

Lecture Notes in Artificial Intelligence 5384
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Iyad Rahwan Pavlos Moraitis (Eds.)

Argumentation
in Multi-Agent
Systems

Fifth International Workshop, ArgMAS 2008
Estoril, Portugal, May 12, 2008
Revised Selected and Invited Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Iyad Rahwan
British University in Dubai
Faculty of Informatics
Dubai, UAE
and
University of Edinburgh
School of Informatics
Scotland, UK
E-mail: irahwan@acm.org

Pavlos Moraitis
Paris Descartes University
Department of Mathematics and Computer Science
75270, Paris Cedex 06, France
E-mail: pavlos@mi.parisdescartes.fr

Library of Congress Control Number: 2009920684

CR Subject Classification (1998): I.2.11, C.2.4, H.5.2-3, D.3.2, F.4.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-00206-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00206-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12602292 06/3180 5 4 3 2 1 0

Preface

This volume presents the latest developments in the growing area of research
at the interface of argumentation theory and multiagent systems. This area has
grown tremendously with many papers appearing in the recent special issue of
the Artificial Intelligence Journal on “Argumentation” and the special issue of
IEEE Intelligent Systems on “Argumentation Technologies.”

Over the last few years, argumentation has been gaining increasing impor-
tance in multiagent systems, mainly as a vehicle for facilitating rational inter-
action (i.e., interaction which involves the giving and receiving of reasons). This
is because argumentation provides tools for designing, implementing and ana-
lyzing sophisticated forms of interaction among rational agents. Argumentation
has made solid contributions to the practice of multiagent dialogues. Application
domains include: legal disputes, business negotiation, labor disputes, team for-
mation, scientific inquiry, deliberative democracy, ontology reconciliation, risk
analysis, scheduling, and logistics. A single agent may also use argumentation
techniques to perform its individual reasoning because it needs to make decisions
under complex preferences policies, in a highly dynamic environment.

Most papers in this volume appeared in the proceedings of the 5th Inter-
national Workshop on Argumentation in Multiagent Systems (ArgMAS 2008),
which took place in Estoril, Portugal, in conjunction with the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS). This
continues the success of the ArgMAS workshop series, which took place in tan-
dem with AAMAS in New York in 2004, Utrecht in 2005, Hakodate in 2006, and
Honolulu in 2007.

Often we invite additional papers on the topic of argumentation in multi-
agent systems from the main AAMAS conference for the given year, in order to
bring together the very best of the year’s work on argumentation in MAS into
a single volume. This time, we invited revised papers on argumentation in MAS
from AAMAS 2008. The first invited paper, by Tim Miller and Peter McBurney,
describes the specification of protocols as first-class entities for annotation and
matching. The second invited paper, by Nils Bulling, Carlos I. Chesñevar and
Jürgen Dix, explores the use of argumentation in modeling coalition formation
processes. The third invited paper, by Yuqing Tang and Simon Parsons, explores
how public and private argumentation policies can be integrated.

In addition, we invited a paper by Angelika Foerst, Achim Rettinger and
Matthias Nickles, from the AAMAS International Workshop on Agent-Based
Complex Automated Negotiations (ACAN). These additional contributions were
selected on the basis of their scientific quality and relevance to the topics em-
phasized here. Our objective has been to offer a comprehensive and up-to-date
overview of this rapidly evolving landscape, as we did in the previous volumes of

VI Preface

this series which were all published by Springer (LNAI 3366, LNAI 4049, LNAI
4766, and LNAI 4946).

We conclude this preface by extending our gratitude to the members of the
Steering Committee and members of the Program Committee who together
helped make the ArgMAS workshop a success. We also thank the authors for
their enthusiasm to submit papers to the workshop, and for revising their papers
on time for inclusion in this book.

November 2008 Iyad Rahwan
Pavlos Moraitis

Organization

Program Chairs

Iyad Rahwan British University in Dubai, UAE
(Fellow) University of Edinburgh, UK

Pavlos Moraitis Paris Descartes University, France

ArgMAS Steering Committee

Antonis Kakas University of Cyprus, Cyprus
Nicolas Maudet Université Paris Dauphine, France
Peter McBurney University of Liverpool, UK
Pavlos Moraitis Paris Descartes University, France
Simon Parsons City University of New York, USA
Iyad Rahwan British University in Dubai, UAE

(Fellow) University of Edinburgh, UK
Chris Reed University of Dundee, UK

Program Committee

Leila Amgoud IRIT, France
Katie Atkinson University of Liverpool, UK
Jamal Bentahar Laval University, Canada
Guido Boella Università di Torino, Italy
Brahim Chaib-draa Laval University, Canada
Carlos Chesnevar Universitat de Lleida, Spain
Frank Dignum Utrecht University, The Netherlands
Yannis Dimopoulos University of Cyprus, Cyprus
Sylvie Doutre IRIT, Toulouse, France
Rogier van Eijk Utrecht University, The Netherlands
Frank Guerin University of Aberdeen, UK
Joris Hulstijn Utrecht University, The Netherlands
Anthony Hunter University College, London, UK
Nikos Karacapilidis University of Patras, Greece
Nicolas Maudet Université Paris Dauphine, France
Peter McBurney University of Liverpool, UK
Jarred McGinnis Royal Holloway, University of London, UK
Sanjay Modgil Cancer Research UK
Pavlos Moraitis Paris Descartes University, France
Søren Holbech Nielsen Aalborg University, Denmark

VIII Organization

Tim Norman University of Aberdeen, UK
Nir Oren University of Aberdeen, UK
Fabio Paglieri ISTC-CNR, Rome, Italy
Xavier Parent King’s College, UK
Simon Parsons City University of New York, USA
Philippe Pasquier University of Melbourne, Australia
Laurent Perrussel IRIT, Toulouse, France
Enric Plaza Spanish Scientific Research Council, Spain
Henri Prade IRIT, Toulouse, France
Henry Prakken Utrecht University, The Netherlands
Alun Preece University of Aberdeen, UK
Iyad Rahwan British University in Dubai, UAE

(Fellow) University of Edinburgh, UK
Sarvapali Ramchurn University of Southampton, UK
Chris Reed University of Dundee, UK
Michael Rovatsos University of Edinburgh, UK
Hajime Sawamura Niigata University, Japan
Carles Sierra IIIA-CSIC, Spain
Guillermo Simari Universidad Nacional del Sur, Argentina
Elizabeth Sklar City University of New York, USA
Francesca Toni Imperial College, London, UK
Leon van der Torre University of Luxembourg, Luxembourg
Paolo Torroni Università di Bologna, Italy
Bart Verheij Maastricht University, The Netherlands
Gerard Vreeswijk Utrecht University, The Netherlands
Doug Walton University of Winnipeg, Canada
Simon Wells University of Dundee, UK
Mike Wooldridge University of Liverpool, UK

Table of Contents

Part I: Argument-Based Reasoning

Personality-Based Practical Reasoning . 3
Thomas L. van der Weide, Frank Dignum, John-Jules Ch. Meyer,
Henry Prakken, and Gerard A.W. Vreeswijk

Argumentation Based Resolution of Conflicts between Desires and
Normative Goals . 19

Sanjay Modgil and Michael Luck

A Constrained Argumentation System for Practical Reasoning 37
Leila Amgoud, Caroline Devred, and
Marie-Christine Lagasquie-Schiex

An Argumentation Framework Based on Strength for Ontology
Mapping . 57

Cássia Trojahn, Paulo Quaresma, and Renata Vieira

Contextual Extension with Concept Maps in the Argument Interchange
Format . 72

Ioan Alfred Letia and Adrian Groza

Part II: Argumentation and Dialogue

Command Dialogues . 93
Katie Atkinson, Rod Girle, Peter McBurney, and Simon Parsons

Argumentation and Artifact for Dialogue Support . 107
Enrico Oliva, Mirko Viroli, Andrea Omicini, and Peter McBurney

Co-ordination and Co-operation in Agent Systems: Social Laws and
Argumentation . 122

Katie Atkinson and Trevor Bench-Capon

Annotation and Matching of First-Class Agent Interaction Protocols . . . 141
Tim Miller and Peter McBurney

Part III: Strategic and Pragmatic Issues

Argumentation- vs. Proposal-Based Negotiation: An Empirical Case
Study on the Basis of Game-Theoretic Solution Concepts 161

Angelika Först, Achim Rettinger, and Matthias Nickles

X Table of Contents

Argumentation-Based Information Exchange in Prediction Markets 181
Santi Ontañón and Enric Plaza

An Argumentative Approach for Modelling Coalitions Using ATL 197
Nils Bulling, Carlos I. Chesñevar, and Jürgen Dix

A Dialogue Mechanism for Public Argumentation Using Conversation
Policies . 217

Yuqing Tang and Simon Parsons

Author Index . 237

Part I

Argument-Based Reasoning

Personality-Based Practical Reasoning

Thomas L. van der Weide, Frank Dignum, John-Jules Ch. Meyer,
Henry Prakken, and Gerard A.W. Vreeswijk

University of Utrecht
{tweide,dignum,jj,henry,gv}@cs.uu.nl

Abstract. In virtual training scenarios, agent technology can be used to
build a virtual tutor that assists a student during training. In a dialogue
using argumentation schemes, the virtual tutor provides reasons to the stu-
dents to explain why a particular action is the most sensible. The tutor de-
termines the best action using practical reasoning. The justification of this
action is selected based on the personality type of the student. This paper
studies how agent technology could be used to make a virtual tutor that as-
sists the student during the training. In particular, we study how the tutor
can generate persuasive arguments for what the student should do.

1 Introduction

The context of this paper is the training of firemen in virtual scenarios, such as
the following:

In a remote place a truck is involved in an accident, and catches on fire.
On the truck there is a sign stating that there is gasoline inside. Gasoline
is highly flammable and can cause an explosion when set on fire. Near
the truck there are several injured people who are not able to move.

In this scenario there are several decisions that the student needs to make.
For example, whether to first evacuate the injured people or first to extinguish
the fire in the truck. If the student is training as commander, he might have
to persuade his team members to take a particular course of action. In this
case he has to learn to use the personality type of his team mates in order to
give the right commands. E.g. one type of person might be concentrating on
the overall situation and miss the sign on the truck. Another might start the
standard procedure of using water to extinguish the fire, only thinking about
a possible huge explosion, but ignoring the injured people. So, this is the first
point where an argumentation dialogue should be supported.

The second situation in which a personality based dialogue can take place
in the training scenario is when the student requires feedback while training in
virtual scenarios. For example, when the student makes a mistake, he needs to
understand what went wrong and why. A virtual tutor can assist a student in
this process.

During training the virtual tutor will stop the simulation and engage in a
dialogue with the student about the best action at that particular time. This

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 3–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

4 T.L. van der Weide et al.

paper focuses on how the personality type of the student can be used in selecting
the best justification for a certain action in the case of such a feedback situation
during the training. Personality theory explains how individuals of a certain
type conduct their reasoning; from this we can ascertain what information they
would be most receptive to initially. Presumptive reasoning using argumentation
schemes is used to perform practical reasoning, i.e. to reason about what action
is the most sensible thing to do.

This paper is structured as follows. After the background has been sketched in
section 2, section 3 describes how practical reasoning is done using argumentation
schemes, and describes an algorithm to select the best argument based on the
personality type of the student. Section 4 shows how the theory can be applied
to the scenario. Finally, section 5 provides some conclusions and directions for
future work.

2 Background

2.1 Personality Type Theory

Within personality psychology there are many theories that study personality
and individual differences. Type theories classify persons into personality types.
A popular type theory, the Myers-Briggs Type Indicator (MBTI), is based on the
typological theory of [1]. Although the scientific basis of both MBTI and Jung
have been questioned, the theory describes aspects that we recognize in everyday
life, and seem interesting for agent technology. Furthermore, [2] describes how
to adapt communication to an individual using its personality type.

The Myers-Briggs Type Indicator (MBTI), as introduced in [3], is a person-
ality questionnaire designed to identify certain psychological differences as de-
scribed in [1] work. These psychological differences include attitude, perception
function, the judgment function, and lifestyle. The personality type determines
what effective communication is. [2] describes how to use MBTI to communicate
effectively. There are two important elements in effective communication: what
is communicated, and how it is communicated. This paper focuses on what is
communicated. As we focus on the content of the message we will use only the
Sensing/Intuition preference, and therefore omit three of the four dimensions,
type dynamics, and type development. Our theory thus should be seen more as
an example of how personality type should be incorporated in the argumentation
framework rather than an all encompassing framework.

People who prefer Sensing first want and give information that is real, con-
crete, practical, factual, and specific, whereas people who prefer Intuition first
want and give information that is insightful, opens possibilities, uses the imag-
ination, presents an overview or synthesis, and shows patterns. Sensing people
ask what and how questions; they speak of what is or what has been and give
precise factual descriptions. Intuition people ask what if and why questions; they
speak of what might be, what the main issue is, and what jumped out using ’sort
of’ and general impression descriptions. All of us can and do use both Sensing

Personality-Based Practical Reasoning 5

and Intuition to gather information, but each of us has a natural preference for
one over the other.

2.2 Practical Reasoning

Using argumentation schemes to derive conclusions is a form of presumptive
reasoning which is used commonly in everyday life [4]. Presumptive reasoning is
non-monotonic since it is always subject to revision or correction when new infor-
mation becomes available. Presumptive reasoning using argumentation schemes
is used in [5] to do practical reasoning. Our goal is to make a virtual tutor that
explains to a student fireman why a particular action is the best action to take
in a certain situation. Using argumentation schemes is an appropriate way to do
this since people use them naturally, and it allows the student to ask questions
and to attack the conclusions.

In [4] Walton presents the argument from consequences that was already
present in [6]:

If action a is brought about,
then good (bad) consequences will / might occur.
Therefore, a should (not) be brought about.

However, in [4] (p. 77) Walton notes that the argument from consequences is
highly problematic, in light of its treatments in logic textbooks of that time. In
[7] Walton presents the following reasoning scheme for practical reasoning called
the sufficient condition scheme for practical reasoning:

G is a goal for a,
doing A is sufficient for a to carry out G,
therefore, a ought to do A.

The sufficient condition scheme for practical reasoning was later extended in [5]
by separating the notion of a goal into: the state of affairs brought about the
action, the goal (the desired features in that state of affairs), and the value (the
reason why those features are desired). The extended argumentation scheme is
as follows:

AS1:
In circumstances R,
one should perform action A,
to achieve new circumstances S,
which realise goal G,
which promotes value V

Preferences based upon individual values emerge through the practical reason-
ing process. [5] uses the term values to denote some actual descriptive social
attitude/interest which an agent may or may not wish to uphold or subscribe
to and they provide an actual subjective reason for wanting to bring about a
particular state.

6 T.L. van der Weide et al.

Disagreement about the conclusion is divided into two categories: those that
dispute facts, and those that dispute value preferences. This paper takes AS1 as
a starting point for its argumentation framework since it has a clear connection
to BDI agents, which we plan to use for implementing the virtual tutor. It is
clear that it does not contain references to personality type. So, the main goal of
the paper is to fit elements of personality types in this scheme and the dialogue
rules.

3 Basic Formalism

This section describes how to optimise the justification to perform an action for a
specific personality type by anticipating on what justification is preferred by that
personality type. The justification to do an action is an argumentation scheme
with the conclusion that you should perform a particular action. Next, critical
questions are described that test the validity of this argumentation scheme, and
we give our interpretation of the natural interest that personality types have for
specific critical questions. Finally, we describe what kind of answers personality
types prefer to hear. We assume that the personality type of the student is known
to the system (very simple, fast tests exist to find the MBTI type of a person).

3.1 Basic Notions

In this subsection some basic notions, which are mostly taken from [5], are
described which will be used in later sections. We define separate sets containing
the basic elements of the framework. A predicate logic is used in the standard
way extended with several relations and one function.

– a finite, non-empty set, State, of states
– a finite, non-empty set, Action, of actions the student can perform
– a finite, non-empty set, Prop, of propositions in the predicate logic
– a finite, non-empty set, Goal, of goals where Goal ⊂ Prop
– a finite, non-empty set, V alue, of values
– a relation results(a, r, s) with a ∈ Action and r, s ∈ State to be read as:

performing action a in state r results in state s
– a relation realizes(s, g) with s ∈ State and g ∈ Goal to be read as: state s

realizes goal g
– a relation precludes(a, b) with a, b ∈ Action to be read as: action a precludes

action b
– a predicate oughtT oDo(a) with a ∈ Action to be read as: it is sensible to

perform action a in the current state
– a function effect : Goal × V alue → {+, 0,−} to be read as: the effect of

the given goal on the given value is + when the value is promoted, 0 when
there is no effect on the value, and − when the goal demotes the value

– p �arg q to be read as that q can be derived using argumentation schemes
from p

Besides these basic elements, in later sections new relations will be introduced
when needed.

Personality-Based Practical Reasoning 7

3.2 Practical Reasoning Scheme

We use a slight modification of the argumentation scheme for practical reasoning
as used in [5]. We have modified it by making the premises and the conclusions
explicit.

PR:
premise 1: The current state is r,
premise 2: performing action a in state r results in state s,
premise 3: s realizes goal g,
premise 4: g promotes value v,
conclusion: therefore, you should perform a

The argumentation scheme PR provides a justification for the conclusion that
you should perform action a. It states that the current state is r, and performing
action a leads to a new state s which realizes your goal g. This goal promotes
your value v, and therefore action a is good and you should perform it. It assumes
that the student wants to promote value v, and that the student creates goals
in order to promote value v. The formal notation of PR is

r ∧ results(a, r, s) ∧ realizes(s, g)∧ (effect(g, v) = +)⇒ oughtT oDo(a)

For example, in our scenario a practical argument that justifies extinguishing
the fire in the truck could be: in the current state where there is a fire in the
truck and injured people being near, extinguishing the fire will result in no fire
in the truck, which will realize the goal of having no explosion, which promotes
the value of saving lives.

The argumentation scheme PR is not fool proof as it is a form of presump-
tive reasoning, hence a person can disagree with it, or can wonder whether the
premises actually hold. To test the justification critical questions can be asked
to which the proponent should respond. If the proponent cannot give satisfying
answers, the conclusion that you should perform a is weakened.

The critical questions in table 1 are based on [5], and test the premises made
in PR by asking whether the stated premises are true. Table 1 also provides the
corresponding attacks which the receiver of the argumentation scheme can make
when he has additional information.

The first four critical questions, CQ1-4, question the explicit premises in PR.
CQ5-8 question implicit premises in PR which may not be obvious at first sight,
but are relevant for the conclusion.

For example, attacks of CQ5-8 in our scenario could be an alternative action
that results in the state that realizes the goal of no explosion, for example by
removing the gasoline from the truck. An alternative goal to promote the value
of saving lives would be to evacuate the people near the truck. The action of
extinguishing the fire also promotes the value of minimising material damage.

3.3 Answers

To provide answers to the critical questions associated with PR, [5] is extended
by using argumentation schemes with as conclusion the answer to the critical

8 T.L. van der Weide et al.

Table 1. Critical questions and possible attacks associated PR

Critical Question Possible Attack

1. is it true that the current state is r? ¬r

2. is it true that performing action a in r
results in state s?

¬results(a, r, s)

3. is it true that state s realize goal g? ¬realize(s, g)
4. is it true that goal g promotes value v? ¬promote(g, v)
5. are there alternative actions that result

in state that realizes goal g?
a′ �= a∧results(a′, r, s′)∧realize(s′, g)∧
s′ �= s

6. are there alternative goals that promote
value v?

(effect(g′, v) = +) ∧ g′ �= g

7. does a demote or promote other values? results(a, r, s) ∧ realize(s, g′) ∧
¬(effect(g′, v′) = 0) ∧ g �= g′ ∧ v �= v′

8. does a preclude another action which
promotes some value?

a �= a′ ∧ results(a′, r, s′) ∧
realize(s′, g′) ∧ (effect(g′, v′) =
+) ∧ precludes(a,a′)

question. Walton describes in [4] 25 argumentation schemes, but here only a few
are explained that are necessary for the scenario.

Argument from Expert Opinion. The argument from expert opinion states
that when a true expert asserts p ∈ Prop that is within his expertise, then it
is reasonable to take p to be true. To represent this argumentation scheme, the
following new notions are added to our predicate logic:

– a finite, non-empty set of experts called E
– a finite, non-empty set of domains of expertise called D
– a relation expert(e, d) with e ∈ E and d ∈ D to be read as expert e is an

expert in the domain d
– a relation within(p, d) with p ∈ Prop and d ∈ D to be read as proposition p

is within the domain of expertise d
– a relation assert(e, p) with e ∈ E and p ∈ Prop to be read as expert e

asserted that p is true

Now we can introduce the argument from expert taken from [4]:

AE:
premise: e is an expert in domain d,
premise: e asserts that p is known to be true,
premise: p is within d,
conclusion: therefore, p may (plausibly) be taken to be true.

formally: expert(e, d) ∧ assert(e, p) ∧ within(p, d)⇒ p

Table 2 describes the critical questions and corresponding attacks of AE. The
critical questions are taken from [4].

Personality-Based Practical Reasoning 9

Table 2. Critical questions and corresponding possible attacks associated with AE

Critical Question Possible Attack

1. Is e a genuine expert in d? ¬expert(e, d)
2. Did e really assert p? ¬assert(e, p)
3. Is p relevant to firefighting? ¬within(p, d)
4. Is p consistent with what other experts

in d say?
expert(f, d)∧ f �= e∧ assert(f, q)∧ (p∧
q � ⊥)

5. Is p consistent with known evidence in
d?

p ∧ q ∧ within(q, d) � ⊥

Our application deals mostly with a single domain, namely firefighting, but in
more complex situations there will be other domains like for example health
care, police force, and traffic regulation.

Argument from Observation. The argument from observation is a simplified
version of the argument from sign and the argument from evidence to hypothesis,
both from [4]. The argument from observation is that because I have observed
that p is the case, p is the case. For this a new predicate is introduced which is
added to the logic:

– a predicate observation(p) with p ∈ Prop to be read as I have observed that
p is the case

With this predicate, we can now introduce the argument from observation:

AO:
premise: p is observed in this situation,
conclusion: therefore, generally p is true

formally: observation(p)⇒ p

The associated critical questions and attacks are described in table 3.

Table 3. Critical questions and possible attacks associated with AO

Critical Question Possible Attack

1. How certain was the observation? ¬observation(p)
2. Is the observation consistent with other

observations?
observation(p)∧observation(q)∧(p∧q �
⊥)

Argument from Cause to Effect. The argument from cause to effect, taken
from [4], argues that if an event takes place, then that will cause an effect. For
example, fire and gasoline brought together will cause an explosion. For this we
need a new relation which is added to the predicate logic:

10 T.L. van der Weide et al.

– a relation cause(s, t) with s, t ∈ State to be read as state s causes state t to
occur

The argument from cause to effect is as follows:

ACE:
premise: generally, if p occurs, then q will (or might) occur,
premise: in this case, p occurs,
conclusion: therefore, in this case, p will (or might) occur.

formally: cause(p, q) ∧ p ⇒ q

The associated critical questions and attacks are described in table 4.

Table 4. Critical questions and possible attacks associated with ACE

Critical Question Possible Attack

1. How strong is the causal generalization
(if it is true at all)?

¬cause(p, q)

2. Is the evidence cited strong enough to
warrant the generalization as stated?

p ∧ cause(p, q) ∧ ¬q

3. Are there other factor that interfere
with or counteract the production of the
effect in this case?

p2 ∧ (¬cause(p ∧ p2, q) ∨ cause(p2,¬q))

The above argument schemes and critical questions do not contain personality
elements yet. These will be added in the next subsection.

3.4 Personality Types and Practical Reasoning

Table 5 is taken from [2] and and quotes several characteristics of people who
prefer Sensing and people who prefer Intuition to provide some insights to the
reader of what the Sensing and Intuition functions are. [2] is not written with
argumentation schemes nor software agents in mind, so the techniques described
in this paper are our interpretation of [2].

[2] explains that the Sensing function considers facts and focuses on what is:
what is the problem, what is the purpose or goal, what is the time frame, what
is the status of resources, etc. The Intuition function generates possibilities and
focuses on what could be: what are the ideas, what are the possibilities, what is
the vision, dreams and the ideals.

Table 6 is taken from [2] and provides suggestions how to gear teaching to-
wards people preferring Sensing or Intuition. This table is relevant for our virtual
tutor since our tutor teaches the student what to do in a certain situation.

The Sensing Function. A SENSER trusts his senses, experience, and respects
what is proven. A thorough body of evidence is built by first focusing on real,

Personality-Based Practical Reasoning 11

Table 5. Characteristics of the Sensing and Intuition functions

People who prefer Sensing People who prefer Intuition

trust experience trust hunches and inspirations
respect what is proven use imagination to create something
first want and give information that is real,
concrete, practical, factual, and specific

first want and give information that is in-
sightful, opens possibilities, uses the imag-
ination, presents an overview or synthesis,
and shows patterns

give precise descriptions use ’sort of’ and general impression de-
scriptions

give factual statements give analogies and metaphors

Table 6. Suggestions for teaching to people preferring Sensing and Intuition

People who prefer Sensing People who prefer Intuition

Present facts and realistic details, paying
attention to parts of the whole and steps
of the process

Present options and possibilities

Provide thorough, concrete data Provide analogies, symbols, and theoretical
models

Allow the listener to build a body of evi-
dence step-by-step from the details to the
theory and to interact with the information
about practical, hans-on information

Allow the listener to attach details, facts,
and steps onto the conceptual idea and
to interact with the information through
imagination and insights

concrete, practical, factual, and specific information. For example, observations
are trusted since they come from the senses, and are real and concrete. With a
thorough body of evidence, a detailed understanding is obtained of the problem,
the goal, and the relation to the values. With a proper understanding of the
goal, a SENSER reasons about what actions will realize the goal. Since the
goal is clear, reasoning about the action can be practical, specific, and detailed.
To a INTUIT, a SENSER might appear to be literal, narrow-minded, or stuck
in a rut.

The practical reasoning process of a SENSER first focuses on obtaining a
solid understanding on what is the case and the problem. When presented the
practical reasoning scheme PR, a SENSER naturally starts with obtaining a
solid understanding by using CQ1 to ask for justification for what the current
state r is. When given an answer with the conclusion that r is the case, a
recursive process of asking critical questions is started until either observations
or expert knowledge is given, or when his knowledge can sufficiently answer
the critical questions. With a proper understanding of r, CQ2 can be answered
more concretely since the resulting state s from action a depends on r. With a
detailed description of s, CQ3 can be answered by justifying that s realizes goal
g. Similarly, CQ4 can be answered by justifying that g promotes value v.

12 T.L. van der Weide et al.

When presented a practical reasoning scheme that provides proper justifica-
tion to perform action a, a SENSER is pretty satisfied because of his practi-
cal nature. However, he might reason further, using CQ5, about whether there
are alternative actions that realize goal g that are better than the proposed
action a. He might also use CQ6 to reason about realizing other goals that
promote v, use CQ7 to reason about the effect a has on other values, and use
CQ8 to reason about whether a precludes another action that promotes other
values.

The Intuition Function. An INTUIT trusts hunches and inspirations, and
looks for immediate and long-range implications by using intuition and imag-
ination. Intuitive reasoning is reasoning without being aware of all conscious
reasoning steps. Naturally, an INTUIT first wants information that is insight-
ful, opens possibilities, uses the imagination, presents an overview, and shows
patterns. Insightful information gives an overview of how to reach a conclusion,
but does not give all reasoning steps that are required to reach that conclu-
sion. Since the understanding is based upon hunches and intuition rather than
facts and rules, an INTUIT may be wrong about the conclusions he takes. To a
SENSER he might appear ungrounded and impractical.

When presented the reasoning scheme PR, the practical reasoning process of
an INTUIT starts with CQ1 to get an overview or big picture of the current
state r in which he does not make all reasoning steps that are required to derive
r. Using hunches about that, for example, some observations indeed lead to a
particular situation, the big picture of r is constructed. After getting an overview
of r, an INTUIT uses hunches to get an overview of which state s results from
action a, and how s realizes goal g and how g promotes v. Now that a global
picture is obtained of r and what and why to do a, an INTUIT naturally starts
reasoning about possibilities using critical questions CQ5-8. CQ5 asks for other
possible actions that realize g. CQ6 asks for other possible goals that promote
values, opening again possibilities. CQ7 asks for the effect of a on other values
which for example could be long-term effects. CQ7 thus asks for the implication
of the facts. CQ8 asks whether a precludes other actions, thereby asking for the
implication of and relation between facts.

3.5 Algorithm

This subsection provides two algorithms that generate justifications why a par-
ticular action should be done. One algorithm constructs the justification for
people who prefer Sensing, the other constructs the justification for people who
prefer Intuition. In this subsection, all references to critical questions refer to
critical questions of PR. Critical questions of other argumentation schemes are
not anticipated on, but can be handled when the student asks for them.

Inside the algorithms some new notation is used. The function tell(X) should
be read as tell the student that X . Furthermore, the relations are used here as
sets but should be read as all the instantiations of that relation. For example,
the set cause is all cause(p, q) that are true with p, q ∈ Prop.

Personality-Based Practical Reasoning 13

Input: r ∧ results(a, r, s) ∧ realizes(s, g) ∧ (effect(g, v) = +)⇒
oughtT oDo(a)

// CQ1
given minimal sets O ⊆ observation, E ⊆ expert ∪ within ∪ assert, and
C ⊆ cause are minimal sets such that O, E, C �arg r;
tell(derivation({O, E, C}, r));
// CQ2
given minimal sets rs ⊆ results, and c ⊆ cause such that a, r, rs, c �arg s;
tell(derivation(a, r, {rs, c}, s));
tell(realize(s, g)); // CQ3
tell(effect(g, v) = +) ; // CQ4
// PR: the student should perform a
tell(r ∧ results(a, r, s) ∧ realizes(s, g)∧ (effect(g, v) = +)⇒
oughtT oDo(a))

Algorithm 1. How to give an argument for a person who prefers Sensing

Input: r ∧ results(a, r, s) ∧ realizes(s, g) ∧ (effect(g, v) = +)⇒
oughtT oDo(a)

// CQ1
given minimal sets O ⊆ observation, E ⊆ expert ∪ within ∪ assert, and
C ⊆ cause are minimal sets such that O, E, C �arg r;
tell(O �arg r);
// CQ2 and CQ3
given minimal sets r ⊆ results, and c ⊆ cause such that a, r, r, c �arg s;
tell(a, r �arg s ∧ realize(s, g));
// CQ5
foreach a′ ∈ Action with a′
= a ∧ results(a′, s′) ∧ realizes(s′, g) do

tell(results(a′, s′) ∧ realizes(s′, g));
end
// CQ6
foreach g′ ∈ Goal ∧ g′
= g ∧ (effect(g′, v) = +) do

tell(effect(g′, v) = +);
end
// CQ7
foreach g′ ∈ Goal with g′
= g ∧ realizes(s, g′) ∧ ¬(effect(g′, v) = 0) do

tell(realizes(s, g′) ∧ effect(g′, v));
end
// CQ8
foreach a′ ∈ Action with a′
= a ∧ (precludes(a, a′) ∨ precludes(a′, a)) do

tell(precludes(a, a′));
end

Algorithm 2. How to give an argument for a person who prefers Intuition

14 T.L. van der Weide et al.

Algorithm 1 gives the justification that is adapted to a student who prefers
Sensing. A person who is sensing is mostly interested in CQ1-4 of PR, therefore
the algorithm does not anticipate answering CQ5-8 of PR. The notation used
inside the algorithms is not precise enough at this stage, but is aimed to bring
across the idea. The function derivation(P, r) with P ⊆ Prop and r ∈ Prop
returns all the steps required to derive r from P . A person who prefers Sensing
can use this derivation to completely understand why r is the case. The function
derivation(a, r, P, s) with a ∈ Action, r, s ∈ State, and P ⊆ Prop gives all
the reasoning steps required to derive that when performing action a in state r
results in state s. This derivation is now given loosely, where later is may need
some action logic.

Algorithm 2 gives the justification that is adapted to a student that prefers In-
tuition. A person who prefers Intuition is mostly interested in CQ5-8 of PR, but
also needs to know the basic answers to CQ1-4. To answer CQ1, the full deriva-
tion of why r is the current state is not given, but only the extract, namely
the observations and the conclusion. The student will use hunches and intu-
ition to check whether r is indeed the case. Similarly for CQ2, not the full
derivation of why performing action a in state r results in state s, but only an
extract. CQ3 and CQ4 will be seen by a person who prefers Intuition, so they are
not anticipated on. CQ5-8 are answered completely but again without proper
derivations.

4 Application

In our scenario the virtual tutor stops the simulation and gives the student
arguments that the student should extinguish the fire. However, the tutor must
first reason about what to do. Next, the mental state of the tutor is described
using atoms as described in table 7.

Table 7. The meaning of the literals used in our scenario

Atom Meaning

fire there is a fire in the truck
people there are injured people near the truck
gasoline there is gasoline in the truck
explosion the truck explodes
death the injured people near the truck will die
saveLives the value that as many as possible lives should be saved
minDamage the value that the amount of material damage should minimized
extF ire the action where the fireman extinguishes the fire in the truck
evacuate the action where the fireman evacuates the injured people near the

truck
pump the action where the fireman pumps the gasoline out of the truck

Personality-Based Practical Reasoning 15

The sets are instantiated as follows

Action = {extF ire, evacuate, pump}
Goal = {g1 ≡ ¬explosion ∧ ¬death, g2 ≡ ¬people ∧ ¬death}

V alue = {saveLives, minDamage}
E = {e}
D = {firefighting}

This means that the tutor believes that there are three actions that the student
can perform: extinguish the fire in the truck, evacuate the injured people, and
pump the gasoline out of the truck. Furthermore, the tutor has two goals: g1 and
g2 where g1 is the goal of realizing no explosion in the truck and preventing the
injured people to die, and g2 is the goal of realizing that the injured people are
not near the truck and do not die. The tutor considers two values: saving lives,
and minimizing damage. There is only one expert, namely e, and there is only
one domain of expertise, namely firefighting.

The relations and predicates are instantiated as follows. For simplicity, all the
statements that can be made are within the firefighting domain of expertise.

{observation(fire), observation(gasoline), observation(people),
assert(e, fire ∧ gasoline→ explosion),
∀p ∈ Prop[within(p, firefighting)],
results(extF ire, fire,¬fire), results(evacuate, people,¬people),
results(pump, gasoline,¬gasoline),
precludes(extF ire, evacuate), precludes(extF ire, pump),
precludes(evacuate, pump),
realizes(¬explosion, g1), realizes(¬gasoline, g1), realizes(¬people, g2),
cause(explosion ∧ people, death)}

Finally, the effects of the goals on the values are as follows:

effect(g1, saveLives) = +
effect(g1, minDamage) = +
effect(g2, saveLives) = +
effect(g2, minDamage) = −

4.1 Practical Reasoning

First, the argument from observation, AO, is used to evaluate the observations.

observation(fire)⇒ fire (1)
observation(gasoline)⇒ gasoline (2)

observation(people)⇒ people (3)

16 T.L. van der Weide et al.

Next, the argument from expert opinion, AE, is used to conclude that explosion
will occur. Since we use a simplification, namely every p ∈ Prop is within the
domain of expertise, the within clause is always true and therefore not used.

expert(e, firefighting)∧ assert(e, fire ∧ gasoline→ explosion)
⇒ fire ∧ gasoline→ explosion (4)

The argument from cause to effect, ACE, is used to conclude that death will
occur:

cause(explosion ∧ people, death) ∧ explosion ∧ people⇒ death (5)

From results(extF ire, fire,¬fire) can be concluded that ¬fire and therefore
¬explosion. Since realize(¬explosion, g1) we can conclude that g1 is realized and
because of effect(g1, saveLives) = + we can construct the practical reasoning
scheme PR which is instantiated as follows:

r = death,

a = extF ire,

s = ¬explosion,

g = g1

v = saveLives

4.2 Argument for the Student

In this subsection the algorithms as presented in subsection 3.5 are applied to
construct justification for that the student should extinguish the fire.

Students Who Prefer Sensing. In algorithm 1 the tutor starts by giving
the derivation of how the current state r can be derived from observations,
expert knowledge, and causal knowledge. As such the tutors tells the student
the complete derivation of r from the previous subsection.

Next, the tutor tells the student the complete derivation of why performing
action a in state r results in state s. This derivation will be something like:

results(extF ire, fire,¬fire) �arg ¬fire �arg ¬explosion

Next, the tutor tells that realizes(¬explosion, g1) where g1 is ¬explosion ∧
¬death which means that the state that results from performing extF ire realizes
goal g1. Next, the student is told that effect(g1, saveLives) = + which means
that goal g1 promotes the value to save lives. Finally, the student is told the
whole practical reasoning scheme with the conclusion that extF ire should be per-
formed: r∧results(a, r, s)∧realizes(s, g)∧(effect(g, v) = +)⇒ oughtT oDo(a).

When transformed into text, this argument given by the tutor could look as
follows:

Personality-Based Practical Reasoning 17

I observe that there is a fire in the truck and the truck contains gasoline.
Experts say that gasoline is highly flammable, so when the fire reaches
the gasoline, there will be a big explosion. I observe that there are several
persons near the truck who are injured and cannot get away. If there is a
big explosion in the truck, those people will die. Because of my value to
save lives, I have the goal to save those people near the truck. The action
’extinguish the fire’ will prevent the fire from reaching the gasoline, which
prevents an explosion, and thus saves those people from dying because
of the explosion. Therefore, you should extinguish the fire.

Students Who Prefer Intuition. In algorithm 2 the tutor starts by giving
an overview of the current state r:

observation(fire) ∧ observation(gasoline) ∧ observation(people) �arg r

Next, an overview is given of that performing action extF ire in r results in
state s by telling that:

extF ire ∧ r �arg s ∧ realize(s, g)

Next, CQ5 will be anticipated on by giving the alternative actions that realize
goal g. The tutor tells the student the following:

results(pump,¬gasoline)∧ realizes(¬gasoline, g1)
results(evacuate,¬people)∧ realizes(¬people, g2)

CQ6 asks for all other goals that promote value saveLives. In this case, the
tutor will tell effect(g2, v) = +. Next, the tutor answers CQ7 by telling whether
extF ire promote or demotes other values. In this case, the tutor tells the student
that effect(extF ire, minDamage) = +. Next, CQ8 is answered by telling the
student that precludes(extF ire, pump) and precludes(extF ire, evacuate). From
this, the student will conclude that extF ire should be done.

When transformed into text, this argument given by the tutor could look as
follows:

Because there is a fire in the truck and there is gasoline in the truck,
the truck will explode killing the pople that are near. By extinguishing
the fire in the truck, the explosion will not occur, and thus the people
will survive. Pumping the gasoline out of the truck might also prevent
an explosion, and evacuating the injured people may result in that those
people are not near the truck when it explodes. Extinguishing the fire
minimizes material damage. However, extinguishing the fire precludes
pumping away the gasoline and evacuating the people.

5 Conclusions

In this paper we have demonstrated how arguments can be adapted to person-
ality types. We have concentrated on only one aspects of personalities: the sens-
ing/intuition dimension. Because this dimension mainly influences the content

18 T.L. van der Weide et al.

of the arguments it alters the argumentation basically at the level of argument
formation. The argument schemes that are used are almost identical to the clas-
sical ones used in the literature, but the way critical questions are chosen and
answers are given is different for different personality types.

It is obvious that much work remains to be done in order to fully integrate
personality types in the argumentation framework. However, we already have
shown that it can make a crucial difference in the way argumentation functions.
Especially in time critical situations where not all critical questions can be asked
at leisure, it is important to start with the ones that most connect to the per-
sonality type and give the answers that provide most needed information.

We plan to extend the present work in several ways. First we will make the
formalisation more precise such that we can reason more formally about things
like ”cause”, ”effect”, etc.

We also will incorporate the other personality dimensions in the framework
and check the consequences. Finally we aim at performing some real-time exper-
iments in virtual training in order to see the effects of our approach.

References

1. Jung, C.: Psychological Types (1921)
2. Zeisset, C.: The art of dialogue. Center for Applications of Psychological Type, Ince

(2006)
3. Myers, I.: The Myers-Briggs Type Indicator. Princeton, NJ (1962)
4. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erl-

baum Associates, Mahwah (1996)
5. Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of

practical argument. Synthese 152(2), 157–206 (2006)
6. Windes, R., Hastings, A.: Argumentation & Advocacy. Random House (1965)
7. Walton, D.N.: Practical Reasoning: Goal-Driven, Knowledge-Based, Action-Guiding

Argumentation. Rowman & Littlefield (1990)

Argumentation Based Resolution of Conflicts between
Desires and Normative Goals

Sanjay Modgil and Michael Luck

Department of Computer Science, Kings College London

Abstract. Norms represent what ought to be done, and their fulfillment can be
seen as benefiting the overall system, society or organisation. However, individ-
ual agent goals (desire) may conflict with system norms. If a decision to com-
ply with a norm is determined exclusively by an agent or, conversely, if norms
are rigidly enforced, then system performance may be degraded, and individual
agent goals may be inappropriately obstructed. To prevent such deleterious effects
we propose a general framework for argumentation-based resolution of conflicts
amongst desires and norms. In this framework, arguments for and against com-
pliance are arguments justifying rewards, respectively punishments, exacted by
‘enforcing’ agents. The arguments are evaluated in a recent extension to Dung’s
abstract argumentation framework, in order that the agents can engage in met-
alevel argumentation as to whether the rewards and punishments have the re-
quired motivational force. We provide an example instantiation of the framework
based on a logic programming formalism.

1 Introduction

Requirements for conflict resolution arise in open multi-agent systems in which goals
of individual agents conflict with norms imposed by the system to regulate individual
agent behaviour. If the decision to comply with a norm is determined exclusively by
an individual, then system performance may be degraded. Hence, institutional or social
pressure to comply may be brought about by system agents exacting punishments and
grants rewards [11,17]. This may be appropriate for closed static systems, but compro-
mises the flexibility of dynamic open systems in which rigid enforcement of norms may
lead to both unwarranted obstruction of agent goals and degraded system performance.
For example, an agent’s goal may be obstructed by enforcing compliance with a norm
that is justified by system-held beliefs about the context. However, these beliefs may be
erroneous. In addition, it may not always be able to anticipate at design time, contexts
in which compliance with norms does or does not coincide with the best interests of
the system, and when enforcement mechanisms have insufficient motivational force. In
such cases, an agent might appeal to higher level motivations [9], arguing that in pur-
suing its own goal it is indeed acting in the interests of the system as a whole, or that
exacted punishments (or rewards) for non-compliance (or compliance) are outweighed
by the benefits of pursing its own goal.

In this paper we propose a general argumentation-based framework that evaluates
arguments for and against compliance with norms, in order to prevent unwarranted
obstruction of individual goals and degraded system performance. As in [6,11], norms

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 19–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

20 S. Modgil and M. Luck

are interpreted as system goals that individual agents are required to realise, and that
may conflict with the individual goals or desires of an agent. Punishments and rewards
are the individual goals of system agents responsible for enforcement. In general, an
argument for a goal justifies realisation of that goal based on beliefs that are themselves
the outcome of argumentation based reasoning about what is the case. An argument for
a system goal may then mutually attack an argument for a conflicting individual goal,
and arguments for punishment and reward goals attack the argument for an individual
goal. It is the success of these attacks that determines which of the arguments prevail
and thus whether or not there is a reasoned case for compliance1. In general, an attack
succeeds as a defeat if the attacked argument is not stronger than or preferred to its
attacker [1]. As in [4], preferences may be derived from a relative ordering on the values
that the arguments promote. In this paper, preferences among arguments for goals are
similarly evaluated. For example, a ‘reward argument’ will successfully attack (defeat)
an argument for an individual goal if an agent is persuaded that the reward is of greater
utility to it than the individual goal it is required to abandon in favour of compliance
with the system goal. The proposed framework will thus need to account for:

1. Social mechanisms for enforcing compliance: An agent Ag’s argument for an
individual goal g may be attacked by arguments for the (punishment and reward)
goals g′, . . . of other agents, where the attacks are not based on direct conflicts
between g and g′, For example, a reward (punishment) may facilitate (hinder)
some other goal that Ag is already committed to realising.

2. Motivational argumentation: Flexible and adaptive agents need to engage in mo-
tivational argumentation over the respective merits of goals. Hence, argumentation
frameworks in which preferences [1] and value orderings [4] on arguments are
‘given’, and not themselves subject to reasoning, do not suffice. Rather, there is a
requirement for argumentation based reasoning over the preferences themselves.

Existing work addresses argumentation-based resolution of conflicts among goals ([2],
[10], [16]), and [16] explicitly considers conflicts between individual goals and norms.
However, no existing work accounts for social mechanisms, whereby an agent’s deci-
sion as to which goals to pursue is influenced by other agents’ goals. Only [10] accounts
for argumentation over preferences, but does so in the object level logic programming
language, whereby rules express priorities over other rules. In this paper, we aim at an
abstract framework in which preferences are not restricted to rule priorities, but can ac-
count for any criteria for valuating argument strength, including those that relate to the
argument as a whole (e.g., as in [4]). We therefore make use of a recent extension to
Dung’s seminal abstract argumentation semantics [8]. In a Dung framework, arguments
are related by a binary conflict-based relation, and the winning (justified) arguments un-
der different extensional semantics are evaluated. The underlying logic, and definition
of the logic’s constructed arguments and conflict relation, is left unspecified, enabling
instantiation by various logical formalisms. Dung’s semantics thus serves as a general
framework capturing various species of non-monotonic reasoning [5], and, more gener-
ally for conflict resolution. Hence, approaches to argumentation based agent reasoning

1 In philosophical parlance we are adopting an externalist rather than internalist view, where the
latter consider norms to be intrinsically motivating.

Argumentation Based Resolution of Conflicts 21

often conform to these semantics, whereby an agent’s inferences (e.g. denoting beliefs
or goals) can be defined in terms of the claims of the justified arguments constructed
from the underlying theory (an argument essentially being a proof of a candidate infer-
ence — the argument’s claim — in the underlying logic). In [12,13], Dung’s semantics
have been extended to accommodate arguments that express preferences between other
arguments, where no assumption is made as to how these preferences are defined in the
instantiating formalism.

In Section 2 we review the extended semantics described in [12,13]. The main contri-
butions of this paper are then described in Sections 3, 4 and 5. In Section 3 we describe
a general framework for argumentation based resolution of conflicts between system
norms and agent goals. Specifically, we combine the extended argumentation semantics
with the normative model of [11] in which compliance with norms is enforced through
punishments and rewards modelled as the goals of enforcement agents. The framework
thus provides for social mechanisms for enforcing compliance, and motivational argu-
mentation. Section 4 then describes a logic programming instantiation of the general
framework. Section 5 illustrates the instantiation with an extended example. Finally,
Section 6 concludes with a discussion of related and future work.

2 Extended Argumentation Frameworks for Agent Reasoning

2.1 Dung’s Argumentation Framework

A Dung argumentation framework is a tuple (Args,R) where R ⊆ (Args × Args)
can denote either an ‘attack’ or ‘defeat’ relation, and where the latter can be understood
as an attack that succeeds given the available preference information. An argument
A ∈ Args is defined as acceptable w.r.t. some S ⊆ Args, if for every B such that
(B, A) ∈ R, there exists a C ∈ S such that (C, B) ∈ R. Intuitively, C ‘reinstates’ A.
Dung then defines the acceptable extensions of (Args,R) under different extensional
semantics. In this paper we focus on the admissible and preferred semantics. Letting
S ⊆ Args be conflict free if no two arguments in S are related byR, then:

Definition 1. Let S ⊆ Args be a conflict free set.

– S is admissible iff each argument in S is acceptable w.r.t. S
– S is a preferred extension iff S is a set inclusion maximal admissible extension

An argument is said to be justified if it belongs to all preferred extensions of a
framework.

2.2 Motivating Extended Argumentation Frameworks

We now motivate extending Dung’s framework with the following example (that will
be referred to later in Section 3).

Example 1. Consider two agents Ag1 and Ag2 exchanging arguments A, B . . . about
the weather forecast for Hawaii.

Ag2 : “According to the BBC it will be cool in Hawaii” = A

22 S. Modgil and M. Luck

B A

Δ1

B A

C

Δ3
D

B A

C

Δ2

B A

C

Δ4
D

E

B1

A1

B2

 A2

B3

S1
 A3

B1

C1

A

S2

B2

C2C

B

B1

A1

B2

 A2

B3

S3
 A3

B4

b)a)

Fig. 1. Motivating EAFs

Ag1 : “According to CNN it will be hot in Hawaii” = B
Ag2 : “But the BBC are more trustworthy than CNN” = C
Ag1 : “However, statistics show CNN are more accurate than the BBC” = D
Ag1 : “And a statistical comparison is more rigorous and rational than basing a
comparison on your instincts about their relative trustworthiness” = E

Arguments A and B symmetrically attack, i.e., (A, B),(B, A) ∈ R. {A} and {B} are
the preferred extensions, and so neither argument is justified. We then have argument C
claiming that A is preferred to B. Hence B does not successfully attack (defeat) A, but
A does defeat B. Intuitively, C is an argument for A’s repulsion of, or defence against,
B’s attack on A; i.e., C attacks B’s attack on A (Δ2 in Figure 1a)) so that B’s attack
on A does not succeed as a defeat. B’s attack on A is, as it were, cancelled out, and
we are left with A defeating B. Evaluating the preferred extensions on the basis of R
denoting the defeat relation, we now have the single preferred extension containing A.
Now, given D claiming a preference for B over A and so attacking A’s attack on B,
neither defeat the other and so once again we have two preferred extensions. Since C
and D claim contradictory preferences they attack each other (Δ3). These attacks can
themselves be subject to attacks in order to determine the defeat relation between C and
D and, in so doing A and B. E attacks the attack from C to D (Δ4), so that D defeats
C, B defeats A, and Ag1’s argument that it will be hot in Hawaii is now justified.

2.3 Defining Extended Argumentation Frameworks

Example 1 illustrates requirements for arguments attacking attacks. Hence, as in [12,13],
an Extended Argumentation Framework is defined as follows:

Definition 2. An Extended Argumentation Framework (EAF) is a tuple (Args, R, D)
such that Args is a set of arguments, and:

– R ⊆ Args×Args
– D ⊆ (Args ×R)
– If (C, (B, A)), (D, (A, B)) ∈ D then (C, D), (D, C) ∈ R

Argumentation Based Resolution of Conflicts 23

Notation 1. We may write A ⇀ B to denote (A, B) ∈ R. If in addition (B, A) ∈ R,
then A � B. Also, D � (A ⇀ B) denotes (D, (A, B)) ∈ D.

The defeat relation is now parameterised w.r.t. some set S of arguments. This accounts
for an attack’s success as a defeat being relative to preference arguments already ac-
cepted in some set S, rather than relative to some externally given preference ordering.

Definition 3. A defeatsS B, denoted by A →S B, iff (A, B) ∈ R and ¬∃D ∈ S s.t.
(D,(A, B)) ∈ D.

Referring to Example 1, A defeats∅ B but A does not defeat{D} B. The notion of a
conflict free set S of arguments is now defined. Notice that it may be that an argument
A asymmetrically attacks an argument B, so that given D � (A ⇀ B), neither A
nor B defeatS each other if D ∈ S. This means that both A and B may be accepted
together in the same extension (where any extension is required to be conflict free). For
example, if B is an argument for an action, and A claims that (for example) the action is
too costly, it may be that an agent decides to execute the action while accepting that it is
expensive (in value based argumentation [4], D is an argument claiming that the value
promoted by B’s action is greater than A’s value of ‘cost’). In the following section we
will show that such preference dependent asymmetric attacks are also appropriate when
resolving conflicts between norms and desires.

Definition 4. S is conflict free iff ∀A, B ∈ S: if (A, B) ∈ R then (B, A) /∈ R, and
∃D ∈ S s.t. (D,(A, B)) ∈ D.

The definition of acceptability of an argument A w.r.t. a set S for an EAF is motivated
in some detail in [12,13]. It references the notion of a reinstatement set for a defeat, in
order that an intuitive requirement on what it means for an argument to be acceptable
w.r.t. an admissible set S of arguments is satisfied: if A is acceptable with respect to S,
then S ∪ {A} is admissible (referred to as the fundamental lemma in Dung [8]).

Definition 5. Let S ⊆ Args in (Args,R,D). Let RS = {X1 →S Y1, . . . , Xn →S Yn}
where for i = 1 . . . n, Xi ∈ S. Then RS is a reinstatement set for C →S B, iff:

• C →S B ∈ RS , and
• ∀X →S Y ∈ RS , ∀Y ′ s.t. (Y ′,(X, Y)) ∈ D, ∃X ′ →S Y ′ ∈ RS

Definition 6. Let (Args,R,D) be an EAF. A ∈ Args is acceptable w.r.t. S ⊆ Args
iff ∀B ∈ Args s.t. B →S A, ∃C ∈ S s.t. C →S B and there is a reinstatement set for
C →S B.

In Figure 1b), A1 is acceptable w.r.t. S1. We have that B1 →S1 A1, and A1 →S1 B1.
The latter defeat is itself challenged by B2. However, A2 →S1 B2, which in turn is
challenged by B3. But then, A3 →S1 B3. We have the reinstatement set {A1 →S1

B1, A2→S1 B2, A3→S1 B3} for A1 →S1 B1. Also, A is acceptable w.r.t. S2 given
the reinstatement set {C →S2 B, C1 →S2 B1, C2 →S2 B2} for C →S2 B. Finally
A1 is not acceptable w.r.t S3 since no argument in S3 defeatsS3 B4.

Admissible and preferred semantics for EAFs are now given by Definition 1, where
conflict free is defined as in Definition 4. (In [12,13], the complete, stable and grounded

24 S. Modgil and M. Luck

semantics are similarly defined for EAFs, i.e., in the same way as for Dung frame-
works). Referring to Example 1, {B, D, E} is the single preferred extension. In [12,13]
we show that EAFs inherit many of the fundamental results holding for extensions of a
Dung framework. This suggests that much of the work building on Dung’s framework
can readily be reformulated for EAFs, including work on argument game proof theories
and dialogue frameworks. In particular, Dung’s fundamental lemma is satisfied, imply-
ing that the set of all admissible extensions of an EAF form a complete partial order
w.r.t. set inclusion, and so for each admissible S there exists a preferred extension S′

such that S ⊆ S′.
To conclude, the extended semantics accommodates arguments that express prefer-

ences between other arguments, while preserving the abstraction of a Dung framework;
no commitments are made to how preferences are defined in the instantiating logical
formalism. We now make use of the extended semantics in a framework for conflict
resolution in normative systems, and show that the ability to engage in argumentation
based reasoning about, as well as with, defeasible and possibly conflicting preference
information, provides for agent flexibility and adaptability.

3 A Framework for Conflict Resolution in Normative Systems

This section describes a framework in which agents engage in dialogues to decide which
amongst conflicting desire based and normative goals are to be pursued. Agent submit
arguments for goals, where these arguments attack each other, and then engage in moti-
vational argumentation over the relative utility of states in which the goals are realised.
This equates to arguing over preferences between arguments, and so which attacks suc-
ceeds as defeats. The arguments and attacks defined in the course of a dialogue thus
instantiate an EAF, and the goals to be pursued are those claimed by the justified argu-
ments of the EAF. Note that the agents also argue over the beliefs justifying adoption
of goals. In this way, the agents are first required to agree that the goal being proposed
for adoption is indeed warranted by what is believed to be the case. Section 3.1 first sets
out some general assumptions about the kinds of agents modelled by the framework,
and the dialogues these agents participate in. Section 3.2 then describes how conflicts
between individual agent goals and system norms are resolved through argumentation
based dialogues over beliefs, and goals proposed by individual agents and agents acting
on behalf of the system.

3.1 Agents and Dialogues

The proposed framework abstracts from the logics for agent reasoning, assuming only
BDI type agents (e.g. those instantiating the BOID architecture [7]) and a declarative
interpretation of goals as beliefs holding in some future state. Each agent has a be-
lief base consisting of facts and rules, and a goal base containing rules for deriving
goals. From amongst all the goals that are derivable, those that an agent commits to
realising are referred to as intentions. An intention persists in an agent’s intention base
until such a time as it is realised by a plan (the agent’s planning component is not
modelled here).

Argumentation Based Resolution of Conflicts 25

As in [11]’s model of normative multi-agent systems, four types of goal are distin-
guished. Individual agent goals, which we refer to here as desires, may conflict with nor-
mative goals. For example, an agent Ag1’s desire to stay on Waikiki beach in Hawaii,
may conflict with the normative goal of staying in a cheap hotel. Ag1 may decide to
comply or not comply with the norm, based on rewards and punishments exacted by
system agents (specifically enforcement agents). Rewards and punishments are also in-
dividual goals of enforcement agents, but are punishment, respectively reward goals,
from the perspective of the agent being punished, respectively rewarded. Punishment
goals hinder the punished agent’s intentions if that agent decides not to comply with
the norm. For example, a punishment may be to deny the funding that Ag1 needs to
fulfill its intention to visit Leipzig for a meeting. Reward goals benefit the achievement
of the rewarded agent’s intentions if it decides to comply. For example, a reward for an
agent who intends to have a laptop, may be to provide the agent with a laptop.

In general, goals are derived by rules whose antecedents refer to what the agent
believes and its current intentions. Extending the scenario described in Example 1, sup-
pose agent Ag1 believes it will be hot in Hawaii, and it intends to attend a conference in
Hawaii. Then it derives the desire to stay on Waikiki beach. The goals of system agents
are derived in the same way, and may additionally refer to the intentions of other agents.
For example, if Ag1 intends to attend a conference, then the normative goal of staying
in a cheap hotel is derived (in either Ag1’s goal base or the goal base of a system agent
responsible for informing other agents of their obligations). An enforcement agent AgP

may derive the punishment goal of denying Ag1 the funding for a meeting, given Ag1’s
intention to attend the meeting, and AgP ’s belief that the meeting is not related to an EU
project. Rules in the goal base can also capture the sub-goal relationship. For example,
if Ag1 intends to visit Leipzig for a meeting, then it derives the sub-goal goal of having
funding for the visit. Finally, we assume argument construction from agents’ bases is
defined in some underlying logic.

Definition 7. Let {Ag1, . . . , Agn} be a set of agents, where for i = 1 . . . n, Agi is
equipped with a belief base Bi, an intention base Ii, and a goal base Gi. For i = 1, let
argument A be constructed from Bi ∪ Gi ∪

⋃n
i=1 Ii.

If A is constructed only from Bi, then A is a belief argument of Agi, otherwise A is
a goal argument of Agi.

In general, we write bel(A) to denote the beliefs in A. We also write claim(A) to
identify an argument A’s claim.

The basic idea is that individual and system agents engage in argumentation-based con-
flict resolution (persuasion) dialogues to determine which amongst the arguments for
beliefs and goals are justified in the EAFs of Section 2. The goals that are the claims
of justified arguments are then adopted as intentions. In persuasion dialogues (reviewed
in [3]) a proponent makes a claim — the topic of the dialogue — and (one or more)
opponents attempt to persuade the proponent that the claim does not hold. In general
such a dialogue d is a sequence of moves m1, . . . , mi, . . ., where the first move m1 is a
locution introducing the topic as an assertion or claim of an argument. Here, we simply
assume that the topic of d can be referred to as topic(d). Dialogue protocols vary from
model to model, and specify the legal moves at each stage of the dialogue, where a
move can be an assertion of a proposition or an argument, a challenge to a premise in

26 S. Modgil and M. Luck

an argument, a concession of a proposition or argument, and so on. Models also vary
on the rules for termination of a dialogue. However, in general, the arguments submit-
ted and constructed (from the propositions asserted) during the course of a dialogue
can be organised into an argumentation framework [15]. If an argument for the topic is
justified, then the proponent wins the dialogue. Formalising dialogue models is to be
addressed in future work. Here, we refer only to an EAF constructed on the basis of a
dialogue.

Definition 8. Let d = m1, . . . , mn be a terminated dialogue where topic(d) = α, and
AG = {Ag1, . . . , Agm} the participants in d. We say that the EAF Δ = (Args,R,D)
constructed on the basis of d, is:

– a belief EAF iff every argument in Args is a belief argument of some Ag ∈ AG
– a goal EAF iff every argument in Args is either a belief or goal argument of some

Ag ∈ AG2.

3.2 Arguing about Beliefs and Goals

An agent’s argument A for a desire may conflict with (and so mutually attack) an argu-
ment B for a normative goal. Arguments for punishment and reward goals may in turn
attack A and so reinstate the argument B for the normative goal. The success of these
attacks as defeats depends on argumentation over preferences between the arguments
(corresponding to meta-level motivation-based argumentation over the relative utility
of states in which the goals are realised).

Prior to agents submitting goal arguments in a dialogue, the beliefs in the argument
justifying the goal may themselves by subject to debate3. In our running example, Ag1’s
desire to stay on Waikiki beach is contingent on its belief that it will be hot in Hawaii. A
system agent may successfully persuade Ag1 that it will be cool in Hawaii. Hence Ag1
will not submit the argument for its desire, precluding the possibility of norm violation
(in Example 1 the outcome is in favour of Ag1’s argument that it will be hot). Fur-
thermore, the beliefs in arguments for system goals may be challenged. Thus, an agent
may successfully argue that the beliefs justifying a normative goal may be erroneous;
hence the normative goal does not have to be adopted and unwarranted obstruction
of the conflicting desire is prevented. Suppose arguments A and B for the conflicting
goals of staying on Waikiki and staying at a cheap hotel have been submitted. AgP

will not submit an argument C for the punishment goal of denying Ag1 funding for
the Leipzig meeting, if Ag1 successfully persuades AgP that the meeting is related to
an EU project. Again, this prevents unwarranted obstruction of Ag1’s intention to at-
tend the meeting. Of course, AgP may then be motivated to submit an argument for an
alternative punishment goal to enforce compliance.

2 Of course, in the limiting case where only arguments can be submitted as locutions, then each
mi in d corresponds to an argument in Args, and a protocol for d would require that mi attack
some mj , j < i, or some attack between mj and mk, j < i, k < i.

3 Arguing over beliefs justifying a goal prior to arguing over the relative merits of goals
precludes ‘wishful thinking’; i.e., one wouldn’t want that argumentation over which goals
to adopt (which future state to realise) influences what is believed about the current state
of the world.

Argumentation Based Resolution of Conflicts 27

Definition 9. Let AG = {Ag1, . . . , Agn}. Then A is an agreed goal argument of Ag ∈
AG if for every α ∈ bel(A):
if there is a terminated dialogue d with topic α, participants AG ⊆ {Ag1, . . . , Agn},
and Δ is a belief EAF constructed on the basis of d, then α is the conclusion of a
justified argument of Δ.

We now describe how argumentation over goals proceeds. Consider the case where
a normative goal g′ conflicts with a desire g (in the simplest case g′ ≡ ¬g in the
underlying logic). In general, we say that the goal argument A′ for g′ conflicts with the
goal argument A for g. In a goal EAF, A and A′ attack each other since an agent can
either adopt g and not g′, or g′ and not g.

Suppose such an EAF , where Ag1 submits A claiming ‘stay on Waikiki beach’, and
A′ claiming ‘stay in cheap hotel’, mutually attacks A. An enforcement agent can then
submit an argument P for a punishment goal p, that, in the terminology of [11], hinders
some intention of Ag1. In our running example, p = ‘deny funding for meeting’. Now
P does not directly attack on A’s goal; it does so in the sense that if the attack succeeds,
then Ag1 will not pursue its desire, and will comply with the norm. Note also, that the
attack is a preference dependent asymmetric attack. Ag1 might argue (B) that it is of
more value to him to stay on Waikiki beach then attend the meeting. That is, B �
(P ⇀ A), and it may now be that A and P are justified; Ag1 adopts its desire, and
accepts the punishment. An alternative punishment may then need to be submitted to
see if it has the required enforcing effect. Finally, an enforcement agent can submit an
argument R for a reward goal r, that, in the terminology of [11], benefits some intention
of Ag. For example r = ‘provide the agent with a laptop’, benefiting Ag1’s intention to
have a laptop. R symmetrically attacks A. Either Ag1 accepts the reward and drops the
desire, or vice versa.

Definition 10. Let AG={Ag1, . . . , Agn} be a set of agents. Let ArgsG=
⋃

i=1...n{A|A
is a goal argument for Agi}. Let IAG =

⋃
i=1...n Ii. Then:

– conflicts ⊆ ArgsG ×ArgsG

– hinders⊆ ArgsG × IAG

– benefits ⊆ ArgsG × IAG
4

Definition 11. Let AG = {Ag1, . . . , Agn}, and for some Ag ∈ AG, let A be a goal
argument of Ag, I the intention base of Ag.

Let A′ be the goal argument of some Ag′ ∈ AG, Ag′
= Ag. Then:

– A′ goal attacks A and A goal attacks A′ if conflicts(A′, A) or benefits(A′, ι) for
some ι ∈ I

– A′ goal attacks A if hinders(A′, ι) for some ι ∈ I
We now specify some constraints on a dialogue that begins with a topic that is a goal
proposed for adoption as an intention. We do so by expressing constraints on the goal
EAF constructed on the basis of the dialogue. These are that the goal arguments are
agreed, and can only be attacked by goal arguments as defined above, and only belief
arguments are used in arguing over the relative merits of the goals.

4 Note that an agent’s desires may ‘internally’ conflict. We so not here directly address conflict
resolution in such cases. Note also that an agent’s goals may benefit/hinder its own intentions.

28 S. Modgil and M. Luck

Definition 12. Let AG = {Ag1, . . . , Agn} be a set of agents. Let d be a terminated
dialogue with topic α, and participants AG′ ⊆ AG, where:

– α is the conclusion of an agreed goal argument A of some agent Ag ∈ AG′.
– Δ = (Args,R,D) is the goal EAF constructed on the basis of d, where:

i) for any goal arguments B, A ∈ Args, (B, A) ∈ R iff A and B are agreed goal
arguments, and B goal attacks A.
ii) If (C,(B, A)) ∈ D then C is a belief argument for some agent in AG′

If the topic α of the dialogue is an agent’s desire, and α is the claim of a justified
argument in the dialogue’s goal EAF, then α is updated to the agent’s intention base,
and any punishment goal that is the claim of a justified argument is updated to the
corresponding enforcement agent’s intention base. If α is not the claim of a justified
argument, and there is a justified argument for a normative goal β, then β is updated to
the agent’s intention base, and any reward goal that is the claim of a justified argument
is updated to the corresponding enforcement agent’s intention base.

4 Instantiating the Framework

In this section we describe an example instantiation of the framework. Agent goals,
beliefs and intentions are represented in [14]’s argument based logic programming
with defeasible priorities (ALP-DP). An ALP-DP theory’s arguments are defined as
sequences of chained rules. Some rules can express priorities on other rules, so that one
can construct priority arguments whose claims determine preferences between other
mutually attacking arguments. Preferences between priority arguments can also be es-
tablished on the basis of other priority arguments. [14] then defines the justified ar-
guments of a theory under Dung’s grounded semantics. In [12,13] the arguments and
attacks defined by an ALP-DP theory instantiate an EAF, and an equivalence result with
the EAF’s justified arguments (under the grounded semantics) is shown. By giving an
EAF semantics for ALP-DP one can, unlike [14], also:

1. characterise the justified arguments of an ALP-DP theory under the preferred se-
mantics; and

2. model preference dependent asymmetric attacks.

Both these features are employed when instantiating an EAF. Note that ALP-DP models
both negation as failure and strict negation. To simplify the presentation, we describe
a restricted version of ALP-DP — ALP-DP* — which does not include negation as
failure.

Definition 13. Let (S, D) be a ALP-DP* theory where S is a set of strict rules of the
form s : L0∧ . . .∧Lm → Ln, D a set of defeasible rules r : L0∧ . . .∧Lj ⇒ Ln, and:

– Each rule name r (s) is a first order term. Henceforth, head(r) denotes the conse-
quent Ln of the rule named r.

– Each Li is an atomic first order formula, or such a formula preceded by strong
negation ¬.

Argumentation Based Resolution of Conflicts 29

Strict rules represent information that is beyond debate (note that neither→ nor⇒ ad-
mit contraposition). We also assume that the language contains a two-place predicate
symbol≺ for expressing priorities on rule names, and that any S includes the following
strict rules expressing the properties of a strict partial order on ≺:

• o1 : (x ≺ y) ∧ (y ≺ z)→ (x ≺ z)
• o2 : (x ≺ y) ∧ ¬(x ≺ z)→ ¬(y ≺ z)
• o3 : (y ≺ z) ∧ ¬(x ≺ z)→ ¬(x ≺ y)
• o4 : (x ≺ y)→ ¬(y ≺ x)

Definition 14. An argument A based on the theory (S, D) is:

1. a finite sequence [r0, . . . , rn] of ground instances of rules such that
– for every i (0 ≤ i ≤ n), for every literal Lj in the antecedent of ri there is a

k < i such that head(rk) = Lj .
We say that claim(A) = head(rn), and if head(rn) = x ≺ y then A is called a
‘singleton priority argument’.

– no distinct rules in the sequence have the same head
or

2. a finite sequence [r01 ,. . . rn1 ,. . .,r0m ,. . . rnm], such that for i=1 . . . m, [r0i ,. . . rni]
is a singleton priority argument. We say that A is a ‘composite priority argument’
and claim(A) = head(rn1). . .head(rnm) is the ordering claimed by A

In [14], arguments are exclusively defined by item 1. We additionally define composite
priority arguments so that an ordering, and hence a preference, can be claimed by a
single argument rather than a set of arguments (as in [14]).

Definition 15. For any arguments A, A′ and literal L:

– A is strict iff it does not contain any defeasible rule; it is defeasible otherwise.
– L is a conclusion of A iff L is the head of some rule in A
– If T is a sequence of rules, then A + T is the concatenation of A and T

Note that an argument has only one claim, but may have many conclusions correspond-
ing to the heads of the contained rules. We now instantiate the abstract definition 7 of
an agent and its constructed arguments. Note that intentions are represented by the goal
arguments that have previously been used to justify their adoption. Hence, an agent’s
goal arguments will be constructed from its belief and goal base, and the claims (named
by the name of the rule whose head is the claim) of intention arguments in all agents’
intention bases.

Definition 16. Let {Ag1, . . . , Agn} be a set of agents, where for i = 1 . . . n:

- Bi and Gi are ALP-DP* theories, and Ii is a set of arguments.

- A is a belief argument of Agi iff it is based on Bi

- A is a goal argument of Agi iff it is based on Bi ∪ Gi∪
⋃

i=1...n{r : claim(B)|B ∈
Ii, head(r) = claim(B)}

[14] motivates definition of attacks between arguments that account for the ways in
which arguments can be extended with strict rules:

30 S. Modgil and M. Luck

Definition 17. A1 attacks A2 on the pair (L,¬L) if there are sequences S1 and S2 of
strict rules such that A1 + S1 is an argument with conclusion L and A2 + S2 is an
argument with a conclusion ¬L.

In the following example illustrating attacks between belief arguments, we will without
loss of generality simply assume that all beliefs are contained in a single theory. Only
in the example at the end of this section, in which we illustrate argumentation over
goals, will we identify the individual agents involved. Following [14], every rule with
terms t1, . . . , tn is named with a function expression r(t1, . . . , tn) where r is the rules’s
informal name. For example, r(p(X, Y), q(X, Y)) names the rule p(X, Y)⇒ q(X, Y).
To maintain readability we will only write the function-symbol part of the rule name,
and as an abuse of notation, arguments will be represented as sequences of rule names
rather than the rules these names identify.

Example 2. Let tr(X, Y), st(X, Y) and ra(X, Y) respectively denote that X is more
trustworthy, statistically accurate, and rational than Y .

Let S = {o1 . . . o4} ∪ {s1 : temp(X, cool)→ ¬temp(X, hot),
s2 : temp(X, hot)→ ¬temp(X, cool)}.

Let D = {bbc :⇒ temp(hawaii, cool),
cnn :⇒ temp(hawaii, hot),
c1 :⇒ tr(bbc, cnn),
d1 :⇒ st(cnn, bbc),
c2 : tr(X, Y) ⇒ Y ≺ X,

d2 : st(X, Y)⇒ Y ≺ X,

e1 :⇒ ra(d2, c2),
e2 : ra(X, Y)⇒ Y ≺ X}

A = [bbc], B = [cnn], C = [c1, c2], D = [d1, d2].
E = [e1, e2] with conclusions ra(d2, c2) and c2 ≺ d2, and claim c2 ≺ d2.

A and B attack each other since A + s1 has conclusion
¬temp(hawaii, hot) and B has conclusion temp(hawaii, hot). C and D attack each
other since C has conclusion cnn ≺ bbc and D + o4 has conclusion ¬(cnn ≺ bbc)

We now define the relations conflicts, hinders and benefits, and goal attacks for ALP-
DP* goal arguments. Note that the notion of benefits requires that a goal argument of
a rewarding agent be extended (as in the definition of attack) with strict rules that link
the reward goal to the intention that it benefits (this will be illustrated in the example
concluding this section).

Definition 18. Let A be a goal argument of an agent Ag and I the intention base
of Ag.

Let B be any goal argument of an agent Ag′, where B′ = (S′, D′) is the belief base
of Ag′. We say that:

• conflicts(B, A) if B attacks A as in definition 17.

For any I ∈ I:

• hinders(B, I) if B attacks I as in definition 17

Argumentation Based Resolution of Conflicts 31

• benefits(B, I) if claim(B+S1) = claim(I) for some possibly empty sequence of strict
rules S1 in S′

Then:

– B and A goal attack each other on the pair
(claim(B), claim(A)) if conflicts(B, A)

– B and A goal attack each other on the pair
(claim(B), claim(A)) if benefits(B, I) for some I ∈ I

– B goal attacks A on the pair
(claim(B), claim(A)) if hinders(B, I) for some I ∈ I

To determine a preference amongst attacking arguments, [14] defines the sets of relevant
defeasible rules to be compared, and an ordering on these sets. Here, the ordering on
such sets is based on the ordering claimed by a given priority argument.

Definition 19. If A+S is an argument with conclusion L, the defeasible rules RL(A+
S) relevant to L are:

1. {rd} iff A includes defeasible rule rd with head L
2. RL1(A + S) ∪ . . . ∪ RLn(A + S) iff A is defeasible and S includes a strict rule s

: L1 ∧ . . . ∧ Ln → L

Definition 20. Let C be a priority argument claiming the ordering≺. Let R and R′ be
sets of defeasible rules. Then R′ > R iff ∀r′ ∈ R′, ∃r ∈ R such that r ≺ r′.

Intuitively, R can be made better by replacing some rule in R with any rule in R′, while
the reverse is impossible. Now, given two arguments A and B, it may be that for belief
arguments they attack on more than one conclusion. For goal arguments they goal attack
on a single pair of conclusions (the goals claimed by the arguments). Given a priority
ordering ≺ claimed by argument C, we say that A is preferred≺ to B if for every pair
(L, L′) of conclusions on which they attack, the set of A’s defeasible rules relevant to
L is stronger (>) than the set of B’s defeasible rules relevant to L′.

Definition 21. Let C be a priority argument claiming ≺. Let (L1, L
′
1), . . . , (Ln, L′

n)
be the pairs on which A attacks, or goal attacks B, where for i = 1 . . . n, Li and L′

i

are conclusions in A and B respectively. Then A is preferred≺ to B if for i = 1 . . . n,
RLi(A + Si) > RL′

i
(B + S′

i)

In example 2, C and D attack each other on the pair (cnn ≺ bbc, ¬(cnn ≺ bbc)),
and Rcnn≺bbc(C) = {c2}, R¬(cnn≺bbc)(D) = {d2}. E claims c2 ≺ d2, and so D is
preferredc2≺d2 to C. Note also, that given C, A is preferredcnn≺bbc to B, and given D,
B is preferredbbc≺cnn to A. We can now instantiate an EAF with the arguments, their
attacks, and priority arguments claiming preferences and so attacking attacks:

Definition 22. The EAF (Args, R, D) for a theory (S, D) is defined as follows. Args
is the set of arguments given by definition 14, and ∀A, B, C ∈ Args:

1. (C,(B, A)) ∈ D iff C claims ≺ and A is preferred≺ to B
2. (A, B),(B, A) ∈ R if A and B attack as in definition 17, or A and B goal attack

as in definition 18

32 S. Modgil and M. Luck

The belief EAF obtained by the arguments and attacks for our running example is shown
in figure 1a). {E, D, B} is the single preferred extension of the EAF. We can now
constrain a goal EAF constructed on the basis of a dialogue between agents, as defined
in definition 12.

5 An Extended Example

We now illustrate the previous section’s formalism with an extended version of our
Hawaiian example, in which we assume that every goal argument is agreed.
In what follows we use the following shorthand:

ha = ‘Hawaii’, wa = ‘Waikiki beach’, le = ‘Leipzig’, att, = ‘attend’, conf = ‘confer-
ence’, meet, = ‘meeting’, cheap = ‘cheap hotel’, lap = ’laptop’, fund = ‘have funding’,
and deny f = ‘deny funding’.

Also, predicates may refer to the agents themselves. For example, att(ag, conf, ha) de-
notes the goal of ag to attend a conference in Hawaii. Also, variables will begin with up-
percase letters and constants with lowercase letters. For example, deny f(agP , AgX,
meet, L) denotes the goal of agent agP to deny funding for any agent AgX to attend a
meeting in some location L.

Let {aga, agN , agP , agR} be a set of agents. We describe each agent’s knowledge
bases. Note that we may not show all the goal rules used to construct arguments in
the intention base of each agent. Also, as before, we may simply write the rule name
rather than the rule the name identifies.

aga:
I =
{ [ia1 :⇒ att(aga, conf, ha)], [ia2 :⇒ att(aga, meet, le)],
[ia2 :⇒ att(aga, meet, le), ia3 : att(aga, meet, le)⇒ funds(aga, meet, le)],
[ia4 :⇒ have(aga, lap)] }
G =
{ ga1 : temp(ha, hot) ∧ att(aga, conf, ha)⇒ stay(aga, wa)}
B =
{ ba0 :⇒ temp(ha, hot),
ba1 :→ norm des(gn1, ga1),
ba self : norm des(X, Y)⇒ X ≺ Y ,
ba2 :⇒ project funds(high),
ba3 : project funds(high)⇒ except(ba self, bn social),
ba excep : except(X, Y)⇒ Y ≺ X ,
ba4 :⇒ gp1 ≺ ga1}
agN :
I = ∅
G = { gn1 : att(AgX, conf, L)⇒ stay(AgX, cheap, L)}
B = { bn1 : stay(AgX, cheap, ha)→ ¬stay(AgX, wa),
bn2 :→ norm des(gn1, ga1),
bn social : norm des(X, Y) ⇒ Y ≺ X }

Argumentation Based Resolution of Conflicts 33

agP :
I = ∅
G = { gp1 : att(AgX, meet, L) ∧ ¬type(meet, eu, L)
⇒ deny f(agP , AgX, meet, L)}
B = { bp1 :⇒ ¬type(meet, eu, le),
bp2 : deny f(agP , AgX, meet, L)→ ¬funds(AgX, meet, L)}
agR:
I = ∅
G = { gr1 : have(AgX, lap)⇒ provide(agR, AgX, lap)}
B = { br1 : provide(agR, AgX, lap)→ have(AgX, lap),
br2 :→ rew des(gr1, ga1),
br rew suffice : rew des(X, Y) ⇒ Y ≺ X }
1) aga initiates a dialogue with goal argument A1 = [ba0, ia1, ga1] claiming the goal
stay(aga, wa), having already persuaded a system agent that it will indeed be hot in
Hawaii.

2) agN submits A2 = [ia1,gn1] (AgX = aga, L = ha), where A2 and A1 goal attack
each other (see figure 2) on the pair
(stay(aga, cheap, ha), stay(aga, wa)).
This symmetric goal attack is based on conflicts (A2, A1) which obtains because A2 +
[bn1] and A1 attack (as in def.17) on the conclusion pair (¬stay(aga, wa), stay(aga,
wa))agN also submits the social ordering argument B1 = [bn2, bn social] claiming
ga1 ≺ gn1, and so B1 � (A1 ⇀ A2).

3) aga submits:
- the selfish ordering argument B2 = [ba1, ba self] claiming gn1 ≺ ga1, and so
B2 � (A2 ⇀ A1)

A1 A2

B1B2

C1

A3

A4
B4

B3

Fig. 2. EAF based on argumentation based dialogue over goals

34 S. Modgil and M. Luck

- an argument claiming that the selfish behaviour type is preferred to the social be-
haviour type given the exceptional circumstances in which the remaining project budget
is high:
C1 = [ba2, ba3, ba excep,] claiming bn social ≺ ba self , and so C1 � (B1 ⇀ B2).

The single preferred extension contains A1
4) agP attempts to enforce compliance by submitting A3 = [ia2, bp1, gp1] given that it
is agreed that the meeting is not an Eu project meeting.
A3 + [bp2] attacks (as in def.17), and so hinders, aga’s intention [ia2, ia3]. Hence, A3
goal attacks A1 on the pair (deny f(agP , aga, meet, le), stay(aga, wa)).
5) However, aga prefers to stay on the beach and be denied funding by agP for the
leipzig meeting. It may be that aga has another source of funding in mind. We do not
encode the rationale for the preference, but simply assume the priority argument B3
= [ba4] claiming gp1 ≺ ga1. Hence B3 � (A3 ⇀ A1). Since A3’s attack on A1 is
asymmetric:

The single preferred extension contains A1 and A3
6) agR attempts to enforce compliance with A4 = [ia4, gr1] offering to provide aga

with a laptop. This benefits aga’s intention to have a laptop since claim([ia4, gr1] +
[br1]) = claim[ia4]. Hence, A4 and A1 goal attack each other (A4 � A1) on the pair
(provide(agR, aga, lap), stay(aga, wa)).

agR believes the reward is of sufficient strength that aga will prefer the reward to staying
on Waikiki beach. agR submits B4 = [br2, br rew suffice] claiming ga1 ≺ gr1.
Hence, B4 � (A1 ⇀ A4). This is accepted by aga and the dialogue terminates.

The single preferred extension contains A2 and A4
aga’s intention set can then be updated with A2. agR’s intention set can then be updated
with A4. aga intends now to book a cheap room in Hawaii, and agR intends to provide
aga with a laptop.

6 Conclusions

In this paper we have proposed a framework for argumentation-based resolution of
conflicts in normative multi-agent systems, and have illustrated instantiation of the
framework with a logic programming formalism. The framework provides for agents to
argue over the beliefs justifying goals, conflicting preferences brought to bear in argu-
mentation over beliefs, and metalevel motivational argumentation over the states repre-
sented by desire based goals, and normative, punishment and reward goals argued for by
other agents. In this way, unwarranted obstruction of individual agents’ desires is pre-
cluded, and enforcement of compliance can appropriately account for the motivations
of the agents and erroneously held beliefs about the contexts in which the agents find
themselves.

As mentioned in Section 1, existing approaches to argumentation-based resolution
of conflicts amongst goals ([2],[10],[16]) do not model social mechanisms deployed
to enforce compliance with norms. In [16], norms are represented as bridge rules that

Argumentation Based Resolution of Conflicts 35

describe the relationships between mental attitudes. Argumentation based resolution of
conflicts amongst goals derived using these rules exploits a preference relation on these
rules. In [2], only conflicts amongst desire based goals are addressed. Argumentation
over the beliefs that justify desires conforms to the Dung semantics. However selection
of desires does not account for their relative importance and does not conform to the
Dung semantics. Rather, the maximal (under set inclusion) sets of desires that can be
consistently realised are chosen. However, goal selection does account for the feasibility
of plans for realising goals, and this is a factor that our work needs to account for in
future work.

Future work will also investigate instantiation of the framework by formalisms with
explicit BDI type modalities. Further work is also required before evaluation of the
framework based on prototypical implementations can proceed. In particular, we intend
development of argument game proof theories, algorithms and dialogue protocols for
EAFs. Since EAFs inherit the fundamental results shown for Dung frameworks, our
approach will adopt the methodologies deployed in specification of game based algo-
rithms [18] and protocols [15] based on the Dung semantics. We also believe that our
approach is applicable to resolution of conflicts arising between an individual agent’s
conflicting desires, and between conflicting norms. Both cases often require reasoning
about abstract values and motivations. Furthermore, conflict resolution may lead to re-
finement and evolution of a system’s norms. Finally, one of the key novel features of
our framework is that an agent’s decision as to which goals to pursue is influenced by
other agents’ goals. We believe that we can abstract from the normative application of
the framework to consider other contexts in which the impact of other agents’ goals can
be modelled through argumentation based mechanisms.

Acknowledgements. The research described in this paper is partly supported by the Eu-
ropean Commission Framework 6 funded project CONTRACT (INFSO-IST-034418).
The opinions expressed herein are those of the named authors only and should not
be taken as necessarily representative of the opinion of the European Commission or
CONTRACT project partners.

References

1. Amgoud, L.: Using Preferences to Select Acceptable Arguments. In: Proc. 13th European
Conference on Artificial Intelligence, pp. 43–44 (1998)

2. Amgoud, L., Kaci, S.: On the generation of bipolar goals in argumentation-based negotiation.
In: Rahwan, I., Moraı̈tis, P., Reed, C. (eds.) ArgMAS 2004. LNCS, vol. 3366, pp. 192–207.
Springer, Heidelberg (2005)

3. ASPIC Deliverable D2.1: Theoretical frameworks for argumentation. (June 2004),
http://www.argumentation.org/PublicDeliverables.htm

4. Bench-Capon, T.J.M.: Persuasion in Practical Argument Using Value-based Argumentation
Frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

5. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence 93, 63–101 (1997)

6. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.W.N.: Goal Generation in the BOID
Architecture. Cognitive Science Quarterly Journal 2(3-4), 428–447 (2002)

http://www.argumentation.org/PublicDeliverables.htm

36 S. Modgil and M. Luck

7. Dastani, M., van der Torre, L.: Programming BOID-Plan Agents: Deliberating about Con-
flicts among Defeasible Mental Attitudes and Plans. In: Proc 3rd Int. Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 706–713 (2004)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

9. d’Inverno, M., Luck, M.: Understanding agent systems, 2nd edn. Springer, Heidelberg
10. Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous agents. In:

Proc. Second international joint conference on autonomous agents and multiagent systems,
pp. 883–890 (2003)

11. Lopez, F., Lopez, Y., Luck, M., D’Inverno, M.: A normative framework for agent-based
systems. J. Computational and Mathematical Organization Theory 12(2-3), 227–250 (2006)

12. Modgil, S.: An Abstract Theory of Argumentation That Accommodates Defeasible Rea-
soning About Preferences. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp.
648–659. Springer, Heidelberg (2007)

13. Modgil, S.: Reasoning About Preferences in Argumentation Frameworks. Technical Report,
http://www.dcs.kcl.ac.uk/staff/modgilsa/
ArguingAboutPreferences.pdf

14. Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible prior-
ities. Journal of Applied Non-Classical Logics 7, 25–75 (1997)

15. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of logic
and computation 15(6), 1009–1040 (2005)

16. Gaertner, D., Toni, F.: Conflict-free normative agents using assumption-basedargumentation.
In: Rahwan, I., Parsons, S., Reed, C. (eds.) Argumentation in Multi-Agent Systems. LNCS,
vol. 4946. Springer, Heidelberg (2008)

17. Moses, Y., Tennenholtz, M.: Artificial Social Systems. Computers and AI 14(6), 533–562
(1995)

18. Vreeswijk, G.: An algorithm to compute minimally grounded and admissible defence sets
in argument systems. In: Proc. 1st International Conference on Computational Models of
Argument, pp. 109–120 (2006)

http://www.dcs.kcl.ac.uk/staff/modgilsa/ArguingAboutPreferences.pdf
http://www.dcs.kcl.ac.uk/staff/modgilsa/ArguingAboutPreferences.pdf

A Constrained Argumentation System for Practical
Reasoning

Leila Amgoud1, Caroline Devred2, and Marie-Christine Lagasquie-Schiex1

1 IRIT–UPS, Toulouse - France
{amgoud,lagasq}@irit.fr

2 LERIA, Angers - France
devred@info.univ-angers.fr

Abstract. Practical reasoning (PR), which is concerned with the generic ques-
tion of what to do, is generally seen as a two steps process: (1) deliberation, in
which an agent decides what state of affairs it wants to reach –that is, its desires;
and (2) means-ends reasoning, in which the agent looks for plans for achieving
these desires. A desire is justified if it holds in the current state of the world, and
feasible if there is a plan for achieving it. The agent’s intentions are thus a consis-
tent subset of desires that are both justified and feasible. This paper proposes the
first argumentation system for PR that computes in one step the intentions of an
agent, allowing thus to avoid the drawbacks of the existing systems. The proposed
system is grounded on a recent work on constrained argumentation systems, and
satisfies the rationality postulates identified in argumentation literature, namely
the consistency and the completeness of the results.

Keywords: Argumentation, Practical Reasoning.

1 Introduction

Practical reasoning (PR) [16], is concerned with the generic question “what is the right
thing to do for an agent in a given situation”. In [22], it has been argued that PR is a
two steps process. The first step, often called deliberation, consists of identifying the
desires of an agent. In the second step, called means-end reasoning, one looks for ways
for achieving those desires, i.e. for actions or plans. A desire is justified if it holds in the
current state of the world, and is feasible if it has a plan for achieving it. The agent’s
intentions, what the agent decides to do, is a consistent subset of desires that are both
justified and feasible.

What is worth noticing in most works on practical reasoning is the use of arguments
for providing reasons for choosing or discarding a desire as an intention. Indeed, several
argumentation-based systems for PR have been proposed in the literature [3,13,15].
However, in most of these works, the problem of PR is modeled in terms of at least two
separate systems, each of them capturing a given step of the process. Such an approach
may suffer from a serious drawback. In fact, some desires that are not feasible may be
accepted at the deliberation step to the detriment of other justified and feasible desires.
Moreover, the properties of those systems are not investigated.

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 37–56, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

This paper proposes the first argumentation system that computes the intentions of
an agent in one step. The system is grounded on a recent work on constrained argumen-
tation systems [9]. These last extend the well-known general system of Dung [10] by
adding constraints on arguments that need to be satisfied by the extensions returned by
the system. Our system takes then as input i) three categories of arguments: epistemic
arguments that support beliefs, explanatory arguments that show that a desire holds in
the current state of the world, and instrumental arguments that show that a desire is fea-
sible, ii) different conflicts among those arguments, and iii) a particular constraint on
arguments that captures the idea that for a desire to be pursued it should be both feasible
and justified. This is translated by the fact that in a given extension each instrumental
argument for a desire should be accompanied by at least an explanatory argument in
favor of that desire. The output of our system is different sets of arguments as well as
different sets of intentions. The use of a constrained system makes it possible to com-
pute directly the intentions from the extensions. The properties of this system are deeply
investigated. In particular, we show that its results are safe, and satisfy the rationality
postulates identified in [5], namely consistency and completeness.

The paper is organized as follows: Section 2 recalls the basics of a constrained
argumentation system. Section 3 presents the logical language. Section 4 studies the
different types of arguments involved in a practical reasoning problem, and Section 5 in-
vestigates the conflicts that may exist between them. Section 6 presents the constrained
argumentation system for PR, and its properties are given in Section 7. The system is
then illustrated in Section 8.

2 Basics of Constrained Argumentation

Argumentation is an established approach for reasoning with inconsistent knowledge,
based on the construction and the comparison of arguments. Many argumentation for-
malisms are built around an underlying logical language and an associated notion of
logical consequence, defining the notion of argument. The argument construction is a
monotonic process: new knowledge cannot rule out an argument but gives rise to new
arguments which may interact with the first argument. Since knowledge bases may give
rise to inconsistent conclusions, the arguments may be conflicting too. Consequently,
it is important to determine among all the available arguments, the ones that are ulti-
mately “acceptable”. In [10], an abstract argumentation system has been proposed, and
different acceptability semantics have been defined.

Definition 1. ([10] – Basic argumentation system) An argumentation system is a pair
AF = 〈A,R〉 with A is a set of arguments, andR is an attack relation (R ⊆ A×A).

Before recalling the acceptability semantics of Dung [10], let us first introduce some
useful concepts.

Definition 2. ([10] – Conflict-free, Defence) Let E ⊆ A.

E is conflict-free iff � α, β ∈ E such that α R β.
E defends an argument α iff ∀ β ∈ A, if β R α, then ∃ δ ∈ E such that δ R β.

Dung’s semantics are all based on a notion of admissibility.

A Constrained Argumentation System for Practical Reasoning 39

Definition 3. ([10] – Acceptability semantics) Let E be a set of arguments.

E is an admissible set iff it is conflict-free and defends every element in E .
E is a preferred extension iff it is a maximal (w.r.t. set-inclusion) admissible set.
E is a stable extension iff it is a preferred extension that attacks all arguments in
A\E .

Note that every stable extension is also a preferred one, but the converse is not
always true.

The above argumentation system has been generalized in [9]. The basic idea is to
explicit constraints on arguments that should be satisfied by the above Dung’s exten-
sions. For instance, one may want that the two arguments α and β belong to the same
stable extension. These constraints are generally expressed in terms of a propositional
formula built from a language using A as an alphabet.

Definition 4. ([9] – Constraints on arguments, Completion of a set of arguments)
Let A be a set of arguments and LA be a propositional language defined using A as
the set of propositional variables.

C is a constraint on A iff C is a formula of LA.
The completion of a set E ⊆ A is: Ê = {α | α ∈ E} ∪ {¬α | α ∈ A \ E}. A set
E ⊆ A satisfies C iff Ê is a model of C (Ê � C).

A constrained system is defined as follows:

Definition 5. ([9] – Constrained argumentation system) A constrained argumenta-
tion system is a triple CAF = 〈A,R, C〉 with C is a constraint on arguments of A.

Let us recall how Dung’s extensions are extended in constrained systems. As said be-
fore, the basic idea is to compute Dung’s extensions, and then to keep among those
extensions the ones that satisfy the constraint C.

Definition 6. ([9] – C-admissible set) Let E ⊆ A. E is C-admissible iff

1. E is admissible,
2. E satisfies the constraint C.

Note that the empty set is admissible, however, it is not always C-admissible since ∅̂
does not always imply C.

Definition 7. ([9] – C-extensions) Let E ⊆ A.

E is a C-preferred extension iff E is maximal for set-inclusion among the C-
admissible sets.
E is a C-stable extension iff E is a C-preferred extension that attacks all arguments

in A\E .

Now that the acceptability semantics are defined, we are ready to define the status of
any argument.

Definition 8. (Argument status) Let CAF be a constrained argumentation system, and
E1, . . . , Ex its extensions under a given semantics. Let α ∈ A.

40 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

α is accepted iff α ∈ Ei, ∀Ei with i = 1, . . . , x.
α is rejected iff �Ei such that α ∈ Ei.
α is undecided iff α is neither accepted nor rejected.

One can easily check that if an argument is rejected in the basic system AF, then it will
also be rejected in CAF.

Property 1. Let α ∈ A. Under the stable or preferred semantics, if α is rejected in AF,
then α is also rejected in CAF.

Proof. Let α ∈ A. Assume that α is rejected in AF, and that α is not rejected in CAF.

Case of Stable Semantics: Since α is not rejected in CAF, then there exists Ei that
is a C-stable extension of CAF, and α ∈ Ei. In [9], it has been shown (Prop. 6) that
every C-stable extension is also a stable extension. Consequently, Ei is also a stable
extension. Since α is rejected in AF, then α
∈ Ei, contradiction.

Case of Preferred Semantics: Since α is not rejected in CAF, then there exists Ei that
is a C-preferred extension of CAF, and α ∈ Ei. In [9], it has been shown (Prop. 4)
that each C-preferred extension is a subset of a preferred extension. This means that ∃E
such E is a preferred extension of AF and Ei ⊆ E . However, since α is rejected in AF,
then α
∈ E , contradiction with the fact that α ∈ Ei.

3 Logical Language

This section presents the logical language that will be used throughout the paper. Let
L be a propositional language, and ≡ be the classical equivalence relation. From L, a
subsetD is distinguished and is used for encoding desires. By desire we mean a state of
affairs that an agent wants to reach. Elements ofD are literals. We will write d1, . . . , dn

to denote desires and the lowercase letters will denote formulas of L.
From the above sets, desire-generation rules can be defined. A desire-generation rule

expresses under which conditions an agent may adopt a given desire. A desire may come
from beliefs. For instance, “if the weather is sunny, then I desire to go to the park”. In
this case, the desire of going to the park depends on my belief about the weather. A
desire may also come from other desires. For example, if there is a conference in India,
and I have the desire to attend, then I desire also to attend the tutorials. Finally, a desire
may be unconditional, this means that it depends on neither beliefs nor desires. These
three sources of desires are captured by the following desire-generation rules.

Definition 9. (Desire-Generation Rules) A desire-generation rule (or a desire rule) is
an expression of the form

b ∧ d1 ∧ . . . ∧ dm−1 ↪→ dm, where

b is a propositional formula of L and ∀di, di ∈ D. Moreover, �di, dj with i, j ≤ m
such that di ≡ dj . b ∧ d1 ∧ . . . ∧ dm−1 is called the body of the rule (this body may be
empty; this is the case of an unconditional desire), and dm is its consequent.

A Constrained Argumentation System for Practical Reasoning 41

The meaning of the rule is “if the agent believes b and desires d1, . . . , dm−1, then the
agent will desire dm as well”. Note that the same desire di may appear in the consequent
of several rules. This means that the same desire may depend on different beliefs or
desires. In what follows, a desire rule is consistent if it depends on consistent beliefs
and on non contradictory desires.

Definition 10. (Consistent Desire Rule) A desire rule b ∧ d1 ∧ . . . ∧ dm−1 ↪→ dm

is consistent iff b � ⊥, ∀i = 1 . . .m, b � ¬di and �di, dj with i, j ≤ m such that
di ≡ ¬dj . Otherwise, the rule is said inconsistent.

An agent is assumed to be equipped with plans provided by a given planning system.
The generation of such plans is beyond the scope of this paper. A plan is a way of
achieving a desire. It is defined as a triple:

a set of pre-conditions that should be satisfied before executing the plan,
a set of post-conditions that hold after executing the plan, and
the desire that is reached by the plan.

Definition 11. (Plan) A plan is a triple 〈S, T, x〉 such that

S and T are consistent sets of formulas of L,
x ∈ D,
T � x and S
� x.

Of course, there exists a link between S and T . But this link is not explicitly defined
here because we are not interested by this aspect of the process. We just consider that
the plan is given by a correct and sound planning system (for instance [11,17]).

In the remaining of the paper, we suppose that an agent is equipped with three finite
bases:

a base K
= ∅ and K
= {⊥} containing its basic beliefs about the environment
(elements of K are propositional formulas of the language L),
a base Bd containing its “consistent” desire rules,
a base P containing its plans.

Using Bd, we can characterize the potential desires of an agent as follows:

Definition 12. (Potential Desires) The set of potential desires of an agent is PD =
{dm|∃b ∧ d1 ∧ . . . ∧ dm−1 ↪→ dm ∈ Bd}.

These are “potential” desires because it is not yet clear whether these desires are justi-
fied and feasible or not.

4 Typology of Arguments

The aim of this section is to present the different kinds of arguments involved in prac-
tical reasoning. There are mainly three categories of arguments: one category for sup-
porting/attacking beliefs, and two categories for justifying the adoption of desires. Note
that the arguments will be denoted with lowercase greek letters.

42 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

4.1 Justifying Beliefs

The first category of arguments is that studied in argumentation literature, especially for
handling inconsistency in knowledge bases. Indeed, arguments are built from a knowl-
edge base in order to support or to attack potential conclusions or inferences. These
arguments are called epistemic in [12]. In our application, such arguments are built
from the base K. In what follows, we will use the definition proposed in [18].

Definition 13. (Epistemic Argument) Let K be a knowledge base. An epistemic
argument α is a pair α = 〈H, h〉 s.t:

1. H ⊆ K,
2. H is consistent,
3. H � h and
4. H is minimal (for set ⊆) among the sets satisfying conditions 1, 2, 3.

The support of the argument is given by the function SUPP(α) = H , whereas its conclu-
sion is returned by CONC(α) = h. Ab stands for the set of all epistemic arguments that
can be built from the base K.

4.2 Justifying Desires

A desire may be pursued by an agent only if it is justified and feasible. Thus, there are
two kinds of reasons for adopting a desire: i) the conditions underlying the desire hold
in the current state of world; ii) there is a plan for reaching the desire. The definition of
the first kind of arguments involves two bases: the belief base K and the base of desire
rules Bd. In what follows, we will use a tree-style definition of arguments [20]. Before
presenting that definition, let us first introduce the functions BELIEFS(δ), DESIRES(δ),
CONC(δ) and SUB(δ) that return respectively, for a given argument δ, the beliefs used
in δ, the desires supported by δ, the conclusion and the set of sub-arguments of the
argument δ.

Definition 14. (Explanatory Argument) Let 〈K,Bd〉 be two bases.

If ∃ ↪→ d ∈ Bd then −→ d is an explanatory argument (δ) with BELIEFS(δ) = ∅,
DESIRES(δ) = {d}, CONC(δ) = d, SUB(δ) = {δ}.
If α is an epistemic argument, and δ1, . . . , δm are explanatory arguments, and
∃ CONC(α) ∧ CONC(δ1) ∧ . . . ∧CONC(δm) ↪→ d ∈ Bd then α, δ1, . . . , δm −→ d
is an explanatory argument (δ) with BELIEFS(δ) = SUPP(α) ∪ BELIEFS(δ1) ∪
. . . ∪ BELIEFS(δm), DESIRES(δ) = DESIRES(δ1) ∪ . . . ∪ DESIRES(δm) ∪ {d},
CONC(δ) = d, SUB(δ) = {α} ∪ SUB(δ1) ∪ . . . ∪ SUB(δm) ∪ {δ}.

Ad stands for the set of all explanatory arguments that can be built from 〈K,Bd〉 with
a consistent DESIRES set.

One can easily show that the set BELIEFS of an explanatory argument is a subset of the
knowledge base K, and that the set DESIRES is a subset of PD.

Property 2. Let δ ∈ Ad. The inclusions BELIEFS(δ)⊆K and DESIRES(δ)⊆ PD hold.

A Constrained Argumentation System for Practical Reasoning 43

Proof. Let δ ∈ Ad.
Let us show that BELIEFS(δ) ⊆ K. BELIEFS(δ) =

⋃
SUPP(αi) with αi ∈ Ab ∩ SUB(δ).

According to the definition of an epistemic argument αi, SUPP(αi) ⊆ K, thus BELIEFS
(δ) ⊆ K.

Let us show that DESIRES(δ)⊆PD. This is a direct consequence from the definition
of an explanatory argument and the definition of the set PD.

Note that a desire may be supported by several explanatory arguments since it may be
the consequent of different desire rules.

The last category of arguments claims that “a desire may be pursued since it has a
plan for achieving it”. The definition of this kind of arguments involves the belief base
K and the base of plans P .

Definition 15. (Instrumental Argument) Let 〈K,P〉 be two bases, and d ∈ PD. An
instrumental argument is a pair π = 〈〈S, T, x〉, d〉 where

1. 〈S, T, x〉 ∈ P ,
2. S ⊆ K,
3. x ≡ d.

Ap stands for the set of all instrumental arguments that can be built from 〈K,P ,PD〉.
The function CONC returns for an argument π the desire d. The function Prec returns
the pre-conditions S of the plan, whereas Postc returns its post-conditions T .

The second condition of the above definition says that the pre-conditions of the plan
hold in the current state of the world. In other words, the plan can be executed. Indeed,
the base P may contain plans whose pre-conditions are not true. Such plans cannot be
executed and their corresponding instrumental arguments do not exist.

In what follows,A = Ab∪Ad∪Ap. Note thatA is finite since the three initial bases
(K, Bd and P) are finite.

5 Interactions among Arguments

An argument constitutes a reason for believing, or adopting a desire. However, it is
not a proof that the belief is true, or that the desire can be adopted. The reason is that
an argument can be attacked by other arguments. In [7,14], it has been shown that an
argument may also be supported by other arguments. However, taking into account
the supports between arguments in a practical reasoning context will be the subject of
future work. In this section, we will investigate the different kinds of conflicts among
the arguments identified in the previous section.

5.1 Conflicts among Epistemic Arguments

An argument can be attacked by another argument for three main reasons: i) they have
contradictory conclusions (this is known as rebuttal), ii) the conclusion of an argument
contradicts a premise of another argument (assumption attack), iii) the conclusion of an
argument contradicts an inference rule used in order to build the other argument (under-
cutting). Since the base K is built around a propositional language, it has been shown
in [2] that the notion of assumption attack is sufficient to capture conflicts between
epistemic arguments.

44 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

Definition 16. Let α1, α2 ∈ Ab. α1 Rb α2 iff ∃h′ ∈ SUPP(α2) s.t. CONC(α1) ≡ ¬h′.

Note that the relation Rb is not symmetric. Moreover, one can show that there are no
self-defeating arguments.

In [6], the argumentation system 〈Ab,Rb〉 has been applied for handling inconsis-
tency in a knowledge base, say K. In this particular case, a full correspondence has
been established between the stable extensions of the system and the maximal consis-
tent subsets of the base K. Before presenting formally the result, let us introduce some
useful notations:

Let E ⊆ Ab, Base(E) =
⋃

Hi such that 〈Hi, hi〉 ∈ E .
Let T ⊆ K, Arg(T) = {〈Hi, hi〉|Hi ⊆ T }.

Property 3 ([6]). Let E be a stable extension of 〈Ab,Rb〉.
Base(E) is a maximal (for set ⊆) consistent subset of K and Arg(Base(E)) = E .

Property 4 ([6]). Let T be a maximal (for set ⊆) consistent subset of K.
Arg(T) is a stable extension of 〈Ab,Rb〉 and Base(Arg(T)) = T .

A direct consequence of the above result is that if the base K is not reduced to ⊥, then
the system 〈Ab,Rb〉 has at least one non-empty stable extension.

Property 5. The argumentation system 〈Ab,Rb〉 has non-empty stable extensions.

Proof. Since K
= {⊥} and K
= ∅ then the base K has at least one maximal (for
set inclusion) consistent subset, say T . According to Property 4, Arg(T) is a stable
extension of 〈Ab,Rb〉.

5.2 Conflicts among Explanatory Arguments

Explanatory arguments may also be conflicting. Indeed, two explanatory arguments
may be based on two contradictory desires.

Definition 17. Let δ1, δ2 ∈ Ad. δ1 Rd δ2 iff ∃d1 ∈ DESIRES(δ1), d2 ∈ DESIRES(δ2)
such that d1 ≡ ¬d2.

Property 6. The relationRd is symmetric and irreflexive.

Proof. The proof follows directly from the definition of the attack relationRd.

Note that from the definition of an explanatory argument, its set DESIRES cannot be
inconsistent. However, its set BELIEFS may be inconsistent. The union of the beliefs
sets of two explanatory arguments may also be inconsistent. Later in the paper, we
will show that it is useless to explicit these kinds of conflicts, since they are captured
by conflicts between explanatory arguments and epistemic ones (see Property 9 and
Property 10).

5.3 Conflicts among Instrumental Arguments

Two plans may be conflicting for four main reasons:

their pre-conditions are incompatible (i.e. the two plans cannot be executed at the
same time),

A Constrained Argumentation System for Practical Reasoning 45

their post-conditions are incompatible (the execution of the two plans will lead to
contradictory states of the world),
the post-conditions of a plan and the preconditions of the other are incompatible
(i.e. the execution of a plan will prevent the execution of the second plan in the
future),
their supporting desires are incompatible (indeed, plans for achieving contradictory
desires are conflicting; their execution will in fact lead to a contradictory state of
the world).

The above reasons are captured in the following definition of attack among instrumental
arguments. Note that a plan cannot be incompatible with itself.

Definition 18. Let π1, π2 ∈ Ap with π1
= π2. π1 Rp π2 iff:

Prec(π1) ∧ Prec(π2) |= ⊥, or
Postc(π1) ∧ Postc(π2) |= ⊥, or
Postc(π1) ∧ Prec(π2) |= ⊥ or Prec(π1) ∧ Postc(π2) |= ⊥.

Property 7. The relationRp is symmetric and irreflexive.

Proof. The proof follows directly from the definition of the attack relationRp.

One can show that if two plans realize conflicting desires, then their corresponding
instrumental arguments are conflicting too.

Property 8. Let d1, d2 ∈ PD. If d1 ≡ ¬d2, then ∀π1, π2 ∈ Ap s.t. CONC(π1) = d1 and
CONC(π2) = d2, then π1 Rp π2.

Proof. Let d1, d2 ∈ PD. Suppose that d1 ≡ ¬d2. Let us also suppose that ∃ π1, π2 ∈
Ap with CONC(π1) = d1, and CONC(π2) = d2. According to Definition 15, it holds that
Postc(π1) � d1 and Postc(π2) � d2. Since d1 ≡ ¬d2, then Postc(π2) � ¬d1. How-
ever, the two sets Postc(π1) and Postc(π2) are both consistent (according to Defini-
tion 11), thus Postc(π1) ∪ Postc(π2) � ⊥. Thus, π1 Rp π2.

In this section, we have considered only binary conflicts between plans, and conse-
quently between their corresponding instrumental arguments. However, in every-day
life, one may have for instance three plans such that any pair of them is not conflicting,
but the three together are incompatible. For simplicity reasons, in this paper we suppose
that we do not have such conflicts.

5.4 Conflicts among Mixed Arguments

In the previous sections we have shown how arguments of the same category can inter-
act with each other. In this section, we will show that arguments of different categories
can also interact. Indeed, epistemic arguments play a key role in ensuring the acceptabil-
ity of explanatory or instrumental arguments. Namely, an epistemic argument can attack
both types of arguments. The idea is to invalidate any belief used in an explanatory or
instrumental argument. An explanatory argument may also conflict with an instrumen-
tal argument when this last achieves a desire whose negation is among the desires of
the explanatory argument.

46 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

Definition 19. Let α ∈ Ab, δ ∈ Ad, π ∈ Ap.

αRbd δ iff ∃h ∈ BELIEFS(δ) s.t. h ≡ ¬CONC(α).
αRbp π iff ∃h ∈ Prec(π), s.t. h ≡ ¬CONC(α).
δRpdpπ and πRpdpδ iff CONC(π) ≡ ¬d and d ∈ DESIRES(δ)1.

As already said, the set of beliefs of an explanatory argument may be inconsistent. In
such a case, the explanatory argument is attacked (in the sense of Rbd) for sure by an
epistemic argument.

Property 9. Let δ ∈ Ad. If BELIEFS(δ) � ⊥, then ∃α ∈ Ab such that αRbd δ.

Proof. Let δ ∈ Ad. Suppose that BELIEFS(δ) � ⊥. This means that ∃T that is minimal
for set inclusion among subsets of BELIEFS(δ) with T � ⊥. Thus2, ∃h ∈ T such that
T \{h} � ¬h with T \{h} is consistent. Since BELIEFS(δ) ⊆ K (according to Prop-
erty 2), then T \{h} ⊆ K. Consequently, ∃ 〈T \{h},¬h〉 ∈ Ab with h ∈ BELIEFS(δ).
Thus, 〈T \{h},¬h〉 Rbd δ.

Similarly, when the beliefs of two explanatory arguments are inconsistent, it can be
checked that there exists an epistemic argument that attacks at least one of the two
explanatory arguments.

Property 10. Let δ1, δ2 ∈ Ad respecting BELIEFS(δ1)
� ⊥ and BELIEFS(δ2)
� ⊥. If
BELIEFS(δ1) ∪ BELIEFS(δ2) � ⊥, then ∃α ∈ Ab such that αRbd δ1, or αRbd δ2.

Proof. Let δ1, δ2 ∈ Ad with BELIEFS(δ1)
� ⊥ and BELIEFS(δ2)
� ⊥.
Suppose that BELIEFS(δ1) ∪ BELIEFS(δ2) � ⊥. So, ∃T1 ⊆ BELIEFS(δ1) and ∃T2 ⊆
BELIEFS(δ2) with T1 ∪ T2 � ⊥ and T1 ∪ T2 is minimal for set inclusion, i.e. T1 ∪ T2
is a minimal conflict. Since BELIEFS(δ1)
� ⊥ and BELIEFS(δ2)
� ⊥, then T1
= ∅
and T2
= ∅. Thus, ∃h ∈ T1 ∪ T2 such that (T1 ∪ T2) \ {h} � ¬h. Since T1 ∪ T2 is a
minimal conflict, then each subset of T1 ∪ T2 is consistent, thus the set (T1 ∪ T2) \ {h}
is consistent. Moreover, according to Property 2, BELIEFS(δ1) ⊆ K and BELIEFS(δ2)
⊆K. Thus, T1 ⊆K and T2 ⊆K. It is then clear that (T1∪T2)\{h} ⊆ K. Consequently
〈(T1 ∪ T2) \ {h},¬h〉 is an argument of Ab.

If h ∈ T1 then 〈(T1∪T2)\{h},¬h〉 Rbd δ1, and if h ∈ T2 then 〈(T1∪T2)\{h},¬h〉
Rbd δ2.

Conflicts may also exist between an instrumental argument and an explanatory one
since the beliefs of the explanatory argument may be conflicting with the preconditions
of the instrumental one. Here again, we’ll show that there exists an epistemic argument
that attacks at least one of the two arguments.

Property 11. Let π ∈ Ap and δ ∈ Ad with BELIEFS(δ)
� ⊥. If BELIEFS(δ) ∪
Prec(π) � ⊥ then ∃α ∈ Ab such that αRbd δ, or αRbp π.

1 Note that if δ1Rpdpπ2 and there exists δ2 such that CONC(δ2) = CONC(π2) then δ1Rdδ2.
2 Since T is ⊆-minimal among inconsistent subsets of BELIEFS(δ), then each subset of T is

consistent.

A Constrained Argumentation System for Practical Reasoning 47

Proof. Let δ ∈ Ad and π ∈ Ap. Suppose that BELIEFS(δ)
� ⊥. Since BELIEFS(δ)
� ⊥
and Prec(π)
� ⊥, then ∃T ⊆ BELIEFS(δ) ∪ Prec(π) with BELIEFS(δ) ∩ T
= ∅,
Prec(π) ∩ T
= ∅ and T is the smallest inconsistent subset of BELIEFS(δ)∪ Prec(π).

Since T � ⊥, then ∃h ∈ T such that T \{h} � ¬h with T \{h} is consistent. Since
BELIEFS(δ) ⊆ K and since Prec(π) ⊆ K, then T ⊆ K. Consequently, T \{h} ⊆ K.
Thus, 〈T \{h},¬h〉 ∈ Ab.

If h ∈ BELIEFS(δ), then 〈T \{h},¬h〉 Rbd δ. If h ∈ Prec(π), then 〈T \{h},¬h〉
Rbp π.

Later in the paper, it will be shown that the three above propositions are sufficient for ig-
noring these conflicts (between two explanatory arguments, and between an explanatory
argument and an instrumental one). Note also that explanatory arguments and instru-
mental arguments are not allowed to attack epistemic arguments. In fact, a desire cannot
invalidate a belief. Let us illustrate this issue by an example borrowed from [19]. An
agent thinks that it will be raining, and that when it is raining, she gets wet. It is clear
that this agent does not desire to be wet when it is raining. Intuitively, we should get
one extension {rain, wet}. The idea is that if the agent believes that it is raining, and
she will get wet if it rains, then she should believe that she will get wet, regardless of
her likings. To do otherwise would be to indulge in wishful thinking.

6 Argumentation System for PR

The notion of constraint which forms the backbone of constrained argumentation sys-
tems allows, in the context of PR, the representation of the link between the justification
of a desire and the plan for achieving it (so between the explanatory argument in favor
of a given desire and the instrumental arguments in favor of that desire). A constrained
argumentation system for PR is defined as follows:

Definition 20. (Constrained argumentation system for PR) The constrained argu-
mentation system for practical reasoning is the triple CAFPR = 〈A,R, C〉 with:

A = Ab ∪ Ad ∪ Ap,
R = Rb ∪Rd ∪Rp ∪Rbd ∪Rbp ∪Rpdp

and C a constraint on arguments defined on A respecting C = ∧i(πi ⇒ (∨jδj))
for each πi ∈ Ap and δj ∈ Ad such that CONC(πi) ≡ CONC(δj).

Note that the satisfaction of the constraint C implies that each plan of a desire is taken
into account only if this desire is justified. Note also that we consider that there may
be several plans for one desire but only one desire for each plan. Nevertheless, for each
desire there may exist several explanatory arguments.

An important remark concerns the notion of defence. This notion has two different
semantics in a PR context. When we consider only epistemic or explanatory arguments,
the defence corresponds exactly to the notion defined in Dung’s argumentation systems
and in its constrained extension: an argument α attacks the attacker of another argu-
ment β; so α “reinstates” β; without the defence, β cannot be kept in an admissible
set. Things are different with instrumental arguments: when an instrumental argument

48 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

attacks another argument, this attack is always symmetric (so, each argument defends
itself against an instrumental argument). In this case, it would be sufficient to take into
account the notion of conflict-free in order to identify the plans which belong to an
admissible set. However, in order to keep an homogeneous definition of admissibility,
the notion of defence is also used for instrumental arguments knowing that it is without
impact when conflicts from an instrumental argument are concerned.

Note that ∅ is always a C-admissible set of CAFPR. The reason is that ∅ is admis-
sible (as shown by Dung in [10]) and that all πi variables are false in ∅̂, so ∅̂ � C3.
Thus, CAFPR has at least one C-preferred extension. Moreover, the extensions do not
contain the “good” plans of non-justified desires. Thus, the use of the constraint makes
it possible to filter the content of the extensions and to keep only useful information.

At some places of the paper, we will refer by AFPR = 〈A,R〉 to a basic argumenta-
tion system for PR, i.e. an argumentation system without the constraint, and A and R
are defined as in Definition 20.

Remember that the purpose of a practical reasoning problem is to compute the in-
tentions to be pursued by an agent, i.e. the desires that are both justified and feasible.

Definition 21 (Set of intentions). Let I ⊆ PD. I is a set of intentions iff there exists
a C-extension E (under a given semantics) of CAFPR such that for each d ∈ I, there
exists π ∈ Ap ∩ E such that d = CONC(π).

Our system provides an interesting solution to the PR problem. It computes directly
sets of intentions, and identifies the state of the world as well as the plans necessary for
achieving these intentions.

7 Properties of the System

The aim of this section is to study the properties of the proposed argumentation system
for PR. Since the proposed CAFPR is grounded on the abstract constrained argumenta-
tion system defined in [9], it is natural that it inherits the results got in [9]. However,
the following result, whose proof is obvious, holds in the context of PR but not in the
general case.

Property 12. Let CAFPR = 〈A,R, C〉. The set Ω of C-admissible sets defines a
complete partial order for⊆.

An important property shows that the set of epistemic arguments in a given stable ex-
tension of AFPR is itself a stable extension of the system 〈Ab,Rb〉. This shows clearly
that stable extensions are “complete” w.r.t. epistemic arguments.

Property 13. If E is a stable extension of AFPR, then the set E ∩Ab is a stable extension
of 〈Ab,Rb〉.

Proof. Let E be a stable extension of AFPR. Let us suppose that E ′ = E ∩ Ab is not a
stable extension of 〈Ab,Rb〉. Two cases exist:

3 This is due to the particular form of the constraint for PR. This is not true for any constraints
(see Section 2 and [9]).

A Constrained Argumentation System for Practical Reasoning 49

Case 1: E ′ is not conflict-free. This means that there exist α, α′ ∈ E ′ such that αRbα
′.

Since E ′ = E∩Ab, then α, α′ ∈ E . This means that E is not conflict-free. This contradicts
the fact that E is a stable extension.

Case 2: E ′ does not attack every argument that is not in E ′. This means that ∃α ∈ Ab

and
∈ E ′ and E ′ does not attack (w.r.t. Rb) α. This means that E ′ ∪ {α} is conflict-
free, thus E ∪ {α} is also conflict-free, and does not attack an argument that is not
in it (because only an epistemic argument can attack another epistemic argument and
all epistemic arguments of E belong to E ′). This contradicts the fact that E is a stable
extension.

Another important property of AFPR is that it has stable extensions.

Property 14. The system AFPR has at least one non-empty stable extension.

Proof. (Sketch) AFPR can be viewed as the union of 2 argumentation systems: AFb =
〈Ab, Rb〉 and AFdp = 〈Ad ∪ Ap, Rd ∪ Rp ∪ Rpdp〉 plus the Rbd ∪ Rbp relation.
The system AFb has stable extensions (according to Prop. 5). Let E1, . . . , En be those
extensions. The system AFdp is symmetric in the sense of [8] since the relation Rd

∪ Rp ∪ Rpdp is symmetric. In [8], it has been shown that such a system has stable
extensions which correspond to maximal (for ⊆) sets of arguments that are conflict-
free. Let E ′1, . . . , E ′m be those extensions.

These two systems are linked with the Rbd ∪ Rbp relation. Two cases can be
distinguished:

Case1: Rbd ∪ Rbp = ∅. ∀Ei, E ′j , the set Ei ∪ E ′j is a stable extension of AFPR.
Indeed, Ei ∪ E ′j is conflict-free since Ei, E ′j are both conflict-free, and the relation
Rbd ∪ Rbp = ∅. Moreover, Ei ∪ E ′j defeats every argument that is not in Ei ∪ E ′j ,
since if α /∈ Ei ∪ E ′j , then: i) if α ∈ Ab, then Ei defeats w.r.t. Rb α since Ei is a
stable extension. Now, assume that α ∈ Ad ∪ Ap. Then, E ′j ∪ {α} is conflicting
since E ′j is a maximal (for⊆) set that is conflict-free. Thus, E ′j defeats α.
Case2: Rbd ∪ Rbp
= ∅. Let E be a maximal (for set inclusion) set of arguments

that is built with the following algorithm:
1. E = Ei

2. while (∃β ∈ Ap ∪ Ad such that E ∪ {β} is conflict-free) do E = E ∪ {β}
This algorithm stops after a finite number of steps (because Ap ∪ Ad is a finite
set) and gives a set of arguments which is ⊆-maximal among the conflict-free sets
which include Ei. It is easy to see that E is stable because, by construction, ∀γ ∈
(Ap ∪ Ad) \ E , ∃γ′ ∈ E such that γ′Rγ, and, because Ei ⊆ E , we also have
∀α ∈ Ab \ E , ∃α′ ∈ E such that α′Rα.

So, the system AFPR has a stable extension.

Let us now come back to the three critical cases of conflicts among arguments that
are not explicitly captured by the six attack relations defined in Section 5. The first
case concerns explanatory arguments whose sets of beliefs are inconsistent. It can be
checked that such arguments are rejected in the system CAFPR.

50 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

Property 15. Let δ ∈ Ad with BELIEFS(δ) � ⊥. Under the stable semantics, the argu-
ment δ is rejected in CAFPR.

Proof. (Sketch) Let δ ∈ Ad with BELIEFS(δ) � ⊥. According to Property 14, the
system AFPR has at least one stable extension. Let E be one of these stable extensions.
Suppose that δ ∈ E . According to Property 13, the set E ∩ Ab is a stable extension of
〈Ab,Rb〉. Moreover, we can show that ∃α ∈ E ∩Ab such that αRbdδ. This contradicts
the fact that a stable extension is conflict-free. Thus, δ is rejected in AFPR. According
to Prop. 1, δ is also rejected in CAFPR.

Similarly, it can be checked that if two explanatory arguments have conflicting beliefs,
then they will never belong to the same stable extension at the same time.

Property 16. Let δ1, δ2 ∈ Ad respecting BELIEFS(δ1)
� ⊥ and BELIEFS(δ2)
� ⊥. If
BELIEFS(δ1) ∪ BELIEFS(δ2) � ⊥, then �E C-stable extension of CAFPR such that
δ1 ∈ E and δ2 ∈ E .

Proof. (Sketch) Let δ1, δ2 ∈ Ad s.t. BELIEFS(δ1)
� ⊥, BELIEFS(δ2)
� ⊥, and
BELIEFS(δ1) ∪ BELIEFS(δ2) � ⊥. Let E be a C-stable extension of CAFPR. Thus,
E is also a stable extension of AFPR. Suppose that δ1 ∈ E and δ2 ∈ E . According to
Property 13, the set E ∩ Ab is a stable extension of 〈Ab,Rb〉. Moreover, we can easily
show that ∃α ∈ E ∩ Ab such that αRbdδ1, or αRbdδ2. This contradicts the fact that a
stable extension is conflict-free.

Similarly, if the beliefs of an explanatory argument and an instrumental one are con-
flicting, the two arguments will not appear in the same stable extension.

Property 17. Let δ ∈ Ad and π ∈ Ap with BELIEFS(δ)
� ⊥. If BELIEFS(δ) ∪ Prec(π)
� ⊥ then �E with E is a C-stable extension of CAFPR such that δ ∈ E and π ∈ E .

Proof. (Sketch) Let δ ∈ Ad and π ∈ Ap with BELIEFS(δ)
� ⊥ and BELIEFS(δ)
∪ Prec(π) � ⊥. Let E be a C-stable extension of CAFPR. Thus, E is also a stable
extension of AFPR. Let us assume that δ ∈ E and π ∈ E . Since E is a stable extension
of AFPR, then E ′ = E ∩ Ab is a stable extension of 〈Ab,Rb〉 (according to Property
13). Moreover, it can be checked that when BELIEFS(δ) ∪ Prec(π) � ⊥ then ∃α ∈ E ′
s.t. αRbdδ or αRbpπ. This means that E attacks δ or E attacks π. However, δ ∈ E and
π ∈ E . This contradicts the fact that E is conflict free.

The next results are of great importance. They show that the proposed argumentation
system for PR satisfies the “consistency” rationality postulate identified in [5]. Indeed,
we show that each stable extension of our system supports a consistent set of desires
and a consistent set of beliefs. Let E ⊆ A, the following notations are defined: Bel(E)
= (

⋃
αi∈E∩Ab

SUPP(αi)) ∪ (
⋃

δj∈E∩Ad
BELIEFS(δj)) ∪ (

⋃
πk∈E∩Ap

Prec(πk)) and
Des(E) = (

⋃
δj∈E∩Ad

DESIRES(δj)) ∪ (
⋃

πk∈E∩Ap
CONC(πk)).

Theorem 1. (Consistency) Let E1, . . . , En be the C-stable extensions of CAFPR. ∀Ei,
i = 1, . . . , n, it holds that:

Bel(Ei) = Bel(Ei ∩ Ab),

A Constrained Argumentation System for Practical Reasoning 51

Bel(Ei) is a ⊆-maximal consistent subset of K and
Des(Ei) is consistent.

Proof. Let E be a C-stable extension of CAFPR. Thus, E is also a stable extension of
AFPR.

1. Let us show that the set Bel(Ei) = Bel(Ei∩Ab). In order to prove this, one should
handle two cases:

1.1. Bel(Ei ∩ Ab) ⊆ Bel(Ei). This is implied by Bel(Ei ∩ Ab) =
⋃
SUPP(αi) with

αi ∈ Ei ∩ Ab (cf. definition of Bel(E)).

1.2. Bel(Ei)⊆ Bel(Ei∩Ab). Let us suppose that ∃h ∈ Bel(Ei) and h
∈ Bel(Ei∩Ab).
According to Property 13, Ei ∩Ab is a stable extension of 〈Ab,Rb〉. Moreover, accord-
ing to [6], Bel(Ei ∩ Ab) is a maximal (for set-⊆) consistent subset of K4. However,
Bel(Ei) ⊆ K, then h ∈ K. Since h
∈ Bel(Ei ∩ Ab), then Bel(Ei ∩ Ab) ∪ {h} � ⊥
(this is due to the fact that Bel(Ei ∩ Ab) is a maximal (for set-⊆) consistent subset of
K). Thus, Bel(Ei ∩ Ab) � ¬h. This means that ∃H ⊆ Bel(Ei ∩ Ab) such that H is
the minimal consistent subset of Bel(Ei ∩ Ab), thus H � ¬h. Since H ⊆ K (since
Bel(Ei∩Ab)⊆K), then 〈H,¬h〉 ∈ Ab. However, according to [6], Arg(Bel(Ei∩Ab))
= Ei ∩ Ab. Besides, h ∈ Bel(Ei), there are three possibilities:

h ∈ BELIEFS(δ) with δ ∈ Ei. In this case, 〈H,¬h〉 Rbd δ. This contradicts the
fact that Ei is a stable extension that is conflict-free.
h ∈ Prec(π) with π ∈ Ei. In this case, 〈H,¬h〉 Rbp π. This contradicts the fact

that Ei is a stable extension that is conflict-free.
h ∈ SUPP(α) with α ∈ Ei. This is impossible since the set Ei ∩ Ab is a stable

extension, thus it is conflict free.

2. Let us show that the set Bel(Ei) is a maximal (for set inclusion) consistent subset
of K. According to the first item of Theorem 1, Bel(Ei) = Bel(Ei ∩ Ab). However,
according to Property 13, Ei ∩ Ab is a stable extension of 〈Ab,Rb〉, and according to
[6], Bel(Ei ∩ Ab) is a maximal (for set-⊆) consistent subset of K. Thus, Bel(Ei) is a
maximal (for set inclusion) consistent subset of K.
3. Let us show that the set Des(Ei) is consistent. Let us suppose that Des(Ei) is in-
consistent, this means that

⋃
DESIRES(δk) ∪

⋃
CONC(πj) � ⊥ with δk ∈ Ei and

πj ∈ Ei. Since Des(Ei) ⊆ PD (according to Property 2), then ∃d1, d2 ∈ Des(Ei) such
that d1 ≡ ¬d2. Three possible situations may occur:
a. ∃π1, π2 ∈ Ei ∩ Ap such that CONC(π1) = d1, and CONC(π2) = d2. This means that
π1Rpπ2, thus π1Rπ2. This is impossible since Ei is a stable extension, thus it is sup-
posed to be conflict-free.
b. ∃δ1, δ2 ∈ Ei ∩ Ad such that d1 ∈ DESIRES(δ1) and d2 ∈ DESIRES(δ2). This means
that δ1Rdδ2, thus δ1Rδ2. This is impossible since Ei is a stable extension, thus it is
supposed to be conflict-free.
c. ∃δ ∈ Ei∩Ad, ∃π ∈ Ei∩Ap such that d1 ∈ DESIRES(δ) and d2 = CONC(π). Since d1 ∈
DESIRES(δ), thus ∃δ′ ∈ SUB(δ) such that CONC(δ′) = d1. This means that δ′Rpdpπ, thus
δ′Rπ. However, since δ ∈ Ei, thus δ′ ∈ Ei. This is impossible since Ei is a stable ex-
tension, thus it is supposed to be conflict-free.

4 Because Bel(Ei∩Ab) =
⋃
SUPP(αi) with αi ∈ Ei∩Ab; so, Bel(Ei∩Ab) = Base(Ei∩Ab).

52 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

As direct consequence of the above result, an intention set is consistent. Formally:

Theorem 2. Under the stable semantics, each set of intentions of CAFPR is consistent.

Proof. Let I be a set of intentions of CAFPR. Let us suppose that I is inconsistent.
From the definition of an intention set, it is clear that I ⊆ Des(Ei) with Ei is a C-stable
extension of CAFPR. However, according to Theorem 1 the set Des(Ei) is consistent.

Our system satisfies also the rationality postulate concerning the closedness of the ex-
tensions [5]. Namely, the set of arguments that can be built from the beliefs, desires, and
plans involved in a given stable extension, is that extension itself. Let Ei be a C-stable
extension.As is the set of arguments built from Bel(Ei), Des(Ei), the plans involved in
building arguments of Ei, and the base Bd.

Theorem 3. (Closedness) Let E1, . . . , En be the C-stable extensions of CAFPR. ∀Ei,
i = 1, . . . , n, it holds that: Arg(Bel(Ei)) = Ei ∩ Ab and As = Ei.

Proof. Let Ei be a C-stable extension of the system CAFPR. Ei is also a stable exten-
sion of AFPR (according to [9]).
1. Let us show that Arg(Bel(Ei)) = Ei ∩ Ab. According to Theorem 1, it is clear that
Bel(Ei) = Bel(Ei ∩ Ab). Moreover, according to Property 13, Ei ∩ Ab is a stable ex-
tension of 〈Ab,Rb〉. Besides, according to [6] Arg(Bel(Ei ∩ Ab)) = Ei ∩ Ab, thus
Arg(Bel(Ei)) = Ei ∩ Ab.
2. Let us show that As = Ei. The case Ei ⊆ As is trivial. Let us show that As ⊆ Ei. Let
us suppose that ∃y ∈ As and y /∈ Ei. There are three possible situations:

2.1. y ∈ As ∩Ab: Since y /∈ Ei, this means that ∃α ∈ Ei ∩ Ab such that αRby. Thus,
SUPP(α) ∪ SUPP(y) � ⊥. However, SUPP(α) ⊆ Bel(Ei) and SUPP(y) ⊆ Bel(Ei), thus
SUPP(α) ∪ SUPP(y) ⊆ Bel(Ei). This means that Bel(Ei) is inconsistent. According to
Theorem 1 this is impossible.

2.2. y ∈ As ∩Ad: Since y /∈ Ei, this means that ∃x ∈ Ei such that xRy. There are three
situations:

2.2.1. x ∈ Ab This means that BELIEFS(y) ∪ SUPP(x) � ⊥. However, BELIEFS(y) ∪
SUPP(x) ⊆ Bel(Ei). Thus, Bel(Ei) is inconsistent. This contradicts Theorem 1.

2.2.2 x ∈ AdThis means that DESIRES(y) ∪ DESIRES(x) � ⊥. However, DESIRES(y)
∪ DESIRES(x) ⊆ Des(Ei). Thus, Des(Ei) is inconsistent. This contradicts Theorem 1.

2.2.3. x ∈ Ap This means that DESIRES(y) ∪ CONC(x) � ⊥. However, DESIRES(y) ∪
CONC(x) ⊆ Des(Ei). Thus, Des(Ei) is inconsistent. This contradicts Theorem 1.

2.3. y ∈ As ∩Ap: Since y /∈ Ei, this means that ∃x ∈ Ei such that xRy. There are three
situations:

2.3.1. x ∈ Ab This means that xRbpy, thus SUPP(x) ∪ Prec(y) � ⊥. However,
SUPP(x) ∪ Prec(y) ⊆ Bel(Ei). Thus, Bel(Ei) is inconsistent. This contradicts
Theorem 1.

A Constrained Argumentation System for Practical Reasoning 53

2.3.2. x ∈ Ad This means that xRpdpy, thus DESIRES(x) ∪ CONC(y) � ⊥. How-
ever, DESIRES(x) ∪ CONC(y)⊆ Des(Ei). Thus, Des(Ei) is inconsistent. This contradicts
Theorem 1.

2.3.3. x ∈ Ap This means that xRpy. There are three different cases:

Prec(x) ∪ Prec(y) � ⊥. However, Prec(x) ∪ Prec(y) ⊆ Bel(Ei). Thus, Bel(Ei)
is inconsistent. This contradicts Theorem 1.
Postc(x) ∪ Prec(y) � ⊥. We know that y is built using one of the plans of Ei,
say p = 〈S, T, d〉. Thus, ∃π ∈ Ei such that π = 〈p, d′〉. Thus, Postc(x) ∪ Prec(π)
� ⊥, consequently, xRπ. This is impossible since Ei is a stable extension, thus it is
supposed to be conflict-free.
Postc(x) ∪ Postc(y) � ⊥. Since y ∈ As, thus y is built using one of the plans
of Ei, say p = 〈S, T, d〉. Thus, ∃π ∈ Ei such that π = 〈p, d′〉. Thus, Postc(x)
∪ Postc(π) � ⊥, consequently, xRπ. This is impossible since Ei is a stable
extension, thus it is supposed to be conflict-free.

8 Illustrative Example

In this section, we illustrate the above system on a simple example.

α2 α1α3
α0

π1

δ1

π2

δ2

The meaning of these arguments is the following:

α0: My AAMAS paper is accepted and AAMAS conference is in Portugal so I go
to AAMAS in Portugal
α1: My AAMAS paper is accepted and it is scheduled Day D so I am not available
Day D
α2: My sister’s wedding is scheduled Day D
α3: My sister’s wedding is scheduled Day D so I must be available Day D
δ1: I go to AAMAS in Portugal so I desire to visit Portugal
δ2: My sister’s wedding is scheduled Day D so I desire to go to my sister’s wedding
Day D
π1: My AAMAS paper is accepted, my institute pays my AAMAS mission, AA-
MAS is in Portugal so I can realize my desire to visit Portugal
π2: I am available Day D, my sister’s wedding is scheduled Day D, I know where
and how to go to my sister’s wedding Day D so I can realize my desire to go to my
sister’s wedding Day D

So, we have:

the constraint: C = (π1 ⇒ δ1) ∧ (π2 ⇒ δ2);

54 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

the C-preferred and C-stable extensions are E1 = {α2, α0, α3, π2, δ2, δ1}, E2 =
{α2, α0, α3, π1, δ1, δ2}, E3 = {α2, α0, α1, π1, δ1, δ2},
the sets of intentions are { visit Portugal }, { go to my sister’s wedding }.

9 Related Works

A number of attempts have been made to use formal models of argumentation as a basis
for PR. In fact the use of arguments for justifying an action has already been advocated
by philosophers like Walton [21] who proposed the famous practical syllogism:

G is a goal for agent X
Doing action A is sufficient for agent X to carry out G
Then, agent X ought to do action A

The above syllogism, which would apply to the means-end reasoning step, is in essence
already an argument in favor of doing action A. However, this does not mean that the
action is warranted, since other arguments (called counter-arguments) may be built or
provided against the action.

In [1], an argumentation system is presented for generating consistent plans from
a given set of desires and planning rules. This was later extended with argumentation
systems that generate the desires themselves [3]. This system suffers from three main
drawbacks: i) exhibiting a form of wishful thinking, ii) desires may depend only on
beliefs, and iii) some undesirable results may be returned due to the separation of the
two steps of PR. Due to lack of space, we will unfortunately not give an example where
anomalies occur using that approach. In [15], the problem of wishful thinking has been
solved. However, the separation of the two steps was kept. Other researchers in AI like
Atkinson and Bench Capon [4] are more interested in studying the different argument
schemes that one may encounter in practical reasoning. Their starting point was the
above practical syllogism of Walton. The authors have defined different variants of this
syllogism as well as different ways of attacking it. However, it is not clear how all these
arguments can be put together in order to answer the critical question of PR “what is
the right thing to do in a given situation?”. Our work can be viewed as a way for putting
those arguments all together.

10 Conclusion

The paper has tackled the problem of practical reasoning, which is concerned with the
question “what is the best thing to do at a given situation?” The approach followed here
for answering this question is based on argumentation theory, in which choices are ex-
plained and justified by arguments. The contribution of this paper is two-fold. To the
best of our knowledge, this paper proposes the first argumentation system that com-
putes the intentions in one step, i.e. by combining desire generation and planning. This
avoids undesirable results encountered by previous proposals in the literature. This has
been possible due to the use of constrained argumentation systems developed in [9].
The second contribution of the paper consists of studying deeply the properties of
argumentation-based practical reasoning.

A Constrained Argumentation System for Practical Reasoning 55

This work can be extended in different ways. First, we are currently working on
relaxing the assumption that the attack relation among instrumental arguments is binary.
Indeed, it may be the case that more than two plans may be conflicting while each pair
of them is compatible. Another important extension would be to introduce preferences
to the system. The idea is that beliefs may be pervaded with uncertainty, desires may
not have equal priorities, and plans may have different costs. Thus, taking into account
these preferences will help to reduce the intention sets into more relevant ones.

In [7], it has been shown that an argument may not only be attacked by other ar-
guments, but may also be supported by arguments. It would be interesting to study
the impact of such a relation between arguments in the context of PR. Another area
of future work is investigating the proof theories of this system. The idea is to answer
the question “is a given potential desire a possible intention of the agent ?” without
computing the whole preferred extensions. Finally, an interesting area of future work is
investigating the relationship between our framework and axiomatic approaches to BDI
agents.

References

1. Amgoud, L.: A formal framework for handling conflicting desires. In: Nielsen, T.D., Zhang,
N.L. (eds.) ECSQARU 2003. LNCS, vol. 2711, pp. 552–563. Springer, Heidelberg (2003)

2. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation
frameworks. International Journal of Automated Reasoning 29(2), 125–169 (2002)

3. Amgoud, L., Kaci, S.: On the generation of bipolar goals in argumentation-based negotiation.
In: Rahwan, I., Moraı̈tis, P., Reed, C. (eds.) ArgMAS 2004. LNCS, vol. 3366, Springer,
Heidelberg (2005)

4. Atkinson, K., Bench-Capon, T., McBurney, P.: Justifying practical reasoning. In: Reed, C.,
Grasso, F., Carenini, G. (eds.) Proceedings of the Fourth Workshop on Computational Mod-
els of Natural Argument (CMNA 2004), pp. 87–90 (2004)

5. Caminada, M., Amgoud, L.: An axiomatic account of formal argumentation. In: Proceedings
of the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 608–613. AAAI
Press, Menlo Park (2005)

6. Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based en-
tailment. In: Proceedings of the International Joint Conference on Artifitial Intelligence (IJ-
CAI 1995), pp. 1443–1448 (1995)

7. Cayrol, C., Lagasquie-Schiex, M.-C.: On the acceptability of arguments in bipolar argu-
mentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 378–389.
Springer, Heidelberg (2005)

8. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: Godo,
L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 317–328. Springer, Heidelberg (2005)

9. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frameworks. In: Pro-
ceedings of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2006), pp. 112–122 (2006)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)

11. Ghallab, M., Nau, D., Traverso, P.: Automated planning, theory and practice. Elsevier, Mor-
gan Kaufmann (2004)

56 L. Amgoud, C. Devred, and M.-C. Lagasquie-Schiex

12. Harman, G.: Practical aspects of theoretical reasoning. The Oxford Handbook of Rationality,
45–56 (2004)

13. Hulstijn, J., van der Torre, L.: Combining goal generation and planning in an argumentation
framework. In: Heskes, T., Lucas, P., Vuurpijl, L., Wiegerinck, W. (eds.) Proceedings of the
15th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2003), Katholieke
Universiteit Nijmegen, October 2003, pp. 155–162 (2003)

14. Karacapilidis, N., Papadias, D.: Computer supported argumentation and collaborative deci-
sion making: the HERMES system. Information systems 26(4), 259–277 (2001)

15. Rahwan, I., Amgoud, L.: An Argumentation-based Approach for Practical Reasoning . In:
Weiss, G., Stone, P. (eds.) 5th International Joint Conference on Autonomous Agents &
Multi Agent Systems, AAMAS 2006, Hakodate, Japan, pp. 347–354. ACM Press, New York
(2006)

16. Raz, J.: Practical reasoning. Oxford University Press, Oxford (1978)
17. Russel, S., Norvig, P.: Artificial Intelligence. A modern approach. Prentice-Hall, Englewood

Cliffs (1995)
18. Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its imple-

mentation. Artificial Intelligence 53, 125–157 (1992)
19. Thomason, R.H.: Desires and defaults: A framework for planning with inferred goals. In:

Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR 2000: Principles of Knowledge Represen-
tation and Reasoning, Proceedings of the Seventh International Conference, Breckenridge,
Colorado, USA, pp. 702–713. Morgan Kaufmann, San Francisco (2000)

20. Vreeswijk, G.: Abstract argumentation systems. Artificial Intelligence 90(1–2), 225–279
(1997)

21. Walton, D.: Argument schemes for presumptive reasoning, vol. 29. Lawrence Erlbaum As-
sociates, Mahwah (1996)

22. Wooldridge, M.J.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)

An Argumentation Framework Based
on Strength for Ontology Mapping

Cássia Trojahn1, Paulo Quaresma1, and Renata Vieira2

1 Departamento de Informática, Universidade de Évora, Portugal
2 Faculdade de Informática, Pontif́ıcia Universidade Católica do Rio Grande do Sul,

Brazil
cassia@di.uevora.pt, pq@di.uevora.pt, renata.vieira@pucrs.br

Abstract. In the field of ontology mapping, using argumentation to
combine different mapping approaches is an innovative research area.
We had extended the Value-based Argumentation Framework (VAF) in
order to represent arguments with confidence degrees, according to the
similarity degree between the terms being mapped. The mappings are
computed by agents using different mapping approaches. Based on their
preferences and confidences, the agents compute their preferred mapping
sets. The arguments in such preferred sets are viewed as the set of globally
acceptable arguments. In previous work we had used discrete classes
to represent the confidence degrees (certainty and uncertainty). In this
paper, we propose to use continuous values from the interval [0,1]. Here,
confidence is treated as strength. Using a threshold for the strength we
can reduce the set of mappings and adjust the values of precision. We
evaluate the use of strength against the previous confidence as discrete
classes. The results are promising, especially what concerns precision.

1 Introduction

Ontology mapping is the process of linking corresponding terms from different
ontologies. The mapping result can be used for ontology merging, agent commu-
nication, query answering, or for navigation on the Semantic Web. [19], [20], and
[7] present a broad overview of the various approaches on automated ontology
matching. Basically, the ontology mapping problem involves to combine different
approaches. Using argumentation to solve this problem is an innovative research.

We had extended an Argumentation Framework, namely Value-based Argu-
mentation Framework (VAF)[3], in order to represent arguments with confidence
degrees. The VAF allows to determine which arguments are acceptable, with re-
spect to different audiences represented by different agents. We then associate
to each argument a confidence degree, representing how confident an agent is in
the similarity of two ontology terms.

Our agents apply different mapping approaches and cooperate in order to
exchange their local results (arguments). Next, based on their preferences and
confidence of the arguments, the agents compute their preferred mapping sets.
The arguments in such preferred sets are viewed as the set of globally acceptable

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 57–71, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

58 C. Trojahn, P. Quaresma, and R. Vieira

arguments. Our approach is able to give a formal motivation for the composite
mapping approaches.

In previous work [24][25] we had used discrete classes to represent the con-
fidence degrees (certainty and uncertainty). In this paper, we propose to use
continuous values from the interval [0,1]. Here, confidence is treated as strength.
Using a threshold for the strength we can reduce the set of mappings and adjust
the values of precision. In a scenario where the mappings must be defined on the
fly (i.e., web systems involving agent communication), precision is preferred than
recall. On the other side, when the mapping system is used to help users in the
mapping process, it is interesting to reduce the set of mappings. We evaluate the
use of strength against the previous discrete classes. The results are promising,
specially what concerns precision.

The paper is structured as follows. Firstly, in Section 2, we comment on on-
tologies and approaches for ontology mapping. Section 3 presents the Argumen-
tation Framework, upon which our model rely. Section 4 presents our Strength
based Argumentation Framework (S-VAF). Section 5 presents the evaluation.
Section 6 comments on related work. Finally, section 7 presents the final
remarks and future work.

2 Ontologies and Ontology Mapping Approaches

The standard definition of ontology is from [10]: “an explicit specification of the
conceptualization of the domain”. From this definition [8] point out that: (a) the
ontology makes things explicit – without an ontology many design assumptions
may be implicit in the executable representation; (b) the ontology is supposed
to be formal: the notions it captures are thus precise and unambiguous; (c) the
ontology concerns some specific domain; (d) the ontology represents a concep-
tualization – different people will conceptualize a domain differently according
to experience, and their tasks in the domain – and there is no a single ontology
applicable to a domain. Specifically, ontologies contain the types of objects in
the domain; the attributes which these objects may have; the relationships which
these objects may enter into; and the values that the attributes may have for
particular types.

Ontology mapping is the process of finding correspondences between two on-
tologies, using as input their types of objects (classes), attributes, relationships
or value of attributes. For instance, if two objects correspond, they mean the
same thing, or closely related things. [19], [20], and [7] present a broad overview
of the various approaches on automated ontology matching. In this paper, we
focus in how to combine mapping approaches using argumentation. Three spe-
cific kinds of mapping approaches are considered: lexical ([22][18]), semantic and
structural (see [11]). Lexical approaches apply metrics to compare string simi-
larity. One well-known measure is the edit distance [14], which is given by the
minimum number of operations (insertion, deletion, or substitution of a single
character) needed to transform one string into another.

An Argumentation Framework Based on Strength for Ontology Mapping 59

Semantic approaches consider the semantic relations between concepts to
measure the similarity between them, usually on the basis of semantic oriented
linguistic resources. The well-known WordNet1 database, a large repository of
English semantically related items, has been used to provide these relations.
This kind of mapping is complementary to the pure string similarity metrics.
It is not uncommon the cases where string metrics fail to identify high similar-
ity between strings that represent completely different concepts (i.e, the words
“score” and “store”). Semantic-structural approaches have been explored [11].
In this case, the positions of the terms in the ontology hierarchy are considered,
i.e, terms more generals and terms more specifics are also considered as input to
the mapping process.

3 Argumentation Framework

Our argumentation framework for ontology mapping is based on the Value-based
Argumentation Frameworks (VAF)[3], a development of the classical argument
system of Dung [6]. First, we present the Dung’s framework, upon which the
VAF rely. Next, we present the VAF and our extended framework.

3.1 Classical Argumentation Framework

Dung [6] defines an argumentation framework as follows.

Definition 3.1.1. An Argumentation Framework is a pair AF = (AR, attacks),
where AR is a set of arguments and attacks is a binary relation on AR, i.e.,
attacks ⊆ AR × AR. An attack(A,B) means that the argument A attacks
the argument B. A set of arguments S attacks an argument B if B is attacked
by an argument in S.

The key question about the framework is whether a given argument A, A ∈ AR,
should be accepted. One reasonable view is that an argument should be accepted
only if every attack on it is rebutted by an accepted argument [6]. This notion
produces the following definitions:

Definition 3.1.2. An argument A ∈ AR is acceptable with respect to set
arguments S(acceptable(A,S)), if (∀ x)(x ∈ AR) ∧ (attacks(x,A)) −→ (∃
y)(y ∈ S) ∧ attacks(y,x)

Definition 3.1.3. A set S of arguments is conflict-free if ¬(∃ x)(∃ y)((x ∈ S)∧(y
∈ S) ∧ attacks(x,y))

Definition 3.1.4. A conflict-free set of arguments S is admissible if (∀x)(x ∈
S) −→ acceptable(x,S)

Definition 3.1.5. A set of arguments S is a preferred extension if it is a
maximal (with respect to inclusion set) admissible set of AR.

1 http://www.wordnet.princeton.edu

60 C. Trojahn, P. Quaresma, and R. Vieira

A preferred extension represent a consistent position within AF, which can de-
fend itself against all attacks and which cannot be further extended without
introducing a conflict. The purpose of [3] in extending the AF is to allow as-
sociate arguments with the social values they advance. Then, the attack of one
argument on another is evaluated to say whether or not it succeeds by comparing
the preferences of the values advanced by the arguments concerned.

3.2 Value-Based Argumentation Framework

In Dung’s frameworks, attacks always succeed. However, in many domains, in-
cluding the one under consideration, arguments lack this coercive force: they
provide reasons which may be more or less persuasive [13]. Moreover, their per-
suasiveness may vary according to their audience. The VAF is able to distinguish
attacks from successful attacks, those which defeat the attacked argument, with
respect to an ordering on the preferences that are associated with the argu-
ments. It allows accommodate different audiences with different interests and
preferences.

Definition 3.2.1. A Value-based Argumentation Framework (VAF) is a 5-tuple
VAF = (AR,attacks,V,val,P) where (AR,attacks) is an argumentation
framework, V is a nonempty set of values, val is a function which maps
from elements of AR to elements of V and P is a set of possible audiences.
For each A ∈ AR, val(A) ∈ V.

Definition 3.2.2. An Audience-specific Value Based Argumentation Frame-
work (AVAF) is a 5-tuple VAFa = (AR,attacks, V,val,valprefa) where AR,
emphattacks, V and val are as for a VAF, a is an audience and valprefa is a
preference relation (transitive, irreflexive and asymmetric) valprefa ⊆ V ×
V, reflecting the value preferences of audience a. valpref(v1,v2) means v1 is
preferred to v2.

If V contains a single value, or no preference between the values has been defined,
the AVAF becomes a standard AF. If each argument can map to a different value,
a Preference Based Argumentation Framework is obtained [1].

Definition 3.2.3. An argument A ∈ AR defeatsa (or successfully attacks) an
argument B ∈ AR for audience a if and only if both attacks(A,B) and not
valpref(val(B), val(A)).

Definition 3.2.4. An argument A∈AR is acceptable to audience a (acceptablea)
with respect to set of arguments S, acceptablea(A,S)) if (∀ x) ((x ∈ AR ∧
defeatsa (x,A)) −→ (∃y)((y ∈ S) ∧ defeatsa(y,x))).

Definition 3.2.5. A set S of arguments is conflict-free for audience a if (∀ x)(∀
y)((x ∈ S ∧ y ∈ S) −→ (¬attacks(x,y) ∨ valpref(val(y),val(x)) ∈ valprefa)).

Definition 3.2.6. A conflict-free set of argument S for audience a is admissible
for an audience a if (∀x)(x ∈ S −→ acceptablea(x,S)).

An Argumentation Framework Based on Strength for Ontology Mapping 61

Definition 3.2.7. A set of argument S in the VAF is a preferred extension for
audience a (preferreda) if it is a maximal (with respect to set inclusion)
admissible for audience a of AR.

In order to determine the preferred extension with respect to a value order-
ing promoted by distinct audiences, [3] introduces the notion of objective and
subjective acceptance.

Definition 3.2.8. An argument x ∈ AR is subjectively acceptable if and only
if x appears in the preferred extension for some specific audiences but not
all. An argument x ∈ AR is objectively acceptable if and only if, x appears
in the preferred extension for every specific audience. An argument which is
neither objectively nor subjectively acceptable is said to be indefensible.

3.3 Strength Based Argumentation Framework (S-VAF)

We extend the VAF in order to represent arguments with strength, which repre-
sents the confidence that an agent has in some argument. One element has been
added to VAF: a function which maps from arguments to real values from the
interval [0,1]. We assumed that the strength is a relevant criterion in the ontol-
ogy mapping domain, representing the confidence measure by using the mapping
approach.

Definition 3.3.1. A Strength based Argumentation Framework (S-VAF) is a
6-tuple (AR, attacks,V,val,P,valS) where (AR,attacks,V,val, P) is a value-
based argumentation framework, and valS is a function which maps from
elements of AR to real values from the interval [0,1] representing the strength
of the argument.

Definition 3.3.2. In the S-VAF, an argument x ∈ AR defeatsa an argument y
∈ AR for audience a if and only if attacks(x,y) ∧ ((valS(x) > valS(y)) ∨ (¬
valpref(val(y),val(x)) ∧ (¬ (valS(y) > valS(x)))).

An attack succeeds if (a) the strength of the attacking argument is greater than
the strength of the argument being attacked; or if (b) the argument being at-
tacked does not have greater preference value than attacking argument (or if
both arguments relate to the same preference values) and the strength of the
argument being attacked is not greater than the attacking argument.

Definition 3.3.3. In the S-VAF, an argument A ∈ AR is acceptable to audience
a (acceptablea) with respect to set of arguments S, acceptablea(A,S)) if (∀
x) ((x ∈ AR ∧ defeatsa (x,A)) −→ (∃y)((y ∈ S) ∧ defeatsa(y,x))).

Definition 3.3.4. In the S-VAF, a set S of arguments is conflict-free for
audience a if (∀x)(∀y) ((x ∈ S ∧ y ∈ S) −→ (¬attacks(x, y) ∨ (¬(valS(x) >
valS(y)) ∧ (valpref(val(y), val(x)) (∨ (valS(y) > valS(x)))))).

Definition 3.3.5. A set of argument S in the S-VAF is a preferred extension
for audience a (preferreda) if it is a maximal (with respect to set inclusion)
admissible for audience a of AR.

62 C. Trojahn, P. Quaresma, and R. Vieira

It is important to distinguish the difference between values and strengths. There
are different types of agents representing different mapping approaches. Each
approach represent a value and each agent represents an audience, with pref-
erences between the values. The values are used to determine the preference
between the different agents. Moreover, each agent generates arguments with
a strength, based on the confidence returned by the mapping technique. So,
we extended the VAF in order to define a new notion of argument acceptabil-
ity which combines values (related with the agent’s preference) and strength
(confidence degree of an argument). If our criterion was based only on the
strength of the arguments, a Preference Based Argumentation Framework could
be used [1].

4 S-VAF for Ontology Mapping

In this paper we consider three values: lexical (L), semantic (S), and structural
(E) (i.e. V = {L, S, E}, where V ∈ S-VAF). These values represent the mapping
approach used by the agent and are also used to represent the audiences. Each
audience has an ordering preference between the values. For instance, the lexical
agent represents an audience where the value L is preferred to the values S and
E. Our idea is not to have an individual audience with preference between the
agents (i.e., semantic agent is preferred to the other agents), but it is to try
accommodate different audiences (agents) and their preferences.

4.1 Argumentation Generation

First, the agents work in an independent manner, applying the mapping ap-
proaches and generating mapping sets. The mapping result will consist of a set
of all possible correspondences between terms (type of objects) of two ontologies.
A mapping m can be described as a 3-tuple m = (t1,t2,h), where t1 corresponds
to a term in the ontology 1, t2 corresponds to a term in the ontology 2, and h
is one of {+,-} depending on whether the argument is that m does or does not
hold. Now, we can define arguments as follows:

Definition 4.1. An argument ∈ AR is a 3-tuple x = (m,a,s), where m is a
mapping; a ∈ V is the value of the argument (lexical, semantic or structural);
s is the strength of the argument.

Lexical Agent. This agent adopts the lexical similarity proposed by [18]. This
metric is based on the Levenshtein distance [15] and considers the length of the
compared terms to compute the final lexical similarity. A value from the interval
[0,1] is returned, where 1 indicates high similarity between two terms.

Differently from the previous work [24][25], the agents are able to deal with
compound terms. The first step in this process is the tokenization, where the
terms are parsed into tokens by a tokenizer. The strength of an argument is
computed according to the lexical similarity between each token of the two com-
pared terms. Table 1 shows the possible values to s and h, where tSn correspond

An Argumentation Framework Based on Strength for Ontology Mapping 63

Table 1. h and s to lexical audience

s + (h)
1 tS1 lexically similar to tT 1

calc-s tS1 lexically similar to some tT 1, ..., tT n

tS1, ..., tSn some lexically similar to tT

tS1, ..., tSn some lexically similar to some tT 1, ..., tT n

s - (h)
0 otherwise

Table 2. h and s to semantic audience

s + (h)
1 tS1 semantic relation with tT 1

calc-s tS1 some semantic relation with some tT 1, ..., tT n

tS1, ..., tSn some semantic relation with tT

tS1, ..., tSn some semantic relation with some tT 1, ..., tT n

s - (h)
0 otherwise

to some token of the source term (source ontology), and tTn correspond to some
token of the target term (target ontology). Two tokens are lexically similar if
the lexical similarity is greater than a threshold r.

When all tokens are lexically similar with each other, the terms match and the
strength of the argument is 1. If some tokens of the terms are lexically similar, the
strength is computed according to the number of tokens that matches, according
to the calc-s formula, where TS is the term from the source ontology, TT is
the term from the target ontology, and nM is the number of tokens that match
between TS and TT :

calc-s = max

(
0,

max(| TS |, | TT |) − nM)
max(| TS |, | TS |)

)
If there are no lexically similar tokens between the terms, the agent is not sure
that the terms map (i.e., strength equals to 0), because this agent knows that
other agent can resolve this mapping. In the specific case, if there is no lexical
similarity between the terms, the semantic agent can resolve that mapping.

Semantic Agent. This agent considers semantic relations (i.e., synonym, hy-
ponym, and hypernym) between terms to measure the similarity between them,
on the basis of WordNet2 database. Table 2 shows the possible values to s and
h according to the semantic similarity.

When all tokens have semantic relation with each other, the strength of the ar-
gument is 1. If some tokens have semantic relation, the strength is computed ac-
cording to the number of semantically related tokens (formula presented above).
2 http://www.wordnet.princeton.edu

64 C. Trojahn, P. Quaresma, and R. Vieira

Otherwise, if there are no semantic relation between the tokens, the agent is not
sure that the terms map (i.e., strength equals to 0), because this agent knows
that other agent can resolve the mapping. In the specific case, when the searched
terms are not available in WordNet, the lexical agent can decide the mapping. It
is common because there is no complete lexical database for every domain (i.e.,
WordNet is incomplete for some domains).

Structural Agent. The structural agent considers the positions of the terms in
the ontology hierarchy to verify if the terms can be mapped. First, it is verified if
the super-classes of the compared terms are lexically similar. If not, the semantic
similarity is used. For instance, if the super-classes of the terms are not lexically
similar, but they are synonymous, an argument x = (m,E,s), where m = (t1,t2,+),
is generated, where s varies according to the rules from Tables 1 or 2.

However, there are two main differences among the strengths returned by the
lexical, semantic, and structural agents. As Table 1 and Table 2, when the agents
can not resolve the mapping, the strength of the corresponding argument is 0.
However, if the structural agent does not find similarity (lexical or semantic)
between the super-classes of the compared terms, it is because the terms can
not be mapped (i.e., the terms occurs in different contexts). Then, the strength
for no mapping is 1. Otherwise, if the structural agent finds similarity between
the super-classes of the compared terms, it is because they can be mapped, but
it does not mean that the terms have lexical or semantic similarity, then the
strength for the mapping is 0. For instance, for the terms “Publication/Topic”
and “Publication/Proceedings”, the structural agent indicates that the terms
can be mapped because they have the same super-class, but not with strength 1
because it is not able to indicate that the terms are similar. Otherwise, for the
terms “Digital-Camera/Accessories” and “Computer/ Accessories”, the agent
can indicate that the terms can not be mapped because they occur in different
contexts (no-mapping with strength equal to 1).

4.2 Preferred Extension Generation

After generating their set of arguments, the agents exchange with each other
their arguments and generate their attacks set. An attack (or counter-argument)
will arise when we have arguments for the mapping between the same terms, but
with conflicting values of h. For instance, an argument x = (m1,L,+) have as an
attack an argument y = (m2,E,-), where m1 and m2 refer to the same terms in
the ontologies. The argument y also represents an attack to the argument x.

As an example, consider the mapping between the terms “Subject” and
“Topic” and the lexical and semantic agents. The lexical agent generates an
argument x = (m,L,0), where m = (subjectS ,topicT ,-); and the semantic agent
generates an argument y = (m,S,1), where m = (subjectS ,topicT ,+). For both
lexical and semantic audiences, the set of arguments is AR= {x,y} and the
attacks = {(x,y),(y,x)}.

When the set of arguments and attacks have been produced, the agents need
to define which of them must be accepted. To do this, the agents compute their

An Argumentation Framework Based on Strength for Ontology Mapping 65

preferred extension, according to the agent’s preferences and strengths of the
arguments. A set of arguments is globally subjectively acceptable if each element
appears in the preferred extension for some agent. A set of arguments is globally
objectively acceptable if each element appears in the preferred extension for every
agent. The arguments which are neither objectively nor subjectively acceptable
are considered indefensible.

In the example above, considering the lexical(L) and semantic(S) audiences,
where L � S and S � L, respectively, for the lexical audience, the argument y
successfully attacks the argument x, while the argument x does not successfully
attack the argument y for the semantic audience. Then, the preferred extension
of both lexical and semantic agents is composed by the argument y.

5 Argumentation Model Evaluation

Let us consider that three agents need to obtain a consensus about mappings
that link corresponding class names in two different ontologies. We have used
three groups of ontologies: parts of Google and Yahoo web directories3(Test 3),
product schemas4(Test 4), and company profiles5(Test 8). In Test 3, the source
ontology has 9 terms and the target ontology has 6 terms, resulting 54 possible
mappings (comparisons term by term). The terms are formed from 1 to 2 tokens
(for instance, “Art-History”). In Test 4, the source ontology has 5 terms and
the target ontology has 6 terms, resulting 30 possible mappings. The terms are
formed from 1 to 3 tokens. Finally, the source and target ontologies in Test 8
have 10 and 16 classes, respectively, resulting 160 possible mappings. The terms
are composed from 1 to 5 tokens (for instance “Oil-and-Gas-Exploration-and-
Production” or “Petroleum-Product-Distribution”).

As a mapping quality evaluation, the measures of precision, recall and f–measure
were used. Precision is defined by the number of correct automated mappings di-
vided by the number of mappings that the system returned. It measures the sys-
tem’s correctness or accuracy. Recall indicates the number of correct mappings
returned by the system divided by the number of manual mappings. It measures
how complete or comprehensive the system is in its extraction of relevant map-
pings. F–measure is a weighted harmonic mean of precision and recall.

First, we compared the results from using confidence as discrete classes (cer-
tainty and uncertainty), based on E-VAF, as proposed in [24][25], against the
results from using strength as continuous values. When considering only the
mappings (h equals +) with certainty (Figure 1 (a)) and the mappings with
strength equals to 1 (Figure 2 (a)), the values for f-measure (and corresponding
precision and recall) were the same, for the three tests. However, when consid-
ering both mappings with certainty and uncertainty (Figure 1 (b)) against the
use of a threshold (0.70) (Figure 2 (b)), better values of precision were obtained
using strength.
3 http://dit.unitn.it/˜accord/Experimentaldesign.html (Test 3)
4 http://dit.unitn.it/˜accord/Experimentaldesign.html (Test 4)
5 http://dit.unitn.it/˜accord/Experimentaldesign.html (Test 8)

66 C. Trojahn, P. Quaresma, and R. Vieira

Fig. 1. Mappings with confidence: (a) certainty ; (b) certainty + uncertainty

Next, we analyzed more specifically the use of different values of threshold
(Figure 3). When using a low threshold, the recall is 1 and the precision is lower.
When using a high threshold (0.70), the precision is 1 and the recall is lower.
In a scenario where the mappings must be defined on the fly, the precision of
the mappings is more valuable than the recall (i.e., web systems involving agent
communication).

On the other side, when the mapping system is used to help users in the
mapping process, it is interesting reduce the set of mappings. When using the
confidence uncertainty it is not possible. However, we can do that using thresh-
olds for strength. Specifically for Test 8 (larger ontology), Figure 4 shows the
number of mappings using different values for threshold (40 mappings returned
when considering the mapping with certainty and uncertainty). In the scenario
under consideration, there are two advantages to use strength and thresholds.
First, the user can adjust the threshold. Second, when reducing the set of map-
ping, it is easier for the user to analyze the resulting mappings. As shown in
Figure 4, using the threshold the set can be reduced to 26, 12 and 6 mappings.
In this sense, our system can help the users to reduce the set of possible map-
pings, using different thresholds for strength.

Fig. 2. Mappings with strength

An Argumentation Framework Based on Strength for Ontology Mapping 67

Fig. 3. Precision and recall for the three tests using different thresholds

Fig. 4. Comparative results

Second, we compared our proposal with three mapping systems: Cupid[16],
COMA[5], and S-Match[9]. The comparative results among these three systems
are available in [9]. We utilized these results as criteria to evaluate our argu-
mentation model, but the details of these tests (implementations, time of run,
processor, etc) are not available. The evaluation of ontology mapping systems
still lacks well established benchmarks, therefore our choices on evaluation were
based on the availability of reported results of previous systems. Figure 5 shows
the comparative results. We used a threshold r equals to 0.8 for the lexical agent
classifies the mappings (terms with lexical similarity greater than 0.8 are consid-
ered similar) and a threshold to eliminate the mappings that have strength below
0.75. Our model returned better precision than Cupid and COMA, and equal
precision when compared to S-Match (precision equal to 1). When comparing
the f–measure values, our model had better result than Cupid.

Differently from these works, our model uses argumentation to combine map-
ping approaches. Cupid uses a weighted similarity which is a mean of linguis-
tic and structural similarities. COMA represents a generic system to combine

68 C. Trojahn, P. Quaresma, and R. Vieira

Fig. 5. Comparative results

matching results, which is a set of mapping elements specifying the matching
schema elements together with a similarity 2 [0,1] indicating the plausibility of
their correspondence. S-Match algorithm is based on the semantic and structural
similarities, where the semantic matcher provides the input to the structural
matcher.

Although our implementation does not provide the best solution for the on-
tology mapping problem for these experimental tests as yet, we claim that our
main contribution is to propose a model that can be used to combine different
approaches.

Using argumentation has the following advantages: the agents are independent
to each other; many other agents can be easily added to our model, without
having to modify the implementation; there are several techniques for ontology
mappings, which can be adapted according to domain, kind of ontologies, and
available resources (for instance, in the context of some languages, there is no
lexical databases such WordNet).

6 Related Work

In the field of ontology argumentation few approaches are being proposed. Basi-
cally, the closer proposal is from [13][12], where an argument framework is used to
deal with arguments that support or oppose candidate correspondences between
ontologies. The candidate mappings are obtained from an Ontology Mapping
Repository (OMR) – the focus is not how the mappings are computed – and
argumentation is used to accommodate different agent’s preferences. In our ap-
proach mappings are computed by the specialized agents described in this paper,
and argumentation is used to solve conflicts between the individual results.

We find similar proposals in the field of ontology negotiation. [23] presents an
ontology to serve as the basis for agent negotiation, the ontology itself is not the
object being negotiated. A similar approach is proposed by [4], where agents agree
on a common ontology in a decentralized way. Rather than being the goal of each

An Argumentation Framework Based on Strength for Ontology Mapping 69

agent, the ontology mapping is a common goal for every agent in the system. [2]
presents an ontology negotiation model which aims to arrive at a common ontol-
ogy which the agents can use in their particular interaction. We, on the other hand,
are concerned with delivering mapping pairs found by a group of agents using ar-
gumentation. [21] describes an approach for ontology mapping negotiation, where
the mapping is composed by a set of semantic bridges and their inter-relations, as
proposed in [17]. The agents are able to achieve a consensus about the mapping
through the evaluation of a confidence value that is obtained by utility functions.
According to the confidence value the mapping rule is accepted, rejected or nego-
tiated. Differently from [21], we do not use utility functions. Our model is based
on cooperation and argumentation, where the agents change their arguments and
by argumentation they select the preferred mapping.

7 Final Remarks and Future Work

In this paper we proposed to use continuous values to represent the strength
of arguments, which represents the confidence degree that an agent has in the
mapping, according to the similarity degree between the ontology terms. We had
previously extended an Argumentation Framework, namely Value-based Argu-
mentation Framework (VAF)[3], in order to represent arguments with confidence
with discrete values.

Using a threshold for the strength we can reduce the set of mappings and
adjust the values of precision. In a scenario where the mappings must be defined
on the fly (i.e., web systems involving agent communication), the precision is
preferred than the recall. On the other, when the mapping system is used to
help users in the mapping process, it is interesting reduce the set of mappings,
what cannot be done when using the discrete classes. Moreover, the strength as
a continuous value is more expressive than the discrete classes, especially when
dealing with compound terms.

We evaluated the use of strength against the previous discrete classes using
three groups of ontologies. The results are promising, especially what concerns
precision.

In the future, we intend to develop further tests considering a benchmark of
ontologies6; verify the impact of using only strengths in our model; and use the
mapping as input to an ontology merge process in the question answering domain.

References

1. Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based
argumentation. In: 14th Conference on Uncertainty in Artificial Intelligence (UAI
1998), San Francisco, California, juillet 1998, pp. 1–7. Morgan Kaufmann, San
Francisco (1998)

2. Bailin, S., Truszkowski, W.: Ontology negotiation between intelligent information
agents. The Knowledge Engineering Review 17(1), 7–19 (2002)

6 http://oaei.ontologymatching.org/

70 C. Trojahn, P. Quaresma, and R. Vieira

3. Bench-Capon, T.: Persuasion in practical argument using value-based argumenta-
tion frameworks. Journal of Logic and Computation 13, 429–448 (2003)

4. van Diggelen, J., Beun, R., Dignum, F., van Eijk, R., Meyer, J.C.: Anemone: An
effective minimal ontology negotiation environment. In: Proceedings of the Fiftheen
International Conference on Autonomous Agents and Multi-Agent Systems, pp.
899–906 (2006)

5. Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: Proceedings of the 28th Conference on Very Large Databases, pp.
610–621 (2002)

6. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n–person games. Artificial Intelligence 77,
321–358 (1995)

7. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
8. Gangemi, A., Pisanelli, D.M., Steve, G.: A formal ontology framework to repre-

sent norm dynamics. In: Congreso Internacional de Culturas y Sistemas Juŕıdicos
Comparados (2005)

9. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an imple-
mentation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer,
R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)

10. Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analy-
sis and Knowledge Representation, Deventer, The Netherlands. Kluwer Academic
Publishers, Dordrecht (1993)

11. Hakimpour, F., Geppert, A.: Resolving semantic heterogeneity in schema integra-
tion: an ontology approach. In: Proceedings of the International Conference on
Formal Ontology in Informational Systems, pp. 297–308 (2001)

12. Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.: Argu-
mentation over ontology correspondences in mas. In: Durfee, M., Yokoo, E.H. (eds.)
Proceedings of the Sixth International Joint Conference on Autonomous Agents
and Multi-Agent Systems (2007)

13. Laera, L., Tamma, V., Euzenat, J., Bench-Capon, T., Payne, T.R.: Reaching agree-
ment over ontology alignments. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 371–384. Springer, Heidelberg (2006)

14. Levenshtein, I.: Binary codes capable of correcting deletions, insertions an reversals.
In: Cybernetics and Control Theory (1966)

15. Levenshtein, V.: Binary Codes Capable of Correcting Deletions and Insertions and
Reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

16. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with cupid. In:
Proceedings of the Very Large Data Bases Conference, pp. 49–58 (2001)

17. Maedche, A., Motik, B., Silva, N., Volz, R.: Mafra - a mapping framework for
distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS, vol. 2473, pp. 235–250. Springer, Heidelberg (2002)

18. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proceedings of
the European Conference on Knowledge Acquisition and Management, pp. 251–263
(2002)

19. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB 10, 334–350 (2001)

20. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Technical
report, Informatica e Telecomunicazioni, University of Trento (2004)

An Argumentation Framework Based on Strength for Ontology Mapping 71

21. Silva, N., Maio, P., Rocha, J.: An approach to ontology mapping negotiation. In:
Proceedings of the K-CAP Workshop on Integrating Ontologies (2005)

22. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 624–637. Springer, Heidelberg (2005)

23. Tamma, V., Wooldridge, M., Blacoe, I., Dickinson, I.: An ontology based approach
to automated negotiation. In: Proceedings of the IV Workshop on Agent Mediated
Electronic Commerce, pp. 219–237 (2002)

24. Trojahn, C., Quaresma, P., Vieira, R.: A cooperative approach for composite on-
tology mapping. LNCS Journal of Data Semantic (to appear, 2007)

25. Trojahn, C., Quaresma, P., Vieira, R.: An extended value-based argumentation
framework for ontology mapping with confidence degrees. In: Fourth International
Workshop on Argumentation in Multi-Agent Systems (ArgMAS 2007). Workshop
at International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS) (2007)

Contextual Extension with Concept Maps
in the Argument Interchange Format

Ioan Alfred Letia and Adrian Groza

Technical University of Cluj-Napoca
Department of Computer Science

Baritiu 28, RO-400391 Cluj-Napoca, Romania
{letia,adrian}@cs-gw.utcluj.ro

Abstract. In our approach of argumentation we focus on formalizing
the context of arguments and its propagation within the argumentation
chain, aiming to facilitate the re-usability of arguments in the World
Wide Argument Web. The contextual extension is based on intensional
operators used to update the context for different arguments. We extend
the ontology of the Argument Interchange Format with context nodes
and visualize the arguments as concept maps.

1 Introduction

We are in the age when we can imagine a World Wide Argument Web (WWAW)
infrastructure, native to the Internet, enhancing software agents with the ability
to debate, rise argumentation, or analyze ideas, in order to provide a more effec-
tive dissemination of the information to the more and more knowledge driven,
but lost, human agents.

The WWAW [1] is a large scale network of inter-connected arguments created
by human agents in a structured manner. From the idea of integrating struc-
tured argumentation within the WWW [2], the current vision aims to create an
infrastructure for mass-collaborative editing of structured arguments in the style
of the Semantic Wikipedia. One desiderata of the WWAW is to employ a unified
argumentation ontology that can be extended [1].

The current trend consists in developing hybrid approaches that combine the
advantages of formal (logic-based) and informal (argumentation schemes-based,
diagramming reasoning) ideas [3]. Among the variety of prototype systems that
support argumentation: Rationale [4], Araucaria [5], Carneadas [6], Reasonable,
Magtalo1, Aver2, Compendium3, none seem to overcome a minimum number
of users. The above approaches aim to simplify the argumentation process by
providing graphical representations and by hiding irrelevant or improbable in-
formation. During the inference process, this information is left aside and is no
longer accessible in a later stage.
1 MultiAgent Argumentation, Logic and Opinion at www.arg.computing.dundee.ac.uk
2 Argument visualization for evidential reasoning.
3 http://compendium.open.ac.uk

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 72–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Contextual Extension with Concept Maps in the AIF 73

Consequently, this research focuses on formalizing the context of arguments
and its propagation within the argumentation chain, aiming to facilitate i) the
re-usability of arguments in WWAW and ii) identifying inconsistencies between
consequents and the actual contexts or world state. The vision is that the result-
ing context-aware argument networks will make use of the Argument Interchange
Format (AIF) ontology for developing large scale argumentation networks.

2 Aspects of Arguments

The acceptance of an argument is a combination of intrinsic and extrinsic fac-
tors. A successful argument in a context might have no relevance in another one.
Consider a chess player who browses opening collections, trying to figure out
the best move for a particular board position. The collection provides a trace
of moves (the structure or form of the argumentation chain), and a value esti-
mating the current position4 (the content of the argument). Happily, during one
tournament, he meets a known position and he recalls the best recommended
move. Facing this situation, a wise player takes into consideration three contex-
tual factors (context of the argument):

1. Social context : the re-usability of the move depends on the knowledge about
the current opponent: ”If I make that move, I will enter in an ”open position”,
and my opponent loves such positions.”

2. Intentional context : the re-usability of the move is influenced by the current
goal: ”If I re-use the move, I will get some advantage, but the position be-
comes unstable. My goal in this game is to obtain a tie, therefore I should
better consider other options.”

3. Dialectical context : the re-usability depends on the time available: ”After this
move the position will become very complex. My remaining time is less than
that of my opponent and I cannot afford it in this situation.”

Themultifaceted argument ismodeledby threevectors: form, content and context.

Form. The form reveals the structure of the argument: the layout and the link
between reasons and conclusion [7]. Analyzing the form shows if the premises
are capable of supporting a justified conclusion, on the assumption that the an-
tecedents are true. If the structure of the argument is weak the argument will be
weak too. If there is a high reliance on the form of the argument, the argument
is called strict: whenever the premises are true, so is the conclusion. Strict ar-
guments are associated with the analysis of concepts or epistemic knowledge. If
this is not the case, we have defeasible arguments: the link between premises and
conclusion is weak; therefore it can be attacked with undercutting defeaters [8].

The newly proposed AIF ontology [9] focuses on the representation of the
argument form. Patterns of arguments come in different shapes and we find two
approaches: logic based (modus ponens, defeasible modus ponens, modus tollens,

4 A qualitative one, as ”white ahead” in chess algebraic notation, or a quantitative
one, a subunit number computed by chess programs.

74 I.A. Letia and A. Groza

abductive arguments, inductive arguments), and a more informal one, given
by argumentation schemes (presumptive, inductive, or defeasible argumentation
schemes [10]).

Content. The analysis of the content of an argument deals with two issues: i)
it reveals if the premises are actually true, and ii) it assures that the set of an-
tecedents are semantically coherent [7]. If the form of the argument encapsulates
common patterns of human reasoning, the content of the argument is domain
dependent: to establish the degree of truth of the premises requires knowledge
of the domain5.

Regarding the first issue, the degree of support (dos) assigned to an argument
can be expressed either qualitatively or quantitatively. To evaluate the degree
of belief in an argument a flattening function is necessary to aggregate different
representations of the reliance upon subarguments [2]. Some inference engines
for computing the acceptability of arguments have been developed in the ASPIC
project6. To prove the AIF concepts in this prototype, each node has a degree of
support (dos ∈ [0, 1]) attribute. Also, the computation of the dos of a conclusion
based on the dos of its premises is based on the weakest link principle7. In the
large-scale, open context of WWAW, these attributes might not suffice due to:
i) standards of evaluating arguments are domain dependent; ii) the applicable
principle of inference for computing the reliance on an argument may change
during the course of argumentation. iii) the applicable principle of inference de-
pends on the current context; iv) different principles require different attributes
attached to the premises (instead of the degree of support) such as fuzzy numbers
or rough intervals.

Regarding the second issue, a standard of thematic coherence must be defined
in order to validate the content of an argument. Arguments usually contain
questionable premises: “is the probability of a premise so high?”, “is the source
that posted the argument reliable?”. Critical questions on the argumentation
scheme model deal with the content analysis by questioning the truth or the
semantic coherence of the premises.

Context. Arguments are conveyed for a particular purpose in the context of
an action. In order to effectively support a consequent, flexible control must
be exercised over the extrinsic factors by providing a context [7]. The context
helps agents to discover the available means of persuasion for the current debate.
The success of an argument-based agent in WWAW regards its ability to re-use
arguments by changing their context8. The following contextual dimensions can
be formalized for a general argument.
5 With the exception of tautologies, where the truth depends only on the form, regard-

less of the content. On the contrary, some fallacious reasoning, or arguments with
bad form, can be perfectly acceptable in specific contexts.

6 http://www.argumentation.org
7 The dos of the consequent is the minimum degree of support of its antecedents.
8 To re-use arguments is certainly an easier task for a software agent than to create

them from scratch. The re-use of arguments would be equivalent to re-creating them
in a different context.

Contextual Extension with Concept Maps in the AIF 75

Dialectical Context. It refers to the discourse or the debate protocol in which
the arguments have been conveyed. The communication context formalizes the
participants (IDs, roles such as pro, con, persuader, buyer, seller), the topic of
the dialog (useful when searching arguments in WWAW), or the type of dialog
(persuasion, negotiation, dispute resolution, interview9). The last issue opens
the perspective of developing protocol-based reasoning agents in WWAW.

Intentional Context. Usually, the utterance of an argument serves in achieving
a goal during the debate, negotiation, or persuasion protocol in which the argu-
mentation takes place. The intentional context models the relationship between
the specific arguments and the plans of the arguers [7]. Thus, a good argument
is one which fits the current goal of the arguer. Providing an intentional con-
text representation helps to mediate a debate by accepting only the relevant
arguments.

Social Context. It encapsulates the human factors related to the context, or
agent attitudes and strategies in the case of interacting software entities. The
human factors might refer to: information on the user (knowledge of habits,
emotional state), social environment (co-location of friends, social interaction),
cultural issues (e.g. acquisition of context), relationship between the specific
arguments and the plans of the arguers. The context of an argument can be seen
as representing subjective perspectives on the argument.

3 Extending the Argument Interchange Format

Two extensions of the AIF ontology are: Argument Schemes [1], and Protocol
Interaction Application Nodes [11]. The first one enhances agents with both
reasoning capabilities: logic based argumentation and scheme based argumenta-
tion, and it also focuses on representing the form of an argument. The second
one allows agents to represent the dialectical part of arguments.

We introduce a new node type, context node (CO − node), arguably needed
since context exists independently of any object. One context may be used to
evaluate different arguments, while the same argument can be evaluated in dif-
ferent contexts. The separation of the argument structure, modeled with I-nodes
and Scheme-nodes, from contexts, provides more power to the re-use of argu-
ments, and flexibility in the representation and acceptance [12].

Definition 1. The extended-AIF ontology has five disjoints sets of nodes: NI,
NS, NPIA, NF , and NCO.

– An information node I − node ∈ NI represents passive information of an
argument such as: claim, premise, data, locution, etc.

– A scheme node S − node ∈ NS captures active information or domain-
independent patterns of reasoning. The schemes are split in three disjoint
sets, whose elements are: rule of inference schemes (RA − node), conflict
application node (CA− node), preference application node (PA− node).

9 It can point to a more elaborate dialog topology.

76 I.A. Letia and A. Groza

– Forms of arguments f ∈ NF model argumentation schemes, by defining the
premise descriptor, the conclusion descriptor, presumptions and exceptions.

– Protocol interaction nodes (PIA − node) are used to constrain the dialog
moves within an argumentation process.

– Context application nodes (CO−nodes ∈ NCO) are used to capture the con-
text of the above node types in order to increase the re-usability of arguments
in WWAW.

RA − nodes are used to represent logical rules of inference such as modus po-
nens, defeasible modus ponens, modus tollens. CA−nodes represent declarative
specifications of possible conflicts. PA−nodes allow to declaratively specify pref-
erences among evaluated nodes. F−nodes focus on the form aspect of arguments
by allowing the introduction of argumentation schemes in the AIF ontology. A
PIA − node encodes the range of possible speech acts as reply to an I-node of
type locution, and their preconditions and effects [11]. In WWAW, a mediator
agent deploys PIA−nodes for dialog representation accessible to the participat-
ing agents. When dealing with such a node, one can either i) use this node, by
providing I−nodes encapsulating the speech acts specified into the PIA−node,
or ii) attack the node by instantiating a scheme node having the PIA−node as
conclusion.

Definition 2. An argument map Θ in AIF is a directed graph consisting of a
set N of nodes and a binary relation

edge−→: N × N representing edges, where

 ∃(i, j) ∈edge−→, where both i, j ∈ Ni.

The informal semantics of the edges from a CO-node to the existing nodes of
the AIF-core ontology is:

– to an I-node: apply a context to the data in the I-node;
– to an RA-node: apply a context to the inference application in the RA-node;
– to a CA-node: apply a context to the conflict application in the CA-node;
– to a PA-node: apply a context to the preference application in the RA-node;
– to a PIA-node: apply a context to a move in the dialog in the PIA-node;
– to an F-node: apply a context in relation to the presumptions in the F-node.

The inverse relation, from the nodes of the AIF ontology to a CO-node, is:

– from an I-node: I-node data is used to apply a context;
– from an RA-node: infer a conclusion in the form of a context application;
– from a CA-node: apply a conflict definition to the context application in the

CO-node
– from a PA-node: apply a preference on a context application;
– from a PIA-node: apply a dialog move on the context application in the

CO-node.
– from an F-node: apply an argumentation scheme on a context application in

the CO-node.

Contextual Extension with Concept Maps in the AIF 77

4 Context Calculus in the Extended AIF

4.1 Context Representation

We approach the context issue by using the intensional programming paradigm,
which has its foundations in intensional logic. Intensional logic adds dimensions
to logical expressions and intensional operators are used to navigate in the con-
text space. Consider the following I-node of type claim:

I − node1 : ”This year the acceptance rate of this conference is 25%.”

The claim is intensional because its truth value (or content) depends on the
context in which it is evaluated. Two intensional operators in the I − node1
are ”this year” and ”this conference”, which refer to two contextual dimensions:
time and conference. One extension I ′ − node1 is illustrated in table 1 where
the content of the claim depends on the year and conference name, and it is
represented as boolean values.

Table 1. Extension of the claim I − node1

AAMAS IAT ECAI

2008 True True True
2007 True False False
2006 False False True

The context is defined as a subset of finite union of relations [12], where DIM
represents dimension names and the function fdimtag associates a tag Xi with
each Di ∈ DIM .

Definition 3. A context C, given DIM and fdimtotag, is a finite subset of⋃n
i=1 Pi, where Pi = di × fdimtotag(di), 1 ≤ i ≤ n. The degree of context C

is |Δ|, where Δ ⊂ DIM represents the dimensions that appear in C. A context
C is simple if (di, xi), (dj , xj) ∈ c ⇒ di
= dj. A simple context of degree 1 is
called a micro context.

4.2 Context Application Schemes

We formalize context operators as rule application schemes in AIF, with the
following operators [12]:

– Set schemes: difference �, conjunction �, disjunction �;
– Selectors: projection ↓, hiding ↑;
– Constructors: cons [:], used to create a micro context, enrich ⊗, reduce ÷;
– Predicates: comparison =;
– Change schemes: override ⊕, substitute /, choice | (accepts a finite number

of contexts and nondeterministically returns one of them).

Protocol application nodes can be used to define precedence rules for all these
operators. In the case of the override operator (figure 1), if c1 is a context with

78 I.A. Letia and A. Groza

Fig. 1. Override and disjunction operators as RA-nodes in a micro context

dimension d and tag x1, c2 is a context with the same dimension d and tag
x2, the resulting context c3 will have the tag x2 associated with the dimen-
sion d. Accepting the conclusion of an F − node, the context of that conclu-
sion is enriched with the presumptions assumed during the inference process.
In the case of the disjunction operator, the resulting context c3 will incorpo-
rate both dimensions and the corresponding tags ([d1:x1, d2:x2]) of the input
contexts.

Example: Consider two contexts:

c1 = [year : 2008, year : 2007, conf : AAMAS]

c2 = [year : 2008, conf : AAMAS , location : Estoril]

and the dimension set DIM={conf, location}. Applying the contextual operators
we obtain:

– c2 overrides c1: c1 ⊕ c2=[year:2008, conf:AAMAS , location:Estoril];
– c1 difference c2: c1 � c2=[year:2007];
– c1 conjunction c2: c1 � c2=[year:2008, conf:AAMAS];
– c1 disjunction c2: c1 � c2=[year:2008, year:2007, conf:AAMAS location:

Estoril];
– c1 projection on DIM : c1 ↓ D=[conf:AAMAS];
– c1 hiding DIM : c1 ↓ D=[conf:AAMAS];
– c2 substitution [conf:IAT, location:Sydney]: c1/ [conf:IAT, location:Sydney]:

[year:2008, conf:AAMAS , location:Sydney].

Contextual Extension with Concept Maps in the AIF 79

5 Visualizing AIF Arguments in Concept Maps

As concept maps provide intuitive visualizations of the argument networks, we
have chosen CMap servers10 to provide robust displays of the arguments in
the WWAW. When an argument map is saved on a CMap server, a web page
version is also stored. A WWW browser is therefore sufficient to browse the
argumentation chains.

Fig. 2. Contextual Argument in CMaps

5.1 Example of Contextual Form Node

Two premises are defined, in the argument map illustrated in the figure 2, by
the I − node1 and I − node2 concepts. I − node1 has two explicit intensional
operators, captured by the context node c1.

c1 = [year : 2008, conference : AAMAS]

I − node2 has a hidden context time, captured by the context node:

c2 = [year : 2008, year : 2007, year : 2006]

stating that the claim in I−node2 is known to be true in the years 2008, 2007, and
2006. Based on the presumptive F − nodeArgumentFromExpertOpinion, the claim
may be plausibly taken to be true. The F−nodeArgumentFromExpertOpinion points
to its structural representation as conceptual map (figure 3). Anyone who wants
to inspect or attack it can browse its presumptions or expected exceptions. Every
F − node has its own formula to propagate the context to the conclusions. In
the case of an Argument from Expert Opinion, the context of the major premise
is enriched with the assumed presumptions, using the relation enriches context
(figure 3).

c4 = c1 � [MASexpert : Singh, credible : Singh]

10 http://cmap.ihmc.us/

80 I.A. Letia and A. Groza

Fig. 3. F-node: Argument from expert opinion enriched with context, in CMaps

By applying the CO − node4 in this scheme some presumptions are stated
explicitly (”Singh is an expert in MAS”and ”Singh is credible”), but presumptions
that have not been initially encapsulated in the F-node, as ”AAMAS and IAT
are MAS conferences”, may also be added.

c4 = c4 � [MASconf : AAMAS ,MASconf : IAT]

As these presumptions are usually domain dependent, the context-node is
used to represent them. Suppose that the claim in i3 is identified on the Internet.
Therefore, the conflict application node negation may be applied to represent the
rebuttal attacking relation between nodes i2 and i3 (figure 2).

One question regards how contextual information may impact argument re-
usability. Depending on the context dimensions of the data in I−node3 that the
arguer can obtain, the specific preference application criteria (PA − node) can
be used to resolve the conflict. The difference between the contexts of conflicting
nodes is useful when searching for proper preference criteria.

c3 � c2 = [year : 1990]

In this case, the difference refers to the time dimension, and is also relevant to the
content of the argumentation chain. Therefore, the preference application node

Contextual Extension with Concept Maps in the AIF 81

legisposterior can be used (figure 2). The ”Legis Posterior” principle stipulates
that the last known data or norm dominates. By comparing the time dimension
of both conflicting nodes, using formulas of the context calculus:

c1 ↓ year > c3 ↓ year

the i2 is considered to have its content true. By clicking on the PA −
nodeLegisPosterior , a new concept map will be opened, revealing its structure.

When we want to re-use the above argument for another multi-agent system
conference, we enrich the CO − node1 context:

c1 � [conf : IAT] = [year : 2008, conf : AAMAS , conf : IAT]

Given that a context c5=[conf:IAT] has been defined, the override operation:

c1 ⊕ c5 = [year : 2008, conf : IAT]

might also be used.

5.2 Example of Contextual Protocol

In the chess example considered in section 2 (figure 4), the first move e4 encap-
sulated in the data node I − node1 has the contextual information:

c1 = [player : DeepBlue, goal : 1/2− 1/2, time : 2.00h]

Fig. 4. Contextual protocol

82 I.A. Letia and A. Groza

which encapsulates the social context of the game (player dimension), the inten-
tional context (the goal is to obtain a tie), and the dialectical context (available
time to end the protocol). It points to the protocol application node pia1 rec-
ommending the best (according to a preference criterion PA − node1) possible
moves in the current state (figure 4). The preference criterion closed positions
depends on the current context. The PIA1 node has a context denoting the topic
language and the elapsed time.

c2 = [TopicLanguage : ChessAlgebraicNotation, time : 10m]

From the available locutions, the opponent chooses Kf6 in the node i2. This
passive information has a different context attached:

c3 = [player : Kasparov, goal : 0− 1, time : 2.00h]

where both the social aspect and the intentional context have been changed.
Observe that the context attached to a PIA-node denotes objective information,
while the context attached to the locutions in I-nodes has a subjective perspective
on the game. Using the available contextual information, the context can be
updated by instantiating the rule application node override time. Thus, the time
dimension of the context attached to the next move will be overridden by the
remaining time, the difference between the available time (in c1) and the elapsed
time (in c2).

c5 = c1 ⊕ [time : (c1 ↓ time− c2 ↓ time)]

The context c4 of the protocol node PIA2 is calculated similarly, based on the
RA− node2, which overrides the number of the move.

c4 = c3⊕ [number : (c2 ↓ number + 1)]

5.3 CMap Functionalities for WWAW

The following functionalities from the CMap tool can be used to visualize the
WWAW architecture:

– Deploying arguments in WWAW : The system allows users to save their argu-
ments on the available public servers, if the proper user name and password
are provided.

– Searching Arguments : The CMap tool provides searching capabilities for
identifying arguments within both public argument maps and the WWW.

– Validating and fixing links. Due to the dynamics of WWW resources, web
pages having the role of supporting arguments might no longer be available.
The tool can check if a chain of an argument is available at a certain time.

– Allowing modification of argument maps : If the proper user name and pass-
word are provided the user can modify publicly deployed argument maps, in
the style of Wikipedia.

– Public character of the arguments : Some debates, such as Online Dispute
Resolution, need to maintain some arguments as private. Even if they are
posted on the WWW, only the arbitrator might have the right to read them.

Contextual Extension with Concept Maps in the AIF 83

– Providing evidence: The piece of evidence is often relevant in the course of
argumentation. An argument is stronger if some evidence is provided for
its premises. The system enhances parties with the ability to point towards
relevant evidence in a different number of formats: video, html pages.

The resulting conceptual maps are saved in the XML format, which allows the
integration of software agents within the WWAW.

5.4 Crisis Mediation

This section illustrates how a real life scenario is modeled using our approach.
Engineering the conceptual argumentation maps is based on four templates
(right part of figure 5): i) the basic AIF nodes (i, ra, ca, pia, pa, f , co); ii) the
contextual operators nodes (disjunction, conjunction, substitution, difference,
hiding, overrides, projection); iii) the existing argumentation schemes modeled
as f-nodes (Argument from expert opinion, Argument from position to know, Ar-
gument from reputation, Argument from legal rule, etc.); and semantic web tem-
plates that facilitate interaction with software agents (A are B, A is B, Property
domain and range, Class property to Individual, etc.). Using the above (extensi-
ble) templates, the process of modeling the argumentation chain is simplified for
the human agent. At the same time, the IHMC COE11 tool that we use is able
to export the argument map in the OWL format. Therefore a software agent
knowing the AIF ontology will be able to reason on the existing argumentation
chains.

We consider the crisis scenario that took place in 1995 between Canada and
Spain. Canada, acting unilaterally to protect depleted fishing stocks, has seized a
Spanish trawler just outside Canadian territorial waters. The crisis started when
a Canadian fishing patrol cut the net of a Spanish trawler caught overfishing in
international waters. Canada confiscated illegal nets whose mesh size were to
small, so that turbot too young to spawn would be caught. Spain claimed that
the seizure of the ship was a breach of international law; therefore the evidence
discovered could not be used against them. The crisis has several contextual
dimensions, such as legal, economical, political, environmental. The legal context
is exemplified in the following paragraphs.

Assume that the starting legal context is given by the NAFO (Northwest
Atlantic Fisheries Organization) illustrated by CO-node c1 in figure 5. Based
on the Argument from expert opinion f1, the nets used by the Spanish trawler
don’t let the turbot fish to spawn (i2). On the one hand, in the context c1 =
[law : NAFO], which stipulates that the fish cannot be caught before reach-
ing a certain age (i3), based on the f3 argument from legal rule, one can infer
that Spain has breached the regulations (i6). If we also consider the issue in the
context of year 1995 (c1), by applying the ra0 contextual operator, we validate
the fact that the fishing quota for EU boats is set to 34000 tones (i4). In the
context c2, Canada claims that, according to its observations (f2), the fishing
quota has already reached 70.000 tones (i5). This discrepancy, modeled by the

11 http://coe.ihmc.us

84 I.A. Letia and A. Groza

F
ig

.
5
.

L
eg

al
co

nt
ex

t
of

th
e

C
an

ad
ia

n-
Sp

an
is
h

fis
hi

ng
cr

is
is
.

I-
no

de
s

ar
e

re
pr

es
en

te
d

w
it
h

re
ct

an
gl

es
,

Sc
he

m
e

A
pp

lic
at

io
n

no
de

s
w

it
h

ro
un

de
d

re
ct

an
gl

es
,
an

d
C

O
-n

od
es

w
it
h

ov
al

s.

Contextual Extension with Concept Maps in the AIF 85

conflict application node ca1 and based on the same f3 pattern of argumentation
also supports the consequent i6. Notice that the argument from legal rule f3 was
applied in a different context c3, opposite to its first application in the c1 context,
which exemplifies the re-use of arguments in different contexts.

The Spanish government claims that the recently (context node c4) decreas-
ing of fishing quota from 60000 (i7) to 34000 tones has produced economical
perturbations (ra1), which might lead to serious labor problems in the Spanish
fishing industry (i8). If one looks at the issue from the context of 1991 (c5), when
the fishing quota was only about 4000 tones (i8), one can find a conflict (ca2)
between Spanish claims, which defeats the application of the ra1 scheme12.

The Spanish advocate can enrich the legal context by the EU legislation (c6).
When Spain entered the European Union in 1986, it was not allowed to fish
in European waters for 16 years (i9). In the same line, under the Namibia law
(c7), one can find that in 1990 the Spanish boats have been kicked out from
its territorial waters (i10). Similar regulations (i11) have been put into force
by Morocco in 1992 (c8). These correspond to the period when Spanish fleet
started to over-fish in North Atlantic. In the context of 500000 employers in the
Spanish fishing industry (c9), by accrual of these perturbations (ra2), the social
argument of the Spanish government has stronger support, but it also contributes
to the bad reputation of the Spanish fleet (i15). Note that the Spanish fleet bad
reputation is inferred only in the context c12 of Namibia and Morocco legislation,
obtained from:

c12 = (c7 ↓ law) � (c8 ↓ law)

From the viewpoint of the other side, Canada has stricter regulations than
UNCLOS (The United Nation Convention Law of the Sea), but they are applied
only to its own citizens. As a consequence of these norms (c11), 50000 fishermen
became unemployed (i15) and the Canadian government spent 3 billion Cana-
dian dollars to assist them. Thus, both Canadian and Spanish governments face
similar social problems.

On the other hand, UNCLOS stipulates that only 200 miles are under Cana-
dian jurisdiction. Consequently, in this legal context c10, considering that Cana-
dian action took place after this limit (i13), the Canada is the one that has
breached the law. Note again, that the same argument from legal rule was re-
used in a different context.

One conclusion is that context is very relevant to understand and to identify
the causes and solutions of such a crisis. By exporting the above structure in
OWL, the software agents can analyze and contribute to the argument map.

6 Related Work

A fundamental difference between human and agent societies is that humans
demonstrate some heterogeneity in their interpretation of what an argument

12 By attacking the link between the premises i4, i7 and the conclusion i8, it represents
an undercutting defeater.

86 I.A. Letia and A. Groza

represents. The AIF ontology basically tries to structure argumentation without
affecting this flexibility. Compared to existing work, our approach refines the
flexibility provided by the AIF ontology, adding the context explicitly.

Rationale [4] is an instance of an emerging category of argumentation tools,
aiming to improve argumentation abilities of human agents, based on the semi-
formal concept of diagramming reasoning. The advocated advantages of the tool
consists in its usability and semi-formality. Quite the contrary, this research
focuses on re-usability, flexibility, and the open world assumption needed in
large environments such as WWAW. In the WWAW arguments are no longer
ordered sequentially or chronologically as in the discussion threads, but rather
according to their functional role. The context of an argument is introduced to
facilitate the composition of argument along several contextual dimensions.

The Logical Argument Mapping [13] (LAM) provides for structuring argu-
ments a seven step methodology. The ontology of LAM maps distinguishes state-
ments and relations. Statements have a graphical representation according to
their importance for cognitive change. Contrary to the AIF ontology, relations
in LAM have a fixed set of labels: therefore, opposes, refutes, rejects, questions,
supports, etc. An AU: tag is used to identify the author of an argument. Instead,
we use PIA-nodes and the dialectical context of the argument to represent the
dialogical aspect of an argument.

Different types of premises are used in the Carneades Argumentation frame-
work [6]: ordinary, presumptions, and exceptions. The context of an argument
depends on the status of the claims (accepted, rejected), proof standard (prepon-
derance of evidence, beyond reasonable doubt) and weights attached to claims.
In our approach, these notions regard the content of the argument, while the
context is closely related to the presumptions in Carneades.

7 Discussion

Argumentation schemes in F-node are fixed structures of inference [1] reflect-
ing common patterns of human reasoning. In our view, they should sometimes
be slightly changed in order to fit a particular case. Contextual nodes allow to
extend the presumptions in a particular argumentation scheme. Therefore, un-
expected rebuttal facts which attack the newly introduced assumptions can be
accepted to defeat the conclusion of the scheme.

The relevant question is what makes an argument successful. The strength
of its form, the truth of its content, its application in the adequate context, a
combination of these aspects? How will successful arguments replicate within
WWAW, as memes13 for instance, is the subject of new fields of exploration. A
situation in which some arguments will be preferred by humans and others by
software agents is not very hard to imagine.

In order to deploy agent-based applications on the WWAW, ideas from the
REST architecture style of web services [14] can be applied, by considering each
13 Term coined by Richard Dawkins on the analogy of gene, to define the cultural

copying unit.

Contextual Extension with Concept Maps in the AIF 87

argument as a web resource. The agent progresses through an argument chain by
selecting links, in this case state transition, resulting in a new page transferred to
the user, according to the requested form, content, or context. In this approach,
the re-usability of the arguments is increased due to the loose coupling property
of the argument networks. Also, this design reflects the fact that, in a debate, the
information is revealed gradually. Depending on the form, content, or context
provided at each stage of the argumentation, the new state will be computed
accordingly.

According to the premises of the game theoretic approach, a rational agent
cannot be persuaded. It will always choose the best action independently of
persuasion attempts. In the utility-based negotiation model [15] agents do not
attempt to persuade each other or to explain why the proposal should be ac-
cepted, which are not necessary in domains with complete information. The fish
dispute between Canada and Spain is seen as such a domain. In our view, each
crisis is characterized by gradually revealed information. Of course, we assume
that a crisis is an unanticipated event, not designed by some political circles.
Consequently, at the beginning of the crisis, each party takes some actions based
only on partial or distorted pieces of information. The need of negotiation it-
self is questioned when all the information is available: a decision system which
compute the optimal outcome will suffice.

Quite the opposite to repetitive disputes, such as simple e-commerce contract
breaches, international disputes are characterized by high dependence on con-
text. They depend on the political context, social context, economical context,
and a very complex and multi-jurisdictional legal context. For instance, in [15]
the name of the states have been hidden during experiments. Consequently, the
context was deeply altered, which leads to a severe limitation of the means of
negotiation and the ability of negotiators to identify new solutions during the
mediation. The experiments also deviate from the real life in the sense that only
one negotiator was used. During an international crisis an entire team of experts
is empowered by the government to handle the issue. We argue that the argu-
mentation approach based on collaborative editing of conceptual maps is better
suited to such scenarios.

8 Conclusions

Our approach aims to refine the argumentation process, by providing a context
to each claim or scheme application. The contributions of this paper are: i)
extending AIF ontology with context nodes, and ii) enacting AIF ontology as
concept maps.

Future work regards the representation of data in I-node within AIF. In order
to be effectively used by the software agents, the facts should be available as
pieces of evidence that agents can refer to. The Common Knowledge Library can
be particularly useful to represent the evidence in a structural form14. Although
Compendium/ClaiMaker [16,17] has some similarities with our work, we have
14 http://piex.publ.kth.se/ckl/index.html

88 I.A. Letia and A. Groza

preferred to use CMap as it was easier to connect to our system, but further
consideration will be paid to that research in the near future.

In the game theoretic approach each player is selfish. It aims to maximize
its expected utility and it does not take into consideration equity and social
welfare. Quite the opposite, the argumentation approach aims to maximize the
global welfare. As in real life, it is characterized by cooperation too, and not just
competition between agents.

This paper focused on simplifying the argumentation process for the human
agent, but keeps enough formality to allow interaction with software agents. The
future work deals with the use of the exported argument map in OWL by the
AIF-based software agents.

Acknowledgments

We are grateful to the anonymous reviewers for the very useful comments. Part
of this work was supported by the grant 27702-990 from the National Research
Council of the Romanian Ministry for Education and Research.

References

1. Rahwan, I., Zablith, F., Reed, C.: Laying the foundations for a world wide argument
web. Artificial Intelligence 171, 897–921 (2007)

2. Reed, C.: Representing and applying knowledge for argumentation in a social con-
text. AI and Society 11, 138–154 (1997)

3. Hunter, A.: Real arguments are approximate arguments. In: 22nd AAAI Conference
on Artificial Intelligence, pp. 66–71 (2007)

4. van Gelder, T.: Rationale: Making people smarter through argument mapping.
Law, Probability and Risk (submitted, 2007)

5. Reed, C., Rowe, G.: Araucaria: Software for argument analysis, diagramming and
representation. International Journal on Artificial Intelligence Tools 13, 961–979
(2004)

6. Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and
burden of proof. Artificial Intelligence 171, 875–896 (2007)

7. O’Rourke, M.: Critical Thinking Handbook. University of Idaho (2005)
8. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artificial

Intelligence 133, 233–282 (2001)
9. Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South,

M., Vreeswijk, G., Willmott, S.: Towards an argument interchange format. The
Knowledge Engineering Review 21, 293–316 (2006)

10. Reed, C., Walton, D.: Towards a formal and implemented model of argumenta-
tion schemes in agent communication. Autonomous Agents and Multi-Agent Sys-
tems 11, 173–188 (2005)

11. Modgil, S., McGinnis, J.: Towards characterising argumentation based dialogue in
the argument interchange format. In: Argumentation in Multi-Agent Systems, May
2007, Hawai US (2007)

12. Alagar, V.S., Paquet, J., Wan, K.: Intensional programming for agent communica-
tion. In: Leite, J., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS,
vol. 3476, pp. 48–56. Springer, Heidelberg (2005)

Contextual Extension with Concept Maps in the AIF 89

13. Hoffmann, M.: Logical argument mapping: a cognitive-change-based method for
building common ground. In: 2nd International Conference on the Pragmatic Web,
Tilburg, The Netherlands, pp. 41–47 (2007)

14. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. In:
22nd International Conference on Software Engineering, pp. 407–416. ACM, New
York (2000)

15. Kraus, S., Hoz-Weiss, P., Wilkenfeld, J., Andersen, D.R., Pate, A.: Resolving crises
through automated bilateral negotiations. Artificial Intelligence 172, 1–18 (2008)

16. Buckingham Shum, S.: Hypermedia discourse: Contesting networks of ideas and
arguments. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS, vol. 4604,
pp. 29–44. Springer, Heidelberg (2007)

17. Uren, V., Buckingham Shum, S., Bachler, M., Li, G.: Sensemaking tools for under-
standing research literatures: Design, implementation and user evaluation. Inter-
national Journal of Human-Computer Studies 64, 420–445 (2006)

Part II

Argumentation and Dialogue

Command Dialogues

Katie Atkinson1, Rod Girle2, Peter McBurney1, and Simon Parsons3

1 Department of Computer Science, University of Liverpool, UK
{K.M.Atkinson,mcburney}@liverpool.ac.uk

2 Department of Philosophy, University of Auckland, New Zealand
r.girle@auckland.ac.nz

3 Department of Computer and Information Science, Brooklyn College, New York, USA
parsons@sci.brooklyn.cuny.edu

Abstract. We propose a representation of imperatives in computational systems,
and a multi-agent dialogue protocol to argue over these. Our representation treats
a command as a presumptive argument for an action to be executed by a desig-
nated agent, together with a set of associated critical questions whose answers
may defeat the presumption. The critical questions enable the identification of
attacks on the uttered command, and so can be used to specify a dialogue game
protocol for participants to argue over the command. We present a formal syntax
for part of the protocol, called CDP, and outline denotational semantics for both
commands and for the protocol.

Keywords: agent communications, argument schemes, commands, dialogue
games, imperatives, interaction protocols, semantics.

1 Introduction

Computational processes may malfunction or they may interfere with the successful
operation of other processes, whether intentionally or not. If a process in a single, cen-
tralized computer system malfunctions, the thread that is in overall control of the sys-
tem can de-activate or delete the malfunctioning process. In a computer system with
multiple threads of control, such as a distributed e-commerce system, there may be no
central thread with the power to de-activate or delete malfunctioning processes on re-
mote machines; at best, a co-ordinating thread may instruct the relevant remote thread
controlling a malfunctioning process to de-activate or delete it. If the remote entities in
the distributed system are autonomous, such an instruction may or may not be obeyed.
If these remote entities are intelligent, they may also question or seek justification for
an instruction prior to deciding whether or not to obey it. Humans do this constantly,
even in organizations with strong hierarchical command structures, such as the military.

How should such instructions be formally represented and issued? And once issued,
how should they be questioned or challenged, and how justified? Girle [10] presented
the syntax of a dialogue protocol, IDL3, which enables arguments over commands.
The protocol was based on a Hamblin-style dialogue game, DL3 (also defined in [10]),
with additional locutions for issuing and responding to instructions. If challenged, an
instruction may be justified by reference to some proposition (indicating some fact

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 93–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

94 K. Atkinson et al.

about the world), and/or by reference to some further action which the commanded
action is intended to enable. For many applications, such as the computer-aided in-
struction systems to which dialogue games were first applied [4,19], this level of gran-
ularity of justification may be sufficient, especially if participants share over-arching
goals. However, multi-agent computational applications typically involve participants
with possibly-conflicting beliefs, goals, and even values.1 We therefore believe a more
finely-grained approach is required, in order that a dialogue over commands is better
able to elucidate the differences between participating agents. Moreover, [10] gives no
semantics for IDL3, although an axiomatic semantics defined in terms of the pre- and
post-conditions of dialogue utterances would not be difficult to define.

What makes command utterances different to other locutions regarding actions, such
as proposals, promises, requests or entreaties? Firstly are the pre-conditions of the ut-
terance: the valid utterance of a command pre-supposes the existence of a regulatory
environment or a social context in which one party (the speaker) has some right to re-
quire another party (the hearer) to perform some action at the behest of the first party,
something Habermas has called the normative rightness of a directive [11]. Such an
environment or context, if it exists, creates a prima facie obligation on the hearer to
obey any legally-issued commands by the speaker. Of course, whether such a context
actually pertains between the parties may be a matter of disagreement between them,
and thus itself open to question and challenge. A protocol for multi-party dialogues
over commands should be sufficiently expressive to permit such disputation. Secondly
are the conditions of revocation of the utterance: normally only the issuer of a com-
mand utterance has the contextual power to retract the utterance and thus to revoke the
requirement that the action stated be performed by the recipient of the command. This
dialogic aspect of the semantics of a command — that revocation privileges are limited
only to the initial speaker, even after a command may be accepted by a recipient —
distinguishes commands from many other types of action locutions, such as promises,
proposals and entreaties, as two of us explain in greater detail in [17].

Thirdly, are the possible forms of challenge to a command utterance: questioning or
challenging a command may involve disagreement not only with the appropriateness,
suitability or feasibility of a proposed action, as in the protocol for arguments over
action of [2], but also disagreement with the normative rightness of the command ut-
terance. As Habermas argues, “refusing imperatives normally means rejecting a claim
to power” [11, p. 325]. Thus dialogue over commands may involve discussions over
the right of the agent issuing a command to do so, or to do so at the particular time of
the utterance, or to do so to the intended recipient. Any protocol for command dialogs
needs, therefore, to enable arguments over such issues.

The approach adopted in this paper begins by presenting a novel formalism for rep-
resenting commands, similar to the computational representation of proposals for ac-
tions given in [2]. That representation construed an action proposal as an argument
scheme for practical reasoning, i.e., as a presumption for action along with a collection
of relevant critical questions whose answers may defeat the presumption, following

1 Values, as used in this sense, represent the social interests promoted through achieving the
goal. Thus they are qualitative measures of the desirability or non-desirability of achieving a
goal.

Command Dialogues 95

the account of Walton [25]. The current paper extends that representation to deal with
command utterances, and identifies the specific critical questions appropriate for re-
sponse to such commands. Section 2 presents our argument schemes for commands, and
the associated critical questions are articulated in Section 3. These argument schemes
enable the specification of a dialogue protocol, called CDP, in which commands can
be issued, rationally questioned, challenged and justified, and accepted or rejected. The
syntax for CDP is presented in Section 4, and we outline denotational semantics for
commands and for the protocol in Section 5. Our semantic framework draws on recent
work by Reed and Norman [24] formalizing Hamblin’s Action-State Semantics for im-
peratives [12] and by two of us in the semantics of action dialogues [16,17]. The paper
concludes with a brief summary of our contribution and a discussion of future work.

2 Representing Commands

We first propose a representation of commands. We assume two dialogue participants,
called Commander and Receiver, respectively. After opening, a dialogue between the
two begins with Commander issuing an instruction or command to Receiver to execute
some action. In the spirit of Hamblin [12], we allow this instruction to either specify
the action to be executed or to specify a (partial or complete) world state to be achieved
as a result of successful execution of an action, or both. For simplicity, we assume
that actions either successfully achieve their intended goals, or they do not, and, apart
from this binary outcome, we do not represent any degree of uncertainty regarding
the execution or the effects of actions. We assume that both Commander and Receiver
model time as discrete, and represented by the positive integers, and that they share a
common clock (and thus always agree on the current time).

Our approach treats commands as presumptive arguments for action by Receiver,
represented as argument schemes with an associated list of critical questions, as [2]
does for action proposals. Accordingly, we have two basic representations for com-
mands, either as an instruction to Receiver to perform at a certain time a certain action
(Command Argument Scheme for Actions, no. 1, or CAS-A1) or as an instruction to
Receiver to make true at a certain time a certain set of propositions describing a world-
state (Command Argument Scheme for States, no. 1, or CAS-S1):

CAS-A1: Commander instructs Receiver to perform, at time t, action α.
CAS-S1: Commander instructs Receiver to bring about, at time t, state S.

An instruction issued according to CAS-S1 allows Receiver the freedom to choose
whatever action Receiver believes can best achieve state S at time t. We number these
schemes because each has a variant, in which Commander provides a justification for
the instruction. Building on the account of [2], a justification for an instruction could
include statements regarding: the current situation in which the instructed action is
to be performed (represented by the symbol R in our notation below); an indication
of the social context (X) enabling Commander to issue instructions to Receiver; the
state of affairs (S) expected to be achieved by the performance of the instructed action
(α); the goal (G) of the action, meaning the features of the state of affairs desired by
Commander; the value (v) to be realized or enhanced by the achievement of the goal,

96 K. Atkinson et al.

which provides a reason why those features are desirable. Thus, goals are (partial or
complete) states of the world, represented by conjunctions of propositions, while val-
ues are functions over these states. As such, goals have truth values, and these values
may (at least, in principle) be verified objectively, independently of the particular agents
engaged in the dialogue. In contrast, values, not being propositions, do not have truth
values, and only have value with reference to a particular agent or group of agents;
they may be evaluated differently by different agents, or differently by any one agent
at different times. The division of the consequences of an action into a set of implied
logical statements (the goal G) and the impact of realization of these statements on
some value v means that dialogue participants can potentially separate objective from
subjective assessments of the new circumstances arising from successful performance
of the action.

With such a structure, each argument scheme above has a variant (numbered 2) which
provides a justification for the instruction, as follows:

CAS-A2: Given the social context X ,
In the current circumstances R,
Commander instructs Receiver to perform action α at time t,
Which will result in new circumstances S,
Which will realize goal G,
Which will in turn promote value v.

CAS-S2: Given the social context X ,
In the current circumstances R,
Commander instructs Receiver to bring about state S at time t,
Which will realize goal G,
Which will in turn promote value v.

Denoting Commander by Com and Receiver by Rec, we can represent these as:

CAS-A2: [Com : Rec] : X, R
α,t→ S |= G ↑ v

CAS-S2: [Com : Rec] : X, R → (S, t) |= G ↑ v

Our notation also allows for commands to be justified on the basis of some value v be-
ing demoted, denoted ↓ v. If we allow the action notation α to include representation of
negative actions (i.e., not doing something), then demotion of values also permits rep-
resentation of commands in which Receiver is instructed not to do some action because
doing so may be deleterious for some value or may actively promote some value. For
simplicity, we ignore issues regarding relationships between the timing and durations
of actions on the one hand, and the timing of goal- and state-realizations, on the other.

3 Critical Questions

The justifications for instructions given by CAS-A2 and CAS-S2 provide a basis for
elaborating a set of associated critical questions. In this paper, we present only the
questions for instructions under Scheme CAS-A2, and these questions fall naturally
into the following categories:

Command Dialogues 97

– Questions regarding the selection of the action
– Questions regarding the selection of Receiver to perform the action
– Questions regarding the authority of Commander to issue the instruction to Receiver
– Questions regarding performance of the action, including questions regarding its

timing.

3.1 Questioning the Choice of Action

Most of the critical questions related to the selection of the action α stated in instruc-
tion CAS-A1 or CAS-A2 are the same as the questions already articulated in [3]. We
list these again here (numbered CQA1, . . ., CQA18, to indicate that these are Critical
Questions regarding the Action). For simplicity of presentation, we delete references to
the time t specified in the command.

CQA1: Are the believed current circumstances true?
CQA2: Assuming this, will the action bring about the stated new circumstances?
CQA3: Assuming all of these, will the action bring about the desired goal?
CQA4: Does the goal promote the value intended?
CQA5: Are there alternative ways of realizing the same new circumstances?
CQA6: Are there alternative ways of realizing the same goal?
CQA7: Are there alternative ways of promoting the same value?
CQA8: Does doing the action have a side effect which demotes the value?
CQA9: Does doing the action have a side effect which demotes some other value?
CQA10: Does doing the action promote some other value?
CQA11: Does doing the action preclude doing some other action which would promote
some other value?
CQA12: Is the action possible?
CQA13: Are the current circumstances as described possible?
CQA14: Are the new circumstances as described possible?
CQA15: Can the desired goal be realized?
CQA16: Is the value indeed a legitimate value?
CQA17: Do the new circumstances already pertain?
CQA18: Has the action already been performed?

The last two questions are additional to those in [3]. A reason not to obey a command
is that the action being commanded has already been performed at an earlier time and
the resulting world-state already brought into being. This may be a fact known to Re-
ceiver but not yet known to Commander, especially if they are situated in a distributed
computational environment.

Commander may respond to any of these questions with further elaboration and jus-
tification of the instruction, or with its withdrawal. The type of justification dialogue
between Commander and Receiver will differ, according to the particular critical ques-
tion posed by Receiver; these different dialog types are listed in [3].

3.2 Questioning the Choice of Receiver to Perform the Action

This second category deals with questions regarding why Receiver, in particular, was
selected by Commander to perform the action stated in the instruction. Here, we are

98 K. Atkinson et al.

dealing with questions regarding availability and capability of agents other than Re-
ceiver to execute the instruction, and the criteria used by Commander in selecting Re-
ceiver. The critical questions are:

CQR1: Is there another agent available to perform the action at the stated time?
CQR2: Is there another agent with sufficient knowledge to perform the action at the
stated time?
CQR3: Is there another agent with access to the resources required to perform the action
at the stated time?
CQR4: Is there another agent with sufficient experience to perform the action at the
stated time?
CQR5: Is there another agent with the appropriate skillset able to perform the action at
the stated time?
CQR6: Is there another agent who can see to it that the action is performed at the stated
time?
CQR7: Is there another agent more suitable than Receiver to perform the action at the
stated time?

In responding to such questions, Commander may provide information on the expected
consequences of Receiver performing the action and/or Receiver not performing the
action. These consequences could be for Receiver, for Commander, for other agents in
the system as individuals, or for the system as a whole. Statements by Commander of
such consequences can be understood as elaborations of the Consequential State (S),
the Goal (G), and the Value (v) components of CAS-A2. If the answer to any of the
questions CQR1 – CQR7 is YES, then the action to be performed may be re-assigned
to another agent, not Receiver. In that case, Commander will need to withdraw the
instruction issued to Receiver, and issue a new instruction to the other agent. Note that
answers to questions CQR1 – CQR6 may all be YES, and yet the answer to question
CQR7 may be NO: Receiver may be assessed by Commander as the best, or most
suitable, by some criteria, of all those agents able, willing and available to do the task.

3.3 Questioning Commander’s Authority to Command Receiver

The third category of critical questions are those regarding the authority of Commander
to issue an instruction to Receiver within the social context stated in CAS-A2. They
deal with issues such as: the social status of Commander; the social roles of the two
agents; and the social or individual consequences of obeying or disobeying orders. The
critical questions that arise here are:

CQX1: Under what authority does Commander have the power to issue such an instruc-
tion to any agent?
CQX2: Under what authority does Commander issue the instruction to Receiver?
CQX3: Under what authority does Commander issue the instruction to Receiver to per-
form the stated action?
CQX4: Under what authority does Commander issue the instruction to Receiver to per-
form the stated action at the stated time?
CQX5: What are the consequences of compliance with the instruction?
CQX6: What are the consequences of non-compliance with the instruction?

Command Dialogues 99

Responses to these questions will depend upon the nature of the social context (de-
noted by X in CAS-A2), which links Commander and Receiver. As with the previous
category of questions, the consequences of compliance or non-compliance with the
instruction may impact upon the Receiver, the Commander, other agents in the sys-
tem, and/or the system as a whole; similarly, statements by Commander of such conse-
quences in response to Questions CQX5 or CQX6 can be understood as elaborations of
the Consequential State (S), the Goal (G), and the Value (v) components of CAS-A2.
Implementing computational entities able to entertain and respond to questions such as
these would, of course, require a formal representation of the social context connecting
the agents, as for example in the work of Karunatillake [14], or in multi-agent systems
with explicitly-defined roles, rights and responsibilities, such as those developed using
software engineering methodologies such as Gaia [27].

3.4 Questions Regarding the Performance of the Action

The final category of questions relate to the performance and timing of the action. As
with the questions above, the answers to these questions may inhibit an agent’s abil-
ity or make it impossible to execute an instructed action, and so may serve to defeat
the command. However, these questions may also be asked by a Receiver willing to
obey the command, in order to clarify the instruction. In this category are the following
questions:

CQP1: By what time should Receiver complete the action?
CQP2: How long should the action take to complete?
CQP3: At what place should Receiver perform the action?
CQP4: How (by what methods) should Receiver perform the action?
CQP5: May Receiver delegate the performance of the action?
CQP6: May Receiver perform the action in concert with other agents?
CQP7: For joint actions, with whom should Receiver perform the action?

Joint actions and delegated actions lead to consideration of issues such as: the division
of actions into constituent tasks; co-ordination and timing of these tasks; the willing-
ness and availability of other agents to execute their assigned tasks; etc. For reasons of
simplicity, we ignore these issues in this initial account.2

4 Protocol Syntax

We now present the syntax of a multi-agent dialogue protocol to enable agents to issue,
accept, reject, question, challenge, justify and retract commands. We call the protocol
the Command Dialogue Protocol (CDP). The syntax is based to some extent on that
of the PARMA Protocol for arguments over proposals for action [2], extended to deal
with commands and associated questions and challenges. As is standard in the agent
communications literature, we represent agent utterances by a two-layer syntax: an in-
ner, or content, layer and an outer, or wrapper, layer. The outer layer comprises locu-
tions which express the illocutionary force of the inner content. The inner layer includes

2 Note that the argument scheme for action proposals of [2] has recently been extended in [1] to
deal with joint actions.

100 K. Atkinson et al.

the following elements (expressed in suitable formal representations): a time-stamp; an
identifer for the speaker of the utterance; an identifier for the intended recipient of the
locution; and the conversational content of the utterance.3

Generic (uninstantiated) locutions are denoted with just the wrapper as, for exam-
ple, in WITHDRAW(.), while instantiated locutions are denoted with both wrapper and
contents shown, as in WITHDRAW(t, Ag1, Ag2), where t is a time-stamp, and Ag1
is an agent identifier indicating the speaker, and Ag2 the intended recipient of the ut-
terance. For simplicity, we assume there are just two participating agents, Commander
and Receiver, denoted Com and Rec as before. We also assume, as in [17], that CDP
contains standard control locutions for participants to initiate, enter into and withdraw
from dialogues using the protocol.

After the opening, a command dialogue using CDP begins with Commander issu-
ing a command to Receiver to perform a specified action at a specified time; Table 1,
discussed below, presents the locutions available to Commander for this utterance. Fol-
lowing this utterance, CDP then permits Receiver to respond to the command, using
the locutions in Table 2, discussed below. If Receiver issues a question or challenge to
Commander in response to the command, Commander may respond in turn, using the
locutions in Table 1 to answer a question, or to state or justify an aspect of the com-
mand, or to retract some aspect of the command. The next four sub-sections discuss the
utterances, responses and counter-responses in more detail.

4.1 Issuing or Retracting a Command

As in Section 3, we assume argumentation scheme CAS-A2 is used to issue instructions.
Table 1 shows the locutions available to Commander for stating the instruction and for
stating the elements of its justification, and for retracting any of these statements after
their utterance. We suppress the agent identifiers and time-stamp from these expressions,
except in the case of the utterances indicating or cancelling the action to be undertaken.
We also assume, for simplicity, that the value v is one promoted by the action. The
time variable t specified in the following locutions refers to the start time of execution
of the action, α. Note that, in this protocol, only the agent issuing an instruction has the
dialectical power to retract it and thus to revoke the command it embodies.

Table 1. Locutions to issue or revoke a command, or elements of its justification

Command & Justification Locutions Retraction Locutions

State_context(X) Deny_context(X)
State_circumstances(R) Deny_circumstances(R)
State_action_command(Com, Rec,α, t) Retract_action_command(Com, Rec, α, t)
State_consequences(α, t, R, S) Deny_consequences(α, t,R, S)
State_logical_ consequences(S, G) Deny_logical_ consequences(S, G)
State_purpose(v) Deny_purpose(v)

3 We assume faultless transmission, so that the intended recipient is also always the hearer of
the utterance.

Command Dialogues 101

Table 2. High-level locutions in response to a command

Accept_action_command(Com, Rec,α, t)
Refuse_action_command(Com, Rec,α, t)
Question_action_command(Com, Rec, α, t)
Challenge_action_command(Com, Rec, α, t)
Done_action_command(Com, Rec, α, t)
Action_done(β, s)

4.2 Responding to a Command

We now now list the high-level locutions available to Receiver to respond to an instruc-
tion from Commander. These are shown in Table 2. Receiver may accept or refuse the
instruction issued by Commander, with the first or the second locutions shown there.
The third locution, Question_action_command(.), allows Receiver to indicate a desire to
seek clarification or further information from Commander. As stated earlier, such clari-
fication may be sought whether Receiver intends to obey or not to obey the instruction.
The fourth locution, Challenge_action_command(.), indicates that Receiver wishes to
challenge the instruction or some aspect of its justification. These two locutions will
then lead to subsequent utterances by Receiver with specific questions or challenges, as
discussed in Section 4.3 below.

The locution Done_action_command(Com, Rec, α, t),uttered by Receiver, indicates
that Receiver has executed at time t the action α which was assigned by Commander in
the command utterance. It may be that Receiver has only partially executed action α, or
has executed it at some other time, or has executed some other action whose performance
obviates the need to execute action α, or whose performance precludes the execution of
α. In such cases, Receiver may respond with an appropriate instantiation of the final
locution in Table 2, namely Action_done(β, s), where β denotes some action, and s a
time-point. This locution can also be used if action α or some other action β has been
executed by another agent, not Receiver, and such execution obviates or precludes now
the need to execute α at time t. Thus, this final locution in Table 2 permits Receiver to
make an initial response to an instruction in the case where the commanded action does
not need to be undertaken.

4.3 Questioning or Challenging a Command

The content of the various questions and challenges available to Receiver in response
to an instruction issued by Commander are those listed in Sections 3.1 to 3.4. For each
of the questions listed there, we may specify two associated dialogue locutions, in a
similar manner to that adopted for the specification of the PARMA Protocol for the
first 16 critical questions of Section 3.1 [2]. One of these two dialogue locutions is
intended to seek from Commander further information or a justification of the relevant
issue. The other locution is intended to deny a justification provided by Commander of
the relevant issue. Consider, for example, critical question CQR1 in Section 3.2, which
asks if there is another agent available to perform the action stated in the command at
the time specified. Receiver may respond with a question to Commander, asking if there

102 K. Atkinson et al.

Table 3. Locutions to question or attack the choice of agent to perform the action

CQ Locutions to question the choice of agent Locutions to challenge the choice of agent

CQR1 Ask_if_other_agents_available(.) Deny_no_other_agents_available(.)
CQR2 Ask_if_other_agents_with_knowledge(.) Deny_no_other_agents_with_knowledge(.)
CQR3 Ask_if_other_agents_with_resources(.) Deny_no_other_agents_with_resources(.)
CQR4 Ask_if_other_agents_with_experience(.) Deny_no_other_agents_with_experience(.)
CQR5 Ask_if_other_agents_with_skillset(.) Deny_no_other_agents_with_skillset(.)
CQR6 Ask_if_other_agents_can_see_to_it(.) Deny_no_other_agents_can_see_to_it(.)
CQR7 Ask_if_other_agents_more_suitable(.) Deny_no_other_agents_more_suitable(.)

is another agent available to perform the stated action at the stated time. Or, Receiver
may respond with a challenge to Commander, denying the assertion that no other such
agent exists. The dialectical force of these two utterances is, of course, very different:
a challenge, unlike a question, is an attack by Receiver on the dialectical position of
Commander.

Accordingly, corresponding to the 38 critical questions presented in Sections 3.1–
3.4, CDP has 76 locutions available to Receiver for questioning or challenging the
command and its justification issued by Commander.4 For reasons of space we do not
list all of these here. Instead, Table 3 provides an example of these locutions, giving the
14 locutions corresponding to the seven critical questions CQR1–CQR7 of Section 3.2;
these seven critical questions relate to the choice of agent selected by Commander to
perform the action specified in the instruction.

4.4 Responding to a Question or Challenge to a Command

If Receiver utters a question or challenge to a command locution uttered by Comman-
der, Commander has several alternatives in responding to it. Commander may say noth-
ing at all or may withdraw from the interaction, as may happen at any time in any
dialogue between autonomous agents. Commander may provide answers to questions
or provide justifications to challenges from Receiver by stating (or re-stating) some as-
pect of the justification for the command, using the locutions in the left-hand column of
Table 1. In the case where these justifications have already been uttered in the dialogue,
and Receiver questions or challenges them, Commander may utter supporting evidence
or arguments, again using the locutions in the left-hand column of Table 1, but instan-
tiated with new content. In response to a question or challenge, Commander may also
retract the initial command, using the Retract_action_command(.) locution of Table 1.
Commander may also simply re-state the command.

The Command Dialogue Protocol has no guarantee of eventual termination or even
of loop-freeness (i.e., freeness from circularity), since Commander may simply repeat-
edly restate a command which Receiver repeatedly rejects, or which Receiver

4 In case this number of locutions is thought prolix, recall that CDP is intended for machine-to-
machine communications; for comparison, the machine interaction protocol, Hypertext Trans-
fer Protocol (HTTP), defines 41 standard status-code responses to a GET command, and allows
for several hundred additional non-standard codes [20].

Command Dialogues 103

repeatedly accepts but never executes. Whether such features are considered desirable
or not will depend upon the goals and values of the dialogue participants. For automated
applications, it may be useful to explore modifications to CDP to avoid or ameliorate
such protocol features, perhaps using the instruction completion blocks of IDL3 [10, p.
259], and/or limits on the number of repetitions of the same utterance by an agent [15].

5 Outline of Semantics

We now present a semantic framework for CDP, which we merely sketch, for space
reasons. We require both a semantics for command statements, and for the CD Protocol
overall. For commands, we can utilize the double-possible-worlds semantics recently
proposed by Reed and Norman [24] to formalize Hamblin’s Action-State Semantics for
imperatives [12]. This formal semantics includes representation both for world-states
and for events (including actions); both are needed to accommodate actions which do
not achieve their intended outcome-state, and states arising not through any deliberate
action. Reed and Norman propose a ternary relationship across states and events, indi-
cating that a given world-state is accessible from another by means of a particular event.
Additional accessibility relationships encode time relationships between world-states,
events and one another, in such a way that alternative models of time are possible. We
have designed our representation for commands in order to map neatly into this seman-
tic framework.

For the semantics of the protocol CDP, it would be straightforward to define an ax-
iomatic semantics of pre- and post-conditions for each legal utterance in terms of their
effects on the state of the dialogue. Given a suitable mental model of the participating
agents, for example, in terms of the Beliefs, Desires and Intentions of each agent, it
would be possible to extend these pre- and post-conditions to include the mental states
of the participants, as does the Semantic Language SL of the FIPA Agent Communi-
cations Language ACL [7].5 Instead of this, we adopt the denotational trace semantics
approach presented for dialogues over action in [16], as refined in [17]. In this approach,
participants in a multi-agent dialogue are viewed as jointly creating and manipulating
objects in a shared conceptual space of action-intentionality tokens, analogously to the
joint creation of natural language semantics in Discourse Representation Theory in lin-
guistics [13]. Each token in the shared space represents a possible action, tagged with
meta-information providing information about the preferences and intentions of agents
regarding that action. Examples of such meta-information includes: the identity of the
dialogue participant who first proposed the action; the identity(ies) of the intended ex-
ecutor(s) of the action; the identities of dialogue participants, if any, who have cur-
rently endorsed the proposal; and the identities of participants with the power to revoke
the proposal. The tags on tokens enable the shared token space to be partitioned into
sub-spaces, with different read-, write-, and delete-permissions applying in different
sub-spaces. These sub-spaces may also be viewed as generalizations of the participants’
Commitment Stores. Preferences between different actions expressed in the dialogue by
participants are represented by labeled arrows between tokens.

5 However, such an extension to include mental states would not, in general, be verifiable, since
a sufficiently-clever agent could always simulate any required mental states [26].

104 K. Atkinson et al.

In the case of commands, only the proposer of an instruction, Commander, has the
power to revoke it, which simplifies the tags (and hence the sub-space partition struc-
ture). Moreover, CDP does not (currently) permit expression of preferences, so there are
no arrows created between distinct tokens. Each command utterance in a dialogue using
CDP causes the creation of an action-intentionality token in an appropriate subspace of
the shared space. Utterances to indicate acceptance or rejection of a command likewise
lead to tagging of the associated token, or equivalently, the creation of tokens in other
sub-spaces of the overall space. A complete articulation of the mapping between CDP
utterances and objects in the token-space semantics will be presented in later work.

6 Conclusion

We have a proposed a novel representation for commands in computational systems,
with each command represented as a presumptive argument scheme for action by a
designated agent along with a list of critical questions, in the manner of [2]. We have
then used this representation to specify a multi-agent dialogue protocol for command
dialogues, CDP. A denotational semantic framework for this protocol has also been
outlined, with commands interpreted via the Action-State double-possible-worlds se-
mantics of [24], and dialogue utterances understood as intended to manipulate action-
intentionality tokens in a shared conceptual space, following [17]. Such a semantic
framework may be viewed as a tuple space co-ordination model [9], with tokens (i.e.,
tuples) manipulated by agents using law-governed Linda [18]. In other work [5,6], one
of has shown how such a semantic framework can enable the straightforward imple-
mentation of agent interaction protocols, using the TuCSoN tuple centre platform [22].

Our work in this paper lies in the field of software engineering of multi-agent systems
using argumentation: we have presented a principled framework for the design of a
machine-to-machine dialogue protocol which would enable commands to be issued,
questioned, challenged and justified between autonomous software agents. To the best
of our knowledge, CDP is the first computational framework to enable multi-agent
command dialogues.

Of course, much work remains to be done before this framework would be ready for
production deployment. In addition to a full articulation of the semantics, and the devel-
opment of a prototype implementation, several other aspects require further research.
Firstly, a computational representation of the social context between the participants,
as in [14], may be useful to provide a stronger semantic underpinning of those critical
questions relating to the authority of the Commander (CQX1–CQX6). In some social
contexts, of course, agents issuing commands may have access to arsenals of rewards
or threats to ensure compliance; although a different topic to that of command dialogs,
work in that area may be relevant, e.g., [23]. Secondly, we plan to refine our model
of time, so as to enable more sophisticated treatment of the relationships between the
timing and duration of actions and the timing of achievement of world-states and goals.
We also plan to consider how to incorporate uncertainty regarding the success or failure
of actions, and discussion of the relative costs and benefits of alternative actions, pos-
sibly drawing on the qualitative decision theory of [8]. Such work would support the
development of appropriate critical questions for argument scheme CAS-S2, which we

Command Dialogues 105

did not consider in this paper. Finally, recent work in multi-agent systems has looked at
delegation and responsibility, e.g., [21]; it may be valuable to explore the relationships
between that work and multi-agent dialogs over commands requiring joint action for
their fulfilment.

Acknowledgments. We thank the anonymous referees and the audience at ArgMAS
2008 for their comments. Two authors (PM and SP) are grateful for partial financial sup-
port received from the EC Information Society Technologies (IST) programme, through
project ASPIC (IST-FP6-002307). This work was also partially supported by the US
Army Research Laboratory and the UK Ministry of Defence under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the US Government, the
UK Ministry of Defense, or the UK Government. The US and UK Governments are au-
thorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

References

1. Atkinson, K., Bench-Capon, T.: Action-based alternating transition systems for arguments
about action. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI
2007), pp. 24–29. AAAI Press, Menlo Park (2007)

2. Atkinson, K., Bench-Capon, T., McBurney, P.: A dialogue game protocol for multi-agent
argument for proposals over action. Autonomous Agents and Multi-Agent Systems 11(2),
153–171 (2005)

3. Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of practical
argument. Synthese 152(2), 157–206 (2006)

4. Bench-Capon, T.J.M., Dunne, P.E., Leng, P.H.: Interacting with knowledge-based systems
through dialogue games. In: Proceedings of the Eleventh International Conference on Expert
Systems and Applications, Avignon, pp. 123–140 (1991)

5. Doutre, S., McBurney, P., Wooldridge, M.: Law-governed linda as a semantics for agent inter-
action protocols. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge,
M. (eds.) Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2005), Utrecht, The Netherlands, pp. 1257–1258. ACM
Press, New York (2005)

6. Doutre, S., McBurney, P., Wooldridge, M., Barden, W.: Information-seeking agent dialogs
with permissions and arguments. Technical Report ULCS-05-010, Department of Computer
Science, University of Liverpool, Liverpool, UK (2005),
www.csc.liv.ac.uk/research/techreports/tr2005/tr05010abs.html

7. FIPA. Communicative Act Library Specification. Standard SC00037J, Foundation for Intel-
ligent Physical Agents, December 3 (2002)

8. Fox, J., Parsons, S.: Arguing about beliefs and actions. In: Hunter, A., Parsons, S. (eds.)
Applications of Uncertainty Formalisms. LNCS (LNAI), vol. 1455, pp. 266–302. Springer,
Heidelberg (1998)

9. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming Lan-
guages and Systems 7(1), 80–112 (1985)

10. Girle, R.: Commands in Dialogue Logic. In: Gabbay, D.M., Ohlbach, H.J. (eds.) FAPR 1996.
LNCS (LNAI), vol. 1085, pp. 246–260. Springer, Heidelberg (1996)

www.csc.liv.ac.uk/research/techreports/tr2005/tr05010abs.html

106 K. Atkinson et al.

11. Habermas, J.: The Theory of Communicative Action, Reason and the Rationalization of So-
ciety, Heinemann, London, vol. 1 (1984); Translation by T. McCarthy

12. Hamblin, C.L.: Imperatives. Basil Blackwell, Oxford (1987)
13. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Modeltheoretic Semantics of

Natural Language, Formal Logic and Discourse Representation Theory. Kluwer, Dordrecht
(1993)

14. Karunatillake, N.C.: Argumentation-Based Negotiation in a Social Context. Phd, School of
Electronics and Computer Science, University of Southampton, Southampton, UK (2006)

15. Krabbe, E.C.W.: The problem of retraction in critical discussion. Synthese 127(1-2), 141–
159 (2001)

16. McBurney, P., Parsons, S.: A denotational semantics for deliberation dialogues. In: Rahwan,
I., Moraïtis, P., Reed, C. (eds.) ArgMAS 2004. LNCS, vol. 3366, pp. 162–175. Springer,
Heidelberg (2005)

17. McBurney, P., Parsons, S.: Retraction and revocation in agent deliberation dialogs. Argumen-
tation 21(3), 269–289 (2007)

18. Minsky, N.H., Leichter, J.: Law-governed Linda as a coordination model. In: Ciancarini,
P., Nierstrasz, O., Yonezawa, A. (eds.) ECOOP-WS 1994. LNCS, vol. 924, pp. 125–146.
Springer, Heidelberg (1995)

19. Moore, D.J.: Dialogue Game Theory for Intelligent Tutoring Systems. PhD thesis, Leeds
Metropolitan University, Leeds (1993)

20. Network Working Group. Hypertext Transfer Protocol — HTTP/1.1. Technical Report RFC
2616, Internet Engineering Task Force (June 1999)

21. Norman, T.J., Reed, C.: Delegation and responsibility. In: Castelfranchi, C., Lespérance, Y.
(eds.) ATAL 2000. LNCS, vol. 1986, p. 136. Springer, Heidelberg (2001)

22. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Program-
ming 41(3), 277–294 (2001)

23. Ramchurn, S.D., Sierra, C., Godo, L., Jennings, N.R.: Negotiating using rewards. In:
Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) Proceedings of the Fifth Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2006),
Hakodate, Japan, pp. 400–407. ACM Press, New York (2006)

24. Reed, C., Norman, T.: A formal characterisation of Hamblin’s action-state semantics. Journal
of Philosophical Logic 36, 415–448 (2007)

25. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum As-
sociates, Mahwah (1996)

26. Wooldridge, M.J.: Semantic issues in the verification of agent communication languages.
Journal of Autonomous Agents and Multi-Agent Systems 3(1), 9–31 (2000)

27. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia
methodology. ACM Transactions on Software Engineering Methodology 21(3), 317–370
(2003)

Argumentation and Artifact
for Dialogue Support

Enrico Oliva1, Mirko Viroli1, Andrea Omicini1, and Peter McBurney2

1 ALMA MATER STUDIORUM–Università di Bologna, Cesena, Italy
2 University of Liverpool, Liverpool L69 3BX UK

Abstract. Intelligent and autonomous software agents may engage in dialogue
and argument with one another, and much recent research has considered proto-
cols, architectures and frameworks for this. Just as with human dialogues, such
agent dialogues may be facilitated by the presence of a mediator, able to sum-
marise different positions, identify common assumptions and inconsistencies,
and make appropriate interventions in the dialogue. Drawing on the theory of
co-ordination artifacts in multi-agent systems, we propose a formal framework
to explicitly represent the functions of a mediator artifact. We then describe an
implementation of this framework using the TuCSoN coordination infrastruc-
ture for MAS, where the mediator artifact is realised by a tuple centre—a pro-
grammable tuple space.

1 Introduction

Proponents of public policy conversations and decision-making processes usually em-
phasise the need for a human moderator or mediator to be involved in the interaction,
e.g., Forester [3]. The mediator may act to ensure fairness and equality of access by
all participants, may assist participants to clarify their positions and to argue more ef-
fectively, and may even seek to reconcile opposing views. Similarly, the designers of
computer-aided argumentation systems have also provided support for human media-
tors; for example, the developers of Zeno define their system as “a mediation system”
[5, p. 10]:

“a kind of computer-based discussion forum with particular support for ar-
gumentation. In addition to the generic functions for viewing, browsing and
responding to messages, a mediation system uses a formal model of argumen-
tation to facilitate retrieval, to show and manage dependencies between argu-
ments, to provide heuristic information focusing the discussion on solutions
which appear most promising, and to assist human mediators in providing ad-
vice about the rights and obligations of the participants in formally regulated
decision making procedures.”

Just as with human interactions, and for the same reasons, many of the functions pro-
vided by mediators could be useful when software agents engage in argumentation with
one another. Most of these mediator functions are better supported through some al-
gorithmic procedure, rather than by some articulated process of rational deliberation.
In earlier work [8], we presented a conceptual framework for a central co-ordinating

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 107–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 E. Oliva et al.

entity in an argumentation dialogue, called a Co-Argumentation Artifact (CAA), to pro-
vide co-ordination services to the participating agents, allowing them to share, store
and exchange arguments with one another. A CAA is an artifact, a computational en-
tity used by the agents, specialised in argumentation reasoning. Vesting the CAA with
its own argumentation capabilities meant that this entity, like the participants, could
elaborate over the arguments stored. For example, the CAA could embody algorithms
determining whether a particular argument is acceptable (under a specified semantics of
argumentation) with respect to the global knowledge of all the participants. We reprise
the CAA framework in Section 3.1.

It is easy to imagine that the CAA could undertake more sophisticated interventions
in the dialogue, resembling complex, automated tasks of a human mediator. To this end,
in this paper we extend our earlier concept of a central co-ordinating artifact to be a di-
alogue artifact (DA), acting as a mediator between the participating agents, enacting
the agents participation in the dialogue. We do this, first, by articulating, in Section 2,
the possible functions of the mediator artifact; for reasons of space, we do not consider
all such functions here. We then present a formalisation of some of such mediator ar-
tifact functions in Section 4, drawing on recent work in the theory of communications
artifacts in multi-agent systems [11,18]. We follow this with a description of a proto-
type implementation we have undertaken in the TuCSoN coordination infrastructure,
in Section 5. Finally, Section 6 concludes the paper.

2 Functionalities of Multi-agent Argumentation Support

In an agent and human society, argumentative reasoning system and dialogue system
have a central role enabling exchange of knowledge, common sense reasoning, dispute
resolution and argumentative communication between agents.

Our model of a multi-agent argumentation system follows the A&A meta-model
[12,17], which defines MAS as composed of two kinds of entities: agents, in charge
of autonomous and proactive behaviour, and artifacts, providing function-oriented ser-
vices to agents in a passive way. An agent is an autonomus computational entity situated
in an enviroment, which is composed by artifacts; an artifact is hence a social construct
shared by the agents that enables, constraints or mediates their activities.

In this work we want to propose a model that merges concepts from argumentation
and artifact theories, and offers a coherent framework to cater for these reasoning and
coordination abilities that agents need to exhibit. More precisely, we brings the theory
of argumentation and of dialectical agents interaction to a level of operationalisation.

Dialogue participants, of course, need to be able to generate, evaluate, contest and
defend arguments as they interact with one another through the dialogue. But the medi-
ator artifact also needs this argumentation functionality if it is to find common ground
between different participants, or to clarify their differences. For example, if the medi-
ator is to convince two participants that their opposed positions in fact share common
assumptions or that one position implies the other, then the mediator artifact may need
– in an automated way – to create, present and defend a case to the participants.

Consequently, we define two types of artifacts: Dialogue Artifacts (DA), to support
dialectical agent interaction, and Co-Argumentation Artifacts (CAA), to support agent

Argumentation and Artifact for Dialogue Support 109

argumentative reasoning. The DA realises the mediator artifact enabling argumentative
communication among a multiplicity of entities. DA exploits directly CAA functional-
ities in order to drive the dialectical interaction between agents through argumentative
reasoning over the argument set stored inside the centralised CAA.

The CAA realises coordination services based on argumentative reasoning between
multi entities. For example, the CAA could determine whether a particular argument
is acceptable (under a specified semantics of argumentation) with respect to the global
knowledge of all the participants. Briefly the CAA is composed of arguments, repre-
sented in a suitable computational form, and a collection of algorithms deployed over
this argument set. The CAA is well introduced in a recent paper by Oliva et al [8].

The combination of both artifacts DA and CAA provides the support of basic and ad-
vanced functionality for automatic mediation services in a MAS based on
argumentation.

2.1 Dialogue Artifact

The dialogue artifact requires some basic functionality to support the exchange of ar-
guments in a dialogue between the participants. This basic functionality includes:

1. Storage of the dialogue protocol (e.g. in a library of such protocols)
2. Storage of the specifications of the dialogue protocol
3. Storage of the complete history of a dialogue as it proceeds
4. The ability to refuse to allow agent utterances which do not conform to the current

protocol in use
5. The ability to suggest next moves which are legal according to the current protocol

in use in a dialogue
6. The ability to receive and store confidential information from the participating

agents, such as their preferences in a negotiation. The mediator could then aggre-
gate such information (across multiple agents), and/or seek to identify and reconcile
differences.

Also, the dialogue artifact could act as sophisticated mediator of the discussion, by
providing in an automated way the following services:

– Seeking to resolve any disputes over the rules of the protocol
– Providing rewards or penalties to agents for breaking the protocol rules
– Having the power to admit or to expel agents to/from the dialogue
– Suggesting a new protocol, when needed.
– Supporting multiple simultaneous bilateral interactions.
– Assigning roles, rights and responsibilities to agents at run-time, as, for example,

in an action protocol, assigning the role of winner to a particular agent near the end
of the interaction.

– Identifying conflicts and inconsistencies between commitments made by agents in a
dialogue, for example, if an agent commits to sell a car it is also trying to purchase.

– Identifying agent utterances which are not relevant to the current state of the dia-
logue, and refusing to permit these to be made.

– Providing automated alerts to inform agents that dialogues on particular topics are
about to start, or to end, or that particular commitments have just been made.

– Combining different dialogues on the same topic.

110 E. Oliva et al.

More advanced functions could also include:

– Annotation of protocols with their properties, for protocols stored in the protocol
library, for instance, the possible outcomes of a protocol, its computational com-
plexity, and so on.

– Storing the outcomes of past dialogues, for example, the commitments remaining
at the end of the dialogue.

– Tracking agent commitments across multiple dialogues.
– Using previous dialogues to create an independent assessment of the reputation of

participating agents.
– Storage of the entire history of past dialogues. These may be required for regulatory

or legal reasons, e.g., in stock market transactions.

In this paper, we present a Dialogue Artifact supporting dialectical argumentation in
a MAS scenario, which provides some of the basic functionalities listed above. The
DA is based over two formal systems: an argumentation system and a dialogue system,
explained in the next sections.

3 Argumentation and Dialogue: Formal Definitions

In our earlier work [8], we introduced an argumentation system and an artifact abstrac-
tion to support the co-ordination functions necessary to support agent argumentation.
We now extend that framework to handle argumentation dialogues, drawing on the the-
ory of organisations and roles in multi-agent systems of Omicini et al. [11] and the
formal language used to define an agent interaction protocol, in the work of Viroli et
al. [18]. In our approach we describe a dialogue in terms of a labelled process algebra,
where labels denote roles, as in [11], and the process algebra specifies the interaction
protocol, as in [18].

We assume that the interaction is between a finite number N of intelligent software
agents, and that each agent has a range of possible utterances (or actions) at each step
in the dialogue (i.e., this is a multi-move protocol). Formally, a multi-agent dialogue
system for argumentation is composed of two parts: an argumentation system, and a
dialogue system. The definition of the argumentation system is discussed based on the
work in [8], and builds on various earlier argumentation frameworks.

3.1 Argumentation System

Prakken and Vreeswijk [16] observe that an argumentation system is generally com-
posed of five elements (although sometimes implicitly): (1) a logical language; (2)
an argument definition; (3) a concept of conflict among arguments; (4) a concept of
defeated argument; (5) a concept of argument acceptability. In this section we define
an argumentation system as a reference point for our work. We take inspiration from
Dung’s framework [2], and we also define the structure inside the arguments.

The object language of our system is a first-order language, where Σ contains all
well-formed formulae. The symbol � denotes classical inference (different styles will
be used like deduction, induction and abduction)≡ denotes logical equivalence, and ¬
or non is used for logical negation.

Argumentation and Artifact for Dialogue Support 111

Table 1. Deductive Inference: (MP) Modus Ponens, (MMP) Multi-Modus Ponens and (MT)
Modus Tollens; Inductive and Abductive Inference: (θ -su) θ -subsumption, (Ab) Abductive

Deductive Inference Inductive Inference
MP A A→B

B θ -su B
R where Rθ ⊆ B

MT ¬A B→A
¬B Abductive Inference

MMP B1,...Bn (B1,...Bn)→C
C Ab B A→B

A

Definition 1 (argument). An argument is a triple A = 〈B, I,C〉 where B = {p1, . . . ,

n}⊆Σ is a set of beliefs, �I∈ {�d ,�i,�a} is the inference style (respectively, deduction,
induction, or abduction), and C = {c1, . . . ,cn} ⊆ Σ is a set of conclusions, such that:

1. B is consistent
2. B �I C
3. B is minimal, so no subset of B satisfying both 1 and 2 exists

The types of inference we consider for deduction, induction and abduction are shown in
Table 1. Modus Ponens (MP) is a particular case of Multi-Modus Ponens (MMP) with
only one premise. The inference process θ -subsumption derives a general rule R from
specific beliefs B, but is not a legal inference in a strict sense.

For defeat of arguments, the definition is not straightforward because there are differ-
ent type of attack well defined in [16]. Following those definitions, two possible types
of attack are ‘conclusions against conclusions’ – called rebuttals – and ‘conclusions
against beliefs’—called undercuts.

Definition 2 (contrary). The contrary (or attack) relation R is a binary relation over
Σ that ∀p1, p2 ∈ Σ , p1Rp2 iff p1 ≡ ¬p2

Definition 3 (undercut). Let A1 = 〈B1, I1,C1〉 and A2 = 〈B2, I2,C2〉 be two distinct ar-
guments, A1 is an undercut for A2 iff ∃h ∈C1 such that hRbi where bi ∈ B2

Definition 4 (rebuttal). Let A1 = 〈B1, I1,C1〉 and A2 = 〈B2, I2,C2〉 be two distinct ar-
guments, A1 is a rebuttal for A2 iff ∃h ∈C1 such that hRci where ci ∈C2

The definitions of acceptability and admissibility used in our framework are those of
Dung in [2]. The following definitions are the basic ones in our argumentation system
and follow from Dung’s framework.

Definition 5 (conflict-free set). An argument set S is a conflict free set iff there exist
no Ai,A j ∈ S such that Ai attacks A j.

Definition 6 (collective defense). An argument set S defends collectively all its ele-
ments if ∀ argument B /∈ S where B attacks A ∈ S ∃ C ∈ S : C attacks B.

Definition 7 (admissible set). An argument set S is a admissible set iff S is conflict free
and S defends collectively all its elements.

Definition 8 (preferred extension). An argument set S is a preferred extension iff S is
a maximal set among the admissible set of A.

112 E. Oliva et al.

An argument is acceptable in the context of preferred semantics if an argument is in
some/all preferred extensions (credulous/sceptical acceptance).

Definition 9 (credulous acceptability). An argument A is credulous acceptable if A ∈
at least one preferred extension.

Definition 10 (sceptical acceptability). An argument A is sceptical acceptable if A ∈
all preferred extensions.

For further details, including an implementation and examples of this argumentation
framework, we refer the interested reader to our earlier paper [8].

3.2 Dialogue System

In this section we present a novel formalisation of a multi-agent dialogue system. Our
intention is to capture the rules that govern legal utterances, as well as the effects of
utterances on the commitment stores of the dialogue. We use a process algebra approach
in the style of [18] to represent the possible paths that a dialogue may take, and to
represent explicitly the operations to and from the commitment store. We proceed by
considering each element of a dialogue system in turn: (1) the communication language;
(2) the interaction protocol; and (3) the protocol semantics.

Because a dialogue is a dialectical exchange of arguments, we assume that argu-
ments and counter-arguments are represented and expressed in the formal language
defined above in Section 3.1. Agents may exchange arguments, along with facts, with
one another in the form of instantiated parameters in their utterances.

Communication Language. The agents need to share a same communication lan-
guage CL in order to exchange information. The role of CL as a language used for
internal knowledge representation and reasoning is explained in [14]. We let F de-
note a set of terms representing facts, and A the set terms representing all arguments
able to be represented in Σ following the definition of an argument given in Defini-
tion 1. Our CL is defined in order to support all six primary dialogue types as iden-
tified by [19]: persuasion, inquiry, negotiation, information seeking, deliberation and
eristic.

Definition 11 (communication language). Our communication language is a set of
locutions Lc. A locution l ∈ Lc is a expression of the form perfname(Arg1, . . . ,Argn)
where perfname is a element of the set P of performatives and Argx is either a fact or an
argument.

An agent performing a dialogue using the communication language can utter a locu-
tion composed of facts and arguments. A fact is represented by syntax fact(Terms)
and an argument with argument(B,I,C). The definitions to manage attacking and
undercutting arguments are provided by the underlying argumentation system given in
Definition 1. In Example 1 an agent wants to communicate the classical example of
argument like All men are mortal, Socrates is a man, Socrates is mortal, so it uses a
Argue locution with an argument parameter.

Argumentation and Artifact for Dialogue Support 113

Example 1. Argue(argument(name,beliefs([human(Socrates)],
[clause(mortal(X), [human(X)])]),infer(MP),conclusions
([mortal(Socrates)]))).

Examples of performatives to support an instance of an Information Seeking Dialogue
could be: OpenDialogue, Ask, Tell, DontTell, Provide, Argue, and so on.
Further details about this form of dialogue and its complete locutions are presented in
[1] (see also Example 2).

Dialogue Protocol. In our framework the dialogue protocol is a complete description
of all possible dialogue paths, from the perspective of an external entity observing the
dialogue between the agents. The protocol indicates the possible paths of a dialogue,
specifies the source and target of each message, and shows the relationship between
utterances and the content of commitment stores. Our approach basically describes the
step-by-step behaviour of an external entity acting as a mediator, hence enabling the
allowed interactions. Hence, technically, we find it useful to model a dialogue in terms
of a process algebra with standard composition operators (sequence, parallel, iteration),
and whose atomic actions represent either agent utterances, or interactions with the
commitment store (writing, reading, or removing a commitment).

On the one hand, Prakken [15] proposes a general definition of locution where a
move m is denoted by four elements: (1) identifier, (2) speaker (or source), (3) speech
act, and (4) intended recipient (or target). Following this model, we provides a definition
of a speech act, as follows:

Definition 12 (action). An action A is defined by the syntax A ::= s : Lc|s[t1, . . . ,tn] :
Lc where s indicates the source, and [t1, . . . ,tn] indicates the (optional) targets of the
message.

On the other, beyond this, we include additional atomic operations K over commitment
stores—many of them can actually occur into one argumentation artifact. To this end,
the commitment store is viewed as a set of tuples as in [7]: such tuples are manipulated
by the commands of the Linda language [4]—in, rd and out.

Definition 13 (term action). A term action K has the syntax K ::= in(C,X)|out(C,X)|
rd(C,X), where C is a term representing the commitment store identifier, and X is a
term representing the commitment.

Specifically, the commands in(C,t), rd(C,t) and out(C,t) respectively con-
sumes, reads and puts a tuple t in the commitment store C. These actions are useful
to manage the private or public commitment store in relation to the dialogue execu-
tion. In particular, they can operate, for example, as action-preconditions in order to
restrict or constrain the next action choice, and thus enable only certain future dia-
logue paths. For instance, if at a given time a sub-dialogue is guarded by operation
rd(c,commit(a)), then it is allowed to proceed only if commit(a) occurs in the
commitment store.

Definition 14 (protocol). A protocol P is a composition of action from sets A and K,
defined by syntax P ::= 0 |A.P |K.P |P + P |(P ‖ P) | !P where the symbols .,+,‖, ! de-
note respectively sequence (action prefix), choice, parallel composition, and infinite
replication operators, and the symbol 0 denotes the empty protocol.

114 E. Oliva et al.

For example, an abstract dialogue protocol definition is given by D := (s : a1 +s : a2).(s :
a3 + s : a4).s : a5 where agent s is only allowed to execute a sequence of three actions:
the sequence composed of a first action consisting of either action a1 or action a2, then
a second action consisting of either a3 or a4, and then a third action comprising a5. A
protocol specifies a set of actions histories that the agents might execute. As another
example of a protocol definition, consider D := s : a1 ‖ s : a1 ‖ s : a1 ‖ t : a2 ‖ t : a3

where agent s invokes a1 three times, agent t can invoke a2 and a3 only once, but in
whichever order.

To illustrate this framework, we present a specification for an Information-Seeking
Dialogue (f is seen as a variable over the content of communication):

Example 2 (Information Seeking Dialogue). This protocol involves two agents: an
agent s controlling information, and an agent c trying to persuade s to give him
the permission to access. Operation rd(permission(c,f)) is the instruction by
which the protol instance checks whether c can be given the permission: if this is the
case, permission is provided and the dialogue ends; otherwise, c should try to persuade
s by arguing an ADD, which can then by either accepted or refused by s.

c:Opendialogue.
s:Opendialogue.
c:Ask(f).(

rd(permission(c,f)).
s:Tell(f).
s:Provide(f).
s:Argue(permission(c,f),YES,A).
s:Enddialog.
c:Enddialog

+
rd(not(permission(c,f))).
s:DontTell(f).
s:Argue(permission(c,f),NO,B).
c:Argue(permission(c,f),ADD,A).(

s:Argue(permission(c,f),NO,A).
s:Enddialog.
c:Enddialog
+
s:Accept(A,permission(c,f)).
out(accept(permission(c,f))).
s:Provide(f).
s:Enddialog.
c:Enddialog

))

3.3 Operational Semantics

Following Hamblin [6], we assume that each agent is associated to a knowledge base,
accessible to all agents, containing its commitments made in the course of the dialogue.

Argumentation and Artifact for Dialogue Support 115

Commitments are understood as statements which the associated agent must support,
while they remain in the commitment store, if these statements are either questioned or
attacked by other agents. We can now use the notion of commitment store and the tran-
sition system given in Definition 16 to define an operational semantics for the dialogue
system. This semantics describes the evolution over time of the dialogue state and the
states of commitment store (seen as composition of all commitment stores). In essence,
the commitment store is the knowledge repository of the dialogue as a whole, and it is
expressed in our framework as a multiset of terms.

Definition 15 (commitment store). A commitment store C is a multiset of terms and
it is defined by the syntax C ::= 0|(C|C)|X where X is a term, and 0 is the empty set.

Definition 16 (operational semantics). The operational semantics of our dialogue sys-
tem is described by a labelled transition system 〈S,→, I〉, where S ::= (C)P represents
the state of dialogue system (protocol P running with commitment store C), I is the set
of interactions (labels) composed of i ::= τ|a, and→ is a transition relation of the kind
→⊆ S× I×S.

As usual, we write s
i−→ s′ in place of 〈s, i,s′〉 ∈→, meaning the dialogue system moves

from state s to s′ due to interaction i—either an action a, or an internal step τ (an
operation over the commitment store). We introduce a congruence relation ≡, which
syntactically equates similar states:

0 + P≡ P P+ Q≡ Q+ P (P + Q)+ R≡ P+(Q+ R) !P≡ P|!P
0 ‖ P≡ P P ‖ Q≡ Q ‖ P (P ‖ Q) ‖ R≡ P ‖ (Q ‖ R)

We use also notation t{x/y}, to mean term t after applying the most general substitution
between terms x and y—x should be an instance of y, otherwise the substitution notation
would not make sense. Finally, we define operational rules that describe the behavior of
the dialogue system as follows:

(C)out(x).P τ→ (C|x)P (K−OUT)
(C|x)rd(y).P τ→ (C|x)P{x/y} (K−RD)
(C|x)in(y).P τ→ (C)P{x/y} (K− IN)
(C)(P + Q) i→ (C′)P′ if (C)P i→ (C′)P′ (OP−SUM)

(C)(P|Q) i→ (C′)(P′|Q) if (C)P i→ (C′)P′ (OP−PAR)

(C)a.P
a′→ (C)P{a′/a} (ACT)

Rule (K-OUT) provides the semantic of out operation, expressing that x term is added
to the commitment store C, and process continuation can carry on. Rules (K-RD) and
(K-IN) similarly handle operation rd and in: the use of substitution operator guaran-
tees that the term x in the commitment store is an instance of the term x to be retrieved.
Rules (OP-SUM) and (OP-PAR) provide the semantics for choice and parallel oper-
ators in the standard way. Finally rule (ACT) expresses that locution a′ is executed
that is an instance of the allowed one a, and accordingly process continuation P can
carry on.

116 E. Oliva et al.

4 The Dialogue Artifact

As mentioned above, the A&A meta-model for MAS as discussed in [8] views agents
engaged in argumentative communication as making use of an abstraction, called a Co-
Argumentation Artifact, to communicate, to exchange information, data and arguments,
and to record their public commitments. The current work extends this abstraction by
formally defining a Dialogue Artifact (DA), able to support and mediate the commu-
nication between agents engaged in a dialogue under the system defined in Section 3
above.

Definition 17 (Dialogue Artifact). A Dialogue Artifact is a triple DA = 〈DP,CS, IC〉,
where

– DP is a collection of specifications of dialogue protocols
– CS is a collection of commitment stores
– IC is a collection of specifications of interaction control (IC)

The DP, CS and IC components are in turn defined in the following subsections.

Dialogue Protocols. The class DP is a collection of formal specifications of dialogue
protocols, with each protocol specified using a labelled process algebra, as in Defini-
tion 14. Protocols in DP may also be annotated with identifiers and with their properties,
such as their termination complexity. When agents engage in dialogue using a protocol
in the collection DP, they make utterances according to the permitted sequences defined
by the protocol specification. Accordingly, the Dialogue Artifact is able to verify that
utterances proposed by agents in a dialogue are valid under the protocol; the DA is also
able to use the specification to suggest potential legal utterances to participating agents
at each point in the dialogue.

Commitment Stores. For any particular collection of agents and any particular dia-
logue they undertake, the collection CS specifies a set of stores representing the private
and public Commitment Stores of each participant, together with a central Commitment
Store for the dialogue as a whole. The Dialogue Artifact can support the dialogue by
holding these stores. The private Commitment Stores are also held by the DA to record
confidential information entrusted to it by the participants, such as their private valua-
tions of some scarce resource (in the case of Negotiation dialogues) or arguments based
on privileged information (in the case of dialogues over beliefs). Sharing such informa-
tion with the DA may allow the DA to elaborate over such stores while not revealing
private information of individual agents.

We can classify the various types of stores according to the access permissions (write,
read, and delete permissions) holding on each store, as shown in Table 2. The cells of
the table indicate the access permissions pertaining to different types of Commitment
Stores (the rows of the table), depending on the agent seeking access (the columns of
the table). The Dialogue Artifact may also store other relevant information, such as the
sequence of locutions exchanged in the current dialogue, which would be stored in the
Central Commitment Store. These stores do not have an algebraic structure, but rather
a declarative representation of the contents with a proper classification.

Argumentation and Artifact for Dialogue Support 117

Table 2. Commitment Stores - Read (R), write (W) and delete (D) Permissions

Type Agent A All Agents Mediator Artifact

Private Commitment Store of Agent A R/W/D - R
Public Commitment Store of Agent A R/W/D R R

Central Commitment Store R R R/W/D

Interaction Control. The third component of the Dialogue Artifact, denoted as IC,
is a collection of specifications for interaction control. IC roughly follows the MVC
(Model View Control) pattern, where the model is the dialogue specification in DP, the
view is the CS component with dialogue trace, and the control is represented by the IC
specification. The control rule of the dialogue is represented by the labelled transition
system introduced in previous sections, modelling the evolution over time of the agent
interaction protocol. Three operators can be used to control the dialogue:

nextI(s) =
{

i : s
i→ s′

}
nextS(s) =

{
s′ : ∃i,s

i→ s′
}

nextIS =
{
(i,s′) : s

i→ s′
}

Operator nextI(s) yields the next admissible interactions i from state s. Operator nextS(s)
yields the states reachable from s in one step. Operator nextIS yields couples (i,s) instead.

The IC component realises the above three operators in order to identify which po-
tential utterances are legal for any agent at any point in the dialogue. The basic primi-
tives in,rd,out to manage arguments and facts in commitment stores allow the IC to
identify which constraints on the future course of dialogues are created by the existing
commitments. For instance, the IC could permit only one utterance in a choice point
basing the decision on state of commitment store. Also, it could work with an argument
set over some advanced structures such as conflict free sets and preferred extensions
presented in Section 3.1 to determine for instance the acceptability of an argument.

DA Functionalities. It is straightforward to see that all six basic functionalities of
the central Dialogue Artifact listed in Section 2.1 can be performed by a Dialogue
Artifact defined as a triple DA = 〈DP,CS,LI〉 as above. The collection DP provides the
functionalities of items 1 and 2, the storage of protocols and their formal specifications;
the Central Commitment Store of the collection CS provides storage for the history of a
dialogue (item 3); similarly, the private Commitment Store components of the collection
CS provide storage for confidential information communicated from agents to the DA
(item 6); the formal specification of a protocol in DP (as given by the process algebra
formalism we have used above) permits the DA to identify potential utterances which
do not conform to the protocol (item 4); and, both the formal protocol specifications in
the collection DP and the logics of interaction in IC permit the DA to suggest possible
legal next moves (item 5).

5 TuCSoN Implementation

The technological support to build a DA is provided by the TuCSoN coordination in-
frastructure for MAS introduced in [13]. TuCSoN provides MAS with coordination

118 E. Oliva et al.

dialoguesession(infoseek,close)
participant(infoseek,2)
dialogue(infoseek,[act(C,openDialogue(C,T)),

act(T,openDialogue(C,T)),act(C,ask(Arg)+
(act(T,tell(arg1),cs(T,out(commit(arg1)))))])

currentpar(infoseek,0)

Fig. 1. Example of Dialogue State (DP component)

%reacts from agent next moves request
reaction(rd(nextmoves(Dialogue,S)),(

rd_r(dialoguestate(Dialogue,S)),
out_r(findall(S,Dialogue))

)).
reaction(out_r(findall(S,Dialogue)),(

in_r(findall(S,Dialogue)),
findall(A,transition(S,A,Q),L),%collect all next legal moves
out_r(nextmoves(Dialogue,L))

)).

Fig. 2. Implementation of nextI operator in ReSpecT

abstractions called tuple centres where agents write, read and consume logic tuples via
simple communication operations (out, rd, in, inp, rdp). In particular, inp, rdp
respectively consume and read matching tuples in the same way in, rd; unlike in,
rd they fail if the tuple is not present when the request is served. As programmable
tuple spaces [10], tuple centers can play the role of agent mediator, where coordination
rules are expressed in terms of logic specification tuplesof the ReSpecT language—an
event driven language over the multi-set of tuples [9]. Since tuple centre can be used as
a general-purpose support for MAS artifacts, we exploited TuCSoN logic tuple centres
in order to implement DA.

In this framework, agents utter a locution by means of an out(move(Dialogue,
AgentID,Locution)) in the tuple centre. The automatic actions executed over
the commitment store are represented by the term cs(ID,out(commit(...)))—
where out could be replaced by in or rd operations. The CS class is composed of
commit tuples that are put in the tuple space as facts and arguments expressed in logic
tuple notation.

The dialogue is written in terms of tuplesdialogue(name,AList)whereAList
is the list of actions reifying in tuple form the operators choiceact(A1)+(act(A2)),
parallel par(A1,A2) and sequence A1,A2. Figure 1 shows a dialogue protocol com-
posed by some basic information on dialogue state and few steps of the Information Seek-
ing Dialogue protocol. The tuples that form the DP component are: participant
(potential number of participants), dialogue (dialogue protocol),dialoguestate
(actual protocol dialogue state), and currentpar (actual number of participants). In
addition, an open dialogue session also uses tuple session(AgentID,infoseek,
open) for each dialogue participant.

The key idea of the IC implementation is shown in figure 3, where the reactions
implementing the control of dialogue interaction are presented. In particular, the code
implements the dialogue state transition after an agent action, the search of next admis-
sible move after an agent request, and also makes it possible the automatic interaction
with the commitment store executing cs actions. Such mechanisms make it possible

Argumentation and Artifact for Dialogue Support 119

transition(cs(Id,A),cs(Id,A),zero).
transition(act(Id,A),act(Id,A),zero).
transition([Act],A,zero):-!,transition(Act,A,zero).
transition([Act,Act2],A,Act2):-!,transition(Act,A,zero).
transition([Act|S],A,S):-transition(Act,A,zero).
transition(S1+S2,A,R1):-transition(S1,A,R1).
transition(S1+S2,A,R2):-transition(S2,A,R2).
%Start reaction
reaction(out(move(Dialogue,Id,Act)),(

in_r(dialoguestate(Dialogue,S)),
out_r(transition(S,act(Id,Act),C,Dialogue))

)).
reaction(out_r(transition(S,A,S1,Dialogue)),(

transition(S,A,S2), %make the state transition
in_r(transition(S,A,S1,Dialogue)),
out_r(dialoguestate(Dialogue,S2)),
out_r(findall(S2,Dialogue))

)).
reaction(out_r(findall(S,Dialogue)),(

in_r(findall(S,Dialogue)),
findall(cs(Id,Commit),transition(S,cs(Id,Commit),Q),L), %collect all next commits
out_r(nextcsmoves(Dialogue,L))

)).
reaction(out_r(nextcsmoves(D,[H|T])),(

in_r(nextcsmoves(D,[H|T])),
out_r(excommit(H)), %call execution commit
out_r(looknext(D,T))

)).
reaction(out_r(looknext(D,[E])),(

in_r(looknext(D,T)),
out_r(nextcsmoves(D,T))

)).
reaction(out_r(looknext(D,T)),(

T==[], in_r(looknext(D,[])),
in_r(nextcsmoves(D,[]))

)).
%Implementation of K-OUT, K-IN and K-RD
reaction(out_r(excommit(cs(Id,out(A)))),(

out_r(A), in_r(excommit(cs(Id,out(A)))),
in_r(dialoguestate(Dialogue,S)),
out_r(transition(S,cs(Id,Act),C,Dialogue))

)).
reaction(out_r(excommit(cs(Id,in(A)))),(

in_r(A), out_r(excommit(cs(Id,in(A)))),
in_r(dialoguestate(Dialogue,S)),
out_r(transition(S,cs(Id,Act),C,Dialogue))

)).
reaction(out_r(excommit(cs(Id,rd(A)))),(

rd_r(A), in_r(excommit(cs(Id,rd(A)))),
in_r(dialoguestate(Dialogue,S)),
out_r(transition(S,cs(Id,Act),C,Dialogue))

)).

Fig. 3. Control of Interaction: Checking agent legal locution, Making dialogue protocol transition
and executing automatically cs actions are the basic function here implemented in ReSpecT

for a dialogue to be driven automatically by the state of the commitment store. FAs an
example, Figure 2 shows the ReSpecT implementation of the nextI operator.

6 Conclusions

In this paper we propose a conceptual architecture for a multi-agent dialogue system in
which participants are assisted by a mediator, called a Dialogue Artifact. To the best of

120 E. Oliva et al.

our knowledge, there is no other research which combines at an operative level dialogue
and argumentation reasoning through the use of a mediation artifact. The functions of
such a mediator are the basic functionalities we have identified as part of a longer list of
potential mediation or moderation functions in agent argumentation dialogues. Our Di-
alogue Artifact is an extension of our previous concept of a Co-Argumentation Artifact
(CAA), and builds on that earlier work. We also draw on the recent theory of com-
munication artifacts in MAS to formalise the properties of the Dialogue Artifact. Our
paper also reported on a prototype implementation of these ideas we have undertaken
in the TuCSoN coordination framework. In future work, we plan to formalise more of
the potential mediator functions as listed in Section 2. While some of such functions
will be straighforward to formalise – e.g., identifying conflicts between commitments,
providing automated alerts to agents concerning upcoming dialogues – others, such as
run-time assignment of rights and responsibilities to dialogue participants, are likely to
result more challenging.

Also we aim at extending the underlying argumentation system by introducing la-
bels. In fact, labelled arguments should make it possible to capture different sorts of
certainty resulting from the different types of inference applied. Moreover, we plan to
exploit labels to fix preferred ordering in an arguments set and to define stricter attack
relation.

Acknowledgments

We are grateful for partial financial support from the EC’s Information Society Tech-
nologies programme through project ASPIC (IST-FP6-002307).

References

1. Doutre, S., McBurney, P., Wooldridge, M.: Law-governed Linda as a semantics for agent dia-
logue protocols. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge,
M. (eds.) 4rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2005), Utrecht, The Netherlands, July 25-29, 2005, pp. 1257–1258. ACM Press,
New York (2005)

2. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)

3. Forester, J.: The Deliberative Practitioner: Encouraging Participatory Planning Processes.
MIT Press, Cambridge (1999)

4. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming Lan-
guages and Systems 7(1), 80–112 (1985)

5. Gordon, T.F., Karacapilidis, N.: The Zeno argumentation framework. In: Proceedings of the
Sixth International Conference on AI and Law, pp. 10–18. ACM Press, New York (1997)

6. Hamblin, C.L.: Fallacies. Methuen, London, UK (1970)
7. McBurney, P., Parsons, S.: Posit spaces: a performative theory of e-commerce. In:

Wooldridge, M., Rosenschein, J.S., Sandholm, T., Yokoo, M. (eds.) Proceedings of AAMAS
2003, pp. 624–631. ACM Press, New York (2003)

Argumentation and Artifact for Dialogue Support 121

8. Oliva, E., McBurney, P., Omicini, A.: Co-argumentation artifact for agent societies. In:
Rahwan, I., Parsons, S., Reed, C. (eds.) Argumentation in Multi-Agent Systems. LNCS,
vol. 4946, pp. 31–46. Springer, Heidelberg (2008)

9. Omicini, A.: Formal ReSpecT in the A&A perspective. In: Canal, C., Viroli, M. (eds.) 5th
International Workshop on Foundations of Coordination Languages and Software Architec-
tures (FOCLASA 2006), CONCUR 2006, Bonn, Germany, University of Málaga, Spain,
August 31, 2006, pp. 93–115 (2006)

10. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Program-
ming 41(3), 277–294 (2001)

11. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisation, roles
and contexts in MAS. Applicable Algebra in Engineering, Communication and Comput-
ing 16(2-3), 151–178 (2005); Special Issue: Process Algebras and Multi-Agent Systems

12. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for MAS.
Electronic Notes in Theoretical Computer Sciences 150(3), 21–36 (2006); 1st International
Workshop “Coordination and Organization” (CoOrg 2005), COORDINATION 2005, Namur,
Belgium, . Proceedings, April 22 (2005)

13. Omicini, A., Zambonelli, F.: Coordination for Internet application development. Au-
tonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

14. Parsons, S., McBurney, P.: Argumentation-based communication between agents. In: Huget,
M.-P. (ed.) Communication in Multiagent Systems. LNCS, vol. 2650, pp. 164–178. Springer,
Heidelberg (2003)

15. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of Logic
and Computation 15(6), 1009–1040 (2005)

16. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gabbay, D.M.,
Guenther, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp. 219–318. Kluwer, Dordrecht
(2002)

17. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In: Bordini, R.H., Das-
tani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS (LNAI), vol. 3862,
pp. 206–221. Springer, Heidelberg (2006)

18. Viroli, M., Ricci, A., Omicini, A.: Operating instructions for intelligent agent coordination.
Knowledge Engineering Review 21(1), 49–69 (2006)

19. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. SUNY Press (1996)

Co-ordination and Co-operation in Agent
Systems: Social Laws and Argumentation

Katie Atkinson and Trevor Bench-Capon

Department of Computer Science
University of Liverpool
Liverpool L69 3BX, UK

{katie,tbc}@liverpool.ac.uk

Abstract. The social laws paradigm represents an important approach
to the co-ordination of behaviour in multi-agent systems. In this paper we
examine the relationship between social laws and rational behaviour, by
which we mean behaviour that can be justified by a defensible argument.
We describe how social laws have previously been defined and used within
the context of Action-Based Alternating Transition Systems (AATSs).
We then show how an account of argumentation for practical reasoning
in agent systems, also based on AATSs, can be used to determine what
is rational for the agents to do in the absence and presence of such laws.
The reasoning involved is both of a practical and epistemic nature: agents
need to make decisions about what to do based upon the assumptions
that they make about the states they find themselves in, and crucially,
they also need to reason about what the other agents in the scenario will
do. What is rational for the agents to do has implications for the need
for social laws, the ways in which social laws can help the situation, the
form the social laws should take, and the likelihood of compliance with
the social laws. This paper demonstrates how we can think about social
laws and rational behaviour in a single framework, so as to identify these
implications in particular scenarios, and so frame social laws accordingly.

1 Introduction

Co-ordination within multi agent systems can be addressed through numerous
different approaches. One important approach is through the use of social laws
(e.g. [10][9]) that constrain the behaviour of agents within a scenario so that
compliance with the law ensures that either some particular undesirable state is
avoided or that some desirable state is eventually reached. In practice the reali-
sation of social laws takes a variety of forms, ranging from mere conventions of
etiquette, through moral conventions, to laws which have legislative force. In [12]
it has been shown that such laws can be effectively expressed and understood us-
ing Action-based Alternating Transition Systems (AATSs) and Alternating-time
Temporal Logic (ATL). In the absence of such laws, however, agents will not be-
have arbitrarily. In some cases, it may be enough for agents to behave rationally
to guarantee the desired outcomes. In others the laws may be essential to guide

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 122–140, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Co-ordination and Co-operation in Agent Systems 123

the behaviour of the agents. In still others it may be rational for one or more
agents to violate the laws, potentially rendering them ineffective. Thus the need
for, the benefits of, the form of, and the effectiveness of, social laws all require
some consideration of what is rational for agents to do in the various situations,
both where there are social laws and in the “state of nature” without them. In
this paper we demonstrate how an argumentation based approach to practical
reasoning, also based on AATSs, can be used to determine what is rational for
the agents to do in the absence of hard constraints enforcing such social laws. In
doing so we consider a particular example, taken from [12], concerning the co-
ordination of the movement of two trains. Using this example we consider how
the reasoning differs depending upon the view that other agents take of their
counterparts within the scenario, both what these other agents are likely to do,
and the degree to which the interests of the other agents are respected. Our ap-
proach differs from that of Castelfranchi [7], in which social action is considered
in terms of agents adopting the goals of others. On our view agents do not adopt
goals of other agents, although their actions may further these goals, but rather
choose to constrain their actions so as to enhance, or at least not threaten, the
interests of other agents. Another characterisation of selfish and social agents is
given in the context of the BOID architecture [6]. There agents are considered
to have obligations as well as the standard beliefs, desires and intentions, and a
selfish agent is one which prefers its desires to its obligations, and a social agent
one which prefers its obligations to its desires. In our approach these conflicts
are not resolved by a policy of this sort, but by considering the effect on the
interests of the agents concerned. For us, actions are justified through the pro-
motion of some social value, and these values may be promoted in respect of the
agent itself or some other agent. For example, the promotion of liberty is always
through an increase in the liberty of some particular agent. Selfish agents are,
on our account, those who place most weight on values promoted in respect of
themselves: they will prefer to promote a relatively unimportant value enhanced
in respect of themselves over even important values promoted in respect of oth-
ers: for example they may be willing to seek their own happiness even when it
may jeopardise the safety of other agents.

The rest of the paper is structured as follows. In Section 2 we provide the
details of the example scenario that we will use, which is taken from [12]. In
Section 3 we briefly describe the background theory of practical reasoning that
we use to enable agents to formulate and critique arguments about what to
do, and so provide justifications of their actions. In Section 4 we show how
this theory can be used to drive the reasoning in the scenario. In Section 5 we
provide a general discussion of social laws that draws on our examples and covers
consideration of when they are required, how they operate and what form they
should take. Section 6 finishes the paper with some concluding remarks.

2 Social Laws

In [12] van der Hoek et al. make use of Action-Based Alternating Transition
Systems (AATSs) to explore social laws as a means of co-ordinating multi-agent

124 K. Atkinson and T. Bench-Capon

systems, and we will use their notation. In an AATS transitions between states
are governed by joint actions which are composed from the individual actions of
the agents involved. A formal definition of an AATS is given by van der Hoek
et al. in [12]. It is their example that we will make use of here to extend the
exploration to encompass consideration of what is rational for the agents to do
in various scenarios.

The example has two trains, one running eastwards and one running west-
wards. For most of the circuit each train has its own track, but this narrows to a
single track shared by the trains where the track enters a narrow tunnel. If both
trains enter the tunnel together, therefore, they will crash. The trains may be in
one of three states, away from the tunnel, waiting to enter the tunnel, or in the
tunnel. At each point they may move (away to waiting to in to away) or stay
still. Two particular aspects of the scenario are relevant: safety, i.e. ensuring that
there is no crash, and progress, i.e. ensuring that the trains keep moving as much
as possible whilst avoiding a crash. Initially they are both away from the tunnel.
The transitions of the AATS for the scenario are shown in Table 1. Here the nine
states in the scenario are labelled q0–q8. In each state each agent may choose
one of two actions, move or do nothing. When the actions of the two agents are
combined, this results in four joint actions: j0, where both trains do nothing;
j1, where the eastbound train does nothing but the westbound train moves; j2,
where the eastbound train moves but the westbound train does nothing; and j3,
where both trains move. The final column of the table gives the interpretation
function that shows which propositions are true in each state (away, waiting or
in) subscripted for each train.

The transitions can be shown diagramatically, as in Figure 1 below. In the
diagram each of the states is labelled with its number (one of q0–q8) in the
bottom right hand corner. Each state also contains two propositions to determine
the status of each train: the top proposition represents the eastbound train’s
status, the bottom proposition the westbound’s. Each proposition can be set to
either 0, when the train is away, 1, when the train is waiting to enter the tunnel,
or 2, when the train is in the tunnel. The arcs are labelled with the joint actions,
as described in Table 1.

Table 1. Transitions/Pre-conditions/Interpretation

q/j j0 j1 j2 j3 π(q)
q0 q0 q1 q3 q5 {awayE , awayW }
q1 q1 q2 q5 q6 {awayE , waitingW }
q2 q2 q0 q6 q3 {awayE , inW }
q3 q3 q5 q4 q7 {waitingE , awayW }
q4 q4 q7 q0 q1 {inE , awayW }
q5 q5 q6 q7 q8 {waitingE ,

waitingW }
q6 q6 q3 q8 q4 {waitingE , inW }
q7 q7 q8 q1 q2 {inE , waitingW }
q8 q8 – – -- {inE , inW }

Co-ordination and Co-operation in Agent Systems 125

j0

j0 j0

j0

j0 j0

j0

j0

j0

q0

q1

0
0

0
1

0
2 q2 1

1
q5

0
2

q4

q30
1

q6
1
2

2
1 q7

2
2 q8

j1

j1

j1

j1

j2

j1

j2

j2

j3

j1

j3

j3

j1

j2 j3

j3

j2j2

j3

j3

j2

j2

j3

j1

Fig. 1. State transition diagram for scenario

In general, the social laws approach is intended to constrain the behaviour
of agents in particular states, so as to achieve certain objectives, typically that
some state is avoided, or that some state is eventually reached. A social law is
said to be effective if compliance with the law ensures that the objectives are
achieved. The main objective of the above example is to ensure that there is no
collision, that is, that state q8 is never reached, with a secondary objective that
the trains are able to make progress and so able to reach any of the states away,
in and waiting. The undesirable state q8 can only be reached from one of the
three states q5, q6 and q7. So, to ensure that q8 is not reached, a social law is
needed to restrict the behaviour of the agents in these three cases. One such law
proposed and formalised in [12], which we will call SL1, is as follows:

1. when both trains are waiting (q5) the eastbound train should not move;
2. when the westbound train is in the tunnel and the eastbound is waiting (q6)

the eastbound train should not move;
3. when the eastbound train is in the tunnel and the westbound is waiting (q7),

then the westbound train should not move.

As is shown in [12] this social law is effective, in the sense that if it is obeyed,
it will ensure that the trains do not collide. As noted there, however, this law
is asymmetric, in that it favours the westbound train over the eastbound train
(although a very similar social law could be made which favoured the eastbound
train, by modifying the first condition). Note that SL1 does not guarantee that
any progress will be made since a train could remain in the tunnel indefinitely
without violating SL1. SL1 thus seems to assume that agents will choose to move
from the tunnel at the first opportunity, and so no social law is required to ensure
that they do so. We will also make this assumption and focus our subsequent
discussion on state q5, as representative of a state in which there is a danger of

126 K. Atkinson and T. Bench-Capon

collision. Of course, we could make a social law to ensure that this assumption
is satisfied, consistent with the conditions of SL1, by additionally insisting that
the trains should move whenever they are in the tunnel.

The argumentation based model of practical reasoning that we use in this
paper enables us to evaluate the law in terms of what the agents would choose
to do in the absence of any social law. So, we view the situation as a practical
reasoning problem. In our account there is no need for the agents to reason about
each others’ beliefs since the relevant situation is fully described in the publicly
available structure of the AATS. Moreover, in our example, agents have perfect
information as to the situation and so disagreements as to how it is represented
in the AATS do not arise. For this reason we have no need to use epistemic logic.

In the next section we provide an overview of the argumentation based ap-
proach that we make use of to model the problem.

3 Background Theory of Practical Reasoning

In [2] an argument scheme and associated critical questions are presented to
enable agents to propose, attack and defend justifications for action. Such an ar-
gument scheme follows Walton [13] in viewing reasoning about action (practical
reasoning) as presumptive justification - prima facie justifications of actions can
be presented as instantiations of an appropriate argument scheme, and then crit-
ical questions characteristic of the scheme used can be posed to challenge these
justifications, which can be used to overturn the presumption. The argument
scheme AS1 developed by Atkinson [2] is an extension of Walton’s sufficient
condition scheme for practical reasoning [13]. AS1 is stated as follows:

AS1 In the current circumstances R,
We should perform action A,
Which will result in new circumstances S,
Which will realise goal G,
Which will promote some value V.

In this scheme Walton’s notion of a goal has been made more precise by
distinguishing three elements it encompasses: the state of affairs brought about
by the action; the goal proper (the desired features in that state of affairs); and
the value (the reason why those features are desirable)1.

The underlying idea in making this distinction is that the agent performs an
action to move from one state of affairs to another. The new state of affairs
may have many differences from the current state of affairs, and it may be that
only some of them are actively desired by the agent. The significance of these
differences is that they make the new state of affairs better with respect to some
good valued by the agent and typically the new state of affairs will be better
through improving the lot of some particular agent.
1 In this sense values represent the social interests promoted through achieving the

goal. Thus they are qualitative, as opposed to quantitative, measures of the desir-
ability of a goal.

Co-ordination and Co-operation in Agent Systems 127

Agents act so as to bring about states of affairs that promote the particular
values that are of concern to the individual agents. Thus, each agent has a
preference ordering on the values it considers relevant in the particular scenario.
We can therefore characterise agents’ behaviour with respect to the ordering that
they place on values. As mentioned previously, the two values of concern in the
train scenario are ‘safety’ and ‘progress’. Prudent agents will place a higher value
on safety, but reckless agents will value progress more highly. In the examples
that we discuss in Section 4 we use the terms selfish and moral to describe the
behaviour of agents, following [3]. Note that when a value is promoted it is done
so in virtue of one agent or both agents. Thus progress can be promoted in virtue
of the eastbound train moving, the westbound train moving, or both moving.
Similarly safety is demoted when the eastbound train crashes, the westbound
train crashes, or both crash. We therefore subscript values to show in virtue
of which agent progress and safety are affected. Selfish agents prefer their own
interests to those of others and thus they will rank promotion of values in respect
of themselves more highly than any values promoted in respect of others. For
example, considering the value ordering from the perspective of a selfish prudent
eastbound agent will give us the following: safetyE > progressE > safetyW >
progressW . Moral agents, on the other hand, will take the other agents’ interests
into account, and so a prudent moral agent will believe that safety promoted
in respect of others is more important than its own progress. A truly moral
agent will give the value equal rank, whichever agent it is promoted in respect
of, but, as discussed in [3], it remains morally acceptable to prefer promotion
of a value in respect of oneself to promotion of that value in respect of others,
provided the ordering of values is consistent. Note that moral agents need not
be sacrificial (i.e. they do not favour promoting a value in respect of the other
agent over promoting it in respect of themselves). Note also that the values
are ordered according to the preference of the agent itself: a prudent agent is
not required to rank the progress of a reckless agent more highly than that
agent’s safety, even though that is the preference of the other agent. Nor is a
moral agent required to adopt values of the other agent if it does not recognise
their worth: if the westbound train had a value “excitement” promoted by near
collisions, the eastbound train would be under no moral compulsion to consider
that to be a value. Thus, considering the value ordering from the perspective of
a moral prudent eastbound agent will give us the following: (safetyE = safetyW)
> (progressE = progressW).

Associated with AS1 are seventeen different critical questions [4] that chal-
lenge the presumptions in instantiations of AS1. Each critical question can be
seen as an attack on the argument it is posed against and examples of such criti-
cal questions are: “Are the circumstances as described?”, “Does the goal promote
the value?”, “Are there alternative actions that need to be considered?”. The
full list of critical questions, and their interpretation in terms of AATS, can be
found in [4]. In the next section we make use of a selection of these critical ques-
tions and upon doing so we will make clear the attack that the critical question
is asserting.

128 K. Atkinson and T. Bench-Capon

Using argument scheme AS1 and its associated critical questions to produce
arguments for reasoning about matters of practical action, we should expect to
see one or more prima facie justifications advanced stating, explicitly or im-
plicitly, the current situation, an action, the situation envisaged to result from
the action, the features of that situation for which the action was performed
and the value promoted by the action, together with negative answers to critical
questions directed at those claims. In the example that we provide in the next
section the argumentation is expressed in natural language terms for ease of
understanding, though we note that the machinery to express these arguments
formally for use with an AATS is given in [4] and it would be a simple task to
express them in this notation.

Finally, we note that the argument scheme AS1 can also be used in a negative
form (AS2):

AS2 In a particular set of circumstances R,
We should not perform action A,
As it would lead to a particular state of affairs S
Which entails some ‘goal’ G,
Which demotes some value V.

This negative version of AS1 can thus be used in scenarios where the onus
is on avoiding some undesirable outcome rather than achieving some positive
outcome, as is the case in the examples we present in the next section.

4 Example

Using the example scenario described in Section 2, we now show how the two
agents in this scenario, the eastbound train and the westbound train, will each
reason about what to do, in the absence of constraints, by instantiating the
argument schemes AS1 and AS2, and posing the appropriate critical questions.
We do so in respect of a number of different scenarios, based on the different
possible value orderings that determine the agents’ behaviour. We make the
assumption in each case in this scenario that perfect information is available to
both trains so that there is no epistemic uncertainty as to the current state.
Now, in order to decide what to do, each agent will need to consider how it
can promote its values, taking into consideration what the other agent will do.
Of course, not all agents will act in the same way in a given scenario, and this
will be reflected in the weight given to the arguments. We consider a number of
different scenarios in turn, though the objective in every case is to avoid collision,
i.e. avoid state q8.

4.1 Scenario 1: Reasoning in the Absence of Social Laws

We begin by considering how agents in the scenario will act in the absence of
any social law. The reasoning starts in the initial state q0 where both trains are
away. In q0 there are no controversial decisions to be made, each train may move

Co-ordination and Co-operation in Agent Systems 129

knowing that the other is away. Each agent can thus instantiate an argument
for moving, and can assume that the other agent will reason in the same way.
However, since it is not possible to reach the state in which collision occurs from
q0, the action of the other agent will not make an important difference and
so need not be of real concern. Thus, the eastbound train will instantiate an
argument as follows:

Arg1: In state q0, I should perform j2, to achieve waiting status in q3, promoting
the value progress.

No attack can be successfully used against this argument since even if the
assumption that the other agent will also choose to move is proved incorrect,
the resulting state is equally good as far the eastbound train is concerned. We
can see that Arg1 will similarly hold for states q1–q4 since none of the actions
that can be performed in these states lead to the undesirable q8, regardless of
how the other agent acts. Thus in each of these cases progress can be pursued
without risk. The remaining states, q5–q7, can however, lead to q8. This is shown
in Figure 2 below, which gives the subset of the scenario containing the states
from which a collision can occur.

1
1 q5

j0

q6

j0

1
2

j0

q7
2
1

q8
2
2

j0

j1

j1 j3

j2 j3

j3

j2

j2
+Pe

j1+Pw

+Pe −Se
−Sw

+Pe
+Pw

−Se
−Sw

+Pw
−Se
−Sw

Fig. 2. State transition diagram for states q5–q8

The arrows from states q6 and q7 that do not lead to any states signify
that if these actions are performed, they will lead back to safe states (which
are not of concern for this part of the scenario). Additionally, as in [3], in this
diagram the transitions are labelled with the relevant values that are promoted
or demoted by the transitions, with respect to each agent. Recall, the two values
of concern are progress (P) and safety (S). Thus, for example, where a transition
is labelled by +Pe, this indicates that progress is promoted for the eastbound
train. For reasons of space we omit value labels from transitions that are neutral
with respect to value promotion (i.e. where the transition neither promotes nor
demotes safety or progress for either agent).

Selfish Agents. Let us consider first the state q5 from the perspective of the
eastbound train using the assumption that both agents are selfish. Since selfish-
ness means that the agent will want to better its own interests, it will instantiate

130 K. Atkinson and T. Bench-Capon

an argument to move in order to promote progress. When there is more than
one action that will promote progress, the agent will choose the one (if any) that
does not demote some other value. So, considering the eastbound train in q5,
the following argument will be put forward:

Arg2: In state q5, I should perform j2, to reach q7 and enter tunnel, promoting
the value progress.

We can immediately see that this argument poses a problem if the other agent,
reasoning in the same way, also decides to move, since this will result in j3, rather
than j2 being performed, which leads to the collision in q8. We can thus pose a
critical question against this instantiation. The particular critical questions that
is applicable here is CQ17: can the other agent be guaranteed to perform its part
of the joint action?2

Obj1: Agent W cannot be guaranteed to act so as to execute j2.

Remembering that each agent in this scenario expects the other to act in a
selfish way and thus move, we can see that the objection raised in this critical
question is upheld; the agent can be expected to act in this way since, being
selfish, it will want to promote its progress by moving, so j3 will be executed.
Thus, Arg2 is defeated by the attack of Obj1 and will be abandoned. Now the
eastbound agent must consider whether there is any argument for executing j3:

Arg3: In state q5, I should perform j3, to reach q8 and enter tunnel, promoting
the value progress.

Whilst we can see that executing j3 will indeed promote progress, it will, how-
ever, lead to the state in which collision occurs. Thus we can critically question
Arg3, since the action has a side effect that demotes another value. CQ9 raises
such an objection:

Obj2: Action j3 has a side effect that demotes the value safety.

Again, we can see that this objection is upheld and, since normally safety is
more important than progress, Arg3 will be abandoned. This leaves only one
choice for the eastbound train: to stay still. The agent will be indifferent as to
whether j0 or j1 is executed since both have the same effect with respect to value
promotion, each being neutral with respect to both its values. Whilst j1 does
in fact promote progress for the westbound train, this has no influence on the
eastbound train since it reasons in a selfish manner. If we consider the possibility
that the eastbound train would choose to execute j0, this argument would again
be subject to questioning through CQ17. In response to this we can say that the
westbound train, being selfish, will actually prefer to move and so state q6 will
be reached with no detriment. This would bring the reasoning round full circle
since the westbound train would then need to consider whether the other agent
would act so as to guarantee that j1 would be executed. We can thus see that

2 Arguments that instantiate a critical question are labelled with ‘Obj’, to distinguish
them from those arguments that instantiate an argument scheme (‘Args’).

Co-ordination and Co-operation in Agent Systems 131

that a symmetric set of arguments to those given above would be generated by
the westbound train. The overall result of the reasoning would mean that each
train would remain still, as shown through the following argument:

Arg4: In state q5, I should perform j0, which would avoid collision, so as not to
demote the value safety.

No critical question can be successfully posed against this argument. However,
again, although the collision is avoided for prudent agents, the reasoning results
in an undesirable situation since deadlock is created as neither train has an
argument to move. It is from the need to avoid this effect that the requirement
for a social law arises. In the absence of such a law the deadlock is broken only
when one of the agents becomes sufficiently reckless to prefer progress to safety.
Should both agents do so at the same time, a collision will occur.

So far we have assumed that the agents in this scenario are all acting selfishly.
We should therefore consider if the outcome of the reasoning would be any
different if the agents are not in fact selfish, but instead ‘moral’ agents. That is,
they are not selfish, but neither are they sacrificial in that they do not favour
the other agent’s interests over their own.

Moral Agents. Starting over where the initial state is q0, there are again no
potentially dangerous actions so each agent will choose to move. The problem
states remain q5–q7. Again in q5, each agent will have an argument to move,
as in the previous scenario, and Arg2 will be put forward. Likewise, CQ17 can
again be posed to state that the other agent cannot be guaranteed to act so as
to execute j2. However, this time when the eastbound train considers that this
non-compliance with j2 will lead to j3 being executed and subsequently q8 will
be reached, it will, unlike in the previous scenario, consider the values of the
other agent. So, whilst the same line of reasoning will still apply, the eastbound
train will now have an additional attack, through the use of CQ9, that can be
posed against Arg3:

Obj3: Action j3 has a side effect that demotes the value safety of the westbound
train.

In order to see how this extra argument affects the evaluation of the set of
arguments, we can organise them into a value-based argumentation framework
(VAF) [5], which is an extension to Dung’s abstract Argumentation Frameworks
(AFs) [8]. AFs provide a means of evaluating the acceptability of a set of argu-
ments in terms of the attack relations between them. VAFs extend Dung’s AFs
to accommodate different audiences with different values and interests. Within
a VAF, which arguments are accepted depends on the ranking that the audience
(characterised by a particular preference ordering on the values) to which they
are addressed gives to the values motivating the argument. In essence, attacks
are removed if the value of the attacking argument is ranked below the value
of the attacked argument. The VAF for the arguments relevant to this scenario,
from the viewpoint of the eastbound train, is given in Figure 3.

To evaluate the status of the arguments we need to consider the preference
ordering on values to resolve the conflicts between the arguments. As stated

132 K. Atkinson and T. Bench-Capon

Arg4

Pe

Sw

Se

Arg3 Arg2

Pe

Se

Obj1Obj3

Fig. 3. VAF for moral agents

previously, safety is preferred to progress in all cases, thus Arg3 will always be
defeated. The point to note however, is that the attack of Obj3 on Arg3 succeeds
in this scenario since moral agents rank values without considering which agent
they are promoted in respect of. But, this particular attack would not succeed
for the previous case where the agents are all selfish, even though Arg3 would
still be defeated by Arg4, assuming the agents are prudent. The result of the
reasoning here is that both trains will again remain still, but this time there
is an additional reason, which will prevent even a reckless agent from moving,
provided it is moral enough to consider the other agent’s safety, even if it does not
care about its own. Thus, although the reasoning on the parts of both agents will
avoid the undesirable q8, here a social law is essential, not to avoid collision, but
in order to break the deadlock. In this case, where the agents are considerate of
each other in this way, the need for a social law is greater, since even recklessness
will not resolve the impasse.

The scenarios discussed so far consider a situation which was symmetrical
with respect to the interests of the agents. Now suppose we alter the scenario
so that one of the agents, say the westbound, is instead a pedestrian and both
agents are again assumed to act selfishly. In this case, the state to avoid remains
q8, but the reasons for avoiding it have now altered since a collision would only
impact negatively upon the pedestrian (where ‘safety’ and ‘progress’ remain the
only two values of concern): the train would be unharmed by the collision.

Considering again the problematic q5, the reasoning of the eastbound agent
will again begin with the proposal of Arg2, against which CQ17 can be posed. In
this case the train’s safety is not now compromised in q8: the transition between
q5 and q8 will be labelled only with the value ‘safety’ demoted in respect of the
pedestrian. Thus, the eastbound train is aware that the pedestrian, not willing to
compromise his safety, will not move, leaving the train free to enter the tunnel.
But, now the critical question CQ9 does not apply, since even if the pedestrian
ignores the risk, the resulting situation will not demote the safety of the train.
In this case the rationality of the agents should be enough to ensure that q8
is avoided and the need for a social law to enforce such behaviour is dispelled,
since the agents will behave in compliance with SL1 anyway. However, we may
wish to actually enforce such behaviour through the issue of a social law since
consideration must be given to the situation where an agent may be reckless
and a collision ensues. The law now, however, is for the pedestrian’s own good,

Co-ordination and Co-operation in Agent Systems 133

rather than to provide the co-ordination required in the case of two trains. In
such a case we may wish to implement punishments or sanctions against such
behaviour, as we discuss later in Scenario 3.

The previous example considers the reasoning of the agents where one is a
pedestrian, the other a train and both are selfish. Does the outcome change if the
agents are moral? Again, considering the problematic state q5, we can see that
the reasoning of the train will begin by it proposing Arg2, against which CQ17
can again be posed. Once more, the train would expect the pedestrian to comply
with not entering the tunnel, yet in this case the train will act in consideration
of the pedestrian’s values in addition to its own. Thus, the VAF for the situation
will be updated so that the argument based on the eastbound train’s safety
no longer appears in it. Here the train will not move since the argument for
moving is defeated by the argument demoting the pedestrian’s safety. However,
the pedestrian, also reasoning that the danger only concerns himself, will not
move either, leading to a deadlock situation. In this case a social law is clearly
needed to avoid deadlock, even if only the train is moral.

4.2 Scenario 2: Reasoning in the Presence of Social Laws

We now consider how the reasoning will change when a social law is present.
As demonstrated above, reasoning in the scenario in the absence of a social law
will indeed avoid the undesirable state, but a deadlock situation arises. This is
true for both the case in which the agents are selfish, and that in which they act
in accordance with ‘morality’. Now let us consider the effect of introducing the
social law SL1, as stated in Section 2. When such a social law is in place, the
agents in the scenario have a change in information about the actions of each
other. Thus all agents may still act selfishly, i.e. in accordance with their own
interests, but there is now an assumption that the other agents will all obey
the law. This effectively excludes certain joint actions (those containing the
prohibited action) from the AATS. This makes j3 unavailable in q5 (SL1.1), j2
unavailable in q6 (SL1.2) and j1 unavailable in q7 (SL1.3). So, for our problematic
situation, state q5, the social law ensures that the agents will not act so as to
end up in q8, and the deadlock is broken through the law specifying which agent
should move into the tunnel first. This means that the westbound train will
generate an argument for moving:

Arg5: In state q5, I should perform j1, to reach q6 and enter tunnel, promoting
the value progress.

CQ17 can still be posed against this argument to test the presumption that
the eastbound train can be guaranteed to act so as to execute j1. However, the
response to this argument is now that the eastbound train will act so as to
execute j1, because it will obey the social law and so cannot bring about the
performance of j3. But, as noted previously, SL1 is asymmetric in that it favours
the westbound train over the eastbound train. Nonetheless, even though the
agents are not treated equally by the law, it does in fact provide more benefit to
them both than the case where there is no law. Since the choices that are forced

134 K. Atkinson and T. Bench-Capon

through the law are rational in any case, it follows that both trains will move
sooner, and without the need to degenerate into recklessness, than they would
if the social law was not in place. In this way, adherence to the law is reinforced
through rationality. The same outcome is also true for the situation in which the
agents are ‘moral’ as opposed to selfish.

If we now return to the example where one agent is a pedestrian and the
other a train, we noted previously that a social law is required where the agents
are acting morally. Again, we consider the application of SL1 in this situation.
As before, the law works so as to remove the deadlock, but since a choice must
be made as to which party will get to move first, the law will again favour
one of the parties. However, in order to reinforce the behaviour that rationality
suggests, the choice of who goes first in this case should not be an arbitrary one.
Here, the social law should be defined so as to allow the train to move first,
since it is the party against which no danger is posed. Now the moral train
can enter the tunnel assured that the pedestrian will wait, and any threat to
the pedestrian’s safety comes from the pedestrian’s own disobedience. If, on the
other hand, the law tried to make the train wait, the train would have no reason
other than conforming to the law to wait, and so there would be temptation
to violate the law. Moreover, the pedestrian might be reluctant to jeopardise
his safety by trusting that the train would comply. Such a law might therefore
lead to collisions when the train disregarded the law, and to deadlocks when
the pedestrian did not trust the train to comply. By reinforcing rather than
conflicting with the rational choice, the law is more likely to be followed since it
does not penalise the party who has a rational justification for non-compliance.
This suggests that in general when framing the law we should consider which
parties benefit the most when compared with the situations without the law, if
the laws are to be as effective as possible.

4.3 Scenario 3: Social Laws with Sanctions

As noted above, the presence of social laws should prescribe3 the behaviour of
the agents. However, since the agents are autonomous, they cannot always be
guaranteed to adhere to the social laws in place. Thus, we consider how obedience
to the law can be achieved through the use of sanctions. Sanctions can take two
forms; they may operate in relation to a value representing the stigma associated
with violating the law, or they may operate through undesirable consequences
relating to the state reached when the law is violated i.e. the agent is in some
way punished for violating the law. In the presence of these new elements we
now consider how the reasoning in the scenario will differ in state q5.

We begin with the case of the selfish agents. In q5 SL1 states that the east-
bound train should remain stationary. However, this agent, as in the previous
scenarios, will have an argument for moving into the tunnel based on pursuit of
3 Although we make use of deontic notions such as obligations and their violations,

we do not give any precise characterisation of them here. The relationship between
deontic logic and ATL is the topic of [14] which introduces Normative ATL and
provides definitions of obligation and permission in terms of an AATS.

Co-ordination and Co-operation in Agent Systems 135

Arg4

Pe Se

Arg3

Me

Arg2

Pe

Se

Obj5 Obj1Obj4

He

Fig. 4. VAF for scenario with sanctions

progress. There remains an argument against moving, but a reckless agent may
be tempted to ignore this and move in an attempt to get into the tunnel first,
thus violating the law. However, we can now introduce the third value of ‘hon-
our’ into the scenario, whereby any transition that ignores the law demotes this
value. All actions that are executed in adherence with the law will promote the
value. So, where there may be temptation to break the law, e.g. the eastbound
train does not want to wait in q5, there is now another critical question, based
upon the demotion of another value, that can be posed against the argument to
move:

Obj4: Action j2 has a side effect that demotes the value honour.

In the simple scenario considered here it may be that honour does not feature
highly in a value ordering and thus Arg3 will resist the attack of Obj4. However,
in a more complex scenario where honour plays a role in future interactions, this
may be enough of a sanction to deter violation. As an additional, or alternative,
to this form of sanction we may also take a quantitative measure into account.
We can thus add a proposition to each of the states to represent some kind
of monetary possession. Here, where an agent violates the social law the state
reached will actually be different to that intended through the application of the
sanction, as expressed through critical question CQ2:

Obj5: Action j2, does not lead to q7.

Of course, with the addition of this proposition the state transition diagram
will now need to be altered to show in which states money is decreased for each
agent. So, the losses made in such situations should be enough to deter the agent
from violating the law here, if money is ranked higher than progress. We can see
that this is the case by considering the VAF for the arguments shown in Figure 4,
where the values ‘honour’ (H) and ‘money’ (M) are introduced to ground the
appropriate arguments.

The above view is for that of selfish agents, so we again consider how the
reasoning changes in the case of moral agents, for the scenario where there is a
social law with sanctions. Here, unlike the case of selfish agents, the temptation
to violate the law will be removed since the agents take each others’ interests
into account; an objection based on CQ9 can again be posed against Arg3 to

136 K. Atkinson and T. Bench-Capon

state demotion of the other agent’s safety, which will be enough to stop the
violation.

However, we note that the above holds for this particular scenario because
there are no conflicts within a value, i.e. in our scenario safety always trumps
progress and there is no situation here where an agent is forced to choose between
its own safety and the other agent’s, nor its own progress and the other agent’s.
There are, however, other example scenarios where such a choice is required,
and these in turn could lead to the temptation to violate a sanction. In such
cases we need need to make a distinction between different levels of morality, in
order to resolve the conflict. One such account of these different levels has been
given in [3]. There, a distinction is made between ‘moral’ agents, as we have
used in our example where values are ordered but within each value agents are
treated equally, and ‘noble’ agents, where values are ordered in a moral sense,
but within a value an agent prefers the other’s interests. For example, a noble
eastbound agent would order values as follows: safetyW > safetyE > progressW

> progressE. There are numerous everyday examples that can be cited in which
such a distinction is required. Consider the scenario of being sat on a train in
which all the seats are occupied and a pregnant woman boards the train. In
such a case, the norms of society are such that it is expected that a person with
no impediment would give up their seat for the woman. Whilst a moral agent
would value his own comfort equally to other peoples’, he would be required to
be noble, i.e. value the comfort of a pregnant woman over his own, in order to
be forced to act and give up his seat. Whilst temptation to violate such a norm
would not exist in the case of a noble agent, for the moral agent, whose value
ordering conforms to a lesser standard of morality, the temptation would arise.
Here, a sanction based upon demotion of honour could again be employed in
order to force compliance.

Finally, concerning sanctions, there is one further problem to be considered
before too much reliance is placed on them: sanctions require that the trans-
gression be detected and the punishment enforced. But this will not always be
the case. Sanctions therefore require an additional agent, the agent responsi-
ble for enforcing the social laws, to be modelled in the system, and additional
joint actions since the sanction may or may not be enforced. In many cases, this
reintroduces uncertainty into the situation, since the agent cannot know that
the transgression will be followed by the sanction. So an agent reasoning in the
presence of sanctions will still have an argument for the transgressive act, albeit
one subject to CQ17, since the sanction may be enforced and the expected state
not reached. The agent’s decision will then need to balance the risk of detec-
tion against the gains resulting from transgression. In such cases other agents
similarly will not be as sure of their assumption that the law will be complied
with, since conformity now requires a degree of judgment on the part of the
other agent. In many cases therefore, where detection is not assured, the so-
cial laws fail to provide the essential increase in certainty as to how others will
behave.

Co-ordination and Co-operation in Agent Systems 137

5 Discussion

From the above considerations, we can attempt to draw some generalisations,
about when social laws are required, how they operate and the form they should
take. We will draw upon the above discussions, and additionally add some illus-
trations from road traffic practice.

In some cases no social law is really needed, as illustrated above where the social
law requires the pedestrian to give way to the train, since the agents will avoid
the collision, provided they act in their own interest and expect the other agent
to do so. This is the situation with regard to pedestrians crossing the road: since
prudence should lead them to avoid crossing in front of cars, no law is necessary,
although parents do try to teach their children to value safety over progress.

In other cases, represented in the example by the scenario with two trains,
a social law is needed, since agents will be prevented from acting freely in ac-
cordance with their preferences because of uncertainty about what the other
agent will do. What the social law does is to remove this uncertainty: since the
social law requires the eastbound train to give way, the westbound train can
confidently enter the tunnel. In road traffic scenarios, this gives rise to conven-
tions as to which side of the road should be driven on: it is crucial that the
agents know what the others will do if collisions are to be avoided. Of course,
such a convention does constrain behaviour but agents will willingly accept the
constraint since everyone gains: the preference is to drive on the same side as
others, not on a particular side. While in this case the effect of the law is the
same for both agents, in the train case the westbound train gains more, since it is
effectively enabled to act in accordance with its best interests without fear that
the eastbound train will act so as to endanger it. Nonetheless, the eastbound
train also gains, since the social law assures it of eventual progress without dan-
ger, whereas, without the social law, progress cannot be made without an agent
becoming sufficiently reckless to desire progress even at the risk of its safety.
The role of the social law here is purely one of co-ordination, which is enabled
by increasing confidence in what the other agent will do.

In other situations agents are constrained with no advantage to themselves.
The example scenario is where the train is required to give way to the pedes-
trian. Since the train is in no danger from the collision, the arguments to act in
conformity with the law relate to benefits to the pedestrian, not the agent which
is constrained. On roads this is the situation with pedestrian crossings: it is con-
cern for the safety of the pedestrian that should induce the car to comply with
the convention that the pedestrian has right of way in such cases. The social law
is socially justified in that it gives a substantial benefit to one agent at a small
cost to the other, but compliance does rely on a degree of moral sense on the
part of the car drivers. In consequence pedestrians often hesitate at crossings,
particularly if a car is approaching at speed, since they do not trust the driver
to comply with the law.

Of course, pedestrian crossings are backed with the force of law. Nonethe-
less, observance of pedestrians rights here is largely self regulating: prosecutions
are unlikely unless an accident actually occurs, and pedestrians are typically

138 K. Atkinson and T. Bench-Capon

sufficiently wary when using them that this is a rare occurrence. Compliance is,
however, reinforced by the wish to avoid the stigma of being thought inconsider-
ate, and the possibility of legal sanction. In other cases, such as for example, road
tax, sanctions take on more importance: this law is frequently flouted, and would
be flouted even more but for likelihood of prosecution. Self regulation is possibly
sufficient when the loss is small and the benefits to others are obvious, but as the
constraints become more burdensome and the benefits less immediately visible
the need for sanctions increases.

Social laws essentially work by reducing uncertainty as to what others will
do in a given situation, thus allowing the consequences of one’s own actions to
be more predictable. Sometimes there will be gains for everyone, so that selfish
agents will, given the assurance about how others will act, rationally conform.
In other cases it may be necessary for the agents to consider values promoted in
respect of others to motivate conformity. This is illustrated by advertisements
encouraging conformity to speed limits which emphasise the danger to oneself
in the case of motorways, and the danger to others in the case of low speed
limits in residential areas. The former can appeal to self interest, but the latter
requires a sensitivity to the danger to others. In some extreme cases – military
draft in wartime may be an example -- conformity requires the agent to put the
interests of others before of its own most valued interests, and here sanctions
will normally be essential to ensure conformity.

In her work on emergence of norms, Ullmann-Margalit [11] distinguishes
norms of co-ordination, where both parties benefit from compliance, from norms
of co-operation where an increase in the common good comes at the price of
a decrease of individual goods. This is the situation represented by the classic
game theory scenario known as the Prisoner’s Dilemma, and she refers to such
norms as PD-norms.

Co-ordination norms are unproblematic, since given the resolution of uncer-
tainties offered by the social law, rational agents will freely choose to comply
with them. For PD-norms, however, the rational situation is defection, not com-
pliance, as is well established in game theory. Ullmann-Margalit suggests three
ways of inducing compliance: making defection impossible; making defection
unattractive through sanctions; and, what she calls “honour”, which involves
a sufficiently strong sense of identity with the other agent to mean that the
interests of the other are given sufficient weight to induce co-operation.

The first method, making violation impossible, is the approach typically taken
in Electronic Institutions e.g. [1]. There, for example, if a participant in an
auction is not permitted to bid according to the norms of the institution, this
action is simply unavailable. While this is possible in a structured situation such
as is provided by an electronic institution, there are several problems with this as
a general solution. First it violates the autonomy of the agents: they are forced to
obey the norm, and so their freedom is constrained. Secondly agent interaction
in open systems is desirable in less structured contexts, when it is impossible
to impose these constraints. But most importantly, it is part of the nature of
social laws that there are occasions when it is desirable that they are violated.

Co-ordination and Co-operation in Agent Systems 139

Occasionally it is necessary to drive on the wrong side of the road to avoid
an accident: we would not want this to be impossible. In a medical emergency
we may not only allow, but desire, speed limits to be exceeded. In complex
environments norms can conflict, and we would wish our agents to solve this
conflict rationally with regard to the particular situation, rather than blindly
following the norms.

Sanctions, as mentioned above, can be effective, given a regime in which
detection is sufficiently certain and the punishments sufficiently great. This re-
quirement, however, may be very difficult to achieve in a loosely structured
environment. In an agent society, however, there are further problems: what
sanctions are appropriate to agents, and how can they be applied? Possibly the
best that can be done is through concern for reputation (compare the feedback
mechanism used by auction website ebay), but the opportunities to cloak iden-
tities in cyberspace make this at best a flimsy defence.

For the third strategy to be possible we need to have agents that have the
ability to reason about what to do in a particular way, so that they consider
the general interest as well as their own. In so far as PD-norms are desirable
in situations where neither making violation impossible nor enforcing sanctions
is practicable, this seems to be the only solution. Respect for social laws and
consideration for others are necessary parts of the functioning of human society:
without a certain degree of compliance with social laws through simple consider-
ation of others, life would be intolerable. It might be thought that consideration
for others should be a desirable feature of agent societies also: we would not
employ a person we believed to be amoral or dishonest, so why should we be
prepared to unleash agents with no sense of moral duty on an unsuspecting
world? We bring up our children to respect the interests of others, so should we
not implement our agents in the same way?

6 Concluding Remarks

In this paper we have considered social laws in the context of rational decision
making. We have seen that at one extreme some social laws simply provide the
necessary degree of certainty about how others will behave to enable good results
to come from rational, self-interested action. At the other extreme, other social
laws will require the backing of certain and heavy sanctions to make compliance
rational. In between there are situations where rationality leads to compliance
if the welfare of the other agents involved in the situation is taken into account.
When framing social laws we need to consider whether they will be adhered to:
doubt as to the compliance of other agents will restore the uncertainty the so-
cial law was designed to resolve, and the social law will be rendered ineffective.
When framing social laws these factors need to be considered: sometimes that
will lead us to prefer one formulation over another, particularly if the social law
favours one agent over another. There are also implications for designing reason-
ing agents: social laws will often depend on some sense of social obligation for
their effectiveness, and so agents need to be designed to be capable of reasoning
so as to consider the interests of others.

140 K. Atkinson and T. Bench-Capon

References

1. Arcos, J.L., Esteva, M., Noriega, P., Rodŕıguez, J.A., Sierra, C.: Engineering open
environments with electronic institutions. Journal on Engineering Applications of
Artificial Intelligence 18(2), 191–204 (2005)

2. Atkinson, K.: What Should We Do?: Computational Representation of Persuasive
Argument in Practical Reasoning. PhD thesis, Department of Computer Science,
University of Liverpool, Liverpool, UK (2005)

3. Atkinson, K., Bench-Capon, T.: Addressing moral problems through practical rea-
soning. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS, vol. 4048, pp. 8–23.
Springer, Heidelberg (2006)

4. Atkinson, K., Bench-Capon, T.: Action-based alternating transitions systems for
arguments about action. In: Proceedings of the Twenty Second Conference on
Articicial Intelligence (AAAI 2007), pp. 24–29 (2007)

5. Bench-Capon, T.: Persuasion in practical argument using value based argumenta-
tion frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

6. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID
architecture: conflicts between beliefs, obligations, intentions and desires. In: Pro-
ceedings of Autonomous Agents 2001, pp. 9–16. ACM Press, New York (2001)

7. Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelli-
gence 103(1-2), 157–182 (1998)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 321–357 (1995)

9. Moses, Y., Tennenholtz, M.: Artificial social systems. Computers and Artificial
Intelligence 14(6), 533–562 (1995)

10. Shoham, Y., Tennenholtz, M.: On the synthesis of useful social laws for artificial
agent societies. In: Proceedings of the Tenth Conference on Artificial Intelligence
(AAAI 1992), pp. 276–281 (1992)

11. Ullmann-Margalit, E.: The Emergence of Norms. Clarendon Press, Oxford (1977)
12. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternating time:

effectiveness, feasibility and synthesis. Synthese 156(1), 1–19 (2007)
13. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erl-

baum Associates, Mahwah (1996)
14. Wooldridge, M., van der Hoek, W.: On obligations and normative ability: Towards

a logical analysis of the social contract. Journal of Applied Logic 3, 396–420 (2005)

Annotation and Matching of First-Class Agent
Interaction Protocols

Tim Miller1 and Peter McBurney2

1 Department of Computer Science and Software Engineering
University of Melbourne
Victoria, Australia, 3010

tmill@csse.unimelb.edu.au
2 Department of Computer Science,

University of Liverpool
Liverpool, L69 7ZF, UK

mcburney@liverpool.ac.uk

Abstract. Many practitioners view agent interaction protocols as rigid
specifications that are defined a priori, and hard-code their agents with a
set of protocols known at design time — an unnecessary restriction for in-
telligent and adaptive agents. To achieve the full potential of multi-agent
systems, we believe that it is important that multi-agent interaction pro-
tocols are treated as first-class computational entities in systems. That
is, they exist at runtime in systems as entities that can be referenced, in-
spected, composed, invoked and shared, rather than as abstractions that
emerge from the behaviour of the participants. Using first-class proto-
cols, a goal-directed agent can assess a library of protocols at runtime to
determine which protocols best achieve a particular goal. In this paper,
we presented three methods that enable agents to determine if a proto-
col achieves a specified goal. The two most promising approaches allow
an agent to summarise a protocol that it has learned by calculating the
outcomes achieved by the protocol, and annotate the protocol with these
summaries. The agent can match, via annotations, which protocols in a
library achieve a given goal.

Keywords: multi-agent systems, agent interaction, first-class protocols,
annotation, matching.

1 Introduction

In the distributed environments of multi-agent systems, interaction protocols
are seen as a promising approach to coordination in multi-agent systems. How-
ever, rather than viewing interaction protocols as rigid specifications that are
defined a priori, with agents being hard-coded to follow the protocol rules —
a restriction that is out of place with the vision of agents being intelligent and
adaptive — we believe it is important that agent interaction protocols are first-
class computational entities, allowing agents to select, reference, share, compose,
invoke and inspect protocols at runtime. Such an approach would allow agents

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 141–158, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

142 T. Miller and P. McBurney

to assess which protocols achieve their goals, and to learn the rules and effect of
new protocols at runtime.

In previous work, we proposed the RASA framework [9,10], which regards
protocols as first-class entities. These first-class protocols are documents that ex-
ist within a multi-agent system, in contrast to hard-coded protocols, which exist
merely as abstractions that emerge from the messages sent by the participants.
To promote decoupling of agents from the protocols they use, RASA contains
a formal, executable language for protocol specification, about which agents can
reason to determine the rules and outcomes of protocols.

A major goal of research into first-class protocols is for agents to maintain
a library of interaction protocols, and to be able to select the protocol that
best suits the goals that it wants to achieve at a given time and in a given
environment. For this, agents must be able to quickly and correctly determine
the outcomes that can result for an interaction protocol, and compare protocols
in their library. In this paper, we present methods for annotating a protocol with
its possible outcomes, so that it does not have to determine the outcomes each
time it is trying to find a suitable protocol, and for matching a protocol that
achieves a given goal, using the annotations. Emphasis is placed on protocols
specified in the RASA protocol language, but such ideas would be applicable to
other protocol languages with operators similar to RASA’s.

2 The RASA Framework

The RASA framework was designed to allow us to represent and reason about
first-class protocols, and investigate the types of statements we can make about
them. The RASA specification language was designed as an example of the
minimal requirements for a successful first-class protocol specification language.
First presented in [10], along with its operational semantics, the language uses
constraint languages and process algebra to specify interaction protocols. In this
section, we briefly present this language, and a logic for reasoning about the
outcomes of protocols specified in this language.

2.1 Modelling Information

Rather than devise a new language for expressing information, or using an ex-
isting language, we take the approach that any constraint language can be used
to model the universe of discourse, provided that it has a few basic constants,
operators and properties. This allows us to express and study a wider variety
of protocols, such as those that use description logic, constraint programming
languages, or even predicate and modal logic’s. It also permits us to use different
mechanisms for defining protocol meaning, such as norms and commitments.

Definition 1. Cylindric constraint system. We assume that the underlying com-
munication language fits the definition of a cylindric constraint system proposed
by De Boer et al. [3]. They define a cylindric constraint system as a complete
algebraic lattice, 〈C, ,�, true, false, V ar, ∃〉. In this structure, C is the set of

Annotation and Matching of First-Class Agent Interaction Protocols 143

atomic propositions in the language, for example X = 1, is an entailment
operator, true and false are the least and greatest elements of C respectively, �
is the least upper bound operator, V ar is a countable set of variables, and ∃ is
an operator for hiding variables. The entailment operator defines a partial order
over the elements in the lattice, such that c d means that the information in
d can be derived from c.

A constraint is one of the following: an atomic proposition, c, for example, X = 1,
where X is a variable; a conjunction, φ � ψ, where φ and ψ are constraints; or
∃xφ, where φ is a constraint and x ∈ V ar. We extend this notation by allowing
negation on the right of an entailment operator, for example, φ ¬ψ is true if
and only if φ ψ is not. Other propositional operators are then defined from
these, for example, φ ∨ ψ =̂ ¬(¬φ � ¬ψ) and φ → ψ =̂ ¬φ ∨ ψ. We use vars(φ)
to refer to the free variables that occur in φ; that is, the variables referenced in
φ that are not hidden using ∃.

2.2 Modelling Protocols

The RASA protocol specification language is an action language. The actions
– messages sent across channels – manipulate a shared social state, for example,
a set of commitments between the participants. An agent can send a message
across a channel, and the definition of that message informs other participants
to update their copy of the state. Messages are specified using atomic protocols
of the form

ψ
c(i,j).φ−−−−−→ ψ′,

in which ψ represents the precondition that must hold in the current social state
for the message to be sent, c(i, j) represents the channel from participant i to
participant j, φ is the message template, and ψ′ is the postcondition, which
specifies the effect this message has on the state. We omit (i, j) when we do not
care who the sender and receiver of the message is.

A special type of atomic protocol is the empty protocol: ψ → ε, which specifies
that no message is required to be sent if ψ holds in the current social state.

Compound protocols can be built up from atomic protocols and empty proto-
cols using operators. If π1 and π2 are protocols, then π1; π2 is their sequential
composition, π1∪π2 is a choice between them. The protocol varψx ·π1 represents
a protocol the same as π1, except that a local variable x is available over the
scope of π1, but with the constraints ψ on x remaining unchanged throughout
that scope. Any variable x already in the state is out of scope until π1 finishes
executing.

A protocol specification is a collection of protocol definitions of the format
N(x, . . . , y) =̂ π, in which N is a name, x, . . . , y ∈ V ar, and π represents a
protocol. Protocols can be referenced from other protocols via their name.

An iteration operator, π∗, is derivable from these operators by declaring a
recursive protocol using names. π∗ is defined as the name N , in which

N =̂ ε ∪ π; N.

144 T. Miller and P. McBurney

A positive iteration operator, π+, representing one or more iterations of π, is
defined as π; π∗.

2.3 Reasoning about Protocol Outcomes

RASA defines a logic for reasoning about protocols. By logic, we mean a syntax,
semantics, and proof system. The logic is concerned with protocol outcomes; that
is, the state of the protocol after it is executed. For this reason, we use a restricted
version of propositional dynamic logic [7], tailored to the RASA specification
language, and derived a proof system that corresponds to the system for dynamic
logic.

The syntax for a proposition in this logic is defined using the following gram-
mar, assuming that φ0 is a constraint in the underlying constraint language:

φ ::= φ0 | φ ∧ φ | ¬φ | [π]φ

A formal semantics and proof system for this logic has been defined in [9]. φ0
is true if it holds in the underlying constraint system. φ ∧ ψ and ¬φ are defined
as conjunction and negation respectively. The interesting operator, [π]φ, which
is found in propositional dynamic logic, has the meaning that φ holds for every
possible outcome of the protocol π. That is, no matter which possible dialogue
is executed in the protocol π, the proposition φ will hold after the protocol has
executed.

As usual in dynamic logic, we define the dual operator 〈π〉φ, which means that
φ holds in at least one possible outcome of the protocol π, and is shorthand for
¬[π]¬φ. That is, φ holds in at least one end state of π if and only if ¬φ does not
hold in all of them. We use subscripts on the Greek letters φ and ψ to indicate
something that is strictly a constraint; that is, φ0 is a constraint, while φ can be
a dynamic logic proposition (including a constraint).

We use this logic to represent protocol outcomes, match protocols, as well as
to prove the correctness of our method for annotation and matching.

3 Definitions

Before we continue with our presentation, we first define some terms.
For the rest of this paper, the term protocol will refer to a RASA definition of

a protocol that does not have the stuckness property, as defined in earlier work
[11]. A protocol has the stuckness property if and only if, at any point during the
execution of the protocol, the protocol has not terminated, and the rules of the
protocol prevent any participant from making an utterance. Therefore, in this
work, we are assuming that the protocol has been proved to be stuckness-free,
using a proof method such as that presented in [11].

The weakest precondition of a protocol is the weakest (or most general) con-
straint from which a protocol cannot become stuck. The maximal postcondition
is the strongest constraint that results from a protocol being executed under its
weakest precondition.

Annotation and Matching of First-Class Agent Interaction Protocols 145

An annotation of a protocol is some information that is attached to a protocol,
but is not part of the protocol’s definition. An annotation could contain infor-
mation such as where the protocol originated, security properties, or efficiency
properties. In this paper, we are concerned solely with outcome annotations: an-
notations that document the outcomes that may result if a protocol is executed.

A goal is a state of the world that an agent would like to bring about, or
maintain. In this paper, we assume that a goal is represented as a constraint in
the underlying constraint language.

Given a goal, φG, an initial state, ψI (the state of the world from which an
agent wants to achieve the goal – generally the current state), a weak matching
protocol is a protocol, π, in an agent’s protocol library, such that

ψI → 〈π〉φG.

That is, from the initial state, at least one outcome of the protocol entails the
goal.

A strong matching protocol is a protocol that achieves a goal for all outcomes,
assuming that there exists at least one outcome1. Formally:

ψI → [π]φG.

All strong matching protocols are also weak matching protocols.
To find all matches for a goal φG from the state ψI , the agent could simply

use the proof system discussed in Section 2.3. That is, for every protocol π, if
the proof ψI → 〈π〉φG is successful, then π is a weak match.

However, for a large protocol library, this is an expensive operation to perform
each time an agent wants to find a protocol that achieves a certain goal. In Sec-
tion 4.3, we present a matching method that uses outcome annotations to prove
the above, but is more efficient once the outcomes annotations have been derived.

4 Matching Protocols via Proof

Outcome annotations for a protocol are derivable directly from the protocol
definition itself. In this section, we discuss an algorithm for deriving annotations
of protocols, including iterative protocols, and terminating recursive protocols;
that is, recursively defined protocols that always terminate. We prove that this
method is sound and complete.

4.1 Representing Outcome Annotations

Outcome annotations are represented as theorems in the logic presented in Sec-
tion 2.3. For example, the annotation

ψ0 → [π]φ0

specifies that, if executed from any state that satisfies the weakest precondition
ψ0, the protocol π is guaranteed to achieve the outcome φ0.
1 This assumption is subsumed by our assumption that a protocol is free from

stuckness.

146 T. Miller and P. McBurney

a

A

��
a′

B

����
��

��
�

C

���
��

��
��

b′ c′

a → [A]a′

a → [A; B](a′ � b′)
a → [A; C](a′ � c′)

a′ → [B](a′ � b′)

a′ → [C](a′ � c′)

Fig. 1. An abstract syntax tree for a protocol, and its annotations

We enforce on strict condition: outcomes must be specified using the under-
lying constraint language, not the dynamic logic. That is, for an annotation
[π]φ0, φ0 must not contain any expressions of the form [] or 〈〉. We assume that
the goals of agents are specified using (or at least translated to) the constraint
language.

Our goal is to annotate, for each protocol in a protocol library, not the out-
comes that it achieves, but the outcomes of the paths that make up this protocol.

As an example, consider the protocol A; (B ∪ C), in which A =̂ a
c.am−−−→ a′,

B =̂ true c.bm−−−→ b′, and C =̂ true c.cm−−−→ c′. Figure 1 shows the abstract syntax
tree of the protocol, and the annotations that we want to be able to derive. This
protocol contains two paths: (1) A followed by B; and (2) A followed by C.

The first annotation would be annotated to protocol A, the second and third
to the entire protocol, and the final two to B and C respectively. In this paper,
we are concerned solely with how these outcome annotations are derived, and
do not discuss the attachment of annotations to protocols.

4.2 Deriving Outcome Annotations

Instead of proving annotations for the specific goals of an agent, it may be more
efficient if the agent derives annotations directly from the protocol definition. It
would not be possible to annotate the protocol with every constraint that could
hold in an end state, so instead, we document the outcomes as maximal postcon-
ditions. By maximal, we mean a constraint such that every end state satisfies
that constraint, and that it is satisfied only by those end states. Therefore, every
end state would entail the maximal postcondition. We also document the maxi-
mal postconditions of the sub-protocols that make up a compound protocol, to
help agents choose between multiple protocols that each achieve a goal, and to
help them reason about which interactions best achieve their goals.

The advantage of this approach is that each annotation needs to be calculated
only once, and it remains valid for the lifetime of the system/protocol. In fact,
annotations can be added to protocols and shared between agents, therefore not
requiring each agent to derive them.

To derive annotations, we specify a set of annotation rules. When receiving a
new protocol, an agent applies these rules to the protocol, and its sub-protocols,
adding the annotations. Annotation rules are specified as theorems in theRASA

Annotation and Matching of First-Class Agent Interaction Protocols 147

logic. Each rule is of the form φ ∧ φ′ ∧ . . . → ψ, resembling a Horn clause, and
should be read: if φ,φ′,. . . can be derived as maximal postcondition annotations,
then ψ is a maximal postcondition annotation. Each of the annotation rules in
this section has been proved using the axiom system defined in [9].

Global Annotations. The most straightforward of the rules is that if a protocol
π achieves φ0 for all outcomes, and has at least one outcome, then it must achieve
φ0 for at least one outcome.

[π]φ0 ∧ 〈π〉true → 〈π〉φ0

This is similar to the D axiom found in many modal logics. We define a protocol
to be executable when it contains at least one interaction that can occur fully,
while following the rules of the protocol. For a protocol, π, that is not executable,
(for example, a protocol whose precondition is false), the proposition [π]φ will
hold for any φ; that is, for all end states, of which there are none, φ holds.
Therefore, if false is provable at all end states, either there are no end states, or
all end states are equivalent to false, which is represented as ¬[π]¬false. This is
equivalent to 〈π〉true from the definition of 〈 〉.

The above rule is unnecessary for deriving annotations, because when search
for a weak match, an agent would simply need to check if [π]φ0 was an anno-
tation. However, it is necessary for this specification because weak matches are
often premises of other annotation rules.

Annotating ψ0 → ε. An empty protocol receives only one annotation:

[ψ0 → ε]ψ0

This rule contains no premise. An empty protocol does not change the state,
therefore, the postcondition is anything that is true before the execution of the
protocol. In the case of the maximal postcondition, the only information that
we can derive is that the precondition must hold for the protocol to execute,
therefore, the maximal postcondition is the precondition ψ0.

Annotating ψ0
c.φm−−−→ ψ′

0. An atomic protocol receives only one annotation:

〈ψ0
c.φm−−−→ ψ′

0〉true → [ψ0
c.φm−−−→ ψ′

0](ψ
′
0 � φm � ∃vars(ψ′

0	φm)ψ0)

The premise of this rule insists that the protocol is executable. The maximal
postcondition of an atomic protocol ψ0

c.φm−−−→ ψ′
0 is the constraint that corre-

sponds to the ψ′
0�φm (the constraint that specifies the postcondition), conjoined

with the constraints on variables from the precondition ψ0 that have not been
changed by the protocol; that is, those that are not free in ψ′

0 or φm.

Annotating π1;π2. Two annotation rules are associated with sequentially
composed protocols:

[π1][π2]φ0 → [π1; π2]φ0

〈π1〉〈π2〉φ0 → 〈π1; π2〉φ0

148 T. Miller and P. McBurney

The first says that if, for every end state of π1, the maximal postcondition of
π2 is φ0, then the maximal postcondition of π1; π2 is also φ0. The second is
similar, but for the 〈〉 operator. Note that, as a result of the global annotation
rule specified in Section 4.2, an agent will also derive the annotation 〈π1; π2〉φ0
from [π1]〈π2〉φ0 or 〈π1〉[π2]φ0.

Recall from introduction to Section 4, goals must be constraints. Therefore,
annotations of the form [π1][π2]φ0 cannot occur. To derive the equivalent for
[π1][π2]φ0 (and similarly for 〈〉), one must derive the maximal postcondition of
π2 under the initial state that is the maximal postcondition of π1. That is, for
the annotation [π1]ψ0, derive the maximal postcondition for ψ0 → [π2]φ0. This
can be expressed as the following rule.

[π1]ψ0 ∧ (ψ0 → [π2]φ0) → [π1; π2]φ0

〈π1〉ψ0 ∧ (ψ0 → 〈π2〉φ0) → 〈π1; π2〉φ0

These rules are read differently to others, because it is unlikely that there will be
annotations ψ0 → [π2]φ0 or ψ0 → 〈π2〉φ0. In these cases, the rules are read that
if [π1]ψ0 (respectively 〈π1〉ψ0) is an annotation, and then calculate the maximal
postcondition, φ0, of π2 under the state ψ0. φ0 is then the maximal postcondition
of π1; π2.

Annotating π1 ∪ π2. Choice protocols are the most difficult to annotate be-
cause they offer more than one alternative, each with a maximal postcondition,
and our method must derive information that covers each of these. We propose
the following three rules, each which is straightforward to prove.

〈π1〉φ0 → 〈π1 ∪ π2〉φ0

〈π2〉φ0 → 〈π1 ∪ π2〉φ0

[π1]φ0 ∧ [π2]ψ0 → [π1 ∪ π2](φ0 ∨ ψ0)

However, the final rule above is not adequate as an annotation. Recall from the
start of this section, that we restrict the annotations to propositions of the form
[π]φ0, in which φ0 is a constraint. Constraint stores cannot hold negations or
disjunctions, and as a result, the application of this rule is non-trivial, and in
many cases, deriving the maximal postcondition is not possible.

Despite this, we can still derive some information that is useful. For example,
take the following choice protocol definition:

N =̂ x = 1
c.a(x)−−−−→ x = y � x ∈ [0..7] ∪

x = 1
c.b(x)−−−→ x
= y � x ∈ [3..10]

Despite the fact that these two postconditions are inconsistent with each other
(because one contains x = y and the other x
= y), we can still derive common in-
formation. The maximal postcondition is x ∈ [3..7], so we could derive the annota-
tion [N](x ∈ [3..7]) — that is, we know that x will be in the range [3..7] whichever
interaction is executed. Such an annotation could prove useful for an agent.

However, except for the most trivial cases (e.g. where φ0 ψ0 or ψ0
φ0), calculating this is beyond the means of any constraint solver known to the

Annotation and Matching of First-Class Agent Interaction Protocols 149

authors, because constraint solvers are not designed to find the most general
constraint store that is consistent with two unrelated, and possible inconsistent,
constraints.

To find a solution such as the one above, we propose an approach in which an
agent analyses different parts of the constraints. This does not necessarily find
the best solution, but it can derive a constraint that satisfies parts of both φ0
and ψ0.

To do this, we consider the variables in the two constraints. Clearly, any
maximal postcondition of a choice must only reference variables that are in both
φ0 and ψ0 — any variables in only one will not be constrained in the maximal
postcondition of the choice protocol. Therefore, what we aim to do is derive a
set of constraints, each of which is relevant to only a subset of the variables. For
example, if we take the two postconditions from above and hide y from both,
then the constraint ∃y(x = y � x ∈ [0..7]) � ∃y(x
= y � x ∈ [3..10]) is reduced to
the constraint x ∈ [3..7], which is the maximal postcondition relative to x, so we
can use this as an annotation. If we hide x instead, then the resulting constraint
is unsatisfiable, so this is not considered as an annotation.

In this example, we examine the variables in φ0 and ψ0, and look at constraints
that result from hiding some of these variables. It is not always useful to hide
only one variable, otherwise we lose information about the constraints between
variables. Instead, we hide different combinations of variables. To obtain the re-
lationships between all variables, one can take an approach that, for every set of
variables Z ⊂ vars(φ0)∩vars(ψ0), check if the constraint ∃Zφ0�∃Zψ0 is satisfi-
able — something which we hope is straightforward for any constraint solver to
check. If this is satisfiable, then we add the annotation [π1 ∪ π2](∃Zφ0 � ∃Zψ0).

We note that this approach is sound but not complete. That is, such an ap-
proach will always produce annotations that are correct, but they are not guar-
anteed to be annotations containing the maximal postcondition. For example,
take the following definition:

P =̂ x = 1
c.a(x)−−−−→ x = 1 ∪ x = 1

c.b(x)−−−→ x = 2

Here, either x = 1 or x = 2 will hold in the outcome. Therefore, the proposition
[P]x ∈ [1..2] is valid, but our annotation rules fail to derive this, because x =
1 � x = 2 is not satisfiable, and as a result, we derive only the annotations
〈P 〉x = 1 and 〈P 〉x = 2 (using the first two rules), even though the annotation
[P]x ∈ [1..2] is the annotation containing the maximal postcondition.

While this approach is sound and may prove useful, the approach for calculat-
ing it is somewhat undesirable, because for n variables, we have 2n− 1 different
combinations to check, and a worst case of 2n − 1 annotations. For a large n,
deriving annotations is costly, as is searching through annotations to match pro-
tocols. For large n, agents could selectively choose to calculate annotations based
on the variables in their current goals. That is, if they generally have goals that
related to certain variables in the system, then calculate only the annotations
for those variables.

150 T. Miller and P. McBurney

However, all is not lost for outcome derivations. Theorem 1 (Section 4.3)
shows that the final rule does not need to be applied to find a suitable protocol,
provided that the first two rules for choice protocols are applied. While not
necessary, applying the above rule may reduce the runtime complexity of finding
a suitable protocol. This is discussed further in Section 4.3.

Annotating varψ0
x ·π. Annotation of variable declarations is straightforward.

If the maximal postcondition of the sub-protocol π is φ0, then the maximal
postcondition of varψ0

x ·π is φ0 with the value of x constrained to the same value
as it is before execution. For this we introduce a new variable x0 and constrain
it to be equal to x. In the postcondition, we then constrain that x must be
equal to x0. We know that the constraints on x0 have not been changed by π
because it is a fresh variable and therefore not referenced in in π. Finally, the
variable x0 is hidden using the ∃ operator, because x0 is not part of the maximal
postcondition.

ψ0 → [π]φ0 → x = x0 → [varψ0
x ·π]∃x0(x = x0 � φ0)

In which x0 is fresh

Annotating π∗. To annotate an iterative protocol, we derive information from
the protocol that is iterated over. The first rules specifies that if a protocol π
achieves φ0 for all outcomes, then iterating it one or more times achieves φ0 as
well. The second rules specifies that if a protocol π achieves φ0 for at least one
outcome, then iterating zero or more times must also achieve φ0.

[π]φ0 → [π; π∗]φ0

〈π〉φ0 → 〈π∗〉φ0

In addition to the above, one can also annotate the protocol to specify the case
of zero iterations of the protocol. In such a case, the state of the protocol remains
unchanged.

The first rule above is perhaps perhaps the only annotation rule that does not
follow from its definition. However, the soundness of this rule is straightforward
to prove.

From the premise of the rule, we know that one iteration of π will result
in φ0. After that iteration, one of two properties hold: either φ0 entails the
precondition of π, or is does not. If the former, then π cannot iterate again,
because the precondition is not satisfied. Therefore, the postcondition must be
φ0. If the latter, then π can either terminate, leaving the postcondition as φ0,
or it can iterate again. If it iterates again, we know that the result will be φ0,
because φ0 holds for every outcome of π. Therefore, the resulting postcondition is
φ0. Applying this argument inductively, we see that the strongest postcondition
of π; π∗ is φ0.

Annotating N(x). To derive outcome annotations for name references, an
agent can simply derive the annotations for the protocol that the name refer-
ences. The downside to this is that for a recursively-defined protocol, an infinite
number of unfoldings will result. In other work, we are looking at ways to anno-
tate recursively-defined protocols.

Annotation and Matching of First-Class Agent Interaction Protocols 151

Annotating π1; (π2∪π3). Protocols of the form π1; (π2∪π3) (and (π1∪π2); π3)
are treated as special cases because they represent the merging or splitting of
interactions. Theories of business process modelling often refer to these as or-
splits and or-joins respectively, because they represent the splitting and joining
of single traces with multiple traces respectively.

We can derive important annotations from protocols of this format, mainly
those that annotate the outcomes achieved by the different interactions. This is
important because it gives agents additional information for choosing protocols
that achieve their goals, as well as choosing which interactions best achieve their
goal. The rules specified so far in this section fail to take into account these
special cases. We specify two annotation rules for protocols of this form.

〈π1; π2〉φ0 → 〈π1; (π2 ∪ π3)〉φ0

〈π1; π3〉φ0 → 〈π1; (π2 ∪ π3)〉φ0

These say that if the protocols π1; π2 or π1; π3 have at least one end state in
which φ0 is the maximal postcondition, then the composite protocol π1; (π2∪π3)
also has at least one end state such that φ0 holds. This is clear from the semantics
of 〈〉, and is provable by showing that π1; (π2∪π3) is equivalent to π1; π2∪π1; π3,
and using the annotation rules from Section 4.2.

Note that the annotations produced on the right hand side of the rules will be
derived from the rules for choice and sequential composition, but the annotations
in the premise will not. Therefore, these two rules exist solely to document that
one must annotate π1; π2 and π1; π3.

We also note that protocols of the form (π1 ∪ π2); π3 have similar annotation
rules, however, these should be clear to the reader, so they are omitted.

4.3 Using Derived Annotations

Agents use annotations to search for protocols that achieve their goals, and to
guide them through the execution of a protocol. In this section, we present a
method for determining whether an annotated protocol achieves a given goal.
The process of selecting a protocol, should there be more than one such match,
and the process of reasoning about interaction are more likely to be varied be-
tween different agent implementations, so they are not discussed here. However,
the process of matching protocols is more straightforward and likely to follow a
similar pattern between implementations.

If an agent has a goal, φG, then it must find a protocol that achieves φG. To
do this, it could either search through annotations of protocols until it finds a
protocol that satisfies its needs, or search through all protocols and then make
a choice if multiple protocols achieve its needs. In this section, we focus only on
the process of assessing whether a protocol achieves the goal — that is, matching
protocols — assuming that the annotations have been derived using the rules
from Section 4.2. This method is guaranteed to find a protocol, if one exists.

A First Attempt. For a goal φG and protocol π, take the annotations of π
and then perform the following:

152 T. Miller and P. McBurney

1. For every annotation of the format [π]φA, test φA φG; that is, test whether
the maximal postcondition satisfies the goal. If this entailment is successful,
and the initial state under which the protocol will be executed satisfies its
precondition, add π to the list of strong matching protocols.

2. If step 1 fails, for every annotation of the format 〈π〉φA, test φA φG. If this
entailment is successful, and the initial state under which the protocol will be
executed satisfies its precondition, add π to the list ofweak matching protocols.

This is a reasonable way to match protocols, however, it does not guarantee
that an agent will find a protocol that satisfies its goal, even if one exists. For
example, take a situation in which an agents goal is x = 1. We have an annotation
[π](x ∈ [1..5] � x = y), but the above process fails to match this because x ∈
[1..5] � x = y does not entail x = 1. However, it may be the case that one
end state satisfies x = 1, but because the annotations document only maximal
postconditions, there is no annotation such that x = 1.

Clearly, adding annotations for every possible postcondition is at best, ex-
pensive, and at worst, impossible. Instead, we add an extra step to the process
which is not expensive, and which guarantees that we find a matching protocol.

ACompleteApproach. A complete approach requires us to assess the maximal
postconditions in more detail. To do this, we perform an additional test for every
annotation, while still performing the naive approach. For a goal φG and protocol
π, take the annotations of [π]φA and 〈π〉φA and then perform the following:

1. Test whether φG and φA are consistent with each other; that is, φG � φA

false. If the goal and postcondition are consistent, then it may be that there
is an outcome stronger than the maximal postcondition that satisfies our
goal, as in the example above. If not, then π can never achieve the goal φG,
so do not continue.

2. If step 1 succeeds, attempt to prove ψI → [π]φG, in which ψI is the initial
state in which the protocol will be executed. If this is provable, add π to the
list of strong matching protocols.

3. If step 1 succeeds and step 2 fails, attempt to prove ψI → 〈π〉φG, in which ψI

is the initial state in which the protocol will be executed. If this is provable,
add π to the list of weak matching protocols.

Using our example above, if an agent has a protocol with the maximal postcon-
dition x ∈ [1..5], and a goal x = 1, then it can calculate in a straightforward
manner that x = 1 is consistent with x ∈ [1..5]. From here, it tries to prove if it
is possible that x = 1 in all outcomes of the protocol: [π]x = 1. If this holds, then
its possible for the agent to achieve its goals with this protocol. If not, the it
tries to prove 〈π〉x = 1. The steps of proving [π]x = 1 (and 〈π〉x = 1) are in fact
necessary, because it may be possible that the goal and maximal postconditions
are consistent, but that the goal is not achieved by the protocol. For example,
consider a case in which x ∈ [1..5] is also the only constraint that holds for x in
all outcomes of a protocol:

N =̂ x = 0
c.a(y)−−−−→ y = 1 � x ∈ [1..5]

Annotation and Matching of First-Class Agent Interaction Protocols 153

Here, because the sender cannot constrain the value of x (it not being part of the
message), the only postcondition is y = 1 � x ∈ [1..5], so x = 1 is not achieved.
However, consider the following alternate protocol, in which y = 1 is replaced
with y = x in the postcondition:

N =̂ x = 0
c.a(y)−−−−→ y = x � x ∈ [1..5]

An agent can constrain the value of x , and therefore x = 1 is a possible end
state, and 〈N〉x = 1 could be proved.

We also note that attempting the proof [π]φG is beneficial, rather than only
proving 〈π〉φG. That is, it is possible that φA
 φG, but that all outcomes hold
for φG, which may initially seem counter-intuitive. This is best demonstrated
with the following example:

P =̂ x = 1
c.a(x)−−−−→ x = 1 ∪ x = 1

c.b(x)−−−→ x = 2

Here, either x = 1 or x = 2 will hold in the outcome. Therefore, the proposition
[P]x ∈ [1..2] is valid, but, as discussed in Section 4.2, our annotation rules fail to
derive this. As a result, the goal x ∈ [1..2] would not be matched, but the proof
[P]x ∈ [1..2] would succeed.

Although the approach outlined in this section requires a proof to be per-
formed at runtime, similar to the matching-via-proof method described in
Section 4, checking whether or not the goal is consistent with the maximal
postcondition before attempting the proof would eliminate the need to do these
proofs for many protocols. This is advantageous because proofs in the dynamic
logic are more computationally expensive than the matching rules, especially for
large protocols.

Theorem 1. This annotation and matching method is sound and complete.

Proof. To prove this theorem, we need to demonstrate that any matched protocol
achieves the goal, and that only protocols that achieve the goal are matched.

Soundness is straightforward to prove. For a goal φG, and annotations [π]φA

and 〈π〉φA, a match is noted when at least one of the following two conditions
hold:

1. φA φG; or
2. φG � φA
 false and [π]φG (respectively 〈π〉φG).

Part (1) is trivially sound from modus ponens and the modal logic inference rule
of necessitation; Part (2) is trivially sound from [π]φG (or 〈π〉φG). Additionally,
annotations are added using the rules from Section 4.2, which are valid theorems
of our logic. Therefore, the method is sound.

Completeness is less straightforward to prove. For completeness, we must
prove that, for any true formula [π]φG (or 〈π〉φG), the rules defined in Section 4.2
will produce an annotation [π]φA (respectively 〈π〉φA), such that either:

1. φA φG; or
2. φG � φA
 false and [π]φG (respectively 〈π〉φG).

154 T. Miller and P. McBurney

This is proved via reductio ad absurdum. It is trivially valid that every valid pro-
tocol receives an annotation, and from the soundness proof, we know that each
annotation is correct, therefore, we know there is a correct annotation 〈π〉φA.
We prove this only for the case of 〈π〉φA, because from the global annotation
rule, this will also be valid for [π]φA, for executable π.

If our method is incomplete, then there exists φG such that 〈π〉φG holds, but
that:

1. φA
 φG; and
2. φG � φA false or ¬〈π〉φG.

That is, π is not matched as achieving φG, despite the fact that it is a valid
postcondition. It suffices to prove that item 2 above is a contradiction. Firstly,
¬〈π〉φG contradicts the assumption that φG is a valid postcondition.

Secondly, if φA is the maximal postcondition of at least one interaction in π,
then it must be that any postcondition of that interaction is consistent with φA.
It holds trivially from the annotation rules that every interaction in a protocol
receives an annotation, therefore, it cannot be that each annotation on π is
inconsistent with φG if φG is a valid postcondition.

If φA is not the maximal postcondition (recall from Section 4.2 that the fi-
nal annotation rule for choice protocols does not necessarily derive the maximal
postcondition), then it may be that the case that an annotation on φA is incon-
sistent with the goal φG. However, the third rule from Section 4.2 is not necessary
for completeness, because the first two rules cover such a case: if 〈π1 ∪ π2〉φG is
true, then is must be that 〈π1〉φG or 〈π2〉φG, one of which will be derived from
the first two rules. Therefore, the other annotations rules defined in Section 4.2
will have annotated π1 ∪ π2 with their maximal postconditions, one of which
must be consistent with φG, and therefore the protocol will be matched.

��
From this, we see that the final annotation rule defined in Section 4.2 is redun-
dant. However, it may be useful because in some cases, it can prevent an agent
from having to discharge proofs for propositions [π]φG and 〈π〉φG. Whether the
rule is used would clearly be a policy of individual agents. Such a decision is
specific to the strategy of the agents, not the protocol itself, and therefore it is
out of scope of this paper.

5 Annotating and Matching Pre/Postcondition Models

When using our framework, we often specify protocols as pre/postcondition mod-
els; that is, models that specify a relationship between pre-states and post-states
of protocols. The semantics of atomic protocols (and therefore compound proto-
cols) does not support specifying postconditions as a relation with the pre-state.
For example, consider a case in which we want to increment the integer value
of a variable, x. The only way to specify this is to specify that the value of x
is 1 greater than before the message was sent, which is not possible using an
atomic protocol; the postcondition merely represents a constraint between state

Annotation and Matching of First-Class Agent Interaction Protocols 155

variables,with no way of referencing pre-state values. However, we use the vari-
able declaration operator to simulate this behaviour:

N =̂ varx0=x
x0

·x < 10
c.a(x)−−−−→ x = x0 + 1

Recall that the constraints placed on a locally declared variable are maintained
throughout its entire scope. Therefore, the constraints on x0 in the postcondition
are that it equals the constraints on x in the pre-state. If we were to execute
this message sending in the state x = 1, then the postcondition would resolve
to the following: ∃x(x = 1 � x0 = x) � x = x0 + 1. The only solution for this
is x0 = 1 � x = 2. The scope of the variable x0 would end, and the post-state
would be x = 2.

Annotating protocols using the rules in Section 4.2 would annotate this cor-
rectly, however, we would lose all information about the relationship between the
pre-state and post-state. That is, we would have an annotation [π]x < 11, which
contains no information about the relationship between the pre-state and x < 11.
To preserve this relationship, we propose annotating such variable declarations
in a different manner.

This new approach to annotation requires us to explicitly consider the pre-
state in the annotation rules. If we label our pre-state as ψ0, then rule is as
follows:

x0 = x ∧ ψ0 → [π]φA → [varx0=x
x0

·π]∃x0(∃x(ψ0 � x0 = x) � φA)

in which vars(φA) = x ∪ x0. Therefore, this rule says that if φA is the maximal
postcondition of π, then the maximal postcondition of the variable declaration
protocol, under the initial state ψ0, is calculated by assigning the pre-state oc-
currences of each variable x to a local variable x0, and hiding this pre-state
occurrence. Conjoin this with the postcondition, which specifies the relationship
between each x and its pre-state counterpart, x0. Finally, the local variables are
hidden, because they are out of scope. When the agent reads this annotation, it
substitutes in the initial state for ψ0, giving it the postcondition.

As an example, take the protocol from above that increments a variable x.
The annotation would be the following:

[varx0=x
x0

·π]∃x0(∃x(ψ0 � x0 = x) � x = x0 + 1).

Substituting in the current state, for example, x = 1, will result in the constraint

∃x0(∃x(x = 1 � x0 = x) � x = x0 + 1)

which simplifies to ∃x0(x0 = 1 � x = x0 + 1), which in turn, simplifies to x = 2.
We note that the above annotation is in fact meta-level, because ψ0 in this case

is a variable in the annotation, rather than just a meta-variable used to represent
a constraint. Substituting in the current state for ψ0 will give us the precondi-
tion/postcondition annotation. Unless the constraint solver supports constraints
as variables, this substitution must be done before asking the constraint solver
to provide a solution.

This approach overcomes many weaknesses of the previous approaches: it does
not require the agent to perform entire proofs, therefore reducing the overhead of

156 T. Miller and P. McBurney

the matching-via-proof method from Section 4; and it is not a general annotation,
overcoming the problem of having to perform dynamic logic proofs if the goal
entails the end state of the annotation, as described in Section 4.2. The obvious
disadvantage to using this approach is that it is restricted only to protocols that
are modelled using the precondition/postcondition approach.

6 Related Work

There are various aspects of related literature for this work. What we do not
consider closely related are approaches using modal and dynamic logic for pro-
tocol specification, such as the work performed by Giordano et al. [5] and Brak
et al. [1]. Their aim is to specific protocols using dynamic and modal logics,
whereas our protocols are specified using the RASA language, and PDL is used
to reason about the protocols.

Several authors have investigated the idea of executable protocol specifica-
tions. McGinnis and Miller [8] summarise and compare the work in this field.

As far as the authors are aware, there has been no investigation into the
annotation or matching of protocols to date. Temporal projection, the process
of calculating the outcome of given plan (or, more generally, the outcome of a
sequence of actions), carries many of the same goals as our work. Much work has
been done on temporal project using modal logic, such as early work by Hanks
and McDermott [6], to more recent work, such as that by Predinger and Schurz
[12]. Existing work on temporal projection is not complete for our purposes,
because RASA protocols contain branching; plans are generally assumed to be
single sequences of actions. Also, our work differs because we aim to annotate
a program with its maximal postcondition, which will hold when executed from
any state, whereas planners take into consideration only the current state of
their system.

Our concept of protocol libraries is similar to plan libraries, such as those
found in many BDI and goal-oriented agent framework, such the Procedural
Reasoning System [4]. However, plan postconditions are typically specified man-
ually, rather than calculated, and matching is performed by unifying the post-
condition with the goal, which is different to our approach of matching, due to
us using constraint languages rather than logical languages, and using maximal
postconditions.

Clement and Durfee [2] present a method for summarising precondition and
postconditions of hierarchical task network (HTN) plans. However, they consider
only plans with branching, interleaving, and sequencing, and do not discuss
summarising iterative or recursive plans.

Specification matching for component-based software engineering has been ex-
plored in the past, such as in [13]. Motivation for specification matching is simi-
lar to our motivation for protocol matching: to find a component that satisfies a
specification. These approaches are considerably different to ours. They consider
only pre- and postcondition models, and as a result, they do not consider cases
in which the goal specification (the equivalent of an agent’s goal) is stronger than
the postcondition. This is not necessary in pre- and postcondition models.

Annotation and Matching of First-Class Agent Interaction Protocols 157

7 Discussion and Other Work

In this paper, we have presented three methods for annotating and matching
first-class protocols specified in RASA. Each of these methods has advantages
and disadvantages. The method that we believe is the most useful involves anno-
tating a protocol with its maximal postcondition, and then using these annota-
tions to match the protocols that an agent will test at runtime to find a protocol
that achieves a given goal.

In related work, we are investigating how protocol libraries can be stored and
searched for efficient protocol matching, as well as how to annotate recursively-
defined protocols. An implementation of the annotation rules in this paper is also
under development. We are also investigating several other interesting aspects
of first-class protocols, such as runtime composition of protocols, which would
permit agents to compose new protocols if no protocol can be found that achieves
a certain goal. In future work, we plan to assess other techniques for protocol
annotation and matching, such as analysing properties other than outcomes, for
example, the number of participants.

Acknowledgements

The authors are grateful for financial support from the EC-funded PIPS project
(EC-FP6-IST-507019), the EC-funded ASPIC project (IST-FPC-002307), and
the EPSRC Market-Based Control project (GR/T10657/01).

References

1. Brak, R.L., Fleuriot, J.D., McGinnis, J.: Theorem proving for protocol languages.
In: Proceedings of the European Union Multiagent Systems Workshop (2004)

2. Clement, B., Durfee, E.: Theory for coordinating concurrent hierarchical plan-
ning agents using summary information. In: Proceedings of the Sixteenth National
Conference on Artificial Intelligence and the Eleventh Innovative Applications of
Artificial Intelligence Conference, pp. 495–502. AAAI, Menlo Park (1999)

3. De Boer, F.S., Gabbrielli, M., Marchiori, E., Palamidessi, C.: Proving concurrent
constraint programs correct. ACM Transactions on Programming Languages and
Systems 19(5), 685–725 (1997)

4. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proc. of the 6th
National Conference on Artificial Intelligence, pp. 677–682 (1987)

5. Giordano, L., Martelli, A., Schwind, C.: Specialization of interaction protocols in
a temporal action logic. Electronic Notes on Theoetical Computer Science 157(4),
3–22 (2006)

6. Hanks, S., McDermott, D.: Nonmonotonic logic and temporal projection. Artificial
Intelligence 33(3), 379–412 (1987)

7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
8. McGinnis, J., Miller, T.: Amongst first-class protocols. In: Artikis, A., O’Hare,

G.M.P., Stathis, K., Vouros, G. (eds.) ESAW 2007. LNCS, vol. 4995, Springer,
Heidelberg (2008)

158 T. Miller and P. McBurney

9. Miller, T., McBurney, P.: Executable logic for reasoning and annotation of first-
class agent interaction protocols. TR ULCS-07-015, University of Liverpool, Dept
of Computer Science (2007)

10. Miller, T., McBurney, P.: Using constraints and process algebra for specification of
first-class agent interaction protocols. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 245–264. Springer,
Heidelberg (2007)

11. Miller, T., McBurney, P.: On illegal composition of first-class agent interaction
protocols. In: Dobbie, G., Mans, B. (eds.) Thirty-First Australasian Computer
Science Conference. CRPIT, vol. 74, pp. 127–136. Australian Computer Society
(2008)

12. Prendinger, H., Schurz, G.: Reasoning about action and change: A dynamic logic
approach. Journal of Logic, Language, and Information 5(2), 209–245 (1996)

13. Zaremski, A., Wing, J.: Specification matching of software components. ACM
Transactions on Software Engineering and Methodology 6(4), 333–369 (1997)

Part III

Strategic and Pragmatic Issues

Argumentation- vs. Proposal-Based Negotiation:
An Empirical Case Study on the Basis of

Game-Theoretic Solution Concepts

Angelika Först1, Achim Rettinger1, and Matthias Nickles2

1 Department of Informatics
Technische Universität München

85748 Garching, Germany
angelika.foerst@gmail.com,

rettinger@cs.tum.edu
2 Department of Computer Science

University of Bath
Bath BA2 7AY, UK

m.l.nickles@bath.ac.uk

Abstract. Recently, argumentation-based negotiation has been proposed as an
alternative to classical mechanism design. The main advantage of argumentation-
based negotiation is that it allows agents to exchange complex justification posi-
tions rather than just simple proposals. Its proponents maintain that this property
of argumentation protocols can lead to faster and beneficial agreements when
used for complex multiagent negotiation. In this paper, we present an empirical
comparison of argumentation-based negotiation to proposal-based negotiation in
a strategic two-player scenario. We apply a game-theoretic solution as a bench-
mark, which requires full knowledge of the stage games. Our experiments show
that in fact the argumentation-based approach outperforms the proposal-based
approach with respect to the quality of the agreements found and the overall time
to agreement.

1 Introduction

Integration of individual entities into complex, open, and heterogeneous systems like
the internet and peer-to-peer networks is ubiquitous. The potential of these systems is
grounded in the interaction between their parts. Since they are often heterogeneous,
interacting autonomous and intelligent agents [13] tend to have conflicting interests,
but often they still can profit from coordinating their actions with other agents or even
cooperating with each other. Hence, coordination techniques and mechanisms rapidly
gain importance in the field of distributed artificial intelligence. Central to the concept
of intelligent agents is their capability to reason about themselves and their environ-
ment. This aspect is usually not exploited by game-theoretic approaches [11] to au-
tomated negotiation and thus these approaches often lack flexibility. In recent years,
argumentation-based negotiation [2] has been suggested as an approach to negotiation.
It takes advantage of the abilities of intelligent agents to reason about rich interaction
scenarios where complex justification positions (and not just simple proposals) can be

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 161–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

162 A. Först, A. Rettinger, and M. Nickles

exchanged [8,9]. Therefore this approach is currently enjoying increasing popularity in
the field of negotiation research. However, until today, only very few approaches exist
in which the performance of argumentation-based negotiating agents, bargaining agents
and game-theoretic solution concepts can actually be compared in a specific scenario.

The problem definition of this paper is driven mainly by two aspects: Firstly, many
negotiation settings are well-researched and have been analysed using game-theoretic
techniques. The merits are that optimal negotiation mechanisms and strategies can be
provided for a broad range of problems, which are also used in real-world scenarios, e.g.
auctions. But then, the applicability of such solutions is often restricted to specific situ-
ations. Secondly, the emerging field of argumentation-based negotiation endeavours to
overcome some of the fundamental limitations of the game-theoretic approach, notably
partial knowledge, inconsistent beliefs and bounded rationality. Substantial work has
been done in this field, and a number of implementations have been realised (see [5] for
recent theoretical and software approaches to argumentation-based negotiation). How-
ever, until today, very little work exists in which different approaches are implemented
and the performance of argumentation-based negotiating agents, bargaining agents and
game-theoretic solution concepts can actually be compared in a specific scenario. The
objective of this paper is to examine the benefits of different types of negotiation in a
complex and stochastic environment in which agents only dispose of partial, incomplete
knowledge. For this purpose, a negotiation framework is implemented, together with
negotiating agents using different negotiation mechanisms. The performance of our so-
lution concepts is evaluated empirically by benchmarking their performance against a
provably optimal solution borrowed from game theory that requires complete and fully
observable information.

Our evaluation shows that the different negotiation mechanisms that were tests can
be clearly ranked with respect to their performance. The upper benchmark is set by the
employment of a game theoretic mediator with complete knowledge who discharges
the agents from negotiation by computing the optimal outcome for them. If agents are
bound to negotiate under incomplete knowledge, the argumentation-based approach is
clearly favourable to bargaining with respect to a number of evaluation criteria.

This paper is structured as follows: In the next section we introduce the environment
within which the negotiating agents are situated. In Section 3 we present our solution
concepts in an abstract form. The verification of our working hypothesis was conducted
through extensive empirical evaluation - Section 4 is dedicated to the presentation of the
experimental setup, the main experimental results, and an interpretation of our findings.
Section 5 concludes with a summary and suggestions for future work on the topic.

2 The Testbed

In the following, we describe the testbed used for the subsequent evaluation and com-
parison task. Our testbed is designed in a way that makes the negotiation scenario
complex enough to draw meaningful conclusions while keeping the negotiation pro-
cesses comprehensible and analyzable. In game theoretic terms our scenario is based
on the most general framework of games, namely general sum stochastic games [6,12].
In our case players additionally have to deal with incomplete and partially observable

Argumentation- vs. Proposal-Based Negotiation 163

information - as possessions of other players are not public - making it difficult to apply
game theoretic solutions.

The scenario the agents are situated in is a production game. All players receive
different kinds of resources. Each player tries to collect a certain number of resources
of one type at a time to assemble products. By selling their products agents earn game
points. The functionality of a player’s resource store is equivalent to that of a FIFO
(First In, First Out) queue. Hence, elements are added to one end of the queue (the tail),
and taken off from the other (the head). The production unit however resembles a stack
based on the LIFO (Last In, First Out) principle. Elements are added and removed only
on one end. Thus, the game is called Queue-Stack-Game. One additional behaviour
applies to the production units of this game. They can hold only one type of resources
at a time and loose their previous content if new elements of a non-matching resource
type are added.

Each round, every player is assigned a sequence of new resources, which are uni-
formly drawn from the available resource types. These elements are added in sequence
to the tail of the queue. Next, a number of resources is taken off the head of the queue
and added to the stack. As a consequence, the previous content of the stack might be
lost if any of the new resources is of a non-matching type. To avoid this waste, play-
ers can negotiate with their peers and offer to give away resources from their queues.
In doing so, they might be able to create sequences of identically typed resources of a
certain length and thereby succeed in the game.

The following section describes the rules and phases of the Queue-Stack-Game in
detail.

2.1 Production

There are a number of game parameters and restrictions that apply to the production
process of the Queue-Stack-Game, which are listed here:

– Each agent can produce only one product at a time
– A product consists of a number of identically typed resources, this number being a

game parameter, namely stackCapacity
– The types of resources and the order in which they are allocated to the producers

are random. The number of resources each player receives per round is fixed though
and is a parameter of the game, namely getPerRound

– The incoming sequence of resources cannot be altered by the agent before being
added to the queue

– Each player is forced to input pushPerRound resources from the head of his queue
into the production unit in each round

– If the type of any newly input resource does not match the type of the product being
currently assembled, this product is spoiled and thrown away

– The players are admitted to remove elements of any types from their queue in order
to give them to one of their fellow players

– If a player receives resources, he is allowed to arrange them in the desired order
before they are immediately fed into the production unit

164 A. Först, A. Rettinger, and M. Nickles

1

1

1

0

1

1

1

1

1

1

00

0

1

1

1

0 0

0 0

0

0

1

1

0

0

1

0

1

1
1. 2.

3. 4.

Fig. 1. Examples illustrating the behaviour of a player’s stack when additional resources are
pushed

2.2 Allocation

Each round is divided into two phases, namely allocation and negotiation. In the allo-
cation phase, getPerRound new random resources are enqueued in all players’ resource
stores. The resources allocated to the different players are independently generated.
Subsequently, each agent is forced to remove the pushPerRound-first elements from
the head of his queue and to push them onto the stack, maintaining their ordering. If
the production unit already contains some elements and their type does not match the
newly pushed resources, the old contents of the stack are wasted. Figure 1 illustrates
four examples of feeding resources into the stack.

The examples show the state of the stack before and after new resources have been
pushed. We assume two different types of resources, 0 and 1. The number of game
points owned in the current situation is shown underneath each stack. In situation (1)
all elements of the stack are discarded when the 0 token is pushed, as the types do not
match. The 0 token itself is also thrown away, when the next resource, a 1 token is
pushed. In situation (2), the player has more luck. The two resources pushed complete
the product, which the player can sell and thus is rewarded. The production unit is empty
now, ready to accept new resources of any type. Situation (3) shows how resources are
added to an empty stack. In example (4) the first of the pushed resources completes the
stack, the player sells the completed product, earns a reward and the stack is emptied
before the next resource is pushed.

Argumentation- vs. Proposal-Based Negotiation 165

2.3 Generating Possible Worlds

We will now formalise the notion of a state in the Queue-Stack-Game and outline the
process of generating a set of possible worlds with respect to a particular state. A state
sc contains the following elements:

– The condition of the queue after resources have been removed, referred to as queue
(sc)

– the condition of the stack after transfer received from another player has been
pushed, referred to as stack (sc),

– the number of rewards, rewards(sc),
– the set of resources received from another player, get(sc),
– the set of resources removed from the queue in order to be transferred to the other

player, give(sc),
– noWaste(sc), a flag indicating whether elements of the stack were wasted when

get(sc) was pushed,
– earnedReward(sc) a flag being set to 1 if a reward was earned when pushing

get(sc) or 0 otherwise.

The queue of a state sc can be generated by removing each possible subset of resources
from the previous queue queue(sc−1). The removed resources are give(s). Which re-
sources can be received from other players is not known to the agent, as he has no
insight into his opponents’ resource situation. So all possible combinations of resource
types up to an arbitrary total amount are considered. As the resources can be pushed in
any order, get(sc) is generated for each permutation of the received transfer. stack(sc)
is the resulting stack, after get(sc) has been pushed. rewards(sc) is the number of re-
wards the agent possesses afterwards. noWaste(sc) and earnedReward(sc) are needed
when calculating the utility for a state.

The deal that produced a state is implicit to the state. When we speak of the utility
of a deal, we mean the utility of the state which results from execution of the deal.

2.4 Evaluating Possible Worlds – the Utility Function

We now need a numerical utility function which measures the quality of a state. A utility
function u maps a state or a sequence of states to a real number [10]. The following
criteria could be used to describe a “good” queue.

1. The more resources the agent possesses, the better.
2. Blocks of identically typed resources contained in the queue should be of maximum

length; ideally, the length is a multiple of the number of resources needed to earn a
reward.

3. Preferably, no elements of the stack should be wasted when resources are pushed.
4. Resources at the head of the queue which are to be pushed in the next round should

carry more weight than resources at the back end of the queue.
5. As few resources as possible should be given to other players.
6. As many resources as possible should be received.

166 A. Först, A. Rettinger, and M. Nickles

Equation 1 captures criteria 1 and 2. It computes the base utility for a state s. In any
sequence of resources, each element is either of type 0 or 1, or white and black, re-
spectively. Single elements of identical type are indistinguishable. Resource sequences
can thus be represented as a sequence of blocks containing identically typed resources.
bi(r) is taken to denote the ith block of a sequence r. amount(bi(r)) is the number of
resources bi(r) contains and type(bi(r)) denotes the type of resources in block bi(r). k
denotes the number of blocks in r. stackCapacity is the capacity of the stack, in other
words, the number of resources required to obtain one unit of reward. The sequence
of all resources that a player possesses is the concatenation of his stack and queue.
Concatenation is represented by the “|” operator.

baseUtility(s) =
1
k

k∑
i=0

amount(bk(stack(s)|queue(s)))
stackCapacity

Each block is considered as a fraction of a complete stack. stackCapacity resources in
a row are equivalent to one unit of reward. The equation computes the average reward
that can be achieved.

Next, we will describe the course of one round of the Queue-Stack-Game. Each
round is divided into two phases, namely allocation and negotiation. In the allocation
phase, getPerRound new random resources are enqueued in all players’ resource stores.
The resources allocated to the different players are independently generated. Subse-
quently, each agent is forced to remove the pushPerRound-first elements from the head
of his queue and to push them onto the stack, maintaining their ordering. For details on
the allocation phase please see Appendix 2.2.

Having completed the allocation phase, the players enter the negotiation phase. The
outcome of a successful negotiation is a deal, describing which sets of resources are to
be exchanged between players. Hence, the agents engage in practical reasoning. The
exchange of resources is the only means for agents to take action during the game. If a
player chooses not to negotiate or not to agree to any deal proposed to him, his succeed-
ing in the game entirely depends on the random resource sequence he is allocated. If
players cannot find an agreement, the default deal is forced. The default deal entails no
actions of the players, thus the resource situation of all players remains unchanged. The
available locutions are propose, reject, accept and inform. The negotiation protocol, i.e.
the communication rules are defined as follows:

1. The negotiation terminates immediately after an acceptance message is uttered by
one of the participants.

2. The negotiation terminates with the default deal if a player quits the negotiation.
3. The players take turns in proposing deals. If a player cannot propose a new deal, he

is forced either to accept a previously offered deal or to quit the negotiation.
4. All deals offered during the negotiation can be accepted at any point in time later

on as long as they have not been rejected.
5. A counterproposal can be preceded by a critique and a rejection.

This protocol entails that agents have to receive up to three messages (inform, reject,
propose) until they are allowed to respond.

Argumentation- vs. Proposal-Based Negotiation 167

After the outcome of the negotiation is set, the deal is executed. The resources each
player receives from fellow players are pushed onto the stack, whereby the player him-
self can dictate the order in which they are to be pushed. Eventually, the players are
rewarded if they were able to complete their stack and thus sold a product.

3 Three Approaches to the Game

3.1 Employing a Mediator

Our first approach to designing successful players involves the consultation of a trusted
mediator. We assume the mediator does not take part in the game and is unbiased to-
wards any of the players. The players truthfully reveal their resource situation and their
utility function to the mediator. The mediator has thus perfect information of the play-
ers’ private states. Using this knowledge, all possible offers per player can be computed.
Here, offer refers to a subset of the queue which the owner offers to give to an fellow
player. The space of all possible deals is thus the Cartesian product of each player’s
offer vector. Through the utility function each player assigns a utility value to each pos-
sible deal. By knowing the utility functions, the mediator can compute these values per
deal and player.

The next task is to determine the optimal deal for both agents. We adapt the axioms
of the Nash Bargaining Solution [7] to define optimality: Pareto efficiency (there is no
other deal which improves the payoff of at least one agent without another agent being
worse off), Invariance (utility functions only represent preferences over outcomes, the
actual cardinalities of the utilities do not matter), Independence of irrelevant alterna-
tives (if outcome o is the solution and other outcomes o′
= o are removed from the set of
all possible outcomes, o still remains the solution) and Symmetry (the optimal solution
remains the same as long as the set of utility functions is the same. Which player has
which utility function does not influence the outcome.) According to the Nash Bargain-
ing Solution, the optimal deal o∗ is the deal that maximises the product of the players’
utilities. Formally:

o∗ = argmax
o

[(u1(o)− u1(odefault))× (u2(o) − u2(odefault))]

where n is the number of players and ui(o′) is the utility which player i assigns to deal
o′. The mediator chooses the deal from the set of all generated deals that satisfies this
equation. He then proposes this deal to the players, whom we assume to accept.

The advantage of the mediator approach is obvious. The outcome is guaranteed to be
Pareto efficient. Hence, it is impossible to find a deal where both players are better off.
The Nash Bargaining Solution respects each player’s interests as far as possible without
being biased towards any particular player, and promotes fairness. This approach has
some shortcomings though, which limit its practicability. First of all, it requires the ex-
istence of a mediator whom the players trust, so they will reveal their utility functions
and their resource situation. If the players are concerned with privacy issues in gen-
eral and if they do not trust the meditator they might not agree to collaborate with that

168 A. Först, A. Rettinger, and M. Nickles

mediator. Furthermore, they might not be content with the solution found, because there
are deals with which the individual would be better off. The individual players are not
necessarily interested in maximising the social welfare [4] but are only concerned with
maximising their own profit. Additionally, the realisation of a mediator can be very
complex and inefficient in real world scenarios.

The mediator will serve as a benchmark to which we compare the negotiation out-
comes achieved by the argumentation-based agent described in the following sections.

3.2 Proposal- and Argumentation-Based Negotiating Agents

In this section we describe two designs of agents, both capable to negotiate by exchang-
ing proposals with negotiation partners. While the proposal-based negotiating agent’s
abilities are restricted to the exchange of proposals, the argumentation-based negoti-
ating (ABN) agent can use arguments to justify his negotiation stance and to critique
proposals he has received from fellow players. Arguments can be arbitrary logical for-
mulae with literals taken from a given vocabulary.

Algorithm 1. Negotiation strategy
1: receive δj,r

2: δi,r+1 ← bestDealPossible()
3: δj,best ← bestDealReceived()
4: if δi,r+1 = ⊥ then
5: if utility(δi,default) ≥ utility(δj,best) then
6: ACCEPT δi,default

7: else
8: ACCEPT δj,best

9: end if
10: else
11: if utility(δi,r+1) < utility(δj,best) then
12: ACCEPT δj,best

13: else
14: allArguments[] ← generateArguments(δj,r)
15: if allArguments[] �=⊥ then
16: argument ← selectBestArgument(allArguments[])
17: INFORM argument
18: end if
19: if utility(δi,r) < utility(δj,best) then
20: REJECT δj,r

21: end if
22: PROPOSE δi,r+1

23: end if
24: end if

Agent Architecture Overview. The architecture of our argumentation-based agent fol-
lows the abstract architecture described in [8]. All incoming proposals are stored in a
Proposal Database. If arguments are employed, these are stored as well. As a model of
his environment, the agent maintains a set of possible worlds to which he will possibly

Argumentation- vs. Proposal-Based Negotiation 169

agree. This set is continuously adapted during negotiation, i.e. possible worlds are re-
moved after arguments or rejections of his proposals have been received and evaluated.
According to his negotiation strategy, the agent then decides whether to accept or reject
the last proposal. The ABN agent can then generate different types of arguments [3],
in our case either a critique or a justification to inform his opponent why he is not in-
clined to accept the proposal. Of all generated arguments one is selected which will be
uttered as a response. According to the adapted negotiation protocol (see Section 2.4),
the agent cannot reply to every message received, but is bound to wait until he receives
a proposal. So, not every incoming locution triggers an outgoing locution. The next
sections describe the main components of the agent architecture in detail.

The Negotiation Strategy. In this section, we describe the negotiation strategy both
our agents pursue. Each agent generates a set of possible deals which he will propose
to his opponent one after another, starting with the deal with highest utility, followed
by deals with descending utility. This ensures that the opponent knows all deals which
would yield higher utility for the proposing agent, before being given the chance to ac-
cept a new deal. On the other hand, an agent waits until he is not able to make a proposal
with higher utility himself before he accepts a deal. Thus, the use of this strategy aims
to maximise the utility of the outcome for both players. Algorithm 1 shows the strategy
of an agent using arguments in pseudo-code notation. Removing lines 14 to 18 yields
the strategy of our proposal-based agent, who simply accepts or rejects deals without
criticising them. Algorithm 1 is executed by the agents in every round of the game to
determine the next locutions in the negotiation.

Deals received from the negotiation partner carry a j subscript, own proposals an i
subscript. After agent j has offered deal δj,r to agent i in round r, agent i computes the
best deal he is able to propose δi,r+1 as a counterproposal (line 2). This is the deal with
the highest utility based on the current resource situation, which has not been offered
yet. Additionally, the deal with highest utility of all deals received from agent j in ear-
lier rounds (δj,best) is determined (line 3). If no proposable deal could be found agent
i terminates negotiation. Either by accepting δj,best if executing this deal improves the
utility compared to the current situation in round r or by accepting the default deal
and thus leaving the resource situation unchanged. If the best proposable deal δi,r+1
has lower utility than the best deal received already δj,best, agent i accepts this δj,best.
Otherwise, the agent has incentive to pursue negotiation and proposes the best deal
possible δi,r+1 (line 22). Furthermore the agent will reject the latest offer if it is not
the deal with highest utility of all offers received so far (lines 19 to 20). Lines 14 to
17 show the generation of all possible arguments concerning the latest offer and se-
lection of the best argument which is then uttered before making the counterproposal
δi,r+1.

In summary, it can be stated that the agent will accept the deal with the highest utility
of all deals he was offered (bestDealReceived) when all deals left to propose have lower
utility. He will withdraw from the negotiation and thus accept the default deal if he
cannot make any more proposals, but has not received any offer whose utility exceeds
that of the current situation. An explicit reject is stated with respect to the current offer
if there is already another offer with higher utility.

170 A. Först, A. Rettinger, and M. Nickles

Generating and Selecting Arguments. Next, we explain how argument generation
(line 14, “generateArguments”) and argument selection (line 16, “selectBestArgument”)
is managed.

The negotiation language we designed contains just two basic elements. On the one
hand, the statement quit negotiation(agent), which an agent utters if he stops nego-
tiating. On the other hand, give(a, b, r, t) where a and b are agents, r is an amount of
resources and t denotes a round of the game. The semantics of this statement is that
agent a gives the resources r to agent b in round t. By combining statements using
logical connectives, it is possible to create complex expressions with varying meaning.
A deal, as it describes the exchange of resources between two players, consists of the
conjunction of two statements:

give(a, b, r1, t) ∧ give(b, a, r2, t)

Arguments can serve two purposes in our approach: justification (“I cannot provide
you with six white resources in the current round 13, because I only have four”) or
critique (“I reject your offer to give me four whites in exchange for three blacks in the
current round 7, because I do not want to get four whites at all”). Each proposal is
hence examined as to whether it contains one or more actions which either cannot be
performed or are not desirable. An action is deemed not desirable if it is not contained
in any deal considered in the agent’s store of possible worlds. The argument generated
then consists of the conjunction of the negated actions.

Here are two arguments which agent a sends to agent b. The following example
corresponds to the above justification:

¬give(a, b, fourWhites, 13)
∧ ¬give(a, b,fiveWhites, 13)

∧ ¬give(a, b, sixWhites , 13)

It states that the agent cannot give four, five or six white resources. A possible
critique could be ¬give(b, a, fourWhites, 7). Agent a does not want to receive four
white resources under any circumstances.

The question of which of all arguments generated is to be uttered is answered by one
simple rule: If a justification was generated and it has not yet been uttered, it will be
selected. Otherwise, the critique is selected.

Interpreting Arguments. Now we will address the issue of how to evaluate incoming
arguments. Arguments are statements about the opponent’s mental attitude, i.e. his be-
liefs about possible worlds. Consisting of formulas on propositions of the form “give(a,
b, r, t)”, they describe the set of deals he might be willing to accept at all. Hence they
are used to refine the set of possible offers. We assume our agents to be honest, so argu-
ments are believed to be true. If an argument is received, its interpretation with respect
to the current set of possible worlds is determined. The interpretation is a subset of the
universe (the current set of possible worlds). This subset is then regarded as the new set
of possible worlds. A set of possible worlds can be regarded as a logical formula of the
form

Argumentation- vs. Proposal-Based Negotiation 171

give(a, b, r1, t) ∧ give(b, a, r2, t)︸ ︷︷ ︸
deal1

∨ . . .

. . . ∨ give(a, b, rn, t) ∧ give(b, a, rm, t)︸ ︷︷ ︸
dealk

The ri stand for arbitrary sets of resources. A ri can appear in several deals.
Incoming arguments are transformed into a normal form, so that negations are

pushed inward and all operators but ∨ and ∧ are resolved. Then the subset of possible
deals, which is denoted by the argument, is determined using the following inductive
definitions in Table 1 where φ and ψ are any arguments.

Table 1. Interpretation of arguments as subsets of possible worlds

Argument Interpretation
give(a, b, r, t) set of all deals which include give(a, b, r, t)
¬give(a, b, r, t) set of all deals which do not include give(a, b, r, t)

φ ∧ ψ all deals which are elements of the intersection of the sets which are
the interpretation of φ and ψ

φ ∨ ψ all deals which are elements of the union of the sets which are the
interpretation of φ and ψ

4 Evaluation

This section describes the empirical evaluation conducted to answer our central research
questions: Do agents who use arguments in the negotiation perform better in our com-
plex trading scenario than agents who are confined to exchanging proposals? Are agents
using argumentation-based negotiation capable of reaching optimal deals? In the first
section, we introduce the evaluation criteria for which data was gathered during the test
runs. Section 4.2 describes the experimental setup. Finally, in Section 4.3, we evaluate
our experimental findings with respect to our key research questions.

4.1 Evaluation Criteria

In our experimental evaluation, we consider a number of evaluation criteria which al-
low for measuring certain aspects of agent performance. The following subsections
introduce these criteria one by one. Moreover, we outline why and to what extent we
consider the criteria to be suitable metrics for evaluation.

– Rewards: Rewards earned over time are the most natural criterion for the Queue-
Stack-Game, as this measure is used to determine the winner after one or more
rounds, and hence it also reflects the game-playing ability of any given agent strat-
egy. The rewards a player has earned are influenced mainly by two factors. On the
one hand, they depend on how lucky the player has been in terms of the resources
that were randomly allocated to him. On the other hand, their number increases
with the quality of the game strategy adopted, and in particular also with the qual-
ity of the chosen negotiation strategy. Hence, it is important to have several rounds
in one game, so that the distribution of resources becomes fair.

172 A. Först, A. Rettinger, and M. Nickles

– Social Welfare: Social welfare is a means of assessing the well-being of a soci-
ety of agents as a whole, i.e. taking into account the well-being of all individual
agents [1]. In literature, there are different measures for social welfare, e.g. Egal-
itarian or Utilitarian social welfare. We employed the Nash Bargaining Solution
which is proven to promote pareto-optimal deals, which means that no other deal
is preferred by every other agent. The mediator computes the optimal deal accord-
ing to this measure. The deals achieved by each of the negotiation methods can be
compared to this optimal deal and thus a “degree of optimality” can be established
for each method. Furthermore, the deals achieved by ABN and by bargaining can
be compared to each other with respect to the optimal deal. Social welfare is also an
adequate indicator if all agents get better deals by arguing, or if, e.g., an increase of
utility of Player1 can only be realised at Player2’s expense, thus promoting unjust
deals.

– Number of Communication Units: As a measure for the amount of communication,
we define a communication unit for our negotiation language. Deals and arguments
are generated by combining different statements of the form give(a, b, r, t). We de-
fine this as one communication unit. Operators are not accounted for by this mea-
sure, i.e. a conjunctive expression has the same “value” as two atomic expressions.
Similar to the other measures discussed above, the absolute number of communi-
cation units is meaningless in itself. However, counting the communication units
allows for a comparison of the amount of communication across the different ne-
gotiation mechanisms. In the ABN approach, we distinguish communication units
that were sent as part of proposals and messages that carried arguments.

– Number of Negotiation Steps: The number of steps the agents negotiate for per
round is an apt measure to determine the speed of a negotiation style. Reaching an
agreement in fewer steps is considered better, if the agreement is as good as the
agreement that could have been reached within an unbounded number of negotia-
tion rounds. Even if no agreement is reached, the less time and effort is invested to
find out that no co-operation is possible or desired, the better.

– Number of Possible Worlds: Our agents maintain a changing number of possible
worlds during negotiation. The absolute number of possible worlds is not interest-
ing per se. Their number is highly dependent on the current resource situation of
the agent, and can initially be very large. What we really want to show is that our
agents are capable of reducing the number of possible worlds while negotiating.
Examining the decrease in possible worlds over negotiation steps offers valuable
clues on how the negotiation outcomes are achieved. This is because the num-
ber and the utility of the remaining possible worlds directly influence an agent’s
decision to accept or reject an offered deal.

4.2 Experimental Setup

In the following, we describe the tests that were run to generate the test data. The Queue-
Stack-Game was played in three different settings. Scenario one comprises a meditator
as described in Section 3.1 in addition to two players. In the second scenario, players
can exchange deals but not arguments. Finally, in the third scenario, players are capable
of exchanging arguments in addition to proposals. Ten consecutive games consisting

Argumentation- vs. Proposal-Based Negotiation 173

Table 2. Frequency of data collection

Test Criterion Mediator Player
Nash Bargaining Solution end of round n/a
Utilitarian Social Welfare end of round n/a
Egalitarian Social Welfare end of round n/a
Rewards n/a start and end of round
Utility n/a start and end of round
Communication Units (Proposals) n/a end of negotiation
Communication Units (Arguments) n/a end of negotiation
Negotiation Steps n/a end of negotiation
Possible Worlds n/a each negotiation-step

of ten rounds per game are played in all three scenarios. The sequences of resources
which are allocated to each player from the deck in each round are identical in all three
settings. What is left to chance is the random time the agents wait before uttering their
initial proposal as soon as their NegotiationBehaviour is started. In summary, the course
of the game in our three settings is solely dependent on the negotiation and its outcome.
Hence, we can draw conclusions from the players’ success in the game to their ability
to negotiate.

The data for the empirical evaluation of the scenarios is logged by the players and
the mediator, if existent, during the test runs. The criteria are logged with different
frequency and in different phases of the game. Table 2 provides an overview of all
logged test variables.

4.3 Evaluation of Experimental Results

In this section we evaluate and interpret our experiments with respect to the above
mentioned test criteria.

Rewards. Earned rewards measure an agent’s success in the Queue-Stack-Game. The
graphs in Figure 2 show the number of rewards earned by players Player1 (top) and
Player2 (bottom) in every round of the game, respectively. The recurring decline of
rewards is due to the start of a new game every ten rounds. That is, the agents are
restarted with zero rewards in every eleventh round. Figure 3 shows the average reward
per round earned by both players in different test scenarios. Both agents perform best
when guided by a mediator, which matches our initial expectations. Comparing the
scenarios where the agents actually negotiate with each other shows that both agents
achieve better results when using arguments in addition to the proposal exchange.

Social Welfare. Figure 4 depicts the average social welfare for each experimental
setting, namely “Argumentation”, “Proposal exchange” and “Mediator use”. Different
measures for social welfare were used, the most common being Utilitarian social wel-
fare (sum of each player’s payoff) and the Nash product (product of each player’s pay-
off). We computed social welfare on the basis of actual rewards, not based on the utility
of the negotiation outcome for reasons described above. As a matter of design, the me-
diator maximised the Nash product of the players’ utilities, which are a heuristic for the

174 A. Först, A. Rettinger, and M. Nickles

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

R
ew

ar
ds

Round

Rewards of Player1 over game rounds

Mediator use
Proposals only

Arguments

Fig. 2. Earned rewards over game rounds of Player1 for different test scenarios

expected reward. Quite naturally, this lead to the best average game results compared
to the other mechanisms and considering any of our suggested measures. Likewise, it
becomes apparent that the agents of the “Argumentation” scenario achieved the second
best results and thus performed better than negotiating agents who were restricted to
proposal exchange.

Table 3 summarises the percentage of games won by each player. The number of
successful negotiations which ended with an agreement can be increased by 19,7 %
from 66 to 79 of 100 by the use of arguments. Whereas in scenario 2 both agents ac-
cepted equally often, Player1 ended 9 more negotiations with an acceptance in scenario
3 whereas Player2 accepted in just two more negotiations.

 0

 1

 2

 3

 4

Argumentation Proposal Mediator

R
ew

ar
d

Player 1

Comparison of social welfare for different types of negotiation

Average reward per game round (errorbars depict standard deviation)

Player 2

Argumentation Proposal Mediator

Fig. 3. Average rewards earned per game in different test scenarios. Left: Player1, Right: Player2.

Argumentation- vs. Proposal-Based Negotiation 175

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Argumentation Proposal exchange Mediator use

Negotiation type

Average minimum player reward per game round

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Argumentation Proposal exchange Mediator use

Negotiation type

Average maximum player reward per game round

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Argumentation Proposal exchange Mediator use

Negotiation type

Average sum of rewards per game round

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Argumentation Proposal exchange Mediator use

Negotiation type

Average reward product per game round

Fig. 4. Comparison of average social welfare based on earned rewards for “argumentation” (left),
“proposal exchange” (middle), “mediator use” (right). Measures for social welfare (from top to
bottom, left to right): minimum (egalitarian social welfare), maximum (elitist), sum (utilitarian
social welfare), product (Nash product).

Possible Worlds. The agents in scenario 2 and 3 mainly differ in the way an agent’s
set of possible worlds is maintained. The exchange of arguments aims at the refinement
of the set of possible worlds, and thus the removal of worlds that are not acceptable to
any of the agents. Hence, we look at how the number of possible worlds changes over
negotiation rounds.

In Figure 5 the average decrease of possible worlds over rounds is plotted for Player2
for the two negotiation scenarios. The curve for agent Player1 is almost identical, we
therefore omit it.

Comparing the plots of the two different test scenarios, one observation is obvious:
The decrease of possible worlds proceeds much faster when arguments are used. After
ten negotiation steps, agents in scenario 2 still maintain more than 80% of the worlds
they initially considered possible on the average. By that time, agents in scenario 3 have
removed over 80% of their initial worlds and maintain only less than 20% after ten steps.

176 A. Först, A. Rettinger, and M. Nickles

Table 3. Acceptance rates of negotiation scenarios

Scenario Player1 Player2 No agreement
2: Proposals only 32% 34% 33%
3: With arguments 43% 36% 21%

After termination of the negotiation process, ABN agents have eliminated about 65%
of their initially possible worlds on the average, their counterparts in scenario 2 have
been able to remove a mere 42%.

Negotiation Steps. Considering the average number of negotiation steps, agents of
the different scenarios needed to come to an agreement, the average of 39 steps of the
scenario with argumentation lies clearly under the average of 76 of the scenario where
only proposals are exchanged, see Figure 6. This means that when using arguments
the negotiation terminates after little more than half of the steps required using pure
proposal exchange in the average. This is due to the faster decrease of possible worlds
in scenario 3, and it is also due to the fact that once the negotiation has started no
arguments can be produced which entail an increase of possible worlds. In the few
cases where the ABN agents need more steps to come to an agreement, this can be still
be justified by the better negotiation outcome these agents achieve compared to their
proposal-exchanging counterparts.

Communication Units. The total number of communication units (in the sense de-
fined above) averages 113.12 in scenario 2 and 44.01 in scenario 3. Latter number is
composed of 12.87 units used on arguments and 31.14 units describing outcomes. Even
the sum of proposals and arguments in scenario 3 does not get close to the average of

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70 80

P
er

ce
nt

ag
e

of
 p

re
vi

ou
sl

y
co

ns
id

er
ed

 p
os

si
bl

e
w

or
ld

s

Negotiation round

Average reduction of possible world number over negotation steps - proposal vs argument exchange
 (errorbars depict standard deviation)

proposal-based negotiating agent
argumentation-based negotiating agent

Fig. 5. Player2: Average reduction of possible world number over negotation steps in scenario
“proposal exchange” (continous errorbars) and “argument exchange” (dashed errorbars)

Argumentation- vs. Proposal-Based Negotiation 177

 0

 20

 40

 60

 80

 100

Argumentation Proposal exchange

N
eg

ot
ia

tio
n

st
ep

s

Comparison of average number of negotiation steps

Argumentation
Proposal exchange

Fig. 6. Average number of negotiation steps: “argumentation” (left), “proposal exchange” (right)

units exchanged for proposals in scenario 2. This result is obtained by the richer seman-
tics of the language which is used for argument exchange. The use of logic allows for
using concise descriptions of subsets of possible worlds. If the negotiation language is
restricted to deals and a set of possible deals is to be encoded, there is no alternative
to enumerating the elements of this set. As the elements are deals and each deal equals
two communication units, the number of units needed to encode a set is twice the car-
dinality of the set. Using logic this number still constitutes the worst case, but due to
dependencies between different deals which contain identical actions, a subset of pos-
sible worlds can usually be encoded with fewer communication units. Hence, the use of
logic as negotiation language allows for the reduction of communication overhead.

 0

 20

 40

 60

 80

 100

 120

Argumentation Proposal exchange

N
um

be
r

of
 m

es
sa

ge
s

du
rin

g
si

ng
le

 n
eg

ot
ia

tio
n

cy
cl

e

Negotiation type

Comparison of communication overhead for different types of negotiation

Average number of arguments per round
Average number of proposals per round

Fig. 7. Average number of communication units sent during negotiation

178 A. Först, A. Rettinger, and M. Nickles

4.4 Summary

In this section we introduced the evaluation criteria that were considered in the con-
ducted experiments. We then described the experimental setup for the data generation.
Furthermore, we were able to show through a thorough analysis of experimental results
that additional use of arguments during negotiation in the Queue-Stack-Game not only
drastically reduces the duration and communication overhead of negotiation, but also
that the quality of the achieved agreements is higher (in the sense that the resulting deals
cause a higher increase in agents’ payoffs and thus they perform better in the game).
This is due to the refinement of the set of possible worlds by exchanging arguments
which accompany the rejection of deals. Not only is the actually rejected deal elimi-
nated from the opponent’s set of possible worlds, but so is also every deal that shares
the undesired aspects that caused the rejection of the explicitly proposed deal.

5 Conclusion and Future Work

In this work we presented the implementation of three different negotiation mechanisms
in an environment which is only partially observable, i.e. the state and the preferences
of an agent’s peer are not known to him, and which incorporates stochastic elements,
i.e. subsequent states are not solely dependent on the actions which are carried out by
agents. Two agents are randomly assigned resources which they can use in a specific
manner to earn rewards. In most cases agents need to exchange resources with their
opponent to be successful. Hence, the agents need to come to an agreement about which
type of resources and how many of them they want to exchange.

We approached this problem from three different angles. Our first solution was the
employment of a trustworthy mediator, toward whom the agents disclose their prefer-
ences and resource situation. Using this complete information, the mediator can com-
pute the optimal solution and dictate the outcome of the negotiation. Our second
solution comprised agents who engaged in bargaining. They were restricted to a simple
exchange of proposals to come to an agreement. Then, in our third scenario we pro-
vided the negotiating agents with the additional capability to accompany proposals or
rejection of proposals with arguments. These arguments can either be a detailed cri-
tique of an previously received proposal, telling the opponent exactly which aspects of
the proposal are undesirable. Or, an argument can carry information about the sender’s
negotiation stance and thus explain why a proposed deal cannot be fulfilled by the
sender.

We extensively tested these solution concepts in identical experimental settings, al-
lowing for a detailed comparison of the performance of the three negotiation mecha-
nisms. As expected, agents perform best when consulting a mediator. When actually
engaging in negotiation with each other, the use of arguments proves beneficial in vari-
ous ways. Not only decrease communication overhead and duration of negotiation sig-
nificantly, but agents simultaneously reach better agreements. Hence we were able to
verify our working hypothesis, that the use of arguments enables better deals in an
generic example scenario with partial, incomplete knowledge compared to negotiation
that is purely based on proposal exchange.

Argumentation- vs. Proposal-Based Negotiation 179

A number of aspects could not be addressed and were beyond the scope of this paper.
The following is a list of issues that could be the basis for future research:

– Although agents receive information about the internal state of their opponent, they
do not actually try to create a model of their opponent, which they could use over
several rounds. This aspect gains importance if agents are allowed to cheat. From
the offers the opponent has made his resource situation could at least be inferred
partially or inconsistencies in his offers and arguments could be detected.

– In the light of potentially agents that are not trustworthy it is necessary to reassess
the process of argument evaluation. If the truthfulness of the arguments cannot be
taken for granted, it is not advisable to accept all implications of the arguments
without examining whether one believes the argument or not.

– Commitment to future actions is not considered as potential part of an agreement,
even though the design of the negotiation language would allow it.

– Our agents have not been equipped with the ability to learn or plan, two essential
aspects of intelligent agents.

– Also the use of the mediator could be reassessed. Players might not be required to
execute the deal they have been advised to perform. They could bear that deal in
mind and engage in negotiation nonetheless, leaving open which agreement they
will pursue. Again, this problem is within the scope of research on computational
trust.

By our strong efforts to keep our implementation generic in the choice of the tools and
design we hope to contribute to the further investigation of these important issues.

References

1. Eatwell, J., Milgate, M., Newman, P. (eds.): The New Palgrave: A Dictionary of Economics,
vol. 2, pp. 460–482. Macmillan, London (1987)

2. Jennings, N.R., Parsons, S., Noriega, P., Sierra, C.: On argumentation-based negotiation. In:
Proceedings of the International Workshop on Multi-Agent Systems, Boston, USA (1998)

3. Kraus, S.: Automated negotiation and decision making in multiagent environments. In: Luck,
M., Mařı́k, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS,
vol. 2086, pp. 150–172. Springer, Heidelberg (2001)

4. Lomuscio, A., Wooldridge, M.J., Jennings, N.R.: A classification scheme for negotiation
in electronic commerce. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS,
vol. 1991, p. 19. Springer, Heidelberg (2001)

5. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: Context and
recent developments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2006. LNCS,
vol. 4766, pp. 1–16. Springer, Heidelberg (2007)

6. Murray, C., Gordon, G.: Multi-robot negotiation: Approximating the set of subgame perfect
equilibria in general sum stochastic games. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.)
Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge (2007)

7. Nash, J.F.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
8. Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., Sonenberg, L.:

Argumentation-based negotiation (2004)
9. Rahwan, I., Sonenberg, L., McBurney, P.: Bargaining and argument-based negotiation: Some

preliminary comparisons. In: Proceedings of the AAMAS Workshop on Argumentation in
Multi-Agent Systems, New York (2004)

180 A. Först, A. Rettinger, and M. Nickles

10. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education,
London (2003)

11. Sandholm, T.W.: Distributed rational decision making. In: Weiß, G. (ed.) Multiagent Sys-
tems: A Modern Approach to Distributed Artificial Intelligence, pp. 201–258. MIT Press,
Cambridge (1999)

12. Wang, X., Sandholm, T.: Reinforcement learning to play an optimal nash equilibrium in team
markov games. In: Becker, S.T.S., Obermayer, K. (eds.) Advances in Neural Information
Processing Systems, vol. 15, pp. 1571–1578. MIT Press, Cambridge (2003)

13. Weiß, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-
gence. MIT Press, Cambridge (1999)

Argumentation-Based Information Exchange
in Prediction Markets

Santi Ontañón1 and Enric Plaza2

1 CCL, Cognitive Computing Lab Georgia Institute of Technology,
Atlanta, GA 303322/0280
santi@cc.gatech.edu

2 IIIA, Artificial Intelligence Research Institute - CSIC, Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia, Spain

enric@iiia.csic.es

Abstract. The purpose of this paper is to investigate how argumentation pro-
cesses among a group of agents may affect the outcome of group judgments.
In particular we will focus on prediction markets (also called information mar-
kets) and we will investigate how the existence of social networks (that allow
agents to argue with one another to improve their individual predictions) effect
on group judgments. Social networks allow agents to exchange information about
the group judgment by arguing about the most likely choice based on their indi-
vidual experience. We develop an argumentation-based deliberation process by
which the agents acquire new and relevant information. Finally, we experimen-
tally assess how different social network connectivity and different data distribu-
tion affect group judgment.

1 Introduction

The purpose of this paper is to investigate how argumentation processes among a group
of agents may affect the outcome of group judgments. In particular we will focus on
prediction markets (also called information markets) and we will investigate how the
existence of social networks (that allow agents to argue with one another to improve
their individual predictions) effect on group judgments using prediction markets.

There are different ways to aggregate the information held by a group of agents.
According to C. R. Sunstein [17] there are three main paradigms to achieve group judg-
ments, that is to say a joint decision or prediction based on aggregating the information
or preferences of a group of agents (Sunstein deals with human agents, while we will
focus only on artificial software agents). One paradigm is using statistical means to
aggregate the group information: techniques like plurality voting, Condorcet voting or
weighted voting define aggregation functions based on statistical means (i.e. on dimin-
ishing the joint error). Human committees, panels and juries use these techniques —
and groups of agents also, see for example [11] where learning agents’ joint predictions
are compared when using plurality voting vs. weighted voting.

A second paradigm is that of deliberation, where arguments in favor or against a
joint judgment are exchanged by the member agents of a group. Human public and
private institutions traditionally favor deliberative ways of taking decisions, and certain

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 181–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

182 S. Ontañón and E. Plaza

accounts of democracy are based on the deliberation process. The main feature here
is that rough preferences are not considered sufficient to justify a joint judgment, and
deliberation provides reasons by an exchange of arguments by individuals with different
information and diverse perspectives. Agents can also use argumentation to deliberate
on joint judgments, as for example in the work reported in [13].

The third paradigm is the one this paper focuses on: prediction markets, also known
as information markets. Prediction markets’ goal is to aggregate information based on
a price signal emitted by the members of a group. The advantage of the price signal is
that it encapsulates both the information and the preferences of a number of individuals.
In this approach, the task of aggregating information is achieved by creating a market,
and that market should offer the right incentives for the participating people or agents
to disclose the information they possess.

The purpose of this paper is to analyze the effect of social network relationships
in group judgment —specifically in prediction markets. These social networks allow
agents to exchange information about the prediction task domain. We model this in-
formation exchange as an argumentation process, where an agent A tells an agent A′

its prediction S together with an argument α intended to justify why this prediction
is correct. Agent A can agree or disagree with S, and in the case of disagreement A′

communicates to A a counterargument or a counterexample that contradicts α. Agent
A may keep its original prediction S or change it to some new prediction S′ due to
the counterarguments and counterexamples A has exchanged with one or more other
agents. Social networks establish the different possible graphs of trusted acquaintances
with which an agent can soundly exchange information; several simple social networks
are tested in order to analyze the impact of information exchange.

The structure of the paper is as follows: the next section describes the Multiagent
Prediction Market (MPM) and discusses the assumptions to use such mechanism for
group judgment; section 3 describes the argumentation processes among agents that
models the information exchange among agents; then section 4 presents an empirical
evaluation of MPM in a prediction domain and we assess (1) the effect of using a pre-
diction market instead of a voting scheme, and (2) the effect upon prediction markets of
information exchange. Finally, section 5 presents related work and section 6 discusses
the contributions of the paper and the foreseeable future work.

2 Multiagent Prediction Market

Essentially, a Multiagent Prediction Market (MPM) is composed of (a) a prediction task
domain, (b) a market broker agent AD, (c) a collection of participating agents A, and
two parameters: M (maximum bet) and X (a percentage bonus).

In this paper we will address only single-issue predictions and we will assume that
the prediction task domain is characterized by an enumerated collection of alternatives
or solutions S = {S1, ..., SK} and the prediction task is to select the correct one for
the current situation or problem P . The participating agents is a multiagent system
composed of n agents A = {A1, ..., An}. For a specific market, given a problem P
every agent receives P , generates its individual prediction, and then it can bet up to a
quantity MP on one single alternative.

Argumentation-Based Information Exchange in Prediction Markets 183

Let BAi = 〈S, b〉 be the bet made by a particular agent Ai, where S is the predicted
solution, and b is the amount bet. Let BP = {BAi, ..., BAn} be the set of all bets
made by all the agents in the market MPMP . We will use the dot notation to refer to
elements inside a tuple, e.g. we will write B.b to refer to the amount bet in B. We
define BP =

∑
B∈B B.b as the total amount of money bet by all the agents, and BSk

=∑
B∈B|B.S=Sk

B.b the total amount of money bet for a particular solution Sk.
The broker agent AD receives those bets (amounting to a total quantity BP) and

determines the joint prediction as the alternative (say Sr) invested with the highest ac-
cumulated bet, as follows: Sr = arg maxSk∈S BSk

. When the correct solution Sc of P
becomes known, the broker agent AD checks whether the joint prediction was accurate
(Sr = Sc). If it was, then those agents that bet for Sc receive a reward. Specifically, an
agent Ai who bet for the correct solution receive the reward rAi = 1

BS
(BP×BAi .b×c),

where c = 100+X
100 is a factor that ensures that the agents receive more money than they

bet if they win. Intuitively, the winner agents receive all the money bet by all the agents
(i.e. BP), but multiplied by the factor c, to provide an incentive. In our experiments we
have set the percentage bonus X = 10%, thus, c = 1.1.

The rationale of this design is to provide a twofold incentive: a) for the agents to
reveal their true prediction, and b) also to benefit from the the joint accuracy.

Concerning the participating agents, we make the assumptions that (1) the individ-
ual agents possess a way to determine the confidence in an individual prediction and
(2) the agents possess an argumentative capability that supports the information ex-
change with other agents regarding the prediction task domain. The first assumption
requires that the agent is not only capable of making a prediction, but also estab-
lishing the likelihood of that specific prediction to be correct, i.e. a degree of con-
fidence for each specific prediction. Rationality dictates that the more confident an
agent with respect to a prediction, the higher the quantity to bet on that prediction.
The second assumption allows the agents to perform an information exchange phase
(that we model as an argumentation process), and thus generate more informed
predictions.

3 Information Exchange in Social Networks

Social networks views social structures as composed of nodes and links, where nodes
are individuals or organizations and links are their relationships. For the purpose of this
paper, we will focus on individual agents as nodes and acquaintances as their links.

In our framework, a social network is a collection of acquaintance directional re-
lations N = {(Ai1 , Aj1), ..., (Aim , Ajm)}, where an agent Ai has another agent Aj

as an acquaintance only if (Ai, Aj) ∈ N . Figure 1 shows three examples of social
networks: In the leftmost one, each agent has one acquaintance, in the middle one,
each agent has two acquaintances, and in the rightmost one each agent has three
acquaintances.

Before declaring a prediction on the market, an agent Ai will first try to exchange
information with its acquaintances. Thus, Ai will engage in argumentation processes
about the correct solution of the problem at hand with each of its acquaintances before
making a prediction — following the argumentation formalism we introduced in [13].

184 S. Ontañón and E. Plaza

Fig. 1. Three of social networks among 8 agents where each agent has 1, 2 or 3 acquaintances

3.1 Problem-Centered Information Exchange as Argumentation

An agent Ai can obtain new information concerning the solution of a problem P by en-
gaging in an argumentation process with another agent Aj , that might have information
unknown to Ai. During an argumentation process, two agents exchange information
concerning the solution of a specific problem P . Specifically, an agent may generate
an argument in favor of a particular solution and send it to the other agent. Agents can
also analyze a received argument, and agree or disagree with it. When an agent dis-
agrees with an argument, it might generate a counterargument or a counterexample.
By exchanging arguments and counterarguments two agents may reach a consensus
about which is the most plausible solution for a given problem taking into account the
information that both of them have. Therefore, the individual solution reached after an
argumentation process is in principle more informed, and thus more likely to be correct.

3.2 MPM with CBR Agents

In our framework, each agent uses Case-Based Reasoning (CBR) [1] in order to gener-
ate predictions. Thus, each agent Ai owns a case base Ci, composed of a collection of
cases, Ci = {c1, ..., cm}. A case is a tuple c = 〈P, S〉 containing a case description P
and a solution S ∈ S. We will use the terms problem and case description indistinctly.

CBR agents can solve problems by themselves, using CBR problem solving meth-
ods. Moreover, agents can also try to obtain information from other agents in order to
increase their prediction accuracy. In a prediction market, given that each individual
agent is interested in maximizing its prediction accuracy (in order to obtain a higher
reward), it is rational for an agent to try to obtain the maximum information possible
from other agents before making its prediction.

Argumentation provides a formal and well founded way to problem-centered infor-
mation exchange. We will next summarize the case-based approach to multiagent argu-
mentation introduced in [13]: the kind of arguments and counterarguments supported,
how CBR agents generate arguments, and how agents compare arguments. Finally, we
will present a specific argumentation protocol for information exchange in prediction
markets, that agents can use to increase the accuracy of their predictions.

3.3 Arguments and Counterarguments

For our purposes an argument α generated by an agent A is composed of a statement
S and some information D endorsing the fact that S is correct. In the context of CBR

Argumentation-Based Information Exchange in Prediction Markets 185

• SpiculateSkeleton

• ExternalFeatures

Sponge

• Megascleres

SpiculateSkeleton

• SmoothForm

Megascleres

Tylostyle

• Osc

ExternalFeatures

AbsentOsc

X

Prediction

• SpiculateSkeleton

• ExternalFeatures

Sponge

• Megascleres

SpiculateSkeleton

• SmoothForm

• Acanthose

Megascleres

Tylostyle

• Osc

ExternalFeatures

AbsentOsc

NoAcanthoseY

Prediction

α1

β2

Fig. 2. Relationship between two arguments:β2 is a counterargument of α1 because β2 is a re-
finement of α1 and predicts Y that is different from α1’s prediction X

agents, agents argue about predictions for new problems and can provide two kinds of
information: a) specific cases 〈P, S〉, and b) justified predictions: 〈A, P, S, D〉. Using
this information, we can define three types of arguments: justified predictions, counter-
arguments, and counterexamples.

A justified prediction α is generated by an agent Ai to argue that Ai believes that
α.S is the correct solution for problem P because of justification α.D.

A counterargument β is an argument offered in opposition to another argument α.
In our framework, a counterargument consists of a justified prediction 〈Aj , P, S′, D′〉
generated by an agent Aj with the intention to rebut an argument α generated by another
agent Ai, that endorses a different solution S′ with a justification D′.

Figure 2 shows two arguments from our experimental setting in section 6. First notice
that each argument is predicting a different solution: α1 predicts X while β2 predicts Y .
Moreover, α1 subsumes β2 (in other words, β2 is a specialization of α1), meaning that
all problems that satisfy β2 also satisfy α1. If the predictions are contradictory (X
= Y)
then β2 is a counterargument of α1.

A counterexample c is a case that contradicts an argument α. Thus, a counterexample
is also a counterargument, stating that an argument α is not always true, and the evi-
dence provided is the case c. Specifically, a case c is a counterexample of an argument
α if the following conditions hold: α.D ! c and α.S
= c.S, i.e. the case satisfies the
justification α.D while determining a solution different to than the predicted by α.

3.4 Argument Generation

In our framework, arguments are generated by the agents from cases, using learning
methods. Any learning method able to provide a justified prediction can be used to gen-
erate arguments. For instance, decision trees and LID [4] are suitable learning methods.
Specifically, in the experiments reported in this paper agents use LID. Thus, when an
agent wants to generate an argument endorsing that a specific solution is the correct
solution for a problem P , it generates a justified prediction using LID.

186 S. Ontañón and E. Plaza

• SpiculateSkeleton

• ExternalFeatures

Sponge

• Megascleres

SpiculateSkeleton

• SmoothForm

Megascleres

Tylostyle

• Osc

ExternalFeatures

AbsentOsc

Case Base

Fig. 3. Relationship between an argument and a case base. Dark stars are cases endorsing the
argument while white stars are cases contradicting it.

Agents may try to rebut arguments by generating a counterargument or by finding
counterexamples. An agent Ai wants to generate a counterargument β to rebut an ar-
gument α when α is in contradiction with the local case base of Ai. Moreover, while
generating such a counterargument β, Ai expects that β is preferred over α. For that
purpose, agents use a specific policy to generate counterarguments based on the speci-
ficity criterion [14]. The generation of counterarguments using the specificity criterion
puts some requirements on the learning method but techniques LID or ID3 can be easily
adapted for this task (as shown in [13]).

For instance, in Figure 2, given an argument α1 that predicts X asserted by agent A1
generating a counterargument means that agent A2 finds a description β2 such that it is
subsumed by α1 but (according to A2’s experience) predicts a solution Y
= X .

Specifically, in our experiments, when an agent Ai wants to rebut an argument α,
uses the following policy: (1) Agent Ai tries to generate a counterargument β more
specific than α; if found, β is sent to the other agent as a counterargument of α. If not
found, then (2) Ai searches for a counterexample c ∈ Ci of α. If a case c is found, then
c is sent to the other agent as a counterexample of α. If an agent Ai is unable to generate
a counterargument or find a counterexample then Ai has no grounds to disagree with
argument α and can not rebut that argument.

3.5 Prediction Confidence

We will use a case-based confidence measure [13] to determine the degree of confi-
dence of an individual agent in its own argument (justified prediction) and also on the
counterarguments received from other agents. The confidence is assessed by the agents
via an process of examination of arguments. During this examination, an agent will
count how many of the cases in its individual case base endorse an argument α, and
how many cases are counterexamples of α. The more endorsing cases, the higher the
confidence; and the more the counterexamples, the lower the confidence.

While examining an argument α, an agent determines the set of cases in its indi-
vidual case base that are subsumed by α.D (the cases shown as stars in the circle of

Argumentation-Based Information Exchange in Prediction Markets 187

Figure 3): the more of these cases that have α.S as solution, the higher the confidence.
After examining an argument α, an agent Ai obtains the aye and nay values: The aye
value Y Ai

α = |{c ∈ Ci| α.D ! c.P ∧α.S = c.S}| is the number of cases in the agent’s
case base subsumed by the description α.D that has solution α.S proposed by α, while
the nay value NAi

α = |{c ∈ Ci| α.D ! c.P ∧ α.S
= c.S}| is the number of cases in
the agent’s case base subsumed by description α.D that do not have that solution.

Figure 3 shows an the examination process where, given an argument α, an agent first
retrieves all the cases that are subsumed by α.D from the case base, and then counts
how many are counterexamples (white stars) or endorsing cases (black stars).

The confidence on an argument α is assessed by an agent Ai as follows:

CAi(α) =
Y Ai

α + 1
Y Ai

α + NAi
α + 2

where the reason for adding 1 to the numerator and 2 to the denominator is akin to the
Laplace correction to estimate probabilities.

3.6 Information Exchange Protocol

In this section we will define an information exchange protocol that allows agents in
an information market to exchange information with its acquaintances in the social
network. Intuitively, an agent will engage into one-to-one argumentation processes with
each one of his acquaintances sequentially, trying to improve its prediction at each step.
The intuition is that after each discussion, the solution is more likely to be the correct
one, since more information has been taken into account to come up with it.

Let us assume that a particular agent Ai wants to generate a prediction for a problem
P . Let F ⊆ A be the set of m acquaintances of Ai. The information exchange protocol
initiates a series of argumentation processes between Ai and each of the agents in F in
a series of rounds. In the first round r = 0, Ai simply generates its individual prediction
in the form of an argument α0. Then, in the next round r = 1, Ai will argue with the
first agent Aj ∈ F and refine its prediction into a better one α1. At the end of round
r = m, Ai will have a prediction αm that will be the final one made for the market.

Each one of these argumentation processes in itself consists of a series of cycles.
In the initial cycle, each agent states which is its individual prediction for P . Then, at
each cycle an agent can try to rebut the prediction made by the other agent. The agents
alternate turns in the protocol, and an agent is allowed to send one counterargument or
counterexample at its turn. When an agent receives a counterargument or counterex-
ample, it informs the other agent if it accepts the counterargument (and changes its
prediction) or not. Moreover, agents have also the opportunity to answer to counterar-
guments in their turn, by trying to generate a counterargument to the counterargument.
At any time the protocol terminates when all the agents agree or when no agent has
generated any counterargument during the last two cycles.

During the argumentation protocol, agents can use the following performatives:

– assert(α): the justified prediction held during the next cycle will be α. If multiple
asserts are send, only the last one is considered as the currently held prediction.

– rebut(β, α): the agent has found a counterargument β to the prediction α.

188 S. Ontañón and E. Plaza

We will define αt
i as the prediction that an agent Ai is holding at iteration t of the

argumentation protocol, and Ht as the set containing the predictions that each of the
two agents hold at a cycle t. The argumentation protocol between an agent Ai, that is
currently holding a prediction αr at a round r of the information exchange protocol,
and an acquaintance Aj works as follows:

1. At cycle t = 0, the initial argument of Ai will be the one coming from the previous
round αr, thus α0

i = αr. The initial argument of Aj will be the result of trying
to solve P individually, building a justified prediction using its own CBR method.
Then, each agent sends the performatives assert(α0

i) and assert(α0
j) respectively

to the other agent. Thus, the agents know H0 = 〈α0
i , α

0
j 〉. The turn is given to the

first agent Ai.
2. At each cycle t (other than 0), the agents check whether their arguments in Ht

agree. If they do, the protocol moves to step 5. If during the last 2 cycles no agent
has sent any counterexample or counterargument, the protocol also moves to step
5. Otherwise, the agent Ai who has the turn tries to generate βt

i (a counterargument
or a counterexample) against the argument of the other agent:

– If βt
i is a counterargument, then, Ai locally compares αt

i with βt
i by assessing

their confidence against its individual case base Ci (notice that Ai is comparing
its previous argument with the counterargument that Ai itself has just generated
and that is about to send to Aj). If CAi(βt

i) > CAi(αt
i), then Ai considers that

βt
i is stronger than its previous argument, changes its argument to βt

i by sending
assert(βt

i) to the rest of the agents (i.e. Ai checks if the new counterargument
is a better argument than the one it was previously holding) and rebut(βt

i , α
t
j)

to Aj . Otherwise (i.e. CAi(βt
i) ≤ CAi(αt

i)), Ai will send only rebut(βt
i , α

t
j)

to Aj . In any of the two situations the protocol moves to step 3.
– If βt

i is a counterexample c, then Ai sends rebut(c, αt
j) to Aj . The protocol

moves to step 4.
– If Ai cannot generate any counterargument or counterexample, the turn is given

to the next agent, a new cycle t + 1 starts, and the protocol moves to state 2.
3. The agent Aj that has received the counterargument βt

i , locally compares it against
its own argument, αt

j , by locally assessing their confidence. If CAj (βt
i) > CAj (αt

j),
then Aj will accept the counterargument as stronger than its own argument, and it
will send assert(βt

i) to the other agent. Otherwise (i.e. CAj (βt
i) ≤ CAj (αt

j)), Aj

will not accept the counterargument, and will inform the other agent accordingly.
Any of the two situations start a new cycle t+1, Ai gives the turn to the next agent,
and the protocol moves to state 2.

4. The agent Aj that has received the counterexample c retains it into its case base
and generates a new argument αt+1

j that takes into account c, and informs the rest
of the agents by sending assert(αt+1

j) to all of them. Then, Ai gives the turn to the
other agent, a new cycle t + 1 starts, and the protocol moves to step 2.

5. The argument that Ai is holding is the one that will be carried on to the next round
of the information exchange protocol, i.e. when Ai engages in an argumentation
with the next agent out of his acquaintances.

Moreover, in order to avoid infinite iterations, if an agent sends twice the same argument
or counterargument to the same agent, the message is not considered.

Argumentation-Based Information Exchange in Prediction Markets 189

3.7 Bet Generation

At the end of the information exchange protocol, an agent Ai will have a prediction α
for a particular solution class. Moreover, in order to participate in a prediction market,
the agent has to bet a particular amount of money on its prediction. The more money the
agent bets, the bigger the potential reward is, but the bigger the risk. Thus, it is natural
for an agent to bet more money when it is more confident that its prediction is correct.
For that reason, in our framework, agents bet money proportionally to the confidence
(computed as explained in Section 3.5) on their predictions. Since an MPM defines a
maximum amount of money M that each agent can bet, each agent will bet M ×C(α),
i.e. a proportional amount to its individual confidence. Thus, the bet made by an agent
Ai that has a prediction α after the information exchange process will be:

BAi = 〈α.S, M × C(α)〉

4 Experimental Evaluation

In this section we will empirically evaluate the performance of prediction markets, com-
paring it to the performance of normal voting. Moreover we will also study the effect
of having different social networks among the agents in the market and how much the
quality of data affects the market.

We have made experiments in the sponge data set, a marine sponge identification
tasks that contains 280 marine sponges represented in a relational way and pertaining to
three different orders of the Demospongiae class. In an experimental run, training cases
are distributed among the agents. In the testing stage problems arrive to the market, and
each agent will place a bet for the solution they predict is the correct one.

We have performed three sets of experiments. In the first set, we are interested in
comparing prediction markets with majority voting, in the second one we want to ex-
plore the effect of argumentative information exchange in prediction markets, and fi-
nally, the third one explores the effect of varying the quality of the data sample that
each agent owns. Each experiment consists of 5 runs of a 5-fold cross validation test.
Notice that in step 4 of the argumentation protocol in section 3.6, agents learn from
counterexamples coming from other agents. In the experiments we performed, each
problem in the test set has to be independent from one another, in order to compute the
averages for cross validation. Thus, the learning performed during argumentation is not
carried up to the next problem in the test set. We have researched the issue of learning
from communication in other multiagent scenarios in [12].

4.1 Prediction Markets Versus Majority Voting

For these experiments we evaluated the prediction accuracy of a committee using ma-
jority voting consisting of 8 agents with a prediction market consisting of the same 8
agents. The training set is split into 8 parts and each part is sent to an agent. Thus, each
agent has an initial case base of about 28 cases.

Agents solving problems using a prediction market didn’t do any information ex-
change for this experiment. The maximum bet was set to M = 100, and the incentive

190 S. Ontañón and E. Plaza

Table 1. Prediction markets accuracy with information exchange along several social networks
and with different biases in the individual case bases

social network market accuracy individual accuracy average reward majority voting

0 acquaintances 89.71% 74.21% 10.35

89.71
1 acquaintances 90.57% 83.99% 11.42
2 acquaintances 91.29% 86.63% 12.14
3 acquaintances 91.14% 87.64% 11.94 0.20
4 acquaintances 91.07% 88.16% 11.85 0.21

factor was set to X = 10%, thus c = 1.1. The results showed that the majority vot-
ing achieved a prediction accuracy of 88.93%, while the prediction market achieved an
accuracy of 89.71%, a significant improvement. Moreover, agents won an average of
10.35 monetary units per problem solved. In a voting committee, agents are only asked
to reveal part of its individual information, namely the preferred alternative for which
an individual casts a vote. In a prediction market, however, the amount bet by an indi-
vidual acts as a “signal” indicating the degree of individual confidence in predicting the
preferred alternative as being the correct one. Since the reward is proportional to the bet
amount, the agents have an incentive to disclose this additional information.

Since the reward is proportional to the individual prediction confidence, the agents
have an incentive to try to improve their individual prediction accuracy and confidence.

4.2 The Effect of Information Exchange

We performed several experiments with different social networks in a prediction market
composed of 8 agents. Figure 1 shows some social networks where each agent has 0,
1, 2 or 3 acquaintances; we have performed experiments with 0 to 4 acquaintances and
logged the prediction accuracy of the market, the prediction accuracy of each individual
agent, and also the average money reward received by each agent per problem.

Table 1 shows that information exchange is positive both for the individual agents
and for the market as a whole. We can see that the more acquaintances an agent has,
the higher its individual prediction. For instance, agents with 0 acquaintances have an
accuracy of 74.21% while agents with 1 acquaintance have an accuracy of 83.99%, and
when they have 4 acquaintances, their accuracy is increased to 88.16%. Moreover, the
predictive accuracy of the market increases from 89.71% when agents do not perform
information exchange, to above 91% when agents have more than 1 acquaintance.

These results also show that the argumentation process of section 3.6 is successful
in in acquiring individually valuable information. The increase in individual accuracy
and confidence in prediction can only be explained by agents changing their original
prediction and confidence value after arguing with other agents.

Another effect we can observe is that the reward that the agents obtain increases
when they perform information exchange, starting in 10.35 monetary units per problem
when they do not perform information exchange, and going up to close to 12 when
agents have 2 acquaintances ore more. It is interesting to notice that the performance of
the prediction market doesn’t increase linearly with the performance of the individual
agents. In fact, the more accurate the individual agents get, the more correlated their

Argumentation-Based Information Exchange in Prediction Markets 191

individual predictions are, and thus there is less difference between their individual
predictions and the prediction of the market as a whole. This is a well known effect
in machine learning (known as the ensemble effect [9]), or in economics (related to
the Condorcet Jury Theorem). Therefore, if the reward signal that the agents get was
only related to its individual accuracy, agents might be interested in their classification
accuracy to a point were the correlation is too high, and then the market would not
achieve it’s optimal accuracy. The reward signal presented in Section 2 takes this into
account, and rewards the agents when the market as a whole has high accuracy.

Moreover, Table 1 shows that the reward signal is higher when the market accu-
racy is higher (in our experiments, when agents have 2 acquaintances), instead of when
their individual accuracy is higher. Therefore, the agents have an incentive to be highly
accurate, but up to a limit, so that the market as a whole has a high accuracy. In our
experiments, the agents receive maximum reward when they collaborate with two ac-
quaintances, and thus it is rational for the agents to do so. As a side effect, the accuracy
of the market as a whole is also maximum under those conditions, thus the agents have
an incentive to do what is better for the market.

Summarizing, the experiments show that prediction markets can provide incentives
for agents to disclose more information, and that information improves the accuracy
of joint predictions or group judgments. The MPM is based on disclosing further in-
formation interpreted as a bet amount that represents the individual confidence on a
prediction. The results also show that the case-based confidence function defined in
Section 3.5 provides a good estimation, since the prediction market improves the
accuracy.

Concerning information exchange, the experiments show that individual and market
accuracy improve. This means that the agents make a more informed prediction, and
thus that the argumentation protocol of Section 3.6 is effective in providing agents with
enough information to correct previously inaccurate predictions.

4.3 Quality of the Data Sample

The results in the previous section assume that each agent have a good sample of data,
i.e. that each agent is competent. We performed a set of experiments where we changed
the quality of the data sample that each agent has and evaluated how this affects the
performance of the market, as well as the individual agents.

Specifically, we performed experiments where agent have biased case bases. A bi-
ased case base is one that is not a good sample of the complete data set. The bias of a
case base Ci with respect to a data set C is defined by:

B(Ci) =

√√√√ ∑
k=1...K

(
#({c ∈ Ci|c.S = Sk})

#(Ci)
− #({c ∈ C|c.S = Sk})

#(C)

)2

Notice that Case Base Bias is zero when the ratio of cases for each solution class is
the same in the case base Ci than in the data set C. The higher the bias, the worst the
sample.

192 S. Ontañón and E. Plaza

Table 2. Prediction markets accuracy with information exchange along several social networks
and with different biases in the individual case bases

bias social network market accuracy individual accuracy average reward majority voting

0.2

0 acquaintances 90.14% 73.01% 10.44

89.00
1 acquaintances 89.86% 82.79% 10.29
2 acquaintances 90.07% 85.80% 10.53
3 acquaintances 91.21% 87.16% 11.54
4 acquaintances 91.36% 87.49% 11.79

0.4

0 acquaintances 88.71% 66.43% 8.86

84.86
1 acquaintances 87.79% 75.95% 7.43
2 acquaintances 89.43% 79.56% 8.63
3 acquaintances 90.57% 81.7% 9.59
4 acquaintances 90.79% 82.16% 9.84

0.6

0 acquaintances 86.29% 58.05% 6.7

83.29
1 acquaintances 88.00% 70.00% 6.75
2 acquaintances 90.14% 74.94% 8.05
3 acquaintances 89.36% 74.48% 7.33
4 acquaintances 89.21% 75.51% 7.21

0.6

0 acquaintances 49.71% 38.63% -32.36

55.57
1 acquaintances 48.00% 41.26% -23.64
2 acquaintances 61.43% 47.52% -16.55
3 acquaintances 67.43% 55.67% -0.02
4 acquaintances 66.93% 55.44% -0.53

We performed experiments giving agents case bases with bias 0.2, 0.4, 0.6, and 0.8
(results in Table 1 correspond to bias equal to 0.0). Table 2 shows the accuracy of the
market, of the individual agents, and also of majority voting. If we look at the accuracy
of majority voting, we can see that it degrades when the bias increases, since the in-
dividual agents’ predictions also degrades. For instance, the classification accuracy of
majority voting degrades from 88.93% when the bias is 0.0 to 83.29% when the bias is
0.6 or to 55.57% when the bias is 0.8 (0.8 is a really large bias in our sponge data set,
and each agent almost only knows cases of a single class).

Concerning market’s accuracy, increasing the bias also diminishes its accuracy, but
remarkably much less than for majority voting; in fact market’s accuracy is strongly
affected only when the bias is very high. For instance, a prediction market where agents
have 4 acquaintances with bias 0.6 has still an accuracy of 89.21% (compared to 83.29%
of majority voting). The accuracy of individual agents is much more affected by bias,
being reduced from 74.21% with no bias to 58.05% with bias 0.6 when they have no
acquaintances. When the bias is even larger (0.8), their accuracy goes down drastically
to 38.63%. As the number of acquaintances increases, the individual accuracy largely
increases, showing that the argumentation framework allows agents to efficiently ex-
change information and benefit from information in the case bases of acquaintances. For
instance, the individual accuracy with bias 0.6 recovers from 58.05% with no acquain-
tances to 75.51% with 4 acquaintances. This effect of argumentation is thus responsible
for the increase of the market’s accuracy with bias 0.6 recovers from 86.29% with no

Argumentation-Based Information Exchange in Prediction Markets 193

acquaintances to 89.21% with 4 acquaintances. Even in the extreme case with 0.8 bias,
argumentation is able to increase the accuracy of individual agents. Therefore, we can
conclude that an argumentation-based process of information exchange is very useful
in conditions where individuals do not have a perfect (or very good) sample of data in
which to base its decisions. Argumentation allows each individual agent to contrast its
empirically-based judgements with those of its peers and acquire new information that,
albeit partially, help it recover a better sample of data.

An interesting effect is that when the bias is extreme, the confidence the agents com-
putes is not accurate: this is the only scenario where the market has lower accuracy than
simple majority voting and where the agents obtain a negative reward. However, by
means of information exchange (having acquaintances) even in this extreme scenario
the quality of the individual solutions increases, and thus the market accuracy also in-
creases, from 48.0% accuracy with no information exchange to 67.43% and 66.93%
when agents have 3 and 4 acquaintances respectively.

Thus, in summary, we see that by means of information exchange using an argumenta-
tion process, agents become much more robust to biased data than standard voting mecha-
nisms, by leveraging available information in the acquaintances’ case bases. Agents with
biased case bases benefit from exchanging information (by means of argumentation pro-
cesses) with other agents, and the result of argumentation among agents with different
biases is a less biased prediction that can largely overcome the effect of bias (except in the
extreme case of 0.8 bias, where we see an improvement, but not up to the levels achieved
when there is no bias). However, notice that in our experiments, the cases learnt from other
agents during argumentation are not stored (for experimentation purposes), it is part of
our future work to explore how retention of cases can help agents to further overcome the
effect of bias (continuing the work started in previous work [12]).

5 Related Work

Research on prediction markets has been focused on exploiting human knowledge [17],
and to our knowledge they have not been used in multiagent systems. Research in MAS
is generally focused on negotiation processes and much less on social choice, in the
sense of modeling and implementing processes where a group of agents achieve a joint
judgment. As argued in [8], computational approaches to social choice can benefit both
social choice studies and AI. Impossibility theorems proved in theoretical approaches
to social choice do not prevent the design of reasonably fair and robust mechanisms [3].

Other approaches in social choice (different from prediction markets) have been ap-
plied to MAS. What we have been calling statistical means approaches (that includes
voting) have been applied to MAS, from simple voting to complex schemes such as vot-
ing for combinatorial domains [10]. Deliberative approaches to group judgment have
also been studied, for instance in [13] a committee of agents argue the pros and cons
of a group judgment. Market mechanisms have been applied to resource allocation [15]
or other types of market goods. Our focus here is rather different: developing an agent-
based information or prediction market for group judgment.

Concerning on argumentation in MAS, previous work focuses on several issues like
a) logics, protocols and languages that support argumentation, b) argument selection

194 S. Ontañón and E. Plaza

and c) argument interpretation. Approaches for logic and languages that support
argumentation include defeasible logic [7] and BDI models [16]. An overview of logical
models of reasoning can be found at [6]. Moreover, the most related area of research is
case-based argumentation. Combining cases and generalizations for argumentation has
been already used in the HYPO system [5], where an argument can contain both specific
cases or generalizations. Moreover, generalization in HYPO was limited to selecting a
set of predefined dimensions in the system while our framework presents a more flexible
way of providing generalizations. Furthermore, HYPO was designed to provide argu-
ments to human users, while we focus on agent to agent argumentation. Case-based
argumentation has also been implemented in the CATO system[2], that models ways
in which experts compare and contrast cases to generate multi-case arguments to be
presented to law students.

6 Conclusions

Mechanisms for group judgment (voting, deliberation, etc) are ubiquitous in human so-
cieties. However, in addition to the formal structure of the group judgment mechanism,
the informal structure play an important role [17]. We have considered here the effect of
an informal structure (social networks used to exchange information mediated by argu-
mentation) in a formal group judgment mechanism (MPM). We have shown that these
social networks maybe individually useful for artificial agents, since agents may use
argumentation to improve their information about the world. Therefore, artificial mul-
tiagent systems will also have to deal with the interplay of informal structures together
with formal group judgment mechanism.

We have taken a typical task of prediction form a Machine Learning data set and
we had goal of developing a simple market called MPM. The basic idea of MPM is
that learning agents can use data concerning a prediction task domain to predict new
unknown problems and, moreover, use the learnt data to implement a confidence esti-
mate of their own predictions. Then, the prediction market design has to be set up to
encourage the expression of the agents confidence as a “price signal”. Clearly, this is
a quite general approach, and different variations can be explored in future work: im-
proving the confidence estimation functions, modifying the market reward scheme or
using other machine learning techniques.

We also introduced a process of deliberation based on an argumentation protocol
inside the framework of prediction markets. The reason is twofold: first, we wanted to
model the idea that people often consult trusted people before making a decision (i.e.
they not only learn from experience, but also from communication). Second, current
state of the art in multiagent learning suggests that the individual accuracy and con-
fidence increases after a deliberative process [13]. The experiments shown that this is
the case: information exchange supported by an argumentation process increases indi-
vidual accuracy and confidence. As expected, the information exchange also increases
the error correlation among agents [12], decreasing the so-called “ensemble effect”
that increases joint accuracy over the individual accuracy. The conclusion thus is that
information exchange is beneficial to a certain extent, i.e. among a small number of in-
dividuals compared to the total number of participating individuals, in such a way that

Argumentation-Based Information Exchange in Prediction Markets 195

individual performance is rather increased but error correlation is not much increased.
We have also shown that information exchange helps agents with biased views of the
problem to overcome their bias and produce more accurate predictions.

Although we presented the results for one data set, any other classification machine
learning data set could be used. Current state of the art in multiagent learning suggests
that the only difference would be on the degree in which the prediction market surpasses
voting [11,13].

As part of our future work, we plan to explore how our techniques will extend to fully
open multi-agent systems, where there are several different problems that agents must
solve, and not all agents ar competent in all of them, agents use heterogeneous learning
mechanisms, and not all agents are trustable. So, agents will have to learn which agents
are trustable and which ones are not, and the argumentation process has to be general-
ized to support heterogeneous learning methods. Our final goal is to define a framework
for learning agents with problem solving, learning, collaboration and argumentation ca-
pabilities ready to be deployed and be autonomous in an open multi-agent system for
real-life application.

Acknowledgements. Support for this work came from projects MID-CBR TIN2006-15140-
C03-01, and Agreement Technologies CSD2007-0022.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. Artificial Intelligence Communications 7(1), 39–59 (1994)

2. Aleven, V.: Teaching Case-Based Argumentation Through a Model and Examples. PhD the-
sis, University of Pittsburgh (1997)

3. List, C., Pettit, P.: Aggregating sets of judgments: Two impossibility results compared. Syn-
these 140, 207–235 (2004)

4. Armengol, E., Plaza, E.: Lazy induction of descriptions for relational case-based learning.
In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS, vol. 2167, pp. 13–24. Springer,
Heidelberg (2001)

5. Ashley, K.: Reasoning with cases and hypotheticals in hypo. International Journal of Man-
Machine Studies 34, 753–796 (1991)

6. Chesñevar, C.I., Mguitman, A., Loui, R.: Logical models or argument. Computing Sur-
veys 32(4), 336–383 (2000)

7. Chesñevar, C.I., Simari, G.R.: Formalizing Defeasible Argumentation using Labelled De-
ductive Systems. Journal of Computer Science & Technology 1(4), 18–33 (2000)

8. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A short introduction to computational
social choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H.,
Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69. Springer, Heidelberg (2007)

9. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS
2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

10. Lang, J.: Logical preference representation and combinatorial vote. Annals of Mathematics
and Artificial Intelligence 42, 37–71 (2004)

11. Ontañón, S., Plaza, E.: Justification-based multiagent learning. In: ICML 2003, pp. 576–583.
Morgan Kaufmann, San Francisco (2003)

12. Ontañón, S., Plaza, E.: Case-based learning from proactive communication. In: Proc. 20th
International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 999–1004. IJCAI
Press (2007)

196 S. Ontañón and E. Plaza

13. Ontañón, S., Plaza, E.: Learning and joint deliberation through argumentation in multi-agent
systems. In: Proc. AAMAS 2007, pp. 971–978. ACM, New York (2007)

14. Poole, D.: On the comparison of theories: Preferring the most specific explanation. In: IJCAI
1985, pp. 144–147 (1985)

15. Rodriguez-Aguilar, J.A., Sousa, P.: Issues in multiagent resource allocation. Informatica 30,
3–31 (2006)

16. Jennings, N.R., Parsons, S., Sierra, C.: Agents that reason and negotiate by arguing. Journal
of Logic and Computation 8, 261–292 (1998)

17. Sunstein, C.R.: Group judgments: Deliberation, statistical means, and information markets.
New York University Law Review 80, 962–1049 (2005)

An Argumentative Approach for Modelling
Coalitions Using ATL�

Nils Bulling1, Carlos I. Chesñevar2,3, and Jürgen Dix1

1 Department of Informatics, Clausthal University of Technology, Germany
{bulling,dix}@in.tu-clausthal.de

2 CONICET (National Council of Scientific and Technical Research), Argentina
3 Department of Computer Science and Engineering, Universidad Nacional del Sur,

Bahía Blanca, Argentina
cic@cs.uns.edu.ar

Abstract. During the last decade argumentation has evolved as a suc-
cessful approach to formalize commonsense reasoning and decision mak-
ing in multiagent systems. In particular, recent research has shown that
argumentation can be used to provide a framework for reasoning about
coalition formation, formalizing the adoption of coalitions by the agents
in association with different argumentation semantics. At the same time
Alternating-time Temporal Logic (ATL for short) has been successfully
used to reason about the behavior and abilities of coalitions of agents.
However, an important limitation of ATL operators is that they account
only for the existence of successful strategies of coalitions, not considering
whether coalitions can be actually formed.

This paper is an attempt to combine both frameworks in order to
develop a logical system through which we can reason at the same time
(1) about abilities of coalitions of agents and (2) about the formation of
coalitions. In order to achieve this, we provide a formal extension of ATL,
called Coalitional ATL (CoalATL for short), in which the actual com-
putation of the coalition is modelled in terms of argumentation seman-
tics. Moreover, we integrate goals as agents’ incentive to join coalitions.
We show that CoalATL’s proof theory can be understood as a natural
extension of the model checking procedure used in ATL.

1 Introduction and Motivations

During the last decade, argumentation frameworks [23,11] have evolved as a
successful approach to formalize commonsense reasoning and decision making in
multiagent systems (MAS). Application areas include issues such as joint delib-
eration, persuasion, negotiation, knowledge distribution and conflict resolution
(e.g. [27,24,25,6,21]), among many others. In particular, recent research by Leila

� We thank the editors for the invitation to publish this paper in the ArgMas pro-
ceedings. This paper is mostly based on the paper “Modelling coalitions: ATL
+ Argumentation” [7], including also some results presented in “A Finer Grained
Modelling of Rational Coalitions Using Goals” [8].

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 197–216, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 N. Bulling, C.I. Chesñevar, and J. Dix

Amgoud [3,4] has shown that argumentation provides a sound setting to model
reasoning about coalition formation in MAS. The approach is based on using
conflict and preference relationships among coalitions to determine which coali-
tions should be adopted by the agents. This is done according to a particular
argumentation semantics, which can then be computed using a suitable proof
theory.

Alternating-time Temporal Logic (ATL) [2] is a temporal logic which can be
used for reasoning about the behavior and abilities of agents under various ra-
tionality assumptions [17,18,9]. In ATL the key construct has the form 〈〈A〉〉φ,
which expresses that a coalition A of agents can enforce the formula φ. Under a
model theoretic viewpoint, 〈〈A〉〉φ holds whenever the agents in A have a winning
strategy for ensuring the satisfiability of φ (independently of the behavior of A’s
opponents). However, this operator accounts only for the theoretical existence of
such a strategy, not taking into account whether the coalition A can be actually
formed. Indeed, in order to join a coalition, agents usually require some kind
of incentive (e.g. sharing common goals, getting rewards, etc.), since usually
forming a coalition does not come for free (fees have to be paid, communication
costs may occur, etc.). Consequently, several possible coalition structures among
agents may arise, from which the best ones should be adopted according to some
rationally justifiable procedure.

In this paper we present an argumentative approach to extend ATL for mod-
elling coalitions. We provide a formal extension of ATL, CoalATL, by including a
new construct 〈|A|〉φ which denotes that the group A of agents is able to build a
coalition B, A ∩ B
= ∅, such that B can enforce φ. That is, it is assumed that
agents in A work together and try to form a coalition B. The actual computa-
tion of the coalition is modelled in terms of a given argumentation semantics [13]
in the context of coalition formation [3]. In a second step, we enrich CoalATL

with goals. We address the question why agents should cooperate. Goals refer to
agents’ subjective incentive to join coalitions. We show that the proof theory for
modelling coalitions in our framework can be embedded as a natural extension
of the model checking procedure used in ATL.

The rest of the paper is structured as follows. Section 2 summarizes the main
concepts of alternating-time temporal logic (ATL). In Section 3 we introduce
the notion of coalitional framework [3] as well as some fundamental concepts
from argumentation theory. Section 4 provides an argumentation-based view of
coalition formation by merging ATL and the coalitional framework introduced
in Sections 2 and 3. In Section 5 we incorporate goals to CoalATL, turning to
model checking in Section 6. Finally, Sections 7 and 8 discuss related and future
work and present the main conclusions obtained.

About this Paper. As already mentioned, this invited paper is based on [7]
and [8]. Sections 2-4 and 6-8 are slight variations of [7]. However, some minor
conceptual issues have been modified (in accordance with [8]) or added; discus-
sions on future and related work has also been updated. Section 5 presents the
work given in [8].

An Argumentative Approach for Modelling Coalitions Using ATL 199

2 ATL

Alternating-time Temporal Logic (ATL) [2] enables reasoning about temporal
properties and strategic abilities of agents. The language of ATL is defined as
follows.

Definition 1 (LATL [2]). Let Agt = {a1, . . . , ak} be a nonempty finite set of all
agents, and Π be a set of propositions (with typical element p). We denote by “a”
a typical agent, and by “A” a typical group of agents from Agt. LATL(Agt, Π)
is defined by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉� ϕ |
〈〈A〉〉ϕU ϕ.

Informally, 〈〈A〉〉ϕ expresses that agents A have a collective strategy to enforce
ϕ. ATL formulae include the usual temporal operators: �(“in the next state”),
� (“always from now on”) and U (strict “until”). Additionally, ♦ (“now or
sometime in the future”) can be defined as ♦ ϕ ≡ "U ϕ.

The semantics of ATL is defined by concurrent game structures.

Definition 2 (CGS [2]). A concurrent game structure (CGS) is a tuple M =
〈Agt,Q , Π, π, Act, d, o〉, consisting of: a set Agt = {a1, . . . , ak} of agents; set
Q of states; set Π of atomic propositions; valuation of propositions π : Q →
P(Π); set Act of actions. Function d : Agt×Q → P(Act) indicates the actions
available to agent a ∈ Agt in state q ∈ Q . We often write da(q) instead of d(a, q),
and use d(q) to denote the set da1(q) × · · · × dak

(q) of action profiles in state
q. Finally, o is a transition function which maps each state q ∈ Q and action
profile α = 〈α1, . . . , αk〉 ∈ d(q) to another state q′ = o(q,α).

A path λ = q0q1 · · · ∈ Qω is an infinite sequence of states such that there is a
transition between each qi, qi+1.We define λ[i] = qi to denote the i-th state of λ.
The set of all paths starting in q is defined by ΛM(q).

A (memoryless) strategy of agent a is a function sa : Q → Act such that sa(q)
∈ da(q) We denote the set of such functions by Σa. A collective strategy sA for
team A ⊆ Agt specifies an individual strategy for each agent a ∈ A; the set of
A’s collective strategies is given by ΣA =

∏
a∈A Σa and Σ := ΣAgt.

The outcome of strategy sA in state q is defined as the set of all paths that
may result from executing sA: out(q, sA) = {λ ∈ ΛM(q) | ∀i ∈ N0 ∃α =
〈α1, . . . , αk〉 ∈ d(λ[i]) ∀a ∈ A (αa = sa

A(λ[i]) ∧ o(λ[i],α) = λ[i + 1])}, where
sa

A denotes agent a’s part of the collective strategy sA.
The semantics of ATL is as follows.

Definition 3 (ATL Semantics). Let a CGS M = 〈Agt,Q , Π, π, Act, d, o〉 and
q ∈ Q be given. The semantics of state formulae is given by a satisfaction relation
|= as follows:

M, q |= p iff p ∈ π(q)
M, q |= ¬ϕ iff M, q
|= ϕ
M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ
M, λ |= ϕ iff M, λ[0] |= ϕ;

200 N. Bulling, C.I. Chesñevar, and J. Dix

and for path formulae by

M, λ |= �ϕ iff M, λ[1] |= ϕ
M, λ |= � ϕ iff M, λ[i] |= ϕ for all i ∈ N0
M, λ |= ϕU ψ iff there is an i ∈ N0 with M, λ[i] |= ψ, and M, λ[j] |= ϕ for all

0 ≤ j < i.

3 Coalitions and Argumentation

In this section we provide an argument-based characterization of coalition for-
mation that will be used later to extend ATL. We follow an approach similar
to [3], where an argumentation framework for generating coalition structures is
defined. Our approach is a generalization of the framework of Dung for argu-
mentation [13], extended with a preference relation. The basic notion is that
of a coalitional framework, which contains a set of elements C (usually seen as
agents or coalitions), an attack relation (for modelling conflicts among elements
of C), and a preference relation between elements of C (to describe favorite
agents/coalitions).

Definition 4 (Coalitional framework [3]). A coalitional framework is a
triple CF = (C,A,≺) where C is a non-empty set of elements, A ⊆ C × C is
an attack relation, and ≺ is a preorder on C representing preferences on ele-
ments in C.

Let S be a non-empty set of elements. CF(S) denotes the set of all coalitional
frameworks where elements are taken from the set S, i.e. for each (C,A,≺) ∈
CF(S) we have that C ⊆ S.

The set C in Definition 4 is intentionally generic, accounting for various pos-
sible alternatives. One alternative is to consider C as a set of agents Agt =
{a1, . . . , ak}: CF = (C,A,≺) ∈ CF(Agt). Then, a coalition is given by C =
{ai1 , . . . , ail

} ⊆ C and “agent” can be used as an intuitive reference to elements
of C. Another alternative is to use a coalitional framework CF = (C,A,≺) based
on CF(P(Agt)). Now elements of C ⊆ P(Agt) are groups or coalitions (where we
consider singletons as groups too) of agents. Under this interpretation a coalition
C ⊆ C is a set of sets of agents. Although “coalition” is already used for C ⊆ C,
we also use the intuitive reading “coalition” or “group” to address elements in C.1
Yet another way is not to use the specific structure for elements in C, assuming
it just consists of abstract elements, e.g. c1, c2, etc. One may think of these
elements as individual agents or coalitions. This approach is followed in [3].

In the rest of this paper we mainly follow the first alternative when informally
speaking about coalitional frameworks, i.e. we consider C as a set of agents.

Example 1. Consider the following two coalitional frameworks: (i) CF1 = (C,
A,≺) where C = {a1, a2, a3}, A = {(a3, a2), (a2, a1), (a1, a3)} and agent a3

1 The first interpretation is a special case of the second (coalitional frameworks are
members CF(P(Agt))).

An Argumentative Approach for Modelling Coalitions Using ATL 201

(a)
a1 a2 a3

where a1 ≺ a3

(b)

a1 a2 a3

where a2 ≺ a3

Fig. 1. Figure (a) (resp. (b)) corresponds to the coalitional frameworks defined in
Example 1 (resp. 3 (b)). Nodes represent agents and arrows between nodes stand for
the attack relation.

is preferred over a1, i.e. a1 ≺ a3; and (ii) CF2 = (C′,A′,≺′) where C′ =
{{a1}, {a2}, {a3}},A′ = {({a3}, {a2}), ({a2}, {a1}), ({a1}, {a3})} and group {a3}
is preferred over {a1}, i.e. {a1} ≺′ {a3}. They capture the same scenario and are
isomorphic but CF1 ∈ CF({a1, a2, a3}) and CF2 ∈ CF(P({a1, a2, a3})); that is,
the first framework is defined regarding single agents and the latter over (trivial)
coalitions. Figure 1 (a) shows a graphical representation of the first coalitional
framework.

Let CF = (C,A,≺) be a coalitional framework. For C, C′ ∈ C, we say that C
attacks C′ iff CAC′. The attack relation represents conflicts between elements
of C; for instance, two agents may rely on the same (unique) resource or they
may have disagreeing goals, which prevent them from cooperation. However, the
notion of attack may not be sufficient for modelling conflicts, as some elements
(resp. coalitions) in C may be preferred over others. This leads to the notion of
defeater which combines the notions of attack and preference.

Definition 5 (Defeater). Let CF = (C,A,≺) be a coalitional framework and
let C, C′ ∈ C. We say that C defeats C′ if, and only if, C attacks C′ and C′ is
not preferred over C (i.e., not C ≺ C′). We also say that C is a defeater for C′.

Attacks and defeats are defined between single elements of C. As we are inter-
ested in the formation of coalitions it is reasonable to consider conflicts between
coalitions. Members in a coalition may prevent attacks to members in the same
coalition; they protect each other. The concept of defence, introduced next, cap-
tures this idea of mutual protection.

Definition 6 (Defence). Let CF = (C,A,≺) be a coalitional framework and
C, C′ ∈ C. We say that C′ defends itself against C if, and only if, C′ is preferred
over C, i.e., C ≺ C′, and C′ defends itself if it defends itself against any of its
attackers. Furthermore, C is defended by a set S ⊆ C of elements of C if, and
only if, for all C′ defeating C there is a coalition C′′ ∈ S defeating C′.

In other words, if an element C′ defends itself against C then C may attack C′

but C is not allowed to defeat C′.
A minimal requirement one should impose on a coalition is that its members

do not defeat each other; otherwise, the coalition may be unstable and break up
sooner or later because of conflicts among its members. This is formalized in the
next definition.

202 N. Bulling, C.I. Chesñevar, and J. Dix

Definition 7 (Conflict-free). Let CF = (C,A,≺) be a coalitional framework
and S ⊆ C a set of elements in C. Then, S is called conflict-free if, and only if,
there is no C ∈ S defeating some member of S.

It must be remarked that our notions of “defence” and “conflict-free” are defined
in terms of “defeat” rather than “attack”.2 Given a coalitional framework CF
we will use argumentation to compute coalitions with desirable properties. In
argumentation theory many different semantics have been proposed to define
ultimately accepted arguments [13,10]. We apply this rich framework to provide
different ways to coalition formation. A semantics can be defined as follows.

Definition 8 (Coalitional framework semantics). A semantics for a coali-
tional framework CF = (C,A,≺) is a (isomorphism invariant) mapping sem
which assigns to a given coalitional framework CF = (C,A,≺) a set of subsets
of C, i.e., sem(CF) ⊆ P(C).

Let CF = (C,A,≺) be a coalitional framework. To formally characterize different
semantics we will define a function FCF : P(C) → P(C) which assigns to a set
of coalitions S ∈ P(C) the coalitions defended by S.

Definition 9 (Characteristic function F). Let CF = (C,A,≺) be a coali-
tional framework and S ⊆ C. The function F defined by

FCF : P(C)→ P(C)
FCF(S) = {C ∈ C | C is defended by S}

is called characteristic function.3

F can be applied recursively to coalitions resulting in new coalitions. For ex-
ample, F(∅) provides all undefeated coalitions and F2(∅) constitutes the set of
all elements of C which members are undefeated or are defended by undefeated
coalitions.

Example 2. Consider again the coalitional framework CF1 given in
Example 1. The characteristic function applied on the empty set results in {a3}
since the agent is undefeated, F(∅) = {a3}. Applying F on F(∅) determines the
set {a1, a3} because a1 is defended by a3. It is easy to see that {a1, a3} is a fixed
point of F .

We now introduce the first concrete semantics called coalition structure
semantics, which was originally defined in [3].

Definition 10 (Coalition structure semcs [3]). Let CF = (C,A,≺) be a
coalitional framework. Then

semcs(CF) :=

{ ∞⋃
i=1

F i
CF(∅)

}
is called coalition structure semantics or just coalition structure for CF .
2 In [3,4] these notions are defined the other way around, resulting in a different

characterization of stable semantics.
3 We omit the subscript CF if it is clear from context.

An Argumentative Approach for Modelling Coalitions Using ATL 203

For a coalitional framework CF = (C,A,≺) with a finite set C4 the characteristic
function F is continuous [13, Lemma 28]. Since F is also monotonic it has a
least fixed point given by F(∅) ↑ω (according to Knaster-Tarski). We have the
following straightforward properties of coalition structure semantics.

Proposition 1 (Coalition structure). Let CF = (C,A,≺) be a coalitional
framework with a finite set C. There is always a unique coalition structure for
CF. Furthermore, if no element of C ∈ C defends itself then the coalitional
structure is empty, i.e. semcs(CF) = {∅}.

Example 3. The following situations illustrate the notion of coalitional structure:

(a) Consider Example 2. Since {a1, a3} is a fixed point of FCF1 the coalitional
framework CF1 has {a1, a3} as coalitional structure.

(b) CF3 := (C,A,≺) ∈ CF({a1, a2, a3}) (shown in Figure 1(b)), is a coalitional
framework with C = {a1, a2, a3}, A = { (a1, a2), (a1, a3) , (a2, a1), (a2, a3),
(a3, a1)} and a3 is preferred over a2, a2 ≺ a3, has the empty coalition as
associated coalition str., i.e. semcs(CF) = {∅}.

Since the coalition structure is often very restrictive, it seems reasonable to
introduce other less restrictive semantics. Each of the following semantics are
well-known in argumentation theory [13] and can be used as a criterion for
coalition formation (cf. [3]).

Definition 11 (Argumentation Semantics). Let (C,A,≺) be a coalitional
framework, S ⊆ C a set of elements of C. S is called

(a) admissible extension iff S is conflict-free and S defends all its elements, i.e.
S ⊆ F(S).

(b) complete extension iff S is conflict-free and S = F(S).
(c) grounded extension iff S is the smallest (wrt. to set inclusion) complete

extension.
(d) preferred extension iff S is a maximal (wrt. to set inclusion) admissible

extension.
(e) stable extension iff S is conflict-free and it defeats all arguments not in S.

Let semcs (resp. semcomplete, semgrounded, sempreferred and semstable) denote the
semantics which assigns to a coalitional structure CF all its admissible (resp.
complete, grounded, preferred, and stable) extensions.

There is only one unique coalition structure (possibly the empty one) for a given
coalitional framework, but there can be several stable and preferred extensions.
The existence of at least one preferred extension is assured which is not the case
for the stable semantics. Thus, the possible coalitions very much depend on the
used semantics.
4 Actually, it is enough to assume that CF is finitary (cf. [13, Def. 27]).

204 N. Bulling, C.I. Chesñevar, and J. Dix

Example 4. For CF3 from Example 3 the following holds:

semcs(CF) = {∅}
semadmissible(CF) = {{a1}, {a2}, {a3}, {a2, a3}}
semcomplete(CF) = semgrounded(CF) = {{a1}, {a2, a3}} =
sempreferred(CF) = semstable(CF) = {{a1}, {a2, a3}}

Analogously, for the coalitional framework CF1 from Example 1 there exists
one complete extension {a1, a3} which is also a grounded, preferred, and stable
extension.

4 Coalitional ATL

In this section we combine argumentation for coalition formation and ATL and
introduce Coalitional ATL (CoalATL). This logic extends ATL by new operators
〈|A|〉 for each subset A ⊆ Agt of agents. These new modalities combine, or rather
integrate, coalition formation into the original ATL cooperation modalities 〈〈A〉〉.
The intended reading of 〈|A|〉ϕ is that the group A of agents is able to form
a coalition B ⊆ Agt such that some agents of A are also members of B, A ∩
B
= ∅, and B can enforce ϕ. Coalition formation is modelled by the formal
argumentative approach in the context of coalition formation, as described in
Section 3, based on the framework developed in [3].

Our main motivation for this logic is to make it possible to reason about the
ability of building coalition structures, and not only about an a priori specified
group of agents (as it is the case for 〈〈A〉〉ϕ). The new modality 〈|A|〉 provides a
rather subjective view of the agents in A and their power to create a group B,
A ∩ B
= ∅, which in turn is used to reason about the ability to enforce a given
property.

The language of CoalATL is as follows.

Definition 12 (LATLc). Let Agt = {a1, . . . , ak} be a finite, nonempty set of
agents, and Π be a set of propositions (with typical element p). We use the
symbol “a” to denote a typical agent, and “A” to denote a typical group of agents
from Agt. The logic LATLc(Agt, Π) is defined by the following grammar:

ϕ ::=p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉� ϕ | 〈〈A〉〉ϕU ϕ |
〈|A|〉 �ϕ | 〈|A|〉� ϕ | 〈|A|〉ϕU ϕ

We extend concurrent game structures by coalitional frameworks and an argu-
mentative semantics. A coalitional framework is assigned to each state of the
model capturing the current “conflicts” among agents. In doing so, we allow that
conflicts change over time, being thus state dependent. Moreover, we assume
that coalitional frameworks are agents’ dependend. Two intial groups of agents
may have different skills to form coalitions. Consider for instance the following
example.

An Argumentative Approach for Modelling Coalitions Using ATL 205

Example 5. Imagine the two agents a1 and a2 are not able (because they do not
have the money) to convince a3 and a4 to join. But a1, a2 and a3 together have
the money and all four can enforce a property ϕ. So {a1, a2} are not able to
build a greater coalition to enforce ϕ; but {a1, a2, a3} are. So we are not looking
at coalitions per se, but how they evolve from others.

We assume that the argumentative semantics is the same for all states.

Definition 13 (CGM). A coalitional game model (CGM) is given by a tuple

M = 〈Agt,Q , Π, π, Act, d, o, ζ, sem〉

where 〈Agt,Q , Π, π, Act, d, o〉 is a CGS, ζ : P(Agt) → (Q → CF(Agt)) is a
function which assigns a coalitional framework over Agt to each state of the
model subjective to a given group of agents, and sem is an (argumentative)
semantics as defined in Definition 8. The set of all such models is given by
M(Q , Agt, Π, sem, ζ).

A model provides an argumentation semantics sem which assigns all formable
coalitions to a given coalitional framework. As argued before we require from a
valid coalition that it is not only justified by the argumentation semantics but
that it is also not disjunct with the predetermined starting coalition. This leads
to the notion valid coalition.

Definition 14 (Valid coalition). Let A, B ⊆ Agt be groups of agents, M =
〈Agt,Q , Π, π, Act, d, o, ζ, sem〉 be a CGM and q ∈ Q .

We say that B is a valid coalition with respect to A, q, and M whenever
B ∈ sem(ζ(A)(q))) and A ∩ B
= ∅. Furthermore, we use VCM(A, q) to denote
the set of all valid coalitions regarding A, q, and M. The subscript M is omitted
if clear from the context.

Remark 1. Note, that in [7] we assume that the members of the initial group
A work together, whatever the reasons might be. So group A was added to the
semantics. This ensured that agents in A can enforce ψ on their own, if they
are able to do so. Even if A is not accepted originally by the argumentation
semantics, i.e. A
∈ sem(ζ(A)(q)). Here, we drop this requirement. As pointed
out in [8] the “old” semantics is just a special case of this new one: The operator
from [7] can be defined as 〈|A|〉γ ∨ 〈〈A〉〉γ.

Moreover, we changed the condition that the predefined group given in the
coalitional operator must be a subset of the formed coalition, A ⊆ B, to the
requirement that some member of the inital coalition should be in the new one,
A ∩B
= ∅. Both definitions make sense in different scenarios; however, the new
one seems to be more generic.

The semantics of the new modality is given by

Definition 15 (CoalATL Semantics). Let a CGM M = 〈Agt,Q , Π, π, Act, d,
o, ζ, sem〉 a group of agents A ⊆ Agt, and q ∈ Q be given. The semantics of
Coalitional ATL extends that of ATL, given in Definition 3, by the following rule
(〈|A|〉ψ ∈ LATLc(Agt, Π)):

206 N. Bulling, C.I. Chesñevar, and J. Dix

M, q |= 〈|A|〉ψ iff there is a coalition B ∈ VC(A, q) such that M, q |= 〈〈B〉〉ψ.

Remark 2 (Different Semantics, |=sem). We have just defined a whole class of
semantic rules for modality 〈|·|〉. The actual instantiation of the semantics sem, for
example semstable, sempref, and semcs defined in Section 3, affects the semantics
of the cooperation modality.

For the sake of readability, we sometimes annotate the satisfaction relation |=
with the presently used argumentation semantics. That is, given a CGM M with
an argumentation semantics sem we write |=sem instead of |=.

The underlying idea of the semantic definition of 〈|A|〉ψ is as follows. A given
(initial) group of agents A ⊆ Agt is able to form a valid coalition B (where A
and B must not be disjoint), with respect to a given coalitional framework CF
and a particular semantics sem, such that B can enforce ψ.

Similarly to the alternatives to our definition of valid coalitions there are
other sensible semantics for CoalATL. The semantics we presented here is not
particularly dependent on time; i.e., except from the selection of a valid coalition
B at the initial state there is no further interaction between time and coalition
formation. We have chosen this simplistic definition to present our main idea –
the connection of ATL and coalition formation by means of argumentation – as
clear as possible.

Proposition 2 ([7]). Let A ⊆ Agt and 〈|A|〉ψ ∈ LATLc(Agt, Π). Then it holds
that 〈|A|〉ψ →

∨
B∈P(Agt),A⊆B〈〈B〉〉ψ is a validity with respect to CGM’s.

Compared to ATL, a formula like 〈|A|〉ϕ does not refer to the ability of A to
enforce ϕ, but rather to the ability of A to constitute a coalition B, such that
A∩B
= ∅, and then, in a second step, to the ability of B to enforce ϕ. Thus, two
different notions of ability are captured in these new modalities. For instance,
〈〈A〉〉ψ ∧ ¬〈|∅|〉ψ expresses that group A of agents can enforce ψ, but there is
no reasonable coalition which can enforce ψ (particularly not A, although they
possess the theoretical power to do so).

Example 6. There are three agents a1, a2, and a3 which prefer different out-
comes. Agent a1 (resp. a2, a3) desires to get outcome r (resp. s, t). One may

q0 start

q1t, s q2 s q3 r

(�
, α

, β
)

(α
, β

, β
)

(�
,
α

,
α
)

(α
,
β

,
α
)

(β, β, �)

(�, �, �) (�, �, �) (�, �, �)

Fig. 2. A simple CGS defined in Example 6

An Argumentative Approach for Modelling Coalitions Using ATL 207

assume that all outcomes are distinct; for instance, a1 is not satisfied with an
outcome x whenever x
= r. Each agent can choose to perform action α or β.
Action profiles and their outcomes are shown in Figure 2. The � is used as a
placeholder for any of the two actions, i.e. � ∈ {α, β}. For instance, the profile
(β, β, �) leads to state q3 whenever agent a1 and a2 perform action β and a3
either does α or β.

According to the scenario depicted in the figure, a1 and a2 cannot commonly
achieve their goals. The same holds for a1 and a3. On the other hand, there exists
a situation, q1, in which both agents a2 and a3 are satisfied. One can formalize
the situation as the coalitional game CF = (C,A,≺) given in Example 3(b), that
is, C = Agt, A = {(a1, a2), (a1, a3), (a2, a1), (a2, a3), (a3, a1)} and a2 ≺ a3.

We formalize the example as the CGM M = 〈Agt,Q , Π,
π, Act, d, o, ζ, sem〉 where Agt = {a1, a2, a3},Q = {q0, q1, q2, q3}, Π = {r, s, t},
and ζ(A)(q) = CF for all states q ∈ Q and groups A ⊆ Agt. Transitions and the
state labeling can be seen in Figure 2. Furthermore, we do not specify a concrete
semantics sem yet, and rather adjust it in the remainder of the example.

We can use pure ATL formulas, i.e. formulas not containing the new modal-
ities 〈| · |〉, to express what groups of agents can achieve. We have, for instance,
that agents a1 and a2 can enforce a situation which is undesirable for a3:
M, q0 |= 〈〈a1, a2〉〉 �r. Indeed, {a1, a2} and the grand coalition Agt (since it
contains {a1, a2}) are the only coalitions which are able to enforce �r; we have

M, q0 |= ¬〈〈X〉〉 �r (1)

for all X ⊂ Agt and X
= {a1, a2}. Outcomes s or t can be enforced by a2:
M, q0 |= 〈〈a2〉〉 �(s∨ t). Agents a2 and a3 also have the ability to enforce a situa-
tion which agrees with both of their desired outcomes:M, q0 |= 〈〈a2, a3〉〉 �(s∧t).

These properties do not take into account the coalitional framework, that
is, whether specific coalitions can be formed or not. By using the coalitional
framework, we get

M, q0 |=sem 〈〈a1, a2〉〉 �r ∧ ¬〈|a1|〉 �r ∧ ¬〈|a2|〉 �r

for any semantics sem introduced in Definition 8 and calculated in Example 4.
The possible coalition (resp. coalitions) containing a1 (resp. a2) is {a1} (resp.
are {a2} and {a2, a3}). But neither of these can enforce �r (in q0) because of
(1). Thus, although it is the case that the coalition {a1, a2} has the theoretical
ability to enforce r in the next moment (which is a “losing” situation for a3),
a3 should not consider it as sensible since agents a1 and a2 would not agree to
constitute a coalition (according to the coalitional framework CF).

The decision for a specific semantics is a crucial point and depends on the actual
application. The next example shows that with respect to a particular argu-
mentation semantics, agents are able to form a coalition which can successfully
achieve a given property, whereas another argumentative semantics does not
allow that.

208 N. Bulling, C.I. Chesñevar, and J. Dix

Example 7. CoalATL can be used to determine whether a coalition for enforcing
a specific property exists. Assume that sem represents the grounded semantics.
For instance, the statement

M, q0 |=semgrounded 〈|∅|〉 �t

expresses that there is a grounded coalition (i.e. a coalition wrt to the grounded
semantics) which can enforce �t, namely the coalition {a2, a3}. This result does
not hold for all semantics; for instance, we have

M, q0
|=semcs 〈|∅|〉 �t

with respect to the coalition structure semantics, since the coalition structure is
the empty coalition and M, q0
|= 〈〈∅〉〉 �t.

Note that it is easily possible to extend the language by an update mechanism,
in order to compare different argumentative semantics using formulae inside the
object language.

5 Cooperation and Goals

Why should agents join coalitions? Up to now we did not address this ques-
tion and focussed on why not to cooperate. Often cooperation does not come
for free and it requires some kind of incentive (i.e. sharing common goals or
getting rewards) to offer one’s ability in order to support other agents. Coali-
tional frameworks, however, were mainly used to model conflicts between agents,
and therewith, avoid cooperation. In [8] the authors propose goals as agents’
incentives to join coalitions; the following is based on that work.

5.1 The Framework

In this section a goal framework is incorporated into CoalATL models. First of all,
each agent is equipped with a set of goals Ga where a ∈ Agt and G :=

⋃
a∈Agt Ga.

Goals are formulated as ATL-path formulae or conjunctions of them. An agent,
say Bill, might have the goal – or rather a dream – that he will sometimes be
able to buy a new car without asking other people (e.g. his wife Ann). Such a
goal can be formulated as ♦ 〈〈Bill〉〉 �buyNewCar. Sometimes Bill would like to
enforce to buy a new car in the next moment. To assign goals to agents a CGM

is extended by a goal mapping.

Definition 16 (Goal mapping g). A goal mapping is a function g : Agt →
(Q+ → P(G)) assigning a set of goals to a given sequence of states and an agent.

So, a goal mapping assigns a set of goals to a history. This is needed to introduce
goals into CGM’s. The history dependency can be used, for instance, to model
when a goal should be removed from the list: An agent having a goal ♦ s may
drop it after reaching a state in which s holds. Alternatively, a model update

An Argumentative Approach for Modelling Coalitions Using ATL 209

mechanism can be used to achieve the same regarding state-based goal mappings;
however, in our opinion the former is more elegant.

So far, we did not say how goals can be actually used to form coalitions. We
assume, given some task, that agents having goals satisfied or partly satisfied
by the outcome of the task are willing to cooperate to bring about the task.
Consider, for instance, the ATL formula 〈〈A〉〉γ. It says that A can enforce γ –
the objective. In the context of Coalitional ATL it is even more intuitive: 〈|A|〉γ
means that A is able to from a coalition B which can enforce the objective
γ. Of course, rational agents should have reasons to bring about γ in order to
work towards γ. In the following we will use the notion objective (or objective
formula) to refer to both the task itself and the outcome of it. A typical objective
is written as o. Agents which have goals fulfilled or at least partly supported by
objective o are possible candidates to participate in a coalition aiming at o. We
consider CoalATL objectives which are CoalATL path formulae.

We say that an objective o satisfies goal g, o ↪→ g, if the goal g is fulfilled after
o has been accomplished. Intuitively, an objective � t satisfies goal � (t ∨ s) an
supports goal ♦ t.

5.2 Coalitional ATL with Goals

In this section we link together Coalitional ATL and the goal framework described
above. The syntax of the logic is given as in Definition 12. The necessary change
takes place in the semantics. We redefine what it means for a coalition to be
valid.

Up to now valid coalitions were solely determined by coalitional frameworks.
Conflicts represented by such frameworks are a coarse, but necessary, criterion
for a successful coalition formation process. However, nothing is said about in-
centives to join coalitions, only why coalitions should not be joined.

Goals allow to capture the first issue. For a given objective formula o and a
finite sequence of states, called history, we do only consider agents which have
some goal supported by the current objective. CGM’s with goals are given as a
straightforward extension of CGM’s (cf. Definition 13).

Definition 17 (CGM with goals). A CGM with goals (CGMg) M is given by
a model of M(Q , Agt, Π, sem, ζ) extended by a set of goals G and a goal mapping
g over G. The set of all such models is denoted by Mg(Q , Agt, Π, sem, ζ,G, g) or
just Mg if we assume standard naming.

To define the semantics we need some additional notation. Given a path λ ∈ Qω

we use λ[i, j] to denote the sequence λ[i]λ[i + 1] . . . λ[j] for i, j ∈ N0 ∪ {∞} and
i ≤ j. A history is a finite sequence h = q1 . . . qn ∈ Q+, h[i] denotes state qi

if n ≥ i, qn for i ≥ n, and ε for i < 0 where i ∈ Z ∪ {∞}. Furthermore, given
a history h and a path or history λ the combined path/history starting with h
extended by λ is denoted by h ◦ λ.

Finally, we present the semantics of CoalATL with goals. It is similar to Defi-
nition 15. Here, however, it is necessary to keep track of the steps (visited states)
made to determine the goals of the agents.

210 N. Bulling, C.I. Chesñevar, and J. Dix

Definition 18 (Goal-based semantics of LATLc). Let M be a CGMg, q a
state, ϕ, ψ state-, γ a path formula, and i, j ∈ N0. The goal-based semantics of
LATLc formulae is given as follows:

M, q, τ |= p iff p ∈ π(q)
M, q, τ |= ϕ ∧ ψ iff M, q, τ |= ϕ and M, q, τ |= ψ
M, q, τ |= ¬ϕ iff not M, q, τ |= ϕ
M, q, τ |= 〈〈A〉〉γ iff there is a strategy sA ∈ ΣA such that for all λ ∈ out(q, sA)

it holds that M, λ, τ |= ϕ
M, q, τ |= 〈|A|〉γ iff there is A′ ∈ VCg(q, A, γ, τ) such that M, q, τ |= 〈〈A〉〉γ
M, λ, τ |= ϕ iff M, λ[0], τ |= ϕ
M, λ, τ |= � ϕ iff for all i it holds that M, λ[i], τ ◦ λ[1, i] |= ϕ
M, λ, τ |= �ϕ iff it holds that M, λ[1], τ ◦ λ[1] |= ϕ
M, λ, τ |= ϕU ψ iff there is a j such that M, λ[j], τ ◦ λ[1, j] |= ψ and for all

0 ≤ i < j it holds that M, λ[i], τ ◦ λ[1, i] |= ϕ.

Ultimately, we are interested in M, q |= ϕ defined as M, q, q |= ϕ.

All the new functionality provided by goals is captured by the new valid coalition
function VCg

Definition 19 (Valid coalitions,VCg(q, A, o, τ)). Let M ∈ Mg, τ ∈ Q+,
A, B ⊆ Agt, o an CoalATL objective.

We say that B is a valid coalition after τ with respect to A, o, and M if, and
only if,

1. B ∈ sem(ζ(τ [∞])(A)), A ∩B
= ∅, and
2. there are goals gbi ∈ gbi(τ), one per agent bi ∈ B, such that o ↪→M,τ,B

gb1 ∧ · · · ∧ gb|B|

The set VCg(q, A, o, τ) consists of all such valid coalitions wrt to M.

Thus, for the definition of valid coalitions among other things, a goal mapping,
a function ζ and a sequence of states τ are required. The intuition of τ is that it
represents the history (the sequence of states visited so far including the current
state). So, τ is used to determine which goals of the agents are still active.

Finally, we have to define when a goal is satisfied.

Definition 20 (Satisfaction of goals). Let g be an ATL-goal, o an LATLc-
objective, and τ ∈ Q+. We say that objective o satisfies g, for short o ↪→M,τ,B g,
with respect to M, τ , and B if, and only if, there is a strategy sB ∈ ΣB such
that

1. for all λ ∈ out(τ [∞], sB) it holds that M, λ, τ |= o implies M, λ |= g, and
2. that there is some path λ ∈ out(τ [∞], sB) with M, λ, τ |= o.

A goal is satisfied by an objective if each path (enforceable by B) that satisfies
the objective does also satisfy the goal. That is, satisfaction of the objective will
guarantee that the goal becomes true. The second condition ensures that the

An Argumentative Approach for Modelling Coalitions Using ATL 211

coalition actually has a way to bring about the goal. However, in [8] it is shown
that the second condition is superfluous.

It remains to define the semantics for combined (by conjunction) ATL path
formulae. Therefore, we extend the ordinary semantics (given in Definition 3) by
the following semantic rule: M, λ |= γ1 ∧ · · · ∧ γn iff M, λ |= γi for i = 1, . . . , n.

6 Model Checking ATLc

In this section we present an algorithm for model checking CoalATL formulae.
The model checking problem is given by the question whether a given CoalATL

formula follows from a given CGM M and state q, i.e. whether M, q |= ϕ [12].
In [2] it is shown that model checking ATL is P-complete, with respect to the
number of transitions of M, m, and the length of the formula, l, and can be
done in time O(m · l).

For CoalATL we also have to treat the new coalitional modalities in addition
to the normal ATL constructs. Let us consider the formula 〈|A|〉ψ. According to
the semantics of 〈|A|〉, given in Definition 15, we must check whether there is a
coalition B such that (i) A ∩ B
= ∅, (ii) B is acceptable by the argumentation
semantics, and (iii) 〈〈B〉〉ψ. The number of possible candidate coalitions B which
satisfy (i) and (ii) is bounded by |P(Agt)|. Thus, in the worst case there might
be exponentially many calls to a procedure checking whether 〈〈B〉〉ψ. Another
source of complexity is the time needed to compute the argumentation seman-
tics. In [14], for instance, it is stated that credulous acceptance5 using preferred
semantics is NP-complete.

Both considerations together suggest that the model checking complexity has
two computationally hard parts: exponentially many calls to 〈〈A〉〉ψ and the
computation of the argumentation semantics. Indeed, Theorem 1 will support
this intuition. However, we show that it is possible to “combine” both compu-
tationally hard parts to obtain an algorithm which is in ΔP

2 = PNP, if the
computational complexity to determine whether a given coalition is acceptable
are not harder than NP.

For the rest of this section, we will denote by Lsem,CF the set of all coalitions
A such that A is acceptable according to the coalitional framework CF and the
argumentation semantics sem, i.e. Lsem,CF := {A | A ∈ sem(CF)}.

Given some complexity class C, we use the notation Lsem,CF ∈ C to state that
the word problem of Lsem,CF , i.e., whether A is a member of Lsem,CF , is in C.
Actually in [7] it was statet that Lsem,CF ∈ P for all semantics sem defined in
Definition 11. In Figure 3 we propose a model checking algorithm for CoalATL.
The complexity result given in the next theorem is modulo the complexity needed
to compute membership in Lsem,CF .

Theorem 1 (Model checking CoalATL [7]). Let a CGM M = 〈Agt,Q , Π, π,
Act, d, o, ζ, sem〉 be given, q ∈ Q , ϕ ∈ LATLc(Agt, Π), and Lsem,CF ∈ C. Model
checking CoalATL with respect to the argumentation semantics sem6 is in PNPC

.
5 That is, whether an argument is in some preferred extension.
6 That is, whether M, q |=sem ϕ.

212 N. Bulling, C.I. Chesñevar, and J. Dix

mcheck(M, q, ϕ)
M = 〈Agt, Q, Π, π, Act, d, o, ζ, sem〉 q ∈ Q ϕ ∈ L c (Agt, Π)

� M, q |=sem ϕ

ϕ 〈|B|〉 q ∈ mcheck (M, ϕ) � ⊥
ϕ 〈|B|〉

ϕ ≡ ¬ψ ¬(M, q, ψ)
ϕ ≡ ψ ∨ ψ′ mcheck(M, q, ψ) ∨ mcheck(M, q, ψ′)
ϕ ≡ 〈〈A〉〉Tψ q′ mcheck(M, q′, ψ) == �

yes mcheck(M, q, 〈〈A〉〉T yes) T � �

ϕ ≡ 〈〈A〉〉ψ U ψ′ q′ mcheck(M, q′, ψ) == �
yes1 q′ mcheck(M, q′, ψ′) == �

yes2 mcheck(M, q, 〈|A|〉yes1 U yes2)
ϕ ≡ 〈|A|〉Tψ ψ 〈|C|〉 q′

mcheck(M, q′, ψ) == � yes
mcheck(M, q, 〈|A|〉T yes) T � �

ϕ ≡ 〈|A|〉ψ U ψ′ ψ ψ′ 〈|C|〉 q′

mcheck(M, q′, ψ) == � yes1 q′

mcheck(M, q′, ψ′) == � yes2

mcheck(M, q, 〈|A|〉yes1 U yes2)
ϕ ≡ 〈|A|〉ψ ψ 〈|C|〉 B ∈

P(Agt)

B ∈ (sem(ζ(A)(q)))
A ∩ B �= ∅

q ∈ mcheck (M, 〈〈B〉〉ψ)

� ⊥

mcheck (M, ϕ)
M = 〈Agt, Q, Π, π, Act, d, o〉 ϕ ∈ L (Agt, Π)

q M, q |= ϕ

� {q ∈ Q | M, q |= ϕ}

Fig. 3. A model checking algorithm for CoalATL

The last theorem gives an upper bound for model checking CoalATL with respect
to an arbitrary but fixed semantics sem. A finer grained classification of the
computational complexity of Lsem,CF allows to improve the upper bound given
in Theorem 1. Assume that Lsem,CF ∈ P and consider the last case of function
mcheck in Figure 3 labelled by (�), ϕ ≡ 〈|A|〉ψ. First, a coalition B ∈ P(Agt)
is non-deterministically chosen and then, it is checked whether B satisfies the
three conditions (1-3) in (�). Each of the three tests can be done in deterministic
polynomial time. Hence, the verification ofM, q |= 〈|A|〉ψ, in the last case, meets
the “guess and verify” principle which is characteristic for problems in NP. This

An Argumentative Approach for Modelling Coalitions Using ATL 213

brings the overall complexity of the algorithm to ΔP
2 . More surprisingly, the

same result holds even for the case where Lsem,CF ∈ NP.

Corollary 1 ([7]). If Lsem,CF ∈ NP (resp. NP-complete) then model checking
CoalATL is in ΔP

2 (resp. ΔP
2 -complete) with respect to sem.

In [14] the complexity of credulous reasoning with respect to the preferred
and stable extensions is analyzed and determined to be NP-complete. This
is in the line with our result: there can be a polynomial number of calls to
mcheck(M, q, 〈|A|〉ψ) (where ψ does not contain any cooperation modality 〈| · |〉).
Now, the problem of checking whether mcheck(M, q, 〈|A|〉ψ) holds is very similar
to checking whether some argument is credulously accepted. In both cases we
have to ask for the existence of a set X with specific properties (in our framework
we refer to X as a coalition and in [14] as an argument) which can be validated
in polynomial deterministic time.

Corollary 2 ([7]). Model checking CoalATL is in ΔP
2 for all semantics defined

in Definition 11.

7 Related and Future Work

Related Work. The main inspiration for our work was the powerful argument-
based model for reasoning about coalition structures proposed by Amgoud [3].
Indeed, our notion of coalitional framework (Def. 4) is based on the notion
of framework for generating coalition structures (FCS) presented in Amgoud’s
paper. However, in contrast with Amgoud’s proposal, our work is concerned with
extending ATL by argumentation in order to model coalition formation.

Previous research by Hattori et al. [16] has also addressed the problem of
argument-based coalition formation, but from a different perspective than ours.
In [16] the authors propose an argumentation-based negotiation method for coali-
tion formation which combines a logical framework and an argument evaluation
mechanism. The resulting system involves several user agents and a mediator
agent. During the negotiation, the mediator agent encourages appropriate user
agents to join in a coalition in order to facilitate reaching an agreement. User
agents advance proposals using a part of the user’s valuations in order to reflect
the user’s preferences in an agreement. This approach differs greatly from our
proposal, as we are not concerned with the negotiation process among agents,
and our focus is on modelling coalitions within an extension of a highly expressive
temporal logic, where coalition formation is part of the logical language.

Modelling argument-based reasoning with bounded rationality has also been
the focus of previous research. In [26] the authors propose the use of a frame-
work for argument-based negotiation, which allows for a strategic and adaptive
communication to achieve private goals within the limits of bounded rationality
in open argumentation communities. In contrast with our approach, the focus
here is not on extending a particular logic for reasoning about coalitions, as in
our case. Recent research in formalizing coalition formation has been oriented

214 N. Bulling, C.I. Chesñevar, and J. Dix

towards adding more expressivity to Pauly’s coalition logic [22]. E.g. in [1], the
authors define Quantified Coalition Logic, extending coalition logic with a lim-
ited but useful form of quantification to express properties such as “there exists
a coalition C satisfying property P such that C can achieve φ”. In [5], a semantic
translation from coalition logic to a fragment of an action logic is defined, con-
necting the notions of coalition power and the actions of the agents. However,
in none of these cases argumentation is used to model the notion of coalition
formation as done in this paper.

It must be noted that the adequate formalization of preferences has deserved
considerable attention within the argumentation community. In preference-based
argumentation theory, an argument may be preferred to another one when, for
example, it is more specific, its beliefs have a higher probability or certainty,
or it promotes a higher value. Recent work by Kaci et al. [19,20] has provided
interesting contributions in this direction, including default reasoning abilities
about the preferences over the arguments, as well as an algorithm to derive the
most likely preference order.

Future Work. Indeed, in the line with the previous paragraph, one of our fu-
ture research lines is to extend our current formalization of CoalATL to capture
more complex issues in preference handling and to consider more sophisticated
semantics.

In the semantics presented in Definition 15 a valid coalition is initially formed
and kept until the property is fulfilled. For instance, consider formula 〈|A|〉� ϕ.
The formula is true in q if a valid coalition B in q can be formed such that it can
ensure � ϕ. On might strengthen the scenario and require that B must be valid
in each state on the path λ satisfying ϕ. Formally, the semantics could be given as
follows: q |= 〈|A|〉� ϕ if, and only if, q |= ϕ and there is a coalition B ∈ VC(q, A)
and a common strategy sB ∈ ΣB such that for all paths λ ∈ out(q, sB) and for
all i ∈ N it holds that λ[i] |= ϕ and B ∈ VC(λ[i], A). The last part specifies that
B must be a valid coalition in each state qi = λ[i] of λ.

In the semantics just presented the formed coalition B must persist over time
until ϕ is enforced. One can go one step further. Instead of keeping the same
coalition B it can also be sensible to consider “new” valid coalitions in each time
step (wrt. A), possibly distinct from B. This leads to some kind of fixed-point
definition. At first, B must be a valid coalition in state q leading to a state in
which ϕ is fulfilled and in which another valid coalition (wrt. A and the new
state) exists which in turn can ensure to enter a state in which, again, there is
another valid coalition and so on.

Finally, part of our future work also involves the actual implementation of
a subset of CoalATL, restricted to some particular argumentation semantics for
which proof procedures can be deployed, such as assumption-based argumenta-
tion [15] in order to perform experiments to assess our proposal when modelling
complex problems. Research in this direction is currently being pursued. Also
the model checking complexity of the goal-based semantics is left for future
research.

An Argumentative Approach for Modelling Coalitions Using ATL 215

8 Conclusions

In this paper we have presented CoalATL, an extension of ATL which is able to
model coalition formation through argumentation.Our formalism includes twodif-
ferent modalities, 〈〈A〉〉 and 〈|A|〉, which refer to different kinds of abilities agents
may have. Note that the original operator 〈〈A〉〉 is used to reason about the pure
ability of the very group A. However, the question whether it is reasonable to as-
sume that the members of A collaborate is not taken into account in ATL. With the
new operator 〈|A|〉we try to close this gap, providing also a way to focus on sensible
coalition structures. In this context, “sensible” refers to acceptable coalitions with
respect to some argumentative semantics (as characterized in Def. 8).

Furthermore, we have defined the formal machinery required for characteriz-
ing argument-based coalition formation in terms of the proposed operator 〈|A|〉.
Coalitions can be actually computed in terms of a given argumentation seman-
tics, which can be given as a parameter within our model, thus providing a
modular way of analyzing the results associated with different alternative se-
mantics. This allows us to compare the ability of agents to form particular coali-
tions and study emerging properties regarding different semantics. Additionally,
as outlined in Section 6, the model checking algorithm used in ATL can be ex-
tended to CoalATL by integrating suitable proof procedures for argumentation
semantics.

Acknowledgements. This research was partially funded by the Projects
DAAD-SeCyT (DA0609) and PGI-UNS (24/ZN10). The authors would also like
to thank the anonymous reviewers for their useful comments.

References

1. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Quantified coalition logic. In:
IJCAI, pp. 1181–1186 (2007)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time Temporal Logic. Jour-
nal of the ACM 49, 672–713 (2002)

3. Amgoud, L.: An argumentation-based model for reasoning about coalition struc-
tures. In: Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005.
LNCS, vol. 4049, pp. 217–228. Springer, Heidelberg (2006)

4. Amgoud, L.: Towards a formal model for task allocation via coalition formation.
In: AAMAS, pp. 1185–1186 (2005)

5. Borgo, S.: Coalitions in action logic. In: IJCAI, pp. 1822–1827 (2007)
6. Brena, R.F., Aguirre, J.-L., Chesñevar, C.I., Ramírez, E.H., Garrido, L.: Knowl-

edge and information distribution leveraged by intelligent agents. Knowl. Inf.
Syst. 12(2), 203–227 (2007)

7. Bulling, N., Chesñevar, C., Dix, J.: Modelling coalitions: ATL+argumentation. In:
Proceedings of AAMAS 2008, Estoril, Portugal, May 2008. ACM Press, New York
(2008)

8. Bulling, N., Dix, J.: A finer grained modeling of rational coalitions using goals.
In: Proceedings of the 14th Argentinean Conference on Computer Science CACIC
2008 (to appear, 2008)

216 N. Bulling, C.I. Chesñevar, and J. Dix

9. Bulling, N., Jamroga, W., Dix, J.: Reasoning about temporal properties of rational
play. Annals of Mathematics and Artificial Intelligence (to appear)

10. Caminada, M.: Semi-stable semantics. In: Intl. Conference on Computational Mod-
els of Argument (COMMA), pp. 121–130 (2006)

11. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM
Comput. Surv. 32(4), 337–383 (2000)

12. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

13. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

14. Dunne, P.E., Bench-Capon, T.J.M.: Two party immediate response disputes: Prop-
erties and efficiency. Artif. Intell. 149(2), 221–250 (2003)

15. Gaertner, D., Toni, F.: Computing arguments and attacks in assumption-based
argumentation. IEEE Intelligent Systems 22(6), 24–33 (2007)

16. Hattori, H., Ito, T., Ozono, T., Shintani, T.: An approach to coalition formation
using argumentation-based negotiation in multi-agent systems. In: Monostori, L.,
Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS, vol. 2070, pp. 687–696. Springer,
Heidelberg (2001)

17. Jamroga, W., Bulling, N.: A general framework for reasoning about rational agents.
In: Proceedings of AAMAS 2007, Honolulu, Hawaii, USA, pp. 592–594. ACM Press,
New York (2007)

18. Jamroga, W., Bulling, N.: A logic for reasoning about rational agents. In: Sadri,
F., Satoh, K. (eds.) Proceedings of CLIMA 2007, Porto, Portugal, Univesidade Do
Porto, pp. 54–69 (2007)

19. Kaci, S., van der Torre, L.: Preference-based argumentation: Arguments supporting
multiple values. Int. J. Approx. Reasoning 48(3), 730–751 (2008)

20. Kaci, S., van der Torre, L.W.N., Weydert, E.: On the acceptability of incompatible
arguments. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 247–258.
Springer, Heidelberg (2007)

21. Karunatillake, N.C., Jennings, N.R., Rahwan, I., Ramchurn, S.D.: Managing social
influences through argumentation-based negotiation. In: Proc. of AAMAS, pp. 426–
428 (2006)

22. Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12(1),
149–166 (2002)

23. Prakken, H., Vreeswijk, G.: Logical Systems for Defeasible Argumentation. In:
Gabbay, D., Guenther, F. (eds.) Handbook of Phil. Logic, pp. 219–318. Kluwer,
Dordrecht (2002)

24. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning.
In: Proc. of AAMAS Conf., pp. 347–354 (2006)

25. Rahwan, I., Pasquier, P., Sonenberg, L., Dignum, F.: On the benefits of exploiting
underlying goals in argument-based negotiation. In: Proc. of AAAI Conf., pp. 116–
121 (2007)

26. Rovatsos, M., Rahwan, I., Fischer, F.A., Weiß, G.: Practical strategic reasoning
and adaptation in rational argument-based negotiation. In: Parsons, S., Maudet,
N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS, vol. 4049, pp. 122–137.
Springer, Heidelberg (2006)

27. Tang, Y., Parsons, S.: Argumentation-based dialogues for deliberation. In: Proc.
of AAMAS, pp. 552–559 (2005)

A Dialogue Mechanism for Public Argumentation Using
Conversation Policies

Yuqing Tang1 and Simon Parsons1,2

1 Department of Computer Science, Graduate Center
City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

ytang@gc.cuny.edu
2 Department of Computer and Information Science, Brooklyn College,

City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
parsons@sci.brooklyn.cuny.edu

Abstract. In this paper, we propose a flexible dialogue mechanism through
which a set of agents can establish a coherent set of public beliefs. Flexibility
and coherence are achieved by decomposing the dialogue mechanism into two
parts, a backbone protocol and a set of conversation policies. The backbone pro-
tocol maintains the set of arguments put forward by the agents, and each agent
uses a pre-agreed argumentation theory to extract a set of public beliefs from this
set of arguments. The flexibility is achieved by distributing the other functions of
the dialogue mechanism among a set of conversation policies, some of which are
public and some of which are private to each agent.

1 Introduction

Multiagent systems need a mechanism by which they can communicate in order to co-
ordinate their efforts to achieve tasks that are assigned to the system [32]. Furthermore,
this mechanism should be flexible enough to enable a human designer to incrementally
add more and more building blocks to the mechanism as understanding of the tasks
evolve and the tasks themselves change. Many approaches have been proposed for the
communication mechanism — see [17,26] for surveys. Argumentation based dialogues
[4,24,26] have proved to be a general approach to agent communication in which the
agents exchange not only statements of what they believe and what they want but also
the reasons why. In this approach, a protocol or a conversation policy is used to govern
the valid sequences of dialogue moves and then argumentation-based reasoning is used
by individual agents to resolve the conflicts arising from the information that they hold
privately and the messages that they receive.

The set of beliefs held by the agent society as a whole can be implicitly deduced from
the common beliefs that all the agents have obtained by their own private argumenta-
tion. However, this causes two interrelated problems. Firstly, the way that protocols are
specified cannot be separated from the specification of the agents that use the protocol.
Indeed, such protocols are typically specified in a way that explicitly depends on the
internal mechanisms that the agent uses. Secondly, it is hard to see the impact of the
compositions of dialogue protocols on each individual agent’s beliefs as well as on the

I. Rahwan and P. Moraitis (Eds.): ArgMas 2008, LNAI 5384, pp. 217–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ytang@gc.cuny.edu
parsons@sci.brooklyn.cuny.edu

218 Y. Tang and S. Parsons

implicit public belief set [17]. These problems will prevent the dialogues from achiev-
ing the desiderata and criteria of a good dialogue as suggested in [17] and [20], such as
flexibility and verifiability.

In response to these problems, we propose a flexible dialogue mechanism through
which the agents can establish a coherent public belief set. Flexibility and public coher-
ence is achieved together by decomposing the mechanism into two parts — a backbone
protocol and a set of conversation policies. The backbone protocol maintains a shared
context of messages that have been exchanged between agents in the form of arguments
and defeats, and each agent uses a pre-agreed argumentation theory to extract the public
belief set from this set of messages. Flexibility is achieved by distributing the remain-
ing functions of the dialogue mechanism among a set of conversation policies. Some
of these policies will need to be obeyed publicly to regulate the kinds of arguments
that can be asserted into the dialogue context, and other policies will be private to each
individual agent and be used to decide which arguments and defeats should be gener-
ated out of the agent’s own private information base. The public aspect of conversation
policies is to have the agents cooperate together to create the set of public beliefs. The
private aspect of conversation policies is to offer freedom and flexibility for individual
agents to solve the problems from different perspectives.

2 Related Work

Argumentation theory, which is used to establish the public set of beliefs in our mech-
anism, has been used in a range of ways in artificial intelligence in general [9,10] and
multiagent communications in particular [4,24,26]. In the general field of artificial in-
telligence, argumentation-based reasoning has mainly been used to unify a number of
approaches to nonmonotonic reasoning [10], to reason about uncertainty [16], to reason
coherently from inconsistent information [2], to perform decision making and practical
reasoning [7], and to handle conflicting desires [1].

These applications of argumentation based reasoning suggest that the approach is
a solution for resolving conflicts arising from agent communication about issues in-
volving uncertainty, inconsistency, decision making and practical reasoning — all the
things that researchers have shown that can be handled using argumentation. However,
the most interesting property of argumentation based reasoning to us is the concept of
“external stability” [10] through which a set of coherent beliefs is characterized by the
relations between the arguments “internally” supporting the beliefs and the arguments
“externally” supporting the contradictory beliefs. In an agent society, because of the
diversity and the dynamics of the situated environment, messages from different agents
and messages from the same agent at different times often convey conflicting informa-
tion. In many cases, these conflicts can not be resolved by just looking at consecutive
messages in a dialogue. Therefore most dialogue protocols — for example [24] — in-
clude complex sets of rules about asserting statements into and retracting the statements
from the set of public beliefs with the aim of keeping those beliefs coherent. In con-
trast, in our approach, argumentation, with the “external stability” property, ensures the
coherence of the public belief set almost for free by just choosing different semantics
and different computation methods for different applications.

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 219

Furthermore, there are many recent advances in argumentation based reasoning such
as the work of Cayrol and Lagasquie-Schiex [8], Jakobovits and Vermeir [14], Besnard
and Hunter [6], and Pollock [23], that have expanded our understanding of what argu-
mentation can be used for, and have created a bridge to possibility theory and plausibil-
ity theory in the field of reasoning about uncertainty [12]. The new systems that have
emerged from this research are not usable in existing argumentation-based dialogue
systems because of the way that the latter tightly couple the dialogue protocol with
the underlying argumentation theory. The dialogue mechanism proposed in this paper
paves the way to use these new argumentation reasoning theories freely in dialogues by
decoupling dialogue from any specific model of argumentation.

3 An Argumentation Framework

An argumentation framework is a pair 〈A,R〉 whereA is a set of arguments, andR is a
binary defeat relation over the set of arguments. The set of arguments are induced from
an information base, denoted by Σ. Σ is represented in a logical language L with the
standard connectives ∧,∨,¬,≡. An entailment relationship � is required to be defined
on L. Inconsistent information is allowed in Σ to accommodate conflicting information
in the information base. The defeat relation R will be induced from Σ to recapture the
inconsistency of the information base at the level of arguments. Once we have the set
of arguments and the set of defeats, we adopt a set of principles, principles drawn from
the philosophical and linguistic study of human argumentation and fallacious reasoning
[31], that we can use to analyze the outcome of the argument set and the defeat set.

The rest of this section will be devoted to describe one such framework and its com-
ponents formally. The framework is mostly drawn from the work of Amgoud and her
colleagues [2,3] with some slight modifications.

Definition 1. An argument based on Σ is pair (H, h) where H ⊆ Σ such that

1. H is consistent with respect to L,
2. H � h,
3. H is minimal (for set inclusion).

H is called the support and h is called the conclusion of the argument. A(Σ) denotes
the set of all arguments which can be constructed from Σ.

This definition of argument can be understood as constraints on how pieces of coher-
ence information can be clustered as arguments. Condition (1) is to ensure that an argu-
ment is a coherent. The coherence of an agent’s information is defined in terms of the
consistency of the language L in which the information is written. Condition (2) can
be understood as insisting that the conclusion of an argument should be supported by
a set of information in the sense of inference in the language L. Condition (3) can be
understood as saying that no redundant information should appear in an argument. This
definition of argument is chosen from Amgoud’s work because its form is simple. Our
proposed dialogue mechanism in Section 4 doesn’t prevent the application from choos-
ing another form of argument as long as there is a process to generate the arguments
and check their validity.

220 Y. Tang and S. Parsons

Definition 2. (H ′, h′) is a subargument of the argument (H, h) iff H ′ ⊆ H .

Definition 3. Let (H1, h1), (H2, h2) be two arguments ofA(Σ).

1. (H1, h1) rebuts (H2, h2) iff h1 ≡ ¬h2.
2. (H1, h1) undercuts (H2, h2) iff ∃h ∈ H2 such that h ≡ ¬h2.
3. (H1, h1) contradicts (H2, h2) iff (H1, h1) rebuts a subargument of (H2, h2).

The binary relations rebut, undercut, and contradict gather all pairs of arguments
satisfying conditions (1), (2) and (3) respectively.

The relations rebut, undercut, and contradict will be collectively referred to as
defeat if no distinction is necessary, and we will write defeat((H1, h1), (H2, h2))
if (H1, h1) rebuts, undercuts or contradicts (H2, h2).

The definition of these forms of defeat can be viewed as recapturing the inconsis-
tency of the original information into a conflict relation among the arguments in terms
of the fallacious reasoning recorded in the arguments. rebut means that the two argu-
ments leads to conflicting conclusions in the sense of L. undercut means that the one
argument’s conclusion conflicts with another argument’s premise. contradict means
that one argument’s conclusion conflicts with a conclusion which can be extended, us-
ing the inferences in L, from one or many segments of another argument’s support. In
contrast to rebut and undercut, contradict penetrates into arguments and explores
various parts of the arguments to detect conflicting points with respect to L.

These notions of defeat are close, but none is equivalent to, or subsumes, the other in
general. If we define arguments of the form ({a}, a), where the conclusion is also the
support, to be degenerate, then we can easily show that:

Proposition 1. Let (H1, h1) and (H2, h2) be two arguments.

1. If (H1, h1) rebuts (H2, h2) then it also undercuts (H2, h2) iff (H2, h2) is
degenerate.

2. If (H1, h1) undercuts (H2, h2) then it contradicts (H2, h2) iff (H2, h2) is
degenerate,

Proof. We can easily see the equivalence of rebut, contradict and undercut on a degen-
erate argument from an example. (H1,¬a), rebuts, undercuts and contradicts ({a}, a).
In general, for rebuttal to entail undercut, the conclusion has to be in the support, and
by the minimality condition on arguments, the undercut/rebutted argument must there-
fore be degenerate. Similarly, for undercut to entail contradiction, the element of the
support that is attacked by the undercutter must also be the conclusion of the undercut
argument. Hence it must be degenerate.

[2] gives a detailed discussion on how these definitions of defeat will affect the behav-
iors of an argumentation framework, while [29,30] provide a more detailed discussion
on the concepts and forms of defeat. In later sections we will only use undercut.

Following Dung’s work [10], we have the following component definitions of the
theory.

Definition 4. An argumentation framework is a pair, Args = 〈A,R〉, whereA is a set
of arguments, andR is a binary defeat relation over the arguments.

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 221

Definition 5. Let 〈A,R〉 be an argumentation framework, and S ⊆ A. An argument A
is defended by S iff ∀B ∈ A if (B, A) ∈ R then ∃C ∈ S such that (C, B) ∈ R.

Definition 6. S ⊆ A. FR(S) = {A ∈ A|A is defended by S with respect toR}.

Now, for a function F : D → D where D is the domain and the range of the function,
a fixed point of F is an x ∈ D such that x = F (x). When the D is associated with an
ordering P — for example, P can be set inclusion over the power set D of arguments
— x is a least fixpoint of F if x is a least element of D with respect to P and x is a
fixed point.

Definition 7. Let 〈A,R〉 be an argumentation framework. The set of acceptable ar-
guments, denoted by AccF

R, is the least fixpoint of the function FR with respect to set
inclusion.

The least fixpoint semantics can be viewed as a mathematical translation of the principle
that an argument survives if it can defend itself or be defended by a set of arguments
which can also survive all the attacks made upon them.

It is possible to provide alternative semantics for argumentation systems. For exam-
ple we have the numerical characterization in [6], the string (or tree) characterization
in [8], a characterization based on Dempster-Shafer theory [15], and the algebra based
characterization [23]. Others are surveyed in [8].

In terms of engineering the reasoning system, given the language L it should be suf-
ficient to describe the application domain. The concept of argument and defeat that are
selected should be such that the logical property of arguments and the defeat defined on
them should be strong enough to capture sufficient conflicting patterns of information in
the application at the level of arguments. In addition, the argumentation semantics that
are selected should be able to produce a set of acceptable arguments that corresponds to
the set of correct answers in the relevant application domain. In the following sections,
we propose a mechanism to lay out the backbone of a shared argumentation reasoning
system and build different conversation policies on top of it.

4 A Dialogue Mechanism

4.1 The Backbone Protocol

In this section, we define a flexible dialogue mechanism that decomposes a dialogue
into a backbone protocol and a set of conversation policies. This dialogue mechanism
serves a set of agents T = {T1, ..., Tn} where each agent Ti is equipped with an infor-
mation base Σ(Ti). The set of conversation policies is a set of facilities, some of which
are interrelated, to produce arguments and defeats out of the information base and feed
them into the backbone protocol. The job of the backbone protocol is then to main-
tain a unified dialogue context of arguments and defeats between all the agents, and to
provide an interface for the agents to query the public beliefs. In contrast to existing
protocols, which typically enforce all the requirements on the structure of a conversa-
tion, the backbone protocol only assures the integrity and validity of arguments and
defeats that have been exchanged, and leaves the other requirements of the dialogue to

222 Y. Tang and S. Parsons

A g e n t 1

I n f o r m a t i o n B a s e

C o n v e r s a t i o n P o l i c y
C o n v e r s a t i o n P o l i c y

C o n v e r s a t i o n P o l i c y
C o n v e r s a t i o n P o l i c y

C o n v e r s a t i o n P o l i c y

B a c k b o n e P r o t o c o l

A r g u m e n t s
D e f e a t s

A g e n t 2

I n f o r m a t i o n B a s e

C o n v e r s a t i o n P o l i c y
C o n v e r s a t i o n P o l i c y

C o n v e r s a t i o n P o l i c y
C o n v e r s a t i o n P o l i c y

C o n v e r s a t i o n P o l i c y

B a c k b o n e P r o t o c o l

A r g u m e n t s
D e f e a t s

D i a l o g u e C o n t e x t

P u b l i c L a y e r

P r i v a t e L a y e r

Fig. 1. A dialogue between two agents

conversation policies. As shown in Figure 1, the components of the mechanism can be
divided into two layers — the public layer and the private layer — from the view of
whether the components can be accessed and verified publicly by the the agents, and
whether they require public cooperation among the agents to maintain their functions.
The public layer is composed of a backbone protocol and a set of public conversation
policies1; the private layer is composed of the agents’ information bases and a set of
private conversation policies. We will discuss conversation policies in section 4.2.

The backbone protocol organizes the messages exchanged by agents as a shared set
of valid arguments and defeats, and then uses some agreed argumentation semantics to
extract public beliefs from the messages. The prerequisites for using the protocol are
that all the agents share the same language L, share the same definition of arguments
and defeats, and share the same argumentation semantics. The central notion in the
backbone protocol is the dialogue context, denoted by C, the shared set of arguments
and defeats as well as their supports. C is triple

〈CΣ , CA, CR〉

where CΣ is the set of formulae that have been exchanged; CAis the set of arguments
that have been identified; and CR is the set of defeat relations that have been identified.
For convenience, we also write C = CΣ ∪CA ∪CR.

1 We use the term “protocol” for the set of rules that governs the overall structure of a dialogue
instance, and the term “conversation policy” for the set of rules that governs, possibly partially,
the local structure a segment of a dialogue instance following [19]. However, in the literature,
it is common to use the two terms interchangeably. See [17,19] for more discussion.

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 223

The implementation of the dialogue context will depend heavily on how conversa-
tions between the agents are organized. Here we assume that the configuration only
allows pair-wise agent communication. Under this assumption, one of many ways to
implement the dialogue context C distributively is to have each agent Ti maintain a
copy Ci = Ci

Σ ∪ Ci
A ∪ Ci

R of the context C, and regulate the agents to access and
modify the context only through a set of pairwise communication locutions:

Definition 8. Basic pairwise communication locutions:

send(Ti, Tj , ϕ)
– Precondition: none.
– Ti updates Ci

Σ = Ci
Σ ∪ {ϕ}.

– Tj updates Cj
Σ = Cj

Σ ∪ {ϕ}.
send(Ti, Tj , (H, h))

– Precondition: H ⊆ Ci
Σ , h ∈ Ci

Σ , and (H, h) is an argument according to
Definition 1.

– Ti updates Ci
A = Ci

A ∪ {(H, h)}.
– Tj updates Cj

A = Cj
A ∪ {(H, h)}.

send(Ti, Tj , defeat((H, h), (H ′, h′)))
– Precondition: (H, h) ∈ Ci

A and (H ′, h′) ∈ Ci
A, namely the arguments should

already exist in the communication context, and defeat((H, h), (H ′, h′)) is a
defeat according to Definition 3.

– Ti records updates Ci
R = Ci

R ∪ {(defeat((H, h), (H ′, h′))}.
– Tj updates Cj

R = Cj
R ∪ {defeat((H, h), (H ′, h′))}.

query(Ti, Tj , h)
– Precondition: None
– Ti asks himself and Tj to stop sending formulae, arguments, and defeats into

the context.
– The agents compute simultaneously whether there is an argument (H, h) in

the set of acceptable arguments AccCi
A,Ci

R
according to the argumentation

framework 〈Ci
A, Ci

R〉.

Proposition 2. The contents of Ci for i ∈ {1, . . . , n} are identical if the context is only
manipulated by the locutions defined in Definition 8 .

Proof. Immediate by construction.

The following are a set of macro locutions constructed from the pairwise locutions in
Definition 8 and invoked as primitives (i.e. no other pairwise locutions can be invoked
by any agent during each macro):

send(Ti, ϕ): Invoke Send(Ti, Tj, ϕ) for every agent Tj , j
= i.
send(Ti, (H, h)): Invoke Send(Ti, Tj , (H, h)) for every agent Tj , j
= i.
send(Ti, defeat((H, h), (H ′, h′))): Invoke Send(Ti, Tj, defeat((H, h), (H ′, h′)))

for every agent Tj , j
= i.
query(Ti, h): Invoke Query(Ti, Tj, h) for every agent Tj , j
= i.

Proposition 3. For each query query(Ti, h), all the participating agents will obtain
the same status for h.

224 Y. Tang and S. Parsons

Protocol 4.1. A Backbone Protocol
Require: (1) each agent Ti is equipped with a dialogue context Ci, (2) each agent Ti is equipped

with a conversation policy CP , (3) all the agents pre-agree on a language L, an argumenta-
tion reasoning system AS and its semantics,

1: repeat
2: Query CP for an argument (H, h)

– Check whether (H,h) is a valid argument according to AS, if not go to next step
– Check whether (H,h) ∈ Ci

A, if yes go to next step
– Invoke Send(Ti, p) for each p ∈ H ∪ {h}
– Invoke Send(Ti, (H,h))

3: Query CP for a defeat(Aj, Ak)

– Check whether Aj and Ak are valid arguments and Aj , Ak ∈ Ci, if not continue the
loop

– Check whether defeat(Aj, Ak) is a valid defeat, if not continue the loop
– Invoke send(Ti, defeat(Aj, Ak))

4: until query(Tk, h) is posted to the dialogue by some agent Tk; after every agent gets the
answer, resume the loop

Proof. The status for h evaluated by Ti solely depends on Ci. For all i ∈ {1, . . . , n},
Ci is the same according to Proposition 2, and all Tis share the same semantics of
argumentation, therefore all the agents will obtain the same status for h.

With these locutions, we get the backbone Protocol 4.1. This defines a set of prereq-
uisites that all participating agents must satisfy before the execution of the protocol,
and a loop of two execution steps: one to handle arguments and another one to handle
defeats. The set of prerequisites is that all the agents must maintain a copy of the con-
text, have a conversation policy CP (which will be defined below in section 4.2), and
pre-agree on a languageL, an argumentation system AS and its semantics. In the body,
the protocol loops through two steps: 1) query the conversation policy for an argument,
check its validity, make sure it is new to the context, and then add it into the context
by sending its component formulae and the (argument) structure explicitly over these
formulae using locutions send(Ti, ϕ) and send(Ti, (H, h)) respectively; 2) query the
conversation policy for a defeat, check its validity, make sure that it is new to the con-
text, and then add it into the context by sending its explicit structure using the locution
(Ti, Aj defeats Ak). The loop can be stopped at any time by any agent that needs the
argument status of a belief represented by a formula h, then every agent will compute
this status based on its own copy of the dialogue context. In this way, the protocol can
guarantee that every agent will have the same answer for h.

4.2 Conversation Policies

In [11], the authors defined the concept of a conversation policy as a declarative specifi-
cation that governs communication between software agents using an agent communi-
cation language. We agree with this notion of conversation policy in general, but as we

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 225

use the conversation policies on top of the backbone protocol defined in the previous
section (which is actually also a conversation policy in this general definition), we will
define our conversation policies as mechanisms that govern the production of arguments
and defeats that are then fed into the backbone protocol. Different conversation policies
capture different aspects of the communication between agents, and can be tailored to
the needs of specific applications.

There are several aspects of a conversation policy that need to be dealt with in addi-
tion to the backbone protocol, including:

1. the source and mechanism from which the arguments and defeats are generated;
2. whether it is a private policy which only requires an individual effort or whether it

is a public policy which requires cooperation among agents;
3. whether it is verifiable; and
4. whether it is concerned with general public argumentation, or with application-

specific problem solving.

In this paper, we only have room to deal with some of these dimensions.
Given two policies CP1 and CP2 we can combine them in the following ways,

reminiscent of those suggested for dialogue game protocols in [17,19].

– sequential: return the arguments (respectively, defeats) produced by CP1 first;
when no more arguments (defeats) can be produced by CP1, then return those
of CP2

– alternate: one argument or defeat from CP1, then one from CP2, continuing to
alternate until no further arguments or defeats can be produced.

– filtering: filter the arguments and defeats from CP1 and CP2 with respect to some
criteria

– preference selection: compare two arguments or defeats obtained from CP1 and
CP2 respectively, then select one of them according to some preference.

5 Example Policies

5.1 A Basic Policy

Policy 5.1 is a basic policy, concerned with the general process of public argumenta-
tion. It generates arguments and defeats using the reasoning mechanism of L, and it
requires no cooperation among agents. It is not possible to verify whether an agent con-
forms with this policy by analyzing what the agent puts into the dialogue context. Since
the criteria to select a formula h from I is unspecified, there is no guarantee that the
arguments and defeats put into the dialogue are complete enough to generate a stable
argument overall for the topic of interest in terms of the selected argumentation seman-
tics and certainly no guarantee that this will occur within a given amount of time. We
can, however, improve on the basic policy.

5.2 Iterative Deepening Dialogue

Policy 5.2 is an improvement on the basic policy. It will still generate arguments and
defeats based on the information in agents’ information bases and using the reasoning

226 Y. Tang and S. Parsons

Policy 5.1. A basic conversation policy
Require: (1) a set of topics of interest {hi} shared by all the agents or held by individual agent,

(2) each agent Ti is equipped with a dialogue context Ci and an information base Σ(Ti), (3)
all the agents pre-agree on a common language L and an argumentation system AS and its
semantics,

1: Initialize I = {hi} and maintain a memory of I during the dialogue
2: On request for an argument,

– if I is empty, return nil
– select a formula h from I ,
– construct an argument A = (H,h) �∈ Ci

A based on Σ(Ti) ∪ Ci
Σ according to the proof

theory of L. If such an argument exists, then return it; otherwise return nil
– if all possible arguments for h have been exhausted, let I = I − {h}

3: Internally decide the defeating points: Select an argument A = (H, h) ∈ ΣA, select a
formula p ∈ H ∪ {h}, let I = I ∪ {¬p} if ¬p �∈ I .

4: On request for a defeat, look for two arguments A1, A2 ∈ Ci
A such that A1 defeats A2 �∈

Ci
A, if such a defeat exists then return it; otherwise return nil

mechanism of the language L, but it does this by generating arguments and defeats in
a specific order in the spirit of iterative deepening search. The policy uses three search
parameters to limit the resources that the agents can use to generate arguments and de-
feats: (1) reasoning depth RD, which controls the maximum number of inference rules
that can be used in building arguments, (2) defeat depth Dd, which controls the maxi-
mum number of defeats that may be chained together2, (3) reasoning breadth RB , which
controls the maximum number of arguments an agent can provide for a conclusion. To
apply the policy, we will need the agents to synchronize these parameters cooperatively
(if not, this will become a specific case of Policy 5.1). This means that this conversation
policy is a public one.

The advantage of this policy is that, since it is an exhaustive search through the argu-
ments and defeats that the set of agents can generate, then if there is a set of acceptable
arguments that can be distilled from the set of all arguments that each agent can con-
struct on its own (namely ∪iA(Σ(Ti)), the iterative deepening search policy will reach
this set after a finite number of iterations.

Using a similar scheme of maintaining some shared parameters, a more efficient pol-
icy than Policy 5.2 can be created based on AND-OR tree evaluation to decide whether
an argument is acceptable. If Dung’s grounded semantics is used, and the argumen-
tation system is finitary — for every argument there are only finite number of defeat
arguments — then we have the same policy as used in [3]). This policy is of polyno-
mial complexity in terms of the number of arguments3. Alternatively, if we employ the
argument schemes and defeat schemes approach of [27], we may be able to tailor the

2 A defeat chain takes the form of argument A1 defeats A2 which defeats A3.
3 This does not imply that the whole argumentation process is polynomial in the size of the

information base, Σ. The overall time complexity is dependent on checking the validity of an
argument which, unless the reasoning mechanism is restricted in some way, will not in general
be polynomial.

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 227

Policy 5.2. An iterative deepening dialogue policy

Require: (1) A set of topics: S = {hj}, (2) a set of agents Ti each with dialogue context Ci, (3)
a pre-agreed reasoning depth increment ΔR, (4) a pre-agreed defeat depth increment ΔD,
(4) a pre-agreed reasoning breadth increment ΔB .

1: Initially set reasoning depth RD = 1, reasoning breadth RB = 1, defeat depth Dd = 1,
2: Initially set interest points I = {hi}
3: Initially set defeat points D = ∅
4: On request for an argument

– if I is empty, return nil
– select a formula h from I ,
– construct an argument A = (H, h) based on Σ(Ti) ∪ Ci

Σ such that

• A �∈ Ci
A

• A uses at most RD of the inference rules of L
• Other than A, there are less than RB arguments supporting h

– if all possible arguments for h have been exhausted, let I = I−{h} if such an argument
exists, then return it; otherwise return nil

5: On request for a defeat, look for two arguments A1, A2 ∈ Ci
A such that

– A1 defeats A2 �∈ Ci
A, and

– the length of any defeat path ended with A1 is less than Dd,

if such a defeat exists then return it; otherwise return nil
6: Internally decide the defeating points: Select an argument A = (H,h) ∈ ΣA such that the

length of any defeat path ending with A is less than Dd, select a formula p ∈ H ∪ {h}, let
I = I ∪ {¬p} if ¬p �∈ I .

7: If all the agents can not produce more arguments and defeats, they cooperatively increase the
parameters: (1) reasoning depth Rd ← Rd + ΔR, (2) reasoning breadth RB ← RB + ΔB ,
(3) defeat depth Dd ← Dd + ΔD, (4) set interest points back to I = {hi}

language to generate a polynomial number of arguments for a specific domain, and then
in total we will have a polynomial policy in terms of the number argument schemes and
defeat schemes.

5.3 Constructing Arguments Cooperatively

If we use Policies 5.1 and 5.2 then there will be some arguments and defeats that can
not be constructed. These are arguments that are constructed using information that is
held by different agents, and so is not all available to any single agent. Some of these
arguments might be constructed by Policies 5.1 and 5.2 — the necessary information
being revealed by other arguments that the agents put forward — but there is no guar-
antee that this will be the case. In general we will need some mechanism to help the
agents construct arguments cooperatively, especially in information seeking, inquiry
and deliberation dialogues [31]. The following are the basic constructs for this purpose.
To better organize the policy, we decompose some primitive functions of the policy as
those in the backbone Protocol 4.1. We need the agents to cooperatively maintain a set

228 Y. Tang and S. Parsons

Policy 5.3. A policy to construct arguments cooperatively
Require: Requirements are those in Policy 5.1 or those in the Policy 5.2, and in addition that all

the agents cooperatively maintain CG

1: Function as Policy 5.1 or Policy 5.2, with the additional two steps:
2: For a formula h ∈ I , for which the agent cannot construct an argument, use backward

chaining to obtain a proof for h, then select an open formula ϕ (i.e. not in CΣ ∪ Σ(Ti)) in
the proof, and invoke ask_help(Ti, ϕ)

3: Select a ϕ ∈ CG such that ϕ ∈ Σ(Ti) but ϕ �∈ CΣ , invoke offer_help(Ti, ϕ)

of goals CG, the set of goals waiting for additional information (we can think of this as
part of the dialogue context). The content of CG is different from CΣ in the sense that
it is not the information held by any participating agents, but rather a set of symbols
indicating the intention of asking agents to provide information. CG is maintained by
the following locutions:

– ask_help(T, ϕ)
• precondition: ϕ /∈ Σ(T) and ϕ /∈ CΣ ,
• T updates CG = CG ∪ {ϕ}.

– offer_help(T, ϕ)
• precondition: ϕ ∈ CG, and ϕ ∈ Σ(T)
• T updates CΣ = CΣ ∪ {ϕ}
• T updates CG = CG − {ϕ}

With this set of locutions we can define Policy 5.3. This policy can be used to gain and
provide help in constructing arguments, and works by delegating all the other functions
to policies like those we discussed above. In Policy 5.3, we do not specify the conditions
under which the agents can ask for help and should offer help. Such conditions will be
application specific, and will result in specializations of Policy 5.3 that are used in
specific situations.

5.4 A Policy for Multiagent Planning

Our final example, Policy 5.4, is a conversation policy that is application specific, and
deals with multiagent planning. The policy handles part of the generation of the argu-
ments and defeats using its knowledge about specific problem — formalized in terms of
state transitions, plans, resource conflicts and resource reconfiguration — and delegates
the other functions to Policy 5.1 or 5.2.

To demonstrate the policy, we consider a simple multiagent planning problem, con-
cerning two agents T1 and T2. Making common assumptions from the AI planning lit-
erature [21], both of them characterize the world as a set of precisely observable states
S; T1 and T2 are capable of performing two sets of actions, A1 and A2 respectively. The
evolution of the world is modeled as three mutually exclusive state transition functions

γ1 : S ×A∗
1 → S

γ2 : S ×A∗
2 → S

γ3 : S × (A1 −A∗
1)× (A2 −A∗

2) → Sn

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 229

where A∗
1 ⊆ A1 and A∗

2 ⊆ A2, γ1 models the state transitions which can be totally
controlled by T1, γ2 models the state transitions which can be totally controlled by T2,
and γ3 models the state transitions which can only be controlled cooperatively by the
two agents. Two sets of states G1 ⊆ S and G2 ⊆ S express the goals of T1 and T2
respectively. We denote the set of all possible state transitions as

Γ = {(s, a, s′)|γi(s, a) = s′ with i = 1, 2}
∪ {(s, a1, s2, s

′)|γ3(s, a1, a2) = s′}
A plan p is a pair 〈Γp, πp〉 where Γp ⊆ Γ is a set of interesting state transitions and
πp ⊆ S×A is a set of state-actions pairs. πp is a policy, in the planning sense, prescrib-
ing what action to take in each state encountered. We assume that there is a carefully
designed language L such that one argument type is a pair 〈(Γp, πp), G〉 where Γp and
πp together characterize a plan p, and G characterizes the set of states that can be ex-
perienced by the policy πp. Another argument type is pair of the form 〈H,¬(s, a)〉 or
〈H,¬(s, a1, a2)〉which means that H is a set of formulae in the language that character-
ize the resource conflicts which prevent the action a or cooperative action pair (a1, a2)
from being performed in the state s, and one more argument type is a pair of the form
〈H, (s, a)〉 or 〈H, (s, a1, a2)〉 which means that H characterizes a configuration of re-
sources which enables the action a or (a1, a2) in the state s. Therefore we have two
types of defeat: (1) an argument 〈H,¬(s, a)〉 defeats another argument 〈(Γp, πp), G〉
when (s, a) ∈ πp, and (2) an argument 〈H, (s, a)〉 or 〈H, (s, a1, a2)〉 defeats another
argument 〈H,¬(s, a)〉. For simplicity, we assume that nothing can defeat the argument
of the form 〈H, (s, a)〉 or 〈H, (s, a1, a2)〉. Namely, we are assuming that the informa-
tion about the state transitions that is taken as input to the dialogue system is consistent
with respect to the language L being used.

We further assume that the set of all possible arguments is A. There is a set of
arguments AG ⊆ A such that all the arguments in AG have the same conclusions
G1∪G2. For every argument a ∈ AG, there is an argument in b ∈ AC with conclusions
saying that some action in a cannot be performed because of resource conflict; there is
subset A′

C ⊂ AC such that for every argument a ∈ A′
C there is an argument b ∈ AR

saying there is a resource configuration which will make sure that the action in a’s
conclusion can be performed. Therefore the set of acceptable arguments Aacc is the set
of all a ∈ AG such that if there is some b ∈ AC that defeats a then another c ∈ AR

defeats b. In this setting, Aacc corresponds to the set of plans that can achieve the two
agents’ goals G1 and G2 simultaneously. Assume that Ti (i = 1, 2) can construct four
nonempty sets of arguments AG,i, AC,i, A

′
C,i, AR,i (it is possible that two sets of the

same argument type from different agents intersect) where:

AG = AG,1 ∪AG,2

AC = AC,1 ∪AC,2

AC = A′
C,1 ∪A′

C,2

AR = AR,1 ∪AR,2

If all the arguments only use a finite number of inferences in the language L, then
the backbone protocol 4.1 and the deepening search conversation policy 5.2 can col-
lect the set of Aacc in the dialogue at some point. After that point, the two agents

230 Y. Tang and S. Parsons

Policy 5.4. A planning policy
Require: Requirements are those of Policy 5.1 or 5.2
1: Function as Policy 5.1 or 5.2, with the following modified request handler:
2: On request for an argument

– if there is an argument a from AR,i (assume there is an additional mechanism to detect
this with errors), return a

– if there is an argument b from AG,i (assume there is an additional mechanism to detect
this with errors), return b

– otherwise function as Policy 5.1 or 5.2.

enter the stable state in which no matter what the two agents say the set of accept-
able arguments, and in turn the acceptable plans, will not change. With this kind of
domain knowledge, the agent can employ Policy 5.4. In the policy, two additional
mechanisms are used to generate the arguments from AR,i and AG,i as early as pos-
sible so that the system can reach the stable state as soon as possible. As we can
see in the policy, we allow errors in the policy for generating these arguments, but
it won’t greatly affect the outcome of the dialogue for two reasons: 1) the argumen-
tation semantics will still characterize the major part of the acceptable arguments as
acceptable on the fly if the errors are restricted to a small range, and 2) the iterative
deepening conversation policy will eventually generate these arguments using the infer-
ence power of L although it may take a long time for the dialogue to reach the stable
stage.

As we can see, the major effort in coming up with a dialogue for multiagent planning
involves:

1. representing the problem domain in the language L and the problem solving
schemes in terms of the chosen argumentation system; and

2. identifying shortcuts to generate the most important arguments so as to have the
dialogue reach the stable state as soon as possible.

In this way, the dialogue becomes much easier to engineer than the other dialogue ap-
proaches for similar problems [5,13,28] in which the problem domain, the problem
solving schemes, the underlying logic, the dialogue moves, the dialogue protocols, and
the dialogue conversation policies need to be considered all together.

6 Responses to Design Desiderata

There are two well known, overlapping, sets of dialogue design desiderata in the litera-
ture, those proposed by Maudet and Chaib-Draa [17] and those proposed by
McBurney et al. [20]. This section briefly compares our framework against these. Each
numbered passage describes how our framework compares with the identically
numbered desideratum in the relevant proposal.

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 231

6.1 Response to McBurney et al.

1) In response to stated dialogue purpose, our mechanism does not impose any restric-
tion on the purpose of the dialogue, different applications can choose their purposes
freely by agreeing on a set of interest points represented in the language. 2) In re-
sponse to the need for diversity of individual purposes, different agents can have dif-
ferent points of interest and these will be subjected to public argumentation to resolve
conflicts. 3) In response to the need for inclusiveness, our mechanism allows any agent
to participate into the dialogue, and how new agents contribute to the dialogue will
depend on the quality of the arguments they can make with respect to the public argu-
mentation semantics. 4) In response to transparency, our mechanism decomposes the
functions so that as many components as possible are public. An agent’s commitments
to the external world should be subject to public argumentation. 5) In response to fair-
ness, our mechanism advocates fairness in terms of the public argumentation semantics:
every agent can influence the outcome if it can provide good arguments. 6) In response
to the clarity of argumentation theory, most of the argumentation theory is captured
explicitly by the shared public argumentation semantics. 7) In response to the separa-
tion of syntax and semantics, the semantics of the dialogue is mainly defined by the
public argumentation semantics. The conversation policies and the backbone protocols
are independent of the semantics. 8) In response to rule-consistency, our mechanism in
practice allows any conversation policy, but the backbone protocol will rule out invalid
arguments and defeats, and the argumentation semantics will further rule out ultimately
defeated arguments to maintain the consistency of the public belief set. 9) In response
to encouragement of resolution, our mechanism can output results at any time. Whether
the status of the public belief benefits a given agent at that time will depend on the
quality of the arguments it has put into the dialogue context. This can be viewed as an
incentive to encourage agents to provide the best arguments to resolve conflicts. 10)
In response to discouragement of disruption, the argumentation semantics prevent be-
haviors such as repeatedly uttering the same argument from having an effect on public
beliefs. 11) In response to the enablement of self-transformation, there are two aspects.
From the viewpoint of an agent influencing public beliefs, all agents are allowed to
change their opinions or preference using different arguments — whether these changes
will be sanctioned by the set of public beliefs will depend on how good an argument
the agent can make for its most recent interest. We leave work on the question of how
an agent changes its views to fit in with the set of public beliefs for future work (but see
[22]). 12) In response to system simplicity, the decomposition of the dialogue mech-
anism helps to modularize and thus simplify the major components. 13) In response
to computational simplicity, our mechanism allows the private and public conversation
polices to be made efficient in order to have public argumentation reach the stable state
as early as possible.

6.2 Response to Maudet and Chaib-Draa

In [17], the authors consider their desiderata under the headings of flexibility and
specification.

First we consider the desiderata relating to flexibility. 1) In response to the call for
a formalism which allows more flexibility than a finite state machine (which is the

232 Y. Tang and S. Parsons

mechanism used to specify a number of dialogues), we don’t restrict the description
form of conversation policies: they can be procedural, declarative, and even object ori-
ented programming style, while the only strict restriction is the form of arguments and
defeats in the backbone protocol, then the argumentation semantics actually replace the
role of some complex specification constructs in the traditional dialogue protocol, such
as backtracking. 2) In response to permitting unexpected messages within conversation
policies, we employ a different philosophy: no strict regulation on what to say, but if
the agent says something which is defeatable, the argumentation semantics will rule
those points out, so in practice, there are no unexpected messages but only effective
or ineffective messages. 3) In response to the need to be able to compose conversation
policies, we allow conversation policies to be composed in much the same way that the
control structures of procedural programming languages allow the commands of such
languages to be composed. The effect of these compositions is defined by the argu-
mentation semantics on the dialogue context. 4) In response to the need for a means to
reach an agreement on a conversation policy, it is possible in our mechanism to have
the agents represent their concerns about the conversation policies in a similar way to
that introduced in Section 5.4, and then have them reach an agreement on a conver-
sation policy (a plan) using the conversation policy for multiagent planning defined in
Section 5.4.

Next we turn to the desiderata relating to specification. 1) In response to the need
for public specifications, we decompose the functions of the mechanism to make as
many components public as possible — the public conversation policies, the backbone
protocol, and the public argumentation semantics are publicly known, the private con-
versation policies are the only private parts. 2) In response to adopting a declarative
approach, our mechanism does not prevent the adoption of conversation policies that
are defined declaratively, but we also think that a clear functional decomposition of the
dialogue is as good a way to make the mechanism clear as adopting a declarative ap-
proach. 3) In response to exhibiting properties of conversation policies, we believe that
there are good ways to do this even though the policies themselves are defined here in
a procedural way. As with program verification, we can create a formal description of
our procedural policies and verify their properties using model checking. 4) In response
to optimizing conversation policies, there is nothing in our approach that rules this out.
Individual agents can employ their own private policies to produce important arguments
as early as possible based on their knowledge of specific problems. A similar approach
can be used for public conversation policies, but the agents need to jointly use their
shared knowledge of specific problems to generate the important arguments.

7 Conclusions

In this paper, we propose a flexible dialogue mechanism built on top of a public argu-
mentation system. In this mechanism, we decompose the functions of dialogue into two
parts — a backbone protocol which maintains the dialogue context regarding the set of
public beliefs, and a set of conversation policies which handle the other aspects of the
dialogue regarding the application and further regulation of the public argumentation.
In this way, we are free to choose different argumentation theories to maintain the set of

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 233

public beliefs, we can incrementally construct and combine conversation policies for the
computation of argumentation semantics as well as making effective arguments for the
specific applications without concerning the other parts of the dialogue. The publicly
accessible part of the dialogue, that is the backbone protocol and the public conversa-
tion policies, are in general verifiable because they are using only publicly available
information. The private part of the dialogue is open for an individual agent to choose
with respect to their individual needs. In this way, we balance between the need for
public specification and verification and the need for flexibility.

In our mechanism, the idea of dialogue context shares some similarity with the com-
mon game board of Maudet [18], but instead of recording the dialogue moves, we
record the content of the moves, the formulae, arguments and defeats, and apply a
pre-agreed argumentation semantics on them to compute the status of arguments. In
this way, we obtain a compact description of the interaction between the agents and a
clear argumentation-theoretic interpretation of the dialogue outcomes. The reply struc-
ture proposed in Prakken [24] is close to our usage of argumentation in the dialogue
context, but again Prakken applied argumentation to dialogue moves while we use the
argumentation directly on the arguments and defeats that make up these moves.

There are a number of ways to extend this work. One future direction is to complete
the mechanism with another set of private conversation polices which revise the agent’s
individual information base in the light of the set of public beliefs. The model used in
[4] is a candidate for this set of revision conversation policies, a model that decides how
to revise by looking at the status of the arguments in an argumentation system that uses
a combination of public and private information. As the maintenance of the public dia-
logue context is costly, another future direction is to devise distributed algorithms and
data structures to efficiently maintain public beliefs, especially in a cooperative society
of agents, so that we can extend the dialogue mechanism to be a general multiagent
coordination mechanism. A third direction that we want to pursue is to formally verify
the properties of the backbone protocol and the conversation policies. In addition, more
formal treatments of how to combine conversation policies similar to the approach of di-
alogue game protocols — such as those mentioned in [19] — will be needed, especially
to formalize the way in which agents can reach an agreement on the public conversation
policy that they will adopt. One candidate, already hinted at above, is to represent con-
versation policies as multiagent plans (plans in which the only actions are utterances)
and then use the dialogue mechanism defined in Section 5.4 to create a meta-dialogue
in which the agents come to agreement on the conversation polices they will adopt.

Acknowledgments

This work was partially supported by the US Army Research Laboratory and the UK
Ministry of Defence under Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the US Army
Research Laboratory, the US Government, the UK Ministry of Defense, or the UK
Government. The US and UK Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation hereon.

234 Y. Tang and S. Parsons

References

1. Amgoud, L.: A formal framework for handling conflicting desires. In: Nielsen, T.D., Zhang,
N.L. (eds.) ECSQARU 2003. LNCS, vol. 2711, pp. 552–563. Springer, Heidelberg (2003)

2. Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation
frameworks. Journal of Automated Reasoning 29(2), 125–169 (2002)

3. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable argu-
ments. Annals of Mathematics and Artificial Intelligence 34(1-3), 197–215 (2002)

4. Amgoud, L., Maudet, N., Parsons, S.: Modeling dialogues using argumentation. In: Proceed-
ings of the Fourth International Conference on Multi-Agent Systems (2000)

5. Atkinson, K., Bench-Capon, T.J.M., McBurney, P.: A dialogue game protocol for multi-agent
argument over proposals for action. In: Rahwan, et al. (eds.) [25], pp. 149–161.

6. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artifical Intelli-
gence 128(1-2), 203–235 (2001)

7. Bonet, B., Geffner, H.: Arguing for decisions: A qualitative model of decision making. In:
Proceedings of the 12th Annual Conference on Uncertainty in Artificial Intelligence (1996)

8. Cayrol, C., Lagasquie-Schiex, M.-C.: Graduality in argumentation. Journal of Artificial In-
telligence Research 2005, 245–297 (2005)

9. Chesn̈evar, C., Maguitman, A., Loui, R.: Logical models of argument. ACM Computing
Surveys 32(4), 337–383 (2000)

10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358
(1995)

11. Greaves, M., Holmback, H., Bradshaw, J.: What is a conversation policy? In: Issues in Agent
Communication, London, UK, pp. 118–131. Springer, Heidelberg (2000)

12. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)
13. Hitchcock, D., McBurney, P., Parsons, S.: The eightfold way of deliberation dialogues. Inter-

national Journal of Intelligent Systems (2004)
14. Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks. Journal of

Logic and Computation 9(2), 215–261 (1999)
15. Kohlas, J.: Probabilistic argumentation systems: A new way to combine logic with probabil-

ity. Journal of Applied Logic 1(3-4), 225–253 (2003)
16. Krause, P., Ambler, S., Elvang-Gøransson, M., Fox, J.: A logic of argumentation for reason-

ing under uncertainty. Computational Intelligence 11, 113–131 (1995)
17. Maudet, N., Chaib-Draa, B.: Commitment-based and dialogue-game-based protocols: new

trends in agent communication languages. Knowledge Engineering Review 17(2), 157–179
(2002)

18. Maudet, N., Evrard, F.: A generic framework for dialogue game implementation. In: Hulstijn,
J. (ed.) Proceedings of the 2nd Workshop on Formal Semantics and Pragmatics of Dialogue,
University of Twente, The Netherlands, pp. 185–198 (1998)

19. McBurney, P., Parsons, S.: Dialogue game protocols. In: Huget, M.-P. (ed.) Communication
in Multiagent Systems. LNCS, vol. 2650, pp. 269–283. Springer, Heidelberg (2003)

20. McBurney, P., Parsons, S., Wooldridge, M.: Desiderata for agent argumentation protocols.
In: Proceedings of the 1st International Conference on Autonomous Agents and Multiagent
Systems (2002)

21. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kauf-
mann Publishers Inc., San Francisco (2004)

22. Parsons, S., Sklar, E.: How agents revise their beliefs after an argumentation-based dialogue.
In: Parsons, S., Maudet, N., Moraitis, P., Rahwan, I. (eds.) ArgMAS 2005. LNCS, vol. 4049,
pp. 297–312. Springer, Heidelberg (2006)

A Dialogue Mechanism for Public Argumentation Using Conversation Policies 235

23. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artificial Intelli-
gence 133(1-2), 233–282 (2001)

24. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Journal of Logic
and Computation 15(6), 1009–1040 (2005)

25. Rahwan, I., Moraïtis, P., Reed, C. (eds.): ArgMAS 2004. LNCS, vol. 3366. Springer, Heidel-
berg (2005)

26. Rahwan, I., Ramchurn, S.D., Jennings, N.R., Mcburney, P., Parsons, S., Sonenberg, L.:
Argumentation-based negotiation. The Knowledge Engineering Review 18(4), 343–375
(2003)

27. Reed, C., Walton, D.: Towards a formal and implemented model of argumentation schemes
in agent communication. In: Rahwan, et al. (eds.) [25], pp. 19–30.

28. Tang, Y., Parsons, S.: Argumentation-based dialogues for deliberation. In: Proceedings of the
4th International Conference on Autonomous Agents and Multiagent Systems (2005)

29. Verheij, B.: Rules, Reasons, Arguments. Formal studies of argumentation and defeat. PhD
thesis, University of Maastricht (1996)

30. Vreeswijk, G.: The feasibility of defeat in defeasible reasoning. In: Proceedings of the Sec-
ond International Conference on the Principles of Knowledge Representation and Reasoning
(1991)

31. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. State University of New York Press, Albany (1995)

32. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-
gence. MIT Press, Cambridge (1999)

Author Index

Amgoud, Leila 37
Atkinson, Katie 93, 122

Bench-Capon, Trevor 122
Bulling, Nils 197

Chesñevar, Carlos I. 197

Devred, Caroline 37
Dignum, Frank 3
Dix, Jürgen 197

Först, Angelika 161

Girle, Rod 93
Groza, Adrian 72

Lagasquie-Schiex, Marie-Christine 37
Letia, Ioan Alfred 72
Luck, Michael 19

McBurney, Peter 93, 107, 141
Meyer, John-Jules Ch. 3
Miller, Tim 141
Modgil, Sanjay 19

Nickles, Matthias 161

Oliva, Enrico 107
Omicini, Andrea 107
Ontañón, Santi 181

Parsons, Simon 93, 217
Plaza, Enric 181
Prakken, Henry 3

Quaresma, Paulo 57

Rettinger, Achim 161

Tang, Yuqing 217
Trojahn, Cássia 57

van der Weide, Thomas L. 3
Vieira, Renata 57
Viroli, Mirko 107
Vreeswijk, Gerard A.W. 3

	Title page
	Preface
	Organization
	Table of Contents
	Part I Argument-Based Reasoning
	Personality-Based Practical Reasoning
	Introduction
	Background
	Personality Type Theory
	Practical Reasoning

	Basic Formalism
	Basic Notions
	Practical Reasoning Scheme
	Answers
	Personality Types and Practical Reasoning
	Algorithm

	Application
	Practical Reasoning
	Argument for the Student

	Conclusions
	References

	Argumentation Based Resolution of Conflicts between Desires and Normative Goals
	Introduction
	Extended Argumentation Frameworks for Agent Reasoning
	Dung’s Argumentation Framework
	Motivating Extended Argumentation Frameworks
	Defining Extended Argumentation Frameworks

	A Framework for Conflict Resolution in Normative Systems
	Agents and Dialogues
	Arguing about Beliefs and Goals

	Instantiating the Framework
	An Extended Example
	Conclusions
	References

	A Constrained Argumentation System for Practical Reasoning
	Introduction
	Basics of Constrained Argumentation
	Logical Language
	Typology of Arguments
	Justifying Beliefs
	Justifying Desires

	Interactions among Arguments
	Conflicts among Epistemic Arguments
	Conflicts among Explanatory Arguments
	Conflicts among Instrumental Arguments
	Conflicts among Mixed Arguments

	Argumentation System for \bf{PR}
	Properties of the System
	Illustrative Example
	Related Works
	Conclusion
	References

	An Argumentation Framework Based on $Strength$ for Ontology Mapping
	Introduction
	Ontologies and Ontology Mapping Approaches
	Argumentation Framework
	Classical Argumentation Framework
	Value-Based Argumentation Framework
	$Strength$ Based Argumentation Framework (S-VAF)

	S-VAF for Ontology Mapping
	Argumentation Generation
	Preferred Extension Generation

	Argumentation Model Evaluation
	Related Work
	Final Remarks and Future Work
	References

	Contextual Extension with Concept Maps in the Argument Interchange Format
	Introduction
	Aspects of Arguments
	Extending the Argument Interchange Format
	Context Calculus in the Extended AIF
	Context Representation
	Context Application Schemes

	Visualizing AIF Arguments in Concept Maps
	Example of Contextual Form Node
	Example of Contextual Protocol
	CMap Functionalities for WWAW
	Crisis Mediation

	Related Work
	Discussion
	Conclusions
	References

	Part II Argumentation and Dialogue
	Command Dialogues
	Introduction
	Representing Commands
	Critical Questions
	Questioning the Choice of Action
	Questioning the Choice of Receiver to Perform the Action
	Questioning Commander’s Authority to Command Receiver
	Questions Regarding the Performance of the Action

	Protocol Syntax
	Issuing or Retracting a Command
	Responding to a Command
	Questioning or Challenging a Command
	Responding to a Question or Challenge to a Command

	Outline of Semantics
	Conclusion
	References

	Argumentation and Artifact for Dialogue Support
	Introduction
	Functionalities of Multi-agent Argumentation Support
	Dialogue Artifact

	Argumentation and Dialogue: Formal Definitions
	Argumentation System
	Dialogue System
	Operational Semantics

	The Dialogue Artifact
	TuCSoN Implementation
	Conclusions
	References

	Co-ordination and Co-operation in Agent Systems: Social Laws and Argumentation
	Introduction
	SocialLaws
	Background Theory of Practical Reasoning
	Example
	Scenario 1: Reasoning in the Absence of Social Laws
	Scenario 2: Reasoning in the Presence of Social Laws
	Scenario 3: Social Laws with Sanctions

	Discussion
	Concluding Remarks
	References

	Annotation and Matching of First-Class Agent Interaction Protocols
	Introduction
	The \mathcal{RASA} Framework
	Modelling Information
	Modelling Protocols
	Reasoning about Protocol Outcomes

	Definitions
	Matching Protocols via Proof
	Representing Outcome Annotations
	Deriving Outcome Annotations
	Using Derived Annotations

	Annotating and Matching Pre/Postcondition Models
	Related Work
	Discussion and Other Work
	References

	Part III Strategic and Pragmatic Issues
	Argumentation- vs. Proposal-Based Negotiation: An Empirical Case Study on the Basis of Game-Theoretic Solution Concepts
	Introduction
	The Testbed
	Production
	Allocation
	Generating Possible Worlds
	Evaluating Possible Worlds – the Utility Function

	Three Approaches to the Game
	Employing a Mediator
	Proposal- and Argumentation-Based Negotiating Agents

	Evaluation
	Evaluation Criteria
	Experimental Setup
	Evaluation of Experimental Results
	Summary

	Conclusion and Future Work
	References

	Argumentation-Based Information Exchange in Prediction Markets
	Introduction
	Multiagent Prediction Market
	Information Exchange in Social Networks
	Problem-Centered Information Exchange as Argumentation
	MPM with CBR Agents
	Arguments and Counterarguments
	Argument Generation
	Prediction Confidence
	Information Exchange Protocol
	Bet Generation

	Experimental Evaluation
	PredictionMarkets Versus Majority Voting
	The Effect of Information Exchange
	Quality of the Data Sample

	Related Work
	Conclusions
	References

	An Argumentative Approach for Modelling Coalitions Using ATL
	Introduction and Motivations
	ATL
	Coalitions and Argumentation
	Coalitional ATL
	Cooperation and Goals
	The Framework
	Coalitional \sc{ATL} with Goals

	Model Checking ATLc
	Related and Future Work
	Conclusions
	References

	A Dialogue Mechanism for Public Argumentation Using Conversation Policies
	Introduction
	Related Work
	An Argumentation Framework
	A Dialogue Mechanism
	The Backbone Protocol
	Conversation Policies

	Example Policies
	A Basic Policy
	Iterative Deepening Dialogue
	Constructing Arguments Cooperatively
	A Policy for Multiagent Planning

	Responses to Design Desiderata
	Response toMcBurney $et al.$
	Response toMaudet and Chaib-Draa

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

