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Abstract. Circles are frequently used for modelling the growth of par-
ticle aggregates through the Johnson-Mehl tessellation, that is a special
instance of the Voronoi diagram of circles. Voronoi diagrams allow one
to answer proximity queries after locating a query point in the Voronoi
zone it belongs to. The dual graph of the Voronoi diagram is called the
Delaunay graph. In this paper, we first show a necessary and sufficient
condition of connectivity of the Voronoi diagram of circles. Then, we
show how the Delaunay graph of circles (the dual graph of the Voronoi
diagram of circles) can be computed exactly, and in a much simpler
way, by computing the eigenvalues of a two by two matrix. Finally, we
present how the Voronoi diagram of circles can be used to model the
growth of particle aggregates. We use the Poisson point process in the
Voronoi diagram of circles to generate the Johnson-Mehl tesselation. The
Johnson-Mehl model is a Poisson Voronoi growth model, in which nuclei
are generated asynchronously using a Poisson point process, and grow
at the same radial speed. Growth models produce spatial patterns as a
result of simple growth processes and their visualization is important in
many technical processes.

Keywords: Voronoi diagram of circles, Visualization of nucleation and
growth of particles, Johnson-Mehl tessellations, growth models.

1 Introduction

The proximity queries among circles could be effectively answered if the Delau-
nay graph for sets of circles could be computed in an efficient and exact way.
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This would require the embedding of the Delaunay graph and the location of
the query point in that embedded graph. The embedded Delaunay graph and
the Voronoi diagram are dual subdivisions of space, which can be stored in a
quad-edge data structure [GS85]. The original contribution of this paper is a nec-
essary and sufficient condition of connectivity of the Voronoi diagram of circles,
an exact and much simpler algorithm for the Delaunay graph of circles (the dual
graph of the Voronoi diagram of circles, with no assumption on the disjointness
of circle sites), and its application to the visualization of the growth of particles.

The first and most explored Voronoi diagram is the Voronoi diagram for
a set of points [Vor07, Vor08, Vor10] in the Euclidean plane or in the three-
dimensional Euclidean space (see Figure 1). Voronoi diagrams have been gener-
alised in many different ways including by modifying the space in which they
are embedded (see [Auren87, OBSC01] for a general survey of Voronoi dia-
grams): higher dimensional Euclidean spaces, non Euclidean geometries (e.g.
Laguerre geometry, hyperbolic geometry, etc.). Fewer generalisations of Voronoi
diagrams correspond to extending the possible sites from points to circles, i.e.,
the additively weighted Voronoi diagram (see Figure 2) [AMG98b, AMG98a]
and the Voronoi diagram for circles (set of sites comprising circles, see Figure 3)
[KKS01b, KKS01a, KKS00]. The definition of the weighted Voronoi diagram
differs from the definition of the ordinary one in that the Euclidean distance is
replaced by a weighted distance. In the case of the additively weighted Voronoi
diagram, the weighted distance between a point and a generator is the Euclid-
ean distance minus the weight of the generator, but since it must be a distance,
it has to be always positive or zero, and thus the additively weighted distance
is not defined in the interior of the weight circles (circles centred on a genera-
tor and of radius the weight of the generator). The additively weighted Voronoi
diagram has been extensively studied by Ash and Bolker [AB86] and Aurenham-
mer [Auren88] under the name of hyperbolic Dirichlet tessellations and Power
Voronoi diagrams, but till [AMG98b] and [AMG98a], there was no dynamic algo-
rithm for constructing the additively weighted Voronoi diagram. This work solves
the robustness issue in the work of Anton, Mioc and Gold [AMG98b, AMG98a]
and extends it to the Voronoi diagram of circles. This robustness fix and exten-
sion are achieved by providing an exact conflict locator.

The exact computation of the additively weighted Voronoi diagram has not
been addressed until Anton et al. [ABMY02]. That paper addressed the exact
predicate for the off-line construction of the dual graph of the additively weighted
Voronoi diagram from the dual of the Power Voronoi diagram of spheres by using
the relationship between the additively weighted Voronoi diagram in the plane
and the Power Voronoi diagram1 of spheres in the three-dimensional space. In
their independent work, Karavelas and Emiris [KE02, EK06, KE03] provided
several exact predicates of maximum degree 16 for achieving the same “in-cir-
cle/orientation/edge-conflict-type/difference of radii” test as we do in a single

1 The Power Voronoi diagram is a generalised Voronoi diagram where sites are hyper-
spheres and the distance between a point and a site is the power of that point with
respect to that site [Auren87].
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Fig. 1. The ordinary Voronoi diagram (plain lines) of points (squares), and its topology
expressed by the Delaunay triangulation (dashed lines)

conflict locator presented in this paper. They reduced the degree of their predi-
cate from 28 to 20 and then to 16 using Sturm sequences and invariants. Their
work is more limited in scope than ours, because they compute the additively
weighted Voronoi diagram (or Appolonius diagram) rather than the Voronoi
diagram of circles, and they assume the circles never intersect (they mention
this assumption could be lifted, but they provide no justification), and they
also assume no three circles can have a common tangent, or equivalently, no
empty circle has infinite radius. The difference between the additively weighted
Voronoi diagram (or Appolonius diagram) and the Voronoi diagram of circles is
that the additively weighted Voronoi diagram (or Appolonius diagram) is based
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on a distance that is not defined in the interior of the (weight) circles, while
the Voronoi diagram of circles is based on a distance that is defined everywhere.
Thus, there can not be a point of the additively weighted Voronoi diagram in
the interior of a circle, because its distance to the enclosing circle is not defined.
Thus intersecting circles are not permitted and circles contained in other circles
are not permitted either. Indeed, a point of the Voronoi diagram in the interior
of the enclosing circle would not have a defined distance to the enclosing circle.
The approach adopted in [KE02, EK06, KE03] is also more complex than ours,
because they compute exactly not only the Delaunay graph, but also the addi-
tively weighted Voronoi diagram, which unlike they state, is not required in the
applications. Only the exact computation of the Delaunay graph of circles is re-
quired for practical applications, because the Delaunay graph gives the topology
of circles. Finally, our approach is much simpler, because we obtain the output
of the predicate (in fact a Delaunay graph conflict loctor) by computing the sign
of the eigenvalues of a simple two by two matrix.

In this paper, we also provide an application of the Voronoi diagram of circles
to the visualisation of the growth of particle aggregates, which justifies the moti-
vation for not only computing the additively weighted Voronoi (or Appolonius)
diagram, but also the Voronoi diagram of circles. A comprehensive overview of
the Delaunay and Voronoi methods for non-crystalline structures was provided
by Medvedev [Med00], and Anishchik and Medvedev [AM95] were the first ones
in 1995 to provide the solution of Appolonius problem for sphere packing in
three dimensions. The application of the additively weighted Voronoi diagram
to visualization of the growth of particle aggregates is based on particle statis-
tics. Particle statistics play an important role in many technical processes (in the
industrial production of materials where the phase transition from liquid to solid
is a part of the technical process, for example production of metals and ceramic
materials) [Stoya98], material science, plant ecology, and spatial analysis. Due to
the lack of efficient algorithms for their visualization only the “set-theoretic ap-
proach in particle statistics” [Stoya98] has been used as a method of visualization
of spatial growth processes in the past.

Growth models produce spatial patterns as a result of simple growth processes
operating with respect to a set of n points (nucleation sites), P = {p1, p2, ...pn} at
positions x1, x2, ..., xn, respectively in R

m or a bounded region of R
m (m = 2, 3).

The growth processes such as agglomeration, aggregation, packing, etc. lead in
a natural way to the Poisson Voronoi tessellation [OBSC01], [Stoya98] and to
the Johnson-Mehl tessellation when the members of the generator set P are not
contemporaneous [OBSC01].

The Johnson-Mehl model has been introduced in [JM39] for modelling the
growth of particle aggregates. The Johnson-Mehl model is a Poisson Voronoi
growth model, in which nuclei are generated asynchronously using a Poisson
point process [OBSC01], and grow at the same radial speed v. Each generator
Pi = (−→pi , ti) has both a planar location (its position vector) and an associated
birth time ti (ti ≥ 0). The Johnson-Mehl tessellation can be considered as a
generalisation of a dynamic version of an additively weighted Voronoi diagram
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Fig. 2. An additively weighted Voronoi diagram, its dual graph and the empty circum-
circles

[AMG98a], in which the weight reflects the arrival time of the point in R
2

[OBSC01]. However, since when nuclei start to touch as they grow, the Johnson-
Mehl tessellation might have intersecting nuclei, and edges that correspong to
loci of centres of circles internally tangent to two weight circles. In that case,
the additively weighted distance would not be well defined, because it would be
negative. In that case, the distance used is the distance corresponding to the
Voronoi diagram of circles. Thus, the Johnson-Mehl tessellation differs from the
Voronoi diagram of circles in that only bisectors that are loci of circles that
are either externally tangent to 2 circles or internally tangent to 2 circles are
boundaries of Johnson-Mehl cells.

This paper is organised as follows. In Section 2, we present the definitions of
the (generalised) Voronoi diagram of a set of sites and its dual Delaunay graph
of a set of sites, and the Delaunay graph conflict locator. In Section 3, we pro-
vide necessary and sufficient conditions for construction of the Delaunay graph
of circles and for connectivity of the Voronoi diagram of circles. In Section 4, we
present the Delaunay graph conflict locator, both in the case of the additively
weighted Voronoi diagram, and the Voronoi diagram of circles. In Section 5, we
present the application of the Voronoi diagram to the modelling and the visual-
isation of the growth of particle aggregates. Finally, we present the conclusions
and future work in Section 6.

2 Preliminaries

Voronoi diagrams are irregular tessellations of the space, where space is contin-
uous and structured by discrete objects [AK00, OBSC01]. The Voronoi diagram



The Voronoi Diagram of Circles 25

Fig. 3. The Voronoi diagram, the Delaunay graph and the empty circumcircles of
circles. The circles hide the edges of the Delaunay graph between intersecting circles
and the empty circles corresponding to intersecting circles.

[Vor07, Vor08, Vor10] (see Figure 1) of a set of sites is a decomposition of the
space into proximal regions (one for each site). Sites were points for the first his-
torical Voronoi diagrams [Vor07, Vor08, Vor10], but in this paper we will explore
sets of circles. The proximal region corresponding to one site (i.e. its Voronoi
region) is the set of points of the space that are closer to that site than to any
other site of the set of sites [OBSC01]. We will recall now the formal definitions
of the Voronoi diagram and of the Delaunay graph. For this purpose, we need
to recall some basic definitions.

Definition 1. (Metric) Let M be an arbitrary set. A metric on M is a mapping
d : M × M → R+ such that for any elements a, b, and c of M , the following
conditions are fulfilled: d (a, b) = 0 ⇔ a = b, d (a, b) = d (b, a), and d (a, c) ≤
d (a, b) + d (b, c). (M, d) is then called a metric space, and d (a, b) is the distance
between a and b.

Remark 2. The Euclidean space R
N with the Euclidean distance δ is a metric

space
(
R

N , δ
)
.

Let M = R
N , and δ denote a distance between points. Let S = {s1, ..., sm} ⊂

M, m ≥ 2 be a set of m different subsets of M , which we call sites . The distance
between a point x and a site si ⊂ M is defined as d (x, si) = infy∈si {δ (x, y)}.

Definition 3. (Bisector) For si, sj ∈ S, si �= sj , the bisector B (si, sj) of si with
respect to sj is: B (si, sj) = {x ∈ M |d (x, si) = d (x, sj)} (see Figure 4).

Definition 4. (Influence zone) For si, sj ∈ S, si �= sj , the influence zone
D (si, sj) of si with respect to sj is: D (si, sj) = {x ∈ M |d (x, si) < d (x, sj)}
(see Figure 5).
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Fig. 4. The bisector (parabola) of a point and a line segment

Fig. 5. The influence zone (hashed) of a point with respect to a line

Definition 5. (Voronoi region) The Voronoi region V (si, S) of si ∈ S with
respect to the set S is: V (si, S) =

⋂
sj∈S,sj �=si

D (si, sj).

Definition 6. (Voronoi diagram) The Voronoi diagram of S is the union V (S)=⋃
si∈S ∂V (si, S) of all region boundaries (see example on Figure 3).

Definition 7. (Delaunay graph) The Delaunay graph DG (S) of S is the dual
graph of V (S) defined as follows:

– the set of vertices of DG (S) is S,
– for each (N − 1)−dimensional facet of V (S) that belongs to the common

boundary of V (si, S) and of V (sj , S) with si, sj ∈ S and si �= sj , there is
an edge of DG (S) between si and sj and reciprocally, and

– for each vertex of V (S) that belongs to the common boundary of V (si1 , S)
,. . . ,V

(
siN+2, S

)
, with ∀k ∈ {1, ..., N + 2} , sik

∈ S all distinct, there exists
a complete graph KN+2 between the sik

, and reciprocally (see example on
Figure 3).
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The one-dimensional elements of the Voronoi diagram are called Voronoi edges.
The points of intersection of the Voronoi edges are called Voronoi vertices. The
Voronoi vertices are points that have at least N + 1 nearest neighbours among
the sites of S. In the plane, the Voronoi diagram forms a network of vertices and
edges. In the plane, when sites are points in general position, the Delaunay graph
is a triangulation known as the Delaunay triangulation. In the plane, the Delaunay
graph satisfies the following empty circle criterion: no site intersects the interior
of the circles touching (tangent to without intersecting the interior of) the sites
that are the vertices of any triangle of the Delaunay graph.

Once the Voronoi region a query point belongs to has been identified, it is easy
to answer proximity queries. The closest site from the query point is the site whose
Voronoi region is the Voronoi region that has been identified. The Voronoi diagram
defines a neighbourhood relationship among sites: two sites are neighbours if, and
only if, their Voronoi regions are adjacent, or alternatively, there exists an edge
between them in the Delaunay graph.

The exact computation of the Delaunay graph is important for two reasons.
By exact computation, we mean a computation whose output is correct. First,
unlike the Voronoi diagram, the Delaunay graph is a discrete structure, and thus
it does not lend itself to approximations. Second, the inaccurate computation of
this Delaunay graph can induce inconsistencies within this graph (see Section
4.2), which may cause a program that updates this graph to crash. This is
particularly true for the randomised incremental algorithm for the construction
of the Voronoi diagram of circles. In order to maintain the Delaunay graph
after each addition of a site, we need to detect the Delaunay triangles that are
not empty any longer, and we need to detect which new triangles formed with
the new site are empty, and thus valid. In the reminder, sites are generators of
the Voronoi diagram or the Delaunay graph, while points are any location in
the plane unless specified otherwise. The algorithm that certifies whether the
triangle of the Delaunay graph whose vertices are 3 given sites is empty (i.e.
does not contain any point of a given site in its interior) or not empty is used for
checking which old triangles are not empty any longer and which new triangles
formed with the new site are empty, and thus valid. This algorithm is called the
“Delaunay graph conflict locator” in the reminder of this paper.

When the old triangles are checked, its input is a 4-tuple of sites, where
the first three sites define an old triangle, and the fourth site is the new site
being inserted. When the new triangles are checked, its input is also a 4-tuple
of sites, where the first three sites define a new triangle, the first two sites being
linked by an existing Delaunay edge, and the fourth site forms an old Delaunay
triangle with the first two sites. Its output is the list of all the Voronoi vertices
corresponding to the 1−dimensional facets of the Delaunay graph having the
first 3 sites as vertices whose circumcircles contain a point of the fourth site in
their interior, and a value that certifies the presence of each Voronoi vertex in
that list. The fact that a circumcircle (the circle that is externally tangent to
three given circles) is not empty is equivalent to the triangle formed by those
three circles being not Delaunay, and this is called a conflict. Thus, it justifies
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the name of “Delaunay graph conflict locator”. In the context of the ordinary
Voronoi diagram of points in the plane, the concept that is analogous to the
Delaunay graph conflict locator is the Delaunay graph predicate, which certifies
whether a triangle of the Delaunay triangulation is such that its circumcircle
does not contain a given point.

The exact knowledge of the Delaunay graph for curved objects may sound like
a purely theoretical knowledge that is not central in practical applications. This
is not always the case in some applications. These applications include material
science, metallography, spatial analyses and VLSI layout. The Johnson-Mehl tes-
sellations (which generalise several weighted Voronoi diagrams) [OBSC01] play
a central role in the Kolmogorov-Johnson-Mehl-Avrami [JM39, Kol37] nucle-
ation and growth kinetics theory. The Kolmogorov theory provides an exact
description of the kinetics during the heating and cooling processes in mater-
ial science (the Kolmogorov equation [JM39, Kol37]). The exact knowledge of
the neighbourliness among molecules is central to the prediction of the forma-
tion of particle aggregates. In metallography, the analysis of precipitate sizes in
aluminium alloys through Transmission Electronic Microscopy [Des03, Section
1.2.2] provides an exact measurement of the cross sections of these precipitates
when they are “rodes” with a fixed number of orientations [Des03, Section 1.2.2].
In VLSI design, the second order Voronoi diagram of the layout is used in the
computation of the critical area, a measure of a circuit layout’s sensitivity to spot
defects [CPX02, Section 1]. An important concern on critical area computation
is robustness [CPX02, Section 1].

Another limitation of approximative algorithms for the computation of the
Delaunay graph is that when approximate computations are performed on ob-
jects defined approximately (within some geometric tolerance), the propagation
of the errors can be critical, especially if the final computation involves approx-
imate intermediary computations.

Finally, the exact computation of the Delaunay graph participates to the
recent move in the development of numerical and simulation software as well as
computer algebra systems to exact systems [BCSS98].

3 The Necessary and Sufficient Conditions of
Construction of the Delaunay Graph of Circles and of
Connectivity of the Voronoi Diagram of Circles

In this section, we will examine how the Delaunay graph conflict locator can be
used to maintain the Voronoi diagram of circles in the plane as those circles are
introduced one by one. Finally, we will give a necessary and sufficient condition
for the connectivity of the Voronoi diagram of circles in the projective plane
that has a direct application in the representation of spatial data at different
resolutions.

Knowing the Voronoi diagram V (S) of a set S={s1, . . . , sm} ⊂ R
2 of at least

two circles (m > 1) and its embedded Delaunay graph DG (S) stored in a quad-
edge data structure, we would like to get the Voronoi diagram V (S ∪ {sm+1}),
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where sm+1 is a circle of R
2. In all this section, we will say that a circle C touches

a circle si if, and only if, C is tangent to si and no point of si is contained in the
interior of C.

The Voronoi edges and vertices of V (S) may or may not be present in
V (S ∪ {sm+1}). Each new Voronoi vertex w induced by the addition of sm+1
necessarily belongs to two Voronoi edges of V (S), because two of the three
closest sites to w necessarily belong to S. The new Voronoi edges induced
by the addition of sm+1 will clearly connect Voronoi vertices of V (S) to new
Voronoi vertices induced by the addition of sm+1 or new Voronoi vertices between
themselves.

Any of these later Voronoi edges e′ must be incident to one of the former
Voronoi edges at each extremity of e′ (because the Voronoi vertex at each ex-
tremity of e′ belongs to only one new Voronoi edge, i.e. e′). Any of the former
Voronoi edges e must be a subset of a Voronoi edge of V (S), since e must be a
new Voronoi edge between sites of S (otherwise the Voronoi vertex belonging to
V (S) at one of the extremities of e by the definition of e would be a new Voronoi
vertex). Thus, to get V (S ∪ {sm+1}), we need to know which Voronoi vertices
and edges of V (S) will not be present in V (S ∪ {sm+1}), which Voronoi edges
of V (S) will be shortened in V (S ∪ {sm+1}) and which new Voronoi edges will
connect new Voronoi vertices between themselves.

We can test whether each Voronoi vertex v of V (S) will be present in
V (S ∪ {sm+1}). Let us suppose that v is a Voronoi vertex of si, sj and sk.
v will remain in V (S ∪ {sm+1}) if, and only if, no point of sm+1 is contained
in the interior of the circle centred on v that touches si, sj and sk. This is a
sub-problem of the Delaunay graph conflict locator that can be tested by giving
si, sj , sk and sm+1 as input to the Delaunay graph conflict locator, and then
retain only the solutions where the Voronoi vertex is v.

We can test whether each Voronoi edge e of V (S) will be present in
V (S ∪ {sm+1}). Let us suppose that e is a locus of points having si and sj

as closest sites. e will disappear entirely from V (S ∪ {sm+1}) if, and only if, a
point of sm+1 is contained in the interior of each circle centred on e and touching
si, sj and each common neighbour sk to si and sj in DG (S) in turn. This can
be tested by giving si, sj , sk and sm+1 as input to the Delaunay graph conflict
locator and then retaining only the solutions where the Voronoi vertex belongs
to e. e will be shortened (possibly inducing one or more new Voronoi edges) in
V (S ∪ {sm+1}) if, and only if, there exists Voronoi vertices of si, sj and sm+1
on e and there is no point of any common neighbour sk to si and sj in DG (S)
in the interior of a circle centred on e and touching si, sj and sm+1. The centre
of each one of such circles will be a new Voronoi vertex in V (S ∪ {sm+1}). This
can be tested by giving si, sj , sm+1 and sk as input to the Delaunay graph
conflict locator and then retaining only the solutions where the Voronoi vertex
belongs to e.

The Delaunay graph conflict locator is sufficient to maintain the Voronoi
diagram of circles. Tests might be limited to edges and vertices on the boundaries
of the Voronoi regions V (si, S) , si ∈ S that intersect sm+1 and of the Voronoi
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regions V (sj, S) , sj ∈ S adjacent to a Voronoi region V (si, S). Indeed, a point
(and thus a circle) can steal its Voronoi region only from the Voronoi region it
belongs to and the adjacent Voronoi regions.

We will finish this section with a necessary and sufficient condition for the
connectivity of the Voronoi diagram of connected circles in the projective plane.
This result allows the characterisation of dangling edges in the Delaunay graph
corresponding to the presence of closed edges in the Voronoi diagram. In order to
proceed, let us recall some notations used in point set topology: let s denote the
closure of s, and

◦
s denote the interior of s in the sense of the point set topology

in R
2. Note that if s bounds a closed domain then the interior of s is meant to

be the interior of the closed domain bounded by s.

Proposition 8. (Connectivity of the Voronoi diagram in the plane) The Voronoi
diagram V (S) of a set S = {s1, . . . , sm} ⊂ R

2 of at least two connected circles
(m > 1) considered in P

2 is not connected if, and only if, there exist a subset
I of [1, . . . , m] and one index j of [1, . . . , m] such that ∀i ∈ I, si ⊂ ◦

sj and ∀k ∈
[1, . . . , m] \ I, si ∩ sk = sj ∩ sk = ∅.

Proof. If: Assume there exist a subset I of [1, . . . , m] and one index j of [1, . . . , m]
such that ∀i ∈ I, si ⊂ ◦

sj and ∀k ∈ [1, . . . , m] \ I, si ∩ sk = sj ∩ sk = ∅. Let sl ∈ S
with l ∈ [1, . . . , m] \ I. Let S =

⋃
i∈I si. Since S ⊂ ◦

sj , any circle touching both
a si, i ∈ I and sj must be contained in sj . Since S ∩ sl = sj ∩ sl = ∅, no circle
can touch each of an si, i ∈ I, sj and sl. Thus, there is no point that has a
si, i ∈ I, sj and sl as nearest neighbours. Thus, there is no Voronoi vertex of a
si, i ∈ I, sj and sl. Since there is no Voronoi vertex of a si, i ∈ I, sj and an sl

with l ∈ [1, . . . , m] \ I, there are no Voronoi vertices on the bisector of S and
sj . Since S ∩ sl = S ∩ sl = ∅, any circle centred on the bisector of S and sj and
touching both S and sj does not intersect any site sk with k ∈ [1, . . . , m] \ I.
Thus, the bisector of S and sj is contained in V (S). Since sj is connected and
S ⊂ ◦

sj, the bisector of S and sj is a closed curve. Thus, the Voronoi diagram of
S is not connected in P

2.
Only if: Assume the Voronoi diagram of S is not connected in P

2. Then,
V (S) has at least two connected components. Thus, at least one of these con-
nected components does not have points at infinity. Let us consider the connected
component (let us call it C1) that does not have points at infinity. Since C1 is
composed of Voronoi edges2, each edge in C1 must end at either a Voronoi vertex
or a point at infinity. Since C1 does not have any point at infinity, all Voronoi
edges in C1 connect Voronoi vertices. Thus C1 is a network of vertices and edges
linking those vertices. The regions that this network defines are Voronoi regions.
Let D be the union of the closure of those Voronoi regions. D is a closed set by
its definition. Let us consider now the circles sl, l ∈ L whose Voronoi regions are
contained in D. Let S =

⋃
l∈L sl. Thus S is a union of circles.

2 A one-dimensional component of the Voronoi diagram, which is also the locus of
points having two nearest sites.
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Fig. 6. The relative position with respect to the bisector must be constant

We will now consider S as a site instead of each one of the sl, l ∈ L. The
influence zone of S =

⋃
l∈L sl is clearly

◦
D, because the influence zone of a union

of circles is clearly the closure of the union of the Voronoi regions of those circles.
Let e = ∂D. It is a portion of the bisector of S and another circle. Let us call
it sj. If not all the bisector of S and sj was contained in V (S), then e would
end at Voronoi vertices (a point on the Voronoi diagram has at least two closest
sites) or the point at infinity, a contradiction with e not being connected. Thus,
the bisector of S and of sj is contained in V (S), and it is equal to e. By the
definition of e, e must be a closed curve. Assume the positions of S and sj with
respect to e are not always the same. Then, S and sj must intersect. The bisector
of S and sj must have two branches near the intersection points (see Figure 6).
Since e is a closed curve and S is contained in the interior of e, sj must be closed,
and the other branches must be unbounded (a contradiction with e not being
connected in P

2). Thus, the positions of S and sj with respect to e are always
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the same along e. Since sj is connected, S is contained in the interior of e and
the positions of S and sj with respect to e are always the same along e, S ⊂ ◦

sj .
Since e is the bisector of S and sj and belongs to V (S), any circle centred on e
and touching both S and sj does not intersect any site sk with k ∈ [1, . . . , m]\I.
Thus, ∀k ∈ [1, . . . , m] \ I, si ∩ sk = sj ∩ sk = ∅.

The only cases of disconnected (considered in P
2) Voronoi diagrams correspond

to one or more sites (circles) contained in the interior of another site. This
property has a direct application in Geographic Information Systems. When
the same region R bounded by a circle S is represented at different scales, the
representation of the details inside R does not change the Voronoi diagram
outside R. The edges of the Delaunay graph corresponding to a disconnected
Voronoi diagram (considered in P

2) are respectively dangling edges or cut edges
(the Delaunay graph is not bi-connected and removing a cut edge induces two
connected components). It is possible to detect if there exists one or more sites
si, i ∈ I contained in the interior of another site sj by checking that there exists
no Voronoi vertex of si, sj and any sk ∈ S distinct from si and sj . This is again
a subproblem of the Delaunay graph conflict locator.

4 The Exact Symbolic Delaunay Graph Conflict Locator
for Circles

We will first present the exact symbolic Delaunay graph conflict locator for
additively weighted points when weighted points are introduced one by one, and
then introduce what changes for circles. For this purpose, we will present some
preliminaries about additively weighted Voronoi diagrams.

4.1 Preliminaries

Let N be the set of integers, R be the set of real numbers, and R
2 be the Euclidean

plane. Let P = {P1, ..., PN} be the set of generators or sites, where Pi is the
weighted point located at pi ∈ R

2 and of weight wi ∈ R. Let Ci be the circle
centred at pi and of radius wi, which we call weight circle hereafter.

The definitions of bisector, influence zone, Voronoi region and Voronoi dia-
gram presented in Section 2 generalise to the case where the set of sites S is a
set of weighted points P , and the distance d (M, Pi) (called additive distance)
between a point M and a site Pi is d (M, Pi) = δ (M, pi) − wi, where δ is the
Euclidean distance between points.

The Voronoi region of Pi with respect to the set P is defined by: V (Pi, P) ={
M ∈ R

2|∀j �= i : δ (M, pi) − wi < δ (M, pj) − wj

}
.

The Additively Weighted Voronoi diagram of P is defined by:

V (P) =
⋃

Pi∈P ∂V (Pi, P). The additively weighted Voronoi diagram is illus-
trated in Figure 7: the weight circles are drawn as plain disks with small holes
at their centres, the additively weighted Voronoi diagram is drawn in plain thick
hyperbola segments, and the Delaunay graph is drawn in dashed lines.
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Fig. 7. The additively weighted Voronoi diagram

The additively weighted Voronoi diagram defines a network composed of edges
(loci of points having two nearest neighbours), and vertices (loci of points having
three nearest neighbours).

The additively weighted Voronoi diagram is related to the Apollonius Tenth
problem. The Apollonius Tenth problem is to find a circle Γ tangent to three
given circles C1, C2, C3 (see Figure 8). For additively weighted points, we will
see later in this section that only the circles that are either externally tangent to
each of three given circles C1, C2, C3 or internally tangent to each of C1, C2, C3,
are relevant to the Delaunay graph conflict locator. The centres of the circles that
are solutions to the Apollonius Tenth problem are the first example encountered
in this paper of generalised Voronoi vertices (a concept that we introduced in
[Anton04]). Informally, generalised Voronoi vertices are the centres of circles
tangent to N + 1 sites, where N is the dimension of the Euclidean space.

Hereafter we will call the solutions of the Apollonius Tenth problem Apollonius
circles. The centres of the Apollonius circles that are either externally tangent
to each of three given circles C1, C2, C3 or internally tangent to each of C1,
C2, C3 are the first example encountered in this paper of true Voronoi vertices
(i.e. centres of circles that touch N + 1 sites where N is the dimension of the
Euclidean space).

4.2 The Delaunay Graph Conflict Locator for Additively Weighted
Points

In this subsection, we present an exact algebraic conflict locator for the De-
launay graph of additively weighted points (i.e. the dual graph of the additively
weighted Voronoi diagram). The maximum degree of the polynomials which need
to be evaluated to compute this Delaunay conflict locator is 16 (thus, we say
that the degree of the conflict locator is 16). This Delaunay graph conflict lo-
cator would be the core of a randomised incremental algorithm for constructing
the additively weighted Voronoi diagram since the additively weighted Voronoi
diagram is an abstract Voronoi diagram [Kle89], and thus, it can be constructed
with the randomised incremental algorithm of Klein [Kle89].
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Fig. 8. The Apollonius Tenth problem

The motivation for an exact conflict locator lies in the fact that without an
exact computation of the Delaunay graph of additively weighted points, some
geometric and topologic inconsistencies may appear. This is illustrated with
an example. The starting configuration is shown on Figure 9. There are three
weighted points (whose corresponding weight circles are drawn). The Delaunay
graph is drawn in dashed lines. The Apollonius circles tangent to the weight
circles have been drawn in dotted lines. The real configuration after addition of
a fourth weighted point is shown on Figure 10. The configuration that might
have been computed by an approximate algorithm is shown on Figure 11: the
difference between real and perceived situations has been exaggerated to show
the difference. The old Apollonius circles have been adequately perceived to
be invalid with respect to the newly inserted weighted point. About the new
Voronoi vertices, while on the right of the figure two new Voronoi vertices have
been identified as valid with respect to their potential neighbours, on the left of
the figure, only one Voronoi vertex has been identified as being valid with respect
to its potential neighbours. While the new Voronoi edge between the middle and
bottom weighted points can be drawn between the two new Voronoi vertices of
the new, middle and bottom weighted points; the Voronoi edge between the top
and new weighted points cannot be drawn, because there is no valid Voronoi
vertex on the left. There is an inconsistency within the topology: there is one
new Voronoi vertex (the Voronoi vertex of the top new and middle weighted
points) that cannot be linked by a new Voronoi edge to any other new Voronoi
vertex and thus, that Voronoi vertex is incident to only two Voronoi edges.
This additively weighted Voronoi diagram might have been computed by an
approximative algorithm that is not an additively weighted Voronoi diagram.
Thus, even if we perturbate the input weighted points, we will never get this
additively weighted Voronoi diagram.

We consider the maintenance of the Delaunay graph of additively weighted
points in an incremental way: we check the validity of all the triangles of the
Delaunay graph whose vertices are P1, P2, P3 with respect to a newly inserted
weighted point P4 [AKM02] or the validity of all the triangles of the Delaunay
graph whose vertices are P1, P2, where the edge between P1 and P2 exists in
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Fig. 9. The starting configuration

the Delaunay graph, and the newly inserted weight point P3 with respect to
an existing point P4. Thus, the input of the conflict locator is constituted by
four points: the first three are supposed to define a triangle in the Delaunay
graph, and the last one is the tested point. Let (xi, yi) be the coordinates of pi,
for i = 1, 2, 3, 4. There are two possible outcomes to the above test of validity:
either the triangles are valid with respect to the fourth weighted point and the
triangles must appear in the Delaunay graph, or one or two triangles are not valid
with respect to the fourth weighted point and those triangles will not be present
in the Delaunay graph. We can see an example of the later case in Figure 12.
A triangle having P1P2P3 as vertices is not valid with respect to the weighted
point P4, because the circle externally tangent to both the weight circles C1, C2
and C3 (of weighted points C1, C2 and C3) contains a point of the weight circle
C4 (of the weighted point P4). Thus, it must not appear in the Delaunay graph.

When the old triangles are checked, the conflict locator consists of determining
which of the additively weighted Voronoi vertices of P1, P2 and P3 will not
remain after the insertion of P4. When the new triangles are checked, the conflict
locator consists of determining which new Voronoi vertices of weighted points
P1, P2 and the newly inserted weighted point P3 will appear, where P1P2 is an
old Delaunay edge. When the new triangles are checked, this conflict locator
tests the new triangle P1P2P4 with respect to any point P4 such that P1P2P4 is
an old Delaunay triangle. In both cases, the Delaunay graph conflict locator is
equivalent in turn to the additive distance from which of the additively weighted
Voronoi vertices of P1, P2 and P3 to P4 is smaller than the additive distance of
that Voronoi vertex to P1 (or P2 or P3 (see Figure 12).
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Fig. 10. The real configuration after addition of the fourth weighted point (bold weight
circle)

Any additively weighted Voronoi vertex I of P1, P2, and P3 with coordinates
(x, y) can be obtained algebraically by computing the common intersection of
the three circles C′

1, C′
2 and C′

3 expanding (see Figure 13), or shrinking (see
Figure 14) from the three first circles C1, C2 and C3 all at the same rate. The
common signed expansion of the first three circles is denoted by r. Each circle
C′′ centred on (x, y) and of radius r is either externally tangent to the first three
circles (if the expansion r is positive) or internally tangent to the first three
circles (if the expansion r is negative).

The centres coordinates x, y and radii r of the circles C′′ centred on the
intersections I = C′

1 ∩ C′
2 ∩ C′

3 and either externally or internally tangent to
each of C1, C2, and C3 can be computed algebraically as the solutions of the
following system of three quadratic equations in the variables x, y and r:

⎧
⎨

⎩

c′1 (x, y, r) = (x − x1)
2 + (y − y1)

2 − (w1 + r)2 = 0
c′2 (x, y, r) = (x − x2)

2 + (y − y2)
2 − (w2 + r)2 = 0

c′3 (x, y, r) = (x − x3)
2 + (y − y3)

2 − (w3 + r)2 = 0

Subtracting one of the equations (say c′1 (x, y, r) = 0) from the remaining
two (c′2 (x, y, r) = 0 and c′3 (x, y, r) = 0) results in a system of 2 linear equations,
from which x and y may be expressed as linear functions of r. Substitution in the
first equation c′1 (x, y, r) = 0 then leads to a quadratic equation in r. This means
that the unknown quantities x, y, r can be expressed with quadratic radicals as
functions of the given centres and radii.
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VertexNo vertex

Fig. 11. The configuration computed by an approximate algorithm

Though the simplest thing to do now would be to compute the two Voronoi
vertices and use their computed coordinates and corresponding signed expansion
in the computation of the values certifying the output of the Delaunay graph
conflict locator, it is not desirable because this method would not guarantee the
topology of the Voronoi diagram of circles, nor its generalisation to conics or
higher degree algebraic curves. We will detail hereafter only the computation of
the values certifying the presence of Voronoi vertices in the output list.

To get the exact Delaunay graph conflict locator in a more elegant and general-
isable way, we evaluated the values certifying the conflict locator output without
relying on the computation of the Voronoi vertices as an intermediary computa-
tion. This is done by evaluating the values taken by the polynomial function ex-
pressing the relative position of C4 with respect to C′′ on the set of solutions of
the system (i.e. the common zeroes of the three polynomials c′1, c

′
2 and c′3). This

is possible due to the translation that exists between geometry and algebra.
More specifically, to the geometric set X of the set of common zeroes of the

three polynomials c′1, c
′
2 and c′3 in K3, where K is an algebraically closed field

[Lan02, Definition before Theorem 1, Section 2, Chapter VII], we can associate
the set of all polynomials vanishing on the points of X , i.e., the set of polyno-
mials f1c

′
1 + f2c

′
2 + f3c

′
3 where the fi, i = 1, 2, 3 are polynomials in the three

variables x, y, r with coefficients in K. This set is the ideal [GP02, Definition
1.3.1] 〈c′1, c′2, c′3〉. The set of polynomials with coefficients in K, forms with the
addition and the multiplication of polynomials, a ring: the ring of polynomials
[GP02, Definition 1.1.3]. A polynomial function g (x, y, r) on K3 is mapped to
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Fig. 12. The Delaunay graph conflict locator for the additively weighted Voronoi dia-
gram: only the weight circles Ci or the weighted points Pi for i = 1, ..., 4 are shown. Up:
there is only one Voronoi vertex to check; down: there are two Voronoi vertices to check.

a polynomial function on X if we recursively subtract from g any polynomial
in g belonging to 〈c′1, c′2, c′3〉 until no monomial in g can be divided by each one
of the lexicographically highest monomials in c′1, c

′
2 and c′3. The result of this

mapping gives a canonic representative of the remainder of the Euclidean di-
vision of the polynomial g by the polynomials c′1, c

′
2 and c′3. The image of the

ring of polynomials by this mapping is called the quotient algebra [Lan02, Sec-
tion 3, Chapter II] of the ring of polynomials by the ideal 〈c′1, c′2, c′3〉. Moreover,
〈c′1, c′2 − c′1, c

′
3 − c′1〉=〈c′1, c′2, c′3〉. Finally, if we recursively subtract from g any

polynomial in g belonging to 〈c′1, c′2 − c′1, c′3 − c′1〉 till the only monomials in g
are 1 and r, we get the same result as the preceding mapping. The polynomials
c′1, c

′
2 − c′1, c

′
3 − c′1 constitute what is called a Gröbner basis [GP02, Definition

1.6.1] of the ideal 〈c′1, c′2, c′3〉.
Gröbner bases are used in Computational Algebraic Geometry in order to

compute a canonic representative of the remainder of the division of one polyno-
mial by several polynomials generating a given ideal I. This canonic representa-
tive belongs to the quotient algebra of the ring of polynomials by the ideal I. The
Gröbner basis for this system provides a set of polynomials that define uniquely
the algebraic relationships between variables for the solutions of the system.
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Fig. 13. The additively weighted Voronoi vertex as the common intersection of three
expanding circles

C3
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Fig. 14. The additively weighted Voronoi vertex as the common intersection of three
shrinking circles

The initial (largest with respect to some monomial order [CLO98]) monomials
of each one of the polynomials of the Gröbner basis form an ideal. The mono-
mials that do not pertain to this ideal form a basis for the representatives of
the equivalence class of the remainders of the division of a polynomial by the
polynomials of the system in the quotient algebra. These monomials are called
standard monomials. For the above Gröbner basis, the standard monomials are
1 and r. The size of this basis equals the dimension [GP02, see definition on
page 414] of the quotient algebra and the number of solutions of the system
counted with their multiplicity [Lan02]. In the case of the conflict locator for the
additively weighted Voronoi diagram, there are two solutions.

The polynomial g = (x4 − x)2 + (y4 − y)2 − (r + r4)
2 expresses the relative

position of C4 with respect to C′′. Indeed C′′ is tangent to C4 if, and only if,
the Euclidean distance between the centres of C′′ and of C4 (i.e., (x, y) and p4)
equals the sum of the radii r and r4, i.e. (x4 − x)2+(y4 − y)2−(r + r4)

2 = 0. The
open balls bounded by C′′ and C4 intersect if, and only if, the Euclidean distance
between the centres of C′′ and of C4 is smaller than the sum of the radii r and
r4, i.e. (x4 − x)2+(y4 − y)2−(r + r4)

2
< 0. The circles C′′ and C4 are disjoint if,



40 F. Anton, D. Mioc, and C. Gold

and only if, the Euclidean distance between the centres of C′′ and of C4 is greater
than the sum of the radii r and r4, i.e. (x4 − x)2 +(y4 − y)2 − (r + r4)

2
> 0. We

considered the operation of multiplication of polynomials by the polynomial g.
This multiplication operator is a linear mapping. The operation of this mapping
on the canonic representative of the reminder of the division of a polynomial by
c′1, c

′
2 and c′3 is also a linear mapping that can be expressed by a matrix since

the quotient algebra has a finite dimension.

First, we compute the matrix Mg =
(

m00 m01
m10 m11

)
of the following multiplica-

tion operator on the quotient algebra:
mg : [f ] −→ [gf ].

The eigenvalues of Mg are the values of g taken on X (see Theorem 4.5, page
54 in [CLO98]). The eigenvalues of Mg are the solutions of det (Mg − λI) = 0,
where I denotes the 2 × 2 identity matrix, i.e. the roots of

λ2 − λ (m00 + m11) + (m00m11) − (m01m10) = 0 (4.1)

The values certifying the presence of Voronoi vertices in the list output by
the Delaunay graph conflict locator are the signs of the values taken by g, and
they are determined by the sign of the roots of Equation 4.1 (which are the
eigenvalues of Mg). If there is only one eigenvalue and it is 0 then the fourth
circle is tangent to the circle externally tangent to the first three circles. The sign
of Δ (where Δ = (m00 + m11)

2 − 4 (m00m01 − m01m10) ) cannot be negative
when the first three sites of the input correspond to a Delaunay triangle, because
this would be equivalent to the fact there would be no triangle with vertices C1,
C2 and C3 in the old Delaunay graph (because of the absence of real Voronoi
vertex, see Figure 15). Thus, if sign (Δ) is negative that means we have one circle
contained in another circle, and then we just need to link them by a Delaunay
edge. Otherwise, sign (Δ) is 0 or positive, and we have to evaluate the sign of
the roots of the quadratic equation.

When there is only one double root of Equation 4.1 then we have the following
two possibilities. Either the value of the root of Equation 4.1 is positive or 0

C2

C1

C3

Fig. 15. There is no such triangle in the old Delaunay graph because of the absence of
a real Voronoi vertex
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and the triangle will exist in the new Delaunay graph, or the value of the root
of Equation 4.1 is negative and the triangle will not exist in the new Delaunay
graph (see Figure 12). When there are two real roots of Equation 4.1, we have two
triangles to consider (see Figure 16). The triangles that correspond to the roots
with a negative value will disappear in the new Delaunay graph (see Figure 16).

+
2

4

r4

+

r
r1

+
C

2C

1

C3

C

Fig. 16. Two triangles can possibly disappear simultaneously by the addition of a
single weighted point

There is not much interest in showing the elements of the matrix of the multi-
plication operator here, but the Macaulay 2 [GS] code is presented in Appendix 1.
The exact algebraic computation of the Delaunay graph conflict locator we have
presented in the previous paragraph is not generalisable to the other proper
conics or higher degree algebraic curves. Indeed, the size of the multiplication
operator matrix is greater than 4 for the other proper conics and for higher
degree algebraic curves, and an algebraic equation of degree 5 or more is not
necessarily solvable by radicals (see [BB96, Theorem 8.4.8]). Even if we can
obtain the matrix of the multiplication operator symbolically, we will need nu-
merical methods for computing the eigenvalues of that matrix, which give the
answer to the Delaunay graph conflict locator.

We will now present the Delaunay graph conflict locator for circles, empha-
sising the changes with respect to the Delaunay graph of additively weighted
points presented in this subsection.

4.3 The Delaunay Graph Conflict Locator for Circles

Let C = {C1, ..., CN} be the set of generators or sites, with all the Ci being
circles in R

2. Let pi be the centre of Ci and ri be the radius of Ci.
The definitions of bisector, influence zone, Voronoi region and Voronoi dia-

gram presented in Chapter 2 generalise to the case where the set of sites S is
a set of circles C, and the distance d (M, Ci) between a point M and a site Ci

is the Euclidean distance between M and the closest point on Ci from M , i.e.
d (M, Ci) = |δ (M, pi)−ri|, where δ is the Euclidean distance between points. Ob-
serve that assuming Ci is centred on pi and ri = wi for i = 1, .., N , this distance
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3C1

C2

C

Fig. 17. Seven Apollonius circles centres that are true Voronoi vertices (first case)

is the absolute value of the additive distance used in the previous subsection.
The Voronoi region of Ci with respect to the set C is thus defined by:

V (Ci, C) =
{
M ∈ R

2|∀j �= i : |δ (M, pi) − ri| < |δ (M, pj) − rj |
}
.

The Voronoi diagram of C is defined by: V (C) =
⋃

Ci∈C ∂V (Ci, C).
In the previous subsection, we observed that two Apollonius circles centres

are true Voronoi vertices of the additively weighted Voronoi diagram (the circles
that are either externally or internally tangent to three given circles). When the
sites are circles, up to seven of the eight Apollonius circles may be relevant to
the Delaunay graph conflict locator (see Figure 17).

We consider the maintenance of the Delaunay graph of circles in an incre-
mental way: we check first the validity of all the old triangles of the Delaunay
graph whose vertices are a given triple of circles with respect to a given newly
inserted circle. When old triangles are checked, four circles C1, C2, C3 and C4
are given: the first three are supposed to define one or more triangles in the
Delaunay graph, and the last one is the newly inserted circle. Let (xi, yi) be
the coordinates of pi for i = 1, 2, 3, 4. There are two possible outcomes to the
above test of validity. Either the triangles are valid with respect to the newly
inserted weighted point and the triangles remain in the new Delaunay graph, or
there is at least one triangle that is not valid with respect to the newly inserted
weighted point and these triangles will not be present in the Delaunay graph any
longer. We also need to check the validity of new triangles C1C2C3 with respect
to a circle C4, where C1C2C4 is an old Delaunay triangle and C3 is the newly
inserted circle. There are two possible outcomes to this test of validity. Either
the triangles formed with an old Delaunay edge C1C2 and the newly inserted
weighted point C3 are valid with respect to any circle C4, where C1C2C4 is an
old Delaunay triangle, and the triangles will appear in the new Delaunay graph,
or there is at least one triangle that is not valid and these triangles will not be
added in the Delaunay graph. In both cases, we check the validity of a triangle
C1C2C3 with respect to a circle C4.
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The Apollonius circles of C1, C2 and C3 can be obtained algebraically by
computing the common intersection of the three circles C′

1, C′
2 and C′

3 (see
Figure 13) expanding or shrinking from the three first circles C1, C2 and C3 all
with the same absolute value of the rate. The common unsigned expansion of
the first three circles is denoted by r. The coordinates of the intersection I of
C′

1, C′
2 and C′

3 are denoted (x, y). The circle C′′ centred on (x, y) and of radius
r is tangent to the first three circles.

Thus, the Apollonius circles are the solutions of one of the eight following
systems (I) of three quadratic equations in three unknowns x, y, r:

⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 ± r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 ± r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 ± r)2 = 0
.

By replacing r by −r in one of the preceding systems of equations, we still
get another one of the preceding systems of equations. Thus, let us suppose r is
the signed expansion of C1. Then, we can reformulate the preceding systems of
equations as the following systems (II) of equations:

⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 + r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 ± r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 ± r)2 = 0

Now let us consider for each system (II) the set X of solutions of the system
(II) of equations in K3, where K is an algebraically closed field.

Subtracting one of the equations from the remaining two results in a system
of 2 linear equations, from which x and y may be expressed as linear functions
of r. Substitution in the first equation then leads to a quadratic equation in r.
This means that the unknown quantities x, y, r can be expressed with quadratic
radicals as functions of the given centres and radii for each one of the systems
of equations above.

As before, though the simplest thing to do now would be to compute the
two Voronoi vertices and use their computed coordinates and corresponding
signed expansion in the computation of the values certifying the output of the
Delaunay graph conflict locator, it is not desirable because this method would
not be generalisable to conics or higher degree curves.

For the Delaunay graph of additively weighted points, the true Voronoi ver-
tices are the solutions of one system of algebraic equations. Unlike the previous
case, for the Delaunay graph of circles, the true Voronoi vertices are not all the
solutions of one system of algebraic equations, but a subset of the solutions of
four systems of algebraic equations. The solutions of the algebraic equations are
the Apollonius circles, whose centres are generalised Voronoi vertices (a concept
that was introduced in [Anton04]). We thus need to determine which Apollonius
circles centres are potentially true Voronoi vertices (only the real Apollonius
circles centres can be true Voronoi vertices).

There are four possible determinations of the true Voronoi vertices from Apol-
lonius circles centres of C1, C2 and C3:
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First case. If C1, C2 and C3 mutually intersect, then the real circles among
the seven Apollonius circles that are not internally tangent to each of C1, C2
and C3 correspond to true Voronoi vertices (their centres are true Voronoi
vertices, see Figure 17), and reciprocally.

Second case. If one circle (say C1) intersects the two others (C2 and C3) which
do not intersect, then only the real Apollonius circles that are either exter-
nally tangent to each of C1, C2 and C3, or internally tangent to C1 and
externally tangent to C2 and C3 correspond to true Voronoi vertices (their
centres are true Voronoi vertices, see Figure 18).

3

2

C1

C

C

Fig. 18. Four Apollonius circles centres that are true Voronoi vertices (second case)

Third case. If two circles (say C1 and C2) intersect the interior of the third
one (C3) and at least one of them (say C1) is contained in the interior of C3,
then only the real Apollonius circles that are externally tangent to C1 and
C2 and internally tangent to C3 correspond to true Voronoi vertices (their
centres are true Voronoi vertices, see Figure 19).

Fourth case. Otherwise (if none of the three situations above apply), only the
real Apollonius circles that are externally tangent to C1, C2 and C3 corre-
spond to true Voronoi vertices (their centres are true Voronoi vertices, see
Figure 20).

When the old Delaunay triangles are checked, the case where one circle (say
C1) lies in the interior of a second circle (say C2), which lies in the interior of
the third circle (C3), or only one circle (say C1) lies within the interior of one of
the other ones (say C2) cannot happen because then, there would be no Voronoi
vertices and the triangle C1C2C3 would not exist in the Delaunay graph. If we
check new triangles, we can check if the situation described just above happens
by computing the sign of the determinant of the multiplication matrix for the
fourth case.
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2C C

C3

1

Fig. 19. Two Apollonius circles centres that are true Voronoi vertices (third case)
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C

C
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1

Fig. 20. Two Apollonius circles centres are true Voronoi vertices (fourth case)

Now that we have seen the different cases of true Voronoi vertices, we will
see how we can test in which case we are and which solutions of the systems of
equations (II) described above correspond to true Voronoi vertices.

First case. C1, C2 and C3 mutually intersect if, and only if, d (p1, p2)−r1−r2 ≤
0 and d (p1, p3) − r1 − r3 ≤ 0 and d (p2, p3) − r2 − r3 ≤ 0. The computation
of this test can be done exactly, since the only variables that are not input
to the Delaunay graph conflict locator are the distances, and these distances
are expressed by radicals. Indeed, we need to test the sign of the difference of
a radical and a number which do not depend on intermediary computations.
The true Voronoi vertices are the real solutions of all the systems of equations
(II) such that r > 0.



46 F. Anton, D. Mioc, and C. Gold

Second case. C1 intersects C2 and C3, and C2 and C3 have no point of inter-
section if, and only if, d (p1, p2)− r1 − r2 ≤ 0 and d (p1, p3)− r1 − r3 ≤ 0 and
d (p2, p3) − r2 − r3 > 0. The computation of this test can be done exactly
for the same reasons as the previous case. The true Voronoi vertices are the
real solutions of the system of equations:
⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 ± r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 − r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 − r)2 = 0

with r < 0.
Third case. C1 lies in the interior of C3 and C2 intersects the interior of C3

if, and only if, d (p1, p3) + r1 − r3 < 0 and d (p2, p3) − r2 − r3 < 0 and
(x1 − x3)

2 + (y1 − y3)
2 − r2

3 < 0. The computation of this test can be done
exactly for the same reasons as the previous case. The true Voronoi vertices
are the real solutions of the system of equations:
⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 + r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 + r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 − r)2 = 0

such that r > 0.
Fourth case. this is the case if all the previous three tests failed. The true

Voronoi vertices are the real solutions of the system of equations:
⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 + r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 + r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 + r)2 = 0

with r > 0.

As before, we used the same algebraic machinery to compute the values of poly-
nomials that are taken by the true Voronoi vertices without solving any interme-
diate system of equations. We computed the Gröbner basis of the ideal of X for
each one of the systems (II) encountered. Each one of these Gröbner bases consists
of the earlier mentioned quadratic equation in r and linear equations in x, y and r.

For the Delaunay graph of additively weighted points, we observed that eval-
uating the signs of a single polynomial (g = (x4 − x)2 + (y4 − y)2 − (r + r4)

2)
taken on the real points of X was enough to provide the values certifying the
presence of Voronoi vertices in the list output by the conflict locator. As before,
we can check for the existence of real solutions by evaluating the sign of the
discriminant of the characteristic polynomial. We will suppose the real solutions
to the systems (II) have been tested. Unlike in the previous case, here we need
to evaluate the signs taken by both g and r on each one of the points of X .
Indeed, we need not only to check the relative position of C4 with respect to the
Apollonius circles, but we need for each Apollonius circle, to check the relative
position of C4 with respect to that Apollonius circle, and to check whether that
Apollonius circle corresponds to a true Voronoi vertex.
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As before, we considered the operation of multiplication of polynomials by
the polynomial g, whose sign expresses the relative position of C4 with respect
to C′′. We also considered the operation of multiplication of polynomials by the
polynomial r, whose sign allows one to check whether the solutions correspond to
true Voronoi vertices. These operations are linear mappings. The operations of
these mappings on the canonic representative of the remainder of the Euclidean
division of a polynomial by the three polynomials of the system are also linear
mappings that can be expressed by a matrix.

We need to be able to associate the signs of the values of g with the signs of the
values of r taken on the (real) solutions of each system (II). For a given system
(II), let Mg and Mr be the matrices of the result of the multiplication by g and
by r respectively on the canonic representative of the remainder of the division of
a polynomial by the three polynomials of the system. Since these multiplication
maps commute, it is possible to use the transformation matrix obtained during the
computation of the Jordan form of one of these matrices to triangularise the other
matrix by a simple multiplication of matrices [CLO98]. Indeed, the computation
of the Jordan form for Mg gives the triangular matrix P−1MgP of the Schur form
of that matrix where P is a unitary matrix called the transformation matrix; and
P−1MrP is triangular. Finally, we can obtain the solutions by reading the diago-
nal entries in turn in each one of the Jordan forms of these matrices (the diagonal
entries of the Jordan form of a matrix are its eigenvalues). The row number on
each one of these matrices corresponds to the index of the solution. By evaluating
the signs of the diagonal entries in the Jordan forms of Mg and of Mr on the same
line, we associate the signs of the values of g with the signs of the values of r taken
on the solutions of each system (II).

5 The Application to the Visualization of the Nucleation
and Growth of Particles

The algorithm described in the previous section is applied in this section to
the computation of the Johnson-Mehl tessellation, which is a special case of
Voronoi diagram of circles. The dual graph of the Johnson-Mehl tessellation is

Pj wj

P

w

P

w

w Pk

l

k

l

i

i

Fig. 21. The event that changes the topology
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a triangulation. Now, we will examine the events that affect this triangulation
(see Figure 21).

Proposition 9. (The empty circumcircle criterion for the dual graph of the

Johnson-Mehl tessellation): A triangle
�

PiPjPk exists in the triangulation if, and
only if, the circle externally (respectively internally) tangent to the weight circles
C (Pi, wi), C (Pj , wj), and C (Pk, wk), does not intersect properly (non tangen-
tially) any other circle C (Pl, wl), l /∈ {i, j, k}.
Proof. If a fourth circle C (Pl, wl) happens to be externally (respectively inter-
nally) tangent to the circle Ct{i,j,k} that is externally (respectively internally) tan-
gent to C (Pi, wi), C (Pj , wj), and C (Pk, wk), then the vertex v{i,j,k} (intersection
of Bij , Bik, and Bjk) is 4-valent, and the triangle exists in the Delaunay graph.

Otherwise, if the intersection of C (Pl, wl) and Ct{ijk} was constituted by two
different points, then Ct{i,j,l} and Ct{j,k,l} would be externally (respectively inter-
nally) tangent to C (Pi, wi), C (Pj , wj), and C (Pl, wl); and C (Pj , wj), C (Pk, wk),

and C (Pl, wl) respectively. Then we would have the triangles
�

PiPjPk,
�

PiPjPl,

and
�

PjPkPl, which would contradict the fact that the dual graph of the Johnson-
Mehl tessellation is a triangulation (see Figure 22).

We should therefore make a triangle switch: replace
�

PiPjPk and
�

PiPkPl by
�

PiPjPl and
�

PjPkPl. Proposition 1 implies that the triangulation mentioned
above obeys the Delaunay triangulation “empty circumcircle criterion”. This fol-
lows the algorithm of Guibas and Stolfi [GS85] for the ordinary Voronoi diagram,
extending it to this case of a generalized Dirichlet tessellation. This proposition
is the basis of the incremental algorithm that we implemented for the dynamic
construction and maintenance of additively weighted Voronoi diagrams. When
a new point is added, we locate the triangle T in which it lies, then we connect
this new point to the triangulation by replacing T by three new triangles whose
vertices are the vertices of T and the new point. Then we check every circle ex-
ternally respectively internally tangent to the weight circles of the points of every
new triangle. If a triangle switch (see Figure 22) has to be performed (see end
of the Proof of Proposition 9), we perform the same check for all the externally
respectively internally tangent circles corresponding to the triangles generated
by the triangle switch (see Figure 2 where the triangle switch is shown: replacing

�
PiPjPk and

�
PiPkPl by

�
PiPjPl and

�
PjPkPl).

When an existing point is deleted, we locate its nearest neighbour, then we
transfer all its neighbours to the nearest neighbour and we remove it and its
topological relationships from the triangulation. Then we check every circle ex-
ternally respectively internally tangent to the weight circles of the points of every
modified triangle. If a triangle switch has to be performed (see end of the Proof
of Proposition 9), we perform the same check for all the externally respectively
internally tangent circles corresponding to the triangles generated by the trian-
gle switch. This is the basis of the incremental algorithm [AMG98a], that we
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implemented for the dynamic construction and maintenance of Johnson-Mehl
tessellation.

Our algorithm proceeds in a fashion analogous to the algorithm of Devillers,
Meiser, and Teillaud [DMT90] for the dynamic Delaunay triangulation based on
the Delaunay tree. They proved using the Delaunay tree that each insertion and
point location has an expected running time of O (log n), and each deletion has an
expected running time ofO (log log n). Our algorithm has an efficiency ofO (log n).

5.1 The Johnson-Mehl Tessellation

The algorithm for the construction of the Voronoi diagram of circles has been
adapted in order to get the incremental algorithm for the construction and main-
tenance of the Johnson-Mehl model. After each arrival of a new nucleus, the
Johnson-Mehl tessellation changes, and we recompute it as follows. The new
nucleus is inserted in the Johnson-Mehl tessellation (a new Voronoi region ap-
pears), and the neighbouring Voronoi cells are changed. The size of the spheres
is then increased by the growth corresponding to the time interval between the
previous insertion and this one (ti − tj). Consequently, the spheres will be in-
creased for this time interval (see Figures 22 and 23). This type of spatial growth
uses a Poisson point process [OBSC01], and we will now introduce two different
cases of radial speed for spatial growth processes.

Time homogeneous Poisson point process. The uniform radial growth of the
nuclei and appearance of their Voronoi regions at two different times is shown in
Figures 22 and 23. On Figures 22 and 23, we can see the growth of the spheres
between two time units. We notice that the Voronoi regions are changed only
when a new particle appears.

We assume [Stoya98] that the radial growth speed is the same for all the
spheres, and the growth of the spheres in the portion of contact is stopped (see
Figures 22 and 23). In the early stages of growth and nucleations spheres do not
overlap, but after a certain time a sphere may touch another sphere [OBSC01].

Fig. 22. The growth of particles at t = 93
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Fig. 23. The growth of particles at t = 163

Time inhomogeneous Poisson point process. The Johnson-Mehl model has been
generalized [OBSC01] in three differentways: changing the spatial location process
for the generators (nuclei), changing the birth rate of the generators, or both. The
most extensively studied generalization is the generalization corresponding to the
change of the nuclei birth rate as a function of time without changing the spatial
location process (the homogeneous Poisson point process). This generalization is
known as the time inhomogeneous Johnson-Mehl model. The algorithm for the
construction and maintenance of the Johnson-Mehl model is also applied in the
case of a time inhomogeneous Poisson point process. In that case, all the nuclei
grow at the same radial speed for each time interval and therefore, as long as a
new nucleus does not arrive, the difference between the weights of neighbouring
nuclei is constant, and the Johnson-Mehl tessellation does not change.

Fig. 24. The Voronoi growth model at t = 31
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Fig. 25. The Voronoi growth model at t = 96

5.2 The Voronoi Growth Model

The Additively Voronoi diagram reduces to the ordinary Voronoi diagram when
all the wi are equal to some constant. In that type of particle growth, nucleation
occurs simultaneously. In Figure 24 we can see the simultaneous appearance of
the nuclei that are all of the same size. Figure 25 shows the growth of these
particles after 65 time units (shown in increased weights). We notice that the
tessellation has not changed.

Thus, for the nucleation sites that are appearing simultaneously we have a
non-Poisson point process [Stoya98] and we can apply our algorithm that reduces
the Johnson-Mehl model to the Voronoi growth model.

6 Conclusions

We have provided a predicate for the incremental construction of the Delaunay
graph and the Voronoi diagram of circles that amounts to computing the sign
of the eigenvalues of a two by two matrix. Unlike other independent research,
our work proposes a single predicate that can compute the Delaunay graph
even in the case of one circle being entirely in another circle or intersecting
circles. We have also provided an application of the Voronoi diagram of circles
to the modelling and the visualisation of the growth of crystal aggregates. We
have been also working on the Delaunay graph of conics and of semi-algebraic
sets (see [Anton04]), and future work include the Delaunay graph and Voronoi
diagram of quadrics and its applications.

References

[AB86] Ash, P.F., Bolker, F.D.: Generalized Dirichlet Tessellations. Geometria
Dedicata 20, 209–243 (1986)

[ABMY02] Anton, F., Boissonnat, J.-D., Mioc, D., Yvinec, M.: An exact predi-
cate for the optimal construction of the Additively Weighted Voronoi
diagram. In: Proceedings of the European Workshop on Computational
Geometry 2002, Warsaw, Poland (2002)



52 F. Anton, D. Mioc, and C. Gold

[AK00] Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Handbook of com-
putational geometry, pp. 201–290. North-Holland, Amsterdam (2000)

[AKM02] Anton, F., Kirkpatrick, D., Mioc, D.: An exact algebraic predicate for the
maintenance of the topology of the additively weighted voronoi diagram.
In: The Fourteenth Canadian Conference on Computational Geometry,
Lethbridge, Alberta, Canada, pp. 72–76 (2002)

[AM95] Anishchik, S.V., Medvedev, N.N.: Three-dimensional Apollonian packing
as a model for dense granular systems ll. Phys. Rev. Lett. 75(23), 4314–
4317 (1995)

[AMG98a] Anton, F., Mioc, D., Gold, C.M.: Dynamic Additively Weighted Voronoi
Diagrams Made Easy. In: Proceedings of the 10th Canadian Conference
on Computational Geometry (CCCG 1998), Montréal, Canada (1998)

[AMG98b] Anton, F., Mioc, D., Gold, C.M.: An algorithm for the dynamic construc-
tion and maintenance of Additively Weighted Voronoi diagrams. In: Pro-
ceedings of the 14th European Workshop on Computational Geometry
(CG 1998), Barcelona, Spain, pp. 117–119 (1998)

[Anton04] Anton, F.: Voronoi diagrams of semi-algebraic sets, Ph.D. thesis, The Uni-
versity of British Columbia, Vancouver, British Columbia, Canada (2004)

[Auren87] Aurenhammer, F.: Power diagrams: properties, algorithms and applica-
tions. SIAM J. Comput. 16(1), 78–96 (1987)

[Auren88] Aurenhammer, F.: Voronoi diagrams - A survey, Institute for Information
Processing, Technical University of Graz, Report 263 (1988)

[BB96] Beachy, J.A., Blair, W.D.: Abstract Algebra. Waveland Press Inc. (1996)
[BCSS98] Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real compu-

tation. Springer, New York (1998) (with a foreword by R.M. Karp)
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[Vor10] Voronöı, G.F.: Nouvelles applications des paramètres continus à la
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paralléloèdres primitifs. seconde partie. domaines de formes quadratiques
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Appendix 1

The Macaulay 2 program for the exact Delaunay graph conflict locator for circles

gbTrace 4
dim FractionField := F -> 0
P = frac(QQ[a,b,c,d,e,f,g,h,i,j,k,l])
R = P[x,y,t]
cercle1 = (x-a)^2+(y-b)^2-(c+t)^2
cercle2 = (x-d)^2+(y-e)^2-(f+t)^2
cercle3 = (x-g)^2+(y-h)^2-(i+t)^2
emptycircle = ideal(cercle1,cercle2,cercle3)
ecgb = gb emptycircle
print ecgb
eckb = basis cokernel gens ecgb
print eckb
kl = sort(flatten(entries(eckb)))
kmind = splice {0..#kl - 1}
scan(kl,entry->print ring entry);
hashlist = pack(2,mingle(kl,kmind));
feetmon = applyKeys(hashTable hashlist, key->toString(key));
compmat = f -> (htl=apply(kl,be->
hashTable(pack(2,mingle(apply(flatten(entries((coefficients((f*be)
%ecgb))#0)),
item -> feetmon#(toString(item))),flatten(entries((coefficients
((f*be)%ecgb))#1))))));
matrix(table(#kl,#kl,(i,j)->if (htl#i)#?j then (htl#i)#j else
0)));
matp2 = compmat((x-j)^2+(y-k)^2-(t+l)^2);
m00 = matp2_(0,0)
m01 = matp2_(0,1)
m10 = matp2_(1,0)
m11 = matp2_(1,1)
cm00 = coefficients m00
cm000 = cm00#0
cm001 = cm00#1
cm01 = coefficients m01
cm010 = cm01#0
cm011 = cm01#1
cm10 = coefficients m10
cm100 = cm10#0
cm101 = cm10#1
cm11 = coefficients m11
cm110 = cm11#0
cm111 = cm11#1
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