∗k to Γ ρ

k−1. We distinguish two cases
depending on whether the k-th face of G satisfies Statement S1 or Statement S2 of
Lemma 2.

Statement S1 of Lemma 2 holds. Refer to Fig. 4(d) where v∗k is face v∗4 and we need to
insert edge (1, 5). Let j be the number of vertices between w and w′′ along Λ. Suppose
j = 1. Since w, w′ and w′′ are on the external face of Gk−1, by Property I1 there
are no endpoints of semi-circles on segments ww′ and w′w′′. Choose two arbitrary
points p and p′ such that w < p < w′ < p′ < w′′. Draw edge (w, w′′) as three semi-
circles (w, p),(p, p′),(p′, w′′), respectively in the half-planes on the left hand-side, right
hand-side, and left hand-side of Λ. The resulting drawing Γ ρ is a ρ-constrained upward
topological book embedding of G. Also, Property I1 holds, since wp is an upper pocket
for w and a lower pocket for w′ and p′w′′ is an upper pocket for w′ and a lower pocket
for w′′. Furthermore, pp′ is a maximal covered segment and indeed w is such that
p < w < p′. Thus, Property I2 holds.

If the number of vertices between w and w′′ along Λ is j = h− 1 (2 < h < n) then
edge (w, w′′) can be added to Γ ρ

k−1 such that the resulting drawing is a ρ-constrained
upward topological book embedding satisfying Properties I1 and I2. Assume j = h.
Let p be the point of Λ above w such that wp is the upper pocket of w.
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Two cases are possible: (i) p is the point representing vertex w′; (ii) p is an endpoint
of a semi-circle (p, p′) in the half-plane on the right-hand side of Λ. We can deal with
cases (i) and (ii) at once, since case (i) can be seen as a special instance of case (ii),
where p and p′ coincide with vertex w. Thus, suppose case (ii) holds and let (q, q′)
be a semi-circle of Γ ρ

k−1 in the half plane on the right-hand side of Λ. Points q and
q′ cannot be such that q < p < q′ since every point of wp must be visible from the
right-hand side, and they cannot be such that p < q < p′ < q′ since in this case
there would be a crossing between semi-circles (q, q′) and (p, p′). Therefore, pp′ is a
maximal covered segment of Γ ρ

k−1. Hence, by Property I2, there must exist a vertex v
of Gk−1 such that p < v < p′ in Γ ρ

k−1. Also, by Property I1, there exists a point p′′ of
Λ such that p′p′′ is the upper pocket of v. Let p̃ and p̃′ be arbitrary points of Λ such that
w < p̃ < p < p′ < p̃′ < p′′.

We draw edge (w, w′′) by splitting it into two edges: An edge from w to p̃′ and
an edge from p̃′ to w′′. Since there are exactly h − 1 vertices between p̃′ and w′′,
edge (p̃′, w′′) can be added to Γ ρ

k−1 so that the resulting drawing is a ρ-constrained
upward topological book embedding satisfying Properties I1 and I2. Notice that, as a
consequence of Property I1, there must exist a point p′′ with p̃′ < p′′ such that p̃′p′′

is an upper pocket for p̃′, which means that the first semi-circle of edge (p̃′, w′′) is in
the half-plane on the left hand-side of Λ. Now, draw edge (w, p̃′) as two semi-circles
(w, p̃) and (p̃, p̃′) in the half planes on the left-hand side and on the right-hand side of Λ,
respectively. Semi-circles (w, p̃) and (p̃, p̃′) do not cross any other semi-circle of Γ ρ

k−1.
Also, Properties I1 and I2 hold for w and v. Indeed, segment wp̃ is an upper pocket for
w and a lower pocket for v while segment p̃′p′′ is an upper pocket for v. Property I2
holds for v as segment p̃p̃′ is a maximal covered segment and v is such that p̃ < v < p̃′.
Therefore, the semi-circles we have drawn preserve planarity and respect Properties I1
and I2. It follows that edge (w, w′′) has been drawn as a monotone curve from w to
w′′ formed by a sequence of semi-circles c1, c2, . . . c2h+1 such that consecutive semi-
circles lie on different half-planes, share only a spine crossing along Λ, do not cross
other semi-circles and Properties I1 and I2 hold. The resulting drawing Γ ρ is thus a ρ-
constrained upward topological book embedding of G satisfying Properties I1 and I2.

StatementS2 of Lemma 2 holds. Refer also to Fig. 4(b) and Fig. 4(c). Letv be the vertex
of Gk−1 having the largest number in the topological numbering such that ρ(v) < ρ(w′).
Let p1p2 be the upper pocket of v. Draw vertex w′ such that p1 < w′ < p2. Segment
p1w′ is both the new upper pocket of v and the lower pocket of w′ while segment w′p2
is the upper pocket of w′. Thus, the drawing is a ρ-constrained upward topological book
embedding satisfying Properties I1and I2. Draw edge (w, w′)by the same technique as in
the previous case. The same reasoning proves that the resulting drawing is a ρ-constrained
upward topological book embedding satisfying Properties I1 and I2. The same argument
applies to edge (w′, w′′). The final drawing is thus a ρ-constrained upward topological
book embedding of G satisfying Properties I1 and I2.

It remains to prove the time complexity of the algorithm and the number of spine
crossings per edge of the drawing. The dual digraph of G and a topological numbering
of its vertices can be computed in linear time. Indeed, by Property 1, the dual of G
is a planar st-digraph without multiple edges. Also, each edge (u, v) is drawn by the
algorithm so that for every vertex w with u < w < v there are exactly two spine
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crossings p1 and p2 with p1 < w < p2. It follows that the number of spine crossings
per edge is at most 2(n − 2) = 2n − 4; we also remark that Ω(n) bends are known
to be necessary for constructing topological book embeddings with a fixed ordering
of undirected planar graphs [1]. Finally, the time complexity of the described drawing
algorithm is O(m · n) that is equal to O(n2) since G is a planar graph.

4 Upward Point-Set Embeddability with a Given Mapping Φ

We first study the special case that the points of S are collinear and that the input graph
is a planar st-digraph, and then study general upward planar digraphs and points in
general position.

4.1 Collinear Points and Planar st-Digraphs

Assume without loss that p1, . . . , pn are vertically aligned. We associate each point pi

of S with an integer in the set {1, . . . , n} such that point pi is given integer k if pi is
the k-th point of S that we encounter moving along the increasing y-direction. We also
consistently assign numbers to the vertices v1, . . . , vn: If point pi = Φ(vj) has been
given integer k, then also vj is given integer k. See Fig. 5(a) for an example. We call
such a numbering of the vertices of G the Φ-numbering of G and we call Φ-number
of vj the number assigned to vertex vj . We say that mapping Φ induces a topological
numbering of G if the Φ-numbering of G is also a topological numbering of G. For
example, the Φ-numbering of Fig. 5(a) does not induce a topological numbering of G.

The characterization almost immediately follows from the result in Sect. 3 concern-
ing ρ-constrained upward topological embeddability and from the observation that the
y-coordinates of the vertices in an upward planar drawing induce a topological number-
ing of the graph.

Lemma 4. Let G be an upward planar digraph with n vertices, S = {p1, . . . , pn}
a set of vertically aligned points and Φ a mapping from G to S. Let Γ be an upward
topological book embedding of G such that: (i) the maximum number of spine crossings
per edge of Γ is k; (ii) for every pair of vertices u and v of G such that u < v along
the spine of Γ , the Φ-number of u is smaller than the Φ-number of v. Then G admits an
upward point-set embedding on S consistent with Φ, with at most k +1 bends per edge.

Theorem 2. Let G be a planar st-digraph with n vertices; let S be a set of n distinct
collinear points in the plane; let Φ be a mapping from G to S. G admits an upward
point-set embedding on S consistent with Φ if only if Φ induces a topological numbering
of G. Also, such an upward point-set embedding of G on S can be computed in O(n2)
time with at most 2n− 3 bends per edge, which is asymptotically worst-case optimal.

4.2 Points in General Position and Upward Planar Digraphs

In this section we extend Theorem 2 by characterizing when mapping Φ guarantees
the upward point-set embeddability of a (not necessarily st-) upward planar digraph G
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(a) (b)

Fig. 5. (a) A planar st-digraph G, a set S of distinct collinear points in the plane and the Φ-
numbering of G. (b) A digraph G and a set S of points in the plane. Mapping Φ induces a
topological numbering of G on �, whereas it does not induce a topological numbering of G on �′.

on a set S of (not necessarily collinear) points. Let 
 be a directed line. We denote as
S� = {p′1, . . . , p′n} the collinear set of points obtained by orthogonally projecting S
onto 
; we assume that the direction of 
 is such that when projecting S on 
 no two
projected points coincide. Also, let Φ� be the mapping from G to S� that associates
each vertex v of G with the projection of Φ(v) on 
. We say that mapping Φ induces
a topological numbering of G on 
 if mapping Φ� induces a topological numbering of
G. For example, Fig. 5(b) shows the digraph G, the set S and the mapping Φ from
G to S defined by associating every vertex of G with the point of S having the same
index; also, two directed lines 
 and 
′ are depicted such that Φ induces a topological
numbering on 
 while it does not induce a topological numbering on 
′.

Theorem 3. Let G be an upward planar digraph with n vertices, S a set of n distinct
points in the plane, and Φ a mapping from G to S. G admits an upward point-set
embedding consistent with Φ if and only if there exists an including planar st-digraph
G′ of G and a directed line 
 such that Φ induces a topological numbering of G′ on 
.
Also, such an upward point-set embedding of G on S can be computed in O(n2) time
with at most 2n− 3 bends per edge, which is asymptotically worst-case optimal.

We remark that the number of bends per edge stated in Theorem 3 improves by a con-
stant factor the best known upper bound of 3n + 2 for the point-set embeddability with
mapping of undirected planar graphs (Theorem 4 of [1]).

5 Testing Upward Point-Set Embeddability

Theorem 3 naturally raises the question about how to efficiently test whether an upward
planar digraph G with n vertices admits an upward point-set embedding consistent
with a given mapping Φ on a set S of n distinct points. By Theorem 3, it suffices to test
whether there exist an including planar st-digraph G′ of G and a directed line 
 such
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that Φ induces a topological numbering of G′ on 
. Therefore, we consider every di-
rected line 
 such that Φ induces a distinct Φ�-numbering. For each such Φ�-numbering,
we check whether it is a topological numbering of G and, if so, we verify whether
there exists an including planar st-digraph of G that preserves it. The following lemma
strongly relies on results by [10,11] concerning level planarity testing and embedding;
its proof is omitted from this abstract.

Lemma 5. Let ρ be a Φ�-numbering. There exists an O(n)-time algorithm that tests
whether ρ is a topological numbering of G and, if so, whether there exists an including
planar st-digraph of G that preserves ρ.

To compute all possible Φ�-numberings we must consider all possible directed lines
such that the orthogonal projections of the points on these lines produce different per-
mutations of the points. This is equivalent to computing the well-known circular se-
quence of permutations associated with point set S (see, e.g. [8]).

Lemma 6. [8] Let S be a set of n distinct points in the plane. The circular sequence of
permutations associated with S has cardinality O(n2) and can be computed in O(n2)
time.

Theorem 4. Let G be an upward planar digraph, S = {p1, . . . , pn} a set of n distinct
points in the plane, and Φ a mapping from G to S. There exists an O(n3)-time algorithm
that tests whether G admits an upward point-set embedding on S consistent with Φ.

6 Upward Consistent Simultaneous Embeddability

The following theorem characterizes the upward simultaneous embeddability of a se-
quence of upward planar digraphs with respect to the same direction.

Theorem 5. A sequence G1, G2, . . . , Gk of distinct upward planar digraphs sharing
the same vertex set admits an upward consistent simultaneous embedding with respect
to the same direction if and only if there exists a sequence G′

1, G
′
2, . . . , G

′
k such that:

(i) G′
i is an including planar st-digraph of Gi, and (ii)

⋃k
i=1 G′

i is acyclic.

Proof. If the sequence G1, G2, . . . , Gk admits the desired embedding, then each draw-
ing is an upward planar drawing of Gi (1 ≤ i ≤ k) and has an including planar st-
digraph by Lemma 1. Since all drawings have the same direction of upwardness, the
union of these planar st-digraphs is acyclic.

Let n be the number of vertices in each graph of the sequence and let G′ be the
union digraph, that is G′ =

⋃k
i=1 G′

i. Assume that G′ is acyclic and let ρ be a topo-
logical numbering of G′. Note that ρ is a topological numbering of each G′

i. Compute
a ρ-constrained upward topological book embedding for each G′

i by using Theorem 1.
Define a set of n distinct points in the plane having consecutive y-coordinates from 1 to
n. Define a mapping Φ that associates every vertex of G′

i having number h in the topo-
logical numbering with the point of S having y-coordinate equal to h. By Theorem 3
each G′

i has an upward point-set embedding consistent with Φ such that the edges are
monotonically increasing with the y-direction.
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7 Open Problems

We conclude with three open problems: (1) For upward point-set embedding with a
given mapping, minimize the total number of bends; (2) Improve the time complexity
in Theorem 4; and (3) Design a fast test for upward simultaneous embeddability with
respect to the same direction (we have linear time results for the case of switch-regular
digraphs).
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Abstract. In this paper, we present a dynamic algorithm that checks if a single-
source embedded digraph is upward planar in the presence of edge insertions and
edge deletions. Let Gφ be an upward planar single-source embedded digraph and
let G′φ ′ be a single-source embedded digraph obtained by updating Gφ . We show

that the upward planarity of G′φ ′ can be checked in O(logn) amortized time when
the external face is fixed.

1 Introduction

Assume we have a solution of a graph theoretic problem P on a graph G. A dynamic
graph algorithm tries to solve P after G is updated in less time than recomputing P from
scratch [5]. Dynamic graph algorithms are useful when a graph has discrete changes like
the addition or deletion of vertices or edges. A practical example of a dynamic graph
algorithm is the maintenance shortest paths in a communication network as links are
added or deleted.

In this paper, we present a dynamic algorithm to check if a single-source embedded
digraph remains upward planar after an edge is inserted or deleted. An planar embed-
ding is an equivalence class of planar drawings for a graph G, such that each drawing
of this class has the same circular order of edges around each vertex of G. A graph G
with a given planar embedding is denoted by Gφ and we call it an embedded digraph. A
digraph G is upward planar if it has a planar drawing with all edges pointing monotoni-
cally upward [6]. It is NP-hard to test if a digraph G is upward planar [9], hence upward
planarity testing is either done for a fixed embedding [3,7], or for special classes of di-
graphs like single-source digraphs [10,4], series-parallel digraphs [8], and outer planar
digraphs [11].

Let Gφ be an upward planar embedded digraph with the single-source sG. We let G′φ ′
be an embedded digraph with the single-source sG′ , such that G′φ ′ is obtained from Gφ
by performing one of the following update operations:

– insert-edge(e,u,v): Insert an edge e = (u,v) between two existing vertices in Gφ .
– attach-vertex(e,u,v): Add a new vertex and insert an edge between an existing

vertex and the new vertex.
– delete-edge(e): Delete the edge e from Gφ . We also delete a vertex if it results in

no incident edge.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 254–265, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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An update operation is illegal if the resulting digraph is not single-source. In case
of an edge insertion, this happens if an edge e = (u,v) is inserted between existing
vertices such that v = sG, or when edge e = (u,v) is inserted between a new vertex u
and v �= sG. An edge deletion is illegal if an edge e = (u,v) is deleted such that G′φ ′
becomes disconnected.

It is generally believed that upward planar drawings of a digraph are more compre-
hensible to humans. Hence, it is reasonable to say that a non-upward planar digraph H
is more readable if the largest possible subgraph of H is drawn in an upward planar
fashion. In this paper, we present a dynamic algorithm to test the upward planarity of
G′φ ′ . Our dynamic algorithm can be used to compute a maximal upward planar subgraph
for a single-source digraph H by incrementally building an upward planar embedding
of H and discarding a new edge if it results in a non-upward planar embedded digraph.

In the remainder of this section, we define some basic terminology and review some
relevant results. In Sec. 2, we discuss how to obtain a bimodal and embedded G′φ ′ .
In Sec. 3, we give a characterization of upward planarity of G′φ ′ with respect to the
update operations. In Sec. 4, we present our algorithm and its complexity analysis. We
conclude by identifying some related open problems.

1.1 Preliminaries

We assume basic familiarity with graph theory. Let G be a graph. We denote the set
of vertices of G by V (G) and we denote the set of edges of G by E(G). In a digraph,
a source vertex has only outgoing edges, a sink vertex has only incoming edges, and
an internal vertex has both incoming and outgoing edges. A planar drawing Γ divides
the plane into non-overlapping regions called faces; the unique unbounded region is
called the external face and each bounded region is called an internal face. The facial
boundary of a face f is the path enclosing f in the clockwise direction, all drawings
of an embedded graph have the same set of facial boundaries. An embedded digraph
Gφ is bimodal when φ(v) can be partitioned into two sets of consecutive incoming and
outgoing edges for every vertex v ∈ Gφ .

In an embedded digraph Gφ , an angle is a triplet 〈e1,v,e2〉 such that the edges are
incident to the vertex v and edge e1 is immediately before edge e2 in φ(v). A vertex v is
incident to the angle 〈e,v,e〉 when e is the only edge incident to v. A switch 〈e1,v,e2〉 is
an angle with both e1 and e2 pointing either toward or away from v: it is a sink-switch
when e1 and e2 point toward v and it is a source-switch when e1 and e2 point away from
v [7]. Switches were originally defined as nodes in an embedded biconnected digraph
by Bertolazzi et al. [3], however Didimo generalized their concept to general embedded
digraphs by defining them as angles [7].

We now show that both Gφ and G′φ ′ have at most one sink-switch incident to a vertex
v inside a particular face. This allows us to refer to a vertex v incident to a sink-switch
〈e1,v,e2〉 in a face f as sink-switch v incident to face f for simplicity and clarity.

Lemma 1. Let Gφ be an upward planar embedded digraph with a single source sG,
and let G′φ ′ be the bimodal embedded digraph with a single source sG′ obtained after
adding an edge in Gφ . Both Gφ and G′φ ′ have at most one sink-switch incident to a
vertex v inside a particular face.
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The face-sink graph F of Gφ is an undirected graph such that the vertices of F are the
faces of Gφ and all vertices of Gφ that are incident to a sink-switch; an edge ( f ,v) is in F
if face f is incident to a sink-switch on a vertex v in Gφ . Bertolazzi et al. [4] presented an
O(n)-time algorithm to test the upward planarity of a single-source embedded digraph
Gφ . This algorithm is based on the following theorem:

Theorem 1 (Bertolazzi et al. [4]). Let Gφ be a embedded digraph with a single-source
sG. Gφ is upward planar with face h as the external face if and only if the following
conditions are satisfied.

1. The face-sink graph F of Gφ is a forest.
2. F has exactly one tree T̂ with no internal vertices, while all other trees have exactly

one internal vertex.
3. T̂ contains the node corresponding to face h and sG is incident to face h in Gφ .

2 Maintaining Planarity and Bimodality

Theorem 1 requires a embedded single-source digraph, however bimodality is a neces-
sary condition for upward planarity and hence G′φ ′ will have more chances to be upward
planar if it is already bimodal and planar. In this section, we see how a bimodal embed-
ded digraph G′φ ′ can be obtained after Gφ is updated. The embedded digraph Gφ will
remain bimodal and planar after an edge is deleted, hence we only study the case when
an edge is inserted.

When an edge is inserted, a planar and bimodal embedded digraph G′φ ′ can be ob-
tained, if it exists, by using the techniques of Bertolazzi et al. [2] and Tamassia [12].
Tamassia described a technique to incrementally build a planar embedding: it checks if
an edge can be added to the current embedded graph without introducing a crossing in
O(logn) time and it then adds the new edge to the current embedded graph in O(logn)
amortized time [12]. A technique for constructing a bimodal embedding of a digraph G
was discussed by Bertolazzi et al. [2]. It works by splitting all vertices of G with at least
2 incoming edges and at least 2 outgoing edges into a vertex va with all the incoming
edges of v and a vertex vb with all the outgoing edges of v, and adding the edge (va,vb).
We call the vertices that are split as split-vertices and we call the resulting digraph as
the split-digraph G̃ . Bertolazzi et al. showed that G has a planar bimodal embedding if
and only if G̃ has a planar embedding. We get a planar and bimodal embedded Gφ by
merging back the split vertices in a planarly embedded G̃φ̃ [2].

We obtain a bimodal and planarly embedded G′φ ′ , if it exists, by maintaining a cor-

responding planarly embedded split-digraph G̃φ̃ . Figure 1 shows an embedded digraph

Gφ and its corresponding split-digraph G̃φ̃ . A vertex v in G has two corresponding ver-

tices ṽa and ṽb in G̃ if it is a split-vertex, and it has one corresponding vertex ṽ otherwise.
If v is a split-vertex, we let ṽb represent the vertex in G̃ with all corresponding outgoing
edges of v, and we let ṽa represent the vertex in G̃ with all corresponding incoming
edges of v. We define a function o : V (G)→V (G̃), such that o(v) = ṽb when v is a split-
vertex and o(v) = ṽ otherwise. Similarly, we define function i : V (G) → V (G̃), such
that i(v) = ṽa when v is a split-vertex and i(v) = ṽ otherwise. We also define a function
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(a) Gφ (b) G̃φ̃

Fig. 1. An embedded digraph Gφ (a); and its embedded split digraph G̃φ̃ (b)

e : E(G)→ E(G̃), which maps the edges in G to their corresponding edges in G̃. When
we want to add an edge e = (u,v) in Gφ , we first try to add the edge ẽ = (o(u), i(v)) in
G̃φ̃ . The embedded digraph G′φ ′ is not planar or bimodal if ẽ cannot be added in G̃φ̃ us-

ing Tamassia’s method. Lets assume that we get a planar G̃′φ̃ ′ , with ẽ inserted between

ẽ1 and ẽ2 at o(u), and ẽ inserted between ẽ′1 and ẽ′2 at i(u). In this case, we get a planar
and bimodal G′φ ′ by adding e between e−1(ẽ1) and e−1(ẽ2) at u, and adding e between

e−1(ẽ′1) and e−1(ẽ′2) at v. Figure 1 shows that we can bimodally add the edge (v5,v4) in
Gφ but not the edge (v4,v5).

The split-digraph G̃φ̃ takes O(n) space. If the addition of edge e makes a vertex v

a split-vertex then we will need to construct the corresponding ṽa and ṽb in G̃φ̃ . This
can be done in constant time because there will be either one incoming edge or one
outgoing edge incident to v before the new edge is added. Hence we have the following
lemma.

Lemma 2. Let Gφ be an upward planar embedded digraph and let e be an edge that
we want to insert in Gφ . We can perform the following two operations.

1. Check if an edge e can be added to Gφ such that the resulting graph has a bimodal
and planar embedding in O(logn) time.

2. If the previous test is true then we can obtain a planar and bimodal embedded
digraph G′φ ′ in O(logn) amortized time.

The insertion of an edge e = (u,v) bisects an angle αu = 〈e1,u,e2〉 at vertex u into
two new angles 〈e1,u,e〉 and 〈e,u,e2〉. The new edge e similarly bisects the angle
αv at vertex v into two new angles. The insert-face f is divided into two new faces
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f1 and f2 when a new edge e = (u,v) is inserted when both u and v already exist.
Let the facial boundary of f be w0,e0, . . . ,ei,u,ei′ , . . . ,e j,v,e j′ , . . . ,ek,wk = w0. After
e is inserted, let 〈ei,u,ei′ 〉 and 〈e j,v,e j′ 〉 be the angles that are bisected at u and v re-
spectively, then f1 has the facial boundary e,u,ei′ , . . . ,e j,v,e and f2 has the boundary
w0,e0, . . . ,u,e,v, . . . ,ek,wk = w0. If both u and v exist and αv is not a switch then either
f1 or f2 will have a sink-switch at v. We assume, without the loss of generality, that the
new sink-switch will be created at f1. Similarly, when a new edge e = (u,v) is inserted
in f and one of the vertices is new, then the facial boundary of f will change. Let the
facial boundary of f be w0,e0, . . . ,ei,w′,ei′ , . . . ,ek,wk = w0, such that w′ is the existing
vertex and 〈ei,w′,ei′ 〉 is the angle bisected at w′. After e is inserted, the facial boundary
will change to w0,e0, . . . ,ei,w′,e,w′′,e,w′, . . . ,ek,wk = w0, where w′′ is the new vertex.
Hence, we can maintain the facial boundaries in a linked list which can be updated in
constant time by keeping pointers to nodes in the linked list.

3 Maintaining Upward Planarity

In this section, we characterize the upward planarity of G′φ ′ after an update operation.
We will only study the case of inserting an edge because G′φ ′ remains upward planar
when an edge is deleted. We will however need to update our datastructures when an
edge is deleted, this is discussed in the next section. We assume that G′φ ′ is bimodal and
planar because we construct it by using the method described in Sec. 2.

Let F be the face-sink graph corresponding to Gφ and let F ′ be the face-sink graph
corresponding to G′φ ′ . Since Gφ is upward planar, F will satisfy Theorem 1. Further,
G′φ ′ will be upward planar if and only if F ′ satisfies Theorem 1. In this section, we
show that we can check if F ′ satisfies Theorem 1 by considering a small subset of F ′.
This will lead to an efficient dynamic single-source upward planarity testing algorithm,
which is presented in the next section.

We first present some definitions that will be used later in this section. An edge e is
inserted in one particular face of Gφ , which we call the insert-face and denote it by f .
Every face g in Gφ has a corresponding vertex ḡ in F . Let Tf = (VTf ,ETf ) be the tree that
contains f̄ , i.e. the vertex corresponding to f . Let T be a tree in F , we define f aces(T )
to be the set of faces such that a face g is in f aces(T ) if and only if ḡ ∈V (T ). We also
define a set of vertices, denoted by nodes(T ), that contains all vertices of Gφ that are in
V (T ). Let T̂ denote the tree of F with no internal vertices, and let HGφ denote the set of

faces in Gφ that are incident to the single-source sG. Then HGφ ∩ f aces(T̂ ) is the set of
all possible external faces in an upward planar drawing of Gφ .

Our results in this section rely on observing how F changes into F ′. We define a tree
T1 to be different from a tree T2 if it has at least one different vertex or one different
edge. We claim that either F \F ′ = {Tf } or F \F ′ = /0. This is because a tree T in
F will transform to a new tree T ′ in F ′ only if a new sink-switch is added in a face
g ∈ f aces(T ) or a sink-switch is removed from g or when g is divided into two new
faces. This can happen only for the insert-face f , hence at most Tf will be transformed
by the edge insertion.

We now have a closer look at the structure of Tf . If we traverse f in the clockwise
direction, we will encounter some vertices that are incident to a sink-switch in f . Let



Upward Planarity of Single-Source Embedded Digraphs 259
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Fig. 2. The tree Tf with respect to face f such that both u and v already exist (a); and the tree Tf
with respect to face f when only u is the existing vertex (b)

W = {w1,w2, . . . ,wl} be all such vertices. We define a subtree Ti as the part of Tf that
is reachable from f̄ through the vertex wi, where 1≤ i≤ l. We call wi ∈ Ti the access-
vertex of Ti with respect to f̄ . This is shown in Fig. 2 for both type of edge insertions
discussed in Sec. 1. When both end vertices of e = (u,v) already exist in Gφ then the
partitioning of Tf is shown in Fig. 2(a): the access-vertex for T1, . . . ,Ti is between u
and v in the clockwise direction, the access-vertex of Tj+1, . . . ,Tk is between v and u
in the clockwise direction, the access-vertex of Tj is v, and the access-vertex of Tl is u.
Note that Tj and Tl will be empty subgraphs if u and v are not incident to a sink-switch
in f . When e = (u,v) has one existing vertex u then the partitioning is shown in Fig.
2(b): the access-vertex at u ( if it exists) is Tl , and the access-vertices for T1, . . . ,Tk are
encountered as we traverse f in the clockwise direction after u.

The next lemma is easily derived from the illegal operations described in Sec. 1 and
the fact that G′φ ′ is bimodal.

Lemma 3. If edge e = (u,v) is added in Gφ such that both u and v already exist, then
αv, the bisected angle at v, cannot be a source-switch.

Proof. Assume that v is incident to a source-switch in f . We know from Sec. 1 that
v �= sG hence v has at least one incoming edge. This implies that G′φ ′ is not bimodal,
which is a contradiction. ��

We now come to the main results of this section, presented as a series of theorems. We
divide the analysis into two main cases: Tf �= T̂ and Tf = T̂ . When Tf �= T̂ , the tree T̂
is in F ′ and all other trees in F ′ ∩F have one internal vertex. In this case, G′φ ′ will be
upward planar if all trees of F ′ \F have one internal vertex. The single internal vertex
of Tf is denoted by wTf when Tf �= T̂ . On the other hand, all trees in F ′ ∩F have one

internal vertex when Tf = T̂ . In this case, G′φ ′ will be upward planar if F ′ \F has one
tree T with no internal vertex, all other trees trees in F ′ \F have exactly one internal
vertex and f aces(T )∩HG′φ ′

�= /0.
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In some cases, G′φ ′ will always be upward planar, the next theorem analyze these
cases.

Theorem 2. Let Gφ be an upward planar embedded digraph with a single source sG

and a face-sink graph F. If we insert an edge e = (u,v) in the face f ∈ Gφ , then G′φ ′
will be upward planar if one of the following conditions is true.

1. Both u and v already exist, such that αv is a sink-switch and αu is either a source-
switch or αu is a non-switch angle;

2. u is the new vertex;
3. v is the new vertex and αu is either a source-switch or a non-switch angle.

We analyze the remaining cases by looking at the different possibilities for αu and αv.
Both αu and αv can either be a sink-switch, a source-switch, or they can be a non-
switch angle. If the new edge is added between two existing vertices, then we know
from Lemma 3 that αv cannot be a source-switch. The case when αv is a sink-switch
and αu is either a source-switch or when αv is a non-switch angle is already discussed in
Theorem 2. Hence we need to analyze when αv is a sink-switch or a non-switch angle,
while αu is any type of angle. These cases are discussed in Theorem 3 and Theorem
4. Theorem 3 discusses the case when αv is not a switch while αu can be any type of
angle. The only case left for both end-vertices to be already existing is when both αv

and αu are sink-switches, which is discussed in Theorem 4.

Theorem 3. Let Gφ be an upward planar embedded digraph with a single source sG

and a face-sink graph F. If we insert an edge e = (u,v) in the face f ∈ Gφ such that
both u and v exists and αv is not a switch then G′φ ′ will be upward planar if and only if
one of the following is true.

1. If Tf �= T̂ then wTf ∈ nodes(Tj+1∪ . . .∪Tk).
2. If Tf = T̂ then sG′ is incident to at least one face in f aces(Tj+1∪ . . .∪Tk).

While αu can either be a sink-switch, or, a source-switch, or not a switch.

Proof. The tree Tf is transformed into two new trees T1 and T2, such that

V (T1) = V (T1∪T2 . . .Tj)

E(T1) = E(T1∪T2, . . .Tj)∪{( f̄1,w1)∪ . . . ( f̄1,wj)})

V (T2) = V (Tj+1∪Tj+2 . . .Tk)

E(T2) = E(Tj+1∪Tj+2 . . .Tk)∪{( f̄2,wj+1)∪ . . .( f̄2,wk)})

where wi is the access node for subtree Ti. When u is a sink-switch in f , there will also
be a third tree

T3 = (V (Tl),E(Tl)).

We may observe that v is an internal vertex that is part of T1 and u is an internal vertex
of T3 (when T3 exists). All possible cases are shown in Fig. 3.
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Fig. 3. Cases of Theorem 3: u and v already exist, αu is source-switch and αv is not a switch (a);
u and v already exist, αu is not a switch and αv is sink-switch (b); u and v already exist, αu is a
sink-switch and αv is not a switch (c)

If: If Tf �= T̂ and wTf ∈ nodes(Tj+1 . . .∪Tk) then each tree in F ′ \F has one internal

vertex and G′φ ′ is upward planar in this case. Similarly, if Tf = T̂ then each of the
generated new trees has one internal vertex except T2. Again, G′φ ′ is upward planar
because according to our assumption f aces(T2)∩HG′φ ′

�= /0.

Only if: We show this by proving the contrapositive. If Tf �= T̂ and wTf ∈{T1, . . . ,Tj}
then F ′ has two trees T2 and T̂ that have no internal vertices. Similarly, if Tf = T̂ and
sG′ is not incident to a face in f aces(Tj+1 . . .∪Tk) then T2 has no internal vertex but
f aces(T2)∩HG′φ ′

= /0. Hence G′φ ′ will not be upward planar. ��

Theorem 4. Let Gφ be an upward planar embedded digraph with a single source sG

and a face-sink graph F. We insert an edge e = (u,v) in the face f ∈Gφ , such that both
u and v already exists. If both αu and αv are sink-switches in f then G′φ ′ will be upward
planar if and only if one of the following is true.

1. If Tf �= T̂ then wTf ∈ nodes(T1∪ . . .∪Tk).
2. If Tf = T̂ then sG′ is incident to at least one face in f aces(T1∪ . . .∪Tk)

When one of the end-vertices is a new vertices for the new edge e = (u,v), then the case
when u is the new vertex and when v is the new vertex and αu is a sink-switch is already
discussed in Theorem 2. The only remaining case is discussed in Theorem 5.

Theorem 5. Let Gφ be an upward planar embedded digraph with a single source sG

and a face-sink graph F. We insert an edge e = (u,v) in the face f ∈ Gφ , such that v is
a new vertex and αu is a sink-switch, then G′φ ′ will be upward planar if and only if one
of the following is true.
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1. If Tf �= T̂ then wTf ∈ nodes(T1∪ . . .∪Tk).
2. If Tf = T̂ then sG′ is incident to at least one face in f aces(T1∪ . . .∪Tk).

4 Algorithm and Time Complexity

We now present our algorithm for testing the upward planarity of a bimodal and pla-
narly embedded G′φ ′ with a fixed external face and discuss its complexity. The input to
the algorithm is Gφ , the upward planar embedded digraph; e, the edge to be added or
deleted; and G̃φ̃ , the embedded split-digraph corresponding to Gφ . It first constructs a
bimodal and planar G′φ ′ , if it exists. If we delete the edge e then the resulting G′φ ′ will
also be upward planar. The rest of the algorithm checks if G′φ ′ satisfies the conditions
of theorems from the previous section. The algorithm is shown in Algorithm 1.

We now show that dynamic upward planarity testing based on Theorem 1 requires
Ω(n) time when we allow the external face to change and do not transform Gφ . We
show it by assuming that G′φ ′ is non-upward planar with h as its external face, where h
was the external face of Gφ . The digraph G′φ ′ will be upward planar if there is a face

g �= h, such that g∈HG′φ ′
∩ f aces(T̂ ′), where T̂ ′ is the tree in F ′ with no internal vertex.

Recall that HG′φ ′
denotes the set of faces that are incident to the single-source in G′φ ′ . In

order to find an alternative external face g in o(n) time, we dynamically maintain HG′φ ′

by making appropriate additions or deletions in HGφ because recomputing HG′φ ′
from

scratch will take O(n) time. Now, if the new edge e = (u,v) is between a new vertex u
and an existing vertex v = sG, then HG′φ ′

= { f}. This results in a contradiction because

removing the old faces will take O(n) time. Hence it is not possible to design an efficient
dynamic upward planarity testing algorithm for single-source embedded digraphs using
Theorem 1.

We recall from Sec. 2 that finding a planar and bimodal G′φ ′ requires O(logn) amor-
tized time. We can check that an insertion satisfies Theorem 2 in constant time. Let μ
represent the unique internal vertex wTf of Tf when Tf �= T̂ and represent the external

face h of Gφ when Tf = T̂ . The overall time complexity of Algorithm 1 depends on
how efficiently we can check if μ is in a particular subtree of Tf . The location of μ can
be easily be determined in O(n) time by traversing the nodes of Tf , but then the time
complexity of Algorithm 1 will equal running the algorithm of Bertolazzi et al. from
scratch. We propose instead an O(1)-time method. We maintain a directed version of
F by rooting each tree T ∈ F at its unique internal vertex or vertex corresponding to
the external face, and then orienting all edges toward the root. Each vertex v �= μ will
have exactly one outgoing edge and if v = μ then it has no outgoing edge. Let out(v)
represent the outgoing edge for a vertex v and let p(v) be the target node for out(v).
Note that, p( f̄ ) is always an access-vertex wi for a subtree Ti.

We can check if μ is in a subtree satisfying Theorems 3, 4 or 5 by finding the relative
location of p( f̄ ) in the facial boundary of f . This is done by maintaining a linked
list Lf for every face f ∈ Gφ , such that every vertex v ∈ f has a corresponding real
number Lf [v]. We construct Lf = {Lf [v1], . . . ,Lf [vk]} such that: Lf [vi]<Lf [vi+1], where
v1, . . . ,vk are consecutive vertices on the facial boundary of f in the clockwise direction.
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Algorithm 1. Dynamic Upward Planarity Test(Gφ,e = (u,v),G̃φ̃)

1: Find a planar and bimodal embedding of G′, G′φ ′
2: if we cannot find a planar and bimodal G′φ ′ then
3: Return False
4: end if
5: if delete the edge e then
6: Return True
7: end if
8: if Both u and v already exist and αv is sink-switch; or u is a new vertex; or v is a new vertex

and αu is not sink-switch then
9: Return True

10: end if
11: μ = wTf when Tf �= T̂ and μ = h when Tf = T̂
12: if u and v exist and αv is not a switch and μ ∈ {Tj+1, . . . ,Tk} then
13: Return True
14: else if u and v exist and both αu and αv are sink-switches and μ ∈ {T1, . . . ,Tk} then
15: Return True
16: else if v is a new vertex and αu is a sink-switch and μ ∈ {T1, . . . ,Tk} then
17: Return True
18: else
19: Return False
20: end if

When the insertion of e = (u,v) divides f into f1 and f2, we divide Lf to get Lf1 and
Lf2 such that L[u] and L[v] are present in both of them. We also maintain pointers from
each vertex incident to a face f to its entry in Lf . When we insert an edge e such
that a new vertex v j is added, we can choose a sufficiently small ε , letting Lf [v j] =
Lf [v j−1]+ ε . However, this can result in difficulties associated with high precision real
numbers and hence increase the time complexity in comparing two elements of Lf .
Instead, we suggest using the algorithm by Bender et al. to assign Lf [v j] in O(logn)
amortized time [1]. The algorithm by Bender et al. maintains a dynamic list and allows
a user to compare the order of any two elements in the list. This is done by assigning
tags of O(logn) bits to each element in the list. Hence, any Lf [v j] and Lf [vi] can be
efficiently compared. The following lemma shows that Lf can be used to efficiently
check if μ is in the required subtree. This technique will also work when Lf is divided
into two new lists Lf1 and Lf2 because the algorithm of Bender et al. assigns a tag by
locally relabeling a subset of a list.

Lemma 4. We can check the conditions of Theorems 3, 4 5 in constant time.

Proof. Theorem 4 and 5: We need to check if p( f̄ ) ∈ {w1, . . . ,wk}, this will be true if
p( f̄ ) �= wl . Hence p( f̄ ) ∈ {w1, . . . ,wk} and G′φ ′ will be upward planar if and only if

Lf [p( f̄ )] �= Lf [u].
Theorem 3: We can see from Fig. 3 that we need to check if p( f̄ ) ∈ {wj+1, . . . ,wk}.

We have the following 2 cases, based on the fact that p( f̄ ) should be between v and u
in the clockwise direction in order to satisfy the theorem.
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1. When Lf [v] < Lf [u] then p( f̄ ) ∈ {wj+1, . . . ,wk} will be true if Lf [v] < Lf [p( f̄ )] <
Lf [u].

2. When Lf [u] < Lf [v] then p( f̄ ) ∈ {wj+1, . . . ,wk} will be true if either Lf [p( f̄ )] <
Lf [u] < Lf [v] or Lf [u] < Lf [v] < Lf [p( f̄ )].

��

We have yet to show that we maintain the correct orientation of the edges of F in the
presence of updates. The following two lemmas shows that we can do this in constant
time. We define the splitting of a vertex f̄ with respect to the new edge e = (u,v) as the
creation of two new vertices f̄1 and f̄2, such that f̄1 has edges of f̄ to and from w1, . . . ,wi

and f̄2 has all edges of f̄ to and from wj+1, . . . ,wk. We also define the merging of a
vertex f̄1 and a vertex f̄2 as the creation of a new vertex f̄ , such that f̄ has all outgoing
edges and incoming edges of both f̄1 and f̄2. We need to split f̄ when as a result of edge
insertion the face f splits into f1 and f2, and we need merging when two faces f1 and
f2 combine to form the face f . Splitting and merging f̄ can be done by splitting and
merging the adjacency list of f̄ .

Lemma 5. Let Gφ be an upward planar embedded digraph with a single-source sG.
If we add a new edge e to create an embedded digraph G′φ ′ with a single source sG′

such that G′φ ′ is upward planar with the same external face Gφ then we can update F
in constant time.

The deletion of an edge e will either merge two faces f1 and f2 in Gφ to form a face
f in G′φ ′ , or when one of the end vertices of e has a degree of 1 and is incident to a
single face f then the facial boundary of f will change. Moreover, we let αu and αv

represent the angle that is created at u and v respectively as a result of the edge deletion.
We say that with the deletion of an edge e from Gφ , F will change to the face-sink
graph F ′. Let T ′f be the tree in F ′ that contains f̄ . T ′f ′ is formed by merging trees in a set
M ⊂ F, |M | ≥ 1 and making some local changes in this merged tree. F ′ will always
satisfy Theorem 1. When all trees in M have one internal vertex then the resulting tree
T ′f will also have exactly one internal vertex. However, if M contains T̂ , the tree in F
with no internal vertex, then T ′f will also have no internal vertex. We let μ ′ denote either

the internal vertex in T ′f or the vertex h̄ that corresponds to the external tree.

Lemma 6. Let Gφ be an upward planar embedded digraph with a single-source sG. If
we delete an edge e = (u,v) to create an embedded digraph G′φ ′ with a single source
sG′ then we can update F in constant time.

Hence we conclude that Algorithm 1 will take O(logn)-time leading to the following
theorem.

Theorem 6. Let Gφ be an upward planar embedded digraph with a single-source sG.
If we add or delete an edge e to create an embedded digraph G′φ ′ with a single source
sG′ then we can check the upward planarity of G′φ ′ in O(logn) when the external face is
fixed.
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5 Open Problems

As further work, we want to investigate if there is a dynamic upward planarity testing
algorithm for embedded digraphs that allows for the external face to change. Moreover,
it will be interesting to investigate the optimality of our algorithm. Our algorithm may
also be relevant to finding a maximum upward planar subgraph of a single-source em-
bedded digraph and we intend investigating this. A slightly more difficult open problem
is to develop a dynamic upward planarity testing algorithm for a single-source digraph
over all its embeddings.
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Abstract. There are several scenarios in which a given drawing of a
graph is to be modified subject to preservation constraints. Examples
include shape simplification, sketch-based, and dynamic graph layout.
While the orthogonal ordering of vertices is a natural and frequently
called for preservation constraint, we show that, unfortunately, it results
in severe algorithmic difficulties even for the simplest graphs. More pre-
cisely, we show that orthogonal-order preserving rectilinear and uniform
edge length drawing is NP-hard even for paths.

1 Introduction

In several scenarios, a graph drawing algorithm receives as input not only a
graph, but also an initial (possibly partial) drawing. The task is to redraw the
graph while maintaining selected features of the input drawing. Examples of this
kind are embedding-constrained graph layout, shape simplification, sketch-based
drawing, and dynamic graph layout.

A cartographic application of particular interest is the simplification of lines.
Given a polygonal path, the task is to generate a simpler representation of the
path, for instance by omitting vertices [8, 12] (level of detail) or by restricting
the allowable types of segments [15, 14] (schematization).

Note that line simplification is also the base case in the design of schematic
metro maps, where admissible slopes may be restricted and few bends are de-
sired. Maintaining a user’s mental map by preserving the orthogonal ordering [9]
of stations and landmarks seems particularly appropriate in this scenario and
has been tried, e.g., in [7]. For layout stability [3] and similarity [5] the relative
position of vertices, strongly related to the orthogonal ordering, is considered,
used [13] and tested [4] helpfull. Alternative constraints include preservation of
the cyclic ordering of neighbors [16] and distance from original positions using
various metrics [15, 14].

For two different drawing conventions we show that orthogonal ordering isNP-
hard to preserve, even for paths. This is in contrast to the direction-restricted
models studied in [15] and [14], where paths or vertices must be within a given
distance (according to the Fréchet or Euclidean metric) of the original and the
number of bends can be minimized in polynomial time. For orthogonal-order pre-
serving graph drawing, even the decision problems in the rectilinear and equal
� Corresponding author.
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edge-length model are NP-hard. The former implies, e.g., that bend-minimum
orthogonal layout is hard under ordering constraints. The latter is also interest-
ing, since drawing with given edge lengths is hard for general graphs [10], but easy
for trees (see, e.g., [2]). With orthogonal ordering constraints, the problem is hard
even for paths.

After some preliminaries, we treat the rectilinear case in Sect. 3 and the equal
edge-length case in Sect. 4. For convenience, we give additional illustrations of
gadgets in an appendix.

2 Preliminaries

We are interested in redrawing simple undirected paths P = (v1, . . . , vn) using
straight line edges. An original geometric position (xv, yv) in the plane is given
for each vertex v ∈ P . Let (x′

v, y
′
v) be the position of a vertex v in the resulting

layout. By preserving the orthogonal ordering of the vertices we mean that if for
two vertices vi, vj it is xvi ≤ xvj (yvi ≤ yvj ) in the original layout, x′

vi
≤ x′

vj

(y′vi
≤ y′vj

) holds also for the resulting layout.
For a (sub)-path P of l ≥ 1 edges we call the area between the vertical line

through P ’s rightmost vertex and the one through the leftmost vertex the x-
range of P , and analogously the area between the horizontal line through P ’s
highest vertex and the one through the lowest vertex P ’s y-range.

For theNP-hardness proofs in this paper we use reductions from MONOTONE
3-SAT. In MONOTONE 3-SAT each clause contains exactly three literals either
all negated or all non-negated. The problem is known to be NP-hard [11]. Let I
be an instance of the MONOTONE 3-SAT-problem with Boolean variables X =
{x1 . . . xn} and clauses C = {C1, C2, . . . , Ck}.

3 Rectilinear Drawings

The first problem we address is the following:

Orthogonal-order preserving rectilinear drawing problem: Given a gr-
aph in the plane, we want to decide whether we can draw each edge either
horizontally or vertically, changing neither the horizontal nor the vertical
order of endpoints, without introducing any intersection other than the com-
mon endpoint of two incident edges and keeping the edge-length positive for
each edge.

Choosing the direction of an edge can force the direction of other edges.
Figure 1 shows how an edge ei can force the direction of another edge ej . More
formal: We say an edge ei pulls another edge ej horizontally, if ej lies completely
within ei’s y-range, hence, to keep the vertical order of endpoints, ej has to be
horizontal if ei is horizontal. This of course also means that ei cannot be drawn
horizontally if ej is vertical and we say ej pushes ei vertically. Analogously we
say an edge ei pulls another edge ej vertically, if ej lies within ei’s x-range
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(a) ei pulls ej horizontally
and ej pushes ei vertically

(b) ei pulls ej vertically and
ej pushes ei horizontally

Fig. 1. Forcing to have the same direction

and therefore also ej pushes ei horizontally. We use this to construct the main
elements of a gadget for the NP-hardness proof.

Given a path P = (e1, e2, e3) of three edges as shown in Fig. 2. If there is a
horizontal edge with one endpoint in the x-range of e1 and one endpoint in the
x-range of e3, at least one of P ’s edges has to be drawn horizontally and we call
P with the horizontal edge a horizontal decision unit. Analogously, if there is a
vertical edge with one endpoint in the y-range of e1 and one in the y-range of
e3 at least one of P ’s edges has to be drawn vertically and we call P with the
vertical edge a vertical decision unit. We will later use these decision units to
represent the 3-SAT clauses.

(a) horizontal decision unit (b) vertical decision unit

Fig. 2. Decision units

In Fig. 3 two edges ei �= ej are linked by a third edge l �= ei, ej . We call l the
horizontal link for ei and ej, if ej pulls l horizontally and l pushes ei horizontally
such that ei, ej and l are all horizontal if ej is horizontal (see Fig. 3(a)). Of course
this also means that if ei is vertical, also l and ej must be vertical. A vertical
link is defined correspondingly and shown in Fig. 3(b). We will use these links
for variables which occur in more the one clause.

3.1 Unions of Paths

We now use the described edge-dependency elements to create a gadget for a
given instance of MONOTONE 3-SAT to prove the following:

Theorem 1. The orthogonal-order preserving rectilinear drawing problem is
NP-hard for unions of paths.
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(a) Horizon-
tal link

(b) Vertical link

Fig. 3. Possible links l for ei and ej

For a given instance I of MONOTONE 3-SAT we create a union of paths as
follows. Each variable will have several corresponding edges. For each positive
clause Ci we place a horizontal decision unit U(Ci) on the diagonal of the drawing
and for each negative clause Cj we place a vertical one U(Cj) as shown in
Fig. 4. The horizontal and vertical edges of the decision units can be placed on a
horizontal and a vertical line near the borders of the drawing. The diagonal edges
in the decision units correspond to the literals in the decision unit’s clause. We
then place a variable path (e1, . . . , en) (see Fig. 4) on the diagonal of the drawing
with n edges corresponding to the n variables in X . For each diagonal edge in a
horizontal decision unit we add a positive link between this edge and the edge in
the variable path corresponding to the same variable and for each diagonal edge
in a vertical decision unit we do the same with a negative link. Because of the
links an edge in the variable path is horizontal in a valid orthogonal drawing if
an edge corresponding to the same variable is drawn horizontally in a horizontal
decision unit and vertical if drawn vertically in a vertical decision unit. We set
a variable true if the corresponding edge is drawn horizontally in the variable
path and false, if it is drawn vertically, such that for a valid drawing all clauses
are satisfied and all other variables can be chosen arbitrary.

Analogously to this, setting the variables such that all clauses are satisfied
will also induce a valid drawing, hence the edges in S can be drawn orthogonally
without intersections keeping the horizontal and vertical order of their endpoints
if and only if I is satisfiable. Thus the problem is proven to be NP-hard.

The gadget is quite special but we can change it to a gadget with totally
ordered vertices, i. e., no two vertices have the same x- or y-coordinates. In the
horizontal decision units we used horizontal edges eh that we can move away
from their horizontal line, but force them to be later drawn horizontally again,
by attaching at one endpoint a small edge ef like shown in Fig. 5(a). ef lies
in eh’s x-range and eh in ef ’s y-range such that the only possibility of avoiding
intersections is to draw eh horizontally and ef vertically. Since eh must be drawn
horizontally, still at least one of the diagonal edges in the decision unit must be
drawn horizontally as well. We place ef ’s endpoint that is not incident to eh such
that no vertex lies in ef ’s x-range, so ef cannot pull any other edge vertically.
Because the horizontal edges of the decision units are placed near the borders
of the drawing we can easily guarantee that ef does not lie in any other edge’s
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Fig. 4. Union of paths for a MONOTONE 3-SAT-instance I

(a) eh and ef (b) ev and ef

Fig. 5. Decision units without horizontal or vertical edges

y-range, so it cannot push other edges vertically. The strategy for the vertical
decision units is the same and shown in Fig. 5(b). After also making sure, that
no two vertices of different horizontal (vertical) links for the same edge in the
variable path lie on the same vertical (horizontal) line for example by making
each horizontal link shorter than the one exactly above it (likewise for vertical
links), we have a gadget with total ordering that is drawable if and only if the
special gadget was drawable. Thus the problem is proven to be NP-hard also
for unions of paths with totally ordered vertices.

3.2 Single Path

Theorem 2. Orthogonal-order preserving rectilinear drawing is NP-hard for
paths.
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Fig. 6. Single path for the instance I

Fig. 7. lc is connecting two positive links

To show NP-hardness also for paths we have to connect the edges. We add
horizontal and vertical edges connecting the decision units and the links for dif-
ferent decision units (see Fig. 6). They have no effect on the drawability because
edges which are already horizontal or vertical cannot pull other edges. Addition-
ally the horizontal and vertical edges added here do not lie in the range of any
edge not yet horizontal or vertical and therefore cannot push other edges. Links
belonging to the same decision unit are also connected. We take a closer look
at these connecting edges. For two incident edges e′i, e

′
j in the same horizontal

decision unit and the edges ei, ej in the variable path corresponding to the same
variables, let eii′ and ejj′ be the positive links. (See Fig. 7.) For ei and ej not
incident let ec be connecting the positive links. If e′i and e′j are both drawn hor-
izontally they pull ec (as well as eii′ and ejj′ of course) horizontally. If e′i, e

′
j

or even both edges are vertical, ec can still be drawn horizontally. Furthermore ec
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can pull all edges ei+1 . . . ej−1 vertically so we draw it vertically if and only if
all edges ei . . . ej must be vertical anyway and horizontally otherwise. The edges
connecting the links have no effect on drawability. The edges in the union of
paths are also kept in the connected path, hence the path is not drawable, if the
union of paths had not been drawable.

With the connecting edges we again have vertices with the same x- or y-
coordinates, but because they have no effect on drawability we can just slightly
turn each horizonal or vertical line with two or more vertices. It can be turned
back without conflicts when redrawing the path such that the new connected
path is drawable if and only if the old one was. The problem is NP-hard also
for paths with double-totally ordered vertices.

4 Drawings with Uniform Edge Lengths

Orthogonal-order preserving equal edge lengths drawing problem:
Given a graph in the plane, we want to decide whether we can draw each
edge with length one changing neither the horizontal nor the vertical order
of the edges’ endpoints and without introducing any intersection other than
the common endpoint of two connected edges.

The constraint that all edges have length one may be exploited tp force some
of them to be drawn horizontally or vetically. We can use the concept of linking
edges like in the previous section. Edge ei in Fig. 8(a) forces ej to be drawn
horizontally, because otherwise it would not be short enough to have the same
length as ei. We can also define decision units. In the example in Fig. 8(b) the
path P = {e1, e2, e3} must have length 3 and the only possibility of achieving
this is to draw the framing edges horizontally and vertically to give the path the
room of a 1×2-rectangle in which the longest possible path monotone in x− and
y−direction has length 3. It is easy to see that one edge of P has to be drawn
horizontally and the other two edges vertically.

Let a horizontal decision unit be a 3-edge-path monotone in x- and y- direction
contained into a 1x2-rectangle while a vertical decision unit is also a 3-edge-path
monotone in x- and y- direction, but contained into a 2x1-rectangle

(a) ei forcing ej (b) Three possible drawings

Fig. 8.
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4.1 Unions of Paths

We now use these edge-dependency elements to create a gadget for a given
instance of MONOTONE 3-SAT to prove the following:

Theorem 3. The orthogonal-order preserving equal edge lengths drawing prob-
lem is NP-hard for unions of paths.

For a given instance I of MONOTONE 3-SAT we create a union of paths as
follows. Like in the proof for the rectilinear graph drawing we place decision
units for the clauses with edges corresponding to the variables in the clause. For
each positive clause we place a horizontal decision unit and for each negative
clause we place a vertical one. Similar to the gadget in Sect. 3.1 we arrange the
decision units on the diagonal such that all vertical and all horizontal decision
units lie next to each other without being connected. The framing rectangle
edges can be placed on an almost horizontal and an almost vertical line near the
borders of the drawing. For each variable in a negative clause that also occurs
in a positive clause we add a link between the edge in the vertical and the
edge in the horizontal decision unit such that both edges are horizontal if drawn
horizontally in the horizontal decision unit and vertical if drawn vertically in
the vertical decision unit (see Fig. 9). In a valid drawing there is no edge drawn
horizontally in a horizontal decision unit linked to an edge drawn vertically in a
vertical decision unit. We choose the variable corresponding to an edge horizontal
in a horizontal decision unit true and to an edge vertical in a vertical decision
unit false. With this all clauses are satisfied and the other variables can be set
arbitrarily.

For a given solution of I we can create a valid drawing as follows: For each
positive clause we choose one of the variables set true and draw the corresponding
edge in the corresponding decision unit horizontally, the other edges in this
decision unit we draw vertically. From each negative clause we also choose one
variable set false and draw the corresponding edge in the corresponding decision
unit vertically and the other edges horizontally. Now all decision units have a

Fig. 9. The union of paths for the instance I from Sect. 3.1
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(a) special case (b) total ordering

Fig. 10. Intraclause links

valid drawing. The links have a valid drawing, too, because the linked edges
are both either horizonal or vertical such that the link can have length one.
The union of paths can be drawn with equal edge lengths without intersections
keeping the horizontal and vertical order of their endpoints if and only if I is
satisfiable. Thus the problem is proven to be NP-hard. Note that we did not use
horizontal or vertical edges and with our arrangement of decision units we can
guarantee total ordering by additionally avoiding links on the same horizontal
or vertical line like we did in Sect. 3.1.

4.2 Single Path

Theorem 4. The orthogonal-order preserving equal edge lengths drawing is
NP-hard for paths.

To show NP-hardness also for paths we have to add connecting edges and prove
that they have no effect on the drawability. We guarantee this by making sure
that the connected path stays drawable if the union of paths had been drawable.
To make it easier to connect the path segments, we copy the decision units such
that each copy has exactly one link to one copy of another decision unit. For
countneg(e) being the number of times the variable corresponding to e occurs
in a negative clause and countpos(e) the number of times it occurs in a positive
clause, each vertical decision unit U must have

∑
e∈U countpos(e) copies and each

horizontal decision unit U ′ must have
∑

e∈U ′ countneg(e) copies. The copies are
placed next to each other on the diagonal and linked such that each copy has to
be drawn equally (see Fig. 10(a)). We refer to these linking edges as intraclause
links.

An interclause link between a copy of a horizontal and a vertical decision
unit lies within a 2x2-rectangle. We first connect the link to two inner anchor
vertices outside of this rectangle. We take a close look at the case where the
third edge of a vertical decision unit is linked with the second edge of a vertical
decision unit (see Fig. 11). For the eight combinations of possible drawings of
the decision units, except for one combination the anchor vertices lie exactly
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Fig. 11. Eight possible combinations

Fig. 12. Outer anchor vertices

at the same distance from the border of the horizontal decision units’s y-range
and always at the same distance from the border of the vertical decision units’s
x-range. Because of the one exception, we connect the inner anchor vertices to
outer anchor vertices that can always be placed each at the same y-coordinates
with a clause anchor vertex for the horizontal decision unit and at the same x-
coordinates with a clause anchor point of the positive decision unit (see Fig. 12).
This guarantees, that we can later connect these parts of the path, without
having an effect on the drawability.

It is possible to move the horizontal decision unit and possible intraclause
links by one edge length. Whenever we have to cross the x- or y-range between
the outer anchor vertices when connecting other parts of the path, we can use
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a connector like shown in Fig. 12 and outside the ranges edges that are either
horizontal or vertical with length already 1. Analogously for any interclause link
such anchor points can be defined because only one of the decision units has to be
movable by at least one edge length. Thus the union of paths can be connected
to a path, that stays drawable, if the unions of paths was drawable.

We can also achieve total ordering for a single path. Before connecting the
union of paths in the special case, we changed it by copying and linking the
clauses. To guarantee that the copies of the decision units for the same clause
are all drawn in the same way, we used intraclause links with vertices on the same
horizontal and vertical line with the vertices of the decision units (Fig. 10(a)). We
now have to link the copies without using vertices with equal x- or y-coordinates.
We can do this by using shorter and longer links as shown in Fig. 10(b) on both
sides of the units. The shorter links l1, l

′
1 and l3, l

′
3 are pulled by e1 and e3 but

also push them, such that e1, l1, l
′
1 and e′1 must always have the same direction,

just as e3, l3, l
′
3 and e′3. The longer links l2 and l′2 pull e2 and e′2 and are also

pushed by them, hence also e2, l2, l
′
2 and e′2 all have the same direction and the

two copies have to be drawn in the same way. We now have a new union of
paths that is drawable if and only if the old one had been drawable as well. We
connect the paths exactly like in Sect. 4.2 and turn the horizontal and vertical
lines through more than one vertex like in Sect. 3. The connecting edges are
always drawable and do not force any other edge, while the edges of the union of
paths are still contained, hence the path is drawable if and only if the union of
paths had been drawable. The problem is NP-hard also for a single path with
totally ordered vertices along each axis.
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Abstract. In this paper we present a generalization of the shift method algo-
rithm [4,6] to obtain a straight-line grid drawing of a triconnected graph, where
vertex representations have a certain specified size. We propose vertex representa-
tions having a rectangular shape. Additionally, one may demand maintainance of
the criterion of strong visibility, that is, any possible line segment connecting two
adjacent vertices cannot cross another vertex’ representation. We prove that the
proposed method produces a straight-line grid drawing of a graph in linear time
with an area bound, that is only extended by the size of the rectangles, compared
to the bound of the original algorithm.

1 Introduction

The shift method [4] is a well-known method among several approaches to obtain a stan-
dard straight-line representation of planar graphs in the graph drawing literature [2,7,9].
Given a triangulated graph, the original algorithm calculates coordinates for each vertex
on an 2D integer grid such that the final drawing has a quadratic area bound. A linear
time variant is presented in [3], [6] provides a version for triconnected graphs, [5] for
biconnected graphs.

The approach presented in the following sections is related to a version of the shift
method given in [1], which allows square vertex representations. In this paper, the shift
method for triconnected graphs [6] is generalized to have rectangular shaped vertex
representations. Furthermore, we demand that the criterion of strong visibility between
adjacent vertices is satisfied, that is, any possible line segment connecting two adjacent
vertices does not cross another vertex’ representation. To maintain the strong visibility
criterion in the shift method, additional shifts have to be introduced. The main contribu-
tion is to prove that the proposed method produces a grid drawing with an area quadratic
in the sum of number of vertices and the sizes of the vertex representations.

The generalized shift method can be used to draw clustered graphs having planar
quotient graphs [8]. Other possible applications include drawing graphs that have ar-
bitrary vertex representations by using the minimal bounding box, or drawing graphs
with labeled vertices, where the positions of a vertex and its label are not known, but
only the size of the region into which they are allowed to be drawn.
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Fig. 1. Vertex representations. Left: singleton Vk = {v}. Right: |Vk| > 1.

2 Preliminaries

Let G = (V,E) be a graph with n = |V | and m = |E|. A graph is called planar if it has
a crossing-free drawing in the plane. A plane graph is a planar graph with a fixed cyclic
ordering of edges incident to each vertex and a fixed outer face. A plane graph divides
the plane into which it is drawn into connected regions called faces. A triconnected
graph is a graph where the removal of any pair of vertices does not disconnect the
graph.

Let G be a triconnected plane graph. Let π = (V1, V2, . . . , VK),K < n, be a lmc-
ordering of G as presented in [6]. It is shown that every triconnected plane graph has
a lmc-ordering, and it can be computed in linear time. Let Gk, k ≤ K , be the graph
induced by V1 ∪ · · · ∪ Vk according to π, particularly GK = G. We denote by C0(Gk)
the boundary of the outer face of Gk.

Vertices are represented as rectangles rotated by 45 degrees. For all v ∈ V , vertex
lengths ll(v) and lr(v) are given according to the side lengths of a vertex representation,
as illustrated in Fig.1. Let l(v) = ll(v)+lr(v). Let Pl(v), Pr(v), Pb(v) and Pt(v) be the
left, right, bottom and top corners of v’s representation, with Pl(v) = (xl(v), yl(v)),
etc. As illustrated in Fig.1, we represent a set Vk = {v1

k, . . . , v
j
k}, j > 1, as a chain of

the single vertices, where [Pr(vi
k), Pl(vi+1

k )], 1 ≤ i < j, are horizontally aligned with
distance two. Let l(Vk) =

∑
v∈Vk

l(v), ll(Vk) =
∑

v∈Vk
ll(v), and lr(Vk) accordingly.

Let B(Vk) be the minimal bounding box of the representation of Vk. For a singleton
Vk = {vk}, the corner points of B(Vk) are exactly the corner points of vk. To obtain a
grid drawing, we assume without loss of generality that ll(v), lr(v) ∈ IN0 for all v ∈ V
and both are even.

For vertex representations having an area, as the representation given above, we can
define the criterion of strong visibility for graph drawing algorithms:

Definition 1 (Strong visibility). Let v, w ∈ V . Then v is strongly visible to w, if any
line segment connecting a point within the representation of v to a point within the
representation of w does not cross the representation of any other vertex u ∈ V with
u �= v, w.

Let P1 and P2 be two grid points on an integer grid and let μ(P1, P2) be the intersec-
tion point of the straight-line segment with slope +1 through P1 and the straight-line
segment with slope −1 through P2. In the algorithm, vertices will be placed according
to μ; hence the rotation of vertex representations by 45 degrees. Let L(v) be a set of
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Fig. 2. Installing vertex vk. Left: Gk−1. Right: Gk.

dependent vertices of v, that will later on contain the vertices which have to be rigidly
moved with v when v itself is moved.

3 Algorithm

The algorithm starts by drawing G2. We place V1 = {v1
1 , v

2
1} and V2 with coordinates

Pr(v1
1)← (0, 0),Pl(v2

1)← (l(V2)+max{ll(v1
1), lr(v2

1)}+2·|V2|, 0) andPt(B(V2)) ←
μ
(
Pr

(
v1
1
)
, Pl

(
v2
1
))

. The sets of dependent vertices are initialized with L(v) ← {v}
for v ∈ G2. We proceed by placing the next set Vk in the lmc-ordering into Gk−1, one
by one, starting with V3. Let C0 (Gk−1) = w1, . . . , wt, w1 = v1 and wt = v2. Assume
that following conditions hold for Gk−1, k ≥ 3 :

(C1) xr (wi) < xl (wi+1), 1 ≤ i ≤ t− 1.
(C2) each straight-line segment (Pr (wi) , Pl (wi+1)), 1 ≤ i ≤ t − 1, has either

slope +1, 0 or−1.
(C3) every vertex in Gk−1 is strongly visible to its adjacent vertices in Gk−1.

Obviously, these conditions hold for the initial GraphG2. When insertingVk, letw1, . . . ,
wp, wp+1, . . . , wq, . . . , wt be the vertices on C0(Gk−1), where wp is the leftmost and
wq the rightmost adjacent vertex of Vk in Gk−1. Similar to [3,6], install Vk = {v1

k, . . . ,

vj
k} by applying the following steps, see Fig.2.

Step 1. for all v ∈
⋃q−1

i=p+1 L(wi) do x(v) ← x(v) + ll(Vk) + |Vk|
Step 2. for all v ∈

⋃t
i=q L(wi) do x(v) ← x(v) + ll(Vk) + lr(Vk) + 2 · |Vk|+ Δ

Step 3. Pt(B(Vk)) ← μ (Pr (wp) , Pl (wq))
Step 4. For one j′, 1 ≤ j′ ≤ j set L(vj′

k )←
{
vj′

k ∪
(⋃q−1

i=p+1 L(wi)
)}

;

for all other j′′ �= j′, 1 ≤ j′′ ≤ j set L(vj′′

k )← {vj′′

k }

Actually, if Vk is not a singleton, the bottom corner of B(Vk) is placed too low
by |Vk| − 1. Nevertheless, this is sufficient since every vertex in Vk is separated by
distance two, and therefore the lowest possible bottom corner of any v ∈ Vk is at least
|Vk|− 1 higher than Pb(B(Vk)). Assume for the moment that Δ = 0 in step 2. Then all
conditions are satisfied for Gk if {wp+1, . . . , wq−1} �= ∅, see [8]. However, if there are
no inner vertices between wp and wq on the outer face of Gk−1, and ll(wp), lr(wq) �= 0,
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condition (C3) is violated in Gk by placing Vk in steps 1 to 4, as wq is not strongly
visible to wp anymore after insertion. Since step 1 will be omitted in this case, the
problem can only be addressed by introducing an extra shift Δ in step 2, thus placing
Vk high enough in step 3 such that the strong visibility between wp and wq is not
violated in Gk. The following Lemma shows how much extra shift is needed, when in-
stalling Vk.

Lemma 1. Let Vk = {vk}. Let {wp+1, . . . , wq−1} = ∅ and ll(wp), lr(wq) �= 0. Then
wp will be strongly visible to wq in Gk, if an extra shift amount Δ is added in step 2
with

Δ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⌈
2 · ll(wp)·lr(wq)

ll(wp)+ll(wq)+lr(wq)

⌉
if [Pr(wp), Pl(wq)] has slope +1 in Gk−1

⌈
2 · ll(wp)·lr(wq)−4

ll(wp)+lr(wq)+4

⌉
if [Pr(wp), Pl(wq)] has slope 0 in Gk−1

⌈
2 · ll(wp)·lr(wq)

ll(wp)+lr(wp)+lr(wq)

⌉
if [Pr(wp), Pl(wq)] has slope −1 in Gk−1

Proof. Let δ be the height, with which vk must be lifted upwards to guarantee strong
visibility. Assume [Pr(wp), Pl(wq)] has slope +1 in Gk−1, as illustrated in Fig.3 (left).
The gray rectangle indicates the position of vk in Gk without introducing an extra shift.
Let δpq =

√
2 · [Pr(wp), Pl(wq)]. Observe that δ is largest, if δpq has the smallest

possible value, and that at the same time δpq ≥ ll(wq). Thus, assume δpq = ll(wq). By
the theorem on intersecting lines, we have

δ

ll(wp)
=

lr(wq)
ll(wp) + ll(wq) + lr(wq)

⇔ δ =
ll(wp) · |wq|r

ll(wp) + ll(wq) + lr(wq)

It is easy to see that δ is analogous, if the line segment [Pr(wp), Pl(wq)] has slope −1
in Gk−1. Assume [Pr(wp), Pl(wq)] has slope 0 in Gk−1, as shown in Fig.3 (right). In
this case, Pr(wp) and Pl(wq) are separated by a horizontal line segment with length
two. Assume that ll(wp) < lr(wq), then

δ + 1 = ll(wp)
2 + ll(wp)/2 + 1

ll(wp)/2+2+lr(wq)/2 ·
lr(wq)−ll(wp)

2

⇔ δ = ll(wp)·lr(wq)−4
ll(wp)+lr(wq)+4

The same value is obtained, if ll(wp) ≥ lr(wq). Overall, if an extra shift Δ = #2δ$ is
introduced, vk is lifted by at least δ, and hence wp and wq will be strongly visible to
each other in Gk . ��

Observe that, if Vk is not a singleton, we have to add 2·(|Vk|−1) to Δ, since Pb(B(Vk))
is |Vk| − 1 lower than the bottom corner of a singleton vk, as indicated in Fig.3. Note
also that, if Δ is an odd number, it has to be increased by one to maintain the grid
drawing property.

4 Analysis

The following theorems state the bounds for the drawing area of the proposed method,
and its time complexity.
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Fig. 3. Geometry for the case {wp+1, . . . , wq−1} = ∅. Left: slope +1. Right: slope 0.

Theorem 1. The total grid area of a drawing of a triconnected plane graphG = (V,E)
with given vertex lengths ll(v), lr(v), v ∈ V produced by the proposed method is in

O
(
|V |+

∑
v∈V l(v)

)2
.

Proof. The width of the initial layout of G2 is clearly bounded by 2 · |V2| + Δ2 +
∑2

i=1 l(Vi), with Δ2 = max(ll(v1
1), lr(v2

1)). Whenever a set Vk is added, the width
increases by 2 · |Vk| + Δk + l(Vk), where Δk denotes the extra shift in step k. Thus,
the total width is bounded by 2 · |V |+

∑
v∈V l(v) +

∑K
i=2 Δi.

Assume that all Vk, 2 < k ≤ K , are singleton, and that, instead of shifting ex-
actly with Δ = #2δ$ when installing Vk, we shift with either max(ll(wp), lr(wq)) or
min(ll(wp), lr(wq)). If [Pr(wp), Pl(wq)] has slope +1 in Gk−1 and

1. ll(wp) ≥ δpq + lr(wq)

⇒

δ ≤ ll(wp)/2,

then

Δ = ll(wp)
2. lr(wq) ≤ ll(wp) < δpq + lr(wq) δ ≤ lr(wq)/2, Δ = lr(wq)
3. lr(wq) ≥ ll(wp) + δpq δ ≤ lr(wq)/2, Δ = lr(wq)
4. ll(wp) < lr(wq) < ll(wp) + δpq δ ≤ ll(wp)/2, Δ = ll(wp)

are sufficient to maintain strong visibility. If [Pr(wp), Pl(wq)] has slope −1 in Gk−1,
the bounds are analogous. If [Pr(wp), Pl(wq)] has slope 0, δ is bounded by max(ll(wp),
lr(wq))/2, therefore we assume to shift with the maximum length in this case. To find
an upper bound for

∑
Δ we use amortized analysis.

Consider the part of
∑

Δ which is contributed due to shifting with the maximum
length of ll(wp) and lr(wq), i.e. cases 1 and 3, and the case where the slope of
[Pr(wp), Pl(wq)] is 0. It is easy to see that, after one of these cases occured on one
side of a vertex v at step k, the length of v on the same side only contributes to another
extra shift at step k′ > k as the minimum length of the two adjacent vertices of Vk′ .
Hence, this part of

∑
Δ is bounded by

∑
v∈V l(v).

For determining the part of
∑

Δ which is contributed due to shifting with the mini-
mum length, let each vertex v have two amounts left(v) and right(v), that it can spend
to support one extra shift on its left side and one on its right side. Set left(v) ← lr(v)
and right(v) ← ll(v). Let wp and wq be the neighbors of Vk on the outer face of
Gk−1 at step k with {wp+1, . . . , wq−1} = ∅. Assume [Pr(wp), Pl(wq)] has slope +1
in Gk−1. Since in this case wq was inserted later than wp, it cannot have spent left(wq),
because otherwise there would be an inner vertex between wp and wq on the outer
face. If min{ll(wp), lr(wq)} = lr(wq), then wq pays for the extra shift with left(wq).
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Suppose now that min{ll(wp), lr(wq)} = ll(wp). If wp has not used right(wp) so far,
then it just pays for the shift. If on the other hand right(wp) has already been spent
(e.g. to insert wq), then wq uses left(wq) = lr(wq) ≥ ll(wp) to pay the extra shift.
The payment is analogous if [Pr(wp), Pl(wq)] has slope −1 in Gk−1. Thus, the total
amount of extra shift is sufficiently paid, and this part of

∑
Δ is therefore also bounded

by
∑

v∈V l(v). The additional amount of extra shift which is contributed, if Vk are not
singleton, is clearly bounded by 2 ·

∑
2≤i≤K(|Vk| − 1) < 2 · |V |.

Since G = GK satisfies condition (c2), the height of the drawing is bounded by half
of its width plus the part of vertices v1

1 and v2
1 beneath the x-axis. ��

If the strong visibility constraint has not to be maintained, the drawing area is exactly(
l(v1

1)+l(v2
1)

2 + 2ω
)
×
(

max(lr(v1
1),ll(v2

1))
2 + ω

)
, ω = |V |−2+

∑K
i=2

l(Vi)
2 , since no extra

shift is needed in this case. It remains an open problem to give a worst-case scenario
and sharp area bound if strong visibility has to be guaranteed.

The linear time implementation of the original shift method [3] can easily be ex-
tended to our problem. Since the determination of the extra shift amount takes only
constant time, the overall asymptotic complexity is not changed.

Theorem 2. Given a triconnected plane graph G = (V,E), n = |V |, the proposed
method can be implemented with running time O(n).
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Placing Text Boxes on Graphs�

A Fast Approximation Algorithm for Maximizing Overlap
of a Square and a Simple Polygon

Sjoerd van Hagen and Marc van Kreveld

Department of Information and Computing Sciences
Utrecht University, The Netherlands

Abstract. In this paper we consider the problem of placing a unit
square on a face of a drawn graph bounded by n vertices such that the
area of overlap is maximized. Exact algorithms are known that solve this
problem in O(n2) time. We present an approximation algorithm that—
for any given ε > 0—places a (1+ε)-square on the face such that the area
of overlap is at least the area of overlap of a unit square in an optimal
placement. The algorithm runs in O( 1

ε
n log2 n) time. Extensions of the

algorithm solve the problem for unit discs, using O( log(1/ε)
ε
√

ε
n log2 n) time,

and for bounded aspect ratio rectangles of unit area, using O( 1
ε2

n log2 n)
time.

1 Introduction

The annotation of drawn graphs comes in different forms. Vertices can be la-
beled with their name or index, edges may be labeled with extra information, or
faces of the embedded graph may receive a label. The analogy with cartographic
label placement is clear: Here we have point feature labels, linear feature labels,
and areal feature labels. Areal features are for instance lakes, national parks,
provinces, and countries.

A related cartographic question is that of annotating regions of a map with
extra information instead of names. These can be text boxes, pie charts, his-
tograms, or other diagrams that show statistics about that region. If the anno-
tation does not fit inside the region, it must obviously overlap parts of other
regions. To achieve the best possible association of the correct region and the
annotation, it is desirable to have the largest possible overlap in area of the
annotation and that region. A possible positive side effect is that not too much
of the region boundaries is covered by the annotation, and if more regions are
annotated, that their annotations usually do not overlap.

One can abstract an annotation by a rectangle, square, or circle of some given
size, which represents the bounding shape of the annotation. A region on a map
is typically a simple polygon (although sometimes it has holes). The algorithmic
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A text box
to annotate
a face of a
drawing

A text box
to annotate
a face of a
drawing

Some Graph Drawing Window

Name: Agraph
Vertices: 27
Edges: 44
Min. angle: 9◦

Fig. 1. Left, annotation of two faces by text boxes. Right, annotation in the outer face
of a drawn graph.

question that arises is: How do we compute the placement of a simple shape with
a simple polygon to maximize area of overlap efficiently? Van Kreveld et al. [16]
studied this problem (along with some related problems) in the context of placing
diagrams on maps. It was shown that the maximum overlap placement of a unit
square on a simple polygon P with n vertices can be computed in O(n2) time.
It was also shown that the placement problem with one degree of freedom—for
example, the y-coordinate of the top of the unit square is fixed—can be solved
in O(n log n) time.

The faces of a drawn graph are also simple polygons, and the annotation of
a face is the same problem as the annotation of a region on a map. Hence, the
problem we address in this paper is motivated by both automated cartography
and graph drawing. Figure 1 gives two examples where faces are annotated,
and maximizing overlap with a face appears reasonable for the best text box
positioning. Annotation—or label placement—has been studied in the context
of graph drawing various times, see for instance [6,7,14,19].

If one considers a quadratic time solution to the area of overlap maximization
problem to be too slow, there are several approaches to deal with this. Firstly,
one can argue that faces in typical graphs do not have large complexity, so an
algorithm that takes time quadratic in the number of vertices of the face is
no problem. In some cases this is obviously true, like drawings of triangulated
graphs. In other cases it is not true, like drawings of trees with a few additional
edges or other sparse planar graphs.

Secondly, one can make realistic input assumptions that allows one to show
that for inputs satisfying those assumptions, a provably more efficient solution
exists. This idea has led to a large body of research in computational geometry.
For our problem, this idea does not seem to work. For standard definitions of
realistic input polygons [8,20,15], the so-called placement space of a unit square
remains combinatorially quadratic in size.

Thirdly, one can use approximation. For example, one could try to find the
unit square placement that has area overlap with P of at least c · A, for some
fixed c ≤ 1, where A is the area of overlap of the optimal placement. Then we
have a c-approximation algorithm (which is the optimal algorithm if c = 1).
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An approximation scheme is an algorithm that, for any ε > 0, computes a
placement with area overlap of at least (1−ε) ·A. Approximation algorithms and
approximation schemes only make sense if they are significantly more efficient
than the corresponding exact algorithm.

It appears hard to develop a subquadratic time approximation algorithm for
our problem, due to the fact that the optimal overlap can be very close to 0.
However, we can show that if the overlap is at least some constant Â > 0, then
we can compute a placement that guarantees an overlap of (1 − ε) · Â, for any
fixed ε > 0. The algorithm runs in O(1

ε n log2 n) time. Note that assuming that
the area of overlap is at least a constant is in a sense a realistic assumption: For
instances where the optimal overlap is very small, the solution to the problem
is not suitable for a good annotation anyway.

We solve our problem via a detour. We show that for any fixed δ > 0, we can
compute a placement of a square of size 1 + δ whose area of overlap with the
simple polygon P is at least Aopt, where Aopt is the maximum area of overlap
that can be achieved for the placement of a unit square. When we shrink the
(1+ δ)-square to a unit square, we can lose an area of overlap of at most 2δ + δ2.
Hence, given ε > 0 and Â > 0, we choose δ = Â · ε/3 and compute a placement
of a (1 + δ)-square with the algorithm we present in this paper. Any unit square
inside the (1+ δ)-square we found will have area of overlap at least (1− ε) ·Aopt,
so this implies a (1− ε)-approximation algorithm.

Our algorithm can be extended to compute the placement of a unit disc with
maximum area of overlap approximately in O( log(1/ε)

ε
√

ε
n log2 n) time, again as-

suming that the area of overlap is at least some constant. We note that for
this case, no exact algorithm exists at all, due to the algebraic complexity of
maximizing the analytic form of the area-of-overlap function. The algorithm
can also be extended to place a unit area rectangle with bounded aspect ratio
in O( 1

ε2 n log2 n) time (for rectangles with fixed aspect ratio one can use the
algorithm for squares after scaling). This can be useful for elastic labels, an ab-
straction for text boxes of a fixed length text where the width of the text box is
also free proposed by Iturriaga and Lubiw [12,13].

In computational geometry, there is a large body of research on optimal match-
ing of two shapes [21]. One measure for similarity is the area of overlap, and
hence, research has been done on maximizing this measure under various trans-
formations. For translations only, Mount et al. [17] gave a O((nm)2) time algo-
rithm for the maximum overlap of a simple n-gon and a simple m-gon. For two
convex polygons, an ((n + m) log(n + m)) time algorithm exists [2].

There are also several papers that use approximation to find a unit square or
disc that covers the maximum number of points of a given point set [9,10]. A
main difference with our problem is that we optimize a (continuous) area measure
instead of a (discrete) point count measure. Other related research is on finding
a largest area rectangle inside a simple polygon, for which Daniels et al. [5] give
an O(n log2 n) time algorithm, and finding the largest similar copy of a convex
polygon inside a simple polygon [1]. This would correspond to scaling such that
the annotation just fits inside the face. For text boxes this implies changing the



Placing Text Boxes on Graphs 287

q

Q

P

P ∩Q

Fig. 2. Example of a simple polygon P intersecting a square Q; the area of intersection
can be decomposed into trapezoids

font size, which may not be desirable. Finally, there are many papers on the
topic of label placement in the algorithms and automated cartography research
fields, but it is beyond the scope of this paper to review them.

We start with a brief description of the quadratic time exact algorithm from
[17,16] in Sect. 2 since we will need ideas from it. In Sect. 3 we present the approx-
imation algorithm. We first give a version whose running time is O(1

ε n log3 n).
Then we show how to use Jordan sorting to improve the total running time
to O(1

ε n log2 n). We present the extension for circles and bounded aspect ratio
rectangles in Sect. 4. Concluding remarks are given in Sect. 5.

2 An Exact Quadratic-Time Algorithm

In this section we sketch the approach from [17,16] to compute an exact solution
to the maximum overlap placement of a unit square on a simple polygon. It
is based on the fact that there are quadratically many combinatorially distinct
placements of a square Q on a simple polygon P .

The combinatorially distinct placements of Q on P are described by the differ-
ent pairs of edges—one from Q and one from P—that can intersect. We use the
top right corner of Q as a reference point q to characterize the possible positions
of Q. When the pairs of intersecting edges are fixed, the reference point still has
a little freedom to move, see Fig. 2. As long as the intersecting edges of P and
Q remain the same, changing the position of q will change the area of P ∩ Q,
but in a prescribed manner. We can express the area of P ∩ Q as a quadratic
function in the x- and y-coordinates of the reference point q. Specifically, it has
the form:

ax2 + bxy + cy2 + dx + ey + f .

This is true because the overlap can be decomposed into a set of trapezoids
whose vertices change linearly in x and y, see Fig. 2. Therefore the area changes
as a quadratic function. If Q were a circle, the area-of-overlap function would
have a non-constant description involving square roots, and maximizing the area
of overlap would not be possible exactly.
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q

Fig. 3. The 1-dimensional problem of placing a unit square to maximize area of overlap.
The first four positions where the area-of-overlap function changes are shown.

Suppose the reference point q and therefore the square Q translates in the
plane. The quadratic function giving the area of overlap stops to be valid when
the pairs of edges of Q and P that intersect change. Then a different quadratic
function will describe the area of overlap, that is, the coefficients a, b, c, d, e, f
are different. This happens when:

– an edge of Q passes over a vertex of P , or
– a vertex of Q passes over an edge of P .

Let Π be the subdivision obtained from all positions of q where an edge of Q
coincides with a vertex of P , or vice versa. Π is called the placement space of
Q with respect to P . In each face of Π , some fixed quadratic function describes
the area of overlap of Q and P .

Theorem 1. (Adapted from [17,16]) Given a simple polygon P with n edges and
a square Q, the placement space of Q with respect to P can be constructed in
O(n log n+N) time, where N = O(n2) is the number of combinatorially distinct
placements.

It can also be shown that the quadratic function that is valid in each cell of
Π can be computed in quadratic time by a suitable traversal of the cells of Π .
Given Π and the quadratic function for each cell, we can compute the placement
of Q that maximizes the area of overlap in O(N) = O(n2) time.

In case we are only interested in square placements where the reference point
is restricted to lie on a given line, the placement space is 1-dimensional and
there are only O(n) combinatorially distinct placements, see Fig. 3. The optimal
placement can now be solved by a sweep of the square with its reference point
on the line, and updating the quadratic function. Since we must sort the O(n)
events where the quadratic function changes, this takes O(n log n) time.

3 An Approximation Algorithm

In this section we compute a placement of a (1 + ε)-square on a simple polygon
P with n vertices so that the area of overlap is at least the maximum area of
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ε ε ε

q

1

1 + ε

ε

Fig. 4. If the optimal unit square intersects the split line �, then one of the 1/ε sweeps
will consider (1 + ε)-squares (like the one shown dotted) that contains it

overlap of a unit square and P . The solution is based on divide-and-conquer,
where dividing gives rise to running the 1-dimensional exact algorithm for a
(1 + ε)-square a number of times. The algorithm will at some point consider a
(1+ ε)-square that contains the unit square in its optimal placement. This leads
to the desired approximation guarantee.

Divide-and-conquer. The divide-and-conquer algorithm chooses vertical lines to
partition the simple polygon into pieces. This will give vertical slabs in the plane.
Every split will guarantee that the number of vertices in the interior of the slab is
at least halved. So we determine the median of the x-coordinates of the vertices
and choose a vertical line 
 through this vertex.

We would like to create two subpolygons and recurse on them, but it may be
that the optimal unit square intersects 
, and we must take this possibility into
account. This is done by running the 1-dimensional algorithm 1+1/ε times.1 The
1-dimensional algorithm is run with the reference point q of the (1 + ε)-square
on 
, and on vertical lines at distances ε, 2ε, 3ε, . . . , 1 + ε to the right of 
, see
Fig. 4. We observe:

Observation 1. If the optimal unit square intersects 
, then at least one of the
1 + 1/ε sweeps with a (1 + ε)-square will give a position where a (1 + ε)-square
contains the optimal unit square.
1 With slight abuse of notation, we assume that 1 + 1/ε is an integer, but technically

we should use rounding. Asymptotically the running time is not affected.
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Fig. 5. Splitting a simple polygon by a line and repairing the parts into two simple
polygons

Hence, in O(1
ε n log n) time, we find a (1 + ε)-square whose area of intersection

with P is at least as large as the optimal unit square that intersects 
.

Splitting the polygon. Now we can divide the problem into two subproblems by
splitting the simple polygon. We may split the polygon into more than two parts,
but we can repair the situation while using only vertices on the splitting line, see
Fig. 5. The resulting polygons may have edges that coincide on the split lines,
but this degeneracy does not influence the algorithm. It is standard to perform
such a split and repair in O(n log n) time. Observe that the number of vertices
interior to each of the resulting slabs is at least halved. The divide-and-conquer
algorithm will find a (1 + ε)-square strictly left of 
 recursively, a (1 + ε)-square
strictly right of 
 recursively, and a (1+ ε)-square that intersects 
. The one with
largest area of overlap with P is returned.

Recall that a 1-dimensional sweep has two types of events: An edge of Q
passes over a vertex of P , or a vertex of Q passes over an edge of P . In a slab,
a subpolygon of P has interior vertices and boundary vertices. We call an edge
of P that intersects a slab short if it has an endpoint that is an interior vertex,
and we call it long if both endpoints are boundary vertices. Long edges cross
the slab completely. The divide-and-conquer algorithm takes care of halving the
number of interior vertices, and therefore the number of short edges is bounded
as well. But the number of long edges can become large, and these also give
rise to events in the 1-dimensional sweeps. Ultimately, the divide-and-conquer
algorithm bottoms out when a slab has no more interior vertices, or when its
width is at most unit. The final O(n) slabs may all be crossed by a linear number
of edges, leading to an algorithm that takes at least quadratic time in the worst
case.

Free splits. To control the number of long edges in recursive subproblems, we
use the concept of free splits, introduced by Patterson and Yao to prove bounds
on the size of binary space partitions [18]. We will take measures to eliminate



Placing Text Boxes on Graphs 291




e1

e2

e3




e1

e2

e3

ε

ε
ε

ε

q

Fig. 6. After splitting along �, the free split along e2 is done in the left part, and then
free splits along e1 in the bottom left polygon and along e3 in the top left polygon.
Two free splits are performed in the right part as well. In the right figure, the sweeps
are shown by dashed segments parallel to e2.

long edges when they appear after a split with a line 
, so that there are no long
edges when we choose a next split line.

Let S be a slab with no long edges. We determine the median x-coordinate
of the interior vertices, which defines a vertical split line 
, and perform 1 + 1/ε
sweeps as described above. Then we split the simple polygon P into two polygons
Pleft and Pright, as described above as well. For each resulting polygon, say, Pleft,
we determine the long edges e1, . . . , ek from bottom to top, see Fig. 6. We use
these edges to partition Pleft further, also in a divide-and-conquer fashion. So we
select e�k/2�, perform a number of sweeps parallel to this edge and then split Pleft
at e�k/2� into two subpolygons that are handled recursively. Since the diameter
of a unit square is

√
2, we must now perform up to

√
2/ε sweeps with q on lines

that are a distance ε apart, see Fig. 6. Free splits are performed in the same way
as splits along vertical lines; no additional cases occur.

Running time. To prove an upper bound on the running time of the algorithm,
we first observe that the number of free splits is O(n log n) throughout the whole
algorithm. This is standard; see for instance Chapter 10 in [3], or [4,18].

Lemma 1. Assume that a slab contains m interior vertices and no long edges.
The time needed to perform the vertical split and all necessary free splits is
O(1

ε m log2 m), including the time for the sweeps.



292 S. van Hagen and M. van Kreveld

Proof. We already argued that the vertical split takes O(1
ε m log m) time. We

may have created O(m) long edges while doing this. For each free split, each of
the O(m) interior and boundary vertices appears in only one of the two new poly-
gons that is created. Each vertex creates an event in O(1

ε log m) 1-dimensional
sweeps, because the recursion depth of the free splits is O(log m). Hence, the
O(1

ε m) sweeps due to free splits encounter O(1
ε m log m) events together, lead-

ing to O(1
ε m log2 m) time for all free splits. ��

The lemma can be used to prove an O(1
ε n log3 n) time bound for the approxi-

mation problem: The recurrence that describes the efficiency of the algorithm is
given by T (n) = 2 · T (n/2) + O(1

ε n log2 n) for n > 1 (and T (1) = O(1)), which
solves to O(1

ε n log3 n) time. However, we can remove a logarithmic factor.

Jordan sorting. We next improve the overall running time to O(1
ε n log2 n) by

applying Jordan sorting to the 1-dimensional problems. Jordan sorting is a linear
time algorithm which, given a simple polygon and a line, sorts their intersection
points along the line [11].

The 1-dimensional sweep algorithm to find the (1 + ε)-square that has the
largest area of overlap with P takes O(n log n) time due to the sorting of the
events. If the events were sorted, we could update the quadratic function in
constant time because at most three trapezoids can appear or disappear during
an event. We only have to perform some simple additions to the coefficients
a, b, c, d, e, and f based on these changed trapezoids to get the new quadratic
function that is valid. This fact was already used in [16] to generate the placement
space with all quadratic functions.

To obtain a sorted list of events, recall that there are two types of events: an
edge of Q crosses an vertex of P , and a vertex of Q passes a edge of P . The
former type will be obtained in sorted order by pre-sorting and maintaining two
sorted lists, the second type by Jordan sorting.

For the first type, we perform preprocessing for the algorithm by sorting all
vertices of P by x-coordinate into a list Lx, and also by y-coordinate into a list
Ly. Whenever we perform a split, by a vertical line or a free split, we traverse
each list and generate two new sorted lists for the two subproblems that appear.
This will take time linear in the length of the list, which is linear in the number
vertices in the slab or trapezoid that is split.

For the second type, we compute the event just before performing the 1-
dimensional sweep. We perform Jordan sorting four times, once for each path of
a vertex of Q; this path is a line segment. We merge these sorted lists into one,
and also merge them with the events of the first type. In total, we need six list
merges to obtain all events in sorted order. Hence, a 1-dimensional sweep can
be performed in linear time.

Summarizing the results of this section, we conclude:

Theorem 2. Given a simple polygon P with n vertices and a constant ε > 0, an
O(1

ε n log2 n) time algorithm exists that computes a placement of an axis-aligned
square with side length 1 + ε of which the area of overlap with P is at least the
area of overlap of any axis-aligned unit square with P .
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4 Extensions to Circles and Rectangles

Suppose we wish to place a circular annotation on a region of a map or a face
drawn graph, like a pie chart. We can adapt the approximation algorithm given
in previous section to this case. The idea is to choose a suitable integer k, and
adapt the algorithm for squares to work for regular k-gons.

We will use a regular k-gon that is inside a diameter (1 + ε)-disc but outside
a (1 + ε

2 )-disc. Instead of performing 1-dimensional sweeps with a distance ε in
between, we must use a distance of ε/2 in between. Finally, we need to maintain
k sorted lists that give the order in which the edges of the regular k-gon will
cross the vertices of subpolygons of P . The extensions are straightforward.

It is well known that the choice k = Θ(1/
√

ε) satisfies our requirement of
approximating a disc well enough. Following the analysis for the square case, we
notice that merging k sorted lists with O(nk) events in total takes O(nk log k)
time. Hence, we conclude:

Theorem 3. Given a simple polygon P with n vertices and a constant ε > 0,
an O( log(1/ε)

ε
√

ε
n log2 n) time algorithm exists that computes a placement of a disc

with diameter 1 + ε of which the area of overlap with P is at least the area of
overlap of any unit disc with P .

Next we discuss the extension to placing an axis-aligned rectangle with aspect
ratio r : 1 or less and unit area (assuming r ≥ 1). If the aspect ratio were
fixed, we could simply scale the input so that the problem reduces to placing an
axis-aligned square. Our algorithm will test a fixed number of aspect ratios (de-
pending on ε and r), scale the input appropriately, and run the square placement
algorithm. We will asume that r = O(1) since this will be true in any practical
context.

Suppose that the optimal unit area rectangle is Ropt. Then we wish to find a
rectangle with area at most 1 + ε, aspect ratio at most r : 1, and that has area
of overlap with P that is at least as much as the area of overlap of Ropt. We
must make sure to that our algorithm tries some rectangle during a sweep that
contains the optimal rectangle Ropt.

We will try the following rectangle widths (or heights): (1+ 3ε
5r ), (1+ 4ε

5r ), (1+
ε
r ), (1 + 6ε

5r ), . . . and the corresponding heights (resp. widths) to get an area of
1 + ε; these corresponding heights (resp. widths) increase by less than ε/(5r).
We continue until the first value greater than

√
(1 + ε)r .

One of the rectangles we try will be larger by ε/(5r) in height and width
than Ropt but at most larger by 2ε/(5r). If the optimal rectangle Ropt has size
h× (1/h), then 1 ≤ h ≤ √r, and a rectangle of size (h + 2ε

5r )× ((1/h) + 2ε
5r ) has

area less than 1 + ε.
If we run the 1-dimensional sweeps with lines at distance ε/(5r) in between,

then we will encounter a rectangle with the desired properties that contains Ropt.
Since r is assumed to be constant, we run the algorithm for squares O(1/ε) times.
We conclude:

Theorem 4. Given a simple polygon P with n vertices, a constant ε > 0, and a
value r ≥ 1, an O( 1

ε2 n log2 n) time algorithm exists that computes a placement
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of an axis-aligned rectangle with area 1 + ε and aspect ratio bounded by r : 1 of
which the area of overlap with P is at least the area of overlap of any axis-aligned
unit area rectangle and aspect ratio bounded by r : 1 (assuming r = O(1)).

5 Concluding Remarks

We have studied the problem of annotating a region on a map or a face of a
drawn graph by a square, circular, or rectangular shape while maximizing the
area of overlap. This will give a good association between the face and the shape,
may avoid unnecessary covering of edges by the annotation, and if more faces are
annotated, may help to avoid overlap of different annotations. It was known that
the problem can be solved in O(n2) time if the face has n boundary vertices. We
showed that a placement of a shape that is larger by a factor 1 + ε can be found
in O(n log2 n) time that has at least the area of overlap of the optimal placement
of the original shape (ignoring factors depending on the constant ε > 0).

With the same approach, we can compute a placement whose length of overlap
with the boundary of the face is minimized. For this problem to make sense, we
must restrict the space of all placements somehow, otherwise the optimum can
lie fully outside the face. We can for instance require that the center of the
shape lies inside the proper face. For each combinatorially distinct placement,
the length of overlap changes linearly in the coordinates of the reference point,
but otherwise, the solution approach is the same, and we get the same running
time bounds.

The main open problems are improvements in the running time. Firstly, we
suspect that it must be possible to remove one log-factor from the running time,
but it is even conceivable that both log-factors can be removed. For the disc and
rectangle versions, we may be able to improve the dependency on ε, or generalize
to rectangles of unbounded aspect ratio.
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Abstract. In this paper, we consider the problem of removing overlaps
of labels in a given layout by changing locations of some of the over-
lapping labels, and present a new method for the problem based on a
packing approach, called multi-sphere scheme. More specifically, we study
two new variations of the label overlap problem, inspired by real world
applications, and provide a solution to each problem. Our new approach
is very flexible to support various operations such as translation, trans-
lation with direction constraints, and rotation. Further, our method can
support labels with arbitrary shapes in both 2D and 3D layout settings.
Our extensive experimental results show that our new approach is very
effective for removing label overlaps.

1 Introduction

Graph Drawing has been extensively studied over the last twenty years due
to its popular application for visualization in VLSI layout, computer networks,
software engineering, social networks and bioinformatics. As a result, many algo-
rithms and method are available. Note that most algorithms in Graph Drawing
deal with abstract graph layout, where each node is represented as a point.
However, in many real world applications, nodes may have labels with different
size and shape. For example, some nodes have very long text labels or large
images, and they can be represented as boxes or circles as in UML diagrams.
Consequently, direct use of layout algorithm for abstract graph often leads to
overlapping of nodes (i.e. labels) in the resulting visualization.

In order to visualize graphs with different node sizes, the following three steps
approach is used in general: (1) a reasonably good initial layout is created us-
ing a graph layout algorithm without considering node size; (2) labels of nodes
are added in the layout; (3) the post processing step to remove node overlap-
ping is performed. The problem of removing node overlaps has been well studied
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by the Graph Drawing community. These can be classified into three different
approaches: force-directed method [5,6,9,11], Voronoi Diagram method [5,11],
and constrained optimization method [4,12]. Further, they differ in their opti-
mization criteria considered. The variations of Force Scan algorithm based on
the force-directed method [6,9] preserves orthogonal ordering, the top-down and
left-right relationship between nodes. Note that the problem of transforming a
given layout of a graph with overlapping rectangular nodes into a minimum area
layout without node overlapping which preserves the orthogonal order is proved
as NP-complete [6]. The constrained optimization techniques using a quadratic
programming approach minimizes the total change of node positions while sat-
isfying non-overlap constraints [4,12]. Note that most of the methods solve the
problem of overlap removal of rectangular labels with translation only.

We present a new method for removing overlap of labels based on multi-sphere
scheme [8], a general algorithmic framework for solving the problem of packing
objects both in two and three dimensions. Based on this scheme, each label
in a given layout is approximated by a set of circles or spheres and a penalty
function of the overlap between two labels is introduced. By minimizing the
penalty function using a quasi-Newton method [10], we compute a layout of
the set of circles or spheres as an approximate solution to the original problem.
Our new approach is very flexible, and has the following three advantages over
previous work:
1. Our approach can handle labels with arbitrary shapes. Note that previous
methods can deal with only rectangular labels. However, in our approach, we
can treat any non-rectangular-shaped labels by approximating each of them as
a set of circles. We can also place given labels inside a specified area with a
non-rectangular boundary.
2. Our algorithm can use three types of operation: translation, translation with
direction constraints (i.e. move along the specified line), and rotation. Note that
the previous methods deal with only translation.
3. Our method can be used for both 2D and 3D layouts. Note that previous study
can only deal with 2D layout.

In order to demonstrate our three advantages, we consider two new variations
of the label overlap problem, each inspired by real world applications, and design
an algorithm for each problem setting. More specifically, we consider following
two types of label overlap removal problems.

Problem 1: Rectangular Label with Direction-Constrained Translation
Input: A set of overlapping rectangles, where each rectangle is located on its
initial position with a specified direction constraints (i.e. a line segment) in the
plane.
Output: A set of new positions of rectangles such that no two rectangles overlap
and the change of new positions from the initial positions is small, where the
new position of each rectangle is obtained by restricted translation along the
specified direction only.
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Problem 2: 3D Multi-attribute Label with Translation and Rotation
Input: A set of overlapping spiked sphere (i.e. a sphere with several small cones
on its surface), where each spiked sphere is located on its initial position in the
3D space.
Output: A set of new positions of spiked spheres in 3D such that no two spiked
spheres overlap and the change of new positions from the initial positions is
small, where the new position of each spiked sphere is obtained by both trans-
lation and rotation in 3D.

Problem 1 appears in applications such as placing labels of street names in
a road map layout [2]. Problem 2 appears in applications such as visualization
of network data with multiple attributes in three dimensions. For example, a
spiked sphere was used to represent an author of the Information Visualization
community, where each sphere represents an author, the size of sphere repre-
sents the number of research papers published by the author in the conference
proceedings, and the length of each spike attached to the sphere represents spe-
cial attributes such as the number of papers in specific research area [3]. We
implemented our algorithm and evaluated with two different types of data sets.
Our extensive experimental results show that our new approach is very fast and
effective for removing label overlaps. For the full version of this paper, see [7].

2 Algorithm Based on Multi-sphere Scheme

In the multi-sphere scheme, we first approximate each label by a set of spheres,
and then search for positions of all the spheres that minimize an appropriate
penalty function. Approximating objects by spheres makes it easy to check col-
lisions of objects and handle rotations of objects by arbitrary angles.

To find a layout of sets of spheres, we formulate penalized rigid sphere set
packing problem of as an unconstrained optimization program and apply an
algorithm RigidQN, which moves the labels simultaneously and modifies the
entire layout gradually. Given an initial layout of labels, where the labels are
approximated by sphere sets, RigidQN returns a locally optimal layout com-
puted by applying the quasi-Newton method to the penalized rigid sphere set
packing problem. Although we do not use an explicit criteria to minimize the
total change between the initial and final layouts, RigidQN obtains the final po-
sitions of labels are close to the initial positions in most cases because RigidQN

moves sphere sets gradually.
We formulate the penalized rigid sphere set packing problem for Rd, which

asks to move a collection O = {O1, . . . , Om} of m objects so that no two objects
overlap each other. Each object Oi consists of ni spheres {Si1, . . . , Sini}. Let cij

be the vector that represents the center of spheres Sij , rij be the radius of Sij and
N =

∑m
i=1 ni.We let ri =

∑ni

j=1 cij/ni, which represents the center of Oi. For a
set S of points, let ∂S be the boundary of S, and int(S) = S \∂S be the interior
of S. After translating object O by a translation vector v ∈ Rd, the resulting
object is described as O⊕v = {x+v | x ∈ O}. The penetration depth [1] of two
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shapes S and T is defined by δ(S, T ) = min{‖x‖ | int(S)∩(T ⊕x) = ∅, x ∈ Rd},
where ‖·‖ denotes the Euclidean norm. Let Λi(x,v) : Rd×λi → Rd (i = 1, . . . ,m)
be a motion function that moves a point x ∈ Rd by λi variables v ∈ Rλi . For
a set of points S ⊆ Rd, let Λi(S,v) = {Λi(x,v) | x ∈ S}. For simplicity, we
let cij(v) = Λi(cij ,v) and Sij(v) = Λi(Sij ,v). The penalized rigid sphere set
packing problem is formally defined by

minimize Fpen(v) =
∑

1≤i<k≤m

ni∑

j=1

nk∑

l=1

fpen
ijkl(v),

subject to v = (v1, . . . ,vm) ∈ R
∑m

i=1 λi ,

vi ∈ Rλi , i = 1, . . . ,m,

(1)

where fpen
ijkl(v) = [δ(Sij(vi), Skl(vk)]2 denotes the penetration penalty of two

spheres Sij and Skl. This problem is an unconstrained nonlinear program. If the
motion functions cij(v) of the centers of objects are chosen to be differentiable,
Fpen is also differentiable and we can apply the quasi-Newton method to (1). In
this paper, we consider following two types of motions.

Translations with a Fixed Direction in 2D for Problem 1. We first consider the
case where object Oi is allowed to translate only in a prescribed direction in R2,
but not allowed to rotate. Assume that the reference point ri of object Oi lies
on a line di + tiei, where di, ei ∈ R2 are given and ti is a variable. Then

Λi(x, ti) = x − ri + di + tiei,
∂cij(ti)
∂ti

=
∂Λi(cij , ti)

∂ti
= ei.

Translations and Rotations in 3D for Problem 2. We next consider the case
where each object Oi in R3 is allowed to translate and rotate around its ref-
erence point ri. Let (xi, yi, zi)T be the translation vector, (φi, θi, ψi) be the
z-x-z Euler angles, and R3(φi, θi, ψi) be the rotation matrix. Given variables
vi = (xi, yi, zi, φi, θi, ψi)T, we define the resulting position of a point x ∈ R3

after the motion by Λi(x,vi) = R3(φi, θi, ψi)(x − ri) + (xi, yi, zi)T + ri. Then,

∂cij(vi)
∂xi

= (1, 0, 0)T,
∂cij(vi)
∂φi

=
∂R3(φi, θi, ψi)

∂φi
(cij − ri).

The other derivatives of cij(vi) with respective to yi, zi, θi, and ψi can be cal-
culated analogously.

3 Experimental Results

We conducted computational experiments of RigidQN by generating instances
of both Problems 1 and 2 randomly. We implemented RigidQN in C++, com-
piled it by GCC 4.1 and conducted experiments on a PC with an AMD Sempron
3000+ 1.8 GHz processor and 450 MB memory. We adopted a quasi-Newton
method package L-BFGS [10].
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(a) (b)

Fig. 1. An example of a road map layout with 147 labels (	label = 100, 	grid = 150)

The data set of Problem 1 was generated as follows. We first start with a
square with size map × map which consists of four lines as a drawing area,
where we set map = 10000, and place a square grid on the square, where the
minimum distance between two grid lines is grid. Next we draw horizontal and
vertical line segments one after another on the grid lines. Then, we draw some
slanted line segments by choosing two arbitrary points in the drawing. Finally,
we place a rectangle in the middle of each line segment in the drawing, where
the height of a rectangle is label and the length of a rectangle varies over a range
[5label, 10label]. For example, Fig. 1(a) shows an initial layout with labels for
label = 100, where a line segment represents an edge (i.e. street) and a rectangle
represents a label (i.e. street name). Figure 1(a) is generated for grid = 150,
which has 147 labels and 4818 circles. See Fig. 1(b) for the resulting layout. It
took 0.43 seconds for Fig. 1(b).

To observe the influence of the density of the road map layout and the number
of labels on the efficiency of our algorithm, we varied two parameters label and
grid from 100 to 1000 with a step size 50 and from 50 to 1000 with a step
size 50, respectively, and conducted experiments. For each setting, we generated
100 instances and applied RigidQN to them. We observed that our algorithm
removed almost all overlaps in less than one second for the instances for grid ≥
2label. For details on the experimental results, see [7].

For the data set of Problem 2, we created instances which resemble the spiked
spheres used in [3]. We generated an instance as follows. A spiked sphere has
a sphere of radius 10 together with attached 10 spikes. Each spike consists of
20 spheres and the length varies on a range [10, 70]. To create an instance, we
place the spiked spheres randomly in a cube with edge length 300, where the
number of spiked spheres is a parameter. See Fig. 2 for magnified pictures of the
initial layout and the resulting layout of an instance with 100 spiked spheres.
We can see a spiked sphere in Fig. 2(a) penetrating another spiked sphere, and
the removal of overlap in Fig. 2(b). RigidQN run in 1.7 seconds for Fig. 2(b).

To observe the influence of the number of spiked spheres on the efficiency of
our algorithm, we varied the number of spiked spheres from 50 to 250 with a step
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(a) (b)

Fig. 2. Magnified figures of an instance with 100 labels of Problem 2

size 50, generated 10 instances for each setting, and measured the computation
time. We observed that our algorithm removed almost all overlaps in less than
10 seconds for the instances with the number of spikes spheres less than or equal
to 200. For details on the experimental results, see [7].
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Abstract. A graph is 1-planar if it can be drawn on the plane so that each edge
is crossed by no more than one other edge. A non-1-planar graph G is minimal
if the graph G − e is 1-planar for every edge e of G. We construct two infinite
families of minimal non-1-planar graphs and show that for every integer n ≥ 63,
there are at least 2

n
4 − 54

4 non-isomorphic minimal non-1-planar graphs of order
n. It is also proved that testing 1-planarity is NP-complete. As an interesting con-
sequence we obtain a new, geometric proof of NP-completeness of the crossing
number problem, even when restricted to cubic graphs. This resolves a question
of Hliněný.

1 Introduction

A graph is 1-immersed in the plane if it can be drawn in the plane so that each edge is
crossed by no more than one other edge. A graph is 1-planar if it can be 1-immersed
into the plane. It is easy to see that if a graph has 1-immersion in which two edges e, f
with a common endvertex cross, then the drawing of e and f can be changed so that
these two edges no longer cross. Consequently, we may assume that adjacent edges are
never crossing each other and that no edge is crossing itself. We take this assumption as
a part of the definition of 1-immersions since this limits the number of possible cases
when discussing 1-immersions.

The notion of 1-immersion of a graph was introduced by Ringel [11] when trying
to color the vertices and faces of a plane graph so that adjacent or incident elements
receive distinct colors.

Little is known about 1-planar graphs. Borodin [1,2] proved that every 1-planar graph
is 6-colorable. Some properties of maximal 1-planar graphs are considered in [12]. It
was shown in [3] that every 1-planar graph is acyclically 20-colorable. The existence
of subgraphs of bounded vertex degrees in 1-planar graphs is investigated in [7]. It was
shown in [4,5] that a 1-planar graph with n vertices has at most 4n− 8 edges and that
this upper bound is tight. In the paper [6] it was observed that the class of 1-planar
graphs is not closed under the operation of edge contraction.
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Much less is known about non-1-planar graphs. The basic question is how to recog-
nize 1-planar graphs. This problem is clearly in NP, but it is not clear at all if there is a
polynomial time recognition algorithm. We shall answer this question by proving that
1-planarity testing problem is NP-complete.

The recognition problem is closely related to the study of minimal obstructions for
1-planarity. A graph G is said to be a minimal non-1-planar graph (MN-graph, for
short) if G is not 1-planar, but G− e is 1-planar for every edge e of G. An obvious qu-
estion is:

How many MN-graphs are there? Is their number finite? If not, can they be charac-
terized?

The answer to the first question is not hard: there are infinitely many. This was first
proved in [10]. Here we present two additional simple arguments implying the same
conclusion.

Example 1. Let G be a graph such that and t = #cr(G)/|E(G)|$− 1 ≥ 1, where cr(G)
denotes the crossing number of G. Let Gt be the graph obtained from G by replacing
each edge of G by a path of length t. Then |E(Gt)| = t|E(G)| < cr(G) = cr(Gt).
This implies that Gt is not 1-planar. However,Gt contains an MN-subgraphH . Clearly,
H contains at least one subdivided edge of G in its entirety, so |V (H)| > t. Since t can
be arbitrarily large, this shows that there are infinitely many MN-graphs.

Example 2. Let K ∈ {K5,K3,3} be one of Kuratowski graphs. For each edge xy ∈
E(K), let Lxy be a 5-connected triangulation of the plane and u, v be adjacent vertices
of Lxy whose degree is at least 6. Let L′

xy = Lxy − uv. Now replace each edge xy of
K with L′

xy by identifying x with u and y with v. It is not hard to see that the resulting
graph G is not 1-planar (since two of graphs L′

xy must “cross each other”, but that is
not possible since they come from 5-connected triangulations). Again, one can argue
that they contain large MN-graphs.

The paper [10] and the above examples prove the existence of infinitely many MN-
graphs but do not give any concrete examples. In [10], two specific MN-graphs of order
7 and 8, respectively, are given. One of them, the graph K7 − E(K3), is the unique
7-vertex MN-graph and since all 6-vertex graphs are 1-planar, the graph K7 − E(K3)
is the MN-graph with the minimum number of vertices. Surprisingly enough, the two
MN-graphs in [10] are the only explicit MN-graphs known in the literature.

The main problem when trying to construct 1-planar graphs is that we have no char-
acterization of 1-planar graphs. The set of 1-planar graphs is not closed under taking
minors, so 1-planarity can not be characterized by forbidding some minors.

In the present paper we construct two explicit infinite families of MN-graphs and,
correspondingly, we give two different approaches how to prove that a graph has no
plane 1-immersion.

In Sect. 2 we construct MN-graphs based on the Kuratowski graph K3,3. To ob-
tain the MN-graphs, we replace six edges of K3,3 by some special subgraphs. The
non-1-planarity of the obtained MN-graphs follows from the nonplanarity of K3,3.
Using these MN-graphs, we show that for every integer n ≥ 63, there are at least
2

n
4 − 54

4 non-isomorphic minimal non-1-planar graphs of order n. In Sect. 3 we describe
a class of 3-connected planar graphs that have no plane 1-immersions with at least one
crossing point (PN-graphs, for short). Every 3-connected PN-graph has a unique plane
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1-immersion, namely, the unique plane embedding of the graph. Hence, if a 1-planar
graph G contains as a subgraph a PN-graph H , then in every plane 1-immersion of
G the subgraph H is 1-immersed in the plane in the same way. Having constructions
of PN-graphs, we can construct 1-planar and non-1-planar graphs with some desired
properties: 1-planar graphs that have exactly k > 0 different plane 1-immersions; MN-
graphs, etc.

In Sect. 4 we construct MN-graphs based on PN-graphs. Each of these MN-graphs
G has as a subgraph a PN-graph H and the unique plane 1-immersion of H prevents to
draw the remaining part of G on the plane when trying to obtain a plane 1-immersion
of G.

Despite the fact that minimal obstructions for 1-planarity (i.e., the MN-graphs) have
diverse structure, and despite the fact that discovering 1-immersions of specific graphs
can be very tricky, it turned out to be a hard problem to establish hardness of 1-planarity
testing. A solution is outlined in Sect. 5, where we show that 1-planarity testing is
NP-complete, see Theorem 4. The proof is geometric in the sense that the reduction
is from 3-colorability of planar graphs (or similarly, from planar 3-satisfiability). As
an interesting consequence we obtain a new, geometric proof of NP-completeness of
the crossing number problem, even when restricted to cubic graphs. Hardness of the
crossing number problem for cubic graphs was established recently by Hliněný [9],
who asked if one can prove this result by a reduction from an NP-complete geometric
problem instead of the Optimal Linear Arrangement problem used in his proof.

2 MN-Graphs Based on the Graph K3,3

Two cycles of a graph are adjacent if they share a common edge. If a graphG is drawn in
the plane, then we say that a vertex x lies inside (resp. outside) a non-self-intersecting
embedded cycle C, if x lies in the interior (resp. exterior) of C, and does not lie on
C. Having two embedded adjacent cycles C and C′, we say that C lies inside (resp.
outside) C′ if every point of C either lies inside (resp. outside) C′ or lies on C′. We
assume that in 1-immersions, adjacent edges do not cross each other and no edge crosses
itself. Thus, every 3-cycle of a 1-immersed graph is embedded in the plane. Hence,
given a 3-cycle of a 1-immersed graph, we can speak about its interior and exterior.

In what follows, throughout the paper, given a 1-immersion of a graph, when we
speak about vertices, paths and cycles of the graph, we usually mean (the exact meaning
will be always clear from the context) immersed vertices, paths and cycles of the 1-
immersed graph.

Now we begin describing a family of MN-graphs based on the graph K3,3.
By a link L(x, y) connecting two vertices x and y we mean any of the graphs shown

in Fig. 1 where {z, z} = {x, y}.
By an A-chain of length n ≥ 2 we mean the graph shown in Fig. 2(a). By a B-

chain of length n ≥ 2 we mean the graph shown in Fig. 2(c) and every graph obtained
from this graph in the following way: for some integers h1, h2, . . . , ht, where t ≥ 1
and 1 ≤ h1 < h2 < · · · < ht ≤ n − 2, for every i = 1, 2, . . . , t, we replace the
subgraph at the left of Fig. 2(e) by the subgraph shown at the right of the figure. Note
that, by definition, A- and B-chains have length at least 2. We say that the chains in
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Fig. 1.

Figs. 2(a) and (c) connect the vertices v(0) and v(n) which are called the end vertices
of the chain. Two chains are adjacent if they share a common end vertex. The A-chain
in Fig. 2(a) and the B-chain in Fig. 2(c) will be designated in later figures by a single
directed (broken) edge, as shown in Figs. 2(b) and (d), respectively, where the arrow
points to the end vertex incident with the base link. The vertices v(0), v(1), . . . , v(n)
are the core vertices of the chains.

Fig. 2.

By a chain graph we mean the graph obtained fromK3,3 as shown in Fig. 3(a), where
the three A-chains and three B-chains can have arbitrary lenghts≥ 2. The verticesΩ(1),
Ω(2), and Ω(3) are the base vertices of the chain graph. The edges joining the vertex
Ω to the base vertices are called the Ω-edges.

We will show that every chain graph is an MN-graph.

Lemma 1. If G is a chain graph and e ∈ E(G), then the graph G− e is 1-planar.

Proof. It is easy to see that G − e is 1-planar for every Ω-edge e. Let us now consider
a plane embedding f of G − Ω of Fig. 3(a) after we delete the vertex Ω. If e is not an
Ω-edge, then, because of the symmetry, it suffices to prove that G − e is 1-planar for
every edge e belonging to the A- or B-chain incident to Ω(2). Figs. 3(b) and (c) show
how f can be modified to obtain a 1-immersion of G− e for every edge e belonging to
the chains incident to Ω(2) (the edge e is represented by the dotted line). �
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Fig. 3.

We are not aware of a simple argument showing that a chain graph G is not 1-planar.
We prove it by reductio ad absurdum – assuming that G has a 1-immersion ϕ, we show
that ϕ has the following properties that eventually yield a contradiction. If Π and Π ′ are
nonadjacent A- and B-chain, respectively, then for every 3-cycle C of Π the following
holds: The core vertices of Π ′ either all lie inside or all lie outside C. If all core vertices
of Π ′ lie inside (resp. outside) C, then at most one vertex of Π ′ lies outside (resp.
inside) C. If Π and Π ′ are nonadjacent A- and B-chain, respectively, then Π does not
cross Π ′ in ϕ. The Ω-edges do not cross all three edges of a link incident to the same
core vertex of the link. The proof of these properties is deferred for the full paper.

The following theorem shows how chain graphs can be used to construct exponen-
tially many nonisomorphic MN-graphs of order n.

Theorem 1. For every integer n ≥ 63, there are at least 2
n
4 − 54

4 non-isomorphic MN-
graphs of order n.

Proof. The A-chain of length t has 3t + 2 vertices and a B-chain of length t has 4t +
1 vertices. Consider a chain graph whose three A-chains have length 2, 2, and  ≥
2, respectively, and whose B-chains have length 2, 3, and t ≥ 4, respectively. The
graph has 35 + 3 + 4t vertices. One can apply the modification shown in Fig. 2(e)
to an arbitrary subset of the links of the B-chains of the graph, and thus obtain 2t−1

nonisomorphic chain graphs of order 35 + 3 + 4t, where  ≥ 2 and t ≥ 4. We claim
that for every integer n ≥ 63, there are integers 2 ≤  ≤ 5 and t ≥ 4 such that
n = 35 + 3 + 4t. Indeed, if m ≡ 0, 1, 2, 3 (mod 4), put  = 3, 2, 5, 4, respectively.
If n = 35 + 3 + 4t, where 2 ≤  ≤ 5, then t ≥ n/4− 50/4. Hence, there are at least
2

n
4 − 54

4 non-isomorphic chain graphs of order n ≥ 63. Since every chain graph is an
MN-graph, the theorem follows.

3 PH-Graphs

By a proper 1-immersion of a graph we mean a 1-immersion with at least one crossing
point. Let us recall that a PN-graph is a planar graph that does not have proper 1-
immersions. In this section we describe a class of PN-graphs and construct some graphs
of the class. They will be used in Sect. 4 to construct MN-graphs.



Minimal Obstructions for 1-Immersions and Hardness of 1-Planarity Testing 307

Two disjoint edges vw and v′w′ of a graph are paired if the four vertices v, w, v′, w′

are all four vertices of two adjacent 3-cycles. For every cycle C of a graph denote by
N(C) the set of all vertices of the graph not belonging to C but adjacent to vertices
of C.

Consider a 3-connected plane graph. By a basic k-cycle of the graph we mean the
boundary cycle of a k-gonal face of the embedding. By a nontriangular basic cycle we
mean every basic k-cycle, k ≥ 4.

Theorem 2. Suppose that a 3-connected plane graph G satisfies the following
conditions:

(C1) Every vertex has degree at least 4 and at most 6.
(C2) Every edge belongs to at least one 3-cycle.
(C3) Every 3-cycle is basic.
(C4) Every 3-cycle is adjacent to at most one other 3-cycle.
(C5) No vertex belongs to three mutually edge-disjoint 3-cycles.
(C6) Every 4-cycle is either basic or is the boundary of two adjacent triangular faces.
(C7) For every 3-cycle C, any two vertices of V (G) \ (V (C) ∪N(C)) are connected

by 4 edge-disjoint paths not passing through the vertices of C.
(C8) If an edge vw of a nontriangular basic cycle C is paired with an edge v′w′ of a

nontriangular basic cycle C′, then C andC′ have no vertices in common and any
two vertices a and a′ of C and C′, respectively, such that {a, a′} �⊆ {v, w, v′, w′}
are non-adjacent and are not connected by a path a, b, a′ of length 2, where b does
not belong to C and C′.

(C9) G does not contain the subgraphs shown in Fig. 4 (in this figure, 4-valent (resp.
5-valent) vertices of G are encircled (resp. encircled twice)).

Then G has no proper 1-immersion.

The proof of Theorem 2 is long and will be given in the full paper.

Fig. 4.

Denote by A the class of all 3-connected plane graphs G satisfying the conditions
(C1)–(C9) of Theorem 2. In the full paper we show how to construct graphs of the class
A. Figure 5 shows two graphs of A, one of which (in Fig. 5(a)) will be used in Sect. 4
to construct MN-graphs. To simplify checking conditions (C1)–(C9) we construct the
graphs to be symmetrical so that, for example, to check the condition (C7) we need to
consider only two 3-cycles of a graph.
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Fig. 5.

4 MN-Graphs Based on PN-Graphs

In this section we construct MN-graphs based on the PN-graphsGn described in Sect. 3.
Denote by Sm, m ≥ 2, the graph shown in Fig. 6. The graph has m + 1 cycles of

length 12m− 2 labelled by B0, B1, . . . , Bm as shown in the figure. The vertices of B0
are called the central vertices of Sm and are labelled by 1, 2, . . . , 12m− 2 (see Fig. 6).
For every central vertex x ∈ {1, 2, . . . , 12m−2}, denote by x∗ the vertex 6m−1+x if
x ∈ {1, 2, . . . , 6m−1} and the vertex x−(6m−1) if x ∈ {6m, 6m+1, . . . , 12m−2}.
In Sm any pair {x, x∗} of central vertices is connected by a central path P (x, x∗) of
length 6m− 3 with 6m− 4 two-valent vertices.

Fig. 6.

For any integers m ≥ 4 and n ≥ 0, denote by Φm(n) the set of all (12m− 2)-tuples
n1, n2, . . . , n12m−2 of nonnegative integers such that n1 +n2 + · · ·+n12m−2 = n. For
every λ ∈ Φm(n), denote by Sm(λ) the graph obtained from Sm if for every central
vertex x ∈ {1, 2, . . . , 12m− 2}, we replace the 8 edges marked by transverse stroke in
Fig. 7(a) by 8(1+nx) new edges marked by transverse stroke in Fig. 7(b) (here x+1 = 1
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Fig. 7.

for x = 12m−2). The graph Sm(λ) has m−2 (12m−2)-cycles B0, B1, . . . , Bm−3
and three (12m− 2 + n)-cycles Bm−2, Bm−1, Bm; all the m + 1 cycles are depicted
in Fig. 7(b) in thick line.

We want to show that for every m ≥ 4 and for every λ ∈ Φm(n), n ≥ 0, the graph
Sm(λ) is an MN-graph.

Lemma 2. The graph Sm(λ) − e, where m ≥ 4, λ ∈ Φm(n), is 1-planar for every
edge e.

Proof. If we delete an edge of a central path, then the remaining 6m− 2 central paths,
each with 6m − 3 edges, can be 1-immersed inside B0 in Fig. 6. If we delete one
of the edges depicted in Fig. 8(a) in thick line, then the central path P (x, x∗) can be
drawn outside B0 with 6m− 3 crossing points as shown in the figure (where the path is
depicted in thin line) and then the remaining 6m− 2 central paths can be 1-immersed
inside B0. If we delete one of the two edges depicted in Fig. 8(a) in dotted line, then
Fig. 8(b) shows how to place the central vertex x so that the path P (x, x∗) can be drawn
outside B0 with 6m − 3 crossing points and then the remaining 6m − 2 central paths
can be 1-immersed inside B0. �

Lemma 3. The graph obtained from the graph Sm(λ), where m ≥ 4 and λ ∈ Φm(n),
by deleting the two-valent vertices of all central paths is a PN-graph.

Theorem 3. The graph Sm(λ), where m ≥ 4 and λ ∈ Φm(n), is not 1-planar.

The proofs of Lemma 3 and Theorem 3 are deferred for the full paper.
We have shown that every graph Sm(λ), where m ≥ 4 and λ ∈ Φm(n), is an MN-

graph (the graph has order (5m − 1)(12m − 2) + 5n). Clearly, graphs Sm1(λ1) and
Sm2(λ2), where λ1 ∈ Φm1(n1) and λ2 ∈ Φm2(n2), are nonisomorphic for m1 �= m2
and for m1 = m2 and n1 �= n2.

Corollary 1. For any integersm ≥ 4 andn ≥ 0, there are at least 1
2(12m−2)

(
n+12m−3

12m−3

)

non-isomorphic MN-graphs Sm(λ), where λ ∈ Φm(n).
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Fig. 8.

Proof. It is well known that |Φm(n)| =
(
n+12m−3

12m−3

)
. The automorphism group of the

graph Sm is the automorphism group of a regular (12m− 2)-gonal, that is, the dihedral
group D12m−2 of order 2(12m− 2). Now the claim follows. �

5 Testing 1-Immersibility Is Hard

In this section we prove that it is NP-complete to decide if a given input graph is 1-
immersible. This shows that it is extremely unlikely that there exists a nice classification
of MN-graphs.

The reduction showing completeness for the class NP is from 3-colorability of planar
graphs. It is worth mentioning that our method also yields a similar reduction of planar
3-colorability to the problem of computing the crossing number of cubic graphs. NP-
completeness of the crossing number problem on cubic graphs was proved recently by
Hliněný [9]. The author has observed in [9] that his proof is non-geometric and asked for
an accessible proof based on geometric reduction. Our construction, correspondingly
adapted, in particular answers the question of Hliněný.

Theorem 4. It is NP-complete to decide if a given graph is 1-immersible in the plane.

Proof (sketch). Since 1-immersions can be represented combinatorially, it is clear that
1-immersability is in NP. To prove its completeness, we shall make a reduction from
a known NP-complete problem, that of 3-colorability of planar graphs of maximum
degree at most four [8].

Let G0 be a given planar graph of maximum degree 4 whose 3-colorability is to be
tested. We shall show how to construct, in polynomial time, a related graph Ĝ such that
Ĝ is 1-immersible if and only if G0 is 3-colorable. We may assume that G0 has no
vertices of degree less than three.

The construction of Ĝ involves replacement of each vertex v of G0 by a vertex-
block Lv, and replacement of each edge uv ∈ E(G0) by an edge-block Fuv which is
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henceforth attached to Lu and Lv. Each building block has constant size, so the whole
construction can be carried over in linear time. The building blocks Lv and Fuv are
1-planar but there is very little flexibility among their 1-immersions. They are pasted
together so that their 1-immersions influence each other in such a way that globally
consistent choices exist if and only if G0 has a 3-coloring.

The vertex block essentially consists of a PN-graph L together with several sub-
divided edges, called legs. The legs can “pass through” L in a unique way since the
number of degree-two vertices on the legs (the lengths of the legs) allow crossing it
through a part of L that is not too dense. The legs are connecting vertices of L in a way
as shown in Fig. 9, where they are represented by thin lines. Where the legs attach to the
“boundary”, there is an additional crossing edge, which can be turned outside to cross
the leg in the edge-block instead. Each edge-block contains three legs that correspond
to three colors 1,2,3, and we say that the leg i is active if it is crossed by the additional
edge at the boundary part of the edge-block. A leg i that is active at the connection of
Lu and Fuv corresponds to the choice of color i for the vertex u of G0. The construc-
tion is made in such a way that an active leg i cannot be active at the other end of the
edge-block (so we have proper coloring), that around u at least one leg is active, and
that being active in the edge-block Fuv, the ith leg is also active in other edge-blocks
Fuw, for other edges uw of G0 incident with u. The details are cumbersome and are
left for the full version of the paper. �
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Abstract. Given n points in d-dimensional space, we would like to connect the
points with straight line segments to form a connected graph whose edges use d
pairwise perpendicular directions. We prove that there exists at most one such set
of directions. For d = 2 we present an algorithm for computing these directions
(if they exist) in O(n2) time.

1 Introduction

Given a set V of n points in d-dimensional space, we would like to connect the points
of V with straight line segments to form a connected rectilinear graph G. A rectilinear
graph is an embedded straight-line graph such that any two edges in the graph are
either parallel or perpendicular. We define the orientation of such a graph as the set of
d pairwise perpendicular directions used by its edges. Two orientations are said to be
different if there is a direction e in one of them and a direction e′ in the other such that
e and e′ are neither the same nor perpendicular. We say that an orientation O allows
for a connected rectilinear graph on V if there exists such a graph G that uses V as its
vertices and has orientation O.

At the Canadian Conference on Computational Geometry in 2007, Therese Biedl
asked whether a given set of points in the plane can be the vertex set of two rectilinear
polygons that have different orientations. In this paper we show that the answer is no,
and more generally, for a set V of points in Rd there exists at most one orientation
that allows for a connected rectilinear graph on V . Figure 1 shows an example of two
rectilinear graphs on the same point set, but note that G′ is not connected.

G G′

Fig. 1. Two rectilinear graphs with the same vertex set, but different orientations
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A special case of this problem has been considered by Fekete and Woeginger [4].
They show that for a set of points that have rational coordinates in the plane at most one
orientation is possible. Problems on rectilinear polygons have been studied extensively.
O’Rourke [10] proves that there is at most one way to connect a given point set into a
rectilinear polygon that makes a 90◦ turn at each vertex, and gives a simple algorithm
to compute it. On the other hand, if turns of 180◦ are allowed, Rappaport [12] shows
that the problem is NP-hard. Durocher and Kirkpatrick [1] study the problem of finding
a collection of rectilinear tours that use the given points as vertices, where the tours are
allowed to have different orientations. They prove that this is NP-hard as well.

A number of papers address the problem of drawing a graph on a fixed point set. For
example, Pach and Wenger [11] show that to make such a graph planar, a linear number
of bends per edge may be necessary. Efrat et al. [3] study the possibility of drawing a
crossing-free graph with circular arcs as edges. Rectilinear graphs also received a lot
of attention from a graph drawing perspective. Vijayan and Wigderson [13] show how
to embed an abstract graph with an additional “direction” associated to each edge as a
rectilinear graph in O(n2) time; Hoffman and Kriegel [7] improve this to O(n) time.
Garg and Tamassia [6] show that without such associated directions, it is NP-hard to
decide if a graph has a rectilinear embedding.

The remainder of the paper is organised as follows. In Sec. 2 we show that any point
set allows for a connected rectilinear graph in at most one orientation. Then, in Sec. 3,
we discuss the related algorithmic question of finding such an orientation for a point set
in the plane. We conclude in Sec. 4.

2 Existence of Orientations

In this section, we prove that a point set cannot be the vertex set of two differently
oriented rectilinear graphs. We first study the situation in the plane, then we extend
the result to any dimension. We use several algebraic concepts, which we try to define
briefly when we use them, but we refer to the full version [9] for a more complete and
formal discussion.

2.1 Points in the Plane

Let V be a set of points in the plane, and let X and Y be the sets of all x-coordinates
and y-coordinates of the vertices in V respectively. Assume w.l.o.g. that min(X) =
min(Y ) = 0. In this section for convenience we are going to refer to an orientation
using the slope on one of its directions since the orientation is uniquely defined by it.
Suppose for a contradiction that there are two connected differently oriented rectilinear
graphs G and G′ on V . Assume w.l.o.g. that the edges of G are axis-aligned and G′ has
edges of slopes s and − 1

s .
Let Q(s) be the field generated by adjoining s to Q; that is, the smallest subfield

of R that contains both Q and s. Consider the vector space Q(s)〈X ∪ Y 〉; that is, the
set of all sums of products of an element from Q(s) and an element from X or Y .
Let E = (e1, . . . , ek) be a basis for this vector space. We can now denote this vector
space by Q(s)〈E〉 = Q(s)〈e1, . . . , ek〉. We now have X,Y ⊂ Q(s)〈E〉 so we can
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write xi =
∑

j xijej for all xi ∈ X , and yi =
∑

j yijej for all yi ∈ Y , where
xij , yij ∈ Q(s). We use [Q(s) : Q] to denote the degree of the extension of field Q(s)
over Q, which is defined as the dimension of Q(s) as a vector space over Q. We consider
the following cases:

[Q(s) : Q] = 1: s is rational.
[Q(s) : Q] <∞: s is algebraic over Q.
[Q(s) : Q] = ∞: s is transcendental over Q.

In fact, the rational case follows directly from the algebraic case since rational num-
bers are also algebraic, but we have separated them to allow the reader to follow the
main argument without needing too much algebraic machinery yet.

Rational Slopes. When s is rational, Q(s) = Q, therefore xij , yij ∈ Q. We can assume
w.l.o.g. that xij , yij ∈ Z and that their greatest common divisor (GCD) is 1 (if not, scale
the input by the appropriate factor). Now xi, yi are elements of the Z-module Z〈E〉;
that is, the set of all sums of integer multiples of elements from E. Consider any pair of
vertices v, v′ ∈ V , and the horizontal and vertical distances Δx and Δy between them.
These vertices are connected by a path v1, v2, . . . , vm in G, where v1 = v and vm = v′.
Denote by (Δxi, Δyi) the horizontal and vertical distance between vi and vi+1. We
know that there exists a path in G′ from vi to vi+1, see Fig. 2. This path uses edges with
slope s or− 1

s , so when following this path we move over distances (a, sa) or (sb,−b).
Since all vertex coordinates are in Z〈E〉, we know that a, b ∈ Z〈E〉. In total we move
from vi to vi+1 over a distance (ai+sbi, sai−bi) where ai, bi ∈ Z〈E〉. Since G is axis-
parallel, every edge between two points vi and vi+1 is either horizontal or vertical. If it
is horizontal, Δyi = sai− bi = 0, thus Δxi = ai + sbi = ai + s2ai = (1 + s2)ai. If it
is vertical, then Δxi = ai +sbi = 0, thus Δyi = sai−bi = −s2bi−bi = −(1+s2)bi.

Now write Δxi =
∑

j Δxijej andΔyi =
∑

j Δyijej , and also write ai =
∑

j aijej

and bi =
∑

j bijej . Clearly Δxij , Δyij , aij , bij ∈ Z. Since the elements of E are
linearly independent over Q, it follows that Δxij = (1+s2)aij for horizontal segments
and Δyij = −(1 + s2)bij for vertical segments for all i, j.

Now s2 ∈ Q, so we can write s2 = p/q with p and q co-prime. This means that
Δxij = (1+p/q)aij = (p+q)aij/q or Δyij = −(p+q)bij/q. Since q does not divide
p+q (unless it is 1), p+q is in Z and divides Δxij and Δyij . Since Δx =

∑
i,j Δxijej ,

it follows that p + q divides Δx, and similarly Δy. So, any two vertices v and v′ are a
Z〈E〉-multiple of p + q away from each other in both horizontal and vertical direction,
which contradicts the fact that all their coordinates had GCD 1.

G

G′

Fig. 2. For any edge of G, there is also a path in G′ connecting its vertices
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Algebraic Slopes. When s is algebraic over Q, the argument described in the previous
section still goes through when we replace all instances of Q by Q(s) and Z by OQ(s).
Here OQ(s) is the ring of integers of Q(s), which consists of all algebraic integers that
are in Q(s). Intuitively, the ring of integers OQ(s) behaves towards the field Q(s) as Z
behaves towards Q. Every element of Q(s) can be written as p/q, where p, q ∈ OQ(s).
Every element of OQ(s) can be written as the product of a finite sequence of irreducible
elements of OQ(s), though this factorisation is not necessarily unique. This means we
can divide out common divisors in OQ(s), and that we can have irreducible fractions
p/q in Q(s).

Transcendental Slopes. When s is transcendental, every element w ∈ Q(s) can be
written in the form

w =

∑
0≤l≤h wls

l

∑
0≤l′≤h′ w′

l′sl′

for some h, h′ ∈ N, and wl, w
′
l′ ∈ Q. Assume w.l.o.g. that we can write

xij =
∑

0≤l≤h

xijls
l and yij =

∑

0≤l≤h

yijls
l

where h ∈ N and xijl, yijl ∈ Z (otherwise scale the input).
Now xij , yij ∈ Z〈s, . . . , sh〉. Assume h ≥ 2 (if it is smaller, just add some 0’s to

the descriptions of the coordinates). We now also know that (1 + s2) ∈ Z〈s, . . . , sh〉.
Assume w.l.o.g. that not all of xij , yij can be written as (1 + s2)w for some w ∈
Z〈s, . . . , sh〉 (otherwise divide everything by (1 + s2)).

However, in the same way as before, we argue that Δxij = (1 + s2)aij for hori-
zontal segments and Δyij = −(1 + s2)bij for vertical segments for all i, j, where now
aij , bij ∈ Z〈s, . . . , sh〉. This clearly contradicts our assumption. Thus we arrive at the
following theorem:

Theorem 1. Given a set of points in the plane, there can be at most one orientation
that allows for a connected rectilinear graph that has these points as its vertices.

2.2 Points in Higher Dimensions

Let V be a set of n points in Rd. We will show that there is at most one orientation
that allows for a connected rectilinear graph that uses V as its vertex set. Suppose for
a contradiction there are two connected rectilinear graphs G and G′ on V . And let E
be the orientation of G and E′ be the orientation of G′. Let e ∈ E and e′ ∈ E′ be two
distinct directions that are not perpendicular.

Let α be a plane spanned by e and e′. Let Vα be the projection of V on α, and let
Gα and G′

α be the projections of G and G′ on α. We ignore any duplicate points in
Vα and edges that were reduced to single points in Gα and G′

α. Note that Gα and G′
α

are still connected graphs. Moreover, since α contains e, all edges of Gα map either to
an edge in α parallel to e, or to one perpendicular to e, so Gα is a rectilinear graph.
Similarly, G′

α is a rectilinear graph. However, these are two graphs on the same vertex
set in 2-dimensional space, which is not possible by Theorem 1. We have proven the
following theorem:
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Theorem 2. Given a set of points in Rd, there exists at most one orientation that allows
for a connected rectilinear graph that has these points as its vertices.

3 Finding the Right Orientation

We now discuss the algorithmic side of the problem: given a set V of points in the
plane, can we find a slope s such that the graph on V with edges of slope s and − 1

s is
connected? A trivial approach takes O(n2 logn) time. Consider all pairs of points and
the line segment connecting them, and sort those segments by slope. For each slope that
has at least n− 1 segments (together with its perpendicular slope), we can test whether
they form a connected graph in linear time. Note that the most expensive step here is
sorting the directions: a long-standing open problem is whether this can be done any
faster than in O(n2 logn) time [5].

However, it is not necessary to sort all directions, since many of them are uninter-
esting. Namely, since our graph has to be connected, an arbitrary point p has to share
an edge with at least one other point of V . Thus we only need to consider n − 1 (pos-
sibly non-distinct) directions obtained by connecting p to all other points in V . Now
consider the problem in dual space. Our set of points becomes a set of lines, our slope
an x-coordinate, and two points are connected by a line segment of slope s if the two
corresponding lines intersect at x-coordinate s. We sweep two vertical lines (at x = − 1

s
and x = s) simultaneously over the dual plane, and keep track of the intersection points
on those lines. The arrangement of the lines can be computed in O(n2) time [2]. We can
inspect the potentially interesting slopes, and process the events in between in O(n2)
time in total. The details are not hard, and can be found in the full version [9].

Deciding whether there is an orientation that allows for a planar rectilinear graph
(a simple polygon, for example) on a given set of points is NP-hard: Since there is at
most one possible orientation, we can use the algorithm sketched above to find it. Then
we can take the maximal rectilinear graph in that orientation. However, now we need to
decide whether this graph has a non-crossing subgraph, which is NP-complete [8].

4 Conclusion

We have proven that given a point set in Rd, there exists at most one orientation such that
the maximal rectilinear graph on the points in that orientation is connected. However,
finding this orientation remains an interesting challenge. We have shown that this can be
done in O(n2) time for a 2-dimensional point set, but we see no reason for this bound
to be tight. Furthermore, finding such an orientation in higher dimensions is still open.
We have also shown that deciding whether the points can be connected into a planar
rectilinear graph is NP-hard.
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Abstract. The Four Color Theorem is equivalent with its dual form
stating that each 2-edge-connected 3-regular planar graph is 3-edge-
colorable. In 1968, Grünbaum conjectured that similar property holds
true for any orientable surface, namely that each 3-regular graph with
a polyhedral embedding in an orientable surface has a 3-edge-coloring.
Note that an embedding of a graph in a surface is called polyhedral if its
geometric dual has no multiple edges and loops. We present a negative
solution of this conjecture, showing that for each orientable surface of
genus at least 5, there exists a 3-regular non 3-edge-colorable graph with
a polyhedral embedding in the surface.

1 Introduction

Edge-coloring of cubic (3-regular) graphs is an important topic in graph theory
and theoretical computer science. By Tait [11], a cubic planar graph is 3-edge-
colorable if an only if its geometric dual is 4-colorable. Since geometric dual of
a 2-edge-connected planar cubic graph is a planar triangulation, the Four Color
Theorem (see [2]) is equivalent to the statement that every 2-edge-connected
planar cubic graph has a 3-edge-coloring.

Nonplanar cubic graphs do not need to be 3-edge-colorable. The best know
example is the Petersen graph (see Fig. 1). In fact, by Holyer [8], the problem
to decide whether a cubic graph is 3-edge-colorable is NP-complete.

An embedding of a graph in a surface is called polyhedral if its dual has no
multiple edges and loops. In 1968, Grünbaum [7] presented a conjecture that
each 3-regular graph with a polyhedral embedding in an orientable surface has
a 3-edge-coloring. If this is true, it would generalize the dual form of the Four
Color Theorem for any orientable surface.

In this paper we disprove the Grünbaum’s conjecture and for every orientable
surface of genus at least 5, we construct non 3-edge-colorable cubic graphs with
a polyhedral embedding in the surface.

Note that Petersen graph has a polyhedral embedding in projective plane.
Thus Grünbaum’s conjecture has a sense only for orientable surfaces. More de-
tails about this conjecture and related results can be found in [1,3,4,12]. Basic
facts about embeddings of graphs into surfaces can be found in [5,6].
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(a) (b)

e

Fig. 1.

2 Snarks and Superposition

By a snark we mean a cubic graph without a 3-edge-coloring. It is well known
(see, e.g., [10]) that any cubic graph with a bridge (1-edge-cut) is a snark. Such
snarks are considered to be trivial. A nontrivial snark is the Petersen graph (see
Fig. 1).

Suppose v is a vertex of a graph G. Let G′ arise from G in the following
process. Replace v by a graph Hv so that each edge e of H having one end v has
one end from Hv. If e is a loop having both ends v, then both ends of e become
vertices of Hv. Then G′ is called v-superposition or a vertex superposition of G.

Suppose e is an edge of G with ends u and v. Let G′ arises from G in the
following process. Replace e by a graph He having at least two vertices, i.e., we
delete e, pick up two distinct vertices u′, v′ of He and identify u′ with u and
v′ with v. Then G′ is called an e-superposition or an edge superposition of G.
Furthermore, if He is a snark, then G′ is called a strong e-superposition or a
strong edge superposition of G.

We say that a graph G′ is a (strong) superposition of G if G′ arises from
G after finitely many vertex and (strong) edge superpositions. The following
statement was proved in [10, Lemma 4.4] (see [9,10] for more details).

Lemma 1. Let G be a snark and G′ be a strong superposition of G. Furthermore,
suppose that G′ is cubic. Then G′ is a snark.

3 Constructions

Clearly, a graph has an embedding in an orientable surface of genus n if and
only if it has an embedding in the plane with n handles. In parts (a) and (b) of
Fig. 1 are embeddings of the Petersen graph in the torus and in the plane with
one handle, respectively. (If we identify the opposite segments of the square in
part (b) of Fig. 1, we get a handle on the plane.)

Replacing edge e by another copy of Petersen graph we get graph G18 from
Fig. 2. Replacing in G18 the vertices of degree 5 by paths of length 2, we get a
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Fig. 2.
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cubic graph G indicated in Fig. 3. By Lemma 1, G is a snark. The boundary of
the infinite face f0 is a circuit, composed from paths P1 and P2 with ends u and
v. The following holds true.

(1) any two faces fi, fj, i, j ∈ {1, . . . , 8}, share at most one edge,
(2) the infinite face f0 share exactly two edges with each fi, i ∈ {1, . . . , 8} so

that P1 and P2 contain exactly one of them.

Properties (1) and (2) are important. We can take a nonpolyhedral embedding
of a snark in an orientable surface, and replacing some of its edges by copies
of G and some vertices by suitable graphs, we can get snarks with polyhedral
embeddings in orientable surface. By replacing an edge of a copy of G, we identify
the ends of e by u and v, respectively. For example, in Fig. 4 is a snark constructed
in [4, Fig. 8]. Let us note that this is not a polyhedral embedding in the torus,
because the pairs of faces a1, a2 and b1, b2 have two edges in common (i.e., its
geometric dual has two pairs of parallel edges). In order to remove this obstacle,
we replace edges e1 and e2 by two copies of G and we get graph G66 indicated
in Fig. 5. Replacing in G66 the vertices of degree 5 by paths of length 2 we get
the graph indicated in Fig. 6. By Lemma 1, this is a snark. Furthermore, by (1)
and (2), any two faces of this graph have at most one edge in common (i.e., the
pairs of faces a1, a2 and b1, b2 are “separated” by the copies of graph G). Thus
the geometric dual has no parallel edges and loops, i.e., we have a polyhedral
embedding of a snark in orientable surface of genus 5.
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In order to get snarks with embeddings in orientable surfaces of genus > 5,
it suffices to replace a vertex of degree 5 from G66 by suitable graphs with
embeddings in a plane with handles. For example, consider the three vertices of
the graph from Fig. 6 contained inside of the disc C indicated by dotted line.
Replacing them by the graph indicated in Fig. 7, we get a snark with polyhedral
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Fig. 7.

embedding in surface of genus 7. This snarks is a strong superposition of the
snark from Fig. 4. In this way we can prove the following statement.

Theorem 1. For any orientable surface of genus ≥ 5, there exists a 3-regular
non-3-edge-colorable graph with a polyhedral embedding in this surface.
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7. Grünbaum, B.: Conjecture 6. In: Tutte, W.T. (ed.) Recent Progress in Combina-

torics, Proceedings of the Third Waterloo Conference on Combinatorics, May 1968,
p. 343. Academic Press, New York (1969)

8. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720
(1981)

9. Kochol, M.: Snarks without small cycles. J. Combin. Theory Ser. B 67, 34–47
(1996)

10. Kochol, M.: Superposition and constructions of graphs without nowhere-zero k-
flows. European J. Combin. 23, 281–306 (2002)

11. Tait, P.G.: Remarks on the colouring of maps. Proc. Roy. Soc. Edinburgh 10, 729
(1880)

12. Vodopivec, A.: On embedding of snarks in the torus. Discrete Math. 308, 1847–1849
(2008)

http://www.emba.uvm.edu/~archdeac/problems/grunbaum.htm


Drawing (Complete) Binary Tanglegrams
Hardness, Approximation, Fixed-Parameter Tractability�

Kevin Buchin1,��, Maike Buchin1,��, Jaroslaw Byrka2,3,
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Abstract. A binary tanglegram is a pair 〈S, T 〉 of binary trees whose
leaf sets are in one-to-one correspondence; matching leaves are connected
by inter-tree edges. For applications, for example in phylogenetics, it is
essential that both trees are drawn without edge crossings and that the
inter-tree edges have as few crossings as possible. It is known that finding
a drawing with the minimum number of crossings is NP-hard and that
the problem is fixed-parameter tractable with respect to that number.

We prove that under the Unique Games Conjecture there is no
constant-factor approximation for general binary trees. We show that
the problem is hard even if both trees are complete binary trees. For
this case we give an O(n3)-time 2-approximation and a new and simple
fixed-parameter algorithm. We show that the maximization version of
the dual problem for general binary trees can be reduced to a version of
MaxCut for which the algorithm of Goemans and Williamson yields a
0.878-approximation.

1 Introduction

In this paper we are interested in drawing so-called tanglegrams [16], that is,
pairs of trees whose leaf sets are in one-to-one correspondence. The need to
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(a) arbitrary drawing (b) drawing of our 2-approximation

Fig. 1. A binary tanglegram showing two evolutionary trees for pocket gophers [9]

visually compare pairs of trees arises in applications such as the analysis of
software projects, phylogenetics, or clustering. In the first application, trees may
represent package-class-method hierarchies or the decomposition of a project into
layers, units, and modules. The aim is to analyze changes in hierarchy over time
or to compare human-made decompositions with automatically generated ones.
Whereas trees in software analysis can have nodes of arbitrary degree, trees from
our second application, that is, (rooted) phylogenetic trees, are binary trees. This
makes binary tanglegrams an interesting special case, see Fig. 1. Hierarchical
clusterings, our third application, are usually visualized by a binary tree-like
structure called dendrogram, where elements are represented by the leaves and
each internal node of the tree represents the cluster containing the leaves in its
subtree. Pairs of dendrograms stemming from different clustering processes of
the same data can be compared visually using tanglegrams.

In this paper we consider binary tanglegrams if not stated otherwise. From
the application point of view it makes sense to insist that (a) the trees under
consideration are drawn plane (namely, without edge crossings), (b) each leaf of
one tree is connected by an additional edge to the corresponding leaf in the other
tree, and (c) the number of crossings among the additional edges is minimized. As
in the bioinformatics literature (e.g., [13, 16]), we call this the tanglegram layout
(TL) problem; Fernau et al. [7] refer to it as two-tree crossing minimization.
Note that we are interested in the minimum number of crossings for visualization
purposes. The number is not intended to be a tree-distance measure. Examples
for such measures are nearest-neighbor interchange and subtree transfer [3].

Related problems. In graph drawing the so-called two-sided crossing mini-
mization problem (2SCM) is an important problem that occurs when computing
layered graph layouts. Such layouts have been introduced by Sugiyama et al. [17]
and are widely used for drawing hierarchical graphs. In 2SCM, vertices of a bi-
partite graph are to be placed on two parallel lines (layers) such that vertices
on one line are incident only to vertices on the other line. As in TL the objective
is to minimize the number of edge crossings provided that edges are drawn as
straight-line segments. In one-sided crossing minimization (1SCM) the order of
the vertices on one of the layers is fixed. Even 1SCM is NP-hard [6]. In contrast
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to TL, a vertex in 1SCM or 2SCM can have several incident edges and the lin-
ear order of the vertices in the non-fixed layer is not restricted by the internal
structure of a tree. The following is known about 1SCM. The median heuristic
of Eades and Wormald [6] yields a 3-approximation and a randomized algorithm
of Nagamochi [14] yields an expected 1.4664-approximation. Dujmovič et al. [4]
gave an FPT algorithm that runs in O�(1.4664k) time, where k is the minimum
number of crossings in any 2-layer drawing of the given graph that respects the
vertex order of the fixed layer. The O�(·)-notation ignores polynomial factors.

Previous work. Dwyer and Schreiber [5] studied drawing a series of tangle-
grams in 2.5 dimensions, i.e., the trees are drawn on a set of stacked two-
dimensional planes. They considered a one-sided version of TL by fixing the
layout of the first tree in the stack, and then, layer-by-layer, computing the leaf
order of the next tree in O(n2 logn) time each. Fernau et al. [7] showed that TL is
NP-hard and gave a fixed-parameter algorithm that runs in O�(ck) time, where
c is a constant estimated to be 1024 and k is the minimum number of crossings
in any drawing of the given tanglegram. They showed that the problem can be
solved in O(n log2 n) time if the leaf order of one tree is fixed. This improves the
result of Dwyer and Schreiber [5]. They also made the simple observation that
the edges of the tanglegram can be directed from one root to the other. Thus
the existence of a planar drawing can be verified using a linear-time upward-
planarity test for single-source directed acyclic graphs [1]. Later, apparently not
knowing these previous results, Lozano et al. [13] gave a quadratic-time algo-
rithm for the same special case, to which they refer as planar tanglegram layout.
Holten and van Wijk [10] presented a visualization tool for general tanglegrams
that heuristically reduces crossings (using the barycenter method for 1SCM on
a per-level base) and draws inter-tree edges in bundles (using Bézier curves).

Our results. Let us call the restriction of TL to (complete) binary trees the
(complete) binary TL problem. We first analyze the complexity of binary TL,
see Sect. 2. We show that binary TL is essentially as hard as the MinUncut

problem. If the (widely accepted) Unique Games Conjecture holds, it is NP-hard
to approximate MinUncut—and thus TL—within any constant factor [12]. This
motivates us to consider complete binary TL. It turns out that this special case
has a rich structure. We start our investigation by giving a new reduction from
Max2Sat that establishes the NP-hardness of complete binary TL.

The main result of this paper is a simple recursive factor-2 approximation
algorithm for complete binary TL, see Sect. 3. It runs in O(n3) time and extends
to d-ary trees. Our algorithm can also process general binary tanglegrams—
without guaranteeing any approximation ratio. It works very well in practice
and is quite fast when combined with a branch-and-bound procedure [15].

Next we consider a dual problem: maximize the number of edge pairs that do
not cross. We show that this problem (for general binary trees) can be reduced
to a version of MaxCut for which the algorithm of Goemans and Williamson
yields a 0.878-approximation.
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Finally, we investigate the parameterized complexity of complete binary TL.
Our parameter is the number k of crossings in an optimal drawing. We give a
new FPT algorithm for complete binary TL that is much simpler and faster than
the FPT algorithm for general binary TL by Fernau et al. [7]. The running time
of our algorithm is O(4kn2), see Sect. 4. An interesting feature of the algorithm
is that the parameter does not drop in each level of the recursion.

Formalization. We denote the set of leaves of a tree T by L(T ). We are given
two rooted trees S and T with n leaves each. We require that S and T are
uniquely leaf-labeled, that is, there are bijective labeling functions λS : L(S)→ Λ
and λT : L(T )→ Λ, where Λ is a set of labels, for example, Λ = {1, . . . , n}. These
labelings define a set of new edges {uv | u ∈ L(S), v ∈ L(T ), λS(u) = λT (v)},
the inter-tree edges. The TL problem consists of finding plane drawings of S
and T that minimize the number of induced crossings of the inter-tree edges,
assuming that edges are drawn as straight-line segments. We insist that the
leaves in L(S) are placed on the line x = 0 and those in L(T ) on the line x = 1.
The trees S and T themselves are drawn to the left of x = 0 and to the right
of x = 1, respectively. For an example see Fig. 1. Given uniquely leaf labeled
trees S and T , we denote the resulting instance of TL by 〈S, T 〉.

The TL problem is purely combinatorial: Given a tree T , we say that a linear
order of L(T ) is compatible with T if for each node v of T the nodes in the
subtree of v form an interval in the order. Given a permutation π of {1, . . . , n},
we call (i, j) an inversion in π if i < j and π(i) > π(j). For fixed orders σ of L(S)
and τ of L(T ) we define the permutation πτ,σ, which for a given position in τ
returns the position in σ of the leaf having the same label. Now the TL problem
consists of finding an order σ of L(S) compatible with S and an order τ of L(T )
compatible with T such that the number of inversions in πτ,σ is minimum.

2 Complexity

In this section we consider the complexity of binary TL, which Fernau et al. [7]
have shown to be NP-complete for general binary tanglegrams. We strengthen
their findings in two ways. First, we show that it is unlikely that an efficient
constant-factor approximation for general binary TL exists. Second, we show
that TL remains hard even when restricted to complete binary tanglegrams.

We start by showing that binary TL is essentially as hard as the MinUncut

problem. This relates the existence of a constant-factor approximation for TL to
the Unique Games Conjecture (UGC) by Khot [11]. The UGC became famous
when it was discovered that it implies optimal hardness-of-approximation results
for problems such as MaxCut and VertexCover, and forbids constant factor-
approximation algorithms for problems such as MinUncut and SparsestCut.
We reduce the MinUncut problem to the TL problem, which, by the result
of Khot and Vishnoi [12], makes it unlikely that an efficient constant-factor
approximation for TL exists.

The MinUncut problem is defined as follows. Given an undirected graph
G = (V,E), find a partition (V1, V2) of the vertex set V that minimizes the
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number of edges that are not cut by the partition, that is, min(V1,V2) |{uv ∈ E :
u, v ∈ V1 or u, v ∈ V2}|. Note that computing an optimal solution to MinUncut

is equivalent to computing an optimal solution to MaxCut. Nevertheless, the
MinUncut problem is more difficult to approximate.

Theorem 1. Under the Unique Games Conjecture it is NP-hard to approximate
the TL problem for general binary trees within any constant factor.

Proof. As mentioned above we reduce from the MinUncut problem. Our re-
duction is similar to the one in the NP-hardness proof by Fernau et al. [7].

Consider an instance G = (V,E) of the MinUncut problem. We construct
a TL instance 〈S, T 〉 as follows. The two trees S and T are identical and there
are three groups of edges connecting leaves of S to leaves of T . For simplicity we
define multiple edges between a pair of leaves. In the actual trees we can replace
each such leaf by a binary tree with the appropriate number of leaves.

Suppose V = {v1, v2, . . . , vn}, then both S and T are constructed as follows.
There is a backbone path (v1

1 , v
2
1 , v

1
2 , v

2
2 , . . . , v

1
n, v

2
n, a) from the root node v1

1 to a
leaf a. Additionally, there are leaves lS(vj

i ) and lT (vj
i ) attached to each node vj

i

for i ∈ {1, . . . , n} and j ∈ {1, 2} in S and T , respectively. The edges form the
following three groups.

Group A contains n11 edges connecting lS(a) with lT (a).
Group B contains for every vi ∈ V n7 edges connecting lS(v1

i ) with lT (v2
i ), and

n7 edges connecting lS(v2
i ) with lT (v1

i ).
Group C contains for every vivj ∈ E a single edge from lS(v1

i ) to lT (v1
j ).

Next we show how to transform an optimal solution of the MinUncut instance
into a solution of the corresponding TL instance. Suppose that in the optimal
partition (V ∗

1 , V ∗
2 ) of G there are k edges that are not cut. Then we claim that

there exists a drawing of 〈S, T 〉 such that k ·n11 +O(n10) pairs of edges cross. It
suffices to draw, for each vertex vi ∈ V ∗

1 (vi ∈ V ∗
2 ), the leaves lS(v1

i ) and lT (v2
i )

above (below) the backbones, and the nodes lS(v2
i ) and lT (v1

i ) below (above)
the backbones. It remains to count: there are k · n11 A–C crossings, no A–B
crossings, O(n10) B–C crossings, and O(n4) C–C crossings.

Now suppose there exists an α-approximation algorithm for the TL problem
with some constant α. Applying this algorithm to the instance 〈S, T 〉 defined
above yields a drawing D(S, T ) with at most α ·k ·n11 +O(n10) crossings. Let us
assume that n is much larger than α. We show that from such a drawing D(S, T )
we would be able to reconstruct a cut (V1, V2) in G with at most α·k edges uncut.
First, observe that if a node lS(v1

i ) is drawn above (below) the backbone in
D(S, T ), then lT (v2

i ) must be drawn on the same side of the backbone, otherwise
it would result in n18 A–B crossings. Similarly lS(v2

i ) must be on the same side as
lT (v1

i ). Then observe that if a node lS(v1
i ) is drawn above (below) the backbone

in D(S, T ), then lS(v2
i ) must be drawn below (above) the backbone, otherwise

there would be O(n14) B–B crossings. Finally, observe that if we interpret the
set of vertices vi for which lS(v1

i ) is drawn above the backbone as a set V1 of a
partition of G, then this partition leaves at most α · k edges from E uncut.
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Hence, an α-approximation for the TL problem provides an α-approximation
for the MinUncut problem, which contradicts the UGC. ��

The above negative result for (general) binary TL is our motivation to investi-
gate the complexity of complete binary TL. It turns out that even this special
case is hard. Unlike Fernau et al. [7] who show hardness of binary TL by a reduc-
tion from MaxCut using extremely unbalanced trees, we use a quite different
reduction from a variant of Max2Sat (see full version for the proof [2]).

Theorem 2. The TL problem is NP-hard even for complete binary tanglegrams.

3 Approximation

We now present our main result, a 2-approximation algorithm for complete bi-
nary TL that runs in O(n3) time. The idea is to split a given tanglegram recur-
sively at the roots of the two trees into two subinstances, each again consisting
of a pair of complete binary trees. Let 〈S, T 〉 be a subinstance of 〈S0, T0〉 with
subtrees S ⊆ S0 and T ⊆ T0 rooted at nodes vS ∈ S0 and vT ∈ T0, respectively
(see Fig. 2). When treating 〈S, T 〉, we use the following pieces of information.

Firstly, associated with vS and vT we have labels S and T that indicate
what choices in the recursion so far led to the current subinstances. A label is a
bit string that represent the choices (swap/do not swap children) made at each
node, from the first recursive step to the current one (see Fig. 3).

We also assign labels to some other subtrees of 〈S0, T0〉 apart from S and T .
Given a leaf v ∈ T0\T , we define the largest T -avoiding tree of v to be the largest
complete binary subtree of T0 that contains v, but not T . Largest S-avoiding
trees are defined analogously for leaves in S0. Each largest S- or T -avoiding tree
receives a label in the same way as S and T . Note that the labels of the avoiding
trees are relative to the labels of vS and vT , that is, a different subinstance leads
to different labels. If we refer (in the context of a subinstance 〈S, T 〉) to the label
of a leaf v ∈ T0, we mean the label of the largest T -avoiding tree of v.

Secondly, since S and T are part of a larger tree, some leaves of S may not
have the matching leaf in T (and vice versa). This means that at some previous
step such leaves were matched to leaves in some other subtrees, above or below
〈S, T 〉. We do not know exactly to which leaves they are matched, but we do
know, for each leaf, the label of the subtree that contains the matching leaf.

At each level of the recursion we have to choose between one out of four con-
figurations. Let the current subinstance be given by 〈S, T 〉 = 〈(S1, S2), (T1, T2)〉.
At each node vS on the left side, we must choose between having S1 above S2
or the other way around. On the right side for vT , there are also two different
ways of placing T1 and T2. For each of the four configurations we invoke the
algorithm twice recursively: for the top half and for the bottom half. We return
the configuration with the smallest number of crossings.

When counting the crossings that a configuration creates, we distinguish two
types: current-level and lower-level crossings.
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Fig. 2. Context of subinstance
〈S, T 〉 = 〈(S1, S2), (T1, T2)〉

Fig. 3. Labels for a particular subinstance 〈S, T 〉.
The numbers at the nodes show the choices taken
(swap/do not swap children) that led to S and T .
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Fig. 4. Different types of current-level crossings. Type (d) is considered current-level
only if the right leaves of the crossing edges have different labels, that is, if 	T ′ �= 	T ′′ .

Current-level crossings are crossings that can be avoided at this level by choos-
ing one of the four configurations for the subtrees, independently of the choices
to be done elsewhere in the recursion. Figure 4 illustrates the four different types.
For type (d), we remark that crossings are considered to be current-level only
if the largest S- and T -avoiding trees that contain the endpoints of the edges
outside S and T are different. Crossings of type (d) where that is not the case
cannot be counted at this point. We call them indeterminate crossings.

Lower-level crossings are crossings that appear based on choices taken by
solving the subinstances of S and T recursively. We cannot do anything about
them at this level, but we know their exact number after solving the subinstances.

Here is a sketch of the algorithm.

1. For all four choices of arranging {S1, S2} and {T1, T2}, compute the total
number of lower-level crossings recursively. Before each recursive call 〈Si, Tj〉,
we assign proper labels to some of the leaves of S and T , as follows. All leaves
in Si that connect to T3−j (that is, T1 if j = 2, T2 otherwise) get the label
T with a 0 or 1 appended depending on whether Tj is above or below T3−j .
Then we do the analogue for all leaves of Tj connected to S3−i.



Drawing (Complete) Binary Tanglegrams 331

2. For each choice 〈Si, Tj〉 compute the number of current-level crossings (de-
tails below).

3. Return the choice that has the smallest sum of lower-level and current-level
crossings.

The labels are needed to propagate as much information as possible to the
smaller subinstances. For example, even though at this stage of the recursion it
is clear that the leaves of, say T3−j, are above the leaves of the subtrees below T ,
once we recurse into the top subinstance, this information will be lost, implying
that what was a current-level crossing at this stage, will become an indeterminate
crossing later. The labeling allows to prevent this loss of information.

The number of current-level crossings can be computed in linear time as fol-
lows. We go through all inter-tree edges incident to leaves of S and put each
edge into one of at most O(log n) different classes, depending on the labels of
the endpoints outside S. Then we repeat the same for T . This takes linear time.
Depending on where the largest S- or T -avoiding trees go (above or below), all
edge pairs belonging to a specific pair of labels do or do not intersect. Hence we
can count the total number of current-level crossings by multiplying the cardi-
nalities of the O(log2 n) pairs of classes whose edges all intersect each other.

The running time of the algorithm satisfies the recurrence T (n) ≤ 8T (n/2)+
O(n), which solves to T (n) = O(n3). We now prove that the algorithms yields a
2-approximation. In the full version [2] we show that our analysis is tight.

Theorem 3. Given a complete binary tanglegram 〈S0, T0〉 with n inter-tree edges,
the recursive algorithm computes in O(n3) time a drawing of 〈S0, T0〉 that has at
most twice as many crossings as an optimal drawing.

Proof sketch. Fix an optimal drawing δ of 〈S0, T0〉. The algorithm tries, for a
given subinstance 〈S, T 〉 of 〈S0, T0〉, all four possible layouts of S = (S1, S2)
and T = (T1, T2). Assume that in δ, 〈S, T 〉 is drawn as 〈(S1, S2), (T1, T2)〉. We
distinguish between four different areas for the endpoints of the edges: above
〈S, T 〉, in 〈S1, T1〉, in 〈S2, T2〉, and below 〈S, T 〉. We number these regions from 0
to 3 (see Fig. 5(a)). This allows us to classify the edges into 16 groups (two of
which, 0–0 and 3–3, are not relevant). We denote the number of i–j edges, that
is, edges from area i to area j, by nij (for i, j ∈ {0, 1, 2, 3}). Figures 5(b) and 5(c)
show the 14 relevant groups of edges.

The only edge crossings that our recursive algorithm cannot take into account
are the indeterminate crossings, which occur when the two edges connect to
leaves above or below 〈S, T 〉 that are in the same largest S- or T -avoiding tree.
This is the case if both leaves have the same label. Such crossings cannot be
predicted from the current subinstance because they depend on the relative
position of the other two endpoints of the edges. We can, however, bound the
number of these crossings.

We observe that any crossing of that type at the current subinstance was, in
some previous step of the recursion, a crossing between two 1–2 edges or two
2–1 edges. We can upper-bound the number of these crossings by

(
n12
2

)
+
(
n21
2

)
.

Let calg be the number of crossings in the solution produced by the algorithm,
and let copt be the number of crossings of δ. Then
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Fig. 5. For an instance 〈(S1, S2), (T1, T2)〉 the locations of the edge endpoints are di-
vided into four areas (numbered 0–3); each edge is classified accordingly (a). This
defines 14 groups of relevant edges, where nij denotes the number of i–j edges (b & c).

calg ≤ copt +
(
n12

2

)

+
(
n21

2

)

≤ copt + (n2
12 + n2

21)/2. (1)

Since our (sub)trees are complete, we have n10 + n12 + n13 = n01 + n21 + n31
and n01 + n02 + n03 = n10 + n20 + n30. These two equalities yield n12 ≤ n01 −
n10 + n21 + n31 and n01 − n10 ≤ n20 + n30, respectively, and thus we obtain
n12 ≤ n20 + n30 + n21 + n31 or, equivalently, n2

12 ≤ n12 · (n20 + n30 + n21 + n31).
It is easy to verify that all the terms on the right-hand side of the last inequal-

ity count crossings that cannot be avoided and must be present in the optimal
solution as well. Hence n2

12 ≤ copt, and symmetrically n2
21 ≤ copt. Plugging this

into (1) yields calg ≤ 2 · copt. ��

General binary trees. Our recursive algorithm can also be applied to general,
non-complete tanglegrams. Then, however, the approximation factor does not
hold any more. Nöllenburg et al. [15] have evaluated several heuristics for TL;
our recursive algorithm turned out to be a successful method for both complete
and general binary tanglegrams.

Generalization to d-ary trees. The algorithm can also be generalized to
complete d-ary trees. The recurrence relation of the running time changes to
T (n) ≤ d · (d!)2 · T (n/d) + O(n) since we need to consider all d! subtree order-
ings of both trees, each triggering d subinstances of size n/d. This resolves to
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T (n) = O(n1+2 logd(d!)). At the same time the approximation factor increases
to 1 +

(
d
2

)
.

Maximization version. Instead of the original TL problem, we now consider
the dual problem TL� of maximizing the number of pairs of edges that do not
cross. The tasks of finding optimal solutions for these problems are equivalent,
but from the perspective of approximation it makes quite a difference which
of the two problems we consider. Now we do not assume that we draw binary
trees. Instead, if an internal node has more than two children, we assume that
we may only choose between a given permutation of the children and the reverse
permutation obtained by flipping the whole block of children.

In contrast to the TL problem, which is hard to approximate as we have shown
in Theorem 1, the TL� problem has a constant-factor approximation algorithm.
We show this (see full version [2]) by reducing TL� to a constrained version of
the MaxCut problem, which can be approximately solved with the semidefinite
programming rounding algorithm of Goemans and Williamson [8].

Theorem 4. There exists a 0.878-approximation for the TL� problem.

4 Fixed-Parameter Tractability

We consider the following parameterized problem. Given a complete binary TL
instance 〈S, T 〉 and a non-negative integer k, decide whether there exists a TL of
S and T with at most k induced crossings. Our algorithm for this problem uses a
labeling strategy, just as our algorithm in Sect. 3. However, here we do not select
the subinstance that gives the minimum number of lower-level crossings, but we
consider all subinstances and recurse on them. Thus, our algorithm traverses a
search tree of branching factor 4. For the search tree to have bounded height,
we need to ensure that whenever we go to a subinstance, the parameter value
decreases at least by one. For efficient bookkeeping we consider current-level
crossings only. At first sight this seems problematic: if a subinstance does not
incur any current-level crossings, the parameter will not drop. The following key
lemma—which does not hold for general binary trees—shows that there is a way
out. It says that if there is a subinstance without current-level crossings, then
we can ignore the other three subinstances and do not have to branch.

Lemma 1. Let 〈S, T 〉 be a complete binary TL instance, and let vS be a node
of S and vT a node of T such that vS and vT have the same distance to their
respective root. Further, let (S1, S2) be the subtrees incident to vS and let (T1, T2)
be the subtrees incident to vT . If the subinstance 〈(S1, S2), (T1, T2)〉 does not in-
cur any current-level crossings, then each of the subinstances 〈(S1, S2), (T2, T1)〉,
〈(S2, S1), (T1, T2)〉, and 〈(S2, S1), (T2, T1)〉 has at least as many crossings as
〈(S1, S2), (T1, T2)〉, for any fixed ordering of the leaves of S1, S2, T1 and T2.

Proof. If the subinstance 〈(S1, S2), (T1, T2)〉 does not incur any current-level
crossings, there are no edges between S1 and T2 or between S2 and T1. We
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Fig. 6. Edge types and crossings of the instance 〈S,T 〉

only consider the first case; the second is symmetric. We categorize the inter-
tree edges originating from the four subtrees according to their destination—see
Fig. 6(a)—and denote the numbers of edges of the various types by n11, n21, n22,
l1, l2, r1, and r2. Since we consider complete binary trees, we obtain l1 = r1+n21,
r2 = l2 + n21, and r1 + n11 = l2 + n22.

We fix an ordering σ of the leaves of the subtrees S1, S2, T1, T2. We first com-
pare the number of crossings in 〈(S1, S2), (T1, T2)〉 with the number of crossings
in 〈(S2, S1), (T2, T1)〉, see Fig. 6(b). The subinstance 〈(S1, S2), (T1, T2)〉 can have
at most n21(n11+n22) crossings that do not occur in 〈(S2, S1), (T2, T1)〉. However,
〈(S2, S1), (T2, T1)〉 has at least l1(l2+n21+n22)+l2n11+r2(r1+n21+n11)+r1n22
crossings that do not appear in 〈(S1, S2), (T1, T2)〉. Plugging in the above equal-
ities for l1 and r2, we get (r1 +n21)(l2 +n21 +n22)+ l2n11 +(l2 +n21)(r1 +n21 +
n11) + r1n22 ≥ n21(n11 + n22). Thus, the subinstance 〈(S2, S1), (T2, T1)〉 has at
least as many crossings with respect to σ as 〈(S1, S2), (T1, T2)〉 has.

Next, we compare the number of crossings in 〈(S1, S2), (T1, T2)〉 with the
number of crossings in 〈(S1, S2), (T2, T1)〉, see Fig. 6(c). Now the number of
additional crossings of 〈(S1, S2), (T1, T2)〉 is at most n21n22, and the subinstance
〈(S1, S2), (T2, T1)〉 has at least (r1 +n11)(r2 +n22)+ r2n21 crossings more. With
the equality r1 + n11 = l2 + n22 and the inequality r2 + n22 ≥ n21 we get
(r1 + n11)(r2 + n22) + r2n21 ≥ n22n21. Thus, the subinstance 〈(S1, S2), (T2, T1)〉
has at least as many crossings with respect to σ as 〈(S1, S2), (T1, T2)〉 has.

By symmetry, the same holds for 〈(S2, S1), (T1, T2)〉. ��

Thus, to decompose the instance into four subinstances we spend O(n2) time.
Therefore we spend O(4kn2) time to produce all leaves of our bounded-height
search tree (omitting details). At each leaf of the search tree, we obtain a cer-
tain layout of 〈S, T 〉, and the accumulated number of current-level crossings is
at most k. This, however, does not mean that the total number of crossings is
at most k since we did not keep track of the indeterminate crossings. There-
fore, at each leaf we still need to check how many crossings the corresponding
layout has. This can be done in O(n log n) time. If one of the leaves yields at
most k crossings, the algorithm outputs “Yes” and the layout; otherwise it out-
puts “No”.
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Theorem 5. The algorithm sketched above solves the parameterized version of
complete binary TL in O(4kn2) time.

References

1. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward pla-
narity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)
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Abstract. The metro-line crossing minimization (MLCM) problem was
recently introduced as a response to the problem of drawing metro maps
or public transportation networks, in general. According to this problem,
we are given a planar, embedded graph G = (V, E) and a set L of simple
paths on G, called lines. The main task is to place the lines on G, so that
the number of crossings among pairs of lines is minimized.

Our main contribution is two polynomial time algorithms. The first
solves the general case of the MLCM problem, where the lines that tra-
verse a particular vertex of G are allowed to use any side of it to either
“enter” or “exit”, assuming that the endpoints of the lines are located
at vertices of degree one. The second one solves more efficiently the re-
stricted case, where only the left and the right side of each vertex can be
used.

To the best of our knowledge, this is the first time where the general
case of the MLCM problem is solved. Previous work was devoted to the
restricted case of the MLCM problem under the additional assumption
that the endpoints of the lines are either the topmost or the bottommost
in their corresponding vertices, i.e., they are either on top or below the
lines that pass through the vertex. Even for this case, we improve a
known result of Asquith et al. from O(|E|5/2|L|3) to O(|V |(|E| + |L|)).

1 Introduction

A metro map can be modeled as a tuple (G,L), which consists of a connected
graph G = (V,E), referred to as the underlying network, and a set L of simple
paths on G. The nodes of G correspond to train stations, an edge connecting
two nodes implies that there exists a railway track connecting them, whereas
the paths illustrate the lines connecting terminal stations. Then, the process of
constructing a metro map consists of a sequence of steps. Initially, one has to
draw the underlying network nicely. Then, the lines have to be properly added
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into the visualization and, finally, a labeling of the map has to be performed
over the most important features.

In the graph drawing and computational geometry literature, the focus so far
has been nearly exclusively on the first and the third step. Closely related to the
first step are the works of Hong et al. [5], Merrick and Gudmundsson [6], Nöl-
lenburg and Wolff [7] and Stott and Rodgers [8]. The map labeling problem has
also attracted the interest of several researchers. An extensive bibliography on
map labeling is maintained on-line by Strijk and Wolff [9]. Interestingly enough,
the intermediate problem of adding the line set into the underlying network was
recently introduced by Benkert et al. [3], followed by [2]. Since crossings within a
visualization are often considered as the main source of confusion, the main goal
is to draw the lines, so that they cross each other as few times as possible. This
problem is referred to as the metro-line crossing minimization problem (MLCM).

1.1 Problem Definition

The input of the metro-line crossing minimization problem consists of a con-
nected, embedded, planar graph G = (V,E) and a set L = {l1, l2 . . . lk} of
simple paths on G, called lines. We will refer to G as the underlying network
and to the nodes of G as stations. We also refer to the endpoints of each line as
its terminals. In this paper, we study the case where all line terminals are located
at stations of degree one, which are referred to as terminal stations. Stations of
degree greater than one are referred to as internal stations. The stations are rep-
resented as particular shapes (usually as rectangles but in general as polygons).
The sides of each station that each line may use to either “enter” or “exit” the
station are also specified as part of the input. Motivated by the fact that a line
cannot make a 180o turn within a station, we do not permit a line to use the
same side of a station to both “enter” and “exit”.

The output of the MLCM problem should specify an ordering of the lines at
each side of each station, so that the number of crossings is minimized.

Each line li consists of a sequence of edges e1 = (v0, v1), . . . , ed = (vd−1, vd).
Stations v0 and vd are the terminals of line li. Equivalently, we say that li
terminates or has terminals at v0 and vd. By |li| we denote the length of line li.

Each line that traverses a station u has to touch two of the sides of u at
some points (one when it “enters” u and one when it “exits” u). These points are
referred to as tracks (see the dark-gray colored bullets on the boundary of each
station in Fig. 1b). In general, we may permit tracks to all sides of each station,
(see Fig. 1a). In the case where the stations are represented as rectangles, this
model is referred to as the 4-side model. In the general case where the stations
are represented as polygons of at most k sides, this model is referred to as the
k-side model. A more restricted model, referred to as the 2-side model, is the one
where i) the stations are represented as rectangles and ii) all lines that traverse
a station may use only its left and right side (see Fig. 1b).

A particularly interesting case that arises under the 2-side model is the one
where the lines that terminate at a station occupy its topmost and bottommost
tracks, in the following referred to as top and bottom station ends, respectively
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(a) 4-side model - Station crossings. (b) 2-side model - Edge crossings.

Fig. 1. The underlying network is the gray colored graph

(see Fig. 1b). This is to emphasize that the line terminates at that station. The
variant of the MLCM problem that fulfills this restriction is referred to as the
metro-line crossing minimization problem with station ends (MLCM-SE ). If ad-
ditionally, the information whether a line terminates at a top or at a bottom
station end in its terminal station is specified as part of the input, the corre-
sponding problem is referred to as metro-line crossing minimization problem with
fixed station ends (MLCM-FixedSE ).

A further refinement of the MLCM problem concerns the location of the
crossings among pairs of lines. If the relative order of two lines changes between
two consecutive stations, then the two lines must intersect between these stations
(see Fig. 1b). We call this an edge crossing. As opposed to an edge crossing, a
station crossing occurs inside a station. For aesthetic reasons, we want to avoid
station crossings whenever this is possible (e.g. in the case of 4-side model this
is not always feasible; see Fig. 1a).

1.2 Previous Work and Our Results

The first results on the MLCM problem were presented by Benkert et al. in
[3], who devised a dynamic-programming algorithm that runs in O(|L|2) time
for the restricted case where the crossings are minimized along a single edge
of G. Bekos et al. [2] proved that the MLCM-SE problem is NP-complete even
in the case where the underlying network is a path. They also proved that the
MLCM-FixedSE problem can be solved in O(|V | + log d

∑|L|
i=1 |li|), in the case

where the underlying network is a tree of degree d. Extending the work of Bekos
et al., Asquith et al. [1] proved that the MLCM-FixedSE problem is also solvable
in polynomial time in the case where the underlying network is an arbitrary
planar graph. The time complexity of their algorithm was O(|E|5/2|L|3). They
also proposed an integer linear program which solves the MLCM-SE problem.

This paper is structured as follows: In Section 2, we present a polynomial
time algorithm, which runs in O((|E| + |L|2)|E|) time for the MLCM prob-
lem under the k-side model, assuming that the line terminals are located at
stations of degree one. To the best of our knowledge no results are currently
known regarding this general model. In Section 3, we present a faster algorithm
for the special case of 2-side restriction. The time complexity of the proposed
algorithm is O(|V ||E|+

∑|L|
i=1 |li|). It can also be employed to solve the MLCM-

FixedSE problem, which drastically improves the running time of the algorithm
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of Asquith et al. [1] from O(|E|5/2|L|3) to O(|V ||E| + |V ||L|). We conclude in
Section 4 with open problems and future work.

2 The MLCM Problem under the k-Side Model

To simplify the description of our algorithm and to make the accompanying
figures simpler, we restrict our presentation to the MLCM problem under the 4-
side model, i.e., we assume that each station is represented as a rectangle and we
permit tracks to all four sides of each station. Our algorithm for the case of k-side
model is identical, since it is based on recursion over the edges of the underlying
network. Recall that all line terminals are located at stations of degree one, the
lines can terminate at any track of their terminal stations, and, finally, the sides
of each station that each line may use to either “enter” or “exit” are specified
as part of the input. We further assume that an internal station always exists
within the underlying network, otherwise the problem can be solved trivially.

The basic idea of our algorithm is to decompose the underlying network by
removing an arbitrary edge out of the edges that connect two internal stations
(and, consequently, appropriately partitioning the set of lines that traverse this
edge ), then recursively solve the subproblem and, finally, derive a solution of
the initial problem by i) re-inserting the removed edge and ii) connecting the
partitioned lines along the re-inserted edge.

2.1 Base of Recursion

The base of the recursion corresponds to the case of a graph GB consisting of a
“central station” u containing no terminals and a particular number of terminal
stations, say v1, v2 . . . vd, incident to u (see Fig. 2c). To cope with this case, we
first group all lines that have exactly the same terminals into a single line, which
is referred to as bundle. The notion of bundles corresponds to the fact that lines
with same terminals are drawn in a uniform fashion, i.e., occupying consecutive
tracks at their common stations. So, in an optimal solution once a bundle is
drawn, it can be safely replaced by its corresponding lines without affecting the
optimality of the solution. In Fig. 2c, lines belonging to the same bundle have
been drawn with the same type of non-solid line. Note that single lines are also
treated as bundles in order to maintain a uniform terminology (refer to the solid
lines of Fig. 2c). Then, the number of bundles of each terminal station is bounded
by the degree of the “central station” u.

In order to route the bundles along the edges of GB, we will make use of the
Euler tour numbering that was proposed by Bekos et al. [2]. Let v be a terminal
station of GB . The Euler tour numbering of the terminal stations v1, v2, . . . , vd

of GB with respect to v is a function ETNv : {v1, v2, . . . , vd} → {0, 1, . . . , d− 1}.
More precisely, given a terminal station v of GB, we number all terminal stations
of GB according to the order of first appearance when moving clockwise along
the external face of GB starting from station v, which is assigned the zero value.
Note that such a numbering is unique with respect to v and we refer to it as



340 E. Argyriou et al.

v1 v2

v6 v5

u

v3

v4

1

1 2 3 7 8 910

2
3
4
5

10
9

11
12
14

6 14 5 7

6
8
11
12

4
v8

v7

(a)

v1 v2

v6 v5

u

v3

v4

1

1 2 3 7 8 910

2
3
4
5

10
9

11
12
14

6 14 5 7

6
8
11
12

4
v8

v7

(b)

v1 v2

v6 v5

u

v3

v4

Sorted
based on
ETNv8

1

1 2 3 7 8 910

2
3
4
5

10
9

11
12
14

6 14 5 7

6
8
11
12

4
v8

v7

(c)

Fig. 2. Illustration of the base of the recursion. The numbering of the lines is arbitrary.

the Euler tour numbering starting from station v or simply as ETNv. Also, note
that the computation of only one numbering is enough in order to compute the
corresponding Euler tour numberings from any other terminal station of GB ,
since ETNv′(w) = (ETNv(w) − ETNv(v′)) mod d.

Our approach is outlined as follows: We first sort in ascending order the
bundles at each terminal station v based on the Euler tour numbering ETNv of
their destinations (see Fig. 2a). This implies the desired ordering of the bundles
along the side of each terminal station that is incident to the “central station” u.
We will denote by BND(v) the ordered set of bundles of each terminal station v.
Then, we pass these bundles from each terminal station to the “central station”
u along their common edge without introducing any crossings (see Fig. 2b). This
will also imply an ordering of the bundles at each side of the “central station” u.
To complete the routing procedure, it remains to connect equal bundles in the
interior of the “central station” u, which may imply crossings (see Fig. 2c). Note
that only necessary station crossings are created, since the underlying network
is planar and from the Euler tour numbering it follows that no edge crossings
will eventually occur. So, the optimality of the solution follows trivially.

2.2 Description of the Recursive Algorithm

Having specified the base of the recursion, we now proceed to describe our recur-
sive algorithm in detail. Let e = (v, w) be an edge which connects two internal
stations v and w of the underlying network. If no such edge exists, then the
problem can be solved by employing the algorithm of the base of the recursion.

Let Le be the set of lines that traverse e. Any line le,i ∈ Le originates from
a terminal station, passes through a sequence of edges, then enters station v,
traverses edge e, exits station w and, finally, passes through a second sequence
of edges until it terminates at another terminal station. Let p : E ×L→ N be a
function, such that p(e, l) denotes the position of edge e along line l. Formally,
Le = {le,1, le,2, . . . , le,|Le|}, where le,i denotes the i-th line of Le. Since each
line of Le consists of a sequence of edges, set Le can be written in the form
{le,i = e1

e,i e2
e,i . . . ek−1

e,i e ek+1
e,i . . . e

|le,i|
e,i ; k = p(e, le,i), i = 1, 2, . . . , |Le|}. We

proceed by removing edge e from the underlying network and by inserting two
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v w

remove e = (v, w)

v wtve twe

e

Lv
e Lw

eLe

Fig. 3. Illustration of the removal of an edge that connects two internal stations

new terminal stations tve and twe incident to the stations v and w, respectively
(see the dark-gray colored stations of the right drawing of Fig. 3). Let G∗ = (V ∪
{tve , twe }, (E − {e}) ∪ {(v, tve), (twe , w)}) be the new underlying network obtained
in this manner.

Since the edge e has been removed from the underlying network, the lines of
Le cannot traverse it any more. So, we force them to terminate at tve and twe , as
it is depicted in the right drawing of Fig. 3. This is done by splitting the set Le

into two new sets Lv
e and Lw

e (see Fig. 3), which are formally defined as follows:

– Lv
e = {e1

e,i e
2
e,i . . . ek−1

e,i (v, tve); k = p(e, le,i), i = 1, 2, . . . , |Le|}
– Lw

e = {(twe , w) ek+1
e,i . . . e

|le,i|
e,i ; k = p(e, le,i), i = 1, 2, . . . , |Le|}}

The new set of lines that it is obtained after the removal of the edge e is
L∗ = (L−Le)∪(Lv

e∪Lw
e ). Observe that the removal of edge e from the underlying

network may disconnect it. In the case where G∗ is connected, we recursively
solve the MLCM problem on (G∗, L∗). Otherwise, since G∗ was obtained from
G by the removal of a single edge, it has exactly two connected components, say
G∗

1 and G∗
2. Let L(G∗

i ) denotes the lines of L∗ induced by G∗
i . In this case, we

recursively solve the MLCM problem on (G∗
1, L(G∗

1)) and (G∗
2, L(G∗

2)).
The recursion will lead to a solution of (G∗, L∗). Part of the solution consists

of two ordered sets of bundles BND(tve) and BND(twe ) at each of the terminal
stations tve and twe , respectively. Recall that, in the base of the recursion, all lines
in a bundle have exactly the same terminals. In the recursive step, a bundle
corresponds to a set of lines whose relative positions cannot be determined. In
order to obtain a solution of (G,L), we restore the removed edge e and remove
the terminal stations tve and twe . The bundles BND(tve) and BND(twe ) of tve and twe
have also to be connected appropriately along the edge e. Note that the order
of the bundles of tve and twe is equal to those of v and w, due to the base of the
recursion. Thus, the removal of tve and twe will not produce unnecessary crossings.

We now proceed to describe the procedure of connecting the ordered bundle
sets BND(tve) and BND(twe ) along edge e. We say that a bundle is of size k iff
it contains exactly k lines. We also say that two bundles are equal iff they
contain the same set of lines, i.e., the parts of the lines that each bundle contains
correspond to the same set of lines. First, we connect all equal bundles. Let
b ∈ BND(tve) and b′ ∈ BND(tve) be two equal bundles. The connection of b and b′

will result into a new bundle which i) contains the lines of b (or equivalently of
b′) and ii) its terminals are the terminals of b and b′ that do not participate in
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l1
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l4
l1
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l3
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BND(twe )BND(tve)

Fig. 4. Splitting the largest bundle. Note that no equal bundles exist.

the connection. Note that a bundle is specified as a set of lines and a pair of
stations, that correspond to its terminals. When the connection of b and b′ is
completed, we remove both b and b′ from BND(tve) and BND(twe ).

If both BND(tve) and BND(twe ) are empty, all bundles are connected. In the case
where they still contain bundles, we determine the largest in size bundle, say
bmax, of BND(tve) ∪ BND(twe ). W.l.o.g. we assume that bmax ∈ BND(tve) (see the
left drawing of Fig. 4). Since bmax is the largest bundle among the bundles of
BND(tve) ∪ BND(twe ) and all equal bundles have been removed from both BND(tve)
and BND(twe ), bmax contains at least two lines that belong to different bundles of
BND(twe ). So, it can be split into smaller bundles, each of which contains a set of
lines belonging to the same bundle in BND(twe ) (see the right drawing of Fig. 4).
Also, the order of the new bundles in BND(tve) should follow the order of their
corresponding bundles in BND(twe ) in order to avoid unnecessary crossings (refer
to the order of the bundles within the dotted rectangle of Fig. 4). In particular,
the information that a bundle was split should be propagated to all stations that
this bundle traverses, i.e., splitting a bundle is not a local procedure that takes
place along a single edge but it requires greater effort. Note that the crossings
between lines of bmax and bundles in BND(twe ) cannot be avoided. In addition, no
crossings among lines of bmax occur.

We repeat these two steps (i.e. connection of equal bundles and splitting the
largest bundle) until both BND(tve) and BND(twe ) are empty. Since we always split
the largest bundle into smaller ones, this guarantees that our algorithm regarding
the connection of the bundles along the edge e will eventually terminate.

Theorem 1. Given a graph G = (V,E) and a set of lines L on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
4-side model can be solved in O((|E| + |L|2)|E|) time.

Proof. The base of the recursion trivially takes O(|V | +
∑|L|

i=1 |li|), or simply,
O(|V ||L|) total time. The complexity of our algorithm is actually determined
by the connection of the bundles along a particular edge, which is performed at
most O(|E|) times, since we always remove an edge that connects two internal
stations. The previous steps of our algorithm (i.e., the construction of graph G∗

and the necessary recursive calls) need a total of O((|V |+ |E|)|E|+ |V ||L|) time.
In order to connect equal bundles, we initially sort the lines of BND(twe ) using

counting sort [4] in O(|L| + |Le|) time, assuming that the lines are numbered
from 1 to |L|, and we store them in an array, say B, such that the i-th numbered
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line occupies the i-th position of B. Then, all equal bundles can be connected by
performing a single pass over the lines of each bundle of BND(tve). Note that, given
a line l that belongs to a particular bundle of BND(tve), say b, we can determine in
constant time to which bundle of BND(twe ) it belongs by employing array B. So,
in a total of O(|b|) time, we decide whether b is equal to one of the bundles of
BND(twe ), which yields into an O(|Le|) total time for all bundles of BND(tve). Thus,
the connection of equal bundles can be accomplished in O(|L|+ |Le|) time.

Having connected all equal bundles, the largest bundle is then determined
in O(|me|) time, where me = BND(tve) ∪ BND(twe ). Using counting sort, we can
split the largest bundle in O(|L|+ |Le|) time. The propagation of the splitting of
the largest bundle needs O(|V ||Le|) time. The connection of the equal bundles
and the splitting of the largest bundle will take place at most O(|Le|) times.
Since |me| ≤ 2|Le| and |Le| ≤ |L|, the total time needed for our algorithm is
O((|E| + |V ||L|2)|E|+ |V ||L|).

Note that the above straight-forward analysis can be improved by a factor
of |V |. This is accomplished by propagating the splitting of each bundle only
to its endpoints (i.e., not to all stations that each individual bundle traverses).
This immediately implies that some stations of G may still contain bundles after
the termination of the algorithm. So, we now need an extra post-processing step
to fix this problem. We use the fact that the terminals of G do not contain
bundles, since they are always at the endpoints of each bundle, when it is split.
This suggests that we can split –up to lines– all bundles at stations incident
to the terminal stations. We continue in the same manner until all bundles
are eventually split. Note that this extra step needs a total of O(|E||L|) time
and consequently does not affect the total complexity, which is now reduced to
O((|V |+|E|+|L|2)|E|+|V ||L|). Since G is connected, |E| ≥ |V |−1 and therefore
our algorithm needs O((|E| + |L|2)|E|) time, as desired. ��

Corollary 1. Given a graph G = (V,E) and a set of lines L on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
k-side model can be solved in O((|E| + |L|2)|E|) time.

3 The MLCM Problem under the 2-Side Model

In this section, we adopt the scenario of Section 2 under the 2-side model, i.e.,
we study the MLCM problem assuming that each station is represented as a
rectangle and we permit tracks to the left and the right side of each station, i.e.,
one of the rectangle’s sides is devoted to “incoming” edges/lines while the other
is devoted to “outgoing” edges/lines (see Fig. 5a). This assumption, combined
with the fact that we do not permit a line to use the same side of a station to
both “enter” and “exit”, implies that all lines should be x-monotone.

Since the lines are x-monotone, we refer to the leftmost (rightmost) terminal
of each line as its origin (destination). We also say that a line uses the left side
of a station to enter it and the right side to exit it. Furthermore, we refer to the
edges incident to the left (right) side of each station u in the embedding of G as



344 E. Argyriou et al.

Incoming edges of u

Outgoing edges of u

u

Eout(u)

Ein(u)

(a)

u

(b)

1

2

4

6

5

7 8

3
9

(c)

Fig. 5. (a) Incoming/outgoing edges of u. (b) Construction of graph G′ when G consists
of a single internal station u. (c) An edge numbering of G.

incoming (outgoing) edges of station u (see Fig. 5a). For each station u of G, the
embedding of G also specifies an order of both the incoming and outgoing edges
of u. We denote these orders by Ein(u) and Eout(u), respectively (see Fig. 5a).

A key component of our algorithm is a numbering of the edges of G, i.e.,
a function EN : E → {1, 2, . . . , |E|}. In order to obtain this numbering, we first
construct a directed graph G′ = (V ′, E′), as follows: For each edge e ∈ E of G, we
introduce a new vertex ve in G′ (refer to the black-colored bullets of Figures 5b
and 5c). Therefore, |V ′| = |E|. Also, for each pair of edges ei and ei+1 of G that
are consecutive in that order in Ein(u) or Eout(u), where u ∈ V is an internal
station of G, we introduce an edge (vei , vei+1) in G′ (refer to the black-colored
solid edges of Fig. 5b). Finally, we introduce an edge connecting the vertex of G′

associated with the last edge of Ein(u) to the vertex of G′ associated with the
first edge of Eout(u) (refer to the black-colored dashed edge of Fig. 5b). Then,
|E′| = O(|E|). An illustration of the proposed construction is depicted in Fig. 5c.
Note that all edges of G′ are either directed “downward” or “left-to-right” w.r.t.
an internal station. Thus there exist no cycles within the constructed graph (no
“right-to-left” edges exist to form cycles). The desired numbering of the edges of
G is then implied by performing a topological sorting on G′ (see Fig. 5c).

Since each line is a sequence of edges, it can be expressed as a sequence of
numbers based on the edge numbering EN : E → {1, 2, . . . , |E|}. We refer to the
sequence of numbers assigned to each line as its numerical representation. Note
that the numerical representation of each line is sorted in ascending order.

Let l and l′ be two lines that share a common path of the underlying network
G. Let also a1 . . . akc1 . . . cmb1 . . . bn and g1 . . . gqc1 . . . cmh1 . . . hr be their numer-
ical representations, respectively, where the subsequence c1c2 . . . cm corresponds
to their common path. Then, l and l′ inevitably cross iff (ak−gq)× (b1−h1) < 0
(see Fig. 6a). Note that their crossing can be placed along any edge of their
common path. This is because we aim to avoid unnecessary station crossings.

Consider now two lines l and l′ that share only a single internal station u of
G. We assume that u is incident to –at least– four edges, say e1

v, e2
v, e3

v and e4
v,

where e1
v and e2

v are incoming edges of u, whereas e3
v and e4

v outgoing. We further
assume that l enters u using e1

v and exits u using e4
v. Similarly, l′ enters u using

e2
v and exits u using e3

v (see Fig. 6b). Then, l and l′ form a station crossing which
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Fig. 6. Crossings that cannot be avoided. Note that in Fig. 6a, ak < gq < h1 < b1,
whereas in Fig. 6b, EN(e1

v) < EN(e2
v) < EN(e3

v) < EN(e4
v).

cannot be avoided iff (EN(e1
v)− EN(e2

v))× (EN(e4
v)− EN(e3

v)) < 0. In this case, the
crossing of l and l′ can only be placed in the interior of station u.

Our intention is to construct a solution where only crossings that cannot be
avoided are present. We will draw the lines of G incrementally by appropriately
iterating over the stations of G and by extending the lines from previously it-
erated stations to the next station. Assuming that the edges of G are directed
from left to right in the embedding of G, we first perform a topological sorting
of the stations of G. Note that since all edges are directed from left to right,
the graph does not contain cycles (no right to left edges exist to form cycles)
and therefore a topological order exists. We consider the stations of G in their
topological order. This ensures that whenever we consider the next station, its
incoming lines have already been routed up to its left neighbors. Let u be the
next station in the order. We distinguish the following cases:

Case (a) : indegree(u) = 0 (i.e. terminal station).
A station u with indegree(u) = 0 corresponds to a station which only con-
tains the origins of some lines. In this case, we simply sort in ascending order
these lines lexicographically with respect to their numerical representations.
This implies the desired ordering of the lines along the right side of station
u. It also ensures that these lines do not cross along their first common path.

Case (b) : indegree(u) > 0.
Let e1

u, e
2
u, . . . , e

k
u be the incoming edges of station u, where k = indegree(u)

and ei
u = (ui, u), i = 1, . . . , k. W.l.o.g. we assume that EN(ei

u) < EN(ej
u),

∀i < j. The lines that enter u from e1
u will occupy the topmost tracks of the

left side of station u. Then, the lines that enter u from e2
u will occupy the

next available tracks and so on. This ensures that the lines that enter u from
different edges will not cross with each other, when entering u.

Let Li
u be the lines that enter u from edge ei

u, i = 1, 2, . . . , k, ordered
according to the order of the lines along the right side of station ui. In
order to specify the order of all lines along the left side of station u, it
remains to describe how the lines of Li

u are ordered when entering u, for
each i = 1, 2, . . . , k. We stably sort in ascending order the lines of Li

u based
on the numbering of the edges that they use when exit station u. Note
that in order to perform this sorting we only consider the number following
EN(ei

u) in the numerical representation of each line. Also, the stable sorting
ensures that only unavoidable edge crossings will occur along ei

u. To see this
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consider two lines l, l′ ∈ Li
u which use the same edge to exit station u. Since

the sorting is stable their relative position will not change when they enter
u, which implies that they will not cross along the edge ei

u.
Up to this point, we have specified the order of the lines along the left

side of station u, say Lu
in. In order to complete the description of this case

it remains to specify the order, say Lu
out, of these lines along the right side

of u. Again, the desired order Lu
out is implied by stably sorting the lines

of Lu
in based on the numbering of the edges that they use when they exit

station u. Note that also in this case the sorting of the lines is performed
by considering only the EN-number of the edges used by the lines when exit
station u. Again, the stable sorting ensures that only unavoidable station
crossings will occur in the interior of station u.

Note that the stable sortings that are performed at each terminal station
ensure that only unavoidable station and edge crossings eventually occur. Also,
an unavoidable edge crossing between two lines is always placed along the last
edge of their common path.

Theorem 2. Given a graph G = (V,E) and a set of lines L on G that terminate
at stations of degree 1, the metro-line crossing minimization problem under the
2-side model can be solved in O(|V ||E|+

∑|L|
i=1 |li|) time.

Proof. The topological sorting on G needs O(|V |+ |E|) time. The construction
of graph G′ and the computation of a topological sorting on it need O(|E|) time,
since both the number of nodes and the number of edges of G′ are bounded
by |E|. Having computed the EN-number of each individual edge of the under-
lying network, the numerical representations of all lines can be computed in
O(
∑|L|

i=1 |li|) time. Using radix sort [4], we can lexicographically sort all lines
at each terminal station v of indegree zero in O((|E| + |Lv|)|lvmax|) total time,
where Lv is the set of lines that originate at v and lvmax is the longest line of
Lv. Therefore, the sorting of all lines at stations of indegree zero needs a total of
O((|E|+ |L|)|V |) time, since the length of the longest line of L is at most |V |. We
can –stably– sort the lines of each set Li

u, i = 1, 2, . . . , k based on the numbering
of the edges that they use when exit u, using counting sort. This can be done in
O(|E|+ |Lu|) total time, where Lu denotes the set of lines that traverse station
u. Recall that counting sort is stable. Similarly, can –stably– sort the lines of
each set Lu

in based on the numbering of the edges they use when exit station u
in O(|E| + |Lu|) time. Summing over all internal stations, our algorithm needs
O(|V ||E|+

∑|L|
i=1 |li|). ��

As already stated, our algorithm can be employed to solve the MLCM-FixedSE
problem. Our approach is as follows: For each station u of G, we introduce four
new stations, say ut

l , u
b
l , u

t
r and ub

r, adjacent to u. Station ut
l (ub

l ) is placed on
top (below) and to the left of u in the embedding of G and contains all lines that
originate at u’s top (bottom) station end. Similarly, station ut

r (ub
r) is placed on

top (below) and to the right of u in the embedding of G and contains all lines
that are destined for u’s top (bottom) station end. In the case where some of the
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newly introduced stations contain no lines, we simply ignore their existence. So,
instead of restricting each line to terminate at a top or at a bottom station end
in its terminal stations, we equivalently assume that it terminates to one of the
newly introduced stations. The following theorem summarizes this result.

Theorem 3. Given a graph G = (V,E) and a set of lines L on G, the metro-
line crossing minimization problem with fixed station ends under the 2-side model
can be solved in O(|V ||E|+

∑|L|
i=1 |li|) time.

4 Conclusions

In this paper, we studied the MLCM problem under the k-side model for which
we presented an O((|E| + |L|2)|E|) algorithm, and a more efficient algorithm
for the special case of 2-side model. Possible extensions would be to study the
problem where the lines are not simple, and/or the underlying network is not
planar. Our first approach seems to work even for these cases, although the
time complexity is harder to analyze and cannot be estimated so easily. The
focus of our work was on the case where all line terminals are located at specific
stations of the underlying network. Allowing the line terminals anywhere within
the underlying network would hinder the use of the proposed algorithms in both
models. Therefore, it would be of particular interest to study the computational
complexity of this problem.
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Abstract. The Sugiyama framework is the most commonly used con-
cept for visualizing directed graphs. It draws them in a hierarchical way
and operates in four phases: cycle removal, leveling, crossing reduction,
and coordinate assignment.

However, there are situations where cycles must be displayed as such,
e. g., distinguished cycles in the biosciences and processes that repeat in
a daily or weekly turn. This forbids the removal of cycles. In their seminal
paper Sugiyama et al. also introduced recurrent hierarchies as a concept
to draw graphs with cycles. However, this concept has not received much
attention since then.

In this paper we investigate the leveling problem for cyclic graphs.
We show that minimizing the sum of the length of all edges is NP-hard
for a given number of levels and present three different heuristics for the
leveling problem. This sharply contrasts the situation in the hierarchi-
cal style of drawing directed graphs, where this problem is solvable in
polynomial time.

1 Introduction

The Sugiyama framework [8] is among the most intensively investigated algo-
rithms in graph drawing. It is the standard technique to draw directed graphs,
and displays them in an hierarchical manner. This is well-suited particularly for
directed acyclic graphs, which are drawn top-down (or left to right) and level
by level. These drawings reflect the underlying graph as a partial order. Typical
applications are schedules, UML diagrams and flow charts.

In the general case, the Sugiyama framework first destroys cycles. In the
decycling phase it removes or redirects some edges until the resulting graph is
acyclic. However, there are many situations, where this procedure is inacceptable.
For example, there are well-known cycles in the biosciences, and it is a common
standard there to display these cycles as such. These cycles often serve as a
landmark [7]. Another application for cycles are repeating processes, such as
daily, weekly or monthly schedules with almost the same tasks. Here again it is
important that these cycles are clearly visible in a “nice” drawing.

In their original paper from 1981 [8], Sugiyama et al. have proposed a solution
for both the hierarchical and the cyclic style. The latter is called recurrent hier-
archy. A recurrent hierarchy is a level graph with additional edges from the last
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Fig. 1. Example drawings

to the first level. Here, two drawings are natural: The first is a 2D drawing, where
the levels are rays from a common center, and are sorted counterclockwise by
their number, see Fig. 1(a). All nodes of one level are placed at different positions
on their ray and an edge e = (u, v) is drawn as a monotone counterclockwise
curve from u to v wrapping around the center at most once. The second is a 3D
drawing on a cylinder, see Fig. 1(c). A combination of the two drawing methods
would be the best of both worlds: An interactive 2D view which shows horizontal
levels. This view can be scrolled upwards and downwards infinitely and always
shows a different part of the cylinder, e. g., the front view of Fig. 1(c).

Recurrent hierarchies are known to most graph drawers – but unnoticed. A
planar recurrent hierarchy is shown on the cover of the book by Kaufmann and
Wagner [6]. There it is stated that recurrent hierarchies are “unfortunately [. . . ]
still not well studied”. The reason is that they are much harder. Intuitively, there
is no start and no end, there are no top and bottom levels. Formally, we pinpoint
a problem which is tractable in the hierarchical style and is intractable in the
cyclic style.

In cyclic drawings edges are irreversible and cycles are represented in a di-
rect way. Thus, the cycle removal phase disappears from the common Sugiyama
framework. This saves much effort, since the underlying problem is the NP-
hard feedback arc set problem [5]. Another advantage are short edges. The sum
of the edge length can be smaller than in the hierarchical case: Consider a cycle
consisting of three nodes. The only way to draw this graph in the Sugiyama
framework is to reverse one edge which will then span two levels. Therefore, the
sum of the edge length will be four. In the cyclic case this graph can be drawn
on three levels s. t. each edge has span one. Moreover, the cyclic style reduces
the number of crossings in general. See Fig. 1(a) and (b) as an example. At the
threshold with no crossings [2], there are cyclic level planar graphs which are
not level planar. Here, consider Fig. 1 with the solid edges only.

Note that any Sugiyama drawing is a cyclic Sugiyama drawing which discards
the option to draw edges between the last and first level. Therefore, all benefits
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of such drawings exist in the cyclic case as well. However, the sum of the edge
length and the number of crossings will often be smaller.

In this paper we consider the leveling phase for the cyclic Sugiyama frame-
work. In the hierarchical version this phase is generally solved by topological
sorting, or more advanced, by the Coffman-Graham algorithm [6, 3]. As our
main result we show that minimizing the sum of the length of all edges is NP-
hard for a given number of levels. This sharply contrasts the hierarchical case.
Then we introduce three heuristics for the cyclic leveling problem, and evaluate
them experimentally within the Gravisto system [1].

2 Preliminaries

Let G = (V,E) be a directed graph. For a given k ∈ N we call φ : V →
{1, 2, . . . , k} a level assignment and G = (V,E, φ) a cyclic k-level graph. We
denote with deg(v) the degree of a node v ∈ V . For two nodes u, v ∈ V let
span(u, v) = φ(v)−φ(u) if φ(u) < φ(v), and span(u, v) = φ(v)−φ(u)+ k other-
wise. For an edge e = (u, v) ∈ E we define span(e) = span(u, v) and span(G) =∑

e∈E span(e). For a set of edges E′ ⊆ E we define span(E′) =
∑

e∈E′ span(e).
next(l) = (l mod k)+1 denotes the level after l. For a node v ∈ V and a subset
V ′ ⊂ V we set E(v, V ′) = { (u, v) ∈ E | u ∈ V ′ } ∪ { (v, w) ∈ E | w ∈ V ′ }.

3 Complexity of Cyclic Leveling

In this section we consider different leveling problems and compare their com-
plexity in the hierarchical and the cyclic style. The graphs G = (V,E) are di-
rected in both cases and are acyclic in the hierarchical case.

Definition 1 (Height and Width). Let G be a directed graph which is drawn
s. t. the edges connect vertices on different levels and are uni-directed from the
start level to a successive level. Let the height be the number of levels and let the
width be the maximal number of nodes on a level.

We can now state our leveling problems, both for the common hierarchical style
and for the cyclic style of recurrent hierarchies.

Problem 1. Let k ∈ N. Does there exist a leveling of G with height at most k?

Problem 2. Let ω ∈ N. Does there exist a leveling of G with width at most ω?

Problem 3. Let k, ω ∈ N. Does there exist a leveling of G with height at most k
and width at most ω?

In the hierarchical case problems 1 and 2 are easy: The former can be solved
in linear time by the longest path search algorithm [6], whereas, the latter is
trivial as each graph has a leveling with width 1 by placing each node on its
own level according to a topological sorting of G. Problem 3 is NP-hard as this
corresponds to precedence constrained scheduling [5].
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In the cyclic case all these problems are easy. Note that an edge e = (u, v)
does not impose any constraint on the leveling of the nodes u and v. u can have
a smaller level, a larger level, and even the same level as v. Therefore, the answer
to Problems 1 and 2 is yes (if k, ω > 0). For Problem 3 there is a cyclic leveling
if |V | ≤ k · ω by arbitrarily placing vertices in a k × ω grid.

Problem 4. Let l ∈ N. Does there exist a leveling of G with span(G) ≤ l?

In the hierarchical case minimizing the span can be formulated as an ILP:

min
∑

(u,v)∈E

(φ(v) − φ(u)) (1)

∀v ∈ V :φ(v) ∈ N (2)
∀e = (u, v) ∈ E :φ(v) − φ(u) ≥ 1 (3)

This ILP can be solved in polynomial time, since the constraint matrix is totally
unimodular [6]. Therefore, Problem 4 has a polynomial time complexity in the
hierarchical case as well. In the cyclic case the span can no longer be formulated
by a system of linear equations, as a case differentiation or the modulo operation
is needed.

As a degenerated case we may place all nodes on a single level. Then all edges
have span 1 which is obviously minimal. Therefore, we sharpen Problem 4:

Problem 5. Let l, k ∈ N. Does there exist a leveling of G with exactly k levels
with span(G) ≤ l?

Problem 5 is simple for k = 1, as such a leveling exists if l ≥ |E|. For k > 1
we now show that the problem is NP-hard. We use two different reductions for
k = 2 and k > 2. For k = 2 we use the NP-hard bipartite subgraph problem [5]:

Problem 6 (Bipartite subgraph). Let G = (V,E) be an undirected graph and
k ∈ N. Does there exist a bipartite subgraph G′ of G with at least k edges?

Lemma 1. Let G = (V,E) be an undirected graph and l ∈ N. Let G∗ = (V,E∗)
be a directed version of G with an arbitrary direction for each edge. G contains
a bipartite subgraph G′ with at least l edges if and only if there exists a leveling
of G∗ on two levels with span(G∗) ≤ 2|E| − l.

Proof. “⇒”: Let G′ = (V ′, E′) be a bipartite subgraph of G with at least l edges.
Let V1

.
∪V2 = V ′ be the partition of the node set with all edges of E′ between V1

and V2. We construct the following leveling for G∗: For each node v ∈ V1 we set
φ(v) = 1, for each node v ∈ V2 we set φ(v) = 2, and for all nodes v ∈ V \(V1∪V2)
we set φ(v) = 1. Then each edge in E′ has span 1 and all other edges have span
1 or 2. Thus, span(G∗) ≤ |E′|+ 2(|E| − |E′|) = 2|E| − E′ ≤ 2|E| − l.

“⇐”: Let φ be a leveling of G∗ with span(G∗) ≤ 2|E| − l. Let V1 and V2 be
the nodes of V on level 1 and 2, respectively. Let E′ ⊆ E be the set of edges e
s. t. one end node is in V1 and the other is in V2. Then, G′ = (V,E′) is bipartite.
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All edges in E′ have span 1 in the leveling φ and all other edges have span 2. As
span(G∗) ≤ 2|E|− l = 1 · l+2(|E|− l), there are at least l edges with span 1. As
these edges are in E′, G′ is a bipartite subgraph of G with at least l edges. ��

For k > 2 we use graph k-colorability, which is NP-hard for a fixed k > 2 [5]:

Problem 7 (Graph k-colorability). Let G = (V,E) be an undirected graph and
let k ∈ N. Does there exist a coloring c : V → {1, . . . , k}, s. t. c(u) �= c(v) for
every edge e = {u, v} ∈ E?

Lemma 2. Let G = (V,E) be an undirected graph and let k ∈ N. Let G′ =
(V,E′) with E′ containing the edges (u, v) and (v, u) for each edge {u, v} ∈ E.
G is k-colorable if and only if G′ has a leveling on k levels with span(G′) ≤ k·|E|.

Proof. Let e = {u, v} ∈ E. Note that for each leveling φ of G′ and each edge
e = (u, v) ∈ E′ the sum of the spans of (u, v) and (v, u) is either k (if φ(u) �= φ(v))
or 2k (if φ(u) = φ(v)). Thus, span(G′) ≥ k · |E

′|
2 = k · |E|.

“⇒”: Let c be a coloring of G. Set φ = c. Then, for each edge with end nodes
u and v in G (and G′) φ(u) �= φ(v) holds. Thus, each pair of edges (u, v) and
(v, u) in sum has span k and span(G′) = k · |E| holds.

“⇐”: Let φ be a leveling of G′ with span(G′) ≤ k · |E|. Then, span(G′) = k · |E|
and for each edge (u, v) ∈ E′ φ(u) �= φ(v) holds. Thus, c = φ is a correct coloring.

��

Theorem 1. Let G = (V,E) be a directed graph and l, k ∈ N (k ≥ 2). The
problem whether there exists a leveling of G on k levels with span(G) ≤ l is
NP-complete.

Proof. Lemma 1 and Lemma 2 show that the problem is NP-hard for k = 2 and
k > 2, respectively. The problem is obviously in NP . ��

4 Heuristics

As minimizing the span of a graph in a cyclic leveling with k levels is NP-
complete, we have to use heuristics. Known approaches from the hierarchical
case as the longest path method [6] or the Coffman-Graham algorithm [3] cannot
be easily adapted to the cyclic case. They heavily rely on the fact that the graph
is acyclic and start the leveling process at nodes with no incoming edges. As it
is not guaranteed that such nodes exist in the cyclic case at all, we introduce
three new heuristics. They are evaluated experimentally in Sect. 5.

The input to the algorithms are the number of levels k and the maximum
number of nodes on a level ω. The output is the leveling φ : V → {1, . . . , k}.
The parameter k is either given by the user or it is pre-computed, e. g., as the
average length of simple cycles detected by a depth first search of the graph.
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Table 1. Complexity of leveling (k as height and ω as width)

hierarchical cyclic

Minimizing k O(|V | + |E|),
by longest path

Set φ : V → {1}

Minimizing ω O(|V | + |E|),
by φ = topsort

Choose injective φ

Leveling with k and ω given NP-hard, precedence
constrained scheduling

Test k · ω ≥ |V |

Minimizing k with ω given NP-hard for arbitrary
ω > 2

Set k = � |V |
ω

�

Minimizing ω with k given NP-hard for k > 2 Set ω = � |V |
k

�
Minimizing span(G) with k given P , by LP NP-hard for k > 1

4.1 Breadth First Search

The breadth first search (BFS) heuristic (Algorithm 1) is rather simple: We
choose an arbitrary start node v, set φ(v) = 1 and perform a directed BFS
from v. When we reach a node w for the first time using an edge (u,w), we set
φ(w) = next(φ(u)) if this level does not contain ω nodes already. Otherwise, we
move w to the first non-full level.

Using this heuristic the tree edges will have a rather short span. But the back
edges are not taken into account for the leveling at all. Thus, these edges can be
arbitrarily long.

Lemma 3. The BFS leveling heuristic needs O(|V |+ |E|+ k2) time.

Proof. BFS runs in O(|V |+ |E|) time. In addition we must keep and update an
array N of size k. N [i] denotes the first non-full level from level i. At most all
k levels can get full which costs O(k) time for each. ��

4.2 Minimum Spanning Tree

This heuristic has similarities to the algorithm of Prim [4], which computes the
minimum spanning tree (MST) of a graph. We sequentially level the nodes by
a greedy algorithm. Let V ′ ⊂ V be the set of already leveled nodes. When we
level a node v, all edges in E(v, V ′) get a fixed span. Therefore, we set φ(v) s. t.
span(E(v, V ′)) is minimized. Note that there are possibly more edges incident to
v which are also incident to not yet leveled nodes. These edges will be considered
when the second end node is leveled.

We decide in which order to add the nodes by using a distance function δ(v).
We discuss four options:
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Algorithm 1. breadthFirstSearchLeveling
Input: G: a directed graph, k: the number of levels,

ω: the maximum number of nodes on each level
Output: φ: a cyclic leveling of G

Queue Q ← ∅1
Leveling φ ← ∅2
foreach u ∈ V do u.marked ← false3
foreach l ∈ {1, . . . , k} do N [l] ← l4
foreach u ∈ V do5

if ¬u.marked then6
Q.append(u)7
u.marked ← true8
φ(u) ← N [1]9
updateN(N [1])10
while ¬Q.isEmpty() do11

v ← Q.removeF irst()12
foreach neighbor w of v do13

if ¬w.marked then14
w.marked ← true15
φ(w) ← N [next(φ(v))]16
updateN(φ(w))17
Q.append(w)18

return φ19

Minimum Increase in Span (MST_MIN). We choose the node which will
create the minimum increase in span in the already leveled graph:

δMIN(v) = min
φ(v)∈{1,...,k}

span(E(v, V ′)) (4)

Minimum Average Increase in Span (MST_MIN_AVG). Using the
distance function δMIN will place nodes with a low degree first, as nodes with
a higher degree will almost always cause a higher increase in span. Therefore,
considering the increase in span per edge is reasonable:

δMIN_AVG(v) = min
φ(v)∈{1,...,k}

span(E(v, V ′))
|E(v, V ′)| (5)

We distribute isolated nodes evenly on the non-full levels in the end.

Maximum (Average) Increase in Span (MST_MAX(_AVG)). Choose
the node which causes the maximum (average) increase in span per edge:

δMAX(v) =
1

δMIN(v)
, δMAX_AVG(v) =

1
δMIN_AVG(v)

(6)
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The idea behind this is the following: A node which causes a high increase in
span will cause this increase when leveled later as well. But if we level this node
now, we can possibly level other adjacent, not yet leveled nodes in a better way.

Note that we only use the distance function δ(v) to determine which node to
level next. When we level a node v, we set φ(v) s. t. the increase in span will be
minimized. In some cases several levels for v will create the same increase in span.
We will then choose a level for v which minimizes

∑
e∈E(v,V ′) span(e)2 as well.

Thus, we assign v a level which is more centered between its leveled adjacent
nodes. In each case we can only use a level which has not yet ω nodes on it.
Nodes with already leveled neighbors block a place on their optimal level s. t.
they can later be placed on the level. Algorithm 2 shows the complete heuristic.

Algorithm 2. minimumSpanningTreeLeveling
Input: G: a directed graph, k: the number of levels,

ω: the maximum number of nodes on each level
Output: φ: a cyclic leveling of G

Heap H ← ∅1
Leveling φ ← ∅2
foreach u ∈ V do3

u.status ← white4
δ(u) ← ∞5

foreach u ∈ V do6
if u.status = white then7

δ(u) ← 08
H.insert(u)9
while ¬H.isempty() do10

v ← H.removeMin()11
v.status ← black12
φ(v) ← getOptimalLevel(v)13
foreach neighbor w of v with w.status �= black do14

δ(w) ← computeDistance(w)15
φ(w) ← getOptimalLevel(w)16
if w.status = gray then17

H.update(w)18

else19
w.status ← gray20
H.insert(w)21

return φ22

Lemma 4. The MST heuristic needs O(|V | log |V |+ k · deg(G) · |E|) time.

Proof. The time complexity is dominated by the while loop. Here, removing each
node from the heap costs O(|V | log |V |). Each edge e = (w, z) ∈ E may change
its span whenever a neighbor v of w (or z) is fixed on a level. In this case each
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of the k levels is tested for w (or z). Thus, we get O(k · (deg(w) + deg(z))) for e
and O(k · deg(G) · |E|) for all edges. Finally, updating all neighbors in the heap
costs O(|E| log |V |) (or O(|E|) using a Fibonacci heap). ��

4.3 Force Based

Spring embedders use a physical model to simulate the edges as springs [6]. Forces
between nodes are computed and the nodes are moved accordingly. Transferring
this idea to the cyclic leveling problem, we could use a force function similar to
conventional energy based placement algorithms as follows:

force(v) =
∑

(v,w)∈E

(span(v, w) − 1)2 −
∑

(u,v)∈E

(span(u, v)− 1)2 (7)

However, moving a node to its energy minimum using this force will not minimize
the span of the graph, i. e., (7) minimizes the deviation between the edge lengths,
e. g., see Fig. 2. Furthermore, the span may increase when moving a node towards
its energy minimum, as some edges can flip from span 1 to span k. We solve this
problem by using directly the span as the (undirected) force which is minimized:

force(v) = span(E(v, V )) (8)

We move the node with the maximum impacting force. And we directly move
the node to its energy minimum, which is the level s. t. the span is minimized.
For this, we test all possible (non-full) levels. Note that moving all nodes at once
would not decrease time complexity here. Algorithm 3 shows the pseudo code.

As an initial leveling we either use a random leveling (SE_RND) or the result
of the best minimum spanning tree heuristic MST_MIN_AVG (SE_MST).

Lemma 5. In the force based heuristic O(|V | log |V |+k · |E|) time is needed for
each iteration.
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Algorithm 3. forceBasedLeveling
Input: G: a directed graph, k: the number of levels,

ω: the maximum number of nodes on each level
Output: φ: a cyclic leveling of G

Heap H ← ∅1
φ ← computeInitialLeveling()2
foreach v ∈ V do3

computeForce(v)4

while improvement ∧ iterations < limit do5
foreach v ∈ V do6

H.insert(v)7

while ¬H.isEmpty() do8
v ← H.removeMax()9
φ(v) ← energyMinimalLevel(v)10
foreach neighbor w of v do11

updateForce(w, v)12

return φ13

Proof. Inserting all nodes in the heap can be implemented in O(|V |) time. Re-
moving each node from the heap has time complexity O(|V | log |V |). Computing
the energy minimal level for v costs O(k · deg(v)), which is O(k · |E|) for all
nodes. Computing the new force is possible in time O(1) for each neighbor of v,
in O(deg(v)) for all neighbors and O(|E|) in total. The O(|E|) updates in the
heap cost O(|E| log |V |) (or O(|E|) using a Fibonacci heap). ��

5 Empirical Results

In this section we evaluate and compare the heuristics with each other and with
an optimal leveling. The optimal leveling is computed by a branch and bound
algorithm which can be used for graphs up to 18 nodes.

In Fig. 3 the running times of the algorithms are shown. Figure 4 compares the
calculated spans of the heuristics with the optimal span. For a better pairwise
comparison of the heuristics, Fig. 5 only shows their results.

For Fig. 3 and 5 the number of nodes |V | was increased by steps of 50 each
time. For each size 10 graphs with |E| = 5|V | were created randomly. For Fig. 4
10 graphs for each size |V | and |E| = 2|V | were used. In all three diagrams k and
ω were set to

√
2|V |, s. t. there were 2|V | possible node positions. Each heuristic

was applied to each graph min(|V |, 30) times using different start nodes resp.
initial levelings and choosing the average.

The benchmarks show the practical performance of the algorithms. All tests
were run on a 2.8 GHz Celeron PC under the Java 6.0 platform from Sun Mi-
crosystems, Inc. within the Gravisto framework [1].

As expected the force based heuristics with MST initialization computes the
best leveling and the results are close to the optimum. All MST variants do
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not differ very much, but MST_MIN_AVG seems to be the best. The results
can be improved by applying the heuristics i times to the same graph with i
different start nodes or different initial levelings, respectively, and choosing the
best result. However, the price is an i times higher running time.

6 Summary and Open Problems

The leveling problem has turned out to be essentially different in the hierarchical
and cyclic style. We have shown different optimization goals for the cyclic leveling
compared to the goals of the hierarchic leveling. For the reasonable minimization
of the sum of the edge lengths we have shown the NP-hardness and presented
three practical heuristics for the problem.

Open problems are the approximation ratios of our heuristics, other quality
measures for cyclic drawings, the best number of levels, and the completion of
the cyclic style to a cyclic Sugiyama framework.
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Abstract. This paper starts the investigation of a constrained version of the
point-set embeddability problem. Let G = (V, E) be a planar graph with n ver-
tices, G′ = (V ′, E′) a subgraph of G, and S a set of n distinct points in the
plane. We study the problem of computing a point-set embedding of G on S sub-
ject to the constraint that G′ is drawn with straight-line edges. Different drawing
algorithms are presented that guarantee small curve complexity of the resulting
drawing, i.e. a small number of bends per edge. It is proved that: (i) If G′ is an
outerplanar graph and S is any set of points in convex position, a point-set em-
bedding of G on S can be computed such that the edges of E \ E′ have at most
4 bends each. (ii) If S is any set of points in general position and G′ is a face of
G or if it is a simple path, the curve complexity of the edges of E \ E′ is at most
8. (iii) If S is in general position and G′ is a set of k disjoint paths, the curve
complexity of the edges of E \ E′ is O(2k).

1 Introduction

The problem of computing a planar drawing of a graph on a given set of points in
the plane is a classical subject of investigation both in the graph drawing and in the
computational geometry literature. The input is a planar graph G with n vertices and a
set of n distinct points in the plane. The output is a drawing of G such that each vertex is
mapped to a distinct point of S and no two edges cross each other. Besides the intrinsic
theoretical interest of studying the interplay between the topology of the graph and the
geometry of the given set of points, the question is in part justified by the variety of
graph drawing applications where some or all of the vertices are constrained at fixed
locations (see, e.g., [17]).

Different versions of the problem have been investigated. In the point-set embed-
dability problem with given mapping the function that associates each vertex of G with
a distinct point of S is given as part of the input. Halton [10] shows that a planar graph
always admits a point-set embedding with given mapping on any set of n points but he
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does not give any result about the number of bends per edge. Pach and Wenger [16] de-
scribe an algorithm to compute a point-set embedding with given mapping of a planar
graph with at most 120n bends per edge; they also prove that m

403 bends per edge may
be necessary in some cases (m is the number of edges of the graph). Both the upper and
the lower bounds of Pach and Wenger have been recently reduced by Badent et al. [1]
to 3n + 2 and n

8 , respectively.
The point-set embeddability problem without mapping allows the drawing algorithm

to choose for each vertex v of G the point of S that represents v. Algorithms to com-
pute straight-line point-set embedding without mapping of trees [3,11,15] and outer-
planar graphs [2,9] have been presented. Since outerplanar graphs are the largest class
of graphs admitting a straight-line point-set embedding without mapping on any set of
points [9], Kaufmann and Wiese [14] study the point-set embeddability problem with
bends. They show that every planar graph admits a point-set embedding without map-
ping with at most two bends per edge and that this bound is worst-case optimal.

The above two versions of the problem have also been studied in a unifying frame-
work. In a k-colored point set embedding each vertex of G and each point of S is given
one of k colors and the drawing algorithm can map a vertex of color i to any point of S
having the same color. If k = 1 the problem coincides with the point-set embeddabil-
ity problem without mapping; if k = n we have the point-set embeddability problem
with mapping; if the input specifies a mapping of n1 vertices to n1 points while there
is no mapping for the remaining n − n1, we have a k-colored point-set embeddabil-
ity problem with k = n1 + 1. A limited list of papers about the k-colored point set
embeddability includes [1,4,5,8,11,12,13].

This paper studies a natural extension of the point-set embeddability problem without
mapping. It is assumed that a subgraph of G is given whose edges are required to be
drawn as straight-line segments. Our input is a graph G = (V,E) with n vertices, a set
S of n distinct points in the plane, and a subgraph G′ = (V ′, E′) of G. We want to
compute a point-set embedding of G with small curve complexity (i.e. a small number
of bends per edge) and such that G′ is drawn with straight-line edges. It may be worth
recalling that a recent paper [6] has proved that if G is a tree, G′ is a tree with k edges,
and a mapping from the vertices of G′ to a subset of the points of S is given, then
a point-set embedding where the edges of G′ are straight-line can have O(k) curve
complexity. A fundamental difference between the setting of [6] and this paper is that
here we do not assume that the mapping from the subgraph to the point set is given as
part of the input. A high level description of the results in the paper is as follows.

– We prove that if S is a set of points in convex position, then G admits a point-set
embedding on S with the edges of G′ drawn straight-line if and only if G has a
planar embedding ψ such that the embedding of G′ induced by ψ is outerplanar
and each vertex of V \ V ′ is on the external face of G′ in ψ. Furthermore we show
that, when the drawing exists, it can be computed in such a way that the edges of
E \E′ have at most 4 bends each.

– We extend the above investigation to sets of points in general position. If either G′

is a face of G or if it is a simple path, a point-set embedding of G on any set of
points in general position exists such that the edges of G′ are straight-line edges
and the edges of E \ E′ have at most 8 bends each.
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– We finally consider the situation where G′ is a set of k disjoint paths and S is any
set of points in general position. In this case a point-set embedding exists where the
edges of G′ are straight-line edges and the edges of E \E′ have O(2k) bends each.

In the remainder of the paper some proofs are omitted for reasons of space.

2 Preliminaries

Let G = (V,E) be a graph. A drawing Γ of G maps each vertex v of G to a distinct
point p(v) of the plane and each edge e = (u, v) of G to a simple Jordan curve con-
necting p(u) and p(v). Drawing Γ is planar if no two distinct edges intersect except at
common end-vertices. Graph G is planar if it admits a planar drawing. A planar draw-
ing Γ of G partitions the plane into topologically connected regions called the faces
defined by Γ . The unbounded face is called the external face. The boundary of a face
is its delimiting cycle described by the circular list of its edges and vertices. A face is
simple if its boundary is a simple cycle.

An embedding of a planar graph G is an equivalence class of planar drawings that
define the same set of faces, that is, the same set of face boundaries. A planar graph G
together with the description of a set of faces F is called an embedded planar graph. A
maximal embedded planar graph is such that all faces are triangles, that is, the boundary
of each face has three vertices and three edges. Given any embedded planar graph G,
it is easy to add edges that split the faces of G in order to obtain a maximal embedded
planar graph that includes G. A graph G is outerplanar if it admits an embedding such
that all vertices of G belong to a common face, which we can always choose as the
external face.

A subdivision of a graph G is a graph obtained from G by replacing each edge by a
path with at least one edge. Internal vertices on such a path are called division vertices,
the edges of such path are called sub-edges.

Let G = (V,E) be a planar graph with n vertices and let S be a set of n points in
the plane. We say that the points of S are in general position if no three points of S
lie on the same line. A point-set embedding of G on S, denoted as Γ (G,S), is a planar
drawing of G such that each vertex is mapped to a distinct point of S. Γ (G,S) is called
a geometric point-set embedding if all edges are drawn straight-line. Let G′ = (V ′, E′)
be a subgraph of G. A point-set embedding of G on S with straight-line subgraph G′,
denoted as Γ (G,G′, S), is a point-set embedding of G on S such that the edges of G′

are drawn as straight-line segments. The edges of G can be partitioned, with respect to
G′, in the following four sets:

Blue Edges. Eblue = E′;
Red Edges. Ered = {(u, v) ∈ E \ E′ | u �∈ V ′ ∧ v �∈ V ′};
Black Edges. Eblack = {(u, v) ∈ E \ E′ | u ∈ V ′ ∧ v �∈ V ′};
Green Edges. Egreen = {(u, v) ∈ E \ E′ | u ∈ V ′ ∧ v ∈ V ′}.

Let G = (V,E) be a planar graph. A 2-page book embedding of G is a planar
drawing of G such that all vertices of G are represented as points of a horizontal line 
called the spine and each edge is drawn in one of the two half-planes defined by . The
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half-plane above  is called the top page, while the half-plane below the spine is called
the bottom page. An edge of a 2-page book embedding is completely contained either
in the top page or in the bottom page. Let e1 = (u1, v1) and e2 = (u2, v2) be two edges
in the same page of a 2-page book embedding. Assume, without loss of generality, that
u1 is to the left of v1 on , that u2 is to the left of v2 on , and that u1 is to the left
of u2 on . A crossing between e1 and e2 can be avoided only if u1, u2, v1, and v2 do
not appear in this order along the spine. On the other hand, if u1, u2, v1, and v2 do not
appear in this order along the spine the two edges can easily be drawn without crossing
(for example they can be drawn as circular arcs). Thus, the fact that two edges in a same
page cross or not depends only on the relative position of their endvertices.

A monotone topological book embedding of a planar graph G is a 2-page book em-
bedding of a subdivision of G such that each edge (u, v) of G has at most one division
vertex d and: (i) u, d, and v appear in this order along the spine; (ii) sub-edge (u, d) is
in the bottom page; (iii) sub-edge (d, v) is in the top page.

In [7] an algorithm to compute a monotone topological book embedding of a planar
graph was presented. The next lemma, that will be used as a basic tool for the algorithms
presented in the next sections, can be proved by exploiting the algorithm of [7] for
computing a monotone topological book embedding.

Lemma 1. Let G = (V,E) be an embedded planar graph. If G contains a cycle C =
v1, v2, . . . , vh whose interior is triangulated with edges (v1, vi) for 3 ≤ i ≤ h−1, then
there exists a monotone topological book embedding γ such that the linear order of the
vertices of C in γ is v1, vh, vh−1, . . . , v2; also, all edges of C and all edges (v1, vi)
(3 ≤ i ≤ h− 1) are in the bottom page of γ.

3 Points in Convex Position

Let G be a planar graph and let G′ be a subgraph of G. In this section we give a
necessary and sufficient condition on the embedding of G and G′ that guarantees that
G has a point-set embedding on any set of points in convex position with straight-line
subgraph G′. We start by giving some technical lemmas.

Lemma 2. Let G = (V,E) be an embedded simply connected outerplanar graph.
There exists a graph Ga = (Va, Ea) such that: (i) Va = V and E ⊂ Ea; (ii) Ga

is biconnected and outerplanar; (iii) every edge in Ea \ E is on the external face.

Lemma 3. Let S be a set of points in convex position. It is possible to connect any two
points p and q of S with a 1-bend polyline that does not intersect the interior of the
convex hull of S.

Lemma 4. Let G = (V,E) be a planar graph, let S be any set of points in convex
position and let G′ = (V ′, E′) be a biconnected subgraph of G. Let G admit a planar
embedding ψ such that: (i) the embedding of G′ induced by ψ is outerplanar; and (ii)
all vertices of V \V ′ are on the external face of G′ in the embedding ψ. Then G admits
a point-set embedding on S with straight-line subgraph G′.
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Proof. Refer to Fig. 1 for an illustration. Since G′ is biconnected, the boundary of its
external face is a cycle C. Maintaining the embedding ψ we change the external face in
such a way that an edge (u, v) of C is on the external face. Since the embedding of G′

induced by ψ is outerplanar, then no vertex of G′ is inside C; also no vertex of V \V ′ is
inside C. Thus, C contains only blue edges. Let v1 = u, v2 = v, . . . , vh be the vertices
of C according to their circular ordering. Remove all blue edges inside C and replace
them with blue edges of the type (v1, vi) for 3 ≤ i ≤ h − 1. We denote the graph
obtained from this transformation as G and its subgraph consisting of C and of the blue
edges inside it as G′. By Lemma 1, the graph G admits a monotone topological book
embedding γ such that the linear order of the vertices of C in γ is v1, vh, vh−1, . . . , v2
and all the edges of C along with the blue edges inside it are in the bottom page of γ.

Let u1, u2, . . . , un′ be the linear ordering of the (real and division) vertices of G in γ.
We enrich the set S with extra points so that the resulting set S has n′ points in convex
position. Let p1, p2, . . . , pn′ be the points of S according to their clockwise circular
ordering. The points of S \ S are positioned in such a way that pi is an extra point if
and only if ui is a division vertex (1 ≤ i ≤ n′). Vertex ui is mapped to pi (1 ≤ i ≤ n).
All the subedges of G that are in the bottom page of γ will be drawn inside the convex
hull CH(S) of S as straight-line segments between their end-vertices. The subedges
of G that are in the top page of γ are drawn outside CH(S) with one bend. More
precisely, let Et be the set of sub-edges in the top page of γ. We start drawing an edge
e1 ∈ Et such that, when drawn with the technique of Lemma 3, it leaves the points of
S representing the end-vertices of the edges of Et not yet drawn, on the convex hull of
S∪{q}, where q is the bend point of e1. We now can apply the same drawing technique
to the set of subedges Et \ {e1} and to the set of points S ∪ q.

Let Γ be the drawing obtained after replacing the division vertices with bends. We
prove now that Γ is a point-set embedding of G on S with straight-line subgraph G′.
By construction, each vertex of G is mapped to a point of S. Let e1 = (u1, v1) and
e2 = (u2, v2) be two sub-edges of G; we prove that e1 and e2 do not cross. If they
are in different pages in γ then one of them is inside CH(S) and the other one is
outside CH(S) and therefore they do not cross. Suppose they are both in the bottom
page; since they do not cross in γ then the order of their end-vertices in γ is either
u1, v1, u2, v2 or u1, u2, v2, v1. Since the circular ordering of the points representing
u1, v1, u2, v2 is coherent with the linear ordering that these vertices have in γ, then e1
and e2 do not cross. If e1 and e2 are both in the top page, then they are drawn with one
bend. Without loss of generality assume that e1 is drawn before e2. By construction,
the polyline representing e2 does not intersect the interior of the convex hull of S ∪
{qi | qi is the bend point of an edge drawn before e2} and therefore it does not cross
e1. By Lemma 1 all edges of G′ are in the bottom page of γ and therefore they are
drawn straight-line.

We prove now that the drawing Γ obtained from Γ by restoring the original blue
edges inside C is a point-set embedding of G on S with straight-line subgraph G′.
Since C is drawn straight-line and the points are in convex position, then C is drawn as
a convex polygon P . Also, by Lemma 1 the linear order of the vertices v1, v2, . . . , vh

of C in γ is v1, vh, vh−1, . . . , v2; it follows that their circular order on the boundary of
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Fig. 1. (a) A maximal embedded planar graph G; the bold edges highlight a biconnected outer-
planar subgraph G′. (b) The subgraph G′ is transformed into a new subgraph G′ with all chords
incident on vertex 1. (c) A set S of 9 points in convex position. (d) A point-set embedding of G
on S with straight-line subgraph G′; S is a set of points obtained from S by adding two extra
points. (d) A point-set embedding of G on S with straight-line subgraph G′.

P is v1, v2, . . . ,vh, i.e. the same ordering they have in the embedding of ψ. Hence the
original blue edges can be restored without creating any crossing. ��

Theorem 1. Let G = (V,E) be a planar graph, let S be any set of points in convex
position and let G′ = (V ′, E′) be a connected subgraph of G. G admits a point-set
embedding Γ (G,G′, S) on S with straight-line subgraph G′ if and only if G admits a
planar embedding ψ such that: (i) the embedding of G′ induced by ψ is outerplanar;
(ii) all vertices of V \ V ′ are on the external face of G′ in the embedding ψ.

Also, if Γ (G,G′, S) exists, it can be computed so that: If G′ is biconnected, then
every edge not in G′ has at most 2 bends per edge; If G′ is simply connected, then every
edge not in G′ has at most 4 bends per edge.

Proof. Let Γ (G,G′, S) be a point-set embedding of G on S with straight-line subgraph
G′. Consider the drawing Γ ′ of G′ in Γ (G,G′, S). Since the points of S are in convex
position and Γ ′ is a straight-line drawing, all vertices of G′ are on the external face of
Γ ′ and therefore G′ is outerplanar. Also, all points distinct from those representing the
vertices of V ′ are on the external face of Γ ′. It follows that the embedding defined by
Γ (G,G′, S) is the desired embedding ψ.
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Assume now that G does admit an embedding ψ that satisfies the statement; we
prove that G admits a point-set embedding on S with straight-line subgraph G′. If G′

is biconnected, then this is true by Lemma 4. If G′ is not biconnected we apply the
biconnection procedure described in Lemma 2 to make it biconnected. The dummy
edges that are added to make G′ biconnected can cross black and green edges. Every
crossing between a dummy edge and a black/green edge is replaced with a division
vertex that splits both the dummy edge and the black/green edge. Each black edge can
be split at most once. Namely, let e = (u, v) be a black edge and assume that u ∈ V ′

and v ∈ V \ V ′. If a dummy edge e′ crosses e, then u is encountered between the two
end-vertices of e′ when walking clockwise along the external boundary of G′; we say
that e′ covers u. If ewas crossed more than once then there would be at least two dummy
edges that cover u. In this case, however, one of the two dummy edges cannot be on
the external face of G′, which is impossible by Lemma 2. Each green edge e = (u, v)
can be split at most twice. Namely, with an analogous argument as in the case of black
edges, we have that there is at most one edge that covers u and at most one edge that
covers v.

All the dummy (sub-)edges are considered to be blue edges. Let e = (u, v) be a
black edge split by a division vertex d and assume that u ∈ V ′ and v ∈ V \ V ′

sub-edge (u, d) is considered a blue edge, while sub-edge (d, v) is considered a black
edge. Analogously, if e is a green edge split by two division vertices d1 and d2, the
sub-edges (u, d1) and (d2, v) are considered to be blue edges, while sub-edge (d1, d2)
is considered to be a green edge. The graph obtained after this transformation will be
denoted as Ĝ. This graph has as a subgraph the graph Ĝ′ that consists of G′ plus the
blue edges added as dummy edges or obtained by splitting a black/green edge of G. Ĝ′

is outerplanar and biconnected and by Lemma 2 Ĝ admits a point-set embedding on a
suitably augmented set of points Ŝ with straight-line subgraph Ĝ′. Since no edge of G′

is split with a division vertex, removing dummy edges and replacing division vertices
with bends we obtain a point-set embedding of G on S with straight-line subgraph G′.

We count now the number of bends along red, black, and green edges. If G′ is bicon-
nected, then each red, black, or green edge e is split by at most one division vertex in
the monotone book embedding γ. The two sub-edges obtained from e are in different
pages and thus one of them is drawn straight-line and the other one is drawn with one
bend. Since the division vertex that splits e is replaced at the end by an additional bend,
then the number of bends along e is two.

Suppose now that G′ is not biconnected and let e be a black edge. Edge e can be
split into a blue sub-edge e1 and a black sub-edge e2 during the biconnection proce-
dure. The drawing of the transformed graph Ĝ is computed like in the case when G′

is biconnected, and therefore e1 has no bends while e2 has at most two bends. Since
the division vertex that splits e into e1 and e2 is replaced by an additional bend, the
total number of bends along e is at most three. Let e′ be a green edge; edge e can be
split into a blue sub-edge e1, a green sub-edge e2, and a blue sub-edge e3 during the
biconnection procedure. The drawing of the transformed graph Ĝ is computed like in
the case when G′ is biconnected, and therefore e1 and e3 have no bends while e2 has at
most two bends. Since the division vertices that split e into e1, e2, and e3 are replaced
by two additional bends, the total number of bends along e is at most four. ��



Constrained Point-Set Embeddability of Planar Graphs 367

4 Points in General Position

In this section we consider points in general position and consider planar graphs whose
subgraph is either a cycle or a path or a set of disjoint paths. Before giving the main
results of this section we need to give some additional definitions and to prove a pair of
lemmas that will be used subsequently.

Let Γ be a drawing of a graph G and let v be a vertex of G; we say that v is visible
from below in Γ if Γ does not intersect the open vertical halfline below v. Analogously,
v is visible from above in Γ if Γ does not intersect the open vertical halfline above v.
Throughout this section we assume that the points of S have distinct x-coordinate; if
this is not the case we can achieve this condition by a suitable rotation of the plane.

Lemma 5. Let C be a cycle and let S be a set of points in general position. C admits a
geometric point-set embedding Γ on S such that each vertex of C is visible in Γ either
from above or from below.

Proof. Let CH(S) be the convex hull of S and let pl and pr be the leftmost and the
rightmost point of CH(S), respectively. In CH(S) there are two paths from pl to pr:
the first one, that we call upper hull, has no point of S above, the other one, that we call
lower hull, has no point of S below. Let pl = p1, p2, . . . , ph = pr be the points in the
lower hull ordered from left to right. Let q1, q2, . . . , qk be the remaining points ordered
from right to left.

Let v1, v2, . . . , vn be the vertices of C ordered clockwise. Notice that n = h + k.
Vertex vi, for 1 ≤ i ≤ h, is mapped to point pi; vertex vh+i, for 1 ≤ i ≤ k, is mapped
to point qi. Cycle C can be divided into two paths with end-vertices in common: π1 =
v1, v2, . . . , vk and π2 = vk, vk+1, vk+2, . . . , vk+m, v1. Both π1 and π2 are represented
by a x-monotone polyline and therefore neither the drawing of π1 nor the drawing of
π2 has a crossing. On the other hand, all points of π2 are above those of π1 except for
the end-vertices that are in common. Hence there is no crossing between edges of π1
and edges of π2. Due to the monotonicity of π1 and π2, the vertices of π1 are visible
from below, and those of π2 are visible from above. ��

Lemma 6. Let G = (V,E) be an embedded planar graph and let S be a set of points
in general position. If G contains a cycle C = v1, v2, . . . , vh whose interior is triangu-
lated with edges (v1, vi) for 3 ≤ i ≤ h−1, then there exists a point-set embedding of G
on S such that: (i) each edge has at most two bends; and (ii) after removing the edges
of C and the edges (v1, vi) (3 ≤ i ≤ h− 1) all vertices of C are visible from below.

Proof. Let γ be a monotone topological book embedding of G computed according to
Lemma 1. Let w1, w2, . . . , wn′ be the real and division vertices of G in the order they
appear along the spine of γ. We enrich the set S with extra points so that the resulting
set S′ has n′ points and, denoted as p1, p2, . . . , pn′ the points of S′ according to their
order along the x-direction, pi is an extra point if and only if wi is a division vertex
(1 ≤ i ≤ n′).

We compute a point-set embedding of G on S′ with the following technique intro-
duced by Kaufmann and Wiese [14]. Vertex wi is mapped to point pi (1 ≤ i ≤ n′);
the edges between vertices that are consecutive along the spine of γ (and therefore
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drawn on consecutive points of S′) are drawn straight-line. Let σ be a value greater
than the maximum slope of a segment pipi+1 (1 ≤ i ≤ n′ − 1); the remaining edges
are drawn as polylines with two segments (and hence one bend) with slope σ and −σ.
Using segments with slope σ and −σ it is possible to draw an edge either above or
below the polyline π = p1p2, p2p3, . . . , pn′−1pn′ . If a sub-edge e is in the top page of
γ, then it is drawn above π; if e is in the bottom page of γ, then it is drawn below π.
The resulting drawing is planar except that 1-bend edges that are incident on the same
vertex may contain overlapping segments. To eliminate these overlaps, we perturb the
overlapping edges by decreasing the absolute value of their segment slopes by slightly
different amounts. The slope changes are chosen to be small enough to avoid creating
edge crossings while preserving the planar embedding. See [14] for details.

Via this technique, each sub-edge of G has at most one bend. Since γ is a monotone
topological book embedding, each edge of G is split into at most two sub-edges. Let
e = (u, v) be an edge of G subdivided into two sub-edges e1 and e2 by a division
vertex d(u, v). One of the two sub-edges is in the top page in γ and the other one is in
the bottom page in γ. Thus, the point p representing d(u, v) has two segments incident
on it: one from above and the other one from below; also, these two segments have the
same slope. Since these two segments are the only two incident on d(u, v) no rotation
is performed to remove overlaps and therefore, when d(u, v) is removed, no extra bend
is created at p. It follows that each edge of G has at most two bends.

By Lemma 1, all edges of C and all edges inside C are in the bottom page. Since
point-set embedding of G on S preserves the embedding of G, then there is no vertex
or edge inside the drawing of C. Thus, if all edges of C and all edges inside C are
removed, the vertices of C are visible from below. ��

Theorem 2. Let G be an embedded planar graph, let S be any set of points in general
position and let C be the boundary of a simple face of G. G admits a point-set embed-
ding on S with straight-line subgraph C such that every edge not in C has at most 8
bends per edge.

Proof. We describe how to compute a point-set embedding of G on S with straight-line
C. Maintaining the embedding of G we change the external face so that some edge
e = (u, v) of C is on the external face. Let v1 = u, v2 = v, . . . , vh be the vertices of C
according to their circular ordering. We add blue edges (v1, vi) (3 ≤ i < h) inside C.

Let S′ ⊆ S be the set containing the first h points along the x-direction. A point-
set embedding Γ ′ of C on S′ is computed as described in the proof of Lemma 5. The
drawing Γ ′ is computed so that the circular clockwise order of the vertices is preserved
and vertex v1 is placed at the leftmost point of S.

Let γ be a monotone topological book embedding of G computed according to
Lemma 1. Let w1, w2, . . . , wn′′ be the real and division vertices of G in the order they
appear along the spine of γ. We enrich the set S \ S′ with extra points so that the re-
sulting set S′′ has n′′ points and, denoted as p1, p2, . . . , pn′′ the points of S′′ according
to their order along the x-direction, pi is an extra point if and only if wi is a division
vertex or a vertex of C (1 ≤ i ≤ n′′). We compute a point-set embedding of G on
S′′ according to Lemma 6. After this point-set embedding is computed we remove the
edges of C and the blue edges inside C. Denote as Γ ′′ the resulting drawing.



Constrained Point-Set Embeddability of Planar Graphs 369

′

p′′

q′′i

′′



B′ B′′

p′

q′l
q′′j

q′′k

q′′l

q′i

q′j

q′k

Fig. 2. An illustration for the proof of Theorem 2

Let vi (1 ≤ i ≤ h) be a vertex of C. Let p′i be the point representing vi in Γ ′, and
let p′′i be the point representing vi in Γ ′′. Notice that p′i is a point of S, while p′′i is not
a point of S; therefore vi will be represented by p′i in the final drawing. All black/green
edges incident to vi are incident on point p′′i . We add a polyline from p′i to p′′i , in order
to make these edges incident to p′i.

Let B′ be the bounding box of Γ ′ and let B′′ be the bounding box of Γ ′′. Let p′ be
the top-right corner of B′ and let p′′ be the bottom-left corner of B′′. Refer to Fig. 2 for
an illustration. Let  be the straight line through p′ and p′′. Let ′ be a half-line that is
completely above  and intersects all vertical lines that intersect B′; let ′′ be a half-line
that is completely below  and intersects all vertical lines that intersect B′′. Finally, let
H be a horizontal line below B′.

Let q′i be the projection of point p′i either on line ′, if p′i is visible from above, or on
line H , if p′i is visible from below. Notice that the leftmost and rightmost points of Γ ′

are visible both from above and from below. We project these two vertices on ′. Let q′′i
be the projection of p′′i on ′′. The polyline connecting p′i to p′′i is πi = p′iq

′
i, q

′
iq

′′
i , q

′′
i p

′′
i .

Notice that, if there are k > 1 black/green edges incident to a vertex vi, then all
these edges are represented with a portion in common: the polyline πi. It is possible
to separate these edges by replacing each of the three points q′i, q

′′
i , p′i with a set of k

points coherently ordered.
Since both Γ ′ and Γ ′′ are planar, planarity can be proved by showing that the poly-

lines πi (1 ≤ i ≤ h) cross neither Γ ′ nor Γ ′′ and do not cross each other.
Consider a polyline πi (1 ≤ i ≤ h) and assume first that q′i is above B′. Segment

p′iq
′
i does not cross Γ ′ because p′i is visible from above and it does not cross Γ ′′ because

it is completely to the left of B′′. Segment q′′i p
′′
i does not cross Γ ′′ because p′′i is visible

from below and does not cross Γ ′ because it is completely to the right of B′. Since
point q′i is above  and point q′′i is below , segment q′iq

′′
i crosses  between p′ and p′′

and therefore it crosses neither Γ ′ nor Γ ′′. Suppose now that q′i is below B′. In this case
segment p′iq

′
i does not cross Γ ′ because p′i is visible from below and it does not cross
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Γ ′′ because it is completely to the left of B′′. Segment q′′i p
′′
i does not cross Γ ′′ because

p′′i is visible from below and does not cross Γ ′ because it is completely to the right of
B′. Point q′i is below B′ by construction; point q′′i is below  and therefore below B′′.
It follows that segment q′iq

′′
i crosses neither Γ ′ nor Γ ′′.

Consider now two polylines πi and πj (1 ≤ i, j ≤ h). Assume first that q′i and q′j
are both above B′. Since the drawing Γ ′ preserves the clockwise circular order of C
and since v1 is represented by the leftmost point of Γ ′, the order of the projections on
′ is q′1, q

′
h, q

′
h−1, . . . , q

′
h−k (k ≥ 1). This means that the order of q′i and q′j on ′ is

the same as the order of q′′i and q′′j on ′′ and therefore πi and πj do not cross each
other. Suppose now that q′i and q′j are both below B′. Since the drawing Γ ′ preserves
the clockwise circular order of C and since v1 is represented by the leftmost point of
Γ ′, the order of the projections on H is q′2, q

′
3, . . . , q

′
h−k−1 (k ≥ 1). This means that

the order of q′i and q′j on H is opposite to the order of q′′i and q′′j on ′′ and therefore πi

and πj do not cross each other. Finally, suppose that q′i is above B′ and q′j is below B′.
In this case q′′j is below and to the right of q′′i , and therefore a crossing is not possible.

We count now the number of bends per edge. Clearly the blue edges are drawn with
zero bends in Γ ′. The red edges are drawn with two bends in Γ ′′. Consider a black
edge e. Edge e is first drawn with two bends in Γ ′′ with one end-vertex at a point p′′i
(1 ≤ i ≤ h); the drawing of this edge is then modified with the addition of the polyline
πi. Since polyline πi has two bends and an extra bend can exist at point p′′i , then the
total number of bends on e is at most 5. Let e′ be a green edge. The two end-vertices of
e′ are vertices of C but e′ is not an edge of C. Thus edge e′ is first drawn with two bends
in Γ ′′ with one end-vertex at a point p′′i and the other one at a point p′′j (1 ≤ i, j ≤ h);
the drawing of this edge is then modified with the addition of the two polylines πi and
πj . Each of these polylines has 2 bends and two extra bends can exist at p′′i and p′′j . It
follows that e′ has at most 8 bends per edge. ��

With techniques similar to that of Theorem 2 the following theorems can be proved.

Theorem 3. Let G be an embedded planar graph, let S be any set of points in general
position and let P be a subgraph of G that is a simple path. G admits a point-set
embedding on S with straight-line subgraph P such that every edge not in C has at
most 8 bends per edge.

Theorem 4. Let G be an embedded planar graph, let S be any set of points in general
position and let P1, P2, . . . , Pk be a set of disjoint subgraphs of G each being a simple
path. G admits a point-set embedding on S with straight-line subgraph

⋃k
i=1 Pi such

that every edge not in
⋃k

i=1 Pi has O(2k) bends per edge.

5 Open Problems

1. Theorem 1 shows that for every set of points in convex position and for every out-
erplanar subgraph a point-set embedding can be computed such that the subgraph has
straight-line edges and the remaining edges of the graph have at most four bends each.
How hard is it to compute a point-set embedding with the minimum number of bends
in total?
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2. Extend Theorems 2 and 3 by considering the case that G′ is either a tree or a general
outerplanar graph. Note that the outerplanar graphs are the largest family of graphs that
admit a straight-line point-set embedding without mapping on any set of points [9].

3. We have studied constrained point-set embeddability on any given set of points.
Given a planar graph G with n vertices, a non outerplanar subgraph G′ of G, and a
set S of n distinct points in convex position, how hard is it to test whether G admits
a point-set embedding on S such that G′ is drawn with straight-line edges and the re-
maining edges have constant curve complexity?
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Abstract. We consider straight-line drawings of trees on a hexagonal
grid. The hexagonal grid is an extension of the common grid with inner
nodes of degree six. We restrict the number of directions used for the
edges from each node to its children from one to five, and to five patterns:
straight, Y , ψ, X, and full. The ψ–drawings generalize hv- or strictly
upward drawings to ternary trees.

We show that complete ternary trees have a ψ–drawing on a square of
size O(n1.262) and general ternary trees can be drawn within O(n1.631)
area. Both bounds are optimal. Sub–quadratic bounds are also obtained
for X–pattern drawings of complete tetra trees, and for full–pattern
drawings of complete penta trees, which are 4–ary and 5–ary trees. These
results parallel and complement the ones of Frati [8] for straight–line or-
thogonal drawings of ternary trees.

Moreover, we provide an algorithm for compacted straight–line draw-
ings of penta trees on the hexagonal grid, such that the direction of the
edges from a node to its children is given by our patterns and these edges
have the same length. However, drawing trees on a hexagonal grid within
a prescribed area or with unit length edges is NP–hard.

1 Introduction

Drawing trees is one of the best studied areas in graph drawing. It has been
initiated forty years ago by D. E. Knuth, who posed the question “How shall we
draw a tree?” [12]. He proposed the hierarchical style, drawing binary trees level
by level and left–to–right, and used a typewriter as a drawing tool. This idea
has become the most common tree drawing technique, and has been turned into
practice by the Reingold–Tilford algorithm [13] and its generalizations [16, 2].

Another approach are radial drawings, introduced by Eades [7]. Here trees
are displayed in a centralized view with the root in the center and the nodes
at depth d on the d–th ring. This approach is used for tree drawings in social
sciences.

The third major approach was motivated by VLSI design and the theory of
graph embeddings. Orthogonal drawings are obtained using the common grid as
a host. The most important cost measure for such drawings is the area of the
smallest surrounding rectangle.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 372–383, 2009.
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Orthogonal drawings are restricted to graphs of degree at most four. This suffices
for binary and ternary trees, which can be drawn on O(n) area, if bends of the
edges are permitted [5,15]. However, the drawings obtained by these algorithms
are not really pleasing. Even complete binary trees are deterred, as illustrations
in these papers display. The typical tree structure is not visible, since the algo-
rithms wind edges and recursively fold subtrees. This poor behavior also holds
for other tree drawing algorithms achieving good area bounds [3, 9, 10, 14].

The readability improves with the restriction to upward and hv–drawings,
which use only three resp. two out of four directions. Now the hierarchical struc-
ture of the tree is preserved, and in case of hv–drawings the parent is in the
upper left corner above its subtrees (with the Y–axis directed downwards).

For binary trees in general there is one degree of freedom on the orthogonal
grid. Only three directions at a grid point are used in the drawing. This suffices
for compact tree drawings on an almost linear area. In particular, complete
binary trees can be drawn straight–line on a square of size less than 2n in the
H–layout and on O(n) area in the hv–layout. Moreover, O(n logn) is the upper
and lower bound for the area of straight–line orthogonal upward drawings of
arbitrary binary trees [3].

Ternary trees need all four directions on the orthogonal grid. For straight–line
drawings this enforces more area and even fails when restricted to upward draw-
ings [8]. Frati’s upper bounds are O(nlog32)2 = O(n1.262) for complete ternary
trees and O(n1.631) for arbitrary ternary trees. There are no non–trivial lower
bounds for these types of tree drawings, yet.

The paper is organized as follows: In Sect. 2 we introduce hexagonal grid draw-
ings and review previous work on straight–line orthogonal drawings of binary and
ternary trees. In Sect. 3 we provide upper and lower bounds of ψ–drawings of
ternary trees, and establish sub–quadratic upper bounds of X–pattern drawings
of complete tetra trees and full–pattern drawings of complete penta trees. In
Sect. 4 we introduce an algorithm for straight–line drawings of penta trees with
patterns for the directions of the edges from the nodes to their children, and
in Sect. 5 we establish NP–hardness results on minimal area and minimal edge
length drawings.

2 Preliminaries

We consider straight–line drawings on the hexagonal grid which consists of equi-
lateral triangles as defined, e. g., in [11]. It defines three directions, called grid
lines. The X–axis is directed to the east, the Y–axis has an angle of 2π/3 and
the diagonal one of π/3 clockwise against the X–axis. They are directed to the
south–west, and to the south–east, respectively, see Fig. 1(a). The hexagonal
grid can be sheared by a counter–clockwise rotation of the diagonal axis by
π/12 and of the Y–axis by π/6 creating the sheared grid. Then, the Y–axis is as
usual and directs downward, see Fig. 1(b). We switch between these representa-
tions whenever it is appropriate. The latter representation shows that hexagonal
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drawings are an extension of orthogonal drawings, where the orthogonal grid is
underlying. A grid point v is defined by its x– and y–coordinate (vx, vy).

We define the distance between two points a and b lying on the same grid line
or on the same bisecting line between two grid lines as d(a, b) = max(|ax − bx| ,
|ay − by| , |(ax − ay)− (bx − by)|). The distance dD(a, L) of a point a to a seg-
ment of a bisecting line or a grid line L with respect to a direction D (along a
grid line or a bisecting line), is defined by the distance of a to the intersection
point c of L and the parallel of D through a. The distance is set to ∞, if this
direction line does not intersect L. Note that in the sheared grid the bisecting
lines are not really bisecting the angle between the grid lines.

See Fig. 1 for an example of distances: d(u,w) = 4, d(u, v) = 2, d(v, w) = 4,
d(v,c)(v, (u,w)) = 2 and d(v,w)(v, (u,w)) = 4.
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(b) Sheared grid

Fig. 1. The two grid versions

Let T = (V,E) be a rooted tree. Tetra and penta trees are trees with outdegree
at most 4 or 5, respectively. The height h(T ) of a rooted tree T is the maximum
length (number of edges) of a path from the root to a leaf. Let T be a penta
tree. A straight–line drawing Γ (T ) of T on the hexagonal grid is an embedding
of the nodes of T to grid points. The edges are mapped to segments on the
grid lines s. t. the embedding is planar. The area of a tree drawing Γ (T ) on the
sheared grid is the size of the smallest surrounding rectangle. Let widthΓ (T ) and
heightΓ (T ) denote the width and the height of this rectangle, whose quotient is
the aspect ratio. The rectangle corresponds to an enclosing parallelogram in the
hexagonal grid. We call a drawing Γ (T ) globally uniform, if all outgoing edges of
nodes at the same depth have the same length. It is locally uniform, if outgoing
edges for each node have the same length.

We first consider globally uniform ψ–drawings of ternary trees. In ψ–drawings
three directions are used: to the east, south–east and south. ψ–drawings are ex-
tensions of hv–drawings of binary trees [4]. They correspond to upward drawings
with three possible directions and are used only for binary and ternary trees.

We introduce another drawing style, pattern drawings. In pattern drawings
the edge directions of the outgoing edges of each node v ∈ V have a fixed angle
to the direction of the incoming edge, see Fig. 2(a) – (e).
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(a) straight (b) Y (c) ψ (d) X (e) full

Fig. 2. The five patterns of the drawings

Our investigations on hexagonal grid drawings are motivated by the fact, that
they allow nice drawings of up to 5–ary trees. In particular, for ternary trees
they provide a canonical generalization of upward and hv–drawings, which gives
pleasing pictures. The pattern drawings can be seen as a step towards a dis-
cretization of radial drawings with a bounded number of slopes [6]. Let us first
recall the state–of–the–art on straight–line orthogonal drawings of binary (see
Tab. 1) and ternary trees (see Tab. 2).

Table 1. Area bounds for binary trees

Drawing Style Complete Trees Arbitrary Trees Source

hv or strictly upward Θ(n) Θ(n log n) [4]
T or upward Θ(n) Θ(n log n) [3, 4]
H, all four directions Θ(n) O(n log log n) [3, 14]

Straight–line orthogonal drawings of ternary trees were recently investigated
by Frati [8]. Here the picture changes. We loose one degree of freedom, which
increases the area and may even lead to non–drawability. Moreover, there are no
non–trivial lower bounds, yet.

Table 2. Area bounds for ternary trees

Drawing Style Complete Trees Arbitrary Trees Source

hv or strictly upward non–drawable non–drawable trivial
T or upward non–drawable non–drawable trivial
H, all four directions O(n1.262) O(n1.631) [8]

ψ (on hexagonal grid) Θ(n1.262) Θ(n1.631) Th. 1, Th. 2
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3 Hexagonal Tree Drawings

In the following we consider upper and lower bounds with respect to the required
area in ψ–drawings of complete and arbitrary ternary trees.

Theorem 1. There is a linear time algorithm to draw a complete ternary tree
with n nodes by a globally uniform ψ–drawing on the hexagonal grid in O(n1.262)
area and with aspect ratio 1.

Proof. We construct the drawing recursively, such that the root is in the upper
left corner. Let the three subtrees of height h each be drawn inside a square with
width and height S(h). We move the three subtrees 1 + S(h) units away from
the root following the X– and Y–axis and the diagonal creating a drawing of the
tree with width and height S(h + 1) = 2S(h) + 1. This leads to S(h) = 2h − 1
and to globally uniform edge lengths. Since h = log3 n we obtain for a complete
n–node ternary tree a drawing with width and height each in O(n0.631) and an
area of O(n1.262). ��

Theorem 2. There is a linear time algorithm to draw an unordered arbitrary
ternary tree with n nodes by a ψ–drawing on the hexagonal grid in O(n1.631)
area.

Proof. Minimize the width and let the height be arbitrary, i. e., the height is
O(n). Let T1, T2, and T3 be the subtrees of T with root r, with width(T1) ≤
width(T2) ≤ width(T3). Recursively construct the drawing with the root in
the upper left corner. Relative to r place T1 one unit diagonally under r, at-
tach T2 horizontally to the right at distance 2 + width(T1), and attach T3 by
a vertical line underneath, see Fig. 3. Then width(T ) = max{2 + width(T1) +
width(T2), width(T3)}, which results in width(T ) = O(nlog3 2) = O(n0.631). This
is shown by calculations as in the proof of Theorem 5 in [8]. ��

See Fig. 4 for an example of a ψ–drawing of a complete ternary tree. We now
turn to lower bounds between n logn and n2. These are the lower bounds for
the area of unordered and ordered hv–drawings of binary trees [4].

r

T
1

T
2

T
3

Fig. 3. Sketch for Theorem 2 Fig. 4. Complete ψ–drawing
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Lemma 1. Any ψ–drawing of a complete ternary tree with n nodes has a width
(and a height) of Ω(n0.631).

Proof. Consider ψ–drawings on the sheared grid. Let Γ (T ) be a ψ–drawing of
a complete ternary tree of height h. We claim that the extreme grid points at
(0, 2h− 1) and (2h− 1, 0) are occupied by the drawing. There is a node at these
grid points or they are passed by some edge. The proof is by induction on the
height h. The claim is clearly true for h = 1.

Assume for contradiction that there exists a minimal h, s. t. a complete subtree
of height h does not occupy the grid points as described above. Let r be the
root of a tree with height h placed at (0, 0) and let T1, T2, and T3 be the
subtrees of r. By induction, every ψ–drawing of a tree with height h−1 occupies
points (2h−1 − 1, 0) and (0, 2h−1 − 1) relative to its root.

There is a vertical line from r to T3, a diagonal line from r to T1, and a
horizontal line from r to T2. If T3 does not occupy (0, 2h − 1), then it must
occupy the diagonal at a point (p, p) with p ≤ 2h−1 − 1 and there is no space
left for T1. With a symmetric argument T2 occupies (2h − 1, 0). ��

From Theorem 1 and Lemma 1 we directly obtain.

Theorem 3. The upper and lower bound for the area of ψ–drawings of complete
ternary trees with n nodes in the sheared grid is Θ(n1.262).

Theorem 4. The upper and lower bound for the area of ψ–drawings of un-
ordered arbitrary ternary trees with n nodes is Θ(n1.631).

Proof. The upper bound follows directly from Theorem 2. For the lower bound
consider a ternary tree consisting of a path of length n/2 followed by a complete
ternary subtree of size n/2. Then, the path needs Ω(n) in at least one dimension,
and the complete subtree needs Ω(n0.631) in any dimension. ��

These results parallel the ones for hv–drawings of binary trees on the orthogonal
grid, where the bounds are Θ(n) for complete and Θ(n log n) for arbitrary binary
trees.

ψ–drawings use less area than radial tree drawings, where the nodes are placed
on concentric rings around the center. Suppose that two nodes must have at least
unit distance. Consider the binary case; the general case is similar. Then, the
outermost ring containing the leaves must have a circumference of at least n/2
for complete trees and, thus, the area is Ω(n2).

We now turn to complete penta and tetra trees, and their pattern drawings
on the hexagonal grid with five and four directions towards the children. We
call the pattern drawings of complete penta trees full–pattern drawings and of
complete tetra trees X–pattern drawings.

Theorem 5. There is a linear time algorithm to draw a complete penta tree
with n nodes by a globally uniform full–pattern drawing on the hexagonal grid in
O(n1.37) area and with aspect ratio 1.
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(a) Complete penta tree (b) Complete penta tree
on the sheared grid

(c) Complete
tetra tree

Fig. 5. Drawings of complete trees

Proof. Construct the drawings recursively. By an expansion by the factor three
in each dimension one can draw a new tree of height h+1 in a planar way. This
can easily be seen in the sheared grid, see Fig. 5(b). Thus, the area is in O(9h),
where h is the height of the tree. All edges of the same depth have the same
length. Since h = log5 n, the area is O(nlog5 9), which is O(n1.37). ��

For an example see Fig. 5(a). In the same way we draw complete tetra trees,
which need O(nlog4 9) area, see Fig. 5(c).

Theorem 6. There is a linear time algorithm to draw a complete tetra tree
with n nodes by a globally uniform X–pattern drawing on the hexagonal grid in
O(n1.58) area and with aspect ratio 1.

4 Pattern Drawings of Penta Trees

In this section we introduce an algorithm for compacted pattern drawings of
ordered penta trees on the hexagonal grid, e.g., see Fig. 7.

Once the directions of the outgoing edges of the root are fixed, the directions of
all edges of the tree are predetermined. Thus, all edge directions can be computed
in linear time by a top–down traversal of the tree. The only free and computable
parameter is the length of the edges. We produce locally uniform drawings, i.e.,
the edge length is the same for all outgoing edges of a node. The goal is to keep
it small which is achieved by a compaction method.

Our algorithm has some similarities with the Reingold–Tilford algorithm [13].
However, it uses simpler contours, which are convex hexagons, and it attempts
to minimize the edge length and not the width of the drawing.
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Definition 1. The convex contour of a subtree T is defined by six coordinates:
minx,miny, and minx−y are the smallest coordinates of the nodes of the subtree
in x, y, and (x−y) directions, respectively. The values maxx,maxy, and maxx−y

are defined analogously.

The six corner points and the six segments of each contour can be computed in
linear time obviously. The trivial convex contour of a leaf v consists of the values
minx = maxx = vx, miny = maxy = vy, and minx−y = maxx−y = vx − vy.
In this case, the values of the contour match the absolute position of the leaf in
the current drawing of the tree. We construct the contour Cr of an inner node
r by merging the contours C1, . . . , Cl of its children s1, . . . , sl. We set the value
minx(Cr) = min {rx,minx(C1), . . . ,minx(Cl)}. The remaining five values are
computed analogously. As an example see the contour C1 of the drawing of the
subtree rooted at r1 in Fig. 6.
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Fig. 6. Before and after trimming the outgoing edges of r

Definition 2. Let C be a contour and let x be a point, a segment, or a contour.
Let D be a direction. We define dD(x,C) as the length of the shortest segment
parallel to D such that one end point lies on x and the other on C. We set
dD(x,C) =∞, if such a segment does not exist.

Note that all these distances can be computed in O(1) time using the distance
between a point and a segment only, as each contour has at most six segments.

Algorithm 1 first produces a drawing of a penta tree T with sufficiently
long edges s. t. the drawing is planar. Therefore, drawTreeOnHexagonalGrid
is called, which uses the value edgeLengthToChildren for each node. These edge
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lengths suffice to get a planar pattern drawing of a penta tree, see Theorem 5.
Then, it computes the compacted edge lengths which are used for the final
drawing. As an example see Fig. 7.

To compact the subtree of a node r (see Algorithm 2), we create the trivial
contour C of the node r (line 1), call the algorithm recursively for its children to
compute their contours (lines 3 to 5), compute the trim of all outgoing edges of r
(lines 6 to 19), move only the contours of the children (for efficiency reasons not
the complete subtrees) towards r, and merge them with C (lines 20 to 22). The
edge trim is the value the outgoing edges of r can be shortened. It is computed
satisfying the following conditions:

1. For each pair of children ri and rj of r, the contour Ci of ri does not cross
the edge (r, rj) (line 8).

2. For each pair of children ri and rj of r, the contours of ri and rj do not
cross. Here we distinguish two cases: The angle α between the edges to ri

and rj is π
3 (line 11) or the remaining cases α ∈

{2π
3 , π

}
(line 13). Note that

moving two contours with α = π
3 one unit towards their parent reduces their

distance by one, whereas moving two contours with α ∈
{ 2π

3 , π
}

one unit
towards their parent reduces their distance by two.

3. For each child ri of r, the contour Ci of ri does not cross the edge of r to its
parent (line 16) or does not cross r (if there is no parent) (line 19).

As an example see Fig. 6, where we assume that the non visible children of r
do not influence the calculations. The following distances are used:

1. d(r,r1)((r, r2), C1) = 6, d(r,r2)((r, r1), C2) = 9
2. d(r1,r2)(C1, C2) = 5 (α = π

3 )
3. d(r,r1)((r, r.parent), C1) = 5, d(r,r2)((r, r.parent), C2) = 9

Therefore, the edge trim of r is 4. For the result see the top right box of Fig. 6.

Theorem 7. Let T be an arbitrary penta tree with n nodes and root r. Algo-
rithm 1 (drawTreeCompactedOnHexagonalGrid) has time complexity O(n).

Proof. The time complexity of each line in Algorithm 1 isO(n), as the calculation
of the initial edge lengths is done in O(n), and drawTreeOnHexagonalGrid(T )
and computeCompactedEdgeLength(r) each have linear time complexity. For
the latter one, the distance between a point and a segment is computed in O(1).
As each node has at most five children and each convex contour consists of at
most six segments, the edge trim is computed in O(1). Moving a contour is in
O(1) as well. Thus, the time complexity for one node is O(1) and O(n) for the
tree T . ��

5 NP–Completeness Results

Finally we establish some NP–hardness results for the area and the edge length
of drawings on the hexagonal grid. In contrast to the previous section the trees
are unordered, i.e., the children of a node can be permuted. In the drawing this
is a rotation or a flip.
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Algorithm 1. drawTreeCompactedOnHexagonalGrid
Input: An ordered penta tree T = (V, E) with root r and height h
Output: A compacted drawing Γ (T ) of T

foreach v ∈ V do v.edgeLengthToChildren ← 3h−depth(v)−11
drawTreeOnHexagonalGrid(T )2
computeCompactedEdgeLength(r)3
drawTreeOnHexagonalGrid(T )4

Algorithm 2. computeCompactedEdgeLength
Input: A node r of an ordered penta tree
Output: edgeLengthToChildren of each node in the subtree of r

Contour C ← Contour(r)1
Set C ← ∅2
foreach child ri of r do3

Ci ← computeCompactedEdgeLength(ri)4
C = C ∪ {Ci}5

edgeTrim ← ∞6
foreach Ci, Cj(i �= j) ∈ C do7

edgeTrim ← min
(
edgeTrim,d(r,ri)((r, rj), Ci) − 1

)
8

α ← angle between (r, ri) and (r, rj)9
if α = π

3 then10
edgeTrim ← min

(
edgeTrim,d(ri,rj)(Ci, Cj) − 1

)
11

else12

edgeTrim ← min
(

edgeTrim,

⌊
d(ri,rj)(Ci,Cj)−1

2

⌋)

13

if r.parent �= nil then14
foreach Ci ∈ C do15

edgeTrim ← min
(
edgeTrim,d(r,ri)((r, r.parent), Ci) − 1

)
16

else17
foreach Ci ∈ C do18

edgeTrim ← min
(
edgeTrim,d(r,ri)(r,Ci) − 1

)
19

foreach Cs ∈ C do20
move(Cs, edgeTrim)21
C.merge(Cs)22

r.edgeLengthToChildren ← r.edgeLengthToChildren − edgeTrim23
return C24

Theorem 8. Let T = (V,E) be an unordered penta tree. The following problems
are NP–hard:

– Given an integer K, does T have a straight–line drawing on the hexagonal
grid with an area at most K?

– Does T have a straight–line drawing on the hexagonal grid with unit length
edges?
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Fig. 7. Compacted drawing of a penta tree

Proof. (Sketch). We follow the Bhatt–Cosmadakis technique [1] and reduce from
the NOT–ALL–EQUAL–3SAT problem. Suppose we draw on the sheared grid
with the two axis and the diagonal. Then, the construction is made s. t. the
diagonal cannot be used by the drawing, if the area bound or the unit length
edges are preserved. ��

Corollary 1. It is NP–hard to draw unordered penta trees on a hexagonal grid
within minimal area or with minimal edge length.

6 Summary and Open Problems

In this paper we have shown upper and lower bounds for ψ–drawings of ternary
trees and upper bounds for tetra and penta trees on the hexagonal grid. We
have introduced a compaction algorithm for penta trees, which produces pleasing
drawings in linear time. Finally, we have shown the NP–hardness of drawing
unordered penta trees with minimal area or minimal edge length.
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As open problems remain finding a tree drawing algorithm, which adopts as
much as possible from the Reingold–Tilford algorithm, establishing upper and
lower bounds for the area of X–pattern and full–pattern drawings of ternary
trees and considering the extension to the octagrid, which is the orthogonal grid
with both diagonals.
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Abstract. We test in polynomial time whether a graph embeds in a distance-
preserving way into the hexagonal tiling, the three-dimensional diamond struc-
ture, or analogous higher-dimensional structures.

1 Introduction

Subgraphs of square or hexagonal tilings of the plane form nearly ideal graph draw-
ings: their angular resolution is bounded, vertices have uniform spacing, all edges have
unit length, and the area is at most quadratic in the number of vertices. For induced sub-
graphs of these tilings, one can additionally determine the graph from its vertex set: two
vertices are adjacent whenever they are mutual nearest neighbors. Unfortunately, these
drawings are hard to find: it is NP-complete to test whether a graph is a subgraph of a
square tiling [2], a planar nearest-neighbor graph, or a planar unit distance graph [5],
and Eades and Whitesides’ logic engine technique can also be used to show the NP-
completeness of determining whether a given graph is a subgraph of the hexagonal
tiling or an induced subgraph of the square or hexagonal tilings.

With stronger constraints on subgraphs of tilings, however, they are easier to con-
struct: one can test efficiently whether a graph embeds isometrically onto the square
tiling, or onto an integer grid of fixed or variable dimension [7]. In an isometric em-
bedding, the unweighted distance between any two vertices in the graph equals the L1

distance of their placements in the grid. An isometric embedding must be an induced
subgraph, but not all induced subgraphs are isometric. Isometric square grid embed-
dings may be directly used as graph drawings, while planar projections of higher di-
mensional embeddings can be used to draw any partial cube [6], a class of graphs with
many applications [11].

Can we find similar embedding algorithms for other tilings or patterns of vertex
placements in the plane and space? In this paper, we describe a class of d-dimensional
patterns, the generalized diamond structures, which include the hexagonal tiling and the
three-dimensional molecular structure of the diamond crystal. As we show, we can rec-
ognize in polynomial time the graphs that have isometric embeddings onto generalized
diamonds of fixed or variable dimension.

2 Hexagons and Diamonds from Slices of Lattices

The three-dimensional points {(x,y,z) | x+y+z∈{0,1}}, with edges connecting points
at unit distance, form a 3-regular infinite graph (Fig. 1, left) in which every vertex has
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Fig. 1. Left: The unit distance graph formed by the integer points {(x,y,z) | x + y + z ∈ {0,1}}.
Right: The same graph projected onto the plane x+y+ z = 0 to form a hexagonal tiling.

three perpendicular edges [10]. Its projection onto the plane x + y + z = 0 is a hexag-
onal tiling (Fig. 1, right). In one higher dimension, the points {(w,x,y,z) | w + x + y +
z ∈ {0,1}}, with edges connecting points at unit distance, projected into the three-
dimensional subspace w+ x + y + z = 0, form an infinite 4-regular graph embedded in
space with all edges equally long and forming equal angles at every vertex (Fig. 2).
This pattern of point placements and edges is realized physically by the crystal struc-
ture of diamonds, and is often called the diamond lattice, although it is not a lattice in
the mathematical definition of the word; we call it the diamond graph.

Analogously, define a k-dimensional generalized diamond graph as follows. Form
the set of (k + 1)-dimensional integer points such that the sum of coordinates is either
zero or one, connect pairs of points at unit distance, and project this graph onto the
hyperplane in which the coordinate sum of any point is zero. The result is a highly sym-
metric infinite (k+1)-regular graph embedded in k-dimensional space. The generalized
diamond graph is an isometric subset of the (k + 1)-dimensional integer lattice, so any
finite isometric subgraph of the generalized diamond graph is a partial cube. However,
not every partial cube is an isometric subgraph of a generalized diamond: for instance,
squares, cubes, or hypercubes are not, because these graphs contain four-cycles whereas
the generalized diamonds do not. Thus we are led to the questions of which graphs are
isometric diamond subgraphs, and how efficiently we may recognize them.

3 Coherent Cuts

A cut in a graph is a partition of the vertices into two subsets C and V \C; an edge
spans the cut if it has one endpoint in C and one endpoint in V \C. If G = (U,V,E) is
a bipartite graph, we say that a cut (C,(U ∪V )\C) is coherent if, for every edge (u,v)
that spans the cut (with u ∈U and v ∈V ), u belongs to C and v belongs to (U ∪V )\C.
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Fig. 2. The three-dimensional diamond graph

That is, if we color the vertices black and white, all black endpoints of edges spanning
the cut are on one side of the cut, and all white endpoints are on the other side.

The Djokovic–Winkler relation of a partial cube G determines an important family
of cuts. Define a relation ∼ on edges of G by (p,q) ∼ (r,s) if and only if d(p,r) +
d(p,s) = d(q,r)+ d(q,s); then G is a partial cube if and only if it is bipartite and ∼
is an equivalence relation [4, 14]. Each equivalence class of G spans a cut (C,V \C);
we call V and V \C semicubes [7]. One may embed G into a hypercube by choosing
one coordinate per Djokovic–Winkler equivalence class, set to 0 within C and to 1
within V \C. Since this embedding is determined from the distances in G, the isometric
embedding of G into a hypercube is determined uniquely up to symmetries of the cube.

As an example, The Desargues graph (Fig. 3) is a symmetric graph on 20 vertices,
the only known nonplanar 3-regular cubic partial cube [8]; it is used by chemists to
model configuration spaces of molecules [1, 13]. The left view is a more standard sym-
metrical view of the graph while the right view has been rearranged to show more
clearly the cut formed by one of the Djokovic–Winkler equivalence classes. As can be
seen in the figure, this cut is coherent: each edge spanning the cut has a blue endpoint
in the top semicube and a red endpoint in the bottom semicube. The Djokovic–Winkler
relation partitions the edges of the Desargues graph into five equivalence classes, each
forming a coherent cut.

Theorem 1. A partial cube is an isometric subgraph of a generalized diamond graph
if and only if all cuts formed by Djokovic–Winkler equivalence classes are coherent.

Proof. In the generalized diamond graph itself, each semicube consists of the set of
points in which some coordinate value is above or below some threshold, and each edge
spanning a Djokovic–Winkler cut connects a vertex below the threshold to one above
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Fig. 3. Two views of the Desargues graph and of a coherent cut formed by a Djokovic–Winkler
equivalence class

it. The bipartition of the generalized diamond graph consists of one subset of vertices
for which the coordinate sum is zero and another for which the coordinate sum is one.
In an edge spanning the cut, the endpoint on the semicube below the threshhold must
have coordinate sum zero and the other endpoint must have coordinate sum one, so the
cut is coherent. The Djokovic–Winkler relation in any isometric subset of a generalized
diamond graph is the restriction of the same relation in the generalized diamond itself,
and so any isometric diamond subgraph inherits the same coherence property.

Conversely let G be a partial cube in which all Djokovic–Winkler cuts are coherent;
color G black and white. Choose arbitrarily some white base vertex v of G to place at
the origin of a d-dimensional grid, where d is the number of Djokovic–Winkler equiva-
lence classes, and assign a different coordinate to each equivalence class, where the ith
coordinate value for a vertex w is zero if v and w belong to the same semicube of the
ith equivalence class, +1 if v belongs to the white side and w belongs to the black side
of the ith cut, and −1 if v belongs to the black side and w belongs to the white side of
the cut. This is an instance of the standard embedding of a partial cube into a hypercube
by its Djokovic–Winkler relationship, and (by induction on the distance from v) every
vertex has coordinate sum either zero or one. Thus, we have embedded G isometrically
into a d-dimensional generalized diamond graph. ��

For example, the Desargues graph is an isometric subgraph of a five-dimensional gen-
eralized diamond.

4 The Diamond Dimension

Theorem 1 leads to an algorithm for embedding any isometric diamond subgraph into
a generalized diamond graph, but possibly of unnecessarily high dimension. Following
our previous work on lattice dimension, the minimum dimension of an integer lattice
into which a partial cube may be isometrically embedded [7], we define the diamond
dimension of a graph G to be the minimum dimension of a generalized diamond graph
into which G may be isometrically embedded. The diamond dimension may be as low
as the lattice dimension, or (e.g., in the case of a path) as large as twice the lattice
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dimension. We now show how to compute the diamond dimension in polynomial time.
The technique is similar to that for lattice dimension, but is somewhat simpler for the
diamond dimension.

Color the graph black and white, and let (C,V \C) and (C′,V \C′) be two cuts deter-
mined by equivalence classes of the Djokovic–Winkler relation, where C and C′ contain
the white endpoints of the edges spanning the cut and the complementary sets contain
the black endpoints. Partially order these cuts by the set inclusion relationship on the
sets C and C′: (C,V \C)≤ (C′,V \C′) if and only if C ⊆C′. The choice of which color-
ing of the graph to use affects this partial order only by reversing it. A chain in a partial
order is a set of mutually related elements, an antichain is a set of mutually unrelated
elements, and the width of the partial order is the maximum size of an antichain. By
Dilworth’s theorem [3] the width is also the minimum number of chains into which
the elements may be partitioned. Computing the width of a given partial order may be
performed by transforming the problem into graph matching, but even more efficient
algorithms are possible, taking time quadratic in the number of ordered elements and
linear in the width [12].

Theorem 2. The diamond dimension of any isometric diamond subgraph G, plus one,
equals the width of the partial order on Djokovic–Winkler cuts.

Proof. First, the diamond dimension plus one is greater than or equal to the width of
the partial order. For, suppose that G is embedded as an isometric subgraph of a d-
dimensional generalized diamond graph; recall that this graph may itself be embedded
isometrically into a (d +1)-dimensional grid. We may partition the partial order on cuts
into d + 1 chains, by forming one chain for the cuts corresponding to sets of edges
parallel to each of the d + 1 coordinate axes. The optimal chain decomposition of the
partial order can only use at most as many chains.

In the other direction, suppose that we have partitioned the partial order on cuts
into a family of d + 1 chains. To use this partition to embed G isometrically into a d-
dimensional generalized diamond graph, let each chain correspond to one dimension
of a (d + 1)-dimensional integer lattice, place an arbitrarily-chosen white vertex at the
origin, and determine the coordinates of each vertex by letting traversal of an edge in the
direction from white to black increase the corresponding lattice coordinate by one unit.
Each other vertex is connected to the origin by a path that either has equal numbers of
white-to-black and black-to-white edges (hence a coordinate sum of zero) or one more
white-to-black than black-to-white edge (hence a coordinate sum of one). Thus, the
diamond dimension of G is at most d. As we have upper bounded and lower bounded
the diamond dimension plus one by the width, it must equal the width. ��

Thus, we may test whether a graph may be embedded into a generalized diamond graph
of a given dimension, find the minimum dimension into which it may be embedded,
and construct a minimum dimension embedding, all in polynomial time. To do so, find
a partial cube representation of the graph, giving the set of Djokovic–Winkler cuts [9],
form the partial order on the cuts, compute an optimal chain decomposition of this
partial order [12], and use the chain decomposition to form an embedding as described
in the proof.
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It would be of interest to find more general algorithms for testing whether a graph
may be isometrically embedded into any periodic tiling of the plane, or at least any
periodic tiling that forms an infinite partial cube. Currently, the only such tilings for
which we have such a result are the square tiling [7] and (by the dimension two case of
Theorem 2) the hexagonal tiling.
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Abstract. We show that every plane graph admits a planar straight-line drawing
in which all faces with more than three vertices are non-convex polygons.

1 Introduction

In a straight-line planar drawing of a graph each edge is drawn as a segment and no
two segments intersect. A convex drawing is a straight-line planar drawing in which
each face is a convex polygon. While every plane graph admits a planar straight-line
drawing [6], not every plane graph admits a convex drawing. Tutte showed that ev-
ery triconnected plane graph admits such a drawing with its outer face drawn as an
arbitrary convex polygon [12]. Thomassen [11] characterized the graphs admitting a
convex drawing and Chiba et al. [3] presented a linear-time algorithm for producing
such drawings. Convex drawings can be efficiently constructed in small area [4,2].

Hong and Nagamochi proved that for every triconnected plane graph whose bound-
ary is a star-shaped polygon a drawing in which every internal face is a convex polygon
can be obtained in linear time [8]. The same authors also investigated drawings where
the outer face is a convex polygon and the internal faces are star-shaped [9,10].

As opposed to traditional convex graph drawing, some research works explored the
properties of drawings with non-convexity requirements [7,1]. A pointed drawing is
such that each vertex is incident to an angle larger than π. In [7] it is shown that a planar
graph admits a straight-line pointed drawing iff it is minimally rigid or a subgraph of
a minimally rigid graph. Since there exist planar graphs that do not admit straight-line
pointed drawings, algorithms that construct pointed drawings with tangent-continuous
biarcs, circular arcs, or parabolic arcs are studied in [1].

In this paper we address the problem of producing non-convex drawings, i.e., draw-
ings where all faces with more than three vertices are non-convex. This can be consid-
ered as the opposite of the classic problem of constructing convex drawings. Also, it can
be seen as the dual of the problem of constructing pointed drawings, since faces, and
not vertices, are constrained to have an angle greater than π. We prove the following:

Theorem 1. Every plane graph admits a non-convex drawing.

In Sect. 3 we prove the previous theorem for biconnected graphs by means of a con-
structive algorithm whose inductive approach is reminescent of Fary’s construction [6],
although it applies to non-triangulated graphs and relies on a more complex case study.
Due to space restrictions, some proofs are omitted and can be found in [5]. In Sect. 4
we discuss how to extend the result to general plane graphs.
� Work partially supported by MUR under Project “MAINSTREAM: Algoritmi per strutture

informative di grandi dimensioni e data streams.”
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2 Preliminaries

A graph G is simple if it has no multiple edges and no self-loops. A planar drawing of G
determines a circular ordering of the edges incident to each vertex. Two drawings of G
are equivalent if they determine the same circular ordering around each vertex. A planar
embedding is an equivalence class of planar drawings. A planar drawing partitions the
plane into faces. The unbounded face is the outer face and is denoted by f(G). A chord
of f(G) is an edge connecting two non-adjacent vertices of f(G). A graph with a planar
embedding and an outer face is called a plane graph. A non-convex drawing of a plane
graph G is a planar straight-line drawing of G in which each internal (external) face
with more than three vertices has an angle greater than π (smaller than π).

Consider a face f of G and two non-adjacent vertices u and v incident to f . The
contraction of u and v inside f leads to a graph G′ in which u and v are replaced by
a single vertex w, connected to all vertices u and v are connected to in G. If u and
v are connected to the same vertex y, then G′ contains two edges (w, y) (hence G′ is
not simple), unless (u, y) and (y, v) are incident to f (in this case there is only one
edge (w, y)). A contraction can also be performed on two adjacent vertices u and v, by
removing edge (u, v) and contracting u and v inside the face created by the removal.

3 Proof of Theorem 1

In this section we assume that graph G is biconnected. The following lemmata hold.

Lemma 1. Suppose that G has a face f with at least four incident vertices. Then there
exist two vertices u and v incident to f , such that edge (u, v) can be added to G inside
f , so that the resulting plane graph G′ is simple.

Lemma 2. Let G be a plane graph with a face f having more than four incident ver-
tices. Let G′ be the plane graph obtained by inserting inside f an edge e between two
non-adjacent vertices of f . Suppose that a non-convex drawing Γ ′ of G′ exists. Then
the drawing Γ obtained by removing e from Γ ′ is a non-convex drawing of G.

In order to prove Theorem 1 for biconnected plane graphs, we prove the following:

Theorem 2. Let G be a biconnected plane graph such that all the faces of G have
three or four incident vertices. Let f(G) be the outer face of G. If f(G) has three
vertices, then, for every triangle T in the plane, G admits a non-convex drawing in
which f(G) is represented by T . If f(G) has four vertices and no chord, then, for every
non-convex quadrilateral Q in the plane, G admits a non-convex drawing in which
f(G) is represented by Q. The mapping of the vertices of f(G) to the vertices of T or
Q is arbitrary, provided that the circular ordering of the vertices of f(G) is respected.

Theorem 2, together with Lemmata 1 and 2, implies Theorem 1. Namely, let G be any
biconnected plane graph. While G has any face f with at least five vertices, add, by
Lemma 1, a dummy edge inside f so that the augmented graph is still plane and simple.
The obtained graph G′ has (at least) one face with four incident vertices for each face
of G with more than three incident vertices. In order to apply Theorem 2, consider
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Fig. 1. (a) G∗
6. (b) Construction of a non-convex drawing of G∗

6.

f(G′) and, if f(G′) has four incident vertices and has a chord, insert a dummy edge
inside f(G′) between the two vertices not incident to the chord, turning f(G′) into a
triangular face. Construct a non-convex drawing of G′, as in the proof of Theorem 2.
By Lemma 2, removing the dummy edges inserted leaves the drawing non-convex.

Before proving Theorem 2, we give two more lemmata. Let G∗
5 be the plane graph

having a 4-cycle (u1, u2, u3, u4) as outer face and one internal vertex u5 connected to
u1, u2, u3, and u4. Let G∗

6 be the plane graph having a 4-cycle (u1, u2, u3, u4) as outer
face and two connected internal vertices u5 and u6 with u5 connected to u1 and u2, and
u6 connected to u3 and u4 (see Fig. 1.a).

Lemma 3. For any non-convex quadrilateral Q in the plane, there exists a non-convex
drawing of G∗

5 such that f(G∗
5) is represented by Q.

Lemma 4. For any non-convex quadrilateral Q in the plane, there exists a non-convex
drawing of G∗

6 such that f(G∗
6) is represented by Q (see Fig. 1.b).

Proof of Theorem 2. Let G be a biconnected plane graph having all faces of size three
or four and such that, if f(G) has size four, then it has no chord.

The proof is by induction on the number of internal vertices of G. In the base case, ei-
ther G has no internal vertex and the statement is trivially true, or G = G∗

5, or G = G∗
6.

In the latter cases the statement follows by Lemmata 3 and 4, respectively. Inductively
assume that the statement holds for any biconnected plane graph with less than n inter-
nal vertices. Suppose that G has n internal vertices. Three are the cases.

G has a separating 3-cycle C. Denote by G1 the graph obtained by removing from
G all vertices internal to C. Denote by G2 the subgraph of G induced by the vertices
internal to and on the border of C. If f(G1) has three (four) vertices, then consider any
triangle T (resp. any non-convex quadrilateral Q) and construct a non-convex drawing
Γ1 of G1 having T (resp. Q) as outer face. Consider the triangle T ′ representing C in
Γ1. Construct a non-convex drawing Γ2 of G2 having T ′ as outer face and insert Γ2
inside Γ1 by gluing the two drawings along the common face C represented by T ′ in
both drawings. The resulting drawing Γ is a non-convex drawing of G.

G has no separating 3-cycle and G has a separating 4-cycle C. Denote by G1
the graph obtained by removing from G all vertices internal to C. Denote by G2 the
subgraph of G induced by the vertices internal to and on the border of C. Notice that
f(G2) has no chords, otherwise G2 (and then G) would have a separating triangle. If
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Fig. 2. (a) Both u1 and u2 are incident to f(G). (b) Both u1 and u2 are internal vertices of G. (c)
Vertex u1 is incident to f(G) and vertex u2 is not.

f(G1) has three (four) vertices, then consider any triangle T (resp. any non-convex
quadrilateral Q) and construct a non-convex drawing Γ1 of G1 having T (resp. Q) as
outer face. Consider the non-convex quadrilateral Q′ representing C in Γ1. Construct a
non-convex drawing Γ2 of G2 having Q′ as outer face and insert Γ2 inside Γ1 by gluing
the two drawings along the common face C represented by Q′ in both drawings. The
resulting drawing Γ is a non-convex drawing of G.

G has no separating 3-cycle and no separating 4-cycle. We are going to contract
two vertices of G to obtain a graph with n− 1 vertices in order to apply induction.

Consider any internal vertex v of G. First, we show that at least one of the follow-
ing statements holds: (i) there exist two triangular faces incident to v and sharing an
edge (v, u), such that contracting edge (v, u) does not create chords of f(G); (ii) there
exists a quadrilateral face f = (v, u1, u, u2), such that either contracting v and u or
contracting u1 and u2 does not create chords of f(G); (iii) G is G∗

5; (iv) G is G∗
6.

First, suppose that two triangular faces (u, v, u1) and (u, v, u2) exist. If also u is
internal to G, then contracting (u, v) does not create chords of f(G) and statement (i)
holds. Otherwise, assume that u is incident to f(G). Then, statement (i) does not hold
only if both the following are true: (a) f(G) is a 4-cycle and (b) there exists an edge
connecting v and the vertex w of f(G) not adjacent to u. In fact, if (a) does not hold,
then f(G) is a 3-cycle and no chord can be generated by contracting any two vertices.
Also, if (b) does not hold, then contracting v to u does not create chords of f(G).

Then, suppose that f(G) is a 4-cycle (u,w1, w, w2) and that edge (v, w) exists. If
at least one of u1 and u2 is internal to G, then either (u, v, w,w1) or (u, v, w,w2) is
a separating 4-cycle, contradicting the hypotheses. Hence, assume that both u1 and u2
are incident to f(G). The four 3-cycles (u, v, u1), (u, v, u2), (w, v, u1), and (w, v, u2)
do not have internal vertices by hypothesis. Hence, G contains no internal vertex other
than v, G = G∗

5, and statement (iii) holds.
If two triangular faces incident to v and sharing an edge do no exist, then there exists

a face f = (v, u1, u, u2). Edge (u, v) does not belong to G, otherwise either (v, u, u1)
or (v, u, u2) would be a separating 3-cycle. Analogously, edge (u1, u2) does not belong
to G. If u is internal to G, then contracting v and u in f does not create chords of
f(G) and statement (ii) holds. Otherwise, with similar arguments as above, statement
(ii) does not hold for v and u only if both the following are true: (a) f(G) is a 4-cycle
and (b) there exists an edge connecting v and the vertex w of f(G) not adjacent to u.
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Fig. 3. (a) and (b): Inductive construction of Γ , when statement (i) holds. The light shaded region
represents disk D. (a) and (c): Inductive construction of Γ , when statement (ii) holds. The dark
shaded region represents face (u, u1, v, u2) in Γ .

Then, suppose that f(G) is a 4-cycle and that edge (v, w) exists. We distinguish three
cases: (1) If both u1 and u2 are incident to f(G) (see Fig. 2.a), then G contains 3-cycles
(u1, v, w) and (u2, v, w). Since G has no separating triangle, such cycles are faces
of G, contradicting the hypothesis that two triangular faces incident to v and sharing
an edge do no exist. (2) If both u1 and u2 are internal vertices of G (see Fig. 2.b),
then contracting u1 and u2 does not create chords of f(G) and statement (ii) holds.
(3) If one out of u1 and u2, say u1, is incident to f(G) and the other, say u2, is not
(see Fig. 2.c), consider the fourth vertex z of f(G). If edge (u2, z) does not exist,
vertices u1 and u2 can be contracted without creating chords of f(G) and statement (ii)
holds. If edge (u2, z) exists, there exist 3-cycles (u1, v, w) and (u, u2, z), and 4-cycles
(v, u1, u, u2) and (v, w, z, u2). Such cycles contain no vertices in their interior, since G
has no separating 3-cycle or 4-cycle. Hence, G = G∗

6 and statement (iv) holds.
We prove that whichever of the statements holds, a non-convex drawing of G can

be constructed. Suppose that statement (i) holds, with G having faces (v, u, w1) and
(v, u, w2). Contract edge (u, v) to a vertex w. The resulting graph G′ is simple. If not,
then there would exist a vertex w3 adjacent to both u and v in G, with w3 �= w1, w2.
This would imply that (u, v, w3) is a separating triangle, contradicting the hypotheses.

Inductively construct a non-convex drawing Γ ′ of G′ (see Fig. 3.a). Now consider
the point p where vertex w is drawn in Γ ′. There exists a small disk D (see Fig. 3.b)
centered at p such that moving p to any point inside D leaves Γ ′ a non-convex drawing.
Consider the line l′ through p and orthogonal to the line l connectingu1 and u2. Remove
w and its incident edges. Insert vertices u and v on l′, so that both are inside D. Connect
u and v to their neighbors. It is easy to see that all faces that had an angle greater than
π in Γ ′ still have an angle greater than π in Γ and that the drawing is still planar.

Now, suppose that statement (ii) holds. More precisely, suppose that contracting u
and v inside a face f = (u, u1, v, u2) does not create chords of f(G). Contract u and v
inside f to a vertex w. The resulting graph G′ is simple. If not, then there would exist a
vertex w3 adjacent to both u and v in G, with w3 �= u1, u2. This would imply that either
(u, v, u1, w3) or (u, v, u2, w3) is a separating 4-cycle, contradicting the hypotheses.

Inductively construct a non-convex drawing Γ ′ of G′ (see Fig. 3.a). Perturb the ver-
tices so that they are in general position and that Γ ′ is still a non-convex drawing.
Consider the point p where w is drawn in Γ ′ and consider the line l′ through p and
orthogonal to the line l connecting u1 and u2. There exists a small disk D (see Fig. 3.c)
centered at p such that D does not intersect l and such that moving p to any point inside
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D leaves Γ ′ non-convex. Remove w and its incident edges. Insert vertices u and v on
l′, so that both are inside D. Connect u and v to their neighbors. It is easy to see that all
faces that had an angle greater than π in Γ ′ still have an angle greater than π in Γ and
that the drawing is still planar. Further, face (u, v, u1, u2) is non-convex, as well, since
the angle incident to the one of u and v farther from l is greater than π.

Finally, suppose that statement (iii) or (iv) holds. We are in one of the base cases and
the claim directly follows from Lemmata 3 or 4, respectively. �

4 Conclusions

We have proved that every biconnected plane graph admits a drawing in which each face
with more than three vertices has an angle greater than π. This result can be extended
to general plane graphs as follows. Any simply-connected graph G can be suitably
augmented to a biconnected graph G′ by adding dummy edges in such a way that for
each face of G with more than three vertices there exists a corresponding face of G′

with more than three vertices. Removing dummy edges from a non-convex drawing of
G′ yields a non-convex drawing of G. We believe it is of interest to determine whether
non-convex drawings can be realized on a polynomial-size grid.
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Abstract. We introduce the concept of subdivision drawings of hypergraphs. In
a subdivision drawing each vertex corresponds uniquely to a face of a planar sub-
division and, for each hyperedge, the union of the faces corresponding to the ver-
tices incident to that hyperedge is connected. Vertex-based Venn diagrams and
concrete Euler diagrams are both subdivision drawings. In this paper we study
two new types of subdivision drawings which are more general than concrete
Euler diagrams and more restricted than vertex-based Venn diagrams. They al-
low us to draw more hypergraphs than the former while having better aesthetic
properties than the latter.

1 Introduction

A graph G is a pairG = (V,E), where V is a set of elements or vertices andE ⊆ V ×V
is a set of pairs of vertices, called edges. A hypergraph H = (V,E) is a generalization
of a graph, where again V is a set of elements or vertices, but E is a set of non-empty
subsets of V , called hyperedges [1]. The set E ⊆ P(V ) of hyperedges is a subset of the
powerset of V .

Hypergraphs are not as common as graphs, but they do arise in many application areas.
In relational databases there is a natural correspondence between database schemata and
hypergraphs, with attributes corresponding to vertices and relations to hyperedges [7].
Hypergraphs are used in VLSI design for circuit visualization [6,14] and also appear in
computational biology [10,12] and social networks [3].

Drawings of hypergraphs are less well-understood than drawings of graphs. There is
no single “standard” method of drawing hypergraphs, comparable to the point-and-arc
drawings for graphs. When drawing hypergraphs, vertices are usually depicted as points
or regions in the plane, but hyperedges can have very varied forms, including Steiner
trees, closed curves in the plane, faces of subdivisions, and points. As a result, there
is no unique definition of planarity for hypergraphs—different drawing methods imply
different, non-equivalent planarity definitions. In the following, we describe some of
the drawing methods for hypergraphs in more detail.
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Hypergraph Drawings. The two most common methods to draw hypergraphs are the
subset-based and the edge-based method. A subset-based drawing highlights the fact
that a hypergraph can be interpreted as a set system: Vertices are drawn as points in
the plane and hyperedges are drawn as simple closed curves that contain exactly those
vertices that they are incident to (see Fig. 1(a)). It is easy to see that any hypergraph can
be drawn this way. Subset-based drawings neither know any concept of or experience
any problems with planarity. Bertault and Eades [2] show how to create subset-based
hypergraph drawings.

An edge-based hypergraph drawing resembles standard drawings of graphs more
closely [11]. Vertices are again drawn as points, but hyperedges are drawn as Steiner
trees (see Fig. 1(b)). Edge-based drawings imply the most common definition for hy-
pergraph planarity: A hypergraph is planar if and only if it has an edge-based drawing
without hyperedge crossings.

Another way to draw hypergraphs is the so-called Zykov representation. Vertices are
again drawn as points, but hyperedges are visualized by faces of a subdivision. The
vertices around a face of the subdivision are the ones connected by the corresponding
hyperedge (see Fig. 1(c)). To distinguish faces that represent hyperedges from faces
that do not, a background color is needed to fill all faces of the subdivision that do not
correspond to hyperedges. A hypergraph is Zykov-planar if it has a Zykov representa-
tion. Zykov-planarity is equivalent to hypergraph planarity as induced by edge-based
drawings.

A hypergraph H can also be drawn as a bipartite graph where one set of vertices
corresponds to the vertices of H and the other set corresponds to the hyperedges (see
Fig. 1(d)). The edges of the bipartite graph represent vertex-hyperedge incidences. Also
this representation immediately implies a definition of planarity, which is equivalent to
Zykov-planarity and hence to hypergraph planarity as induced by edge-based draw-
ings [17].

Many hypergraphs are not (Zykov-)planar and hence have neither an edge-based
drawing, nor a Zykov representation, nor a drawing as a planar bipartite incidence
graph. Motivated by this fact, Pollak and Johnson [9] study alternative definitions of hy-
pergraph planarity which are implied by yet two more methods to draw hypergraphs—
hyperedge-based Venn diagrams and vertex-based Venn diagrams. (The choice of these
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(1, 2, 3)

(1, 2)

(2, 4)

(3, 4, 5, 6)

Fig. 1. Four drawings of the hypergraph H = (V, E) with V = {1, 2, 3, 4, 5, 6} and
E = {(1, 2), (1, 2, 3), (2, 4), (3, 4, 5, 6)}: (a) subset-based drawing; (b) edge-based drawing;
(c) Zykov representation; (c) incidence representation (bipartite graph)
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Fig. 2. A hyperedge-based Venn diagram for (a) K5 and (b) K3,3; (c) two different drawings of a
vertex-based Venn diagram for H

names is somewhat unfortunate, since the drawings have little in common with standard
Venn diagrams.)

In a hyperedge-based Venn diagram, hyperedges correspond uniquely to the faces of
a planar subdivision in such a way that for any vertex v, the union of the faces corre-
sponding to hyperedges that contain v, is connected. In a vertex-based Venn diagram,
vertices correspond uniquely to faces of a planar subdivision in such a way that for any
hyperedge, the union of the faces corresponding to its incident vertices is connected.
Note that the subdivision itself does not show the hyperedges directly, curves that en-
close unions of faces must still be drawn to visualize them. A hypergraph is hyperedge-
planar or vertex-planar if a planar subdivision with the required properties exists. It is
easy to see that both K5 and K3,3 are hyperedge-planar (see Fig. 2(a, b)). Concerning
vertex-planarity, consider the following hypergraph H : H has six vertices and three
hyperedges (1, 2, 3, 4), (1, 2, 3, 5), and (1, 2, 3, 6). H is vertex-planar but not (Zykov-
)planar. Figure 2(c) shows two drawings of H which showcase different methods to
draw the hyperedges in a vertex-based Venn diagram.

Subdivision Drawings. Vertex-based Venn diagrams are a particular type of hyper-
graph drawings which we call subdivision drawings. In a subdivision drawing each
vertex corresponds uniquely to a face of a planar subdivision. Furthermore, for any hy-
peredge, the union of the faces corresponding to the vertices incident to that hyperedge,
the hyperedge region, is connected. Hypergraph drawings which are based on Euler di-
agrams are subdivision drawings as well. Below we discuss them in some more detail.

To draw a hypergraph H as an Euler diagram we again need to interpret H as a set
system. Euler diagrams represent a collection of sets by simple, closed curves in the
plane, such that the interior of each curve represents the elements of the corresponding
set. Any face induced by the collection of curves is called a zone, which lies in the
interior of some curves and in the exterior of the rest. In an Euler diagram, a zone z
is only present if an element exists that is in exactly those sets whose curves have z
as their common interior, and z is in the common exterior of all other curves [13]. No
two zones may represent the same intersections of sets. Often, certain well-formedness
conditions are considered part of the definition of Euler diagrams. These specify that
no point may be the intersection of three of more curves, and all intersections of two
curves are proper intersections (no two curves partially overlap). Flower and Howse
call diagrams satisfying these conditions concrete Euler diagrams [8].

Extended Euler diagrams [16] allow curves to intersect in more general ways: They
may partially coincide, and multiple intersections are allowed. Also, zones exist for
all possible subsets that can be obtained by intersections. For example, the set system
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S : { {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} } generates all four units, all six pairs, and
all four triples of elements as intersections of one or more sets, so an extended Euler
diagram will have 14 zones for these intersections. Strictly speaking, an extended Eu-
ler diagram is not a subdivision drawing, since there is no unique mapping between
the vertices and the faces of the subdivision anymore. (There is, however, an injective
mapping.)

There is no concrete Euler diagram for S, but if we interpret S as a hypergraph, then
a vertex-based Venn diagram of S with four faces exists. On the other hand, hyperedge
regions of a concrete Euler diagram are simply connected, whereas hyperedge regions
of a vertex-based Venn diagram need only be connected, that is, they can have holes.
In this paper we study two new types of subdivision drawings for hypergraphs—simple
and compact subdivision drawings—which are more general than concrete Euler di-
agrams and more restricted than vertex-based Venn diagrams. They allow us to draw
more hypergraphs than the former while having better aesthetic properties than the lat-
ter. An interesting connection to traditional graph drawing is established by the observa-
tion that drawing simple subdivisions corresponds to the problem of overlapping cluster
planarity [4] when single edges are missing.

Results. In Sect. 2 we define simple and compact subdivision drawings. We also show
that there are hypergraphs which have a subdivision drawing, but not a simple subdi-
vision drawing, and hypergraphs which have a simple, but not a compact subdivision
drawing. Pollack and Johnson [9] proved that it is NP-complete to decide if a given
hypergraph has a subdivision drawing. Nevertheless, there are classes of graphs that
always have a subdivision drawing. In Sect. 3 we prove that hypergraphs which cor-
respond to a particular hierarchy (when viewed as a set system) have a compact sub-
division drawing where each face of the subdivision is convex. In the full paper we
also show that hypergraphs which are reduced line graphs of complete graphs have a
compact subdivision drawing.

2 Subdivision Drawings

Before we can define simple and compact subdivision drawings we first need to intro-
duce some notation and state some assumptions. Let H = (V,E) be a hypergraph. Two
vertices u and v of H are equivalent with respect to E, if every hyperedge contains
either both or none of u and v. To simplify the following discussion we assume that no
two vertices of H are equivalent. (Equivalent vertices can easily be removed in a pre-
processing step and can be added to the final drawing in an equally easy post-processing
step.)

Recall that in a subdivision drawing each vertex corresponds uniquely to a face of a
planar subdivision D. Furthermore, the hyperedge region of each hyperedge (the union
of the faces corresponding to the vertices incident to that hyperedge) is connected. We
assume that the subdivision D has only vertices of degree three. Not every bounded
face of D has to correspond to a vertex of H . We call a face that does correspond to a
vertex of H a vertex face.

A subdivision drawing is simple if every hyperedge region is simple, that is, bounded
by one simple closed curve. A subdivision drawing is compact if it is simple and each
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H = (V,E) E = { (1, 2, 3), (2, 4), (3, 4, 5, 6) }V = {1, 2, 3, 4, 5, 6}
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Fig. 3. Subdivision drawing of a hypergraph H , only the curves bounding the hyperedge
(3, 4, 5, 6) are indicated (a); simple subdivision drawing of H (b); compact subdivision draw-
ing of H (c). Dotted edges indicate a planar support.

bounded face of D is a vertex face. That is, the complement of all vertex faces is
connected. Note that collapsing a face that is not a vertex face will never destroy the
connectivity of hyperedge regions, but it may create non-simple hyperedge regions.
Consider the white face in Fig. 3(b): Removing it will make the region of either hyper-
edge (1, 2, 3) or hyperedge (3, 4, 5, 6) non-simple.

A concrete Euler diagram is a compact subdivision drawing which has only proper
intersections between the simple closed curves which bound hyperedge regions: No
three curves have a common point and no two curves intersect over a stretch of positive
length. In Flower and Howse’s terminology, not even the set system { {1, 2}, {2, 3},
{1, 3} } has a concrete Euler diagram.

A graph G is a support for a hypergraphH if the vertices of G correspond to the ver-
tices of H such that for each hyperedge e the subgraph of G induced by e is connected.
G is a planar support if it is planar. A planar support G is simple if G has a planar
embedding where each cycle in a subgraph induced by a hyperedge e does not have any
other vertex of G on the inside. Hence the planar support in Fig. 4(a) is a simple planar
support if every hyperedge that induces the cycle c is also incident to vertex v. Intu-
itively, the planar support is a subgraph of the dual graph of any subdivision drawing of
H (see Fig. 3).

Observation 1. A hypergraph H

(i) has a simple subdivision drawing if and only if it has a simple planar support.
(ii) has a compact subdivision drawing if and only if it has a simple planar support

with an embedding where all bounded faces are triangulated.

v
c

(a) (b)

Fig. 4. A (simple) planar support (a); turning a support into a subdivision (b)
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Subdivisions and their dual graphs have been extensively studied in, for example, graph
theory and VLSI design, and there are several methods that can turn a planar support
into a dual subdivision. For completeness, we sketch an easy approach that creates such
a subdivision. Use any straight-line embedding of the support. (i) Trace a “race track”
around every edge and cut it in the middle. Each vertex face is formed by the union of
all half race tracks adjacent to the corresponding vertex. (ii) Place a vertex inside each
triangle and connect it to the middle of each edge, forming three quadrilaterals. Place a
small circle around every cut vertex, trace a race track around every bridge edge, and cut
it in the middle (see Fig. 4(b)). Each vertex face is now the union of all quadrilaterals,
circles, and half race tracks adjacent to the corresponding vertex in the support.

We now show that there are hypergraphs which have a subdivision drawing, but not
a simple subdivision drawing, and hypergraphs which have a simple but not a compact
subdivision drawing. First, consider the hypergraph H1 on four vertices. The hyper-
edges of H1 are the six pairs and the four triples of vertices. Since the hyperedges
include all pairs of vertices all vertex faces of the subdivision must be adjacent. Hence,
modulo re-labeling of vertices and the removal of white non-vertex faces, we must have
a subdivision drawing as the one depicted in Fig. 5(a) with a non-simple hyperedge
region for hyperedge (2, 3, 4).

Second, consider the hypergraph H2 that is schematically depicted in Fig. 5(b). The
hyperedges of H2 are all black edges plus the two hyperedges with nine vertices each,
which are indicated by the gray contours. The black edges form a planar support which
is uniquely defined, up to the choice of the outer face. Each hyperedge region is simply
connected, so the black edges even form a simple planar support. However, we can
not triangulate either of the quadrilaterals without making one hyperedge non-simple.
Since at most one of the quadrilaterals can be the outer face,H2 does not have a compact
subdivision drawing.

3 Hierarchies and Subdivision Drawings

In this section we characterize certain hypergraphs which have a compact subdivision
drawing. In fact, they even have a compact subdivision drawing where each face of the
subdivision is convex. We again view hypergraphs as set systems and study a partic-
ular hierarchy defined on these set systems. Any hypergraph H with n vertices and k

(c)(b)(a)

12 3

4

Fig. 5. A hypergraph which has no simple subdivision drawing (a); the hypergraph H2 (b); a
simple but not compact subdivision drawing of H2 (c)
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hyperedges can be interpreted as a set system S = {S1, . . . , Sk} on a base set M of n
elements. (Here we again assume that no two vertices of H are equivalent.) Subdivision
drawings naturally visualize set containment well: The region of a set (hyperedge)Si is
contained in the region of a set (hyperedge) Sj if and only if Si ⊂ Sj .

A hierarchyH is a directed acyclic graph induced by a set system or hypergraph. A
hierarchy has two types of vertices: base vertices, which represent a singleton set for
each element in the base set M , and set vertices, which represent each set in the set
system S. Hence H has n + k vertices. With slight abuse of notation we refer to the
vertices of H by the names of the sets they represent. H has a directed edge (S1, S2)
with S1, S2 ∈ S ∪ {{v} : v ∈ M} if and only if S2 ⊂ S1 and for no set S3 ∈ S,
we have S2 ⊂ S3 ⊂ S1. That is, edges are directed from larger to smaller sets and
represent direct containment—our hierarchies do not contain transitive edges. The base
nodes are the leaves of the hierarchy (with only incoming edges) and the set nodes are
the internal nodes of the hierarchy (each internal node has at least two outgoing edges).
A hierarchy H corresponds uniquely to a hypergraph H and vice versa. H is a planar
hierarchy if it is planar. We say that a hierarchy is based if it has a set vertex SM that
represents the complete base set M . SM is necessarily the root of the hierarchy and has
only outgoing edges. See Fig. 6 for an example.

In the following we prove that a hypergraph H has a compact drawing where each
face of the subdivision is convex if the corresponding hierarchyH is based and planar.
In particular we describe an algorithm that transforms H into an outerplanar support
for H by “sliding” certain edges of H down to the leaf level. The complete process
comprises the following four steps:

1. Fix an embedding and construct a depth-first search spanning tree ofH.
2. Slide all non-tree edges ofH down to the leaf level.
3. Remove all internal nodes ofH to create an outerplanar support for H .
4. Construct a compact subdivision drawing from the outerplanar support.

We now describe each step in more detail.

1 2 3 4 5 6 7 8 9 10 11

Fig. 6. A based planar hierarchy H defined by M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and
the sets {1, 2, 3}, {1, 3, 4}, {5, 6}, {1, 2, 3, 4, 8, 9}, {9, 10, 11}, {1, 2, 3, 9, 11}, {1, 2, 3, 4},
{1, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 8, 9, 10, 11}, SM = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
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Step 1: EmbeddingH and constructing a depth-first search spanning tree.
We embed H such that the root SM lies on the outer face. Recall that all edges

are directed from the root to the leaves. The embedding defines a left to right order
(counterclockwise) of the children of each node. We traverse the hierarchy in a depth-
first search (DFS) manner, creating an ordered DFS spanning tree, where every edge
that reaches some node for the first time defines the true parent of that node. The true
parent structure is a tree which categorizes the edges of H into tree edges and non-tree
edges. W.l.o.g. we relabel the vertices in the base set with 1, 2, . . . , n in the order in
which they are encountered in the DFS traversal.

Step 2: Slide all non-tree edges down to the leaf level.
We now transform the based planar hierarchyH into another based planar hierarchy

H′ where all non-tree edges point to leaves. We do this in such a way that the outerplanar
support forH′ which we create in Step 3 is also an outerplanar support forH.

Let  a be any non-tree edge that points to an internal node Si. We distinguish five
different cases, depending on the next edge in the clockwise order around Si, see Fig. 7.
If the next edge in clockwise order is (i) an outgoing tree edge, then we can slide  a to
point to the child of that tree edge. If it is (ii) an incoming non-tree edge  c, then we can
proceed with  c instead. If it is (iii) an outgoing non-tree edge  c, then we can slide  a to
point to the destination of  c. Finally, the next clockwise edge can be an incoming tree
edge from the parent. In this case we consider the counterclockwise neighbor of  a at Si.
Due to the construction of the DFS tree, this can be only an outgoing tree edge (iv) or
an incoming non-tree edge  c (v). We can treat (iv) symmetric to (i) and (v) symmetric
to (ii).

The following lemma shows that this transformation preserves the adjacencies cap-
tured by the original hierarchy.

Lemma 1. For any based planar hierarchy H there exists another based planar hier-
archyH′ where every non-tree edge points to a leaf, and a planar support forH′ is also
a planar support forH.

Proof. We first argue that the transformation described above terminates and results in
a hierarchyH′ where all non-tree edges point to leaves. The five cases of the transfor-
mation can be grouped as follows: In cases (i), (iii), and (iv) the non-tree edge  a slides

(i)
�a �a

(ii) �a

�c

(iii)
�a

�c�c

�a

�a

(iv)

�a

(v)

�a

�c

Fig. 7. Cases of the transformation. Grey nodes are internal, half-grey nodes can be internal or
leaf nodes.
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to a node Sj with Sj ⊂ Si. In cases (ii) and (v) no sliding is done, but it is easy to see
that these cases cannot occur more often than there are non-tree edges pointing to Si.
Hence the process terminates when all non-tree edges point to leaves.

Now we prove that a planar support for H′ is also a planar support for H by con-
sidering the corresponding hypergraphs (set systems). Let H be the hypergraph corre-
sponding to H. We argue that any sliding operation results in a hypergraph H ′ whose
planar support is also a planar support for H . In particular, let (Si, Sj) be a non-tree
edge that is slid and which becomes edge (S′

i, Sk). The sets of H ′ are precisely the sets
of H with the exception of Si which is replaced by S′

i. We know that Sk ⊂ Sj and
S′

i ⊆ Si. Consider a planar support G′ for H ′. The base elements in Sj , Sk, and S′
i are

connected in G′. We have to show that the base elements of Si are also connected in
G′, although Si is not a set of H ′ and hence not a node of H′. We have Si = S′

i ∪ Sj

and also Sk = S′
i ∩ Sj which implies S′

i ∩ Sj �= ∅. Hence we can conclude that the
base elements of Si are connected in G′. Since this argument holds for every sliding
operation the lemma follows. ��

Step 3: Remove all internal nodes and create an outerplanar support.
After Step 2 we have a hierarchy where every non-tree edge points directly to a

leaf (see Fig. 8). We now embed this hierarchy in the plane such that all leaves (base
elements) lie on a horizontal line . Non-tree edges are drawn as curves that connect
an internal node to a leaf, either without crossing  or by crossing it exactly once.
Such a planar embedding always exists—its can be obtained directly from the planar
embedding used in Step 1 of our algorithm (see Fig. 8).

We say that a base element encounters  if either its leaf is intersected by  or if
 intersects a non-tree edge that is directed to its leaf. Let W = w1, . . . , ws be the
sequence of the base elements as they encounter  from left to right. In Fig. 8, the se-
quence is W = 1, 2, 3, 1, 4, 5, 6, 7, 6, 8, 4, 1, 9, 10, 11, 9, 1. The base elements in any set
(internal node) form a subinterval of W . Hence, any planar graph on the base elements
that realizes all adjacencies of W is a planar support. Therefore we call W the support
sequence.

1 2 3 4 5 6 7 8 9 10 11
�

Fig. 8. Hierarchy after the transformation



Subdivision Drawings of Hypergraphs 405

Lemma 2. A support sequence W does not have a subsequence . . a . . b . . a . . b . .,
where a and b represent any two distinct base elements.

(In other words, W is a Davenport-Schinzel sequence of order 2 [15].)

Proof. By construction, the first occurrences of a and b in W correspond to leaves,
the later ones to crossings of non-tree edges with . A subsequence . . a . . b . . a . . b . .
implies that the non-tree edges to a and b cross below , but the initial hierarchy was
planar and the transformations preserved planarity. ��

Lemma 3. There is an outerplanar graph G that realizes all adjacencies of W .

Proof. Assume that the base elements are numbered 1, . . . , n. We compute G from W
as follows. Create a node for every base element and connect them into a path using
n− 1 edges (i, i + 1), 1 ≤ i ≤ n− 1. Scan W from left to right, and for any repeated
occurrence of i in . . . j, i, k . . ., create edges (i, j) and (i, k) such that the path edges
(i, i + 1) always keep the unbounded face to the left. The planarity of this construction
follows directly from the planarity of the transformed hierarchy H′. G is outerplanar
since all path edges (i, i + 1) bound the outer face and hence all nodes are incident to
the outer face, see Fig. 9. ��

Step 4: Construct a compact subdivision drawing from the outerplanar support.
The outerplanar graph G that results from Step 3 forms the basis of the planar sup-

port. We add an edge (1, n) if it is not present yet and triangulate all bounded faces (in
Fig. 9, only the faces 1, 4, 8, 9 and 4, 5, 6, 8).

An easy way to construct the regions is the following: Use any straight-line embed-
ding of the planar support with triangulated bounded faces. For each triangle, choose
any point in its interior, for instance the center of mass. For any edge, place an extra
point in the middle. Partition each triangle into three quadrilaterals by drawing edges
between the center and three edge midpoints. The region of each node is the union of
the incident quadrilaterals (see Fig. 10(a)).

We can ensure that each face of the subdivision is convex, by using a slightly more
involved method based on Voronoi diagrams. Dillencourt [5] showed how to realize an
outerplanar graph as the Delaunay triangulation of points. The dual of this Delaunay
triangulation, clipped to lie within a bounding box, is a compact subdivision drawing
where each face is convex, see Fig. 10(b).

Theorem 1. A hypergraph that corresponds to a based planar hierarchy has a compact
subdivision drawing where each face of the subdivision is convex.

To conclude this section we note that hypergraphs corresponding to a (non-based) pla-
nar hierarchy need not have a compact subdivision drawing, or even a simple one. Con-
sider again the hypergraph H1 on four vertices. The hyperedges of H1 are the six pairs

1 2 3 4 5 6 7 8 9 10 11

Fig. 9. Planar support for the hierarchy shown in Fig. 8
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Fig. 10. Triangle-partition based method of constructing a subdivision for the planar support of
Fig. 9, the face of node 1 is indicated (a); Voronoi diagram based method for the same support,
showing 3 sets: {5, 6}, {1, 2, 3, 9, 11}, and {1, 2, 3, 4, 8, 9} (b)

and the four triples of vertices. Its hierarchy is planar, as shown in Fig. 11(a), but—as
argued in Sect. 2—H1 has no simple subdivision drawing. It is easy to see, however,
that each hypergraph corresponding to a planar hierarchy has a subdivision drawing,
the planar support can be extracted from any planar embedding of the hierarchy by
iteratively contracting edges incident to base vertices.

4 Conclusion and Open Problems

We introduced the concept of subdivision drawings of hypergraphs which comprises
both vertex-based Venn diagrams and Euler diagrams. We studied two new types of
subdivision drawings, simple and compact subdivision drawings, and established some
of their basic properties. We also characterized certain hypergraphs that have a compact
subdivision drawing.

It is NP-complete to decide if a hypergraph has a subdivision drawing, but it is not
clear if the same result holds for simple and compact subdivision drawings as well. Of

12 3

4
(a) (b)

1, 2, 3

1, 3, 4

2, 3, 4

1, 2

1, 3 1, 4

2, 3

2, 4

3, 4

2
1 3 4 1, 2, 4

Fig. 11. Planar drawing of the hierarchy of H1 (a); subdivision drawing of H1 (b)
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course it would be interesting to identify further classes of hypergraphs that have simple
or compact subdivision drawings.
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Abstract. A minimum segment drawing Γ of a planar graph G is a straight line
drawing of G that has the minimum number of segments among all straight line
drawings of G. In this paper, we give a linear-time algorithm for computing a
minimum segment drawing of a series-parallel graph with the maximum degree
three. To the best of our knowledge, this is the first algorithm for computing
minimum segment drawings of an important subclass of planar graphs.

1 Introduction

A straight line drawing Γ of a planar graph G is a planar drawing where each vertex
u of G is mapped to a point p(u) in the plane and each edge e = (u, v) of G is drawn
as a line segment l(e) closed between the points p(u) and p(v). A line segment L in
a straight line drawing Γ is said to be a maximal line segment in Γ if L is formed
by a maximal set of line segments l1, l2, . . . , lk such that each pair li and li+1 has a
common end point in Γ (0 < i < k). In the remainder of this paper, we simply use
the term segment to refer a maximal line segment in a straight line drawing. A straight
line drawing Γ of G is called a minimum segment drawing of G if Γ has the minimum
number of segments among all possible straight line drawings of G. For example, the
graph G in Fig. 1(a) can be drawn with seven segments as shown in Fig. 1(b). Another
drawing of G with five segments is shown in Fig. 1(c). One can easily verify that unless
we change the embedding of G in Fig. 1(a), it is impossible to draw G with less than
five segments. However, if we consider the embedding shown in Fig. 1(d), then G can
be drawn with four segments as shown in Fig. 1(e). One can also verify that, it is not
possible to draw any embedding of G with less than four segments. Thus, the drawing
of G in Fig. 1(e) is a minimum segment drawing of G.

The problem of computing straight line drawings of planar graphs has been studied
for long with various application specific objectives [2,3,5,8,9,10]. Recently, Dujmović
et al. have studied this problem with a new objective of minimizing the number of

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 408–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. (a) The graph G, (b) a drawing of G on seven segments, (c) a drawing of G on five
segments, (d) another embedding of G, and (e) a minimum segment drawing of G

segments in a drawing [1], and the insightful results presented in their work have estab-
lished a new line of research henceforth. However, as their results suggest, this prob-
lem is quite difficult for most of the non-trivial graph classes. For most of these cases,
bounds have been given on the number of segments in a drawing, but no algorithm is
known so far for computing a minimum segment drawing. For example, although Du-
jmović et al. have provided an algorithm for computing minimum segment drawings
of trees, no algorithm is known for biconnected and triconnected planar graphs. The
problem has also been studied for plane graphs. Although dealing with plane graphs is
typically easier than dealing with planar graphs, no algorithm is known for computing
minimum segment drawings of biconnected and triconnected plane graphs as well. Even
for degree restricted cases of plane graphs, e.g., for plane triconnected cubic graphs, no
algorithm has yet been devised for computing minimum segment drawings.

In this paper, we study the minimum segment drawing problem for series-parallel
graphs with the maximum degree three. For such a graph G, we give linear-time algo-
rithms for choosing such an embedding of G that admits a straight-line drawing on the
minimum number of segments, and for computing a minimum segment drawing of G.
The rest of this paper is organized as follows. In Section 2 we give some definitions and
present our primary results. In Section 3 we give a linear-time algorithm for computing
a minimum segment drawing of a biconnected series-parallel graph with the maximum
degree three. In Section 4 we briefly illustrate how our idea from Section 3 can be ex-
tended to compute minimum segment drawing of a series-parallel graph which is not
necessarily biconnected. Finally Section 5 is a conclusion.

2 Preliminaries

In this section we give some relevant definitions and present our preliminary results.
For basic graph theoretic and graph drawing related definitions we refer to [4].

A graph G = (V,E) is called a series-parallel graph (with source s and sink t) if
either G consists of a pair of vertices s and t connected by a single edge, or there exist
two series-parallel graphs Gi = (Vi, Ei), i = 1, 2, with source si and sink ti such that
V = V1 ∪ V2, E = E1 ∪ E2, and either (i) s = s1, t1 = s2 and t = t2, or (ii)
s = s1 = s2 and t = t1 = t2 [6]. A pair {u, v} of vertices of a connected graph
G is a split pair if there exist two subgraphs G1 = (V1, E1) and G2 = (V2, E2) such
that: (i) V = V1 ∪ V2, V1 ∩ V2 = {u, v}; and (ii) E = E1 ∪ E2, E1 ∩ E2 = ∅,
|E1| ≥ 1, |E2| ≥ 1. Thus every pair of adjacent vertices of G is a split pair of G. A
split component of a split pair {u, v} is either an edge (u, v) or a maximal connected
subgraph H of G such that {u, v} is not a split pair of H .
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Fig. 2. (a) A biconnected series-parallel graph G with Δ(G) = 3, (b) SPQ-tree T of G with
respect to reference edge (i, n), (c) SPQ-tree T of G with P -node z1 as the root, (d) the three
core paths of node z3, and (e) the four core paths of node z2

Let G be a biconnected series-parallel graph. The SPQ-tree T of G with respect
to a reference edge e = (s, t) is a recursive decomposition of G induced by its split
pairs [6]. T is a rooted ordered tree whose nodes are of three types: S, P and Q. Each
node x of T corresponds to a subgraph of G, called its pertinent graph G(x). Tree T is
recursively defined as follows.

(i) Trivial Case: In this case, G consists of two parallel edges e and e′ joining s and t.
The tree T consists of a single Q-node x. The pertinent graph G(x) consists of only the
edge e′. (ii) Parallel Case: In this case, the split pair {s, t} has three or more split com-
ponents G0, G1, . . . , Gk (k ≥ 2), and G0 consists of only a reference edge e = (s, t).
The root of T is a P -node x. The pertinent graph G(x) = G1 ∪ G2 ∪ · · · ∪ Gk. (iii)
Series Case: In this case, the split pair {s, t} has exactly two split components, and
one of them consists of the reference edge e. One may assume that the other split com-
ponent has cut-vertices c1, c2, . . . ck−1 (k ≥ 2), that partition the component into its
blocks G1, G2, . . . , Gk in this order from s to t. Then the root of T is an S-node x. The
pertinent graph G(x) of node x is a union of G1, G2, . . . , Gk. In Fig. 2 we have illus-
trated the concept of representing the recursive decomposition of a given biconnected
series-parallel graph through an SPQ-tree. In each of the cases mentioned above, we
call the edge e the reference edge of node x. Except for the trivial case, node x of T has
children x1, x2, . . . , xk in this order; xi is the root of the SPQ-tree of graph G(xi)∪ ei

with respect to the reference edge ei, 1 ≤ i ≤ k. We call edge ei the reference edge
of node xi, and call the endpoints of edge ei the poles of node xi. The tree obtained
so far has a Q-node associated with each edge of G, except the reference edge e. We
complete the SPQ-tree T by adding a Q-node, representing the reference edge e, and
making it the parent of x so that it becomes the root of T . One can easily modify T to
an SPQ-tree T ′ with an arbitrary P -node as the root as illustrated in Fig. 2(e). In the
remainder of this paper, we consider SPQ-trees having P -nodes as their roots. Based
on the assumption that Δ(G) = 3, the following facts were mentioned in [6].
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Fact 1. Let (s, t) be the reference edge of an S-node x of T , and let x1, x2, . . . , xk be
the children of x in this order from s to t. Then the following (i)–(iii) hold. (i) Each
child xi of x is either a P -node or a Q-node; (ii) both x1 and xk are Q-nodes; and
(iii) xi−1 and xi+1 must be Q-nodes if xi is a P -node where 2 ≤ i ≤ k − 1.
Fact 2. The root P -node of T has exactly three children and each non-root P -node of
T has exactly two children. For a non-root P -node x in T , either both the children of
x are S-nodes, or one child of x is an S-node and the other child of x is a Q-node.

A node x in T is primitive if x does not have any descendantP -node in T . We define
the height of a primitive P -node to be zero. The height of any other P -node is (i + 1)
if the maximum of the heights of its descendant P -nodes is i. For two given P -nodes x
and z in T , we say that z is a child P -node of x if there is an S-node y in T such that
y is a child of x and z is a child of y in T .

Let G be a biconnected series-parallel graph with Δ(G) = 3. Let G′ be the plane
graph corresponding to a straight line drawing Γ of G. Let T ′ be an SPQ-tree of G′,
and r be such a P -node in T ′ that the poles of r appear on the outerface of Γ . An
SPQ-tree of G corresponding to Γ is the SPQ-tree obtained by considering T ′ rooted
at r. We use TΓ to denote an SPQ-tree of G corresponding to a drawing Γ of G. For a
node x in TΓ , let Px and Nx denote the number of P -nodes and primitive P -nodes in
the subtree of TΓ rooted at x. If x is a non-rootP -node, then let y and y′ denote the two
children of x in TΓ . Let p and q denote the number of child P - and Q-nodes respectively
of the node y in TΓ . Similarly, let p′ and q′ denote the number of child P - and Q-nodes
respectively of y′ in TΓ . Let zi denote the i-th child P -node of y in TΓ and ei denote the
edge corresponding to the i-th child Q-node of y in TΓ . Similarly, let z′i denote the i-th
child P -node of y′ in TΓ and e′i denote the edge corresponding to the i-th child Q-node
of y′ in TΓ . For each non-root P -node x of TΓ , we now define the core paths of G(x)
as follows. If x is a primitive P -node, then let q ≥ q′. We then define three core paths
Pi(x) (1 ≤ i ≤ 3) of G(x) as P1(x) = e1, P2(x) = G(y′) and P3(x) =

⋃q
i=2 ei, as

shown in Fig. 2(d). Otherwise, x is not primitive, and we consider the following two
subcases. If either of the two nodes y and y′ has at least two child P -nodes then we
assume that y is such a node, otherwise we assume that p ≥ p′ and proceed as follows.
Let ej and ek denote the edges corresponding to the Q-nodes immediately preceding
z1 and zp, respectively in TΓ . We then define four core paths Pi(x) (1 ≤ i ≤ 4)
of G(x) as P1(x) = P1(z1) ∪

⋃j
i=1 ei, P2(x) =

⋃p′

i=1 P2(z′i) ∪
⋃q′

i=1 e
′
i, P3(x) =

P3(zp)∪
⋃q

i=k+1 ei, and P4(x) =
⋃p

i=1 P2(zi)∪
⋃k

i=j+1 ei, as shown in Fig. 2(e). We
define a straight line drawing Γ of G to be a canonical drawing of G if the following
(a) and (b) hold for Γ . (a) For each non-root P -node x in TΓ , each core path Pi(x) of
G(x) is drawn on a different line segment Li(x); and (b) there is a primitive P -node w
in TΓ such that the poles of w appear on the outerface of Γ .

Let L(Γ ) denote the number of segments in the drawing Γ of G. We call a line
segment l1 in Γ to be collinear with another line segment l2 in Γ if l1 and l2 have
the same slope, and the perpendicular distance between l1 and l2 is zero. For a node x
in TΓ , we use Γ (x) to denote the drawing of G(x) in Γ , and Γ \ Γ (x) to denote the
drawing obtained by deleting Γ (x) from Γ . If Γ is a canonical drawing of G, then we
say that Γ (x) is a canonical drawing of G(x). We say that Γ (x) shares a line segment
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Fig. 3. All possible cases for computing Γc(x) when x is a primitive P -node

with Γ \ Γ (x) if there is a line segment l1 in Γ (x) and a line segment l2 in Γ \ Γ (x)
such that l1 and l2 are collinear and have a common end point.

3 Biconnected Series-Parallel Graphs

In this section we give our algorithm for computing a minimum segment drawing of a
biconnected series-parallel graph G with Δ(G) = 3. We first show that any drawing Γ
of G can be transformed into a canonical drawing Γc such that L(Γc) ≤ L(Γ ). We then
give a lower bound of L(Γ ), and describe our drawing algorithm.

We have the following lemma on transformation of a drawing into canonical
drawing.

Lemma 1. Let G be a biconnected series-parallel graph with Δ(G) = 3. Then for any
straight-line drawing Γ of G, a canonical drawing Γc of G can be computed such that
L(Γc) ≤ L(Γ ).

Proof. Let x be a non-root P -node having poles u and v in TΓ . By Fact 1, there is
a sibling Q-node of x preceding it and a sibling Q-node of x following it in TΓ . Let
e(x) = (u′, u) and e′(x) = (v′, v) denote the two edges corresponding to these two Q-
nodes respectively. Let h(x) denote the height of x in TΓ . Using induction on h(x) we
now prove that for each non-rootP -node x of TΓ , we can compute a canonical drawing
Γc(x) of G(x) such that replacing Γ (x) with Γc(x) in Γ does not increase L(Γ ).

For h(x) = 0, we compute Γc(x) by first drawing a triangle with three segments
Li(x) (1 ≤ i ≤ 3), and then drawing the core path Pi(x) on Li(x) (1 ≤ i ≤ 3).
Considering all possible orientations of l(e(x)) and l(e′(x)), computation of Γc(x) is
shown in Fig. 3. In each case, we choose the line segment closed between α and β as
L1(x), the one closed between β and γ as L2(x), and the one closed between α and γ
as L3(x). We now show that, L(Γ ) will not increase if we replace Γ (x) with Γc(x).
Since G(x) is a simple cycle, any straight line drawing of G(x) would require at least
three line segments. Again, in any straight line drawing of G, Γ (x) may share at most
two line segments with Γ \ Γ (x). Except for the case where l(e(x)) and l(e′(x)) are
parallel (as in Fig. 3(g) and (i)) or diverging (as in Fig. 3(e)), we have not reduced the
number of line segments that might have been shared between Γ (x) and Γ \ Γ (x) as
shown in Fig. 3(a)–(d). If l(e(x)) and l(e′(x)) are parallel or diverging as illustrated in
Fig. 3(e)–(j), our drawing might have reduced this number by at most one if Γ (x) had
shared both the line-segments l(e(x)) and l(e′(x)). However, if Γ (x) had shared both
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Fig. 4. All possible cases for computing Γc(x) when h(x) > 0

the line segments l(e(x)) and l(e′(x)), then in every case, any straight line drawing of
G(x) would require at least four segments, and we have reduced this number by at least
one. Hence, replacing Γ (x) with Γc(x) would not increase L(Γ ) in any of the cases.

We now assume that h(x) > 0 and Γc(w) has been computed for all the descendant
P -nodes w of x. To compute Γc(x), we first draw a quadrangle with four line segments
Li(x) (1 ≤ i ≤ 4), in such a way that L2(x) is the line segment closed between
p(u) and p(v). Based on different orientation of l(e(x)) and l(e′(x)), the quadrangle is
illustrated in Fig. 4. In every case, we choose the line segment closed between α and
β as L1(x), the one closed between β and γ as L2(x), the one between γ and δ as
L3 and the one between α and δ as L4(x). We then draw the core path Pi(x) along
Li(x) (1 ≤ i ≤ 4). Finally, for each child P -node w of y, we add Γc(w) by making
L2(w) and L4(x) collinear. Similarly, for each child P -node w of y′, we draw Γc(w)
by making L2(w) and L2(x) collinear. The fact that replacing Γ (x) with Γc(x) does
not increase L(Γ ) can be understood as follows. Let Γ ′(x) denote the drawing obtained
by considering Γc(x) and the two line segments l(e(x)) and l(e′(x)). Let G′(x) denote
the underlying graph of Γ ′(x). If l(e(x)) and l(e′(x)) are collinear or converging as
illustrated in Fig. 4(a)–(d), then for each degree two vertex v′ of G′(x), the two incident
edges of v′ are collinear in Γ ′(x) with the exception that for each primitive P -node, the
incident edges of exactly one degree two vertex are non-collinear. Again for each degree
three vertex v′ of G′(x), exactly two of the three incident edges are collinear in Γ ′(x).
Thus, Γ ′(x) has the maximum possible sharing between the drawings of the edges of
G′(x), and replacing Γ (x) with Γc(x) will not increase L(Γ ). Similarly, if l(e(x)) and
l(e′(x)) are parallel with the angle between them being 0◦ as shown in Fig. 4(h)–(j),
and if x has a child S-node with at least two child P -nodes, then Γ ′(x) will have the
maximum possible sharing between the drawings of the edges of G(x), and replacing
Γ (x) with Γc(x) will not increase L(Γ ). On the other hand, if each child S-node of
x has at most one child P -node, then the three incident edges of v are pairwise non-
collinear in Γ ′(x) as shown in Fig. 4(j) and Fig. 5(c). However, L(Γ ) will not increase
even in this case. If both the line segments l(e(x)) and l(e′(x)) were shared by some
line-segment in Γ (x), then either of the following (a) and (b) will hold. (a) There is at
least one descendant non-primitive P -node x′ of x such that at either of the two poles
of x′, all the three incident edges are pairwise non-collinear as shown in Fig. 5(a); and
(b) there is at least one descendant primitive P -node x′′ of x such that Γ (x′′) uses
four line-segments as shown in Fig. 5(b). In both the cases, replacing Γ (x) with Γc(x)
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G(x′) G(x′′)

p(u)p(u)p(u) p(v)p(v)p(v)
(a) (b) (c)

Fig. 5. (a) and (b) Two drawings of G(x) that shares both the line segments l(e(x)) and l(e′(x))
with the rest of the drawing, (c) a canonical drawing Γc(x) of G(x)

does not increase L(Γ ). The reasoning for the cases where line segments l(e(x)) and
l(e′(x)) are parallel with the angle between them being 180◦ (as shown in Fig. 4(k)
and (l)), or where l(e(x)) and l(e′(x)) are diverging (as shown in Fig. 4(e)–(g)) follows
from similar arguments.

It now remains for us to show that we can obtain a primitive P -node w in TΓ such
that the poles of w appear on the outerface of Γc. One can observe that for each non-
root P -node x of TΓ , there is a primitive P -node w in the subtree of TΓ rooted at x
such that the poles of w appear on the outerface of Γc(x). Let r denote the root of T .
Let y1, y2 and y3 denote the three children of r in T . We first consider the nodes y1
and y2 as the two children of a temporary P -node x′ and compute Γc(x′) in the same
way as described in the inductive step above. We then replace Γ (x′) with Γc(x′), and
this does not increase L(Γ ). We then take a single line segment and draw on it all the
edges corresponding to the child Q-nodes of y3 along with all the paths P2(z) for each
child P -node z of y3. Let Γ ′(y3) denote this drawing of G(y3). We then compute Γc

by merging Γc(x′) with Γ ′(y3). The details of the proof that the merging of Γc(x′) and
Γ ′(y3) does not increase L(Γ ) is omitted in this extended abstract since the arguments
are similar to those given in the induction step above. One can also observe that after
performing the merging of Γc(x′) and Γ ′(y3), we will obtain the poles of a primitive
P -node in the outerface of Γc. ��

Lemma 1 implies that any straight line drawing Γ of G requires at least L(Γc) line
segments where Γc is a canonical drawing obtained by transforming Γ . We therefore
give here a lower bound of L(Γc). For clarity of notations, we use T instead of TΓc to
denote an SPQ-tree corresponding to Γc. Since there is always a primitive P -node w
in T such that the poles of w appear on the outerface of Γc, we assume that the root of
T has two child S-nodes that are primitive in T . We first have the following lemma.

Lemma 2. Let G be a biconnected series-parallel graph with Δ(G) = 3. Let Γc be a
canonical drawing of G. Let T be an SPQ-tree of G corresponding to Γc. Then for a
non-root P -node x in T , L(Γc(x)) ≥ Px + Nx + 1.

Proof. We use induction on Px. In the basis case, Px = 1, i.e., x is a primitive P -node.
Hence Nx = 1 and Px +Nx + 1 = 3. Since G(x) is a simple cycle when x is primitive
and any straight line drawing of a cycle requires at least three segments, the claim holds.

We now assume that Px > 0 and the claim holds for every P -node w in T having
Pw < Px. Hence L(Γc(w)) ≥ Pw + Nw + 1. We now take a child P -node w of x and
delete the drawing Γc(w) from Γc. Let G′ denote the underlying graph of this drawing
Γc \ Γc(w). The graph G′ is not necessarily a biconnected series-parallel graph. Let
u and v be the two poles of w in T . In order to ensure that we are working with a
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6. Cases in the induction step of the proof of Lemma 2. Γc(w) shown highlighted in each case.

biconnected series-parallel graph, we now add an edge (u, v) to G′, and a new line
segment between the points p(u) and p(v) in Γc. We then replace the node w in T with
a Q-node representing the edge (u, v), and rename the node x as x′. Let Γ ′ denote this
newly computed drawing ofG(x′). SincePx′ < Px, we haveL(Γc(x′) ≥ Px′+Nx′+1.
We now have the following two cases to consider.
Case 1. Γ ′ is canonical.

This case may occur in either of the following two subcases. (i) p > 2 and w = zi

(2 ≤ i ≤ p − 1), as illustrated in Fig. 6(a) and (b); and (ii) p′ ≥ 1 and w = z′i
(1 ≤ i ≤ p′), as illustrated in Fig. 6(a) and (c). In both the subcases, Γc(w) had
exactly one line segment shared with Γc(x). Thus, L(Γ ′) = L(Γc(x))−L(Γc(w))+1.
Again, since Γ ′ is canonical, L(Γ ′)) = L(Γc(x′)). By induction hypothesis we have
L(Γc(x)) ≥ Px′ + Nx′ + 1 + Pw + Nw + 1− 1 = Px + Nx + 1.
Case 2. Γ ′ is not canonical.

Here we have the following three subcases.
(i) p > 2 and either w = z1 or w = zp, as illustrated in Fig. 6(d) and (e), (ii) p = p′ = 1
and w = z1, as illustrated in Fig. 6(g) and (h); and (iii) p = 1, p′ = 0 and w = z1, as
illustrated in Fig. 6(j) and (k). We omit the proofs for the second and third subcase in
this extended abstract. For the subcase 2(i), Γc(w) had exactly two line segments shared
with Γc(x). Thus, L(Γ ′) = L(Γc(x)) − L(Γc(w)) + 2. Since Γ ′ is not canonical, we
now make it canonical by making L1(z2) collinear with L1(x′) if w = z1 or, by making
L3(zp−1) collinear with L3(x′) if w = zp as illustrated in Fig. 6(f). One can observe
that, in both the cases, the number of line segments decreases by exactly one in Γc(x′).
Thus, L(Γc(x′)) = L(Γ ′) − 1. By induction hypothesis we then have L(Γc(x)) ≥
Px′ + Nx′ + 1 + Pw + Nw + 1− 1 = Px + Nx + 1. ��

We now have the following theorem.

Theorem 1. Let G be a biconnected series-parallel graph with Δ(G) = 3. Let Γc be a
canonical drawing of G. Let T be an SPQ-tree of G corresponding to Γc. Let PT and
NT denote the number of P -nodes and the number of primitive P -nodes respectively
in T . Then the following (a) and (b) hold. (a) L(Γc) ≥ PT + NT + 2, if every S-node
in T has at most one child P -node; and (b) L(Γc) ≥ PT + NT + 1, otherwise.
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G(y1) ∪ G(y2)

G(y1) ∪ G(y2)
G(y1) ∪ G(y2)

G(z) G(x′)

α

p(u) p(v)

(a) (b) (c) (d)

Fig. 7. (a) The drawing of G(y1) ∪ G(y2), (b) Γc if y3 is primitive, (c) Γc if y3 has exactly one
child P -node, and (d) Γc if y3 has at least two child P -nodes

Proof. Let r be the root of T . Let y1, y2 and y3 be the three children of r in T . Since
Γc is a canonical drawing, we assume that y1 and y2 are primitive in T . Since G is a
simple graph, exactly one of y1, y2 and y3 can be a Q-node in T . Thus, if there is a
Q-node among y1, y2 and y3, then we assume that y2 is the Q-node. The proofs of the
claims (a) and (b) are given below.
(a) We have the following two cases to consider here.
Case 1. y3 is primitive in T .

Since G(y1) ∪ G(y2) is a cycle, at least three line segments are required to draw
G(y1)∪G(y2) in Γc as illustrated in Fig. 7(a). SinceG(y3) is a path, at least one new line
segment is required to drawG(y3) along with G(y1)∪G(y2) in Γc as illustrated through
the thick line segment in Fig. 7(b). Since PΓ = 1, NΓ = 1, and PΓ + NΓ + 2 = 4, we
thus have L(Γc) = 4 ≥ PΓ + NΓ + 2.
Case 2. y3 is not primitive in T .

Let z denote the child P -node of y3 in T . By Lemma 2, L(Γc(z)) ≥ Pz + Nz + 1.
One can observe that G(y1) ∪ G(y2) is connected with G(y3) through the two edges
incident to the two poles of G(y3). Hence, any drawing of G(y1) ∪ G(y2) can share
at most two segments with the drawing Γc(z). However, as shown in the proof of
Lemma 1, since each S-node in T has at most one child P -node, we cannot draw
the line segments L1(z) and L3(z) as converging in the exterior of Γc(z) without in-
creasing L(Γc(z)). Since L1(z) and L3(z) are converging in the interior of Γc(z), at
least two new segments are required to draw G(y1)∪G(y2) along with G(y3) as shown
through the thick line segments in Fig. 7(c). Thus, L(Γc) ≥ Pz + Nz + 1 + 2. Since
PΓ = Pz + 1, NΓ = Nz, we thus have L(Γc) ≥ PΓ + NΓ + 1.
(b) In this case y3 has at least two child P -nodes in T . We consider y2 and y3 as the
two S-nodes of a temporary P -node x′, and computeΓc(x′) as described in the proof of
Lemma 1. By Lemma 2, L(Γc(x′)) ≥ Px′ +Nx′+1. As shown in the proof of Lemma 1,
since at least one S-node in T has two child P -nodes, we can draw the line segments
L1(x′) and L3(x′) as converging in the exterior of Γc(x′) as illustrated in Fig. 7(d). Let
α denote the point where L1(x′) and L3(x′) converges. Let u and v denote the poles of
r. Since y3 is not a Q-node, we can now complete the drawing of G(y3) on the two line
segments closed between p(u), α and α, p(v) without requiring any new line segment.
Since Px′ = PΓ , Nx′ = NΓ , we have L(Γc) ≥ Px′ + Nx′ + 1 = PΓ + NΓ + 1. ��
We now present our main result on minimum segment drawing in the following
theorem.



Minimum Segment Drawings of Series-Parallel Graphs 417

L1(x)
L1(x)
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Fig. 8. (a) Drawing of G(x) for a primitive P -node x, (b) the quadrangle for a non-root and
non-primitive P -node x, (c)–(f) completing the drawing Γ (x) for a non-root and non-primitive
P -node x, (g) Γ when there is a suitable root in T , and (h) Γ when there is no suitable root in T

Theorem 2. Let G be a biconnected series-parallel graph with Δ(G) = 3. Then a
minimum segment drawing of G can be computed in linear time.

Proof. We first compute a planar straight line drawing Γ of G in linear time and then
show that Γ is a minimum segment drawing of G.

Let T be an SPQ-tree of G rooted at an arbitrary P -node r. Let y1, y2 and y3 denote
the three children of r in T . Since G is a simple graph, at most one of y1, y2 and y3
can be a Q-node. Thus, if there is a Q-node among y1, y2 and y3, then we assume that
y2 is the Q-node. In order to compute a minimum segment drawing of G, we want the
following two conditions to hold for y1, y2 and y3 in T . (a) y1 and y2 are primitive
in T ; and (b) y3 has at least two child P -nodes in T . If these conditions hold for the
three children of our arbitrarily chosen root r, then we are done. Otherwise, we search
for such a P -node r in T . If there is such a P -node r in T , then there is an S-node
x in T such that x has at least two child P -nodes, one of which is primitive. We can
search for such an S-node x in T in linear time. If we find such an S-node x in T ,
then the child primitive P -node r of x will be our desired root of T . If we fail to find
any such S-node x in T , then each S-node in T has at most one child P -node in T .
We then choose any primitive P -node r in T as the root of T . We now compute Γ
in a bottom up traversal of T . At first, in each non-root P -node x of T , we compute
a canonical drawing Γ (x) of G(x) from the previously computed canonical drawings
Γ (w) of G(w) for each child P -node w of x. Then we compute Γ = Γ (r) for the root
r of T . We describe this construction inductively. For a primitive P -node x in T , we
draw the three core paths Pi(x) (1 ≤ i ≤ 3) of G(x) on three line segments Li(x)
(1 ≤ i ≤ 3) such that each line segment Li(x) is closed between the end vertices
of Pi(x) (1 ≤ i ≤ 3), as illustrated in Fig. 8(a). For a non-root and non-primitive
P -node x in T , we first draw the four core paths Pi(x) (1 ≤ i ≤ 4) on four line
segments Li(x) (1 ≤ i ≤ 4) such that each line segment Li(x) is closed between the
end vertices of Pi(x) (1 ≤ i ≤ 4), as illustrated in Fig. 8(b). For each child P -node w
of x, we now add Γ (w) to this quadrangle and complete the drawing Γ (x) as follows.
At first, we draw Γ (z1) by making L1(z1) collinear with L1(x), and L2(z1) collinear
with L4(x) as shown in Fig. 8(c). Next we draw Γ (zp) by makingL3(zp) collinear with
L3(x) and L2(zp) collinear with L4(x) as shown in Fig. 8(d). Finally, for each w = zi
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(2 ≤ i ≤ p − 1), we draw Γ (w) by making L2(w) collinear with L4(x) as shown in
Fig. 8(e), and for each w = z′i (1 ≤ i ≤ p′), we draw Γ (w) by making L2(w) collinear
with L2(x) as shown in Fig. 8(f). We finally assume that x is the root P -node of T . Let
u and v denote the poles of x in T . To compute Γ = Γ (x), we first consider y2 and y3
as the children of a temporary P -node x′ and compute the canonical drawing Γ (x′) in
the same way as described in the inductive case above. We now have the following two
cases to consider. We first consider the case where T has a suitable root as described
earlier. By construction, we will have two line segments in Γ (x′) in this case, namely
L1(x′) and L3(x′) that can be drawn as converging in the exterior of Γ (x′). Let α
denote the point where L1(x′) and L3(x′) converge. We then draw the graph G(y3) on
the two line segments closed between p(u), α and α, p(v), as shown in Fig. 8(g). We
next consider the case where T does not have a suitable root r as described earlier. In
this case, we take a point α in the exterior of Γ (x′) such that the points p(u), p(v) and
α form a triangle as shown in Fig. 8(h). We then draw the graph G(y3) on the two line
segments closed between p(u), α and α, p(v). Clearly, the drawing Γ described above
can be computed in linear time. We omit the details of this proof of time complexity in
this extended abstract.

We now prove that Γ has the minimum number of segments. We first prove that for
each non-rootP -node x of T , we draw G(x) on Px+Nx+1 segments. We give here an
inductive proof by taking induction on the height h(x) of x. For h(x) = 0, Px + Nx +
1 = 3. We have drawn G(x) on three line segments, and our claim holds for h(x) = 0.
We now consider h(x) > 0 and x is a non-root and non-primitive P -node. While
computing Γ (x), we have drawn G(y′) in such a way that all the edges corresponding
to the child Q-nodes of y′ were drawn on a single segment, and L2(z′i) for each G(z′i)
was drawn on the same segment. Thus the number of segments in this drawing of G(y′)
is P ′

y + N ′
y + p′ − (p′ − 1) = P ′

y + N ′
y + 1. Similarly, G(y) was first drawn on

Py + Ny + 1 segments and then the path
⋃j

i=1 ei was drawn on the same segment as
L1(z1) and the path

⋃q
i=k+1 ei was drawn on the same segment as L3(zp). Here ej and

ek are the two edges corresponding to the two Q-nodes immediately preceding z1 and
zp respectively in T . Since we had reused an already drawn segment, this last operation
did not increase the number of segments. We finally had merged these drawings of
G(y) and G(y′) together to get a drawing of G(x) on Py + Ny + 1 + P ′

y + N ′
y + 1 =

(Py +P ′
y +1)+Nx +1 = Px +Nx +1 segments. Finally, in the root node, we did not

draw any new line segment if a suitable root r was found for T , otherwise we had drawn
exactly one new line segment. Thus we had drawnΓ onP ′

x+N ′
x+1 segments in the first

case, and on P ′
x + N ′

x + 2 segments in the second case. Since PΓ = Px′ , NΓ = Nx′ ,
we have ultimately drawn Γ on PΓ + NΓ + 2 segments if each S-node in T had at
most one child P -node, and on PΓ +NΓ +1 segments otherwise. Both these quantities
matches the bound given on L(Γ ) in Theorem 1, and this completes the proof. ��

4 Series-Parallel Graphs with Cut Vertices

So far we have dealt with biconnected series-parallel graphs with the maximum degree
three. However, the same idea can be adopted to compute a minimum segment drawing
of a series-parallel graph G that contains cut vertices. In this case, we first compute
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the blocks of G. Each block of G is either a single edge or a series-parallel graph G′

which can be decomposed similarly to the pertinent subgraph G(x) of a P -node x in
the SPQ-tree of a biconnected series-parallel graph with the maximum degree three.
For each such graph G(x), we then compute a canonical drawing of G(x). Next we add
a single line segment aligned with the path P2(x) of each block G(x) and complete the
drawing of G.

5 Conclusion

In this paper we have given a linear-time algorithm for computing minimum segment
drawings of series-parallel graphs with the maximum degree three. To the best of our
knowledge, this is the first result in this problem focusing on an important subclass
of planar graphs. It remains as our future work to achieve similar results for wider
subclasses of planar graphs.
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Abstract. We present a new network diagram authoring tool, Dunnart, that pro-
vides continuous network layout. It continuously adjusts the layout in response
to user interaction, while still maintaining the layout style and, where reasonable,
the current layout topology. The diagram author uses placement constraints, such
as alignment and distribution, to tailor the layout style and can guide the layout
by repositioning diagram components or rerouting connectors. The key to the
flexibility of our approach is the use of topology-preserving constrained graph
layout.

1 Introduction

Producing well laid out network diagrams is not easy and extremely tedious for any
but the simplest networks. While automatic graph layout algorithms can provide high-
quality layout [4], in many situations users would like the ability to interactively control
and fine-tune the layout with similar flexibility to that provided in standard diagram au-
thoring tools. Although some general purpose diagramming tools, such as Microsoft
Visio1 and Omnigraffle,2 provide automatic graph layout, the integration of graph lay-
out into these tools is quite unsatisfactory. Similar concerns apply to the network layout
tool yEd.3 The issue is that these tools use static graph layout algorithms which are
not well-matched to the inherently interactive nature of diagramming tools. They pro-
vide only “once off” graph layout and allow little flexibility for the author to tailor the
resulting layout by, say, requiring that certain nodes are aligned.

We believe that a better model for integrating automatic graph layout into diagram-
ming tools is continuous network layout. In this model the graph-layout engine runs
continuously to improve the layout in response to user interaction. The author uses
placement constraints, such as alignment and distribution, to tailor the layout style and
can guide the layout by repositioning diagram components or rerouting connectors. Im-
portantly, layout should be fast enough to allow the diagram author to immediately see
the effect of their changes. Thus, continuous network layout requires efficient dynamic
graph layout techniques that support placement constraints.

Continuous network layout was introduced in GLIDE [13]. However, the spring-
based layout algorithm used by GLIDE was not robust or powerful enough to truly

1 “Layout Assistant for Visio”, Tom Sawyer Soft., http://www.tomsawyer.com/lav/
2 “Omnigraffle”, The Omni Group, http://www.omnigroup.com/omnigraffle/
3 “yEd”, yWorks, http://www.yworks.com/products/yed/

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 420–431, 2009.
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support the model. Here we present a new network diagram authoring tool, Dunnart,4

that provides continuous network layout and which uses a recently developed topology
preserving constrained graph layout algorithm [7]. This provides considerably more
robust and powerful automatic layout than is possible with unconstrained optimisation
techniques such as those underlying GLIDE.

Dunnart supports a variety of different layout styles, arbitrary clusters of nodes, and
placement tools such as alignment, distribution and separation. Dunnart’s layout engine
continuously adjusts the layout in response to user interaction, ensuring that the diagram
remains “tidy” by, for instance, removing object overlap, while still maintaining the
layout style and user imposed placement constraints. Figure 1 illustrates the use of
Dunnart.

One of the most interesting innovations in Dunnart is a simple, readily understood
physical metaphor for layout adjustment: Poly-line connectors and cluster boundaries
act like rubber-bands, trying to shrink in length and hence straighten. Like physical
rubber-bands, the connectors and cluster boundaries are impervious in that nodes and
other connectors cannot pass through them. This means that layout adjustment pre-
serves the general structure of the network drawing, i.e. its topology, and so changes
are smooth and predictable. Changes to the topology only occur as the result of explicit
direction by the author and for common user editing actions, such as moving objects
during direct manipulation or resizing a node, the diagram topology is preserved.

Usability concerns have guided the design of Dunnart from its beginning and we
have carefully considered the design of the constraint-based placement tools including
how to provide adequate feedback about constraint interaction (especially in the case
of inconsistency) and how to ensure that the diagram is not too cluttered by visual
representation of constraints (See Fig. 2). One important factor improving usability is
that layout adjustment occurs in real-time, providing immediate feedback about the
effect of user changes.

2 Related Work

Our work brings together research into constraint-based diagramming editors and re-
search into graph drawing. Since the very infancy of diagram authoring tools there has
been interest in allowing the author to specify persistent layout relationships on the di-
agram components, e.g. [8,12,14]. Previous systems have explored constraint solving
techniques and user interaction for constraint-based placement tools. However, apart
from GLIDE [13], these were not designed for network diagrams and none provided
automatic network layout in the sense that we are discussing.

GLIDE was the first constraint-based diagramming tool explicitly designed for net-
work diagrams. It introduced continuous network layout and provided high-level place-
ment constraints (called VOFs) which the author could add to control the layout and
which the layout engine endeavoured to satisfy during subsequent changes to the layout.
However GLIDE had two serious limitations. The first was a lack of robustness. GLIDE
used springs to approximately enforce layout constraints which effectively meant the
constraints were solved by minimising a goal function that contains an error term for

4 Dunnart, http://www.dunnart.org/

http://www.dunnart.org/
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(a) Organic layout style

(b) Layered layout style

(c) Flow layout style

(d) Final layout

(a) The author initially calls the
structural layout tool with organic
layout style. Note how various auto-
matic refinement constraints such as
non-overlap of nodes keep the layout
tidy.

(b) The author tries the layered lay-
out style. This generates a set of hor-
izontal alignment constraints with
separation constraints between them.
The separation constraints keep the
layers in order and enforce a min-
imum spacing (adjustable by the
user) between layers. The author has
added a vertical alignment constraint
to several nodes to improve the lay-
out.

(c) Unhappy with the result, the au-
thor now tries the flow layout style.
This generates style constraints re-
quiring that directed edges be down-
ward pointing. The minimum sepa-
ration between nodes connected by
directed edges can be adjusted us-
ing a slider. Note that the vertical
alignment constraint was maintained
when switching layout styles.

(d) Reasonably happy, the author
now fine-tunes the layout. They first
add two new horizontal alignment
constraints. They then cluster to-
gether three seal species and two
types of gull. As a result the position
of several nodes and edges are auto-
matically updated to remove overlap
with the clusters. Finally, the author
repositions the “Beluga” and “Arctic
Fox” nodes to improve the clarity of
the diagram.

Fig. 1. Example of interactive network layout with Dunnart. Network data from the Many Eyes
“Arctic food chain” visualisation, http://www.many-eyes.com/.
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(a) Guidelines are bold in the regions between
attached objects and are significantly faded
outside those regions. This helps to reduce
clutter while still allowing the user to attach
objects to guidelines. The four vertical align-
ment constraints (represented by the guide-
lines) are involved in a horizontal distribution
constraint which requires them to be equally
spaced. The user is currently adjusting the dis-
tribution spacing (about the highlighted guide-
line) by dragging a handle on right-side of the
distribution indicator.

(b) The six alignment constraints have hor-
izontal separation constraints between them.
The minimum separation distance may be ad-
justed by dragging a handle on the separa-
tion indicator. Note that three constraints are
currently active (highlighted in red) while the
other two have some slack. The grey band on
the right edge of the page shows that a page-
containment constraint is not satisfied. This re-
sults from the user indirectly pushing a shape
outside the page while dragging another shape.

(c) Flow layout has been enabled, constrain-
ing all directed edges to point downward. A
cycle of directed edges causes a constraint con-
flict. Dunnart drops one of the conflicting con-
straints, and highlights this as well as the set of
affected nodes.

(d) The widgets in the “Layout Properties”
window control the structural layout setting.
They also allow the user to adjust the ideal
edge length, and toggle generation of non-
overlap and page-boundary constraints.

Fig. 2. Screenshots showing the visual representations of constraints in Dunnart

each constraint. In the case of conflicting forces, such as, for example, alignment of
nodes in a network with springy connectors, the so called “constraints” would simply
not be satisfied, or worse, the whole system could become unstable and not converge
to a local minimum. The second limitation was that GLIDE provided little automatic
network layout. While it did allow the user to manually impose VOFs to control edge
length, when used in combination with other user-specified VOFs this led to conflicting
forces and unsatisfied constraints.
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Our techniques for network layout draw upon recent research into graph drawing.
One relevant area of research is dynamic graph layout [2] which focuses on stable re-
layout of changing graphs, or interactive navigation of large graphs [10]. Most such
systems are based on unconstrained force-directed layout in which the forces between
nodes are modified in response to user interaction. However, in these systems the level
of user control over the layout is very limited (i.e., alignment or distribution of nodes
is not supported) and, because of the underlying optimisation techniques, it would be
difficult to provide more.

Our work is also related to collaborative graph-layout tools in which the user can
interact with the optimisation engine to improve the layout and escape local minima
by providing user hints [11], such as repositioning a node. This is also true in the con-
tinuous network layout model, since user interaction can guide the layout engine away
from undesired local minima. The fundamental difference is that Dunnart is a generic
network diagramming tool, while collaborative graph layout is intended to allow the
user to improve the layout obtained with a single specialised layout engine. Thus, user
hints are quite restrictive and depend on the underlying layout algorithm. For example,
the systems of [11,1] are built on top of a layered graph-drawing algorithm for directed
graphs, while the Giotto system [3] is built on top of an orthogonal graph layout engine.

Dunnart is based upon so called constrained graph layout algorithms which perform
graph layout subject to various kinds of layout constraints [9,5]. It uses a recent algo-
rithm for topology preserving constrained graph layout [7] designed for dynamic graph
layout. This has previously been used for interactive visualisation of large networks [6].
Here we demonstrate its usefulness in a new application area: authoring.

3 Background: Constrained Graph Layout

In this section we briefly review the algorithm for topology preserving constrained
graph layout. It is described more fully in [7]. The algorithm works on network dia-
grams. These can contain: basic graphic shapes, such as rectangles and ellipses, which
are treated as rectangular nodes in the diagram; connectors, which form the edges in the
diagram and may be directed; and container shapes, which contain a set of nodes and
so specify node clusters in the diagram.

A layout for a network diagram gives a position for each node in the diagram and a
route for the paths, i.e. edge routes and cluster boundaries, in the network.

Constrained graph layout allows constraints on the placement of nodes. These are
required to be separation constraints in a single dimension.5 The layout must also sat-
isfy various refinement constraints to ensure that it is “tidy.” The refinement constraints
are:
– no two nodes overlap;

– the nodes inside the region defined by the boundary of each cluster are exactly the
nodes in the cluster;

5 Separation constraints have the form u + d ≤ v or u + d = v where u and v are variables
representing horizontal or vertical position of a node and d is a constant giving the minimum
separation required between u and v.
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– every path is valid and tight where a valid path is one in which no segment passes
through a node and a tight path is one in which the path “wraps” tightly around each
node corner in the path.

Topology-preserving constrained graph layout uses the P-stress (for path-stress) goal
function to measure the quality of a layout. P-stress modifies the standard stress func-
tion to penalise nodes that are too close together, but not nodes that are more than their
ideal distance apart, thus eliminating long range attraction which can cause issues in
highly constrained problems. P-stress also tries to make the length of each path in the
network no more than its ideal length. This has the effect of straightening edges and
making clusters more compact and circular in shape.

The basic algorithm to find a layout that minimises P-stress and which satisfies the
layout constraints is:

(1) Find a position for the nodes satisfying the layout constraints by projecting the cur-
rent position of the nodes on to the placement constraints and then using a greedy
heuristic to satisfy the non-overlap constraints and cluster containment constraints
(modeled using a rectangular box).

(2) Perform edge routing using an incremental poly-line connector routing algorithm
[15] to compute poly-line routes for each edge, which minimise edge length and
amount of bend. The cluster boundary is obtained using the convex hull of the
cluster.

(3) Optimise the layout by iteratively improving the current layout using gradient pro-
jection to reduce P-stress. This preserves the topology of the initial layout.

As noted previously, unlike force-directed layout, constrained graph layout techniques
ensure that the generated layouts really do satisfy all of the layout constraints (unless
the constraints are infeasible).

4 Dunnart

Dunnart is intended to be a generic diagramming tool that supports most diagram types,
including network diagrams. The original motivation for Dunnart was to explore usabil-
ity issues in constraint-based diagramming tools. Thus, usability has been a focus of its
design from the beginning. Feedback from its use—for constructing a wide variety of
diagrams including UML diagrams and biological networks—has greatly improved the
interface design. We now look at its more novel aspects.

A primary usability consideration was when and how much the layout engine should
change the layout in response to user interaction. Typically, when first constructing a
network diagram, the user will try different layout styles and, for each style, wants the
tool to automatically find a good layout. Then, once the basic layout and style is chosen,
the user will fine-tune the layout. During fine-tuning, it is important that changes made
by the layout engine are predictable and controllable by the author. To support these two
use cases, Dunnart provides two kinds of network layout: structural layout and layout
adjustment. We now look at these.
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4.1 Structural Layout

Dunnart provides a structural layout tool which is free to completely rearrange the lay-
out so long as the user-specified placement constraints remain satisfied. It is explicitly
invoked by the author to re-layout the network. The other function of the structural lay-
out tool is to impose a layout style on the diagram. Dunnart currently provides three
layout styles: organic, flow and layered (shown in Fig. 1). It could be extended with
other layout styles. The only requirement is that the aesthetic constraints imposed by
the style must be able to be modelled using separation constraints so that the layout
aesthetic can be maintained in subsequent interaction.

Organic layout is the most basic style since it does not impose any style constraints.
It simply calls the constrained graph layout algorithm sketched in Sect. 3. Flow-style
layout is the same except that the tool adds style constraints ensuring that the start node
of each directed edge is above its end node.

Structural layout can also use external graph layout algorithms to find a layout and
determine the style constraints. As an example of this, structural layout with the layered
style uses the Graphviz6 library implementation of the Sugiyama algorithm. This deter-
mines a layer for each object in the network, the ordering of objects on each layer and
a routing for connectors through the layers which minimises crossings. An alignment
placement constraint is generated for each layer and a separation constraint between
each pair of layers keeps them a minimum distance apart and preserves the layer or-
der. Currently, existing placement constraints are initially ignored in this style and only
imposed in the subsequent layout adjustment step.

Style constraints behave like author specified placement constraints. Thus, the author
is free to modify the layout by removing style constraints. Using constraints to model
layout style is one of the reasons Dunnart is very flexible. It means that, unlike most pre-
vious diagramming tools, layout styles are not brittle and the author is free to tailor the
layout style by adding placement constraints to the diagram before calling the structural
layout tool, or by subsequently modifying the placement and style constraints.

4.2 Layout Adjustment

The second kind of automatic layout provided in Dunnart is called layout adjustment.
This supports fine-tuning of the layout and runs continuously during interaction.
Changes made by the layout engine during layout adjustment need to be predictable
and (reasonably) continuous. Consequently, we believe layout adjustment should pre-
serve the topology of the starting layout as far as possible.

We now describe how the layout is updated after the main kinds of user interaction
provided in Dunnart. For most interactions this has two steps. First, find a new feasible
layout satisfying the placement, style and refinement constraints that changes the topol-
ogy of the current layout as little as possible. Second, perform step (3) of the layout
algorithm (Sect. 3) to optimise the layout while preserving its topology. Table 1 gives
details of how the new feasible layout is found for different kinds of user interaction.
We make use of two techniques.

6 Graphviz, AT&T Research, http://www.graphviz.org/

http://www.graphviz.org/


Dunnart: A Constraint-Based Network Diagram Authoring Tool 427

Table 1. Computation of new feasible layout after common kinds of user interaction. Note that
this step is always followed by topology-preserving layout optimisation.

Add graphic object: Node repair followed by edge routing repair.
Delete graphic object: Edge routing repair.
Add connector: Automatically or manually route connector.
Delete connector: Nothing—layout remains feasible.
Add/modify cluster: Node repair followed by edge routing repair.
Delete cluster: Nothing—layout remains feasible.
Cut/Copy (to clipboard): Copy nodes to clipboard and perform edge routing repair. If cutting,
delete graphic objects and connectors.
Paste (from clipboard): Add nodes to canvas and perform node repair. Then perform edge
routing repair (based on connector routing in clipboard for pasted connectors).
Add a placement constraint: Node repair followed by edge routing repair. However, nodes that
have moved too far because of the placement behave as if cut and pasted.
Delete a placement constraint: Nothing—layout remains feasible.

The first is node position repair. This is done using step (1) of the layout algorithm
(Sect. 3) to compute new position for the nodes which satisfies the placement and style
constraints as well as the non-overlap and cluster containment constraints.

The second technique, which we call rubber-banding, is for repairing edge routes.
The issue is that the route may have become invalid because it now passes through a
graphic object or is no longer tight and so should be shortened by straightening and
merging some adjacent segments. As much as possible we want to preserve the current
route. Rubber-banding finds a new edge route by tracing the original connector path—
object corner by object corner—until the destination object is reached. At all stages the
connector acts like a rubber-band, fitting snugly around objects encountered so far on
the route. The rubber-banding implementation uses the connector routing algorithm to
dynamically route from the start object to the current object corner while preserving as

Fig. 3. Manual connec-
tor routing. The author
“threads” the endpoint
of the connector between
the objects to specify the
topological route for the
connector.

much of the previous route as possible. More exactly, the
last vertex in the route is removed from the route whenever
the bend angle around the vertex becomes 180◦ or more,
and routing proceeds from the preceding vertex.

Rubber-banding is also used for manual specification
of connector routes. Connectors are typically created by
specifying their start and end object, in which case auto-
matic connector routing is used to determine a shortest-
path route. However, the author is also free to specify the
topological route of a connector. The author starts from an
object and then threads the connector through the objects
to the destination object with rubber-banding computing
the route to the current cursor location. This is shown in
Fig. 3.

The remaining user interactions are kinds of direct ma-
nipulation of the diagram. A strength of Dunnart is that
the layout engine is fast enough to provide “live” feed-
back during direct manipulation. With live feedback, all objects and connectors in the
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Table 2. Implementation of user actions providing live feedback during manipulation

Dragging objects: Simply add terms to the goal function for each node v being manipulated of
form (yv − yd)2 + (xv − xd)2 where (xd, yd) is the new desired position of node v.
Horizontal resizing of a node: The node to be resized is internally replaced by two artificial
nodes which correspond to the left and right boundary edges of the original node’s bounding
box. Separation constraints couched in terms of these nodes are generated to maintain non-
overlap between the bounding box and the other nodes. The width is changed by dragging the
two artificial nodes to the required width, and updating the appearance of the node.
Vertical resizing of a node: Analogous to horizontal resizing.
Simultaneous vertical and horizontal resizing of a node: Achieved by resizing in small hori-
zontal and vertical increments.
Tuning of goal function: The user can use sliders to change parameters of the goal function,
such as the desired edge length.

diagram have their position and routing updated immediately in response to user ma-
nipulation. Direct manipulation is guaranteed not to change the topology of the layout.
Details of the process—essentially achieved by performing step (3) of the layout algo-
rithm with a modified P -stress goal function—are given in Table 2.

Clearly topology-preservation means that when dragging objects the author cannot
move objects through connectors or other objects, since this changes the topology. This
may make it difficult or impossible for the author to achieve their objective of, say,
snapping an object to an alignment guideline because the alignment guideline keeps
moving away from the object being dragged. For this reason, Dunnart allows the author
to temporarily escape from continuous layout adjustment during object dragging by
depressing a modifier key. This suspends any current layout activity and causes those
objects not being directly manipulated to maintain their current position. The user is
now free to move objects through connectors and other objects or to add or remove an
object from a container shape. This allows the user to quickly and easily modify the
topology of the diagram.

Depressing the modifier key also breaks the selected objects free from placement
and style constraints involving non-selected objects. Dunnart treats this as if the objects
have been cut and pasted into their new location. The only difference is that connec-
tors between the manipulated objects and non-manipulated objects are treated as new,
automatically routed connectors.

4.3 Understanding Constraints

Placement constraints are the primary method for the author to tailor the layout without
having to explicitly position objects. The placement tool sets up a persistent relation-
ship that is maintained in subsequent interaction until the author explicitly removes it
rather than a once-off position adjustment. Dunnart provides standard placement tools:
horizontal and vertical alignment and distribution, horizontal and vertical separation
(sequencing) that keeps objects a minimum distance apart horizontally or vertically
while preserving their relative ordering, and an “anchor” tool that allows the user to fix
the current position of a selected object or set of objects.
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Table 3. Indicative running times on an average (Dual Core 2GHz) PC for various sized randomly
generated directed networks with flow style. For each graph we give the number of nodes and
edges. Note that the number of separation constraints imposing downward edges is |E|. We give
the time to find (a) a feasible layout after adding a new alignment constraint; and (b) the average
rate of layout updates during dragging of a random node and the time for the layout to converge
following the movement.

(a) Feasibility

|V | |E| Feasibility
repair

(seconds)

59 62 0.19
105 117 0.84
156 167 1.96
230 276 5.16

(b) Direct manipulation

|V | |E| Layout Time to
frame rate converge

(frames/sec) (seconds)

59 62 15.83 0.94
105 117 11.72 1.75
156 167 8.59 4.50
230 276 2.21 7.26

Like most constraint-based diagramming tools, there is a graphical representation for
each placement relation in the diagram. A potential usability issue for constraint-based
layout tools that utilise such visual representations is that they clutter the diagram. To re-
duce clutter we have chosen to use an explicit visual representation only for user-created
placement constraints and some style constraints but not for refinement constraints since
the objects themselves and their behaviour during manipulation provide sufficient feed-
back. To further reduce clutter, the visual representation for constraints is by default very
faded, leaving the actual diagram components clearly visible (see Fig. 2).

Another well-known usability issue of constraint-based layout tools is that users can
find it difficult to understand interaction between the constraints. Immediate feedback
during direct manipulation helps this considerably since it allows the author to quickly
notice unexpected interaction between the objects being manipulated and other parts of
the diagram. As a more sophisticated way to understand constraint interaction, Dunnart
also provides a query tool dubbed “Information Mode.” This tool finds the path of con-
straints between two objects and illustrates this to the user by highlighting the relevant
constraint indicators.

The extreme kind of unexpected interaction between constraints is when the author
tries to perform an action which will give rise to inconsistent constraints. For instance:
the author may try to add a downward pointing connector which creates a cycle of down-
ward edges; try to apply a placement tool which gives rise to an inconsistent constraint;
or use the modifier key to move an object to an infeasible position. To allow the author
to understand the problem, Dunnart highlights the placement and style constraints and
objects associated with the subset of separation constraints causing the inconsistency.

5 Performance

One of the most important requirements of Dunnart is that the layout algorithms are fast
enough for interactive layout. Table 3(a) lists for network diagrams of various sizes the
time taken to complete node position and edge routing repair after the addition of a new
alignment constraint. Up to a few seconds are required to layout networks of around
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250 nodes. We have found that the dominating cost of this process is finding the initial
connector routing.

Perhaps more interesting, is the speed of topology-preserving layout adjustment, es-
pecially during direct manipulation. Table 3(b) shows the average number of layout
updates per second while the user drags a random node slowly to the four corners of
the screen and back to the centre. It also shows the time taken for the layout to con-
verge, once the user has stopped dragging the object. As expected, because the layout
optimisation algorithm generally starts from a solution close to the optimal solution
it converges quite quickly, allowing real-time feedback during manipulation of graphs
with up to 100–150 nodes. It is worth noting that layout occurs in separate thread so
that Dunnart is still responsive while layout adjustment is taking place. Furthermore,
layout adjustment typically finds a near optimal solution very rapidly, and the majority
of time is spent moving nodes only very slightly.

6 Conclusion

We have described Dunnart, a new network diagram authoring tool that provides pow-
erful automatic graph layout, yet still allows the user total layout flexibility. Topology
preserving constrained graph layout provides predictable behaviour during editing and
allows the author to use placement constraints to control and improve the layout.

The underlying graph layout engine is fast enough to provide live update of the
layout during direct manipulation for networks with up to 100 nodes. This is more than
sufficient for the kind of diagrams that are typically created with interactive authoring
tools. For larger networks we believe that a combination of fast layout techniques (for
an overview layout) and topology preserving constrained graph layout (for the detailed
view) is the right approach [6].

There are a number of extensions to Dunnart that we intend to investigate. One is
orthogonal connector routing. We want to explore further use of Dunnart in particular
application areas, such as biological networks and concept maps.
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1. Böhringer, K.-F., Paulisch, F.N.: Using constraints to achieve stability in automatic graph
layout algorithms. In: CHI 1990: Proceedings of the SIGCHI conference on Human Factors
in Computing Systems, pp. 43–51. ACM Press, New York (1990)

2. Brandes, U., Wagner, D.: A bayesian paradigm for dynamic graph layout. In: DiBattista, G.
(ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer, Heidelberg (1997)

3. Bridgeman, S.S., Fanto, J., Garg, A., Tamassia, R., Vismara, L.: InteractiveGiotto: An al-
gorithm for interactive orthogonal graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS,
vol. 1353, pp. 303–308. Springer, Heidelberg (1997)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice-Hall, Inc., Englewood Cliffs (1999)

5. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for separa-
tion constraint layout of graphs. IEEE Transactions on Visualization and Computer Graph-
ics 12(5), 821–828 (2006)



Dunnart: A Constraint-Based Network Diagram Authoring Tool 431

6. Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P.J., Woodward, M., Wybrow, M.: Explo-
ration of networks using overview+detail with constraint-based cooperative layout. In: IEEE
Transactions on Visualization and Computer Graphics (InfoVis 2008) (to appear, 2008)

7. Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: GD
2008. LNCS. Springer, Heidelberg (to appear, 2009)

8. Gleicher, M.: Briar: A constraint-based drawing program. In: CHI 1992: Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, pp. 661–662. ACM Press,
New York (1992)

9. He, W., Marriott, K.: Constrained graph layout. Constraints 3, 289–314 (1998)
10. Huang, M.L., Eades, P., Lai, W.: Online visualization and navigation of global web structures.

The International Journal of Software Engineering and Knowledge Engineering 13(1), 27–52
(2003)

11. do Nascimento, H.A.D., Eades, P.: User hints for directed graph drawing. In: Mutzel, P.,
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Abstract. We show that the crossing number of an apex graph, i.e. a graph
G from which only one vertex v has to be removed to make it planar, can
be approximated up to a factor of Δ(G − v) · d(v)/2 by solving the vertex
inserting problem, i.e. inserting a vertex plus incident edges into an optimally
chosen planar embedding of a planar graph. Due to a recently developed
polynomial algorithm for the latter problem, this establishes the first polynomial
fixed-constant approximation algorithm for the crossing number problem of apex
graphs with bounded degree.

Keywords: Crossing number, apex graph, vertex insertion.

1 Edge and Vertex Insertion Problems

We assume that the reader is familiar with the standard notation of terminology of graph
theory, and especially with topological graphs, see [5]. A graph G is called an apex
graph if there is a vertex v such that G − v is planar. The crossing number cr(G) of a
graph G is the minimum number of pairwise edge crossings in a drawing of G in the
plane. Determining the crossing number of a given graph is an NP-complete problem,
and exact crossing numbers are in general extremely difficult to compute.

A common heuristic way of finding a drawing of a graph G with few crossings starts
with a planar subgraph of G, and then re-inserts the remaining edges one by one in a
locally optimal way. The edge insertion problem can be solved to optimality by a linear-
time algorithm [3]. A subsequent result [4] uses that algorithm to give an approximation
of the crossing number of almost planar graphs (i.e. those made planar by removing one
edge) up to a factor of Δ(G) (recently improved to the best possible Δ(G)/2 in [1]).

A natural generalization of the previous results is to consider the problem of inserting
a vertex with a specified neighbourhood into a planar embedding of a graph G, with the
least number of crossings. Although this shows to be a much harder question than that
of edge insertion, a very recent result of [2] reads:

Theorem 1 (Chimani, Gutwenger, Mutzel, and Wolf). The vertex insertion problem
for a planar graph can be optimally solved in polynomial time.

� Supported by the Institute for Theoretical Computer Science ITI, project 1M0545.
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v

Fig. 1. An example of a vertex v insertion instance requiring many crossings, eventhough the
crossing number of the graph is small. The gray regions denote dense subgraphs.

2 Crossing Number Approximation

We can apply Theorem 1 to approximate the crossing number of apex graphs.

Theorem 2. Let G be a graph and v its vertex such that G− v is planar, the maximum
degree in G − v is Δ, and v has degree d in G. Then the vertex insertion problem of v
back into a planar embedding of G − v has a solution with at most d · 'Δ/2( · cr(G)
crossings.

This new result immediately gives us a polynomial approximation algorithm for the
crossing number of an apex graph G up to factor d · 'Δ/2(. On the other hand, it
is possible to construct examples for which optimal solutions to the vertex insertion
problem require up to d ·Δ · cr(G)/4 crossings, cf. Fig. 1.

The idea of the proof is as follows (compare to [4]): Assume Γ is a plane embedding
of the graph G − v achieving optimality in the vertex v insertion problem, Γ ′ is a
crossing-optimal drawing of the graph G, and let F be a minimal edge set such that
Γ ′ − v − F is a plane embedding. Then |F | ≤ cr(G) and the embedding Γ ′ − v − F
can be turned into Γ − F by a sequence of 1- and 2-flips (Whitney flips), which allows
to re-embed the edges F without crossings in G − v. The central argument is that the
number of new crossings introduced on the edges of v is limited by an iteration of the
following claim over all f ∈ F :

Lemma 3. Let H be an apex graph with a vertex v, having a drawing with  crossings
in which H − v is connected and plane embedded. Let an edge f connect vertices of
H − v. If (H − v)+ f is planar, then there is a drawing of H + f with plane embedded
(H − v) + f having at most  + d(v) · 'Δ(H − v)/2( crossings.

In contrast to [4], establishing Theorem 2 using this lemma requires a careful consider-
ation of non-biconnected graphs and the fact that the position of the newly introduced
vertex v is unknown and probably different between Γ and Γ ′.
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1 Why Visualizing Inter-domain Routing Dynamics

The Internet can be represented as a graph of Autonomous Systems (ASes).
Each AS dynamically selects the (AS-)paths to reach destinations on the Inter-
net, according to inter-AS customer-provider relationships. Such relationships
define a hierarchy of all the ASes.

The Internet is renowned to be highly dynamic as AS-paths to any desti-
nation may frequently change (from an old path to a new path). Such AS-path
changes may impact the Internet operation and are usually debugged manu-
ally. Figure 1(a) shows the AS-paths (valid at a specific time) from a set of
ASes to a specific destination, as displayed by BGPlay [2]. After a few seconds
the state of the network can be significantly different. Due to the enormous
amount of AS-path changes occurring in a short time period, it is very dif-
ficult to spot them and, thus, to locate their root causes. Hence, effectively
visualizing an AS-path change can significantly help understand the Internet
dynamics.

(a) (b)

Fig. 1. (a) AS-paths towards a specific destination. Each number represents an AS.
The red node is the destination. (b) An AS-path change displayed by BGPath. Solid
edges belong to the new path, dashed edges belong to the old path.
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2 How-To Visualize Internet Dynamics to Support
Analysis of Network Events

We propose to focus the visualization on a single AS-path change and to display
it on the customer-provider hierarchy, as [6] shows that network events located
at different levels of the hierarchy have usually significantly different impact on
the Internet.

We now describe our algorithm to draw an AS-path change. First, we assign
customer-provider relationships to the links of both old and new AS-paths, and
we direct the links from providers to customers. As shown by [5], we can then
classify ASes of both paths according to the valley-free property as follows:

type 1 : nodes in the “uphill” portion of the old path
type 2 : nodes in the “uphill” portion of the new path
type 3 : nodes in the “downhill” portion of the old path
type 4 : nodes in the “downhill” portion of the new path

We assign vertical coordinates using a topological sort of the graph. We then
compute the horizontal coordinates. Namely, we first split edges spanning over
multiple vertical layers by adding extra nodes and edges. Further, we add extra
edges between nodes on the same layer, from nodes with lower type values to
nodes with higher values. Finally, the topological sort of this augmented graph
provides us with the horizontal coordinates, such that nodes in the new path are
placed right of nodes in the old path, according to the common intuition of time
flowing left-to-right.

In [3,4] we detail how our visualization paradigm supports the analysis of
network events. We also developed a publicly available tool, BGPath [1], which
visualizes a user-specified AS-path change according to the approach described
above and provides useful information to help identify its root cause. Figure 1(b)
shows how BGPath displays a sample AS-path change.
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In today’s business world, there exist multitudinous tools to model processes. For an
automatic layout algorithm for those processes, it is important to take into account cri-
teria like process flow and the semantic of the modeling notation. Most of the existing
tools use standard layout approaches that often produce unsatisfying results since the
calculated drawings are too dense and/or too large. This makes it difficult for users to
understand the underlying process model.

(a) BPMN-graph (b) Swimlanes/Pools

Fig. 1. (a) shows a graph representing a business process. It was drawn by starting with placing
nodes and finally inserting straight-line edges. The different categories of BPMN elements [3]
are represented by graph objects differing in color and shape.

The popular business process modeling notation (BPMN) [3] consists of the follow-
ing categories of elements (see Fig. 1): Flow objects control the flow in a process and
connecting objects are used to connect flow objects. Swimlanes/Pools partition flow ob-
jects into logical units, e.g. departments of a company. Annotations offer the possibility
to add comments to flow and connecting objects.

For the core layout we use the orthogonal layout approach described in [2] that incor-
porates different constraints needed for the automatic layout of activity diagrams which
are related to business process diagrams. The supported constraints include partitions,
clusters as well as a common flow direction of edges which is especially important for
such diagrams. To improve the layout quality we introduce two concepts - connectors
and cuts.

Connectors replace edges by a pair of connector nodes, which are connected to the
corresponding endpoints of the replaced edge (see Fig. 2). Connector nodes belonging
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(a) (b)

Fig. 2. Applying our approach to the BPMN-graph of Fig. 1. (a) shows the result after applying
the core layout (the assignment of nodes to swimlanes is given as input). After inserting connec-
tors and performing a vertical cut we obtain the sub-layouts shown in (b). Note, that the sum of
the area of the resulting subgraphs is considerably smaller and the significant layout properties
(embedding, shape and orientation) are maintained.

to the same edge get the same label to denote their correlation. Connectors offer a way to
reduce the number of unaesthetic edges, i.e. edges with many bends and crossings. We
determine candidates for a replacement by connectors by means of a badness function.
In cases where process models become very complex and cannot easily be overlooked,
it is desirable to split the resulting diagram into smaller pieces. The main objective for
a cut is to split as few edges as possible and to obtain subgraphs of nearly equal size.
We use the dual graph to find an appropriate route for a cut. The resulting subgraphs
are relayouted using the sketch-driven approach described in [1]. It reduces the area of
the drawing without changing the user’s mental map (see Fig. 2).
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Clustering refers to the process of organizing a set of input vectors into clusters based
on similarity defined according to some preset distance measure. In many cases it is
more desirable to simultaneously cluster the dimensions as well as the vectors them-
selves. This special instance of clustering, referred to as biclustering, was introduced
by Hartigan [3]. It has many applications in areas including data mining, pattern recog-
nition, and computational biology. Considerable attention has been devoted to it from
the gene expression data analysis; see [5] for a nice survey. Input is represented in a data
matrix, where the rows and columns of the matrix correspond to genes and conditions
respectively. Each entry in the matrix reflects the expression level of a gene under a cer-
tain condition. From a graph-teoretical perspective the data matrix can be viewed as a
weighted bipartite graph, where the vertex set of one partition is the set of genes and the
vertex set of the other partition is the set of conditions. An existing weighted edge inci-
dent on a gene-condition pair reflects the expression level of the gene under that specific
experimental condition. The biclustering problem may then be described in terms of the
various versions of the biclique extraction problem in bipartite graphs. Many interest-
ing versions that directly apply to the biclustering problem are NP-hard [4]. Various
graph-theoretical approaches employing heuristics have been suggested [1,4,6,7].

One drawback of these approaches is the assumption that the corresponding bipar-
tite graph is unweighted. Of these approaches the one following a direct graph-drawing
approach is [1]. A crossing minimization procedure is applied on the unweighted bi-
partite graph resulting from preprocessing the original input data matrix. Our approach
is similar in essence. However we do not have a discretization/normalization step to
convert the weighted bipartite graph into an unweighted one as this would cause some
data loss and produce erroneous output. Instead we apply crossing minimization di-
rectly on the original weighted graph. Various efficient crossing minimization heuris-
tics have been shown to work well on weighted bipartite graphs and a 3-approximation
algorithm has been suggested [2]. Our algorithm consists mainly of three steps. Ini-
tial placement phase applies a two-sided crossing minimization on the weighted graph
until there is no change on the node orders. To do this we employ algorithm 3-WOLF
of [2] (one-sided crossing minimization procedure) repeatedly, each time alternating the
fixed layer. We have verified that if the input data is noise-free then this initial place-
ment is usually enough to identify bicliques and extract the biclusters. Adaptive Noise
Hiding phase removes the weighted edges in the graph that correspond to noise in the
original input data. Sliding a window around the primeter of each node pair, where
(i ± 1, j), (i, j ± 1), (i ± 1, j ± 1) constitutes the perimeter of a pair (i, j), we check
whether the window satisfies a threshold density in terms of the number of nonzero
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Fig. 1. Assumed noise is 0.05. (a) Initial artificial design with 15 biclusters of K12,12; (b) Without
noise removal; (c) Our complete algorithm; (d) Matlab Bioinformatics Box

weight edges. If it does not, the pairs on the perimeter are considered suspicious. Once
sliding is finished we find the most suspicious weight and remove all the suspicious
pairs with that weight. We adaptively apply our two-sided crossing minimization pro-
cedure on the new graph and continue noise hiding after incrementing the threshold
density. The removal of the suspicious edges and the crossings couple each other in
terms of noise removal. Each time the partitions of the graph are reordered to reduce
crossings, new suspicious pairs are created. Once the noise removal phase is over, we
finally gather the biclusters by applying a procedure similar to the one described in [1].
Details of the algorithm are left for the final paper. We note that different from previ-
ous approaches we directly apply weighted crossing minimization on the original input
data, not to lose possibly important data that can not be considered noise. Secondly our
application of the crossing minimization is two-folds. Besides providing a good initial
placement, crossing minimization is also used to handle noise removal. Our prelimi-
nary experiments provided better results than the clustergram function of the Matlab
Bioinformatics Box. Figure 1 provides a sample visualization from our initial tests.
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1 Introduction and Problem Definition

Biology contains a wealth of network data, such as metabolic, transcription, signaling
and protein-protein interaction networks. Our research currently focuses on metabolic
networks, although similar ideas may be applied to other biological networks.
Metabolic networks consist of the chemical compounds and reactions necessary to sup-
port life. Traditionally, series of successive metabolic reactions have been organized
into simple metabolic pathways and manually drawn. However, as we move into the
era of systems biology, it is becoming apparent that automated ways of processing and
visualizing metabolic networks must be developed.

Our main goal is to create helpful visualizations of a large number of small metabolic
networks or paths for biological researchers. This is a distinct problem from previous
work on visualizing large metabolic networks and single pathways [1,2,3,4,5]. As a
concrete example, a common query is to find all of the paths between two chemicals
in the network. Using a methodology we developed, we find 27,912 paths of length
13 from L-2-aminoadipate to L-lysine in KEGG. The number of paths quickly scales
with length; there are 693,943 paths of length 15 between the same two compounds.
Displaying a list of all of these pathways or merging all of these pathways together
produces an unsatisfactory visualization.

2 Approach and Results

While merging all of the pathways together produces a poor visualization for biological
researchers, it does reveal that the main variation between the pathways is the reac-
tions, not the compounds. Therefore, we investigated clustering the results. We define a
distance measure based on the similarity of the chemical compounds in the pathways:
|c(X)⊕c(Y )|
|c(X)|+|c(Y )| , where c(X) and c(Y ) are the set of chemical compounds in path X and
Y . Using this distance measure, we cluster using a simple leader algorithm. This algo-
rithm builds a list of the paths in random order, then selects the first path and designates
it a cluster center. It then iterates over the remaining paths. If the next path is less than
a predetermined maximum distance from a cluster center, it is added to the nearest
cluster. Otherwise, it is designated as a new cluster center. This algorithm is fast and
does not require knowledge of the number of clusters. While it is a localized algorithm,
it can be run multiple times and the clusters can be compared to see how consistent
they are.
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For our example data consisting of 27,912 paths of length 13 from L-2-aminoadipate
to L-lysine this method appears to work relatively well. At a distance cutoff of 0 we get
81 clusters ranging in size from 8 to 140 nodes. At a distance cutoff of 0.2 we get 35
clusters ranging in size from 8 to 146. Visualizing these clusters using Cytoscape pro-
duce qualitatively decent results. However, further investigation of distance measures
and clustering technique will likely be needed for larger or more dissimilar result sets.

3 Discussion

We demonstrate that simple clustering methods can help reveal the structure of the data
and create simpler, more useful visualizations. In addition to information obtained from
clustering the results, there is a wealth of external biological information that can assist
and enrich the visualization. In order to be fully useful, the display should enable the
user to interact with the results. We have begun work on a Cytoscape plugin which
should enable interactive features. We hope to combine these ideas together to create
useful visualizations of many small metabolic networks or pathways. However, many
open questions remain to be investigated on visualizing biological pathway data.
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Abstract. We give an overview of a drawing approach that combines the
concepts constraint satisfaction, attribute evaluation and transformation. The ap-
proach is tailored to an editor for visual languages, which supports structured
editing as well as free-hand editing. In this paper, we focus on the visual spec-
ification of such a layout algorithm. As a running example, deterministic finite
automata are used.

1 Visual Specification

When implementing an editor for a visual language, a challenging task is layout. The
drawing approach should produce a good-looking result and should support the user.
Additionally, the layout specification should be very easy. In the following, we intro-
duce an approach that aims to achieve these concurrent goals.

Implementation. The approach was implemented and tested in DIAMETA [1], an editor
generation framework. Figure 1(a) shows a DIAMETA editor for DFA’s.

Aspects. The approach supports structured editing as well as free-hand editing. Struc-
tured editors offer the user some operations that transform correct diagrams into (other)
correct diagrams. Free-hand editors allow to arrange diagram components from a lan-
guage-specific set on the screen without any restrictions, thus giving the user more
freedom.

The approach is best suited for layout refinement, which starts with an initial layout
and performs minor changes to improve it while still preserving the “mental map” [2]
of the original layout.
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Fig. 1. (a) Editor for DFA’s. (b) Visual Rule.
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Fig. 2. Transitions (Editor, Rule (HGM))

Algorithm. We have introduced a dynamic layout algorithm, which combines the con-
cepts constraint satisfaction and attribute evaluation [1]. This approach provides us with
all we need for layout refinement. To simplify layout specification, we combined graph
transformation with this dynamic drawing approach. With the approach, layout speci-
fication may be done on the abstract or on the concrete syntax level of a diagram lan-
guage. In DIAMETA, this means changing an EMF model (abstract syntax level) or a
hypergraph (concrete syntax level). Up to now, the layout specification is textual. To
allow a more intuitive description of layout, we introduce a visual language for layout
specification.

Example. We demonstrate our approach by specifying a rather simple layout for DFA’s.
Generally, a layout algorithm consists of a set of rules that modify the hypergraph. Each
rule either changes attributes or the structure of the hypergraph. From this set, the draw-
ing facility is generated and automatically included in the editor. The layout algorithm
may be triggered manually (click “Apply Sugiyama”, Fig. 1(a)) or automatically.

Figure 2 shows a sample layouting rule that modifies attributes. Similarly, also rules
that change the structure of the graph may be specified. On the left side, a DFA before
and after applying rules that update the attributes xStart, yStart, xEnd and yEnd of
the arrow t is shown. On the right side, the rule that is responsible for updating these
attributes is presented. The rule checks for two states connected by a transition, if the
arrow exactly starts and ends at the borderline of the circle. If this is not the case,
the attributes are updated. Figure 1(b) shows this rule specified visually. An editor for
specifying rules visually is automatically generated.

Conclusion. In this paper, we gave an overview of a drawing approach that supports
structured editing as well as free-hand editing. It is possible to specify the layout algo-
rithm visually. With this approach, an environment was created that allows us to conduct
experiments easily and to identify the “best” layouting strategy.
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1 Introduction

An upward topological book embedding of a planar st-digraph G is an upward
planar drawing of G such that its vertices are aligned along the vertical line,
called the spine, and each edge is represented as a simple Jordan curve which is
divided by the intersections with the spine (spine crossings) into segments such
that any two consecutive segments are located at opposite sides of the spine.
When we treat the problem of obtaining an upward topological book embedding
as an optimization problem, we are naturally interested in embeddings with the
minimum possible number of spine crossing.

We define the problem of HP-completion with crossing minimization problem
(for short, HPCCM ) as follows: Given an embedded planar graph G = (V, E),
directed or undirected, one non-negative integer c, and two vertices s, t ∈ V ,
the HPCCM problem asks whether there exists a superset E′ containing E and
a drawing Γ (G′) of graph G′ = (V, E′) such that (i) G′ has a hamiltonian path
from vertex s to vertex t, (ii) Γ (G′) has at most c edge crossings, and (iii) Γ (G′)
preserves the embedded planar graph G. When the input digraph G is acyclic, we
can insist on HP-completion sets which leave the HP-completed digraph G′ also
acyclic. We refer to this version of the problem as the Acyclic-HPCCM problem.

2 Results

A detailed presentation of our results (including technical proofs) is available
as a Technical Report through arXiv [1]. The following theorem establishes the
equivalence between the Acyclic-HPCCM problem and the problem of spine
crossing minimization in upward topological book embedding for st-digraphs.

Theorem 1. Let G = (V, E) be an n node st-digraph. G has a crossing-optimal
HP-completion set Ec with Hamiltonian path P = (s = v1, v2, . . . , vn = t) such
that the corresponding optimal drawing Γ (G′) of G′ = (V, E∪Ec) has c crossings
if and only if G has an optimal (wrt the number of spine crossings) upward
topological book embedding with c spine crossings where the vertices appear on
the spine in the order Π = (s = v1, v2, . . . , vn = t).

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 445–446, 2009.
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Fig. 1. Example of the construction of an optimal topological book embedding

For an outerplanar triangulated st-digraph G, we define the st-polygon decom-
position of G and, based on the decomposition’s properties, we develop a linear-
time dynamic programming algorithm that solves the Acyclic-HPCCM problem
with at most one crossing per edge. This is summarized in the following theorem.

Theorem 2. Given an n node outerplanar triangulated st-digraph G, a
crossing-optimal HP-completion set for G with at most one crossing per edge
can be computed in O(n) time. ��

Our main result follows from the Theorems 1&2:

Theorem 3. Given an n node outerplanar triangulated st-digraph G, an upward
topological book embedding for G with minimum number of spine crossings and
at most one spine crossing per edge can be computed in O(n) time. ��

Figure 1.a shows an upward planar st-digraph G that is not hamiltonian. In
Figure 1.b graph G is augmented by the edges of an optimal HP-completion set
(bold dashed edges) produced by our algorithm. The created Hamiltonian path
is drawn with bold edges. By splitting the crossing edges we obtain graph Gc.
Figure 1.c shows an upward topological book embedding of Gc with its vertices
placed on the spine in the order they appear on a hamiltonian path of Gc.
The edges appearing on the left (resp. right) side of the Hamiltonian path (as
traveling from s to t) are placed on the left (resp. right) half-plane. Figure 1.d
shows the optimal upward topological book embedding of G created from the
drawing in Figure 1.c by deleting c1, c2, c3, c4 and merging the split edges of G.
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1 Introduction

The Adobe technology platform including Adobe c© Flex c© [2] and Adobe AIRTM

[3] deliver portability, high performance and rich graphical UI to internet and
desktop applications. ILOG Elixir [1] enhances this platform by adding advanced
data visualization displays. It includes ready-to-use schedule displays, map dis-
plays, dials, gauges, 3D and radar charts, treemap charts and organization charts.
ILOG Elixir is completely integrated with Adobe Flex Builder and fully supports
Adobe Flexs data-binding and event models.

Fig. 1. Sample Applications of ILOG Elixir
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2 Highlights

Some of the display components are traditional business displays: The charts
components display data series in radial or linear manner, optionally with a 3D
look. The maps component is suitable for the cartography domain. It allows to
import the ESRI Shapefile format, to style the display and to display arbitrary
symbols on top of the map. These symbols can be charts, gauges, dials or cus-
tom components. The treemap can display large hierarchical data sets for the
purpose of detecting data trends and outliers. Treemaps combine data clustering
algorithms with advanced rendering techniques to help users identify clusters of
particularly significant data. For example, a treemap can be used to depict the
health of the global economy with visual attributes tied to a countrys size and
gross domestic product (GDP).

Directly related to graph layout technology is the organization chart compo-
nent. It depicts the interrelationships between people, equipment, or functions.
It contains an intelligent tree layout algorithm specialized for this business do-
main that places the nodes in top-down or tip-over style while optimizing the
available space. The component allows zooming, partial views, and dynamic level
of details. When changing the partial view or the level of detail, the layout algo-
rithm automatically reorganizes the diagram incrementally to adapt to the new
situation.

Furthermore, all ILOG Elixir components display labels and use intelligent
label decluttering algorithms to avoid overlaps of labels and to increase the read-
ability of the display. No generic label layout algorithm can be used. Instead,
specilialized labeling technology is integrated into the rendering mechanism of
the different displays. For instance, the treemap chart allows various label place-
ment options including an automatic visibility control of labels, that is, an op-
timization algorithm that decides which labels must be displayed depending on
the situation.
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Abstract. DAGmap view is a program written in Java that draws di-
rected acyclic graphs using space filling techniques. In DAGmap view
the layout function and the hierarchy presentation function have been
decomposed to improve the stability of the layout during navigation and
zooming.

1 Description

Among the many alternative ways to visualize a tree, space filling visualiza-
tions, such as treemaps, have become very popular due to their efficiency, their
scalability, and their easiness of navigation and user interaction [1]. Recently,
we investigated space filling visualizations for hierarchies that are modeled by
Directed Acyclic Graphs (DAG) and we defined the constraints for such a visu-
alization [2].

DAGmap view is a program written in Java that draws specific classes of
DAGs, such as Two Terminal Series Parallel digraphs (TTSP), layered planar
st-graphs and trees, using space filling techniques (Fig. 1). Additionally, it im-
plements the vertex duplication heuristic and allows the user to specify a set of
vertices to be duplicated. The tool has implemented many novel ideas such as
drawing of vertices and of edges of a DAG, separate layout and hierarchy presen-
tation functions, zooming without changing the size of the nesting borders and
keeping the layout of the rectangles constant during zooming and navigation.

The two main functions of DAGmap are the layout and the hierarchy presen-
tation functions. The layout function assigns rectangles to vertices and edges of
a DAG G while the hierarchy presentation function illustrates the structure of
a hierarchy using a number of techniques including the cushion, the nested, and
the cascaded presentations. In DAGmap view we implemented nested presenta-
tion and we plan to implement cascaded and cushion presentations in the next
release of the program.

In treemaps, nesting is trivial and is done along with the layout. The drawing
rectangle Ru of a node u is shrunk and the resulting rectangle R′

u is located in-
side Ru. Then the border Ru \R′

u is used for displaying information concerning
u and R′

u is used for drawing the children of u. And this procedure is repeated
recursively. In DAGmaps, layout and nesting should better be implemented as
two separate functions. First, the layout function assigns rectangles to vertices

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 449–450, 2009.
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Fig. 1. Example of a TTSP digraph DAGmap drawing using the squarified layout

all
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cell part cellular component organization 
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Fig. 2. In this example a subgraph of the Gene Ontology (GO) DAG is drawn. The
color refers to the relationship between two GO terms. We use white color for is a
relationship and light brown color for part of relationship. The term “cell part” is a
“cellular component” and part of “cell”.

and/or to edges of a DAG G, in case that such an assignment is possible. Then
the nesting function shrinks the rectangles proportionally to their longest path
distance from the sources, in order to reveal the hierarchy structure. Decom-
posing the nesting from the layout greatly facilitates the implementation of the
layout algorithm although slightly complicates the implementation of the nesting
algorithm.
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Abstract. Brain Network Analyzer is an application, written in Java,
that displays and analyzes synchronization networks from brain signals.
The program implements a number of network indices and visualization
techniques. The program has been used to analyze networks produced
by electroencephalogram data of alcoholic and control patients.

1 Introduction

One of the major issues in neuroscience is to describe how different brain ar-
eas communicate with each other during perception, cognition, action as well as
during spontaneous activity in the default or resting state. Data acquired using
noninvasive techniques [like functional magnetic resonance imaging (fMRI); elec-
troencephalography (EEG); magnetoencephalography (MEG)] may be used to
estimate functional connectivity, which is defined as the statistical dependence
between the activations of distinct and often well separated neuronal popula-
tions. Network models provide a common framework for describing functional
connectivity. However defining what nodes and edges should be is a challenging
problem. Network nodes can easily be identified with fMRI data but the depen-
dence between nodes can be measured only for low frequencies (< 0.2 Hz) due
to the limited time resolution of fMRI. On the other hand the time resolution
of EEG/MEG is excellent but the mapping from generators in the brain to the
sensors on the scalp is complex and the topology of a network in sensors space is
different from the topology in generators space [1]. To identify generators from
EEG/MEG data one has to solve the inverse problem which is ill posed and sen-
sitive to noise. In the following we assume that connectivity networks associated
with EEG/MEG data have been defined as adjacency matrices.

2 Program Presentation

Brain Network Analyzer is a program that visualizes and analyzes functional
connectivity networks as well as connectivity networks at sensors space. The in-
put consists of a series of adjacency matrices Wn, n = 1, 2, . . . , T . To improve the
signal to noise ratio the user may use hard or soft thresholds. Using hard thresh-
olds each matrix Wn is transformed into a binary matrix with entries in {0, 1}.

I.G. Tollis and M. Patrignani (Eds.): GD 2008, LNCS 5417, pp. 451–452, 2009.
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Fig. 1. Synchronization network and topographic map are calculated at sensors space
from EEG data. Network indices and multidimensional scaling windows are also shown.

Soft thresholds, such as the power function f(w) = wβ , are functions from [0, 1]
to [0, 1]. Entry Wn(i, j) is a measure of how similar (or synchronous) is the dy-
namics of node j to the dynamics of node i. To turn this similarity measure into
a dissimilarity (or distance) measure we use the transformation d(w) = −log(w).
Distance measures are needed for calculating multi-dimensional scaling and dis-
playing, in the plane, nodes with similar functionality close together (see Fig. 1).
In the program’s menu there are options to visualize raw signals, potential maps,
scalp topographies, and networks where node coordinates are defined either by
the position of the generators in the brain or the sensors on the scalp or by an
algorithm that groups functionally similar nodes. The user may also produce
video with the evolution of networks during a cognitive task.

Finally, most of network indices, that appeared in complex networks literature,
have been implemented. Using this program we found differences in clustering
coefficient indices among the alcoholic and control subjects beta band (13-30
Hz) networks at sensors space [2].
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Abstract. This report describes the 15th Annual Graph Drawing Contest, held
in conjunction with the 2008 Graph Drawing Symposium in Heraklion, Crete,
Greece. The purpose of the contest is to monitor and challenge the current state
of graph-drawing technology.

1 Introduction

This year’s Graph Drawing Contest had five distinct categories: four special graph cat-
egories, and the Graph Drawing Challenge. The special graph categories provided four
real world graphs from different application domains: a mystery graph, a graph from
electric engineering, a graph from social sciences, and a biological network. The mys-
tery graph had 71 nodes and 145 directed and labeled edges and represents a series of
social or cultural events. The task was to determine which events are represented by this
graph and to create a drawing of its logical structure. For the remaining categories, the
task was to provide a visualization typical for the corresponding domain. The Graph
Drawing Challenge, which took place during the conference, focused on minimizing
the number of crossings of upward grid drawings of graphs with edge bends. We re-
ceived 18 submissions: 7 for the four special graph categories, and 11 for the Graph
Drawing Challenge. Unfortunately, we did not receive any submissions for the biolog-
ical network, which represented the mTOR signalling pathways with 90 entities, 54
interactions and 85 inclusions.

2 Mystery Graph

Honoring this year’s conference location (Greece), the mystery graph represents the
torch relay routes of all Olympic Summer and Winter Games. The nodes are countries,
and the edges are labeled with the year of the games when the torch traveled from one
country to the next. The data was collected from Wikipedia [5], but the order of the
nodes and edges was randomized. All three teams that submitted a drawing found the
correct solution.
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Fig. 1. First place, Mystery Graph: Olympic Torch Relay Routes (original in color)

Since the nodes represent countries, we received two submissions that depicted the
graph on top of a geographic map. However, the judges felt that this did not illustrate
the logical structure of the graph clear enough. The winning submission by Yifan Hu
and Emden Gansner (Fig. 1) does not use geographic locations. Instead it places the
”Greece” node (the starting point of all torch relay routes) in the middle and groups the
other country nodes around it. The different years of the routes are displayed by colors
on the edges. The initial layout of this submission used the sfdp code in a developmental
version of GraphViz[1]. It was then hand-tuned and fed through a spline routine.

3 Graph from Electrical Engineering

This electrical network represents the architecture of the FR500 VLIW processor. The
graph data is inspired by a diagram published in [4]. The original diagram (Fig. 2)
contains a mix of directed and undirected edges, but the contest graph is simplified
(directions are removed, multi-edges are collapsed, an auxiliary node is introduced to
detangle multi-edges). The resulting data consists of 35 deeply nested nodes and 48
undirected edges. The task was to produce a fully automatic drawing without manual
tuning.

There were three submissions for the electric diagram. One submission was an
energy-based compound straight-line drawing, and another submission used a 3D lay-
out of the graph. The winning submission by Melanie Badent and Pietro Palladino used
orthogonal edges with bends, which fits well for diagrams in the electrical application
domain. The drawing (Fig. 3) was obtained by implementing a module Orthogonal-
GroupLayouter for the freely available graph editor YEd [6]. This new module is
based on the topology-shape-metrics approach with three phases (planar embedding
with the introduction of dummy nodes for crossings, calculating the edge shapes using
bends, and finding the metrics for the shapes to obtain the final coordinates).
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Fig. 2. FR500 VLIW processor, Original Diagram

Fig. 3. First place, FR500 VLIW processor
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4 Graph from Social Sciences

The graph represents the supervisory board relationships between companies and top
managers and union officers in Germany. The graph is bipartite with two kinds of
nodes:

– Some nodes represent the top 25 publicly traded German companies and the three
biggest employee unions.

– The remaining nodes represent persons: the top union officers and the top managers
in German business.

There are 3 kinds of directed edges:

– Edges from a person to a company: this person serves in the supervisory board of
the company.

– Red edges from a company to a person: this person is employed by that company
or employee union.

– Gray edges from a company to a person: this person was recently employed by that
company.

The graph can be used to analyze the interest dependencies of companies. If a person
is employed by a company and sits in the supervisory board of another company, the
supervised company is partially controlled by the employing company. If a person was
formerly employed, the situation is however less clear: in some cases, a former CEO

Fig. 4. First place, Supervisory Board Dependencies (original in color)
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moved into the supervisory board simply to free the space for a new CEO but still kept
strong ties to that company. In other cases, a former CEO parted completely from a
company (e.g., got fired) and now acts on own interests.

The first prize was awarded to the only submission in this category by Yifan Hu
and Emden Gansner (Fig. 4). They use a color coding on the nodes and edges. The
company label size is proportional to the market capitalization of that company. The
layout is obtained using the sfdp code of GraphViz without hand-tuning.

5 Graph Drawing Challenge

This year’s challenge dealt with minimizing the number of crossings of upward grid
drawings of graphs with edge bends. This is a subproblem of the popular layered lay-
out technique by Sugiyama e.a. [3] which is known to be NP-hard. It requires that all
nodes be placed on grid positions, that nodes and edge bends don’t overlaps, and that
all edge segments point strictly upwards. At the start of the one-hour on-site compe-
tition, the contestants were given six nonplanar, acyclic, directed graphs with a legal
upward layout that however had a huge number of crossings. The goal was to re-
arrange the layout to reduce the number of crossings. Only the number of crossings
was judged; other aesthetic criteria such as the number of edge bends or the area were
ignored.

We partitioned the challenge into two subcategories: automated and manual. The
seven manual teams solved the problems by hand using ILOG’s Simple Graph Editing
Tool provided by the committee. They received graphs ranging in size from 19 nodes /
32 edges to 148 nodes / 200 edges. The four automated teams were allowed to use their
own sophisticated software tools with specialized algorithms for the problem. They re-
ceived graphs ranging in size from 24 nodes / 46 edges to 993 nodes / 1383 edges. Both
subcategories were judged independently by summing up the scores of each graph. The
score of a graph was determined by dividing the crossing number of the best submission
by the crossing number of the current submission (hence, the best submission receives
1 point and the other submissions receive a fraction of 1).

The winner in the manual subcategory was the team of University Konstanz (Melanie
Badent, Martin Mader, Christian Pich). They had the best manual result for 3 graphs and
obtained an overall score of 4.6. The other manual teams obtained scores between 2 and
4.2. The winner in the automated subcategory was the team of TU Dortmund (Hoi-Ming
Wong, Markus Chimani, Karsten Klein) using software based on a recently published
algorithm [2]. They had the best automated result for all 6 graphs, hence obtaining the
maximum possible score of 6 points.

Some graphs used in both subcategories were constructed in a way so that the optimal
crossing number was known. While some automated and manual teams reached the
optimal crossing number for the smaller graphs, the optimal crossing number for larger
graphs was neither reached by any manual nor by any automated team. However, the
automated teams usually obtained better results than the teams that solved the challenge
manually. Figure 5 shows the optimal result of a graph with 99 nodes/157 edges (4
crossings) and the corresponding best results of the manual teams (100 crossings) and
of the automated teams (15 crossings).
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(a) (b) (c)

Fig. 5. Challenge graph with 99 nodes / 157 edges: (a) the optimal solution: 4 crossings, (b) the
best manually obtained result by team Konstanz: 100 crossings, (c) the best automated result by
team Dortmund: 15 crossings
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