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Abstract. We discuss a biomimetic approach for improving odour detection in artificial olfac-
tory systems that utilises temporal dynamical delivery of odours to chemical sensor arrays de-
ployed within stationary phase materials. This novel odour analysis technology, which we have 
termed an artificial mucosa, uses the principle of “nasal chromatography”; thus emulating the 
action of the mucous coating the olfactory epithelium. Temporal segregation of odorants due to 
selective phase partitioning during delivery in turn gives rise to complex spatio-temporal dy-
namics in the responses of the sensor array population, which we have exploited for enhanced 
detection performance. We consider the challenge of extracting stimulus-specific information 
from such responses, which requires specialised time-dependent signal processing, information 
measures and classification techniques.  

5.1   Three Key Mechanisms for Discrimination of Complex 
Odours in Chemical Sensor Arrays 

The detection capability of chemical sensor array systems is limited by both sensor 
noise and the degree to which response properties can be made stimulus specific 
and diverse across the array (Pearce & Sánchez-Montañés 2003). Two main mecha-
nisms for odour discrimination in artificial olfactory systems have been exploited  
so far: 

1. To generate diverse responses, sensors within the array are typically selected to 
produce an ensemble of complementary wide spectrum broad tunings to the dif-
ferent volatile compounds of interest. Given sufficient diversity in these tunings, 
a spatial fingerprint of a particular complex odour should be generated across 
the array that is sufficiently stimulus specific to overcome noise limitations, and 
may then be used as part of a pattern recognition scheme for odour discrimina-
tion (Pearce et al. 2003). In this case, the role of time is not considered explic-
itly, but rather the magnitudes of the responses across the array, which is the 
classical method of odour classification in artificial olfactory systems. 
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2. Depending upon the choice of chemosensor technology and the compounds un-
der investigation, it is possible that the chemosensor dynamics themselves can 
also depend on the compounds present in the mixture (Albert et al. 2002), lead-
ing to an additional dimension of temporal variation which can be exploited for 
the purposes of discrimination. Such differences have previously been exploited 
to improve discrimination performance (e.g. Llobet et al. 1997, White and 
Kauer 1999).  

In biological olfaction, on the other hand, the temporal dimension is known to play a 
much more central role in the processing of olfactory information (Schoenfeld and 
Cleland 2006) than has thus far been considered in machine olfaction research. For 
instance, the timing and dynamics of the sniffing process are known to be important 
(Kepecs et al. 2006), which appears to be well matched with the timing of neural 
processing mechanisms in the olfactory bulb, as emphasised by many modellers (e.g. 
Brody and Hopfield, 2003). Looking at the overall processes involved in olfactory 
perception, this may be viewed as an exquisitely timed and orchestrated sequence of 
odorant inhalation, odorant partitioning and absorption, olfactory neuron timing re-
sponses mediated by calcium dynamics, the arrival and complex integration of spikes 
at glomeruli and the finely balanced dynamics of excitation and lateral inhibition in 
the bulb. When building biomimetic olfactory systems, therefore, we should consider 
carefully the timing and temporal aspects of the delivery and processing of sensory 
information. 

By considering the role of timing of odorant delivery in biological olfaction (Rubin 
& Cleland 2006), we have recently built a novel machine olfaction technology, 
termed an “artificial olfactory mucosa”, which demonstrates clearly a third principle 
of odour discrimination in artificial olfactory systems: 

3. By creating a temporal profile of odour delivery to the different sensors within 
the array that is stimulus specific, we may provide additional response diversity. 
This is achieved by deploying chemical sensor arrays within stationary phase 
materials that impose the necessary stimulus-dependent spatio-temporal dynam-
ics in sensor response; we have recently shown that this approach aids complex 
odour discrimination (Gardner et al. 2007). This concept is very different to that 
embodied within classical electronic nose systems that are usually designed to 
control the exposure of the stimulus as a square pulse, whose temporal proper-
ties are independent from the nature and chemical composition of the stimulus. 
Instead, we exploit such differences to generate additional discrimination capa-
bility in the device.  

5.2   An Artificial Olfactory Mucosa for Enhanced Complex Odour 
Analysis 

This third discrimination mechanism uses the physical positioning of a series of 
broadly tuned sensors along the length of a planar chromatographic channel  
(analogous to the thin mucous coating of the nasal cavity) which gives rise to more 
diversity in the temporal properties in the sensor signals (retentive delay and profile). 
Figure 5.1 shows the basic architecture of the artificial mucosa concept and its bio-
logical counterpart. A complex odour pulse travelling in the mobile carrier phase  
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Fig. 5.1. a) Sagittal head view showing the main sections of the olfactory mucosa and subse-
quent neural processing. Odour molecules during inhalation selectively partition into a mucous 
layer covering specialized dendritic cilia from olfactory receptor neurons in the nasal epithe-
lium. Odours interact with receptor proteins embedded within the cilia membrane to mediate 
ORN calcium dynamics, ultimately leading to the generation of additional action potentials 
(impulses). These action potentials are transmitted to the olfactory bulb via axonal projections 
where these are processed to interpret complex odour information. b) An artificial mucosa that 
relies on similar principles of odorant partitioning to its biological counterpart. The chemosen-
sor array is deployed inside a microchannel coated with a stationary phase material (retentive 
coating) that has selective affinity to the different compounds with a complex mixture. By in-
troducing a pressure difference across the microchannel odour flow may be pulsed within the 
microchannel, giving rise to segregation in odour components that is compound specific. (Re-
printed with permission by Royal Society, London). 

inside the artificial mucosa gives rise to selective partitioning of components causing 
the odour components to travel at different speeds into the mucosa, leading to a kind 
of chromatographic effect. Depending upon the degree of affinity of each component 
compound for the retentive layer, this will be found within the mobile (carrier) and 
stationary (retentive layer) phases in compound specific ratios.  The retention of each 
odour component in the stationary phase acts to retard the progress of the pulse for 
that compound through the mucosa, leading to segregation in the components of the 
stimulus in accord with the well understood principles of gas capillary column chro-
matography (Purnell 1962). 
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Fig. 5.2. Numerical solutions of an analytical model for concentration for two compounds a 
and b at different positions, x, within the artificial mucosa. Carrier velocity inside the micro-
channel is 15 cm s−1, mass distribution coefficients ka = 1 and kb = 2, and effective diffusion 
coefficients D′a = 50 cm2 s−1 and D′ b = 10 cm2 s−1. Pulse duration at inlet (“sniff time”), t = 5 s. 

We will see that this arrangement provides an important additional mechanism for 
odour discrimination, since depending upon their location in the mucosa, each sensor 
will receive a particular sequence of single or subsets of compounds within a complex 
mixture over time, which is a function of the stimulus composition. It is important to 
understand and accurately describe the transportation of odour compounds within the 
artificial mucosa in order to verify the experimental results, as well as provide the 
basis for an optimisation procedure of its design for complex spatiotemporal chemical 
sensing. We have developed both finite element and analytical models for this pur-
pose.  Figure 5.2, for example, shows the numerical solution of our analytical model 
of local concentration profiles within the micro-channel for two compounds, a and b, 
injected simultaneously at the inlet as they progress through the device. We see a 
clear separation between the two compounds that increases over time and depends 
directly upon the difference in partition coefficients and so is compound and stimulus 
specific. In both cases the dispersion, which determines the degree of overlap, de-
pends upon the effective diffusion coefficient while the velocity of propagation 
through the mucosa depends upon the effective partition coefficient between the com-
pound and the stationary phase deployed. 

Differential sorption of compounds within the artificial mucosa gives rise to a tem-
poral fingerprint in the chemosensor response which is sensitive to the concentrations 
and presence of different compounds. The important aspect here that is distinct from 
previous techniques exploiting the temporal dimension is that the delivery of the 
stimulus itself becomes specific to the compound(s) being delivered, which imposes 
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additional diversity in the array responses. We have shown experimentally (Gardner 
et al. 2007) that deploying chemical sensor arrays within stationary phase materials in 
this way imposes stimulus-dependent spatio-temporal dynamics on their response, 
thereby aiding complex odour discrimination. We will also show theoretically at the 
end of this chapter that using both spatio-temporal responses (all three discrimination 
mechanisms) will always provide better detection performance than using spatial in-
formation alone (the first discrimination mechanism). 

5.2.1   Artificial Olfactory Mucosa Fabrication 

The artificial mucosa was constructed by mounting discrete polymer/carbon black 
composite chemoresistive sensors (40 devices of 10 different composites) on a printed 
circuit board (PCB) base sealed with two different polyester lids (with and without 
stationary phase coating, which we refer to here as the coated and uncoated mucosa) 
within which a serpentine microchannel was machined. Once sealed, this composite 
structure was injected with Parylene C ,as the absorbent stationary phase material, 
deposited using a commercial evaporation technique (PDS 2010 LabcoaterTM 2, Spe-
cialty Coating Systems, Indianapolis, USA).  Each sensor chip was 2.5 mm × 4.0 mm 
in size and comprised a pair of thin co-planar gold electrodes on a SiO2/Si substrate 
with an electrode length of 1.0 mm and an inter-electrode gap of 75 μm. Additional 
fabrication details are provided elsewhere (Gardner et al. 2007). 

5.2.2   Chemical Sensor Behaviour within the Artificial Mucosa 

In order to demonstrate the effect of the stationary phase material within the artificial 
olfactory mucosa, we tested rectangular pulses of simple odorants (toluene and etha-
nol) with the microchannel both coated and uncoated – Figure 5.3 shows the normal-
ised results. In both cases, the sensor closest to the inlet of the microchannel (S1) 
shows a rapid onset time relative to that seen at the sensor towards the outlet (S39), 
which is due to the transport time for the odour pulse (“sniff”). However, in the un-
coated case (Figure 5.3a), we see that the temporal response of the outlet sensor is not 
stimulus specific in time for ethanol and toluene after normalization. Thus, the un-
coated mucosa adds no additional information in time, since within the limits of  
sensor noise, the outlet sensor is only able to discriminate between the two simple 
compounds based upon its response magnitudes – i.e.  using the first mechanism of 
discrimination. Of particular note here is the broadening of the response signal in time 
with increasing sensor distance from the inlet, which is also observed in the responses 
of identical sensors placed at different locations along the channel. This is predomi-
nantly due to diffusion broadening of the odour as it travels along the micro-channel. 
Since the diffusion coefficient in air varies very little for different odour ligands, dif-
fusion broadening, in itself, is not a particularly effective means of imposing stimulus 
dependent response diversity in artificial olfactory systems. We will see that selective 
partitioning can play a much more important role.  
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(a)                   (b) 

     

Fig. 5.3. Comparison of normalized chemosensor responses for an uncoated and coated artifi-
cial olfactory mucosa. a) Uncoated mucosa. Responses of sensor S1 (PEVA sensor material 
composite) close to the inlet and S39 (PCL sensor material composite) close to the outlet of the 
microchannel. b) Responses from the same sensors in the coated mucosa. (Reprinted with per-
mission by Royal Society, London). 

The uncoated responses of the inlet sensor also show some differential response 
that is stimulus dependent, which is most likely due to the kinetics of the 
ligand/sensor interaction rather than the mucosa properties – an example of the sec-
ond discrimination mechanism discussed in Section 1 due to differential ligand/sensor 
temporal interactions.  

In the coated case (the normal operational mode of the artificial mucosa -  
Figure 5.3b), the response of the outlet sensor after normalization shows very differ-
ent temporal responses that are strongly stimulus specific.  Here we see a clear  
additional latency in the onset of the response and also its duration is much longer, 
which is clearly due to spatio-temporal stimulus dynamics imposed by the coated mu-
cosa when we compare to the uncoated case. This stimulus dependent difference in 
 

 
Fig. 5.4. Response of different types of sensors responding to a 10 s pulse of simple analytes. 
Sensor responses to a) ethanol vapour, and b) toluene vapour in air. (Reprinted with permission 
by Royal Society, London). 
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the outlet sensor response, demonstrates clearly the additional third mechanism for 
discrimination which we have produced through the use of selective coatings in our 
artificial mucosa design and believe to be analogous to odorant air/mucus interaction 
in the biological olfactory system.  Figure 5.4 shows the diversity in the sensor re-
sponses for the different composite materials we have used within the artificial mu-
cosa device. The ensemble response clearly shows a wide diversity that is strongly 
stimulus specific, both before and after normalisation. This additional temporal diver-
sity due to selective partitioning is a powerful means for introducing additional dis-
crimination capability to chemical sensor arrays for complex odour analysis. 

5.3   Exploiting Temporal Responses in the Artificial Mucosa 

The three mechanisms for discrimination in artificial olfactory systems are not mutu-
ally exclusive. Rather, as appears to be the case in biology, we may exploit differen-
tial responses due to diverse sensor tunings (first mechanism), ligand/sensor kinetic 
dependencies (second mechanism), and imposed spatio-temporal dynamics in the 
stimulus delivery (third mechanism) simultaneously. Making these three mechanisms 
for discrimination cooperate in tandem and in a selective way is, we believe, the key 
to building new generations of artificial olfactory systems that may begin to approach 
the impressive selectivity and broad range sensitivity found in biological systems. 

In order to take advantage of the rich diversity of temporal responses created by the 
artificial mucosa we must analyse them with suitable signal processing and classifica-
tion strategies, i.e. techniques that are time dependent. One approach is to again look 
to the biology for the principles involved in processing such spatio-temporal signals 
(Pearce 1997). 

5.3.1   Olfactory Bulb Implementations for Spatiotemporal Processing of Odour 
Information 

A large number of olfactory receptor neurons (ORNs) constitute the front-end of the 
olfactory system, being responsible for detecting airborne molecules. Cilia of the 
ORNs protrude into the olfactory mucosa (Figure 5.1), where they come in contact 
with molecules that are transported by the nasal air flow. On the surface of the cilia, 
odorant receptors bind odorant molecules with a broadly tuned affinity. When a re-
ceptor binds with an odorant molecule, it triggers in its ORN a biochemical cascade 
that eventually causes the membrane potential of the ORN to change, potentially lead-
ing to the generation of action potentials (Mori et al. 1999).  

In vertebrates, ORNs project their axons into the olfactory bulb, terminating into 
spherical neuropils called glomeruli, where they connect onto the dendrites of mitral 
and tufted (M/T) cells. Experimental data indicate that each glomerulus receives the 
axons of only ORNs that express the same type of receptor, while any M/T cell sends 
its apical dendrite into one glomerulus only. Inhibitory neurons of the olfactory bulb 
form reciprocal contacts with many M/T cells via granule cells, thus forming together 
a complex network that appears to constitute the first stage of olfactory information 
processing. The output of the M/T cells is also relayed to higher brain areas (Mori  
et al. 1999). 
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Fig. 5.5. A schematic diagram of the olfactory bulb neuronal model architecture which we have 
implemented in programmable logic (Guerrero and Pearce 2007) and aVLSI (Koickal et al. 2007) 
for real-time odour signal processing, showing receptor and principal neurons (triangles) and syn-
apses (circles: unfilled – excitatory, filled – inhibitory). There are 25 M/T cells in total and 75 
ORNs. M/T: mitral/tufted cells, ORN: olfactory receptor neurons. LOT: lateral olfactory tract. 

Figure 5.5 shows the overall schematic of our network model for spatio-temporal 
odour signal processing (only showing three types of receptor input for the sake of 
clarity). The diagram has been drawn representing every computational element with 
an individual device, rather than adopting a biologically realistic representation. 
Chemosensors themselves are represented by irregular polygons at the top of the  
diagram which may be placed within the artificial mucosa to generate additional  
temporal diversity in their responses – polygons of the same shape represent sensors 
of the same type. Since the firing rate produced by ORNs is limited to approx. 1 kHz, 
we use a sigmoidal squashing function to condition the chemosensor signals before 
using it to drive the olfactory bulb (OB) model. 

In our model, any ORN receives input from only one chemosensor/receptor type, 
and any chemosensor only projects to one ORN. The outputs of the ORNs feed into 
the respective ORN-M/T synapses (circles). The outputs of the synapses that receive 
input from ORNs converge a single M/T cell, where they are summed linearly. This 
represents the operation of glomeruli in the olfactory system. The output of any 
glomerulus feeds into one respective M/T cell. Because the signals from sensors of 
the same type are fed forward through neural elements to a single M/T cell, the net-
work presents an evident modular structure, each module being defined by a different 
type of sensor, in a way that resembles the glomerular organization of the olfactory 
bulb. Every M/T cell projects to every other M/T cell through one of the M/T-M/T 
inhibitory synapses (filled circles).  

The neurons themselves have been modelled as integrate-and-fire units. Below the 
threshold Vθ, the dynamics of the “membrane” potential V(t) of the IF neuron are de-
fined by the equation 
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where t is time, R and C are, respectively, the membrane resistance and capacitance, 
and I(t) is the total input current to the neuron. The membrane rest potential is con-
ventionally set equal to the value zero. The membrane time-constant τm is given by 
RC (τm = 10 ms is used throughout as a biologically plausible value). The terms con-
tributing to I(t) are due to sensor responses if the neuron is a ORN, and to ORNs and 
lateral interactions if the neuron is a M/T cell. If the potential V(t) reaches the thresh-
old value Vθ, it is immediately reset to the afterhyperpolarisation value Vahp and an 
action potential is produced as output of the neuron. Since we do not explicitly con-
sider the role of adaptation in the model at this time, we set the threshold Vθ to be 
equal and fixed for all ORN and M/T cells.  

The model also includes dynamical synapses based upon first order dynamics. In 
this case, currents generated by a synapse in response to a spike train is through an 
exponential decay over multiple spike inputs occurring at times (t1, t2, . . ., tj , . . . tl) to 
give the dendritic current 
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where w specifies the weight or efficacy, H(.) is the Heaviside function and τi;e is the 
synaptic time constant of either inhibitory or excitatory synapses. We choose a value 
of 4 ms for excitatory synapses, and 16 ms for GABA mediated inhibitory synapses. 

The weights of the M/T-M/T synapses are defined so as to endow the network with 
associative properties (cf., e.g., Amit 1992 for general definitions), although it is not 
known whether the biological counterpart does perform this kind of processing. This 
lateral connectitivity represents dendrodendritic mitral/tufted and granule cell interac-
tions in the external plexiform layer of the bulb, which are known to be important in 
mediateing odour memory (Hildebrand and Shepherd, 1997). The network learns 
odorants by modifying the weights of the M/T-M/T synapses according to a Hebbian 
learning rule, during a training stage. The activity of a given neuron i by means of its 
firing rate vI (defined by a temporal average of spikes, hence, the mean firing rate v is 
the number of spikes nsp(t) that occur in the time T, v = nsp(T) / T, where the v is ex-
pressed in Hz). The synaptic weight change is then given by the equation  

jiijw νναδ ⋅⋅= , (5.3)

where vi and vj are the firing rates of the postsynaptic and presynaptic cells respec-
tively, and α is a learning parameter, such that α > 0. Since the spatial dependence of 
granule-mitral cell interactions is not fully understood, we choose the lateral weights, 
wij to be random before training. 

Given a learnt Odour A, an indicator function of all M/T cell firing rates can be  
defined 
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that indicates to which degree the network output is currently representing that par-
ticular odorant. Here d and a are vectors of the M/T cell population firing rates after 
training in response to the currently presented odour D and previously presented tar-
get Odour A. The indicator function is normalised by the magnitude of these vectors 
so that this may be interpreted as a correlation between d and a, scaled by k, which is 
kept constant for all indicator functions. Thus, when a previously learnt odorant is 
presented, its corresponding indicator function should assume a relatively large posi-
tive value. 

We have implemented this spatio-temporal olfactory bulb network in both pro-
grammable logic (Guerrero & Pearce, 2007, Guerrero-Rivera et al., 2006) and in ana-
logue VLSI technology (Koickal et al., 2007) for the purposes of real-time processing 
for artificial mucosa. Such recurrent spiking neuronal models have been shown to 
exhibit Hopfield-like attractor based dynamical behaviour. The asymmetric nature of 
the connectivity in our model gives rise to a richer variety of dynamical behaviours 
than in the symmetric Hopfield case (Li and Dayan, 1999). Such networks have been 
shown in a variety of contexts to be sensitive to temporal properties in their input, for 
instance, temporal sequence processing (Wang 2003). We next show that the network 
is capable of supporting odour classification and odour compound detection in vary-
ing backgrounds. 

A.   Odour Classification  

In order to demonstrate the classification properties of the OB model, the same net-
work was subjected to two arbitrary but constant input patterns (that we term ‘Odour 
A’ and ‘Odour B’), representing the receptor response to distinct odours at the input.  

 

Fig. 5.6. Indicator functions for the odour classification task. The same network is trained to 2 
odours, ‘A’ and ‘B’ from which indicator functions (I.F.) are constructed. Shown is the indica-
tor function response for both A and B when odour A and B are presented. In each case the 
indicator function for the learnt odour is far higher than that for the distractor odour.  
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Hebbian learning was first applied to adapt the lateral weights of the network when 
exposed to Odour A and then applied a second time for ‘Odour B’. After training, 
each odour (‘Odour A’ and ‘Odour B’) was presented sequentially for testing and the 
corresponding indicator functions for both learnt odours calculated over time (see 
Figure 5.6). We see that the corresponding indicator function for the learnt odour is 
high after a short time, whereas the other indicator function is low. When we present 
the second odour the situation is the opposite, indicating that the network is able to 
store two attractors corresponding to the two odours and we can read these out to 
classify the odours accordingly. 

B.   Odour Identification in Interfering Backgrounds  

In order to test how robust the learnt odour classification scheme is in this case, we 
trained the system to a random pattern of steady-state activity across the array, which 
we termed ‘Odour A’ and used the network response to define the indicator function. 
When this input was presented, the pure Odour A stimulus gave rise to a large indica-
tor function response, shown in Figure 5.7. In order to confound the input pattern, we 
then added different fractions of a random pattern, ‘Odour B’ to the original odour. In 
this case, the indicator function was found to reliably identify the presence of ‘Odour 
A’ even when the original learnt odour response was linearly superimposed on the 
distractor odour. To be sure that such a large indicator function response did not occur 
by chance or across all possible stimuli, Figure 5.7 also shows a low indicator func-
tion response in the trained network to a 3rd random odour input presented separately, 
‘Odour C’. Our demonstration of the ability of the network to solve this task corre-
sponds to an important problem of identifying a learnt odour when presented in the 
context of some unknown, distractor, chemical such as in an explosives detection 
task. 
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Fig. 5.7. Indicator functions for the odour identification in interfering background task. The 
network is trained to odour ‘A’ from which indicator function (I.F.) is constructed. Shown is 
the indicator function response for pure odour A and odour A mixed with various concentra-
tions of a distractor odour B. Additionally, an odour C is applied to demonstrate low activity to 
untrained odours. 
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Such biologically-plausible networks will further be considered for their properties 
in complex odour detection tasks that have thus far not been solved using classical 
signal processing and pattern recognition approaches. 

5.3.2   Spatiotemporal Information Measures  

Fisher Information 

In previous work we have discussed and analyzed how Fisher Information can be 
used to quantify the performance of an electronic nose (Sánchez-Montañés and Pearce 
2001, Pearce and Sánchez-Montañés 2003). Basically, the Fisher Information Matrix 
(FIM) F is a square and symmetric matrix of s × s components, where s is the number 
of individual compounds whose concentration we are interested to estimate. In order 
to calculate F we should first calculate the individual FIMs for each sensor j: 
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where Yj is the response of sensor j and c is a vector with the concentrations of the s 
simple compounds. The equation is general in that the sensor response Y may either 
be a time-independent scalar or a time series vector (of dimension L). In this case the 
total FIM for the array is just the summation of the individual matrices for each sen-
sor, Fj. The probability distribution p(Yj|c) represents the noisy response of the sensor 
to a given mixture with concentration vector c (odour space).  

The usefulness of Fisher Information is given by the important property that the 
best square error across all unbiased techniques that use the noisy array responses to 
estimate the stimulus is (see Sánchez-Montañés and Pearce 2001 for discussion) 

)(trace 12 −= Fε  (5.6)

Importantly, the Fisher Information matrix F is closely related to the discrimination 
ability of the system, which is why we consider it in this context. For instance, it can 
be demonstrated that in a two-alternative forced choice discrimination between two 
stimuli (i.e. the system has to determine which of two possible complex odours c1 and 
c2 is being presented), the optimal probability of error P(є) that can be achieved using 
linear sensors is P(є) = 0.5·[1-erf( 0.5 · λ 0.5 )] with λ ≡ ½ · δcT· F ·δc and δc ≡ c2-c1. 

In our previous work we have discussed how to calculate in practice this quantity 
when the temporal patterns of the responses of the individual sensors are not taken 
into account (corresponding to the first mechanism for discrimination identified in 
Section 1). Here we extend and calculate the Fisher Information for the spatio-
temporal case which includes the role of time in the responses. The first step is to 
model the noise in the sensors, which will determine p (Yj | c). 

Dynamic Model of the Noise 

Let us define Yj; c as the noisy temporal response (time series) of sensor j to stimulus 
c. Yj; c is a vector of L components (number of consecutive samples of the sensor). We 
will consider sensors with additive noise, 
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where cY ;j  is the expected time series response of sensor j to mixture c, and nj is a 

noisy time series that corrupts the individual sensor response. Note that cY ;j  can be 

in principle a time series of arbitrary complexity, for instance a series with four dif-
ferent peaks. In order to calculate the Fisher Information we need to characterize the 
noise dynamics of nj. To first approximation, we model them as first-order AR proc-
esses, which we express in the convenient form 

ξγσγ ⋅−⋅+⋅=+ 21)()1( jjjjj
kk nn  (5.8)

with k є [1, L-1]. Additionally, n j (1) is modelled as a Gaussian random variable of 
zero mean and variance σj

2. In equation 6 and from now on we use parentheses to 
indicate the element of the vector (k) or matrix (u, v) to avoid confusion with sub-
scripts. The coefficients γj and σj depend on each sensor; ξ is an I.I.D. Gaussian vari-
able of unit variance and zero mean. Note that this implies that nj has zero mean,  
variance σj

2 and auto-covariance given by: 
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(5.9)

Therefore the noise vector nj is a multivariate Gaussian process with zero mean and 
covariance matrix Nj given by 

||2),( vu
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where Lvu ...,,, 1∈  

Spatio-temporal Fisher Information 

The expected time series response of a linear sensor j to a mixture c is given by (re-
moving the constant sensor baseline): 

i
jiij c AY c ⋅Σ=;  (5.11)

where Ai
j is the expected time series response of sensor j to a unit of concentration of 

single compound i. Equation 9 implies that the sensor response is linear to increasing 
concentration (within some reasonable limit) and to mixtures. We have found that this 
is a good approximation for the composite materials used in our artificial mucosa 
(data not shown). 

Using the previous result that Yj; c is a Gaussian vector with covariance matrix Nj, 
together with equation 3, it is straightforward to demonstrate 

( ) ( )Tv
jj

u
jj

vu ANAF ⋅⋅= −1),(  (5.12)
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Using this equation together with equation 8 and using that sensors are causal (Aj 

(1, k) = 0) we can derive after some algebra the following convenient equation 

( ) ),(),(),( viuivu j

L

i
j

jj
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−⋅
= ∑

=222 1

1

γσ
 

(5.13)

with Bj (i, k) ≡ Aj (i, k) – γ j · Aj (i-1, k). This important equation represents the spatio-
temporal Fisher Information of a noisy sensor within an array. 

Purely Spatial Fisher Information 

It is interesting to calculate how much better the spatio-temporal information is when 
compared to the information carried by sensor responses containing no explicit tem-
poral information. Here we consider the contribution of the three mechanisms com-
bined. In case that just the mean output of each sensor is used in subsequent signal 
processing: 

∑
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L
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(5.14)

it is easy to demonstrate that this mean output is a Gaussian variable with average aj
T · 

c, where 
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The variance of y j; c can be calculated as: 
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(5.16)

Then the individual Fisher Information Matrices are given by (Sánchez-Montañés and 
Pearce 2001): 
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(5.17)

Fisher Information of the Microchannel to Mixtures of Toluene and Ethanol 

The spatio-temporal Fisher Information Matrix was calculated for the micro-channel 
responding to toluene and ethanol odorants, such as that shown in Figure 5.3. Then 
the trace of the inverse of this matrix was calculated which corresponds to the optimal 
square error that any method estimating the individual concentrations could obtain. 

Importantly, we see that the expected square error when using spatio-temporal in-
formation is always smaller than that error when only spatial information is consid-
ered (Figure 5.8). When using all the 16 available sensors in the array the ratio of the  
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Fig. 5.8. Optimal square error in the estimation of the individual concentrations in mixtures of 
toluene and ethanol, as a function of the sampling time. All available sensors in the array are 
used. Solid: optimal square error є2

sp-temp when the spatial and temporal information in the sen-
sor array is taken into account. Dashed: optimal square error є2

sp when only the spatial infor-
mation is taken into account. 

two square errors is 2.8. When the detection task is much harder, i.e. complex odours 
with large numbers of components, this ratio of the spatial error to spatio-temporal 
error is expected to be far higher.  

In order to investigate more deeply how much improved the spatio-temporal in-
formation is with respect to pure spatial information (for the case of arbitrary mixtures 
of the two pure odours toluene and ethanol), we calculated the ratio of the two opti-
mal estimation errors є2

sp-temp and є2
sp for all the 65,535 sets of sensors that can  

be generated out of our 16 available sensors (Table 5.1). Specifically, for each possi-
ble subset of sensors we have performed analogous calculations as those shown in 
Figure 5.8, and then computed the ratio of the minima of the two curves. Table 5.1 
shows the resulting range of ratios for a given number of sensors. 

Table 5.1. Range of the ratio є2
sp-temp : є2

sp for all the possible combinations that can be gener-
ated out of our 16 available sensors 

No. sensors Improvement No. sensors Improvement 

1 ∞ 9 1.6 – 50 

2 1.5 – 860 10 1.7 – 33 

3 1.4 – 580 11 1.7 – 18 

4 1.4 – 370 12 1.8 – 5.8 

5 1.5 – 270 13 2.1 – 3.9 

6 1.5 – 170 14 2.2 – 3.5 

7 1.5 – 83 15 2.3 – 3.1 

8 1.6 – 72 16 2.8 
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For configurations with only one sensor, the ratio is always infinite since it is im-
possible to estimate the concentrations of the individual compounds from the average 
response of only one sensor, a task which on the other hand is possible to address 
when the temporal information is also considered. For small numbers of sensors the 
improvement of the performance of the system based on spatio-temporal information 
can be several orders of magnitude (Table 5.1), revealing that an artificial mucosa 
optimally designed for exploiting temporal features can increase largely the sensitiv-
ity as well as reduce the number of total sensors.  

The important result of this analysis is that the spatiotemporal information avail-
able from a sensor time series can never be less than purely spatial information (such 
as the mean output over time). By increasing the diversity in the temporal responses 
the ratio of this information can be very high indeed, leading to large improvements in 
discrimination performance. The equations here characterise this explicitly in the lin-
ear case.  

5.4   Conclusions 

Achieving optimal detection performance in machine olfaction means exploiting both 
spatial and temporal sensor array responses, whereas traditionally only the spatial as-
pects have been employed. We have presented a new machine olfaction technology 
that demonstrates an additional mechanism for discrimination in these systems, which 
we have termed an artificial olfactory mucosa, on account of its similarities to biologi-
cal odour delivery systems. The additional discrimination mechanism acts through the 
physical segregation in complex mixtures of odours combined with chemical sensor 
arrays that are distributed in space. Imposing spatio-temporal dynamics in the delivery 
of chemical components, we have shown, can confer additional diversity in the re-
sponses of chemosensor arrays which may form the basis of a new generation of elec-
tronic noses with improved sensitivity, discrimination performance and selectivity.  

Taking advantage of this new sensing approach requires the consideration of both 
space and time during chemosensor array signal processing and classification. Here 
we have emphasised how a spiking implementation of the olfactory bulb, which is 
also biologically plausible, is able to learn and classify different olfactory inputs as 
well as identify particular odour stimuli present within a mixture of interfering dis-
tractor odorants.  

More formally, a new information theory measure has been described which is ca-
pable of quantifying both spatial and temporal information in artificial mucosa based 
chemical sensor arrays. Importantly this analysis has demonstrated that the spatio-
temporal case should outperform the purely spatial case emphasising the importance 
of time in these systems.  

The artificial mucosa arrangement opens various possibilities for optimising both 
spatial and temporal response profiles to particular compounds and mixtures of inter-
est – for instance by configuring sensor position. We are now applying this new in-
formation measure to the optimisation of artificial mucosa configurations to particular 
detection tasks which will uncover underlying design principles for making a new 
generation of complex odour detection devices with improved detection capabilities.  
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