
Argumentation and Artifact
for Dialogue Support

Enrico Oliva1, Mirko Viroli1, Andrea Omicini1, and Peter McBurney2

1 ALMA MATER STUDIORUM–Università di Bologna, Cesena, Italy
2 University of Liverpool, Liverpool L69 3BX UK

Abstract. Intelligent and autonomous software agents may engage in dialogue
and argument with one another, and much recent research has considered proto-
cols, architectures and frameworks for this. Just as with human dialogues, such
agent dialogues may be facilitated by the presence of a mediator, able to sum-
marise different positions, identify common assumptions and inconsistencies,
and make appropriate interventions in the dialogue. Drawing on the theory of
co-ordination artifacts in multi-agent systems, we propose a formal framework
to explicitly represent the functions of a mediator artifact. We then describe an
implementation of this framework using the TuCSoN coordination infrastruc-
ture for MAS, where the mediator artifact is realised by a tuple centre—a pro-
grammable tuple space.

1 Introduction

Proponents of public policy conversations and decision-making processes usually em-
phasise the need for a human moderator or mediator to be involved in the interaction,
e.g., Forester [3]. The mediator may act to ensure fairness and equality of access by
all participants, may assist participants to clarify their positions and to argue more ef-
fectively, and may even seek to reconcile opposing views. Similarly, the designers of
computer-aided argumentation systems have also provided support for human media-
tors; for example, the developers of Zeno define their system as “a mediation system”
[5, p. 10]:

“a kind of computer-based discussion forum with particular support for ar-
gumentation. In addition to the generic functions for viewing, browsing and
responding to messages, a mediation system uses a formal model of argumen-
tation to facilitate retrieval, to show and manage dependencies between argu-
ments, to provide heuristic information focusing the discussion on solutions
which appear most promising, and to assist human mediators in providing ad-
vice about the rights and obligations of the participants in formally regulated
decision making procedures.”

Just as with human interactions, and for the same reasons, many of the functions pro-
vided by mediators could be useful when software agents engage in argumentation with
one another. Most of these mediator functions are better supported through some al-
gorithmic procedure, rather than by some articulated process of rational deliberation.
In earlier work [8], we presented a conceptual framework for a central co-ordinating

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 107–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 E. Oliva et al.

entity in an argumentation dialogue, called a Co-Argumentation Artifact (CAA), to pro-
vide co-ordination services to the participating agents, allowing them to share, store
and exchange arguments with one another. A CAA is an artifact, a computational en-
tity used by the agents, specialised in argumentation reasoning. Vesting the CAA with
its own argumentation capabilities meant that this entity, like the participants, could
elaborate over the arguments stored. For example, the CAA could embody algorithms
determining whether a particular argument is acceptable (under a specified semantics of
argumentation) with respect to the global knowledge of all the participants. We reprise
the CAA framework in Section 3.1.

It is easy to imagine that the CAA could undertake more sophisticated interventions
in the dialogue, resembling complex, automated tasks of a human mediator. To this end,
in this paper we extend our earlier concept of a central co-ordinating artifact to be a di-
alogue artifact (DA), acting as a mediator between the participating agents, enacting
the agents participation in the dialogue. We do this, first, by articulating, in Section 2,
the possible functions of the mediator artifact; for reasons of space, we do not consider
all such functions here. We then present a formalisation of some of such mediator ar-
tifact functions in Section 4, drawing on recent work in the theory of communications
artifacts in multi-agent systems [11,18]. We follow this with a description of a proto-
type implementation we have undertaken in the TuCSoN coordination infrastructure,
in Section 5. Finally, Section 6 concludes the paper.

2 Functionalities of Multi-agent Argumentation Support

In an agent and human society, argumentative reasoning system and dialogue system
have a central role enabling exchange of knowledge, common sense reasoning, dispute
resolution and argumentative communication between agents.

Our model of a multi-agent argumentation system follows the A&A meta-model
[12,17], which defines MAS as composed of two kinds of entities: agents, in charge
of autonomous and proactive behaviour, and artifacts, providing function-oriented ser-
vices to agents in a passive way. An agent is an autonomus computational entity situated
in an enviroment, which is composed by artifacts; an artifact is hence a social construct
shared by the agents that enables, constraints or mediates their activities.

In this work we want to propose a model that merges concepts from argumentation
and artifact theories, and offers a coherent framework to cater for these reasoning and
coordination abilities that agents need to exhibit. More precisely, we brings the theory
of argumentation and of dialectical agents interaction to a level of operationalisation.

Dialogue participants, of course, need to be able to generate, evaluate, contest and
defend arguments as they interact with one another through the dialogue. But the medi-
ator artifact also needs this argumentation functionality if it is to find common ground
between different participants, or to clarify their differences. For example, if the medi-
ator is to convince two participants that their opposed positions in fact share common
assumptions or that one position implies the other, then the mediator artifact may need
– in an automated way – to create, present and defend a case to the participants.

Consequently, we define two types of artifacts: Dialogue Artifacts (DA), to support
dialectical agent interaction, and Co-Argumentation Artifacts (CAA), to support agent

Argumentation and Artifact for Dialogue Support 109

argumentative reasoning. The DA realises the mediator artifact enabling argumentative
communication among a multiplicity of entities. DA exploits directly CAA functional-
ities in order to drive the dialectical interaction between agents through argumentative
reasoning over the argument set stored inside the centralised CAA.

The CAA realises coordination services based on argumentative reasoning between
multi entities. For example, the CAA could determine whether a particular argument
is acceptable (under a specified semantics of argumentation) with respect to the global
knowledge of all the participants. Briefly the CAA is composed of arguments, repre-
sented in a suitable computational form, and a collection of algorithms deployed over
this argument set. The CAA is well introduced in a recent paper by Oliva et al [8].

The combination of both artifacts DA and CAA provides the support of basic and ad-
vanced functionality for automatic mediation services in a MAS based on
argumentation.

2.1 Dialogue Artifact

The dialogue artifact requires some basic functionality to support the exchange of ar-
guments in a dialogue between the participants. This basic functionality includes:

1. Storage of the dialogue protocol (e.g. in a library of such protocols)
2. Storage of the specifications of the dialogue protocol
3. Storage of the complete history of a dialogue as it proceeds
4. The ability to refuse to allow agent utterances which do not conform to the current

protocol in use
5. The ability to suggest next moves which are legal according to the current protocol

in use in a dialogue
6. The ability to receive and store confidential information from the participating

agents, such as their preferences in a negotiation. The mediator could then aggre-
gate such information (across multiple agents), and/or seek to identify and reconcile
differences.

Also, the dialogue artifact could act as sophisticated mediator of the discussion, by
providing in an automated way the following services:

– Seeking to resolve any disputes over the rules of the protocol
– Providing rewards or penalties to agents for breaking the protocol rules
– Having the power to admit or to expel agents to/from the dialogue
– Suggesting a new protocol, when needed.
– Supporting multiple simultaneous bilateral interactions.
– Assigning roles, rights and responsibilities to agents at run-time, as, for example,

in an action protocol, assigning the role of winner to a particular agent near the end
of the interaction.

– Identifying conflicts and inconsistencies between commitments made by agents in a
dialogue, for example, if an agent commits to sell a car it is also trying to purchase.

– Identifying agent utterances which are not relevant to the current state of the dia-
logue, and refusing to permit these to be made.

– Providing automated alerts to inform agents that dialogues on particular topics are
about to start, or to end, or that particular commitments have just been made.

– Combining different dialogues on the same topic.

110 E. Oliva et al.

More advanced functions could also include:

– Annotation of protocols with their properties, for protocols stored in the protocol
library, for instance, the possible outcomes of a protocol, its computational com-
plexity, and so on.

– Storing the outcomes of past dialogues, for example, the commitments remaining
at the end of the dialogue.

– Tracking agent commitments across multiple dialogues.
– Using previous dialogues to create an independent assessment of the reputation of

participating agents.
– Storage of the entire history of past dialogues. These may be required for regulatory

or legal reasons, e.g., in stock market transactions.

In this paper, we present a Dialogue Artifact supporting dialectical argumentation in
a MAS scenario, which provides some of the basic functionalities listed above. The
DA is based over two formal systems: an argumentation system and a dialogue system,
explained in the next sections.

3 Argumentation and Dialogue: Formal Definitions

In our earlier work [8], we introduced an argumentation system and an artifact abstrac-
tion to support the co-ordination functions necessary to support agent argumentation.
We now extend that framework to handle argumentation dialogues, drawing on the the-
ory of organisations and roles in multi-agent systems of Omicini et al. [11] and the
formal language used to define an agent interaction protocol, in the work of Viroli et
al. [18]. In our approach we describe a dialogue in terms of a labelled process algebra,
where labels denote roles, as in [11], and the process algebra specifies the interaction
protocol, as in [18].

We assume that the interaction is between a finite number N of intelligent software
agents, and that each agent has a range of possible utterances (or actions) at each step
in the dialogue (i.e., this is a multi-move protocol). Formally, a multi-agent dialogue
system for argumentation is composed of two parts: an argumentation system, and a
dialogue system. The definition of the argumentation system is discussed based on the
work in [8], and builds on various earlier argumentation frameworks.

3.1 Argumentation System

Prakken and Vreeswijk [16] observe that an argumentation system is generally com-
posed of five elements (although sometimes implicitly): (1) a logical language; (2)
an argument definition; (3) a concept of conflict among arguments; (4) a concept of
defeated argument; (5) a concept of argument acceptability. In this section we define
an argumentation system as a reference point for our work. We take inspiration from
Dung’s framework [2], and we also define the structure inside the arguments.

The object language of our system is a first-order language, where Σ contains all
well-formed formulae. The symbol � denotes classical inference (different styles will
be used like deduction, induction and abduction) ≡ denotes logical equivalence, and ¬
or non is used for logical negation.

Argumentation and Artifact for Dialogue Support 111

Table 1. Deductive Inference: (MP) Modus Ponens, (MMP) Multi-Modus Ponens and (MT)
Modus Tollens; Inductive and Abductive Inference: (θ -su) θ -subsumption, (Ab) Abductive

Deductive Inference Inductive Inference
MP A A→B

B θ -su B
R where Rθ ⊆ B

MT ¬A B→A
¬B Abductive Inference

MMP B1,...Bn (B1,...Bn)→C
C Ab B A→B

A

Definition 1 (argument). An argument is a triple A = 〈B, I,C〉 where B = {p1, . . . ,

n}⊆Σ is a set of beliefs, �I∈ {�d ,�i,�a} is the inference style (respectively, deduction,
induction, or abduction), and C = {c1, . . . ,cn} ⊆ Σ is a set of conclusions, such that:

1. B is consistent
2. B �I C
3. B is minimal, so no subset of B satisfying both 1 and 2 exists

The types of inference we consider for deduction, induction and abduction are shown in
Table 1. Modus Ponens (MP) is a particular case of Multi-Modus Ponens (MMP) with
only one premise. The inference process θ -subsumption derives a general rule R from
specific beliefs B, but is not a legal inference in a strict sense.

For defeat of arguments, the definition is not straightforward because there are differ-
ent type of attack well defined in [16]. Following those definitions, two possible types
of attack are ‘conclusions against conclusions’ – called rebuttals – and ‘conclusions
against beliefs’—called undercuts.

Definition 2 (contrary). The contrary (or attack) relation R is a binary relation over
Σ that ∀p1, p2 ∈ Σ , p1Rp2 iff p1 ≡ ¬p2

Definition 3 (undercut). Let A1 = 〈B1, I1,C1〉 and A2 = 〈B2, I2,C2〉 be two distinct ar-
guments, A1 is an undercut for A2 iff ∃h ∈C1 such that hRbi where bi ∈ B2

Definition 4 (rebuttal). Let A1 = 〈B1, I1,C1〉 and A2 = 〈B2, I2,C2〉 be two distinct ar-
guments, A1 is a rebuttal for A2 iff ∃h ∈C1 such that hRci where ci ∈C2

The definitions of acceptability and admissibility used in our framework are those of
Dung in [2]. The following definitions are the basic ones in our argumentation system
and follow from Dung’s framework.

Definition 5 (conflict-free set). An argument set S is a conflict free set iff there exist
no Ai,A j ∈ S such that Ai attacks A j.

Definition 6 (collective defense). An argument set S defends collectively all its ele-
ments if ∀ argument B /∈ S where B attacks A ∈ S ∃ C ∈ S : C attacks B.

Definition 7 (admissible set). An argument set S is a admissible set iff S is conflict free
and S defends collectively all its elements.

Definition 8 (preferred extension). An argument set S is a preferred extension iff S is
a maximal set among the admissible set of A.

112 E. Oliva et al.

An argument is acceptable in the context of preferred semantics if an argument is in
some/all preferred extensions (credulous/sceptical acceptance).

Definition 9 (credulous acceptability). An argument A is credulous acceptable if A ∈
at least one preferred extension.

Definition 10 (sceptical acceptability). An argument A is sceptical acceptable if A ∈
all preferred extensions.

For further details, including an implementation and examples of this argumentation
framework, we refer the interested reader to our earlier paper [8].

3.2 Dialogue System

In this section we present a novel formalisation of a multi-agent dialogue system. Our
intention is to capture the rules that govern legal utterances, as well as the effects of
utterances on the commitment stores of the dialogue. We use a process algebra approach
in the style of [18] to represent the possible paths that a dialogue may take, and to
represent explicitly the operations to and from the commitment store. We proceed by
considering each element of a dialogue system in turn: (1) the communication language;
(2) the interaction protocol; and (3) the protocol semantics.

Because a dialogue is a dialectical exchange of arguments, we assume that argu-
ments and counter-arguments are represented and expressed in the formal language
defined above in Section 3.1. Agents may exchange arguments, along with facts, with
one another in the form of instantiated parameters in their utterances.

Communication Language. The agents need to share a same communication lan-
guage CL in order to exchange information. The role of CL as a language used for
internal knowledge representation and reasoning is explained in [14]. We let F de-
note a set of terms representing facts, and A the set terms representing all arguments
able to be represented in Σ following the definition of an argument given in Defini-
tion 1. Our CL is defined in order to support all six primary dialogue types as iden-
tified by [19]: persuasion, inquiry, negotiation, information seeking, deliberation and
eristic.

Definition 11 (communication language). Our communication language is a set of
locutions Lc. A locution l ∈ Lc is a expression of the form perfname(Arg1, . . . ,Argn)
where perfname is a element of the set P of performatives and Argx is either a fact or an
argument.

An agent performing a dialogue using the communication language can utter a locu-
tion composed of facts and arguments. A fact is represented by syntax fact(Terms)
and an argument with argument(B,I,C). The definitions to manage attacking and
undercutting arguments are provided by the underlying argumentation system given in
Definition 1. In Example 1 an agent wants to communicate the classical example of
argument like All men are mortal, Socrates is a man, Socrates is mortal, so it uses a
Argue locution with an argument parameter.

Argumentation and Artifact for Dialogue Support 113

Example 1. Argue(argument(name,beliefs([human(Socrates)],
[clause(mortal(X), [human(X)])]),infer(MP),conclusions
([mortal(Socrates)]))).

Examples of performatives to support an instance of an Information Seeking Dialogue
could be: OpenDialogue, Ask, Tell, DontTell, Provide, Argue, and so on.
Further details about this form of dialogue and its complete locutions are presented in
[1] (see also Example 2).

Dialogue Protocol. In our framework the dialogue protocol is a complete description
of all possible dialogue paths, from the perspective of an external entity observing the
dialogue between the agents. The protocol indicates the possible paths of a dialogue,
specifies the source and target of each message, and shows the relationship between
utterances and the content of commitment stores. Our approach basically describes the
step-by-step behaviour of an external entity acting as a mediator, hence enabling the
allowed interactions. Hence, technically, we find it useful to model a dialogue in terms
of a process algebra with standard composition operators (sequence, parallel, iteration),
and whose atomic actions represent either agent utterances, or interactions with the
commitment store (writing, reading, or removing a commitment).

On the one hand, Prakken [15] proposes a general definition of locution where a
move m is denoted by four elements: (1) identifier, (2) speaker (or source), (3) speech
act, and (4) intended recipient (or target). Following this model, we provides a definition
of a speech act, as follows:

Definition 12 (action). An action A is defined by the syntax A ::= s : Lc|s[t1, . . . ,tn] :
Lc where s indicates the source, and [t1, . . . ,tn] indicates the (optional) targets of the
message.

On the other, beyond this, we include additional atomic operations K over commitment
stores—many of them can actually occur into one argumentation artifact. To this end,
the commitment store is viewed as a set of tuples as in [7]: such tuples are manipulated
by the commands of the Linda language [4]—in, rd and out.

Definition 13 (term action). A term action K has the syntax K ::= in(C,X)|out(C,X)|
rd(C,X), where C is a term representing the commitment store identifier, and X is a
term representing the commitment.

Specifically, the commands in(C,t), rd(C,t) and out(C,t) respectively con-
sumes, reads and puts a tuple t in the commitment store C. These actions are useful
to manage the private or public commitment store in relation to the dialogue execu-
tion. In particular, they can operate, for example, as action-preconditions in order to
restrict or constrain the next action choice, and thus enable only certain future dia-
logue paths. For instance, if at a given time a sub-dialogue is guarded by operation
rd(c,commit(a)), then it is allowed to proceed only if commit(a) occurs in the
commitment store.

Definition 14 (protocol). A protocol P is a composition of action from sets A and K,
defined by syntax P ::= 0 |A.P |K.P |P + P |(P ‖ P) | !P where the symbols .,+,‖, ! de-
note respectively sequence (action prefix), choice, parallel composition, and infinite
replication operators, and the symbol 0 denotes the empty protocol.

114 E. Oliva et al.

For example, an abstract dialogue protocol definition is given by D := (s : a1 +s : a2).(s :
a3 + s : a4).s : a5 where agent s is only allowed to execute a sequence of three actions:
the sequence composed of a first action consisting of either action a1 or action a2, then
a second action consisting of either a3 or a4, and then a third action comprising a5. A
protocol specifies a set of actions histories that the agents might execute. As another
example of a protocol definition, consider D := s : a1 ‖ s : a1 ‖ s : a1 ‖ t : a2 ‖ t : a3

where agent s invokes a1 three times, agent t can invoke a2 and a3 only once, but in
whichever order.

To illustrate this framework, we present a specification for an Information-Seeking
Dialogue (f is seen as a variable over the content of communication):

Example 2 (Information Seeking Dialogue). This protocol involves two agents: an
agent s controlling information, and an agent c trying to persuade s to give him
the permission to access. Operation rd(permission(c,f)) is the instruction by
which the protol instance checks whether c can be given the permission: if this is the
case, permission is provided and the dialogue ends; otherwise, c should try to persuade
s by arguing an ADD, which can then by either accepted or refused by s.

c:Opendialogue.
s:Opendialogue.
c:Ask(f).(

rd(permission(c,f)).
s:Tell(f).
s:Provide(f).
s:Argue(permission(c,f),YES,A).
s:Enddialog.
c:Enddialog

+
rd(not(permission(c,f))).
s:DontTell(f).
s:Argue(permission(c,f),NO,B).
c:Argue(permission(c,f),ADD,A).(

s:Argue(permission(c,f),NO,A).
s:Enddialog.
c:Enddialog
+
s:Accept(A,permission(c,f)).
out(accept(permission(c,f))).
s:Provide(f).
s:Enddialog.
c:Enddialog

))

3.3 Operational Semantics

Following Hamblin [6], we assume that each agent is associated to a knowledge base,
accessible to all agents, containing its commitments made in the course of the dialogue.

Argumentation and Artifact for Dialogue Support 115

Commitments are understood as statements which the associated agent must support,
while they remain in the commitment store, if these statements are either questioned or
attacked by other agents. We can now use the notion of commitment store and the tran-
sition system given in Definition 16 to define an operational semantics for the dialogue
system. This semantics describes the evolution over time of the dialogue state and the
states of commitment store (seen as composition of all commitment stores). In essence,
the commitment store is the knowledge repository of the dialogue as a whole, and it is
expressed in our framework as a multiset of terms.

Definition 15 (commitment store). A commitment store C is a multiset of terms and
it is defined by the syntax C ::= 0|(C|C)|X where X is a term, and 0 is the empty set.

Definition 16 (operational semantics). The operational semantics of our dialogue sys-
tem is described by a labelled transition system 〈S,→, I〉, where S ::= (C)P represents
the state of dialogue system (protocol P running with commitment store C), I is the set
of interactions (labels) composed of i ::= τ|a, and → is a transition relation of the kind
→⊆ S× I×S.

As usual, we write s
i−→ s′ in place of 〈s, i,s′〉 ∈→, meaning the dialogue system moves

from state s to s′ due to interaction i—either an action a, or an internal step τ (an
operation over the commitment store). We introduce a congruence relation ≡, which
syntactically equates similar states:

0 + P ≡ P P+ Q ≡ Q+ P (P + Q)+ R ≡ P+(Q+ R) !P ≡ P|!P
0 ‖ P ≡ P P ‖ Q ≡ Q ‖ P (P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R)

We use also notation t{x/y}, to mean term t after applying the most general substitution
between terms x and y—x should be an instance of y, otherwise the substitution notation
would not make sense. Finally, we define operational rules that describe the behavior of
the dialogue system as follows:

(C)out(x).P τ→ (C|x)P (K −OUT)
(C|x)rd(y).P τ→ (C|x)P{x/y} (K −RD)
(C|x)in(y).P τ→ (C)P{x/y} (K − IN)
(C)(P + Q) i→ (C′)P′ if (C)P i→ (C′)P′ (OP−SUM)

(C)(P|Q) i→ (C′)(P′|Q) if (C)P i→ (C′)P′ (OP−PAR)

(C)a.P
a′→ (C)P{a′/a} (ACT)

Rule (K-OUT) provides the semantic of out operation, expressing that x term is added
to the commitment store C, and process continuation can carry on. Rules (K-RD) and
(K-IN) similarly handle operation rd and in: the use of substitution operator guaran-
tees that the term x in the commitment store is an instance of the term x to be retrieved.
Rules (OP-SUM) and (OP-PAR) provide the semantics for choice and parallel oper-
ators in the standard way. Finally rule (ACT) expresses that locution a′ is executed
that is an instance of the allowed one a, and accordingly process continuation P can
carry on.

116 E. Oliva et al.

4 The Dialogue Artifact

As mentioned above, the A&A meta-model for MAS as discussed in [8] views agents
engaged in argumentative communication as making use of an abstraction, called a Co-
Argumentation Artifact, to communicate, to exchange information, data and arguments,
and to record their public commitments. The current work extends this abstraction by
formally defining a Dialogue Artifact (DA), able to support and mediate the commu-
nication between agents engaged in a dialogue under the system defined in Section 3
above.

Definition 17 (Dialogue Artifact). A Dialogue Artifact is a triple DA = 〈DP,CS, IC〉,
where

– DP is a collection of specifications of dialogue protocols
– CS is a collection of commitment stores
– IC is a collection of specifications of interaction control (IC)

The DP, CS and IC components are in turn defined in the following subsections.

Dialogue Protocols. The class DP is a collection of formal specifications of dialogue
protocols, with each protocol specified using a labelled process algebra, as in Defini-
tion 14. Protocols in DP may also be annotated with identifiers and with their properties,
such as their termination complexity. When agents engage in dialogue using a protocol
in the collection DP, they make utterances according to the permitted sequences defined
by the protocol specification. Accordingly, the Dialogue Artifact is able to verify that
utterances proposed by agents in a dialogue are valid under the protocol; the DA is also
able to use the specification to suggest potential legal utterances to participating agents
at each point in the dialogue.

Commitment Stores. For any particular collection of agents and any particular dia-
logue they undertake, the collection CS specifies a set of stores representing the private
and public Commitment Stores of each participant, together with a central Commitment
Store for the dialogue as a whole. The Dialogue Artifact can support the dialogue by
holding these stores. The private Commitment Stores are also held by the DA to record
confidential information entrusted to it by the participants, such as their private valua-
tions of some scarce resource (in the case of Negotiation dialogues) or arguments based
on privileged information (in the case of dialogues over beliefs). Sharing such informa-
tion with the DA may allow the DA to elaborate over such stores while not revealing
private information of individual agents.

We can classify the various types of stores according to the access permissions (write,
read, and delete permissions) holding on each store, as shown in Table 2. The cells of
the table indicate the access permissions pertaining to different types of Commitment
Stores (the rows of the table), depending on the agent seeking access (the columns of
the table). The Dialogue Artifact may also store other relevant information, such as the
sequence of locutions exchanged in the current dialogue, which would be stored in the
Central Commitment Store. These stores do not have an algebraic structure, but rather
a declarative representation of the contents with a proper classification.

Argumentation and Artifact for Dialogue Support 117

Table 2. Commitment Stores - Read (R), write (W) and delete (D) Permissions

Type Agent A All Agents Mediator Artifact

Private Commitment Store of Agent A R/W/D - R
Public Commitment Store of Agent A R/W/D R R

Central Commitment Store R R R/W/D

Interaction Control. The third component of the Dialogue Artifact, denoted as IC,
is a collection of specifications for interaction control. IC roughly follows the MVC
(Model View Control) pattern, where the model is the dialogue specification in DP, the
view is the CS component with dialogue trace, and the control is represented by the IC
specification. The control rule of the dialogue is represented by the labelled transition
system introduced in previous sections, modelling the evolution over time of the agent
interaction protocol. Three operators can be used to control the dialogue:

nextI(s) =
{

i : s
i→ s′

}
nextS(s) =

{
s′ : ∃i,s

i→ s′
}

nextIS =
{
(i,s′) : s

i→ s′
}

Operator nextI(s) yields the next admissible interactions i from state s. Operator nextS(s)
yields the states reachable from s in one step. Operator nextIS yields couples (i,s) instead.

The IC component realises the above three operators in order to identify which po-
tential utterances are legal for any agent at any point in the dialogue. The basic primi-
tives in,rd,out to manage arguments and facts in commitment stores allow the IC to
identify which constraints on the future course of dialogues are created by the existing
commitments. For instance, the IC could permit only one utterance in a choice point
basing the decision on state of commitment store. Also, it could work with an argument
set over some advanced structures such as conflict free sets and preferred extensions
presented in Section 3.1 to determine for instance the acceptability of an argument.

DA Functionalities. It is straightforward to see that all six basic functionalities of
the central Dialogue Artifact listed in Section 2.1 can be performed by a Dialogue
Artifact defined as a triple DA = 〈DP,CS,LI〉 as above. The collection DP provides the
functionalities of items 1 and 2, the storage of protocols and their formal specifications;
the Central Commitment Store of the collection CS provides storage for the history of a
dialogue (item 3); similarly, the private Commitment Store components of the collection
CS provide storage for confidential information communicated from agents to the DA
(item 6); the formal specification of a protocol in DP (as given by the process algebra
formalism we have used above) permits the DA to identify potential utterances which
do not conform to the protocol (item 4); and, both the formal protocol specifications in
the collection DP and the logics of interaction in IC permit the DA to suggest possible
legal next moves (item 5).

5 TuCSoN Implementation

The technological support to build a DA is provided by the TuCSoN coordination in-
frastructure for MAS introduced in [13]. TuCSoN provides MAS with coordination

118 E. Oliva et al.

dialoguesession(infoseek,close)
participant(infoseek,2)
dialogue(infoseek,[act(C,openDialogue(C,T)),

act(T,openDialogue(C,T)),act(C,ask(Arg)+
(act(T,tell(arg1),cs(T,out(commit(arg1)))))])

currentpar(infoseek,0)

Fig. 1. Example of Dialogue State (DP component)

%reacts from agent next moves request
reaction(rd(nextmoves(Dialogue,S)),(

rd_r(dialoguestate(Dialogue,S)),
out_r(findall(S,Dialogue))

)).
reaction(out_r(findall(S,Dialogue)),(

in_r(findall(S,Dialogue)),
findall(A,transition(S,A,Q),L),%collect all next legal moves
out_r(nextmoves(Dialogue,L))

)).

Fig. 2. Implementation of nextI operator in ReSpecT

abstractions called tuple centres where agents write, read and consume logic tuples via
simple communication operations (out, rd, in, inp, rdp). In particular, inp, rdp
respectively consume and read matching tuples in the same way in, rd; unlike in,
rd they fail if the tuple is not present when the request is served. As programmable
tuple spaces [10], tuple centers can play the role of agent mediator, where coordination
rules are expressed in terms of logic specification tuplesof the ReSpecT language—an
event driven language over the multi-set of tuples [9]. Since tuple centre can be used as
a general-purpose support for MAS artifacts, we exploited TuCSoN logic tuple centres
in order to implement DA.

In this framework, agents utter a locution by means of an out(move(Dialogue,
AgentID,Locution)) in the tuple centre. The automatic actions executed over
the commitment store are represented by the term cs(ID,out(commit(...)))—
where out could be replaced by in or rd operations. The CS class is composed of
commit tuples that are put in the tuple space as facts and arguments expressed in logic
tuple notation.

The dialogue is written in terms of tuplesdialogue(name,AList)whereAList
is the list of actions reifying in tuple form the operators choiceact(A1)+(act(A2)),
parallel par(A1,A2) and sequence A1,A2. Figure 1 shows a dialogue protocol com-
posed by some basic information on dialogue state and few steps of the Information Seek-
ing Dialogue protocol. The tuples that form the DP component are: participant
(potential number of participants), dialogue (dialogue protocol),dialoguestate
(actual protocol dialogue state), and currentpar (actual number of participants). In
addition, an open dialogue session also uses tuple session(AgentID,infoseek,
open) for each dialogue participant.

The key idea of the IC implementation is shown in figure 3, where the reactions
implementing the control of dialogue interaction are presented. In particular, the code
implements the dialogue state transition after an agent action, the search of next admis-
sible move after an agent request, and also makes it possible the automatic interaction
with the commitment store executing cs actions. Such mechanisms make it possible

Argumentation and Artifact for Dialogue Support 119

transition(cs(Id,A),cs(Id,A),zero).
transition(act(Id,A),act(Id,A),zero).
transition([Act],A,zero):-!,transition(Act,A,zero).
transition([Act,Act2],A,Act2):-!,transition(Act,A,zero).
transition([Act|S],A,S):-transition(Act,A,zero).
transition(S1+S2,A,R1):-transition(S1,A,R1).
transition(S1+S2,A,R2):-transition(S2,A,R2).
%Start reaction
reaction(out(move(Dialogue,Id,Act)),(

in_r(dialoguestate(Dialogue,S)),
out_r(transition(S,act(Id,Act),C,Dialogue))

)).
reaction(out_r(transition(S,A,S1,Dialogue)),(

transition(S,A,S2), %make the state transition
in_r(transition(S,A,S1,Dialogue)),
out_r(dialoguestate(Dialogue,S2)),
out_r(findall(S2,Dialogue))

)).
reaction(out_r(findall(S,Dialogue)),(

in_r(findall(S,Dialogue)),
findall(cs(Id,Commit),transition(S,cs(Id,Commit),Q),L), %collect all next commits
out_r(nextcsmoves(Dialogue,L))

)).
reaction(out_r(nextcsmoves(D,[H|T])),(

in_r(nextcsmoves(D,[H|T])),
out_r(excommit(H)), %call execution commit
out_r(looknext(D,T))

)).
reaction(out_r(looknext(D,[E])),(

in_r(looknext(D,T)),
out_r(nextcsmoves(D,T))

)).
reaction(out_r(looknext(D,T)),(

T==[], in_r(looknext(D,[])),
in_r(nextcsmoves(D,[]))

)).
%Implementation of K-OUT, K-IN and K-RD
reaction(out_r(excommit(cs(Id,out(A)))),(

out_r(A), in_r(excommit(cs(Id,out(A)))),
in_r(dialoguestate(Dialogue,S)),
out_r(transition(S,cs(Id,Act),C,Dialogue))

)).
reaction(out_r(excommit(cs(Id,in(A)))),(

in_r(A), out_r(excommit(cs(Id,in(A)))),
in_r(dialoguestate(Dialogue,S)),
out_r(transition(S,cs(Id,Act),C,Dialogue))

)).
reaction(out_r(excommit(cs(Id,rd(A)))),(

rd_r(A), in_r(excommit(cs(Id,rd(A)))),
in_r(dialoguestate(Dialogue,S)),
out_r(transition(S,cs(Id,Act),C,Dialogue))

)).

Fig. 3. Control of Interaction: Checking agent legal locution, Making dialogue protocol transition
and executing automatically cs actions are the basic function here implemented in ReSpecT

for a dialogue to be driven automatically by the state of the commitment store. FAs an
example, Figure 2 shows the ReSpecT implementation of the nextI operator.

6 Conclusions

In this paper we propose a conceptual architecture for a multi-agent dialogue system in
which participants are assisted by a mediator, called a Dialogue Artifact. To the best of

120 E. Oliva et al.

our knowledge, there is no other research which combines at an operative level dialogue
and argumentation reasoning through the use of a mediation artifact. The functions of
such a mediator are the basic functionalities we have identified as part of a longer list of
potential mediation or moderation functions in agent argumentation dialogues. Our Di-
alogue Artifact is an extension of our previous concept of a Co-Argumentation Artifact
(CAA), and builds on that earlier work. We also draw on the recent theory of com-
munication artifacts in MAS to formalise the properties of the Dialogue Artifact. Our
paper also reported on a prototype implementation of these ideas we have undertaken
in the TuCSoN coordination framework. In future work, we plan to formalise more of
the potential mediator functions as listed in Section 2. While some of such functions
will be straighforward to formalise – e.g., identifying conflicts between commitments,
providing automated alerts to agents concerning upcoming dialogues – others, such as
run-time assignment of rights and responsibilities to dialogue participants, are likely to
result more challenging.

Also we aim at extending the underlying argumentation system by introducing la-
bels. In fact, labelled arguments should make it possible to capture different sorts of
certainty resulting from the different types of inference applied. Moreover, we plan to
exploit labels to fix preferred ordering in an arguments set and to define stricter attack
relation.

Acknowledgments

We are grateful for partial financial support from the EC’s Information Society Tech-
nologies programme through project ASPIC (IST-FP6-002307).

References

1. Doutre, S., McBurney, P., Wooldridge, M.: Law-governed Linda as a semantics for agent dia-
logue protocols. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge,
M. (eds.) 4rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2005), Utrecht, The Netherlands, July 25-29, 2005, pp. 1257–1258. ACM Press,
New York (2005)

2. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)

3. Forester, J.: The Deliberative Practitioner: Encouraging Participatory Planning Processes.
MIT Press, Cambridge (1999)

4. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming Lan-
guages and Systems 7(1), 80–112 (1985)

5. Gordon, T.F., Karacapilidis, N.: The Zeno argumentation framework. In: Proceedings of the
Sixth International Conference on AI and Law, pp. 10–18. ACM Press, New York (1997)

6. Hamblin, C.L.: Fallacies. Methuen, London, UK (1970)
7. McBurney, P., Parsons, S.: Posit spaces: a performative theory of e-commerce. In:

Wooldridge, M., Rosenschein, J.S., Sandholm, T., Yokoo, M. (eds.) Proceedings of AAMAS
2003, pp. 624–631. ACM Press, New York (2003)

Argumentation and Artifact for Dialogue Support 121

8. Oliva, E., McBurney, P., Omicini, A.: Co-argumentation artifact for agent societies. In:
Rahwan, I., Parsons, S., Reed, C. (eds.) Argumentation in Multi-Agent Systems. LNCS,
vol. 4946, pp. 31–46. Springer, Heidelberg (2008)

9. Omicini, A.: Formal ReSpecT in the A&A perspective. In: Canal, C., Viroli, M. (eds.) 5th
International Workshop on Foundations of Coordination Languages and Software Architec-
tures (FOCLASA 2006), CONCUR 2006, Bonn, Germany, University of Málaga, Spain,
August 31, 2006, pp. 93–115 (2006)

10. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Program-
ming 41(3), 277–294 (2001)

11. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisation, roles
and contexts in MAS. Applicable Algebra in Engineering, Communication and Comput-
ing 16(2-3), 151–178 (2005); Special Issue: Process Algebras and Multi-Agent Systems

12. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for MAS.
Electronic Notes in Theoretical Computer Sciences 150(3), 21–36 (2006); 1st International
Workshop “Coordination and Organization” (CoOrg 2005), COORDINATION 2005, Namur,
Belgium, . Proceedings, April 22 (2005)

13. Omicini, A., Zambonelli, F.: Coordination for Internet application development. Au-
tonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

14. Parsons, S., McBurney, P.: Argumentation-based communication between agents. In: Huget,
M.-P. (ed.) Communication in Multiagent Systems. LNCS, vol. 2650, pp. 164–178. Springer,
Heidelberg (2003)

15. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of Logic
and Computation 15(6), 1009–1040 (2005)

16. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gabbay, D.M.,
Guenther, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp. 219–318. Kluwer, Dordrecht
(2002)

17. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In: Bordini, R.H., Das-
tani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862,
pp. 206–221. Springer, Heidelberg (2006)

18. Viroli, M., Ricci, A., Omicini, A.: Operating instructions for intelligent agent coordination.
Knowledge Engineering Review 21(1), 49–69 (2006)

19. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. SUNY Press (1996)

	Argumentation and Artifact for Dialogue Support
	Introduction
	Functionalities of Multi-agent Argumentation Support
	Dialogue Artifact

	Argumentation and Dialogue: Formal Definitions
	Argumentation System
	Dialogue System
	Operational Semantics

	The Dialogue Artifact
	TuCSoN Implementation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

