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Abstract. Artificial neural networks (ANN) are useful components in today’s data analysis 
toolbox. They were initially inspired by the brain but are today accepted to be quite different 
from it. ANN typically lack scalability and mostly rely on supervised learning, both of which 
are biologically implausible features. Here we describe and evaluate a novel cortex-inspired 
hybrid algorithm. It is found to perform on par with a Support Vector Machine (SVM) in classi-
fication of activation patterns from the rat olfactory bulb. On-line unsupervised learning is 
shown to provide significant tolerance to sensor drift, an important property of algorithms used 
to analyze chemo-sensor data. Scalability of the approach is illustrated on the MNIST dataset of 
handwritten digits. 

2.1   Introduction 

Artificial neural networks and related learning based techniques add important func-
tionality to today’s signal processing and data analysis toolboxes. In particular, such 
methods excel in supervised learning and e.g. SVM challenges human performance in 
specific domains like recognition of isolated handwritten digits. These methods were 
initially inspired and motivated by analogies with the brain, but today this connection 
is rarely emphasized. On the contrary, ANN:s are in many aspects different from bi-
ology, for instance, by their lack of scalability to brain-sized networks, their focus on 
deterministic computing, and on supervised learning based on the availability of la-
belled training examples. All of these features are markedly non-biological. 

Current knowledge about the brain suggests that its architecture is highly scalable 
and run on stochastic computing elements which employ Hebbian type correlation 
and reinforcement based learning rules rather than supervised ones. In fact, supervised 
error correction learning techniques are quite suspect from the point of view of neuro-
biology. Thorpe and Imbert reviewed the arguments some time ago but their remarks 
are still valid (Thorpe and Imbert 1989). Quinlan suggested that, in fact, the multi-
layer perceptron is super-competent on many tasks compared to humans, which  
reduces its plausibility as models of the brain (Quinlan 1991). 

Why should we be interested in neurobiology at all? Well, in important respects, 
our man-made methods and artefacts still lag far behind biological systems. The 
latter excel in real-time, real world perception and control, handling of input from 
high dimensional sensor arrays, as well as holistic pattern recognition including 
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figure-ground separation and information fusion. They also demonstrate exceptional 
compactness, tolerance to hardware faults and low energy consumption. These are 
attractive properties also from a technological perspective. 

With the increasing abundance of sensors and sensor arrays as well as massive 
amounts of data generated in many different applications of advanced information 
technology and autonomous systems there is an increasing technical interest in scal-
able and unsupervised approaches to learning-based data analysis and in robotics. 
Also, as new molecular scale computing hardware is developed, the interest in robust 
algorithms for stochastic computing will increase. 

A serious complication is that we do not yet fully understand the computational 
and information processing principles underlying brain function. An increasingly im-
portant tool in brain science is quantitative modelling and numerical simulation. In the 
field of computational neuroscience models at different levels of biophysical detail  
 

 

Fig. 2.1. Outline of the hybrid algorithm. The unstructured array of sensors is clustered using 
multi-dimensional scaling (MDS) with a mutual information (MI) based distance measure. 
Then Vector Quantization (VQ) is used to partition the sensor into correlated groups. Each such 
group provides input to one module of an associative memory layer. VQ is used again to pro-
vide each module unit with a specific receptive field, i.e. to become a feature detector. Finally, 
classification is done by means of BCPNN. 
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are developed and investigated to speed up the development of our understanding of 
how the brain works (De Schutter et al. 2005). In fact, the most reduced models in this 
field are formulated on a level of abstraction close to that of ANN, so called connec-
tionist models. Such models can serve as the starting point for the design of brain-
inspired computational structures, and this is the approach we have taken. 

Our overall goal is the development of a generic cortex-inspired computational 
building block that allows for the design of modular and recursive hierarchical adap-
tive pattern processing structures useful in technical applications as those mentioned 
above. This development is in its early stages, and we report here the basic design and 
evaluation of a novel hybrid algorithm aimed for this purpose. 

2.1.1   The Underlying Abstract Model of Cortex 

We have previously developed and investigated biophysically detailed models of the 
associative memory function of neocortex based on experimental data (Lundqvist  
et al. 2006). Based on the knowledge gained we have formulated an abstract network 
model of cortical layers 2/3 that forms the core of our present approach (Lansner and 
Holst 1996; Sandberg et al. 2002; Johansson and Lansner 2006a). Layer 5 is also 
likely to be closely interacting with layers 2/3 and is not represented separately 
(Hirsch and Martinez 2006). 

An important additional operation is the transformation from raw sensor data to the 
sparse and distributed representations employed in cortical layer 2/3. This transforma-
tion is started in the early sub-cortical sensory processing streams but is continued in 
the forward pathway of cortex that involves its layer 4 as a key component. In our 
abstract model we represent layer 4 separately as a layer that self-organizes a modular 
(“hypercolumnar”) structure and also decorrelates the input forming specific receptive 
fields and response properties of units in this layer. The hypercolumnar structure is 
imposed on layer 2/3 when formed and the layer 4 units drive their companion units 
in layer 2/3 via specific one-to-one connections. In the simplest case, as in the simula-
tions described in the following, there is a feedforward projection from layer 2/3 to 
some output layer. In general, this structure can be extended recursively with projec-
tions connecting layer 2/3 to a layer 4 in the next level in the hierarchy located in a 
different cortical area. Long-range recurrent connections may also form between hy-
percolumns within layer 2/3 at the same level, forming the basis for autoassociation. 

2.2   Methods 

The proposed algorithm for one module works in several stages (Figure 2.1). First a 
sensor clustering followed by a vector quantization step partitions the input space. 
Then each group is decorrelated and sparsified in a feature extraction step, again us-
ing vector quantization. Finally the data is fed into an associative memory which is 
used in a feed-forward classification setting. Each step is explained in detail below. 

2.2.1   Partitioning of Input Space 

We consider the case of sensors with discrete coded values or value intervals. For 
sensor X and Y, the general dependence is calculated by the mutual information 
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(2.1)

Here, i and j are the indexes for the units in each hypercolumn and the probabilities 
are estimated as 

 
(2.2) 

 
(2.3) 

Where P is the number of input patterns and is the unit value at position i for input 
pattern . In case of continuous variables the values in this step needs to be interval 
coded. 

The mutual information is transformed into a distance measure (Kraskov et al. 
2005): 

 
(2.4)

with the joint entropy calculated as 

 
(2.5)

From the full distance measure matrix we can create a multidimensional geometric 
map fulfilling the distance relations by employing classical multidimensional scaling 
(Young 1985). The number of dimensions in this map is specified to be as low as pos-
sible (without reducing the quality of the map too much) in order to reduce the com-
putational needs in the following step. The number of partitions of the input space is 
manually specified and sets the number of code vectors in a vector quantization (VQ, 
see below) of the map produced by the multidimensional scaling. The VQ encoding 
process on each element in the map decides which group each sensor should belong 
to. The sensors with high general dependences (as determined by the mutual informa-
tion) will in this way be grouped together. 

2.2.2   Decorrelation and Sparsification 

For each group, we perform VQ on the input from the subset sensors that belongs to that 
specific group, resulting in a decorrelated and sparsified code well suited for an associa-
tive memory system (Steinert et al. 2006). The VQ is performed by means of Competi-
tive Selective Learning (CSL) (Ueda and Nakano 1994), but another VQ algorithm 
could have been used. As for standard competitive learning, CSL updates the weight 
from an input unit i to the output unit with highest activity for input pattern  as 

 
(2.6) 
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 is the step length of change which decreases during learning. CSL also adds a selec-
tion mechanism which avoids local minima by reinitializing weight vectors. 

2.2.3   Associative Memory 

The resulting decorrelated and sparsified code  for input pattern  is fed into a 
BCPNN (Bayesian Confidence Propagating Neural Network) with hypercolumns that 
uses a supervised correlation based Bayesian learning algorithm (Johansson and 
Lansner 2006). Here we are only interested in classification, so the input code from 
the intermediate layer is directly mapped to an output layer having a single hypercol-
umn, using a feed-forward pass where the weights are learned by the Hebbian-
Bayesian learning. If we consider the output code from a group in the intermediate 
layer as a hypercolumn Qg, where each unit corresponds to a code vector from the 
VQ, and the classes as units in the output hypercolumn, the weight between presynap-
tic unit and postsynaptic unit is computed as 

 
 (2.7) 

and  and   are probabilities once again estimated according to Eqs. 2.2 and 2.3 
above. 

For each generated input pattern . Each unit has a bias set to be 

 

(2.8)

When an incoming pattern is processed the activity in postsynaptic unit is calcu-
lated as 

 
(2.9)

Here we sum over all groups and all units in each group where is the activation 
value of unit i. 

The final output is calculated by a softmax function, controlled by the gain parame-
ter G, over all the units in the output layer: 

 

 

(2.10) 

In a classification task, the unit with the highest output is taken as the classification 
result. 
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2.2.4   Data Sets 

In this study we used two different datasets, one of activation patterns from rat olfac-
tory bulb and one of isolated handwritten digits. 

Rat Olfactory Bulb Activation Patterns 
The olfactory bulb activation data of Leon and Johnson was used as one of the evalua-
tion data sets (Leon and Johnson). We used a subset comprising 2-deoxyglucose (2-
DG) imaged activation patterns from 94 different odour stimuli. These spatial activa-
tion patterns were clustered in 60 different local spatial clusters. The mean activity 
within each such cluster was transformed to the range [0,1], whereby 94 patterns with 
60 components were obtained (Marco et al. 2006). 

The classification task was to separate these compounds into their chemical 
classes, i.e. acids (24), aldehydes (19), alcohols (16), ketones (17), esters (6), hydro-
carbons (8), and misc (4). A random subset of 75% of these patterns was used for 
training and the rest comprised the validation set. 

The robustness to sensor drift of the method under study was evaluated using  
a simple synthetic drift model. A gain for each of the 60 sensors was initiated to 1 
after which the gain factor was subject for over 100 random-walk steps taken from 
a Gaussian distribution with = 0.01. In the on-line learning condition while testing 
drift robustness, the last unsupervised vector quantization step was run continu-
ously. 

MNIST Data 
The MNIST data set consists of handwritten images, 28x28 pixels large with 256 gray 
levels (Figure 2.2). It has a training set of 60,000 samples and a test set of 10,000 
samples. Specialized classifiers based on SVM have been reported to be more than 
99% correct on the test set while a standard single layered network typically achieves 
88% with no preprocessing (LeCun et al. 1998). 

 

 

Fig. 2.2. Samples from the MNIST data set 
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(a) 

 
(b) 

Fig. 2.3. Patches generated from the MNIST data by the MI + MDS + VQ + VQ steps of the 
hybrid algorithm. (a) The 12 different patches are colour coded. Note that some patches com-
prise more than one subfield. (b) Example of the specific receptive field of one of the 10 units 
in the patch marked with orange (with two subfields). 

We can illustrate each step in the previous section by applying the proposed 
method to a real classification task. 

In our example, the bit depth of all MNIST images is lowered by reducing the 
number of gray levels to eight. One input hypercolumn, corresponding to one image 
pixel, then can take on eight different values. 

The general dependences between the image pixels are calculated by the mutual in-
formation. After multidimensional scaling the resulting matrix is grouped into P parti-
tions by performing vector quantization. The result is a 28x28 map which shows how 
the pixels should be grouped, see Figure 2.3a for the case P = 12. Note that this is an 
entirely data driven approach that is independent of sensor modality. In the case of 
images, this step replaces the commonly used square tiling of the image. However, 
such tiling can only be applied when the correlation structure of the data is known 
beforehand to be two-dimensional. 

We again perform vector quantization on each subset of sensors and form Q code 
vectors for each group. This gives us a total of P · Q units in the intermediate layer 
between the input and associative layer. Each code vector corresponds to a receptive 
field, an example of which is seen in Figure 2.3b, where we have backtracked the con-
nections between a single code vector and the input sensors in a setting where Q =10. 

2.2.5   MLP/BP and SVM Software 

The MLP/BP code used here to process the olfactory bulb activation patterns was 
from MATLAB® 7.3.0 NN-toolbox, using the scaled conjugate gradient learning rule 
with weight regularization. The SVM code used the osu-svm toolbox for MATLAB® 
(Ma et al. 2006). Parameters were in both cases selected to obtain best average per-
formance on the validation set. Average and SEM of classification performance were 
calculated. 
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2.3   Results 

This result section has three main parts, the first showing a straight-forward compari-
son of our novel hybrid algorithm with other methods, the second demonstrating the 
drift-tolerance of this algorithm relative to other methods, and the third demonstrating 
its scaling performance. 

2.3.1   Evaluation on Olfactory Bulb Activation Patterns 

We compared the results on the classification of the olfactory bulb activation pattern 
data set using different methods. The MLP/BP, one-layer, and SVM networks were  
 

Table 2.1. Classification performance on validation set 

METHOD  %correct (validation) 

Onelayer  45 % 

MLP/BP w reg  64% 

SVM (Poly)  66% 

SVM (RBF)  70% 

VQ-BCPNN (1)  69% 

VQ-BCPNN (7)  60% 
 

 

Fig. 2.4. Drift robustness of SVM, new method and new on-line learning method. Solid and 
dash-dotted lines represent performance on training and test sets respectively. Diamond, cross 
and circle refers to SVM, new method, and new on-line method respectively. Error bars are 
given only for performance of new on-line method on test data. At step 75 a complete recalibra-
tion is performed. 
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run as described in the methods section. The hybrid algorithm was run using two set-
ups, one with just a single sensor partition and the other with the 60 sensors parti-
tioned into seven groups. The total number of units in the BCPNN input layer was 70 
in both cases. The results of this comparison are given in Table 2.1. The hybrid algo-
rithm performs on par with SVM when only a single partition is used. 

Drift tolerance was tested according to the description above using this data set and 
results are shown in Figure 2.4. As can be seen, the new algorithm with on-line learn-
ing has a much superior drift tolerance under these conditions. 

2.3.2   Classification of MNIST Data 

The algorithm was run on the entire MNIST data set. Of the 10,000 images in the test 
set, 95% were correctly classified (Johansson 2006). When only a feedforward con-
figuration of BCPNN was used, with no intermediate layer generated by the hybrid 
algorithm, 84% of the images were correctly classified. Note that the learning in this 
case is not gradient descent but one-shot and correlation based. 

Scaling performance of the algorithm and its dependence on the number of units in 
each hypercolumn is illustrated in Figure 2.5. As can be seen, the performance levels 
off at about 95% when there are more than one hundred units in each hypercolumn. 
Since there are eight hypercolumns, the total number of units in the internal layer is in 
this case up to one thousand. 

 

Fig. 2.5. Scaling performance of the new hybrid algorithm. Dependence of classification per-
formance on the number of units in each hypercolumn (Johansson 2006). 
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2.4   Discussion and Conclusions 

In this study of the performance of a novel hybrid algorithm for pattern processing we 
have proposed and described the different steps of the algorithm and evaluated its 
performance with regard to classification, drift robustness, and scaling. The algorithm 
is entirely data driven and does not make any assumptions on correlation structure, 
e.g. when processing image data. 

When compared to an rbf-SVM approach on a small dataset of olfactory bulb acti-
vation patterns the new algorithm performed on par with SVM when no subdivision 
of the input space was done. With subdivision of the input space in seven disjoint 
groups, performance dropped significantly, from 70% to 60%. This suggests that the 
algorithm did in this case not find a set of seven independent groups of sensors. No 
method was able to reach beyond 70% which suggests that the problem is not separa-
ble, even non-linearily so. Comparison using more standard pattern classification 
benchmark datasets is ongoing. 

In the test of robustness to sensor drift it was shown that when the unsupervised 
part of the algorithm was allowed to run in on-line training mode drift robustness 
much superior to SVM and the new algorithm with no on-line learning was demon-
strated. This is a promising result, but further characterization of this property is re-
quired. Additional evaluation is currently ongoing on a real chemosensor dataset. 

On the MNIST dataset the algorithm was able to reach 95% performance on the 
test set. This is not as good as a carefully designed SVM that reaches beyond 99%. 
On the other hand, our aim here is to develop a cortex-inspired algorithm with similar 
learning performance as a human being. It is not known how well humans do on the 
full MNIST dataset but it is not unlikely to be close to 95% (e.g. worse than SVM) 
given that many handwritten digits in this dataset are truly ambiguous. 

Since associative memory implementing attractor dynamics, reinforcement learn-
ing and boosting approaches are all quite feasible from a biological learning perspec-
tive our ambition is to extend and evaluate this novel approach in such tasks and to 
focus on scalable parallel implementation to allow processing of data from arrays of 
millions of sensors. 
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