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LNCS Transactions on Computational Science 
 
 

Computational science, an emerging and increasingly vital field, is now widely 
recognized as an integral part of scientific and technical investigations, affecting 
researchers and practitioners in areas ranging from aerospace and automotive research 
to biochemistry, electronics, geosciences, mathematics, and physics. Computer 
systems research and the exploitation of applied research naturally complement each 
other. The increased complexity of many challenges in computational science 
demands the use of supercomputing, parallel processing, sophisticated algorithms, 
and advanced system software and architecture. It is therefore invaluable to have 
input by systems research experts in applied computational science research. 

Transactions on Computational Science focuses on original high-quality research 
in the realm of computational science in parallel and distributed environments, also 
encompassing the underlying theoretical foundations and the applications of large-
scale computation. The journal offers practitioners and researchers the opportunity to 
share computational techniques and solutions in this area, to identify new issues, and 
to shape future directions for research, and it enables industrial users to apply leading-
edge, large-scale, high-performance computational methods. 

In addition to addressing various research and application issues, the journal aims 
to present material that is validated – crucial to the application and advancement of 
the research conducted in academic and industrial settings. In this spirit, the journal 
focuses on publications that present results and computational techniques that are 
verifiable.  

 

Scope 

 
The scope of the journal includes, but is not limited to, the following computational 
methods and applications: 

 
• Aeronautics and Aerospace  
• Astrophysics  
• Bioinformatics  
• Climate and Weather Modeling  
• Communication and Data Networks  
• Compilers and Operating Systems  
• Computer Graphics  
• Computational Biology  
• Computational Chemistry  
• Computational Finance and Econometrics  
• Computational Fluid Dynamics  
• Computational Geometry  
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• Computational Number Theory  
• Computational Physics  
• Data Storage and Information Retrieval 
• Data Mining and Data Warehousing  
• Grid Computing  
• Hardware/Software Co-design  
• High-Energy Physics  
• High-Performance Computing  
• Numerical and Scientific Computing  
• Parallel and Distributed Computing  
• Reconfigurable Hardware  
• Scientific Visualization 
• Supercomputing  
• System-on-Chip Design and Engineering  

 



 

 

Preface 

The Transactions on Computational Science journal is part of the Springer series 
Lecture Notes in Computer Science, and is devoted to the gamut of computational 
science issues, from theoretical aspects to application-dependent studies and the vali-
dation of emerging technologies. 

The current issue is devoted to computer systems research and the application of such 
research, which naturally complement each other. The issue is comprised of Part 1: 
Computational Visualization and Optimization, and Part 2: Computational Methods for 
Model Design and Analysis.  

Part 1 – Computational Visualization and Optimization – is devoted to state-of-the-art 
research carried out in this area with the use of novel computational methods. It is com-
prised of five papers, each addressing a specific computational problem in the areas of 
shared virtual spaces, dynamic visualization, multimodal user interfaces, computational 
geometry, and parallel simulation, respectively. 

Part 2 – Computational Methods for Model Design and Analysis – continues the 
topic with an in-depth look at selected computational science research in the areas of 
data representation and analysis. The four papers comprising this part cover such areas 
as efficient reversible logic design, missing data analysis, stochastic computation and 
neural network representation for eccentric sphere models. Each paper describes a 
detailed experiment or a case study of the methodology presented to amplify the  
impact of the contribution. 

In conclusion, we would like to extend our sincere appreciation to all authors for 
submitting their papers to this issue, and to all associate editors and referees for their 
meticulous and valuable reviews. We would also like to express our gratitude to the 
LNCS editorial staff of Springer, in particular Alfred Hofmann, Ursula Barth and 
Anna Kramer, who supported us at every stage of the project.  

It is our hope that the fine collection of papers presented in this issue will be a 
valuable resource for Transactions on Computational Science readers and will stimu-
late further research into the vibrant area of computational science applications. 

 
 

November 2008 
 

Marina L. Gavrilova 
C.J. Kenneth Tan 
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Visual Immersive Haptic Mathematics  
in Shared Virtual Spaces 

Alexei Sourin, Olga Sourina, Lei Wei, and Paul Gagnon 

Nanyang Technological University, Singapore 
{assourin,eosourina,weil0004,pgaganon}@ntu.edu.sg 

Abstract. When teaching subjects richly infused with mathematics, in 
particular geometry, topology and shape modeling, there is a frequent problem 
that the learners are not able to “visualize” the attendant theoretical concepts. It 
is important, therefore, to constantly illustrate the associated theories with 
practical visual exercises, which are preferably to be done in collaboration with 
other learners to allow them to discuss possible approaches to the problem and 
to consult with the instructor, virtually or face-to-face. We have proposed an 
approach that would allow for solving mathematical problems while being 
immersed within shared virtual 3D collaborative environments. Only 
mathematical formulas are used by the learners for immediate interactive 
definition of geometry, appearance and physical property of the shapes being 
created in the virtual environment. We target learners and educators who are 
studying subjects rich in mathematics and geometry, or teaching them at the 
secondary or tertiary level or doing research on these topics. The process allows 
the learners to see and feel the geometric meaning of mathematics, thus making 
it less abstract and more perceptual and tangible. We also see ways of 
incorporating beneficial uses of immersive virtual environments into traditional 
courses at Universities which might benefit from 3D visualization. 

Keywords: Web Technologies, Networked Learning, Distance Education, 
Virtual Campus, Virtual Classroom, Virtual Learning, Web-Based Learning, 
Shape Modeling, Haptic Collaboration, Shared Virtual Spaces. 

1   Introduction 

Generally, although the right hemisphere of the human brain is totally responsible for 
geometric reasoning, in our modern world most people do not use their brain to its full 
extent as everything around us is often simplified to pictures or symbols of 3D objects 
displayed on screens, billboards, etc. Our current generation of children, often called 
“Digital Natives”, are very comfortable with 2D text-based SMS messages, emails, 
web-pages etc., which are an essential part of their everyday life beginning in primary 
school. As a result, the brain is not being sufficiently trained to deal with problems 
which require 3D perception. A good example of this is illustrated by this simple test 
which the readers could do. Look around you and then close one eye and look around 
again. What is the major difference when you use both eyes and only one eye? Most 
people will answer that there is not much difference or that with one eye the view range 
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is narrower. Less than 50% (according to out studies and other sources like 
http://www.vision3d.com) will say that when they see with one eye there is no stereo 
vision: the phenomenon of 3D depth perception which is characteristic of living 
creatures having both eyes located side-by-side in the front of their heads rather than on 
the sides of heads. It was developed as a means of survival for carnivores, as it allowed 
them to estimate the distance of a leap to the prey—while modern people mostly need 
skills to read the price of the food on the supermarket price tag. Geometry as one of the 
oldest sciences with its name originating from the Greek words geo (earth) and metria 
(measure) is now largely separated from everyday life. We do not measure earth. When 
commuting, we do not actually care how 3-dimensional the world around us is and how 
many hills and valleys our transport is crossing—it rather becomes for us just a means 
of rapid transportation from one point to another, if not to say a type of teleportation 
neither controlled nor monitored by our brain. General weakening of geometric 
mentality, 3D perception and binocular vision, in particular, has been de-facto 
acknowledged and reflected in education systems of different countries by making 
curriculum structures more geometry oriented starting from the primary or even pre-
school level. For example, in Japan teaching Euclidean geometry is introduced at lower 
secondary school mathematics level [1]. In the Singapore Mathematics Syllabus 
Primary [2] and the Secondary Mathematics Syllabuses [3], one of the listed 
competences which learners can gain from mathematics training is “Spatial 
visualization”. The importance and specifics of visualization in the teaching and 
learning of mathematics was also discussed as a special topic at the recent 10th 
International Congress of Mathematical Education [4]. However, due to many reasons, 
strengthening the spatial visualization is still not emphasized as much as other 
competences. As a result, students often find it difficult to deal with 3D objects, such as 
forming different figures of concrete 3D models, identifying the nets of solid figures and 
engaging in vector analysis. Although there are commercial software tools that can help 
to visualize 3D objects, they are either expensive or not suitable for school students to 
use. At the university level, there are many subjects requiring advance geometric 
reasoning such as calculus, computer graphics, computer animation, geometric 
modeling, computer-aided design, etc. However, for the same reason as discussed above 
it is usually a challenge for the students to follow the instructor and visualize how 
mathematical concepts reflect in 3D geometry and colors.  

Electronic education is increasingly being adopted and accepted as an important 
and vital part of university education. It has become common practice to use e-
learning systems, like Blackboard or open-source systems like Moodle and Sakai, to 
upload and distribute course materials on the web. However, in a world where more 
and more information is being provided electronically, it often results in 
disorientation and exhaustion for the students. Current educational practice advocates 
that student learning should reflect an active learning pedagogy and teaching 
strategies which support different student learning styles. Cyber-education through 
immersive shared virtual environments expands these pedagogical frontiers and 
creates new learning opportunities.  

Today, there are many 3D virtual educational spaces created with different 
communication and shared VR platforms, for example, virtual universities in Active 
Worlds (http://www.activeworlds.com/edu/index.asp) and Second Life (http://secondlife. 
com) shared communities. However it remain to be understood as to what constitutes the 
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perfect teaching/learning environments and tools for conducting education in such virtual 
spaces—quite often these virtual spaces appear to be merely reflections of the existing 
‘transmission’ or ‘expository’ paradigms of teaching while cyber-education needs to not 
just duplicate what is available in real life, but go beyond it. Given our own advance 
experience of creating and using educational cyber-campuses within the project Virtual 
Campus of NTU, (http://www.ntu.edu.sg/home/assourin/VirCampus.html), we advocate 
that the biggest advantage of cyber-learning in shared virtual environments is the ability 
to create unlimited, enhanced active learning collaboration so that the learners from 
different physical locations can meet and work on problems in environments specially 
tailored and best suited for the application problem. The phenomenon of explosively 
growing 3D virtual communities like Second Life, Entropia Universe, There and others, 
with their millions of virtual residents, is one cogent example of this fact.  

2   Background 

2.1   Cyberworlds and Their Educational Uses 

Canadian novelist William Gibson coined the term “cyberspace” in his novel 
“Neuromancer” [5]. We are now using it with reference to events taking place on the 
Internet as ‘happenings’ in cyberspace where the participants or the network servers are 
actually located, rather than in their countries. Since the invention of the Internet, 
cyberspace has been always used as a space for creating information communities, or 
cyberworlds capable of supporting 3D visual representation. Concomitant with the first 
known shared community, Habitat, which was created in 1985, this has become a very 
popular trend, especially over the last few years. A few of the most popular examples 
listed chronologically are shared virtual communities in Cybertown (since 1993, 
http://www.cybertown.com), ActiveWorlds (since 1995, http://www.activeworlds.com), 
There (since 2003, http://www.there.com), Open Croquet project (since 2003, http:// 
www.opencroquet.com), Second Life (since 2003, http://www.secondlife.com), and two 
massively multiplayer online role-playing games (MMORPG): World of Warcraft 
(since 2004, http://www.worldofwarcraft.com), and Entropia Universe (since 2006, 
http://www.entropiauniverse.com).  

The recent explosive phenomenon and popularity of such places may have many 
roots. It could be growing computer literacy which allows potential content creators to 
apply their skills in building 3D cyberworlds. It may be related to limitation of 
resources in the real world which could motivate one to settle in 3D virtual world with 
no geographical, climatic and political restrictions. Last but not least, it may simply 
reflect a desire to explore a new life in a new environment which can be perceived 
through vision, sound, and communication with other habitants now taking up 
residence there—perhaps suggesting a new frontier mentality is taking hold. 
However, the reported millions of registered residents of different cyberworlds are 
still merely a few per cent of the more than a billion people using the web worldwide. 

In the past few years, the usage of 3D cyberworlds for educational purposes has 
increased significantly. There are now many virtual campuses implemented in 
ActiveWorlds and Second Life shared environments. The metaphors governing the 
visual design of such cyberworlds are quite diverse, from replication of real universities, 
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art museums and scientific labs to non-existing fictitious places [6]. They provide a 
social arena where students and teachers can meet and thereby overcome the barriers of 
the physical world not to mention learn "on-the-fly" much like we acquire knowledge in 
real life. 

When making a collaborative virtual environment in cyberspace, 3D web 
visualization and collaboration can be achieved through several ways. For a strong 
server and weak client configuration image and event transmissions can be used. In 
this case the 3D rendering is performed at the server side and the clients receive only 
streamed images which they can use for interactive navigation through the scene and 
communication with other clients. This mode is quite typical of grid-based 
visualization when either a very powerful server or a cluster of networked computers 
are used for rendering. Its disadvantage is in a limited resolution of the image and 
slow update rate due to bandwidth limitations. Another scenario assumes that all the 
models are preloaded to client computers and only even transmission is performed 
between the clients and an optional server. This mode is quite common for MMORPG 
games and assumes downloading of an advance rendering engine and a large model 
database which may have gigabytes of information stored. Though this method 
provides very photorealistic rendering, the disadvantage is in difficulties which result 
when a new model is introduced into the scene, i.e. it has to be somehow delivered to 
all the participating clients to update the model databases. A compromise method 
which can be called model and event transmission progressively downloads the model 
of the scene on to client computers while it is being rendered. The rendering engines 
can be light-weighted like plug-ins to web browsers (e.g. VRML and X3D plug-ins to 
MS Internet Explorer and Mozilla Firefox), as well as stand-alone applications 
(viewers) with some preloaded textures and models (e.g. SecondLife viewer).  

In this article we consider problems associated with creation of educational 
cyberworlds using VRML and X3D and the model transmission visualization method. 
Since VRML and X3D do not natively support collaboration, a third party 
communication platform has to be used or developed. Examples of such platforms are 
open-source DeepMatrix (http://www.deepmatrix.org), blaxxun Communication 
Platform (http://www.blaxxun.com), and Bitmanagement Collaborate (http://www. 
bitmanagement.com). 

Each of these platforms has unique features. DeepMatrix is a popular open-source 
multi-user 3D communication platform that features chat, shared objects, and shared 
events. It is written in Java consisting of one server application and one client applet 
that works with different web3D plug-ins. DeepMatrix can use either existing VRML 
browser as the client via the Java EAI, or its own VRML client written in Java. The 
DeepMatrix’s functionality includes text chatting facilities and shared events. 
However, the shared events in DeepMatrix do not provide any support of locking 
mechanism. 

The blaxxun Communication Server is available as a commercial product as well as 
through a complimentary web-access albeit with limited functions. It consists of two 
main components: the server and the client. The server acts not only as an HTTP 
server, which holds the VRML scene and HTML web pages, but also some special 
communication servers, which serve two purposes: /1/ To hold additional information 
of the shared virtual scene and /2/ to exchange shared information across different 
clients. In its SDK, it provides a text chat box and shared events. By using the text 
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chat box, users can type text messages and communicate with other users within the 
same session. It is also possible to install on top of it the Bitmanagement BS Contact 
VRML/X3D (http://www.bitmanagement.com) VRML/X3D browser plug-in for MS 
Internet Explorer which then will do VRML/X3D visualization, while communication 
with the server is performed by the blaxxun Contact. However, in that case X3D files 
cannot be used as root scene files but only can be called from VRML files.  

The Bitmanagement Software Collaborate System is a very new networked 
communication platform which supports both VRML and X3D. It has a platform 
independent server which supports shared events, text chatting, server side computation 
and client identification mechanism however, it is still under development and plenty of 
the technical details are not fixed and implemented.  

The Virtual Campus of Nanyang Technological University (NTU) in Singapore [7] is 
an example of a photo-realistic shared virtual world built using VRML and the blaxxun 
Communication Platform. It includes models of the land, buildings, interiors, avatars, 
and texture images resembling the real campus of NTU (Fig. 1). Besides the exteriors of 
the university buildings, there are also interiors of the main places, tutorial rooms, 
lecture theaters and student hostels. All these interiors can be used for virtual meetings, 
classes and other learning activities. There is a large large set of predefined private 
houses as well as different household items which can be obtained from the virtual 
shopping mall. Many visitors to the Virtual Campus are computer graphics students, 
who come to study concepts related to virtual reality and shape modeling. This is a 
mandatory part of their course and the Virtual Campus is used during lectures, as well 
as after classes for consultations. The students go to their favorite places, meet with 
friends in their hostel rooms, and attend collaborative modeling sessions in the virtual 
shape modeling lab. They also can watch educational videos in the tutorial rooms, 
attend video lectures in the lecture theaters or watch the university’s television channel. 
Visitors from around the world usually just wander around and chat, adding an 
international flavor to this place. The Virtual Campus often serves as a guide for foreign 
students who may consider studying at the university. 

 

 

Fig. 1. Snapshots of the Virtual Campus of NTU 
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2.2   Teaching Geometry with a Computer 

There are a few commercially available tools which are commonly used for doing 
research on mathematics and geometry as well as for learning and teaching these 
subjects, e.g., Mathcad (http://www.ptc.com/appserver/mkt/products), Maple (http:// 
www.maplesoft.com), Mathematica (http://www.wolfram.com/products/mathematica), 
MATLAB (http://www.mathworks.com/products/matlab), and Geometer’s Sketchpad 
(http://www.dynamicgeometry.com). Among other features, these tools allow learners 
to perform visualization of geometric shapes (2D/3D curves and surfaces) and some 
provide further means for making web-enabled interactive applications. However when 
using these tools, the learners are only able to see images. It could be, however, more 
interesting to get immersed within the 3D scene and explore the shapes which are being 
modeled. Moreover, it would be even more beneficial if this immersion could be done 
collaboratively with other learners and the instructor. 

There are a few examples of such collaborative approaches to learning geometry in 
virtual augmented worlds [8] and in VRML spaces on the web [9, 10], however these 
projects are restricted to a limited class of geometric objects and only teach geometry 
rather than provide the learner with the ability to see the geometric shapes behind the 
mathematical formulas and illustrate how mathematics creates and supports 
immersive virtual spaces, as we are proposing to do in our project. 

3   Function-Based Web Visualization and Haptic Rendering in 
Shared Virtual Spaces 

In our project we seek to further expand the shared collaborative potential of virtual 
educational environments by developing an efficient way of exchanging geometric, 
appearance and physical properties across the network. Instead of traditionally used 
polygon and voxel based models, we are using relatively small mathematical functions, 
which like individual DNAs define the geometry, appearance and physical properties of 
the objects. We are also using haptic force-feedback in shared virtual environments on 
the web so that the learners can also make physical contact with objects in the virtual 
scene, as well as with other learners. Haptic technology provides an interface to the user 
via the sense of touch by applying forces, vibrations and/or motions to the user. We are 
expecting, soon, the arrival on the consumer market of affordable interactive 3D touch 
devices. For example, Novint Falcon (http://www.novint.com) is currently offered in the 
US at two hundred dollars, which will soon make haptic communication as common as 
interactions using mouses and joysticks. 

A function-based approach to shape modeling assumes that mathematical functions 
are used for defining geometric shapes rather than traditional polygons, voxels or points. 
Hybrid function-based shape modeling in application with VRML and X3D was 
introduced and further developed in [11-13]. It allows for the defining of time-
dependent geometric shapes, their appearances, physical properties and transformations 
by analytical functions which can be used concurrently as individual formulas or as 
java-style function scripts. FVRML/FX3D opens VRML and X3D to practically any  
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type of geometry, 3D colors and geometric textures. It also introduces to VRML and 
X3D set-theoretical operations (union, intersection, difference), as well as allows for 
defining any other operations (e.g., morphing) and physical properties of objects. In 
contrast to the polygon-based models of VRML/X3D, the function-based extension 
allows for a greater reduction of the model size and provides an unlimited level of 
detail. The defining functions can be functions of time which in turn allows for easy 
definition of sophisticated animation applied to geometry and appearance of the 
resulting shapes. These function-defined shapes can be used together with the standard 
VRML and X3D shapes and appearances, as well as allow for their use as parts the 
standard VRML/X3D shape and appearance fields. We implemented a plug-in to two 
VRML and X3D browsers (blaxxun Contact and Bitmanagement BS Contact VRML/ 
X3D). While staying within the VRML/X3D rendering pipeline designed for objects 
built from polygons, we are able to perform haptic rendering of shared VRML and X3D 
scenes by touching surfaces of the objects with different desktop haptic devices. Besides 
this, VRML/X3D objects can be converted to solid objects by defining their inner 
densities using mathematical functions. This can be done by typing analytical functions 
straight into the VRML/X3D code or by defining them in dynamic-link libraries. 
Geometric solid objects can also be reconstructed from CT and MRI data. Since these 
function-defined models are much smaller in size, we can efficiently use them in web-
based collaborative projects. 

For defining geometry, appearance, transformations and physical properties, three 
types of function definitions can be used concurrently: implicit, explicit and 
parametric.  

Implicit functions are defined as f(x,y,z,t)=0, where x, y, z are Cartesian coordinates 
and t is the time. When used to define geometry, the function equals to zero for the 
points located on the surface of a shape.  

Explicit functions are defined as g=f(x,y,z,t). The function value g when evaluated 
at any point of the 3D space can be used either as a value of some physical property 
like density or as an argument for other functions (e.g., to define colors or parameters 
of transformations) or as an indicator of the sampled point location. Thus, explicit 
functions can be used to define bounded solid objects in the FRep sense [14]. In this 
case, the function equals to zero for the points located on the surface of a shape. 
Positive values indicate points inside the shape and negative values are for the points 
outside the shape.  

Parametric functions define surfaces, solid objects, force vector coordinates and 
colors as:  

x= f1(u,v,w,t);  y= f2(u,v,w,t);  z= f3(u,v,w,t) 
r= f1(u,v,w,t);  g= f2(u,v,w,t);  b= f3(u,v,w,t) 

where x, y, z are Cartesian coordinates of the points, r, g, b are values of colors, u, v 
and w are parametric coordinates, and t is the time. 

Thus, geometry, appearance, and physics are defined by implicit, explicit or 
parametric functions in their own domains and then merged together into one shape 
by some mapping functions. Appearance (colors and 3D textures) and physical 
properties are associated with the underlying geometry of the shape.  
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Fig. 2. Modeling shape by consecutive definition of its geometry, texture and color 

For example, we can define an original shape parametrically: 
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Then, we map to this shape the geometric texture which is Perlin noise displacement 
defined by the explicit function: 

)2sin2sin2sin2sin2sin2(sin1.0 zyzxyxg ππππππ ++=  

Finally a parametrically-defined color is applied onto the textured shape by mapping 
the colored plane onto the shape:  

1; sin ; 0;r g u b= = =
 

With these two parametric and one explicit functions, the final shape is defined as 
it is shown in Fig. 2. 

FVRML offers ten additional nodes, which are FShape, FGeometry, FAppearance, 
FMaterial, FTexture3D, FPhysics, FDensity, FFriction, FForce and FTransform. These 
nodes can be used together as well as with the standard VRML and X3D nodes (Fig. 3).  

The FShape node is a container similar to the VRML’s Shape node. It contains 
FGeometry or any standard geometry node, and FAppearance or the standard 
Appearance node. These nodes define the geometry and the appearance of the shape, 
respectively. FShape may be called from FTransform node or from the standard 
Transform node.  

The FGeometry node is designed to define a geometry using implicit, explicit or 
parametric functions. It contains either one string, or a script defining a function 
representing the geometry, or a URL to the function definition.  
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Fig. 3. Scene diagram of the function-defined nodes and their using with the standards nodes of 
VRML and X3D 

The FAppearance node may contain FMaterial or the standard Material, the 
standard Texture node, and FTexture3D node. FTexture3D defines geometric textures 
while the standard Texture node is used for image texture mapping. FMaterial node 
defines diffuse, specular, and emissive colors, as well as transparency, ambient 
intensity, and shininess with parametric and explicit functions. Parametric functions 
directly define color values r, g, b. When the color is defined with an explicit 
function, its values are linearly mapped to the r, g, b values of the actual color with a 
user-defined color interpolation map. FTexture3D node defines 3D geometric textures 
using explicit and parametric functions. These functions define displacements of the 
original shape’s geometry defined in FGeometry or in any standard geometry node. 
The functions are defined either in one string, or in a function script, or via a URL to 
the function definition. 

If the standard Geometry node is used in place of the FGeometry node, the 
standard shapes of VRML will be assigned an appearance defined in the 
FAppearance node. This ability to use the function-based nodes in combination with 
the standard geometry and appearance nodes of VRML adds many new features to 
VRML, some of which are illustrated in this chapter. 

The FPhysics node is used for defining physical properties associated with the 
defined geometry. FPhysics contains FDensity, FFriction and FForse nodes. FDensity 
node is used for defining material density inside the shape. It can be examined with a 
moving haptic device handle. Density is defined by explicit functions of coordinates x, 
y, z. FFriction node is used for defining friction on the surface. It can be examined with 
a moving haptic device actuator. Friction is in turn defined by the explicit functions of 
coordinates x, y, z. The surface of the object can also be made non-tangible. FForce 
node is used for defining a force field associated with the geometry of the shape. The 
force vector at each point of the space is defined by three parametric functions for its x, 
y, and z components. 
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FTransform node contains function-defined operations. It may contain FShape and 
other FTransform nodes as its children. FTransform contains either one string, or a 
script defining a function representing the operation, or a URL to the function definition 
as well as other fields to preserve the consistency with the standard Transform node. 
Both, set-theoretic and affine transformations can be defined as functions of time in 
FTransform node. 

 

Fig. 4. Modeling “watermelon”: final shape and the isosurface of the color function 

An example of the modeling of a “watermelon” is given in Fig. 4. The geometry, 
appearance and physical properties of this object are defined with explicit functions. 
The geometry is defined as a sphere with a piece cut away from it by a semi-infinite 
solid object defined by 3 planes.  

( 1 – x2 – y2 – z2 )& (-( (z - x)&y&z )) 

The color is then represented by a 3D field defined in the same geometric 
coordinate space. The function of this field is defined as a distance from the origin 

222 zyx ++  

with distortions are defined by a noise function 

0.01( sin( 12atan( x, z + 0.04sin( 25y ))) - 0.7) 

The function values are then linearly mapped to the color values according to a 
designed color map. Sampling of this color field is also shown in Figure 4. The 
uneven shape of the “color” surface was used for making green patterns on the 
surface of the “watermelon”. This was achieved by mapping the respective function 
values from 0.98 to 1 to RGB values of colors ranging from [0, 1, 0] to [0, 0.2, 0]. 
The colors inside the watermelon are also created by linear mapping of the respective 
color function values to different grades from yellow, through white, and finally to 
red colors. 

The density of the watermelon is then defined as a distance function with a value 
0.3 in the center of the object increasing to 0.9 at its surface. The friction on the 
surface is a constant 0.1. 
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Defining complex shapes, appearances, physical properties and operations usually 
assumes the use of multiple formulas and temporary variables. This requires a script-
like mathematical language. To be consistent with VRML and X3D, which have a 
JavaScript (VRMLScript) as a standard feature, and to ease the learning curve, 
FVRML/FX3D emulates a subset of JavaScipt. 

Hence, in another example we model a pipe with its geometry defined as a 
parametric cylinder with no tangible surface and a force field defined as a whirlpool 
moving along the axis of the cylinder (Fig. 5). For a force field, at each point of the 
defined geometric volume a force vector will be calculated by the parametric scripts. 

 

Fig. 5. Modeling a cylindrical tube with a force field inside it 

In Fig. 6, four snapshots of an animated geometric morphing from a snail-like shape 
to a star-like shape, and the respective FVRML code of this morphing transformation, 
are shown. Both, the initial and final shapes are defined parametrically in the function 
script. The time-dependent shape is defined as a linear interpolation between the initial 
and the final shapes. The internal timer of the FShape node is used for defining an 
infinite looping with a period of 5 sec, while the time within the script changes in the 
range [0, 1]. Fancy color and variable transparency are defined by explicit functions. In 
this example, the morphing transformations are defined using the linear function 
interpolation: 

( ) tffff   )()()()( 121 ⋅−+= pppp  

where parameter t is in the range [0, 1]. In this formula, functions f1 and f2 may define 
the initial and the final shape’s geometry, texture or color. For implicit and explicit 
functions, vector p defines Cartesian coordinates x, y, z, with only one such morphing 
function needed. For parametric functions, vector p defines coordinates u, v, w in 
parametric domain requiring three morphing functions to define Cartesian coordinates 
x, y, z, respectively. 

In Fig. 7, there are two snapshots of an animated scene where the counter-
clockwise rotation of the implicitly defined cones is defined in FTransform node as a 
function of time. In this example, both internal and external time sensors are used to 
define a gap between two cycles. The internal timer defines a single 5 sec execution 
of the node. The external timer defines an infinite looping with a 7 sec duration of  
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Fig. 6. Geometric shape morphing and appearance transformation 

 

Fig. 7. Function-defined rotating cones and 3D curves 

 
each cycle, which results in a 2 sec time gap between the cycles. In this scene there is 
also a parametrically defined animated curve which spins around the first shape 
following the internal timer. Note that for the cones and for the curve we use the 
standard VRML Appearance node for defining their appearance instead of 
FAppearance. 

Based on FVRML/FX3D, then we have designed and developed a shared virtual 
laboratory for teaching subjects rich with mathematics, such as geometry, topology, 
calculus, shape modeling, and physics. This creates a shared virtual environment 
where the learners are able to collaboratively model complex 3D shapes by defining 
their geometry, appearance and physical properties using analytical implicit, explicit 
and parametric functions. The tool visualizes the language of mathematics in forms of 
point clouds, curves, surfaces and solid objects. The learners may go inside the 3D 
scene being modeled and explore it by walking/flying through it (Fig. 8) as well as 
haptically investigating it.  
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Fig. 8. Flying inside a Klein bottle defined by parametric functions 

At a first glance out tool shares some aspects with conventional math software 
tools mentioned above, however it has totally different aim and goal. Our tool is not 
intended for making hi-end geometric models such as those that can be created with 
CAD tools like Maya and 3D Studio MAX. Instead it rather emphasizes the modeling 
process itself by demonstrating how complex geometry, appearance and physical 
properties can be defined by small mathematical formulas. Thus the learners are able 
to enter the defining functions, either as individual formulas or as function scripts. No 
knowledge of any programming language is required from them. In contract to the 
math tools which offer an overwhelming variety of complex features and usually have 
a steep learning curve, our software has an intuitive and relatively simple user 
interface which learners are interested in. Hence, our aim is not to create a 
professional 3D modeling package, but rather a simple and intuitive interactive 3D 
tool to be used within an immersive shared environment for educational and research 
purposes. 

In this virtual environment, the learners define initial shape, tools, geometric and 
appearance operations analytically or select from the predefined sets. This makes our 
software open to any customization by the learners and educators. Models defined by 
analytical formulas or function scripts can be easily modified on-the-fly in the virtual 
scene either by editing the formulas or by doing iterative interactive modifications. The 
respective function representations are generated for each interactive modification and 
displayed to the learners by request.  

In the user interface of our tool (Fig. 9) there are three parts: /1/ the shared 3D 
collaboration scene where haptic rendering is allowed (top-left), /2/ the control panel 
(top-right) and /3/ the command-chat windows (bottom). The 3D haptic modeling 
scene and the chat area are shared among the learners in the same session, while the 
control panel is learner-specific and not shared. The learners can type commands as 
well as chat in the command-chat pane concurrently. To change the current tool, the 
pre-defined tools and existing customized tools can be chosen from the drop-down 
menu in the control panel. The learners may modify a shape by defining its geometry 
and color either parametrically or with implicit and explicit functions. 

There are just a few easy to use commands, which the learners can type in the chat 
box of the browser and immediately see how the shape changes. The software filters 
out the shape-modeling commands from other chat messages and processes them 
accordingly. The function description of the current shape can be displayed in a 
separate console window, and saved for future use. Shapes can be also defined  
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Fig. 9. Haptic exploration of a Möbius Strip 

interactively by adding and removing material which is borrowed from the current 
tool. Any tool shape can be defined by a mathematical function. Before it is applied, 
the tool can be scaled, rotated and displaced with reference to the shape's surface. 

In Fig. 10, we illustrate an example of a free-form collaborative design session 
using the software. First, we define the original object as a distorted sphere with 
another smaller sphere subtracted from it. The original sphere is defined by the 
following function: 

0.82 – x2 – y2 – z2 ≥ 0 

which defines a solid object for the points where the function value is ≥ 0. 
The 3D texture function making a distortion of the sphere is defined by the 

displacement function: 

0.03 (sin(12 atan(x, z + 0.04 sin(25 y))) - 0.7) ≥ 0 

The smaller sphere to subtract from the distorted one is defined by: 

0.72 – x2 – y2 – z2 ≥ 0 

The final object is defined by typing the following command: 

shape: (0.8^2–x^2–y^2–z^2+0.03*(sin(12*atan2(x,z+0.04*sin(y*25)))–0.7))& 
(–(0.7^2–x^2–y^2–z^2)) 

where & is a symbol of intersection operation, while &(- function) is the defined 
subtraction operation. 
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Fig. 10. Example of shape modeling 

The 3D color of this object is then defined by an explicit distance function: 

222 zyxg ++=  

which values are linearly mapped to the colors, based on the key-values defined by 
patternkey and color values in patterncolor commands. This is achieved by typing 
commands, which is done in Figure 10a by another user participating in the design 
session: 

patternkey: 0, 0.7, 0.74, 0.76, 0.78 
patterncolor: 0.4, 0, 0,   1, 0, 0,   1, 1, 1,   1, 1, 0,   1, 0.8, 0 
color: sqrt(x*x+y*y+z*z) 

This results in a 3D color which varies from yellow-green colors on the surface, to 
white-pink immediately beneath it, and finally to grades of red color inside the object. 

Next, one of the users selects a predefined tool ‘box’, locates it on the surface of 
the object, interactively changes its size and orientation, and finally cuts away the 
material with it to make “eyes” (Figure 10b). The other user can see the changes on 
his computer as well as concurrently participate in the design. Next, the users change 
the tool’s formula to make a cutter to carve away piece by piece a “mouth” (Fig. 10c). 
Finally, the toll’s formula is changed one more time to make a cutter for carving away 
a “nose” (Fig. 10d). The final design can be saved either into VRML or X3D file. 
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 a b c 

Fig. 11. Interaction work with the model reconstructed from CT data 

 

Fig. 12. Student experiments with different types of dynamic geometry and appearance defined 
by implicit, explicit and parametric functions 

In the next example (Fig. 11) the basic volume model of a bunny was acquired by a 
CT scanner as three dimensional volume density values. The function model was 
reconstructed by applying a trilinear interpolation function which was added as a 
native function to the FVRML/FX3D plug-in. At this step, the model is shown as a 
gray object, which is the default color of VRML and X3D. Some details which can be 
seen on the original physical object are missing on the reconstructed model due to the 
scanning precision and the reconstruction procedure. First, the reconstructed model is 
loaded into the design environment and its color is changed in the command mode so 
that it varies from bright white on the belly to dark gray on the back. (Fig. 11a). Next, 
the geometry of the bunny’s mouth and nose is modified by applying interactive 
operations to the object. It is implemented as modifications of the function scripts 
without changing the original CT volume data (Fig. 11b). Finally, the eyes and the 
ears of the bunny are colored interactively as dark red and semi-transparent dark 
yellow, respectively, by various interactive tools (Fig. 11c). The created object’s 
VRML code is very small since it only contains modifications described in FVRML 
while the original CT volume data is referenced as a hyperlink.  
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In Fig. 12 we show examples of student experiments with definitions of different 
types of dynamic geometry and appearance by using implicit, explicit and parametric 
functions, as well as snapshots of the scenes of a computer graphics assignment: 
“Implicit Fantasies and Parametric Metamorphoses in Cyberworlds”, where the 
students have to design a shared VRML environment containing animated function-
defined objects. 

4   Future Trends of Educational Cyberworlds 

Increasingly we believe that educational cyberworlds aided by the inclusion of haptic 
technology will not only flourish but that they will become a mainstay of the 
educational learning narrative. There are several key imperatives governing this 
assertion.  

One, significant numbers of ‘Digital Natives’ have grown up with game-based 
virtual environments, and increasingly they will see them as simply natural extensions 
of their online experiences—in fact they are likely to demand them. Having 
experienced throughout their childhood freedom from geographical space-time 
constraints, students of diverse backgrounds, interests, and talents will increasingly 
insist that they be able to work together and actively build, share and demonstrate for 
both themselves and their instructors what they know, and how they come to know it.  

Two, from an educational and pedagogical perspective, cyberworlds will be seen to 
support - in significant ways, the key principles of good practice in higher education 
[15], identified as crucial to success in the teaching and learning process. More 
importantly, this reality will eventually translate into an academic administrative 
impulse to support the active integration of visual immersive environments within the 
curriculum process. Administrators will eventually realize that their learners have 
changed and changed significantly, requiring bold and creative applications of such 
cyberworlds to attract and hold this increasingly sophisticated digital clientele.  

Three, bandwidth growth and the increasingly innovative application and 
integration of Web 2.0 services within existing and rapidly evolving educational 
cyberworlds, perforce, will require more and more academics to review their teaching 
and learning practices and processes, especially those that can and will soon be 
readily supported within educational cyberworlds, i.e., synchronous classrooms, chat 
lines, streaming videos, interactive lab experiments, just in-time content delivery via 
pedagogical agents - who access federated content repositories and deliver 
individually crafted learning experiences tailored to the learner’s dominant learning 
traits - and individual and group created portfolio display spaces.  

The future is here. It is tactile, interactive, visually driven, expressive, community 
oriented and taking flight within immersive shared virtual spaces. These cyberworlds 
are the tide of the future which, to paraphrase Shakespeare, taken at full flood will 
lead to fortune; missed will result in nothing but misery.  

5   Conclusion 

We have developed a function-based approach to web visualization where relatively 
small mathematical formulas, like some individual DNAs are used for defining the 
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object’s geometry, appearance and physical properties. Based on this approach we 
propose a new virtual haptic shared environment architecture and tools that can be 
used in immersive shared virtual applications. With this approach we are able to 
provide haptic feedback from both standard objects of VRML/X3D, as well as from 
advanced 3D solid objects and force fields defined by functions. We have designed 
and developed an innovative application for collaborative teaching of subjects 
requiring strong 3D geometric interpretations of the theoretical issues, which, in turn, 
caters to the diverse needs of learners and has the space for continuous improvement 
and expansion. Our software unifies, under one roof, and provides learners with the 
ability to: /1/ interactively visualize geometry and appearance defined by analytical 
formulas, /2/ perform a walkthrough the created scene, as well as haptically explore it, 
and /3/ make the scene a part of any other shared virtual scene defined by VRML or 
X3D. As well our tool puts the emphasis on the modeling process itself by 
demonstrating how geometry, appearance and physical properties can be defined by 
mathematical formulas. Another benefit is that the software does not require 
purchasing any licenses and is available anytime anywhere on any Internet-connected 
computer.  

The proposed movement to extend virtual haptic applications within digital 
learning spaces is a significant first step towards the creation of the Intelligent 
Memory Systems envisioned by Hawkins [16]. Such systems are thought to be 
capable of analyzing, synthesizing, evaluating the learner’s needs and integrating 
these within either a tightly or loosely constructed learning sequence.  
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Abstract. Circles are frequently used for modelling the growth of par-
ticle aggregates through the Johnson-Mehl tessellation, that is a special
instance of the Voronoi diagram of circles. Voronoi diagrams allow one
to answer proximity queries after locating a query point in the Voronoi
zone it belongs to. The dual graph of the Voronoi diagram is called the
Delaunay graph. In this paper, we first show a necessary and sufficient
condition of connectivity of the Voronoi diagram of circles. Then, we
show how the Delaunay graph of circles (the dual graph of the Voronoi
diagram of circles) can be computed exactly, and in a much simpler
way, by computing the eigenvalues of a two by two matrix. Finally, we
present how the Voronoi diagram of circles can be used to model the
growth of particle aggregates. We use the Poisson point process in the
Voronoi diagram of circles to generate the Johnson-Mehl tesselation. The
Johnson-Mehl model is a Poisson Voronoi growth model, in which nuclei
are generated asynchronously using a Poisson point process, and grow
at the same radial speed. Growth models produce spatial patterns as a
result of simple growth processes and their visualization is important in
many technical processes.

Keywords: Voronoi diagram of circles, Visualization of nucleation and
growth of particles, Johnson-Mehl tessellations, growth models.

1 Introduction

The proximity queries among circles could be effectively answered if the Delau-
nay graph for sets of circles could be computed in an efficient and exact way.
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This would require the embedding of the Delaunay graph and the location of
the query point in that embedded graph. The embedded Delaunay graph and
the Voronoi diagram are dual subdivisions of space, which can be stored in a
quad-edge data structure [GS85]. The original contribution of this paper is a nec-
essary and sufficient condition of connectivity of the Voronoi diagram of circles,
an exact and much simpler algorithm for the Delaunay graph of circles (the dual
graph of the Voronoi diagram of circles, with no assumption on the disjointness
of circle sites), and its application to the visualization of the growth of particles.

The first and most explored Voronoi diagram is the Voronoi diagram for
a set of points [Vor07, Vor08, Vor10] in the Euclidean plane or in the three-
dimensional Euclidean space (see Figure 1). Voronoi diagrams have been gener-
alised in many different ways including by modifying the space in which they
are embedded (see [Auren87, OBSC01] for a general survey of Voronoi dia-
grams): higher dimensional Euclidean spaces, non Euclidean geometries (e.g.
Laguerre geometry, hyperbolic geometry, etc.). Fewer generalisations of Voronoi
diagrams correspond to extending the possible sites from points to circles, i.e.,
the additively weighted Voronoi diagram (see Figure 2) [AMG98b, AMG98a]
and the Voronoi diagram for circles (set of sites comprising circles, see Figure 3)
[KKS01b, KKS01a, KKS00]. The definition of the weighted Voronoi diagram
differs from the definition of the ordinary one in that the Euclidean distance is
replaced by a weighted distance. In the case of the additively weighted Voronoi
diagram, the weighted distance between a point and a generator is the Euclid-
ean distance minus the weight of the generator, but since it must be a distance,
it has to be always positive or zero, and thus the additively weighted distance
is not defined in the interior of the weight circles (circles centred on a genera-
tor and of radius the weight of the generator). The additively weighted Voronoi
diagram has been extensively studied by Ash and Bolker [AB86] and Aurenham-
mer [Auren88] under the name of hyperbolic Dirichlet tessellations and Power
Voronoi diagrams, but till [AMG98b] and [AMG98a], there was no dynamic algo-
rithm for constructing the additively weighted Voronoi diagram. This work solves
the robustness issue in the work of Anton, Mioc and Gold [AMG98b, AMG98a]
and extends it to the Voronoi diagram of circles. This robustness fix and exten-
sion are achieved by providing an exact conflict locator.

The exact computation of the additively weighted Voronoi diagram has not
been addressed until Anton et al. [ABMY02]. That paper addressed the exact
predicate for the off-line construction of the dual graph of the additively weighted
Voronoi diagram from the dual of the Power Voronoi diagram of spheres by using
the relationship between the additively weighted Voronoi diagram in the plane
and the Power Voronoi diagram1 of spheres in the three-dimensional space. In
their independent work, Karavelas and Emiris [KE02, EK06, KE03] provided
several exact predicates of maximum degree 16 for achieving the same “in-cir-
cle/orientation/edge-conflict-type/difference of radii” test as we do in a single

1 The Power Voronoi diagram is a generalised Voronoi diagram where sites are hyper-
spheres and the distance between a point and a site is the power of that point with
respect to that site [Auren87].
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Fig. 1. The ordinary Voronoi diagram (plain lines) of points (squares), and its topology
expressed by the Delaunay triangulation (dashed lines)

conflict locator presented in this paper. They reduced the degree of their predi-
cate from 28 to 20 and then to 16 using Sturm sequences and invariants. Their
work is more limited in scope than ours, because they compute the additively
weighted Voronoi diagram (or Appolonius diagram) rather than the Voronoi
diagram of circles, and they assume the circles never intersect (they mention
this assumption could be lifted, but they provide no justification), and they
also assume no three circles can have a common tangent, or equivalently, no
empty circle has infinite radius. The difference between the additively weighted
Voronoi diagram (or Appolonius diagram) and the Voronoi diagram of circles is
that the additively weighted Voronoi diagram (or Appolonius diagram) is based
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on a distance that is not defined in the interior of the (weight) circles, while
the Voronoi diagram of circles is based on a distance that is defined everywhere.
Thus, there can not be a point of the additively weighted Voronoi diagram in
the interior of a circle, because its distance to the enclosing circle is not defined.
Thus intersecting circles are not permitted and circles contained in other circles
are not permitted either. Indeed, a point of the Voronoi diagram in the interior
of the enclosing circle would not have a defined distance to the enclosing circle.
The approach adopted in [KE02, EK06, KE03] is also more complex than ours,
because they compute exactly not only the Delaunay graph, but also the addi-
tively weighted Voronoi diagram, which unlike they state, is not required in the
applications. Only the exact computation of the Delaunay graph of circles is re-
quired for practical applications, because the Delaunay graph gives the topology
of circles. Finally, our approach is much simpler, because we obtain the output
of the predicate (in fact a Delaunay graph conflict loctor) by computing the sign
of the eigenvalues of a simple two by two matrix.

In this paper, we also provide an application of the Voronoi diagram of circles
to the visualisation of the growth of particle aggregates, which justifies the moti-
vation for not only computing the additively weighted Voronoi (or Appolonius)
diagram, but also the Voronoi diagram of circles. A comprehensive overview of
the Delaunay and Voronoi methods for non-crystalline structures was provided
by Medvedev [Med00], and Anishchik and Medvedev [AM95] were the first ones
in 1995 to provide the solution of Appolonius problem for sphere packing in
three dimensions. The application of the additively weighted Voronoi diagram
to visualization of the growth of particle aggregates is based on particle statis-
tics. Particle statistics play an important role in many technical processes (in the
industrial production of materials where the phase transition from liquid to solid
is a part of the technical process, for example production of metals and ceramic
materials) [Stoya98], material science, plant ecology, and spatial analysis. Due to
the lack of efficient algorithms for their visualization only the “set-theoretic ap-
proach in particle statistics” [Stoya98] has been used as a method of visualization
of spatial growth processes in the past.

Growth models produce spatial patterns as a result of simple growth processes
operating with respect to a set of n points (nucleation sites), P = {p1, p2, ...pn} at
positions x1, x2, ..., xn, respectively in R

m or a bounded region of R
m (m = 2, 3).

The growth processes such as agglomeration, aggregation, packing, etc. lead in
a natural way to the Poisson Voronoi tessellation [OBSC01], [Stoya98] and to
the Johnson-Mehl tessellation when the members of the generator set P are not
contemporaneous [OBSC01].

The Johnson-Mehl model has been introduced in [JM39] for modelling the
growth of particle aggregates. The Johnson-Mehl model is a Poisson Voronoi
growth model, in which nuclei are generated asynchronously using a Poisson
point process [OBSC01], and grow at the same radial speed v. Each generator
Pi = (−→pi , ti) has both a planar location (its position vector) and an associated
birth time ti (ti ≥ 0). The Johnson-Mehl tessellation can be considered as a
generalisation of a dynamic version of an additively weighted Voronoi diagram
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Fig. 2. An additively weighted Voronoi diagram, its dual graph and the empty circum-
circles

[AMG98a], in which the weight reflects the arrival time of the point in R
2

[OBSC01]. However, since when nuclei start to touch as they grow, the Johnson-
Mehl tessellation might have intersecting nuclei, and edges that correspong to
loci of centres of circles internally tangent to two weight circles. In that case,
the additively weighted distance would not be well defined, because it would be
negative. In that case, the distance used is the distance corresponding to the
Voronoi diagram of circles. Thus, the Johnson-Mehl tessellation differs from the
Voronoi diagram of circles in that only bisectors that are loci of circles that
are either externally tangent to 2 circles or internally tangent to 2 circles are
boundaries of Johnson-Mehl cells.

This paper is organised as follows. In Section 2, we present the definitions of
the (generalised) Voronoi diagram of a set of sites and its dual Delaunay graph
of a set of sites, and the Delaunay graph conflict locator. In Section 3, we pro-
vide necessary and sufficient conditions for construction of the Delaunay graph
of circles and for connectivity of the Voronoi diagram of circles. In Section 4, we
present the Delaunay graph conflict locator, both in the case of the additively
weighted Voronoi diagram, and the Voronoi diagram of circles. In Section 5, we
present the application of the Voronoi diagram to the modelling and the visual-
isation of the growth of particle aggregates. Finally, we present the conclusions
and future work in Section 6.

2 Preliminaries

Voronoi diagrams are irregular tessellations of the space, where space is contin-
uous and structured by discrete objects [AK00, OBSC01]. The Voronoi diagram
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Fig. 3. The Voronoi diagram, the Delaunay graph and the empty circumcircles of
circles. The circles hide the edges of the Delaunay graph between intersecting circles
and the empty circles corresponding to intersecting circles.

[Vor07, Vor08, Vor10] (see Figure 1) of a set of sites is a decomposition of the
space into proximal regions (one for each site). Sites were points for the first his-
torical Voronoi diagrams [Vor07, Vor08, Vor10], but in this paper we will explore
sets of circles. The proximal region corresponding to one site (i.e. its Voronoi
region) is the set of points of the space that are closer to that site than to any
other site of the set of sites [OBSC01]. We will recall now the formal definitions
of the Voronoi diagram and of the Delaunay graph. For this purpose, we need
to recall some basic definitions.

Definition 1. (Metric) Let M be an arbitrary set. A metric on M is a mapping
d : M × M → R+ such that for any elements a, b, and c of M , the following
conditions are fulfilled: d (a, b) = 0 ⇔ a = b, d (a, b) = d (b, a), and d (a, c) ≤
d (a, b) + d (b, c). (M, d) is then called a metric space, and d (a, b) is the distance
between a and b.

Remark 2. The Euclidean space R
N with the Euclidean distance δ is a metric

space
(
R

N , δ
)
.

Let M = R
N , and δ denote a distance between points. Let S = {s1, ..., sm} ⊂

M, m ≥ 2 be a set of m different subsets of M , which we call sites . The distance
between a point x and a site si ⊂ M is defined as d (x, si) = infy∈si {δ (x, y)}.

Definition 3. (Bisector) For si, sj ∈ S, si �= sj , the bisector B (si, sj) of si with
respect to sj is: B (si, sj) = {x ∈ M |d (x, si) = d (x, sj)} (see Figure 4).

Definition 4. (Influence zone) For si, sj ∈ S, si �= sj , the influence zone
D (si, sj) of si with respect to sj is: D (si, sj) = {x ∈ M |d (x, si) < d (x, sj)}
(see Figure 5).
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Fig. 4. The bisector (parabola) of a point and a line segment

Fig. 5. The influence zone (hashed) of a point with respect to a line

Definition 5. (Voronoi region) The Voronoi region V (si, S) of si ∈ S with
respect to the set S is: V (si, S) =

⋂
sj∈S,sj �=si

D (si, sj).

Definition 6. (Voronoi diagram) The Voronoi diagram of S is the union V (S)=⋃
si∈S ∂V (si, S) of all region boundaries (see example on Figure 3).

Definition 7. (Delaunay graph) The Delaunay graph DG (S) of S is the dual
graph of V (S) defined as follows:

– the set of vertices of DG (S) is S,
– for each (N − 1)−dimensional facet of V (S) that belongs to the common

boundary of V (si, S) and of V (sj , S) with si, sj ∈ S and si �= sj , there is
an edge of DG (S) between si and sj and reciprocally, and

– for each vertex of V (S) that belongs to the common boundary of V (si1 , S)
,. . . ,V

(
siN+2, S

)
, with ∀k ∈ {1, ..., N + 2} , sik

∈ S all distinct, there exists
a complete graph KN+2 between the sik

, and reciprocally (see example on
Figure 3).
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The one-dimensional elements of the Voronoi diagram are called Voronoi edges.
The points of intersection of the Voronoi edges are called Voronoi vertices. The
Voronoi vertices are points that have at least N + 1 nearest neighbours among
the sites of S. In the plane, the Voronoi diagram forms a network of vertices and
edges. In the plane, when sites are points in general position, the Delaunay graph
is a triangulation known as the Delaunay triangulation. In the plane, the Delaunay
graph satisfies the following empty circle criterion: no site intersects the interior
of the circles touching (tangent to without intersecting the interior of) the sites
that are the vertices of any triangle of the Delaunay graph.

Once the Voronoi region a query point belongs to has been identified, it is easy
to answer proximity queries. The closest site from the query point is the site whose
Voronoi region is the Voronoi region that has been identified. The Voronoi diagram
defines a neighbourhood relationship among sites: two sites are neighbours if, and
only if, their Voronoi regions are adjacent, or alternatively, there exists an edge
between them in the Delaunay graph.

The exact computation of the Delaunay graph is important for two reasons.
By exact computation, we mean a computation whose output is correct. First,
unlike the Voronoi diagram, the Delaunay graph is a discrete structure, and thus
it does not lend itself to approximations. Second, the inaccurate computation of
this Delaunay graph can induce inconsistencies within this graph (see Section
4.2), which may cause a program that updates this graph to crash. This is
particularly true for the randomised incremental algorithm for the construction
of the Voronoi diagram of circles. In order to maintain the Delaunay graph
after each addition of a site, we need to detect the Delaunay triangles that are
not empty any longer, and we need to detect which new triangles formed with
the new site are empty, and thus valid. In the reminder, sites are generators of
the Voronoi diagram or the Delaunay graph, while points are any location in
the plane unless specified otherwise. The algorithm that certifies whether the
triangle of the Delaunay graph whose vertices are 3 given sites is empty (i.e.
does not contain any point of a given site in its interior) or not empty is used for
checking which old triangles are not empty any longer and which new triangles
formed with the new site are empty, and thus valid. This algorithm is called the
“Delaunay graph conflict locator” in the reminder of this paper.

When the old triangles are checked, its input is a 4-tuple of sites, where
the first three sites define an old triangle, and the fourth site is the new site
being inserted. When the new triangles are checked, its input is also a 4-tuple
of sites, where the first three sites define a new triangle, the first two sites being
linked by an existing Delaunay edge, and the fourth site forms an old Delaunay
triangle with the first two sites. Its output is the list of all the Voronoi vertices
corresponding to the 1−dimensional facets of the Delaunay graph having the
first 3 sites as vertices whose circumcircles contain a point of the fourth site in
their interior, and a value that certifies the presence of each Voronoi vertex in
that list. The fact that a circumcircle (the circle that is externally tangent to
three given circles) is not empty is equivalent to the triangle formed by those
three circles being not Delaunay, and this is called a conflict. Thus, it justifies
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the name of “Delaunay graph conflict locator”. In the context of the ordinary
Voronoi diagram of points in the plane, the concept that is analogous to the
Delaunay graph conflict locator is the Delaunay graph predicate, which certifies
whether a triangle of the Delaunay triangulation is such that its circumcircle
does not contain a given point.

The exact knowledge of the Delaunay graph for curved objects may sound like
a purely theoretical knowledge that is not central in practical applications. This
is not always the case in some applications. These applications include material
science, metallography, spatial analyses and VLSI layout. The Johnson-Mehl tes-
sellations (which generalise several weighted Voronoi diagrams) [OBSC01] play
a central role in the Kolmogorov-Johnson-Mehl-Avrami [JM39, Kol37] nucle-
ation and growth kinetics theory. The Kolmogorov theory provides an exact
description of the kinetics during the heating and cooling processes in mater-
ial science (the Kolmogorov equation [JM39, Kol37]). The exact knowledge of
the neighbourliness among molecules is central to the prediction of the forma-
tion of particle aggregates. In metallography, the analysis of precipitate sizes in
aluminium alloys through Transmission Electronic Microscopy [Des03, Section
1.2.2] provides an exact measurement of the cross sections of these precipitates
when they are “rodes” with a fixed number of orientations [Des03, Section 1.2.2].
In VLSI design, the second order Voronoi diagram of the layout is used in the
computation of the critical area, a measure of a circuit layout’s sensitivity to spot
defects [CPX02, Section 1]. An important concern on critical area computation
is robustness [CPX02, Section 1].

Another limitation of approximative algorithms for the computation of the
Delaunay graph is that when approximate computations are performed on ob-
jects defined approximately (within some geometric tolerance), the propagation
of the errors can be critical, especially if the final computation involves approx-
imate intermediary computations.

Finally, the exact computation of the Delaunay graph participates to the
recent move in the development of numerical and simulation software as well as
computer algebra systems to exact systems [BCSS98].

3 The Necessary and Sufficient Conditions of
Construction of the Delaunay Graph of Circles and of
Connectivity of the Voronoi Diagram of Circles

In this section, we will examine how the Delaunay graph conflict locator can be
used to maintain the Voronoi diagram of circles in the plane as those circles are
introduced one by one. Finally, we will give a necessary and sufficient condition
for the connectivity of the Voronoi diagram of circles in the projective plane
that has a direct application in the representation of spatial data at different
resolutions.

Knowing the Voronoi diagram V (S) of a set S={s1, . . . , sm} ⊂ R
2 of at least

two circles (m > 1) and its embedded Delaunay graph DG (S) stored in a quad-
edge data structure, we would like to get the Voronoi diagram V (S ∪ {sm+1}),
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where sm+1 is a circle of R
2. In all this section, we will say that a circle C touches

a circle si if, and only if, C is tangent to si and no point of si is contained in the
interior of C.

The Voronoi edges and vertices of V (S) may or may not be present in
V (S ∪ {sm+1}). Each new Voronoi vertex w induced by the addition of sm+1

necessarily belongs to two Voronoi edges of V (S), because two of the three
closest sites to w necessarily belong to S. The new Voronoi edges induced
by the addition of sm+1 will clearly connect Voronoi vertices of V (S) to new
Voronoi vertices induced by the addition of sm+1 or new Voronoi vertices between
themselves.

Any of these later Voronoi edges e′ must be incident to one of the former
Voronoi edges at each extremity of e′ (because the Voronoi vertex at each ex-
tremity of e′ belongs to only one new Voronoi edge, i.e. e′). Any of the former
Voronoi edges e must be a subset of a Voronoi edge of V (S), since e must be a
new Voronoi edge between sites of S (otherwise the Voronoi vertex belonging to
V (S) at one of the extremities of e by the definition of e would be a new Voronoi
vertex). Thus, to get V (S ∪ {sm+1}), we need to know which Voronoi vertices
and edges of V (S) will not be present in V (S ∪ {sm+1}), which Voronoi edges
of V (S) will be shortened in V (S ∪ {sm+1}) and which new Voronoi edges will
connect new Voronoi vertices between themselves.

We can test whether each Voronoi vertex v of V (S) will be present in
V (S ∪ {sm+1}). Let us suppose that v is a Voronoi vertex of si, sj and sk.
v will remain in V (S ∪ {sm+1}) if, and only if, no point of sm+1 is contained
in the interior of the circle centred on v that touches si, sj and sk. This is a
sub-problem of the Delaunay graph conflict locator that can be tested by giving
si, sj , sk and sm+1 as input to the Delaunay graph conflict locator, and then
retain only the solutions where the Voronoi vertex is v.

We can test whether each Voronoi edge e of V (S) will be present in
V (S ∪ {sm+1}). Let us suppose that e is a locus of points having si and sj

as closest sites. e will disappear entirely from V (S ∪ {sm+1}) if, and only if, a
point of sm+1 is contained in the interior of each circle centred on e and touching
si, sj and each common neighbour sk to si and sj in DG (S) in turn. This can
be tested by giving si, sj , sk and sm+1 as input to the Delaunay graph conflict
locator and then retaining only the solutions where the Voronoi vertex belongs
to e. e will be shortened (possibly inducing one or more new Voronoi edges) in
V (S ∪ {sm+1}) if, and only if, there exists Voronoi vertices of si, sj and sm+1

on e and there is no point of any common neighbour sk to si and sj in DG (S)
in the interior of a circle centred on e and touching si, sj and sm+1. The centre
of each one of such circles will be a new Voronoi vertex in V (S ∪ {sm+1}). This
can be tested by giving si, sj , sm+1 and sk as input to the Delaunay graph
conflict locator and then retaining only the solutions where the Voronoi vertex
belongs to e.

The Delaunay graph conflict locator is sufficient to maintain the Voronoi
diagram of circles. Tests might be limited to edges and vertices on the boundaries
of the Voronoi regions V (si, S) , si ∈ S that intersect sm+1 and of the Voronoi
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regions V (sj, S) , sj ∈ S adjacent to a Voronoi region V (si, S). Indeed, a point
(and thus a circle) can steal its Voronoi region only from the Voronoi region it
belongs to and the adjacent Voronoi regions.

We will finish this section with a necessary and sufficient condition for the
connectivity of the Voronoi diagram of connected circles in the projective plane.
This result allows the characterisation of dangling edges in the Delaunay graph
corresponding to the presence of closed edges in the Voronoi diagram. In order to
proceed, let us recall some notations used in point set topology: let s denote the
closure of s, and

◦
s denote the interior of s in the sense of the point set topology

in R
2. Note that if s bounds a closed domain then the interior of s is meant to

be the interior of the closed domain bounded by s.

Proposition 8. (Connectivity of the Voronoi diagram in the plane) The Voronoi
diagram V (S) of a set S = {s1, . . . , sm} ⊂ R

2 of at least two connected circles
(m > 1) considered in P

2 is not connected if, and only if, there exist a subset
I of [1, . . . , m] and one index j of [1, . . . , m] such that ∀i ∈ I, si ⊂ ◦

sj and ∀k ∈
[1, . . . , m] \ I, si ∩ sk = sj ∩ sk = ∅.

Proof. If: Assume there exist a subset I of [1, . . . , m] and one index j of [1, . . . , m]
such that ∀i ∈ I, si ⊂ ◦

sj and ∀k ∈ [1, . . . , m] \ I, si ∩ sk = sj ∩ sk = ∅. Let sl ∈ S
with l ∈ [1, . . . , m] \ I. Let S =

⋃
i∈I si. Since S ⊂ ◦

sj , any circle touching both
a si, i ∈ I and sj must be contained in sj . Since S ∩ sl = sj ∩ sl = ∅, no circle
can touch each of an si, i ∈ I, sj and sl. Thus, there is no point that has a
si, i ∈ I, sj and sl as nearest neighbours. Thus, there is no Voronoi vertex of a
si, i ∈ I, sj and sl. Since there is no Voronoi vertex of a si, i ∈ I, sj and an sl

with l ∈ [1, . . . , m] \ I, there are no Voronoi vertices on the bisector of S and
sj . Since S ∩ sl = S ∩ sl = ∅, any circle centred on the bisector of S and sj and
touching both S and sj does not intersect any site sk with k ∈ [1, . . . , m] \ I.
Thus, the bisector of S and sj is contained in V (S). Since sj is connected and
S ⊂ ◦

sj, the bisector of S and sj is a closed curve. Thus, the Voronoi diagram of
S is not connected in P

2.
Only if: Assume the Voronoi diagram of S is not connected in P

2. Then,
V (S) has at least two connected components. Thus, at least one of these con-
nected components does not have points at infinity. Let us consider the connected
component (let us call it C1) that does not have points at infinity. Since C1 is
composed of Voronoi edges2, each edge in C1 must end at either a Voronoi vertex
or a point at infinity. Since C1 does not have any point at infinity, all Voronoi
edges in C1 connect Voronoi vertices. Thus C1 is a network of vertices and edges
linking those vertices. The regions that this network defines are Voronoi regions.
Let D be the union of the closure of those Voronoi regions. D is a closed set by
its definition. Let us consider now the circles sl, l ∈ L whose Voronoi regions are
contained in D. Let S =

⋃
l∈L sl. Thus S is a union of circles.

2 A one-dimensional component of the Voronoi diagram, which is also the locus of
points having two nearest sites.
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Fig. 6. The relative position with respect to the bisector must be constant

We will now consider S as a site instead of each one of the sl, l ∈ L. The
influence zone of S =

⋃
l∈L sl is clearly

◦
D, because the influence zone of a union

of circles is clearly the closure of the union of the Voronoi regions of those circles.
Let e = ∂D. It is a portion of the bisector of S and another circle. Let us call
it sj. If not all the bisector of S and sj was contained in V (S), then e would
end at Voronoi vertices (a point on the Voronoi diagram has at least two closest
sites) or the point at infinity, a contradiction with e not being connected. Thus,
the bisector of S and of sj is contained in V (S), and it is equal to e. By the
definition of e, e must be a closed curve. Assume the positions of S and sj with
respect to e are not always the same. Then, S and sj must intersect. The bisector
of S and sj must have two branches near the intersection points (see Figure 6).
Since e is a closed curve and S is contained in the interior of e, sj must be closed,
and the other branches must be unbounded (a contradiction with e not being
connected in P

2). Thus, the positions of S and sj with respect to e are always
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the same along e. Since sj is connected, S is contained in the interior of e and
the positions of S and sj with respect to e are always the same along e, S ⊂ ◦

sj .
Since e is the bisector of S and sj and belongs to V (S), any circle centred on e
and touching both S and sj does not intersect any site sk with k ∈ [1, . . . , m]\I.
Thus, ∀k ∈ [1, . . . , m] \ I, si ∩ sk = sj ∩ sk = ∅.

The only cases of disconnected (considered in P
2) Voronoi diagrams correspond

to one or more sites (circles) contained in the interior of another site. This
property has a direct application in Geographic Information Systems. When
the same region R bounded by a circle S is represented at different scales, the
representation of the details inside R does not change the Voronoi diagram
outside R. The edges of the Delaunay graph corresponding to a disconnected
Voronoi diagram (considered in P

2) are respectively dangling edges or cut edges
(the Delaunay graph is not bi-connected and removing a cut edge induces two
connected components). It is possible to detect if there exists one or more sites
si, i ∈ I contained in the interior of another site sj by checking that there exists
no Voronoi vertex of si, sj and any sk ∈ S distinct from si and sj . This is again
a subproblem of the Delaunay graph conflict locator.

4 The Exact Symbolic Delaunay Graph Conflict Locator
for Circles

We will first present the exact symbolic Delaunay graph conflict locator for
additively weighted points when weighted points are introduced one by one, and
then introduce what changes for circles. For this purpose, we will present some
preliminaries about additively weighted Voronoi diagrams.

4.1 Preliminaries

Let N be the set of integers, R be the set of real numbers, and R
2 be the Euclidean

plane. Let P = {P1, ..., PN} be the set of generators or sites, where Pi is the
weighted point located at pi ∈ R

2 and of weight wi ∈ R. Let Ci be the circle
centred at pi and of radius wi, which we call weight circle hereafter.

The definitions of bisector, influence zone, Voronoi region and Voronoi dia-
gram presented in Section 2 generalise to the case where the set of sites S is a
set of weighted points P , and the distance d (M, Pi) (called additive distance)
between a point M and a site Pi is d (M, Pi) = δ (M, pi) − wi, where δ is the
Euclidean distance between points.

The Voronoi region of Pi with respect to the set P is defined by: V (Pi, P) ={
M ∈ R

2|∀j �= i : δ (M, pi) − wi < δ (M, pj) − wj

}
.

The Additively Weighted Voronoi diagram of P is defined by:

V (P) =
⋃

Pi∈P ∂V (Pi, P). The additively weighted Voronoi diagram is illus-
trated in Figure 7: the weight circles are drawn as plain disks with small holes
at their centres, the additively weighted Voronoi diagram is drawn in plain thick
hyperbola segments, and the Delaunay graph is drawn in dashed lines.



The Voronoi Diagram of Circles 33

Fig. 7. The additively weighted Voronoi diagram

The additively weighted Voronoi diagram defines a network composed of edges
(loci of points having two nearest neighbours), and vertices (loci of points having
three nearest neighbours).

The additively weighted Voronoi diagram is related to the Apollonius Tenth
problem. The Apollonius Tenth problem is to find a circle Γ tangent to three
given circles C1, C2, C3 (see Figure 8). For additively weighted points, we will
see later in this section that only the circles that are either externally tangent to
each of three given circles C1, C2, C3 or internally tangent to each of C1, C2, C3,
are relevant to the Delaunay graph conflict locator. The centres of the circles that
are solutions to the Apollonius Tenth problem are the first example encountered
in this paper of generalised Voronoi vertices (a concept that we introduced in
[Anton04]). Informally, generalised Voronoi vertices are the centres of circles
tangent to N + 1 sites, where N is the dimension of the Euclidean space.

Hereafter we will call the solutions of the Apollonius Tenth problem Apollonius
circles. The centres of the Apollonius circles that are either externally tangent
to each of three given circles C1, C2, C3 or internally tangent to each of C1,
C2, C3 are the first example encountered in this paper of true Voronoi vertices
(i.e. centres of circles that touch N + 1 sites where N is the dimension of the
Euclidean space).

4.2 The Delaunay Graph Conflict Locator for Additively Weighted
Points

In this subsection, we present an exact algebraic conflict locator for the De-
launay graph of additively weighted points (i.e. the dual graph of the additively
weighted Voronoi diagram). The maximum degree of the polynomials which need
to be evaluated to compute this Delaunay conflict locator is 16 (thus, we say
that the degree of the conflict locator is 16). This Delaunay graph conflict lo-
cator would be the core of a randomised incremental algorithm for constructing
the additively weighted Voronoi diagram since the additively weighted Voronoi
diagram is an abstract Voronoi diagram [Kle89], and thus, it can be constructed
with the randomised incremental algorithm of Klein [Kle89].
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Fig. 8. The Apollonius Tenth problem

The motivation for an exact conflict locator lies in the fact that without an
exact computation of the Delaunay graph of additively weighted points, some
geometric and topologic inconsistencies may appear. This is illustrated with
an example. The starting configuration is shown on Figure 9. There are three
weighted points (whose corresponding weight circles are drawn). The Delaunay
graph is drawn in dashed lines. The Apollonius circles tangent to the weight
circles have been drawn in dotted lines. The real configuration after addition of
a fourth weighted point is shown on Figure 10. The configuration that might
have been computed by an approximate algorithm is shown on Figure 11: the
difference between real and perceived situations has been exaggerated to show
the difference. The old Apollonius circles have been adequately perceived to
be invalid with respect to the newly inserted weighted point. About the new
Voronoi vertices, while on the right of the figure two new Voronoi vertices have
been identified as valid with respect to their potential neighbours, on the left of
the figure, only one Voronoi vertex has been identified as being valid with respect
to its potential neighbours. While the new Voronoi edge between the middle and
bottom weighted points can be drawn between the two new Voronoi vertices of
the new, middle and bottom weighted points; the Voronoi edge between the top
and new weighted points cannot be drawn, because there is no valid Voronoi
vertex on the left. There is an inconsistency within the topology: there is one
new Voronoi vertex (the Voronoi vertex of the top new and middle weighted
points) that cannot be linked by a new Voronoi edge to any other new Voronoi
vertex and thus, that Voronoi vertex is incident to only two Voronoi edges.
This additively weighted Voronoi diagram might have been computed by an
approximative algorithm that is not an additively weighted Voronoi diagram.
Thus, even if we perturbate the input weighted points, we will never get this
additively weighted Voronoi diagram.

We consider the maintenance of the Delaunay graph of additively weighted
points in an incremental way: we check the validity of all the triangles of the
Delaunay graph whose vertices are P1, P2, P3 with respect to a newly inserted
weighted point P4 [AKM02] or the validity of all the triangles of the Delaunay
graph whose vertices are P1, P2, where the edge between P1 and P2 exists in
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Fig. 9. The starting configuration

the Delaunay graph, and the newly inserted weight point P3 with respect to
an existing point P4. Thus, the input of the conflict locator is constituted by
four points: the first three are supposed to define a triangle in the Delaunay
graph, and the last one is the tested point. Let (xi, yi) be the coordinates of pi,
for i = 1, 2, 3, 4. There are two possible outcomes to the above test of validity:
either the triangles are valid with respect to the fourth weighted point and the
triangles must appear in the Delaunay graph, or one or two triangles are not valid
with respect to the fourth weighted point and those triangles will not be present
in the Delaunay graph. We can see an example of the later case in Figure 12.
A triangle having P1P2P3 as vertices is not valid with respect to the weighted
point P4, because the circle externally tangent to both the weight circles C1, C2

and C3 (of weighted points C1, C2 and C3) contains a point of the weight circle
C4 (of the weighted point P4). Thus, it must not appear in the Delaunay graph.

When the old triangles are checked, the conflict locator consists of determining
which of the additively weighted Voronoi vertices of P1, P2 and P3 will not
remain after the insertion of P4. When the new triangles are checked, the conflict
locator consists of determining which new Voronoi vertices of weighted points
P1, P2 and the newly inserted weighted point P3 will appear, where P1P2 is an
old Delaunay edge. When the new triangles are checked, this conflict locator
tests the new triangle P1P2P4 with respect to any point P4 such that P1P2P4 is
an old Delaunay triangle. In both cases, the Delaunay graph conflict locator is
equivalent in turn to the additive distance from which of the additively weighted
Voronoi vertices of P1, P2 and P3 to P4 is smaller than the additive distance of
that Voronoi vertex to P1 (or P2 or P3 (see Figure 12).
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Fig. 10. The real configuration after addition of the fourth weighted point (bold weight
circle)

Any additively weighted Voronoi vertex I of P1, P2, and P3 with coordinates
(x, y) can be obtained algebraically by computing the common intersection of
the three circles C′

1, C′
2 and C′

3 expanding (see Figure 13), or shrinking (see
Figure 14) from the three first circles C1, C2 and C3 all at the same rate. The
common signed expansion of the first three circles is denoted by r. Each circle
C′′ centred on (x, y) and of radius r is either externally tangent to the first three
circles (if the expansion r is positive) or internally tangent to the first three
circles (if the expansion r is negative).

The centres coordinates x, y and radii r of the circles C′′ centred on the
intersections I = C′

1 ∩ C′
2 ∩ C′

3 and either externally or internally tangent to
each of C1, C2, and C3 can be computed algebraically as the solutions of the
following system of three quadratic equations in the variables x, y and r:

⎧
⎨

⎩

c′1 (x, y, r) = (x − x1)
2 + (y − y1)

2 − (w1 + r)2 = 0
c′2 (x, y, r) = (x − x2)

2 + (y − y2)
2 − (w2 + r)2 = 0

c′3 (x, y, r) = (x − x3)
2 + (y − y3)

2 − (w3 + r)2 = 0

Subtracting one of the equations (say c′1 (x, y, r) = 0) from the remaining
two (c′2 (x, y, r) = 0 and c′3 (x, y, r) = 0) results in a system of 2 linear equations,
from which x and y may be expressed as linear functions of r. Substitution in the
first equation c′1 (x, y, r) = 0 then leads to a quadratic equation in r. This means
that the unknown quantities x, y, r can be expressed with quadratic radicals as
functions of the given centres and radii.
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VertexNo vertex

Fig. 11. The configuration computed by an approximate algorithm

Though the simplest thing to do now would be to compute the two Voronoi
vertices and use their computed coordinates and corresponding signed expansion
in the computation of the values certifying the output of the Delaunay graph
conflict locator, it is not desirable because this method would not guarantee the
topology of the Voronoi diagram of circles, nor its generalisation to conics or
higher degree algebraic curves. We will detail hereafter only the computation of
the values certifying the presence of Voronoi vertices in the output list.

To get the exact Delaunay graph conflict locator in a more elegant and general-
isable way, we evaluated the values certifying the conflict locator output without
relying on the computation of the Voronoi vertices as an intermediary computa-
tion. This is done by evaluating the values taken by the polynomial function ex-
pressing the relative position of C4 with respect to C′′ on the set of solutions of
the system (i.e. the common zeroes of the three polynomials c′1, c

′
2 and c′3). This

is possible due to the translation that exists between geometry and algebra.
More specifically, to the geometric set X of the set of common zeroes of the

three polynomials c′1, c
′
2 and c′3 in K3, where K is an algebraically closed field

[Lan02, Definition before Theorem 1, Section 2, Chapter VII], we can associate
the set of all polynomials vanishing on the points of X , i.e., the set of polyno-
mials f1c

′
1 + f2c

′
2 + f3c

′
3 where the fi, i = 1, 2, 3 are polynomials in the three

variables x, y, r with coefficients in K. This set is the ideal [GP02, Definition
1.3.1] 〈c′1, c′2, c′3〉. The set of polynomials with coefficients in K, forms with the
addition and the multiplication of polynomials, a ring: the ring of polynomials
[GP02, Definition 1.1.3]. A polynomial function g (x, y, r) on K3 is mapped to
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Fig. 12. The Delaunay graph conflict locator for the additively weighted Voronoi dia-
gram: only the weight circles Ci or the weighted points Pi for i = 1, ..., 4 are shown. Up:
there is only one Voronoi vertex to check; down: there are two Voronoi vertices to check.

a polynomial function on X if we recursively subtract from g any polynomial
in g belonging to 〈c′1, c′2, c′3〉 until no monomial in g can be divided by each one
of the lexicographically highest monomials in c′1, c

′
2 and c′3. The result of this

mapping gives a canonic representative of the remainder of the Euclidean di-
vision of the polynomial g by the polynomials c′1, c

′
2 and c′3. The image of the

ring of polynomials by this mapping is called the quotient algebra [Lan02, Sec-
tion 3, Chapter II] of the ring of polynomials by the ideal 〈c′1, c′2, c′3〉. Moreover,
〈c′1, c′2 − c′1, c

′
3 − c′1〉=〈c′1, c′2, c′3〉. Finally, if we recursively subtract from g any

polynomial in g belonging to 〈c′1, c′2 − c′1, c′3 − c′1〉 till the only monomials in g
are 1 and r, we get the same result as the preceding mapping. The polynomials
c′1, c

′
2 − c′1, c

′
3 − c′1 constitute what is called a Gröbner basis [GP02, Definition

1.6.1] of the ideal 〈c′1, c′2, c′3〉.
Gröbner bases are used in Computational Algebraic Geometry in order to

compute a canonic representative of the remainder of the division of one polyno-
mial by several polynomials generating a given ideal I. This canonic representa-
tive belongs to the quotient algebra of the ring of polynomials by the ideal I. The
Gröbner basis for this system provides a set of polynomials that define uniquely
the algebraic relationships between variables for the solutions of the system.
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Fig. 13. The additively weighted Voronoi vertex as the common intersection of three
expanding circles

C3
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I
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C1

Fig. 14. The additively weighted Voronoi vertex as the common intersection of three
shrinking circles

The initial (largest with respect to some monomial order [CLO98]) monomials
of each one of the polynomials of the Gröbner basis form an ideal. The mono-
mials that do not pertain to this ideal form a basis for the representatives of
the equivalence class of the remainders of the division of a polynomial by the
polynomials of the system in the quotient algebra. These monomials are called
standard monomials. For the above Gröbner basis, the standard monomials are
1 and r. The size of this basis equals the dimension [GP02, see definition on
page 414] of the quotient algebra and the number of solutions of the system
counted with their multiplicity [Lan02]. In the case of the conflict locator for the
additively weighted Voronoi diagram, there are two solutions.

The polynomial g = (x4 − x)2 + (y4 − y)2 − (r + r4)
2 expresses the relative

position of C4 with respect to C′′. Indeed C′′ is tangent to C4 if, and only if,
the Euclidean distance between the centres of C′′ and of C4 (i.e., (x, y) and p4)
equals the sum of the radii r and r4, i.e. (x4 − x)2+(y4 − y)2−(r + r4)

2 = 0. The
open balls bounded by C′′ and C4 intersect if, and only if, the Euclidean distance
between the centres of C′′ and of C4 is smaller than the sum of the radii r and
r4, i.e. (x4 − x)2+(y4 − y)2−(r + r4)

2
< 0. The circles C′′ and C4 are disjoint if,
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and only if, the Euclidean distance between the centres of C′′ and of C4 is greater
than the sum of the radii r and r4, i.e. (x4 − x)2 +(y4 − y)2 − (r + r4)

2
> 0. We

considered the operation of multiplication of polynomials by the polynomial g.
This multiplication operator is a linear mapping. The operation of this mapping
on the canonic representative of the reminder of the division of a polynomial by
c′1, c

′
2 and c′3 is also a linear mapping that can be expressed by a matrix since

the quotient algebra has a finite dimension.

First, we compute the matrix Mg =
(

m00 m01

m10 m11

)
of the following multiplica-

tion operator on the quotient algebra:
mg : [f ] −→ [gf ].

The eigenvalues of Mg are the values of g taken on X (see Theorem 4.5, page
54 in [CLO98]). The eigenvalues of Mg are the solutions of det (Mg − λI) = 0,
where I denotes the 2 × 2 identity matrix, i.e. the roots of

λ2 − λ (m00 + m11) + (m00m11) − (m01m10) = 0 (4.1)

The values certifying the presence of Voronoi vertices in the list output by
the Delaunay graph conflict locator are the signs of the values taken by g, and
they are determined by the sign of the roots of Equation 4.1 (which are the
eigenvalues of Mg). If there is only one eigenvalue and it is 0 then the fourth
circle is tangent to the circle externally tangent to the first three circles. The sign
of Δ (where Δ = (m00 + m11)

2 − 4 (m00m01 − m01m10) ) cannot be negative
when the first three sites of the input correspond to a Delaunay triangle, because
this would be equivalent to the fact there would be no triangle with vertices C1,
C2 and C3 in the old Delaunay graph (because of the absence of real Voronoi
vertex, see Figure 15). Thus, if sign (Δ) is negative that means we have one circle
contained in another circle, and then we just need to link them by a Delaunay
edge. Otherwise, sign (Δ) is 0 or positive, and we have to evaluate the sign of
the roots of the quadratic equation.

When there is only one double root of Equation 4.1 then we have the following
two possibilities. Either the value of the root of Equation 4.1 is positive or 0

C2

C1

C3

Fig. 15. There is no such triangle in the old Delaunay graph because of the absence of
a real Voronoi vertex
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and the triangle will exist in the new Delaunay graph, or the value of the root
of Equation 4.1 is negative and the triangle will not exist in the new Delaunay
graph (see Figure 12). When there are two real roots of Equation 4.1, we have two
triangles to consider (see Figure 16). The triangles that correspond to the roots
with a negative value will disappear in the new Delaunay graph (see Figure 16).

+
2

4

r4

+

r
r1

+
C

2C

1

C3

C

Fig. 16. Two triangles can possibly disappear simultaneously by the addition of a
single weighted point

There is not much interest in showing the elements of the matrix of the multi-
plication operator here, but the Macaulay 2 [GS] code is presented in Appendix 1.
The exact algebraic computation of the Delaunay graph conflict locator we have
presented in the previous paragraph is not generalisable to the other proper
conics or higher degree algebraic curves. Indeed, the size of the multiplication
operator matrix is greater than 4 for the other proper conics and for higher
degree algebraic curves, and an algebraic equation of degree 5 or more is not
necessarily solvable by radicals (see [BB96, Theorem 8.4.8]). Even if we can
obtain the matrix of the multiplication operator symbolically, we will need nu-
merical methods for computing the eigenvalues of that matrix, which give the
answer to the Delaunay graph conflict locator.

We will now present the Delaunay graph conflict locator for circles, empha-
sising the changes with respect to the Delaunay graph of additively weighted
points presented in this subsection.

4.3 The Delaunay Graph Conflict Locator for Circles

Let C = {C1, ..., CN} be the set of generators or sites, with all the Ci being
circles in R

2. Let pi be the centre of Ci and ri be the radius of Ci.
The definitions of bisector, influence zone, Voronoi region and Voronoi dia-

gram presented in Chapter 2 generalise to the case where the set of sites S is
a set of circles C, and the distance d (M, Ci) between a point M and a site Ci

is the Euclidean distance between M and the closest point on Ci from M , i.e.
d (M, Ci) = |δ (M, pi)−ri|, where δ is the Euclidean distance between points. Ob-
serve that assuming Ci is centred on pi and ri = wi for i = 1, .., N , this distance
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3C1

C2

C

Fig. 17. Seven Apollonius circles centres that are true Voronoi vertices (first case)

is the absolute value of the additive distance used in the previous subsection.
The Voronoi region of Ci with respect to the set C is thus defined by:

V (Ci, C) =
{
M ∈ R

2|∀j �= i : |δ (M, pi) − ri| < |δ (M, pj) − rj |
}
.

The Voronoi diagram of C is defined by: V (C) =
⋃

Ci∈C ∂V (Ci, C).
In the previous subsection, we observed that two Apollonius circles centres

are true Voronoi vertices of the additively weighted Voronoi diagram (the circles
that are either externally or internally tangent to three given circles). When the
sites are circles, up to seven of the eight Apollonius circles may be relevant to
the Delaunay graph conflict locator (see Figure 17).

We consider the maintenance of the Delaunay graph of circles in an incre-
mental way: we check first the validity of all the old triangles of the Delaunay
graph whose vertices are a given triple of circles with respect to a given newly
inserted circle. When old triangles are checked, four circles C1, C2, C3 and C4

are given: the first three are supposed to define one or more triangles in the
Delaunay graph, and the last one is the newly inserted circle. Let (xi, yi) be
the coordinates of pi for i = 1, 2, 3, 4. There are two possible outcomes to the
above test of validity. Either the triangles are valid with respect to the newly
inserted weighted point and the triangles remain in the new Delaunay graph, or
there is at least one triangle that is not valid with respect to the newly inserted
weighted point and these triangles will not be present in the Delaunay graph any
longer. We also need to check the validity of new triangles C1C2C3 with respect
to a circle C4, where C1C2C4 is an old Delaunay triangle and C3 is the newly
inserted circle. There are two possible outcomes to this test of validity. Either
the triangles formed with an old Delaunay edge C1C2 and the newly inserted
weighted point C3 are valid with respect to any circle C4, where C1C2C4 is an
old Delaunay triangle, and the triangles will appear in the new Delaunay graph,
or there is at least one triangle that is not valid and these triangles will not be
added in the Delaunay graph. In both cases, we check the validity of a triangle
C1C2C3 with respect to a circle C4.
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The Apollonius circles of C1, C2 and C3 can be obtained algebraically by
computing the common intersection of the three circles C′

1, C′
2 and C′

3 (see
Figure 13) expanding or shrinking from the three first circles C1, C2 and C3 all
with the same absolute value of the rate. The common unsigned expansion of
the first three circles is denoted by r. The coordinates of the intersection I of
C′

1, C′
2 and C′

3 are denoted (x, y). The circle C′′ centred on (x, y) and of radius
r is tangent to the first three circles.

Thus, the Apollonius circles are the solutions of one of the eight following
systems (I) of three quadratic equations in three unknowns x, y, r:

⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 ± r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 ± r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 ± r)2 = 0
.

By replacing r by −r in one of the preceding systems of equations, we still
get another one of the preceding systems of equations. Thus, let us suppose r is
the signed expansion of C1. Then, we can reformulate the preceding systems of
equations as the following systems (II) of equations:

⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 + r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 ± r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 ± r)2 = 0

Now let us consider for each system (II) the set X of solutions of the system
(II) of equations in K3, where K is an algebraically closed field.

Subtracting one of the equations from the remaining two results in a system
of 2 linear equations, from which x and y may be expressed as linear functions
of r. Substitution in the first equation then leads to a quadratic equation in r.
This means that the unknown quantities x, y, r can be expressed with quadratic
radicals as functions of the given centres and radii for each one of the systems
of equations above.

As before, though the simplest thing to do now would be to compute the
two Voronoi vertices and use their computed coordinates and corresponding
signed expansion in the computation of the values certifying the output of the
Delaunay graph conflict locator, it is not desirable because this method would
not be generalisable to conics or higher degree curves.

For the Delaunay graph of additively weighted points, the true Voronoi ver-
tices are the solutions of one system of algebraic equations. Unlike the previous
case, for the Delaunay graph of circles, the true Voronoi vertices are not all the
solutions of one system of algebraic equations, but a subset of the solutions of
four systems of algebraic equations. The solutions of the algebraic equations are
the Apollonius circles, whose centres are generalised Voronoi vertices (a concept
that was introduced in [Anton04]). We thus need to determine which Apollonius
circles centres are potentially true Voronoi vertices (only the real Apollonius
circles centres can be true Voronoi vertices).

There are four possible determinations of the true Voronoi vertices from Apol-
lonius circles centres of C1, C2 and C3:
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First case. If C1, C2 and C3 mutually intersect, then the real circles among
the seven Apollonius circles that are not internally tangent to each of C1, C2

and C3 correspond to true Voronoi vertices (their centres are true Voronoi
vertices, see Figure 17), and reciprocally.

Second case. If one circle (say C1) intersects the two others (C2 and C3) which
do not intersect, then only the real Apollonius circles that are either exter-
nally tangent to each of C1, C2 and C3, or internally tangent to C1 and
externally tangent to C2 and C3 correspond to true Voronoi vertices (their
centres are true Voronoi vertices, see Figure 18).

3

2

C1

C

C

Fig. 18. Four Apollonius circles centres that are true Voronoi vertices (second case)

Third case. If two circles (say C1 and C2) intersect the interior of the third
one (C3) and at least one of them (say C1) is contained in the interior of C3,
then only the real Apollonius circles that are externally tangent to C1 and
C2 and internally tangent to C3 correspond to true Voronoi vertices (their
centres are true Voronoi vertices, see Figure 19).

Fourth case. Otherwise (if none of the three situations above apply), only the
real Apollonius circles that are externally tangent to C1, C2 and C3 corre-
spond to true Voronoi vertices (their centres are true Voronoi vertices, see
Figure 20).

When the old Delaunay triangles are checked, the case where one circle (say
C1) lies in the interior of a second circle (say C2), which lies in the interior of
the third circle (C3), or only one circle (say C1) lies within the interior of one of
the other ones (say C2) cannot happen because then, there would be no Voronoi
vertices and the triangle C1C2C3 would not exist in the Delaunay graph. If we
check new triangles, we can check if the situation described just above happens
by computing the sign of the determinant of the multiplication matrix for the
fourth case.
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Fig. 19. Two Apollonius circles centres that are true Voronoi vertices (third case)
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Fig. 20. Two Apollonius circles centres are true Voronoi vertices (fourth case)

Now that we have seen the different cases of true Voronoi vertices, we will
see how we can test in which case we are and which solutions of the systems of
equations (II) described above correspond to true Voronoi vertices.

First case. C1, C2 and C3 mutually intersect if, and only if, d (p1, p2)−r1−r2 ≤
0 and d (p1, p3) − r1 − r3 ≤ 0 and d (p2, p3) − r2 − r3 ≤ 0. The computation
of this test can be done exactly, since the only variables that are not input
to the Delaunay graph conflict locator are the distances, and these distances
are expressed by radicals. Indeed, we need to test the sign of the difference of
a radical and a number which do not depend on intermediary computations.
The true Voronoi vertices are the real solutions of all the systems of equations
(II) such that r > 0.
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Second case. C1 intersects C2 and C3, and C2 and C3 have no point of inter-
section if, and only if, d (p1, p2)− r1 − r2 ≤ 0 and d (p1, p3)− r1 − r3 ≤ 0 and
d (p2, p3) − r2 − r3 > 0. The computation of this test can be done exactly
for the same reasons as the previous case. The true Voronoi vertices are the
real solutions of the system of equations:
⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 ± r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 − r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 − r)2 = 0

with r < 0.
Third case. C1 lies in the interior of C3 and C2 intersects the interior of C3

if, and only if, d (p1, p3) + r1 − r3 < 0 and d (p2, p3) − r2 − r3 < 0 and
(x1 − x3)

2 + (y1 − y3)
2 − r2

3 < 0. The computation of this test can be done
exactly for the same reasons as the previous case. The true Voronoi vertices
are the real solutions of the system of equations:
⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 + r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 + r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 − r)2 = 0

such that r > 0.
Fourth case. this is the case if all the previous three tests failed. The true

Voronoi vertices are the real solutions of the system of equations:
⎧
⎨

⎩

(x − x1)
2 + (y − y1)

2 − (r1 + r)2 = 0
(x − x2)

2 + (y − y2)
2 − (r2 + r)2 = 0

(x − x3)
2 + (y − y3)

2 − (r3 + r)2 = 0

with r > 0.

As before, we used the same algebraic machinery to compute the values of poly-
nomials that are taken by the true Voronoi vertices without solving any interme-
diate system of equations. We computed the Gröbner basis of the ideal of X for
each one of the systems (II) encountered. Each one of these Gröbner bases consists
of the earlier mentioned quadratic equation in r and linear equations in x, y and r.

For the Delaunay graph of additively weighted points, we observed that eval-
uating the signs of a single polynomial (g = (x4 − x)2 + (y4 − y)2 − (r + r4)

2)
taken on the real points of X was enough to provide the values certifying the
presence of Voronoi vertices in the list output by the conflict locator. As before,
we can check for the existence of real solutions by evaluating the sign of the
discriminant of the characteristic polynomial. We will suppose the real solutions
to the systems (II) have been tested. Unlike in the previous case, here we need
to evaluate the signs taken by both g and r on each one of the points of X .
Indeed, we need not only to check the relative position of C4 with respect to the
Apollonius circles, but we need for each Apollonius circle, to check the relative
position of C4 with respect to that Apollonius circle, and to check whether that
Apollonius circle corresponds to a true Voronoi vertex.
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As before, we considered the operation of multiplication of polynomials by
the polynomial g, whose sign expresses the relative position of C4 with respect
to C′′. We also considered the operation of multiplication of polynomials by the
polynomial r, whose sign allows one to check whether the solutions correspond to
true Voronoi vertices. These operations are linear mappings. The operations of
these mappings on the canonic representative of the remainder of the Euclidean
division of a polynomial by the three polynomials of the system are also linear
mappings that can be expressed by a matrix.

We need to be able to associate the signs of the values of g with the signs of the
values of r taken on the (real) solutions of each system (II). For a given system
(II), let Mg and Mr be the matrices of the result of the multiplication by g and
by r respectively on the canonic representative of the remainder of the division of
a polynomial by the three polynomials of the system. Since these multiplication
maps commute, it is possible to use the transformation matrix obtained during the
computation of the Jordan form of one of these matrices to triangularise the other
matrix by a simple multiplication of matrices [CLO98]. Indeed, the computation
of the Jordan form for Mg gives the triangular matrix P−1MgP of the Schur form
of that matrix where P is a unitary matrix called the transformation matrix; and
P−1MrP is triangular. Finally, we can obtain the solutions by reading the diago-
nal entries in turn in each one of the Jordan forms of these matrices (the diagonal
entries of the Jordan form of a matrix are its eigenvalues). The row number on
each one of these matrices corresponds to the index of the solution. By evaluating
the signs of the diagonal entries in the Jordan forms of Mg and of Mr on the same
line, we associate the signs of the values of g with the signs of the values of r taken
on the solutions of each system (II).

5 The Application to the Visualization of the Nucleation
and Growth of Particles

The algorithm described in the previous section is applied in this section to
the computation of the Johnson-Mehl tessellation, which is a special case of
Voronoi diagram of circles. The dual graph of the Johnson-Mehl tessellation is

Pj wj

P

w

P

w

w Pk

l

k

l

i

i

Fig. 21. The event that changes the topology
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a triangulation. Now, we will examine the events that affect this triangulation
(see Figure 21).

Proposition 9. (The empty circumcircle criterion for the dual graph of the

Johnson-Mehl tessellation): A triangle
�

PiPjPk exists in the triangulation if, and
only if, the circle externally (respectively internally) tangent to the weight circles
C (Pi, wi), C (Pj , wj), and C (Pk, wk), does not intersect properly (non tangen-
tially) any other circle C (Pl, wl), l /∈ {i, j, k}.
Proof. If a fourth circle C (Pl, wl) happens to be externally (respectively inter-
nally) tangent to the circle Ct{i,j,k} that is externally (respectively internally) tan-
gent to C (Pi, wi), C (Pj , wj), and C (Pk, wk), then the vertex v{i,j,k} (intersection
of Bij , Bik, and Bjk) is 4-valent, and the triangle exists in the Delaunay graph.

Otherwise, if the intersection of C (Pl, wl) and Ct{ijk} was constituted by two
different points, then Ct{i,j,l} and Ct{j,k,l} would be externally (respectively inter-
nally) tangent to C (Pi, wi), C (Pj , wj), and C (Pl, wl); and C (Pj , wj), C (Pk, wk),

and C (Pl, wl) respectively. Then we would have the triangles
�

PiPjPk,
�

PiPjPl,

and
�

PjPkPl, which would contradict the fact that the dual graph of the Johnson-
Mehl tessellation is a triangulation (see Figure 22).

We should therefore make a triangle switch: replace
�

PiPjPk and
�

PiPkPl by
�

PiPjPl and
�

PjPkPl. Proposition 1 implies that the triangulation mentioned
above obeys the Delaunay triangulation “empty circumcircle criterion”. This fol-
lows the algorithm of Guibas and Stolfi [GS85] for the ordinary Voronoi diagram,
extending it to this case of a generalized Dirichlet tessellation. This proposition
is the basis of the incremental algorithm that we implemented for the dynamic
construction and maintenance of additively weighted Voronoi diagrams. When
a new point is added, we locate the triangle T in which it lies, then we connect
this new point to the triangulation by replacing T by three new triangles whose
vertices are the vertices of T and the new point. Then we check every circle ex-
ternally respectively internally tangent to the weight circles of the points of every
new triangle. If a triangle switch (see Figure 22) has to be performed (see end
of the Proof of Proposition 9), we perform the same check for all the externally
respectively internally tangent circles corresponding to the triangles generated
by the triangle switch (see Figure 2 where the triangle switch is shown: replacing

�
PiPjPk and

�
PiPkPl by

�
PiPjPl and

�
PjPkPl).

When an existing point is deleted, we locate its nearest neighbour, then we
transfer all its neighbours to the nearest neighbour and we remove it and its
topological relationships from the triangulation. Then we check every circle ex-
ternally respectively internally tangent to the weight circles of the points of every
modified triangle. If a triangle switch has to be performed (see end of the Proof
of Proposition 9), we perform the same check for all the externally respectively
internally tangent circles corresponding to the triangles generated by the trian-
gle switch. This is the basis of the incremental algorithm [AMG98a], that we
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implemented for the dynamic construction and maintenance of Johnson-Mehl
tessellation.

Our algorithm proceeds in a fashion analogous to the algorithm of Devillers,
Meiser, and Teillaud [DMT90] for the dynamic Delaunay triangulation based on
the Delaunay tree. They proved using the Delaunay tree that each insertion and
point location has an expected running time of O (log n), and each deletion has an
expected running time ofO (log log n). Our algorithm has an efficiency ofO (log n).

5.1 The Johnson-Mehl Tessellation

The algorithm for the construction of the Voronoi diagram of circles has been
adapted in order to get the incremental algorithm for the construction and main-
tenance of the Johnson-Mehl model. After each arrival of a new nucleus, the
Johnson-Mehl tessellation changes, and we recompute it as follows. The new
nucleus is inserted in the Johnson-Mehl tessellation (a new Voronoi region ap-
pears), and the neighbouring Voronoi cells are changed. The size of the spheres
is then increased by the growth corresponding to the time interval between the
previous insertion and this one (ti − tj). Consequently, the spheres will be in-
creased for this time interval (see Figures 22 and 23). This type of spatial growth
uses a Poisson point process [OBSC01], and we will now introduce two different
cases of radial speed for spatial growth processes.

Time homogeneous Poisson point process. The uniform radial growth of the
nuclei and appearance of their Voronoi regions at two different times is shown in
Figures 22 and 23. On Figures 22 and 23, we can see the growth of the spheres
between two time units. We notice that the Voronoi regions are changed only
when a new particle appears.

We assume [Stoya98] that the radial growth speed is the same for all the
spheres, and the growth of the spheres in the portion of contact is stopped (see
Figures 22 and 23). In the early stages of growth and nucleations spheres do not
overlap, but after a certain time a sphere may touch another sphere [OBSC01].

Fig. 22. The growth of particles at t = 93
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Fig. 23. The growth of particles at t = 163

Time inhomogeneous Poisson point process. The Johnson-Mehl model has been
generalized [OBSC01] in three differentways: changing the spatial location process
for the generators (nuclei), changing the birth rate of the generators, or both. The
most extensively studied generalization is the generalization corresponding to the
change of the nuclei birth rate as a function of time without changing the spatial
location process (the homogeneous Poisson point process). This generalization is
known as the time inhomogeneous Johnson-Mehl model. The algorithm for the
construction and maintenance of the Johnson-Mehl model is also applied in the
case of a time inhomogeneous Poisson point process. In that case, all the nuclei
grow at the same radial speed for each time interval and therefore, as long as a
new nucleus does not arrive, the difference between the weights of neighbouring
nuclei is constant, and the Johnson-Mehl tessellation does not change.

Fig. 24. The Voronoi growth model at t = 31
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Fig. 25. The Voronoi growth model at t = 96

5.2 The Voronoi Growth Model

The Additively Voronoi diagram reduces to the ordinary Voronoi diagram when
all the wi are equal to some constant. In that type of particle growth, nucleation
occurs simultaneously. In Figure 24 we can see the simultaneous appearance of
the nuclei that are all of the same size. Figure 25 shows the growth of these
particles after 65 time units (shown in increased weights). We notice that the
tessellation has not changed.

Thus, for the nucleation sites that are appearing simultaneously we have a
non-Poisson point process [Stoya98] and we can apply our algorithm that reduces
the Johnson-Mehl model to the Voronoi growth model.

6 Conclusions

We have provided a predicate for the incremental construction of the Delaunay
graph and the Voronoi diagram of circles that amounts to computing the sign
of the eigenvalues of a two by two matrix. Unlike other independent research,
our work proposes a single predicate that can compute the Delaunay graph
even in the case of one circle being entirely in another circle or intersecting
circles. We have also provided an application of the Voronoi diagram of circles
to the modelling and the visualisation of the growth of crystal aggregates. We
have been also working on the Delaunay graph of conics and of semi-algebraic
sets (see [Anton04]), and future work include the Delaunay graph and Voronoi
diagram of quadrics and its applications.
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[Vor07] Voronöı, G.F.: Nouvelles applications des paramètres continus à la
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Appendix 1

The Macaulay 2 program for the exact Delaunay graph conflict locator for circles

gbTrace 4
dim FractionField := F -> 0
P = frac(QQ[a,b,c,d,e,f,g,h,i,j,k,l])
R = P[x,y,t]
cercle1 = (x-a)^2+(y-b)^2-(c+t)^2
cercle2 = (x-d)^2+(y-e)^2-(f+t)^2
cercle3 = (x-g)^2+(y-h)^2-(i+t)^2
emptycircle = ideal(cercle1,cercle2,cercle3)
ecgb = gb emptycircle
print ecgb
eckb = basis cokernel gens ecgb
print eckb
kl = sort(flatten(entries(eckb)))
kmind = splice {0..#kl - 1}
scan(kl,entry->print ring entry);
hashlist = pack(2,mingle(kl,kmind));
feetmon = applyKeys(hashTable hashlist, key->toString(key));
compmat = f -> (htl=apply(kl,be->
hashTable(pack(2,mingle(apply(flatten(entries((coefficients((f*be)
%ecgb))#0)),
item -> feetmon#(toString(item))),flatten(entries((coefficients
((f*be)%ecgb))#1))))));
matrix(table(#kl,#kl,(i,j)->if (htl#i)#?j then (htl#i)#j else
0)));
matp2 = compmat((x-j)^2+(y-k)^2-(t+l)^2);
m00 = matp2_(0,0)
m01 = matp2_(0,1)
m10 = matp2_(1,0)
m11 = matp2_(1,1)
cm00 = coefficients m00
cm000 = cm00#0
cm001 = cm00#1
cm01 = coefficients m01
cm010 = cm01#0
cm011 = cm01#1
cm10 = coefficients m10
cm100 = cm10#0
cm101 = cm10#1
cm11 = coefficients m11
cm110 = cm11#0
cm111 = cm11#1
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Abstract. In this paper, we present an approach to design of command tables in 
aircraft cockpits. To date, there is no common standard for designing this kind 
of command tables. Command tables impose high load on human visual senses 
for displaying flight information such as altitude, attitude, vertical speed, air-
speed, heading and engine power. Heavy visual workload and physical condi-
tions significantly influence cognitive processes of an operator in an aircraft 
cockpit. Proposed solution formalizes the design process describing instruments 
in terms of estimated effects they produce on flight operators. In this way, we 
can predict effects and constraints of particular type of flight instrument and 
avoid unexpected effects early in the design process.  

Keywords. Aircraft cockpit, multimodal user interfaces, aircraft instrument, 
formal description of cockpit display. 

1   Introduction  

Today’s modern aircraft operators rely on vast amount of data that has to be presented 
in real-time. The meaning of this data is difficult to asses in its raw format. Therefore, 
we need sophisticated methods to interpret and present data to the user in a suitable 
format [1]. There is also a need for a data visualization platform that can distribute 
flight data to a variety of animated graphical displays for easy interpretation by the 
aircraft operator. Large amounts of airflow velocity data presented in real-time cause 
numerous effects on human sensory and perceptual apparatus. In situations where the 
operator must react in a limited period of time and avoid hazardous situations, it is 
very important to present flight data in a form that can be easily interpreted and proc-
essed having in mind user’s abilities and preferences. This paper addresses the prob-
lem of adapting immense amount of visualization data to the operator in an aircraft 
cockpit based on the ideas from the multimodal human-computer interaction [13, 16].  

This paper is structured as follows. In next section, we give an overview of the re-
search field and some existing solutions.  Then, we discuss basic concepts of multi-
modal systems from the point of our interests. After that, we describe the proposed 
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approach, where we present formal description technique based on the existing meta-
model of multimodal human-computer interaction. In Section 4, we demonstrate our 
solution giving the case study example of Unmanned Aerial Vehicle’s (UAV) visual 
instrument that we have developed. Finally, we give short discussion and conclusions. 

2   Background 

In our approach, we are reusing ideas from multimodal user interfaces, and applying 
them in the designing of aircraft cockpit displays. In this section, we give an overview 
of these two fields, emphasizing their similarities. 

2.1   Problem Background 

Over the last few decades, the continuous global growth of air traffic has led to in-
creasing problems with respect to airspace capacity and delays [2]. This situation has 
initiated the research for new operational concepts and aircraft systems that aim for 
more independent aircraft systems in order to probe the human factors of pilots when 
operating in aircraft cockpit. Key aspects of this research include modeling interaction 
in complex time-critical environments like aircraft cockpit and providing timely con-
text-sensitive information in real time without overloading or distracting the human 
operator [3]. In aircrafts, human-machine interaction is the key issue in providing 
situational awareness and maintaining safety. The operator functions as an observer 
who monitors the displays information from the flight computer, pays attention to the 
environment and concentrates on communication tasks. To facilitate the amount of 
work and tasks he or she has to accomplish, the aircraft becomes more and more 
computerized. However, the displays in the cockpit of an aircraft can be quite com-
plex and have to function in a harsh visual environment that may strongly affect the 
quality of the displayed information. Numerous reports and studies clarify specific 
fields of research such as situation awareness [4], tactile sensation [5], color patterns 
[6] and so forth. Major drawback of existing solutions is a lack of operational feed-
back regarding human performances connected with audio, visual and haptic cues in 
highly interactive environments such as aircraft cockpit.  

If we consider interfaces developed in the field of highly interactive (also called 
post-WIMP) applications, the dynamicity of interaction objects in terms of existence, 
reactivity and interrelations appears as a new characteristic [7]. These interfaces may 
include new interactors such as graphical representations of aircrafts at any time dur-
ing the use of application. Even though this kind of problems is easily handled by 
programming languages it is hard to master it in terms of models. This is why classi-
cal formal description techniques must be improved to be able to describe highly 
interactive environment in a complete and unambiguous way. The reason for deploy-
ment of formal description techniques lies in the fact that they are means for modeling 
all components of an interactive system (presentation, dialogue and functional mod-
ule). Besides, they are usually applied to early phases of development process and 
clarify their limits when it comes to evaluation.  
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2.2   Multimodal Human-Computer Interaction 

Multimodal systems represent a research-level paradigm shift from conventional 
WIMP interfaces toward providing users with greater expressive power, naturalness, 
flexibility and portability [8]. Multimodal research focuses on human perceptual 
channels [9]. User communicates with the system through set of communication 
channels which use different modalities, such as visual display, audio, and tactile 
feedback, to engage human perceptual, cognitive, and communication skills in under-
standing what is being presented. Multimodal systems integrate various modalities 
simultaneously, sequentially or independently what is defined by multimodal integra-
tion patterns [10]. 

Various systems offering multimodal interaction techniques have been provided  
since the early work Bolt in early 80’s [11]. Although some real systems have been 
presented, development process of multimodal interactive systems remains difficult 
task usually carried out by an ad hoc process.    

Previous study on multimodal interaction [8] has shown that multimodal interac-
tion presents several advantages: 

• Multimodality increases the overall efficiency of interaction. Task-critical errors 
decrease during multimodal interaction. This advantage justifies the use of multi-
modal techniques in highly interactive environments (for instance aircraft cockpit).  

• Flexibility of a multimodal interface can accommodate a wide range of users, tasks 
and environments-including users who are temporarily or permanently handi-
capped and usage in adverse surroundings (aircraft cockpit, for example). 

• Users have a strong preference to interact multimodally. This preference is most 
pronounced in spatial domain systems when describing spatial information about 
location, number, orientation or shape of an object. 

• Multimodality provides greater naturalness and flexibility of interaction that facili-
tates learning process. This can be very useful for the flight simulator training.  

We find multimodal interaction techniques very useful for designing user interfaces 
in an aircraft cockpit from the point of quantity (they can increase the bandwidth be-
tween user and system) and quality (extracting and adapting content according to user 
abilities and preferences). 

For all these reasons, multimodal human-computer interaction appears to be very 
useful in the field of interactive systems. It permits enhancing human-computer inter-
action in these systems, but formal description technique is needed to describe entire 
multimodal interactive system in a way that can be incorporated in current software 
development practices.  

3   Proposed Solution  

In this section, we describe how we model aircraft cockpit displays as a multimodal 
interface. We begin with an overview of the vocabulary of modeling primitives. Then 
we define basic steps for describing aircraft displays as complex modalities, and  
describe how these models can be used in evaluating human performances. In the 
following section, we give a concrete example of a formal description of a visual 
instrument as a complex modality. 
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3.1   Metamodel of Sensory, Motor, Perceptual and Cognitive Effects 

The engineering of multimodal systems introduces additional complexity to the devel-
opment of interactive software systems rarely addressed by current software develop-
ment methodologies. For example, the UML Unified Software Development Process 
[12] devotes only a short paragraph to the design of the user interface. For describing 
multimodal interfaces we use set of modeling primitives defined by the semantic 
metamodel of multimodal interaction which has been previously developed [13].   

The main concept of the metamodel is a HCI modality, which is described as a 
form of interaction designed to engage some of human capabilities, e.g. to produce 
some effects on users. A HCI modality can be simple or complex. A complex modal-
ity integrates other modalities to create simultaneous use of them, while a simple 
modality represents a primitive form of interaction. Simple HCI modality can be input 
or output, using the computer as a reference point. Input and output modalities are not 
symmetric with human input and output modalities because they represent a computer 
viewpoint, where it is computer code, not neural circuity, that control interaction with 
users. Each modality engages some of human capabilities, e.g. it produces some ef-
fects on the user. Effects are classified in four main categories: sensory, perceptual, 
motor, and cognitive (Table 1). 

Table 1. Classification of sensory, perceptual, motor and cognitive concepts 

Classification Concepts 
Stimulus: light, sound, vibration 
Sensory excitation 

Sensory 

Sensory processing: color, sharpness, peripheral vision 

Pattern recognition 
Grouping: similarity, proximity, or voice color or timber 
Highlighting : color, polarity, or intensity 
3D cue such as stereo vision or interaural time difference 

Perceptual 

Illusion 
Movement: translation or rotation 
Force: pressure or twisting 
Hand or head movement 

Motor 

Degree of freedom 
Short- or long-term memory and memory processes such as remembering
forgeting 
Attention: focus and context 
Reasoning: deductive, inductive, and abductive 
Problem solving: Gestalt, problem space, and analogical mapping 
Analogy 
Skill acquisition: skill level, proceduralization, and generalization 

Cognitive 

Linguistics: speech, listening, reading, and writing 

 
Sensory effects describe processing stimuli performed by human sensory appara-

tus. Perceptual effects are more complex effects that human perceptual systems get by 
analyzing data received from sensors. Motor effects describe human mechanical ac-
tion, such as head movement or pressure. Cognitive effects describe effects that take 
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place at higher level of human information processing, such as memory processes, 
attention, and curiosity. Furthermore, effects are often interconnected. For example, 
all perceptual effects are a consequence of sensory effects. These relations among 
effects are important because in this way a designer can see what side effects will be 
caused by his intention to use some effects. 

3.2   Proposed Approach 

Our approach is inspired by the model-driven development, where software develop-
ment’s primary focus and products are models rather than computer programs. In this 
way, it is possible to use concepts that are much less bound to underlying implemen-
tation technology and are much closer to the problem domain [14].  

In the design of the instrument table, we have classified instrument types by analogy 
with modalities as basic or complex. Basic instrument tracks simple parameter values 
and changes and engages a specific human sense. According to type of human sensory  
 

 

Integrated performance 
evaluation: Experimental 
evaluation of human 
performances for complex 
displays, such as more that 
one instrument.

Cognitive walkthrough: 
initial meta-description of 
sensory, perceptual, and 
cognitive properties of 
presentation modalities and 
constraints (instruments are 
treated as complex 
presentation modalities).

Basic performance 
evaluation: Experimental 
evaluation of human 
performances for individual 
components. 

Metadescription 
of presentation 

modalites. 

 
 

Fig. 1. Proposed design process 
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system it excites, basic instrument can be visual, audio or haptic. Each basic instrument 
consists of an instrument scale, instrument pointer, instrument zone, and scale marker. 
Complex instrument integrates other instruments combining information aimed at 
specific human sensory apparatus into complex and uniform excitation event.  

Each individual instrument engages some human capabilities. Communication 
channel established between the human and system is parameterized by effects pro-
duced on the user. By classifying instruments into categories, we can have an insight 
into specific effects produced by them, which enables predicting effects conducted in 
complex instruments where various types of signals interfere and integrate. Next step 
is connecting estimated effects with cockpit environment characteristics and operator 
abilities that increase or decrease them. In this way, we can treat each instrument as a 
presentation modality having some inherit sensory, perceptual or cognitive qualities. 
Thus, a concrete instance of some instrument will add or change some qualities ac-
cording to user abilities and preferences, for example, by choosing color scheme or 
shape pattern that can introduce some analogy. Upon these instruments descriptions 
experimental evaluation of human performances for individual and complex compo-
nents is done in order to conclude metadescription of presentation modalities as 
shown in Figure 1. Given the metadescriptions of presentation modalities, each in-
strument is considered as an instance of defined metamodels. 

 Mapping between instruments and effects can serve several purposes. It provides 
context where we could perceive many relations that are not always obvious. Predict-
ing effects that an instrument causes on humans and connecting these effects with 
descriptions of limiting environment characteristics gives an opportunity to avoid 
some undesired situations which can occur (for example, increasing visual workload 
during instrument scan). Finally, information channels between users (pilot/operator) 
and device (the aircraft) are described in a uniform and an unambiguous way. 

4   Design Case Study: A Visual Instrument  

We have applied our approach in designing virtual cockpit for close-range Unmanned 
Aerial Vehicles (UAV). Requirements for human-computer interface developed are as 
stated [17]: 

• Ergonomic Goal. In order to minimize physical fatigue, the system has to form and 
fit a human body and to give comfortable environment (temperature and lighting). 

• Cognitive Goal. In order to decrease cognitive fatigue, the system should use ana-
log versus digital displays. Placement and font of text and appropriate symbol 
shapes and colors should minimize scan time. 

• Response Goal. This concerns minimizing UAV response time and is achieved by 
underlying implementation technology. 

To realize these three goals we have applied proposed approach. Figure 2 is a UML 
class diagram, created with defined UML extensions [13], describing the effects of a 
visual instrument as a complex presentation modality. These effects are used as a 
basis for achieving our ergonomic, cognitive and response goals. An instrument’s 
basic presentation modality is an instrument pointer that presents the current value of 
tracked parameter. A DynamicInstrumentPointer is modeled as a dynamic output 
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modality animating presentation of the StaticInstrumentPointer. Instrument pointers 
introduce several perceptual effects: it is recognizable by its shape; orientation de-
notes its current position; and interposition highlights pointer from instrument scale 
ticks. By smoothly animating positions of the pointer, a DynamicInstrumentPointer 
gives a notion of motion. An InstrumentScale defines global extent in which parame-
ter value can change. Scale is presented to the user as a set of ScaleMarkers described 
as static output modalities. Scale markers add perceptual effects of highlighting by 
shape, size and color. To distinguish between normal and critical extents of parameter 
values, an InstrumentScale consists of several  InstrumentZones, also described as 
static presentation modalities. Each zone defines local extent in which parameter’s 
value varies. Zones distinguish themselves by introducing perceptual effects of high-
lighting by color and shape, and grouping proximate of visual indicator for parameter 
values. A VisualInstrument presents complex modality integrating InstrumentScales 
and DynamicInstrumentPointers. A set of visual instruments represents multimodality 
VisualInstrumentPresentation which engages human cognitive functions of reading 
and information retrieval.  

 

Fig. 2. Visual instrument depicted in terms of effects 

Figure 3 shows instrument table developed upon given metadescriptions. These 
metadescriptions where most useful in cognitive walkthrough phase, as we noticed 
that most of the designers and programmers are not aware of the huge number of 
parameters that presentation effects introduced by every part of user interface. Pre-
sented display operates in a way that represents an operator’s intuitive understanding. 
Controls that have different functions are distinguishable from one another in order to 
clearly assess flight status data. Instruments and controls with related functions are 
grouped together in a logical arrangement, which helps reduce instrument scan time 
and lowers operator’s workload. 
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(a) 

 

(b) 

Fig. 3.  Instrument table as instance of complex modality (a), and the window showing aircraft 
mission route (b) 
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5   Discussion 

The presented work can serve several purposes. First, we demonstrated the ability to 
predict effects that certain type of instrument produces on humans. Proposed instru-
ment classification connected with the metamodel of multimodal communication 
gives us predictive and explanatory approach for describing complex effect notions in 
an aircraft cockpit and connecting them with user and device profiles. Describing a 
cockpit in a common language, we facilitate more effective user interfaces. Designing 
displays and information flow at higher level of abstraction enables predicting unde-
sirable effects that can appear early in the design and reduces information overload. 
What is more important it reduces interdisciplinary gap among designers and allows 
integration of results from various fields of research. For example, multimodal re-
search techniques introduce results that have been used as a basis for a measurement 
and enhancement of situational awareness [15]. Metadescriptions of instruments as 
presentation modalities with some sensory, perceptual and cognitive qualities permits 
experimental evaluation of human performances for complex displays from which 
users can clearly benefit. Evaluation results allow seeing if concrete aircraft display 
suits users abilities and preferences.  

Proposed approach describes all effects introduced by the instrument table. How-
ever, for more detailed analysis, it is useful to include a notion of a visual scan, which 
is currently partially addressed by our approach. Visual scan considers a sequence of 
monitoring tasks associated with flight status.  Scan characteristics (where to look, 
how frequently and how long) are currently determined by the complexity of the in-
formation provided by devices and level of operator’s expertise. Operator/pilot forms 
a mental model as a comprehensive understanding of a system and its dynamics. 
However, mental models are refined with experience, so less experienced operator 
can employ random scan that is not sensitive to the changing needs for information 
from one moment to the next. Experienced pilots often feel uncomfortable when tran-
sitioning to a new aircraft because of a conflict between their mental model and ar-
rangement of instruments in this new aircraft cockpit. Describing cockpit at higher 
level of abstraction facilitates transfer of operational skills between various systems 
and avoids negative learning transfer.  

The efficiency of usage of our method depends very much on the efficiency of 
supporting tools. In our current approach, we are relying on the existing UML model-
ing tools, and their integration mechanisms. The advantage is that the designers who 
are familiar with UML can do the design in their natural environments. Additional 
advantage is that the UML tools, such as Rational Rose, enable integration of custom 
code connecting the tool with other systems. However, the problem with UML tolls  
is lack of rigorousness in modeling, which requires discipline at the side of the de-
signer. Tools that can support analysis of the designed models are a subject of our 
future work. 

In order to take into account type of aircraft, level of aircraft operator training, en-
vironment, our method allows definition of different models of users and interfaces, at 
different levels of abstraction. Models can be organized hierarchically and grouped 
according to different aspects. The models can be reused, which reduce the effort. In 
our experiences, creation of the initial model is the most time consuming effort. 
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In the end, we would like to add that one of the advantages is the increased aware-
ness of the designers and programmers about the human factors involved in the design 
of interfaces. 

6   Conclusion 

The presented work describes an approach to modeling aircraft cockpit devices in 
terms of multimodal interfaces using the UML notation [13]. This work could help 
cockpit designers in analyzing the information presentation to humans and avoiding 
overload as well as streamlining information acquisition. Each instrument consists of 
one or more modalities (depending on its complexity) and causes one or more effects 
on the user/operator. In essence, the instrument is a container for one or more infor-
mation channels between operator/pilot and the device (the aircraft). If we describe 
the whole cockpit in terms of modalities, we get a unified way of analyzing the inputs 
and outputs and the resulting effects on the operator (and the device). This can be 
used as a basis for analyzing cognitive load as well as studying the expressiveness the 
inputs provide in controlling the aircraft. 

We have illustrated our approach on the example of unmanned aircraft vehicle, but 
it is applicable for manned aircrafts as well. Presented work is a part of ongoing pro-
ject and is developed as an experimental prototype. In our future work, we plan to 
integrate our solution into existing CASE tools and work on implementation of tools 
for designing aircraft cockpits based on multimodal technique presented as a proof of 
feasibility of the approach.  
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Abstract. In this paper we consider parallel algorithms for computing
an optimal link among weighted regions in the plane. The problem arises
in several areas, including radiation therapy, geological exploration and
environmental engineering. We present a CREW PRAM parallel algo-
rithm and a coarse-grain parallel computer algorithm for this problem.
For a weighted subdivision with n vertices, the work of the parallel al-
gorithms we propose is only an O(log n) factor more than that of their
optimal sequential counterparts. We further adapt an algorithm for min-
imizing sum of linear fractionals, that has inherent parallelism, to solve
in parallel the global optimization problems associated with our solution
for the weighted region optimal link problem.

1 Introduction

Computing optimal paths in the plane in various settings is a fundamental topic
in computational geometry. Most of the results on computing optimal paths con-
sider only one optimization criteria, such as the length of the path or the number
of turns on the path, and usually assume that the plane is divided into free space
and obstacles that the path must avoid. This last condition can be relaxed by
assigning positive weights to various regions of the plane. In this scenario, a path
can go through any region but it incurs a cost that is proportional to the weight
of the region.

A special class of problems, arising frequently in applications, is that of finding
paths that are optimal with respect to multiple criteria. For example, one may
wish to compute a path that has only a few turns/links (at most k, for some
integer value k), and a small length (the smallest among all possible paths with
no more than k turns).

In this paper we consider a special case of bicriteria shortest path problems in
planar (2-D) weighted polygonal subdivisions. The problem, referred to as the
weighted region optimal link problem, is defined as follows.
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Definition 1. Given a polygonal subdivision R = {R1, R2, . . . , Rm} of the plane,
with m weighted regions and a total of n vertices, find a link (line, semi-line,
or line segment) L such that: (1) L intersects two given regions Rs, Rt ∈ R and
(2) the weighted sum d(L) =

∑
L∩Ri �=φ wi ∗ di(L) is minimized, where wi is the

positive weight of region Ri and di(L) is the Euclidean length of L within Ri.

Depending on the application, the link L may be (a) unbounded (e.g., a line):
the link L “passes through” the regions Rs and Rt; (b) bounded at one end (e.g.,
a ray): L originates on the boundary of Rs and it stabs Rt and (c) bounded at
both ends (e.g., a line segment): L originates on the boundary of Rs and it ends
on the boundary of Rt; in this case L is also called a minimum separation for
Rs and Rt [16]. Throughout the paper, we assume the subdivision is a straight
line embedding of a planar graph, with the internal faces triangulated, the inner
boundary of the external face a convex polygon, as shown in Fig. 1, and the
weight of the external face set to zero. We also assume that Rs and Rt are
internal regions of R and they can be separated by a vertical line.

The weighted region optimal link problem is an extension of the optimal
weighted penetration problem introduced in [9], where the source region Rs is
the external face of the subdivision. The problem arises in several areas such
as geographic information systems, radiation therapy, stereotactic brain surgery,
geological exploration, environmental engineering and military applications. For
example, in military applications the weight wi may represent the probability to
be seen by the enemy when moving through Ri, from a secured source region Rs

to another secured target region Rt. In radiation therapy, it has been pointed
out that finding the optimal choice for the link (cases (a) and (b)) is one of the
most difficult problems of medical treatment optimization [7].
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Fig. 1. Illustrating the problem: (a) L intersects Rs and Rt; (b) L originates on the

boundary of Rs and stabs Rt and (c) L originates on the boundary of Rs and ends on

the boundary of Rt
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1.1 Previous Work

Optimal path and bicriteria optimal path problems have been long studied in
computational geometry and we refer the reader to [26, 29] for comprehensive
surveys of the topic. A few results are known for computing or approximating
minimum link and k-link shortest paths inside simple polygons and polygons
with holes [4, 5, 28] (an extensive survey is given in [24]).

There are a few results in computational geometry that consider weighted re-
gion problems for computing or approximating optimal shortest paths between
pairs of points [1, 2, 3, 13, 23, 25, 27, 30, 31]. Mitchell and Papadimitriou [27] first
presented an algorithm that computes an (1 + ε) approximate geodesic shortest
path between two points in a weighted planar subdivision in O(n8B) time and
O(n4) space, where B is a factor representing the bit complexity of the problem
instance. The algorithms in [23] take O(n5) and O(n3 log n) time to find an ap-
proximate shortest path on triangulated 3-D polyhedral surfaces with weighted
facets. The subsequent work on the weighted region shortest path problem is
based on placement of Steiner points either on edges [1, 3, 13, 30, 31] or on face
bisectors [2]. The Steiner points are used to build a discretization graph, in which
the nodes are the vertices of R and the Steiner points, and the edges correspond
to links between pairs of Steiner points that are on the same face but not the
same edge. Results in most of this work depend on some geometric parameters,
such as the minimum angle in the subdivision, or the largest integer coordinate of
a vertex. The most recent work on the problem [13] describes an algorithm with
time bound of O((n3ρ/ε) log ρ log(ρn/ε)), that computes a (1 + ε)-approximate
shortest path, where the weights of R are in [1, ρ] and ε is any positive constant.
The running time of the algorithm depends on the largest weight of R but it
does not depend on any geometric parameters.

The weighted region optimal link problem however has a different structure
than the shortest path problem. Important steps towards solving the optimal
weighted penetration problem have been made in [9,11], where it has been proven
that the 2-D problem can be reduced to at most O(n2) subproblems, each of
which asks to minimize a 2-variable function over a convex domain, where the
function is given as a sum of O(n) fractional terms. In [9, 11] they show that
all subproblems can be generated sequentially in O(n2) time by sweeping the
arrangement of lines dual to the subdivision vertices while maintaining simple
data structures that allow to efficiently update the fractional terms in each ob-
jective function. Thus, the bulk of computation consists of solving the O(n2)
global optimization subproblems. To compute the optimal solution for each sub-
problem, a global optimization software has been used in [9]. In [16] it has been
proven that an optimal link goes through a vertex of the subdivision R, by
showing that the 2-variable objective functions attain their global optimum on
the boundary of their feasible domains. Thus, 2-variable functions are reduced
to 1-variable functions and the feasible domains become intervals on the real
line. They [16] give an O(n3 log3 n) time sequential algorithm for computing an
optimal link between two regions Rs and Rt of R, and also describe two effi-
cient approximation schemes. In [17,18] they consider the more general problem
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of finding a k-link shortest path between Rs and Rt, where a k-link path is a
polygonal path with k−1 turns, and a k link shortest path is a shortest possible
path with no more than k − 1 turns. Their best solution is an algorithm that
generates paths of weighted length at most (1 + ε) times the weight of a k-link
shortest path, for any fixed ε > 0, while using at most 2k − 1 links.

1.2 Our Results

In [16], it has been pointed out that solving the optimization problems associ-
ated with finding an optimal link requires significant time and memory usage if
the number of fractional terms in the objective function is large (see also [10]).
Since in practical applications having hundreds and even thousands of terms in
the objective function is not an uncommon case, sequentially solving the opti-
mization problems on a single processor seems impractical. Instead, one can take
advantage of the fact that once the feasible domain and the objective function for
each subproblem have been produced, the global optimization problems (GOPs)
are independent and can be solved in parallel. After all GOPs are solved, the
optimal solution can be obtained by a simple minimum selection.

It is then of interests to efficiently produce the set of GOPs in parallel. We
consider this problem and present the following results1:

1. We give an O(log n) time, O(n log n+k) processors algorithm in the CREW
PRAM model, where k is the total complexity description for the feasible
domains of the GOPs (Ω(n2) in the worst case). The algorithm is based on
the arrangement sweeping techniques of Goodrich et al. [22]. Our parallel
algorithm implies an optimal output sensitive O(n log n+ k) time sequential
algorithm for generating all GOPs, by using the optimal segment arrange-
ment construction in [8].

2. We show that, if at most n processors are available, all GOPs can be gen-
erated using O(n2 log n) work. This algorithm is targeted to coarse-grain
parallel computer models, consisting of a relatively small set of nodes (up
to a few thousands), where each node has its own processor, with fair com-
puting power, and a large local memory, allowing to store all data involved
in (sequentially) solving the problem. Our coarse grained parallel computer
algorithm is simple and can be easily implemented.

3. After proving that GOPs can be generated fast in a coarse grained par-
allel computer model, we show how to efficiently solve a GOP in parallel.
Specifically, we adapt an algorithm for minimizing sum of linear fractionals
(SOLFs) [20], that has inherent parallelism, to solve the GOPs associated
with the weighted region optimal link problem.

The paper is organized as follows. In Section 2 we introduce some background
and useful structures. Our parallel algorithms to generate the GOPs are pre-
sented in Section 3. In Section 4 we discuss a parallel algorithm for solving a
GOP. We conclude the paper in Section 5.
1 A preliminary version of some of these results appeared in [15].
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2 Preliminaries and Useful Structures

In this section we introduce some notations and geometric structures.
The PRAM (Parallel Random Access Machine) model of computation is a

shared-memory model in which processors act synchronously. In a parallel step,
each processor reads or writes a location in the shared memory or it performs
some simple, O(1) time computation within its own registers. All communication
between processors is done via the shared memory. There are a few variants of
the PRAM model. In this paper, we are concerned with the CREW (Concur-
rent Read Exclusive Write) version of the model, in which many processors may
simultaneously access for reading the same memory location on the shared mem-
ory space but no two processors can simultaneously write at the same memory
location.

A coarse-grain parallel computer model assumes a relatively small set of nodes
(up to a few thousands), where each node has its own processor, with fair com-
puting power, and a large local memory, allowing to store all data involved in
(sequentially) solving the problem. In contrast, in a fine-grain computing model,
one would allow only constant local memory, but unrestrict the number of pro-
cessing nodes available. In a coarse-grain model the communication between
processors is done along network connections, and thus it incurs a cost that
could be significantly higher than the cost of local computation.

A planar subdivision R is a partition of the plane into polygons, called the
regions of R. We assume that R has one unbounded region, called the external
region, and that the union of all the other regions of R, called internal regions, is
a convex polygon. A subdivision R is generated by a planar graph embedded in
the plane using only straight-line segments. The subdivision is a triangulation if
all internal regions are triangles. We assume the subdivision R is a triangulation.

As mentioned in Section 1.1, the optimal link problem can be reduced to
solving a number of at most O(n2) GOPs. Thus, in designing our algorithms we
need to consider how to efficiently generate the GOPs and how to solve a given
GOP once it is available. In what follows, we introduce the structures needed to
generate the GOPs.

Let L be a link intersecting the source and target regions Rs and Rt. Let S be
the set of line segments in the subdivision R and let Sst = {si1 , si2 , . . . , sik

} be
the subset of line segments in S that are intersected by L. Consider rotating and
translating L. An event ev occurs when L passes a vertex v of R. Such an event
corresponds to some line segments (with an endpoint at v) entering or leaving
Sst. As long as no event occurs, the formula describing the objective function
d(L) does not change and has the expression d(L) =

∑ik−1
i=i1

wi ∗ di, where di

is the length of L between the two line segments si and si+1 that are on the
boundary of Ri and have non-empty intersection with L [9, 16]. The possible
event free movements of L define a hourglass, as shown in Fig. 2.

Let H = {l1, l2, . . . , ln} be a set of n straight lines in the plane. The lines in H
partition the plane into a subdivision, called the arrangement A(H) of H , that
consists of a set of convex regions (cells), each bounded by some line segments on
the lines in H . In general, A(H) consists of O(n2) faces, edges, and vertices and
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Fig. 2. A set of line segments of R (in bold) defining an hourglass (continuous line), a

link L intersecting the segments s1, s2, s3 and s4, and an event point v

it can be computed in O(n2) time and O(n) space, by sweeping the plane with
a pseudoline [19]. If one is interested only in the part of A(H) inside a convex
region, similar results are possible [6, 12].

Throughout the paper we refer to a standard point-line duality transform
that maps a point q = (a, b) to the dual line y = ax + b and the non-vertical
line y = mx + p to the dual point (−m, p). This duality transform preserves
incidences and above/bellow relations (e.g., a point q above a line l dualizes to
a line that is above the dual point of l). At times, we will refer to the dual plane
as the (m, p) plane.

Let A(R) denote the dual arrangement of R, defined by HR = {l1, l2, . . . , ln},
where li ∈ HR is the dual of the vertex vi ∈ R. Using the duality transform, all
lines intersecting the same subset of segments Sst ∈ S correspond to a cell in the
dual arrangement A(R). The case of a semiline, and that of a line segment, can
be reduced to that of a line by appropriately maintaining the set of line segments
intersected by L and dropping those that arise before a segment in Rs or after a
segment in Rt. In [9], it has been shown that sequentially it is possible to obtain
the set of line segments of R that are intersected by a semiline in amortized
constant time if the segments intersected by the supporting line are available.
Their solution can be easily extended to handle a line segment as well.

Generating and sweeping the entire arrangement A(R) however, may not be
efficient, since many cells of A(R) may correspond to set of links that do not
intersect Rs and/or Rt. As noted in [16], the lines intersecting Rs (resp., Rt),
define a “strip” region DRs (resp. DRt) sandwiched between two m-monotone,
unbounded and nonintersecting chains in the (m, p) plane, and the lines inter-
secting both Rs and Rt thus correspond to the common intersection Dst of DRs

and DRt . Dst is a (possibly unbounded) region bounded by two m-monotone
chains with a total of O(ks + kt) vertices, where ks and kt are the number of
vertices of Rs and Rt, respectively.
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Lemma 1. The lines in the set A(R) have at most O(n) intersections with the
two chains bounding the region Dst.

Proof. Only O(1) lines tangent to Rs and Rt can pass through a point p. Then,
the dual line of p can intersect the chains bounding Dst only O(1) times. �

Thus, computing the cells of the arrangement defined by A(R) that correspond to
set of lines intersecting both Rs and Rt reduces to computing the arrangement of
O(n) line segments in Dst (some of these line segments may in fact be semilines,
but this does not influence the overall computation).

Since we assume that R is triangulated and Rs and Rt are triangles, we can
further simplify the problem by computing optimal links for a constant number
of subproblems, where each subproblem corresponds to a pair of edges of Rs and
Rt. Thus, from now on, we assume that Rs and Rt are line segments (edges) of
R. Then, Dst is obtained by intersecting two double wedges in the dual plane,
has constant complexity and can be computed in constant time. Without loss of
generality we assume that Dst is a connected convex region of the dual plane.
Note that it is possible Dst consists of two connected convex regions, in which
case we threat each region separately.

3 Parallel Solutions

In this section we present two parallel solutions for the weighted region optimal
link problem. The first algorithm uses the CREW PRAM model of computa-
tion. In this model processors act synchronously and may simultaneously access
for reading the same memory location on a shared memory space. The second
algorithm uses a coarse-grain parallel computer model of computation. In this
model, a relatively small number of processors are available and each processor
has a large amount of local memory, thus being able to store all data involved
in (sequentially) solving the problem, much like a personal computer. In partic-
ular, such a processing element would be able to store the region R and its dual
arrangement, as well as all data that is required in the process of generating and
solving a GOP.

3.1 The CREW PRAM Algorithm

In this section we give an output sensitive CREW PRAM solution for generating
the set of GOPs. To obtain an output sensitive algorithm, we use the paradigm
in [22]: the pool of virtual processors can grow as the computation proceeds, pro-
vided that the allocation occurs globally [21]. Given a subdivision R with a total
of n vertices, the algorithm we present runs in O(log n) time using O(n log n+k)
processors, where k is the size of the output (the total description complexity
for the feasible domains of the GOPs to be solved), and it could be Ω(n2) in the
worst case. If the traditional CREW PRAM model is used, our solution would
require O(n2) processors.
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As outlined in the previous section, to compute the feasible domains for the
GOPs it suffices to compute the cells in the arrangement A(Dst) of O(n) line
segments in Dst, where each line segment has its endpoints on the boundary of
Dst. Further, in order to produce the corresponding objective functions, with
each cell C of A(Dst) we must associate the subset of line segments in S that
are intersected by a line whose dual is a point in C. This computation may be
regarded as a set of queries on the line segments in S.

The algorithm we present follows the one in [22], where the following segment
intersection problem has been considered and solved: given a set of line segments
in the plane, construct a data structure that allows to quickly report the segments
intersected by a query line. Their algorithm is based on a parallel persistence data
structure termed array-of-trees and on fast construction of line arrangements.
The main idea in [22] is to build the arrangement, an operation sequence σ for
that arrangement, and then use the array-of-trees data structure to evaluate the
sequence. A reporting query can then be answered in O(log n) time per query,
resulting in an O(log n) time, O(n2) processors CREW PRAM algorithm.

The main difference in the algorithm we present is in defining and handling
the operation sequence σ. Given the nature of the optimal link problem, a vertex
of the subdivision R may in fact be the endpoint of multiple line segments (e.g.,
O(n) such segments). Then, while crossing from one cell to an adjacent one, many
line segments may enter or leave the set Sst and thus many enable/disable-like
operations in [22] would be associated to such crossing. Rather than defining the
enable/disable operations on individual segments, we define these operations on
subsets of segments in S.

In order to maintain the processing bounds, we must be able to obtain these
subsets in constant time per subset. As in [9], we assume that for each vertex
v ∈ R, the vertices adjacent to v (and thus the corresponding edges) are in
sorted angular order in the adjacency list of v. If not given as part of the input,
this can be easily done in parallel in O(log n) time using O(n) processors. Let
vs be the list of segments in Sst that are incident to v. We also maintain the
following information: for each v ∈ R, a list for the segments in vs and the
extreme segments in vs (based on the angular order); for each edge vw ∈ Sst,
two pointers for its positions in vs and ws, respectively.

Let d(v) denote the number of vertices adjacent to a vertex v in R. Since R
is a planar subdivision, we have

∑
v∈R d(v) = O(n).

Lemma 2. If the set of line segments intersected by L and corresponding to
some cell C1 in the dual plane is available, then the set of line segments cor-
responding to an adjacent cell C2 can be obtained in O(1) time using O(d(v))
processors, where v is the dual of the line shared by C1 and C2.

Proof. Let e be the common edge of C1 and C2. Then e corresponds to a set
of lines passing through v. Crossing e from C1 to C2 corresponds to deleting
vs from Sst and inserting in Sst the edges adjacent to v that are not in vs.
This results in O(d(v)) updates in Sst. Noting that the two sets above consist
of consecutive edges and each delete/insert operation takes constant time, we
can assign d(v) processors to perform the O(dv) delete/insert operations for Sst.
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Since the first and last entries in the list (for the extreme segments) are known,
the processor assignment can be done in constant time. We first produce the
list of line segments to be deleted from Sst. The list is obtained by having each
processor copying an edge of the list while updating adjacency list information for
its neighbors, which requires O(1) time. The list corresponding to consecutive
insert operations is produced similarly. After the two lists are produced, we
can delete the old list and insert the new one in constant time with a single
processor. Further, for each deleted segment vw, ws can be updated in constant
time using the information stored with vw, and for each inserted segment vu, us

can be updated in constant time by inserting vu in us. Each updating operation
takes constant time and it is assigned to one processor resulting in O(d(v)) total
work. �

Theorem 1. The feasible domains and the objective functions for the GOPs
associated with the region Dst can be generated in O(log n) time using O(n log n+
k) processors, where k is the size of the output.

Proof. We give an algorithm that constructs the GOPs in the claimed time
and processor bounds. The algorithm proceeds as follows. (1) Construct the
arrangement of line segments inside Dst. This can be done in O(log n) time
with O(n log n + k) processors, using the algorithm in [21]. We then compute
a spanning tree for this arrangement and an Euler tour of this tree, as in [22].
While computing the Euler tour, we use the data structures in [9] to produce
the operation sequence σ for the tour. Since the enable/disable operations in
σ add only constant time, this computation can still be done in O(log n) time
using O(k/ log n) processors. Constructing the array-of-trees data structure and
answering reporting queries can be done as in [22]. Then, the claimed processing
bounds follow. �

We mention here that an O(log n) time, O(n2) processors algorithm can be
obtained by associating an enable/disable operation with each line segment in-
volved in a crossing at a node v (i.e., to O(d(v)) segments) and applying the
algorithm in [22].

3.2 A Coarse-Grain Parallel Algorithm

In this section we consider a coarse-grain parallel computer model of compu-
tation. If at most n processors are available, we present a simple yet efficient
algorithm that generates all GOPs using O(n2 log n) work and with practically
no communications between processors. The GOPs can be solved locally or they
can be sent for solving to some external processing clusters. After all GOPs are
solved, the optimal solution can be obtained by a simple minimum selection.

We make the following assumptions for our model: (1) processors are con-
nected and can communicate via a global data buss or a communication net-
work that allows efficient data broadcasting (i.e, feed the subdivision R to all
processing elements) and (2) processors are numbered and each processor knows
its order number. The algorithm we present is more general as it is based on
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computing the portion of an arrangement of lines that lies in between two ver-
tical lines. We will show at the end of this section how to simplify it to address
our specific problem.

At the start of the algorithm, each processing element stores the subdivision
R and the set of lines in A(R) (following a broadcasting operation), and knows
its order number. Since each processor will perform similar computation, it then
suffices to discuss the computation involved at only one of them, say the k-th
processor Pk.

At processor Pk, the algorithm computes the GOPs associated with the por-
tion of the arrangement A(R) that is in between the vertical lines Lk−1 and Lk

passing through the (k − 1)n-th and kn-th leftmost intersection points of the
lines in A(R). We denote these two points as pk−1 and pk. First, the algorithm
finds the lines Lk−1 and Lk by computing the points pk−1 and pk. These points
can be computed in O(n log n) time each using the algorithm in [14]. Next, the
algorithm computes the intersection points of the lines in A(R) with Lk−1 and
Lk and runs a topological sweep algorithm [6, 12] to produce the GOPs inside
the parallel strip. Sweeping the strip, as well as generating the corresponding
objective functions, can be done altogether in O(n log n) time, which follows
from [9].

Alternatively, we can obtain the same results using the (optimal) sequential
version of our CREW PRAM algorithm (i.e., by computing a line segment ar-
rangement inside the strip and traversing that arrangement). After the GOPs
are solved, the last step of the algorithm consists of a minimum selection among
the optimal solutions stored “locally” at different processing elements, in order
to obtain the minimum over all GOPs. This can be done with only O(n) com-
munication, starting at processor P1 and with the overall minimum computed
at processor Pn.

Thus, we have the following results.

Theorem 2. In the proposed coarse-grain computing model, the feasible do-
mains and the objective functions for the GOPs can be computed in O(n log n)
time using O(n) processors.

Corollary 1. If only p processors are available, where p ≤ n, the feasible do-
mains and the objective functions for the GOPs can be computed with O(n2 log n)
total work.

At this point we recall from Section 1.1 that it is known that an optimal solution
goes through a vertex of the subdivision R. Thus, rather than generating the
arrangement of lines, we only need to obtain its edges. This can be done directly
in the original plane as follows. For each vertex v ∈ R, compute the intersection
of the double wedges Ws and Wt at v, defined by the tangent lines from v to
Rs and Rt, respectively. This takes constant time for a vertex v. For each Wv,
find the set of vertices V W (v) in R∩Wv by traversing the portion of R that lies
between the two bounding lines of Wv, which takes linear time in the number of
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R s R tv

Fig. 3. Three double wedges (bold line) at vertex v, when L is a line segment (case

(c))

vertices |V W (v)| in the set (O(n) in the worst case). Then sort the set V W (v)
around v in O(n log n) time and compute the intersection of the lines defined by v
and the vertices in V W (v) with the boundaries of Rs and Rt. This results in a set
of O(n) double wedges at v, defining the feasible domains for the O(n) possible
GOPs at v [16] (see Fig. 3). Finally, compute the objective function associated
with the leftmost double wedge at v, then traverse the remaining double wedges
at v while updating the objective function in constant time, as described earlier.
The computation at v can be carried out in O(n log n) time [16]. Assigning a
processor for each v ∈ R results in O(n2 log n) total work.

Lemma 3. The simplified algorithm above constructs the global optimization
problems for finding an optimal link in O(n log n) time using O(n) processors.

Proof. Follows from the algorithm description. �

Some of the advantages of this algorithm over the previous one are that it avoids
using duality transforms and (line segment) arrangement computation for gen-
erating the optimization problems, which may lead to more robust implementa-
tions. It can also be easily adapted to generate only a subset of the optimization
problems which may be useful in some applications. Observe that for case (c) of
the problem we only need consider the vertices of R that are inside the convex
hull of Rs and Rt when generating the subproblems. This subset can be easily
obtained in O(n) time using a single processor [16].

There are two important features of our solutions that should be noted here.
First, the approaches we propose allow for scalability in solving the GOPs. That
is, after a GOP is produced, it can be solved either locally or it can be sent to
some external processing cluster, that would in turn compute and return the
optimal value for that GOP. Second, once the initial setup for the computation
has been completed, it takes constant time to generate a new GOP; since the
objective function of a GOP could have O(n) terms, this implies that all GOPs in
a strip can be generated in time comparable to that required to perform a single
evaluation of a GOP’s objective function, and justifies the proposed coarse-grain
model of computation.
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4 A Parallel Algorithm for Solving a GOP

While the GOPs can be generated fast in a coarse grained parallel computer
model, it would also be desirable to solve a GOP in parallel. Thus, we need
consider global optimization algorithms that are easily parallelizable.

To solve a GOP in parallel we adapt an algorithm for minimizing a sum of
linear fractional functions (SOLF) [20], that has inherent parallelism, to solve
the specific GOPs associated with the weighted region optimal link problem.

In [16], it has been shown that since an optimal link goes through a vertex of
R the 1-dimensional objective function has the generic form

min
x∈U

{d(x)=
√

1 + x2

m∑

i=1

ai

bix + ci
}=min

x∈U
{

m∑

i=1

√
1 + x2

ai

bix + ci
}=min

x∈U
{

m∑

i=1

ri(x)}

where ai, bi and ci are constants and bix + ci > 0 over the feasible domain U ,
for i = 1, 2, . . .m.

Thus, the functions we try to minimize are 1-dimensional sum of fractional
functions (SOFs) with generic term ri(x) =

√
1 + x2 ai

bix+ci
.

In contrast, a SOLF is a sum of fractional terms, each of which is a ratio of
two linear functions. Thus, in a 1-dimensional SOLF the generic term has the
form ri(x) = ai

x+ci
.

Consider minimizing d(x) =
∑m

i=1 ri(x), over an interval U . The main steps of
the SOLF algorithm [20] are described below (see also [10] for the 1-dimensional
SOLF algorithm).

S tep 1. Set the step variable, k, equal to zero. Determine an initial lower bound
lb = (lb1, . . ., lbm) on the optimal solution for d(x), where we have lbi = minimize
{ri(x)|x ∈ U}, with solutions xi, for i = 1, . . . , m. (This solution gives the
minimum value of a single term ri(x) over U).

S tep 2. Compute a set P of m feasible points

P =

⎡

⎣
p1,1 . . . p1,m

. . .
pm,1 . . . pm,m

⎤

⎦ ,

where pi,j = rj(xi) for i = 1, . . . , m and j = 1, . . . , m. Then compute an isovalue
contour fu defining an upper bound, where

fu = min{
m∑

j=1

pi,j , i = 1, . . ., m}.

S tep 3. Determine the remaining points of the initial m-simplex:

l =

⎡

⎢
⎢
⎢
⎢
⎣

fu −
∑m

i=2 lbi lb2 . . . lbj . . . lbm

. . . . . . . . .
lb1 . . . lbj−1 fu −

∑
i�=j lbi lbj+1 . . . lbm

. . . . . . . . .

lb1 . . . lbj . . . lbm−1 fu −
∑m−1

i=1 lbi

⎤

⎥
⎥
⎥
⎥
⎦

,
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S tep 4. Let k = k + 1. Solve the m problems:

minimize r1(x)
subject to x ∈ U and ti ≥ ri(x), i = 2, . . ., m,

. . .,
minimize rm(x)

subject to x ∈ U and ti ≥ ri(x), i = 1, . . ., m − 1,

where ti = li,i. Let xi, i = 1, 2, . . . , m, be the solutions to these problems. The
new lower bound point lb is the m dimensional point of coordinates lbi = ri(xi),
for i = 1, . . . , m.

S tep 5. Determine the new m-simplex based on the new lower bound.

l =

⎡

⎢
⎢
⎢
⎢
⎣

fu −
∑m

i=2 lbi lb2 . . . lbj . . . lbm

. . . . . . . . .
lb1 . . . lbj−1 fu −

∑
i�=j lbi lbj+1 . . . lbm

. . . . . . . . .

lb1 . . . lbj . . . lbm−1 fu −
∑m−1

i=1 lbi

⎤

⎥
⎥
⎥
⎥
⎦

,

S tep 6. If lb = lj for any j, where lj = (lj,1, . . . , lj,m) is a row in the matrix l
above, then stop. The optimal value of the objective function is

∑m
i=1 lj,i and

the global optimal solution is x∗ such that ri(x∗) = lj,i, for i = 1, . . ., m.

S tep 7. If lbk �= lbk−1, then return to Step 4.

S tep 8. Otherwise, the current upper bound lb is the same as the upper bound
in the previous iteration and the iterative process has stalled. In this case, use
a hyperplane to split the m-simplex containing the optimal solution in half.
Relabel fu as f ′

u. Repeat steps 1 and 2 once for each subregion. In step 1, add
appropriate constraints to restrict the search to a particular subregion of the
m-simplex. In step 2, relabel fu as f1

u and f2
u for the first and second subregion,

respectively, and let fu = min{f1
u, f2

u}. If fu < f ′
u, then return to step 3 with

the new lb. Otherwise, fu ≥ f ′
u, so execute steps 3 through 9 in each of the two

subregions of the simplex.
The algorithm terminates in step 6 or when the difference between the lower

and upper bounds is below a user specified threshold.
The only place in the algorithm above where the expression of the ratio ri(x)

is important is in the optimization subproblems in steps 1 and 4. For the SOF
problems associated with a GOP the optimization subproblems in steps 1 and
4 can be solved in constant time each and thus we can apply the algorithm for
these SOFs. We refer to the resulting algorithm as the SOF algorithm. Steps one,
two and eight correspond to the initialization part while steps three to seven of
the algorithm correspond to the iteration part.
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Lemma 4. In the SOF algorithm the initialization part can be performed in
O(m) time using O(m) processors and the iteration part can be performed with
O(m) total work.

Proof. The initial lower bound lb for Step 1 can be computed with O(m) work
(O(1) time with m processors, or O(m) time with a single processor). Step 2
requires to evaluate m ratios at m points and takes O(m) time with m processors.
Computing the O(m) sums take O(m) time with m processors, where the i-th
processor computes the i-th summation. After that, the upper bound can be
found in O(m) time with a single processor. In Step 8, splitting the m-simplex in
half requires O(m) time sequentially and thus can be done by a single processor.
This concludes the initialization part.

The iteration part can be performed sequentially, using a single processor, as
in [10]. In Steps 3 and 5 use an implicit representation of the m simplex points,
since each simplex point differs from the lower bound in only one dimension.
After computing

∑m
i=1 lbi with O(m) work, the m simplex points can be obtained

within the same bound. Step 6 can be performed in a similar way with O(m)
total work. Step 7 is trivial and requires O(1) work. Thus, the total work for the
iteration part can be carried out with O(m) work. �

From Lemma 4 it follows that we can assign a cluster of O(m) processing nodes to
handle a GOP. Each iteration of the SOF algorithm would be executed in O(m)
time by a single processor, while the other processors are needed to ensure that
a stall can also be handled in O(m) time.

Assuming the SOF algorithm makes progress and returns to Step 3 after each
stall in Step 8, the time to solve a GOP becomes O(mI), where I is the number
of iteration to obtain an (approximate) optimal solution. If no progress is made
after a stall the two resulting optimization subproblems are executed on two
distinct processing nodes.

5 Conclusions

In this paper we have presented parallel CREW PRAM and coarse grained
computer algorithms for computing an optimal link among weighted regions in
the plane. Given a weighted, triangulated subdivision with a total of n vertices,
the work of the parallel algorithms we propose is only an O(log n) factor more
than that of their (optimal) sequential counterparts. After proving that GOPs
can be generated fast in a coarse grained parallel computer model, we have also
shown how to efficiently solve a GOP in parallel by adapting an algorithm for
minimizing a sum of linear fractional functions, that has inherent parallelism, to
solve the specific optimization subproblems associated with the weighted region
optimal link problem.

Our coarse grained parallel computer algorithms are simple and can be easily
implemented. They are targeted towards applications in radiation therapy and
stereotactic brain surgery, where finding the optimal choice for the link fast and
accurate is a key problem in treatment optimization.
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Abstract. With the oil barrel price presently crippling the world economy, 
developing fast oil reservoir simulators is as important as ever. This article 
describes the parallelization and development of a 2-phase oil-water reservoir 
simulator on the state-of-the-art IBM Cell computer. The interdependent linear 
algebraic equations of the reservoir simulator is presented as well as the 
pipelined time step parallelization approach adopted on the Cell, The 
performance results reveal that given the largely interdependent nature of the oil 
reservoir model equations which highly limits parallelism, speedups of 6x or 
higher could be obtained. This speedup is significant as it results in oil 
simulation runs cut from weeks to days, allowing for more simulation runs with 
various well placements to run on the same hardware, and resulting in better 
reservoir management, and possibly higher oil production. The results also 
demonstrate that the oil reservoir simulator application is characterized by 
higher speedups with increasing grid size. However the speedup was shown to 
go down with increased number of time steps as the main memory transfer 
overhead becomes an important factor. Proper choice of compiler optimization 
flags helped boost the performance by a factor of 2x. Our parallelization 
approach is economically feasible due to the affordable cost of the widely 
available Cell-based Playstation 3.  

Keywords: Oil reservoir simulation, multi-core computing, Cell Broadband 
Engine, Thomas algorithm. 

1   Introduction 

With the price of an oil barrel and demand for oil reaching record levels, the 
importance of effective methodologies and tools for oil exploration, extraction, and 
production has soared.  Oil reservoir simulators [1-6] are crucial to the production of 
oil, as they help in oil reservoir forecasting, sensitivity analysis, and history matching. 
As the cost of drilling wells is very high reaching in some cases tens of millions of US 
dollars [7], simulating oil reser-voirs with virtual wells is necessary.  Simulation helps 
evaluating models for the injection rate, places on the well for injection, and recovery 
techniques, all crucial for the oil recovery’s financial success. After the best 
placement of wells is done, a reservoir simulator can be used to extend the life of the 
oil flow plateau. Reservoir simulation is thus a key component of oil reservoir 
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management. The oil reservoir management process repeats the 2 following cycles: i. 
detects data changes during production and from that, detects reservoir changes; ii. 
Enter the data and reservoir changes into the dynamic reservoir model, and conduct 
reservoir simulations to guide future production and data ac-quisition plans.  

Many oil reservoir simulators were developed by oil or oil-related companies such 
as Exxon Mobil, Shell, Amoco, Schlumberger, Saudi Aramco, just to name a few. 
However none of these implementations are be-lieved to be for the IBM Cell 
processor [8-11], a recent state of the art processor that is mass produced and is an 
integral part of the Sony Playstation 3.  

The Cell processor is a multi-core processor with 9 cores on one single chip 
package. With its multi-core parallelism and vector and SIMD processing capabilities, 
the IBM Cell processor was shown to deliver top computation performance levels 
compared to other CPUs on graphics and image processing applications [12] and 
other integer applications. While there have been several implementations of oil 
reservoir simulators on clusters [13-17] and grid computers [18], we believe that our 
work is the first implementation of an oil reservoir simulator on this state of the art 
processor. Because of the Cell’s unique architecture, shorter simulator run times are 
expected on the Cell platform compared to existing systems. Such performance gains 
can result in faster solutions (in terms of days, depending on the size of the problem). 
Faster solutions means that the simulation runs are shorter in time, and that more 
simulation runs with a larger variety of virtual well or other parameter settings can be 
made in fixed time duration, resulting in better reservoir management and forecasting. 
Saudi Aramco [13] projects tremendous growths in number of models and in 
computer capacity requirements for reservoir simulation, both stressing the need for 
faster and more powerful multiprocessors such as the Cell. 

In this paper, we describe the parallelization and implementation of a parallel 1D oil-
water reservoir on the IBM Cell Broadband Engine. In Section 2, we review the stream 
model of computation on which the Cell is based and highlight the Cell’s features. In 
Section 3, we describe the oil reservoir’s partial differential equation model, followed 
by the reservoir’s numerical model based on difference equations in Section 4. In 
Section 5, we present our parallel computation methodology. Implementation details 
and performance results are then presented in Sections 6 and 7, respectively. 
Conclusions are drawn in Section 8. 

2    The Cell and the Stream Model of Computation  

The IBM cell processor is the first commercial proces-sor based on the stream model 
of computation. Earlier, the IMAGINE processor is based on a stream processor 
architecture developed by a team of Stanford University researchers. Multimedia and 
graphics applications are examples of applications suitable for the stream model of 
computation. In general, applications with large data sets friendly to vector processing 
will perform well under this model of computation. 

The steam model of computation is based on the concepts of streams and kernels. 
A stream is a set of sequential data requiring similar operations. A stream is created 
by appending data elements to the tail of the stream. A stream is consumed by 
popping data elements from its head. Kernels are short programs which take one or 
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more streams for input  and generate an output stream as a result of the execution of 
the kernel instructions on the input streams’ data elements.  

Stream processors perform well on media, graphics, and applications with large 
data sets requiring the execution of similar operations on their data elements such as 
in vector processing applications because they exchange large portions of superscalar 
CPU die used to implement out of order instruction execution and large centralized 
on-chip caches for large numbers of SIMD execution units, large register files, and 
smaller memory units distributed among the processor’s processing elements. Stream 
processors require smaller memory areas distributed among the processors which hold 
portions of the code and data as they take advantage of the data locality property of 
multimedia streams. Furthermore, large cache memories between communicating 
stream processors are not needed and stream processors’ processing elements rarely 
access main memory to get hold of sparse data. Without various levels of large caches 
and with local memory serving the computation needs of the processing elements, the 
L0 cache to L1 cache to L2 cache to main memory latency observed on traditional 
CPUs is avoided on stream architectures.  Various types of parallelisms are exploited 
by stream processors. Thread level parallelism is achieved for instance on the Cell by 
running multiple threads on the host RISC processor and another thread on processing 
elements. The stream processor’s many processing elements with distributed local 
memories facilitate data parallelism. Instruction level parallelism is achieved in the 
cores’ pipelines.   

The Cell processor adopts the stream computing model. The Cell is a heterogeneous 
multi-core chip containing one 64-bit PowerPC Processing Element (PPE), eight 
specialized co-processors called Synergistic Processing Elements (SPE), and one 
internal high speed bus called Element Interconnect Bus (EIB) which links PPE and 
SPEs together. The PPE is itself composed of an L2 cache and a Power Processor Unit 
(PPU) containing a Power execution unit and an L1 cache. The PPE supports the VMX 
(AltiVec) vector instruction set to parallelize arithmetic operations. Each SPE contains 
a Synergistic Processing Unit (SPU), and a SMF unit (including DMA, a memory 
management unit, and bus interface). Each SPU contains a RISC processor with 128-
bit SIMD single and double precision instructions, and a 256 KB instruction and data 
local memory area (known as the local store or LS) which is visible to the PPE and can 
be addressed directly by software. The local store does not operate like a superscalar 
CPU cache since it is neither transparent to software nor contains hardware structures 
that predict what data to load. The Cell can handle 10 simultaneous threads and over 
128 outstanding memory requests. Each SPE can communicate 16 Bytes per cycle to 
the EIB which has a bandwidth of 96 Bytes per cycle (< 8 x 16=128B/cycle). The 
Memory Interface Controller and Bus Interface Controller which interface to external 
memory and I/O peripherals, respectively, also communicate with the EIB at a rate of 
16 Bytes/cycle. The Power execu-tion Unit-L1 cache bandwidth is also 16 Bytes/cyle 
while the L1 cache-L2 cache bandwidth is 32 Bytes/cycle. 

3   The Oil Reservoir’s PDE Model 

The development of the parallel partial differential equation (PDE) reservoir 
simulation model involves the following steps. 
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i. Defining and refining a parallel partial diffe-rential equation (PDE) model, 
and identifying performance-efficient numerical methods [19] and 
programming techniques [20]. For a 2-phase oil/water reservoir model, the 
main equations include the oil and water equations, with oil pressure and 
water saturation being the primary unknowns, and water pressure and oil 
saturation being the secondary un-known. Many of the coefficients in these 
equations are also function of these unknown variables.  

ii. Dividing the reservoir into grids, discretizing th model in space and time, and 
parallelizing the model; 

iii. Coding the PDE model in C and parallelizing the code; 
iv. Debugging this model; 
v. Fine tuning and optimizing the performance of this parallel simulator; 
vi. Testing simulator by comparing its results of a known reservoir to known 

results collected from another proven simulator. 

The oil reservoir simulation takes for input an accurate geological model of the oil 
field to be simulated, where the reservoir and its boundaries are clearly defined and 
rock properties including porosity and permeability are modeled, and well production 
and injection detailed information. We consider a heterogeneous 1D 2-phase Oil-
Water reservoir that is surrounded by impermeable rocks. The reservoir simulation 
model is based on the following equations that model the 2-phase flow. The 
differential equations modeling two-phase flow can be derived from the continuity 
equation (eq. 1) of each phase a which describe the conservation of mass of each 
component (o for oil and w for water), and Darcy’s law that relates the phase 
velocities Ua to the gradient of the phase pressures Pa (eq. 2). 
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Where Ua is the phase velocity, Pa is the phase pressure, φ is the porosity, ρa Sa is 
the concentration of component a, Sa is the saturation of phase a,  q is the well 
production or injection rate  (where at an injection well, q is non-negative, while at a 
production well, q is non-positive), K is the rock permeability tensor,λa= Ka Sa, ρa / μa 
is the mobility of phase a, ρa is the phase density, g  H is the gravity acceleration 
vector times the elevation, the relative permeability Ka Sa ρa models the reduced 
permeability of one phase due to the presence of the other, and μa is the phase 
viscosity. It is assumed that the phases (a) are oil (o) and water (w) and that the two 
phases together fill the void space completely so that So+Sw = 1 as indicated by 
equation 3 above. Moreover, the phase pressures are related in terms of the capillary 
pressure pcow = po −pw, which we assume to be a known function of water 
saturation, pcow(Sw). 

po −pw= pcow(Sw)                 (4) 
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Equations 1-3 define the PDE model of step i. In step ii, this PDE model is discretized 
in space and in time resulting in a set of non-linearized finite difference equations which 
are then linearized. The resulting linearized equations corresponding to Equations 1 and 2 
are solved at each discrete time step. The linearized finite difference equation 
corresponding to equation 2 may have its own time step which is adjusted according to 
the stability requirements.  It is known that a time step of 1 day leads to stable results.  

The solution method for solving the set of linearized finite difference equations 
which we use is the Implicit Pressure Explicit Saturation (IMPES) method which 
combines the differential equations such that the saturation derivatives are eliminated. 
As a result, this method combines the equations into a single one in which only one of 
the phase’s pressure is the unknown variable. The resulting linear algebraic equations 
have coefficients which are a function of the oil or water pressures and saturations and 
can thus be computed by this method using the pressure and saturation values 
computed in the previous time iteration. At any time step, when one phase’s pressure 
is solved, the same phase’s saturation is obtained from the phase’s flow partial 
differential equation. The other phase’s pressure is then obtained from the capillary 
pressure equation (4). Afterwards, the other phase’s saturation is obtained from 
equation 3 which reduces in our case to So+ Sw=1. These steps are repeated in the 
next time iterations setting the current pressures and saturations to the values obtained 
in the previous iteration and solving for the next time step’s pressures and saturations 
until the results converge or until a desired time step is reached.  

The equations are typically put in matrix form A x X = C where the X variables in 
the X matrix are the unknown variables representing the set of linear algebraic 
equations, and various solvers can be used to obtain a solution. The coefficient matrix 
A is usually sparse with one main diagonal and some other diagonals. The reservoir’s 
grid blocks can be ordered differently to obtain various diagonal shapes in the A 
coefficient matrix, as various solvers require the coefficient matrix to be in some 
certain shape in order to properly work. Grid block ordering affects the storage and 
computation requirements of simulators. An example of grid ordering is red-black 
ordering. Solvers fall into direct and iterative categories. The direct ones are faster for 
small reservoirs at the expense of larger storage costs and result in more accurate 
solutions. The iterative methods are faster for larger reservoirs requiring less storage 
than their direct counterparts but provide an approximate solution. In direct solvers 
such as Thomas algorithm and Gaussian elimination, an exact solution is obtained. 
Thomas algorithm is superior to other direct solvers as it is based on a tridiagonal 
coefficient matrix which bypasses computation when the matrix coefficients are zero 
thus resulting in time savings. The Thomas algorithm has a forward elimination step 
and a backward substitution step.  

A parallel pipelined version of Thomas Algorithm exists and is known as the 
Immediate Backward Pipelined Thomas Algorithm (IB-PTA) and was developed by 
Povitsky [21] at NASA allowing the backward step to proceed immediately after the 
forward step for each line (equation). It allows the completion of some lines by the 
backward step (and thus variables are solved) immediately after the first lines have 
completed their forward step, and processors switch between the forward and 
backward step and communicate with their neighbors to get data. The algorithm 
prevents some processors from waiting and idling, thus allowing the processor to 
compute some useful work instead of idling. 
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4   Numeric Reservoir Model  

Fig. 1 shows a homogeneous 1D 2-phase oil-water reservoir with n blocks [5]. The 
left and right boundaries of the reservoir are assumed to be sealed and prevent flow as 
denoted by the bold line boundaries. In the grid block 1 on the left, there is a water 
injection well with flow rate of 75.96 B/D at standard conditions and grid block n on 
the right has an oil production well with a flow rate of -75.96 STB/D. The reservoir is 
1000ft long. It is also assumed that the fluids are incompressible. 

 

Fig. 1. 1D Oil-Water Reservoir with 2 Wells 

When n is 4, the size of a grid is 250 ft with a cross-sectional area of 10000 ft2. 
The initial reservoir pressures and saturations are known.  

At each grid block i, the oil pressure equation is of the following form 
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While the water saturation equation at grid block i is of the form 
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where the T
t

iiw 1,, −
 is the transmissibility between neighboring grid blocks i and i-1 at 

time step t (previous time step for which the variable’s value has been computed and 
is know, while time step t+1 refers to the next time step for which the variables’ 

values are to be found), p
t

io
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,

+  is  the oil pressure in grid block I at time t+1, S
t

iw,
 is the 

water saturation in grid block I at time t, the coefficient C iww ,
 is given by 

t
cbV Δαφ / . Note how the pressure variable in grid block I is a function of the 

pressure variables in the neighbouring grids at its left (i-1) and right (i+1). The water 
saturation variable at grid block i is also a function of the oil pressure variables at grid 
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blocks i, i-1, and i+1. These create dependencies which inhibit parallelism and are 
suitable to a few parallelization techniques such as pipelining.  

In our case, after computing all coefficients, the resulting pressure (P) and 
saturation (S) equations for time step 100 days, assuming that at the prior time step, 
po1= po2= po3= po4=1000 psia, Sw1= Sw2= Sw3= Sw4 = 0.16, reduce to 

po1=1000 psia 
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where subscripts o and w refer to oil and water, respectively, and subscripts 1-4 refer 
to the grid block number, and the pressure equations are in matrix form A x P = B, 
where the A coefficients are functions of the transmissibilities and the B coefficients 
are function of the oil and water flow rates. 

As the relative water permeabilities and consequently water transmissibilities in all 
grid blocks are 0, the water saturation equations at time step of 100 days are reduced to 
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5   Parallel Computation Methodology   

The simulator can be parallelized in various fashions. Data parallelism, thread 
parallelism, functional parallelisms are some common techniques to parallelize 
applications. In this work, we chose time parallelism and pipelining in which each 
SPE computes one full iteration including solution of the pressure and saturation 
equations and the Thomas algorithm for solving the above Matrix but at different time 
steps. The SPEs transfer the pressure and saturation values of each time step in a 
pipeline fashion among themselves, as explained later. As solutions at consecutive 
time steps are dependent on the solution at the previous time step, the SPEs can 
overlap in time the computation of the various coefficients and parameters and 
interpolate relative permeability data but would have to wait for the solutions of the 
pressure and saturation in the previous time step, before proceeding with their 
solution in the following time step. Thus the SPEs’ executions are  partially 
overlapped and not fully parallel.    

We chose the following time steps: 100th day, 300th day, 600th day, and 800th day for 
the case of the 4 time step experiment, and extended these time steps with the 
following time steps: 1000th day, 1200th day, 1500th day, and 1800th day, for the 8 time 
step experiment. We chose these specific time steps as these have known solutions and 



 Parallel Simulation of Oil Reservoirs on a Multi-core Stream Computer 89 

ease the process of validation. The time difference between the time steps, tΔ , 
therefore varies from one time step to another and is not constant. Specifically, some of 
the coefficients’ computations which are not dependent on the time step can take place 
concurrently on different SPEs. Similarly as per our implementation as soon as one 
SPE finishes its computation on the shared data for a particular time step, it releases 
(writes) the cache line which enables other SPEs to start computation while the former 
SPE continues its computation of non-shared data. Thus some computations even after 
the cache line is released occur in parallel. 

The PPE is responsible for initializing the coefficient matrix and constant matrix. It 
is also responsible for initializing relative permeability and saturation values from the 
input table. Values for water relative permeability and oil relative permeability in the 
permeability table correspond to a water saturation value and can be interpolated from 
the table values provided that the water saturation is known. Later on, these values are 
forwarded to every SPE. 

The SPEs are responsible for calculating the above equations, and their coefficients 
Cop, Cwp, Trw2,3, Trw3,2,, Trw4,3 , Trw3,4, volume V = A* xΔ , geometric factor G, which 
are computed in parallel since they are not dependent on the time step. Also the 
coefficients based on transmissibilities mentioned above are also computed in parallel 
by the SPEs since they do not change with time. 

6   Implementation Details 

In the serial implementation, we initialized our 2D coefficient arrays/matrices with 
unknown and constant values. Once the arrays are initialized then we started the time 
iteration loop. We calculated the pressure distribution and water saturation 
distribution for the entire tested grids of size 32, 64, and 128 grid blocks, for four time 
steps (100th day, 300th day, 600th day, and 800th day), and in another experiment for 8 
time steps (100th day, 300th day, 600th day, 800th, 1000th day, 1200th day, 1500th, and 
1800th day). We also initialized those variables which were time independent before 
hand at the start and for each iteration we calculated those variables. We calculated 

tΔ  which is the time difference between the two consecutive time steps. We updated 
the corresponding coefficients during each iteration which are relying on the time 
delta, tΔ . In the very first iteration or time step, for calculating the water saturation 
value for each grid we relied on the initial water saturation value but in the following 
time iterations we had to calculate the transmissibility value based on bilinear 
interpolation. Our implementation was flexible enough to be tested for different 
number of grids as we mentioned before.     

In the embedded implementation, because of significant data dependencies and 
inter-process communications, we employed the atomic Unit and atomic cache 
technique. We distributed each time step computation or workload to a different SPE 
so in our experiments with total time of 4 (8) time steps, we used 4 (8) SPEs which 
partially processed some data in parallel and some data in pipelined and serial 
fashion. The data which needs to be computed in serial fashion was brought in the 
SPEs ahead of time for fast serial computation.   
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All the atomic operations supported by the SPEs are implemented by a specific 
Atomic Unit inside each MFC (Memory Flow controller) , which contains a dedicated 
local cache for cache line reservations. This cache is called the Atomic Cache. The 
Atomic Cache has a total capacity of six 128-byte cache lines, of which four are 
dedicated to atomic operations. When all the SPEs and the PPE perform atomic 
operations on a cache line with identical Effective Address, and therefore a reservation 
for that cache line is present in at least one of the MFC units, the cache snooping and 
update processes are performed by transferring that cache line contents to the 
requesting SPE or PPE over the Element Interconnect Bus, without requiring a 
read/write to main system memory. This constitutes effectively a very efficient 
hardware support for atomic operations on shared data structures consisting of up to 
512 bytes divided in four 128-bytes blocks mapped on a 128-bytes aligned data 
structure in the SPEs' Local Store, and can be effectively used as a fast inter-processor 
communication broadcast mechanism. The approach to exploiting this facility is to 
extend the principles behind the handling of a mutex lock or an atomic addition, 
ensuring that the operations involved always affect the same four (or eight) cache lines.  

For the embedded application, two code files, one for the PPE, and one for the 
SPEs were developed in the C programming language. 

The PPE code performs the following steps.  

a) Create separate threads to run PPE code and SPE codes in parallel, using 
libspe2 in our implementation. 

b) Initialize relative permeabilities for both water and oil, oil flow, water flow, 
saturation values, and coefficient matrices. 

c) Initialize the Control block structure and the corresponding member values 
which include shared input memory address from where every SPE has to 
retrieve data for processing and output memory address which will be used by 
every SPE to store the processed data after the computation. 

d) Initialize the shared data structure. This data structure will be communicated 
between each SPE through atomic cache and contains a member time step. This 
value of this member determines which time step a particular SPE has to 
process. 

e) PPE starts the SPE threads. In one experiment, 4 SPE threads are spawned. In 
another, 8 SPEs are spawned. The shared data structure is forwarded to every 
SPE with all member values initialized to zero.  

f) Once all the threads/SPE contexts are spawned, the PPE sends the control 
block to every SPE through a non-blocking mailbox message. Every SPE after 
being started then has to wait for this mailbox message before it can proceed.    

g) Once every SPE finishes the computation of the final time step values, the oil 
pressure and water saturation values will then be transferred to a shared 
memory location by the PPE. 

h) The above steps are repeated for all grid sizes (32, 64, and 128 blocks), and for 
both considered total times (4 and 8 time steps).  

The SPE code performs the following steps.  

a) Every SPE is responsible for computing the pressure and saturation values for 
all grid blocks for one complete time step. There is no guarantee or prior 
information of which SPE will compute which time step iteration as they all 
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race for the cache line simultaneously and once each SPE gets a lock on the 
cache line, and based on the processing step, it starts computing the 
corresponding time step pressure and water saturation values.  

b) As soon as the SPE program is invoked, the SPE starts calculating the 
equations which are  independent of time. It then waits for the shared memory 
address included in the mailbox message sent by the PPE.  

c) Every SPE then races for acquiring the lock on the atomic cache line. The first 
SPE which gets hold of the cache line locks the processing step value. If this 
value is 0 (this tells the SPE that it is assigned the first time step so it does not 
need to wait for another SPE to pass on to it previous iteration values), it then 
computes the time dependent coefficients and equations and then transfers the 
data to the shared memory location which will be used by the next SPE in line. 
It then releases or unlocks the cache line. 

d) If this value if not 0, other SPEs which when they get hold of the cache line, 
retrieve the previously processed data (of the previous iteration or time step) 
from the shared memory location which may or may not be cached and 
compute the current time step-based coefficients, transmissibilities, oil Pressure 
and water saturation values. Once finished computing, the SPE transfers back 
to the main memory the current iteration’s pressure and saturation values which 
will be used by the next SPE, and this is repeated each time by another SPE for 
as many time steps in the total time (4 or 8). 

e) Those equations which are independent of any time iteration, e.g. calculating 
the volume of the entire grid, transmissibility for both water and oil between 
neighboring grid points which does not change with time, relative permeability, 
Gnm (geometric factor between grid blocks n and m), qosc (well’s oil flow rate), 
qwsc (well’s water flow rate), coefficients of pressure equations, and krw 
(relative permeability of water) are immediately calculated in parallel after 
each  SPE thread is  spawned. 

f) In our implementation, we did not parallelize the Thomas algorithm, since we 
have a limited data size, and the parallelized Thomas algorithm involves 
communications between neighboring SPEs which entail DMA transfers which 
-we believe- may hurt the performance. That is why each SPE locally runs the 
Thomas algorithm on its own unknown variables to obtain a solution of these 
variables under its assigned time step. 

g) We did not optimize the code manually. Instead we relied on the auto-compiler 
optimization technique. We used the optimization flags “-O3 -funroll-loops -
fmodulo-sched -ftree-vectorize -ffast-math” which are for loop unrolling, 
software pipelining, auto vectorization and fast floating point calculation.  

After finishing the above with one grid size, we increased the grid size (32, 64, 128 
blocks) and repeated the same steps.  The only changes we had to make is to modify 
the array sizes which represent the grid size, keeping the number of iterations or time 
steps constant. 

After repeating for all grid sizes, we repeated the same steps with 8 time steps 
instead of just 4. 

Fig. 2 shows the execution timing diagram of PPE and SPEs in the embedded 
application. 
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Legend 
Label L1: Every SPE starts calculating those equations which are independent of  time  and 
relative permeability,  and filling the coefficient matrices with constant values. 
L2: Every SPE waits for the control block sent by the PPE via a mailbox message. 
L3: SPE snoops the Cache line and as soon as it sees the atomic cache line free, the SPE locks 
it so no other processor can simultaneously access it. The SPE finishes the computations and 
writes the computed pressure and saturation values to the Cache or main memory. 
L4: SPE snoops the Cache line and as soon as it sees the atomic cache line free, the SPE locks 
it so no other processor can simultaneously access it. The SPE retrieves the processed pressure 
and saturation data -computed in the previous iteration or time step- from the Cache or main 
memory. Once done, the SPE transfers the processed data back to main memory. 
L5: The SPE calculates the oil saturation value, and water pressure distribution for all grid 
blocks. These operations overlap with the L4 computations. 

Fig. 2. Execution timing diagram of PPE and SPEs 
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Where the vertical axis is time. Every SPE is represented by an arrow on top and 
its execution process is represented by another arrow below it. During the entire 
execution process, every computation phase is represented by an oval with the 
description of the phase. When the oval spans several SPEs, this indicates that this 
phase is being executed in parallel by the SPEs simultaneously. The label “T= Ti”, 
where i=1-10, represents the time duration of each computation phase. A horizontal 
bar -crossing a vertical line- represents the end of a particular time period. 
Computations which are taking place during a phase are represented and detailed by 
an oval. For example, T1 indicates the time duration immediately after the SPE thread 
is spawned. During T1, every SPE starts calculating the coefficient matrices, 
transmissibilities and those equations which are independent of the time step, and will 
remain constant for the entire simulation.  During T2, every SPE waits for getting the 
control block through the PPE. This waiting is happening in parallel by all involved 
SPEs as the PPE’s mailbox message is non-blocking and does not require any 
acknowledgement from each SPE.  From T3 onwards, the execution process takes a 
more serial turn (in reality, overlapped computation between a couple of SPEs) as 
every SPE now has to race for acquiring the atomic cache line which contains the 
shared data structure, thus each SPE has to wait for the time period T3 (by 1st SPE to 
get access), or T3+T4 (by 2nd SPE to get through) or T3+T4+T5 (by 3rd SPE to get 
through)  or T3+T4+T5+T6 (by 4th SPE to get through) and so on before it gets hold 
of the cache line and starts its computation part. Note that this serial computation’s 
waiting time is very minimal and does not affect the overall performance -as we 
observed from the results- since this process of acquiring the cache line is on-chip.  
During this serial (overlapped) computation  phase, when a new SPE gets hold of the 
cache line, the SPE which previously held the cache line immediately starts 
computing the data which does not need to be shared among SPEs, thus some 
overlapping in the computation takes place between a pair of  SPEs. 

From the timing diagram of Figure 2, the total execution time can be expressed as  

Total Execution time =T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8 + T9 + T10  (9) 

Where T1= time of L1, T2= time of L2, T3=time of L3, T4=T5=T6=T7=T8=T9= 
time of L4 (with which L5 overlaps), and T10=time of L4 + time of L5. Our 
implementation’s timing diagram clearly indicates that not all SPE (L4 and L5) codes 
are being executed in parallel because of the data dependency which exists between 
each time step iteration. For instance, in order to calculate the water saturation values 
for all grid blocks an SPE must have access to the previous iteration’s oil pressure 
value, and similarly for grid block 1, the computation of the current iteration’s oil 
pressure variable requires the previous iteration’s oil pressure value. Thus each SPE 
has to wait for some time before it can calculate its current time step’s oil pressure 
and water saturation variables and can write them to main memory.  

7   Performance Results  

We ran our experiments on an IBM Cell machine with 1 Cell blade containing one  
9-core Cell processor package. In order to obtain more accurate timing information, we 
calculated the number of ticks on the serial PPE-only model through the mftb function 
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which is available through PPU intrinsic header files along with gettimeofday function. 
In the embedded (PPE+SPE) version, we invoked spu_read_decrementer and 
spu_write_decrementer functions to get the total number of clock ticks and passed on 
that information to the PPE code by updating the counter. These functions return more 
accurate and reliable timing information compared to the gettimeofday function. On the 
Cell blades, the time base frequency is set to 14.318 MHz with a 3.2 GHz 
microprocessor. In order to get the execution time, we divided the number of clock ticks 
by the time base frequency. 

In our first experiment, we calculated the time it requires to run the oil reservoir 
simulation model based on the Thomas Algorithm for solving the oil pressure and 
water saturation equations for 4 (and 8) time steps on the single PowerPC core (PPE-
only model). We repeated this experiment again on the single PowerPC with a varying 
grid size and calculated the execution time. We ran our experiments for grid sizes of 
32, 64 and 128 grid blocks.   

In the embedded implementation, we distributed the workload across four (and 
eight) different SPEs, each SPE core solving the equations for one time step, and the 
PPE core was only responsible for spawning SPE threads, forwarding the shared data 
structure and shared memory addresses to the SPEs. Every SPE is then responsible for 
calculating the oil and water pressure values and water saturation values using the 
Thomas Algorithm for a single time step. Table 1 and Fig. 3 display the execution 
times for PPE-only and PPE-SPE embedded implementations. 

Table 1. Execution Time (in microseconds) 

      Grid Size 
               (in  blocks) 
Mode 

32 64 128 

Embedded  
Execution Time 

7.98*  
16.95V 

20.49* 
26.72V 

35.83* 
 50.25V 

Sequential PPE-only 
Execution Time 

37.96* 
57.97V  

79.55* 
107.14V 

188.99* 
 232.23V 

         *: 4 time steps 
     V: 8 time steps 
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Fig. 3. Plot of execution time (in microseconds) vs. grid size 
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From Table 1 and Fig. 3, we observe a steady increase in the ratio of execution 
times of the two implementations, indicating that with increasing number of grid 
blocks, this application becomes more compute intensive and thus benefits from 
parallelizing and distributing the workload among different SPEs. The difference in 
execution time between the serial and parallel implementations is better in the case of 
4 time steps than 8 time steps. Note that the Table 1 and Fig. 3 execution times were 
calculated by running code built with compiler optimizations. We built the 
executables with the compiler optimization level 3 along with loop unrolling option 
which duplicates the loop body multiple times and can help SPE performance as it 
reduces the number of branches. Further details on other compiler optimization flag 
can be find out in Section 6.  In our code, there are multiple branches (loops) and 
quite a large number of matrix calculation which benefit from these compiler options. 
After compiler optimization, we observed a 2x speedup compared to building without 
the above mentioned compiler optimization flags. 
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Fig. 4. Plot of speedup vs. grid size, excluding mailbox message wait times 

Figure 4 plots the speedup which is the ratio of the embedded application 
execution time to the serial application execution time versus the grid size. In this 
Figure, the execution times exclude the mailbox message waiting times. The results 
are shown for both 4 and 8 days total time steps. The Figure 4 plot for the 8 time steps 
segment demonstrates that the speedup trend is somewhat linear with increasing grid 
size. We observe that when the 4 time steps workload is distributed among 4 SPEs, we 
obtain better speedup as compared to distributing the 8 time steps workload among 8 
SPEs.  The speedup gap between 4 and 8 times steps increases with increasing grid 
size. This results from significantly more main memory transfers in the latter case of 8 
time steps as the grid size increases, as all the data does not fit entirely in the local 
stores and must be accessed from main memory. 

In the timing diagram of Fig. 2, it is shown that every SPE after initialization has to 
wait (i.e is blocked) for some time for a mailbox message from the PPE which 
contains the effective address of the shared main memory address.  We used 
additional shared main memory to introduce flexibility in the code for large data sets. 
As mentioned before, the atomic cache size is 512 bytes only which enables sharing 
of small size data sets. However, for large data sets, we had to store the data in main 
memory which may or may not be cached. 
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The PPE-to-SPE transfers of the shared memory address and of the shared data 
structure -which is shared among different SPEs- employ the atomic cache. This data 
structure contains the current step value which when received by each SPE after 
getting the atomic cache lock guides the SPE to which code portions (in the single 
SPE code file) to execute. This is needed as it is not possible to guarantee that one 
particular SPEs gets the lock before another SPE, so SPEs have to rely on the 
processing step value (shared among all SPEs through the shared data structure) to 
determine which iteration or time step each SPE is responsible for. 
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Fig. 5. Plot of speedup vs. grid size, including mailbox wait times 

Fig. 5 plots the same speedup but now with execution times including the mailbox 
message times. We make a number of observations. First, we observe now that both 
speedup segments are non-linear. For instance in the case of 8 time steps, the grid of 
size 32 blocks is impacted the most by the blocking mailbox time, namely, a reduction 
in the speedup by more than 30%. This effect weakens with increasing grid size, 
resulting in speedup reductions of below 24% and 16%, for 64 and 128 grid blocks 
respectively. Second, the speedups with the mailbox message wait times included in 
the executions times (Fig. 5) are lower than those excluding the message wait times 
(Fig. 4). This is expected as the mailbox message wait time is somehow serial and does 
not concurrently take place with any other significant operation, resulting in a dilution 
of the parallel time in the total (serial + parallel) time. Third, comparing the speedups 
between 4 and 8 time steps, we note that the speedup difference between 4 and 8 time 
steps is negligible for the smaller grid sizes (i.e. 32) and grows as the grid size 
increases. This is due to the same rising amount of main memory transfers with 
increasing grid size and time steps as is also visible in Figure 4.  

8   Conclusion  

This paper describes the parallelization and development of a 2-phase oil-water 
reservoir simulator on the state-of-the-art IBM Cell computer. We described the 
interdependent linear algebraic equations of the reservoir simulator, the matrix solver 
based on Thomas algorithm, presented the pipelined time step parallelization approach 
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adopted on the Cell, and the performance results and speedups in reference to the 
single PowerPC host core. 

The result presented in this paper reveal that given the largely interdependent 
nature of the oil reservoir model equations which highly limits parallelism, significant 
speedups of 6x or higher could be obtained on the first-generation Cell processor 
packages. While other applications could generate a much higher speedup or a 
performance of 1 Petaflop as recently reached by the RoadRunner supercomputer 
with a number of processors including 12960 Cells, in this oil application the obtained 
speedup is significant as it results in oil simulation runs cut from weeks to days. This 
allows reservoir analysts to multiply the number of simulation runs with various well 
locations and on the same hardware, resulting in better reservoir management and 
possibly higher oil production, the ultimate goal of this application.  

The results also demonstrate that the oil reservoir simulator application is 
characterized by higher speedups with increasing grid size. This is because we adopt 
pipelined time step parallelism which assigns the linear equation computation for all 
grid blocks at each time step to a different SPE, which means that with an increasing 
number of grid blocks, each SPE will complete more useful computations 
contributing to widen the overlap times (between L4s and L5s in Fig. 2), and in the 
process helping to boost the speedup. Thus, although untested, we believe that higher 
speedups are expected at grid sizes above 128 blocks.  

The results also reveal that, the speedup goes down with increased number of time 
steps, in particular as the grid size increases. With more time steps allocated to the 
same Cell processor, the main memory transfer overhead limits the speedup. Thus to 
reach even higher performance, we recommend splitting the time step computations 
over several Cell processors –if available-- where each Cell only handles 4 time steps 
rather than fully loading a Cell processor with the computation of 8 time steps. With 
the affordable cost of the Cell and the Playstation 3, this recommendation is 
economically appealing and feasible. 

On the Cell BE processor, we also observed that the application’s performance 
doubled with the chosen compiler optimization flags. This stresses the importance of 
compiler optimization flag experimentation during the software build phase which 
results in quick gains. 

In future work, we will experiment with other forms of parallelism, including 
model and algorithm modification which relatively reduce the serial time and boost 
the parallel time by 

1. Mapping the grid blocks to one SPE each where SPEs cooperate in solving 
the unknowns of a single time step before moving to the next time step. This 
results from a direct mapping of the reservoir’s grid blocks to the Cell’s SPE 
engines; and 

2. Functional parallelism in which cores perform various functions, some 
dedicated to coefficient computation while others dedicated to solving for the 
unknowns with the parallel Thomas algorithm or parallel Gaussian 
elimination technique; 

3. Block ordering such as red-black ordering in which some cores alternate in 
solving for the unknowns; 

4. Running the code on the second-generation Cell with improved floating–point 
performance. 
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Abstract. Reversible logic is emerging as a promising computing paradigm, 
having its applications in low-power CMOS, quantum computing, nanotech-
nology and optical computing. Firstly, we showed a modified design of 
conventional BCD subtractors and also proposed designs of carry look-ahead 
and carry skip BCD subtractors.  The proposed designs of carry look-ahead and 
carry skip BCD subtractors are based on the novel designs of carry look-ahead 
and carry skip BCD adders, respectively. Then, we introduced the reversible 
logic implementation of the modified conventional, as well as the proposed, 
carry look-ahead and carry skip BCD subtractors efficient in terms of the 
number of reversible gates used and garbage output produced. To the best of 
our knowledge, the carry look-ahead and carry skip BCD subtractors and their 
reversible logic design are explored for the first time ever in literature.  

Keywords: Reversible logic, BCD subtractors, BCD adders. 

1   Introduction 

The decimal arithmetic is receiving significant attention, as financial, commercial, 
and Internet-based applications cannot tolerate errors generated by conversion 
between decimal and binary formats [1]. The major consideration in implementing the 
BCD arithmetic is to enhance its speed as much as possible. Reversible logic is 
emerging as a promising computing paradigm, having its applications in future 
computing technologies such as optical computing, nanotechnology and quantum 
computing [6,7]. Reversible circuits are those circuits that do not lose information, 
and reversible computation in a system can be performed only when the system 
comprises of reversible gates. These circuits can generate a unique output vector from 
each input vector and vice-versa; that is, there is a one-to-one mapping between input 
and output vectors. Researchers like Landauer have shown that for irreversible logic 
computations, each bit of information lost generates   kTln2 joules of heat energy, 
where k is Boltzmann’s constant and T, the absolute temperature at which 
computation is performed [2]. Bennett showed that kTln2 energy dissipation would 
not occur if a computation is carried out in a reversible way [3], since the amount of 
energy dissipated in a system bears a direct relationship to the number of bits erased 
during computation.  

The major goal in reversible logic design is to minimize the number of reversible 
gates used and garbage output produced (Garbage output refers to the output that is 
not used for further computations) [4,5].  
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In this work, first, we showed a modified design of a conventional BCD subtractor. 
Two novel BCD subtractor architectures termed CLA (carry look-ahead) and CAS 
(carry skip) BCD subtractors are also proposed. The proposed designs of CLA and 
CAS BCD subtractors are based on novel designs of carry look-ahead and carry skip 
BCD adders. It is to be noted that a BCD subtractor internally consists of nine’s 
complementer, BCD adder and parallel adder. Thus, special emphasis has been laid 
on their architecture to make them carry look-ahead and carry skip, to improve the 
overall efficiency of the subtractor. 

Second, this paper introduces reversible logic implementation of the conventional 
and the proposed carry look-ahead and carry skip BCD subtractors, efficient in terms 
of number of reversible gates and garbage output. For achieving this goal, novel 
reversible gates have been proposed and novel techniques have been adopted which 
are discussed in appropriate sections  in the paper.   

The paper is organized as follows. Section 2 deals with the introduction of pro-
posed modified conventional BCD subtractor. Section 3 and Section 4 introduce the 
proposed carry look-ahead and carry skip BCD subtractors, respectively. Section 5 
deals with the introduction of basic reversible gates used in the proposed work. 
Section 6 deals with the reversible design of conventional BCD subtractor introduced 
in Section 2. Section 7 and Section 8 deal with the reversible design of proposed carry 
look-ahead and carry skip BCD subtractors, respectively. Section 9 and 10 provide 
the implementation results and conclusions of this work, respectively.   

2   BCD Subtractor  

In the BCD subtraction, the nine’s complement of the subtrahend is added to the 
minuend. In the BCD arithmetic, the nine’s complement is computed by nine minus 
the number whose nine’s complement is to be computed. This can be illustrated as the 
nine’s complement of 5 will be 4 (9-5= 4), which can be represented in BCD code as 
0100.  In BCD subtraction using nine’s complement, there can be two possible 
possibilities [8]:  

1. The sum after the addition of minuend and the nine’s complement of subtrahend 
is an invalid BCD Code (an example is when 5 is subtracted from 8) or a carry 
is produced from the MSB (an example is when 1 is subtracted from 9). In this 
case, add decimal 6 (binary 0110) and the end around carry (EAC) to the sum. 
The final result will be the positive number represented by the sum.        

2. The sum of the minuend and the nine’s complement of the subtrahend is a valid 
BCD code which means that the result is negative and is in the nine’s 
complement form.   An   example is, when 8 is subtracted from 5.                   

In BCD arithmetic, instead of subtracting the number from nine, the nine’s 
complement of a number is determined by adding 1010 (Decimal 10) to the one’s 
complement of the number. The nine’s complementer circuit using a 4-bit adder and 
XOR gates is shown in Fig.1 [8].  We have realized that there is no need to use XOR 
gates in the nine’s complementer for complementing.  The use of NOT gates will 
better suit the purpose and will reduce the complexity of the circuit, both in CMOS as 
well as reversible logic implementation. The proposed modified design of nine’s 
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complementer is shown in Fig.2; it replaces 4 XOR gates by 4 NOT gates and thus is 
better compared to the existing design in literature. The one-digit BCD subtractor, 
using the nine’s complementer circuit, is shown in Fig.3. In Fig.3, after getting the 
nine’s complement of the subtrahend, it is added to the minuend using the BCD 
adder. Then the required 1010 is added by using the complement of the output carry 
of the BCD adder. The sign represents whether the number stored is positive or 
negative (for example, 5-8 will be stored as Sign=1 and Magnitude (S3...S0) = 3). 

 

 

 

Fig. 1. Nine’s Complementer Fig. 2. Proposed Nine’s Complementer 

 

Fig. 3. Modified Conventional BCD Subtractor 
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3   Proposed Carry Look-Ahead BCD Subtractor  

As evident from Fig.3, the nine’s complementer, BCD adder and 4-bit adder are the 
integral components of the BCD subtractor. Thus, we propose the replacement of the 
conventional nine’s complementer, the BCD adder and the 4-bit adder by their carry 
look-ahead counterparts. This will help us to design a faster and more efficient overall 
BCD subtractor.  

3.1   Carry Look Ahead BCD Adder  

A carry look ahead BCD adder is proposed which is a modification over the 
architecture proposed in [9,10] and is especially improved for making it suitable for 
CMOS and reversible logic implementation.  In the proposed CLA BCD adder, OR 
gates used in the equations proposed in [9,10] are carefully chosen and replaced by 
XOR gates. One cannot replace the OR gates in the equations in [9,10] randomly. 
Hence, a rigorous study has been done and OR gates in the equations in [9, 10] have 
been replaced in certain places. The functional verification of the proposed CLA BCD 
adder is done in Verilog HDL using the Active HDL simulator. The advantages of 
using this approach are as follows: 

1. In the conventional CMOS logic, the XOR gate can be designed, with a fewer  
number of transistors compared to the OR gate.                          

2. In reversible logic, the multi-input XOR gate can be designed with a less 
complex reversible gate and one less garbage output compared to the multi-input 
OR gate.  For example, the equation  a b c  can be realized with only one (3x3  
reversible gate) and two garbage output compared to  a+b+c ( here +  refers an 
OR gate), which can be realized with one 4x4  reversible gate and  three garbage 
output, or two 3x3 reversible gates with four garbage output. Thus, in reversible 
logic it is better to realize equations as XOR functions.  This advantage of XOR 
gate will become more dominant as the input size is increased beyond three. 

Consider two BCD numbers a and b of 4 bits each, using the proposed approach, the 
modified functions used to generate the carry look-ahead BCD adder are as follows 

//  1st   Part 
g[j] = a[j] • b[j] 0≤ j ≤ 3 “generate” 
p[j] = a[j] + b[j] 0≤ j ≤ 3 “propagate” 
h[j] = a[j]  b[j] 0≤ j ≤ 3 “half-adder” 

//2nd  Part 
k = g[3]  (p[3] • p[2]) + (p[3] • p[1])  (g[2] • p[1]) 
L= p[3]  (g[2] +  (p[2] • g[1]))   
(Here k and L are the carry generate and propagate functions of the first three bits of 
the decimal number a and b (a[3]a[2]a[1] and b[3]b[2]b[1]), respectively. The details 
and complete description of k and L can be found in [9]) 
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C1 = g[0] + (p[0] •  Cin) “carry out of 1’s position” 
 

//3rd Part 
S[0] = h[0]  Cin 
S[1] = ((h[1] k) • ~C1) + (~(h[1]   L) • C1) 
S[2]=(~p[2]•g[1])  (~p[3]•h[2]• ~p[1])  
             ((g[3]  (h[2]•h[1]))• ~C1)+  (((~p[3] • ~p[2] •   
            p[1])  (g[2] • g[1])  (p[3] • p[2])) • C1) 
S[3]=((~k• L)• ~C1) (((g[3] • ~h[3])  
             (~h[3] • h[2] • h[1])) • C1) 
Cout = k + (L • C1). 

In the above equations, S[3], S[2],S[1], S[0] represents the sum bits produced  by 
addition of BCD numbers a and b with input carry Cin. The output carry produced by 
the CLA BCD adder is represented by Cout.   

3.2   Carry Look-Ahead Binary Adder 

As evident in the architectures of the nine’s complementer and the modified 
conventional BCD subtractor shown in Figs.2 and 3, respectively, the improvement in 
the 4-bit adder is the key requirement to increase their efficiency. We propose the 
replacement of 4-bit adder blocks with their carry look-ahead counterparts. Recently, 
a modified carry look-ahead adder (abbreviated as MCLA) is proposed which is 
similar to CLA (carry look-ahead adder) in basic construction [11]. The drawback of 
MCLA is that, despite its faster speed, it occupies a larger area due to the excessive 
number of NAND gates used for faster carry propagation. This problem will 
significantly increase when MCLA is used to design a higher order CLA. This is the 
reason why we are proposing a new carry look-ahead adder, modifying the structure 
of MCLA to make it more economical in terms of the number of gates (area), without 
losing its speed efficiency. The MCLA [11] uses the modified full adder (MFA) as 
shown in Fig.4. In our proposed carry look-ahead adder shown in Fig.5, we propose 
replacing the 4th MFA in the MCLA by a full adder to reduce the area (number of 
gates) without sacrificing speed improvement.It can easily be verified that there will 
be a reduction in the number of gates to generate the final carry, as shown in Fig.5. In 
order to have further savings in terms of the number of gates, the proposed 4-bit CLA 
can be cascaded in a series to design an expanded width CLA, as shown in Fig.6.  
 

 

Fig. 4. MFA (modified full adder)[11] 
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Fig. 5. Proposed 4-bit Carry Look-Ahead Adder 

 

Fig. 6. Cascading for Expanded Width CLA 

 

Fig. 7. CLA Nine’s Complementer 

Figure 7 shows the proposed nine’s complementer using the proposed carry look-
ahead adder and using the proposed concept of using NOT gates for complement- 
ting (rather than XOR gates). The proposed nine’s complementer satisfies the 
requirements of the carry look-ahead approach pertaining to fast speed and reduced 
area (inherit property of proposed CLA). 
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Evaluation of the Proposed Approach 
The adders are coded in Verilog HDL and synthesized using Xilinx VirtexE FPGA. 
For 16-bit addition, the CPA (carry propagate adder) has a delay of 26.109 ns with 
cell usage of 36, while MCLA has a delay of 16.954 ns with cell usage of 46. The 
proposed CLA takes 21.931 ns of delay with cell usage of 35. It can be concluded 
from the above results that the proposed carry look-ahead adder approach is of great 
significance, since it provides a good speed, with cell usage nearly the same as that of 
the CPA. Thus, the proposed carry look-ahead adder having a delay in between the 
MCLA and CPA, and an area nearly equal to CPA, is the best choice.  

3.3   Carry Look-Ahead BCD Subtractor 

After having its key components (BCD adder, 4-bit adder and nine’s complementer) 
designed in carry look-ahead fashion, the carry look-ahead BCD subtractor can be 
designed by integrating the components. Figure 8 shows the design of the proposed 
carry look-ahead BCD subtractor. It is to be noted that we have laid emphasis on 
improving the individual modules of the BCD subtractor, to improve its overall 
efficiency and make it more suitable for reversible logic implementation.  
 

 

Fig. 8. Proposed CLA BCD Subtractor 

4   Proposed Carry Skip BCD Subtractor 

In order to design the carry skip equivalent of the BCD subtractor, we propose the 
carry skip equivalent design of its individual components. 
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Fig. 9. Proposed Carry Skip BCD Adder 

4.1   Carry Skip BCD Adder 

In this work, we propose the design of carry skip BCD adder.  It is constructed in  
such a way that the first full adder block consisting of 4 full adders can generate the  
output carry ‘Cout’ instantaneously,  depending on the input signals and ‘Cin’. This 
avoids carry to be propagated in the ripple carry fashion. Figure 9 shows the proposed 
carry skip BCD adder. The working of the proposed carry skip BCD adder (CS BCD 
Adder) can be explained in this manner: In the single bit full adder operation, if either 
input is a logical one, the cell will propagate the carry input to its carry output. Hence, 
the ith full adder carry input Ci, will propagate to its carry output Ci+1 when Pi= 
Xi Yi, where Xi and Yi represents the input signal to the ith full adder. Thus, the four 
full adders at the first level making a block can generate a “block” propagate signal 
‘P’. When ‘P’ is one, it will make the block carry input ‘Cin’, to propagate as the 
carry output ‘Cout’ of the BCD adder, without waiting for the actual propagation of 
carry in the ripple carry fashion.  An AND gate is used to generate a block propagate 
signal ‘P’. Depending on the value of ‘Cout’, appropriate action is taken. When 
‘Cout’ is equal to one, binary 0110 is added to the binary sum (correction logic to 
convert sum in BCD format) using another 4-bit binary adder at the second level or 
bottom level,  as shown in Fig.9. The output carry generated from the bottom binary 
adder is ignored, since it supplies information already available at the output carry 
terminal. 

4.2   Carry Skip BCD Subtractor  

Figure 10 shows our proposed design of the carry skip BCD subtractor. It is to be 
noted that the carry skip implementation of the nine’s complementer in the proposed 
circuit will not be beneficial, making the carry look-ahead as the best choice for its 
implementation. The carry skipping property of the BCD adder can be beneficial only 
when its input carry Cin=1. Thus, in order to extract the benefit of the carry skip 
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property of  the BCD adder in the proposed BCD subtractor, we have made the LSB 
output (n[0]) of the nine’s complementer  as input carry ‘Cin’ of the carry skip BCD 
adder and passed  ‘0’  in its place for addition to the BCD adder (please refer Fig.10).  
Therefore, the numbers passed for addition in carry skip BCD adder will be 
X+(n[3]n[2]n[1]’0’)+n[0], where n[0] will work as Cin. The last block of the 4-bit 
adder in the proposed circuit has also been designed in the carry skip fashion to 
further improve the efficiency of the proposed design. This will result in the 
generation of Cout in Fig.10 in carry skip fashion. As far as existing literature and our 
knowledge is concerned, the proposed circuit is the maiden attempt to provide the 
carry skip equivalent of the conventional BCD subtractor.  

 

Fig. 10. Proposed Carry Skip BCD Subtractor 

5   Basic Reversible Gates  

There are a number of existing reversible gates in literature. We have used  Fredkin 
gate [12,13], Feynman Gate [12,13], Toffoli Gate (TG) [12,13],  New Gate (NG) [14], 
New Toffoli Gate (NTG)[15], TKS[17], R2 Gate and TS-3 gate(3*3 and 4*4 
Feynman gate, respectively) and TSG Gate[16] to design the reversible BCD 
subtractors.  Since the major reversible gate used in designing the BCD subtractors 
are Feynman, Modified Toffoli Gate [19], Toffoli, Fredkin and  TSG gate, only these 
reversible gates are discussed in this section. 
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5.1   Fredkin Gate 

Fredkin gate is a (3*3) conservative reversible gate originally introduced by Petri [12, 
13] as shown in Fig.11. It is called 3*3 gate because it has three input and three 
output.  
 

 

 

 

 

 

Fig. 11. Fredkin Gate Fig. 12. Feynman Gate Fig. 13. Toffoli Gate 

5.2   Feynman Gate 

Feynman gate [12,13] is a 2*2 one-through reversible gate shown in Fig.12. It is 
called 2*2 gate because it has 2 input and 2 output. One-through gate means that one 
input variable is also the output. An n input and n output Feynman gate can be 
described as mapping (x1,x2,x3…..xn)   to (x1,x2,x3…..,x1 x2 x3 …xn-1 xn). 

5.3   Toffoli Gate  

Toffoli Gate (TG) [12, 13] is a  3*3   two-through reversible gate as shown in Fig. 13. 
A n input and n output Toffoli gate can be described  as mapping  (x1,x2,x3…..xn)   
to (x1,x2,x3…..,(x1x2x3…xn-1) xn). 

5.4   TSG Gate 

Recently, a 4*4 one-through reversible gate called TS gate “TSG” was proposed [16]. 
The reversible TSG gate is shown in Fig.14.  It can be verified that the input pattern 
corresponding to a particular output pattern can be uniquely determined. The TSG 
gate can implement all Boolean functions. One of the prominent functionalities of the 
TSG gate is that it can work singly as a reversible full adder unit. Figure 15 shows  
the implementation of the TSG gate as a reversible full adder. TSG can implement the 
reversible full adder with a bare minimum of two garbage output (at least two garbage 
output will be required to realize a reversible full adder). 

 

Fig. 14. Reversible 4 *4 TS Gate           Fig. 15. TSG as a Reversible Full Adder  
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5.5   Modified Toffoli  Gate 

Modified Toffoli gate (MTG) is a 3*3 reversible gate and is shown in Fig. 16 [19]. An 
n input and n output MTG gate can be described  as mapping  (x1,x2,x3…..xn) to 
(x1,x2,x3…..,(x1|x2|x3|…xn-1) xn).  

 

 

 (a) (b) 

Fig. 16. MTG Gate Fig. 17. (a) New Gate (NG), (b) as a reversible half adder 

5.6   New Gate (NG) 

New gate (NG) [14] is another important 3*3 gate used in our designs of BCD 
subtractors, shown in Fig.17.a. New gate can work singly as a reversible half adder 
with minimum of one garbage output, as demonstrated in Fig.17.b.     

6   Reversible Design of Conventional BCD Subtractor 

It is evident from Fig. 3 that in order to design reversible BCD subtractors, the whole 
reversible design must be divided into three sub-modules. 

1. Design of the reversible nine’s complementer (which, in turn, has to be designed 
using reversible parallel adders). 

2. Design of the reversible BCD adder. 
3. Integration of the modules using existing reversible gates to design the reversible 

BCD subtractor.  

Our primary goal in this work is to design reversible BCD subtractors with a minimal 
number of reversible gates and garbage output.   

6.1   Reversible Nine’s Complementer 

Figure 18 shows the proposed reversible nine’s complementer using the NOT gates, 
New gates (NG) and the 3*3 Feynman Gate (FG3). The proposed design is 
implemented with 7 reversible gates and 3 garbage output.   To minimize the garbage 
at the bottom 4-bit adder, we have utilized the proposed property of regenerating the 
constant value at the garbage output (the constant input ‘1’ at the NG gate is 
regenerated at one its garbage output and is used as input to FG3.We observed that 
the S0 can be directly generated without requiring any addition circuitry (referring to 
Fig. 1, we observed that second input to the full adder is ‘0’ as well as the Cin is ‘0’). 
Further examination showed that there is no need for the full adder in the 2nd place, 3rd 
place and 4th place of the bottom 4-bit adder. Half adders and 3 input XOR gate can 
perform the required addition operations. The reversible half adder can be designed 
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by New gate (NG) with only one garbage output (refer to Fig.17.b), and the 3 input 
XOR gate can be designed using FG3 with only two garbage output. Utilizing the 
reversible full adder in those places would have increased the garbage, as at least two 
garbage output are required in a reversible full adder. Moreover, the output carry is 
not required in the nine’s complementer. Thus, using the reversible full adder would 
have generated the output carry leading to an increase in garbage count.   

 

Fig. 18. Reversible Nine’s Complementer 

 

Fig. 19. Reversible Logic Implementation of the Conventional BCD Adder 

6.2   Reversible BCD Adder  

Figure 19 shows the reversible implementation of the conventional BCD adder using 
the reversible TSG and New Gate. In BCD addition, the steps are as follows:  

Step 1:  The two decimal digits (X and Y), together with the input carry (Cin), are first 
added using a 4-bit binary adder to produce the binary sum (So3,So2,So1,S0) and 
output carry(c4).  
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Step 2: When the output carry (c4) is equal to zero, nothing is added to the binary sum. 
When it is equal to one, binary 0110 is added to the binary sum using another 4-bit 
binary adder. Instead of directly adding 0110, it is added by generating Cout=C4+ 
So3(So2+So1). In 0110 addition, where ‘1’ is required, Cout is used instead.    

In Fig.19, the 4 TSG gates at the top in Fig.19 perform Step 1. The three New gates 
generate Cout=c4+So3 (So2+So1). The final addition is performed using NG, TSG 
and FG reversible gates. The proposed BCD adder architecture in Fig. 19 uses only 
10 reversible gates and produces only 14 garbage output. As can be observed in 
Fig.19, the connections are carefully made to avoid the garbage. The proposed BCD 
adder is shown to be much better than the earlier proposed architecture both in terms 
of number of reversible gates and garbage output. Recently in [18], the BCD adder is 
implemented with 23 reversible gates and 22 garbage output. A comparison between 
our proposed design and the existing design is shown in Table 1. The proposed design 
in this paper is the most efficient design of reversible BCD adder and achieves an 
improvement ratio of 2.3 and 1.69 in terms of the number of reversible gates and 
garbage output, respectively. 

Table 1. A comparison of Reversible BCD Adder 

 Number  of   Gates Number of  Garbage Output 

Proposed Circuit 10 13 

Existing Circuit[18] 23 22 

Improvement Ratio 2.3 1.69 

6.3   Reversible BCD Subtractor 

Figure 20 shows the reversible BCD subtractor using the reversible nine’s 
complementer, reversible BCD adder, TSG, NG and Feynman gate (FG). In the above 
sections, we have proven that the proposed reversible designs of the nine’s 
complementer and BCD adder are designed with minimal number of reversible gates 
and garbage output. In order to design a more efficient complete BCD subtractor in 
terms of the number of reversible gates and garbage output, we have used Feynman 
Gate for generating the XOR/NOT function and copying the output (as fan-out is not 
allowed in reversible logic). We chose Feynman gate as it can generate the 
XOR/NOT function and copy the output with minimum number of reversible gates 
and garbage output. This can be understood by the fact that there are exactly two 
output corresponding to the input of a Feynman gate, a ‘0’ in the second input will 
copy the first input in both the output of that gate. It makes the Feynman gate most 
suitable for a single copy of bit, since it does not produce any garbage output. 

It is to be noted that we have carefully examined the architecture of BCD subtractors 
and in the middle of Fig. 20 used the Feynman gates as chains for generating the XOR, 
copying and NOT functions, with zero garbage. If the architecture is not deeply 
examined, it can lead to an inefficiently designed reversible circuit with increased 
garbage. The reason for this stems from the fact that when the Feynman gate is used for 
generating the XOR and NOT functions, it produces at least one garbage output in both 
cases.  
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The bottom 4-bit binary adder required in BCD subtractor is also designed very 
efficiently to minimize the garbage. This is achieved by carefully passing the input 
signal and thereby utilizing the garbage output for further computation along with 
identifying suitable places where reversible full adders can be replaced by reversible 
half adders. It is to be noted  that we have designed the bottom 4-bit adder with 4 
reversible gates and 4 garbage output. An inefficient approach of simply designing 
the 4-bit adder with the reversible full adder could lead to 8 garbage output (at least 
two garbage output are produced in a reversible full adder). The BCD adder requires 
10 reversible gates and 13 garbage output as proven above. The nine’s complementer 
is designed with 7 reversible gates and 3 garbage output. The generation of XOR 
functions, copying and NOT functions are designed in such an optimal manner that it 
requires 5 Feynman gates with zero garbage output. The bottom 4-bit reversible adder 
is designed with 4 reversible gates and 4 garbage output. Thus, the proposed 
reversible BCD subtractor is designed with 10+7+5+4=26 reversible gates while the 
garbage output is minimal of 13+3+4=20.  

 

Fig. 20. Proposed Reversible BCD Subtractor 

7   Reversible Design of Carry Look Ahead BCD Subtractor 

As evident from the earlier discussion, the reversible implementation of carry look-
ahead BCD subtractor will require the reversible implementation of carry look-ahead 
BCD adder, the proposed carry look-ahead nine’s complementer and 4-bit carry look-
ahead adder.  
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7.1   Reversible Carry Look Ahead BCD Adder 

The reversible logic implementation of the carry look-ahead BCD adder is shown in 
Fig.21. The reversible gates used for designing the proposed reversible carry look-
ahead BCD adder are Feynman gate (FG), TKS gate, New Toffoli gate (NTG), and 
R2 gate (a 4*4 Feynman Gate) and TS-3 gate (the details of these reversible gates are 
discussed in Section V). In the proposed reversible circuit, Feynman Gates (FG) can 
be used for copying the output and to avoid the fan-out problem. The proposed 
reversible CLA BCD adder can be of significant use in future computing 
technologies. Furthermore, it is a hierarchical architecture; hence, huge power savings 
can be obtained by switching off the blocks which are not in use, through a control 
circuitry. It is to be noted that appropriate reversible gates are used in Fig.21, to 
design it overall efficient in terms of number of reversible gates and garbage output. 

 

(a) Part 1. Generation of g[j], p[j] and h[j] for 0≤ j ≤ 3 

 

(b) Part 2. Generation of k,L and C 

   

(c) Part 3. Generation of Sum Bits S3,S2, S1,S0 and Cout 

Fig. 21. Reversible Implementation of proposed Carry Look Ahead BCD Adder 
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7.2   Reversible Carry Look Ahead Adder 

The key consideration while designing reversible carry look-ahead adder is to 
generate Pi, Si and Gi’ signals with the minimum number of reversible gates and 
garbage output. Thus, in order to generate Pi, Si and Gi’ signals with the best possible 
case of 1 reversible gate and 1 garbage output (at least one garbage output will  
be required to make the function Pi, Si and Gi’ reversible.  For  two cases (input 
combinations), we will get the same output which can be removed by addition of one 
garbage bit), we propose the design of a novel 4*4 reversible gate called RMF gate as 
shown in Fig.22.a. The RMF gate can realize Pi, Si and Gi’ signal as shown in  
Fig. 22.b (termed as RMFA block). Thus, RMF is able to realize the Pi, Si and Gi’ 
with the lower bound of 1 reversible gate and 1 garbage output.  

    

            (a)                                                  (b)                        

Fig. 22. (a) Proposed 4*4 Reversible Gate (b) RMF for Generating Pi,Si & Gi’ 

 

Fig. 23. Reversible Carry Look-Ahead Adder 

Figure 23 shows the complete reversible design of the 4-bit carry look-ahead adder. 
In the complete reversible design of proposed CLA, appropriate reversible gates are 
used wherever required for generating the function with the minimum number of 
reversible gates and garbage output. The garbage output is not shown in Fig.23, but it 
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can be identified as the output which is not used in further computations. The fan-out 
problem is also not considered just to simplify the circuit, as it can be easily avoided by 
using the Feynman gate. TKS and Peres Gate (NTG) combination is used for 
generating the multi-input NAND functions. The 4th block (adding A3 & B3) in Fig.23 
consists of only the TSG gate, as only the reversible full adder block is required. The 
reversible nine’s complementer is designed with the proposed reversible CLA, as 
shown in Fig.24, using NOT gates for complementing. 

 

Fig. 24. Reversible Nine’s Complementer 

7.3   Reversible Carry Look-Ahead BCD Subtractor 

After designing the individual reversible components of the carry look-ahead BCD 
subtractor, the components are combined together to design the complete reversible 
carry look-ahead BCD subtractor, as shown in Fig.25. It is to be noted that we have 
used the same strategy of connecting the Feynman gates as chains for generating the 
XOR, copying and NOT functions, with zero garbage (Please refer  to Fig.8, in which 
four XOR and one NOT gate is required in the middle of the CLA BCD subtractor). 
Thus, the architecture is designed efficiently in terms of the number of reversible 
gates and garbage output. 

8   Reversible Design of Carry Skip BCD Subtractor  

The reversible logic design of carry skip BCD subtractor requires the reversible 
design of carry skip BCD adder. 
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Fig. 25. Proposed Reversible Carry Look-Ahead BCD Subtractor 

8.1   Reversible Carry Skip BCD Adder 

Figure 26 shows the block diagram of the reversible carry skip adder block 
constructed with TSG gate, Toffoli gate (TG), Fredkin gate (F) and New gate (NG). 
In this work, we have minimized the number of reversible gates and garbage output 
by adopting various strategies, and designed the reversible carry skip BCD adder 
with 12 reversible gates and 15 garbage output. The first strategy is to  introduce the 
6 input Toffoli gate in the middle of  Fig.26 to perform the operation P & Cin,  where 
P is block propagate signal (P=p[0]&p[1]&p[2]&p[3]) and Cin is the input carry. This 
will minimize the garbage to 5 (if three input Toffoli gates were used for performing 
P&Cin operation, the garbage count will be 8). Referring to Fig.26, we have 
efficiently regenerated the ‘Cin’ at the garbage output of the 1st full adder (TSG gate), 
which helps in avoiding the garbage as well as the fan-out problem (the garbage of 
this TSG gate is reduced to zero). Referring to Fig.9, the generation of Cout as 
P1+C4+So3 (So2+So1) is done using 4 input MTG gate, where So3(So2+So1) is 
generated using  two NG gates. MTG can implement 3 input OR function with bare 
minimum of 3 garbage output. Thus, the proposed reversible carry skip BCD adder 
only has 14 garbage output (that is, with only one more garbage output compared to  
 



 Efficient Reversible Logic Design of BCD Subtractors 117 

 

Fig. 26. Reversible Logic Implementation of the Carry Skip BCD Adder 

the efficient design of reversible conventional BCD adder proposed in this work). 
Furthermore, the proposed carry skip BCD adder will be faster due to its carry 
skipping property. 

8.2   Reversible Carry Skip BCD Subtractor 

Figure 27 shows the reversible implementation of the proposed carry skip BCD 
subtractor.  It is to be noted  that the proposed work is the maiden attempt to design a 
reversible carry skip BCD subtractor. In the proposed reversible implementation, the 
reversible nine’s complementer can be chosen from the nine’s complementer that we 
designed, as shown in the above sections.  The other component, the reversible carry 
skip BCD adder, is already shown in Fig.26. Another interesting component in Fig.27 
is the reversible implementation of the bottom 4-bit carry skip adder block, which we 
have designed with 6 reversible gates and 7 garbage output. Thus, the proposed 
reversible carry skip BCD subtractor is an efficient design in terms of the number of 
reversible gates and garbage output. It  led us to conclude that utilizing the garbage 
output for regenerating the constant input like ‘1’ and ‘0’ will significantly help in 
reducing  the garbage output. This can be considered as the indirect contribution of 
this paper to the reversible logic community.  

9   Experimental Results 

All the BCD adders and subtractors are coded in Verilog HDL for functional 
verification. The designs are synthesized in Xilinx VirtexE FPGA using Xilinx 9.1 for 
understanding the delay and area parameters [20]. FPGA synthesis results show that 
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Fig. 27. Reversible Logic Implementation of the Carry Skip BCD Adder 

the conventional BCD adder has a propagation delay of 12.441ns with a cell usage of 
12. The CLA BCD adder has a propagation delay of 11.619ns with a cell usage of 29. 
The carry skip (CAS) BCD adder has a cell usage of 21, with a propagation delay of 
7.209ns when there is a carry skip. Otherwise, the delay is nearly the same as that of 
the conventional BCD adder. The conventional modified BCD subtractor has a 
propagation delay of 16.029ns with a cell usage of 17. The CLA BCD subtractor has a 
propagation delay of 14.952ns with a cell usage of 37. The carry skip (CAS) BCD 
subtractor has a cell usage of 24 and propagation delay of 7.553ns when there is carry 
skipping; otherwise, the delay is the same as that of the conventional modified BCD 
subtractor. Tables 2 and 3 summarize the FPGA synthesis results for BCD adders and 
BCD subtractors, respectively. It can be observed that CLA BCD architectures are 
fastest compared to other designs, but consumes more area. Carry skip designs seem 
to be the attractive choice when there is an area constraint, and we require the 
propagation delay better than the conventional BCD subtractors  (the propagation 
delay will be the same as that of the conventional BCD subtractor except when there 
is carry skipping). 

The reversible logic implementation of the BCD adders and subtractors are only 
functionally verified due to lack of proper technology to implement the reversible 
gates. One of the existing ways of implementing the reversible gate is using  
r-MOS technology [21,22]. r-MOS circuits make use of more transistors compared  
to CMOS circuits for implementing a design, hence dissipating more power. Thus,  
r-MOS circuits show that it is conceptually possible to implement the reversible gate in 
MOS transistors. However, they do not guarantee less power consumption compared to 
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Table 2. Synthesis Results of BCD Adders 

 Conventional 

BCD  Adder 

CLA BCD 

Adder 

CAS BCD Adder 

Delay 12.641 ns 11.619ns 7.20ns*                    

* Carry Skipping 

Area (Cell Usage) 12 29 21 

Table 3. Synthesis Results of BCD Subtractors 

 Conventional 

BCD  Subtractor 

CLA BCD 

Subtractor 

CAS BCD Subtractor 

Delay 16.029 ns 14.952ns 7.553ns*                

* Carry skipping 

Area (Cell Usage) 17 37 24 

CMOS designs due to resistive contributions. To verify this, we have designed various 
reversible full adders using a combination of existing reversible gates in r-MOS, and 
compared their power dissipation with CMOS full adders using HSPICE tool [23] in 
0.35um TSMC technology.  SPICE simulations have proven that r-MOS reversible full 
adders consume more power than CMOS full adders due to the resistive requirement of 
MOS technology. Implementing reversible designs in r-MOS technology is equivalent 
to a functional verification, which can also be done in Verilog HDL. We have built a 
library of reversible gates in Verilog HDL and used it to code the proposed designs of 
reversible BCD adders and BCD subtractors. The functional verification is done using 
the Active HDL simulator [24], which checks the correctness of our proposed designs.  

10   Conclusions 

In this work, we have proposed novel carry look-ahead and carry skip BCD 
subtractors based on novel designs of carry look-ahead and carry skip BCD adders, 
respectively. The architectures are especially designed to make them suitable for 
reversible logic implementation. We have shown the reversible logic designs of the 
modified conventional BCD subtractor (also proposed in this work), as well as  
the proposed carry look-ahead and carry skip BCD architectures, efficient in terms of 
the number of reversible gates and garbage output. As far as existing literature and 
our knowledge are concerned, this work is the maiden attempt to design carry look-
ahead and carry skip BCD subtractors and provide their reversible logic 
implementation. All the designs are functionally verified using Verilog HDL and 
synthesized using Xilinx VirtexE FPGA. In a nutshell, this paper provides the initial 
direction toward building more complex systems which can execute more 
complicated operations using reversible BCD arithmetic units.  
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Abstract. Many missing data analysis techniques are of single-imputation. 
However, single-imputation cannot provide valid standard errors and confi-
dence intervals, since it ignores the uncertainty implicit in the fact that the im-
puted values are not the actual values. Filling in each missing value with a set 
of plausible values is called multi-imputation. In this paper we propose a ker-
nel-based stochastic non-parametric multi-imputation method under MAR 
(Missing at Random) and MCAR (Missing Completely at Random) missing 
mechanisms in nonparametric regression settings. Furthermore, we present a 
kernel-based stochastic semi-parametric multi-imputation method while we 
have some priori knowledge about the dataset with missing. Our algorithms are 
designed specifically with the aim of optimizing the confidence-interval and the 
relative efficiency. The proposed technique is evaluated by experimentations, 
using simulation data and real data, and the results demonstrate that our method 
performs much better than the NORM method, and is promising.  

1   Introduction 

In machine learning and data mining applications, according to (Cios and Kurgan, 
2002), about 20% of the effort is spent on the problem of data understanding, about 
60% on data preparation and about 10% on data mining and analysis of knowledge, 
respectively. Data preparation needs more than half of the project effort. This is be-
cause data in real world applications can often be incomplete, redundant, inconsistent, 
or with noisy. A main kind of incomplete data is missing data. In fact, incomplete 
information can be caused by error, equipment failure, change of plans, and so on. 
Missing values presented in a dataset are a common fact in real world applications 
and, further than, it may generate bias in the data, affecting the quality of the super-
vised learning process or the performance of classification algorithms. Most learning 
algorithms are not well adapted to some application domains due to the difficulty with 
missing data (for example, Web applications). That implies that a reliable method for 
dealing with those missing values is necessary. 

There are many approaches to deal with missing values in (Han and Kamber, 2006; 
Zhang, et al., 2005): (a) Ignore objects containing missing values; (b) Fill missing 
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values manually; (c) Substitute missing values by a global constant or the mean of the 
objects; (d) Get the most probable value to fill in the missing values. These methods 
usually bias the data and the imputed value may not be correct. For instance, one 
popular method, mean substitution, can result in a distribution with truncated vari-
ance. The method of imputation, however, is a popular strategy. In comparison to 
other methods, it uses as many information as possible from the observed data to 
predict missing value (Zhang, et al., 2008).  

Missing data imputation is a procedure that replaces the missing values in a dataset 
by some plausible values. One advantage of this approach is that the missing data 
treatment is independent of the learning algorithm used. This allows users to select 
the most suitable imputation method for their applications. Commonly used imputa-
tion methods for missing response values include parametric and non-parametric 
regression imputations. 

Common regression methods include parametric methods (such as, linear regres-
sion, nonlinear imputation method) and non-parametric methods (such as, kernel 
imputation in (Zhang, et al., 2008)). The parametric regression imputations are supe-
rior if a dataset can be adequately modeled parametrically, or if users can correctly 
specify the parametric forms for the dataset. However, such a parametric approach is 
potentially more sensitive to model violations than methods based on implicit models. 
If the regression model is not a good fit, then the predictive power of the model might 
be poor (Qin, et al., 2007). Moreover, we must expense much time to model the real 
distribution even if we have some idea to know the real distribute of the datasets. 
Non-parametric imputation method offers a nice alternative if users have no idea on 
the actual distribution of a dataset because the method can provide superior fits by 
capturing structure in datasets (a mis-specified parametric model cannot). In practice, 
non-parametric imputation method cannot correctly explain some relation if we have 
some priori knowledge for the data. For example, there are other relations within real 
world data, and both parametric imputation method and non-parametric imputation 
method are not adequate to capture the relations. That is, we know a part of relation 
between independent variables (condition attributes) and dependent variable (target 
attribute), e.g., we can regard this relation as parametric model, but we have no 
knowledge on the relation between other independent variables and dependent vari-
able, e.g., we can take it as nonparametric model. However, combined these two 
parts, it is difficult for us to consider the compound relation with parametric model or 
nonparametric model. Moreover, the case is very general in real application. In this 
paper, we regard the relation containing two models as semi-parametric model or 
partial parametric model. In real application, semi-parametric model is natural than 
non-parametric model because users can always know some information but no all on 
the datasets, such some parameters in the datasets.  

Recently, much research on missing data analysis has focused on multi-imputation 
techniques for addressing the issues in single-imputation (Qin, et al., 2007, Zhang,  
et al., 2007, Zhang, et al., 2006; Peng and Zhu, 2008; Zhang 2004). Multi-imputation 
is a simulation-based approach to the statistical analysis of incomplete data first pro-
posed by (Little and Rubin, 2002). In multiple imputation methods, each missing 
datum is replaced by m>1 simulated values. The resulting m versions of the complete 
data can then be analyzed by standard complete-data methods, and the results are thus 
combined to produce inferential statements (e.g. interval estimates or p-values) that 
incorporate missing-data uncertainty.  
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No matter which complete-data analysis is used, the process of combining results 
from different data sets is essentially the same. Multiple-imputation does not attempt 
to estimate each missing value through simulated values but rather to represent a 
random sample of the missing values. This process results in valid statistical infer-
ences that properly reflect the uncertainty due to missing values; for example, valid 
confidence intervals for parameters. 

This paper designs a kernel-based stochastic non-parametric multiple imputation 
method under MAR (Missing at Random) and MCAR (Missing Completely at Ran-
dom) missing mechanisms in nonparametric regression settings, with the aim of  
optimizing the confidence-interval and the relative efficiency. We also design a ker-
nel-based stochastic semi-parametric multi-imputation method: instead of filling in a 
single value for each missing value, a multi-imputation procedure replaces each miss-
ing value with a set of plausible values that represent the uncertainty about the right 
value to impute (Little et al. 1987) when we have some priori knowledge about the 
dataset.  

The rest of this paper is organized as follows. We briefly recall some related work 
and describe some experimental results on simulation models and real datasets to 
compare the performances between our methods and the existed method (such as 
Norm, kernel-based deterministic imputation method). We summarize this paper in 
Section 5. 

2   Related Work 

This section reviews some main techniques for missing data imputation and describes 
some basic concepts. 

2.1   Research into Single-Imputation 

Some incomplete data handling methods do a better job of maintaining the distribu-
tion than others. However, the most appropriate way to handle missing or incomplete 
data will depend upon how data is missing. A useful reference for general parametric 
statistical inferences with missing data is (Little and Rubin, 2002), which classified 
missing data mechanisms into three categories as follows. 

1. Missing Completely at Random (MCAR): When given the variables X and 
Y, the probability of response dependents on X but not on Y. 

2. Missing at Random (MAR): The probability of response independence ex-
ists between X and Y. MCAR data exhibits a higher level if randomness than 
does MAR. 

3. Non-ignorable: the probability of response depends on variables X and pos-
sibly on variable Y. 

In practice it is usually difficult to meet the MCAR assumption. Most missing data 
methods are applied upon the assumption of MAR. And in correspondence to Kim 
(2001), “Non-igorable missing data is the hardest condition to deal with, but unfortu-
nately, the most likely to occur as well”. In this paper, our experiments base on the 
missing mechanisms MAR and MCAR. 
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Single imputation strategies provide a single estimate for each missing data value. 
Many methods for imputing missing values are single imputation methods, such as, 
C4.5 algorithm, kNN method, and so on. We can partition single imputation methods 
into statistical methods and machine learning ones. The most popular method in sta-
tistics is regression imputation methods. Common regression methods include  
parametric methods (such as, linear regression, nonlinear imputation method) and 
non-parametric methods (such as, kernel imputation in (Zhang, et al., 2008)). While 
much work focuses on modeling data by parametric or nonparametric approaches, 
(Engle et al. 1986) have studied the semi-parametric model. They model the electric-
ity demand y as the sum of a smooth function g  of monthly temperature t, and a 

linear function of 1x  and 2x , as well as 11 monthly dummy variables 3 13, ,x xL , to 

build a semi-parametric model firstly. In fact, semi-parametric model is more ordinary 
in real application than nonparametric model or parametric model because we always 
contain a little but no all information on our datasets, however, there are a little litera-
tures, such as, (Qin, et al., 2007), focusing on this issue because of the analysis com-
plexity, in this paper, we introduce SIIA algorithm to model the partial parametric 
model for filling up iteratively missing target values. 

The presentation methods in machine learning include rough set method, C4.5 
method, association algorithm (Zhang W., 2000), etc. Most imputation methods focus 
on imputing missing attribute values rather than the methods in statistics which pay 
attention on imputing missing target values. (Karmaker and Kwek, 2005) combines 
EM algorithm with decision tree method to missing condition attribute values, and 
(Mostafa, et al. 2007) combines regression imputation method with ensemble method 
to impute missing values. (Peng and Zhu, 2008) designs imputation method based on 
rough set. 

In semi-parametric, (Millimet, 2003) has shown with data for US states that  
parametric modeling can be rejected in favor of a semiparametric estimator, which 
does not impose any a priori restriction on the functional form of the relationship. 
Pickle et al. (2005) compares the parametric and non-parametric methods, present a 
semiparametric for modeling which combine parametric and non-parametric function 
to improve the quality of both the mean and variance models. The resulting semi-
parametric estimates have smaller bias and variance and result in a better understand-
ing of the process at hand. The above methods about semi-parametric imputation 
method handle the complete data. In fact, real-world data often includes some form of 
missing data. (Qin, et al. 2007) develops a kernel regression model under the assump-
tion of nonparametric model.  

A disadvantage of single imputation strategies is that they tend to artificially re-
duce the variability of characterizations of the imputed dataset. The alternatives are to 
fill in the missing values with multiple imputation methods (e.g., Multiple Imputation 
(MI)). In multivariate analysis, MI methods provide good estimations of the sample 
standard errors. However, data must be missing at random in order to generate a gen-
eral-purpose imputation.  

2.2   Research into Multi-Imputation 

The theoretical underpinnings of multi-imputation are Bayesian. The central idea is to 
fill in the missing values by drawing from the posterior predictive distribution of the 
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missing data given the observed data. The procedure is independently repeated M 
times. Each filled-in dataset is analyzed separately and the results combined following 
well-established rules. (Little and Rubin, 2002)’s multiple imputation is a three-step 
method for handling complex missing data. 

At the first step, m (> 1) completed-data sets are created by imputing the unob-
served data m times using m independent draws from an imputation model, which is 
constructed to reasonably approximate the true distributional relationship between the 
unobserved data and the available information, and thus reduce potentially very seri-
ous non-response bias due to systematic difference between the observed data and the 
unobserved ones. At the second step, m complete data analyses are performed by 
treating each complete data set as a real complete-data set, and thus standard com-
plete-data procedures and software can be utilized directly. At the last step, the results 
from the m complete-data analyses are combined in a simple, appropriate way to 
obtain the so-called repeated-imputation inference, which properly takes into account 
the uncertainty in the imputed values.  

The multi-imputation (MI) procedure (such as (Yuan, 2001), SAS, S-plus) pro-
vides three methods for imputing missing values and the choice of methods depends 
on the type of missing data pattern. These methods are Regression method, Propensity 
Scores method and Markov chain Monte Carlo (MCMC) method. (Scheffer, 2002) 
shows how the mean and standard deviation are affected by different methods of 
imputation, given different missing mechanisms. Better options than the standard 
default options are available in the major statistical software, offering the chance to 
do the right thing to the statistical and non-statistical community alike. (Zhang, 2004) 
propose a method for the multivariate data under the ANOVA model, where both  
the hot-deck and ABB methods run into difficulties. (Faris et al, 2002) compared 
approaches in dealing with missing data. Three multiple imputation methods are 
compared with a method of enhancing a clinical database through merging with ad-
ministrative data. The different methods produced similar results, with one of the 
multiple imputation methods demonstrating a slight advantage. It is concluded that 
the choice of missing data strategy should be guided by statistical expertise and data 
resources. (Allison, 2000) has evaluated two algorithms for producing multiple impu-
tations or missing data using simulated data about software of SOLAS. Software 
using a propensity score classifier with the approximate Bayesian boostrap produces 
badly biased estimates of regression coefficients when data on predictor variables are 
MAR or MACR. Allison has also showed that list-wise deletion produces un-bias 
regression estimates whenever the missing data mechanism depends only in the  
predictor variable, not on the response variable. (Kang, et al., 2007) thinks the MI 
imputation method is more efficient than single imputation, and can handle auxiliary 
variables as well as can be made robust against the failure of the imputation model. 
The experimental results in (Peng and Zhu, 2008) show MI perform better than EM  
algorithm. 

2.3   Our Contribution 

In this article, in the first step, we build a kernel-based stochastic non-parametric 
imputation (detailed in section 3.1) and a kernel-based random semi-parametric impu-
tation model (detailed in section 3.2) as imputation model. In the second step, we 



 Missing Data Analysis: A Kernel-Based Multi-Imputation Approach 127 

impute the non-response in the dataset and obtain m ‘complete’ data sets based on the 
imputation model constructed in section 3.1 or section 3.2. In the third step, we use 
two methods introduced in section 3.4 based on the theory of (Little and Rubin, 2002) 
to analyze the m complete-data for verifying the efficiency of proposed algorithms 
and the experimental results are presented in section 4. The contribution of the paper 
is presented as follows: 

Different from existing single imputation method, our algorithms impute missing 
multiple times. That can avoid efficient the variability of the imputed dataset in single 
imputation. Furthermore, our methods are based on the nonparametric model and 
semi-parametric model which is the practical model in real application. 

Different from existing MI techniques in which the parametric model (i.e., Bayes 
model) is based model, one of our two methods is a stochastic regression multiple 
imputation method in nonparametric settings. Due to the complex structures of data 
sets, it is hard or impossible to precisely describe the regression relationship between 
the response variable and the covariates. In this case, the usual (parametric) regression 
imputation method cannot be used. In particular, the kernel-based stochastic multiple 
imputation method aims at optimizing the confidence-interval and the relative effi-
ciency. Furthermore, we propose an efficient random/stochastic semi-parametric 
regression imputation under the missing mechanisms MCAR and MAR under the 
circumstance of having a little prior knowledge about the dataset.  

3   Proposed Algorithm 

3.1   Kernel-Based Non-parametric Imputation Method 

Let X be a d-dimensional vector of factors and let Y be a response variable influenced 
by X. In practice, one often obtains a random sample (sample size = n) of incomplete 

data associated with a population ),,( δYX , ),,( iii YX δ , i = 1,2,…,n. Where all 

the Xi’s are observed and δi = 0 if Yi is missing, otherwise δi = 1. Suppose that 
),( ii YX 's satisfy the following model: 

( )i i iY g X ε= + , i=1,2,…,n,                                       (3.1.1) 

Where g(.) is an unknown function, and the unobserved iε  (with population ε ) are 

i.i.d.( independent identically distributed) random errors with mean 0 and unknown 

finite variance 2σ , which assure the convergence of our algorithm same as the de-
terministic imputation (Wang, Q. & Rao, J. 2002), and independent of the i.i.d. ran-
dom variables Xi’s. 

Let ∑ −== = rnmr i
n
i ,1δ .  Denote the sets of respondents and non-respondents 

as rs  and ms , respectively. Let K be a symmetric probability density function and let 

h = hn be a bandwidth sequence that decreases toward 0 as the sample size n increases 

toward ∞ . Use ˆ ( )g x  to denote the kernel estimator for g(x) ( dRx ∈ ) based on the 

completely observed pairs ),( ii YX , i.e., 
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( )1
ˆ ( )

2( )1

x Xn iY Ki i i hg xn x Xn iK ni i h

δ

δ

−
∑ =

=
− −+∑ =

 
(3.1.2) 

Where the term 2n−  is introduced to avoid the case that the denominator vanishes; 
K(.) is called kernel function. There are some widely used kernel functions in non-
parametric inference.  For instance, the Gaussian kernel (standard normal density 

function) 1/ 2 2( ) (2 ) exp( / 2), ~ (1,1)K x x Nπ −⋅ = − , and a polynomial kernel: 

1 5 2 4( 1 ) ,   1( . ) 1 6
0 ,   

t t tK
o t h e r w i s e

⎧⎪ − + ≤= ⎨
⎪⎩

 

In practice, there is no any significant difference using these kernel functions. In this 
paper, we use the Gaussian kernel in our experiments of non-parametric multiple impu-
tation, we will discuss the choosing of bandwidth in kernel method later in section 3.3. 

Let 
)(R

iY , msi ∈  be the imputed values for the missing data based on random impu-

tation method, we uses ( ) *ˆ ( )RY g Xi n i iε= + , msi ∈ , as the imputed values in our 

non-parametric imputation method, which have same characteristic of convergence as 

deterministic imputation method, where 
*

iε  is a simple random sample of size m with 

replacement from { rinj sjXmY ∈− ),(ˆ }. Denote 
( )(1 ) , 1, , ,,
RY Y Y i nR i i i i iδ δ= + − = L  

which are ‘complete’ data based on the above imputations. 

3.2   Constructing a Semi-parametric Regression Model 

A general semi-parametric regression model is as follows. 

( ) .T
i i i iY X g Tβ ε= + +                                (3.2.1) 

Where the 'iY s
 
are iid (independent identically distributed) scalar response variables, 

the 'iX s are iid d-dimensional random covariate vectors, the 'iT s
 
are iid *d -

variable random covariate vectors, the function ( )g ⋅  is unknown, and the model 

error 
i

ε are iid random errors with mean 0 and unknown finite variance 2σ . 

Let , .
1

nr m n r
i i

δ= = −∑ =
 Denote the sets of respondents 

and non-respondents as sr  and sm, respectively. Let K be a symmetric probability 

density function and let h = hn be a bandwidth sequence that decreases toward 0 as the 
sample size n increases toward +∞ .  In this section, we define the estimators that we 
will analyze in this article. From (3.2.1), we have: 
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( ) .   1, ,− = + = LTY X g T i r
i i i i

β ε             (3.2.2) 

Assuming β  is known, we have a kernel estimator $ ( )g t  for ( )g t  based on the 

completely observed data: 

( )
( ) ( )

1ˆ ( ) .   1 , , .   
( )

2( )
1

t Tn j
K Y Xj j jhj

g t i r
t Tn j

K nj hj

δ β

δ

−
−∑

== =
− −+∑

=

L
     (3.2.3) 

Where, the term 2n−  is introduced to avoid the case that the denominator vanishes. 
K (.)  is a kernel function. In this paper, we use the polynomial kernel in our semi-
parametric experiments. We will discuss the choosing of bandwidth in kernel method 
later in Section 3.3. 

Using $ ( )g Ti  to replace ( )g Ti  in (3.2), we obtain: 

( )
( )( )

1
,  .  

( )
2( )

1

T Tn i j
K Y Xj j jhjTY X i si i rT Tn i j

K nj hj

δ β

β
δ

−
−∑

=− ≈ ∈− −+∑
=

       (3.2.4) 

Converting (3.2.4), we have 

, .  TZ U i si i rβ≈ ∈                               (3.2.5) 

Where  

( ) ( )
( ) ( )

1 1
, , .

( ) ( )
2 2( ) ( )

1 1

T T T Tn ni j i j
Y K X Kj j j jh hj j

Z Y U X i si i i i rT T T Tn ni j i j
K n K nj jh hj j

δ δ

δ δ

− −
∑ ∑
= == − = − ∈− −− −+ +∑ ∑

= =
       

                        (3.2.6) 

According to the theory of linear regression model, β  is estimated by (3.2.7): 

1ˆ ( ) ( ).   1 1
Tn nU U U Zn i i i i i ii iβ δ δ−= ∑ ∑= =            (3.2.7) 
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Combining with (3.2.3), the final estimator for ( )g t  is given by 

( )
( ) ( )

1ˆ ( ) . 
( )

2( )
1

t Tn jK Y Xj j j nhjg tn t Tn jK nj hj

   (3.2.8) 

Let ( )DYi  and ( )RYi , msi∈  be the imputed values for the missing data based on de-

terministic and random imputation methods, respectively. Deterministic imputation 
(Wang & Rao 2002) uses ˆ ( )g Tn i  as the imputed value, i.e.  

( ) ˆ ˆ ( ) , .D TY X g T i si i n n i mβ= + ∈  

We construct the random imputation ( ) ( )* *ˆ ˆ ( ) ,R DTY X g T Yi i n n i i i iβ ε ε= + + = +
 

.mi s∈  as the imputed values, which have same convergence as the deterministic 

method, where *
iε is a simple random sample of size m with replacement from 

ˆ ˆ ( ),TY X g T i si i n n i rβ− − ∈ .  

Denote 

( )
(1 ) ,  ,

( )
 (1 ) , 1, ...,,

D
Y Y YD i i i i i

R
Y Y Y i nR i i i i i

δ δ

δ δ

= + −

= + − =  

Which are ‘complete’ data based on the above imputations. 

3.3   The Choice of the Bandwidth and the Algorithm Complexity Analysis 

Kernel method can be decomposed into two parts: one for the calculation of the ker-
nel and another for bandwidth choice. (Qin, et al., 2007) states that one important 
factor in reducing the computer time is the choice of a kernel that can be calculated 
very quickly. Having chosen a kernel that is efficient to compute, one must then 
choose the bandwidth. (Qin, et al., 2007) turn out that the choice of window width is 
much more important than the choice o f kernel function. Small value of h make the 
estimate look ‘wiggly’ and show spurious features, whereas to big values of h will 
lead to an estimate which is too smooth in the sense that it is too biased and may not 
reveal structural features. There is no generally accepted method for choosing the 
window widths. Methods currently available include ‘subjective choice’ and auto-
matic methods such as the “plug-in”, ‘cross-validation’ (CV), and ‘penalizing func-
tion’ approaches. In this paper, we use the method of cross-validation to minimize the 
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approximate mean integrated square error (AMISE) of ˆ ( )ig x  for a given sample of 

data. Define the CV function to be 

2ˆ( ( , ) )
1

n
C V y g x ci ii

∑= − −=  

Where ˆ ( , )g x ci− denotes the ‘leave-one-out’ estimator evaluated for a particular value 

of c. ˆ ( , )g x ci− is obtained by omitting the realization (xi ,yi) from the estimator of g(.) 

at the point xi. 
Generally, before imputing, all numeric data are normalized into [0, 1] to avoiding 

the bias that the result is usually prone to the data with bigger magnitude. While the 
complexity of the kernel method is 2( )O m n , where n is the number of instances of 

the dataset, m is the number of attributes, so the algorithm complexity of our two 
methods are 2( )O m n . 

3.4   Combing Inferences from Imputation Data 

We use the method derived in (Little and Rubin, 2002) to analyze the performance for 
our two algorithms. Suppose that our primary interest lies in a scalar Q (in this article, 
we specify Q as the mean of the response variable); and m complete datasets under 
the nonparametric regression model are obtained. In each of these data sets we use 
standard complete-data methods to obtain an estimate of Q with an associated esti-
mated variance. As might be expected, the multiple imputation point estimate of Q is 
the average of the m complete-data estimates: 

1 ( )ˆ

1

m tQ Q
mt

= ∑
=

                                  (3.4.1) 

In the usual way, a 100(1 α− )% interval estimate for Q based on (Barnard and 
Rubin 1999) is 

*1 ,2

Q t Tα γ
± ×

−                                         (3.4.2) 

Another useful statistic about the non-response is the fraction of missing informa-
tion about Q: 

2 1(1+ )( 3) m ,   (where r= )
1

r B

r W

γλ
+ +=

+                       (3.4.3) 

The relative efficiency of using the finite m imputation estimator, rather than using 
an infinite number for the fully efficient imputation, in units of variance, is approxi-
mately a function of m and λ . 

1(1 )RE
m

λ −= +                                     (3.4.10) 
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Below Table 1 shows the relative efficiencies with different values of mm and λ . 

For cases with little missing information, only a small number of imputations are 
necessary for our MI analysis. 

Table 1. Relative efficiencies (RE) with different values of m and λ  

λ  

m 10% 70% 

3 0.9677 0.8108 

10 0.9901 0.9662 

4   Experiments 

In order to show the effectiveness of the proposed method, extensive experiments 
were done on simulation models as well as real dataset using a DELL Workstation 
PWS650 with 2G main memory, 2.6G CPU, and WINDOWS 2000. 

4.1   Experimental Study for Non-parametric Multi-Imputation 

4.1.1   Simulations 
In this section, we introduce some of our experiments to evaluate the performances of 
the proposed method in making inference for the mean (Q) of the response variable. 
We compare the performances of our non-parametric method with the NORM accord-
ing to their coverage probabilities and average lengths of confidence intervals, as well 

as their relative efficiencies. Throughout this section, we set 0.05α= .   
The NORM is a Windows 95/98/NT program for multiple-imputation (MI) of in-

complete multivariate data downloaded from (Schafer, 1999). It creates multiple im-
putations by an algorithm called data augmentation (DA), a special kind of Markov 
chain Monte Carlo (MCMC) technique. NORM is not designed to replace well-
established statistical packages like SAS or SPSS and does not perform statistical 
analyses (e.g. linear or logistic regression). 

We use the model 2
1 2sin  +   y x x ε= + , with ( 1, 2)ix i =  from the normal dis-

tribution N(1, 1) and ε  from N(0, 1). The following two cases of response probabili-
ties under the MAR and MCAR assumptions are considered (Qin, et al, 2007): 

Case1 (MAR): 1 1 2 1 2( ) ( 1 , ) 0.8 0.2 1 1 ,P x P X x X x x xδ= = = = = + − − if 

1 1 1,1 2x x− − ≤  and =0.95, elsewhere. 

Case2 (MCAR): ( ) ( 1 , ) 0.92 2P x P X x X xδ= = = = = , for all 1 2,x x respectively. 
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Fig. 1. The result of average length of confidence interval for our kernel-based stochastic non-
parametric multi-imputation were compared with the NORM. Sample Size is 1000, Missing 
Rate is 10%, 30%, 70% respectively, the repeat time is 3 in left figure, and the right’s is 5. 
method under MCAR and MAR compare with NORM. 

Table 2. The result of coverage probability for our kernel-based stochastic non-parametric 
multi-imputation were presented with NORM. Sample Size is 1000, Missing Rate is 
10%,20%,70% respectively.  

 Repeat Time:3 Repeat Time:10 

MR MCAR MAR NORM MCAR MAR NORM 

10% 0.941 0.937 0.918 0.942 0.947 0.925 

30% 0.938 0.935 0.919 0.941 0.944 0.919 

70% 0.935 0.933 0.926 0.939 0.943 0.918 

 
We obtain the confidence interval from the m ‘complete ‘data sets according to 

formula (3.4.2) and then compare the CP and AL (coverage probability and the aver-
age length of intervals).  

Figure 1 and Table 2 reveal the following results: 

1. When the missing rate is relatively small (for example, 10%), the confidence 
interval based on our algorithm under both of MCAR and MAR perform al-
most uniformly better than those based on NORM as shown in Table 2, i.e., 
the CPs based on our algorithms are closer to the nominal level 95% than the 
CP based on NORM, and the ALs are shorter based on our algorithm than the 
AL based on NORM in Figure 1.  

2. When the missing rate is relatively large( for example, 30% or 70%), the con-
fidence interval based on our algorithm under both of MCAR and MAR  per-
form  still better, but not as significantly as the case when missing rate is small,  
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than those based on NORM as shown in Table 2, that is to say, the CPs based 
on our algorithm are closer to the nominal level 95% than the CP based on 
NORM, and the Als are shorter based on our method than the AL based on 
NORM for all most all C.  

We also compare the performances of our method and the NORM in terms of the 
RE (Relative Efficiency) according to the formula (3.4.3). Table 3 shows the Relative 
Efficiency in different values of m (repeat times) and λ , in which 10% ,30% and 
70% are the missing rates. 

Table 3. The result of Relative Efficiency for our kernel-based stochastic non-parametric multi-
imputation were compared with NORM. Sample Size is 1000, Missing Rate is 10%,30%,70% 
respectively. 

 Repeat Time:3 Repeat Time:10 

MR MCAR MAR NORM MCAR MAR NORM 

10% 0.999983 0.999998 0.9996 1 1 0.999829 

30% 0.999983 0.999994 0.99978 0.999973 0.999991 0.99977 

70% 0.99976 0.99987 0.995 0.999985 0.999739 0.992 

 
From Table 3 comparing with the standard in Table 1, we can see that the perform-

ances of our method and the NORM are similar.  

4.1.2   Application in Abalone from UCI 
In order to show the effectiveness of our proposed method in making inference for the 
mean of a population, we conducted some experiments on the real dataset abalone, 
which is downloaded from the UCI machine-learning repository (Blake & Merz 
1998). It contains 4177 instances in total and 9 attributes (sex, length, diameter, 
height, whole weight, shucked weight, viscera weight, shell weight, rings) for each 
instance, in which there are no missing values. These attributes are used to predict the 
age of abalone. Obviously, the relation between the age and these attributes is MAR. 
But we also have experiments for the data set about MACR since we want to show 
the difference among the three. (Schafe, 1997) has argued that the use of a rich multi-
variate data set can provide protection against violations of the MAR assumption, and 
can minimize the biases incurred where the assumption is violated. It may also be 
possible to guard against violations of the MAR assumption by combining data merg-
ing and multiple imputation methods. So we select the other attributes (except the 
“sex” who is a nominal) to predict. 

We conduct the experiments under missing rates 10%, 30% and 70%, with re-
peated times 3 and 10. We randomly select 1000 instances from 4177 because the 
maximum instance that NORM can only handle is 2000. 

From these experiments, we can see that our method performs better than the 
NORM similar to the findings in previous simulation study. 
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Fig. 2. Sample Size is 1000, Missing Rate is 10%,30%,70% respectively. The result of AL for 
our kernel-based stochastic non-parametric multi-imputation were compared with NORM. 

Table 4. Sample Size is 1000, Missing Rate is 10%,30%,70% respectively. The result of CP for 
our kernel-based stochastic non-parametric multi-imputation were presented with NORM. 

 Repeat Time:3 Repeat Time:10 

MR MCAR MAR NORM MCAR MAR NORM 

10% 0.935 0.941 0.928 0.937 0.939 0.929 

30% 0.934 0.938 0.918 0.945 0.935 0.922 

70% 0.931 0.937 0.909 0.966 0.9249 0.91 

Table 5. Sample Size is 1000, Missing Rate is 10%,30%,70% respectively. The result of 
Relative Efficiency for our kernel-based stochastic non-parametric multi-imputation were 
compared with NORM. 

 Repeat Time:3 Repeat Time:10 

MR MCAR MAR NORM MCAR MAR NORM 

10% 0.999879 0.99999 0.9952 0.999993 0.999998 0.9991 

30% 0.999509 0.999969 0.99091 1 0.999999 0.9991 

70% 0.999797 0.99988 0.98201 0.999911 0.99982 0.9901 

4.2   Experimental Study for Semi-parametric Multi-Imputation 

4.2.1   Simulation 
In this section, we introduce some of our experiments to evaluate the performances of 
the proposed method in making inference for the mean (Q) of the response variable.  
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We compare the performances of our stochastic semi-parametric method with the 
deterministic semi-parametric method according to their coverage probabilities and 
average lengths of confidence intervals, as well as their relative efficiencies. 
Throughout this section, we set 0.05α = .  

According to (3.2.8), we used model: 

1 . 5 ,=β  

and  
2( ) 3 . 2 1  [ 0 , 1 ] ,   ( ) 0 , .= − ∈ =g t t i f t g t o t h e r w i s e  

We generated X si  from the normal distribution N(1, 1) and siε from the standard 

normal distribution N(0, 1), and the following two cases of response probabilities 
under the MAR and MCAR assumptions from (Wang & Rao, 2002a): 

Case 3 (MAR): 

( , ) ( 1 ) 0.8 0.2( 1 | 0.5|),1P x t P X x x tδ= = = = + − + − if 1 | 0 .5| 1,x t− + − ≤  and 

=0.95, elsewhere. 

Case 4 (MCAR):  

( 1 , ) 0.6= = = =P X x T tδ , for all x and t. 

For each of the two cases, we generated 1,000 (repeated time) random samples of 

incomplete data { , , , 1,...,X Y i ni i iδ = } for n=100 from the models and specified re-

sponse probability function. We get the confidence intervals and AL (the average 
length of the intervals) from m ‘complete ‘data sets according to (Little and Rubin, 
2002), and then we achieve the CP (coverage probability ) after scanning the original 
data sets.  

Table 6. The performance of CP under the assumption MCAR and MAR 

 MCAR MAR 

MR Deterministic Stochastic Deterministic Stochastic 

5% 0.91 0.915 0.905 0.903 

10% 0.918 0.924 0.899 0.91 

20% 0.894 0.901 0.89 0.895 

40% 0.885 0.898 0.882 0.902 

 
Table 6 presents the performance of our two imputation methods in terms of  CP 

with various missing rate 5%, 10% , 20%, 40% under the assumption MCAR and 
MAR; Table 7 presents the performance of the two imputation methods in terms of 
AL with various missing rate 5%, 10% , 20%, 40% under the assumption MCAR and 
MAR; 
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Table 7. The performance of AL under the assumption MCAR and MAR 

 MCAR MAR 

MR Deterministic Stochastic Deterministic Stochastic 

5% 0.782347 0.776642 0.763287 0.761652 

10% 0.804854 0.774798 0.75145 0.744785 

20% 0.748518 0.68534 0.699242 0.644894 

40% 0.740917 0.738762 0.717476 0.57594 

 
Tables 6 and 7 reveal the following results. The performance of stochastic method 

under both MCAR and MAR is basically better(closer to the nominal coverage prob-
ability 95% )  than  the deterministic method does in terms of  CP or AL with differ-
ent missing rates, such as 5%,10% ,20% and 40%; 

Table 8. The performance of RE under the assumption MCAR and MAR 

 MCAR MAR 

MR Deterministic Stochastic Deterministic Stochastic 

5% 0.99899 0.99905 0.99803 0.99822 

10% 0.99965 0.99965 0.99928 0.99928 

20% 0.99937 0.99939 0.9988 0.99884 

40% 0.99861 0.99872 0.99932 0.99953 

 
Table 8 presents the RE of deterministic and stochastic semi-parametric multiple 

imputations under MCAR and MAR with different missing rate 5%, 10%, 20% and 
40%. Comparing to Table 1, we can see that the RE of deterministic and stochastic 
imputation methods are much better than the standard values in Table 1, and the sto-
chastic imputation method performs better than the deterministic one with different 
missing rate. 

4.2.2   Real Data Applications 
We considered the real data set given in (Qin, et al., 2007). The data give the normal 
average January minimum temperature in degrees Fahrenheit (Denoted as JanTemp) 
with the latitude (Lat) and longitude (Long) of 56 U.S. cities. For each year from 1931 
to 1960, the daily minimum temperatures in January were added together and divided 
by 31. Then, the averages for each year were averaged over the 30 years. The data set is 
also available on: http://lib.stat.cmu.edu/DASL/Datafiles/USTemperatures.html 

We suppose the dependent variable is JanTemp and the independent variable is 
Lat. Our experiment present that the value of significant probability of the correlation 
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between the JanTemp and Lat is 0 in SPSS, after removing the effects of Lat, we get 
the value of significant probability of the correlation between the JanTemp and Long 
is 0.861, these result show there is a obviously linear relationship between JanTemp 
and Lat, the linear relationship between the JanTemp and Long is not clearly, and 
(Peixoto , 1990) reports a cubic polynomial in Long is used to predict JanTemp. To 
apply our method to these real data, we denote the variables for JanTemp, Lat and 
Long to be Y, X and T respectively. We suppose that Y, X and T satisfy the semi-
parametric model (3.2.1). 

Note that the original data set given by (Peixoto, 1990) is complete. We used the 
56 data and random deleted 6, 14 or 23 Y values (Missing Rate is almost 10%, 20% 
or 40% respectively) and the repeated times are 1000. The deletion mechanisms are 
designed to be MAR and MCAR. We make inference on the distribution function 

)(yF=θ for fixed y and quantile 
1 ( )F qqθ −= comparing our semi-parametric 

regression imputation estimator with non-parametric model and linear model same as 
Section 4.1. When making inference based on non-parametric kernel regression impu-
tation estimator, the kernel function K(t) is used by (3.1.2) and the deletion mecha-
nism were taken to the same as in Section 4.1. 

Due to an obviously linear relationship between JanTemp and Lat, we assume the 
multiple linear regression among JanTemp, Lat and Long, and then we construct a 
experiment about multiple linear regression imputation comparing with the non-
parametric and semi-parametric model. 

Table 9. The performance of CP under the assumption MCAR and MAR 

 MCAR MAR 

MR Semi4Sto Semi4Det Non Linear Semi4Sto Semi4Det Non Linear 

10% 0.925 0.92321 0.91429 1 0.92321 0.91964 0.90893 1 

20% 0.9375 0.91964 0.91429 0.99821 0.92321 0.91964 0.91607 1 

40% 0.92143 0.91071 0.90357 1 0.93036 0.92143 0.90536 1 

Table 10. The performance of AL under the assumption MCAR and MAR 

 MCAR MAR 

MR Semi4Sto Semi4Det Non Linear Semi4Sto Semi4Det Non Linear 

10% 4.1550 4.4092 4.4630 9.2959 4.1222 4.3824 4.5638 9.0311 

20% 3.8179 4.2325 4.3107 9.1249 3.9516 4.2509 4.5346 8.8035 

40% 4.1704 4.2723 4.3417 8.9180 4.0851 4.4714 4.5717 8.9916 

 
Table 9 presents the performance of four imputation methods for CP with missing 

rates 10%, 20% and 40% under the missing mechanism of MCAR and MAR. Table 10 
presents the performance of four imputation methods for AL with missing rates 10%, 
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20% and 40% under the missing mechanism of MCAR and MAR. Table 11 presents 
the performance of four imputation methods for RE with missing rates 10%, 20% and 
40% under the missing mechanism of MCAR and MAR. The ‘Semi4Sto’, 
‘Semi4Deter’, ‘Non’, ‘Linear’ refer to as the imputation method stochastic semi-
parametric regression imputation method, deterministic semi-parametric regression 
imputation method, non-parametric regression imputation method and linear regression 
method respectively. 

Table 11. The performance of RE under the assumption MCAR and MAR 

 MCAR MAR 

MR Semi4Sto Semi4Det Non Linear Semi4Sto Semi4Det Non Linear 

10% 1 0.99996 0.99942 0.91173 1 0.99998 0.99994 0.91112 

20% 1 0.99999 0.99969 0.97045 0.99988 0.99973 0.99985 0.91128 

40% 0.99999 0.99998 0.99863 0.91102 0.99997 0.99994 0.99976 0.91106 

 

Tables 9 to 11 reveal the following facts:  

1. From Tables 9 to 11, we can see that the performances of two imputation 
methods based on semi-parametric models are similar with the simulations re-
sults shown before. The stochastic imputation method is basically better than 
the deterministic imputation method in coverage probabilities (CP), average 
lengths of confidence intervals (AL) and the relative efficiency (RE). The per-
formances based on the two semi-parametric models are significantly better 
than the non-parametric model and linear model as there is some linear relation 
between the covariates and the response variable because the semi-parametric 
model is capable to capture this relation.  

2. From Table 9, we can see that the performance of the CP of linear regression 
imputation is best than the other three methods, such as, the CP of the linear 
regression imputation is 1, 0.99821 and 1 under the missing rate 10%, 20% 
and 40% respectively under the mechanism of MCAR. We can analyze the 
phenomenon in follow: 1) We constructed a 100( 1 α− )% interval estimate for 
Q(mean) where α  is the significance level and we set 0.05α = , i.e. the closer 
to 95% ,the better the result of CP is, we can find the performance of the other 
three methods are closer to 95% than the linear regression. 2) the wider the av-
erage length of the confidence intervals is, the bigger the CP is, from Table 10, 
we can know the AL of the linear regression imputation method is widest 
among all four methods, it show that the performance of the linear regression 
imputation method is worst among these four methods. 

3. Comparing Table 11 with Table 1, we can see that the result of RE of the three 
methods all beyond the standard in Table 1 under different missing rate (10%, 
20%, 40% respectively) under the different missing mechanism (MCAR or 
MAR) when the repeat time is 10 , but the result of the RE of the linear regres-
sion imputation method is worse than the standard because the RE of linear is 
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0.91773, 0.97045 and 0.91102 respectively, under different missing rate (10%, 
20%, 40% respectively) under MCAR (the result is 0.91112, 0.91128, 0.91106 
respectively under MAR ) in Table 11, and the standard is 0.9901, 0.9804 and 
0.9615 in Table 1 when the repeat times are 10. 

4. Comparing to missing rate, we can see that the performance of our stochastic 
semi-parametric regression imputation method is better when the response rate 
is higher about the performance of the CP, AL and RE under the missing 
mechanism of MCAR or MAR, and the result show the performance of all four 
imputation method is better when the missing rate is moderate such as 20%, 
but the performance of our stochastic imputation method is best among the 
four imputation methods.  

5. We conclude from these results that the best efficient method is our stochastic 
semi-parametric regression imputation method, then the second is deterministic 
and non-parametric, and the worst is linear method based on this real data. We 
also get a conclusion: if we want to construct a inference about multiple imputa-
tion, we had better use semi-parametric regression imputation method to patch 
up the missing value when we have a little information about the missing attrib-
ute and the observed attributes, such as we know the linear relationship between 
the dependent variable and one of the independent variables. 

5   Conclusion 

There are many reports on single-imputation methods for missing data in data mining 
and machine learning. In this paper we have designed an algorithm of Kernel-Based 
Stochastic Nonparametric Multi-imputation to impute the incomplete datasets under 
MAR and MCAR assumptions when we have little priori knowledge about the dataset, 
and we can construct a kernel-based stochastic semi-parametric multi-imputation 
method to patch up the missing value if we have a little priori information about this 
dataset. We have experimentally evaluated the performances of our methods with the 
other method (such as NORM, deterministic method) using a simulation dataset and a 
real dataset. The performances are in terms of the confidence intervals and the Relative 
Efficiencies based on different imputation methods. It has shown that our methods per-
form much better than the other methods in terms of confidence intervals, and their 
relative efficiencies are similarly well. When the missing rate is relatively low, the per-
formance of our method is significant better than the other methods. It is interesting to 
study the choice of C in using our methods. We leave this to the future work. 
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Abstract. In this paper, a stochastic nonlinear Schrodinger equation is studied 
under stochastic complex non-homogeneity  in a limited time interval through 
homogeneous boundary conditions and complex initial conditions. The analyti-
cal solution for the linear case is introduced. The Wiener-Hermite expansion 
together with the perturbation method, the WHEP technique, is used to get  
approximate ensemble average of the stochastic solution process. Using Mathe-
matica, the solution algorithm is tested through computing the first order ap-
proximation of the solution ensemble average. The method is illustrated through 
case studies which demonstrate the effects of the initial conditions as well as the 
input non-homogeneities. 

Keywords: Stochastic Nonlinear Schrodinger Equation, Perturbation, Eigen-
function Expansion, WHEP Technique, Wiener-Hermite Expansion. 

1   Introduction 

The nonlinear Schrodinger equation ( NLS )arise as model equations from several 
areas of physics and applied sciences, see [1,2,3,4,5] for examples. All of which can 
be considered as perturbations of one sort or another of the linear Schrodinger equa-
tion. Needless to say, these equations are more difficult to analyze and are in great 
need to more developed and efficient computational  algorithms. 

Wang M. and et al [6] obtained the exact solutions to NLS using what they called 
the sub-equation method. They got four kinds of exact solutions of the equation  

2
2

2

1
0

2
p pu u

i u u u u
t x

α β∂ ∂+ + + =
∂ ∂

, 

for which no sign to the initial or boundary conditions type is made. Xu L. and Zhang 
J. [7] followed the same previous technique in solving the higher order NLS:  

2 3 *
2 2 2

2 3

1
0

2

u u u u u
i u u i i u i u

x t tt t
α β ε δ γ∂ ∂ ∂ ∂ ∂− + + + + =

∂ ∂ ∂∂ ∂
. 
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Sweilam N. [8] solved  

2
2

0 12
0, 0, ,

u u
i q u u t L x L

t x

∂ ∂+ + = > < <
∂ ∂

 

with initial condition ( , 0) ( )u x g x=  and boundary conditions 
0 1( , ) ( , ) 0x xu L t u L t= =  which gives rise to solitary solutions using varia-

tional iteration method. Zhu S. [9] used the extended hyperbolic auxiliary equation 
method in getting the exact explicit solutions to the higher order NLS: 

2 431 2
1 22 6 24z tt ttt ttttiq q q q i q q q q

ββ βγ γ− + = + − , 

without any conditions. Sun J. and et al [10] solved the NLS: 
2

2

2
0i a

t x

ψ ψ ψ ψ∂ ∂+ + =
∂ ∂

, 

with the initial condition 0( , 0) ( )x xψ ψ=  using Lie group method. By using 
coupled amplitude phase formulation, Parsezian K. and Kalithasan B. [11] constructed 
the quartic anharmonic oscillator equation from the coupled higher order NLS. Two-
dimensional grey solitons to the NLS were numerically analyzed by Sakaguchi H. and 
Higashiuchi T. [12]. The generalized derivative NLS was studied by Huang D. and et al 
[13] introducing a new auxiliary equation expansion method. 

Moebs G. [14] considered a stochastic NLS equation as a model for signal propa-
gation in optical fibres. He used the split-step Agrawal method together with a new 
multilevel method to obtain the propagation of a binary signal by solitons. Garnier J. 
and Abdullaev F. [15] introduced the theory of modulational instability of electro-
magnetic waves in optical fibres where they used a model of nonlinear Schrodinger 
equation with random group velocity dispersion and random nonlinear coefficients. 
Adrian A. and et al [16] found what they called the exact dynamics in mean value for 
a particular model of the Schrodinger-Langevin equation that preserves norm for all 
realizations. Abdullaev F. and et al [17] investigated the propagation of optical pulses 
in two types of fibres with randomly varying dispersion. Gautier E. [18] considered 
real multiplicative Gaussian noise in a stochastic NLS. 

In this paper, the WHEP technique is used to introduce an approximate average so-
lution to a stochastic NLS equation. The technique can be revised in appendix A or in 
[19-23] for more applications. In section 2, the linear Schrodinger equation is solved 
analytically to serve the methodology used in section 3 for solving a stochastic NLS 
equation for which some case studies are illustrated in section 4. 

2   The Linear Case 

In this section, the analytical solution of the linear Schrodinger equation is obtained 
which will be considered as a prototype solution when proceeding in the next section, 
mainly the nonlinear case. Consider the non homogeneous linear Schrodinger equation: 

2

1 22

( , ) ( , )
( , ) ( , ) ( , ), ( , ) (0, ) (0, )

u t z u t z
i i u t z F t z i F t z t z T

z t
α γ∂ ∂+ + = + ∈ × ∞

∂ ∂
 

(1) 
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where ( , )u t z  is a complex valued function  which is subjected to initial conditions 

(I.C.), 

1 2( , 0) ( ) ( ),u t f t i f t= +                                              (2) 

and boundary conditions (B.C.), 

(0, ) 0, ( , ) 0u z u T z= = .                                           (3) 

The imaginary constant is represented by i while α  and  γ   are  physical constants. 

The real functions  1F  and  2F  are the real and imaginary parts of the non-

homogeneity respectively.  
Let   ( , ) ( , ) ( , ), ,u t z t z i t zψ φ ψ φ= + : real valued functions. The follow-

ing coupled equations are obtained: 

2

12

( , ) ( , )
( , ) ( , ),

t z t z
t z F t z

z t

φ ψα γφ∂ ∂= − −
∂ ∂

                    (4) 

2

22

( , ) ( , )
( , ) ( , ),

t z t z
t z F t z

z t

ψ φα γψ∂ ∂= − − +
∂ ∂

                 (5) 

where 1 2( , 0) ( ), ( , 0) ( ),t f t t f tψ φ= =  and all other corresponding I.C. and 

B.C. are zeros. 
To get  rid of the loss terms in equations (4) and (5), mainly γφ−  and γψ− , one 

can use the following effective transformations: 

( , ) ( , ),zt z e w t zγψ −=                                                (6) 

( , ) ( , ),zt z e v t zγφ −=                                                  (7) 

where  1 2( , 0) ( ), ( , 0) ( ),w t f t v t f t= =  and all other corresponding I.C. and 

B.C. are zeros. The following coupled equations are obtained: 

2

12

( , ) ( , )
( , ),

v t z w t z
G t z

z t
α∂ ∂= −

∂ ∂
                                 (8) 

2

22

( , ) ( , )
( , ),

w t z v t z
G t z

z t
α∂ ∂= − +

∂ ∂
                               (9) 

where 

1 1( , ) ( , )zG t z e F t zγ= ,                                            (10) 

2 2( , ) ( , )zG t z e F t zγ= .                                          (11) 
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Eliminating one of the variables in equations (8) and (9), one can get the following 
independent equations: 

4 2

14 2 2 2

( , ) 1 ( , ) 1
( , ),

w t z w t z
t z

t z
ψ

α α
∂ ∂+ =

∂ ∂
%                  (12) 

4 2

24 2 2 2

( , ) 1 ( , ) 1
( , )

v t z v t z
t z

t z
ψ

α α
∂ ∂+ =

∂ ∂
% ,                      (13) 

where 

2
1 2

1 2

( , ) ( , )
( , ) ,

G t z G t z
t z

zt
ψ α ∂ ∂

= +
∂∂

%                          (14) 

2
2 1

2 2

( , ) ( , )
( , ) .

G t z G t z
t z

zt
ψ α ∂ ∂

= −
∂∂

%                       (15) 

Using the eigenfunction expansion technique [24],  the following solution expres-
sions are obtained: 

0

( , ) ( ) sin( ) ,n
n

n
w t z T z t

T

π∞

=

= ∑                                    (16) 

0

( , ) ( ) sin( ) ,n
n

n
v t z z t

T

πτ
∞

=

= ∑                                  (17) 

where  ( )nT z  and  ( )n zτ   can be got through the applications of initial condi-

tions and then solving the resultant second order differential equations using the 
method of the variational parameter [25]. The final expressions can be got as the fol-
lowing: 

1 1 2 1( ) ( ( )) sin ( ( )) cos ,n n nT z C A z z C B z zβ β= + + +       (18)  

3 2 4 2( ) ( ( )) sin ( ( )) cos ,n n nz C A z z C B z zτ β β= + + +      (19)  

where 

2( ) ,n

n

T

πβ α=                                                    (20) 

1 1

1
( ) ( ; ) cos ,n n

n

A z z n z dzψ β
β

= ∫ %                         (21) 

1 1

1
( ) ( ; ) sin ,n n

n

B z z n z dzψ β
β
−= ∫ %                         (22) 
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2 2

1
( ) ( ; ) cos ,n n

n

A z z n z dzψ β
β

= ∫ %                        (23) 

2 2

1
( ) ( ; ) sin( ) ,n n

n

B z z n z dzψ β
β
−= ∫ %                     (24)  

in which 

1 1

0

2
( ; ) ( , ) sin( ) ,

T

n

n
z n t z dt

T T

πψ ψ= ∫% %                              (25) 

2 2

0

2
( ; ) ( , ) sin( ) .

T

n

n
z n t z dt

T T

πψ ψ= ∫% %                              (26) 

The following conditions should also be satisfied: 

2 1 1

0

2
( ) sin( ) (0),

T n
C f t dt B

T T

π= −∫                           (27) 

4 2 2

0

2
( ) sin( ) (0).

T n
C f t dt B

T T

π= −∫                          (28) 

Finally, the following solution is obtained: 

( , ) ( ( , ) ( , )),zu t z e w t z iv t zγ−= +                             (29) 

or in absolute value as 

2 2 2 2( , ) ( ( , ) ( , )).zu t z e w t z v t zγ−= +                         (30) 

3   The Non-linear Case 

Consider the non-homogeneous non-linear Schrodinger equation: 

 

2
2

1 22

( , ) ( , )
( , ) ( , ) ( , ) ( , ; ) ( . ; ),

( , ; ) (0, ) (0, ) ,

u t z u t z
i u t z u t z i u t z F t z i F t z

z t
t z T

α ε γ ω ω

ω

∂ ∂+ + + = +
∂ ∂

∈ × ∞ ×Θ
 

(31)

 

where ( , )u t z  is a complex valued function, which is subjected to  the initial and 

boundary conditions (2) and (3), ε  is a deterministic nonlinearity scale and 

( , , )PβΘ = Ω %  is a probability space in which Ω  is a sample space, β%  is a σ - 

field associated with the space  Ω  and P is a probability measure. For typing sim-
plicity, ω  is dropped. 
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Lemma 
The solution of equation (31) with the constraints (2) and (3) is a power series in  ε  
if the solution exists. 

Proof 
At 0ε = , the following linear equation is got: 

2

2

( , ) ( , )
( , ) ( , ), ( , ) (0, ) (0, )

u t z u t z
i i u t z F t z t z T

z t
α γ∂ ∂+ + = ∈ × ∞

∂ ∂
which has the solution, see the previous section, 

0 0 0( , ) ( ( , ) ( , ))zu t z e w t z iv t zγ−= + , 

Following Pickard approximation, equation (31) can be rewritten as 

2
2

1 12

( , ) ( , )
( , ) ( , ) ( , ) ( , ), 1.n n

n n n

u t z u t z
i i u t z F t z u t z u t z n

z t
α γ ε − −

∂ ∂
+ + = − ≥

∂ ∂
 

At n=1, the iterative equation takes the following form: 

2
21 1

1 0 02

1

( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , )

u t z u t z
i i u t z F t z u t z u t z

z t
F t z h t z

α γ ε

ε

∂ ∂
+ + = −

∂ ∂
= +

 

which can be solved as a linear case with zero initial and boundary conditions. The 
following general solution can be obtained: 

1 0 1
0

( , ) ( ) sin( ) ,n n
n

n
w t z T T t

T

πε
∞

=

= +∑  

1 0 1
0

( , ) ( ) sin( ) ,n n
n

n
v t z t

T

πτ ετ
∞

=

= +∑  

1 1 1

(0) (1)
1 1

( , ) ( ( , ) ( , ))

.

zu t z e w t z iv t z

u u

γ

ε

−= +

= +
 

At n=2, the following equation is obtained: 

2
22 2

2 1 12

2

( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , )

u t z u t z
i i u t z F t z u t z u t z

z t
F t z h t z

α γ ε

ε

∂ ∂
+ + = −

∂ ∂
= +

 



 The Average Solution of a Stochastic Nonlinear Schrodinger Equation 149 

which can be solved as a linear case with zero initial and boundary conditions. The 
following general solution can be obtained: 

(0) (1) 2 (2) 3 (3) 4 (4)
2 2 2 2 2 2( , )u t z u u u u uε ε ε ε= + + + + . 

Continuing like this, one can get 

(0) (1) 2 (2) 3 (3) ( ) ( )( , ) ......... n m n m
n n n n n nu t z u u u u uε ε ε ε + += + + + + . 

As n → ∞ , the solution (if exists) can be reached as  ( , ) lim ( , )n
n

u t z u t z
→∞

= . 

Accordingly, the solution is a power series in ε  . 
According to the previous lemma, one can expect that the ensemble average of the  

solution process and the other statistical moments can be represented also as a power 
series in ε .                                       

3.1   The Solution Using WHEP Technique  

By letting    ( , ) ( , ) ( , )u t z t z i t zψ φ= +  in equation (31), the following coupled 

equations are obtained: 

2
2 2

12

( , ) ( , )
( ) ( , ) ( , ),

t z t z
t z F t z

z t

φ ψα ε ψ φ ψ γφ∂ ∂= + + − −
∂ ∂

  (32) 

2
2 2

22

( , ) ( , )
( ) ( , ) ( , ),

t z t z
t z F t z

z t

ψ φα ε ψ φ φ γψ∂ ∂= − − + − +
∂ ∂

 (33) 

where 1 2( , 0) ( ), ( , 0) ( )t f t t f tψ φ= =  and all corresponding other I.C. and 

B.C. are zeros. 
Taking the Gaussian part of the Wiener-Hermite expansion [21], the input and out-

put stochastic processes of the problem can be represented as follows: 

(0) (1) (1)
1 1 1 1 1 1

0

( , ) ( , , ) ( )
t

F t z F F t z t H t dt= + ∫ ,                        (34) 

(0) (1) (1)
2 2 2 1 1 1

0

( , ) ( , , ) ( ) ,
t

F t z F F t z t H t dt= + ∫                          (35) 

(0) (1) (1)
1 1 1

0

( , ) ( , , ) ( ) ,
t

t z t z t H t dtψ ψ ψ= + ∫                          (36) 

(0) (1) (1)
1 1 1

0

( , ) ( , , ) ( )
t

t z t z t H t dtφ φ φ= + ∫ ,                            (37) 
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where the deterministic kernels (0) (1) (0), ,ψ ψ φ  and (1)φ are unknowns to be evalu-

ated through taking a set of ensemble averages [19]. The final governing equations 
are  

(0) 2 (0)
(0)

2

3 2 2 2(0) (0) (0) (0) (1) (0) (1) (0) (1) (1)
1 1 1 1 1 1 1

0 0 0

(0)
1

( , ) ( , )
( , )

( , , ) 3 ( , , ) 2 ( , , ) ( , , )

( , )

t t t

t z t z
t z

z t

t z t dt t z t dt t z t t z t dt

F t z

φ ψα γφ

ε ψ ψ φ ψ φ ψ ψ φ ψ φ

∂ ∂− + −
∂ ∂

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + + +⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎦⎣

=
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(38) 
(0) 2 (0)

(0)
2
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0 0 0

(0)
2

( , ) ( , )
( , )

( , , ) 3 ( , , ) 2 ( , , ) ( , , )
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t t t

t z t z
t z

z t

t z t dt t z t dt t z t t z t dt

F t z

ψ φα γψ

ε φ φ ψ φ ψ φ φ ψ ψ φ

∂ ∂+ +
∂ ∂
⎡ ⎤
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=
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(39) 
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(1)1 1
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1 1 1 1

0

2(1) (1) (1) (1) (1)
1 1 1 1

0
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( , , )
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t
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∫

∫ 1
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1 1( , , )

t

t

F t z t

⎤
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⎦

=

∫
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(1)1 1
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1 1 1 1

0
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ψ φα γψ

ε φ φ ψ φ ψ ψ φ φ φ
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⎡
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⎣
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∫

∫ 1

0

(1)
2 1( , , )

t

F t z t

⎤
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⎦

=

∫

  

(41) 
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Following the WHEP technique up to second correction, the following expressions 
can be assumed 

(0) (0) (0) 2 (0)
0 1 2( , ) ,t zψ ψ εψ ε ψ= + +                                            (42) 

(0) (0) (0) 2 (0)
0 1 2( , ) ,t zφ φ εφ ε φ= + +                                              (43) 

(1) (1) (1) 2 (1)
0 1 2( , ) ,t zψ ψ εψ ε ψ= + +                                              (44) 

(1) (1) (1) 2 (1)
0 1 2( , )t zφ φ εφ ε φ= + +  ,                                               (45) 

where 
(0)
0 1( , 0) ( )t f tψ = , (0)

0 2( ,0) ( )t f tφ = and the corresponding other initial 

and boundary conditions are zeros. Substituting equations (42-45) into the governing 
equations (38-41), the following set of coupled equations are got; 

(0) 2 (0)
(0)0 0
0 12

( , ) ( , )
( , ) ( , ),

t z t z
t z F t z

z t

φ ψα γφ∂ ∂
= − −

∂ ∂
%                  (46) 

(0) 2 (0)
(0)0 0
0 22

( , ) ( , )
( , ) ( , ),

t z t z
t z F t z

z t

ψ φα γψ∂ ∂
= − − +

∂ ∂
%                (47)  

where 1F%  and 2F%  are the average of the non-homogeneous functions 1F  and 2F  

respectively. 

(1) 2 (1)
(1)0 0
02

( , ) ( , )
( , ),

t z t z
t z

z t

φ ψα γφ∂ ∂
= −
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                                     (48) 
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t z

z t

ψ φα γψ∂ ∂
= − −

∂ ∂
                                   (49) 
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0
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0 0

( , , )

3 ( , , ) 2 ( , , ) ( , , ) 0,

t

t t

t z t dt
z t

t z t dt t z t t z t dt

φ ψα γφ ψ ψ φ

ψ ψ φ φ ψ

∂ ∂
⎡ ⎤ ⎡ ⎤− + − + + +⎣ ⎦ ⎣ ⎦∂ ∂
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∫
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(50)
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0 0 1 1 0 0 1 0 1 1

0 0
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3 ( , , ) 2 ( , , ) ( , , ) 0

t

t t

t z t dt
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ψ φα γψ φ φ ψ

φ φ ψ φ ψ

∂ ∂
⎡ ⎤ ⎡ ⎤+ + + + +⎣ ⎦ ⎣ ⎦∂ ∂
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∫
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(51)
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(1) 2 (1)
2 2(1) (0) (1) (0) (0) (1) (1) (1)1 1

1 0 0 0 0 0 0 0 1 12
0
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0 0
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∫
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                                                                                                                       (52) 
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0
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(57) 

The set of coupled equations (46-57) can be represented as the prototype linear equa-
tions (4) and (5) and so can be solved analytically using the linear case algorithm. 

3.2   Zero Order Approximation  

Solving equations (46-49), the zero order approximation takes the following form: 

(0) (0) (0)u iψ φ= +                                                     (58) 

where (0)
(0) 0ψ ψ=  and (0)

(0) 0φ φ= , hence the absolute average function can be got 

using: 
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3.3   First Order Approximation  

Solving equations (50-53), the first order approximation can be represented as 
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Accordingly, the absolute average function can be got using: 
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     (63) 

The covariance function can be got from: 
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From which, the variance can be computed at t τ=  as follows: 
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Fig. 1. The zero order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 0ε =  using only two terms for the solution expansions, mathematica 5 
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Fig. 2. The zero order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 0ε =  using only five terms  for the solution expansions, mathematica 5 

4   Case Studies 

The main goal of this section is to illustrate the efficiency of the proposed symbolic 
solution algorithm presented in section 3. The effect of the nonlinearity strength pa-
rameter ε  is shown through a lot of case studies under the changes of the input func-

tions; mainly, the initial conditions 1 ( )f t  and 2 ( )f t , and the non-homogeneity 

functions 1 ( , )F t z  and 2 ( , )F t z . 
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4.1   Case Study-1 

In this case, 1 ( ) 1,f t = 2 ( ) 0,f t = 1 ( , ) 0,F t z =  and 2 ( , ) 0F t z = . Substituting 

these input values in the expression of the zero order approximation (59) and its con-
sequent related equations, mainly the solution of equations (46) and (47) under zero 
non-homogeneities, the following results are obtained. 
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Fig. 3. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 1ε =  for only two terms,  mathematica 5 
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Fig. 4. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for only two terms, mathematica 5 
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One can notice that the extra solution expansion terms does not affect the solution 
level but it increases its fluctuations. 

Now, let us substitute the input values in the first order solution expression (63) 
and its consequent, mainly the solution of equations (50) and (51). Using mathe-
matica-5 to compute symbolically the resultant solution expression, the following 
results are obtained.  

One can notice that the increase of ε  values, i.e. increasing the nonlinearity, 
highly increases the solution level. 

One can notice the high decrease of the solution average with the increase of the 
value of z. 
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Fig. 5. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for different values of z and for only two terms, mathematica 5 
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Fig. 6. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for different values of t and for only two terms, mathematica 5 

4.2   Case Study-2  

In this case, 1 ( ) 0,f t = 2 ( ) 1,f t = 1 ( , ) 0,F t z =  and 2 ( , ) 0F t z = . The following 

results are obtained. 
One can notice that there is no difference between case-1 and case-2. 
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Fig. 7. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for only one term,  mathematica 5 
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Fig. 8. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for different values of z and for only one term 
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Fig. 9. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for different values of t and for only one term 
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4.3   Case Study-3  

In this case, 1 ( ) 0,f t = 2 ( ) 0,f t = 1 ( , ) 1,F t z =  and 2 ( , ) 0F t z = . The following 

results are obtained. 

 

Fig. 10. The zero order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 0ε =   for only one term, mathematica 5 
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Fig. 11. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 1ε =  for only one term 

One can notice the huge effect of 1F , the real part of the non-homogeneity, on the 

value of the average.  
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Fig. 12. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 1ε =  for different values of z and for only one term 

0.5 1 1.5 2 2.5 3
z

1×1011

2×10
11

3×1011

4×1011

5×1011

6×1011

»μ1»

t=5

t=4

t=3

t=2

 

Fig. 13. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for different values of t and for only one term 
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Fig. 14. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 1ε =   for only one term 
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4.4   Case Study-4 

In this case, 1 ( ) 0,f t = 2 ( ) 0,f t = 1 ( , ) 0,F t z =  and 2 ( , ) 1F t z = . The following 

results are obtained. 
One can notice that identical results to case-3 are obtained.  
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Fig. 15. The zero order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 0ε =   for only one term 
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Fig. 16. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 1ε =  for only one term 

4.5    Case Study-5 

In this case, 1 ( ) 0,f t = 2 ( ) 0,f t = 1 ( , ) 1,F t z =  and 2 ( , ) 1F t z = . The following 

results are obtained. 
One can notice the high increase of the value of the average compared to case-3 or 4. 
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Fig. 17. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 1ε =  for different values of z and for only one term 

4.6    Case Study-6  

In this case, 1 ( ) 1,f t = 2 ( ) 1,f t = 1 ( , ) 0,F t z =  and 2 ( , ) 0F t z = . The following 

results are obtained. 
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Fig. 18. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =   for different values of z and for only one term 

0.5 1 1.5 2 2.5 3
z

2

4

6

8

»μ1»

t=5

t=4

t=3

t=2

 
Fig. 19. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for different values of  t and for only one term 
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One can notice the slight increase for the average in this case when compared with 
case-1 or 2. 

4.7   Case Study-7 

In this case, 1 ( ) ,tf t e −= 2 ( ) ,tf t e −= 1 ( , ) 0,F t z =  and 2 ( , ) 0F t z = . The 

following results are obtained. 
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Fig. 20. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 1ε =   for only one term 
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Fig. 21. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for only one term 
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Fig. 22. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =   for different values of z and for only one term 
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Fig. 23. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =   for different values of  t  and for only one term 
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Fig. 24. The zero order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 0ε =   for only one term 
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Fig. 25. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =  for only one term 
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Fig. 26. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =   for different values of z and for only one term 

One can notice the high reduction in the magnitude of the average compared with 
case-6 and shape changes are also noticed. 

4.8   Case Study-8 

In this case, 1 ( ) 0,f t = 2 ( ) 0,f t = 1 ( , ) ,tF t z e −=  and 2 ( , ) tF t z e −= . The fol-

lowing results are obtained. 
One can notice the high reduction in the average value. 
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Fig. 27. The first order approximation of the absolute average of the solution at 

, 1, 10Tα γ = = , 5ε =   for different values of  t  and for only one term 

5   Conclusions 

The WHEP technique introduces an efficient approximate solution to the NLS equa-
tion with a perturbative nonlinear term for a finite time interval. Using mathematica, 
the difficult and huge computations were fronted to some extent, we still have compu-
tations problems when trying to evaluate higher orders of the solution average or trying 
to evaluate the covariance or variance of the solution process in the future. In general, 
there is a reduction in the magnitude of solution when z increases. The control of the 

input non-homogeneity functions 1 ( )F t  and/or 2 ( )F t  leads to a huge magnification 

in the solution's magnitude level while there is a reverse impact on the solution when 

controlled by the initial condition functions 1 ( )f t  and/or 2 ( )f t . The solution level 

highly increases with the increase of the nonlinearity scale parameter ε . 
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Appendix-A: WHEP Technique 

The Wiener-Hermite expansion (WHE) method utilizes  the Wiener-Hermite polyno-
mials which are the elements of a complete set of statistically orthogonal random 

functions [19]. The Wiener-Hermite polynomial  ),...,( 21
)(

i
i tttH  satisfies the fol-

lowing recurrence relation: 
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in which n(t) is the white noise with the following statistical properties 
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where δ (-) is the Dirac delta function and  E   denotes the ensemble average operator. 
The Wiener-Hermite set is a statistically orthogonal set, i.e. 
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The average of almost all H functions vanishes, particularly, 

1.ifor   0 H(i) ≥=E                                            (A-5) 

Due to the completeness of the Wiener-Hermite set ,any random function  );( ωtG  

can be expanded as 
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where the first two terms are the Gaussian part of );( ωtG . The rest of the terms in the 

expansion represent the non-Gaussian part of );( ωtG . The average of  );( ωtG  is 

)();( )0( tGtGEG == ωμ                                      (A-7) 

The covariance of  );( ωtG  is 
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The variance of );( ωtG  is 
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The WHE method can be elementary used in solving stochastic differential equa-
tions by expanding the solution process as well as the stochastic input processes via 
the WHE. The resultant equation is more complex than the original one due  
to being a stochastic integral-differential equation. Taking a set of ensemble averages 
together with using the statistical properties of the WH polynomials, a set of  
deterministic integral-differential equations are obtained in the deterministic kernels 

,...2,1,0),;()( =itG i ω . To obtain approximate solutions for these deterministic 

kernels, one can use perturbation theory in the case of having a perturbed system 
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depending on, say, ε  . Expanding the kernels as a power series of  ε , another set of 
simpler iterative equations in the kernel series components are obtained. This is the 
main algorithm of the WHEP technique. The technique was successfully applied to 
several nonlinear stochastic equations, see [19-23] and also [26].  

By taking the only first two terms in the solution process expansion, the Gaussian 
part, the first order approximation is obtained. The second order approximation is got 
when adding the third term and the other orders are obtained by consequent terms 
additions. The WHEP technique has an advantage over the other known iterative 
techniques that every order of approximation can be corrected to any required order of 

corrections. The thn correction represents the ε  series of the deterministic kernels up 

to nε . Accordingly, one can have only first order approximate solution with different 
correction levels depending on how efficient the computing tool which may encour-
age computing other approximation orders. 



Neural Network Representation for the Forces

and Torque of the Eccentric Sphere Model

Mostafa Y. Elbakry1, Mohammed El-Helly2, and Mahmoud Y. Elbakry2

1 Faculty of Education for girls, Tabuk, P.O.Box 796, KSA
2 Faculty of science for girls, Dammam, KSA

elbakre1987@hotmail.com, m el helly@hotmail.com

Abstract. An artificial neural network (ANN) has been designed to
simulate and predict the torque and force acting on the outer stationary
sphere due to steady state motion of the second order fluid between two
eccentric spheres by a rotating inner sphere with an angular velocity Ω
The (ANN) model has been trained based on the experimental data to
produce the torque and force at different eccentricities. The experimental
and trained torque and force are compared .The designed ANN shows a
good match to the experimental data.

Keywords: Neural Network, Eccentric Sphere, Eccentricity, Torque,
Force.

1 Introduction

An artificial neural network (ANN) is an information processing paradigm that
is inspired by the way biological nervous systems, such as the brain, process
information. The key element of this paradigm is the novel structure of the
information processing system. It is composed of a large number of highly inter-
connected processing elements (neurons) working in unison to solve specific prob-
lems. ANN, with their remarkable ability to derive meaning from complicated or
imprecise data, can be used to extract patterns and detect trends that are too
complex to be noticed by either humans or other computer techniques. Neural
networks are widely used for solving many scientific linear and non-linear prob-
lems [1,2,3,4,5] The theoretical and experimental studies concerning the flow
field of viscous and viscoelastic fluids in annular region between two rotating
bodies are very interesting boundary value problems in rheology [7,8,9,10] The
solution of these boundary value problems based on microscopic models [11,12]
or phemenological state equations of state [13] allow a number of experimental
measurements sufficient to determine a specific set of material parameters such
as viscosity and first normal stress difference which is very important in different
branches of industries. A large number of theoretical and experimental works are
done on the viscous flow between two eccentric spheres; [14,15,16,17,18]. Re-
cently, M.Y.El-Bakry et .al. studied the flow of viscoelastic fluid between two
eccentric spheres theoretically [19] and experimentally [20]. Determination of
the torque and the force on the outer stationary sphere while the inner sphere
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c© Springer-Verlag Berlin Heidelberg 2009



172 M.Y. Elbakry, M. El-Helly, and M.Y. Elbakry

is rotated with angular velocity at different eccentricities is theoretically inves-
tigated in [19] and the experimental data are obtained in [20] .In the present
work, we have applied the Artificial Neural Network ANN technique to simulate
and predict the torque and the force on the outer stationary sphere as a func-
tion of angular velocity of the inner sphere in eccentric sphere model at different
eccentricities using 0.3 polyacrylamide in 50/50 glycerin/water.

2 Eccentric Sphere Model

The flow of a fluid of a second order between two eccentric (two centers are not
coincide on each other) spheres is considered. This study is carried out in terms
of the Bispherical Coordinates α, β, γ.The inner sphere is rotated with angular
velocity while the outer sphere is kept at rest. The equations of motion of first
and second orders are formulated and solved. The solution of the problem is
carried out within the frame of retarded motion approximation [13]. The velocity
field up to a second order is being a superposition of a first order primary flow
distributed uniformly around the axis of rotation and a secondary flow which
is every where perpendicular to the streamlines of the primary flow. The forces
and torque acting on the outer sphere, when kept at rest, are calculated in [19].
Since experimental measurements can be carried out about the axis of rotation
and any two arbitrary axes perpendicular to it, the total forces and torques are
expanded in the X,Y,Z-directions, where Z-axis is taken along the symmetry
axis. The two component of forces in X and Y-directions are vanished and the
non vanishing component of the force is in Z-direction which is dented by Fz .
The non-vanishing resultant torque is obtained about the z-axis. The force and
torque results are functions of eccentricity of the two spheres which represent
distance between two centers of the two spheres, the angular velocity of the
inner sphere and material parameters of the fluid (viscosity and first normal
stress difference). The experimental setup is built to measure force and toque of
the eccentric sphere model in order to determine viscosity and first normal stress
difference in [20]. These results are measured at certain values of the eccentricity
of the two spheres. In the present work we are used ANN to simulate and predict
these results of the forces and torque at different eccentricities which enable us
to predict these values of force and torque at any value of eccentricity.

3 Neural Network Representation for the Torque and
Force Acting on the Outer Sphere in Eccentric Sphere
Model

3.1 Feed-Forward Neural Networks

An artificial neural network (ANN) is made up of a number of simple and highly
inter-connected computational elements. There are many types of ANNs, but
all of them have three things in common: individual neurons (processing ele-
ments), connections (topology) and a learning algorithm. The processing element
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Fig. 1. Neuron Model

Fig. 2. Example of two hidden layer neural network

calculates the neuron transfer function of summation of weighted inputs. A sim-
ple neuron structure is shown in Figure (1).

The neuron transfer function, f , is typically step or sigmoid function that
produces a scalar output (O) as follows

O = f(
∑

i

Wi + b) (1)

where Ii , Wi and b are ith input, ith weight and bias, respectively. A network
consists of one or more layers of neurons. An example of a multi-layer network
is shown in Figure (2). This example consists of one input layer and two hidden
layers and one output layer. Each neuron can have multiple inputs and only one
output as shown in Figure (2). Inputs to neurons could be from external stimuli
or could be from output of other neurons. Copies of the single output that comes
from a neuron could be input to many other neurons in the network. There is
an inter-connection strength, weight, associated with each connection.

When the weighted sum of the inputs to the neurons exceeds a certain thresh-
old, specified by a threshold (transfer) function with bias, the neuron is fired
and an output signal is produced. The network can recognize input-output
relation (mapping function) once the weights are tuned via some kind of learning
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process [21] Neural networks (NN) can approximate a function, associate input
patterns with specific output (desired or target) patterns, or classify input pat-
terns in an appropriate way as defined by the user. The essential features for a
feed-forward NN are reviewed below employing a two-layer NN [22,23]. How-
ever, the results generally hold for any multiple layers NN. It is assumed that,
the NN consists of an input; a hidden layer and an output layer (see Fig.2).
The objective is to associate a P-pattern input to their corresponding P-pattern
target. The following definitions are necessary’

NI,NH and NO =the number of nodes in the input,hidden and output layers,
respectively
I (i, r) = the ith input value, i ∈ [1, NI] ; in the rth input pattern, r ∈ [1, P],
W1 (i, j) = the weight connecting the ith input value to the jth hidden neuron,
W2(j, k) = the weight connecting the jth hidden neuron to the kth output
neuron,
B2(k) , k ∈ [1, NO] = the bias associated with the kth output neuron,
O (k, r) = output of the kth output neuron, k ∈ [1, NO], for the rth input
pattern,
T (k, r) = target of the kth output neuron, k ∈ [1, NO], for the rth input
pattern,
Y = all weights and biases for the whole NN which starts with the random
values. The output of the jth hidden neuron at the rth input pattern is given by:

H(j, r) = f

[
NI∑

i=1

W1(i, j)I(i, r) + B1(j)

]

(2)

where f, is an approximate transfer function. Typical transfer functions are the
hyperbolic tangent function defined as:

f1(θ) = tanh(θ) (3)

and the linear function defined as:

f2(θ) = tanh(θ) (4)

Similarly, the output of the kth output neuron is given by:

O(j, r) = f

[
NH∑

j=1

W2(j, k)H(i, r) + B2(k)

]

(5)

The NN output O, is required to mimic a target output T. To achieve that,
the NN is trained to find an approximate set of weights and biases Y, which
minimizes an index E defined as:

E =
NO∑

k=1

P∑

r=1

[

O(k, r) − T (k, r)

]2

(6)

An algorithm is employed to minimize the index E over Y, employing gradi-
ents estimated using the partial derivatives of E with respect to Y. The gradi-
ents are determined, employing the backpropagation technique which involves
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performing computations backward in the network [24]. The training is per-
formed employing the Levenberg - Marquardt algorithm (LMA) [25]. The LMA
employs a Newton - like update in the form,

Yυ = Yυ−1 −
[

Jt − μ
∼
I

]−1

J te (7)

where J is the Jacobian matrix which contains the first derivatives of the NN
errors with respect to the weights and biases, e is a vector of NN errors, μ is
is a scalar changed adaptively by the algorithm (the adaptation constant), υ is
the iteration number, t denotes transposition and

∼
I is the identity matrix. The

term between brackets in the R.H.S. of equation(7) is an approximation of the
Hessian matrix, while the term after it is the gradient.

3.2 The Proposed Neural Network

An ANN was constructed for simulation and prediction of the force and torque
on the outer stationary sphere in eccentric sphere model. There are many dif-
ferent types of ANNs. The most widely used is the Back Propagation ANN.
This type of ANN is excellent for performing classification task [26,27]. The
developer of ANN has to answer the main question: which configuration of the
ANN is appropriate for a good out-of-sample prediction? The configuration of
ANN needs to be determined accurately to give an optimal classification result.
This configuration includes the number of layers and the number of neurons
for each layer. It is known that too many neurons degrade the effectiveness of
the model and leads to the undesirable consequences, long training times and
local minima. Large number of connection weights in the ANN model may cause
over-fitting and loss of the generalization capacity. On the other hand, choosing
too few neurons may not capture the full complexity of the data. Many heuristic

Fig. 3. The Proposed neural network configuration for torque or force
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rules were suggested for finding the optimal number of neurons in the hidden
layer. Most of them employ trial-and-error methods, in which the ANN training
starts with a small number of neurons, and additional neurons are gradually
added until some performance goal is satisfied [28]. Unfortunately, there is no
theoretical consideration for determining the optimal network topology for the
specific problem. A number of configurations sample of a feed-forward NN was
considered to select among them the best one that gives the highest classification
accuracy for our problem.

In each configuration two factors are changed. A configuration of NN started
with one hidden layer and five neurons. Gradually the number of neurons is
increased by five for five times to reach to forty neurons. Then, the number of
hidden layers is increased by one for the same number of neurons. The proposed
network consists of input layer, one hidden layer and an output layer. The input
layer composes of two inputs in two cases the first is the angular velocity and the
second is the eccentricity of the two spheres while the output in the first case is
the force acting on the outer sphere and in the second case is the torque acting
on the outer sphere. The output layer uses single neuron (force or torque) based
on a linear activation function.

After many trials, we have used feed-forward neural networks with one hidden
layer and forty neurons per hidden layer and the standard back propagation as
the training algorithm. The hidden layer nodes use a sigmoid transfer function
and the node in the output layer has a linear transfer function and the objective
function to be minimized was the Mean Square Error (MSE). Figure (3) shows
the structure of the proposed network for torque and force.

Fig. 4. Neural Network Training Performance for Force
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The actual weights and biases for the designed networks are given in the
appendix.

4 Results and Conclusion

The chosen neural network was trained on four cases of different eccentricities of
the two spheres for force Fzwhich is acting in the z direction of the Cartesian coor-
dinates on the outer stationary sphere as a function of the angular velocity. These
values of eccentricities are 0.2, 0.4, 0.6 and 0.8. The training performances of the

Fig. 5. The NN simulation of the force on the outer sphere in the z-direction of the
eccentric sphere model
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Fig. 6. Neural Network training performance for torque

obtained networks are shown in figure (4). In this figure, the training is stopped
when the difference between the desired output and NN simulation output nearly
equal to zero (0.00045). The obtained networks were tested for choosing the best
one. This network was tested on the above mentioned four cases and used for pre-
dicting the case at eccentricity 0.7. Figure (5) shows the neural networks results
of the four cases training and one predicted case for the change of the force versus
angular velocity Figure (6) shows also the training performances of the torque act-
ing on the outer stationary sphere as a function of the angular velocity. The values
of training at eccentricities are 0.2, 0.4, 0.6 and 0.8 while the prediction value at
eccentricity ε = 0 The four cases training and one predicted case for torque acting
on the outer stationary sphere as a function of the angular velocity are shown in
Figure (7). It was observed that these figures illustrate an excellent performance
in two cases (the training and prediction).

4.1 Force Results

The following figure shows the four cases tested and one predicted data of the force
acting on the outer sphere in (S.I.units)with angular velocity in (S.I.units) com-
pared to the experimental data for 0.3 polyacrylamide in 50/50 glycerin/water.
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Fig. 7. The NN Simulation of the Torque on the Outer Sphere of the Eccentric Sphere
Model

4.2 Torque Results

The Neural Network performance for torque acting on the outer sphere are
shown in the figure(6). The following figure shows the four cases tested and one
predicted data of the torque acting on the outer sphere in (S.I.units)with angular
velocity in (S.I.units) compared to the experimental data for 0.3 polyacrylamide
in 50/50 glycerin/water. Finally, the present work presents a new technique
for modeling the force and torque on the outer stationary sphere in eccentric
sphere model at different eccentricities based on ANN approach. The designed
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ANN shows a good match to the experimental data.we used the ANN technique
which gives a numerical solution which easier than many complicated theoretical
methods and obtain a best fitting with the experimental data.
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Appendix

This appendix presents two figures Fig.8 and Fig.9 respectively, the first one
is the produced weights and biases values of the best trained network of force
while the second one presents the produced weights and biases values of the best
trained network of the torque. Note: LW (2, 1)T represents the transpose of LW
(2,1). All titles in the these tables that appears in Fig.8 and Fig.9 were described
in architecture of the proposed network.
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Fig. 8. The produced weights and biases values of the best trained network of Force
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Fig. 9. The produced weights and biases values of the best trained network of the
torque
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