
Chapter 7
Overlap-Free Words

Abstract. In this chapter we present the notion of overlap-free words and show how
the number un of overlap-free words of length n is ruled by joint spectral charac-
teristics. We use these results to provide tight estimates on the asymptotic growth
of un. We provide new algorithms to estimate the joint spectral subradius and the
Lyapunov exponent, that appear to be very efficient in practice.

7.1 Introduction

Binary overlap-free words have been studied for more than a century1. These are
words over the binary alphabet A = {a,b} that do not contain factors of the form
xvxvx, where x ∈ A and v ∈ A∗ (A∗ is the set of all words on the alphabet A)2. Such
factors are called overlaps, because the word xvx is written twice, with the two
instances of this word overlapping at the middle x.

Perhaps the simplest way to understand overlap-free words is the following: In
combinatorics on words, a square is the repetition of twice the same word, as for
instance the french word bobo. A cube is the repetition of three times the same
word, like bobobo. Now, an overlap is any repetition that is more than a square. For
instance, the word baabaa is overlap-free (it is a square), but the word baabaab is an
overlap, because baa is repeated “more than twice” (one could say that it is repeated
7/3 times). This word satisfies the definition of an overlap, since it can be written
xuxux with x = b and u = aa. See [6] for a recent survey.

Thue [112, 113] proved in 1906 that there are infinitely many overlap-free words.
Indeed, the well-known Thue-Morse sequence3 is overlap-free, and so the set of its
factors provides an infinite number of different overlap-free words. The asymptotics
of the number un of such words of a given length n was analyzed in a number of

1 The chapter presents research work that has been published in [63, 64].
2 This chapter uses classical results from combinatorics on words. For a survey on this branch of

theoretical computer science, we refer the reader to [76].
3 The Thue-Morse sequence is the infinite word obtained as the limit of θ n(a) as n → ∞ with

θ(a) = ab, θ(b) = ba; see [26].
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subsequent contributions4. The number of factors of length n in the Thue-Morse
sequence is proved in [23] to be larger or equal to 3n− 3, thus providing a linear
lower bound on un:

un ≥ C n.

The next improvement was obtained by Restivo and Salemi [101]. By using a certain
decomposition result, they showed that the number of overlap-free words grows at
most polynomially:

un ≤ C nr,

where r = log(15)≈ 3.906. This bound has been sharpened successively by Kfoury
[67], Kobayashi [68], and finally by Lepistö [73] to the value r = 1.37. One could
then suspect that the sequence un grows linearly. However, Kobayashi proved that
this is not the case[68]. By enumerating the subset of overlap-free words of length
n that can be infinitely extended to the right he showed that un ≥ C n1.155 and so
we have

C1 n1.155 ≤ un ≤C2 n1.37.

Carpi showed that there is a finite automaton allowing to compute un (the sequence
un is 2-regular [25]). In Figure 7.1(a) we show the values of the sequence un for
1 ≤ n ≤ 200 and in Figure 7.1(b) we show the behavior of logun/ logn for larger
values of n. One can see that the sequence un is not monotonic, but is globally
increasing with n. Moreover the sequence does not appear to have a polynomial
growth since the value logun/ logn does not seem to converge. In view of this, a
natural question arises: is the sequence un asymptotically equivalent to nr for some
r ? Cassaigne proved in [26] that the answer is negative. He introduced the lower
and the upper exponents of growth:

α = sup
{

r
∣∣∃C > 0,un ≥Cnr}, (7.1)

β = inf
{

r
∣∣∃C > 0,un ≤Cnr},

and showed that α < β . Cassaigne made a real breakthrough in the study of overlap-
free words by characterizing in a constructive way the whole set of overlap-free
words. By improving the decomposition theorem of Restivo and Salemi he showed
that the numbers un can be computed as sums of variables that are obtained by
certain recurrence relations. These relations are explicitly given in the next section
and all numerical values can be found in Appendix A.1. As a result of this descrip-
tion, the number of overlap-free words of length n can be computed in logarithmic
time. For the exponents of growth Cassaigne also obtained the following bounds:
α < 1.276 and β > 1.332. Thus, combining this with the earlier results described
above, one has the following inequalities:

1.155 < α < 1.276 and 1.332 < β < 1.37. (7.2)

4 The number of overlap-free words of length n is referenced in the On-Line Encyclopedia of
Integer Sequences under the code A007777; see [107]. The sequence starts 1, 2, 4, 6, 10, 14,
20, 24, 30, 36, 44, 48, 60, 60, 62, 72,...
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(a) (b)

Fig. 7.1 The values of un for 1 ≤ n ≤ 200 (a) and logun/ logn for 1 ≤ n ≤ 10000 (b)

In this chapter we develop a linear algebraic approach to study the asymptotic
behavior of the number of overlap-free words of length n. Using the results of Cas-
saigne we show in Theorem 7.2 that un is asymptotically equivalent to the norm
of a long product of two particular matrices A0 and A1 of dimension 20× 20. This
product corresponds to the binary expansion of the number n−1. Using this result
we express the values of α and β by means of certain joint spectral characteristics
of these matrices. We prove that α = log2 ρ̌(A0,A1) and β = log2 ρ(A0,A1). In
Section 7.3, we estimate these values and we obtain the following improved bounds
for α and β :

1.2690 < α < 1.2736 and 1.3322 < β < 1.3326. (7.3)

Our estimates are, respectively, within 0.4% and 0.03% of the exact values. In ad-
dition, we show in Theorem 7.3 that the smallest and the largest rates of growth
of un are effectively attained, and there exist positive constants C1,C2 such that
C1 nα ≤ un ≤ C2 nβ for all n ∈ N.

Although the sequence un does not exhibit an asymptotic polynomial growth,
we then show in Theorem 7.5 that for “almost all” values of n the rate of growth
is actually equal to σ = log2 ρ̄(A0,A1), where ρ̄ is the Lyapunov exponent of the
matrices. For almost all values of n the number of overlap-free words does not grow
as nα , nor as nβ , but in an intermediary way, as nσ . This means in particular that
the value log un

log n converges to σ as n → ∞ along a subset of density 1. We obtain the
following bounds for the limit σ , which provides an estimate within 0.8% of the
exact value:

1.3005 < σ < 1.3098.

These bounds clearly show that α < σ < β .
To compute the exponents α and σ we introduce new efficient algorithms for

estimating the joint spectral subradius ρ̌ and the Lyapunov exponent ρ̄ of matrices.
These algorithms are both of independent interest as they can be applied to arbitrary
matrices.

Our linear algebraic approach not only allows us to improve the estimates of the
asymptotics of the number of overlap-free words, but also clarifies some aspects of
the nature of these words. For instance, we show that the “non purely overlap-free
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words” used in [26] to compute un are asymptotically negligible when considering
the total number of overlap-free words.

The chapter is organized as follows. In the next section we formulate and prove
the main theorems (except for Theorem 7.2, whose proof is quite long and techni-
cal). Then in Section 7.3 we present new algorithms for estimating the joint spectral
subradius and the Lyapunov exponent of a given set of matrices. Applying them to
those special matrices we obtain the estimates for α,β and σ . In the appendices
we write explicit forms of the matrices and initial vectors used to compute un and
present the results of our numerical algorithms.

7.2 The Asymptotics of Overlap-Free Words

To compute the number un of overlap-free words of length n we use several results
from [26] that we summarize in the following theorem:

Theorem 7.1. Let F0,F1 ∈ R
30×30, w,y8, . . . ,y15 ∈ R

30
+ be as given in Appendix A.1.

For n ≥ 16, let yn be the solution of the following recurrence equations

y2n = F0yn,
y2n+1 = F1yn.

(7.4)

Then, for any n≥ 9, the number of overlap-free words of length n is equal to wT yn−1.

It follows from this result that the number un of overlap-free words of length n ≥
16 can be obtained by first computing the binary expansion dt · · ·d1 of n− 1, i.e.,
n−1 = ∑t−1

j=0 d j+12 j, and then computing

un = wT Fd1 · · ·Fdt−4ym, (7.5)

where m = dt−3 +dt−22+dt−122 +dt23 (and dt = 1). To arrive at the results summa-
rized in Theorem 7.2, Cassaigne builds a system of recurrence equations allowing
the computation of a vector Un whose entries are the number of overlap-free words
of certain types (there are 16 different types). These recurrence equations also in-
volve the recursive computation of a vector Vn that counts other words of length n,
the so-called “single overlaps”. The single overlap words are not overlap-free, but
have to be computed, as they generate overlap-free words of larger lengths.

We now present the main result of this section which improves the above the-
orem in two directions. First we reduce the dimension of the matrices from 30 to
20, and second we prove that un is given asymptotically by the norm of a matrix
product. The reduction of the dimension to 20 has a straightforward interpretation:
when computing the asymptotic growth of the number of overlap-free words, one
can neglect the number of “single overlaps” Vn defined by Cassaigne. We call the
remaining words purely overlap-free words, as they can be entirely decomposed in
a sequence of overlap-free words via Cassaigne’s decomposition (see [26] for more
details). In the following Theorem, the notation f (n) � g(n) means that there are
two positive constants K1,K2 such that for all n, K1 f (n) < g(n) < K2 f (n).
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Theorem 7.2. Let A0,A1 ∈ R
20×20
+ be the matrices defined in Appendix A.1 (Equa-

tion (A.3)), let ‖ · ‖ be a matrix norm, and let A(n) : N → R
20×20
+ be defined as

A(n) = Ad1 · · ·Adt with dt . . .d1 the binary expansion of n−1. Then,

un � ||A(n)||. (7.6)

Observe that the matrices F0,F1 in Theorem 7.1 are both nonnegative and hence
possess a common invariant cone K = R

30
+ . We say that a cone K is invariant for a

linear operator B if BK ⊂ K. All cones are assumed to be solid, convex, closed, and
pointed. We start with the following simple result proved in [96].

Lemma 7.1. For any cone K ⊂ R
d, for any norm | · | in R

d and any matrix norm
‖ · ‖ there is a homogeneous continuous function γ : K → R+ positive on intK such
that for any x ∈ intK and for any matrix B that leaves K invariant one has

γ(x)‖B‖ · |x| ≤ |Bx| ≤ 1
γ(x)

‖B‖ · |x|.

Corollary 7.1. Let two matrices A0,A1 possess an invariant cone K ⊂ R
d. Then for

any x ∈ intK, with the notation A(n) of Theorem 7.2, we have

|A(n)x| � ‖A(n)‖.

In view of Corollary 7.1 and of Equation (7.5), Theorem 7.2 may seem obvious,
at least if we consider the matrices Fi instead of Ai. One can however not directly
apply Lemma 7.1 and Corollary 7.1 to the matrices A0,A1 or to the matrices F0,F1

because the vector corresponding to x is not in the interior of the positive orthant,
which is an invariant cone of these matrices.

To prove Theorem 7.2 one has to first construct a common invariant cone K for
the matrices A0,A1. This cone has to contain all the vectors zn , n∈N (the restriction
of yn to R

20, see Theorem 7.1) in its interior, to enable us to apply Lemma 7.1 and
Corollary 7.1.

Then, invoking Lemma 7.1 and Corollary 7.1 it is possible to show that the prod-
ucts F(n) = Fd1 · · ·Fdk are asymptotically equivalent to their corresponding product
A(n) = Ad1 · · ·Adk .

Finally one shows that ‖Ad1 · · ·Adk‖ is equivalent to ‖Ad1 · · ·Adk−4‖.
Putting all this together, one proves Theorem 7.2. Details of the proof can be

found in [63].
Theorem 7.2 allows us to express the rates of growth of the sequence un in terms

of norms of products of the matrices A0,A1 and then to use joint spectral character-
istics of these matrices to estimate the rates of growth. More explicitly, Theorem 7.2
yields the following corollary:

Corollary 7.2. Let A0,A1 ∈ R
20×20
+ be the matrices defined in Appendix A and let

A(n) : N → R
20×20
+ be defined as A(n) = Ad1 · · ·Adk with dk . . .d1 the binary expan-

sion of n−1. Then



106 7 Overlap-Free Words

log2 un

log2 n
− log2 ‖A(n)‖1/k → 0 as n → ∞ . (7.7)

Proof. Observe first that
(

k
log2 n − 1

)
log2 un

k → 0 as n → ∞. Indeed, the first factor

tends to zero, and the second one is uniformly bounded, because, as we have seen,
un ≤Cnr. Hence

lim
n→∞

(
log2 un
log2 n − log2 ‖Ad1

···Adk
‖

k

)
=

lim
n→∞

(
log2 un−log2 ‖Ad1

···Adk
‖

k +
(

k
log2 n − 1

) log2 un
k

)
=

lim
n→∞

(
log2 un−log2 ‖Ad1

···Adk
‖

k

)
= lim

n→∞

log2

(
un·‖Ad1

···Adk
‖−1
)

k ,

and by Theorem 7.2 the value log2

(
un · ‖Ad1 · · ·Adk‖−1

)
is bounded uniformly over

n ∈ N.

We first analyze the smallest and the largest exponents of growth α and β defined
in Equation (7.1).

Theorem 7.3. For t ≥ 1, let αt = min
2t−1<n≤2t

logun
logn and βt = max

2t−1<n≤2t

logun
logn . Then

α = lim
t→∞

αt = log2 ρ̌(A0,A1) and β = lim
t→∞

βt = log2 ρ(A0,A1), (7.8)

where the matrices A0,A1 are defined in Appendix A.1. Moreover, there are positive
constants C1,C2 such that

C1 ≤ min
2t−1<n≤2t

unn−α and C1 ≤ max
2t−1<n≤2t

unn−β ≤ C2 (7.9)

for all t ∈ N.

Proof. The equalities in Equation (7.8) follow immediately from Corollary 7.2 and
the definitions.

The lower bounds in Equation (7.9) are a consequence of Theorem 7.2 and the
fact that ρ̂t ≥ ρ t and ρ̌t ≥ ρ̌ t always hold (see Chapter 1).

For the upper bound in Equation (7.9) we note that the matrices A0,A1 have no
common invariant subspaces among the coordinate planes (to see this observe, for
instance, that (A0 +A1)5 has no zero entry). As shown in Chapter 3, this proves that
the set is nondefective, that is,

ρ̂t ≤C2ρ t .

Corollary 7.3. There are positive constants C1,C2 such that

C1nα ≤ un ≤C2nβ , n ∈ N.

In the next section we show that α < β . In particular, the sequence un does not
have a constant rate of growth, and the value logun

logn does not converge as n → ∞.
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This was already noted by Cassaigne in [26]. Nevertheless, it appears that the value
logun
logn actually has a limit as n → ∞, not along all the natural numbers n ∈ N, but

along a subsequence of N of density 1. A subset A ⊂ N is said to have density 1
if 1

n Card
{

r ≤ n, r ∈ A
}→ 1 as n → ∞. In other terms, the sequence converges

with probability 1. The limit, which differs from both α and β can be expressed by
the so-called Lyapunov exponent ρ̄ of the matrices A0,A1. To show this we apply
the following result proved by Oseledets in 1968. For the sake of simplicity we
formulate it for two matrices, although it can be easily generalized to any finite set
of matrices.

Theorem 7.4. [88] Let A0,A1 be arbitrary matrices and d1,d2, . . . be a sequence of
independent random variables that take values 0 and 1 with equal probabilities 1/2.
Then the value ‖Ad1 · · ·Adt‖1/t converges to some number ρ̄ with probability 1. This
means that for any ε > 0 we have P

(∣∣‖Ad1 · · ·Adt‖1/t − ρ̄
∣∣> ε

)→ 0 as t → ∞.

The limit ρ̄ in Theorem 7.4 is called the Lyapunov exponent of the set {A0,A1}.
This value is given by the following formula:

ρ̄(A0,A1) = lim
t→∞

(
∏

d1,...,dt

‖Ad1 · · ·Adt‖1/t
)1/2t

(7.10)

(for a proof see, for instance, [97]). To understand what this gives for the asymptotics
of our sequence un we introduce some further notation. Let P be some property of
natural numbers. For a given t ∈ N we denote

Pt(P) = 2−(t−1)Card
{

n ∈ {2t−1 + 1, . . . ,2t} : nsatisfiesP
}
.

Thus, Pt is the probability that the integer n uniformly distributed on the set

{2t−1 + 1, . . . ,2t}

satisfies P . Combining Corollary 7.2 and Theorem 7.4 we obtain

Theorem 7.5. There is a number σ such that for any ε > 0 we have

Pt

(∣∣∣ logun

logn
−σ

∣∣∣> ε
)
→ 0 as t → ∞.

Moreover, σ = log2 ρ̄ , where ρ̄ is the Lyapunov exponent of the matrices {A0,A1}
defined in Appendix A.1.

Thus, for almost all n ∈ N the number of overlap-free words un has the same expo-
nent of growth σ = log2 ρ̄ . If positive a and b are large enough and a < b, then for
a number n taken randomly from the segment [a,b] the value logun/ logn is close
to σ . We say that a sequence fn converges to a number f along a set of density 1 if
there is a set A ⊂ N of density 1 such that lim

n→∞,n∈A
fn = f . Theorem 7.5 yields

Corollary 7.4. The value logun
logn converges to σ along a set of density 1.
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Proof. Let us define a sequence {k j} inductively: k1 = 1, and for each j ≥ 2 let k j

be the smallest integer such that k j > k j−1 and

Pk

(∣∣∣ logun

logn
−σ

∣∣∣ >
1
j

)
≤ 1

j
for all k ≥ k j .

By Theorem 7.5 the values k j are well-defined for all j. Let a set A consist of

numbers n, for which
∣∣∣ logun

logn − σ
∣∣∣ ≤ 1

j , where j is the largest integer such that

n ≥ 2k j−1 . Clearly, logun
logn → σ as n → ∞ along A . If, as usual, 2k−1 ≤ n < 2k, then

the total number of integers r ≤ n that do not belong to A is less than

2k

j
+

2k j

j−1
+ · · · +

2k2

1
≤

j

∑
s=1

2k− j+s

s
= 2k− j

j

∑
s=1

2s

s
.

Observe that
j

∑
s=1

2s

s ≤ 3·2 j

j , hence the number of integers r ≤ n that do not belong

to A is less than 3·2k

j ≤ 6n
j , which tends to zero being divided by n as n → ∞. Thus,

A has density 1.

7.3 Estimation of the Exponents

Theorems 7.2 and 7.5 reduce the problem of estimating the exponents of growth of
un to computing joint spectral characteristics of the matrices A0 and A1. In order
to estimate the joint spectral radius we use a modified version of the “ellipsoidal
norm algorithm” presented in Chapter 2. For the joint spectral subradius and for
the Lyapunov exponent we present new algorithms, which seem to be relatively
efficient, at least for nonnegative matrices. The results we obtain can be summarized
in the following theorem:

Theorem 7.6
1.2690 < α < 1.2736,
1.3322 < β < 1.3326,
1.3005 < σ < 1.3098.

(7.11)

In this section we also make (and give arguments for) the following conjecture:

Conjecture 7.1
β = log2

√
ρ(A0A1) = 1.3322 . . . .

7.3.1 Estimation of β and the Joint Spectral Radius

By Theorem 7.3 to estimate the exponent β one needs to estimate the joint spectral
radius of the set {A0,A1}. A lower bound for ρ can be obtained by applying the
three members inequality (1.6). Taking t = 2 and d1 = 0,d2 = 1 we get
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ρ ≥ [
ρ(A0A1)

]1/2 = 2.5179 . . . , (7.12)

and so β > log2 2.5179 > 1.3322 (this lower bound was already found in [26]).
One could also try to derive an upper bound on ρ with the three members in-

equality, that is:
ρ ≤ max

d1,...,dt ∈{1,...,m}
‖Ad1 · · ·Adt‖1/t . (7.13)

This, at least theoretically, gives arbitrarily sharp estimates for ρ . However, in our
case, due to the size of the matrices A0,A1, this method leads to computations that
are too expensive even for relatively small values of t. As we have seen in Chapter 2,
faster convergence can be achieved by finding an appropriate norm. The ellipsoidal
norms are good candidates, because the optimum among these norms can be found
via a simple SDP program. In Appendix A.2 we give an ellipsoidal norm such that
each matrix in Σ14 has a norm smaller than 2.518614. This implies that ρ ≤ 2.5186,
which gives β < 1.3326. Combining this with the inequality β > 1.3322 we com-
plete the proof of the bounds for β in Theorem 7.6.

We have not been able to improve the lower bound of Equation (7.12). However,
the upper bound we obtain is very close to this lower bound, and the upper bounds
obtained with an ellipsoidal norm for Σ t get closer and closer to this value when t
increases. Moreover, as mentioned in Chapter 4, it has already been observed that
for many sets of matrices for which the joint spectral radius is known exactly, and
in particular matrices with nonnegative integer entries, the finiteness property holds,
i.e., there is a product A ∈ Σ t such that ρ = ρ(A)1/t [61]. For these reasons, we
conjecture that the exponent β is actually equal to the lower bound, that is,

β =
√

ρ(A0A1).

7.3.2 Estimation of α and the Joint Spectral Subradius

An upper bound for ρ̌(A0,A1) can be obtained using the three members inequality
for t = 1 and d1 = 0. We have

α = log2(ρ̌) ≤ log2(ρ(A0)) = 1.276... (7.14)

This bound for α was first derived in [26]. It is however not optimal. Taking the
product A10

1 A0 (i.e., t = 11), we get a better estimate:

α ≤ log2

[
(ρ(A10

1 A0)1/11]= 1.2735... (7.15)

One can verify numerically that this product gives the best possible upper bound
among all the matrix products of length t ≤ 14.

We now estimate α from below. As we know, the problem of approximating
the joint spectral subradius is NP-hard [17] and to the best of our knowledge, no
algorithm is known to compute this quantity. Here we propose two new algorithms.
We first consider nonnegative matrices. As proved in Chapter 1, for any t and any set
of matrices Σ , we have ρ̌(Σ t) = ρ̌ t(Σ). Without loss of generality it can be assumed
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that the matrices of the set Σ do not have a common zero column. Otherwise, by
suppressing this column and the corresponding row we obtain a set of matrices of
smaller dimension with the same joint spectral subradius. The vector of ones is
denoted by 1.

Theorem 7.7. Let Σ be a set of nonnegative matrices that do not have any com-
mon zero column. If for some r ∈ R

+,s ≤ t ∈ N, there exists x ∈ R
d satisfying the

following system of linear inequalities

B(Ax− rx) ≥ 0, ∀B ∈ Σ s,A ∈ Σ t ,
x ≥ 0, (x,1) = 1,

(7.16)

then ρ̌(Σ) ≥ r1/t .

Proof. Let x be a solution of (7.16). Let us consider a product of matrices Ak . . .A1 ∈
Σ kt : Ai ∈ Σ t . We show by induction on k that Ak . . .A1x ≥ rk−1Akx : For k = 2, we
have A2(A1x− rx) = CB(A1x− rx) ≥ 0, with B ∈ Σ s,C ∈ Σ t−s. For k > 2 we have
Ak . . .A1x = AkAk−1 . . .A1x ≥ rk−2AkAk−1x ≥ rk−1Akx. In the last inequality the case
for k = 2 was reused.

Hence,
||Ak . . .A1|| = 1T Ak . . .A11 ≥ rk−11T Akx ≥ Krk,

where K = (mink 1T Akx)/r > 0. The last inequality holds because Akx = 0, together
with the first inequality in (7.16), imply that −rBx = 0 for all B ∈ Σ s, which implies
that all B ∈ Σ s have a common zero column. This is in contradiction with our as-
sumption because the matrices in Σ s share a common zero column if and only if the
matrices in Σ do.

Clearly, the size of the instance of the linear program 7.16 grows exponentially
with t and s. We were able to find a solution to the linear programming prob-
lem (7.16) with r = 2.4116, t = 16,s = 6. Hence we get the following lower bound:
α ≥ log2 r/16 > 1.2690. The corresponding vector x is given in Appendix A.3. This
completes the proof of Theorem 7.6.

Theorem 7.7 handles nonnegative matrices, and we propose now a way to gener-
alize this result to arbitrary real matrices. For this purpose, we use the semidefinite
lifting presented in Chapter 2, and we consider the set of linear operators acting on
the cone of positive semidefinite symmetric matrices S as S → AT

i SAi. We know that
the joint spectral subradius of this new set of linear operators is equal to ρ̌(Σ)2.
We use the notation A � B to denote that the matrix A−B is positive semidefinite.
Recall that A � 0 ⇔∀y,yT Ay ≥ 0.

Theorem 7.8. Let Σ be a set of matrices in R
d×d and s ≤ t ∈ N. Suppose that there

are r > 0 and a symmetric matrix S � 0 such that

BT (AT SA− rS)B� 0 ∀A ∈ Σ t ,B ∈ Σ s,
S � 0,

(7.17)

then ρ̌(Σ) ≥ r1/2t .
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Proof. The proof is formally similar to the previous one. Let S be a solution
of (7.17). We denote by Mk the product A1 . . .Ak, where Ai ∈Σ t . It is easy to show by
induction that MT

k SMk � rk−1(AT
k SAk). This is obvious for k = 2 for similar reasons

as in the previous theorem, and for k > 2, if, by induction,

∀y, yT MT
k−1SMk−1y ≥ rk−2yT AT

k−1SAk−1y,

then, with y = Akx, for all x,

xT MT
k SMkx ≥ rk−2xT AT

k AT
k−1SAk−1Akx ≥ rk−1xT AT

k SAkx.

Thus,

sup

{
xT MT

k SMkx

xT Sx

}
≥ rk−1 sup

{
xT AT

k SAkx

xT Sx

}
.

Finally, ||Mk||S ≥ rk/2C, where C is a constant.

For a given r > 0 the existence of a solution S can be established by solving the
semidefinite programming problem (7.17), and the optimal r can be found by bisec-
tion in logarithmic time.

7.3.3 Estimation of σ and the Lyapunov Exponent

The exponent of the average growth σ is obviously between α and β , so 1.2690 <
σ < 1.3326. To get better bounds we need to estimate the Lyapunov exponent
ρ̄ of the matrices A0,A1. The first upper bound can be given by the so-called
1-radius ρ1:

ρ1 = lim
t→∞

(
2−t ∑

d1,...,dt

‖Ad1 · · ·Adt‖
)1/t

.

For matrices with a common invariant cone we have ρ1 = 1
2 ρ(A0 + A1) [96].

Therefore, in our case ρ1 = 1
2 ρ(A0 + A1) = 2.479.... This exponent was first

computed in [26], where it was shown that the value ∑n−1
j=0 u j is asymptotically

equivalent to nη , where η = 1+ log2 ρ1 = 2.310.... It follows immediately from the
inequality between the arithmetic mean and the geometric mean that ρ̄ ≤ ρ1. Thus,
σ ≤ η . In fact, as we show below, σ is strictly smaller than η . We are not aware of
any approximation algorithm for the Lyapunov exponent, except by application of
Definition (7.10). It follows from submultiplicativity of the norm that for any t the

value rt =
(

∏
d1,...,dt

‖Ad1 · · ·Adt‖
) 1

t2t
gives an upper bound for ρ̄ , that is ρ̄ ≤ rt for any

t ∈ N. Since rt → ρ̄ as t → ∞, we see that this estimate can be arbitrarily sharp for
large t. But for the dimension 20 this leads quickly to prohibitive numerical compu-
tations. For example, for the norm ‖ ·‖1 we have r20 = 2.4865, which is even larger
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than ρ1. In order to obtain a better bound for ρ̄ we state the following results. For

any t and x ∈ R
d we denote pt(x) =

(
∏

d1,...,dt

|Ad1 · · ·Adt x|
) 1

2t
and mt = sup

x≥0,|x|=1
pt(x).

In general, this expression is hard to evaluate, but in the following we will use a
particular norm for which mt is easy to handle.

Proposition 7.1. Let A0,A1 be nonnegative matrices in R
d. Then for any norm | · |

and for any t ≥ 1 we have ρ̄ ≤ (mt)1/t .

Proof. By Corollary 7.1, for x > 0 we have rn � [pn(x)]1/n, and consequently

lim
t→∞

[
ptk(x)

] 1/tk → ρ̄

as t → ∞. On the other hand, pk+n(x) ≤ mk pn(x) for any x ≥ 0 and for any n,k ∈ N,
therefore ptk(x) ≤ (mk)t . Thus, ρ̄ ≤ (mk)1/k.

Proposition 7.2. Let A0,A1 be nonnegative matrices in R
d that do not have common

invariant subspaces among the coordinate planes. If ρ̌ < ρ , then ρ̄ < ρ1.

Proof. Let v∗ be the eigenvector of the matrix 1
2

(
AT

0 + AT
1

)
corresponding to its

largest eigenvalue ρ1. Since the matrices have no common invariant coordinate
planes, it follows from the Perron-Frobenius theorem that v∗ > 0. Consider the
norm |x| = (x,v∗) on R

d
+. Take some t ≥ 1 and y ∈ R

d
+, |y| = (y,v∗) = 1, such that

pt(y) = mt . We have

mt = pt(y) ≤ 2−t ∑
d1,...,dt

|Ad1 · · ·Adt y| = 2−t ∑
d1,...,dt

(
Ad1 · · ·Adt y,v∗

)

=
(

y,2−t(AT
0 + AT

1

)t
v∗
)

= ρ t
1

(
y,v∗

)
= ρ t

1.

Thus, mt ≤ ρ t
1, and the equality is possible only if all 2t values |Ad1 · · ·Adt y| are

equal. Since ρ̌ < ρ , there must be a t such that the inequality is strict. Thus, mt < ρ t
1

for some t, and by Proposition 7.1 we have ρ̄ ≤ (mt)1/t < ρ1.

We are now able to estimate ρ̄ for the matrices A0,A1. For the norm |x|= (x,v∗) used
in the proof of Proposition 7.2 the value − 1

t log2 mt can be found as the solution of
the following convex minimization problem with linear constraints:

min − 1
t2t ln2 ∑

d1,...,dt∈{0,1}
ln
(

x,AT
d1
· · ·AT

dt
v∗
)

s.t. x ≥ 0, (x,v∗) = 1.
(7.18)

The optimal value of this optimization problem is equal to −(1/t) log2 mt , which
gives an upper bound for σ = log2 ρ̄ (Proposition 7.1). Solving this problem for
t = 12 we obtain σ ≤ 1.3098. We finally provide a theorem that allows us to derive
a lower bound on σ . The idea is identical to the one used in Theorem 7.7, but
transposed to the Lyapunov exponent.
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Theorem 7.9. Let Σ be a set of m nonnegative matrices that do not have any com-
mon zero column. If for some s ≤ t ∈ N, ri ∈ R+ : 0 ≤ i < mt , there exists x ∈ R

d
+

satisfying the following system of linear inequalities

B(Aix− rix) ≥ 0, ∀B ∈ Σ s,Ai ∈ Σ t ,
x ≥ 0, (x,1) = 1,

(7.19)

then ρ̄(Σ) ≥ ∏i ri
1/(tmt).

The proof is similar to the proof of Theorem 7.7 and is left to the reader. Also,
a similar theorem can be stated for general matrices (with negative entries), but
involving linear matrix inequalities. Due to the number of different variables ri, one
cannot hope to find the optimal x with SDP and bisection techniques. However, by
using the vector x computed for approximating the joint spectral subradius (given
in Appendix A.3), with the values s = 8, t = 16 for the parameters, one gets a good
lower bound for σ : σ ≥ 1.3005.

7.4 Conclusion

The goal of this chapter is to precisely characterize the asymptotic rate of growth of
the number of overlap-free words. Based on Cassaigne’s description of these words
with products of matrices, we first prove that these matrices can be simplified, by
decreasing the state space dimension from 30 to 20. This improvement is not only
useful for numerical computations, but allows to characterize the overlap-free words
that “count” for the asymptotics: we call these words purely overlap-free, as they can
be expressed iteratively as the image of shorter purely overlap free words.

We have then proved that the lower and upper exponents α and β defined by
Cassaigne are effectively reached for an infinite number of lengths, and we have
characterized them respectively as the logarithms of the joint spectral subradius
and the joint spectral radius of the simplified matrices that we constructed. This
characterization, combined with new algorithms that we propose to approximate the
joint spectral subradius, allow us to compute them within 0.4%. The algorithms we
propose can of course be used to reach any degree of accuracy for β (this seems also
to be the case for α and σ , but no theoretical result is known for the approximation
of these quantities). The computational results we report in this chapter have all
been obtained in a few minutes of computation time on a standard PC desktop and
can therefore easily be improved.

Finally we have shown that for almost all values of n, the number of overlap-free
words of length n does not grow as nα , nor as nβ , but in an intermediary way as nσ ,
and we have provided sharp bounds for this value of σ .

This work opens obvious questions: Can joint spectral characteristics be
used to describe the rate of growth of other languages, such as for instance the
more general repetition-free languages ? The generalization does not seem to be
straightforward for several reasons: first, the somewhat technical proofs of the links
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between un and the norm of a corresponding matrix product take into account the
very structure of these particular matrices, and second, it is known that a bifurcation
occurs for the growth of repetition-free words: for some members of this class of
languages the growth is polynomial, as for overlap-free words, but for some others
the growth is exponential, as shown by Karhumaki and Shallit [66]. See [10] for
more on repetition-free words and joint spectral characteristics.
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