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Preface

Biologically inspired approaches for artificial sensing have been extensively applied 
to different sensory modalities over the last decades and chemical senses have been 
no exception. The olfactory system, and the gustatory system to a minor extent, has 
been regarded as a model for the development of new artificial chemical sensing sys-
tems. One of the main contributions to this field was done by Persaud and Dodd in 
1982 when they proposed a system based on an array of broad-selective chemical 
sensors coupled with a pattern recognition engine. The array aimed at mimicking the 
sensing strategy followed by the olfactory system where a population of broad-
selective olfactory receptor neurons encodes for chemical information as patterns of 
activity across the neuron population. The pattern recognition engine proposed was 
not based on bio-inspired but on statistical methods. This influential work gave rise to 
a new line of research where this paradigm has been used to build chemical sensing 
instruments applied to a wide range of odor detection problems.  

More recently, some researchers have proposed to extend the biological inspiration 
of this system also to the processing of the sensor array signals. This has been moti-
vated in part by the increasing body of knowledge available on biological olfaction, 
which has become in the last decade a focus of attention of the experimental neuro-
science community. The olfactory system performs a number of signal processing 
functions such as preprocessing, dimensionality reduction, contrast enhancement, and 
classification. By mimicking the olfactory system architecture using mathematical 
models, some of these processing functions have been applied to arrays of broad-
selective chemical sensors.  

The latests advances in this area where presented in the GOSPEL Workshop on 
Bio-inspired Signal Processing held in Barcelona 2007. This workshop gathered for 
the first time researchers working on bio-inspired processing for chemical sensing 
from around the world. One of the outcomes of this workshop was the project of 
bringing together research contributions of this field in a book. This volume is com-
posed of extended versions of some contributions to the workshop plus some addi-
tional contributions from other experts in the field. 

The book is organized in two sections: biological olfaction; and artificial olfaction 
and gustation. The first section focuses on the study and modeling of the processing 
functions of the olfactory system. In Chapter 1, the author revises the insect olfactory 
system from an information processing point of view. In Chapter 2, a signal processing 
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architecture based on the mammalian cortex is proposed. In Chapter 3, the author pre-
sents an experimental work to understand the high sensitivity of insects. In Chapter 4, 
the authors have performed non-invasive recordings of the olfactory bulb activity and 
present a technique to analyze the chemical information on these recordings. The second 
section is devoted to bio-inspired approaches to process chemical sensor signals. In 
Chapter 5, the authors propose a sensor chamber based on the olfactory mucosa that 
improves odor separation through temporal dynamics. In Chapter 6, the authors use a 
model of olfactory receptor neuron convergence to improve the correlation between 
sensor responses to an odor and his organoleptic properties. Chapter 7, the authors pro-
pose a method to convert chemical sensor signals to spike trains along with the process-
ing of the signals based on the receptor neurons convergence. Chapter 8, the authors 
analyze the signal processing needs of an artificial chemical sensing system to detect 
malodors in open environments.  In Chapter 9, the authors propose a chemical detection 
system for chemicals in liquid solution based on voltametric sensors. 

We would like to thank the authors of this volume and the reviewers that helped to 
improve the quality of the chapters. We are also grateful to Springer's editorial staff, 
in particular to Professor Janus Kacprzyk that encouraged us to produce this scientific 
work. We also like to thank the network of excellence GOSPEL FP6-IST 507610 for 
its support in organizing the Workshop on Bioinspired Signal Processing. We hope 
that the reader will share our excitement on this volume and will find it useful. 

Barcelona, 
December 2008 

Agustín Gutiérrez-Gálvez 
Santiago Marco 
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1 
“Sloppy Engineering” and the Olfactory System of 
Insects 

Thomas Nowotny 

Centre for Computational Neuroscience and Robotics, University of Sussex,  
Falmer, Brighton BN1 9QJ, UK  
T.Nowotny@sussex.ac.uk 

Abstract. Research on nervous systems has had an important influence on new information 
processing paradigms and has led to the invention of artificial neural networks in the past. In 
recent work we have analyzed the olfactory pathway of insects as a pattern classification device 
with unstructured (random) connectivity. In this chapter I will review these and related results 
and discuss the implications for applications in artificial olfaction. As we will see, successful 
classification depends on appropriate connectivity degrees and activation thresholds, as well as 
large enough numbers of neurons, because the strategy essentially rests on the law of large 
numbers. Taken as an inspiration for artificial olfaction, the analysis suggests a new paradigm 
of random kernel methods for odour and general pattern classification. 

1.1   Introduction 

Olfactory space is structurally very different to other sensory spaces. Unlike vision, 
which has a clear two-dimensional spatial structure of sensory input on the retina or 
audition which has a one-dimensional mapping of frequency space in the cochlea, 
odor space has no obvious neighbourhood structure. Certainly, odorants, that is mix-
tures of volatile chemicals, can be organized by various similarity measures. For or-
ganic compounds, by far the most frequently encountered odorants, one can compare 
by functional groups, carbon chain length or general molecular size. It is, however, 
not clear how to organize these different properties in an overall odor space. The fact 
that many odors humans perceive as elemental are actually mixtures of many different 
volatiles complicates the picture even more. The smell of a rose, for example, has 
dozens of different components. 

Due to the complex structure of odor space, it is an extremely interesting and chal-
lenging question whether the olfactory system has a correlate of retinotopic maps in 
vision or frequency maps in audition. And if it does, what would be the organizing 
principle of such an odor “map”? Furthermore, can we learn from this organization of 
biological olfactory systems to build artificial chemosensor systems that perform at 
levels comparable to the performance of the former in general olfactory sensing 
tasks? 

A word of caution might be appropriate at this point. For many applications, the 
performance of single chemical sensors, i.e., sensors that specifically respond to cer-
tain chemical substances or general analysis techniques like mass spectrometry and 
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gas chromatography are vastly superior to biological systems in particular in analyz-
ing the components of a chemical mixture or finding small traces of a specific chemi-
cal. However, whenever human sensory impressions are the target, e.g., in assessing 
whether the odor in a print shop or close to a landfill are acceptable to humans or not 
(see xxx in this volume), or, whether a product smells or tastes right, one clearly will 
need a more bio-mimetic approach. Another aspect is the “online” use in a complex 
environment. Examples of applications are searching for drugs or explosives on a 
busy airport or for truffles in the forest. For the former it might appear easy to look 
for suspicious Nitrogen peaks in a mass-spectrograph. The number of possible false 
positives is, however, very large. 

In this chapter I will review our recent work on the olfactory system of insects, in 
particular the locust. The main hypothesis underlying this work is that a generally 
unstructured, random connectivity may be sufficient, if not advantageous, for classify-
ing odors. I will start by reviewing the known anatomical, bio-chemical and electro-
physiological properties of the olfactory system and then embark on a general  
analysis of a corresponding model system with unstructured connectivity. This analy-
sis is performed on several levels of description and we will see how each level of 
description allows different insights. After discussing aspects of temporal coding 
which is believed to be of great importance in this system I will conclude with a gen-
eral discussion in particular with a focus on the question of applicability of this theo-
retical work for building artificial devices. 

1.1.1   The Olfactory Pathway of Insects 

Insects smell with their antennae. While the olfactory systems of different insects bear 
many similarities, they are by no means identical. For sake of concreteness I will here 
mainly focus on the anatomy and electro-physiology of locust (Schistocerca Ameri-
cana). This species has been studied for a long time, in particular in the group of 
Gilles Laurent at the California Institute of Technology. The locust has on the order of 
50,000-100,000 olfactory receptor neurons (ORN) on either of its antennae (Ernst 
1977, Hansson 1996). The ORN express olfactory receptor proteins that bind to the 
volatiles carried to the antennae through the air. Each receptor type typically responds 
to many different chemicals and each chemical typically can bind to several different 
receptors. Even though it has not been shown in locust, each ORN likely expresses 
only one type of olfactory receptor (OR) in analogy with findings in fruit fly (Droso-
phila) and mouse (Gao et al. 2000; Vosshall et al. 2000; Scott et al. 2001). By the 
same analogy, all ORN with receptors of the same type presumably converge to the 
same regions (Gao et al. 2000, Vosshall et al. 2000, Scott et al. 2001) in the antennal 
lobe (AL), the first brain structure of olfactory information processing. Whereas flies, 
bees and mammals have a few large regions of input convergence, the so-called 
(macro) glomeruli, locust have a micro-glomerular structure of many, small glomeruli 
in the antennal lobe (Ernst 1977). For the purpose of our analysis we contended our-
selves with the knowledge that whichever the exact organization of the input conver-
gence, in either case there are a few, in the case of locust about 800, principal neurons 
(PNs) which relay the odor information to higher brain structures, foremost the mush-
room bodies and the lateral horn of the protocerebrum. It also appears sound to as-
sume that each PN connects to only one (Wang et al. 2003), maybe a few (Bhalerao  
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et al. 2003; Sato et al. 2007), glomeruli thus sampling the input of only one, at most a 
few, olfactory receptors. Due to this one OR - one ORN – one glomerulus – one PN 
organization the olfactory code on the level of the input side to the PN in the AL is 
about the same code of overlapping patterns of activity that the response profiles of 
the ORs define. 

Within the AL about 300 non-spiking interneurons modulate the output of the PNs. 
The resulting activity has been experimentally characterized as patterned on two time 
scales. There are fast 20 Hz local field potential (LFP) oscillations to which spikes of 
PNs are locked (Laurent et al. 1996; Wehr and Laurent 1996). The PNs are active in 
synchronized groups and these groups evolve over time in a slower, odor-specific 
pattern. The slow switching dynamics has been hypothesized to improve odor dis-
crimination for very similar odors (Laurent et al. 2001; Rabinovich et al. 2001) and 
some experimental evidence for a decorrelation, and therefore presumably disam-
biguation, of similar patterns in the olfactory bulb of zebra fish has been observed 
experimentally (Friedrich and Laurent 2001). 

Table 1.1. Some known properties of the olfactory system of insects. For the work described 
here, the assumption of random connections and the localization of learning to the synapses 
between intrinsic and extrinsic Kenyon cells are particularly important. 

Structure 

  
 

Neurons 90000 ORN 
800 
glome-
ruli 

800 PN 50000 KC ~ 100s 
eKC 

Genetically encoded Unknown, random?  

connectivity 

 Genetically en-
coded Unknown, random? 

Concentra-
tion depen-
dence 

dependent Depen-
dent 

Un-
known 

Indepen-
dent Unknown 

Plasticity Adaptation 

Plastic in 
odour 
condi-
tioning 

PN 
adap-
tation 

Main locus of plasticity in 
odour conditioning 
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Feedforward inhibition synchronous with the LFP in the AL is transmitted via an 
indirect pathway involving the lateral horn onto the KCs of the MB. This feedforward 
inhibition, combined with the presumed function of KCs as coincidence detectors, 
effectively partitions the slow temporal patterns of PN activity in the AL into snap-
shots of active PNs during each LFP cycle (Perez-Orive et al. 2002). Following this 
interpretation, the challenge of the MBs is to classify patterns of active PNs in each 
snapshot (and/or across several snapshots) and extract odor information from this 
code. The MBs of locust have about 50000 KCs which synapse onto a few, maybe 
hundreds, of output neurons in the MB lobes, so-called extrinsic Kenyon cells (eKCs). 
In summary, many ORNs project to a few PNs in the AL which fan out to a large 
number of KCs. These in turn converge onto a small number of eKCs that constitute 
the output of the system towards pre-motor areas. For a recent, more complete discus-
sion of the locust anatomy and electrophysiology see (Farivar 2005). 

The connectivity between PNs in the AL and the KCs, as well as between KCs and 
eKCs is largely unknown. Several attempts have been made, mainly using staining 
techniques in the fruit fly Drosophila, to elucidate whether the connectivity is stereo-
typic or animal-specific (Wong et al. 2002; Marin et al. 2002; Masuda-Nakagawa et 
al. 2005). To our mind, the results remain somewhat ambiguous and contradicting. It 
is obvious that the genome is not large enough to specify each single synaptic connec-
tion between the neurons of the system. Therefore, the connections are either formed 
by some smart targeting mechanism (like in the earlier stages from receptor neurons 
to glomeruli and subsequently projection neurons (Gill and Pearce 2003; Tozaki et al 
2004; Feinstein et al. 2004; Feinstein and Mombaerts 2004) or they are formed gen-
erically by proximity of dendritic structures to axons, randomly in a sense. 

In the following I will present results on whether odor recognition in this system 
can be understood based on the general morphology in terms of cell numbers and av-
erage connection degrees and the assumption of completely unstructured (random) 
connectivity between the AL and the MB. Apart from trying to understand the olfac-
tory information processing in insects this also raises some interesting general ques-
tions. Can neural networks function simply relying on the law of large numbers? And 
if so, how well do they perform? And, of course, may there be implications for tech-
nical applications in this “sloppy engineering” as well?  

1.1.2   Assumptions and Conventions 

Throughout this chapter I will use the assumption that cells make synapses with each 
other independently from other cells and with fixed probabilities denoted by 

KCPN →p  and eKCKC→p . The analyses presented below comprise different levels of 
description. 

To address general questions of connectivity and function, the system is modeled 
with time-discrete, binary neurons (McCulloch and Pitts 1943) which fire (have value 
1) whenever the sum of active, connected neurons in the previous time step is larger 
than their firing thresholdθ , 

( )
( )

⎪⎩

⎪
⎨
⎧ >

=+
∑

otherwise0

1
1 j

jij

i

txb
ty

θ
 (1.1)
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Where ijb  encodes the synaptic connectivity which is also simplified to binary 

values, 1=ijb  if j  synapses onto KC i  and 0=ijb  otherwise. Similarly, we use 

ijc  to the connections from KCs to eKCs. The numbers of neurons in the different 

structures are denoted by PNN , KCN  and eKCN . 

Throughout this chapter we will use a common notation of ix  for the AL neurons, 

iy  for the intrinsic KCs of the MB and iz  for the eKCs or output neurons in the MB 

lobes. 
The biological relevance and feasibility of the results obtained with this connec-

tionist approach are confirmed in a second stage of analysis with computer simula-
tions of realistic, spiking neuron models presented in section 1.3. I will indicate the 
details of the models when they are introduced and will refer to previously published 
work where appropriate. 

The remainder of this chapter is organized into 3 sections discussing the fan-out 
properties of PN to KC connections and the AL-MB system as a classification  
machine (section 1.2), more detailed models of the AL-MB classification system 
(section 1.3) and an analysis of lateral connections between KCs in the MB for time 
integration (section 1.4). I will close with a general discussion of the implications of 
these results for biomimetic approaches to odor classification and pattern classifica-
tion in general. 

1.2   The AL-MB Fan-Out Phase 

The connections from the PNs of the AL to the KCs of the MB are strongly divergent 
from some hundreds to fifty thousand neurons. As we will discuss in more detail later 
(section 1.3), we would like to suggest that this divergent connectivity serves to  
separate the strongly overlapping PN activity patterns by projection into the higher-
dimensional KC space. At the least, one will therefore expect that this fan-out connec-
tivity should aim at loss-less information transmission (in contrast to fan-in or  
convergent connectivity where loss of information is inevitable). For simplicity, let us 
assume that the input patterns, i.e., the activity patterns of PN neurons within one LFP 
cycle in the AL, can be described as arising from each PN being active independently 

with a fixed probability 1.0PN =p , which corresponds to the experimental observa-

tion that about 10% of PNs are active at any given time. 
Similarly, we assume that connections between neurons are formed independently 

from each other with fixed probability KCPN →p . The value for KCPN →p  is not well 

known. The common consensus for this connection density has been a value on the 

order of 05.0KCPN =→p  or less, even though recent experiments suggest much lar-

ger values close to 5.0KCPN =→p  (Jortner et al. 2007). The requirement of lossless 

information transmission induces limits on this connection probability and the firing 
threshold of KCs, the other main unknown in the system. A further, general criterion 
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for the nervous system is the minimization of energy cost (Laurent 1999) which may 
suggests further restrictions for suitable system parameters. 

Before presenting our results on structural implications of the observed and pre-
dicted levels of activity in the MB and of the requirement of lossless information 
transmission, some explanation of our probabilistic approach seems warranted. The 
probability PNp  of activity in a given PN mainly reflects properties of the input 
space (odor space) and different patterns of PN activity are “diced out” for every LFP 
cycle. The connection probabilities KCPN →p  and eKCKC→p , on the other hand, refer 
to the random connectivity of each locust, i.e., the connectivity is determined only 
once for each animal. In building distributions (and taking averages) with respect to 
both probability spaces, we are making statements about the distribution of (and the 
typical value of) properties for all locusts in response to all possible odors, in a sense. 

1.2.1   Activity Levels in the MB 

Using the above assumptions of independently chosen random connections and inde-
pendently and randomly active PNs we can directly calculate the probability for a 
given KC to be active, 

( ) ( )∑
=

−
→→ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛=
PN

PN

KCPNPNKCPNPN
PN

KC 1
N

k

kNk pppp
k

N
p

θ
 (1.2)

Because all KCs “look” at the same PN activity patterns at any given time, their ac-

tivity is not independent, such that the probability distribution for the number KCn of 

active KCs is not a binomial distribution with parameters KCp  and KCN . It is given 

by a more intricate expression derived in Appendix A. See also (Nowotny and Huerta 

2003) for a more explicit derivation. The distribution of the number KCn  of active 

KCs in each LFP cycle is given by (A1) and shown in Figure 1.1A in comparison to 

the naïve guess of a binomial distribution with parameters KCN .and KCp . Surpris-

ingly, the expectation value for the number of active neurons, i.e., of the distribution 

(A1), is KCKC pN  as naïvely expected. The standard deviation, however, is much 

larger. The oscillations in the distribution are not a numerical error but due to the dis-
crete (integer) firing thresholds of the McCulloch–Pitts neurons. 

The expectation value for the number KCKC pN  of active KCs depends critically on 

the firing threshold θ and the connectivity probability KCPN→p  according to (1.2) and 

is shown in Figure 1.1B (black line). Not surprisingly, larger thresholds lead to more 
sparse activity and, conversely, more connections to higher activity levels. Thus, in 
terms of energy efficiency, very large thresholds and sparse connectivity are favorable. 

In summary, the activity level in the MB depends essentially on the connectivity 
degree and the firing threshold of KCs as expected. More surprising is the extremely 
wide distribution of possible activity levels which may introduce the necessity of gain 
control mechanisms. 
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1.2.2   Lossless Information Transmission 

As a measure for the faithfulness of the information transmission from the AL to the 
MB we use the probability of having the same KC activity pattern in the MB in re-
sponse to two different input patterns in the PNs of the AL. Clearly, this probability 
has to be kept to a minimum as this situation corresponds to confusing two odors. 
Appendix A explains how to calculate this “probability of confusion”. The results for 

05.0KCPN =→p are shown in Figure 1.1B (grey bars). The figure actually displays 

the approximation 

( ) ( )
( ) .|

)()(|

confusionPxxyyP

xxPxxPxxyyPyyP

=′≠′=≈
′=+′≠′≠′==′=

 (1.3)

This approximation is almost an equality because for 1.0PN =p  we have 

( ) ( )( ) 872
PN

2
PN 105.61

PN −⋅=−+=′=
N

ppxxP  and, therefore, almost 0, 

while ( ) ( )xxPxxP ′=−=′≠ 1  is almost 1. 

 

 

Fig. 1.1. a) Probability distribution for the number of active KCs calculated correctly (thin line, 

6=θ ) and with the incorrect assumption of statistical independence of KCs (thick line).  
B) Probability of collision (bars) and expectation value for the number of active KCs (line). 
Note that the minimum for the collision probability is reached for fairly large numbers 

 of active cells. On the other hand, the collision probability remains acceptably low (< 
610−

) 

for thresholds up to 13=θ . 1000PN =N , 50000KC =N , 1.0PN =p ,  and 

05.0KCPN =→p  in both panels. 

For very small values of KCPN→p  one can assume approximate independence of 

the inputs to the different KCs, leading to a much simplified expression (Garcia-
Sanchez and Huerta 2003),  

( ) ( )( ) KC2
KC

2
KC

2
KC 21|

N
ppxxyyP σ+−+≈′≠′= , (1.4)
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where KCp  is the expected probability of a KC to be active given by (1.2) and KCσ  

denotes the standard deviation of the distribution of single cell activity (seen as a ran-
dom variable with respect to the probability space of potential connectivities). 

The goal was to minimize this probability of confusion of odor input patterns. As 
Figure 1.1B shows, the minimum for the confusion is realized for 3=θ  but at rather 
huge activity levels of more than 50 %. On the other hand, it may be questionable 

whether it is important to have a confusion probability of 8410−  rather than, let us 

say, 610− . For all practical purposes both are basically zero. We will in the follow-
ing, therefore, only require that the collision probability 

( ) ( )yyPxxyyP ′=≈′≠′= |  is less than a given small tolerance level. For  

a tolerance level of ( ) 610−<′= yyP , the firing threshold can be 131 ≤≤ θ   

(Figure 1.1B) leading to potential activity levels down to less than 1%. 

 

 

Fig. 1.2. Linear classification is easier in higher dimensional spaces. In 2D on the left it is im-
possible to find a linear subspace (a straight line) to divide grey and black dots. After a nonlin-
ear projection into the higher-dimensional 3D space, it is easy to find such a linear subspace (a 
plane).  

Another requirement for the system is that all neurons should be able to fire, i.e., 
all neurons should have θ  or more incoming connections. The expected number of 
“useless neurons” with fewer connections is easily calculated to be 

( )∑
−

=

−
→→ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛=
1

0
KCPNKCPN

PN
KCsilent

PN1
θ

j

jNj pp
j

N
Nn . (1.5)

By requiring that no silent neurons exist, i.e., 1silent <n , we obtain another restric-

tion on connectivity and firing threshold. For example, if 1000PN =N , 

05.0KCPN =→p , and 50000KC =N  then the threshold θ  cannot be larger 

than 24 . This condition is weaker than the previous condition derived from the “no 
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confusion” requirement above. For other cell numbers and connectivity degrees this, 
however, need not be the case. 

Realistically, one may also be interested in a more robust coding scheme in which 

the hamming distance ∑
=

′−≡
KC

1
H

N

i
ii yyD is required to be greater than some mini-

mum distance k , i.e., in which the activity patterns in the MB differ by more than k  

active neurons. So far, we have only considered 0=k . Calculating the confusion 

probability for the more general requirement with 0>k  is beyond the scope of this 
chapter and the interested reader is referred to (Garcia-Sanchez and Huerta 2003), at 
least for an approximation. It is, however, clear that 0>k  is a stronger condition 

and includes the case 0=k . The parameters specified with the stronger condition in 
place will, therefore, fall into a subset of the allowed parameter region determined by 
our less stringent condition with 0=k . 

In summary, we have seen that if parameters (connectivity degree and firing thresh-
old) are chosen wisely, fully random connections allow an almost always (in the loose 
sense of a very small failure probability) one-to-one projection of activity patterns 
from the AL to the MB, a necessary requirement for successful odor classification. At 
the same time, the activity level in the MB can remain reasonably low even though the 
absolute minimum for the confusion probability is attained at very high activity levels. 

1.3   The Classification Stage 

The projection from the PNs in the AL to the much larger number of KCs in the MB 
presumably serves the function of separating the overlapping activity patterns in the 
AL, that ensue from the wide response profiles of the ORNs, into non-overlapping, 
sparse activity patterns in the MB. These can subsequently easily be classified with 
linear classifiers. The idea of such a two-stage classification scheme dates back to the 
seminal work of Thomas Cover (Cover 1965) and has been exploited heavily in form 
of the so-called support vector machines (Cortes and Vapnik 1995). That principle 
behind the scheme is illustrated in Figure 1.2. It is important to note, that neurons are, 
in approximation, linear classifiers because they fire when the (almost) linear sum of 
their inputs exceeds a certain threshold. It is, therefore, quite natural to think of neural 
systems in these terms. The suggested classification scheme needs two more essential 
ingredients: plasticity of the synapses between intrinsic and extrinsic KCs and compe-
tition between the eKCs. The intuition behind these requirements is that the connec-
tions from KCs to eKC are initially randomly chosen, such that some eKC will  
receive somewhat larger input for one odor and others receive more for another odor. 
Having a correlation based (“Hebbian”) plasticity rule for the synapses, neurons that 
do respond often to a certain odor will strengthen their synapses and respond even 
more reliably in the future. Through competition between the output neurons, the 
strongest responders for each given odor input prevail and others cease to respond.  
In this way, we have created a so-called winner-take-all situation. After some experi-
ence of odor inputs, we expect the system to respond reliably with specific neurons to 
specific odors. 
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To test this idea and the conditions on how the system needs to be organized in 
terms of the connectivity, initially and after learning, we introduced a “Hebbian learn-
ing rule” for the synapses from KCs to eKCs: 

( ) ( )( )tczyFtc ijijij ,,1 =+  (1.6)

Where F is a probabilistic function, 
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(1.7)

If both the presynaptic and the postsynaptic neurons are active, the synapse be-

comes active with probability +p  and remains unchanged with probability +− p1 . 

This implements the Hebbian, correlation-based strengthening of synapses between 

neurons that are active at the same time. The probability +p  regulates the speed with 

which synaptic connectivity patterns change; it is the “speed of learning”, in a sense. 
If the presynaptic neuron is active but the postsynaptic one is not, the synapse is 

turned off or removed with probability −p  and remains unchanged with probability 

−− p1 . This rule implements a part of the competition between output neurons dis-

cussed above. If a neuron fails to respond to some input it becomes even less likely to 

respond at a later time, conceding defeat to another neuron. The probability −p  regu-

lates the speed of “concession of defeat”. In all other cases the synaptic connections 
remain unaltered. 

As in the treatment of the fan-out phase, we analyzed the performance of the sys-
tem in two steps. First, we consider a simplified task of classifying one odor input as 
different from all other possible inputs. In a second step we then look at the more real-
istic task of separating (recognizing) different classes of odor inputs in a structured set 
of odor input patterns. 

1.3.1   Classification of One Odor Input 

In the simplified task of distinguishing one odor from all other odor input patterns 
only one output neuron, eKC, is required. We consider a simple learning paradigm in 
which the eKC is made to fire if the trained input, let us call it cherry, is present, and 
prevented from firing for all other randomly chosen inputs. A careful inspection of the 
learning equations (1.6) and (1.7) reveals that, given this protocol is repeated long 
enough, the connections to the eKC will converge to a connectivity pattern in which 
the connections to the eKC from KCs which respond to cherry are present and the 
connections from any other KCs are absent (unless one of the learning probabilities 

+p  and −p  is zero). For a successful classification of one odor it is then sufficient that 
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Fig. 1.3. Probability of proper classification of one odor input pattern against 10 other ran-
domly chosen input patterns (upper traces) and probability of the failure to respond to the 

trained pattern (lower traces) for MBs of sizes 1000KC =N  (solid), 2000  (dashed), and 

5000  (dash-dotted) against the threshold of the extrinsic KC. The KC threshold was fixed at 

5 and KCPN→p  adjusted such that the number of active KCs was 50KC =n . 

this connectivity allows that the eKC is exclusively active when cherry is present.  
In other words, we need to calculate the probability that the eKC is active in response 
to other inputs and control that this probability is smaller than an appropriate error 
tolerance. 

We call the probability not to fire in response to other inputs the probability of 
proper classification. It depends on the number of ones in the cherry  

 

 

Fig. 1.4. (A) Approximated classification probability for one input against 100 other random 
inputs for three different numbers of active KCs and in dependence on the total number of KCs. 

The firing threshold of the eKC was chosen as 7eKC =θ . (B) Relationship of active KCs to 

total number of KCs defined by the crossover from failing to successful classification for 1000 
(solid line), 100 (middle dashed line) and 10 (upper dashed line) competing inputs. (modified 
from (Huerta et al. 2004)). 
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KC activity pattern, cherryl , and on how many other random patterns patternn  we 

wish to classify against,  
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This conditional probability can be simplified to be approximately the probability 

without conditioning for cherryyyi ≠  using the same argument of almost vanishing 

probability ( ) 0cherry ≈= yyP  as in equation (1.3) above. 

The probability (1.8) is calculated in Appendix B. The calculation of (C1)-(C5) is 
computationally very expensive. We, therefore, use for the moment a smaller system 

of 100PN =N  and MB sizes of 50001000 KC ≤≤ N . With the usual choice of 

activity levels in the AL, 1.0PN =p , and connectivity 05.0KCPN =→p , and a 

moderate KC firing threshold of 5, we can adjust KCPN→p  such that the number of 

active KCs is 50KC =n . Then we can calculate the probability of correct classifica-

tion ( )patternclassify nP  for 10pattern =n  and the probability for the eKC to be quies-

cent (not to respond to any input, not even the trained cherry pattern). The results as a 

function of the eKC threshold eKCθ and the MB size KCN  are shown in Figure 1.3. 

The proper classification can be achieved ( classifyP  close to one) but only with the 

price of non-negligible probability of quiescence. The situation clearly improves with 
MB size. For larger MB sizes than 5000  it is, unfortunately, almost impossible to 
evaluate the exact expression (C1)-(C5) for the probability of proper classification on 
today’s computers. To obtain a wider overview we will, therefore, resort to the ap-
proximation of a binomial distribution for the number of active cells in the MB, 

( ) ( ) kNk
KC pp

k
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knP −−⎟⎟
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Where KCp  is given by (1.2). This approximation for (A1)-(A3) is then used in (C1) 

and (C3) to determine classifyP . With this approximation, we can obtain the depend-

ence of the probability of proper classification on the number of KCs in the MB in a 
much wider region. Of course, strictly speaking, the probability of proper classifica-
tion depends on several other factors as well (as we have already seen above): The 
size of the AL, the activation probability in the AL, the connection probability from 
the AL to the MB, the firing threshold of the KCs, the firing threshold of the eKC, 
and the number of other inputs the trained input pattern is compared against. With the 
simplified assumption of a binomial distribution of active KCs the dependence on the 
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first four factors is subsumed into the expected value for active KC expressed by the 

KC firing probability KCp . If we fix the threshold of the eKC, then, in order to have a 

meaningful comparison, we will adjust KCp  to give the same number KCn  of active 

KCs: ( ) KCKCKCKC NnNp = . The corresponding results for classifyP  in a com-

parison against 100 other randomly chosen input patterns are shown in Figure 1.4. 
The probability of correct classification is a sigmoid function of the MB size and has 
a rather rapid transition from zero to one which occurs the sooner, the smaller the 

number of active KCs is. The transition point 5.0classify =P  defines a relationship 

between the number of active KC, KCn , and the total number of KC, KCN , which 

turns out to be a power law, 
472.0

KCKC ~ Nn , which origin is to date still an open 

question. It is worth noting that the deviation of the exponent from 0.5 is not a nu-
merical error. The scaling, furthermore, persists for different numbers of competing 
inputs (Figure 1.4B). 

 

Fig. 1.5. Inter (solid line) and intra (dotted line) distances for systems of different MB size. The 

number of active KC was fixed to be 35KC =n . Clearly, for MB sizes 2500KC >N , the 

system is successful and then degrades for smaller MBs. The number of 2500 KCs is about  
the estimated size in Drosophila. (Modified from (Huerta at al. 2004)). 

 

Fig. 1.6. Inter (solid line) and intra (dotted line) distances of output patterns for different levels 

of activity in the MB. Here, the MB size was fixed to 50000KC =N and KCn  was varied 

from 48 to 950 (left to right). The level of 113 active KCs seems to be optimal. For some activ-

ity levels the classification success also depends rather strongly on the learning rate +p . 

(Modified from (Huerta et al. 2004)). 
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In summary, we have seen that adequate MB size and, most importantly, sparse ac-

tivity in the KCs of the MB (small KCn ) are the essential ingredients for successful 

classification. The requirement of sparseness in the MB activity is important for the 
classification stage from the MB to the MB lobes and apparently supersedes the re-
quirement of minimizing the probability of confusion in the projections from the AL 
to the MB. As we have already hinted above, a reasonably small probability of confu-
sion at low activity levels seems superior to a minimized confusion at high levels of 
activity.  

1.3.2   Classification of a Structured Set of Odor Input Patterns 

The computational complexity of calculating exact, or even approximated, probability 
distributions for the full system with several output neurons is too daunting and we 
will have to resort to direct simulations from now on. To implement the competition 
between eKC (output) neurons, we enforce a strict winner-take-all rule in the eKCs. 

Instead of a fixed threshold that determines firing, we let the outn  neurons with the 

strongest input fire and keep all others quiescent. 
As inputs to the system we generated a structured set of input patterns as follows. 

We created classN  random AL input patterns making PNs active with independent 

probability PNp  as usual. For each of these random “basis patterns” we create classn  

perturbed patterns in which each 1  in the pattern (denoting a specific active PN) is 
moved to another location (activating a different PN) with a small probability 

relocatep . This allowed us to tune the similarity of patterns within the same input class 

(with the same “basis pattern”) by changing relocatep . For 0relocate =p  all the input 

patterns of the same class are identical and they become increasingly different from 

each other with increasing relocatep . 

We used a set of input patterns with 40class =N  input pattern classes of each 

10class =n inputs generated with 1.0relocate =p . With the competition rule of 

5out =n  active outputs and the learning rules (1.6) and (1.7) we simulated the sys-

tem using 100PN =N  and 15.0PN =p . The connectivity probability KCPN→p  

and the KC firing threshold KCθ  were adjusted for an acceptable confusion probabil-

ity ( 510−< ) and such that the expectation value for the number of active KC is a 

fixed value KCn . These numbers reflect to some extent the characteristics of the Dro-

sophila olfactory system but were mainly chosen due to numerical limitations that do 
not allow calculations at locust sizes. For the (experimentally unknown) number of 

eKCs we assumed 100eKC =N  and the depression learning rate was fixed at 

5.0=−p  while the potentiation learning rate +p  was used as a free parameter. 
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In the training phase we presented 8000 inputs from the input set in random order 
and then characterized the resulting output patterns in the eKCs. 

As a measure for the structure of the set of observed activity patterns, be it on the 
input side in form of the generated set of input patterns, or on the output side in form 
of the set of activity patterns in response to these inputs, we used the following dis-
tance measures. 

The average intra-distance is the average absolute distance between all patterns 
belonging to the same class, then averaged over all classes, 

{ }( ) ∑ ∑
= =

−=
class class

1 1classclass
intra

11 N

i

n

j
j

i
j

i
j

i
j xx

nN
xD , (1.10)

where the upper index i  labels the classes and the lower index j  the specific input 

patterns within each class. The inter-distance is the average distance of the mean pat-
terns of each class, 
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We performed two types of experiments. In one we kept the number of active 

KCs fixed at 35KC =n  (by appropriate adjustment of KCPN→p  and KCθ ) and var-

ied the total number KCN  of KCs. In the other we kept the total number 

2500KC =N  constant and varied the number KCn of active KCs instead. The re-

sults are illustrated in Figures 1.5 and 1.6. Several observations deserve attention. 
Firstly, the same rule of thumb applies to the size of the MB as before, the bigger the 

better. In addition, the learning rate +p  matters less and less the larger the number 

of KCs. For the number of active KCs with fixed total number of KCs (Figure 1.6) 
the situation is slightly different. Here, an intermediate number of active KCs, 

113KC =n  seems optimal and the learning speed always appears to matter in this 

situation. One tentative explanation, why the optimal level of activity in the MB is 
moved away from the sparsest activities here, is that in these simulations now two 
failure modes are possible. A neuron can respond to incorrect inputs (this is the fail-
ure mode we considered so far and that warrants extremely sparse activity levels) or 
it can fail to respond to an odor input it should be responding to (which warrants not 
too sparse activity levels). 

We have seen in this subsection once again that one of the determining factors in 
making a system successful in the information processing framework with disordered 
(random) connections is the correct balance of system size, connectivity degrees and 
firing thresholds. Other factors like learning rates and output redundancy may play 
equally important roles. 
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1.4   More Detailed Models 

In the description with McCulloch-Pitts neurons, used in the preceding sections, some 
important questions had to be left unanswered due to the discrete time structure of 
these models. Most importantly, the question of how the winner-take-all situation in 
the MB lobes may be realized in a realistic neuronal network and how this particular 
implementation determines the output code had to remain open. 
 

 

Fig. 1.7. Comparison of the map based neurons (defined by equation (1.15)) (A) to an equiva-
lent Hodgkin-Huxley type model (details in (Nowotny et al. 2005)) (B). The response time to 
an EPSP (which is the most important parameter within this context) is almost identical for 
both (C). The inset shows the corresponding response curve of the honeybee KC model of 
(Wüstenberg et al. 2004) which is also virtually identical. (Modified from (Nowotny et al. 
2005)). 

To address these questions and prove the validity of our analysis for spiking neu-
ron models we have built a more realistic network model of an insect olfactory system 
using map-based spiking neurons (Cazelles et al. 2001; Rulkov 2002). These neurons 
are defined by a simple iterative map, 
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where mVV 60spike = , 3=α , Ω= M64.2β , and 468.2−=γ . The parameter 

β  reflects the input resistance of the cell and was chosen such that the map model 

matches a corresponding equivalent Hodgkin–Huxley model (Traub and Miles 1991), 
see Figure 1.7. The details of the corresponding model can be found in (Nowotny  
et al. 2005).  

The 1000-fold speedup of the map model over a conventional Hodgkin-Huxley 
model allowed us to simulate learning in a system of approximately the size of the 
Drosophila olfactory pathway. The model system is illustrated in Figure 1.8. The  
 

 

Fig. 1.8. More realistic model of the olfactory system of insects. The balls represent map-based 
neurons in a 10:1 ratio (i.e. each ball represents 10 neurons). The eKCs are connected all-to-all 
with mutual inhibition. The additional pathway involving lateral horn interneurons provides 
global inhibition on the KCs. (Modified from Nowotny et al. 2005). 
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Fig. 1.9. Pairwise distances of activity patterns in the different stages (distances normalized 
between 0 and 1). Here, the system experiences 10 input classes of 10 patterns each. Patterns 
are sorted by classes, i.e., input 1 to 10 is class 1 etc. The distances are amplified in the projec-
tion from the AL to the MB. In the naïve MB lobes the structure of the activity patterns is al-
most lost while after sufficient experience classes are represented with maximal inter- and 
minimal intra-distance. The same result holds for up to 100 classes of 10 inputs each (not 
shown). (Modified from (Nowotny et al. 2005). 

additional pathway through lateral horn interneurons provides a global inhibitory sig-
nal to the MB that is approximately proportional to the total activity in the AL. This 
inhibition implements a simple form of gain control and avoids the fat tails of the 
probability distribution of the number of active KCs. 

The competition in the MB lobes is in this more detailed, time-resolved model im-
plemented by a straightforward all-to-all inhibitory coupling between the eKCs. 
Whichever eKCs fire first will inhibit other eKCs and prevent them from firing at the 
same time. It turns out that this simple lateral interaction between eKCs is enough to 
implement the winner-take-all situation we previously imposed by hand and to shape 
the output code. 

We again challenge the system with a structured set of inputs generated as before. 
Figure 1.9 illustrates our findings for a set of 10 input classes of 10 input patterns 
each. The grayscale maps in the figure show the pairwise distance of activity patterns 
 

 

Fig. 1.10. Average number of eKCs representing each class in the naïve system (light gray), 
after experience (dark gray) and in an optimal disjoint representation (black). The experienced 
system almost reaches the optimal usage of neurons. (Modified from (Nowotny et al. 2005)) 



 1   “Sloppy Engineering” and the Olfactory System of Insects 21 

in the different parts of the system. The structure of the input set becomes apparent by 
the dark squares of small distance of inputs of the same class and lighter colors for the 
distance between patterns of different classes. All these distances are augmented by 
the projection to the MB manifested by the lighter colors. Before the system experi-
ences any inputs, we call it the naïve system, the structure of the input set is almost 
lost in the MB lobes. After some experience, however, the distances within classes are 
minimal and those between classes are maximal (distances were normalized by the 
number of active neurons such that the maximum possible distance is 1). Note, that 
this process of “experience” only entails presentation of odor input patterns in the AL 
and no additional process of supervision or interference with the output patterns of 
any kind. The system self-organizes into a representation of identical output patterns 
for the patterns within each class and maximal difference of output patterns from dif-
ferent classes. Closer inspection reveals that the maximization of the difference be-
tween inter- and intra-distance occurs through completely disjoint representations, 
i.e., the exact same set of eKCs responds to every pattern of a given class and to no 
other pattern. 

 

 

Fig. 1.11. Illustration of the disambiguation of temporal sequences of activity patterns. If a 
neuron is active (light grey circle) in one pattern the local excitatory connections activate the 
neighbors of the active neuron (dark gray circles). Activity in these neighborhoods during the 
next LFP cycle is now more probable than in other KCs. Which of the neighbors may fire a 
spike, however, still depends on the PN input during the next cycle. It might be a different neu-
ron for a PN activity pattern B (left side) than for another pattern C (right side). In this way 
local sequences of active KC are formed which depend on the identity of active PNs as well as 
on the temporal order of their activity due to the activated neighborhoods. (Modified from 
(Nowotny et al. 2003). 
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The same experiment with 20, 50, and 100 input classes revealed similar results. 
For 100 input patterns the first failures appeared in the form of input patterns that did 
not elicit any response. This is not surprising as a set of 100 input classes represented 
with disjoint representations of active eKCs needs 100 output neurons from which 
each would represent one input class. As the number of eKCs was only 100 in total, 
100 input classes is clearly the limit to which the system can be expected to perform. 

The analysis of the representation of input classes by eKC firing patterns reveals 
another interesting effect. During “experience” the system is confronted with ran-
domly chosen inputs from the input set. No direct information about the structure of 
this set is available to it. Nevertheless it manages to identify this structure and organ-
ize its output accordingly. As shown in Figure 1.10, the system uses about as many 
neurons as it can for each odor class while keeping the disjoint representation. It does 
not use more (not so surprising given the competition between neurons) but also not 
less. Just looking at the number of active eKCs for each input pattern one can tell the 
number of classes in the input set. 

In summary, the more detailed models reveal how the nervous system of the locust 
may implement the elements of the odor classification scheme with random connec-
tions using simple elements like mutual all-to-all inhibition and Hebbian learning. We 
have also seen that the implementation of classification with these simple ingredients 
automatically solves the additional task of detecting the cluster structure of the input 
pattern set. 

1.5   The Role of Multiple Snapshots and Time Integration 

It has been shown repeatedly by careful analysis of the activity in the AL that the tra-
jectory of AL activity (interpreted as the trajectory of a high-dimensional vector in an 
appropriate vector space spanned by the activity of single PNs) over time contains 
more salient information on the identity of an odour than a single snapshot (a point in 
this high-dimensional AL activity space) at any given time. Earlier we have argued 
that this activity trajectory is sliced into snapshots of 50 ms in the activity of KCs in 
the MB due to feedforward inhibition synchronized to the LFP in the AL/ MB calyx 
and the coincidence-detector property of the KCs themselves. Are we, therefore, to 
assume that the additional information that lies in the time evolution of the activity 
pattern in the AL is lost in the further processing and the insect does not make use of 
it? One solution to this problem could be time integration of several KC activity pat-
terns in the eKCs. That, however, would still lead to some information loss. The  
sequence of patterns A, B, C and any permutation of it would look identical in the 
time-integrated activity patterns. 

In a recent paper (Nowotny et al. 2003) we suggested a solution to this paradox 
based on the observation of the existence of lateral excitation between the axons of 
KCs (Leitch and Laurent 1996). We hypothesized that this lateral interaction could 
disambiguate the sequences A, B, C from its permutations by the mechanism illus-
trated in Figure 1.11. 

To test this idea of “symmetry breaking” with lateral excitation, we have built a full 
size model of the locust olfactory system using Hodgkin-Huxley type model neurons 
for PNs, leaky integrate-and-fire neurons for KCs and a single Hodgkin-Huxley neuron 
to represent the global inhibition from lateral horn interneurons onto the KCs. The KCs  
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Fig. 1.12. Differences in the integrated activity of KCs. Black circles symbolize KCs that are 
more active in response to an activity pattern sequence A, C, B than to A, B, C, light grey cir-
cles symbolize KCs which activity is the same for both and dark grey circles are KCs which 
respond more to A, B, C. (Modified from (Nowotny et al. 2003)). 

 
were connected by slow excitatory connections with the topology of a hexagonal lat-
tice according to the earlier experimental findings (Leitch and Laurent 1996). When 
confronted with a PN activity pattern sequence A, B, C and its permutation A, C, B the 
integrated response of the KCs over these three LFP cycles is markedly different  
(Figure 1.12). This demonstrates that the lateral connections can help downstream in-
tegrators to distinguish the different sequences and provides a hypothetical function for 
the existing local, excitatory axo-axonal connections in the MB of locust. 

In summary, the segmentation of AL activity into time discrete “snapshots” of ac-
tivity in the KCs need not mean that the temporal dynamics in the AL does not matter 
or is not being used downstream. One could easily envision a system where single 
snapshots were used for rapid odour recognition and integrated activity for fine odour 
discrimination. The latter then would benefit from the additional disambiguation 
mechanism described in this section. 

1.6   Discussion 

Experimental Data on Connectivity 

The experimental assessment of the connectivity between and within neuropils is a 
notoriously hard problem. Imaging studies with back-filled neurons and genetically  
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expressed markers reveal much of the morphology but are often hard to interpret in 
terms of functional connections. Electron microscopy, on the other hand, allows iden-
tifying potential synaptic sites but it is difficult to trace the neural dendrites or axons 
of specific neurons. For the olfactory system, the connectivity of the first stages from 
ORNs to glomeruli to PNs is broadly accepted to predominantly follow the one OR- 
one ORN- one glomerulus- one PN rule, even though some evidence for more com-
plicated schemes has emerged recently (Sato et al. 2007; Bhalerao et al. 2003). 

The connectivity further downstream from the AL to the MB and the lateral proto-
cerebrum is much less understood. It was mainly examined in Drosophila due to the 
available powerful genetic tools. Some studies find a striking reproducibility of ax-
onal branching in the lateral protocerebrum (Marin et al. 2002; Wong et al. 2002; Ta-
naka et al. 2004). A similar observation of reproducibility across animals has been 
made on the activity patterns in the olfactory cortex of rats (Zou et al. 2005). In the 
MBs, the picture presents itself slightly differently. The studies in adult Drosophila 
find a lack of stereotypy in the branching patterns of PNs in the MB calyx (Wong et 
al. 2002; Marin et al. 2002) and in a recent study of the olfactory system in Droso-
phila larvae the authors refer to outright “potential random patterns of connectivity in 
the MB calyx” (Masuda-Nakagawa et al. 2005). 

With respect to the number of connections individual PNs make on KCs in the MB 
calyx and, reversely, how many connections from PNs each KC receives, the experi-
mental evidence is also mixed. Most researchers assume a fairly sparse connectivity 
based on the observation of just a few boutons of each PN in the MB calyx (Marin  
et al. 2002; Wong et al. 2002). These may, however, “form divergent synapses upon 
multitudinous surrounding Kenyon cell dendrites” (Yasuyama et al. 2002), such that 
the observation of on average 3-10 large boutons on each PN axon in the MB calyx of 
Drosophila may not imply only on the order of 10 post-synaptic KCs. A recent work 
using pairwise electrical recordings of PNs and KCs in the locust has suggested a 
more drastically different connectivity degree of approximately 50% of all-to-all con-
nections (Jortner et al. 2007) which is hard to reconcile with the imaging results. 

For models of the olfactory system the consequence is clear. One will have to rely 
on scanning wide ranges of possible parameter values until a clearer image of the ex-
perimental facts emerges. 

Other Models 

While many models have focused on the experimentally better described and more 
accessible AL (Getz and Lutz 1999; Av-Ron and Vibert 1996; Christensen et al. 
2001; Linster et al. 1993; Linster and Smith 1997; Linster and Cleland 2001; Galan  
et al. 2004), see also (Clelland and Linster 2005; Laurent 2002) for recent reviews, 
some theories including higher brain centers have been proposed as well (Li and 
Hertz 2000; Hopfield 1991; 1999; Brody and Hopfield 2003; Schinor and Schneider 
2001). The necessary experiments to validate any of these models of higher olfactory 
processing, including our own, are, however, still in development. In the discussion of 
our ideas of information processing based on random connectivities we would like to 
take the point of view that even if the olfactory system turns out not to be based on 
such a paradigm, we still may find inspiration for uses in novel technical applications. 
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Implications for Technical Applications 

Recently, artificial general gas sensing devices have been built and equipped with bio-
inspired odorant processing solutions (White et al. 1998; White and Kauer 1999; Fu  
et al. 2005). The strategy of nervous systems may, however, be quite different from 
technical solutions or the traditional artificial neural networks. Growing a large num-
ber of identical, simple neurons may be comparatively inexpensive and a random 
connectivity comes almost for free for biological systems. In this chapter I have pre-
sented evidence of recent years that systems making use of large numbers and random 
connectivities can be successful in tasks like pattern classification. Such neural net-
works with random connections may constitute a new paradigm of “sloppy engineer-
ing” in which the exact connections between elements do not matter. 

The advantages are obvious, at least from a biological point of view. It is easier 
to grow such a system as no specific genetic encoding of connectivity and no  
complex axon targeting schemes are necessary. Furthermore, the system is inher-
ently robust. Because the connections are randomly chosen in the first place, the 
destruction of some connections or the introduction of a few additional ones, will 
not compromise the overall functionality. The same applies to cell death or cell  
replacement. 

How practical is such an approach for technological solutions? Clearly, as a solu-
tion for a CPU-based system, like a desktop computer, the approach is not very effi-
cient. All neurons would have to be evaluated in sequence taking long computation 
times. In the framework of FPGAs (field programmable gate arrays), the sequential 
evaluation problem is absent as one can design massively parallel hardware, comput-
ing the state of all the neurons at the same time, similar to biological systems. How-
ever, random connections still do not seem natural in this framework as the designer 
would have to select those once and then implement them on the chip. Doing so, one 
could as well implement some specific, optimized connectivity and save some re-
sources in terms of the number of connections and neurons. A platform suitable for 
this new “random computing” approach has yet to be designed. One would envision a 
self-organized system of many simple and cheap computing elements like the neurons 
this approach was inspired by. 

Throughout the different analyses presented here, the fact that the considered activ-
ity patterns encode odors has not been used. Consequently the results should apply to 
general pattern classification problems as well. Our work in progress is demonstrating 
that a random classification machine as analyzed here can also be used to classify 
handwritten digits from the MNIST database quite successfully (Huerta and Nowotny 
2007). Furthermore, no major modifications or additions to the main principle seem to 
be necessary to perform this new task. 

1.7   Appendix A: Probability Distribution for the Number of 
Active KC 

The probability for having KCn  out of KCN  active KCs for a given number of PNn  

active PNs is given by (we suppress any reference to the time steps for clarity): 
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where the conditional probability is given by 
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Here, ( )lpKC  denotes the conditional probability for a single KC to fire given l  

PNs are active, 
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For a more explicit explanation see (Nowotny and Huerta 2003). 

1.8   Appendix B: Collision Probability 

Following the lead of (Garcia-Sanchez and Huerta 2003) we can write the probability 
that two activity patterns in the MB are identical as 
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where the triangular brackets denote the expectation value with respect to the product 
measure for inputs x , x′  and connectivity C . 

The connectivity to each KC is chosen independently and clearly does not depend 
on the inputs present at any time. We can, therefore, pull the expectation over C  in-
side, obtaining 
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as all ic  (the columns of the connectivity matrix C ) are independent and identically 

distributed (iid). Furthermore, 111 =′yy  only if 1y  is connected to θ  or more active 

ix  and 1y′  to θ  or more active ix′ . This depends solely on the number of ones in x  
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and in x′ , and how many of those are the same PNs. We denote the number of 1s in 

x  but not x′  by k , of 1s in x′  but not in x  by k ′  and the number of 1s in both by 

k ′′ . Then 
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rameters k  and cp and KCPN→≡ ppc  for the sake of brevity throughout this  

Appendix. The sums can be moved inside such that 
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Denoting the sum of (B5) and (B6) as ( )kkkA ,, ′′′  we obtain 

( ) ( ) ( ) ( )∑
′′′

′
′′′′′′=′′′=′=

kkk
xx

kkkPkkkAkkkAyyP
,,

,
,,,,,, . (1.B7)

The probability for triples kkk ,, ′′′  then is  
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 is the multinomial coefficient. 

The numerical evaluation of this result is rather computationally expensive but the 

simplification for (almost) independent iy  used in (Garcia-Sanchez and Huerta 2003) 

breaks down for larger cp . 

To be exact, we are not interested in the probability of collision per se but in the 
probability of a collision given the inputs x  and x′  do not collide, i.e. 
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Clearly, because of disjointness,  
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and ( )xxP ′=  is easily determined to be 
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In our main example 1.0PN =p  leads to ( ) 921046.3 −⋅=′= xxP which can 

safely be neglected. In Figure 1.1B we thus used ( )yyP ′=  directly. 

1.9   Appendix C: Probability of Proper Classification for One 
Input 

The activity patterns iy are determined by the random choice of activity patterns 

ix in the AL. We assume we have chosen the connectivity and firing threshold in the 

MB appropriately to ensure an (almost) one-to-one correspondence between ix  

and iy . As the ix  are independently chosen the one-to-one relationship induces inde-

pendence of the iy  such that the probability in (8) factorizes to 
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and because of symmetry the product is 

( )( )( ) pattern
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After averaging over all PN-KC connectivities, all KC activity patterns with the 

same number KCn of active KC are equally probable due to symmetry. Furthermore, 

the probability to have a pattern with given KCn  is given by the equations (1.A1)-

(1.A3). 

We have already conditioned by cherryl  and now also do so by the corresponding 

“length” for a new input 1y , denoted as yl , to use our knowledge on equipartition 
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within the class of patterns with the same “length” l  and our knowledge of 

( )lnP =KC , i.e., 
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As we have seen, the connectivity vector w  from KCs to the eKC is equal to the 
cherry KC activity pattern after sufficient experience. In order for the eKC not to fire 

to a non-cherry activity pattern, this pattern must share less than eKCθ  active KCs 

with the cherry pattern. 
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Using the equipartition on the class of KC activity patterns with same KCn  pat-

terns we can use direct combinatorics to obtain the conditional overlap probability for 

patterns of “length” cherryl  and yl , 
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Combining the expressions (1.C2)-(1.C5) gives the full expression for ( )0=zP  

and was used to generate the one-odor classification results in Figure 1.3. 
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Abstract. Artificial neural networks (ANN) are useful components in today’s data analysis 
toolbox. They were initially inspired by the brain but are today accepted to be quite different 
from it. ANN typically lack scalability and mostly rely on supervised learning, both of which 
are biologically implausible features. Here we describe and evaluate a novel cortex-inspired 
hybrid algorithm. It is found to perform on par with a Support Vector Machine (SVM) in classi-
fication of activation patterns from the rat olfactory bulb. On-line unsupervised learning is 
shown to provide significant tolerance to sensor drift, an important property of algorithms used 
to analyze chemo-sensor data. Scalability of the approach is illustrated on the MNIST dataset of 
handwritten digits. 

2.1   Introduction 

Artificial neural networks and related learning based techniques add important func-
tionality to today’s signal processing and data analysis toolboxes. In particular, such 
methods excel in supervised learning and e.g. SVM challenges human performance in 
specific domains like recognition of isolated handwritten digits. These methods were 
initially inspired and motivated by analogies with the brain, but today this connection 
is rarely emphasized. On the contrary, ANN:s are in many aspects different from bi-
ology, for instance, by their lack of scalability to brain-sized networks, their focus on 
deterministic computing, and on supervised learning based on the availability of la-
belled training examples. All of these features are markedly non-biological. 

Current knowledge about the brain suggests that its architecture is highly scalable 
and run on stochastic computing elements which employ Hebbian type correlation 
and reinforcement based learning rules rather than supervised ones. In fact, supervised 
error correction learning techniques are quite suspect from the point of view of neuro-
biology. Thorpe and Imbert reviewed the arguments some time ago but their remarks 
are still valid (Thorpe and Imbert 1989). Quinlan suggested that, in fact, the multi-
layer perceptron is super-competent on many tasks compared to humans, which  
reduces its plausibility as models of the brain (Quinlan 1991). 

Why should we be interested in neurobiology at all? Well, in important respects, 
our man-made methods and artefacts still lag far behind biological systems. The 
latter excel in real-time, real world perception and control, handling of input from 
high dimensional sensor arrays, as well as holistic pattern recognition including 



34 A. Lansner, S. Benjaminsson, and C. Johansson 

figure-ground separation and information fusion. They also demonstrate exceptional 
compactness, tolerance to hardware faults and low energy consumption. These are 
attractive properties also from a technological perspective. 

With the increasing abundance of sensors and sensor arrays as well as massive 
amounts of data generated in many different applications of advanced information 
technology and autonomous systems there is an increasing technical interest in scal-
able and unsupervised approaches to learning-based data analysis and in robotics. 
Also, as new molecular scale computing hardware is developed, the interest in robust 
algorithms for stochastic computing will increase. 

A serious complication is that we do not yet fully understand the computational 
and information processing principles underlying brain function. An increasingly im-
portant tool in brain science is quantitative modelling and numerical simulation. In the 
field of computational neuroscience models at different levels of biophysical detail  
 

 

Fig. 2.1. Outline of the hybrid algorithm. The unstructured array of sensors is clustered using 
multi-dimensional scaling (MDS) with a mutual information (MI) based distance measure. 
Then Vector Quantization (VQ) is used to partition the sensor into correlated groups. Each such 
group provides input to one module of an associative memory layer. VQ is used again to pro-
vide each module unit with a specific receptive field, i.e. to become a feature detector. Finally, 
classification is done by means of BCPNN. 
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are developed and investigated to speed up the development of our understanding of 
how the brain works (De Schutter et al. 2005). In fact, the most reduced models in this 
field are formulated on a level of abstraction close to that of ANN, so called connec-
tionist models. Such models can serve as the starting point for the design of brain-
inspired computational structures, and this is the approach we have taken. 

Our overall goal is the development of a generic cortex-inspired computational 
building block that allows for the design of modular and recursive hierarchical adap-
tive pattern processing structures useful in technical applications as those mentioned 
above. This development is in its early stages, and we report here the basic design and 
evaluation of a novel hybrid algorithm aimed for this purpose. 

2.1.1   The Underlying Abstract Model of Cortex 

We have previously developed and investigated biophysically detailed models of the 
associative memory function of neocortex based on experimental data (Lundqvist  
et al. 2006). Based on the knowledge gained we have formulated an abstract network 
model of cortical layers 2/3 that forms the core of our present approach (Lansner and 
Holst 1996; Sandberg et al. 2002; Johansson and Lansner 2006a). Layer 5 is also 
likely to be closely interacting with layers 2/3 and is not represented separately 
(Hirsch and Martinez 2006). 

An important additional operation is the transformation from raw sensor data to the 
sparse and distributed representations employed in cortical layer 2/3. This transforma-
tion is started in the early sub-cortical sensory processing streams but is continued in 
the forward pathway of cortex that involves its layer 4 as a key component. In our 
abstract model we represent layer 4 separately as a layer that self-organizes a modular 
(“hypercolumnar”) structure and also decorrelates the input forming specific receptive 
fields and response properties of units in this layer. The hypercolumnar structure is 
imposed on layer 2/3 when formed and the layer 4 units drive their companion units 
in layer 2/3 via specific one-to-one connections. In the simplest case, as in the simula-
tions described in the following, there is a feedforward projection from layer 2/3 to 
some output layer. In general, this structure can be extended recursively with projec-
tions connecting layer 2/3 to a layer 4 in the next level in the hierarchy located in a 
different cortical area. Long-range recurrent connections may also form between hy-
percolumns within layer 2/3 at the same level, forming the basis for autoassociation. 

2.2   Methods 

The proposed algorithm for one module works in several stages (Figure 2.1). First a 
sensor clustering followed by a vector quantization step partitions the input space. 
Then each group is decorrelated and sparsified in a feature extraction step, again us-
ing vector quantization. Finally the data is fed into an associative memory which is 
used in a feed-forward classification setting. Each step is explained in detail below. 

2.2.1   Partitioning of Input Space 

We consider the case of sensors with discrete coded values or value intervals. For 
sensor X and Y, the general dependence is calculated by the mutual information 



36 A. Lansner, S. Benjaminsson, and C. Johansson 

 
(2.1)

Here, i and j are the indexes for the units in each hypercolumn and the probabilities 
are estimated as 

 
(2.2) 

 
(2.3) 

Where P is the number of input patterns and is the unit value at position i for input 
pattern . In case of continuous variables the values in this step needs to be interval 
coded. 

The mutual information is transformed into a distance measure (Kraskov et al. 
2005): 

 
(2.4)

with the joint entropy calculated as 

 
(2.5)

From the full distance measure matrix we can create a multidimensional geometric 
map fulfilling the distance relations by employing classical multidimensional scaling 
(Young 1985). The number of dimensions in this map is specified to be as low as pos-
sible (without reducing the quality of the map too much) in order to reduce the com-
putational needs in the following step. The number of partitions of the input space is 
manually specified and sets the number of code vectors in a vector quantization (VQ, 
see below) of the map produced by the multidimensional scaling. The VQ encoding 
process on each element in the map decides which group each sensor should belong 
to. The sensors with high general dependences (as determined by the mutual informa-
tion) will in this way be grouped together. 

2.2.2   Decorrelation and Sparsification 

For each group, we perform VQ on the input from the subset sensors that belongs to that 
specific group, resulting in a decorrelated and sparsified code well suited for an associa-
tive memory system (Steinert et al. 2006). The VQ is performed by means of Competi-
tive Selective Learning (CSL) (Ueda and Nakano 1994), but another VQ algorithm 
could have been used. As for standard competitive learning, CSL updates the weight 
from an input unit i to the output unit with highest activity for input pattern  as 

 
(2.6) 
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 is the step length of change which decreases during learning. CSL also adds a selec-
tion mechanism which avoids local minima by reinitializing weight vectors. 

2.2.3   Associative Memory 

The resulting decorrelated and sparsified code  for input pattern  is fed into a 
BCPNN (Bayesian Confidence Propagating Neural Network) with hypercolumns that 
uses a supervised correlation based Bayesian learning algorithm (Johansson and 
Lansner 2006). Here we are only interested in classification, so the input code from 
the intermediate layer is directly mapped to an output layer having a single hypercol-
umn, using a feed-forward pass where the weights are learned by the Hebbian-
Bayesian learning. If we consider the output code from a group in the intermediate 
layer as a hypercolumn Qg, where each unit corresponds to a code vector from the 
VQ, and the classes as units in the output hypercolumn, the weight between presynap-
tic unit and postsynaptic unit is computed as 

 
 (2.7) 

and  and   are probabilities once again estimated according to Eqs. 2.2 and 2.3 
above. 

For each generated input pattern . Each unit has a bias set to be 

 

(2.8)

When an incoming pattern is processed the activity in postsynaptic unit is calcu-
lated as 

 
(2.9)

Here we sum over all groups and all units in each group where is the activation 
value of unit i. 

The final output is calculated by a softmax function, controlled by the gain parame-
ter G, over all the units in the output layer: 

 

 

(2.10) 

In a classification task, the unit with the highest output is taken as the classification 
result. 
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2.2.4   Data Sets 

In this study we used two different datasets, one of activation patterns from rat olfac-
tory bulb and one of isolated handwritten digits. 

Rat Olfactory Bulb Activation Patterns 
The olfactory bulb activation data of Leon and Johnson was used as one of the evalua-
tion data sets (Leon and Johnson). We used a subset comprising 2-deoxyglucose (2-
DG) imaged activation patterns from 94 different odour stimuli. These spatial activa-
tion patterns were clustered in 60 different local spatial clusters. The mean activity 
within each such cluster was transformed to the range [0,1], whereby 94 patterns with 
60 components were obtained (Marco et al. 2006). 

The classification task was to separate these compounds into their chemical 
classes, i.e. acids (24), aldehydes (19), alcohols (16), ketones (17), esters (6), hydro-
carbons (8), and misc (4). A random subset of 75% of these patterns was used for 
training and the rest comprised the validation set. 

The robustness to sensor drift of the method under study was evaluated using  
a simple synthetic drift model. A gain for each of the 60 sensors was initiated to 1 
after which the gain factor was subject for over 100 random-walk steps taken from 
a Gaussian distribution with = 0.01. In the on-line learning condition while testing 
drift robustness, the last unsupervised vector quantization step was run continu-
ously. 

MNIST Data 
The MNIST data set consists of handwritten images, 28x28 pixels large with 256 gray 
levels (Figure 2.2). It has a training set of 60,000 samples and a test set of 10,000 
samples. Specialized classifiers based on SVM have been reported to be more than 
99% correct on the test set while a standard single layered network typically achieves 
88% with no preprocessing (LeCun et al. 1998). 

 

 

Fig. 2.2. Samples from the MNIST data set 
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(a) 

 
(b) 

Fig. 2.3. Patches generated from the MNIST data by the MI + MDS + VQ + VQ steps of the 
hybrid algorithm. (a) The 12 different patches are colour coded. Note that some patches com-
prise more than one subfield. (b) Example of the specific receptive field of one of the 10 units 
in the patch marked with orange (with two subfields). 

We can illustrate each step in the previous section by applying the proposed 
method to a real classification task. 

In our example, the bit depth of all MNIST images is lowered by reducing the 
number of gray levels to eight. One input hypercolumn, corresponding to one image 
pixel, then can take on eight different values. 

The general dependences between the image pixels are calculated by the mutual in-
formation. After multidimensional scaling the resulting matrix is grouped into P parti-
tions by performing vector quantization. The result is a 28x28 map which shows how 
the pixels should be grouped, see Figure 2.3a for the case P = 12. Note that this is an 
entirely data driven approach that is independent of sensor modality. In the case of 
images, this step replaces the commonly used square tiling of the image. However, 
such tiling can only be applied when the correlation structure of the data is known 
beforehand to be two-dimensional. 

We again perform vector quantization on each subset of sensors and form Q code 
vectors for each group. This gives us a total of P · Q units in the intermediate layer 
between the input and associative layer. Each code vector corresponds to a receptive 
field, an example of which is seen in Figure 2.3b, where we have backtracked the con-
nections between a single code vector and the input sensors in a setting where Q =10. 

2.2.5   MLP/BP and SVM Software 

The MLP/BP code used here to process the olfactory bulb activation patterns was 
from MATLAB® 7.3.0 NN-toolbox, using the scaled conjugate gradient learning rule 
with weight regularization. The SVM code used the osu-svm toolbox for MATLAB® 
(Ma et al. 2006). Parameters were in both cases selected to obtain best average per-
formance on the validation set. Average and SEM of classification performance were 
calculated. 
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2.3   Results 

This result section has three main parts, the first showing a straight-forward compari-
son of our novel hybrid algorithm with other methods, the second demonstrating the 
drift-tolerance of this algorithm relative to other methods, and the third demonstrating 
its scaling performance. 

2.3.1   Evaluation on Olfactory Bulb Activation Patterns 

We compared the results on the classification of the olfactory bulb activation pattern 
data set using different methods. The MLP/BP, one-layer, and SVM networks were  
 

Table 2.1. Classification performance on validation set 

METHOD  %correct (validation) 

Onelayer  45 % 

MLP/BP w reg  64% 

SVM (Poly)  66% 

SVM (RBF)  70% 

VQ-BCPNN (1)  69% 

VQ-BCPNN (7)  60% 
 

 

Fig. 2.4. Drift robustness of SVM, new method and new on-line learning method. Solid and 
dash-dotted lines represent performance on training and test sets respectively. Diamond, cross 
and circle refers to SVM, new method, and new on-line method respectively. Error bars are 
given only for performance of new on-line method on test data. At step 75 a complete recalibra-
tion is performed. 
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run as described in the methods section. The hybrid algorithm was run using two set-
ups, one with just a single sensor partition and the other with the 60 sensors parti-
tioned into seven groups. The total number of units in the BCPNN input layer was 70 
in both cases. The results of this comparison are given in Table 2.1. The hybrid algo-
rithm performs on par with SVM when only a single partition is used. 

Drift tolerance was tested according to the description above using this data set and 
results are shown in Figure 2.4. As can be seen, the new algorithm with on-line learn-
ing has a much superior drift tolerance under these conditions. 

2.3.2   Classification of MNIST Data 

The algorithm was run on the entire MNIST data set. Of the 10,000 images in the test 
set, 95% were correctly classified (Johansson 2006). When only a feedforward con-
figuration of BCPNN was used, with no intermediate layer generated by the hybrid 
algorithm, 84% of the images were correctly classified. Note that the learning in this 
case is not gradient descent but one-shot and correlation based. 

Scaling performance of the algorithm and its dependence on the number of units in 
each hypercolumn is illustrated in Figure 2.5. As can be seen, the performance levels 
off at about 95% when there are more than one hundred units in each hypercolumn. 
Since there are eight hypercolumns, the total number of units in the internal layer is in 
this case up to one thousand. 

 

Fig. 2.5. Scaling performance of the new hybrid algorithm. Dependence of classification per-
formance on the number of units in each hypercolumn (Johansson 2006). 
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2.4   Discussion and Conclusions 

In this study of the performance of a novel hybrid algorithm for pattern processing we 
have proposed and described the different steps of the algorithm and evaluated its 
performance with regard to classification, drift robustness, and scaling. The algorithm 
is entirely data driven and does not make any assumptions on correlation structure, 
e.g. when processing image data. 

When compared to an rbf-SVM approach on a small dataset of olfactory bulb acti-
vation patterns the new algorithm performed on par with SVM when no subdivision 
of the input space was done. With subdivision of the input space in seven disjoint 
groups, performance dropped significantly, from 70% to 60%. This suggests that the 
algorithm did in this case not find a set of seven independent groups of sensors. No 
method was able to reach beyond 70% which suggests that the problem is not separa-
ble, even non-linearily so. Comparison using more standard pattern classification 
benchmark datasets is ongoing. 

In the test of robustness to sensor drift it was shown that when the unsupervised 
part of the algorithm was allowed to run in on-line training mode drift robustness 
much superior to SVM and the new algorithm with no on-line learning was demon-
strated. This is a promising result, but further characterization of this property is re-
quired. Additional evaluation is currently ongoing on a real chemosensor dataset. 

On the MNIST dataset the algorithm was able to reach 95% performance on the 
test set. This is not as good as a carefully designed SVM that reaches beyond 99%. 
On the other hand, our aim here is to develop a cortex-inspired algorithm with similar 
learning performance as a human being. It is not known how well humans do on the 
full MNIST dataset but it is not unlikely to be close to 95% (e.g. worse than SVM) 
given that many handwritten digits in this dataset are truly ambiguous. 

Since associative memory implementing attractor dynamics, reinforcement learn-
ing and boosting approaches are all quite feasible from a biological learning perspec-
tive our ambition is to extend and evaluate this novel approach in such tasks and to 
focus on scalable parallel implementation to allow processing of data from arrays of 
millions of sensors. 
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3 
The Sensitivity of the Insect Nose: The Example of 
Bombyx Mori 
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Max-Planck-Institut fuer Verhaltensphysiologie. Seewiesen, 82319 Starnberg, Germany  
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Abstract. The male silkmoth Bombyx mori responds behaviourally to bombykol concentrations 
in air of 3,000 molecules per ml presented at an air speed of 57 cm/s, i.e. the moth is almost as 
sensitive as a dog. The number of bombykol receptor neurons per antenna is 17,000, about 
10,000-fold smaller than olfactory neurons found in dog noses. This high sensitivity is possible 
due to a very effective capture of odorant molecules and transport to the receptor neurons. The 
effectiveness of the insect antenna/nose has been determined by using radiolabeled bombykol, 
counting nerve impulses generated by the receptor neuron, and measuring the behavioural 
response of the male moth. At the behavioural threshold the neuronal signal/noise 
discrimination works at the theoretical limit.  

3.1   Introduction 

For a low olfactory threshold several sensory functions need to be optimized. Odour 
molecules have to be a) effectively caught by the antenna from the air space,  and b) 
conducted with little loss to the olfactory receptor neurons. c) The odour stimulus 
has to be most sensitively transduced into nerve impulses, and d) the stimulus-
induced impulse firing has to be distinguished from the background of spontaneous 
impulse discharge from the unstimulated receptor neurons. This paper reviews 
quantitative work on these items in the male moth of a species which is attracted (i.e. 
stimulated to walk upwind, Kaissling 1997) by a single chemical pheromone 
component, (E,Z)-10, 12-hexadecadienol (bombykol) released by the female moth 
(Butenandt et al. 1959). 

3.2   Molecule Capture by the Antenna 

To investigate the effectiveness of molecule capture by the antenna we used 3H-
labelled bombykol (Kasang 1968; Schneider et al 1968). With a high specific activity 
of 31.7 Ci/g, or one 3H-atom per four bombykol molecules, about 109 molecules or 
4x10-13 g were required for a measurement in the scintillation counter. The odour 
source, a 1cm2 piece of filter paper (f.p.), had to be loaded with 3x10-12 g of  
bombykol in order to induce wing fluttering of some of the moth with a ten-s 
stimulus. Almost all of the responses occurred within two s. The threshold curve (in 
% of moths responding within the first two s) covered about 2 decades of stimulus 



46 K.-E. Kaissling 

load. Depending on temperature, the time of the day, and the animal origin the 50% 
threshold was reached at loads between 10-11 and 10-10 g/f.p. (Kaissling and Priesner 
1970). 

The fraction of molecules on the filter paper that was released per s, given an 
airflow of 100 ml/s, was determined with loads of 10-8 to 10-4 g/f.p. The fraction was 
1/60,000 at 10-8 and 10-7g/f.p. This value was extrapolated for the load at the 
behavioural threshold. In our setup the concentration of stimulus molecules decreased 
on the way from the outlet of the airflow system to the antenna. The fraction of 
molecules released from the filter paper that was adsorbed on the antenna was 1/150, 
determined with loads of 10-6 g/f.p., or higher. 

 

Fig. 3.1. Antenna of the male saturniid moth Antheraea polyphemus. Upper panel: Schematic 
view of the antenna. Each antennal stem segment has four side branches. Lower panel: Two 
antennal segments enlarged with different types of sensilla. The numerous, long olfactory hairs 
contain two or three receptor neurons responding to two or three components of the female 
pheromone. 
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With a load of 10-11 g/f.p. the concentration (c) of bombykol in air was 3,000 
molecules/ml when the air stream velocity (v) was 57 cm/s as measured by means of a 
thermistor. Of the odour flow (c x v x a) (molecules/s) passing an area (a) equal to the 
outline area of the Bombyx antenna 27% was adsorbed on the antenna (Kaissling 
1971). The air flow (air volume/s) through the actual antenna was most likely not 
more than 30% of the free air flow (through an area equal to the antennal outline 
area).  A transmittance of about 30% of the free air flow may also be estimated for the 
much larger antenna of the male Antheraea polyphemus from measurements of air-
stream velocity in front of and behind the antenna (Figures 3.1 and 3.2). The fraction 
 

 

Fig. 3.2. Airflow at the antenna of  the male moth Antheraea polyphemus.  Air was blown from 
a glass tube towards the antenna. Scheme of the glass tube, antenna, and thermistor positions 
drawn to scale. By means of a thermistor (0.2 mm diameter) the airstream velocity was 
measured without the antenna (open sqares and dashed lines), in front of the antenna (open 
circles), and behind the antenna (dots). 



48 K.-E. Kaissling 

of molecules passing an area equal to the antennal outline area that was adsorbed on 
these antennae was 32% (Kanaujia and Kaissling 1985). Thus we may conclude for 
both species of moths that from the air passing the antenna itself all pheromone 
molecules were caught. 

In males of Bombyx mori (Steinbrecht and Kasang 1972) and Antheraea 
polyphemus (Kanaujia and Kaissling 1985) we determined the fraction of molecules 
caught by the antenna that was adsorbed on the long olfactory hairs (sensilla 
trichodea). The hollow, fluid-filled hairs are 2-3 micrometer thick and 100-300 
micrometer long and house the sensitive dendrites of the pheromone receptor neurons. 
After 10-s exposure of single antennal branches to strong stimuli (10-4 g of 3H-labeled 
pheromone/f.p.) the hairs were immediately (within 1 min) separated from the branch. 
80% of the total radioactivity adsorbed was found on the hairs.  

These findings show that the structure of the antenna, including the dimensions and 
arrangement of the olfactory hairs, is ideally tuned to the diffusion of odour molecules 
in air. It can be calculated that due to its thermal movements an odour molecule on its 
way through the antenna would hit the antennal hair surface about 100 times if it were 
reflected upon hitting. The design of antenna and hairs creates, as it were, an olfactory 
lens concentrating the stimulus and direct it to the sensory cells.  

So far the exact chemical composition and structure of the hair surface and the pore 
tubules of the hair wall are unknown. Certainly the outer epicuticular layer is highly 
waterproof. If one damages the hair locally using a small laser beam one can - under 
microscopical control - see an air bubble growing starting from the point of hitting the 
hair.  

3.3   Transport of Molecules on the Antenna 

Following a strong concentration gradient, the pheromone molecules move along the 
hairs towards the body of the antennal branch. The velocity of this process can be 
measured if the hairs are cut at different times after exposure to 3H-labeled 
pheromone. Within minutes the measured radioactivity decreased on the hairs while 
increasing on the antennal branch. From these measurements we determined a 
diffusion coefficient D of 50 µm2/s for the movement of pheromone on the hairs of B. 
mori (Steinbrecht and Kasang 1972). The diffusion coefficient was 90 µm2/s for air-
filled hairs of dried antennae of A. polyphemus, and 30 µm2/s for intact hairs of fresh 
antennae (Kanaujia and Kaissling 1985). Modeling diffusion in A. polyphemus 
(Kaissling 1987; unpubl.) we use D = 90 µm2/s for the movement of the stimulus 
molecules along the hair surface and through the pore tubules, but D = 30 µm2/s for 
the diffusion through the sensillum lymph within the hair lumen towards the receptor 
neuron. The latter coefficient is expected for a protein molecule of the size of the 
pheromone binding protein (PBP) in water. Since the quantitative model of  
perireceptor and receptor events reveals that 83% of the pheromone adsorbed is 
bound to the PBP within less than 3 ms, we can conclude that the longitudinal 
movement of the 3H-labeled pheromone represents the movement of the pheromone-
PBP complex (Kaissling 2001; unpubl.). The remaining 17% of pheromone molecules 
are enzymatically degraded inside the hair lumen and may no longer function as 
stimulants. 
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With the above-mentioned diffusion coefficients the modeled delay of the 
molecule arrival at the receptor cell is about 10 ms after adsorption at the olfactory 
hairs (Kaissling 2001,  Figure 3.7B). This fits to the minimum delay of the receptor 
potential, the first bioelectrical response of the receptor neuron, as measured after 
stimuli of high intensity. At weak stimulation the average delay of the responses is a 
few hundred ms due to the chemical reactions of the stimulus molecules including 
their interaction with the receptor molecules (Kaissling 2001, and unpubl.). 

3.4   Cellular Transduction 

At low stimulus intensities about 25% of the pheromone molecules adsorbed on the 
antenna elicit nerve impulses of the receptor neuron (Kaissling 1987). Modeling 
reveals that – besides the 17% enzymatically rapidly degraded molecules - more than 
half of the molecules adsorbed must be lost due to the - still hypothetical - odorant 
deactivation on the hairs (Kaissling 2001). The 25% fraction of effective molecules 
was determined by radiometric measurements and by counting the nerve impulses at 
low stimulus intensities such that about one nerve impulse is elicited per receptor 
neuron by a one-s stimulus (3x10-10 g of bombykol/f.p.). At and below this stimulus 
intensity one pheromone molecule is sufficient to elicit a nerve impulse (Kaissling 
and Priesner 1970).  

The first responses of the receptor neuron to a single pheromone molecule are one 
or a group of small depolarizations (elementary receptor potentials, ERPs) (Kaissling 
and Thorson 1980; Kaissling 1994). The single ERPs with amplitudes of 0.1 – 1 mV 
in extracellular recordings last about 10 ms and may trigger firing of one, seldom 
more than one nerve impulse. Quantitative modeling suggested that in vivo it is the 
odorant-PBP complex rather than the free pheromone which interacts with the 
receptor molecule (Kaissling, 2001). The ternary complex PBP-pheromone-receptor 
may one or several times turn into an active state before it finally dissociates (Minor 
and Kaissling 2003). Each activation causes – via an intracellular cascade of signal 
processes – a transient conductance increase of about 30 pS as reflected in the ERP. 

3.5   Processing in the Central Nervous System 

The extreme sensitivity of the receptor neurons is combined with a most efficient 
processing of their responses by the central nervous system. Via the axons of the 
receptor neurons the nerve impulses are conducted to the antennal lobe, the first 
synaptic station of the central olfactory pathway in insects. The axons of the 
pheromone receptor neurons terminate on local interneurons and projection neurons 
(PN) of the macroglomerular complex (MGC) (Hildebrand 1996). The silk moth has 
17,000 bombykol receptor neurons per antenna (Steinbrecht 1970) and 34 projection 
neurons connecting the MGC with higher centres of the central nervous system 
(Kanzaki et al. 2003). Since there are also 17,000 bombykal receptors  the messages 
of at least 1000 (in the hawk moth Manduca sexta up to 10,000) receptor neurons 
finally converge to one projection neuron.  
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The convergence of receptor neurons lowers the threshold of pheromone detection 
by integrating the nerve impulses (spikes). Since the receptor neurons occasionally 
fire nerve impulses without stimulation, this background activity produces the noise 
which needs to be distinguished from the signal, i.e. the stimulus-induced activity. 
The spikes of single receptor neurons were counted every 0.1 s for two s after stimu-
lus onset. The background frequency (fbg) in spikes/s counted after control stimuli with 
clean air was subtracted from the frequency counted at pheromone stimulation in or-
der to obtain the stimulus-induced frequency (fst). Most of the behavioural responses 
(wing vibration) started within the first two s after stimulus onset, with an average 
delay of 0.2 s,  the integration time (ti) of the central nervous system. Since the back-
ground frequency of the bombykol receptor neuron (fbg = 0.0855 spikes/s) has a ran-
dom distribution (Kaissling 1971), its variability represents the noise that determines 
the recognizability of the signal. The noise is proportional to the square root (sqrt) of 
fbg. Also the stimulus-induced frequency (fst) was shown to be randomly (Poisson) 
distributed at stimulus intensities eliciting less than three nerve impulses per stimulus 
(Kaissling and Priesner 1970). For a number (n) of receptor cells the noise is 

n ⋅ ti ⋅ fbg  (3.1)

while the signal is  

n ⋅ ti ⋅ fst  (3.2)

and the signal-to-noise ratio is  

fst ⋅
n ⋅ ti

fbg
 (3.3)

With a load of 10-11 g of bombykol /f.p. (10-10 g/f.p.) 40% (80%) of the males re-
sponded with wing vibration (at 21°C). At these loads we found fst = 0.0145 (0.1545) 
spikes/s (from Tab. 2 in Kaissling and Priesner, 1970). For a convergence of 17,000 
receptor neurons we find from Eq. 3.3 and with fbg = 0.0855 spikes/s a signal-to-noise 
ratio of 3 (31). This shows that the processing in the CNS works near the theoretical 
limit. 

The exact pattern of neuronal connections in the antennal lobe and the mechanism 
of signal/noise detection in the CNS are unknown. If we assume a minimum conver-
gence, i.e. that each PN (directly or via interneurons) receives input from 1000 recep-
tor neurons, the signal-to-noise ratio would be smaller than calculated above for an 
input from 17,000 neurons: For the 40% (80%) behavioural threshold we find a ratio 
of 0.7 (7.5). In this case the signal-to-noise ratio would be below the significant level 
of 3, at least for the 40% threshold. Consequently higher centres would need to con-
tribute to the signal/noise detection, by converging the messages delivered from the 
PNs to higher-order neurons. 

Finally it should be mentioned that the bombykol concentration in air at the 40% 
(80%) behavioural threshold was 3,000 (30,000) pheromone molecules/ml of air, at an 
airstream velocity of 57 cm/s. Interestingly these moths with 17,000 receptor neu-
rons/antenna are almost as sensitive as a dog for (other) odorants (1000 molecules/ml). 
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Since a dog may have 10,000-fold higher numbers of receptor neurons than the moth, 
its thresholds could be 100-fold lower than the one of the moth. It could be even lower 
since the dog´s integration time is probably larger than the one of the moth. It seems 
clear that factors other than the number of receptor neurons are important for a high 
sensitivity, such as a high effectiveness of molecule capture and conveyance to the 
sensitive structures, or a low background activity of the receptor neurons. The low 
threshold in dogs suggests that as in the moth single molecules are able to produce 
nerve impulses. 
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Abstract. In the understanding of processes of neural activity in complex networks, non-
invasive recording of the electrical activity is desirable. One method that achieves this is 
through the use of voltage-sensitive fluorescent dyes (VSD) as reporters, which convert 
changes in a tissue’s membrane potential into fluorescent emission. This fluorescent activity is 
recorded by means of fast CCD cameras that allow visualization and a posteriori studies. Image 
sequences obtained in this way, although often noisy, are commonly studied following a 
univariate approach. 

In this work, there are studied several series of image sequences from an experiment initially 
focused in the monitoring of the Olfactory Bulb activity of a frog (Rana temporaria), where the 
olfactory receptors were exposed to two volatile compounds, under different inhibitory 
conditions. Our work proposes the use of two multivariate analysis methods such Multi-way 
Principal Component Analysis and Independent Component Analysis with a dual aim. First, 
they are able to improve the recordings by removing noise and aliasing after using a supervised 
selection of parameters. Secondly, they demonstrate possibilities in the obtaintion of 
simultaneous information about the most active areas of the monitored surface and its temporal 
behaviour during the stimulus. 

4.1   Introduction 

In the Olfactory Bulb (OB), signals coming from the receptor neurons are initially 
processed, the output signals then going on to the olfactory cortex. Because of the 
nature of the signals and environment (usually 'in vivo') the study of functionality is 
not simple. With this aim, the monitoring of neural events in the olfactory bulb in 
real-time during the course of a olfactory stimulus has been chosen as a strategy to get 
more information about its behaviour. This monitoring is difficult, because often it is 
focused in the detection and temporal recording of changes in membrane potentials. 
The use of microelectrodes has its drawbacks, due to low magnitude of the signals, its 
invasive character and the difficulty of recording more that 2-3 cells at once.  

In front of these problems, as an alternative to study the OB activity, it was proposed 
(Kent and Mozell 1992) the recording of images after impregnating the tissues with an 
appropriate dye.. These recordings should provide, not only a better spatial visualization 
of the global activity of the area under study but also the possibility of a non-invasive 
measurement. From this moment on, it would be possible to extract both temporal and 
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spatial features elicited from a specific response and to record the overall response from 
several neurones at a time. To develop the technique it was necessary to combine 
neurobiology, spectroscopy, organic chemistry, optics, electronic, electro-optics and 
computing. 

Voltage-sensitive fluorescent dyes (VSD) act as optical transducers of membrane 
potential changes. These compounds are capable of staining living cells, binding to 
the external cell membranes.. In this way, these compounds are able to respond to the 
membrane potential, without interfering in living cell's normal operation. This 
response is characterized by changes in the fluorescent emission and its wavelength. 
This fact must be considered previously to the imaging. Their response time towards 
potential changes is around a μs. Thus, these dyes provide the possibility of  non-
invasive multi-cell recording of the electrical activity. In this way, is possible to study 
the spatial-temporal structure of the activity in neuronal cell populations. 

Finding the proper conditions of dyeing is not simple, because several undesired 
effects can occur. Intoxication of live cells due to the staining process can be possible 
if an excess of dye is applied. This excess can be the responsible of changes of 
membrane permeability, thus affecting the living cells. To apply the optimal 
concentration of the dye is necessary to consider the binding constant of the system 
dye/membrane. It is commonly accepted as a general rule to use the minimum 
possible amount of dye in each staining process. Intoxication is not the only side 
effect that can take place. Other effects, such the photoinduced effect must be taken 
into consideration. Basically, this effect consists in the release of oxygen singlets, 
highly reactive, from the dye molecule due to a light-induced reaction, caused by the 
intense light source. The presence of this reactive oxygen can damage the living cells, 
altering its functionality. One way to circumvent this effect is to do the measurement 
at different wavelengths to the ones presenting maxima in absorbance. 

There are technological difficulties in the recording of images in these 
environments. It is necessary to have access to an ultra fast response device and 
suitable data acquisition devices, to keep the records in the same time scale of the 
observed activity. Recording pioneers of the activity of the OB (Orbach and Cohen 
1983) after staining using VSDs, used an array of diodes as a detector with the aim of 
achieving very fast responses. Even though this fast acquisition was achieved, the 
dimensions of the array (12 x 12) or (16 x 16) were an important drawback. In this 
sense, the low resolution of the image became a loss in spatial information. 

This work is based on recording of the activity of the OB of the frog (Rana 
temporaria), designed to investigate the inhibitory effect of lectin Concanavalin A 
(Con A) applied to the olfactory mucosa on the fatty acid response seen in the OB 
(Shah et al 1999). The olfactory mucosa was exposed to brief pulses of different 
odorants in the presence and absence of Con A, and the resulting responses follwed in 
the OB using a voltage sensitive dye as a reporter of neuronal activity. Two additional 
measurements were done for each analyte, corresponding to the observed activity 
after the removal of Con A with Ringer’s solution. To ensure comparable results, the 
positioning of the camera has been thoroughly checked after 5x magnification in a 
small area containing 3-4 glomeruli, corresponding to the left side of frog’s brain. 

This chapter puts the emphasis in data processing techniques for the extraction  
of features and a simultaneous noise removal from images of brain activity. Two  
data analysis techniques are presented based in linear methods for dimensionality 
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reduction. Its aim is double: on one hand, they can act as suitable techniques for image 
filtering/denoising. On the other, in the same step, they provide spatial-temporal 
information allowing the correlation between a specific area and its behaviour along 
the measurement time. 

4.2   Methodology 

4.2.1   Staining 

As it has been described above, proper staining of the tissues is critical to obtain a 
reliable response. Among the population of voltage-sensitive fluorescent dyes, for this 
experiment it was selected RH 414 (4-(4’-p diethyl aminophenylbuta-1’, 3’-dienyl) -
γ-triethyl ammonium-propyl pyridinium bromide. This is a compound fluorescent-
active when it is in the hydrophobic environment of cell membranes. It belongs to the 
family of styryl dyes, which have some advantages, such its good dynamic range, its 
low toxicity and a low level of photoinduced damage potential. 

A solution of 1mg ml-1 of this dye in Ringer solution was prepared for the staining 
of the tissues. The olfactory bulb of the frog was exposed. To properly stain the 
olfactory bulb, 7μl of solution were applied drop-wise onto the surface to be stained, 
covering the whole area. During the staining period (between 30’ and 45’), the cavity 
was covered with a small glass.to avoiding loss of moisture during incubation. Any 
excess of staining solution was then removed using Ringer’s solution as solvent, and 
excess solution removed using the capillary action of a small piece of tissue paper. 
After this step, the tissue was considered to be ready for imaging. 

Once the tissues were ready, it was necessary to build an optical imaging system 
that can be described at 3 different levels: optical, photo detection and data 
acquisition. 

4.2.2   Optical Section 

In the recording of the images, an epifluorescent metallurgical microscope (Olympus, 
Japan) was used. This instrument was appropriately modified with a set of lenses and 
filters, and placed after a light source of 12V/100W. In particular, three filters of 
different types were installed: an interference excitation filter, a barrier filter and a 
dichroic filter. Both three allowed the separation of excitation/emission wavelengths 
during the imaging. Thus, it was possible to discriminate between the excitation 
radiation of λexc 520-530 nm and the fluorescent emission of λem 600 nm. The whole 
apparatus was placed in an optical vibration-isolated table, within a Faraday cage, to 
obtain an electromagnetically noise free environment. The optical instrument was 
preset to operate allowing 20 x magnifications. 

Photo Detection 

As mentioned above, to get the images at the necessary speed during the experiment, 
it is mandatory to have a fast camera. In this case, fast image detection was confided 
to a CA-D1-0064 Turbosensor Area Scan Camera (DALSA Inc. Canada). This system 
consists in a high-speed monochrome camera with a CCD array of 64x64 pixels 
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(1mm2 each). The CCD sensor has adjustable pixel frequencies of 4, 8 or 16 MHz. 
Together with the data acquisition system (see below), they provide recording times 
of 1160 ms, 580 ms and 290 ms, respectively. In the image series under study, the 
pixel frequency was set to 4 MHz, thus leading to a 1160 ms of full sequence 
capturing in 832 frames. This leaded to an integration of 1.39 ms of response for each 
frame. After 20x optical magnification, the effective recording area is 63x63 pixels. 

Data Acquisition 

To convert the information recorded by the CCD device and to be stored in a suitable 
data format, a 4 MEG Video Frame Grabber (model 10, EPIX, USA) was used, 
together with a DALSA camera interface card (EPIX, USA). The grabber was 
synchronized with the camera, to achieve a ‘in phase’ mode of operation, and was 
able to operate at pixel speeds up to 19MHz. The DALSA camera interface card  
was able to digitise with an 8-bit resolution, thus rendering up to 256 grey levels. This 
device is able to digitalize video frames of 80 x 63 pixels, and up to 832 frames. The 
maximum amount of frames is derived from the device’s buffer size (4096 Kb) and 
the image size (5040 bytes). This system was connected to an IBM-PC compatible 
system, to act as a data logger and to a RGB monitor, also controlled by the frame 
grabber, to enable carefully positioning of the camera over the OB region. 
    Properly synchronization between odour stimulation and imaging was enabled. 
Data acquisition was delayed 150ms after odour delivery. It was done so, as a trade-
off between the time of response to an odorant stimulus (described to be around 
100ms) and also the number of frames available. The odorant pulses were delivered to 
the left nasal cavity of the frog, through a valve-operated system, in 60 ms air pulses. 
    In this way, six movies were generated. They corresponded to stimulation using 
Butyric acid and Isoamylacetate before, after the addition of Con A and after further 
removal of the lectin. Its distribution is shown in table 4.1. 

Table 4.1. Labelling of image series 

Odorant Direct After Con A After rinsing with Ringer 
Solution 

Butyric Acid R040212F.97 R060212F.C97 R110212F.R97 

Isoamyl Acetate R020212P.97 R080212P.C97 R120212P.R97 

4.2.3   Data Processing 

Some considerations about the nature of information in a movie, from the data 
processing point of view are important. Conceptually, a movie is a set of frames 
recorded sequentially. Formally, it is a dataset that presents some structure due to the 
sequential nature of its process of generation. Thus it means that the different frames 
are ordered in time, and each frame consists of an image with X and Y-axis. These 
datasets, in which there exists a special ordering due to external reasons (often time in 
Statistic Process Control), are considered multi-way datasets. In our case, we can 
assume that we are dealing with a three-way dataset, because it presents a structure in 
the way (time x X_pixel x Y_pixel). In this way, (I, J, K) axes are providing different 
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information. The most obvious slice (J x K), corresponds to the square image 
recorded and it is ordered sequentially along the I direction (time). The other two 
possibilities (I x J, I x K), describe the variation of all the pixels of one axis along the 
other axis, for all the time period. Whilst the first case has a physical meaning, 
because it describes the spatial conformation of the images, in both of the latter cases 
this information does not have a practical interpretation. 

Multi-way Principal Component Analysis 

Multi-way Principal Component Analysis (MPCA) is strongly related to the standard 
data analysis method Principal Component Analysis (PCA). This bilinear modelling 
technique, based in the eigenvector decomposition of the covariance matrix, does not 
consider the way in which data has been acquired. This means that external 
information, such the ordering in time of the data acquisition, is not taken into 
account for the modelling process. Although this is unnecessary in a wide amount of 
cases, there are some for which it becomes an evident loss of information. Multi-way 
are part of these. 

Multi-way PCA is statistically and algorithmically consistent with PCA (Wise  
et al. 1999; Westerhuis et al. 1999). Thus, it decomposes the initial matrix X in the 
summation of the product of scores vectors (t) and loading matrices (P), plus a 
residual matrix (E). These residuals are minimized by least squares, and are 
considered to be associated to the non-deterministic part of the information. The 
systematic component of the information, expressed by the product (t x P), represents 

the deterministic part of the data. This part is decomposed, in our specific case, in a 
scores vector related to the variation of the data response detected at each sampling 
time and a loadings matrix, corresponding to the spatial distribution of the activity. 
This decomposition, as in PCA, is ordered in decreasing order of importance, 
considering the directions of maximum variance. In this way, MPCA is equivalent to 
carrying out PCA onto an unfolded data array across one of the modes, for instance (I 
x JK) (Figure 4.1). In practice, this means a vectorization of each frame and its’ 
ordering along recording time. Even though there exists other kind of unfoldings, this 
one allows summarizing the variance contained in each frame at each recording, and 
isolates the time-related information from the spatial component. 
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Fig. 4.1. Data handling of Multiway arrays. Unfolding along one dimension. 
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In brief, the MPCA algorithm correctly unfolds the data matrix X, keeping the I 
dimension constant. This, now bivariate, matrix X is mean-centered for each variable 
value (J x K variables) and auto scaled also to unit variance if necessary. Eigenvector 
decomposition is applied to the covariance matrix of X, with the aim of obtaining t 
and p. In this decomposition, it must be remarked that p is, in fact, an unfolded 
version of Pk. This last matrix is easily obtained by proper folding of p matrix, while 
residuals matrix E is obtained also in a similar way, after proper folding of an 
equivalent bivariate e matrix. The nature of the eigenvector decomposition of the 
covariance matrix, points out one of its differential characteristics. Thus, MPCA 
decomposes the information in directions determined using a criteria of variance 
maximization, keeping a restriction of orthogonality between directions in the, now 
reduced, multivariate space. 

Independent Component Analysis 

Linear transformation of the original variables can lead to suitable representations of 
original multivariate data. As is shown above, MPCA method makes this transform 
pointing towards directions of maximum variance. In Independent Component 
Analysis (ICA) the goal is finding components (or directions) as independent as 
possible. This linear decomposition of one random vector (multivariate data) x 
follows the expression: 

Asx =  (4.2)

where A is the so-called mixing matrix and s the independent component vector. This 
is a generative model, meaning that it describes how data vector x has been generated 
by a mixing process (A) of the components s. Because both A and s are unknowns, 
they must be generated from x after applying some assumptions. In ICA, the 
statistical independence between components si must be ensured. 

Independence of two variables is related to the fact that one variable does not give 
information related with the other and vice-versa. This concept can be described in 
terms of probability density functions. In this case, independence between two 
variables can be assumed if the joint probability density of these two variables 
factorizes. This condition is achieved if the data are non-Gaussian. Consequently, 
non-Gaussianity of the data can be considered a good indicator of independence (this 
is so because, in Gaussian variable systems, the directions of the mixing matrix A 
cannot be determined if the independent components are also Gaussian). Non-
gaussianity can be measured in two ways: using Kurtosis and Negentropy (J) criteria. 
Usually, Negentropy is preferred due to its connection with other topics from the 
information theory, such the concept of Entropy (H). 

∫= yyyy d)(flog)(f-)H(  (4.3)

    Entropy can be described as the amount of information provided by a random 
variable. In short, the more random (unpredictable, unstructured) a variable is, larger is 
the Entropy. An important outcome of this concept is that (Gaussian) random variable 
distributions of equal variance are those that achieve higher Entropy values. Then it is 
possible to identify a decrease in entropy with a decrease in gaussianity. At the end, to 
obtain a positive value for non-gaussianity, is defined the concept of Negentropy (J). 
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Negentropy consists in the difference between the maximum Entropy for this 
variable (defined as Gaussian random variable of the same covariance matrix) and its 
current Entropy. Thus, this magnitude always achieves a positive value and becomes 
an optimal estimator of non-gaussianity. Unfortunately, the estimation of Negentropy 
is difficult and some approximations must be done to calculate its value. 

In this sense, there are some simplifications in the literature. They lead at the end 
to a very simplified expression of Negentropy that can depend from only one non-
quadratic function G, given by: 

{ } { }[ ]2)(G-)(G)( υEEJ yy ∝  (4.4)

Where y is a mean-centered and variance scaled variable. Appropriate selection of 
G can provide better approximations of Negentropy. Some examples of selected G 
are: 
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Where 1≤a1≤2 is a constant to be selected. 
    Another way of finding the suitable estimations of independence is obtained 
through the minimization of mutual information. In brief, mutual information can be 
defined as a measure of the dependence between random variables. It is defined by: 

∑
=

=
m

i
m Hyyy

1
i21 )(-)H(y),...,I( y  (4.6)

    Its value is always nonnegative and becomes 0 if the variables are statistically 
independent. In opposite to PCA and related methods, which makes use of the 
covariance to reflect data structure, mutual information takes into account the whole 
dependence structure of the variables. 

As in other methods, some pre-processing steps can be applied before analyzing 
data with ICA. In this sense, two pre-processing steps are assumed as standards. 
Basically, mean centering as in PCA and related techniques and whitening of 
observed variables. This last pre-treatment is equivalent to perform an eigenvalue 
decomposition of the covariance matrix. In this way, is possible to obtain a new 
matrix of whitened vectors, now uncorrelated, with unitary variance. The advantage 
of using this procedure is that an orthogonal mixing matrix A can be obtained. This 
fact reduces the number of parameters to be estimated more or less by a half, and 
leads to a simplification of the ICA algorithm. In this whitening step there is also 
performed a dimensionality reduction. This is done taking in consideration obtained 
eigenvalues and discarding those that are too small. 

Once introduced objective contrast functions for ICA estimation, is necessary to 
use a maximization algorithm for the function selected. This maximization can be 
achieved using different procedures. In this work, we have selected the FastICA 
(Hyvärinen et al. 2001) algorithm. Among several properties of this algorithm there 
can be remarked: its quadratic convergence, thus guaranteeing fast resolution of the 
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models; it is not a gradient based algorithm, thus avoiding the need of fixing step size 
as in linear perceptrons; its performance can be tuned checking different G functions 
and the independent components can be calculated one by one, thus avoiding finding 
unnecessary components in exploratory analysis. Even though there are proposed 
some specific functions in the literature, the algorithm can deal with almost any non-
Gaussian distribution using any nonlinear one.  

Describing FastICA for one single vector x and one single independent component, 
this algorithm finds a direction, described by a weight unit vector (w) such the 
projection wTx maximizes non-gaussianity. Then, non-gaussianity is evaluated using 
the approximation of Negentropy J(wTx) given above, on whitened data. This 
maximum is found following Newton’s approximate method. It must be considered g 
as the derivative of the non-quadratic functions G mentioned above. Basically, 
FastICA does the following steps: 

1. Random generation of one vector w. 
2. Estimation of an update of the vector w: 

{ } ( ){ }wxwxwxw TEE g')(g T −=+  (4.7)

3. Normalization of w: 

++= www  (4.8)

4. Loop until convergence of w. 

The generalization of this algorithm for estimating several independent 
components operates in a similar way, but now considering an array of weight vectors 
(w1,...,wn). In this case, it is necessary to prevent the convergence to the same maxima 
for different vectors. This can be achieved after a de-correlation step on the different 

outputs  w1
Tx,…,wn

Tx . 
In brief, ICA provides a linear model of the information, decomposing it in 

different contributions under criteria of independence maximization. These directions 
in the space are described by the independent components, which can be considered 
formally equivalent to PCA loadings. The mixing matrix provides the contribution of 
each random vector to each direction in the independent components space, which is 
formally equivalent to PCA scores. 

4.3   Results 

After importing the data from the original format by using a suitable routine, the data 
were ordered accordingly to obtain its visualization. Before performing any analysis, 
it was necessary to overcome the differences due to the area covered by the frame 
grabber (ready to accommodate a rectangle of 80 x 63 pixel size) and the area covered 
by the camera (63 x 63 pixels). For each of the imaging series, these differences were 
solved simply removing the non-active area of the image. After that, it was possible to 
obtain a 3-way data array of 832 x 63 x 63 dimensions. 
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Analysis of data was performed in Matlab 7.1 sp3 (The Mathworks, USA) on an 
AMD64 Dual Core platform running on Linux. Standard routines contained in the 
PLS Toolbox 3.5 (Eigenvector Research, USA) and FastICA 2.5 (Hugo Gävert, Jarmo 
Hurri, Jaakko Särelä, and Aapo Hyvärinen, Finland) were used to build the linear 
models. Data handling, manipulation and representation were done using appropriate 
scripts written also in Matlab.  

4.3.1   MPCA Analysis 

Data were arranged in order to identify the time axis along the sample mode of the 
algorithm (in MPCA, by convention, the k-axis). Before calculating the principal 
components, mean centering of the variables obtained after the unfolding of each 
frame was performed. After this pre-processing step, a principal components model is 
set up from these data. Due to the noisy view of the images and other sampling 
artefacts such aliasing, several tests were done to decide a minimum of variance to be 
explained. Thus, a variance threshold was fixed at around 70% for each MPCA 
model. These variances were described by 15 principal components, and provided the 
most significant information in terms of contribution to the total variance. 

As is known, PCA related methods provide an orthogonal decomposition of the 
covariance matrix after the solution of an eigenvalue problem. These results are 
usually sorted according to eigenvalues as indicators of the importance of each 
eigenvector on the global solution. This eigenvalue / eigenvector pair provides an 
ordered sort of the so-called principal components, in decreasing order of importance. 
This means, that each of the presented factors are contributing with different 
extension to the global data set. 

The results obtained are shown in table 4.2. As it can be seen, between a 70 and 82 
% of the total variance is being described by the 15 components of the MPCA model. 
A special case is given by the image series R060212F.C97, corresponding to the 
addition of the Con A to the OB to inhibit the response against Butyric acid. In this 
case, only 61.5% of the total variance can be explained with this number of 
components. 

Table 4.2. MPCA variance results. Selection of components to be kept in the reconstruction 
with filtering purposes. Amount of variance selected from the total. 

Sample Name Factors selected Total Variance (%) Variance selected (%) 

R040212F97 1, 4, 10 70.30 28.02 

R060212F.C97 none 61.54 - 

R110212F.R97 1, 4, 7, 8 75.66 40.06 

R020212P.97 1, 6, 7, 8, 14 79.61 44.50 

R080212P.C97 1, 4, 7 84.26 60.09 

R120212P.R97 1, 4, 7, 12 75.57 43.94 

In general, it can also be said that the magnitudes of the modelled variances are 
relatively low, which can be related to high noise content. It can also be observed a 
greater amount of variance for the three last image series, corresponding to 
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Isoamylacetate stimulation. This fact can be related to a greater intensity directly 
linked to the activity shown in the images. The origin of this intensity can be diverse, 
because it can be interpreted as a bigger response of the tissues towards 
Isoamylacetate stimulation, or it can be merely related to a more successful process of 
staining of the OB. Assuming that the staining process has been done at the same 
extent, this seems to reveal a more intense activity in the response to Isoamylacetate.  

Factors Selection 

Among the overall variance modelled in the first 15 components, a factor selection 
must be done. As expected, the goal of this selection is to obtain noise and aliasing 
free sets of images for their further interpretation. Therefore, the selected number of 
factors will define, as much as possible, the spatial-temporal patterns present in the 
data. To do it so, the scores (T) and refolded loadings (P) of each factor are studied. 
In this way, scores’ interpretation provides a description of the temporal behaviour of 
the different activity patterns present in the data. These image activity patterns are 
described by the loadings of the model. To provide higher interpretability, a proper 
refolding of P to convert the vectorized image loadings (3969 elements) in a square-
loading image of (63 x 63) pixels was done. As it can be seen on Figure 4.2, 
corresponding to the analysis of sample R040212F.97, the image loadings of the 15 
components provide different patterns of activity. Some of them, corresponding to 
factors 1, 4, and 10 provide clear, noise and aliasing free, loading sets. These sets of 
selected scores and loading pairs (let’s say T’ and P’) now can be used to build an 
enhanced version of the initial file. Therefore, the movie can be reconstructed 
 

 

Fig. 4.2. Butyric acid MPCA loading images. Spatial patterns of activity identified at PC 1, 4 
and 10. Identification of noise and aliasing effects. 
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Fig. 4.3. Isoamylacetate MPCA loading images. Spatial patterns of activity identified at PC 1, 
6, 7 and 8. Identification of noise and aliasing effects. 

appropriately by doing the outer product of T’ and P’ matrices. This process provides 
a filtered imaging of the recording, as it can be seen in Figure 4.4. The reconstructed 
signal after MPCA analysis and posterior factor selection allows the identification of 
spatial activity patterns that were not available from raw signals. Although this 
method provides images which are almost clear, there are still present some minor 
aliasing interferences. 

Having a look at the temporal patterns corresponding to the selected components is 
possible to see how there exist a counter-phase oscillatory behaviour for components  
 

 
Fig. 4.4. Differences between MPCA filtered and raw images for Butyric acid response 
(R040212F.97). Selected frame at 418 ms. 
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4 and 10 before 594ms (Figure 4.5A). After that point, both factors reveal a 
synchronization of the activity with a sudden increase. Having in mind the variance 
ordered characteristics of the components obtained, it can be said that MPCA reveals 
three sources of oscillatory activity with differentiated amplitudes and contributions 
to the total variance. To check its relation with the functional activity of the OB, the 
two most relevant temporal patterns can be easily converted to frequencies. The 
analysis of these values reveals oscillations in response consistent (5 -10 Hz) with the 
stimulation-inhibitory effect observed at the olfactory epithelium level, as described 
in the bibliography. 

After following the same process of refolding of the results obtained by MPCA, 
the analysis of Isoamylacetate images (R020212P.97) provide up to four principal 
components that can be distinguished from the background noise and aliasing 
(Figure 4.3). In this case, the selected ones are (1, 6, 7 and 8) and provide up to four 
regions of differentiated activity. Having a look at them, it is clear that some are 
providing very similar patterns. In particular, factors 6, 7 and 8 provide a high degree 
of similitude.  

As in the previous case, temporal patterns are studied. In this way, as it can be seen 
in Figure 4.5B, there exists a counter-phase temporal activity for the first two 
components. In both cases, both score vectors present amplitudes in a similar range. 
The remaining factors (7 and 8) are presenting also temporal profiles of similar 
amplitude between them, but both are considerably lower in comparison with the 
preceding ones and are also noisier. Their contribution to the overall signal can be 
considered less important, and also agrees with the high similitude detected after 
loadings’ analysis. 

The analysis of the information contained in the imaging for butyric acid (after 
addition of Con A) and before the rinsing of this lectin with Ringer solution, leads to 
results according to what is expected. Thus, the addition of Con A, suppress almost 
completely the activity of the OB. The MPCA model for this imaging shows 
undefined spatial patterns showing noise and aliasing effects and reveal a unique 
activity zone in the lower part of the image corresponding to a blood vessel. Temporal 
patterns analyses agree with previous information and define constant profiles, 
without periodic oscillations, corresponding to the observed noise (Figure 4.5C). 

After applying Con A to the OB, the analysis of the imaging of Isoamylacetate 
stimulation (R080212P.C97) presents some differences (see Figure 4.6). In this case, 
the suppression of the activity due to the Con A is not effective. Imaging of the 
response shows evident activity and posterior MPCA analysis provides differentiated 
spatial-temporal patterns. These patterns can be distinguished from the ones recorded 
previously for Isoamylacetate. In this case, MPCA analysis provides at least 3 loading 
images/temporal profiles describing the activity of the OB after the stimulus in these 
inhibitory conditions. They correspond to principal components 1, 4, and 7. 
Comparing those areas with the previous ones, corresponding to the non-inhibited 
response (Figure 4.3), they provide a certain level of simililitude although there are 
some minor differences, that can be related to the repositioning of the camera after 
depositing the lectin. There exists also a reduction of the number of factors to take in 
consideration. Even so, they contain a higher level of overall variance than in the 
previous case. 
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Fig. 4.5. MPCA analysis. Temporal patterns of Butyric acid and Isoamylacetate. Score vectors 
for direct stimulus (A,B), during inhibition with lectin (C,D), and after removal of the inhibitor 
(E,F). 

 
There can be observed changes in the temporal profiles. As seen in Figure 4.5D, 

two of the components shown (4, 7) are also showing an oscillatory behaviour in 
counter-phase. Superimposed on both, there is presented a first component with  
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Fig. 4.6. Selected PCs for Isoamylacetate plus Con A (R080212P.C97). (Top row). Selected 
PCs for Butyric acid after rinse with Ringer solution (R110212F.R97). (Bottom row). 

 
higher amplitude and lower frequency, and describes an oscillation along the entire 
recording. From these profiles, it can be said that the images are presenting two 
different sources of oscillation in the inhibitory conditions. 

The rinsing of the Con A with Ringer solution should lead to a recovery of activity 
of the OB in those cases in which the inhibition is effective. According to what is 
expected, MPCA analysis on these data reveals renewed activity after being exposed 
to Butyric acid (R110212F.R97). Results obtained show in Figure 4.5E up to four 
clear spatial patterns of activity, present in principal components (1, 4, 7 and 8). As  
in the previous case, there appear three factors (1, 4, 7) with clearly differentiated 
spatial patterns of activity. Thus, the first three selected principal components (1, 4, 7) 
are providing a counter-phase oscillation. As expected, both three components are 
contributing with different amplitudes, due to the amount of information they are 
explaining. Although the third component is minor in comparison to the first two 
ones, it is clearly describing another source of oscillatory behaviour. The fourth 
component selected, namely factor (8), also shows a similar behaviour. However, it 
cannot be considered clearly relevant, due to its intensity (only comparable to 
principal component 7) and to the soft aliasing pattern (still present). 

In comparison with spatial patterns for first response to butyric acid 
(R040212F.97) there appear some differences in general. An upward displacement of 
all the spatial activity is observed, that can be related somehow to the variability 
associated with the positioning of the camera after rinsing the tissues. Their temporal 
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profiles still show a clearly definite oscillatory behaviour. But, in this case, the 
activity profiles appear to be slightly less intense as in the first stimulation, what can 
be interpreted as a general decrease in the activity after the Con A deposition / rinsing 
process. By the other side, the temporal activity profiles obtained by MPCA seem to 
be more definite and less noisy than the first stimulation, which points out to better 
recording conditions. 

After rinsing the Con A and further stimulation with Isoamylacetate, it is possible 
to see changes in the temporal activity profile. As it can be seen in Figure 4.5F, these 
changes do not excessively affect the intensity of the temporal profiles, which remain 
almost in the same range. This similitude in intensity can be related to the 
ineffectiveness of the inhibition with the lectin that leaves mostly unaffected the 
response of the OB in terms of intensity. However, it is clear that there exist 
differences in the temporal response to the stimulus. 

4.3.2   ICA Analysis 

To matricize each of the three way datasets for ICA analysis, each of the movies was 
correctly unfolded doing an image vectorization on the pixel dimension. This 
operation rendered a 832 x 3969 data matrix for each of the experiments. Up to four 
nonlinear functions g(u)=u^3, g(u)=tanh(u), g(u)=u*exp(-*u^2/2) and g(u)=u^2 were 
tested for the calculation of the negentropy. After tests on each of the movies, for each 
of the possible nonlinear functions, it was observed that all of them were providing 
nearly the same models in the same conditions. Stability for some of the solutions and 
non-convergence in some cases, were used as criteria to select tanh as nonlinear 
function for all the models. Before doing any calculation, data were properly reduced 
in dimension and whitened to 15 principal components by means of PCA. After this 
step up to 15 independent components (IC) were calculated in parallel. Once the ICs 
were obtained, they were properly refolded to obtain the corresponding IC image and 
to identify spatial activity patterns. Mixing matrix (A) results were used to show the 
temporal patterns corresponding to the ICs. Contrary to PCA, in which there is 
possible an ordering of the PCs according to explained variance; in ICA this ordering 
is done with visualization purposes only. There are given some criteria in the 
literature to order the ICs in some way, such ordering according to eigenvalues 
obtained during dimensionality reduction and the use of reconstruction error as an 
indicator of the explained variance at those IC (Xueguang et al. 2006). 

IC Selection 

As it could be expected, the analysis of the ICs for both Butyric acid and 
Isoamylacetate stimulation reveals differentiated spatial-temporal patterns during the 
imaging. As it can be seen in Figure 4.7 for Butyric acid stimulation, ICA is able to 
isolate the contribution of 3 IC images (labelled IC 8, 13 and 14) from the global 
signal. The method is, then, capable of separating these contributions from aliasing 
and noise effects, clearly presents in the remaining ICs. The different spatial patterns 
of activity are concentrated around the same spatial region, corresponding to the 
glomeruli in focus. 
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Fig. 4.7. Butyric acid IC images. Spatial patterns of activity identified at IC 8, 13 and 14. 
Identification of noise and aliasing effects. 

 

Fig. 4.8. Isoamylacetate IC images. Spatial patterns of activity. IC selected: 1, 6, 13 and 15. 

 
 



 4   Multivariate Analysis of the Activity of the Olfactory Bulb 69 

For Isoamylacetate stimulation is also possible to isolate 4 IC images (marked as 
IC 1, 6, 13 and 15 in this case), leaving a remaining sort of IC images related to noise 
plus aliasing effects (Figure 4.8). The origin of these differences between imaging due 
to analyte stimulation is not clear from these ICs. Even though they could come by 
differences in OB response towards different analytes, it must be noted that these 
images correspond to two individuals, which can provide some morphological 
diversity, and consequently less reproducibility on the spatial patterns. 

Inspecting the mixing matrix results, descriptors of the temporal activity pattern of 
the different IC images, it is possible to identify differentiated behaviours for the three 
regions. When these profiles are superimposed (Figure 4.9B), it can be seen a 
counter-phase oscillatory behaviour along all the 1160ms. The analysis of the mixing 
matrix vectors corresponding to the remaining non-selected ICs reveals both the noise 
contributions to the independent components and also the aliasing effects, present 
along the recording time with similar intensity. They also reveal how some of the 
information is still contained in those ICs, showing the limitations of the proposed 
method. 

When the results obtained for both analytes are compared, it is possible to detect 
differences between both models. The mixing matrix results for Isoamylacetate 
provide differentiated temporal profiles for each of the selected ICs for the 
reconstruction. In this case, in Figures 4.9A and 4.9B, there can be observed a similar 
behaviour in frequency in the first 695 ms for both analyte stimulations. The biggest 
difference between both profiles appears after 695 ms, with the disappearance of the 
broad band present in Butyric acid temporal pattern. The inspection of the temporal 
profiles provides also criteria to discard some of the IC images for isoamylacetate, 
according to its relevance. In this way is possible to discard IC 6 due to its low 
oscillatory behaviour until 880 ms. 

The analysis of the information contained in the imaging for butyric acid (after 
addition of Con A and before rinsing of this lectin with Ringer solution) leads to 
results according to what was observed in MPCA. The addition of Con A suppresses 
almost completely the activity for the OB and leads to an ICA model very similar in 
spatial-temporal activity to the one observed in the MPCA model. Thus, the ICA 
model also identifies noise and aliasing as the main contributors to the overall 
activity. 

After the analysis of the imaging of Isoamylacetate stimulation under inhibitory 
conditions (R080212P.C97), ICA also reveals the differences observed in MPCA. The 
suppression of the activity due to the Con A is not effective. ICA analysis also provides 
differentiated spatial-temporal patterns that can be distinguished from the previous ones. 
Thus, the temporal profiles show changes in frequency and amplitude during the 
deposition and after removal of the lectin. As in MPCA, ICA is able to detect these 
changes, but considering the different sources of variation as purely independent. In this 
case, it provides up to 6 IC images/temporal profiles, almost free from noise and 
aliasing. The selection of the independent components is done in this case by dual 
inspection of the IC images and their mixing values. This inspection allows a selection 
to be made based in the dissimilitude of the observed image / temporal pairs. In this 
way, the former set of 6 IC images is reduced to 4 (4, 5, 8, and 12), as shown in  
Figure 4.10. The almost constant temporal activity of IC 12 and the identification of its 
associated spatial pattern reveal a strong differentiation for this area. 
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Fig. 4.9. ICA analysis. Temporal patterns of Butyric acid and Isoamylacetate. Mixing matrix 
vectors for direct stimulus (A,B), during inhibition with lectin (C,D) and after removal of the 
inhibitor (E,F). IC 8 image corresponding to damaged area (a). 

After rinsing of the Con A, the recuperation of the initial behaviour is expected. 
ICA analysis on these data shows a recovery of the activity of the OB when it is 
exposed to Butyric acid (R110212F.R97). Although some activity is observed, results 
obtained show some differences in the IC images, corresponding to changes in spatial 
activity. As observed in MPCA analysis, an upward displacement of the entire 
activity pattern is observed. It is also observed in Figure 4.10 some strongly 
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differentiated activity, described by IC 8. In this case, both the nearly constant 
temporal activity, seen in Figure 4.9E, and the spatial pattern of the surroundings 
point out to a damage of the tissue during the rinsing process. Three more ICs images 
are observed (4, 12, 14), which are related to the normal activity of the OB under 
Butyric acid stimulus. Whilst one of them keeps a certain degree of similarity with 
first IC analysis of the pure response, the remaining ones are showing a more uniform 
spatial pattern. When temporal patterns are studied and compared, before and after 
inhibition (and posterior rinsing), there can be observed relative changes in terms of 
relative intensity and frequency in each of the selected ICs as in MPCA. Changes in 
response are specially marked after rinsing. These observations points out to a change 
of the spatial-temporal activity of the OB after all the inhibition + rinsing process. The 
origin of these changes is diverse, and can be due to the progressive damaging of the 
tissues during the experiment (photoinduced damage and toxicity of the staining 
compounds), and also to small changes in the positioning of the camera. 

 

Fig. 4.10. Selected ICs for Isoamylacetate plus Con A (R080212P.C97). (Upper row). Selected 
Ics for Butyric acid after rinse with Ringer solution (R110212F.R97). (Bottom row). 

4.4   Conclusions 

In this work there have been presented two alternatives for data processing of image 
series, based in Multi-way PCA and Independent Component Analysis. Results 
obtained show that they can be used with a dual purpose. On one side, they can be 
used with the aim of filtering, removing noise and sampling artefacts, such aliasing. 
Another purpose, also important, is that they allowed the identification of the most 
active areas along all the recordings and its behaviour along all the recording time. 
This can permit the extraction of functional information. 
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The MPCA method is able to build a model of the spatial-temporal activity 
detected in the imaging. Because of the nature of the model, is possible to index the 
contribution of different components to the global activity. Consequently, it is 
possible to determine the weight of the patterns of activity along the entire recording. 
On the contrary this ordering cannot be easily achieved by ICA. 

ICA is also able to build a model of the activity of each of the imaging series. The 
method is able to detect unexpected effects that probably follow an independent 
behaviour. In this way, is possible to detect some damage on the surface of the OB 
after the application / removal of Con A. These effects cannot be determined by 
MPCA. 

Using these methods, it has been possible to determine changes in the overall 
response of the OB along the experiments. These changes appear to be due to the 
effect of the lectin, to the aging of the sample during the preparation and to the 
damages induced by the dye (photoinduced, toxicity). Temporal profiles obtained 
before and after the application of the Con A reveals that the recovery of OB’s 
activity is not complete. 

As expected, precise centering of the image onto the OB glomeruli is critical. 
Improvement in camera positioning and stimulation on the same individual with 
different analytes, should make possible to identify if there exist any kind of temporal 
codification of the olfactory information. Both ICA and MPCA can help in the 
identification of this stimulatory-inhibitory activity, and become useful tools in this 
kind of analysis. 
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Abstract. We discuss a biomimetic approach for improving odour detection in artificial olfac-
tory systems that utilises temporal dynamical delivery of odours to chemical sensor arrays de-
ployed within stationary phase materials. This novel odour analysis technology, which we have 
termed an artificial mucosa, uses the principle of “nasal chromatography”; thus emulating the 
action of the mucous coating the olfactory epithelium. Temporal segregation of odorants due to 
selective phase partitioning during delivery in turn gives rise to complex spatio-temporal dy-
namics in the responses of the sensor array population, which we have exploited for enhanced 
detection performance. We consider the challenge of extracting stimulus-specific information 
from such responses, which requires specialised time-dependent signal processing, information 
measures and classification techniques.  

5.1   Three Key Mechanisms for Discrimination of Complex 
Odours in Chemical Sensor Arrays 

The detection capability of chemical sensor array systems is limited by both sensor 
noise and the degree to which response properties can be made stimulus specific 
and diverse across the array (Pearce & Sánchez-Montañés 2003). Two main mecha-
nisms for odour discrimination in artificial olfactory systems have been exploited  
so far: 

1. To generate diverse responses, sensors within the array are typically selected to 
produce an ensemble of complementary wide spectrum broad tunings to the dif-
ferent volatile compounds of interest. Given sufficient diversity in these tunings, 
a spatial fingerprint of a particular complex odour should be generated across 
the array that is sufficiently stimulus specific to overcome noise limitations, and 
may then be used as part of a pattern recognition scheme for odour discrimina-
tion (Pearce et al. 2003). In this case, the role of time is not considered explic-
itly, but rather the magnitudes of the responses across the array, which is the 
classical method of odour classification in artificial olfactory systems. 
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2. Depending upon the choice of chemosensor technology and the compounds un-
der investigation, it is possible that the chemosensor dynamics themselves can 
also depend on the compounds present in the mixture (Albert et al. 2002), lead-
ing to an additional dimension of temporal variation which can be exploited for 
the purposes of discrimination. Such differences have previously been exploited 
to improve discrimination performance (e.g. Llobet et al. 1997, White and 
Kauer 1999).  

In biological olfaction, on the other hand, the temporal dimension is known to play a 
much more central role in the processing of olfactory information (Schoenfeld and 
Cleland 2006) than has thus far been considered in machine olfaction research. For 
instance, the timing and dynamics of the sniffing process are known to be important 
(Kepecs et al. 2006), which appears to be well matched with the timing of neural 
processing mechanisms in the olfactory bulb, as emphasised by many modellers (e.g. 
Brody and Hopfield, 2003). Looking at the overall processes involved in olfactory 
perception, this may be viewed as an exquisitely timed and orchestrated sequence of 
odorant inhalation, odorant partitioning and absorption, olfactory neuron timing re-
sponses mediated by calcium dynamics, the arrival and complex integration of spikes 
at glomeruli and the finely balanced dynamics of excitation and lateral inhibition in 
the bulb. When building biomimetic olfactory systems, therefore, we should consider 
carefully the timing and temporal aspects of the delivery and processing of sensory 
information. 

By considering the role of timing of odorant delivery in biological olfaction (Rubin 
& Cleland 2006), we have recently built a novel machine olfaction technology, 
termed an “artificial olfactory mucosa”, which demonstrates clearly a third principle 
of odour discrimination in artificial olfactory systems: 

3. By creating a temporal profile of odour delivery to the different sensors within 
the array that is stimulus specific, we may provide additional response diversity. 
This is achieved by deploying chemical sensor arrays within stationary phase 
materials that impose the necessary stimulus-dependent spatio-temporal dynam-
ics in sensor response; we have recently shown that this approach aids complex 
odour discrimination (Gardner et al. 2007). This concept is very different to that 
embodied within classical electronic nose systems that are usually designed to 
control the exposure of the stimulus as a square pulse, whose temporal proper-
ties are independent from the nature and chemical composition of the stimulus. 
Instead, we exploit such differences to generate additional discrimination capa-
bility in the device.  

5.2   An Artificial Olfactory Mucosa for Enhanced Complex Odour 
Analysis 

This third discrimination mechanism uses the physical positioning of a series of 
broadly tuned sensors along the length of a planar chromatographic channel  
(analogous to the thin mucous coating of the nasal cavity) which gives rise to more 
diversity in the temporal properties in the sensor signals (retentive delay and profile). 
Figure 5.1 shows the basic architecture of the artificial mucosa concept and its bio-
logical counterpart. A complex odour pulse travelling in the mobile carrier phase  
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Fig. 5.1. a) Sagittal head view showing the main sections of the olfactory mucosa and subse-
quent neural processing. Odour molecules during inhalation selectively partition into a mucous 
layer covering specialized dendritic cilia from olfactory receptor neurons in the nasal epithe-
lium. Odours interact with receptor proteins embedded within the cilia membrane to mediate 
ORN calcium dynamics, ultimately leading to the generation of additional action potentials 
(impulses). These action potentials are transmitted to the olfactory bulb via axonal projections 
where these are processed to interpret complex odour information. b) An artificial mucosa that 
relies on similar principles of odorant partitioning to its biological counterpart. The chemosen-
sor array is deployed inside a microchannel coated with a stationary phase material (retentive 
coating) that has selective affinity to the different compounds with a complex mixture. By in-
troducing a pressure difference across the microchannel odour flow may be pulsed within the 
microchannel, giving rise to segregation in odour components that is compound specific. (Re-
printed with permission by Royal Society, London). 

inside the artificial mucosa gives rise to selective partitioning of components causing 
the odour components to travel at different speeds into the mucosa, leading to a kind 
of chromatographic effect. Depending upon the degree of affinity of each component 
compound for the retentive layer, this will be found within the mobile (carrier) and 
stationary (retentive layer) phases in compound specific ratios.  The retention of each 
odour component in the stationary phase acts to retard the progress of the pulse for 
that compound through the mucosa, leading to segregation in the components of the 
stimulus in accord with the well understood principles of gas capillary column chro-
matography (Purnell 1962). 
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Fig. 5.2. Numerical solutions of an analytical model for concentration for two compounds a 
and b at different positions, x, within the artificial mucosa. Carrier velocity inside the micro-
channel is 15 cm s−1, mass distribution coefficients ka = 1 and kb = 2, and effective diffusion 
coefficients D′a = 50 cm2 s−1 and D′ b = 10 cm2 s−1. Pulse duration at inlet (“sniff time”), t = 5 s. 

We will see that this arrangement provides an important additional mechanism for 
odour discrimination, since depending upon their location in the mucosa, each sensor 
will receive a particular sequence of single or subsets of compounds within a complex 
mixture over time, which is a function of the stimulus composition. It is important to 
understand and accurately describe the transportation of odour compounds within the 
artificial mucosa in order to verify the experimental results, as well as provide the 
basis for an optimisation procedure of its design for complex spatiotemporal chemical 
sensing. We have developed both finite element and analytical models for this pur-
pose.  Figure 5.2, for example, shows the numerical solution of our analytical model 
of local concentration profiles within the micro-channel for two compounds, a and b, 
injected simultaneously at the inlet as they progress through the device. We see a 
clear separation between the two compounds that increases over time and depends 
directly upon the difference in partition coefficients and so is compound and stimulus 
specific. In both cases the dispersion, which determines the degree of overlap, de-
pends upon the effective diffusion coefficient while the velocity of propagation 
through the mucosa depends upon the effective partition coefficient between the com-
pound and the stationary phase deployed. 

Differential sorption of compounds within the artificial mucosa gives rise to a tem-
poral fingerprint in the chemosensor response which is sensitive to the concentrations 
and presence of different compounds. The important aspect here that is distinct from 
previous techniques exploiting the temporal dimension is that the delivery of the 
stimulus itself becomes specific to the compound(s) being delivered, which imposes 
 
 



 5   Improved Odour Detection through Imposed Biomimetic Temporal Dynamics 79 

additional diversity in the array responses. We have shown experimentally (Gardner 
et al. 2007) that deploying chemical sensor arrays within stationary phase materials in 
this way imposes stimulus-dependent spatio-temporal dynamics on their response, 
thereby aiding complex odour discrimination. We will also show theoretically at the 
end of this chapter that using both spatio-temporal responses (all three discrimination 
mechanisms) will always provide better detection performance than using spatial in-
formation alone (the first discrimination mechanism). 

5.2.1   Artificial Olfactory Mucosa Fabrication 

The artificial mucosa was constructed by mounting discrete polymer/carbon black 
composite chemoresistive sensors (40 devices of 10 different composites) on a printed 
circuit board (PCB) base sealed with two different polyester lids (with and without 
stationary phase coating, which we refer to here as the coated and uncoated mucosa) 
within which a serpentine microchannel was machined. Once sealed, this composite 
structure was injected with Parylene C ,as the absorbent stationary phase material, 
deposited using a commercial evaporation technique (PDS 2010 LabcoaterTM 2, Spe-
cialty Coating Systems, Indianapolis, USA).  Each sensor chip was 2.5 mm × 4.0 mm 
in size and comprised a pair of thin co-planar gold electrodes on a SiO2/Si substrate 
with an electrode length of 1.0 mm and an inter-electrode gap of 75 μm. Additional 
fabrication details are provided elsewhere (Gardner et al. 2007). 

5.2.2   Chemical Sensor Behaviour within the Artificial Mucosa 

In order to demonstrate the effect of the stationary phase material within the artificial 
olfactory mucosa, we tested rectangular pulses of simple odorants (toluene and etha-
nol) with the microchannel both coated and uncoated – Figure 5.3 shows the normal-
ised results. In both cases, the sensor closest to the inlet of the microchannel (S1) 
shows a rapid onset time relative to that seen at the sensor towards the outlet (S39), 
which is due to the transport time for the odour pulse (“sniff”). However, in the un-
coated case (Figure 5.3a), we see that the temporal response of the outlet sensor is not 
stimulus specific in time for ethanol and toluene after normalization. Thus, the un-
coated mucosa adds no additional information in time, since within the limits of  
sensor noise, the outlet sensor is only able to discriminate between the two simple 
compounds based upon its response magnitudes – i.e.  using the first mechanism of 
discrimination. Of particular note here is the broadening of the response signal in time 
with increasing sensor distance from the inlet, which is also observed in the responses 
of identical sensors placed at different locations along the channel. This is predomi-
nantly due to diffusion broadening of the odour as it travels along the micro-channel. 
Since the diffusion coefficient in air varies very little for different odour ligands, dif-
fusion broadening, in itself, is not a particularly effective means of imposing stimulus 
dependent response diversity in artificial olfactory systems. We will see that selective 
partitioning can play a much more important role.  
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(a)                   (b) 

     

Fig. 5.3. Comparison of normalized chemosensor responses for an uncoated and coated artifi-
cial olfactory mucosa. a) Uncoated mucosa. Responses of sensor S1 (PEVA sensor material 
composite) close to the inlet and S39 (PCL sensor material composite) close to the outlet of the 
microchannel. b) Responses from the same sensors in the coated mucosa. (Reprinted with per-
mission by Royal Society, London). 

The uncoated responses of the inlet sensor also show some differential response 
that is stimulus dependent, which is most likely due to the kinetics of the 
ligand/sensor interaction rather than the mucosa properties – an example of the sec-
ond discrimination mechanism discussed in Section 1 due to differential ligand/sensor 
temporal interactions.  

In the coated case (the normal operational mode of the artificial mucosa -  
Figure 5.3b), the response of the outlet sensor after normalization shows very differ-
ent temporal responses that are strongly stimulus specific.  Here we see a clear  
additional latency in the onset of the response and also its duration is much longer, 
which is clearly due to spatio-temporal stimulus dynamics imposed by the coated mu-
cosa when we compare to the uncoated case. This stimulus dependent difference in 
 

 
Fig. 5.4. Response of different types of sensors responding to a 10 s pulse of simple analytes. 
Sensor responses to a) ethanol vapour, and b) toluene vapour in air. (Reprinted with permission 
by Royal Society, London). 
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the outlet sensor response, demonstrates clearly the additional third mechanism for 
discrimination which we have produced through the use of selective coatings in our 
artificial mucosa design and believe to be analogous to odorant air/mucus interaction 
in the biological olfactory system.  Figure 5.4 shows the diversity in the sensor re-
sponses for the different composite materials we have used within the artificial mu-
cosa device. The ensemble response clearly shows a wide diversity that is strongly 
stimulus specific, both before and after normalisation. This additional temporal diver-
sity due to selective partitioning is a powerful means for introducing additional dis-
crimination capability to chemical sensor arrays for complex odour analysis. 

5.3   Exploiting Temporal Responses in the Artificial Mucosa 

The three mechanisms for discrimination in artificial olfactory systems are not mutu-
ally exclusive. Rather, as appears to be the case in biology, we may exploit differen-
tial responses due to diverse sensor tunings (first mechanism), ligand/sensor kinetic 
dependencies (second mechanism), and imposed spatio-temporal dynamics in the 
stimulus delivery (third mechanism) simultaneously. Making these three mechanisms 
for discrimination cooperate in tandem and in a selective way is, we believe, the key 
to building new generations of artificial olfactory systems that may begin to approach 
the impressive selectivity and broad range sensitivity found in biological systems. 

In order to take advantage of the rich diversity of temporal responses created by the 
artificial mucosa we must analyse them with suitable signal processing and classifica-
tion strategies, i.e. techniques that are time dependent. One approach is to again look 
to the biology for the principles involved in processing such spatio-temporal signals 
(Pearce 1997). 

5.3.1   Olfactory Bulb Implementations for Spatiotemporal Processing of Odour 
Information 

A large number of olfactory receptor neurons (ORNs) constitute the front-end of the 
olfactory system, being responsible for detecting airborne molecules. Cilia of the 
ORNs protrude into the olfactory mucosa (Figure 5.1), where they come in contact 
with molecules that are transported by the nasal air flow. On the surface of the cilia, 
odorant receptors bind odorant molecules with a broadly tuned affinity. When a re-
ceptor binds with an odorant molecule, it triggers in its ORN a biochemical cascade 
that eventually causes the membrane potential of the ORN to change, potentially lead-
ing to the generation of action potentials (Mori et al. 1999).  

In vertebrates, ORNs project their axons into the olfactory bulb, terminating into 
spherical neuropils called glomeruli, where they connect onto the dendrites of mitral 
and tufted (M/T) cells. Experimental data indicate that each glomerulus receives the 
axons of only ORNs that express the same type of receptor, while any M/T cell sends 
its apical dendrite into one glomerulus only. Inhibitory neurons of the olfactory bulb 
form reciprocal contacts with many M/T cells via granule cells, thus forming together 
a complex network that appears to constitute the first stage of olfactory information 
processing. The output of the M/T cells is also relayed to higher brain areas (Mori  
et al. 1999). 
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Fig. 5.5. A schematic diagram of the olfactory bulb neuronal model architecture which we have 
implemented in programmable logic (Guerrero and Pearce 2007) and aVLSI (Koickal et al. 2007) 
for real-time odour signal processing, showing receptor and principal neurons (triangles) and syn-
apses (circles: unfilled – excitatory, filled – inhibitory). There are 25 M/T cells in total and 75 
ORNs. M/T: mitral/tufted cells, ORN: olfactory receptor neurons. LOT: lateral olfactory tract. 

Figure 5.5 shows the overall schematic of our network model for spatio-temporal 
odour signal processing (only showing three types of receptor input for the sake of 
clarity). The diagram has been drawn representing every computational element with 
an individual device, rather than adopting a biologically realistic representation. 
Chemosensors themselves are represented by irregular polygons at the top of the  
diagram which may be placed within the artificial mucosa to generate additional  
temporal diversity in their responses – polygons of the same shape represent sensors 
of the same type. Since the firing rate produced by ORNs is limited to approx. 1 kHz, 
we use a sigmoidal squashing function to condition the chemosensor signals before 
using it to drive the olfactory bulb (OB) model. 

In our model, any ORN receives input from only one chemosensor/receptor type, 
and any chemosensor only projects to one ORN. The outputs of the ORNs feed into 
the respective ORN-M/T synapses (circles). The outputs of the synapses that receive 
input from ORNs converge a single M/T cell, where they are summed linearly. This 
represents the operation of glomeruli in the olfactory system. The output of any 
glomerulus feeds into one respective M/T cell. Because the signals from sensors of 
the same type are fed forward through neural elements to a single M/T cell, the net-
work presents an evident modular structure, each module being defined by a different 
type of sensor, in a way that resembles the glomerular organization of the olfactory 
bulb. Every M/T cell projects to every other M/T cell through one of the M/T-M/T 
inhibitory synapses (filled circles).  

The neurons themselves have been modelled as integrate-and-fire units. Below the 
threshold Vθ, the dynamics of the “membrane” potential V(t) of the IF neuron are de-
fined by the equation 
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where t is time, R and C are, respectively, the membrane resistance and capacitance, 
and I(t) is the total input current to the neuron. The membrane rest potential is con-
ventionally set equal to the value zero. The membrane time-constant τm is given by 
RC (τm = 10 ms is used throughout as a biologically plausible value). The terms con-
tributing to I(t) are due to sensor responses if the neuron is a ORN, and to ORNs and 
lateral interactions if the neuron is a M/T cell. If the potential V(t) reaches the thresh-
old value Vθ, it is immediately reset to the afterhyperpolarisation value Vahp and an 
action potential is produced as output of the neuron. Since we do not explicitly con-
sider the role of adaptation in the model at this time, we set the threshold Vθ to be 
equal and fixed for all ORN and M/T cells.  

The model also includes dynamical synapses based upon first order dynamics. In 
this case, currents generated by a synapse in response to a spike train is through an 
exponential decay over multiple spike inputs occurring at times (t1, t2, . . ., tj , . . . tl) to 
give the dendritic current 
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where w specifies the weight or efficacy, H(.) is the Heaviside function and τi;e is the 
synaptic time constant of either inhibitory or excitatory synapses. We choose a value 
of 4 ms for excitatory synapses, and 16 ms for GABA mediated inhibitory synapses. 

The weights of the M/T-M/T synapses are defined so as to endow the network with 
associative properties (cf., e.g., Amit 1992 for general definitions), although it is not 
known whether the biological counterpart does perform this kind of processing. This 
lateral connectitivity represents dendrodendritic mitral/tufted and granule cell interac-
tions in the external plexiform layer of the bulb, which are known to be important in 
mediateing odour memory (Hildebrand and Shepherd, 1997). The network learns 
odorants by modifying the weights of the M/T-M/T synapses according to a Hebbian 
learning rule, during a training stage. The activity of a given neuron i by means of its 
firing rate vI (defined by a temporal average of spikes, hence, the mean firing rate v is 
the number of spikes nsp(t) that occur in the time T, v = nsp(T) / T, where the v is ex-
pressed in Hz). The synaptic weight change is then given by the equation  

jiijw νναδ ⋅⋅= , (5.3)

where vi and vj are the firing rates of the postsynaptic and presynaptic cells respec-
tively, and α is a learning parameter, such that α > 0. Since the spatial dependence of 
granule-mitral cell interactions is not fully understood, we choose the lateral weights, 
wij to be random before training. 

Given a learnt Odour A, an indicator function of all M/T cell firing rates can be  
defined 

ad
adT

kf = , (5.4)
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that indicates to which degree the network output is currently representing that par-
ticular odorant. Here d and a are vectors of the M/T cell population firing rates after 
training in response to the currently presented odour D and previously presented tar-
get Odour A. The indicator function is normalised by the magnitude of these vectors 
so that this may be interpreted as a correlation between d and a, scaled by k, which is 
kept constant for all indicator functions. Thus, when a previously learnt odorant is 
presented, its corresponding indicator function should assume a relatively large posi-
tive value. 

We have implemented this spatio-temporal olfactory bulb network in both pro-
grammable logic (Guerrero & Pearce, 2007, Guerrero-Rivera et al., 2006) and in ana-
logue VLSI technology (Koickal et al., 2007) for the purposes of real-time processing 
for artificial mucosa. Such recurrent spiking neuronal models have been shown to 
exhibit Hopfield-like attractor based dynamical behaviour. The asymmetric nature of 
the connectivity in our model gives rise to a richer variety of dynamical behaviours 
than in the symmetric Hopfield case (Li and Dayan, 1999). Such networks have been 
shown in a variety of contexts to be sensitive to temporal properties in their input, for 
instance, temporal sequence processing (Wang 2003). We next show that the network 
is capable of supporting odour classification and odour compound detection in vary-
ing backgrounds. 

A.   Odour Classification  

In order to demonstrate the classification properties of the OB model, the same net-
work was subjected to two arbitrary but constant input patterns (that we term ‘Odour 
A’ and ‘Odour B’), representing the receptor response to distinct odours at the input.  

 

Fig. 5.6. Indicator functions for the odour classification task. The same network is trained to 2 
odours, ‘A’ and ‘B’ from which indicator functions (I.F.) are constructed. Shown is the indica-
tor function response for both A and B when odour A and B are presented. In each case the 
indicator function for the learnt odour is far higher than that for the distractor odour.  
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Hebbian learning was first applied to adapt the lateral weights of the network when 
exposed to Odour A and then applied a second time for ‘Odour B’. After training, 
each odour (‘Odour A’ and ‘Odour B’) was presented sequentially for testing and the 
corresponding indicator functions for both learnt odours calculated over time (see 
Figure 5.6). We see that the corresponding indicator function for the learnt odour is 
high after a short time, whereas the other indicator function is low. When we present 
the second odour the situation is the opposite, indicating that the network is able to 
store two attractors corresponding to the two odours and we can read these out to 
classify the odours accordingly. 

B.   Odour Identification in Interfering Backgrounds  

In order to test how robust the learnt odour classification scheme is in this case, we 
trained the system to a random pattern of steady-state activity across the array, which 
we termed ‘Odour A’ and used the network response to define the indicator function. 
When this input was presented, the pure Odour A stimulus gave rise to a large indica-
tor function response, shown in Figure 5.7. In order to confound the input pattern, we 
then added different fractions of a random pattern, ‘Odour B’ to the original odour. In 
this case, the indicator function was found to reliably identify the presence of ‘Odour 
A’ even when the original learnt odour response was linearly superimposed on the 
distractor odour. To be sure that such a large indicator function response did not occur 
by chance or across all possible stimuli, Figure 5.7 also shows a low indicator func-
tion response in the trained network to a 3rd random odour input presented separately, 
‘Odour C’. Our demonstration of the ability of the network to solve this task corre-
sponds to an important problem of identifying a learnt odour when presented in the 
context of some unknown, distractor, chemical such as in an explosives detection 
task. 
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Fig. 5.7. Indicator functions for the odour identification in interfering background task. The 
network is trained to odour ‘A’ from which indicator function (I.F.) is constructed. Shown is 
the indicator function response for pure odour A and odour A mixed with various concentra-
tions of a distractor odour B. Additionally, an odour C is applied to demonstrate low activity to 
untrained odours. 
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Such biologically-plausible networks will further be considered for their properties 
in complex odour detection tasks that have thus far not been solved using classical 
signal processing and pattern recognition approaches. 

5.3.2   Spatiotemporal Information Measures  

Fisher Information 

In previous work we have discussed and analyzed how Fisher Information can be 
used to quantify the performance of an electronic nose (Sánchez-Montañés and Pearce 
2001, Pearce and Sánchez-Montañés 2003). Basically, the Fisher Information Matrix 
(FIM) F is a square and symmetric matrix of s × s components, where s is the number 
of individual compounds whose concentration we are interested to estimate. In order 
to calculate F we should first calculate the individual FIMs for each sensor j: 
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where Yj is the response of sensor j and c is a vector with the concentrations of the s 
simple compounds. The equation is general in that the sensor response Y may either 
be a time-independent scalar or a time series vector (of dimension L). In this case the 
total FIM for the array is just the summation of the individual matrices for each sen-
sor, Fj. The probability distribution p(Yj|c) represents the noisy response of the sensor 
to a given mixture with concentration vector c (odour space).  

The usefulness of Fisher Information is given by the important property that the 
best square error across all unbiased techniques that use the noisy array responses to 
estimate the stimulus is (see Sánchez-Montañés and Pearce 2001 for discussion) 

)(trace 12 −= Fε  (5.6)

Importantly, the Fisher Information matrix F is closely related to the discrimination 
ability of the system, which is why we consider it in this context. For instance, it can 
be demonstrated that in a two-alternative forced choice discrimination between two 
stimuli (i.e. the system has to determine which of two possible complex odours c1 and 
c2 is being presented), the optimal probability of error P(є) that can be achieved using 
linear sensors is P(є) = 0.5·[1-erf( 0.5 · λ 0.5 )] with λ ≡ ½ · δcT· F ·δc and δc ≡ c2-c1. 

In our previous work we have discussed how to calculate in practice this quantity 
when the temporal patterns of the responses of the individual sensors are not taken 
into account (corresponding to the first mechanism for discrimination identified in 
Section 1). Here we extend and calculate the Fisher Information for the spatio-
temporal case which includes the role of time in the responses. The first step is to 
model the noise in the sensors, which will determine p (Yj | c). 

Dynamic Model of the Noise 

Let us define Yj; c as the noisy temporal response (time series) of sensor j to stimulus 
c. Yj; c is a vector of L components (number of consecutive samples of the sensor). We 
will consider sensors with additive noise, 
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jjj nYY cc += ;;
 

(5.7) 

where cY ;j  is the expected time series response of sensor j to mixture c, and nj is a 

noisy time series that corrupts the individual sensor response. Note that cY ;j  can be 

in principle a time series of arbitrary complexity, for instance a series with four dif-
ferent peaks. In order to calculate the Fisher Information we need to characterize the 
noise dynamics of nj. To first approximation, we model them as first-order AR proc-
esses, which we express in the convenient form 

ξγσγ ⋅−⋅+⋅=+ 21)()1( jjjjj
kk nn  (5.8)

with k є [1, L-1]. Additionally, n j (1) is modelled as a Gaussian random variable of 
zero mean and variance σj

2. In equation 6 and from now on we use parentheses to 
indicate the element of the vector (k) or matrix (u, v) to avoid confusion with sub-
scripts. The coefficients γj and σj depend on each sensor; ξ is an I.I.D. Gaussian vari-
able of unit variance and zero mean. Note that this implies that nj has zero mean,  
variance σj

2 and auto-covariance given by: 

||2)()( d
jjjj dkk γσ ⋅=+⋅nn  

(5.9)

Therefore the noise vector nj is a multivariate Gaussian process with zero mean and 
covariance matrix Nj given by 

||2),( vu
jjj

vu −⋅= γσN  
(5.10)

where Lvu ...,,, 1∈  

Spatio-temporal Fisher Information 

The expected time series response of a linear sensor j to a mixture c is given by (re-
moving the constant sensor baseline): 

i
jiij c AY c ⋅Σ=;  (5.11)

where Ai
j is the expected time series response of sensor j to a unit of concentration of 

single compound i. Equation 9 implies that the sensor response is linear to increasing 
concentration (within some reasonable limit) and to mixtures. We have found that this 
is a good approximation for the composite materials used in our artificial mucosa 
(data not shown). 

Using the previous result that Yj; c is a Gaussian vector with covariance matrix Nj, 
together with equation 3, it is straightforward to demonstrate 

( ) ( )Tv
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Using this equation together with equation 8 and using that sensors are causal (Aj 

(1, k) = 0) we can derive after some algebra the following convenient equation 
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with Bj (i, k) ≡ Aj (i, k) – γ j · Aj (i-1, k). This important equation represents the spatio-
temporal Fisher Information of a noisy sensor within an array. 

Purely Spatial Fisher Information 

It is interesting to calculate how much better the spatio-temporal information is when 
compared to the information carried by sensor responses containing no explicit tem-
poral information. Here we consider the contribution of the three mechanisms com-
bined. In case that just the mean output of each sensor is used in subsequent signal 
processing: 
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it is easy to demonstrate that this mean output is a Gaussian variable with average aj
T · 
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The variance of y j; c can be calculated as: 
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Then the individual Fisher Information Matrices are given by (Sánchez-Montañés and 
Pearce 2001): 
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Fisher Information of the Microchannel to Mixtures of Toluene and Ethanol 

The spatio-temporal Fisher Information Matrix was calculated for the micro-channel 
responding to toluene and ethanol odorants, such as that shown in Figure 5.3. Then 
the trace of the inverse of this matrix was calculated which corresponds to the optimal 
square error that any method estimating the individual concentrations could obtain. 

Importantly, we see that the expected square error when using spatio-temporal in-
formation is always smaller than that error when only spatial information is consid-
ered (Figure 5.8). When using all the 16 available sensors in the array the ratio of the  
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Fig. 5.8. Optimal square error in the estimation of the individual concentrations in mixtures of 
toluene and ethanol, as a function of the sampling time. All available sensors in the array are 
used. Solid: optimal square error є2

sp-temp when the spatial and temporal information in the sen-
sor array is taken into account. Dashed: optimal square error є2

sp when only the spatial infor-
mation is taken into account. 

two square errors is 2.8. When the detection task is much harder, i.e. complex odours 
with large numbers of components, this ratio of the spatial error to spatio-temporal 
error is expected to be far higher.  

In order to investigate more deeply how much improved the spatio-temporal in-
formation is with respect to pure spatial information (for the case of arbitrary mixtures 
of the two pure odours toluene and ethanol), we calculated the ratio of the two opti-
mal estimation errors є2

sp-temp and є2
sp for all the 65,535 sets of sensors that can  

be generated out of our 16 available sensors (Table 5.1). Specifically, for each possi-
ble subset of sensors we have performed analogous calculations as those shown in 
Figure 5.8, and then computed the ratio of the minima of the two curves. Table 5.1 
shows the resulting range of ratios for a given number of sensors. 

Table 5.1. Range of the ratio є2
sp-temp : є2

sp for all the possible combinations that can be gener-
ated out of our 16 available sensors 

No. sensors Improvement No. sensors Improvement 

1 ∞ 9 1.6 – 50 

2 1.5 – 860 10 1.7 – 33 

3 1.4 – 580 11 1.7 – 18 

4 1.4 – 370 12 1.8 – 5.8 

5 1.5 – 270 13 2.1 – 3.9 

6 1.5 – 170 14 2.2 – 3.5 

7 1.5 – 83 15 2.3 – 3.1 

8 1.6 – 72 16 2.8 
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For configurations with only one sensor, the ratio is always infinite since it is im-
possible to estimate the concentrations of the individual compounds from the average 
response of only one sensor, a task which on the other hand is possible to address 
when the temporal information is also considered. For small numbers of sensors the 
improvement of the performance of the system based on spatio-temporal information 
can be several orders of magnitude (Table 5.1), revealing that an artificial mucosa 
optimally designed for exploiting temporal features can increase largely the sensitiv-
ity as well as reduce the number of total sensors.  

The important result of this analysis is that the spatiotemporal information avail-
able from a sensor time series can never be less than purely spatial information (such 
as the mean output over time). By increasing the diversity in the temporal responses 
the ratio of this information can be very high indeed, leading to large improvements in 
discrimination performance. The equations here characterise this explicitly in the lin-
ear case.  

5.4   Conclusions 

Achieving optimal detection performance in machine olfaction means exploiting both 
spatial and temporal sensor array responses, whereas traditionally only the spatial as-
pects have been employed. We have presented a new machine olfaction technology 
that demonstrates an additional mechanism for discrimination in these systems, which 
we have termed an artificial olfactory mucosa, on account of its similarities to biologi-
cal odour delivery systems. The additional discrimination mechanism acts through the 
physical segregation in complex mixtures of odours combined with chemical sensor 
arrays that are distributed in space. Imposing spatio-temporal dynamics in the delivery 
of chemical components, we have shown, can confer additional diversity in the re-
sponses of chemosensor arrays which may form the basis of a new generation of elec-
tronic noses with improved sensitivity, discrimination performance and selectivity.  

Taking advantage of this new sensing approach requires the consideration of both 
space and time during chemosensor array signal processing and classification. Here 
we have emphasised how a spiking implementation of the olfactory bulb, which is 
also biologically plausible, is able to learn and classify different olfactory inputs as 
well as identify particular odour stimuli present within a mixture of interfering dis-
tractor odorants.  

More formally, a new information theory measure has been described which is ca-
pable of quantifying both spatial and temporal information in artificial mucosa based 
chemical sensor arrays. Importantly this analysis has demonstrated that the spatio-
temporal case should outperform the purely spatial case emphasising the importance 
of time in these systems.  

The artificial mucosa arrangement opens various possibilities for optimising both 
spatial and temporal response profiles to particular compounds and mixtures of inter-
est – for instance by configuring sensor position. We are now applying this new in-
formation measure to the optimisation of artificial mucosa configurations to particular 
detection tasks which will uncover underlying design principles for making a new 
generation of complex odour detection devices with improved detection capabilities.  
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Abstract. We present a neuromorphic approach to study the relationship between the response 
of a sensor/instrument to odorant molecules and the perceptual characteristics of the odors. 
Clearly, such correlations are only possible if the sensing instrument captures information about 
molecular properties (e.g., functional group, carbon chain-length) to which biological receptors 
have affinity. Given that information about some of these molecular features can be extracted 
from their infrared absorption spectra, an attractive candidate for this study is infrared (IR) 
spectroscopy. In our proposed model, high-dimensional IR absorption spectra of analytes are 
converted into compact, spatial odor maps using a feature clustering scheme that mimics the 
chemotopic convergence of receptor neurons onto the olfactory bulb. Cluster analysis of the 
generated IR odor maps reveals chemical groups with members that have similar perceptual 
characteristics e.g. fruits, nuts, etc. Further, the generated clusters match those obtained from a 
similar analysis of olfactory bulb odor maps obtained in rats for the same set of chemicals. Our 
results suggest that convergence mapping combined with IR absorption spectra may be an  
appropriate method to capture perceptual characteristics of certain classes of odorants. 

6.1   Introduction 

Smell is the most primitive of the known senses. In humans, smell is often viewed as 
an aesthetic sense, as a sense capable of eliciting enduring thoughts and memories. For 
many animal species however, olfaction is the primary sense.  Olfactory cues are 
extensively used for food foraging, trail following, mating, bonding, navigation, and 
detection of threats (Axel 1995). Irrespective of its purpose i.e., as a primary sense or 
as an aesthetic sense, there exists an astonishing similarity in the organization of the 
peripheral olfactory system across phyla (Hildebrand and Shepherd 1997). This 
suggests that the biological olfactory system may have been optimized over 
evolutionary time to perform the essential but complex task of recognizing odorants 
from their molecular features, and generating the perception of smells. 
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Inspired by biology, artificial systems for chemical sensing and odor measurement, 
popularly referred to as the ‘electronic nose technology’ or ‘e-noses’ for short, have 
emerged in the past two decades. A number of parallels between biological and  
artificial olfaction are well known to the e-nose community. Two of these parallels 
are at the core of sensor-based machine olfaction (SBMO), as stated in the seminal 
work of Persaud and Dodd (1982). First, biology relies on a population of olfactory 
receptor neurons (ORNs) that are broadly tuned to odorants. In turn, SBMO employs 
chemical sensor arrays with highly overlapping selectivities. Second, neural circuitry 
downstream from the olfactory epithelium improves the signal-to-noise ratio and the 
specificity of the initial receptor code, enabling wider odor detection ranges than 
those of individual receptors. Pattern recognition of chemical sensor signals performs 
similar functions through preprocessing, dimensionality reduction, and classifica-
tion/regression algorithms.  

Most of the current approaches for processing multivariate data from e-noses are 
direct applications of statistical pattern recognition and chemometrics techniques 
(Gutierrez-Osuna 2002).  In this book chapter, we focus on an alternative approach: a 
computational model inspired by information processing in the biological olfactory 
system.  This neuromorphic approach to signal processing represents a unique depar-
ture from current practices, one that could move us a small step beyond multivariate 
chemical sensing and in the direction of true machine olfaction: relating sen-
sor/instrumental signals to the perceptual characteristics of the odorant being sensed. 

6.2   Odor Representation in the Early Stages of the Olfactory 
Pathway 

The first stage of processing in the olfactory pathway consists of a large array (~10-
100 million) of olfactory receptor neurons (ORNs), each of which selectively ex-
presses one or a few genes from a large (100-1,000) family of receptor proteins (Buck 
and Axel, 1991; Firestein, 2001).  Each receptor is capable of detecting multiple 
odorants, and each odorant can be detected by multiple receptors, leading to a mas-
sively combinatorial olfactory code at the receptor level.  It has been shown (Alkasab 
et al. 2002; Zhang and Sejnowski 1999) that this broad tuning of receptors may be an 
advantageous strategy for sensory systems dealing with a very large detection space. 
This is certainly the case for the human olfactory system, which has been estimated to 
discriminate up to 10,000 different odorants (Schiffman and Pearce, 2003).  Further, 
the massively redundant representation improves signal-to-noise ratio, providing in-
creased sensitivity in the subsequent processing layers (Pearce et al. 2002).  

Receptor neurons relay their responses downstream to the olfactory bulb (OB) for 
further processing. Receptor neurons expressing the same receptor gene converge 
onto one or a few glomeruli (GL) (Mori et al. 1999; Laurent 1999), which are spheri-
cal structures of neuropil at the input of the OB.  This form of convergence serves two 
computational functions.  First, massive summation of multiple ORN inputs averages 
out uncorrelated noise, allowing the system to detect odorants below the detection 
threshold of individual ORNs (Pearce et al., 2002).  Second, chemotopic organization 
leads to a more compact odorant representation, an odor map that encodes odor iden-
tity/ quality (Friedrich and Korsching 1997). The generated odor maps have also been 
shown to correlate with the overall odor percept (Leon and Johnson 2003; Uchida  
et al., 2000). Hence we will focus on these convergence circuits in this study. 
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6.3   Infrared Absoption Spectroscopy 

Though very little is known about the molecular determinants of an odorant, it is 
widely believed that each glomerulus (to which similar ORNs converge) acts as a 
“molecular feature detector” that identifies a particular molecular property, such as 
type and position of a functional group (Mori et al. 1999) or carbon chain-length 
(Sachse et al., 1999). Information about these molecular features can be extracted 
from their IR absorption spectra, making IR absorption spectroscopy an attractive 
candidate for this study. 
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Fig. 6.1. IR absorption spectrum of iso-amyl acetate (an ester with a fruity smell). Each peak is 
labeled by the functional group responsible for the absorption. 

Infrared radiations are electromagnetic waves whose wavelength lies in the region 
between the visible light and microwaves. When exposed to IR rays, molecules tend 
to absorb these radiations at wavelengths where the radiant energy matches the energy 
of their intra-molecular vibrations. In IR spectroscopy, differences in molecular struc-
ture and inter-atomic bonds between chemicals are exploited to generate unique IR 
absorption spectra that are rich in analytical information (Nogueira et al. in press). 
The entire IR spectrum comprises of three non-overlapping regions, each with a  
distinct purpose: (1) the far-IR region (400-10 cm-1), used for rotational spectroscopy, 
(2) the mid-IR region (4000-400 cm-1), which provides information about molecular 
rotations-vibrations, and (3) the near-IR region (12800-4000 cm-1), used for studying 
molecular overtones and certain combination vibrations. Of particular interest is the 
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mid-IR region, which is further subdivided into the so-called “functional-group” 
(4000-1500 cm-1) and “fingerprint” (<1500 cm-1) regions.  The former contains  
information about the functional groups that are present in the molecule (e.g., alco-
hols, aldehydes, ketones, esters etc.,), whereas the latter contains a global absorption 
pattern that is unique to each organic compound.  A sample IR spectrum (iso-amyl 
acetate; an ester with a fruity smell) obtained from the National Institute of Standards 
and Technology (NIST) Chemistry Web Book database (Linstrom and Mallard 2003) 
is shown in Figure 6.1. Different peaks in the absorption spectrum correspond to the 
various molecular features present in iso-amyl acetate.  

We use a database comprising of IR absorption spectra (wave number range 0 – 4000 
cm-1) of ninety-three chemicals obtained from NIST (Linstrom and Mallard 2003).  
Each feature in the absorption spectrum indicates the intensity of light absorbed by a 
molecule at a particular wavenumber, thus defining a high dimensional odor signal of 
4,000 features. 

6.4   Modeling Receptor Neuron Convergence 

To process high-dimensional experimental data from infrared spectroscopy we adapt 
the ORN convergence model presented by us earlier (Gutierrez-Osuna 2002; Raman et 
al., 2006).  Briefly, this model is based on three principles: (i) ORNs with similar 
affinities project onto neighboring GL, (ii) GLs in OB are spatially arranged as a two-
dimensional surface, and (iii) neighboring GL tend to respond to similar odors (Meister 
and Bonhoeffer 2001; Johnson and Leon 2000).  Therefore, a natural choice to model 
the ORN-GL convergence is the self-organizing map (SOM) of Kohonen (1982).  

To form a chemotopic mapping, we must first define a selectivity measure upon 
which IR absorption features can be clustered together.  In this work, this is 
accomplished by treating the IR absorption at a particular wavelength across a set of 
odorants as an affinity vector: 

[ ]C21 O
i

O
i

O
ii IR,...,IR,IRIR =  (6.1)

where O
iIR is the IR absorption at wavenumber i for odor O, and C is the number of 

odorants (C = 93 in this study).   
The convergence model operates as follows. The SOM is presented with a 

population of IR absorption features (corresponding to each wavenumber), each 
represented by a vector in C-dimensional affinity space, and trained to model this 
distribution. Once the SOM is trained, each IR absorption feature is then assigned to 
the closest SOM node in affinity space, thereby forming a convergence map from 
which the response of each SOM node is computed as: 

∑ =
=

N

1i

O
iij

O
j IRWSOM  (6.2)

where N is the number of IR features (N = 4,000 in this study), and Wij=1 if IRi 
converges to SOMj and zero otherwise. 

To help visualize this model, Fig. 6.2. illustrates a problem with absorption spectra of 
three odors (labeled as A, B and C). The affinities at different wavenumbers are shown 
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Fig. 6.2. Illustration of chemotopic convergence: the relative response to three analytes (labeled 
A, B and C) is used to define the wavenumbers’ affinities (shown as a colorbar). IR 
wavenumbers with similar affinities project to the same SOM node as a result of chemotopic 
convergence. Activity across the SOM lattice can be considered as an artificial odor map. 

as a colorbar below the IR spectra1. The chemotopic mapping is achieved by assigning 
features (i.e., IR wavenumbers) with similar affinities to the same SOM node. The 
activity of the entire SOM lattice is then considered as an artificial odor map. 

This convergence model works well when the different sensors are reasonably 
uncorrelated, since the projection of sensor features across the SOM lattice  
approximates a uniform distribution, i.e., maximum entropy (Lancet et al. 1993; 
Laaksonen et al. 2003). Unfortunately, the population of sensors created through IR 
absorption spectra tends to be over-sampled. As a result, a few SOM nodes tend to 
receive the majority of input, which capture the “common-mode” response of the 
sensor, overshadowing the most discriminatory information. To avoid this issue, the 
activity of each SOM node is normalized by the number of sensor features that con-
verge onto it: 

∑
∑

=

==
N

1i ij

N

1i iij

j
W

IRW
SOM  (6.3)

 

Note that this solution is not driven by biological plausibility but largely by the limita-
tions of the sensors. 

                                                           
1 This is a simplification to illustrate the concept, as the actual affinity space in this case is three 

dimensional. 
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6.5   Results 

To generate artificial odor maps, a population of 4,000 pseudo-sensors generated from 
the IR spectrum is projected chemotopically onto a 10x10 SOM lattice (100 nodes). 
The odor images are then low-pass filtered using a 5x5 Gaussian kernel.  
 

Apple

Pineapple

Apricot

Citrus

Banana

Iso-Amyl Acetate Ethly Butyrate

Ethly PropionatePropyl Butyrate
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Fig. 6.3. Odor maps generated from the IR spectrum using the chemotopic convergence model 
for ten different smell percepts: i) banana, ii) pineapple, iii) apple, iv) apricot, v) citrus, vi) nuts, 
vii) cheese, viii) sweat, ix) minty and x) fat. 
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Fig. 6.3. (continued) 
 

Fig. 6.3. shows the odor maps for ten different smell percepts2 from the IR database. 
The following observations can be made based on the odor images obtained from their 
IR absorption spectrum: 

                                                           
2 The organoleptic descriptors were obtained from Flavornet. 
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(i) Esters that smell like tropical fruits (banana and pineapple) produce similar 
odor maps, which are different from the maps of chemicals with apricots or 
citrus fruits descriptors,  

(ii) Citrus odor maps are similar to those that smell Fatty,  
(iii) Sweat and Cheese also produce similar odor maps, and, 
(iv) Methyl salicylate and Menthol, which are both minty, produce distinct odor maps. 
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Fig. 6.4. Odor maps obtained in the rat olfactory bulb3 for the same ten smell percepts 

                                                           
3 A database of odor maps from the rat olfactory bulb is available at http://leonlab.bio.uci.edu/ 
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Fig. 6.4. (continued) 

Spatial odor images for these compounds in the dorsal part of rat OB are shown in 
Figure 6.4. These odor maps were obtained using optical imaging techniques involving 
2-deoxyglucose uptakes in the dorsal part of the rat olfactory bulb (Johnson and Leon 
2000). Similar to the images obtained from the IR spectra, esters with tropical fruit 
smells produce similar activation patterns across the OB, which is different from 
chemicals with apricot and citrus descriptors. Odor maps for Citrus and Fat descriptors, 
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Table 6.1. List of odorants and their perceptual properties 

Odorant  
number 

Odorant name Perceptual characteristics 

1 Acetyl Pyridine Nuts 

2 Iso-amyl acetate Fruits 

3 Benzaldehyde Nuts 

4 Butanoic acid or Butyric acid Cheese 

5 2,3 Dimethyl pyrazine Nuts 

6 Ethyl Butyrate Fruits 

7 Ethyl Propionate Fruits 

8 Heptanal Citrus, Fatty 

9 Heptanol Fatty 

10 Hexenal Fatty 

11 Hexanoic acid or Caproic acid Sweat 

12 Hexanol Fatty 

13 Methyl Salicylate Minty 

14 Octanol Fatty 

15 Pentanoic acid or Valeric acid Sweat 

16 Propyl Butyrate  Fruits 

17 Iso-Valeric acid Sweat 

 
 
Sweat and Cheese descriptors overlap similar to the IR-generated odor maps. Minty 
smelling Methyl salicylate and Menthol produced distinct odor maps. 
Hierarchical cluster analysis of the seventeen chemicals, shown in Table 1, present in 
both the NIST-IR dataset and the rat OB image dataset reveal similar groupings, as 
shown in Figures 6.5a and 6.5b. In both cases, four distinct clusters can be identified 
that correspond to the following four smell descriptors: Fruits, Cheese or Sweat, Fat or 
Citrus and Nuts. Interestingly, methyl salicylate, which smells Minty, is grouped with 
the nuts category in both cases. Hexanoic acid, which is a fatty acid that smells like 
Sweat, is grouped under Fat or Citrus smell descriptor using the rat OB images and in 
the Sweat cluster using IR odor maps. 

These results suggest that convergence mapping, combined with IR absorption 
spectra, may be an appropriate method to capture perceptual characteristics of certain 
classes of odorants.  

6.6   Discussion 

What molecular features contribute to the overall percept of smell still remains an open 
question in olfaction. Three theories have been proposed in an attempt to relate 
molecular properties of an odorant with its overall quality: vibrational, steric, and 
odotope theories (Dyson 1938; Moncrieff 1949; Shepherd 1987). The vibrational 
theory first proposed by Dyson (1938), revisited first by Beck and Miles (1947) and 
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later by Wright (1982) and Turin (1996) (Lefingwell 2002), suggests that vibrations 
due to stretching and bending of odor molecules are the determinants of odor identity 
and quality4. On the other hand, the steric theory initially put forth by Moncrieff (1949) 
and later extended by Amoore (1970) (Lefingwell 2002) proposes that odor quality is 
determined by the shape and size of the odorant molecules. More recently, the odotope 
or weak shape theory was proposed by Shepherd (1987). According to this theory, 
odor quality is determined by various molecular features of an odorant (commonly 
referred to as odotopes), such as carbon chain length or different functional groups.  
It is important to note that IR absorption spectroscopy is in fact the basis of the 
vibrational theory of olfactory reception. This theory has been found to be limited in 
terms of explaining structure-odor relationships (Rossiter 1996). First, enantiomers, 
molecules that form non-superimposable mirror images of each other, have identical 
IR absorption spectrum, yet they can smell differently. e.g., the S- and R- enantiomers 
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Fig. 6.5. Dendrograms (complete-linkage) revealing similar clusters a) from OB odor maps b) 
from artificial odor maps formed from their IR absorption spectra. The seventeen common 
chemicals found in both databases used in this study are listed in Table 6.1.   

                                                           
4 Readers are referred to (Keller and Vosshall 2004) where using psychophysical tests the au-

thors have found that vibrational theory alone cannot explain the overall smell of an odorants. 
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Fig. 6.5. (continued) 

of carvone have smells of caraway and spearmint, respectively. Second, isotopic 
substitution affects the IR spectrum but does not change the perceived smell. Hence it 
is important to realize that, in the general case, it will not be possible to predict the 
organoleptic properties of chemicals from their IR absorption spectrum alone. 
Nevertheless, IR spectroscopy has been successfully employed in the food and 
beverage industry for determining their chemical composition (fat, fiber, moisture, 
carbohydrates etc.,), demonstrating that this method might be well suited for process 
monitoring and control in these applications (Li-Chen et al. 2002; Anderson et al. 
2002; Osborne and Fearn 1988). 

The neuromorphic scheme employed an affinity space to cluster sensor features 
with similar selectivity. Conventional statistical pattern recognition approaches for 
clustering operate in the feature space, where each input dimension corresponds to a 
particular feature (or sensor). Figure 6.6a shows a hypothetical example where multiple 
samples from two odorants (A, B) have been sampled with a two-sensor array (S1, S2). 
Samples that belong to the same (odor) class cluster together in feature space, as shown 
in Fig. 6.6. a. In contrast to feature space, each dimension in affinity space corresponds 
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Fig. 6.6. Clustering in feature space and in affinity space.  (a) Samples of the same class pro-
duce similar response across sensor array, and therefore cluster together in feature space.  (b) 
Features that produce similar response to different odors (classes) cluster together in the affinity 
(class) space.   

to a particular (odor) class.  Features that provide similar information regarding the 
different classes cluster together in the affinity space.  As an example, in Fig. 6.6. b all 
features of type S1 provide high response to class B and low response to class A; as a 
result they can be clustered together.  In contrast, all features of type S2 provide high 
response to class A and low response to class B, therefore form a separate cluster. This 
basic principle underlies the proposed chemotopic convergence model. A more 
detailed treatment on the novelty of this approach and its formulation as a 
dimensionality reduction technique can be obtained from Perera et al. (2006)5. 

6.7   Summary 

We have presented a neuromorphic approach for correlating instrumental/sensor data 
of odorants with their organoleptic properties. This approach comprised of two 
complementing components: (1) a model of early olfactory processing, which provides 
odor images that are qualitatively similar to those observed in the OB of animals, and 
(2) an instrument (IR spectroscopy) that provides high-dimensional data and captures 
some information consistent with the odotope theory. Our results show that artificial 
odor maps of chemicals generated from their IR absorption spectra form clusters that 
match those obtained by clustering the rat OB images of the same set of chemicals. 
More interestingly, each of these clusters uniquely identified a specific smell 
descriptor: Fruits, Cheese or Sweat, Fat or Citrus and Nuts.  Though encouraging, our 
results are preliminary at best, as our analysis is limited to those odorants that are 
common among the NIST and Leon Lab’s databases. Further investigations are 
required to study the relationships among the three representations of an odorant: 

                                                           
5 A related approach to evaluate contribution of a single element in a sensor array has been 

independently proposed by Niebling and Muller (1995). 
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stereo-chemical molecular features (Pelosi and Persaud 2000), olfactory bulb images 
(Johnson and Leon 2000), and organoleptic descriptors (Dravnieks 1985). However, as 
rightly pointed out by Sell (2006), the complexity of the problem might make such 
relationships hard to uncover.  
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Abstract. In this paper a novel approach to bio-inspired signal processing for artificial olfac-
tory system is proposed. This method is easy to implement in a Field Programmable Gate Array 
and allows managing a large number of sensor signals using a single chip. It is based on a direct 
spike conversion of the sensors signals and on the introduction of a digital glomerular signal 
processing of the spike train. The performance of the method has been compared with standard 
data analysis also in presence of noisy data. 

7.1   Introduction 

Chemical sensor arrays were first introduced at mid eighties as a method to counter-
act the lack of selectivity of gas sensors (Zaromb and Stetter 1984). Persaud argued 
that besides these practical scopes chemical sensor arrays had a very close resem-
blance to the mammalian olfactory system opening the way for the advent of artifi-
cial olfactory systems (Persaud and Dodd 1984). Moreover with the increase of 
comprehension of the mechanisms of natural olfaction, it has been possible also to 
implement in artificial olfactory systems bio-inspired structures not only at high 
level of abstraction but also as signal processing architectures (Pearce et al. 2001a, 
Pearce et al. 2001b). Several researchers studied and implemented bio-inspired ap-
proached to artificial olfaction. Pearce and co-authors designed and realized a bio-
inspired chip attempting to replicate the functions of the natural olfaction from the 
receptors up to the glomerular level (Pearce et al. 2005). Before these works, Kauer 
et al. suggested the opportunity to use a bio-inspired neural network for the chemical 
sensor array data-analysis (White and Kauer 1999). Another interesting approach 
towards bio-inspired artificial olfaction was presented by Allen and coauthors (Allen 
et al. 2002, Allen et al. 2004), that studied the possibility to implement a natural ol-
faction signal processing strategy directly on Field Programmable Gate Arrays 
(FPGA) using the Address Event Relationship (AER) with different types of digital 
counters characterized by specific thresholds. In this way, with a single FPGA chip 
was possible to process more than one thousand sensor signals. Other authors had 
put their attention to develop biologically derived signal processing and pattern  
recognition methods for chemical sensor array (Perera et al. 2006, Gutierrez-Galvez 
et al. 2006, Raman and Gutierrez-Osuna 2006).  
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Recently we showed that a spike encoding of the sensor signal not only preserves 
the same information content of the analog sensor signal (Martinelli et al. 2006), but 
using a software version of the Integrated and Fire circuit and modulating its threshold 
is possible to improve the recognition obtaining performances that were in some cases 
better than the standard chemical sensors data treatment. 

In this work, starting from these previous results, an approach to chemical sensor 
signal processing is proposed. This approach is based on an electronic sensor interface 
that converts analog sensor signal into a train of spikes, with a classic Integrated and 
Fire circuit, and a novel digital signal processing strategy that allows to process the 
spikes train incorporating some findings about the glomerular excitation due to simul-
taneous inputs (Friederich and Stopfer 2001). Results confirm that this method is of 
certain interest from the pattern recognition point of view. 

7.2   Method Description 

The proposed approach is a contribution towards the development of artificial systems 
mimicking as much as possible the natural olfaction. To reach this goal, the artificial 
olfactory system illustrated in Figure 7.1 is introduced. The system is composed, for 
each kind of receptor, by three fundamental blocks of the biological olfaction: Olfac-
tive Epithelium, Olfactive Receptor Neuron, Glomerulus. The artificial epithelium is 
formed by sensor receptors, and in the example here discussed, it is represented by a 
resistance whose change is produced by the interaction of the sensor with the odorant 
airborne compounds. The Artificial Olfactive Receptor Neuron (AORN) is defined as a 
unit transforming the change of resistance into a spikes sequence. 

 

Fig. 7.1. An overview of the proposed bio-inspired architecture of the artificial olfactory 
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In Figure 7.2, a simple version of an electronic circuit that performs this function is 
shown. The circuit is based on the well-known Integrated and Fire Circuit where the 
sensor resistance bridges the op-amp positive input and the voltage supply Vi (Indiveri 
et al. 2006, Wold et al. 2001). 

In this circuit, the relation between resistance change and spikes rate is provided by 
the following equation: 

ΔT = −RSensorC ⋅ ln 1− VTh

Vi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (7.1)

where ∆T is the time interval between two consecutive spikes, C is the capacitance, Vth 
is the voltage threshold and Vi is the voltage applied to the sensor resistance. An in-
hibitory interval has also been implemented adding a voltage pulse to the threshold 
voltage immediately after a spike emission. In the following sections, the inhibitory 
time interval will be maintained constant. 

In order to compare the response of the sensor interface with the ORN output spik-
ing rate, they have been considered sensors with a resistance time evolution in pres-
ence of a step of chemical stimulus ruled by the equation: 

Rsensor t( )= Rbaseline + ΔR gas,conc( )*e
−

t− t0

τ
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ * u t − t0( ) (7.2)

where the ΔR is dependent by the kind and the concentration of the gas. If it has been 
also considered that all the sensors follow the Langmuir isotherm and the ΔR is corre-
lated with gas concentration through the relation 

ΔR = A *
K1 *conc

K2 + K1 *conc
Ω[ ] (7.3)

where K1 and K2 are the affinity constants and A is a scale factor. 

 
Fig. 7.2. A simple sketch of a Integrated and Fire version where the sensor is represented by the 
variable resistance R 
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a) 

 

b) 

 

Fig. 7.3. a) A typical Langmuir isotherm behavior of a sensor resistance as a function of gas 
concentration; b) the spiking frequency rate of the integrated and fire circuit connected with the 
sensor resistance of the Figure 7.3a 

In the Figures 3a and 3b the ΔR and the spiking frequency rate of the AORN of  
Figure 7.2 as function of the concentration are shown. 

It is interesting to remark as the behavior of the spiking rate is similar to the typical 
behavior of the ORN (Rospars et al. 2000). 

The Glomerular block, hereafter called Digital Glomerular block, transfers the spike 
processing from the analog to the digital context using the spike persistency block (see 
Figure 7.4). This sub system, that can be also considered as part of AORN, has a simi-
lar function of the dendrites-synapses and permits to transform the analog spike into a 
digital one but also it gives a time length of the spike that can be bigger than the  
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smallest digital event representation (the smallest time interval managed from the clock 
system). The spike persistency does not produce an overlapping in the spike emission 
because the time scale of the spiking rate is more than one order of magnitude slower 
of the clock frequency using in the digital context. Moreover, this block represents an 
essential characteristic of the proposed architecture because the time length modulation 
of the spike can simulate the synaptic behavior and it could be used as learning  
parameter to realize a possible adaptation algorithm. 

The digital glomerulus, realized by a combination of logic ports, produces an output 
spike when a certain number of contemporaneous spikes coming from the ARONs are 
presented to its input. Figure 7.5 shows the work principle of the digital Glomerulus 
that gives an output spike with at least three contemporaneous input spikes.  

The example illustrates that it is possible to obtain a sequence of spikes that takes 
into account the number of the input spikes and the time intervals between them. The 
spike persistency modulation can increase or decrease the contribution of the single 
AORN in the glomerula output  modulating the time length of its pulse. Another  
 

 

Fig. 7.4. The principle of the Spike Persistency Block. This block provides to enlarge the spike 
duration. 

 

Fig. 7.5. The digital glomerulus functioning. In this case a digital glomerulus realized by an 
AND logic port with three input. The bigger is the output spike the more synchronized are the 
input spikes. 
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feature of the spike persistency is the spike length patterns produced at the glomerula 
output that express the synchrony of the input AORNs signals. 

To test this novel architecture as a tool for classification, a simulated experiment 
was performed. The case of chemo-resistive sensors was considered because of the 
simple involved electronics. This class of sensors is rather wide and can include sen-
sors based either on inorganic (e.g. metal-oxide semiconductors) or organic (e.g. con-
ducting polymers) sensitive materials. The concepts here illustrated can be extended, 
with a proper modification of the AORN architecture, to different kinds of chemical 
sensors. Actually, the features of the olfactive epithelium define the following structure 
of the AORN.  

7.2.1   Details of Simulated Experiments 

A simulated experiment aimed at classifying three odorants was designed to test the 
consistency of the proposed signal processing method. An array of eight chemically 
sensitive resistances were considered. The sensor resistance was supposed to change 
during the exposure to the odorant molecules, according to the equations 2 and 3. At 
t=t0 the sensor begins to interact with the odorant species. It is worth to mention that 
Eq. 7.2 is coherent with the adsorption of molecules onto a surface where a limited 
number of receptors are available.  

Each sensor is characterized by different value of RBaseline, ∆R and τ, where ∆R and 
τ change also in presence of the different odorants.  

Although in the biological olfaction, the glomerulus has as inputs neurons with the 
same kind of receptors, in order to test processing capability of the Digital Glomeru-
lus and spike persistency block, it was considered that the neurons connected to the 
glomerulus could have also different kind of receptors. This simplistic solution allows 
studying the proposed approach through relatively simple simulations maintaining the 
validity of the results in more extensive context. Actually the purpose of this work is 
to increase the number of paradigm of the natural olfaction in the artificial sensorial 
system trying to implement biological models in a digital context. 

To explore the potentialities of this approach, two different kind of digital glomeru-
lar blocks were considered. They differ in the number of contemporaneous input spikes 
necessary to produce the same event at the output, the cases of two (G2) and four (G4) 
spikes were investigated first separately and subsequently together (G2+G4) to under-
stand the information content brought by the two blocks. 

In order to extract the features from the glomerular spiking signal, the output is di-
vided in seven equally distributed intervals over the entire simulation time. The num-
ber of spikes occurring in each interval represents the features pattern of the array  
to the odorant exposure (Rospars et al. 2000). To evaluate the odour identification 
properties of the proposed signal processing architecture, a discriminant analysis of the 
feature patterns were performed. 

Discriminant analysis indicates a manifold of different algorithms and among them 
particularly interesting is the Partial Least Squares Discriminant Analysis (PLS-DA) 
that is a particular way of use of PLS, an algorithm originally developed for quantita-
tive regression (Chicca et al. 2004). PLSDA is here used as simple method to evaluate 
the proposed signal processing architecture and the Leave One Out Cross Validation 
(LOOCV) were applied as validation procedure. 
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To realize the dataset for the data analysis the following characteristics were taken 
into consideration: 

• Three odour classes were defined through the selection of sensors pattern pa-
rameters for each class. In the simulation dataset one hundred samples for each 
class were considered and the same sensor is characterized by the same baseline 
for all the dataset. 

• to study also the noise rejection, a random noise term (n(t)) was added to the 
sensor signal through the following equation 

RSensor
Noisy t( )= RSensor t( )⋅ 1+ NoisePercentage

100
n t( )⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟  (7.4)

• Olfactory epithelium and AORN were simulated in PSPSICE 9.2 environment 
(Chicca et al. 2004). Spike persistency and digital glomerular block were simu-
lated in Matlab. 

• The simulation time was set to 30ms that corresponds to the time necessary to 
the sensor resistance to steady value. This is to avoid that the output files ob-
tained by PSPICE 9.2 exceeded the file size processable by Matlab (Orcad). 

• Each simulation of the entire process has been repeated twenty times and the 
mean value of the recognition performances was considered. 

The performances of the proposed method are compared with the shift between the 
two steady resistance values (called DR) corresponding to the equilibrium in the clean-
ing and measuring phase. Each of two equilibrium values has been calculated in pres-
ence of noise as the mean value of the ten consecutive samples. 

7.3   Results and Discussion 

Figure 7.6 shows the results obtained using as inputs of the PLS-DA the time distribu-
tion of the output spikes of the G2 glomerulus. The classification rate is represented as 
function of two parameters: the spike length and the percentage of the added noise. It 
appears clear as increasing the noise level the performances decrease but it is also in-
teresting to observe how the highest classification rate is always obtained with a spike 
length interval between 6 and 8. This means that an optimal spike length to maximize 
the performances exists independently by the noise. The G4 results are shown in the 
Figure 7.7. The recognition performances behavior is completely different from the 
G2. In this case also in presence of high level of noise (80% of added noise) the classi-
fication rate is always over the 75% but for an high value of the persistency length of 
the spike.  

For the spike persistency value of 4 in presence of 70% of added noise a local 
minimum in the classification rate is observed. This situation is produced by the data 
under study and it is not correlated to the proposed approach.  

It is interesting to observe that the two kinds of glomerulus have different behaviors 
in presence of noise and because they represent different projections of information 
content. In the Figure 7.8 the three dimensional graph of the recognition performances 
of the model obtained using as inputs both the glomerulus features (G2+G4) is shown. 
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Fig. 7.6. The three dimensional graph of the recognition performances of the PLS-DA model 
built using as input the time distribution of the G2 glomerular spikes. The plot is function of the 
added noise (%) and the spike persistency length. 

Fig. 7.7. The three dimensional graph of the recognition performances of the PLS-DA model 
built using as input the time distribution of G4 (b) glomerular spikes. The plot is function of the 
added noise (%) and the spike persistency length. 

 
In this case, the performances remain higher than the two separate glomerula cases. It 
is reasonable to suppose that the information contents of the G2 and G4 are not com-
pletely overlapped. It is important to remark that also in this case there is an optimal 
length of the spike (6-7). 
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Fig. 7.8. A three dimensional graph of the recognition performances of the PLS-DA model built 
using as input the time distribution of the G2 and G4 glomerular spikes. The plot is function of 
the added noise (%) and the spike persistency length. 

The Figure 7.9 shows a comparison between the best performances of the Glomeru-
lar approaches and those obtained with the correspective DR value. From the graph it 
is possible to observe an interesting character of the G2 and G4 performances. They 
have a similar evolution to the DR feature after 20 % of added noise. The model that 
has as input both G4 and G2 after 70% of added noise results to be the best one. This 
means that in a very noisy environment, to obtain a reliable value of the resistance shift 
(DR), it is necessary to calculate the mean value with more than ten samples. On the 
other hand, the glomerular approach maintains a good discrimination and, as a conse-
quence, a good noise rejection. 

After this first phase, it was investigated the recognition power of the different time 
portion of the glomerular signal. To do this, different PLS-DA models have been built 
utilizing as input increasing portions of the glomerular signals (the smallest interval 
considered was 5ms, the bigger one 30ms and the increasing step was 1ms). The fea-
ture were calculated counting, as done in the previous case, the number of spikes in 
each of the seven intervals (equally distributed) that divided the simulation time  
considered in the analysis. 

The results are shown in the Figure 7.10 a-c where the performances of the G2, G4 
and G2+G4 are plotted as function of the time interval from the beginning of the 
measure and spike length. Figure 7.10a shows a independent behavior respect the time 
intervals. This means that it is necessary only the first 5 ms of simulation in order  
to extract the total amount of system recognition power. In the case of G4 results  
(Figure 7.10b), the independent character versus the simulation time showed for G2 is 
maintained. Anyway, the simulations show a monotonically improvement of the per-
formances increasing of the spike persistency length. Similar graph is obtained using as 
inputs the features of the two glomeruli (Figure 7.10c). The maximum performances 
are obtained from the persistency length in the range 4-10. The classification rate is 
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Fig. 7.9. A comparison between the best performances of the DR and the glomerular features 
has been considered as function of the added noise 

Fig. 7.10. The plot of the PLS_DA model classification rate as function the time portions and 
spike persistency considered as input the features extracted by G2 (a), G4 (b) and both G2 and 
G4 (c) 
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better than the other two cases confirming the assumption related to the different  
information content brought by the two glomeruli. 

It is possible to do some consideration after the simulated experiment results: 

• The system architecture is able to maintain the information content of the sensor 
measurements and the glomerular processing with the spike persistency block 
gives performances that are comparable to the standard processing algorithm. 

• The spike persistency approach allows to find the optimal length of digital spike 
using a learning rule. In this way it can be possible to implement both supervised 
and unsupervised algorithm in simple way. 

• The proposed structure is modular and then it is possible, easily, to built a system 
where several ARONs boards are connected to different glomerular processing 
units.  

It is worth to remark that a different number of time intervals in the feature  
extraction could produce not the same performances. Nevertheless, the study of the 
optimal interval division of the simulation time from recognition point of view is out of 
the scope of this work that has as main goal to show the goodness of the proposed  
architecture. 

7.4   Conclusion 

An alternative approach to realize a bio-inspired artificial olfactory system is pre-
sented. This system is based on the definition of an artificial olfactory Receptor neuron 
and a Digital Glomerulus block. It is also introduced the spike persistency approach 
that can allow to transfer in a digital context the glomerular processing. To test the 
structure a simple simulated experiment is performed and the results showed that this 
approach it is also interesting not only as a merely bio-inspired method but it can rep-
resent an interesting tool to study as a possible useful processing technique. It is also 
important to remark the flexibility of the spike persistency block that can be also util-
ized to realize a learning algorithm that uses the persistency lengths as learning pa-
rameters. Nevertheless, further studies have to be done in order to investigate other 
possible digital configurations of the glomerulus block aimed to maximize the infor-
mation processing and to introduce a modulation of the inhibitory block and to test the 
structure with real sensors in a experimental application. 
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Abstract. Artificial olfaction system (the so-called electronic nose) is a very promising tool to 
monitor the malodour in the field. Usual odour measurement techniques use human olfaction or 
analytical techniques. The first category represents the real odour perception but is not applica-
ble to measure in continuous bad odours in the field. The second class of techniques gives the 
composition of the mixture but not the global information representative of the odour percep-
tion. The e-nose has the potentialities to combine “the odour perception” and the “monitoring in 
the field”. However to be able to reach this goal, the signal processing has to be adapted to 
work in complex environment. We have more than ten years experiments in the measure of 
environmental malodours in the field and this paper presents the minimal requirements that we 
consider essential for artificial olfaction system to become successful for this application. 

8.1   Introduction 

Among all pollution problems, odour annoyance is considered as an important envi-
ronmental issue since it induces a great number of complaints and conflicts between 
the residents and the industries. That growing environmental concern has led local 
authorities to consider odour policies to regulate the odour annoyance. Efforts to 
manage odour problems and to try to limit the exposure in the neighbourhood are 
necessary and, of course, the identification and the quantification of odour emission 
and exposure are very important aspects concerning the compliance with environ-
mental regulation. As the sensitivity to odour involves the highly subjective reaction 
of individual persons, developing and testing reliable measurement techniques consti-
tute really important challenges when dealing with olfactory pollution. 

In this framework, the state-of-the-art generally reports two complementary types 
of measurement methods: human olfaction methods and analytical techniques (Van 
Harreveld 2003, Lammers et al. 2004, Stuetz et al. 2001). 

Human olfaction measurement considers the odour as a global concept and pro-
vides the true dimensions of the human perception. Yet, physiological differences in 
the smelling of various people often lead to subjective results with large uncertainties. 
Analytical techniques identify the various volatile compounds involved in the  
odour and give their chemical concentration. They have better scientific standing than 
sensory methods. However, the chemical composition of the gas mixture doesn't  
represent the odour perception. 
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A third and original concept is promising for measurement of malodour in the en-
vironment: the artificial olfaction. The so-called "electronic nose" instrument emerged 
at the beginning of the nineties thanks to some analogies with the biological sensing 
system. The instrument, based on non-specific gas chemical sensors array provides a 
suitable technique for in site monitoring of malodours. Published studies report attrac-
tive results (Bourgeois et al. 2003). However a number of limitations are associated 
with both the properties of chemical sensors and the performances of the signal proc-
essing. To meet the requirements of this environmental use of artificial olfaction sys-
tem, the signal processing method must be simple, but not simplistic, and capable of 
generalisation. It must be tolerant to hardware weaknesses and adapted for application 
in the real life. 

8.2   Usual Methods to Measure the Odour Pollution 

8.2.1   Human Olfaction Measurement 

Odour Dimensions 

Besides the stimulus, which is a mixture of volatile compounds at given concentra-
tions, the processing of the odour information by the brain is rather complex and leads 
to a multidimensional sensation. Three main dimensions can be considered: the inten-
sity, or the "strength" of the odour, the quality, or the nature of the odour and the he-
donic tone, or the affective reaction to the odour. 

Intensity refers to the perceived strength of the odour sensation. To generate such 
perception, the physical stimulus, i.e. the mixture of odorous molecules, must be de-
tectable. That means that its concentration must exceed a given threshold.  

The relationship between the perceived intensity and the concentration of the 
stimulus, or the odour concentration, is non-linear and depends on the nature of the 
odorants.  

Two famous psychophysical laws express this relationship: the Stevens and the 
Weber-Fechner laws (Nicolas 2001, Misselbrook et al. 1993, Sperber et al. 2003). 

The intensity can be measured by ranking the odour impression on a predetermined 
scale or by comparison with a series of samples of known concentration of a reference 
substance (see for example VDI guideline 3882 -1997- Determination of odour  
intensity). 

The notion of odour concentration is based on the works of H. Zwaardenmaker, a 
Dutch scientist and early investigator of the olfactometry. By definition, the odour 
concentration, expressed in odorous unit per cubic meter (ou/m3) is the dilution factor 
of the odour sample in clean air in order to just become odour free, i.e. to reach the 
perception threshold for an "average" person.  

The dynamic olfactometry is the official method by which different dilutions of the 
gas sample are dynamically presented to trained assessors to determine the odour 
concentration of the original sample. When the European standard method (EN13725 
-European standard “air quality”- Determination of odour concentration by dynamic 
olfactometry, 2003) is used, the concentration is expressed in ouE/m3 (with the sub-
script E).  
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The second dimension of the odour is its quality, expressed in descriptors, or words 
that describe the smell, such as fruity, woody, sour, pungent (Dravnieks 1992). Con-
trary to perfumery or oenology, there isn't any standardised list of words to qualify 
environmental odours and the odour quality is usually associated with its origin, i.e. 
the emission source. 

The third dimension is the hedonic tone, or the category of judgement of the rela-
tive like (pleasantness) or unlike (unpleasantness) of the odour. That is an emotional 
level of reaction which is assessed in accordance with a given category scale, from 
"extremely unpleasant" to "extremely pleasant" (see for example VDI guideline 3882-
2-1994- Determination of hedonic odour tone). 

Odour Annoyance Criteria 

More specifically for environmental odours, the whole process from the formation of 
odorants to the complaint action may be complex. It implies many contributing fac-
tors and conditions at the different steps. 

So, the terminology usually distinguishes the annoyance from the nuisance. An-
noyance is simply the negative appraisal of an odour, but nuisance is the cumulative 
effect on humans, caused by repeated events of annoyance over an extended period of 
time, that leads to modified or altered behaviour. And, finally, significant odour nui-
sance may trigger a complaint to a regulatory authority. 

Five factors are generally identified in relation to odour impact (Hayes et al. 2006, 
Schauberger et al. 2001). 

Those are the five "FIDOR" (or "FIDOL") factors: 

•    Frequency, or the number of times an odour is detected over a specific time 
period, 

•    Intensity, or the strength of the odour, as defined above, 
•    Duration, or the length of exposure, 
•    Offensiveness, or the hedonic tone, 
•    Receptor, (or "Location") including the physiological, social and economical 

aspects of the individual perceiving the odour. 

Besides the quantitative and qualitative dimensions of the odour, the annoyance is 
thus chiefly governed by the tolerance and the expectation of the receptor as well as 
by the time dimension.  

The location of the odour event receptor determines how objectionable the odour 
event is. In some locations certain odours may be more acceptable than in others. For 
example, breeding smells may be better accepted in rural area or a given industrial smell 
sometimes does not generate complaints if the company is a job provider for the region. 

Concerning the time dimension, frequency and duration may be measured using 
odour-hours, i.e. the number of hours of odour perception for a given location. 

Time variation is actually one of the main specificities of environmental odours, 
which could invalidate values obtained only by some spot measurements.  

For instance, some investigations carried out on 9 landfill sites in Belgium showed 
that a wide variety of odour emissions are generated by waste. They are conveniently 
separated into the specific activities, such as active tipping of the waste, its 
transportation by disposal trucks, its intermediate storage and the handling process 
after the garbage deposit. On the investigated sites the main odour problem was 
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caused by the handling of the fresh waste, which is an intermittent activity and which 
makes difficult the sampling of the gas emitted at the landfill working face (Nicolas  
et al. 2006). 

8.2.2   Analytical Techniques 

Chemical analysis like gas chromatography coupled to mass spectrometry (GC-MS) 
carried out in the lab on the basis of samples collected on adsorbent cartridges does 
not allow monitoring the odour fluctuation in real time.  

Alternatively, hand-held specific field detectors allow direct measurement and con-
tinuous operation. Particular volatiles, such as hydrogen sulphide, ammonia or total 
reduced sulphur (TRS), can be continuously recorded and a sudden signal rise can be 
considered as a sign of the odour emergence for a given source.  

However, it is true only if the particular volatiles are correlated to the concentration 
of the odour of interest. Measuring odours with too specific gas detectors is only 
suited for emissions with well known gaseous compositions. Moreover, for industrial 
sites characterised by various gas releases, different types of emission can generate 
the same signal.  

8.3   Artificial Olfaction for Measurement of Odour Pollution 

8.3.1   Interest for Environmental Application 

Artificial, but biological-inspired odour measurement methods constitute attractive 
alternatives to the use of human panels to assess the odour pollution in the environ-
ment. The evaluation of odour annoyance in the field requires indeed objective ap-
proaches and, if possible, means to monitor relevant odorants by a continuous way, 
even in complex mixtures. 

The electronic nose principle exploits that lack of relative specificity to typical 
gaseous analytes by considering the pattern of sensor signals as global response to the 
gas mixture. Such bioinspired strategy opened the door in the early eighties to new 
prospects for those devices that try to mimic the human olfactory system. They in-
clude indeed similar corresponding components: the array of chemical sensors, the 
data processing unit and the pattern recognition engine respectively for the olfactory 
receptor cells, the olfactory bulb and the brain. Many pattern recognition techniques 
used to identify the signal patterns apply also bioinspired algorithms, such as artificial 
neural networks. 

One of the main advantages of the electronic nose for malodour measurement is 
the possibility to use it as a field continuous monitor of odorous emissions (Nicolas 
and Romain 2000). This technique has probably the best potentialities to answer to 
the expectations of the various actors of the environmental problems in relation with 
the odour annoyance. 

8.3.2   Stepwise Methodology 

To develop an artificial olfaction system and to build the pattern recognition and the 
odour regression model for this kind of application, we use a stepwise methodology.  
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The first action to be undertaken is a visit in the field in order to investigate the 
problem. Then the selection come and the development of the method according to 
the field criteria and limits. First options are taken and a first prototype is developed 
and tested in the lab. 

A second field campaign is then organised to test the system and to gather some 
preliminary data to get some proofs before going back a second time in the lab and 
improving and correcting eventual identified problems.  

When the instrument is considered good enough to be carried in the field, then, the 
learning phase begins. It requires the presence of the operator in the field during sev-
eral hours and several days to validate each sensor signal variation by sensory obser-
vations. Such stage is fundamental to feed the pattern recognition procedures with 
sufficient data, based on a huge number of various ambiences, to build robust classifi-
cation and regression models.  

A further step in the lab aims at verifying the models in different conditions and 
with various observation samples. Then a last validation step is carried out in the 
field. 

Such to-and-fros between field and lab result in a final system able to meet field 
requirements and to bring an optimum solution to the problem. 

That quite heavy process must be repeated for each new application, because e-
nose is not a universal tool. The only way to guarantee accurate recognition and/or 
odour concentration prediction is to dedicate the instrument to a specific final utilisa-
tion. Dedicated hardware and dedicated signal processing are keys of the e-nose 
credibility. 

8.3.3   Variability of the Operating Conditions 

Real life field conditions are never reproducible. For the same site of interest, diverse 
activities, different process management strategies or various raw material composi-
tions induce highly variable emissions. 

As a result, for one odour source, there are many different mixtures of compounds.  
So, the various observations belonging to one class of signal patterns are far from 

being homogeneous.  
Figure 8.1 shows two different chromatographic profiles for the same malodorous 

source. 
Other sources of variability are the meteorological conditions. They influence the 

rate and the composition of the generated odour and affect its dispersion. But they 
also exert an effect on the gas sensor behaviour (e.g.: signal variation due to humidity 
change). 

Each of those temporal disturbances induces specific signal variation. It contains 
relevant pieces of information, of different types, and which should not be confused 
with noise, which is random and erratic. So, to be able to recognise the malodour in 
the background, among other gaseous emissions, and, for example, to send a warning 
signal when the odour level rises up above a worrying threshold, or to assess an an-
noyance zone in the surroundings on the basis of the sensor responses or to use the 
measured signals to control an odour abatement technique, it is essential to extract 
just the signal pattern corresponding to the targeted emission and to appraise a signifi-
cant deviation of the global response from the "normal" margin.  
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Fig. 8.1. Gas chromatograms obtained by sampling the same odorous source (in a compost 
shelter) two different days 

 
Figure 8.2 illustrates the time evolution of the conductance of tin oxide gas sensors 

placed in the ambience of a composting process. Short time signal variations are 
clearly identified over the noise level and are due to local handlings of compost mate-
rial. Some other external causes induce diurnal or seasonal variation. 

For all those above reasons, trying to classify environmental odour sources in real 
life with pattern recognition techniques gives rise to a spread of observation points in 
the different clusters. For the signal processing, that implies to have a great number  
of samples in order to consider the various conditions and chemical compositions.  
But that induces a high dispersion of the data of a same class and/or of the same  
concentration. 

The data dispersion is shown in principal component analysis (PCA) scores plot 
(Figure 8.3). The projection in the two first components plane of the PCA highlights 
the effect of the variability of the operating conditions on the data.  

Such dispersion is the normal image of the large number of samples, collected in 
many different conditions and with various chemical compositions.  
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Fig. 8.2. Example of time evolution of 6 tin oxide gas sensors (FigaroTM sensors) in the ambi-
ence of a composting plant 

 

 
Non-odorous 

background air 
Compost malodour 

 

Fig. 8.3. PCA sores plot for measurements with a lab-made e-nose (array of 6 FigaroTM sen-
sors) in a composting plant. The high variance of the data is due to the variability of the operat-
ing conditions. 
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In Figure 8.3, the points in the transitional region between "compost odour" and 
"odourless background" simply represent less odorous compost ambience or slightly 
loaded background ambiance. 

Moreover, to be able to operate in the environment as an efficient stand-alone in-
strument, with minimum maintenance, the hardware of the electronic nose has to cope 
with harsh ambient conditions: dust, humidity, vibration, etc. 

And, last but not least, one of the most severe requirements for an instrument  
aiming at detecting olfactory annoyance is the fact that -contrary to many chemical 
applications- the final expected useful information is the odour dimension of the gas 
emission, and not the concentration of some chemicals. 

8.4   Requirements for the Signal Processing When Using Artificial 
Olfaction Instrument in the Environment 

8.4.1   Context 

As a result of harsh environmental conditions, of hardware limitations and of olfac-
tory pollution specificities, odour real-time monitoring with an electronic nose is thus 
a real challenge.  

The instrument has to cope with several specific drawbacks. It has to automatically 
compensate the time drift and the influence of ambient parameters, such as tempera-
ture or humidity, to filter the unwanted signal variation due to the normal evolution of 
the background chemical composition, to experiment a huge number of various ambi-
ences during the learning phase, to extract just the signal pattern corresponding to the 
targeted emission, to appraise a significant deviation of the global response from  
the "normal" margin and to supply final indicators which aggregate the response of 
the sensor array into a global odour index. 

Although some of those problems may be tackled through an hardware approach 
(improvement of sensor performances, optimisation of sensor chamber, control of gas 
line, etc.), most of them must be solved by a suitable on-line signal processing  
directly embedded in the field instrument. 

8.4.2   Sensor Drift and Calibration Gas 

Drift 

Sensor drift is a first serious impairment of chemical sensors. They alter over time and 
so have poor repeatability since they produce different responses for the same odour. 
That is particularly troublesome for electronic noses (Romain et al. 2002). The sensor 
signals can drift during the learning phase (Holmberg et al. 1997). To try to compen-
sate the sensor drift, three types of solutions were tested for our applications. 

The usual way of minimising drift effect is to consider as useful response the  
difference between the base line, obtained by presenting the sensor array to pure ref-
erence air, and the signal obtained after stabilisation in the polluted atmosphere. 
However, such solution requires operating by cycling between reference air and 
tainted air, which is not convenient for on-site applications. That requires carrying in 
the field heavy gas cylinders. Alternatively, generating the reference air by a simple 
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filtering of ambient atmosphere gives rise to only partial drift compensation and to a 
lack of purity of the reference gas, which increase the data dispersion. 

Posterior global drift counteraction algorithms could be applied either for each in-
dividual sensor or by correcting the whole pattern, using multivariate methods.  

First the main direction of the drift is determined in the first component space of 
the multivariate method, such as Principal Component Analysis (PCA), or by select-
ing time as dependant variable of a Partial Least Square regression (PLS). The drift 
component can then be removed from the sample gas data, correcting thus the final 
score plot of the multivariate method (Artursson et al. 2000). 

Univariate sensor correction gave the best results in our case (table 8.1).  
With real-life measurements, it is indeed very difficult to identify a single direction 

in a multivariate space that is only correlated to sensor drift. So, for each sensor, an 
individual multiplicative factor was calculated by estimating the drift slope for a stan-
dard gas. 

Calibration Gas 

However, an additional difficulty arises when having to select the adequate calibra-
tion gas. There is actually no standard for "compost odour" or "printing house odour".  

Criteria to choose a reliable calibration gas are: as simple mixture as possible, with 
well known compounds, easy to obtain and not too expensive, reproducible, time sta-
ble, and, of course, which generates sensor responses similar to the ones obtained 
with the studied odour.  

As it should be difficult to produce stable artificial gas mixture, the best way is to 
select a single gas. 

Figure 8.4 shows drift compensation of a commercial tin oxide sensor (TGS2620, 
FigaroTM) by multiplicative factor estimated from calibration measurements in ethanol.  
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Fig. 8.4. Drift correction of the sensor TGS 2620 by multiplicative factor estimated by ethanol 
measurements 
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The method was tested to appreciate the classification performance of an array of 
tin oxide sensors for two different environmental odours: a compost odour and a 
printing house odour.  

Discriminant Function Analysis was used as classifier, with 5 features (5 sensor 
conductance values) and 63 observations collected within a 22- month's period. The 
F-ratio of intergroup/intragroup variances was chosen as classification performance 
criterion. 

Table 1 illustrates the fact that the best classification is achieved with individual 
sensor correction. 

Table 8.1. Evaluation of the DFA classification without correction or with correction models 
(by the F criterion, F-ratio of intergroup/intragroup variances) 

Method F 

No correction 33 

Correction by sensor (individual multiplicative factor)  56 

Correction of the sensor array “PLS” 26 

Correction of the sensor array “PCA” 18 

Sensor Replacement 

Another frequent problem encountered in the field and particularly in highly polluted 
atmosphere is a sensor failure or an irreversible sensor poisoning. Clearly, life expec-
tancy of sensors is reduced for real-life operation with respect to clean lab operation. 
Sensor replacement is generally required to address such issue, but, after replacement, 
odours should still be recognised without having to recalibrate the whole system.  
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Fig. 8.5. Illustration, by a PCA score plot of the shift of the measurements after the replacement 
of the TGS sensors 
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But commercial sensors rarely are reproducible. 
Figure 8.5 shows a PCA plot in the plane of the two first components. It concerns 

260 observations, 3 classes (ethanol, background air and compost odour), 5 features 
and a 2-year period. After the replacement of the sensors in the array with the same 
trade mark references, the previous calibrated model is no longer applicable for the 
same odorous emissions: all the observation points are shifted to another part of the 
diagram. 

Again, correction routines including algorithms for handling shift related to sensor 
replacement can be successfully applied. For the above example, illustrated in  
Figure 8.5, the classification performances were severely reduced after array replace-
ment, the percentages of correct classification were 40%, 100% and 33% respectively 
for ethanol vapour, background air and compost emission. After individual sensor 
correction, each classification rate reaches 100 (table 8.2). 

Table 8.2. Percentage of correct classification after replacement of sensors with and without 
correction 

Source %age correct classification 

Validation data 

 without correct. with correct. 

ethanol 40 100 

air 100 100 

compost 33 100 

8.4.3   Odour Quantification 

One of the final goals of odour monitoring with sensor arrays is the detection of odour 
emergence in the background. To be able to define some warning threshold or limit 
values or to assess potential annoyance zones in the surroundings, it is essential to 
establish a relationship between the e-nose response and the sensory assessment of the 
odour. But, again, such relationship can not be univocal for a given odour emission, 
because, as above mentioned, one odorous source corresponds of many different 
chemical mixtures with variable composition. So, the "x" variable of the relationship, 
i.e. the e-nose response to volatile compounds, is spread over a large range of possible 
values. But the "y" branch of the relationship, i.e. the odour sensory assessment, such 
as the odour concentration measured by dynamic olfactometry, is also affected by 
large uncertainties. Odour concentration is indeed the result of a rather subjective as-
sessment with a panel of individuals. 

Moreover, the gas sensors respond to both odorous and odourless compounds. The 
condition for the global e-nose signal to be proportional to the "odour" is that the 
"chemical" concentration and the odour concentration be correlated. That is true for 
compost emission: there is a quite linear relationship between odour concentration 
and sensor response (Figure 8.6). 

But that is not verified for the odour generated by a printing house (Figure 8.7) be-
cause there are a lot of chemical compounds that are not odorous in the ambience. 
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Fig. 8.6. Regression model obtained for compost odour concentration 
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Fig. 8.7. No regression model for a printshop odour 

So, in the case of printing house, we cannot use the electronic nose to monitor the 
odour. But, in the case of compost emission, such monitoring should be possible as 
long as the relationship between odour and sensor response is kept after eventual 
sample preparation (eventual pre-concentration, filtering, drying, etc.).  

Figure 8.8 shows the evolution of the response of an electronic nose placed in a com-
posting hall. Thanks to a suitable calibration model established with parallel olfactomet-
ric measurements, the global response is translated into odour concentration unit 
(ouE/m3) and could be compared to a warning threshold concentration, e.g. 700 ouE/m3. 
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Fig. 8.8. Monitoring of the compost odour concentration 

8.4.4   Useful Signal Detection 

A last typical example of specific problem when monitoring real-life odours with e-
nose is the on-line detection of an abnormal signal emergence.  

That issue could be addressed through correct filtering.  
Figure 8.9 illustrates such signal processing for an array of sensors placed in the 

vicinity of settling ponds of a sugar factory. The aim of the filtering process is to keep 
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Fig. 8.9. Thank to the filtration of the signal (Φ 822), 4 events are detected (significant varia-
tions coupled to an expert system –not shown here-) 
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only significant high frequency variations. As such variations can be generated  
by many different causes; the real odour problem must be correctly identified. Com-
bining the filtering method with a specific expert system makes such useful signal 
detection. 

8.5   Conclusion 

On-line use of electronic nose in the field aiming at monitoring real-life malodours is 
feasible, but has to correct many problems due to harsh environment and to the speci-
ficities of the olfactory annoyance assessment. Hopefully, the requirements of the 
final users seldom are as restricting as laboratory applications ones. Different signal 
processing techniques and many data classification methods were tested, but suffi-
ciently good results are generally obtained with classical and simple techniques. Ideal 
methods commonly recommended by signal and data processing theories often are 
well suited for "clean data sets", with observations gathered in the rigorous conditions 
of the lab, but are rarely applicable with real-life environmental conditions. 

The special nature of the environmental malodour monitoring always has to be 
considered when designing an instrument for such purpose: time variation of the 
emission, large number of odour categories, sensory dimension of the final variable to 
assess, lack of standard, etc. 

Bio-inspired signal processing development is still necessary, but must be driven 
by some specific constraints: preliminary field investigation and subsequent on-line 
validation, even if it is time consuming and not easy, and ability to function in con-
tinuous in the field. 
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Abstract. Electronic tongues are bioinspired sensing schemes that employ an array of sensors 
for analysis, recognition or identification in liquid media. An especially complex case happens 
when the sensors used are of the voltammetric type, as each sensor in the array yields a 1-
dimensional data vector. This work presents the use of a Wavelet Neural Network (WNN) with 
multiple outputs to model multianalyte quantification from an overlapped voltammetric signal. 
WNN is implemented with a feedforward multilayer perceptron architecture, whose activation 
functions in its hidden layer neurons are wavelet functions, in our case, the first derivative of a 
Gaussian function. The neural network is trained using a backpropagation algorithm, adjusting 
the connection weights along with the network parameters. The principle is applied to the si-
multaneous quantification of the oxidizable aminoacids tryptophan, cysteine and tyrosine, from 
its differential-pulse voltammetric signal. WNN generalization ability was validated with train-
ing processes of k-fold cross validation with random selection of the testing set.  

9.1   Introduction 

An electronic tongue is a chemical analysis system that employs sensors in a novel 
way, in order to accomplish quantification, classification or identification in liquid 
media. Conceptually, it relies on the use of a chemical sensor array, with some cross-
sensitivity features plus a chemometric processing tool, needed to decode the gener-
ated multivariate information. This scheme corresponds to how olfaction and taste 
senses are organized in animals, allowing for the identification of thousands of differ-
ent compounds with a reduced number of differentiated receptors, so it is clearly bio-
inspired. Main types of sensors used in electronic tongues are potentiometric and 
voltammetric, which yield very different responses. When the nature of the sensors 
used is voltammetric, a 1-dimensional data vector is generated for each electrode, 
making extremely complex the chemometric processing of the generated signals. A 
powerful bioinspired processing tool used with electronic tongues is Artificial Neural 
Networks (ANNs), although more suited to simpler input information. The use of an 
ANNs with these signals might then imply some kind of preprocessing stage for data 
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reduction such as Principal Component Analysis (PCA), Discrete Fourier Transform 
(DFT) or Discrete Wavelet Transform (DWT) in order to gain advantages in training 
time, to avoid redundancy in input data and to obtain a model with better generaliza-
tion ability. Among these techniques, DWT preprocessing has been gaining popular-
ity due to its ability to decompose a signal into two reduced sets of coefficients that 
separately retain the low and high frequency content of the transformed signal. This 
variant has been successfully coupled to the work with artificial olfaction systems and 
also in some chemical analysis situations. In any case, the large effort demanded for 
optimizing the appropriate set of wavelet coefficients to enter the ANN makes diffi-
cult its general use. 

Recently, a new class of neural network known as Wavelet Neural Network 
(WNN) has been proposed. WNN has quickly received favorable opinion due to re-
markable results reported for classification, prediction and modeling of different non-
linear signals. Very briefly, a WNN is an ANN based on the multilayer perceptron 
architecture whose sigmoidal activation functions in the hidden neurons are replaced 
by wavelet functions. Intuitively, it incorporates inside the ANN the task of previ-
ously optimizing the wavelet transform for feature extraction of sensor information. 
In this way, the coupling seems very advantageous for building calibration models, 
given the setup and fine tuning of the processing conditions are simplified.  

Our communication describes the use of a WNN for an electronic tongue employ-
ing voltammetric sensors. It starts recalling the parallelisms of electronic tongues with 
the sense of taste and its physiology. Similarly, the processing of sensorial informa-
tion through the nervous system is compared to that of ANNs. The backgrounds of 
wavelet transform are also presented before the conceptual and mathematical princi-
ples needed to implement a WNN are described. Finally, we demonstrate an applica-
tion case in quantitative analysis. The chemical case-study corresponded to the direct 
multivariate determination of the oxidizable aminoacids tryptophan (Trp), cysteine 
(Cys) and tyrosine (Tyr), from its differential-pulse voltammetric oxidation signal. 
We describe the building of the response model from this overlapping signal, its ar-
chitecture optimization and its verification through k-fold cross validation of input 
data. 

9.2   The Sense of Taste 

The human sense of taste occurs as a result of complex chemical analysis starting at a 
series of chemical active sites called taste buds located within a depression in the 
tongue. A taste bud is composed of several taste cells (gustatory cells), as shown in 
Figure 9.1. Each taste bud has a pore that opens out to the surface of the tongue ena-
bling molecules and ions taken into the mouth to reach the taste cells inside. 

There are five primary taste sensations including: sweet (carbohydrate based mole-
cules), sour (acidic concentration), salty (sodium chloride), bitter (quinine and other 
basic functionalities) and umami (salts of glutamic acid). The human tongue does not 
discriminate every chemical substance composing a flavor; it decomposes the taste of 
foodstuffs into the five basic taste qualities, instead. A single taste bud contains 50-
100 taste cells representing all 5 taste sensation. An adult has about 9000 taste buds. 
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Fig. 9.1. Scheme of a taste bud 

Taste cells are stimulated by chemical substances received at its biological mem-
brane. Although the detailed transduction mechanism is not clear, it is known that a 
nerve fibre connected to several taste cells carries a series of action potentials (electric 
impulses) in response to chemical stimuli of the taste cells. The connection of each 
cell is made through a synapse, as usually occurs in transduction of signals in animals; 
with the difference that a single sensory neuron can be connected to several taste cells 
of several different taste buds. Each taste bud groups from 50-100 individual sensory 
cells with a nerve fibre branching out and reaching the nucleus of the solitary fascicu-
lus, where synapses with second order neurons take place. The axons of these neurons 
extend to the thalamus and form new synapses; finally, neurons from the thalamus 
send the information to the cerebral cortex to perceive the taste (see Fig. 9.2). 

 

Fig. 9.2. Physiology of the taste sense 
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The rate of electric impulses transmitted by a nerve fibre increases as the stimuli 
intensity does. When talking about gustatory receptors, this is accomplished by in-
creasing the concentration of substances forming the flavour. It is worth mentioning 
that the information transmitted between neurons of different orders (from nucleus to 
thalamus, for example) is frequency encoded. 

A nerve fibre does not necessarily carries the information related to only one taste 
quality since it does not show nor selective neither specific response (Ogawa et al. 
1968). Taste quality is distinguished by using the overall excitation pattern of nerve 
fibres. 

According to the described above, Figure 9.3 proposes a simplified sense-neural 
scheme showing the sense of taste from the reception of taste substances to the per-
ception in the brain. 

 

Fig. 9.3. Information path for a taste perception 

In Figure 9.3, a connection line and a node represent a set of nerve fibres and neu-
rons, respectively. Neurons in thalamus not only act as a mediator in the transmission 
of information related to foodstuffs, they also transmit information to neurons in 
charge of salivary glands. The left side of Figure 9.3 sketches train patterns of electri-
cal impulses travelling by a nerve fibre, at each level of the path. The electrical signal 
transmitted by each nerve fibre that contacts a neuron is weighted by the synapse and 
added to the other weighted inputs. The output of the neuron is a train of pulses which 
frequency is defined by the weighted sum of inputs and probably, by a function ap-
plied to this sum, just like in an artificial neuron. This processing of the signal  
between neurons belonging to different levels is repeated until the information 
reaches the cerebral cortex, where the taste sensed by the tongue is finally recognized. 



 9   Multivariate Calibration Model for a Voltammetric Electronic Tongue 141 

 

One of the goals in gustatory neurobiology is to understand how information about 
taste stimuli is encoded in neural activity. The taste is defined by two parameters: 
taste primary and intensity (stimulus concentration). Historically, there have been two 
major theories of neural coding in the taste system. These are the labeled line (Frank 
1973) and across fibre (or neuron) (Erickson et al. 1965) pattern theories. Both of 
these theories are focused on the spatial representations of neuronal activity. 

In the labeled line theory, different taste qualities are encoded by separate groups 
of cells that respond exclusively, or at least maximally, to a specific quality. In across 
fibre (or neuron) pattern theory, the relative response magnitude across the population 
of taste-responsive cells is thought to convey identifying information about taste 
stimuli. This conceptualization is based on the fact that in multisensitive cells, i.e. 
cells that respond to more than one taste quality, unambiguous identification of a taste 
stimulus cannot be gleaned from the simple presence or absence of a response. So, for 
example, two tastants of different qualities might evoke similar responses rates de-
pending on the particular concentrations at which they are presented. As a result, the 
relative response magnitude across multiple units may be a better means of stimulus 
identification. 

Both theories depend on a measure of relative response magnitude, most often cal-
culated as the number of spikes (electric impulses) occurring in some arbitrary inter-
val (usually 3-5 s) during which the stimulus is present on the tongue (Di Lorenzo and 
Lemon 2000). In fact, many of the models presently used to analyze gustatory signals 
are static in that they use the average neural firing rate as a measure of activity and are 
unimodal in the sense they are thought to only involve chemosensory information. 

More recent investigations of neural coding in the gustatory system have focused 
on time-dependent patterns of the neuronal response, i.e. temporal coding, as a 
mechanism of communication in neural circuits (Hallock and Di Lorenzo 2006). In 
temporal coding, information about taste quality could be conveyed by systematic 
changes in the firing rate over time within a response, by the timing of spikes during 
the response, or by the frequency distribution or particular sequence of interspike in-
tervals during the response. 

Other researchers (Katz et al. 2002, Jones et al. 2006, Simon et al. 2006) have re-
cently elaborated upon dynamic models of gustatory coding that involve interactions 
between neurons in single as well as in spatially separate gustatory and somatosen-
sory regions. For dynamic signal processing, these models consider that the informa-
tion is encoded in time. 

9.3   Electronic Tongue 

In the field of electrochemical sensors for liquids, there is the recent approach known 
as electronic tongue, which is inspired on the sense of taste. A widely accepted  
definition of electronic tongue (Holmberg et al. 2004) entails an analytical instrument 
comprising an array of non-specific, poorly selective, chemical sensors with cross-
sensitivity to different compounds in a solution, and an appropriate chemometric tool 
for data processing. 

The first important part of an electronic tongue is the sensor array; major types of 
electronic tongues normally use either an array of potentiometric sensors or an array 
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of voltammetric sensors (Gutés et al. 2006), although also other variants have been 
described, or even their combined use in a hybrid electronic tongue (Winquist et al. 
2000). The lack of selectivity in such sensors produces complex cross-response sig-
nals that contain information about different compounds plus other features. Due to 
the lack of selectivity, the second important part in a multisensor approach is the sig-
nal processing stage. 

The complexity of the signals gathered from the sensor array, perhaps having non-
linear characteristics, and the unknown relationship between the analytes and the sen-
sors’ response make the neural networks an ideal candidate for the construction of 
calibration models.  

The reliable performance of electronic tongues in recognition tasks (classification, 
identification or discrimination) has been demonstrated along the last few years. Po-
tentiometric sensor arrays still are the most widely used type of electronic tongue sys-
tems (Ciosek et al. 2004; Legin et al. 1999; Rudnitskaya et al. 2001; Gallardo 2003). 
Because of their novelty, such systems still need to gain confidence as quality control 
tools in the food industry, medicine or environmental fields. 

An appropriate sensor system will be the first requirement in order to attempt this 
approach. Additionally, the systems responses must cover the different chemical spe-
cies and the dynamic range of concentrations expected; these are considered the de-
parture point to build the model needed to create an intelligent system. In this way, 
the set-up will be able to predict responses of samples not processed initially, as well 
as to classify them as the human brain does. 

The Artificial Neural Network has been the calibration model widely used for elec-
tronic tongues. It is possible to stronger relate the electronic tongue with the sense of 
taste if the theories for encoding and transmitting electric signals through the biologi-
cal system are considered. As previously mentioned, these theories are labeled line 
and across fibre (or neuron) pattern theories, and temporal coding. 

For electronic tongues using an array of potentiometric sensors, the calibration 
model based on an ANN corresponds to across neuron pattern theory applied to the 
biological system.  

Finally, when the sensor array is of voltammetric type, signals coming from the 
sensor array are dynamic (time-varying signals) and commonly non-stationary, which 
implies that information is time encoded (as stated by recent investigations of neural 
coding in the gustatory system). 

9.4   Artificial Neural Networks 

Artificial Neural Networks (ANN) are computational systems that emerged as an at-
tempt to better understand  neurobiology and cognitive psychology by means of sim-
plified mathematical models of real neurons (Hassoun 1995; Fine 1999). The initial 
interest on these systems arose from the hope that they may enable us to increase our 
knowledge about brain, human cognition, and perception (Garson 2007).  

Despite its main objective, biological and knowledge science areas were not the 
only benefited from neural networks. The success of these systems in tasks such as 
classification, regression and forecasting attracted the attention of the statistical and 
engineering communities (Fine 1999; Beale and Jackson 1992), who for the first time 
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have been provided with a tool for building truly non-linear systems with a large 
number of input variables. 

One scientific area in which neural networks have gained popularity is that of the 
development of systems inspired on olfactory and taste senses. The electronic nose 
(Gardner and Bartlett 1999), firstly conceived and applied, has gained recognition in 
fields like food, aroma or medical diagnosis. The electronic tongue (Vlasov and Legin 
1998), developed later, has special interest in chemical area for qualitative applica-
tions and also for quantifying multiple analytes. Both systems are in continuous de-
velopment and neural networks have played a key role in its development. 

9.4.1   Biological Background 

The brain is the organ in charge of constructing our perceptions of the external world, 
fix our attention and control the machinery of our actions (Kandel et al. 2000). It is 
composed of about 1011 massively connected basic units called neurons of many dif-
ferent types. These units are relatively simple in their morphology, and despite their 
varieties all of them share the same basic architecture. A neuron (Figure 9.4) has a 
cell body or soma, where the cell nucleus is located, short nerve fibres branching out 
of the soma called dendrites that receive most of the incoming signals from many 
other neurons, and a long tubular fibre called the axon that carries output information 
away from the soma to its end, where it divides into fine branches to communicate 
with other neurons at points known as synapses. 

 

Fig. 9.4. Structure of a multipolar cell neuron, which is the one that predominates in nervous 
system of vertebrates. It varies in shape, especially in the length of the axon and the number of 
dendrites. 

For a communication between neurons to occur the sender must release substances 
to excite a receiver and modify its inner potential; if this potential reaches a threshold 
then an electrical impulse of fixed strength and duration known as action potential is 
released and travels down the axon to the synapses with other neurons. 

Action potentials are the signals by which the brain receives, analyzes and carries 
information; they are the response of the neurons to many inputs. The information 
carried by an action potential is determined not by the form of the signal but by the 
pathway the signal travels in the brain (Kandel et al.2000). 
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9.4.2   Basic Structure of Feedforward Networks  

Artificial neural networks try to mimic the behaviour and structure of the brain. As 
such, they are constructed by basic processing units with multiple inputs and a single 
output called artificial neurons. 

The earliest neural network is the perceptron; it was firstly proposed by McCulloch 
and Pitts and consists on a single neuron which output is an all-or-nothing value  
defined by a hard limit function (Hertz et al. 1991). In this structure (sketched on  
Figure 9.5) the inputs are first weighted by positive or negative values and then fed to 
the neuron, which sums these products and output a value that depends on if the 
weighted sum has reached a threshold or not. If the sum of weighted inputs has sur-
passed a pre-defined threshold then the neuron fires and takes the activated value 
(typically 1), otherwise it takes the deactivated value (typically 0). Threshold is com-
monly zero but can take any value as long as lies between the minimum and maxi-
mum output value. Due to limitations on reflecting the behaviour of a biological  
neuron the original perceptron is not longer in use today, however, it was the basis for 
further developments. 

 

Fig. 9.5. The McCulloch-Pitts’ artificial neuron is a bi-state model which output depends on the 
sum of the weighted inputs. Networks built with this neuron can only solve problems whose 
solution is defined by a hyperplane. 

Larger architectures emerged since then, among them, the feed-forward multilayer 
perceptron (MLP) network has became the most popular network architecture (Hertz 
et al. 1991). The disposition of neurons in such ANN is quite different from the dispo-
sition in the brain; they are disposed in layers with different number of neurons each. 
Layers are named according to their position in the architecture; an MLP network has 
an input layer, an output layer and one or more hidden layers between them. Intercon-
nection between neurons is accomplished by weighted connections that represent the 
synaptic efficacy of a biological neuron. 

In feed-forward structure (scheme on Figure 9.6), information flows from input to 
output. Input layer neurons receive the signals coming from outside world, each one 
compute an output value depending on their activation function and transmit them to 
all the neurons in the hidden layer they are connected to. These values are weighted 
by positive or negative values before they reach the inputs of the hidden layer neu-
rons. A positive weight means an excitatory contribution and a negative weight means 
an inhibitory contribution. Hidden layer neurons receive these inputs, add them and  
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Fig. 9.6. In the MLP network depicted in the figure signal flows from left to right according to 
the arrows. Each neuron in the hidden or output layer computes a value depending on its activa-
tion function and the sum of weighted values coming from a previous layer. 

apply a function to this sum to determine the value of their outputs which are passed 
to output layer neurons or to a second layer of hidden neurons, which in turn do the 
same actions to determine the value of their outputs.  

The way that information flows in a feed-forward network classifies them as hier-
archical systems. In such systems, members are categorized by levels, from lowest to 
highest and they can only communicate from low level to higher but not in the oppo-
site direction. It is worth noting that in a MLP network, input layer neurons do not act 
as real neurons in the sense that they do not apply an activation function, they act as 
buffers instead and only distribute the signals coming from outside world to the first 
hidden layer neurons. 

MLP network is not the only kind of network that exists, but it is the one that has 
shown the best performance for the development of biological inspired systems (Deis-
ingh 2004). Other types of networks are radial basis function (RBF) networks, prob-
abilistic neural network (PNN), generalized regression neural networks (GRNN),  
linear networks and self organized feature map (SOFM) networks (Freeman and Ska-
pura 1992, Haykin 1999, Hetz et al. 1991, Iyengar et al. 1991); their application de-
pends on the problem we need to solve and their description are out of the scope of 
this chapter. All these networks can be used to predict values, find patterns in data, 
filter signals, classify, compress data or model input-output relationships. It is this last 
application along with its capability to generalize to new situations the reasons for 
much of the excitement about using neural networks in calibration models of  
electronic tongues. 

9.4.3   Training 

Neural networks are processing systems that work by feeding in some variables and 
get an output as response to these inputs. The accuracy of the desired output depends 
on how well the network learned the input-output relationship during training. 
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Learning is defined as the modification of connection weights between neurons to 
correctly model an input-output relationship (Hebb 1949); this task is similar to the 
brain learning process in the sense that the brain modifies the strength of synaptic 
connection when learning. The process by which ANN’s weights are modified is 
known as training. Training can take a long time and can be accomplished by a super-
vised or unsupervised procedure; the election on the kind of training to use depends 
on the network to be trained and on the available data. 

For supervised training a set of desired outputs is needed, so the network learns by 
direct comparison of its outputs against the set of expected values; on the other hand, 
unsupervised training does not count with a set of defined outputs, the only available 
information is the correlation that might exists in input data. With the latter procedure 
it is expected that the network creates categories from these correlations and be able 
to output values according to the input category. 

MLP network and other architectures learn using a supervised training algorithm 
named error backpropagation. In this training algorithm input signals are iteratively 
presented to the network; for each time the input is presented, the network computes 
its output and compares it against the expected value; next, the difference between 
them is fed back to the network as an error that is used to adjust the weights of the 
connections. The aim is to reduce the error and bring the outputs closer to the ex-
pected values after each iteration. 

Technically speaking, backpropagation is used to calculate the gradient of the net-
work’s error with respect to its connection weights. The negative of this gradient and 
a learning rate parameter are then used in a simple stochastic gradient descent algo-
rithm to adjust the weights and find those values that minimize the error. Large 
changes in weight values speed up learning and may make it converge quickly to the 
desired error or overstep the solution; on the other hand, small changes in weight val-
ues slower down learning and makes necessary a lot of iterations to converge to the 
desired error. 

9.4.4   Data Selection 

Along with the time and effort needed to train a network, a huge input-output data set 
is required to obtain a reliable generalization model. During training process we must 
track generalization capabilities of the network, that is, its ability to predict new situa-
tions that were not presented during the training process. To accomplish this task the 
original data set is split into subsets for training, validating and testing the network. 
Since minimization of error during training does not guarantee that the final network 
is capable to generalize to new input data we need to check learning progress against 
an independent data set, the internal validation set. 

Each time the weight values are updated during training the performance of the 
network is evaluated using the validation data set and an error for this set is com-
puted. At the beginning of training process it is common to compute a large output 
error for both data sets; as training progresses error training decreases and if the net-
work is learning correctly, validation error decreases too. However, if at some point 
of training validation error stops decreasing or indeed starts to increase then training 
must be stopped since the network starts to overfit the data. When over-fitting occurs 
during training it is said that the network is over-learning. On the other hand, if the 
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network can not model the function for which it is being trained then neither training 
error nor validation error will decrease to the desired value. 

Training is a computer controlled process that once started, it might be stopped 
when either of the next conditions is fulfilled: maximum number of training epochs 
has elapsed, training and testing errors have reached an acceptable level or there is no 
more improvement in learning with further iterations. 

The third set, the external set is used to check performance of the trained network, 
and to compare with other configuration or topologies. At the end of training process 
a well-fit model is the desired result. If the network has properly trained then it will be 
able to generalize to unknown input data with the same relationship it has learned. 
This capability is evaluated with the test data set by feeding in these values and com-
puting the output error. 

9.5   Wavelet Transform Background 

In signal processing, the transform of a signal consists on its manipulation for trans-
lating it, from its original domain to another domain, in order to extract its relevant 
information. The most widespread transform technique is Fourier Transform (FT), 
which is used for the analysis of periodic signals. FT works by transforming a signal 
from time domain to frequency domain. It is mathematically defined as 

( ) ( ) dtetfF tjωω −∞

∞−∫=  (9.1)

What FT does is to project the signal ( )tf  onto the set of sine and cosine basis 

functions of infinite duration represented by the complex exponential function (Rioul 
and Vetterli 1991). The transformation (named analysis) is reversible and the recover-
ing of the original function (named synthesis) is done by summing up all the Fourier 
components multiplied by their corresponding basis function, that is, 

( ) ( ) ωω
π

ω deFtf tj∫
∞

∞−
=

2

1
 (9.2)

 

 

Fig. 9.7. Example of a Fourier transformation. The signal in time domain at left is the sinc 
function, the magnitude of its Fourier transform is plotted at right. It is noted that F(ω) is band 
limited. 
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From the mathematical definition of the Fourier transform, it is advisable that the 
process determines the frequency content of the signal by obtaining the contribution 
of each sine and cosine function at each frequency. However, if a transient phenome-
non occurred in the signal or it is non-stationary, then the Fourier transform fails  
either in localizing the anomaly in time domain or representing the signal by the 
summation of the periodic functions. 

A way to solve this bottleneck is by doing the analysis with a piecewise approach 
known as Short Time Fourier Transform (STFT) or Gabor Transform. The idea be-
hind the process consists on splitting up the signal ( )tf  into sections and analyse 

each section separately to find its frequency content (Sarkar and Su 1998). Dividing 
the signal before its processing helps to localize it in time domain before obtaining the 
frequency domain information. The division is accomplished by multiplying the 
original signal with a window function ( )tg  which most of its energy is centred at 

time location τ . The goal on using such a weight function for windowing is to avoid 
spurious frequency components due to abrupt start and end of the window (Alsberg  
et al. 1997). After multiplication and transformation of a segment of the signal the 
window function is displaced along time axis to localize a new segment and compute 
its frequency content again. The process is repeated until the window reaches the end 
of the signal. The analysis of signals with STFT is done by applying: 

( ) ( ) ( ) dtetgtffSTFT tjωττ −∞

∞−
−= ∫,  (9.3)

which can be also seen as the convolution of ( ) tjetf ω−  with ( )tg . It is worth to  

note that if the window function is equal to 1 then we are back to the classic Fourier 
Transform. Synthesis of signals processed with STFT is done by applying the next 
formulation 

( ) ( ) ( ) ωττωτ
π

ω ddetgSTFTtf tj−= ∫ ∫
∞

∞−

∞
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,
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1
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STFT maps the original signal into a time-frequency plane ( )f,τ  which resolution 

depends critically on the choice of the window function ( )tg  and its length. Once 

( )tg  has been chosen, then the resolution across the plane is maintained constant. A 

short window length provides good resolution in time but poor resolution in fre-
quency, a large window length provides the opposite, poor resolution in time but good 
resolution in frequency. This relation between time and frequency is referred to as 
uncertainty principle or Heissenberg inequality, which in other words states that time 
resolution can be trade for frequency resolution or vice-versa but we can not have 
both (Rioul and Vetterli 1991). This trade-off is a drawback if we want to obtain a 
detailed frequency analysis of a signal and isolate its sharp changes (if any) at the 
same time. A way to solve this problem is by having short high-frequency basis func-
tions and long low-frequency ones. This solution is in fact, achieved by analyzing 
signals with wavelet transform.  
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9.5.1   Wavelet Transform 

Wavelet transform (WT), a modern tool of applied mathematics, is a signal process-
ing technique that has shown higher performance compared to Fourier transform and 
Short Time Fourier Transform in analyzing non-stationary signals. These advantages 
are due to its good localization properties in both, the time- and frequency domain. 

 

Fig. 9.8. Time-frequency plane described by the STFT. The analysis can be viewed as a series 
of FTs defined on windowed segments of the signal (vertical bars) or as a filtering process im-
plemented with a bandpass filter-bank (horizontal bars). 

As other processing techniques, WT works by projecting the processed signal 
( )tf  onto a set of basis functions (this time of finite duration) obtained from a local 

wave-like function called mother wavelet ( )tψ  by a continuous dilation and transla-

tion process (Addison 2002). Dilation, also known as scaling, compresses or stretches 
the mother wavelet and limits its bandwidth in the frequency domain, large scaling 
values narrow the wavelet and small scaling values broad it. Translation shifts the 
wavelet and specifies its position along time axis, positive values shift the wavelet to 
the right and negative values shift it to the left. The set of wavelet functions (named 
daughter wavelets) and the mother wavelet are related by Eq. 9.5: 

( ) ⎟
⎠
⎞

⎜
⎝
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s
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, ,     0   ≠ℜ∈ ,   s  s,τ  (9.5)

For a wave-like function to be considered a wavelet it must fulfil certain mathe-
matical conditions. The most important conditions are admissibility and regularity 
(Mallat 1999). Admissibility condition, expressed as 
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  ( ) ( )tψω  of FT  theis Ψ  (9.6)

a) implies that the Fourier transform of the wavelet vanishes at zero frequency, which 
is the same as saying that has a zero average in time domain, and b) ensures that the 
transformation is invertible, it is said, a signal can be analyzed and synthesized without 
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Fig. 9.9. Scaled and translated versions of a wavelet. a) Original wavelet defined by 
( ) ( ) ( )2exp1 22 ttt −−=ψ . B) Wavelet scaled by a factor of 0.4 and translated 9 time units to the 

right. c) Wavelet scaled by a factor of 1.5 and translated 20 time units to the right. 

loss of information. Regularity condition states that the wavelet must have smoothness 
and be concentrated in both time and frequency domains (Graps 1995). For a deeper 
explanation with rigorous mathematics about wavelets the reader can consult (Goswami 
and Chan 1999; Bachman et al. 2000; Daubechies 1992) and many others. 

The basic idea of WT is to correlate any arbitrary function ( )tf  with the set of 

wavelet functions obtained by dilation and translation. A stretched wavelet correlates 
with low frequency characteristics of the signal, while a compressed wavelet corre-
lates with high frequency characteristics (Blatter 1988). Technically, we can say that 
scale parameter s relates the spectral content of the function ( )tf  at a different posi-

tions τ (translation parameter, see Figure 9.9). The correlation process described is the 
Continuous Wavelet Transform (CWT) of a signal, mathematically described as 

( ) ( ) ( )dtttfsW sf
*
,, τψτ ∫

∞

∞−
=  (9.7)

where *
,τψ s  is the complex conjugate of τψ ,s . The wavelet coefficients ( )τ,sW f  

indicate how close the signal is to a particular basis function, their values depend on 
( )tf  and in the time region where the energy of ψs,t is concentrated. Synthesis of 

wavelet transformation is possible and it consists of summing up all the orthogonal 
projections of the signal onto the wavelets, that is to say, 
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Where ψC  in Eq. 9.8 is a value determined by the admissibility condition. 

The CWT, as described in Eq. 9.7, cannot be used in practice because a) the basis 
functions obtained from the mother wavelet do not form a really orthonormal base, b) 
translation and scale parameters are continuous variables, which mean that a function 

( )tf  might be decomposed in an infinite number of wavelet functions, and c) there is 
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no analytical solution for most of the wavelet transforms and its numerical calculation 
is impractical from a computational point of view (Blatter 1988). To overcome these 
problems, discrete wavelet transform (DWT) has been introduced. For the implemen-
tation of DWT translation and dilation parameters must take discrete values instead of 
continuous. By modifying Eq. 9.5 to: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
j

j

jkj s

skt

s
t

0

00

0

,

1 τψψ  (9.9)

we get a new equation for obtaining daughter wavelets at discrete steps. In Eq. 9.9, j 

and k are integers, js0  the dilation factor and τ0 the translation factor. By doing js0  

and τ0 equal to 2 and 1, respectively, we will have dyadic scales and positions  
that lead to the implementation of efficient algorithms for the processing of discrete 
signals. 
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Fig. 9.10. The signal at left was obtained with a voltammetric sensor and was processed with 
Matlab® to compute the wavelet coefficients plotted at right. Such time-scale plotting of the 
coefficients is known as scalogram. 

( ) ( ) ( )ktt jj
kj −= −− 22 2

, ψψ  (9.10)

When discrete wavelets are used to transform a continuous signal, the resulting 
set of coefficients is called the wavelet series decomposition. For this transforma-
tion to be useful it must be invertible, and for synthesis to take place, Eq. 9.11 must 
be satisfied 

22

,
,

2
, fBffA

kj
kj ≤≤∑ ψ      ∞<> BA   ,  0  (9.11)

The family of daughter wavelets kj ,ψ  that satisfy Eq. 9.11 forms a frame with 

frame bounds A and B. When BA =  the frame is tight and the analysis and synthesis 
of the signal can be performed with the same wavelet function, if BA ≠ then the 
wavelet function used for synthesis is different than that used for analysis (Graps  
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Fig. 9.11. Tiling of the time-frequency plane as defined by the DWT 

 

Fig. 9.12. Dyadic sampling of the time-scale plane 

1995). For the complete regeneration of the original signal without redundancy it is 
required that the family of discrete daughter wavelets form an orthonormal basis 
(Kaiser 1994), that is to say, 

( ) ( )dttt kjkj ',', ψψ∫
∞

∞− ⎩
⎨
⎧ ==

=
otherwise  0

' and ' if   1 kkjj
 (9.12)

This ensures that the information stored in a wavelet coefficient is not repeated 
elsewhere. In some applications orthogonality is not required since redundancy can 
help to reduce the sensitivity of noise or improve the shift invariance of the transform. 
With this supporting theory discrete wavelet transform and inverse discrete wavelet 
transform can now be defined as 

( ) ( )dtttf kjkj ,, ψ∫
∞

∞−
=Χ  (9.13)
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and 

( ) ( )∑ ∑
∞

−∞=

∞

−∞=
Χ=

j k
kjkj ttf ,, ψ  (9.14)

The practical implementation of the wavelet transform is not determined yet, since 
Eqs. 13 and 14 still define a large set of orthonormal wavelet basis. Since admissibil-
ity condition states that the behaviour of the Fourier transform of a wavelet is 

( ) 0ˆ
0

2
=Ψ

=ω
ω  (9.15)

then a wavelet has a band-pass spectrum. This property and the dyadic values of 
translation and scale parameters benefit the implementation of the discrete wavelet 
transform as an efficient filtering algorithm. Since compression in time is equivalent 
to stretching the frequency spectrum and shifting it upwards, then scaling the wavelet 

by a factor 12− means to stretch its frequency band-pass characteristic by a factor of 2 
and also to shift all frequency components up by the same factor (Aboufadel and 
Schlicker 1999). By using this approach the set of dyadic scaled wavelets works as a 
band-pass filters bank that covers the finite spectrum of the processed signal with the 
spectra of the dilated wavelets. Trying to cover the whole spectrum of the signal down 
to zero frequency requires an infinite number of filters, since each time a wavelet is 
stretched in time domain its bandwidth halves. To solve this problem Mallat, one of 
the mathematician developers of the technique, introduced a so-called scaling func-
tion with a low-pass spectrum (Mallat 1989). With this new approach the filter bank 
used to process any signal is composed by a low-pass filter implemented with the 
scaling function and a set of band-pass filters implemented with the set of scaled 
wavelets; as the scaling function cares about the low frequency content of the signal, 
its width plays an important role because it determines the low-frequency information 
retained and the number of wavelet coefficients obtained from the decomposition. 

The filter bank characteristics of the scaling and wavelet functions are used to im-
plement the DWT in a subband coding scheme by using Mallat’s pyramidal algorithm 
(Mallat 1989), as sketched in Figure 9.13. Subband coding consists on analysing a 
signal by passing it through a filter bank. 

This signal processing technique operates over a single discrete signal of length M 
by decomposing it into orthogonal sub-spaces of length ca. 2/M . Decomposition is 
made by applying two digital filters, which involves low-pass (scaling function) and 
high-pass (wavelet functions) versions along with downsampling. The result of such 
decomposition is two series of coefficients named approximation coefficients cAj and 
detail coefficients cDj. The cAj set and cDj set retain the low-frequency and high-
frequency content of the signal, respectively. Moreover, this decomposition can be 
iteratively applied to approximation coefficients to get components of lower resolu-
tion and obtain what is known as multiresolution analysis. Expressions for obtaining 
cAj and cDj sets with the multiresolution analysis are:  

( ) ( )ncAknhkcA j
n

j 10 2)( −−=∑  (9.16)
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Fig. 9.13. Mallat’s pyramidal algorithm used to implement the DWT. Approximation and detail 
vectors are indicated by cA and cD respectively; subindices denote decomposition level. 

( ) ( )ncAknhkcD j
n

j 11 2)( −−=∑  (9.17)

For each decomposition level ‘j’ a faithful reconstruction of the original signal is 
possible using the inverse discrete wavelet transform (IDWT) and the set of approxi-
mation coefficients obtained at level ‘j’ altogether with all sets of detail coefficients 
from level ‘j’ until level 1. IDWT is achievable by upsampling the coefficients ob-
tained at level j and applying Eq. 9.18:  

( ) ( ) ( ) ( ) ( ) ( )knhkcDknhkcAncAnx
kk

22 11010 −+−== ∑∑  (9.18)

In DWT, the digital filters are repeatedly applied to the sets of approximation and 
detail coefficients until a series of wavelet components obtained at a certain decom-
position level is chosen as the result. 

9.5.2   Applications Related to the Sensors Field 

In the last decade, numerous applications of the WT have been proposed for chemical 
analysis. One of the main goals in analytical chemistry is to extract useful information 
from recorded data; however, data gathered from experiments is contaminated with 
noise. Band-pass filtering behaviour of WT has been successfully applied to the re-
moval of noise or trends, and smoothing (Alsberg et al. 1997). 

Data compression is another application of WT that has shown remarkable results 
(Artursson and Holmberg 2002). The mathematical treatment for data compression by 
WT is similar to that for denoising and smoothing (Jetter et al. 2000). Chemical data 
is treated with WT and transformed to the scale-time domain where its spectral con-
tent is reduced by eliminating coefficients belonging to high frequency content. Com-
pression with this technique is highly efficient since a one level decomposition and 
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retention of approximation coefficients halves its length. Recovery of the original 
signal is accomplished by applying inverse WT to the set of coefficients left. 

Chromatography, infrared spectroscopy, mass spectrometry, nuclear magnetic 
resonance spectroscopy, ultraviolet-visible spectroscopy and others have also been 
benefited from the properties of wavelet processing for data compression, noise re-
moval, base-line correction, zero crossing and regression (Leung et al. 1998). 

WT has also been applied to the resolution of overlapping signals in electrochemis-
try. Frequently, a degree of overlapping among different components is present if 
different species undergo oxidation or reduction at similar potentials, when using 
voltammetry. WT has been applied to this situation and has resulted efficient since it 
offers the advantage of performing data number reduction, feature extraction and 
noise reduction at the same time (Moreno et al. 2005; Moreno et al. 2006). Recently, 
Cocchi et al. described a close approach to the work presented here, in which WT is 
used for feature selection prior to quantitative calibration using ANNs. Compressed 
voltammetric signals of Pb2+/Tl+ mixtures were processed with WT and modelled 
with ANNs (Cocchi et al. 2003; Palacios-Santander et al. 2003). 

A field that has clearly made a profit from the advantages of wavelet transform as 
feature extraction is that of artificial olfaction. There, the pulse response transient 
corresponding to the injection of a sample can be analyzed dynamically, extracting 
information with the DWT from the rise and recovery stages, apart from the maxi-
mum recorded value, sometimes but not always a steady-state. This strategy was used 
to identify volatile organic compounds after a PCA analysis using an array of tin-
oxide gas microsensors (Distante et al. 2002). The analysis of transient changes has 
also been extended to the extraction of dynamic response components after a thermal 
modulation of the working temperature of gas microsensors, aimed to identify be-
tween two different gases (CO and NO2). There, the obtained DWT coefficients were 
used as input information for a neural network for a classification application (Llobet 
et al. 2002), or to different chemometric tools for the quantitative determination of 
both compounds (Ionescu et al. 2002). The same principles were applied shortly after 
to the correction of humidity interference in a similar system (Ionescu et al. 2003). 

9.6   Wavelet Neural Network 

The idea of combining wavelets with neural networks resulted in a successful synthe-
sis of theories that generated a new class of networks called Wavelet Neural Network 
(WNN) (Zhang and Benveniste 1992). This kind of networks use wavelet functions as 
activation functions in their hidden neurons. Using theoretical features of wavelet 
transform, methods for building networks can be developed. The first approach to a 
WNN model makes sense if the inversion formula for the Wavelet Transform (WT) is 
seen like the sum of products between the wavelet coefficients and the family of 
daughter wavelets (Akay 1997). This definition established by Strömber replaces the 
corresponding integrals by a sum, therefore: 

∑ ∑
∞

−∞=

∞

−∞=

=
s t

tsts xwxf )( )( ,,ψ  (9.19)
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where tsw ,  represent the coefficients wavelets of the decomposition of )(xf  and 

ts,ψ  the daughter wavelets. 

The WNN is based on the similarity found between the inverse WT Strömberg's 
equation (Eq. 9.19) and a hidden layer in the Multi-Layer Perceptron (MLP) network 
structure (Meyer 1993). In fact, the wavelet decomposition can be seen like a neuronal 
network model, where the wavelets are indexed by ki ,...,1=  instead of the double 

index ),( ts that represented the scaled and translated mother wavelet (Figure 9.14).   

The compact system of functions located in the hidden layer allows MLPs with 
only three layers to approximate any arbitrary and continuous function (Hornik 1989, 
Scarselli 1998). The predetermined precision is defined by the characteristics of the 
family of functions used as well as by the approach error to reach. In the development 
of a WNN, a MLP structure with just three layers (input, hidden and output layer) is 
usually considered, because both the analysis and the implementation are simpler. 

Orthogonal wavelets are related with theory of multiresolution analysis and usually 
cannot be expressed in an informal context; they must fulfill stringent orthogonal 
conditions, on the other hand, wavelet frames are constructed by simple operations of 
translation and dilation and are the easiest to use (Akay 1997, Heil 1989, Gutes et al.  
2006).  

Although many wavelet applications use orthogonal wavelet basis, others work 
better with redundant wavelet families. The redundant representation offered by 
wavelet frames has demonstrated to be good both in signal denoising and compaction 
(Daubechies et al. 1986, 1992). 

 

Fig. 9.14. Wavelet expansion observed like a Neural Network 
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In this way any desired signal )(xf  can be approximated by generalizing a linear 

combination of daughter wavelets )(, xtsψ  derived from its mother wavelet )(xψ . 

This family of functions is defined by Eq. 9.5 and forms a continuous frame if condi-
tion in Eq. 9.11 is fulfilled (Kugarajah and  Zhang, 1995). 

Nevertheless for multi-variable model’s applications it is necessary to use multidi-
mensional wavelets. Families of multidimensional wavelets can be obtained from the 
product of P monodimensional wavelets, ψ(aij), of the form: 

∏
=

=Ψ
P

j
iji ax

1

)()( ψ   where  
ij

ij
ij s

tx
a

−
=  (9.20)

where ti and si are the translation and scaling vectors respectively. 

9.6.1   WNN Algorithm 

The WNN architecture shown in Figure 9.14 corresponds to a feedforward MLP ar-

chitecture with multiple outputs. The output )(my n  (where n is an index, not a 

power) depends on the connection weights )(mci  between the output of each neuron 

and the  m-th output of the network, the connection weights )(mwj  between the input 

data and the each output,  an offset value )(0 mb  useful when adjusting functions that 

has a mean value other than zero, the n-th  input vector nx  and the wavelet function 

iΨ  of each neuron.  The approximated signal of the model )(my n  can be repre-

sented by Eq. 9.21. 
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where subindexes i and j stand for the i-th neuron in the hidden layer and the j-th ele-
ment in the input vector xn, respectively, K is the number of wavelet neurons and P is 
the number of elements in input vector xn.  

With this model, a P-dimensional space can be mapped to a m-dimensional space 

( mP RR → ), letting it to predict a value for each output yn(m) when the n-th vector 
xn is input to the trained network (Fig 9.15). 

The basic neuron will be a multidimensional wavelet )( n
i xΨ  which is built using 

the definition in Eq. 9.20 and in where scaling ( ijs ) and translation ( ijt ) coefficients 

are the adjustable parameters of the i-th wavelet neuron. With this mathematical 
model for the wavelet neuron the network’s outputs becomes a linear combination of 
several multidimensional wavelets (Zhang and Benveniste 1992, Cannon and Slotine 
1995, Mallat 1989, Zhang et al. 1995).  
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Fig. 9.15. Architecture of the WNN proposed 

 

Fig. 9.16. Mother wavelet used as activation function 

In the present work, the mother wavelet used as activation function corresponds to 

the first derivative of a gaussian function (Figure 9.16) defined by 
25.0)( xxex −=ψ , 

which has demonstrated to be an effective function for the implementation of WNN 
(Zhang and Benveniste 1992). 
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9.6.2   Training 

Once a network has been structured for a particular application, training of the WNN 
can proceed. The training process is similar to that of a conventional ANN and in our 
case consists in the error backpropagation. This method, proposed by Rumelhart 
(Rumelhart et al. 1986), is an iterative algorithm that allows training multilayer net-
works and helps to determine the neural network parameters. The algorithm looks for 
the minimum of the error function for the set of training vectors. In our application, 
weights are updated when all the vectors have been entered to the network. In this 
form, the training tries to diminish the difference between the outputs of the network 
and the expected values. The difference is evaluated according to the Mean Squared 
Error (MSE) function defined by Eq. 9.22: 
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where )(my n  is the m-th output of the network and )(exp my n  is the m-th real value 

related to the input vector nx . 
Since the proposed model is of multi-variable character, we define: 

{ }ijijij stmcmwmb ,),(),(),(0=Ω  (9.23)

as the set of parameters that will be adjusted during training. 
These parameters must change in the direction determined by the negative of the 

output error function’s gradient: 
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The term 1/N averages the output error depending on the number of WNN’s  
outputs. 

The changes in network parameters are calculated at each iteration according to 

Ω∂
∂=ΔΩ Jμ , where μ  is a positive real value known as learning rate. With these 

changes the variables contained in Ω  are updated using: 

ΔΩ+Ω=Ω oldnew  (9.25)

where oldΩ  represents the current values , ΔΩ  represents the changes and  newΩ  

corresponds to the new values after each iteration. 
Training is stopped when either the number of epochs has elapsed or the conver-

gence error has been reached. 
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9.6.3   Initialization of Network Parameters  

An important point of the training is the initialization of network parameters, be-
cause the convergence of the error depends on them. An initial set of wavelets must 
be generated at the beginning as well as the weights in the architecture. Consider- 

ing a range in input vectors defined by the domain [ ]max,min, , jj xx ,  then the initial  

values of the i-th neuron for translation and scaling parameters are set to  

( )max,min,5.0 jjij xxt +=  and ( )min,max,2.0 jjij xxs −= , respectively, to guaran-

tee no concentration of wavelets in localities of the input universe  
This kind of initialization (Oussar 1998) was shown to be appropriate in a similar 

model (Gutes et al.  2006). The weights are proposed to have random initial values 
since its initialization is less critical than translation and scaling variables. 

9.7   Case Study in Chemical Sensing 

Among the few reports of WNN applied in the chemical area, the modeling and  
prediction of chemical properties is the main theme, gathering the complexation equi-
libria of organic compounds with α-cyclodextrins (Guo et al. 1998), the chroma-
tographic retention times of naphtas (Zhang et al. 2001) or the solubility of an-
thraquinone dyes in supercritical CO2 (Tabaraki et al. 2006). Much more recent are 
the applications found in the field of chemical analysis. The first picked reference is 
the oscillographic chronopotentiometric determination of mixtures of Pb2+, In3+ and 
Zn2+ (Zhong et al. 2001), where a discrete WNN was used to build the calibration 
model. The simultaneous kinetic determination of two species from its spectropho-
tometric transient record (Ensafi et al. 2007) or the extension of the calibration range 
for adsorptive stripping voltammetry of Cu2+ (Khayamian et al. 2006) are the two 
most recent applications of WNN. 

Authors have applied the principles of the electronic tongue to solve a mixture of 
three components by direct voltammetric analysis. The approach departs from the 
overlapped voltammogram, and for the resolution of the three components mixture, a 
multivariate calibration model is built using WNN. The chemical case in the pre-
sented study corresponds to the direct multivariate determination of the oxidizable 
aminoacids tryptophan (Trp), cysteine (Cys) and tyrosine (Tyr), from the differential-
pulse voltammetric signal of a platinum electrode. 

For the analysis, three series of synthetic solutions with six concentrations each in 
the range of [5.0, 35] mM for Cys and Tyr, and [2.0, 21] mM for Trp were prepared. 
These concentrations were studied at two levels: 10 and 25 mM for Trp and Cys; 5.0 
and 34 mM for Tyr. The set of mixture solutions for each analyte was 24, obtained by 
varying the concentration of the corresponding analyte in its specified range in each 
of the 4 possible combinations for the level of the two remaining analytes. With this 
procedure, the total set of mixture solutions and recorded voltammograms for the 
three analytes is 72. 

A commercial potentiostat with a Pt working electrode was used for differential 
pulse voltammetric measurements. The cell was completed by a second Pt counte-
relectrode together with an Ag/AgCl reference element. The resulting voltammetric 
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data for each mixture consisted of 164 current values recorded in the range of poten-
tials from 0.4 to 1.0V in steps of 0.00365V. The details of the differential pulse tech-
nique were modulation amplitude of 0.025 V, modulation time of 70 ms, and pulse 
interval of 300 ms. No preconditioning of electrodes was necessary. To generate the 
series of synthetic samples, microvolumes of each amino acid mixture solution were 
added to 25 ml of a support electrolyte solution (KCl 0.1M pH 7.5) generating the 
different sample series. 

For the calibration model a three-output WNN with three neurons in its hidden 
layer was programmed and trained to build the calibration model of our e-tongue. The 
input layer used 164 neurons, defined as the width of the voltammograms. Error to 
reach during training was preset to 0.01, the initialization of weights, translation and 
scaling parameters were according to the descriptions given before and the learning 
rate was set to 0.001. 

The voltammetric matrix constitutes the input data for training and testing the 
WNN, whereas the concentrations of Trp, Cys and Tyr constitute the targets to be 
modeled, as sketched on Figure 9.17. For training convenience, the input data and 
targets were normalized to an interval of [−1, 1] and randomly split into two groups, 
54 voltammograms out of the 72 were taken for training and the rest for testing. This 
process was repeated several times with random subdivision, in what constituted an 
18-fold validation scheme. 

Training process was successfully accomplished, showing the good characteristics 
of the WNN for modelling non-linear input-output relationships. Prediction capability 
was evaluated by constructing comparison graphs of obtained vs. expected concentra-
tion values. 
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Fig. 9.17. The WNN is in charge of mapping a voltammogram to a point of the three-
dimensional space of concentrations 

These graphs should be, in the ideal case, the identity line when the scaling is the 
same for x- and y-axis. This was checked by linear regression analysis, where correla-
tion coefficients should approach 1, and slopes close to 1 along with intercepts close 
to zero are desirable. Figure 9.18 shows the comparative graphs for the training and 
testing cases between the expected and predicted concentrations for the three oxidi-
zable aminoacids. For a better reference of the modeling capabilities, each plot has the 
same scaling for x- and y-axis. As we can see, all points for the training cases lie close  
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Fig. 9.18. Comparison between the expected results and those obtained with the WNN with 3 
hidden neurons and 3 output neurons. The graphs correspond to the three species under study. 
The dashed line corresponds to ideality (y=x) and the solid line is the regression of the com-
parison data. Plots at top correspond to training and plots at bottom to testing. 

to the identity line, meaning that the value output by the WNN is near the real one, 
however, for the testing cases the points are more dispersed, although a straight line 
still can be adjusted to pass through all of them. 

Prediction capability of the WNN was evaluated with the testing data set.  
The generalization capability of the model was validated with a k-fold validation 

process. Trainings were run with the initialization parameters described above; train-
ing and testing subsets were randomly split and the same size as for the first case. For 
each model obtained, its prediction capability was evaluated and the correlation factor 
for training and testing cases were gathered, averaged and summarized in Table 9.1. 

Table 9.1. Mean values for correlation coefficients obtained in the  k-fold validation process 

 Three-output WNN  One-output WNN 

Aminoacid Training Testing  Training Testing 

Trp 0.982 0.937  0.984 0.936 

Cys 0.987  0.969  0.989 0.980 

Tyr 0.987 0.976  0.983 0.966 
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The performance of the three-output WNN programmed for this case study was 
compared against a model built with three WNN working in parallel, (one per amino-
acid). Good generalization capability of this model has already been reported by (Gu-
tés et al. 2006). In the parallel structure each network had three hidden neurons and 
one output neuron. Initial conditions of network parameters along with training and 
testing subsets were the same as for the three-output model. Correlation factors of the 
k-fold validation process for this model are also summarized in Table 9.1. 

Along with the linear regression analysis, the sum of squared errors (SEE) was cal-
culated to give a better understanding of the modeling capabilities of the WNN. These 
values are contained in Table 9.2. 

From results contained in Tables 9.1 and 9.2, we can state that the modeling capa-
bilities of the WNN is nearly the same for both architectures Despite this similarity, 
the WNN with three-outputs outperforms the approach based on three networks work-
ing in parallel since the number of variables needed to train and build the model is 
reduced by a factor of three. This difference is reflected in the time needed to train the 
networks and the memory used to store the parameters. 

Table 9.2. Mean values for the SEE obtained in the k-fold validation process 

 SEE for three-output WNN  SEE for one-output WNN 

Aminoacid Training Testing  Training Testing 

Trp 56.17e-12 70.80e-12  55.71e-12 68.79e-12 

Cys 131.31e-12 94.43e-12  130.33e-12 91.53e-12 

Tyr 9.24e-9 2.46e-9  10.36e-9 2.65e-9 

9.8   Conclusions 

As it has been shown, the simultaneous quantitative determination of three chemical 
species has been effectively targeted employing a WNN model. This tool has demon-
strated to be a proper multivariate modeling tool for voltammograms, analytical sig-
nals with a first degree of complexity that needs their feature extraction prior any 
modeling or pattern recognition.  For its operation, the WNN adjust the parameters for 
a family of wavelet functions that best fits the shapes and frequencies of sensors’ sig-
nals. The coupling of wavelet functions with ANNs allows a unique chemometric 
tool, configurable to many situations and optimizable to the case under study, by the 
proper selection of the mother wavelet and the topology of the network used.  
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