
Chapter 6
Capacity of Codes

Abstract. This chapter presents personal research on an application of the joint
spectral radius to a problem in constrained coding: the computation of the capacity
of codes submitted to forbidden differences constraints. We first present how the
joint spectral radius appears to be the good tool to compute the capacity in this par-
ticular problem. We show how the quantity ρ̂t provides bounds on the joint spectral
radius that are tighter than in the general case. We show how the situation is even
better in some particular situations. We then provide a polynomial time algorithm
that decides if the capacity is positive. We introduce a closely related problem that
we prove to be NP-hard. We then prove the existence of extremal norms for sets of
matrices arising in this coding problem.

6.1 Introduction

In certain coding applications one is interested in binary codes whose elements avoid
a set of forbidden patterns1. This problem is rather classical and has been widely
studied in the past century [75]. In order to minimize the error probability of some
particular magnetic-recording systems (see for instance [81]), a more complicated
problem arises when it is desirable to find code words whose differences avoid for-
bidden patterns. We now describe this problem formally.

Let {0,1}t denote the set of words of length t over {0,1} and let u,v ∈ {0,1}t .
The difference u− v is a word of length t over {−1,0,+1} (as a shorthand we shall
use {−,0,+} instead of {−1,0,+1}). The difference u− v is obtained from u and
v by symbol-by-symbol subtraction so that, for example, 0110− 1011 = −+ 0−.
Consider now a finite set D of words over {−,0,+}; we think of D as a set of
forbidden difference patterns. A set (or code) C ⊆ {0,1}t is said to avoid the set D
if none of the differences of words in C contain a word from D as subword, that is,
none of the differences u− v with u,v ∈ C can be written as u− v = xdy for d ∈ D
and some (possibly empty) words x and y over {−,0,+}.

1 The chapter presents research work that has been published in [11, 12].

R. Jungers: The Joint Spectral Radius: Theory and Applications, LNCIS 385, pp. 85–99.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

86 6 Capacity of Codes

We are interested in the largest cardinality, which we denote by δt(D), of sets of
words of length t whose differences avoid the forbidden patterns in D.

δt(D) = max
W⊂{0,1}t :W avoids D

|W |.

If the set D is empty, then there are no forbidden patterns and δt(D) = 2t . We will
see that when D is nonempty, δt(D) grows exponentially with the word length t and
is asymptotically equal to 2cap(D)t where the scalar 0 ≤ cap(D) ≤ 1 is the capacity
of the set D. The capacity is thus a measure of how constraining a set D is; the
smaller the capacity, the more constraining the forbidden difference patterns are.

As an illustration consider the set of forbidden patterns D = {+−,++}. Differ-
ences between two words in C = {u10u20 · · ·0uk : ui ∈ {0,1}} will have a ”0” in
any succession of two characters and will therefore not contain any of the forbidden
patterns. From this it follows that δt ≥ 2�t/2� and so cap(D) ≥ 1/2. One can show
that in fact cap(D) = 1/2. This follows from the next proposition combined with
the simple observation that the capacity of the set D = {+−,++} is identical to the
capacity of the set D = {+−,++,−+,−−}, that we denote D = {+,−}2 as usual.

Proposition 6.1. The capacity of the set {+,−}m is given by (m−1)/m.

Proof. Let Ckm be a code of length km avoiding D. In any given window of length
m, the set of words appearing cannot contain both u and ū (we use ū to denote the
word obtained by inverting the ones and the zeros in u). This implies that there are
at most 2m−1 different words in any given window of size m. Let us now consider
words in Ckm as a concatenation of k words of length m. There are at most 2(m−1)k

words in Ckm and so cap(D) ≤ (m−1)/m.
Now consider the code

Ckm = {z10z20 · · ·0zk : zi ∈ {0,1}m−1}. (6.1)

This code satisfies the constraints, and the bound (m−1)/m is reached.

The computation of the capacity is not always that easy. As an example it is proved
in [82] that the capacity of {+++} is given by log2((1 +(19 + 3

√
33)1/3 +(19−

3
√

33)1/3)/3) = .8791 . . . and the same reference provides numerical bounds for the
capacity of {0 +−+} for which no explicit expression is known.

The capacity of codes that avoid forbidden difference patterns was first intro-
duced and studied by Moision, Orlitsky and Siegel. In [82], these authors provide
explicit values for the capacity of particular sets of forbidden patterns and they prove
that, in general, the capacity of a forbidden set D can be obtained as the logarithm of
the joint spectral radius of a set of matrices that have binary entries. The size of the
matrices constructed in [82] for computing the capacity is not polynomial in the size
of the forbidden set D and so even the construction of the set of matrices is an oper-
ation that cannot be performed in polynomial time. Since moreover the computation
of the joint spectral radius is NP-hard even if the matrices have binary entries, com-
puting the capacity of codes seems at first sight to be a challenging task. However,

6.2 Capacity and Joint Spectral Radius 87

as pointed out in [82], the matrices that arise in the context of capacity computation
have a particular structure and so the capacity could very well be computable in
polynomial time.

In this chapter we first present this in details. We then provide several results ; all
are related to the capacity computation and its complexity.

We first provide new bounds that relate the capacity of a set of forbidden patterns
D with the values δt(D), the maximum size of a code of length t avoiding D. These
bounds depend on parameters that express the number and positions of zeros in the
patterns of D. These new bounds allow us to compute the capacity of any set to any
given degree of accuracy by numerically evaluating δt(D) for some value of t. The
approximation algorithm resulting from these bounds has exponential complexity
but provides an a-priori guaranteed precision, and so the computational effort re-
quired to compute the capacity to a given degree of accuracy can be evaluated before
the calculations are actually performed. As an example, it follows from the bounds
we provide that the capacity of a set of forbidden patterns that does not contain any
0s can be computed with an accuracy of 90% by evaluating δt(D) for t = 10 (see
Corollary 6.3 below).

In a subsequent section, we provide explicit necessary and sufficient conditions
for a set to have positive capacity and we use this condition for producing a poly-
nomial time algorithm that decides whether or not the capacity of a set is positive.
These conditions are directly based on theoretical results presented in Chapter 3.

We then consider the situation where in addition to the forbidden symbols −,0
and + the forbidden patterns in D may also include the symbol ±, where ± stands
for both the symbols + and −. We prove that in this case the problem of computing
the capacity, or even determining if this capacity is positive, becomes NP-hard.

Finally, we show that sets of matrices constructed in order to compute the capac-
ity always have an extremal norm.

These results allow us to better delineate the capacity computation problems that
are polynomial time solvable from those that are not. We do however not provide an
answer to the question, which was the original motivation for the research reported
here, as to whether or not one can compute the capacity of sets of forbidden patterns
over {−,0,+} in polynomial time. This interesting question that was already raised
in [82], remains unsettled.

6.2 Capacity and Joint Spectral Radius

Let D be a set of forbidden patterns over the alphabet {−,0,+} and consider for
any t ≥ 1 the largest cardinality, denoted by δt(D), of sets of words of length t
whose pairwise differences avoid the forbidden patterns in D. The capacity of D is
defined by

cap(D) = lim
t→∞

log2 δt(D)
t

. (6.2)

The existence of this limit is a simple consequence of Fekete’s Lemma (Lemma
1.1). We skip the formal proof, since it will be clear after the formulation of the
problem with a joint spectral radius.

88 6 Capacity of Codes

Moision et al. show in [82] how to represent codes submitted to a set of con-
straints D as products of matrices taken in a finite set Σ(D). The idea of the proof
is to make use of De Bruijn graphs. De Bruijn graphs were introduced in [38]; for
an introduction, see for instance [75]. Let us construct the De Bruijn graph of bi-
nary words of length T equal to the lengths of the forbidden patterns. Edges in these
graphs represent words of length T, and since some pairs of words cannot appear
together, a subgraph of the De Bruijn graph is said admissible if it does not contain
two edges that represent words of length T whose difference is forbidden. Figure
6.1 (a) represents a De Bruijn graph that is admissible for the forbidden pattern
D = {++−}. An efficient way of drawing these graphs is to represent them as cas-
cade graphs (see Chapter 3) as in Figure 6.1 (b). In order to construct longer codes,
one just has to juxtapose admissible cascade graphs, such that each path from left to
right represents an admissible word.

Fig. 6.1 An admissible
De Bruijn graph for D =
{++−} (a), and the same
graph under its cascade
graph form (b)

(a)

(b)

In such a construction, the edges in the leftmost cascade graph represent words
of length T, and each subsequent edge represents the addition of one letter to the
word. A cascade graph for words of length 5 that are admissible for D = {++−}
is represented in Figure 6.2. Since we have a bijection between the paths of length
t in an admissible cascade graph and the words in an admissible code of length

6.2 Capacity and Joint Spectral Radius 89

Fig. 6.2 An admissible cascade graph that represents a maximal set of admissible words of
length 5 for D = {++−}. For example, the path on the top represents the word 00000 and the
dashed path represents the word 01010. Such graphs are maximal in the sense that no word
can be added to the corresponding code, but perhaps another choice of elementary cascade
graphs would generate more paths

T +t−1, the maximal size of a code of length T +t−1 is given by the cascade graph
of length T that maximizes the number of paths from left to right. We have seen in
Chapter 3 how the joint spectral radius of binary matrices represents the asymptotics
of the maximum number of paths in long cascade graphs. This reasoning leads to
the following theorem:

Theorem 6.1. Associated to any set D of forbidden patterns of length at most m,
there exists a finite set Σ(D) of binary matrices for which

δm−1+t = ρ̂ t
t (Σ(D)) = max{‖A1 . . .At‖ : Ai ∈ Σ(D)}. (6.3)

In this expression, the matrix norm used is the sum of the absolute values of the
matrix entries. The main result of this section is then a direct consequence of the
definition of the joint spectral radius:

Corollary 6.1. Let D be a set of forbidden patterns and Σ(D) be the set of binary
matrices constructed as described above, then

cap(D) = log2 (ρ(Σ(D))).

Example 6.1. Let D = {++−}. The set Σ(D) contains two matrices :

A0 =

⎛
⎜⎜⎝

1 1 0 0
0 0 1 1
1 1 0 0
0 0 0 1

⎞
⎟⎟⎠ , A1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 1
1 1 0 0
0 0 1 1

⎞
⎟⎟⎠ .

One can check that the cascade graph in Figure 6.2 represents the product A0A0A1

(the sum of the entries equals the number of paths).

90 6 Capacity of Codes

The joint spectral radius of the set Σ is ρ(Σ) = 1.75 . . . [82], and the product
that ensures this value is A0A0A1A1, that is, ρ(Σ) = ρ(A2

0A2
1)

1/4, and cap(D) =
log2 1.75 . . . = 0.8113

Example 6.2. Let D = {+++−}. The set Σ(D) contains two matrices:

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will see that cap(D) = 0.9005 . . . and that the product that ensures this value is
A0A1 (see Example 6.5).

Let us comment here on the number and size of the matrices in Σ(D); these issues
are relevant for the questions raised hereafter: If the forbidden patterns in D have
identical length m, then the number of matrices in Σ(D) can be doubly exponential
in m and all matrices in Σ(D) have dimension 2m−1 × 2m−1. If the forbidden pat-
terns in D have different lengths, then one can construct a set D′ whose forbidden
patterns have equal length and for which cap(D) = cap(D′). Unfortunately, the num-
ber of patterns in D′ can grow exponentially with the size of D so that the number
of matrices in the set Σ(D) is in fact even worse than in the former case. Capac-
ity approximation algorithms based on the direct computation of the set Σ(D) will
therefore not be tractable even for small sets D.

6.3 Upper and Lower Bounds

In this section, we derive bounds that relate the capacity of a set D with δt(D).
Consider some set D of forbidden patterns and denote by r1 (respectively r2) the
maximal k for which 0k is the prefix (respectively suffix) of some pattern in D: No
pattern in D begins with more than r1 zeros and no pattern in D ends with more
than r2 zeros. We also denote by r the maximal number of consecutive zeros in any

6.3 Upper and Lower Bounds 91

pattern in D; obviously, r ≥ max(r1,r2). In the next theorem we provide upper and
lower bounds on the capacity cap(D) in terms of δt(D).

Theorem 6.2. For any t ≥ r1 + r2 we have

log2 δt(D)− (r1 + r2)
t + r + 1− (r1 + r2)

≤ cap(D) ≤ log2 δt(D)
t

. (6.4)

Proof. Let us first consider the upper bound. The following equation is straightfor-
ward, given any positive integers k, t, and any set of forbidden patterns D :

δkt ≤ δ k
t .

Indeed, considering any word of length kt as the concatenation of k subwords of
length t, for each of these subwords we have at most δt possibilities. Taking the 1

kt th
power of both sides of this inequality and taking the limit k → ∞, we obtain :

ρ(Σ) = 2cap(D) ≤ δ 1/t
t .

Now let us consider the lower bound. The optimal code of length t contains at least
�2−r1−r2δt(D)� words that coincide in the first r1 bits and in the last r2 bits (because
there are in total 2r1+r2 different words of length r1 + r2). Denote the set of strings
of all these words from (r1 +1)st bit to (t − r2)th bit by C′. This set contains at least
�2−r1−r2δt(D)� different words of length t − r1 − r2. Then for any l ≥ 1 the code

C =
{

u10r+1u20r+1 · · ·0r+1ul0
r+1 , uk ∈C′, k = 1, . . . , l

}
(6.5)

avoids D. The cardinality of this code is at least �2−r1−r2δt(D)�l and the length of
its words is T = l(t − r1 − r2 + r + 1). Therefore, for any l we have

δT (D) ≥ �2−r1−r2δt(D)�l .

Taking the power 1/T of both sides of this inequality, we get

[
δT (D)

]1/T ≥ �2−r1−r2δt(D)�1/(t−r1−r2+r+1),

which as T → ∞ yields

ρ ≥ �2−r1−r2δt(D)�1/(t−r1−r2+r+1).

Now after elementary simplifications we arrive at the lower bound on cap(D).

Both bounds in Theorem 6.2 are sharp in the sense that they are both attained for
particular sets D. The upper bound is attained for the set D = /0 and the lower
bound is attained, for instance, for the set D = {0m−1+}. Indeed, in this case
r = r1 = m− 1,r2 = 0 and cap(D) = 0, because δt = 2m−1 for t ≥ m− 1. Here
is a direct proof of this equality, drawn from [82]: Clearly, for all t > m−1, we can
construct a code of size δt = 2m−1. It happens that for any given length t this size

92 6 Capacity of Codes

is maximum. Otherwise, there must be two different words u and v whose prefixes
of length k coincide. In order to avoid the forbidden pattern, the k + 1-th symbols
must also be equal, and so on. But then both words are equal, and we have reached
a contradiction.

Corollary 6.2. Let D be given and let r,r1 and r2 be defined as above. Then
log2 δt(D)

t − 1
t max(r1 + r2,r + 1) ≤ cap(D) ≤ log2 δt (D)

t .

Proof. If r1 + r2 ≥ r + 1 this follows from Theorem 6.2 and from simple calcula-
tions. If r1 + r2 < r + 1 simply use the fact that the capacity is always less than one
in Theorem 6.2, and

log2 δt(D)
t

−(r1 +r2)≤ (t +(r+1)−(r1 +r2))cap(D)≤ tcap(D)+(r+1)−(r1 +r2).

These bounds can be used to design an approximation algorithm that computes the
capacity to any desired accuracy by evaluating δt for sufficiently large values of t.
In contrast to previously known algorithms this algorithm has guaranteed computa-
tional cost: once the desired accuracy is given, the corresponding computational cost
can easily be computed. As an illustration, consider the case of a set D for which
r1 = r2 = 2 and r = 4. Then, by Corollary 6.2,

log2 δt(D)
t

− 5
t
≤ cap(D) ≤ log2 δt(D)

t
(6.6)

and we can use log2 δt(D)/t as an estimate for cap(D) and choose a value of t for
which (6.6) provides satisfactory accuracy bounds.

The easiest way of computing δt is to apply Equation (6.3), by evaluating the
maximum-normed product of length t −m+ 1 of matrices taken in the set Σ . Moi-
sion et al. mention in [83] an improvement of this brute force method, similar to
the ones proposed in Chapter 2: The main idea is to compute successively some
sets of matrices Σ̄l , l = 1,2 . . . , with Σ̄1 = Σ . These are sets of products of length
l, obtained by computing iteratively all products of a matrix in Σ̄l−1 with a matrix
in Σ , and then removing from the set Σ̄l a matrix A if it is dominated by another
matrix B in this set, that is, if each entry of A is less or equal than the corresponding
entry of B. For more information about this algorithm, we refer the reader to [83].
We propose here an improvement of this method: given the set Σ̄l , one can directly
compute a set Σ̄2l by computing the set Σ̄2

l and then removing from this set all ma-
trices that are dominated. This small modification of the algorithm has dramatically
improved the computational time for all the examples on which we have used it.

We may specialize the general bounds of Theorem 6.2 to sets of particular
interest.

Corollary 6.3. Let D be given and let r,r1 and r2 be defined as above. Then

1. If cap(D) = 0 the size of any code avoiding D is bounded above by the constant
2r1+r2 .

2. If the patterns in D contain no zero, then

6.4 Positive Capacity Can Be Decided in Polynomial Time 93

t cap(D) ≤ log2 δt(D) ≤ (t + 1) cap(D).

3. If none of the patterns in D starts nor ends with a zero, then

t cap(D) ≤ log2 δt(D) ≤ (t + r + 1) cap(D).

6.4 Positive Capacity Can Be Decided in Polynomial Time

As previously seen by a direct argument, the capacity of the set {0m−1+} is equal to
zero. In this section we provide a systematic way of deciding when the capacity of a
set is equal to zero. We first provide a simple positivity criterion that can be verified
in finite time and then exploit this criterion for producing a positivity checking al-
gorithm that runs in polynomial time. In the sequel we shall use the notation −D to
denote the set of elements that are the opposites to the elements of D, for example
if D = {−+ 0,0−−} then −D = {+−0,0 ++}.

Theorem 6.3. Let D be a set of forbidden patterns of lengths at most m. Then
cap(D) > 0 if and only if there exists a word on the alphabet {+,−,0} that does
not contain any word of D ∪−D as subword and that has a prefix 0m and a
suffix +0m−1.

Proof. Let us first suppose 0m /∈ D. The capacity is positive iff ρ(Σ(D)) > 1. We
know (see Chapter 3) that for binary matrices this is equivalent to the fact that there
is a product in Σ∗ that has a diagonal entry larger than one. In turn, by construction
of the set Σ(D), this is equivalent to the existence of two words with the same m−1
first characters, and the same m − 1 last characters, whose difference avoids the
forbidden patterns. Now, this latter fact is possible iff there is a nontrivial sequence
on {0,+,−} of the shape 0m−1d0m−1 that avoids D∪−D.

Now in order to handle the case 0m ∈ D, which implies cap(D) = 0, we add a zero
at the beginning and by doing this, we do not change anything to the admissibility
of this word, except that we remove the possibility 0m ∈ D.

Corollary 6.4. If every word in D contains at least two nonzero symbols, then

cap(D) > 0.

Proof. For any such set the word d = 0m +0m−1 is admissible, and by Theorem 6.3
the capacity is positive.

Corollary 6.5. If D consists of one forbidden pattern p of length m, then its capacity
is zero if and only if p has at least m−1 consecutive zeros.

Proof. If a pattern p is 0m or +0m−1, then obviously there are no admissible strings,
and by Theorem 6.3 the capacity is zero. The same holds for −0m−1, since this is the
negation of +0m−1 and for 0m−1± because of the symmetry. In all the other cases
the admissible string exists and so cap(D) > 0. Indeed, if p has a unique nonzero
character, then the word d = 0m ++0m−1 is admissible, if it has at least two nonzero
characters, then the proof follows from Corollary 6.4.

94 6 Capacity of Codes

We now prove the polynomial-time solvability of the problem of determining
whether the capacity of a set D is positive. The proof is constructive and is based
on the so-called Aho-Corasick automaton that checks whether a given text contains
as a subsequence a pattern taken from a given set [1]. Let P be a set of patterns,
that do not have to be of the same length. The transition graph of the Aho-Corasick
automaton for the set P is defined as follows (see Figure 6.3 for an example). First,
construct the retrieval tree, or trie, of the set P. The trie of P is the directed tree of
which each vertex has a label representing a prefix of a pattern in P, and all prefixes
are represented, including the patterns themselves. The label of the root of the tree
is the empty string. Edges have a label too, which is a symbol of the used alphabet.
There is an edge labeled with the symbol a from a vertex s to a vertex t if t is the
concatenation sa.

In order to have an automaton, we complete the trie by adding edges so that
for each vertex s, and each symbol a, there is an edge labeled a leaving s. This
edge points to the vertex of the trie of which the label is the longest suffix of the
concatenation sa. Note that this vertex can be the root (that is, the empty string) if
no vertex in the trie is a suffix of sa. Finally, the accepting states of the automaton
are the vertices whose labels are patterns of P. This automaton accepts words that
contain a pattern in P and halts whenever this pattern is a suffix of the entered text.

If 0k ∈ D or +0k ∈ D, then, by Theorem 6.3, cap(D) = 0. If this is not the
case, we construct the graph of the automaton of Aho-Corasick for the set P =
D∪(−D)∪{+0m−1}. We then remove any vertex whose label is a complete pattern
in P (i.e., a state reached when a suffix of the text entered is in the set P) except
the vertex labeled {+0m−1}. The size of the constructed graph is polynomial in the
size and the number of the forbidden patterns. Moreover, since we have removed
vertices corresponding to forbidden patterns, any path in the remaining graph is an
admissible word. Let us now denote q0m the state reached after entering the word 0m.
This state is well defined since 0m does not contain any forbidden pattern, and hence
no state reached after entering any prefix of the string 0m was removed from the pri-
mary automaton. We also denote q+0m−1 the state corresponding to the suffix +0m−1

for the entered text (i.e. the accepting state corresponding to the pattern +0m−1 in
the Aho-Corasick automaton). Figure 6.3 presents the graph for D = {0+0} that is
obtained from the Aho-Corasick automaton of the set P = {0 + 0,0−0,+00}.

We have the following criterion for zero-capacity:

Theorem 6.4. The capacity of a set D is positive if and only if there is a path from
q0m to q+0m−1 in the graph constructed above.

Proof. If cap(D) > 0, by Theorem 6.3, there exists a word d, beginning with m
zeros, and ending with +0m−1, that avoids D∪−D. Hence, entering this word in
the automaton, the finite state will be (well defined and will be) the vertex labeled
+0m−1, because the vertices removed from the original automaton of Aho-Corasick
do not make any problem, since we do not reach the vertices labeled with forbidden
patterns.

6.4 Positive Capacity Can Be Decided in Polynomial Time 95

Fig. 6.3 The graph for D = {0 + 0}. We have constructed the Aho-Corasick automaton for
P = {0+0,0−0,+00}, and then removed the states 0+0 and 0−0 that are forbidden. The
empty word is represented by ε. The path 0→ 0−→+→+0→+00 provides the admissible
word 000−+00

On the other hand, a path in the constructed graph represents an acceptable word,
since it does not pass through any removed vertex, and hence no suffix of any prefix
of this word will be in the forbidden set.

Moreover, a shortest path will give the shortest acceptable word, since the length
of the path is equal to the length of the represented word.

Corollary 6.6. The problem of determining whether or not the capacity of a given
set of forbidden patterns is positive can be solved in polynomial time.

Proof. Aho shows in [1] that the automaton is constructible in polynomial time. The
determination of the state q0m and the computation of the shortest path are obviously
polynomially feasible.

Corollary 6.7. If for a set D of forbidden patterns there are admissible words, then
the length of a shortest admissible word does not exceed 2M + 2m, where m is the
maximal length of all patterns in D and M is the sum of the lengths of each forbidden
pattern.

Proof. The number of vertices of the graph does not exceed 2M+m+1. Indeed, for
each pattern of length l in D∪−D we add to the automaton at most l states, since
there are no more than l prefixes of this pattern. We still add the pattern {+0m−1}
(maximum m new states), and the root. If there is a path connecting two given ver-
tices, this path can be chosen so that its length (in terms of number of vertices)
will not exceed the total number of vertices (if it does not pass through the same
vertex twice). Every edge of this path adds one bit to the admissible string. The
initial length of the string is m (we start from 0m), therefore the total length of the
admissible word is at most 2M + 2m.

96 6 Capacity of Codes

Proposition 6.2. If the capacity is positive, then cap(D) > 1/(2M + m), where m
is the maximal length of all patterns in D and M is the sum of the lengths of each
forbidden pattern.

Proof. If cap(D) > 0, then there is an admissible string of length t ≤ 2M + 2m
(Corollary 6.7). Consider a code as given by Equation (6.5). Its size is 2l and the
length of its words is at most

Tl = l(2M + 2m−m) = l
(
2M + m

)
.

Therefore
cap(D) = lim

l→∞

log2 δTl
Tl

≥ lim
l→∞

log2 2l

l
(

2M+m
) = 1

2M+m .

6.5 Positive Capacity Is NP-Hard for Extended Sets

We now consider the situation where forbidden patterns are allowed to contain the
± symbol. The symbol ± is to be understood in the following sense: whenever it oc-
curs in a forbidden pattern, both the occurrences of + and of − are forbidden at that
particular location. So, for example, avoiding the forbidden set {0±+±} is equiv-
alent to avoiding the set {0 +++,0 ++−,0−++,0−+−}. All results obtained
for forbidden patterns over {−,0,+} have therefore their natural counterparts in the
situation where the forbidden patterns are defined over the alphabet {−,0,+,±}. In
particular, the results of Section 6.3 do transfer verbatim and the bounds derived in
Theorem 6.2 are valid exactly as stated there. However, the symbol ± allows us to
compress the number of forbidden patterns so that the new instance is exponentially
smaller. Thus, the polynomial time algorithm described above for normal sets could
well not be polynomial in the size of the compressed instance. We now prove that
unless P = NP, there is no polynomial time algorithm to decide zero capacity when
the symbol ± is allowed.

Theorem 6.5. The problem of determining if the capacity of a set of forbidden pat-
terns over {0,+,−,±} is equal to zero is NP-hard.

Proof. The proof proceeds by reduction from the Not-All-Equal 3SAT problem that
is known to be NP-complete (see [44]). In the Not-All-Equal 3SAT problem, we are
given m binary variables x1, . . . ,xm and t clauses that each contain three literals (a
literal can be a variable or its negation), and we search a truth assignment for the
variables such that each clause has at least one true literal and one false literal.

Suppose that we are given a set of clauses. We construct a set of forbidden pat-
terns D such that cap(D) > 0 if and only if the instance of Not-All-Equal 3SAT has
a solution. The first part of D is given by:

{(0±0),(0±±0), . . .,(0±m−1 0)}. (6.7)

6.5 Positive Capacity Is NP-Hard for Extended Sets 97

Words over {−,0,+} that avoid these patterns are exactly those words for which
any two consecutive zeros are either adjacent or have at least m symbols on {+,−}
between them. We use these m symbols as a way of encoding possible truth assign-
ments for the variables (the first one is “+” if x1 = 1, etc...).

We then add to D two patterns for every clause: they will force a sequence of
m nonzero symbols to encode a satisfying assignement for the instance of Not-All-
Equal 3SAT. These patterns are of length m and are entirely composed of symbols
±, except for the positions corresponding to the three variables of the clause, which
we set to + if the clause contains the variable itself, or to − if the clause contains
the negation of the variable. We also add the opposite of this pattern; this last pat-
tern is not necessary for the proof but preserves the symmetry and simplifies the
construction.

For example, if the instance of Not-All-Equal 3SAT consists of the two
clauses (x1, x̄3,x4) and (x̄2,x4,x5), the corresponding set D will be D = {(0 ±
0),(0±±0),(0±±± 0),(0±±±±0),(+±−+±),(−±+−±),(±−±++),
(±+±−−)}.

Such a set D has always a length polynomial in the number of clauses and the
number of variables.

We now prove that there is a solution to the instance of Not-All-Equal 3SAT if
and only if cap(D) > 0. First, suppose that there exists a satisfying truth assignment
for x and denote it by (ω1, . . . ,ωm) ∈ {0,1}m. Associated to any k ≥ 1 we construct
a code of length k(m+ 1) containing 2k words as follows:

Ck(m+1) = {0ω0ω0ω0 · · ·0ω0ω ,0ω0ω0ω0 · · ·0ω0ω̄,

0ω0ω0ω0 · · ·0ω̄0ω , . . . ,0ω̄0ω̄0ω̄0 · · ·0ω̄0ω̄},
where ω = ω1 · · ·ωm.

Any difference between two words in this code is a word of the form

0z10z20 · · ·0zk,

where for every 1 ≤ i ≤ k, zi is either a sequence of m 0’s or a word of length m over
{−,+}. Because ω satisfies the instance of Not-All-Equal 3SAT, these words avoid
the set D constructed above. Moreover, the cardinality of Ck(m+1) is 2k and hence

cap(D) ≥ lim
k→∞

log2 2
k

k(m+1) =
1

m+ 1
> 0. (6.8)

For the converse implication, assume now that cap(D) > 0. The capacity is positive,
and so one can find two words whose differences contain a 0 and a +. But then since
this difference must avoid the first part of the forbidden pattern, for a code C large
enough, there must exist two words in the code whose difference contains a word
over {−,+} of length m. But this sequence avoids also the second part of D, and
thus it represents an acceptable solution to our instance of Not-All-Equal 3SAT.

98 6 Capacity of Codes

Note that a similar proof can be given if we replace the symbol ”±” in the state-
ment of the theorem by a symbol that represents either +, −, or 0.

6.6 Extremal Norms and Computing the Capacity

As we have seen in previous chapters, the existence of an extremal norm can sim-
plify many problems related to the joint spectral radius: it allows for instance to
apply the geometrical algorithm exposed in Section 2.3. Recall that an extremal
norm is a norm || · || such that

max
A∈Σ

||A|| = ρ(Σ).

It turns out that in the case of capacity computation, the matrices do in fact always
possess an extremal norm:

Theorem 6.6. For any set D of forbidden patterns the set Σ(D) possesses an
extremal norm.

Proof. Corollary 6.2 implies that Σ(D) is not defective. To see this, replace cap(D)
by log2 ρ in Corollary 6.2 and recall that δt is, by definition of the set Σ , the maximal
norm of products of length t − (m− 1) of matrices taken in Σ . We have seen in
Section 2.1 that the nondefectiveness implies the existence of an extremal norm.

The existence of an extremal norm for a set of matrices makes it possible to apply
the geometric algorithm described in Section 2.3 for computing the capacity with a
given relative accuracy.

The complexity of this algorithm is exponential with respect to m, as the one pro-
posed in Section 6.3 that approximates the capacity by successive estimations of δt .
The advantages of one algorithm over the other appear in numerical computation
of the capacity. Moreover, in many cases the approximation of invariant bodies by
polytopes can lead to the exact value of the joint spectral radius, as mentioned in
Section 2.3. Let us illustrate this method by computing the exact values of the ca-
pacity for several codes. In Examples 6.3 and 6.4 we find the values of capacities
that were approximated in [82]. Example 6.5 deals with a code with m = 4.

Example 6.3. cap({0 + +}) = log2 ρ(A0) = log2

(√5+1
2

)
= 0.69424191 The

eigenvector is v = (2,
√

5−1,2,
√

5−1)T . The algorithm terminates after five steps,
the polytope P = P5 has 32 vertices.

Example 6.4. cap({0+−})= log2 ρ(A0) = log2

(√5+1
2

)
. The algorithm terminates

after four steps, v = (2,
√

5−1,
√

5−1,2)T , P = P4, the polytope has 40 vertices.

Example 6.5. cap({+ + +−}) = log2

(√3+2
√

5+1
2

)
= log2

√
ρ(A0A1) = 0.90

The algorithm terminates after eleven steps, the polytope P = P11 has 528 vertices.

6.7 Conclusion 99

6.7 Conclusion

One way to compute the capacity of a set of forbidden patterns is to compute the
joint spectral radius of a set of matrices. In practice, this leads to a number of diffi-
culties: first, the size of the matrices is exponential in the size of the set of forbidden
patterns. Second, their number can also be exponential in the size of the instance.
Third, the joint spectral radius is in general NP-hard to compute.

We have shown here that, in spite of these discouraging results, the simpler prob-
lem of checking the positivity of the capacity of a set defined on {+,−,0} is polyno-
mially decidable. However the same problem becomes NP-hard when defined over
the alphabet {+,−,0,±}, so that we see a threshold between polynomial time and
exponential time feasibility. We have also provided bounds that allow faster com-
putation of the capacity. Finally we have proved the existence of extremal norms
for the sets of matrices arising in the capacity computation, which is the only “good
news” that we see concerning the possible feasibility of the capacity computation.
To the best of our knowledge the problem remains open for the moment:

Open question 9. Is the capacity computation/approximation NP-hard?

For instance, one has to keep in mind that the approach that consists in computing
a joint spectral radius cannot lead to a polynomial algorithm because of the expo-
nential size of the sets of matrices. Nevertheless, it is conjectured in [11] that the
sets of matrices with binary entries, and, in particular, those constructed in order to
compute a capacity do always possess the finiteness property:

Open question 10. Do matrices that arise in the context of capacity computation
satisfy the finiteness property?

Numerical results in [82], [57], and in this chapter seem to support this conjecture,
and moreover the length of the period seems to be very short: it seems to be of the
order of the size of the forbidden patterns, which would be surprising, because this
length would be logarithmic in the size of the matrices.

We end this chapter by mentionning another question that has not been solved
yet. We have seen that if the capacity is positive, one is able to exhibit an admissible
word of the shape 0md0m−1. This word has moreover a size which is polynomial in
the size of D since it is represented by a path in the auxiliary graph constructed from
the Aho-Corasick automaton. Now if we allow the use of “±” characters, since the
problem can be translated in a classical instance D′ with characters in {0,+,−}, a
positive capacity also implies the existence of a certificate of the shape 0md0m−1.
But what about the length of this word? Since this length is only polynomial in
the new instance D′, we cannot conclude that there exists a certificate whose size
is polynomial in the former instance. If this was the case, we would have that the
problem with “±” characters would be in NP. This motivates our last open question:

Open question 11. Is the problem of determining if the capacity of a set of for-
bidden patterns D over {0,+,−,±} is equal to zero in NP? Is there, for any set
D ∈ {0,+,−,±}∗, an admissible word of the shape 0md0m−1 whose length is poly-
nomial in the size of D?

	Capacity of Codes
	Introduction
	Capacity and Joint Spectral Radius
	Upper and Lower Bounds
	Positive Capacity Can Be Decided in Polynomial Time
	Positive Capacity Is NP-Hard for Extended Sets
	Extremal Norms and Computing the Capacity
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

