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Preface

This monograph is based on the Ph.D. Thesis of the author [58]. Its goal is
twofold:

First, it presents most research work that has been done during his Ph.D.,
or at least the part of the work that is related with the joint spectral radius.
This work was concerned with theoretical developments (part I) as well as
the study of some applications (part II).

As a second goal, it was the author’s feeling that a survey on the state
of the art on the joint spectral radius was really missing in the literature,
so that the first two chapters of part I present such a survey. The other
chapters mainly report personal research, except Chapter 5 which presents
an important application of the joint spectral radius: the continuity of wavelet
functions.

The first part of this monograph is dedicated to theoretical results. The
first two chapters present the above mentioned survey on the joint spectral
radius. Its minimum-growth counterpart, the joint spectral subradius, is also
considered. The next two chapters point out two specific theoretical topics,
that are important in practical applications: the particular case of nonnega-
tive matrices, and the Finiteness Property.

The second part considers applications involving the joint spectral radius.
We first present the continuity of wavelets. We then study the problem of the
capacity of codes submitted to forbidden difference constraints. Then we go
to the notion of overlap-free words, a problem that arises in combinatorics
on words. We then end with the problem of trackability of sensor networks,
and show how the theoretical results developed in the first part allow to solve
this problem efficiently.

Brussels, March 2009 R. Jungers
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Introduction

The joint spectral radius characterizes the maximal asymptotic growth rate of a
point submitted to a switching linear system in discrete time. In the last decades
it has been the subject of intense research due to its role in the study of wavelets,
switching systems, approximation algorithms, curve design, and many other topics.
In parallel with these practical engineering applications, beautiful theoretical chal-
lenges have arisen in the effort to understand the joint spectral radius. These two
facts make the study of the joint spectral radius a dream of a subject for a Ph.D.
thesis, but perhaps a not so easy task.

Indeed by its natural essence, this notion appears in a number of very different
fields of mathematics. For instance, since its definition uses norms and eigenvalues,
the joint spectral radius is undoubtedly a linear algebra concept, but not only. It has
been defined for purposes of analysis of dynamical systems, and the boost of re-
search on this topic came in the middle 90’s from its use in numerical analysis: the
joint spectral radius appeared to be the concept needed to determine the continuity
of wavelets, a tool of high practical importance nowadays. But the range of appli-
cations in which the joint spectral radius has proved useful is much wider; it goes
from number theory to network security management, from combinatorics on words
to signal processing, etc.

Also, the spectrum of theoretical problems one has to cope with when analyzing
the joint spectral radius is wide. In order to solve these problems, results from very
different disciplines have been put together: Dynamical systems theory, numerical
analysis, theoretical computer science and computability theory, abstract algebra
and group theory, graph theory, convex optimization and semidefinite programming
(SDP), combinatorics, are a few examples of fields of mathematics that have proved
helpful for improving our understanding of problems related to the joint spectral
radius. A beautiful example is the contribution of SDP-programming whose use-
fulness to approximate a joint spectral radius has been progressively understood in
the last ten years. This particular contribution is still a subject of research on itself,
and seems by now not only to be a state-of-the-art way of approximating the joint
spectral radius, but also to bring interesting insight on the very nature of the joint
spectral radius.



2 Introduction

Undoubtedly, this profusion of different fields of mathematics that have been
involved in “the joint spectral radius conquest” does not make its understanding
easy. Many researchers with they own (very) personal background, conventions,
motivations, notations and definitions have made progress that one who wants to
properly understand the joint spectral radius cannot honestly ignore. However, the
ideas behind the mathematical constructions are sometimes simpler than they look
at first sight. In view of this, we provide in the first part of this monograph a survey
on the subject.

In the theoretical survey, which constitutes the first two chapters, we tried to be
exhaustive, self-contained, and easily readable at the same time. In order to do that,
some proofs differ from the ones given in the literature. Also, the order of presen-
tation of the results does not follow their chronological apparition in the literature,
because it allowed sometimes to simplify the proofs. Finally, we decided to split
the survey in two chapters: the first one is intended to help the reader to understand
the notion of joint spectral radius, by describing its behavior without confusing him
with long proofs and theoretical developments, while the second chapter brings the
mathematical study of advanced results, and the rigorous demonstrations.

Outline. This monograph is separated in two parts, the first one is dedicated to
theoretical and general problems on the joint spectral radius, while the second part
is applications-oriented.

The first two chapters form the above mentioned survey: Chapter 1 presents ele-
mentary and fundamental results, while Chapter 2 is more involved, and brings the
theory necessary to prove the fundamental theorems. In Chapter 1, we compare the
results available for the joint spectral radius to its minimum-growth counterpart: the
joint spectral subradius. Though very interesting and useful in practice, this latter
quantity has received far less attention in the literature, perhaps because it has been
introduced later. We had the feeling that a rigorous analysis of the basic behavior of
this notion was missing.

The remainder of the monograph presents our personal research. We start with
two particular theoretical questions: In chapter 3 we analyze the case of nonnegative
integer matrices. We show that for these particular sets, it is possible to decide in
polynomial time whether the joint spectral radius is exactly equal to zero, exactly
equal to one, or larger than one. Moreover it is possible to precisely characterize the
growth of the products in the case where the joint spectral radius is exactly equal
to one.

In Chapter 4, we analyze the finiteness property. We show that this property holds
for nonnegative rational matrices if and only if it holds for pairs of binary matrices.
We give a similar result for matrices with negative entries, and we show that the
property holds for pairs of 2×2 binary matrices.

The second part of this monograph presents applications of the joint spectral ra-
dius. We first present in Chapter 5 the continuity of wavelet functions. Then, in
Chapter 6 we go to the capacity of codes submitted to forbidden differences con-
straints, that can be expressed in terms of a joint spectral radius. We propose two ap-
proximation algorithms for the capacity, we show how to efficiently decide whether
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the capacity is zero, and exhibit a closely related problem that we prove to be
NP-hard.

We then turn to a problem in combinatorics on words: estimating the asymptotic
growth of the overlap-free language (Chapter 7). We show how this problem is re-
lated with the joint spectral radius and related quantities. Thanks to this, we provide
accurate estimates for the rate of growth of the number of overlap-free words, a
classical problem in combinatorics on words. We also provide algorithms to esti-
mate the joint spectral subradius and the Lyapunov exponent that appear to perform
extremely well in practice.

We finally analyze a problem related to graph theory and network security: we
present the trackability of sensor networks (Chapter 8) and show how this problem
is efficiently tractable.



Part I
Theory



Chapter 1
Basics

Abstract. This chapter is the first part of the theoretical survey on the joint spectral
radius. We first present precise definitions of the main concepts. We then show that
these definitions are well posed, and we present some basic properties on the joint
spectral radius. In the last section, we show that these notions are “useful”, in the
sense that they actually characterize the maximal and minimal growth rates of a
switched dynamical system.

This chapter is meant to be a quick survey on the basic behavior of the joint
spectral radius. Some of the results presented in this chapter require rather involved
proofs. For this reason this chapter is not self-contained, and some proofs are post-
poned to the next one.

In this introductory chapter, we compare all results for the joint spectral radius to
its minimum-growth counterpart: the joint spectral subradius.

A switched linear system in discrete time is characterized by the equation

xt+1 = Atxt : At ∈ Σ , (1.1)

x0 ∈ R
n,

where Σ is a set of real n×n matrices. We would like to estimate the evolution of the
vector x, and more particularly (if it exists) the asymptotic growth rate of its norm:

λ = lim
t→∞

||xt ||1/t .

Clearly, one cannot expect that this limit would exist in general. Indeed, even in
dimension one, it is easy to design a dynamical system and a trajectory such that the
limit above does not exist. Thus a typical relevant question for such a system is the
extremal rate of growth: given a set of matrices Σ , what is the maximal value for λ ,
over all initial vectors x0 and all sequences of matrices At? In the case of dynamical
systems for instance, such an analysis makes a lot of sense. Indeed, by computing

R. Jungers: The Joint Spectral Radius: Theory and Applications, LNCIS 385, pp. 7–22.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



8 1 Basics

the maximal growth rate one can ensure the stability of the system, provided that
this growth rate is less than one. We will see that the quantity characterizing this
maximal rate of growth of a switched linear discrete time system is the joint spectral
radius, introduced in 1960 by Rota and Strang [104]. Thanks to its interpretation in
terms of dynamical systems, and for many other reasons that we will present later
on, it has been widely studied during the last decades.

When the set of matrices consists in a single matrix A, the problem is simple:
the maximal growth rate is the largest magnitude of the eigenvalues of A. As a
consequence, a matrix is stable if and only if the magnitudes of its eigenvalues are
less than one. However, if the set of matrices consists in more than just one matrix,
the problem is far more complex: the matrices could well all be stable, while the
system itself could be unstable! This phenomenon, which motivates the study of the
joint spectral radius, is illustrated by the next example. Consider the set of matrices

Σ =
{

A0 =
2
3

(
cos1.5 sin1.5

−2sin1.5 2cos1.5

)
,A1 =

2
3

(
2cos1.5 2sin1.5
−sin1.5 cos1.5

)}
.

The dynamics of these matrices are illustrated in Figure 1.1(a) and (b), with the
initial point x0 = (1,1). Since both matrices are stable (ρ(A0) = ρ(A1) = 0.9428,
where ρ(A), the spectral radius of A, is the largest magnitude of its eigenvalues) the
trajectories go to the origin. But if one combines the action of A0 and A1 alterna-
tively, a diverging behavior occurs (Figure 1.2). The explanation is straightforward:
the spectral radius of A0A1 is equal to 1.751 > 1.

(a) (b)

Fig. 1.1 Trajectories of two stable matrices

In practical applications, some other quantities can be of importance, as for in-
stance the minimal rate of growth. This concept corresponds to the notion of joint
spectral subradius. In this introductory chapter, we give definitions for these con-
cepts, as well as some basic results. For the sake of conciseness, and to save time for
the reader, we decided not to recall too many basic facts or definitions from linear
algebra. We instead refer the reader to classical reference books [45, 72].

In this chapter we first present precise definitions of the main concepts (Section
1.1). In Section 1.2 we show that these definitions are well posed, and we present
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Fig. 1.2 Unstable behavior
by combining two stable
matrices

some basic properties on the joint spectral radius and the joint spectral subradius.
In the last section, we show that these notions are “useful”, in the sense that they
actually characterize the maximal and minimal growth rates of a switched dynamical
system of the type (1.1). As the reader will discover, this is not so obvious.

Some of the results presented in this chapter require rather involved proofs. For
this reason this chapter is not self-contained, and some proofs are postponed to
Chapter 2. Nevertheless we had the feeling that a small chapter with all the basic
results could be useful for the reader in order to summarize the basic properties of
the joint spectral radius and the joint spectral subradius.

1.1 Definitions

The joint spectral radius characterizes the maximal asymptotic growth rate of the
norms of long products of matrices taken in a set Σ . By a norm, we mean a function
that to any matrix A ∈ R

n×n associates a real number ||A|| such that

• ||A|| ≥ 0, ||A|| = 0 ⇔ A = 0,
• ∀k ∈ R : ||kA|| = |k| ||A||,
• ||A + B|| ≤ ||A||+ ||B||,
• ||AB|| ≤ ||A|| ||B||.
The latter condition, called submultiplicativity is not required in classical defini-
tions of a norm, but in this monograph we will restrict our attention to them, so
that all results involving norms have to be understood in terms of submultiplicative
norms. Many norms are submultiplicative, and it is for instance the case of any norm
induced by a vector norm. So, let ‖ ·‖ be a matrix norm, and A ∈ R

n×n be a real ma-
trix. It is well known that the spectral radius of A, that is, the maximal modulus of
its eigenvalues, represents the asymptotic growth rate of the norm of the successive
powers of A:

ρ(A) = lim
t→∞

‖At‖1/t. (1.2)

This quantity does provably not depend on the norm used, and one can see that it
characterizes the maximal rate of growth for the norm of a point xt subject to a
Linear Time Invariant dynamical system. In order to generalize this notion to a set
of matrices Σ , let us introduce the following notation:

Σ t � {A1 . . .At : Ai ∈ Σ}.
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Also, it is a common practice to denote by AT the transpose of A. It will always
be clear from the context whether AT denotes the transpose of A of the classical
exponentiation.

We define the two following quantities that are good candidates to quantify the
“maximal size” of products of length t:

ρ̂t(Σ ,‖ · ‖) � sup{‖A‖1/t : A ∈ Σ t},
ρt(Σ) � sup{ρ(A)1/t : A ∈ Σ t}.

For a matrix A ∈ Σ t , we call ||A||1/t and ρ(A)1/t respectively the averaged norm
and the averaged spectral radius of the matrix, in the sense that it is averaged with
respect to the length of the product. We also abbreviate ρ̂t(Σ ,‖ · ‖) into ρ̂t(Σ) or
even ρ̂t if this is clear enough with the context. Rota and Strang introduced the joint
spectral radius as the limit [104]:

ρ̂(Σ) � lim
t→∞

ρ̂t(Σ ,‖ · ‖). (1.3)

This definition is independent of the norm used by the equivalence of the norms in
R

n. Daubechies and Lagarias introduced the generalized spectral radius as [33]:

ρ(Σ) � limsup
t→∞

ρt(Σ).

We will see in the next chapter that for bounded sets of matrices these two quantities
are equal. Based on this equivalence, we use the following definition:

Definition 1.1. The joint spectral radius of a bounded set of matrices Σ is defined by:

ρ(Σ) = limsup
t→∞

ρt(Σ) = lim
t→∞

ρ̂t(Σ).

Example 1.1. Let us consider the following set of matrices:

Σ =
{(

1 1
0 0

)
,

(
1 0
1 0

)}
.

The spectral radius of both matrices is one. However, by multiplying them, one can
obtain the matrix

A =
(

2 0
0 0

)
,

whose spectral radius is equal to two. Hence, ρ(Σ) ≥√
2, since

lim
t→∞

ρ̂t(Σ) ≥ lim ||At/2||1/t =
√

2.

Now, ρ̂2 =
√

2 (where we have chosen the maximum column-sum for the norm) and,
as we will see below, ρ̂t is an upper bound on ρ for any t. So we get ρ(Σ) =

√
2.



1.2 Basic Results 11

As the reader will see, the proof of the equivalence between the joint spectral ra-
dius and the generalized spectral radius necessitates some preliminary work so as
to be presented in a natural way. Before to reach this proof, we continue to make
the distinction between the joint spectral radius ρ̂(Σ) and the generalized spectral
radius ρ(Σ).

Let us now interest ourself to the minimal rate of growth. We can still define
similar quantities, describing the minimal rate of growth of the spectral radius and
of the norms of products in Σ t . These notions were introduced later than the joint
spectral radius ([52], see also [17]).

ρ̌t(Σ ,‖ · ‖) � inf{‖A‖1/t : A ∈ Σ t},
ρ

t
(Σ) � inf{ρ(A)1/t : A ∈ Σ t}.

Then, the joint spectral subradius is defined as the limit:

ρ̌(Σ) � lim
t→∞

ρ̌t(Σ ,‖ · ‖), (1.4)

Which is still independent of the norm used by equivalence of the norms in R
n. We

define the generalized spectral subradius as

ρ(Σ) � lim
t→∞

ρ
t
.

Again, we will see that for bounded sets of matrices these two quantities are equal,
and we use the following definition:

Definition 1.2. The joint spectral subradius of a set of matrices Σ is defined by:

ρ̌(Σ) = lim
t→∞

ρ̌t = lim
t→∞

ρ
t
.

Example 1.2. Let us consider the following set of matrices:

Σ =
{(

2 1
0 0

)
,

(
0 1
0 3

)}
.

The spectral radius of both matrices is greater than one. However, by multiply-
ing them, one can obtain the zero matrix, and then the joint spectral subradius is
zero.

The above examples are simple but, as the reader will see, the situation is sometimes
much more complex.

1.2 Basic Results

In this section, we review basic results on the joint spectral characteristics, that allow
to understand what they are and what they are not. We first present the fundamental
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theorems, proving the equality for the joint and generalized spectral radii (resp.
subradii). We then present basic properties of the joint spectral characteristics, some
of which had to our knowledge not yet been formalized.

1.2.1 Fundamental Theorems

The joint spectral radius

First, recall that we defined ρ̂ as a limit, and not as a limsup. This is due to a classical
result, known as Fekete’s Lemma:

Lemma 1.1. [43] Let {an} : n ≥ 1 be a sequence of real numbers such that

am+n ≤ am + an.

Then the limit
lim
n→∞

an

n

exists and is equal to inf{ an
n }.

In the above lemma, the limit can be equal to −∞, but this is not possible in our case
since the sequence is nonnegative. We are now in position to prove the convergence:

Lemma 1.2. For any bounded set Σ ⊂R
n×n, the function t → ρ̂t(Σ) converges when

t → ∞. Moreover,
lim
t→∞

ρ̂t(Σ) = inf{ρ̂t(Σ)}.

Proof. Since the norms considered are submultiplicative, the sequence

log(sup{‖A‖ : A ∈ Σ t}) = log ρ̂ t
t

is subadditive. That is,
log ρ̂ t+t′

t+t′ ≤ log ρ̂ t
t + log ρ̂ t′

t′ .

If for all t, ρ̂t �= 0, then by Fekete’s lemma,

1
t

log ρ̂ t
t = log ρ̂t

converges and is equal to inf log ρ̂t .
If there is an integer t such that ρ̂t = 0, then clearly, for all t ′ ≥ t, ρ̂t′ = 0, and the

proof is done.

Unlike the maximal norm, the behavior of the maximal spectral radius, ρt is not as
simple, and in general the limsup in the definition of ρ(Σ) cannot be replaced by
a simple limit. In the following simple example, limsupρt = 1, but limρt does not
exist:
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Σ =
{(

0 1
0 0

)
,

(
0 0
1 0

)}
.

Indeed, for any t, ρ2t(Σ) = 1, but ρ2t+1(Σ) = 0.

The Joint Spectral Radius Theorem
It is well known that the spectral radius of a matrix satisfies ρ(Ak) = ρ(A)k,
ρ(A) = lim‖At‖1/t . One would like to generalize these relations to “inhomoge-
neous” products of matrices, that is, products where factors are not all equal to a
same matrix A. This is possible, as has been proved in 1992 by Berger and Wang [5]
in the so-called Joint Spectral Radius Theorem:

For bounded sets, the values ρ̂(Σ) and ρ(Σ) are equal.
No elementary proof is known for this theorem. Elsner [41] provides a self-

contained proof that is somewhat simpler than (though inspired by) the original one
from [5]. Since both proofs use rather involved results on the joint spectral radius,
we postpone an exposition of the proof to the next chapter. The reader can check
that the elementary facts presented in the remainder of this chapter do not make use
of this result.

Observe that the joint spectral radius theorem cannot be generalized to un-
bounded sets of matrices, as can be seen on the following example:

Σ =
{(

1 1
0 1

)
,

(
1 2
0 1

)
, . . .

}
.

Indeed for this set we have ρ(Σ) = 1, while ρ̂(Σ) = ∞.

The joint spectral subradius

Let us now consider the joint spectral subradius. It appears that now both ρ
t

and ρ̌t

converge:

Proposition 1.1. For any set Σ ⊂ R
n×n, the function t → ρ̌t(Σ) converges when

t → ∞, and
lim ρ̌t(Σ) = inf

t>0
ρ̌t(Σ).

Moreover, the function t → ρ
t
(Σ) converges when t → ∞, and

limρ
t
(Σ) = inf

t>0
ρ

t
(Σ).

Proof. Again the sequence log(ρ̌n) is subadditive, which proves the first part. Let
us now prove the second assertion. We define ρ = liminfρ

t
and we will show that

the limit actually exists. Fix an ε > 0. For any sufficiently long t, we will construct
a product of matrices B ∈ Σ t such that ||B||1/t ≤ ρ + ε, and thus ρ(B)1/t ≤ ρ + ε.
Indeed, for any norm || · || and any matrix A, the relation

ρ(A) ≤ ||A||
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always holds. In order to do that, we will pick a matrix A whose spectral radius
is small enough, and we define B = AkC, where C is a short product that does not
perturb too much the norm of B.

By the definition of ρ, there exist T ∈ N,A ∈ ΣT such that ρ(A)1/T ≤ ρ + ε/4.

Since ρ(A) = lim ||Ak||1/k, one gets lim ||Ak||1/kT ≤ ρ + ε/4 and there exists an

integer k0 such that for all k > k0, ||Ak||1/kT ≤ ρ + ε/2.
Let us first define a real number M such that for each length t ′ ≤ T, there is a

product C of length t ′ such that ||C|| ≤ M. Next, there is an integer T0 large enough
so that M1/T0 ≤ (ρ + ε)/(ρ + ε/2).

Now, for any length t > max{k0T,T0}, we define t ′ < T such that t = kT + t ′,
and we construct a product of length t : B = AkC, such that C ∈ Σ t′ , and ||C|| ≤ M.
Finally

||B||1/t ≤ (ρ + ε/2)
ρ + ε

ρ + ε/2
≤ ρ + ε.

We also have the equality between ρ̌ and ρ ; moreover in this case the set need not
be bounded;

Theorem 1.1. [111] For any set of matrices Σ ,

lim
t→∞

inf{ρ(A)1/t : A ∈ Σ t} = lim
t→∞

inf{||A||1/t : A ∈ Σ t} � ρ̌(Σ).

Proof. Clearly,

lim
t→∞

inf{ρ(A)1/t : A ∈ Σ t} ≤ lim
t→∞

inf{||A||1/t : A ∈ Σ t}

because for any matrix A, ρ(A) ≤ ||A||.
Now, for any matrix A ∈ Σ t with averaged spectral radius r close to ρ(Σ), the

product Ak ∈ Σ kt is such that ||Ak||1/kt → r so that

lim
k→∞

inf{||A||1/kt : A ∈ Σ kt} ≤ r.

1.2.2 Basic Properties

1.2.2.1 Scaling Property

Proposition 1.2. For any set Σ ∈ R
n×n and for any real number α,

ρ̂(αΣ) = |α|ρ̂(Σ),

ρ̌(αΣ) = |α|ρ̌(Σ).

Proof. This is a simple consequence of the relation ||αA|| = |α| ||A||.
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1.2.2.2 Complex Matrices vs. Real Matrices

From now on, all matrices are supposed to be real-valued. This is not a restriction
as we can consider complex matrices acting on C

n×n as real operators acting on
R

2n×2n.

1.2.2.3 Invariance under Similarity

Proposition 1.3. For any bounded set of matrices Σ , and any invertible matrix T,

ρ(Σ) = ρ(TΣT−1).

ρ̌(Σ) = ρ̌(TΣT−1).

Proof. This is due to the fact that for any product A1 . . .At ∈ Σ t , the corresponding
product in TΣT−1 is TA1 . . .AtT−1, and has equal spectral radius.

1.2.2.4 The Joint Spectral Radius as an Infimum over All Possible Norms

The following result has been known for long, since it was already present in the
seminal paper of Rota and Strang [104]. Nevertheless, it is very interesting, as it
characterizes the joint spectral radius in terms of the matrices in Σ , without consid-
ering any product of these matrices. We give here a simple self-contained proof due
to Berger and Wang [5].

Proposition 1.4. For any bounded set Σ such that ρ̂(Σ) �= 0, the joint spectral ra-
dius can be defined as

ρ̂(Σ) = inf
||·||

sup
A∈Σ

{||A||}.

From now on, we denote by Σ∗ the monoid generated by Σ :

Σ∗ � ∪∞
t=0Σ t ,

With Σ0 � I. If we exclude Σ0 from the above definition, we obtain Σ+, the semi-
group generated by Σ :

Σ+ � ∪∞
t=1Σ t .

Proof. Let us fix ε > 0, and consider the set Σ̃ = (1/(ρ̂ + ε))Σ . Then, all products
of matrices in Σ̃∗ are uniformly bounded, and one can define a norm | · | on R

n in
the following way: |x| = max{|Ax|2 : A ∈ Σ̃∗}, where | · |2 is the Euclidean vector
norm. Remark that in the above definition, the maximum can be used instead of the
supremum, because ρ(Σ̃) < 1. The matrix norm induced by this latter vector norm,
that is, the norm defined by

||A|| = max
|x|=1

{|Ax|},

clearly satisfies supA∈Σ̃ {||A||} ≤ 1, and so supA∈Σ {||A||} ≤ ρ̂ + ε.
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1.2.2.5 Common Reducibility

We will say that a set of matrices is commonly reducible, or simply reducible if there
is a nontrivial linear subspace (i.e. different from {0} and R

n) that is invariant under
all matrices in Σ . This property is equivalent to the existence of an invertible matrix
T that “block-triangularizes simultaneously” all matrices in Σ :

Σ reducible ⇔ ∃T,n′ : ∀Ai ∈ Σ ,TAiT
−1 =

(
Bi Ci

0 Di

)
: Di ∈ R

n′×n′ .

We will say that a set of matrices is commonly irreducible, or simply irreducible if
it is not commonly reducible.

Proposition 1.5. With the notations defined above, if Σ is bounded and reducible,

ρ(Σ) = max{ρ({Bi}),ρ({Di})},

ρ̌(Σ) ≥ max{ρ̌({Bi}), ρ̌({Di})}, (1.5)

ρ̂(Σ) = max{ρ̂({Bi}), ρ̂({Di})}.
Proof. The first two relations follow from the invariance under similarity (Proposi-
tion 1.3), together with the following elementary facts:

(
B1 C1

0 D1

)
.

(
B2 C2

0 D2

)
=
(

B1B2 B1C2 +C1D2

0 D1D2

)
,

ρ
((

B C
0 D

))
= max{ρ(B),ρ(D)}.

The third relation is more technical, and is proved by showing that extradiagonal
blocks cannot increase the exponent of growth. We can suppose Ai ∈ Σ block-
triangular, still by invariance under similarity. Let us denote M the maximal joint
spectral radius among the diagonal blocks:

M = max{ρ̂({Bi}), ρ̂({Di})}.

We define the norm || · || as the sum of the absolute values of the entries. Clearly
ρ̂(Σ) ≥ M, and we now prove the reverse inequality.

Writing

Ai =
(

0 Ci

0 0

)
+
(

Bi 0
0 Di

)
,

we have

||At . . .A1|| = ||Bt . . .B1||+ ||Dt . . .D1||+ ||
t

∑
r=1

Bt . . .BrCrDr−1 . . .D1||.

Now for any ε there is a natural T such that for all t ≥ T,
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ρ̂t({Bi}), ρ̂t({Di}) < (M + ε)t .

Thus, for t large enough we can bound each term in the summation above by O((M+
ε)t) :

if T < r < t −T, then

||Bt . . .BrCrDr−1D1|| ≤ ||Cr||(M + ε)t−1,

and in the other case (say, r ≤ T, the other case is similar),

||Bt . . .BrCrDr−1D1|| < ||Cr||(ρ̂1)r(M + ε)t−r−1 = O((M + ε)t).

Recall that ρ̂1 is the supremum of the norms of the matrices in Σ . Finally,
||At . . .A1|| ≤ 2(M + ε)t + tO((M + ε)t), and ρ̂(Σ) ≤ M + ε.

It is straightforward that the above proposition generalizes inductively to the case
where there are more than two blocks on the diagonal.

In the above proposition, Equation (1.5) enlightens a fundamental difference be-
tween the joint spectral radius and the joint spectral subradius. For this latter quan-
tity, the inequality cannot be replaced by an equality. This is due to the fact that
the joint spectral subradius is the minimum growth of a quantity (the spectral radius)
which is by essence a maximum (over all eigenvalues of a matrix). Consider the next
example:

Σ =
{(

2 0
0 4

)
,

(
4 0
0 2

)}
.

The joint spectral subradius of the first diagonal entries is 2, and this is also the case
for the set of the second diagonal entries. However, the joint spectral subradius of Σ
is equal to

√
8 > 2.

1.2.2.6 Three Members Inequalities

Proposition 1.6. For any bounded set Σ ∈ R
n×n and for any natural t,

ρt(Σ) ≤ ρ(Σ) ≤ ρ̂t(Σ). (1.6)

Proof. The left hand side inequality is due to the fact that ρ(Ak) = ρ(A)k. The right
hand side is from Fekete’s lemma (Lemma 1.1).

Let us add that this has been generalized to unbounded sets to what is called the four
members inequality[33, 35]:

ρt(Σ) ≤ ρ(Σ) ≤ ρ̂(Σ) ≤ ρ̂t(Σ).

For the joint spectral subradius, it appears that both quantities ρ
t

and ρ̌t are in
fact upper bounds:

Proposition 1.7. For any bounded set Σ ∈ R
n×n and for any natural t,
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ρ̌(Σ) ≤ ρ
t
(Σ) ≤ ρ̌t(Σ).

Proof. The left hand side inequality is due to the fact that ρ(Ak) = ρ(A)k, implying
that ρ

kt
≤ ρ

t
. The right hand side is a straightforward consequence of the property

ρ(A) ≤ ||A||.

1.2.2.7 Closure and Convex Hull

Taking the closure or the convex hull of a set does not change its joint spectral
radius. For the closure, we also prove the result for the generalized spectral radius,
since it will be needed in further developments.

Proposition 1.8. [111] For any bounded set Σ ∈ R
n×n

ρ̂(Σ) = ρ̂(convΣ) = ρ̂(clΣ),

ρ(Σ) = ρ(clΣ).

Proof. For the convex hull, observe that for all t > 0 : ρ̂t(convΣ) = ρ̂t(Σ). Indeed,
all products in (convΣ)t are convex combinations of products in Σ t , and are thus less
or equally normed. The equalities for the closure hold because for all t, ρt(clΣ) =
ρt(Σ), and ρ̂t(clΣ) = ρ̂t(Σ), by continuity of the norm and the eigenvalues.

We now show the counterpart for the joint spectral subradius. The property still
holds for the closure, but not for the convex hull:

Proposition 1.9. For any bounded set Σ ∈ R
n×n

ρ̌(Σ) = ρ̌(clΣ),

but the equality ρ̌(Σ) = ρ̌(convΣ) does not hold in general.

Proof. The equality ρ̌t(clΣ) = ρ̌t(Σ) still holds for all t by continuity of the norm
and the matrix multiplication.

On the other hand, consider the simple example Σ = {1,−1} ⊂ R. All products
have norm one, and so ρ̌ = ρ = 1, but 0 ∈ convΣ , and so ρ̌(convΣ) = 0.

1.2.2.8 Continuity

We show here that the joint spectral radius of bounded sets of matrices is continuous
in their entries. Recall that the Hausdorff distance measures the distance between
sets of points in a metric space:

d(Σ ,Σ ′) � max{sup
A∈Σ

{ inf
A′∈Σ ′ ||A−A′||}, sup

A′∈Σ ′
{ inf

A∈Σ
||A−A′||}}.
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Proposition 1.10. The joint spectral radius of bounded sets of matrices is continu-
ous with respect to the Hausdorff distance in R

n×n.
That is, for any bounded set of matrices Σ ∈ R

n×n, and for any ε > 0, there is a
δ > 0 such that

d(Σ ,Σ ′) < δ ⇒ |ρ̂(Σ)− ρ̂(Σ ′)| < ε.

Proof. Let us fix ε > 0. By Proposition 1.4, there exists a norm || · || such that

ρ̂1(Σ) = sup{||A|| : A ∈ Σ} ≤ ρ̂(Σ)+ ε/2.

Let us now pick a set Σ ′ close enough to Σ : d(Σ ,Σ ′) < ε/2. By definition of the
Hausdorff distance, we have

∀A′ ∈ Σ ′, ∃A ∈ Σ : ||A′ −A||< ε/2,

and we can bound the norm of any matrix in Σ ′ :

||A′|| = ||A +(A′ −A)|| ≤ ρ̂(Σ)+ ε/2 + ε/2 = ρ̂(Σ)+ ε.

By applying the same argument to Σ , we obtain |ρ̂(Σ)− ρ̂(Σ ′)| ≤ ε.

Let us note that this proposition does not generalize to unbounded sets, as shown by
the next example:

Σ =
{(

0 0
ε 0

)}
∪
{(

0 n
0 0

)
: n ∈ N

}
.

Indeed for ε = 0 we have ρ̂(Σ) = 0, while for any ε > 0 we have ρ̂(Σ) = ∞.
Let us add that Wirth has proved that the joint spectral radius is even locally

Lipschitz continuous on the space of compact irreducible sets of matrices endowed
with the Hausdorff topology [115, 117].

Surprisingly, a similar continuity result for the joint spectral subradius is not pos-
sible. It appears that this quantity is only lower semicontinuous:

Proposition 1.11. The joint spectral subradius of bounded sets of matrices is lower
semicontinuous with respect to the Hausdorff distance in R

n×n.
That is, for any bounded set of matrices Σ ∈ R

n×n, and for any ε > 0, there is a
δ > 0 such that

d(Σ ,Σ ′) < δ ⇒ ρ̌(Σ ′) < ρ̌(Σ)+ ε.

Proof. Let us fix ε > 0. By Proposition 1.1, there exists a t and a product A ∈ Σ t

such that
ρ(A)1/t ≤ ρ̌(Σ)+ ε/2.

Let us now pick a set Σ ′ close enough to Σ . By continuity of the eigenvalues there
exists a product A′ ∈ Σ ′t with averaged spectral radius ρ(A′)1/t < ρ(A)1/t + ε/2,
and ρ̌(Σ ′) < ρ̌(Σ)+ ε.

To prove that the joint spectral subradius is not continuous, we introduce the follow-
ing example.
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Example 1.1. Consider the set

Σ =
{(

1 1
0 1

)
,

(
0 0
− 1

k 1

)}
.

Where k ∈ N. When k → ∞, the joint spectral subradius of these sets is equal to zero
(the product (A1Ak

0)
2 is the zero matrix). However these sets tend to

Σ =
{(

1 1
0 1

)
,

(
0 0
0 1

)}
,

whose joint spectral subradius is equal to 1. Indeed any matrix in the semigroup is
nonnegative, and has the lower right entry equal to one.

1.2.2.9 Zero Spectral Radius

The case where the joint spectral radius (resp. joint spectral subradius) is equal to
zero is of practical importance for obvious reasons. In order to state them, following
to [44], we introduce the following definition, which holds for the rest of this mono-
graph, unless specified otherwise. A polynomial time algorithm is an algorithm that
takes an instance and delivers an answer “yes” or “no”, after having performed a
number of elementary operations that is bounded by a fixed polynomial in the size
of the instance, where the size of the instance is its “bit size”, that is, the number of
bits necessary to encode it.

The following two results are not trivial. Their proofs are to be found in
Chapter 2:

Proposition 1.12. There is a polynomial time algorithm allowing to decide whether
the joint spectral radius of a set of matrices is zero.

Proposition 1.13. There is no algorithm allowing to decide whether the joint spec-
tral subradius of a set of matrices is zero, that is, this problem is undecidable.

1.3 Stability of Dynamical Systems

As explained in the introduction, one possible use of the joint spectral radius is to
characterize the maximal asymptotic behavior of a dynamical system. But is this
exactly what we are doing, when we compute a joint spectral radius? The notion
of stability of a dynamical system (like the system defined in Equation (1.1)) is
somewhat fuzzy in the literature, and many different (and not equivalent) defini-
tions appear. According to the natural intuition, and to the more commonly used
definition, we introduce the next definition:

Definition 1.3. A switched dynamical system

xt+1 = Atxt : At ∈ Σ , (1.7)

x0 ∈ R
n,
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is stable if for any initial condition x0 ∈ R
n, and any sequence of matrices {At},

limt→∞ xt = 0.

Clearly, if ρ(Σ) < 1, then the dynamical system is stable, because xt = Ax0, with
A∈ Σ t , and so |xt | ≤ ||A|| |x0|→ 0. But the converse statement is less obvious: could
the condition ρ < 1 be too strong for stability? Could it be that for any length, one is
able to provide a product of this length that is not too small, but yet that any actual
trajectory, defined by an infinite sequence of matrices, is bound to tend to zero? The
next example shows that such a case appears with unbounded sets:

Example 1.2. Let

Σ =
{

A =
1
2

(
1 0
0 1

)}
∪
{

Bk =
(

0 k
0 0

)
,k ∈ R

}
.

For any length t, ρ̂t = ∞, but one can check easily that every infinite product tends
to zero. To see this, observe that a left-infinite product must be of one of these three
forms, each of which tends to zero

|| . . .AA|| ≈ (1/2)t ,

|| . . .A . . .ABkA|| ≈ k(1/2)t−1,

|| . . .A . . .ABkA . . .ABk′A|| = 0.

The following theorem ensures that such a pathological situation does not appear
with bounded sets:

Theorem 1.2. [5] For any bounded set of matrices Σ , there exists a left-infinite
product . . .A2A1 that does not converge to zero if and only if ρ(Σ) ≥ 1.

The proof of this theorem is not trivial, and makes use of results developed in the
next chapter. The reader will find a proof of this important result in Section 2.1.

This proves that the joint spectral radius rules the stability of dynamical systems:

Corollary 1.1. For any bounded set of matrices Σ , the corresponding switched dy-
namical system is stable if and only if ρ(Σ) < 1.

In the above theorem, the boundedness assumption cannot be removed, as shown by
Example 1.2.

The equivalent problem for the joint spectral subradius is obvious: For any
bounded set of matrices Σ , the corresponding switched dynamical system is sta-
bilizable (i.e. there exists an infinite product of matrices whose norm tends to zero)
if and only if ρ̌(Σ) < 1. Indeed, if ρ̌ < 1, there exists a real γ, and a finite product
A ∈ Σ t such that ||A|| ≤ γ < 1, and limk→∞ Ak = 0. On the other hand, if ρ̌ ≥ 1, then
for all A ∈ Σ t : ||A|| ≥ 1, and so no long product of matrices tends to zero. There
is however a nontrivial counterpart to Corollary 1.1. To see this, let us rephrase
Theorem 1.2 in the following corollary:
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Corollary 1.2. For any bounded set of matrices Σ , there is an infinite product of
these matrices reaching the joint spectral radius. More precisely, there is a sequence
of matrices A0,A1, . . . of Σ such that

lim
t→∞

||At . . .A1||1/t = ρ(Σ).

Proof. The proof is a direct consequence of the proof of Theorem 1.2, see Sec-
tion 2.1.

The idea of this corollary can be transposed to the following result on the joint
spectral subradius:

Theorem 1.3. For any (even unbounded) set of matrices Σ , there is an infinite prod-
uct of these matrices reaching the joint spectral subradius:

∃Atj ∈ Σ : lim
i→∞

||Ati . . .At1 ||1/t = ρ̌(Σ).

Proof. Let Σ be a set of matrices. Thanks to the definition and Theorem 1.1, for
every natural k there exists a product Bk ∈ Σnk of a certain length nk such that

||Bk||1/nk < ρ̌ +
1
2k .

Now the sequence ||Bt . . .B1||1/∑1≤k≤t nk tends to ρ̌ . However, this only provides a
product . . .A2A1 such that liminf ||At . . .A1||1/t = ρ̌. In order to replace the liminf
by a limit, for all k we define ck to be the maximal norm of all the suffixes of Bk, and
one can raise the matrix Bk to a sufficiently large power pk such that for any suffix
C of Bk+1,

||CBpk
k ||1/t < c1/t

k+1||Bpk
k ||1/t < ρ̌ +

1
2k−1 ,

and finally the sequence ||Πt || converges, where Πt is the suffix of length t of the
left infinite product . . .Bp2

2 Bp1
1 .

1.4 Conclusion

The goal of this chapter was to understand properly the notions of joint spectral ra-
dius and joint spectral subradius in a glance. As the reader has seen, even some basic
facts, such as the equivalence between the joint and generalized spectral radii, re-
quire some advanced results. We have thus decided to postpone this proof to Chapter
2. There, the result will naturally follow from a careful study of a particular problem
related to the joint spectral radius, namely the defectiveness of a set of matrices.

Further elementary properties of the joint spectral radius of sets of matrices can
be found in [20, 94, 115, 116].



Chapter 2
Classical Results and Problems

Abstract. In this chapter we review major results on the joint spectral radius. Our
goal is to remain concise, but at the same time exhaustive and self-contained. We
begin by analyzing in detail the growth of matrix products, and by presenting the
concept of extremal norms. Existence of extremal norms is an encouraging result,
since it is easier to evaluate the joint spectral radius when an extremal norm is avail-
able. We found it natural to follow with calculability/complexity theorems, which
are on the other hand discouraging. In a subsequent section, we present methods of
computation and approximation of the joint spectral radius. In view of the negative
results of the second section, the reader shall not be surprised to find algorithms
whose efficiency is often rather poor (at least theoretically). In the last section of
this chapter we present a fascinating question: the finiteness property.

2.1 Defectivity and Extremal Norms

2.1.1 Defectivity

We start with a first result that sheds light on the growth of long matrix products.
From the basic results in the previous chapter, we know that ρ̂t goes to ρ̂ as t goes
to infinity, or more precisely:

lim
t→∞

max{‖A‖1/t : A ∈ Σ t} = ρ̂.

However, in some applications, one is interested in a more precise definition of the
asymptotic growth: how does the quantity ρ̂ t

t /ρ̂ t evolve with t? Another way to ask
this question is: How does the maximal norm evolve when the joint spectral radius
is equal to one?

Definition 2.1. [49, 50] A set of matrices Σ is nondefective if there exists K ∈ R

such that for all t,
sup{||A|| : A ∈ Σ t} ≤ Kρ̂ t .

R. Jungers: The Joint Spectral Radius: Theory and Applications, LNCIS 385, pp. 23–46.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Defectivity appears to be a problem of crucial importance, as we will see all along
this section. A first result states that Σ is nondefective if it is irreducible. This has
been known for long, and several proofs are available in the literature [3, 41, 115].
We present here a new proof that is somewhat simpler and more intuitive. In the
proof of the theorem, the notation Σ≤t represents the products of length less than t
in the semigroup Σ∗.

Theorem 2.1. Let a bounded set Σ be irreducible, and ρ̂(Σ) �= 0. Then Σ is nonde-
fective; that is, there is a constant K such that for all A ∈ Σ t ,

||A|| ≤ Kρ̂ t .

Proof. We suppose without loss of generality that ρ̂(Σ) = 1 (nondefectivity is
clearly conserved under scalar multiplication). Let us define

V = {x ∈ R
n | sup

A∈Σ∗
|Ax| < ∞}.

By construction, V is a linear subspace, invariant under the matrices in Σ . Since Σ
is irreducible, we have V = R

n, or V = {0}.
If V = {0}, then for each vector x ∈ R

n, there exists a product A ∈ Σ t such that
|Ax| ≥ 2|x|.

We claim that this length t is bounded uniformly from above by a constant T over
all x. Indeed, if it is not the case, we can define an increasing sequence {tk}, and a
sequence xk of norm 1 such that for all A ∈ Σ≤tk , |Axk| < 2. A subsequence of the
xk converges thus to a vector x of norm 1 such that for all A ∈ Σ∗, |Ax| < 2 and so
V �= {0}.

Finally if for all x there exists a matrix A ∈ Σ≤T such that |Ax| ≥ 2|x|, then ρ̂ ≥
21/T > 1, and we have a contradiction.

So, V = R
n, but this implies that Σ∗ is bounded.

Theorem 2.1 tells us that if a set of matrices is irreducible, then the quantity ρ̂ t
t /ρ̂ t is

bounded from above by a constant. Remark that the equivalent lower bound clearly
always holds, by the three members inequality (1.6): For any set of matrices, and
for all t,

1 ≤ ρ̂ t
t /ρ̂ t .

2.1.2 Extremal Norms

The nondefectivity of Σ allows for a powerful construction, known as extremal
norm, that we now describe.

We know that the joint spectral radius can be defined as follows (Proposition 1.4):

ρ̂(Σ) = inf
||·||

sup
A∈Σ

{||A||}.

So the natural question arises to know whether there is a norm that actually realizes
this infimum. This is exactly the concept of an extremal norm.
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Definition 2.2. A norm || · || on R
n×n is extremal for a set of matrices Σ if for all

A ∈ Σ ,
||A|| ≤ ρ̂(Σ).

Let us note that the above definition, together with the three members inequality
(1.6) implies that for an extremal norm we have

sup
A∈Σ

||A|| = ρ̂.

Also, following Wirth [117], we introduce two similar notions for vector norms:

Definition 2.3. A vector norm | · | is extremal for Σ if for all x ∈ R
n, and for all

A ∈ Σ ,
|Ax| ≤ ρ̂ |x|.

A vector norm | · | is a Barabanov norm for Σ if it is extremal, and if moreover for
any vector x ∈ R

n, there exists a matrix A in the closure of Σ such that

|Ax| = ρ̂ |x|.

One can directly see that the matrix norm induced by an extremal vector norm would
be an extremal matrix norm for Σ . So the first question is: “Does there always exist
an extremal matrix norm?” Unfortunately, the answer to this question is negative in
general, as can be shown with the following simple example:

Example 2.1. Let us consider the following set:

Σ =
{(

1 1
0 1

)}
.

The joint spectral radius of this set is the spectral radius of the matrix, that is,
one. But there is no norm that takes the value one for such a matrix. Indeed, by
submultiplicativity it would imply that

||
(

1 k
0 1

)
|| ≤ 1,

for any k, which is impossible, by the equivalence between the norms in any finite
dimensional vector space.

Note that the set Σ in the above example is defective. When it is not the case, the
construction of an extremal norm appears to be possible. The following theorem is
mainly due to Barabanov [3] for the existence of a Barabanov norm, and to Kozyakin
[70] for the existence of an extremal norm.

Theorem 2.2. [3, 70] A bounded set Σ ∈ R
n×n admits an extremal norm if and only

if it is nondefective.
If Σ is moreover compact and irreducible, then it admits a Barabanov norm.
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Proof. If ρ̂(Σ) = 0 the theorem is clear, since the existence of an extremal norm,
or the nondefectivity, are both equivalent to the fact that Σ only contains the zero
matrix. We thus restrict our attention without loss of generality to sets of matrices
Σ such that ρ̂(Σ) = 1.

First if Σ admits an extremal norm then it is nondefective: indeed all the products
are bounded by the submultiplicativity property.

We now suppose that Σ is nondefective and we prove the existence of an extremal
norm in a constructive way. Let us take an arbitrary vector norm | · | in R

n. For any
x ∈ R

n, we define a new norm in the following way:

|x|∗ = sup
A∈Σ∗

|Ax|.

Recall that by convention, the identity matrix I is in Σ∗. Taking this into account,
one can verify that | · |∗ is a norm, and, since by its definition |Ax|∗ ≤ |x|∗ holds for
all x ∈ R

n, this is an extremal vector norm. So it induces an extremal matrix norm
|| · ||∗ in R

n×n.
We now turn to the second part of the theorem, and suppose that Σ is compact

and irreducible. We provide a Barabanov norm in a constructive way. Let us take an
arbitrary vector norm | · | in R

n. For any x ∈ R
n, we define a new norm as follows:

|x|∗ = limsup
t→∞

sup{|Ax| : A ∈ Σ t}. (2.1)

Again it is not difficult to prove that | · |∗ is a norm. The critical point is that it is
definite: |x|∗ = 0 ⇒ x = 0. Indeed, if |x|∗ = 0, x �= 0, then the linear space generated
by the set {Ax : A ∈ Σ∗} is a nontrivial linear subspace, invariant under all the matri-
ces in Σ . Moreover this subspace is not R

n, for otherwise we would have ρ̂(Σ) < 1.
Indeed, by compacity of the unit ball, if for all x : |x| = 1,

limsup
t→∞

sup{|Ax| : A ∈ Σ t} = 0, (2.2)

then there must exist a T ∈ N such that for all A ∈ ΣT |Ax| < 1, and the induced
matrix norm provides

ρ̂ ≤ ρ̂T < 1.

Finally we have a contradiction since Σ is assumed to be irreducible.
Now this is clear that for all x ∈ R

n, and A ∈ Σ , |Ax|∗ ≤ |x|∗, and that, by com-
pacity of Σ , for all x there exists an A ∈ Σ such that |Ax|∗ = |x|∗.
Clearly, the interest of the above theorem is rather theoretical. Indeed, the construc-
tion of the norm is not possible in general, as it requires for instance the knowledge
of the joint spectral radius itself. However, the knowledge of the existence of an ex-
tremal norm can be useful in several cases: some algorithms have for instance been
constructed that allow to approximate this extremal norm when it exists, in order to
evaluate the joint spectral radius (see Section 2.3). Also, these very concepts allow
to prove two fundamental results that we now present: the existence of an infinite
product reaching the joint spectral radius, and the joint spectral radius theorem.
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2.1.3 Proofs of the Fundamental Theorems

We start with the existence of an ”optimal infinite product”:

Theorem 1. (Theorem 1.2)[5] For any bounded set of matrices Σ , all left-infinite
products . . .A2A1 converge to zero if and only if ρ̂(Σ) < 1.

Proof. ⇐: If ρ̂ < 1, then sup{||A||,A ∈ Σ t}→ 0 when t → ∞, and At . . .A1 → 0.
⇒: Let us suppose that ρ̂ ≥ 1, and show that the system is not stable. The state-

ment is easy to prove if there exists a Barabanov norm. Indeed, for any x0 ∈ R
n,

there exists a matrix A ∈ Σ such that |Ax0| = |x0|. By iterating the construction one
gets a trajectory satisfying |xt | = |x0| and the system is not stable. So, in view of
Theorem 2.2, the proof is done if Σ is compact and irreducible.

Let us now suppose that Σ is only bounded and irreducible. The closure clΣ
is compact, and has the same joint spectral radius as Σ (Proposition 1.8). So for
any x ∈ R, there exists an A ∈ clΣ such that |Ax| = |x|. We will approximate each
matrix Ai closer and closer with matrices Ãi ∈ Σ so that the norm of the whole
approximated product xt = Ãt . . . Ã1x0 is larger than 1/2. To do that, we define a
sequence 0 < δi < 1 such that ∏∞

0 δi = 1/2. Let us pick an x0 ∈ R
n
0. For all t ≥ 1,

we define At ∈ clΣ such that |Atxt−1|= |xt−1|. We approximate each At with Ãt ∈ Σ
such that ||Ãt −At || < 1− δt . By induction, one can see that |xt | ≥ ∏t

0 δi . Indeed,
|xt | = |Ãt xt−1| = |Atxt−1 − (At − Ãt)xt−1| ≥ |xt−1|(1− (1− δt)).

Finally, if Σ is commonly reducible, and ρ̂(Σ) ≥ 1, we know that there exists a
transformation T such that the matrices TAT−1 : A ∈ Σ are block-triangular, with
each block irreducible, and the restriction of these matrices to the first block has a
joint spectral radius greater than or equal to one. We can then apply the above result
to this block.

The above proof provides as a direct corollary the existence of a left-infinite product
whose average norm converges to the joint spectral radius (Corollary 1.2).

We are now almost in position to prove the joint spectral radius theorem. No el-
ementary proof is known for this theorem. We will present a self-contained proof
strongly inspired by the former proof of Berger and Wang[5], and by another pub-
lished proof due to Elsner [41]. Before presenting it, we begin with a small technical
lemma of linear algebra, that states that if a matrix A maps a unitary vector close to
itself, then it has an eigenvalue close to 1.

Lemma 2.1. [41] Let || · || be a matrix norm in R
n×n induced by the vector norm

| · |. There is an absolute constant C(n) > 0 such that for all z ∈ R
n, |z| = 1, and all

A ∈ R
n×n, ||A|| ≤ 1, there is an eigenvalue λ of A such that

|1−λ | ≤C|Az− z|1/n.

Theorem 2.3. ( Joint Spectral Radius Theorem)
For any bounded set of matrices Σ ,

limsup
t→∞

sup{ρ(A)1/t : A ∈ Σ t} = lim
t→∞

sup{||A||1/t : A ∈ Σ t} � ρ(Σ).
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Proof. We suppose without loss of generality that Σ is closed (taking the closure
does not change ρ(Σ) nor ρ̂(Σ) by Proposition 1.8) and that ρ̂ = 1. Clearly, ρ(Σ)≤
1. Let us first suppose that Σ is irreducible. Then, by Theorem 2.2, there exists a
Barabanov norm.

Let us pick an x0 ∈ R
n, |x0| = 1. By the definition of the Barabanov norm, there

exists a sequence of matrices A1,A2, . . . such that for all t, |xt | = 1, where xt =
At . . .A1x0.

By using the compacity of the unit ball, we know that there exists a subsequence
xti converging to a vector y of norm one. So we have two lengths ti > t j such that

|Ati . . .Atj+1 Atj . . .A1x0 −Atj . . .A1x0| < ε, |Atj . . .A1x0| = 1,

for any ε.
Setting z = Atj . . .A1x0, we get a matrix A ∈ Σ∗ such that

|Az− z|< ε,

and we can conclude by Lemma 2.1 that A has an eigenvalue λ such that |1−λ |=
O(ε1/n), which implies that

sup{ρ(A) : A ∈ Σ∗} ≥ 1.

Now, if Σ is not irreducible, since the joint spectral radius is the maximum over
the joint spectral radii of each diagonal block (Proposition 1.5), one just has to apply
the result to each irreducible block separately.

This ends the first section of this chapter. We have now a fair insight on the be-
havior of the joint spectral radius: Given a set of matrices, there is always a set of
submatrices that is irreducible, and whose joint spectral radius has the same value.
Remark that since the conditions for a set of matrices to be commonly reducible
can be expressed as quantified polynomial equalities, the problem of finding irre-
ducible components is computable with quantifier elimination methods (see [27]).
So in some sense we could restrict our attention to irreducible matrices, for which
there exists an extremal norm. However, even if one is able to find the irreducible
component of a set of matrices leading to the joint spectral radius, this would not be
sufficient to compute its value. Indeed, no constructive method is known for com-
puting the extremal norm of an irreducible sets of matrices. We finally mention that
Guglielmi et al. provides sufficient conditions for a set of matrices to admit an ex-
tremal norm which is a complex polytope [48]. These conditions are rather strong
and are not checkable in practice.

2.2 Complexity

In view of the results in the previous section, the joint spectral radius could seem
rather easy to compute: if the set of matrices is reducible it can be decomposed
in smaller irreducible matrices without changing the joint spectral radius. And if
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the matrices are irreducible, there exists a matrix norm for which all the matrices
in Σ have a norm smaller than ρ , trivially providing a tight upper bound on ρ ,
via the three members inequality (1.6). The reality is unfortunately not so easy. In
this section we present not less than three results that show that the joint spectral
radius is (at least theoretically) extremely hard to compute. These results explore
three of the most discouraging arguments: NP-hardness, Turing-undecidability, and
non algebraicity. As usually, the proof of these infeasibility results are somewhat
artificial, and (to our opinion) the details of the proofs are of little interest for a
common reader. Nevertheless, the ideas behind the proofs may give some insight
on what is actually difficult in computing a joint spectral radius, and where is the
limit between feasibility and infeasibility. For these reasons we limit ourselves to
present the main ideas of the theorems, and we provide bibliographic references for
the interested reader.

We add that for now on and unless explicitly stated we restrict our attention to
finite sets of matrices.

2.2.1 NP-Hardness

The first theorem we present is on the NP-hardness of the joint spectral radius ap-
proximation, and is valid even for binary matrices. In the following we call the size
of a number ε its bit size, that is, for instance, if ε = p/q, its size is equal to log(pq).

Theorem 2.4. [17] Unless P = NP, there is no algorithm that, given a set of
matrices Σ and a relative accuracy ε, returns an estimate ρ̃ of ρ(Σ) such that
|ρ̃ −ρ | ≤ ε ρ in a number of steps that is polynomial in the size of Σ and ε. This is
true even if the matrices in Σ have binary entries.

Proof. The proof proceeds by reduction of SAT whose NP-completeness is well-
known [44].

2.2.2 Non Algebraicity

The next theorem, due to Kozyakin [70]1, states that there is no algebraic criterion
allowing to decide stability of a switched linear system. To state this theorem prop-
erly, we consider a finite set of m n×n matrices as a point x ∈ R

mn2
. So we can talk

about the joint spectral radius of the point x as the joint spectral radius of the asso-
ciated set of matrices. We are interested in the set of all such points corresponding,
for instance, to ρ(x) < 1. For these sets to be easily recognizable, one would like
them to be expressed in terms of simple constraints, and for instance, polynomial
constraints. That is the notion of semi-algebraic sets.

Definition 2.4. A subset of R
n is semi-algebraic if it is a finite union of sets that can

be expressed by a finite list of polynomial equalities and inequalities.

1 There is actually a flaw in the first version of the proof in [70]. A corrected proof can be found
in [111].
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Theorem 2.5. [70, 111] For all m,n≥ 2, the set of points x∈R
mn2

for which ρ(x) <
1 is not semi-algebraic.

For all m,n≥ 2, the set of points x∈R
mn2

corresponding to a bounded semigroup
(i.e. Σ∗(x) bounded) is not semi-algebraic.

Proof. Kozyakin exhibits a set of matrices depending on the parameter t ∈]0,1[ and
shows that the set of admissible values for t (that involve stability of the correspond-
ing set of matrices) is not a finite number of intervals:

G(t) = (1− t4)

(
1 − t√

1−t2

0 0

)
, H(t) = (1− t4)

(√
1− t2 −t

t
√

1− t2

)
. (2.3)

The set Σ(t) = {G(t),H(t)} is unstable for all t = sin(2π/(2k)), while it is stable for
all t = sin(2π/(2k + 1)) (see [111] for a proof). Since W = {Σ(t)} is an algebraic
set in R

8, the intersection W ∩E should be made of a finite number of connected
components, if E was semi-algebraic. Taking E the set of points corresponding to
stable sets, or to sets generating a bounded semigroup, we have a contradiction.

2.2.3 Undecidability

The results that we now present are in a sense even worse than the previous ones,
since they teach us that there does not exist in general any algorithm allowing to
compute a joint spectral radius in finite time:

Theorem 2.6. [9, 19] The problem of determining, given a set of matrices Σ , if the
semigroup generated by Σ is bounded is Turing-undecidable.

The problem of determining, given a set of matrices Σ , if ρ(Σ) ≤ 1 is Turing-
undecidable.

These two results remain true even if Σ contains only nonnegative rational
entries.

Proof. The proof proceeds by reduction from the PFA EMPTINESS problem (Prob-
abilistic Finite state Automaton Emptiness problem), which is known to be undecid-
able [93]. In this problem, one is given a set of nonnegative rational matrices Σ and
two nonnegative rational vectors v1,v2. The entries of these matrices and vectors,
between zero and one, are interpreted as probabilities. A character is associated to
each matrix in Σ ; and to a word w (i.e. a sequence of characters) is associated the
corresponding product Aw ∈ Σ∗. A word w is accepted if its corresponding probabil-
ity vT

1 Awv2 is more than a certain given threshold λ . The problem to decide, given
Σ ,v1,v2,λ , whether there exists a word that is accepted is undecidable.

We end this section with an open problem of great practical interest:

Open question 1. Is there an algorithm that, given a finite set of matrices Σ , decides
whether ρ < 1?

This question is important in practice, since it is equivalent to ask for the stability of
the dynamical system ruled by the set Σ , in the sense of definition 1.3. We show in
Section 2.4 a link between this problem and the famous finiteness property.
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2.2.4 Similar Results for the Joint Spectral Subradius

For the sake of completeness, and because we have the feeling that it is worth to
have in mind the different borders between feasibility and infeasibility, we briefly
cite the classical infeasibility results on the joint spectral subradius. They are based
on a famous old result by Paterson on the mortality problem. In this problem, one is
given a set of matrices Σ , and it is asked whether there exists a product of matrices
in Σ∗ that is equal to zero.

Theorem 2.7. [92] The mortality problem is undecidable. This is true even for sets
of 2(np+1) 3×3 matrices, where np is any number for which Post’s correspondence
problem is undecidable.

Corollary 2.1. The mortality problem is undecidable for sets of 16 3×3 matrices.

Proof. Matiyasevitch and Sénizergues have shown that Post’s correspondence prob-
lem is undecidable even for 7 pairs of words [80].

Corollary 2.2. [18] The mortality problem is undecidable for pairs of 48 × 48
matrices.

Proof. Given a set of m n×n matrices, Blondel and Tsitsiklis show how to construct
a pair of mn×mn matrices that is mortal if and only if the former set is (see [18] for
details).

This latter corollary allows us to prove the following theorem on the approximation
of the joint spectral subradius. In order to derive a result as strong as possible, the
authors of [17] define a wide class of approximation algorithms, and show that they
do not exist for approximating the joint spectral subradius. An algorithm providing
the value ρ̃ as an approximation of the joint spectral subradius ρ̌ of a given set is
said to be a (K,L)-approximation algorithm if |ρ̃ − ρ̌| < K + Lρ̌.

Theorem 2.8. [17, Theorem 2] Let np be a number of pairs of words for which
Post’s correspondence problem is undecidable. Fix any K > 0 and 0 < L < 1.

• There exists no (K,L)-approximation algorithm for computing the joint spectral
subradius of an arbitrary set Σ . This is true even for the special case where Σ
consists of one (6np+7)×(6np+7) integer matrix and one (6np+7)×(6np+7)
integer diagonal matrix.

• For the special cases where Σ consists of two integer matrices with binary en-
tries, there exists no polynomial time (K,L)-approximation algorithm for com-
puting the joint spectral subradius unless P = NP.

2.3 Methods of Computation

The results in the previous section are in no way good news. However, far from
discouraging researchers of trying to approximate the joint spectral radius, it seems
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that it has attracted a wealth of motivation in order to cope with these theoretical
limitations. In the last decade, many different methods, of very different natures,
have been proposed to evaluate the joint spectral radius. Some are heuristics, others
rely on brute force methods, others are converging algorithms based on powerful
theoretical results. The consequence of this abundance is twofold:

Firstly, the joint spectral radius appears to be easier to handle than one could
think in view of the above results. Indeed, we do not have knowledge of a practical
problem that is unsolved due to the hardness of a joint spectral radius computation.
We will see in the next chapters that in some practical case where this computation
is needed, the results of approximation algorithms are of remarkable accuracy.

Secondly, this abundance of available algorithms, each with their own (dis)-
advantages, might trouble the practitioner, so that there is some need of classify-
ing the different methods. This part of the research on the joint spectral radius is
in our opinion not yet mature, and an exhaustive and precise classification would
require a huge amount of work, of implementation and computation, as well as of
theoretical investigations. Nevertheless, we give in this section a summary of some
families of methods that have proved useful in practical applications. We first show
how to decide if the joint spectral radius is exactly equal to zero, which is an impor-
tant particular case; we then give direct arguments that allow in some situations to
compute the joint spectral radius exactly. We next present general methods: branch-
and-bound methods, the simple convex combinations method, a geometric method,
and Lyapunov methods. Before this last important class of methods, we present a
lifting procedure that, combined with other algorithms, allows to reach an arbitrary
accuracy.

2.3.1 Zero Spectral Radius

A special case, important in practice, is when joint spectral characteristics are ex-
actly equal to zero. There is a polynomial time algorithm to decide whether the joint
spectral radius of a set of matrices is zero. This algorithm, mentioned in [53] without
proof, is a corollary of the following proposition:

Proposition 2.1. Let Σ = {A1, . . . ,Am} ⊂ R
n×n, Then ρ(Σ) = 0 if and only if

Σn = {0}.

This proposition delivers a polynomial time algorithm to check whether a joint
spectral radius is zero. Indeed, by defining iteratively:

X0 = I (2.4)

Xk =
m

∑
1

AT
i Xk−1Ai, (2.5)

one has Xn = ∑A∈Σn AT A, and this matrix is computable in polynomial time. More-
over Xn is equal to zero if and only if Σn = {0}.
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The proof of Proposition 2.1 is based on the following lemma:

Lemma 2.2. If Σ is irreducible, then ρ(Σ) > 0.

Proof. If Σ is irreducible, there exists a real number β > 0 such that for all x of
norm 1, there exists a matrix A ∈ Σ such that |Ax| ≥ β . Indeed if it is not the case by
compacity of the unit ball there must exist a vector x ∈ R

n, |x| = 1 such that for all
A ∈ Σ , Ax = 0, and Σ is not irreducible. Now chose x0 ∈ R

n
0, and pick Ai ∈ Σ such

that |xi| = |Aixi−1| ≥ β |xi−1|. This implies that for any t > 0, ||At . . .A1|| ≥ β t , and
ρ ≥ β > 0.

We are now in position to prove Proposition 2.1

Proof. The if part is trivial.
The proof of the only if part is by induction on the dimension n: it is true for scalar
matrices. Now suppose it is true for sets of matrices of dimension less than n. Let
Σ ∈ R

n×n,ρ(Σ) = 0. By the previous lemma, we can suppose Σ reducible, and for
all Ai ∈ Σ ,

Ai =
(

Bi Ci

0 Di

)
: Di ∈ R

n′×n′ ,

where ρ({Bi}) = ρ({Di}) = 0. Now, consider a product of length n. By applying
twice the induction hypothesis on n′ and n−n′, we have:

An . . .An′+1An′ . . .A1 =
(

0 C
0 D

)(
B′ C′
0 0

)
,

for some (potentially zero) matrices C,C′,B′,D and this latter product vanishes.

2.3.2 Direct Arguments

In some cases, a direct argument allows one to compute the joint spectral radius
exactly. We present some of these cases here. Other cases can be found in Section
4.3. Recall that a matrix A is said normal if AT A = AAT .

Proposition 2.2. If Σ is a set of normal matrices, the joint spectral radius is equal
to the largest spectral radius of the matrices in Σ .

Proof. The matrix norm induced by the Euclidean vector norm is given by the
largest singular value of the matrix. For normal matrices the largest singular value is
also equal to the largest magnitude of the eigenvalues. Thus, max{||A|| : A ∈ Σ} =
max{ρ(A) : A ∈ Σ} and from the three members inequality it follows that ρ(Σ) =
max{ρ(A) : A ∈ Σ}.

Corollary 2.3. [111, Proposition 6.13] If Σ is a set of symmetric matrices, the joint
spectral radius is equal to the largest spectral radius of the matrices in Σ .

Proof. Symmetric matrices are a particular case of normal matrices.
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Proposition 2.3. [111, Proposition 6.13] If Σ is a set of upper triangular matrices,
the joint spectral radius is equal to the largest spectral radius of the matrices, that
is, the largest absolute value of the diagonal entries.

The proposition obviously also holds for lower triangular matrices.

Proof. We have seen (Proposition 1.5) that if every matrix A in Σ is block-diagonal
with diagonal blocks [Ai,i], the joint spectral radius is given by

max
i

ρ({[Ai,i] : A ∈ Σ}).

Now, for triangular matrices, these blocks are just 1×1, and the joint spectral radius
is the maximum of the diagonal entries of the matrices, that is, the largest spectral
radius of the matrices.

Corollary 2.4. If the matrices in Σ are commonly upper triangularizable, that is, if
there exists an invertible matrix T such that for all A ∈ Σ , TAT−1 is upper triangu-
lar, then ρ(Σ) = ρ1(Σ).

Recall that ρ1(Σ) denotes the maximal spectral radius of the matrices in Σ .

Proof. This is due to the fact that the joint spectral radius is invariant under similar-
ity transformations.

We now present another corollary of Proposition 2.3 that is based on a famous result
in algebra. We recall that the commutator [A,B] of two matrices A and B is equal to
AB−BA, and that the linear span of a set of vectors is span{v1, . . . ,vn} = {∑αivi :
αi ∈ R}. We also need the following definitions:

Definition 2.5. Let Σ be a set of matrices, the Lie Algebra associated to Σ , that we
denote by {Σ}LA is the linear span of the set of all the combinations of commutators
of matrices in Σ :

{Σ}LA = g = span{[A,B], [A, [B,C]], · · · : A,B,C ∈ Σ}.

The descending sequence of ideals g(k) of a Lie algebra g is defined inductively:
g(1) = g, g(k+1) = [g(k),g(k)] ⊂ g(k).

If there exists a k > 0 such that g(k) = {0}, then the Lie Algebra is said to be
solvable.

We have the following theorem, known as Lie’s Theorem (see [105]):

Theorem 2.9. Let Σ be a finite set of matrices. If the Lie Algebra associated to Σ is
solvable, then Σ is commonly upper triangularizable.

Corollary 2.5. Let Σ be a set of matrices. If Σ generates a solvable Lie algebra,
then ρ(Σ) = ρ1(Σ).
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2.3.3 Branch and Bound Methods

The first method that comes to mind when one wants to compute the joint spectral
radius is to apply the three-members inequality (1.6):

ρt(Σ) ≤ ρ(Σ) ≤ ρ̂t(Σ),

remembering that the successive bounds given by the left hand side as well as the
right hand side tend to ρ when t → ∞. So an immediate algorithm would be to fix
a t, compute all products of length t, take the maximal spectral radius as a lower
bound, and the maximal norm (for a fixed norm) as an upper bound. This algorithm
can be iterated for increasing values of t, and will converge to the desired value.

The main problem in the previous algorithm is clearly the explosion of the num-
ber of products of length t that one needs to compute: there are mt of them (m is the
number of matrices in Σ ).

Some ideas have been proposed to attenuate this exponential growth: Maesumi
[77] observes that since the spectral radius of a product is invariant under cyclic
permutations of the factors, one has to compute only O(mt/t) products. Gripenberg
[46] proposes a branch and bound algorithm that allows to approximate asymptoti-
cally the joint spectral radius up to an a priori fixed absolute error. More precisely,
given a set Σ and a desired precision δ , the algorithm computes iteratively succes-
sive bounds αt and βt such that αt ≤ ρ ≤ βt and limβt −αt < δ . The algorithm
is a branch and bound algorithm in the sense that it builds longer and longer prod-
ucts, based on the ones previously constructed, but removing at each step unneces-
sary products, that is, products that are provably not necessary to reach the required
accuracy.

Also, if the matrices in Σ have nonnegative entries, there is an obvious way of
disregarding some products: if A,B are products of length t and A ≤ B (where the
inequality has to be understood entrywise), then one does not have to keep A in
order to have better and better approximations of the joint spectral radius. Indeed,
in any product of length T > t, one can always replace the subproduct A with B, and
by doing this the approximation of the joint spectral radius will be at least as good
as with the other product.

As a matter of fact, it is clear that none of these algorithms provide approxima-
tions of the joint spectral radius in polynomial time, since this is NP-hard, even for
nonnegative matrices. However, it is worth mentioning that in practice, these simple
algorithms can sometimes provide good approximations of the joint spectral radius,
especially if the number and the size of the matrices are not too large.

2.3.4 Convex Combination Method

The following result provides rapidly a lower bound on the joint spectral radius.
Recall that a cone is said proper if it is closed, solid, convex and pointed.

Proposition 2.4. [13] Let Σ = {A1, . . . ,Am} ∈ R
n×n be an arbitrary set of matrices;

the following simple lower bound on the joint spectral radius holds:
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ρ(A1 + · · ·+ Am)/m ≤ ρ(Σ).

If moreover the matrices in Σ leave a proper cone invariant, then

ρ(Σ) ≤ ρ(A1 + · · ·+ Am).

Proof. The first inequality comes from the fact that (A1 + · · ·+Am)/m∈ convΣ . The
second inequality comes from the fact that associated to an invariant cone K, there
exists a norm || · ||K , depending on K, such that for all A,B ∈ Σ , ||A||K ≤ ||A+B||K.
This norm is given by

||A||K = max
v∈K,w∈K∗||v||,||w||=1

wT Av,

where K∗ denotes the dual of the cone K (see [13] for details).

2.3.5 A Geometric Algorithm

If the set of matrices is nondefective it is possible to apply a specific algorithm
due to Protasov [94]. The computation time of this algorithm is exponential in the
dimension of the matrices, but it has some advantages: it provides a clear geometric
interpretation in terms of the construction of an extremal norm, and in particular
applications, it has been reported to converge remarkably fast [11]. Finally, in some
cases it gives a criterion that allows stopping the algorithm and to compute exactly
the joint spectral radius. The idea of the algorithm is to compute iteratively an ap-
proximation of the unit ball of the extremal norm, starting with an arbitrary polytope
which is symmetric with respect to the origin.

We now briefly describe this algorithm. For all technical details we refer the
reader to [94]. For the sake of simplicity we consider the case of two matrices, the
case of an arbitrary number of matrices is treated in the same way.

Suppose A0,A1 ∈ R
n possess an extremal norm; one needs to find a number ρ∗

such that
∣∣ρ∗ −ρ

∣∣/ρ < ε, where ε > 0 is a given accuracy. Consider a sequence of

convex polytopes {Pk} produced as follows. P0 =
{
(x1, . . . ,xn) ∈ R

n, ∑ |xi| ≤ 1
}

.

For any k ≥ 0 the polytope Pk+1 is an arbitrary polytope possessing the following
properties: it is symmetric with respect to the origin, has at most q(ε) = Cn ε

1−n
2

vertices, where Cn is an effective constant depending only on n, and (1− ε)Σ̄Pk ⊂
Pk+1 ⊂ Σ̄Pk, where Σ̄X = Conv{A0X,A1X}.

After T =
[ 3

√
n ln

c2
c1

ε

]
steps the algorithm terminates. The value

ρ∗ =
(
vT+1

)1/(T+1)

gives the desirable approximation of the joint spectral radius. Here vk is the largest
distance from the origin to the vertices of the polytope Pk, c1,c2 are such that
c1 ≤ ρ−t ρ̂t ≤ c2. Each step requires to take the convex hull of two polytopes having
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at most q(ε) vertices and requires the approximation of one polytope with 2q(ε) ver-
tices by a polytope with q(ε) vertices with accuracy ε . Both operations are known
to be polynomial w.r.t. 1

ε [94] (the dimension n is fixed). The computational com-

plexity of this algorithm is C · ε− n+1
2 , where C is some constant.

In addition, suppose that by numerical observations we conjecture that ρ is at-
tained by some product Aw = Ai1 . . .AiT , i.e. ρ = ρ(Aw)1/T . If during the calculations
we find a polytope P such that Σ̄P ⊂ ρ(Aw)1/T P, then it occurs that ρ = ρ(Aw)1/T .
For the polytope P we take P = Pk = Conv{Σ̄ jv , −Σ̄ jv , j = 0, . . . ,k} for some in-
teger k, where v is the eigenvector of Aw corresponding to the largest by modulo
eigenvalue (assuming that this is real and unique).

2.3.6 Lifting Methods to Improve the Accuracy

As we will see in subsection 2.3.7, it can be useful, given a set of matrices Σ to
“lift” this set into another set Σ ′, that is to represent it with matrices acting in a
higher dimensional space, such that the joint spectral radius is raised to a certain
power d :

ρ(Σ ′) = ρ(Σ)d .

A first method consists in using so-called Kronecker powers of matrices. This
method has been recently improved with the so-called symmetric algebras. We will
focus on this last (more efficient) method, but we give hereafter definitions of the
Kronecker powers, for sake of completeness, and because they give an interesting
insight to the symmetric algebra method.

Definition 2.6. Kronecker product. Let A,B ∈ R
n×n. The Kronecker product of A

and B is a matrix in R
n2×n2

defined as

(A⊗B) �

⎛
⎜⎝

A1,1B . . . A1,nB
...

...
...

An,1B . . . An,nB

⎞
⎟⎠ .

The k-th Kronecker power of A, denoted A⊗k, is defined inductively as

A⊗k = A⊗A⊗(k−1) A⊗1 = A.

We now introduce symmetric algebras, which requires some definitions. Corre-
sponding to an nuple α ∈ N

n, we introduce the “α monomial” of a vector x ∈ R
n as

the real number:
xα = xα1

1 . . .xαn
n .

The degree of the monomial is d = ∑αi. We denote by α! the multinomial
coefficient

α! =
d!

α1! . . .αn!
.
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We denote by N the number of different monomials of degree d :

N =
(

n + d−1
d

)
.

Definition 2.7. Symmetric algebra. Let x ∈ R
n. The d-lift of x, denoted x[d], is the

vector in R
N , indexed by all the possible exponents α of degree d

x[d]
α =

√
α!xα .

The d-lift of the matrix A is the matrix A[d] ∈ R
N associated to the linear map

A[d] : x[d] → (Ax)[d].

The matrix A[d] can be obtained via the following formula[90]:

A[d]
αβ =

perA(α,β )√
μ(α)μ(β )

,

where perM denotes the permanent of the matrix M, and μ(α) is the product of the
factorials of the entries of α.

Denoting Σ⊗d = {A⊗d : A ∈ Σ} and Σ [d] = {A[d] : A ∈ Σ}, we have the following
properties for the Kronecker products and the d-lifts:

Proposition 2.5. [13, 90] Let Σ ∈ R
n×n and d ∈ N0,

ρ(Σ)d = ρ(Σd) = ρ(Σ⊗d) = ρ(Σ [d]). (2.6)

Proof. The first inequality is well known, while the two others come from the well
known properties:

(AB)⊗d = A⊗dB⊗d

(AB)[d] = A[d]B[d].

Together with:
||A⊗d || = ||A||d ,
||A[d]|| = ||A||d ,

that holds when || · || is the spectral norm (i.e. the matrix norm induced by the stan-
dard Euclidean norm).

We will see in the next subsection how the above proposition is useful to obtain
sharp approximations of the joint spectral radius.

2.3.7 Lyapunov Methods

Let us recall a fundamental result presented in the previous chapter:

Proposition 2.6. [104] For any bounded set Σ such that ρ(Σ) �= 0, the joint spectral
radius can be defined as
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ρ(Σ) = inf
||·||

sup
A∈Σ

{||A||}.

This result is very strong, as it tells that in order to compute a joint spectral radius,
one is not bounded to compute long products of matrices. It is sufficient to find a
good norm to obtain an arbitrary close estimate of ρ via the formula

ρ ≤ max
A∈Σ

||A||.

So an alternative way to estimate the joint spectral radius is to look over all norms
(or a sufficiently wide set of norms) the one that provides the tightest bound on ρ .

A family of norms that is well understood and classically used in engineering is
the family of ellipsoidal norms:

Definition 2.8. Let P be a symmetric positive definite matrix, the quantity

| · | : R
n → R x → |x|P =

√
xT Px

is called the ellipsoidal (vector) norm associated to P.
The induced matrix norm

A → max
|x|P=1

|Ax|P

is called the ellipsoidal (matrix) norm associated to P.

One can check that these quantities are indeed norms, and since the matrix norm is
induced by a vector norm, it is submultiplicative. The denomination “ellipsoidal”
comes from the fact that the unit ball E = {x ∈ R

n : |x|P ≤ 1} is an ellipsoid. Ellip-
soidal norms are well understood, and easy to use in practice, thanks to the following
well known result:

Proposition 2.7. Given a symmetric positive definite matrix P, the norm ||A||P of a
matrix A is the smallest γ ∈ R

+ such that the following equation has a solution:

AT PA � γ2P. (2.7)

The computation of the minimal γ in (2.7) is easy. Indeed, it can be expressed as
follows:

γ2 = max
xT Px=1

xT AT PAx.

This problem can be solved by computing the Choleski factorization of the matrix
P = LLT , and then by posing y = LT x,x = L−1T y. One gets the following expression:

γ2 = max
yT y=1

(L−1T y)T AT PA(L−1T y).

This problem just amounts to compute the spectral radius of a matrix:

γ2 = ρ(L−1AT PAL−1T ),

which can be done easily with classical methods, like the power method.
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In case such a norm exists for which ||A||P < 1, we naturally speak of a quadratic
Lypunov function, where the term quadratic refers to the fact that the norm |x|P is a
quadratic function in the entries of x. A Lyapunov function for a dynamical system
is a function f such that f (xt) provably tends to zero when t tends to infinity, and
such that f (xt) → 0 implies xt → 0. For a dynamical system ruled by the matrix A,
this norm || · ||P is thus a Lyapunov function, ensuring that xt tends to zero. Now the
next proposition is straightforward, and allows one to derive an upper bound on the
joint spectral radius of an arbitrary set of matrices.

Proposition 2.8. For any set of matrices Σ , if there is a solution P to the following
SDP program:

AT
i PAi � γ2P ∀Ai ∈ Σ (2.8)

P � 0,

then ρ(Σ) ≤ γ.

Proof. The above SDP program can be rewritten as ||A||P ≤ γ for all A ∈ Σ .

SDP programming has become a classical topic in mathematical engineering, and
we do not provide here a survey on this technique. Let us just mention that this
family of problems are well understood and that it is possible to find a solution to
these in polynomial time. For more information on SDP programming, we refer the
reader to classical textbooks [4, 7, 8, 22, 86]. In case such a norm exists such that
||A||P < 1 for all A ∈ Σ , we speak of a common quadratic Lyapunov function. It is
not difficult in practice to compute the minimal γ such that the SDP program (2.8)
has a solution. Indeed, even though the first line of this program is not a linear matrix
inequality because of the term γ2P, the minimum γ can be found by bisection.

How tight is such an approximation? That is, since we know (Proposition 2.6)
that there exists a norm giving arbitrarily tight upper bounds on ρ , how accurately
can we approximate this norm with an ellipsoidal norm? The answer is given by the
following classical result:

Theorem 2.10. (“John’s ellipsoid theorem” [56])
Let K ∈ R

n be a compact convex set with nonempty interior. Then there is an el-
lipsoid E with center c such that the inclusions E ⊂ K ⊂ n(E − c)+ c hold. If K is
symmetric about the origin (K = −K), the constant n can be changed into

√
n.

We are now able to present an important result, that provides two certifications of
accuracy for a joint spectral radius estimation:

Theorem 2.11. [2, 15] For an arbitrary set of m matrices Σ ⊂ R
n×n, the best ellip-

soidal norm approximation ρ∗ of its joint spectral radius ρ satisfies

1√
n

ρ∗ ≤ ρ ≤ ρ∗,

1√
m

ρ∗ ≤ ρ ≤ ρ∗.
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Proof. The first part is a simple application of John’s ellipsoid theorem.
For the second part, consider the set Σ̃ of linear operators acting on symmetric
matrices:

Σ̃ = {Ã : S → AT SA : A ∈ Σ}.
Clearly, ρ(Σ̃) = ρ(Σ)2. This set of linear operators leaves the cone of semidefinite
positive symmetric matrices invariant. So defining

B = ∑̃
A∈Σ̃

Ã,

we can apply Proposition 2.4:

1
m

ρ(B) ≤ ρ(Σ̃) ≤ ρ(B).

Observe that the spectral radius of the linear operator B can be represented as:

inf
γ>0,P

{γ2 : ∑
Ai∈Σ

AT
i PAi � γ2P,P � 0}.

And a feasible pair (P,γ) for the above expression provides a solution to the SDP
program (2.8). Finally,

1√
m

ρ∗ ≤ 1√
m

ρ(B)1/2 ≤ ρ(Σ).

Theorem 2.11 provides an efficient method for estimating the joint spectral radius
within a fixed ratio (that cannot be chosen) of its actual value. This is a good step
forward, but this method seems to fail if we want to compute more accurate esti-
mates. Actually there is a way to do this, by using the lifting procedure defined in
Subsection 2.3.6.

Putting Theorem 2.11 together with Proposition 2.5, we obtain:

Theorem 2.12. [90] Let Σ = {A1, . . . ,Am} ∈ R
n×n. For any d ∈ N0, denoting ρd

ell,d

the best ellipsoidal approximation of the joint spectral radius of Σ [d], obtained
by applying the SDP-program (2.8) to Σ [d], we have the following convergence
properties: (

n + d−1
d

)− 1
2d

ρell,d ≤ ρ(Σ) ≤ ρell,d , (2.9)

m− 1
2d ρell,d ≤ ρ(Σ) ≤ ρell,d . (2.10)

It appears that this method can still be improved by the following recent theorem
due to Parrilo and Jadbabaie[89, 90].

Theorem 2.13. [90] Let p(x) be a strictly positive homogeneous multivariate poly-
nomial in the n variables x1, . . . ,xn, of degree 2d, and let Σ ⊂ R

n×n be a set of
matrices. If for all Ai ∈ Σ ,
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p(Aix) ≤ γ2d p(x),

then ρ(Σ) ≤ γ.

Proof. Let us fix an arbitrary norm | · |. By compactness of the unit ball, and because
p(x) is strictly positive on this ball, there exist two real numbers α,β such that
for all x ∈ R

n, α|x|2d ≤ p(x) ≤ β |x|2d. So, for an arbitrary product of length t :
A1 . . .At ∈ Σ t one has:

α|A1 . . .Atx|2d ≤ p(A1 . . .Atx) ≤ γ2dt p(x) ≤ β γ2dt |x|2d .

Finally,

ρ t ≤ sup
x∈Rn,Ai∈Σ

|A1 . . .Atx|/|x| ≤ (
β
α

)1/2dγt .

Unfortunately, no algorithm is known to optimize efficiently over sets of positive
polynomials in general. However, a subclass of positive polynomials is easy to han-
dle: sums of squares. This is due to the following theorem, that has led to a by now
classical way of relaxing optimization problems on positive polynomials: the Sum
Of Squares relaxation (SOS relaxation) [28, 85, 91, 106]:

Theorem 2.14. A homogeneous multivariate polynomial p(x) of degree 2d is a sum
of squares if and only if p(x) = x[d]T Qx[d], where x[d] is a vector whose entries are
(possibly scaled) monomials of degree d in the variables xi, and Q is a symmetric
positive semidefinite matrix.

Putting Theorem 2.13 and Theorem 2.14 together, one obtains an SOS relaxation
providing an upper bound on the joint spectral radius:

Theorem 2.15. [90] Let Σ ⊂ R
n×n be a finite set of matrices, and let γ > 0. If there

exist P,Qs such that the following polynomial equality holds:

x[d]T (γ2dP−A[d]T
s PA[d]

s )x[d] = x[d]T Qsx
[d] ∀As ∈ Σ (2.11)

P,Qs � 0,

then ρ(Σ) < γ.
Moreover the above condition can be stated as an SDP program.

Proof. Since P � 0, the polynomial p(x) = x[d]T Px[d] is a strictly positive sum of
squares. Hence, Equation (2.11) asks for the polynomial γ2d p(x)− p(Asx) to be a
sum of squares, and this can be expressed as an SDP program, as it only consists
in linear relations between entries of the matrices P and Q. Finally, since a sum of
squares is a positive polynomial, the hypotheses of Theorem 2.13 are satisfied, and
the proof is done.

The above theorem provides an upper bound that is at least as good as the ellipsoidal
approximation of Theorem 2.8, since a solution P for the SDP program (2.8) pro-
vides a solution to the SDP program (2.11) by defining Qs = γ2P−AT

s PAs. We have
thus the following result, where we put the SOS-approximations in comparison with
the convex combination technique:
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Theorem 2.16. [90] Let Σ = {A1, . . . ,Am} ∈ R
n×n. For any d ∈ N0, let us denote

ρd
SOS,d the best SOS approximation of the joint spectral radius of Σ [d], obtained by

applying the SDP-program (2.11) to Σ [d], and

ρd
conv,d = ρ( ∑

Ai∈Σd

Ai),

We have the following convergence properties:

m− 1
2d ρSOS,d ≤ ρ(Σ) ≤ ρSOS,d , (2.12)

(
n + d−1

d

)− 1
2d

ρSOS,d ≤ ρ(Σ) ≤ ρSOS,d , (2.13)

m− 1
2d ρconv,2d ≤ ρ(Σ) ≤ ρconv,2d. (2.14)

Proof. Formulas (2.12) and (2.13) are straightforward consequences of the above
theorems. The proof of Formula (2.14) follows the same idea as the proof of Theo-
rem 2.11.

The computational cost of the different approximations obtained in the above the-
orem is O(mn6d log1/ε), where ε = n

2 logd/d in the estimate (2.13), and ε =
1−m− 1

2d in the estimate (2.12).
Is the bound of the SOS relaxation (2.11) better than the bound of the common

quadratic Lyapunov function (2.8)? That is, is it possible that

γ2P−AT
s PAs � 0,

but yet

x[d]T (γ2dP−A[d]T
s PA[d]

s )x[d] = x[d]T Qsx
[d] ∀As ∈ Σ ,

P,Qs � 0,

for some Qs � 0? Recent numerical experiments ([90, table 2]) indicate that it is
indeed the case for some sets of matrices. The question whether it is possible to have
better bounds than (2.12) and (2.13) on the accuracy for the SOS approximation, is
still open.

Open question 2. Does the SOS approximation of the joint spectral radius guaran-
tee more accurate bounds than presented in Theorem 2.16?

2.3.8 Similar Results for the Joint Spectral Subradius and the
Lyapunov Exponent

Compared to the interest for the joint spectral radius estimation, very few exists
in the literature on the estimation of the joint spectral subradius. In Chapter 7, we
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propose algorithms for approximating the joint spectral subradius and the Lyapunov
exponent. These algorithms appear to perform very well in practice. See Chapter 7,
Theorems 7.7, 7.8, and 7.9 for more information.

Recently, a more general class of methods, which have been called conic pro-
gramming methods has been proposed. These methods encapsulate the ones de-
scribed in Chapter 7. It has also been shown that similar methods can be applied
to the joint spectral radius computation. See the recent preprints [14, 99] for more
information.

2.3.8.1 Conclusion and Discussion

This section on approximation algorithms is not intended to be exhaustive, but tries
to present the main trends in the attempts to approximate the joint spectral radius,
in such a way that the reader could easily implement the most efficient algorithms
known by now.

An exhaustive analysis of the existing algorithms would be much longer. For in-
stance, it is possible to interpret the symmetric algebra lifting in (at least) two other
ways: First, it can be viewed as an application of another approximation algorithm
developed by Protasov [95]. This algorithm had appeared previously in the litera-
ture, but we have preferred to introduce the point of view of symmetric algebras for
several reasons: it is simple to apply and is based on well known algebraic construc-
tions, thus allowing to focus easily on computational aspects, and it does not need
additional assumptions (such as irreducibility).

Secondly, it can be shown (see [90]) that the symmetric algebra lifting is simply
a symmetry-reduced version of the Kronecker liftings presented in [13], and that is
why we decided not to expose this Kronecker method here.

2.4 The Finiteness Property

As we have seen, the three members inequality (1.6) provides a straightforward way
to approximate the joint spectral radius to any desired accuracy: evaluate the upper
and lower bounds on ρ for products of increasing length t, until ρ is squeezed in
a sufficiently small interval and the desired accuracy is reached. Unfortunately, this
method, and in fact any other general method for computing or approximating the
joint spectral radius, is bound to be inefficient. Indeed, we know that, unless P = NP,
there is no algorithm that even approximates with a priori guaranteed accuracy the
joint spectral radius of a set of matrices in a time that is polynomial in the size of the
matrices and the accuracy. And this is true even if the matrices have binary entries.

For some sets Σ , the right hand side inequality in the three members inequality is
strict for all t. This is the case for example for the set consisting of just one matrix

(
1 1
0 1

)
.
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Thus, there is no hope to reach the exact value of the joint spectral radius by simply
evaluating the right hand side in the three members inequality. On the other hand,
since ρ(Ak) = ρ(A)k the left hand side always provides the exact value when the
set Σ consists of only one matrix and one can thus hope to reach the exact value
of the joint spectral radius by evaluating the maximal spectral radii of products of
increasing length. If for some t and A ∈ Σ t we have ρ(A)1/t = ρ(Σ), then the value
of the joint spectral radius is reached. Sets of matrices for which such a product
exists are said to have the finiteness property.

Definition 2.9. A set Σ of matrices is said to have the finiteness property if there
exists some product A = A1 . . .At with Ai ∈ Σ for which ρ(Σ) = ρ(A)1/t.

One of the interests of the finiteness property arises from its connection with the
stability question for a set of matrices which is a problem of practical interest in
a number of contexts. Recall from Definition 1.3 that a set of matrices Σ is stable
if all long products of matrices taken from Σ converge to zero. As mentioned in
Section 2.2, there are no known algorithms for deciding stability of a set of ma-
trices and it is unknown if this problem is algorithmically decidable. We have also
seen that stability of the set Σ is equivalent to the condition ρ(Σ) < 1 and we may
therefore hope to decide stability as follows: for increasing values of t evaluate
ρt = max{ρ(A)1/t : A ∈ Σ t} and ρ̂t = max{||A||1/t : A ∈ Σ t}. Since we know that
ρt ≤ ρ ≤ ρ̂t , as soon as a t is reached for which ρ̂t < 1 we stop and declare the set
stable, and if a t is reached for which ρt ≥ 1 we stop and declare the set unstable.
This procedure will always stop unless ρ = 1 and ρt < 1 for all t. But this last situ-
ation never occurs for sets of matrices that satisfy the finiteness property and so we
conclude:

Proposition 2.9. Stability is algorithmically decidable for sets of matrices that have
the finiteness property.

It was first conjectured in 1995 by Lagarias and Wang that all sets of real matrices
have the finiteness property [71]. This conjecture, known as the finiteness conjec-
ture, has attracted intense attention and several counterproofs have been provided
in recent years [16, 21, 69]. So far all proofs provided are nonconstructive, and all
sets of matrices whose joint spectral radius is known exactly satisfy the finiteness
property. In fact, all counterproofs describe sets of matrices in which there are coun-
terexamples, but no such counterexamples have been exhibited yet.

The finiteness property is also known to hold in a number of particular cases
including the case where the matrices are symmetric, or if the Lie algebra associated
with the set of matrices is solvable, since in this case the joint spectral radius is
simply equal to the maximum of the spectral radii of the matrices (Corollary 2.5;
see Subsection 2.3.2 or [52, 74] for more information). The finiteness property also
holds if the set of matrices admits a complex polytope extremal norm [48].

The definition of the finiteness property leads to a number of natural questions:
When does the finiteness property holds? Is it decidable to determine if a given
set of matrices satisfies the finiteness property? Do matrices with rational entries
satisfy the finiteness property? Do matrices with binary entries satisfy the finiteness
property? Some of these questions are studied in Chapter 4.
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2.5 Conclusion

This closes the survey on the joint spectral radius. We have seen that, even though
results in Section 2.1 were encouraging since they ensure the existence of an ex-
tremal norm (at least on a set of commonly irreducible submatrices), the joint spec-
tral radius is hard to compute or approximate in theory. We have however presented
algorithms that enable one to compute the joint spectral radius to arbitrary accuracy,
but at the cost of an exponential time of computation. We have finally mentioned
the finiteness property, that will be the central subject of a subsequent chapter.



Chapter 3
Nonnegative Integer Matrices

Abstract. In this chapter, for a given finite set Σ of matrices with nonnegative inte-
ger entries we study the growth of

ρ̂ t
t = max{‖A1 . . .At‖ : Ai ∈ Σ}.

We show how to determine in polynomial time whether the growth with t is
bounded, polynomial, or exponential, and we characterize precisely all possible be-
haviors.

3.1 Introduction

In this chapter1, we focus on the case of nonnegative integer matrices and consider
questions related to the growth of ρ̂ t

t with t. When the matrices have nonnegative
integer entries, we will see that the following cases can possibly occur:

1. ρ(Σ) = 0. Then ρ̂ t
t (Σ) takes the value 0 for all values of t larger than some t0 and

so all products of length at least t0 are equal to zero.
2. ρ(Σ) = 1 and the products of matrices in Σ are bounded, that is, there is a con-

stant K such that ‖A1 . . .At‖ < K for all Ai ∈ Σ .
3. ρ(Σ) = 1 and the products of matrices in Σ are unbounded. We will show that in

this case the growth of ρ̂ t
t (Σ) is polynomial.

4. ρ(Σ) > 1. In this case the growth of ρ̂ t
t (Σ) is exponential.

In the sequel we will mostly use the norm given by the sum of the magnitudes of
all matrix entries. Of course, for nonnegative matrices this norm is simply given by
the sum of all entries. Note that the situation 0 < ρ(Σ) < 1 is not possible because
the norm of a nonzero integer matrix is always larger than one. The four cases
already occur when there is only one matrix in the set Σ . Particular examples for
each of these four cases are given by the matrices:

(
0 1
0 0

)
,

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 1
1 1

)
.

1 The chapter presents research work that has been published in [62, 65].

R. Jungers: The Joint Spectral Radius: Theory and Applications, LNCIS 385, pp. 47–61.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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The problem of distinguishing between the different cases has a long history. The
polynomial-time decidability of the equality ρ(Σ) = 0 is shown in [53]. As men-
tioned by Blondel and Canterini [9], the decidability of the boundedness of products
of nonnegative integer matrices follows from results proved in the 1970′s. Indeed,
the finiteness of a semigroup generated by a finite set of matrices has been proved to
be decidable independently by Jacob [55] and by Mandel and Simon [78]. It is clear
that for integer matrices, finiteness of the semigroup is equivalent to its bounded-
ness, and so boundedness is decidable for integer matrices. The decision algorithms
proposed in [55] and [78] are based on the fact that if the semigroup is finite, then
every matrix in the semigroup can be expressed as a product of length at most B of
the generators, and the bound B only depends on the dimension of the matrices n
and on the number of generators. The proposed algorithms consist in generating all
products of length less than B; and checking whether new matrices are obtained by
considering products of length B + 1. The high value of the bound B does however
lead to highly nonpolynomial algorithms and is therefore not practical. A sufficient
condition for the unboundedness of ρ̂ t

t (Σ) has been derived recently for the case of
binary matrices by Crespi et al. [31]. We will show in this chapter that the condition
given there is also necessary. Moreover, we provide a polynomial algorithm that
checks this condition, and thus we prove that boundedness of semigroups of integer
matrices is decidable in polynomial time. Crespi et al. [31] also provide a criterion
to verify the inequality ρ(Σ) > 1 for binary matrices and an algorithm based on that
criterion. However, their algorithm is not polynomial. In this chapter, we present a
polynomial algorithm for checking ρ(Σ) > 1 for sets of nonnegative integer ma-
trices. Observe that it is not in contradiction with NP-hardness results of Chapter
2 since our algorithm allows only to check if ρ is larger than the particular value
one. Let us recall that the same problem for other joint spectral characteristics (such
as the joint spectral subradius) is proved to be NP-hard even for binary matrices.
Therefore, the polynomial solvability of this question for the joint spectral radius is
somewhat surprising.

The main results of this chapter can be summarized as follows. For any finite set
of nonnegative integer n×n matrices Σ there is a polynomial algorithm that decides
between the four cases ρ = 0, ρ = 1 and bounded growth, ρ = 1 and polynomial
growth, ρ > 1 (see Theorem 3.1 and Theorem 3.2). Moreover, if ρ(Σ) = 1, then
there exist constants C1,C2,k, such that C1tk ≤ ρ̂ t

t (Σ) ≤ C2tk for all t; the rate of
growth k is an integer such that 0 ≤ k ≤ n−1, and there is a polynomial time algo-
rithm for computing k (see Theorem 3.3). This sharpens previously known results
on the asymptotic behavior of the value ρ̂ t

t (Σ) for nonnegative integer matrices. We
discuss this aspect in Section 3.6. Thus, for nonnegative integer matrices, the only
case for which we cannot decide the exact value of the joint spectral radius is ρ > 1.
Once more, it is most likely that the joint spectral radius cannot be polynomially
approximated in this case since it was proved that its computation is NP-hard, even
for binary matrices.

The chapter is organized as follows. Section 3.2 contains some notation and aux-
iliary facts from graph theory. In Section 3.3 we establish a criterion for separating
the three main cases ρ(Σ) < 1,ρ(Σ) = 1 and ρ(Σ) > 1. Applying this criterion we
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derive a polynomial algorithm that decides each of these cases. In Section 3.4 we
present a criterion for deciding product boundedness and provide a polynomial time
implementation of this criterion. In Section 3.5 we find the asymptotic behavior of
the value ρ̂ t

t (Σ) as t → ∞ for the case ρ = 1. We prove that this value is asymptoti-
cally equivalent to tk for a certain integer k with 0 ≤ k ≤ n−1 and show how to find
the rate of growth k in polynomial time. Finally, in Section 3.6 we formulate several
open problems on possible generalizations of those results to arbitrary matrices.

3.2 Auxiliary Facts and Notations

For two nonnegative functions f (t),g(t) we use the standard notation f (t) =
O(g(t)), which means that there is a positive constant C such that f (t) ≤ Cg(t)
for all t. The functions f and g are said to be asymptotically equivalent, which we
denote f (t) � g(t) if f (t) = O(g(t)) and g(t) = O( f (t)).

We shall consider each nonnegative n× n matrix A as the adjacency matrix of
a directed weighted graph G(A). This graph has n nodes enumerated from 1 to n.
There is an edge from node i to node j if the (i, j) entry of the matrix is positive and
the weight of this edge is then equal to the corresponding entry. This graph may have
loops, i.e., edges from a node to itself, which correspond to diagonal entries. If we
are given a family Σ of nonnegative integer matrices, then we have several weighted
graphs on the same set of nodes {1, . . . ,n}. In addition we define the graph G(Σ)
associated to our family Σ as follows: There exists an edge in G(Σ) from node i to
node j if and only if there is a matrix A ∈ Σ such that Ai, j > 0. The weight of this
edge is equal to max

A∈Σ
Ai, j. We shall also use the graph G2, whose n2 nodes represent

the ordered pairs of our initial n nodes, and whose edges are defined as follows:
there is an edge from a node (i, i′) to ( j, j′) if and only if there is a matrix A ∈ Σ
such that both Ai, j and Ai′, j′ are positive for the same matrix. The edges of G2 are
not weighted.

Products of matrices from Σ can be represented by cascade graphs. We now
present this tool that will enable us to clarify many reasonings in subsequent proofs.
In a cascade graph, a matrix A ∈ Σ is represented by a bipartite graph with a left and
a right set of nodes. The sets have identical size and there is an edge between the ith
left node and the jth right node if Ai, j > 0. The weight of this edge is equal to the
entry Ai, j. For instance, the non-weighted bipartite graph on Figure 3.1 represents
the matrix ⎛

⎝1 1 0
0 0 1
0 0 1

⎞
⎠ .

Now, for a given product of matrices Ad1 . . .Adt we construct a cascade graph as
follows: we concatenate the corresponding bipartite graphs in the order in which
they appear in the product, with the right side of each bipartite graph directly con-
nected to the left side of the following graph. For example, Figure 3.2 shows a
cascade graph representing the product A0A1A0A1 of length four, with
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A0 =

⎛
⎝0 0 0

1 0 1
0 0 0

⎞
⎠ ,A1 =

⎛
⎝0 1 0

0 0 0
0 1 0

⎞
⎠ .

We say that the bipartite graph at the extreme left side begins at level t = 0 and
the one at the extreme right side ends at the last level. We note (i, t) to refer to the
node i at level t. We say that there is a path from node i to node j if one is able to
construct a cascade graph with a path from some node (i, t) to some node ( j, t ′) for
some t < t ′ (that is, if there is a product with the (i, j)−entry larger than zero). A
path is to be understood as a succession of edges from a level to the next level, i.e.
always from left to right. One can check that the (i, j) entry of a matrix product of
length t is equal to the number of directed paths from the node (i,0) to the node
( j,t) in the corresponding cascade graph. We thus have a way of representing ρ̂ t

t (Σ)
as the maximal total number of paths from extreme left nodes to extreme right nodes
in cascade graphs of length t.

Two nodes of a graph are called connected if they are connected by a path (not
necessarily by an edge). A directed graph is strongly connected if for any pair of
nodes (i, j), i is connected to j. The following well known result states that we can
partition the set of nodes of a directed graph in a unique way in strongly connected
components, and that the links between those components form a tree [110].

Lemma 3.1. For any directed weakly connected graph G there is a partition of its
nodes in nonempty disjoint sets V1, . . . ,VI that are strongly connected and such that
no two nodes belonging to different partitions are connected by directed paths in
both directions. Such a maximal decomposition is unique up to renumbering of the
nodes. Moreover there exists a (non necessarily unique) ordering of the subsets Vs

such that any node i ∈ Vk cannot be connected to any node j ∈ Vl, whenever k > l.
There is an algorithm to obtain this partition in O(n) operations (with n the number
of nodes).

Fig. 3.1 A bipartite graph
representing a binary matrix

Fig. 3.2 A typical cascade
graph
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In this lemma, we suppose by convention that a node that is not strongly connected
to any other node is itself a strongly connected subset, even if it does not have a
self-loop. In such a case we will say that the corresponding set is a trivial strongly
connected subset. Consider the graph G(Σ) corresponding to a family of matrices
Σ , as defined above. After possible renumbering, it can be assumed that the set of
nodes is ordered, that is, for all nodes i∈Vk and j ∈Vl , if k > l then i > j. In that case
all the matrices of Σ have block upper-triangular form with I blocks corresponding
to the sets V1, . . . ,VI (I can be equal to one).

3.3 Deciding ρ < 1 , ρ = 1, and ρ > 1

The goal of this section is to prove the following result.

Theorem 3.1. For matrices with nonnegative integer entries there is a polynomial
algorithm that decides the cases ρ < 1,ρ = 1 and ρ > 1.

Proof. The proof will be split into several lemmas. The inequality ρ < 1 means that
ρ̂ t

t , the maximum number of paths in a cascade graph of length t tends to zero as
t → ∞. Now ρ̂ t

t is integer-valued, and this implies that for sufficiently large t there
are no paths of this length in the graph G(Σ) corresponding to the whole family Σ .
This means that G(Σ) has no cycle. So we get our first lemma :

Lemma 3.2. For a finite set of nonnegative integer matrices Σ , we have ρ(Σ) > 0 if
and only if the graph G(Σ) has a cycle. In this case ρ ≥ 1.

This condition can be checked in O(n) operations : one just has to find the strongly
connected components of the graph G(Σ) (a task that can be performed in O(n)
operations [110]); a cycle will be possible iff one of the subsets is nontrivial.

The problem of deciding between ρ = 1 and ρ > 1 is more difficult. Let us start
with the following lemma.

Lemma 3.3. Let Σ be an arbitrary finite set of real matrices. If ρ(Σ) > 1, then there
is a product A ∈ Σ∗, for which Ai,i > 1 for some i. If the matrices are nonnegative,
then the converse is also true.

Proof. Necessity. Since ρ(Σ) > 1 it follows that there is a product B ∈ Σ∗ such that
ρ(B) > 1. Let λ1 be one eigenvalue of B of largest magnitude, so |λ1| = ρ(B) > 1
and let λ2, . . . ,λn be the other eigenvalues. Since these eigenvalues rotate at different
speeds when one takes the successive powers of B, there must be large values of t
for which arg(λ ) ≈ 0 for all eigenvalues λ of Bt , where arg(z) is the argument
of the complex number z. More precisely, there exists a sufficiently large t such
that |λ1|t > 2n and arg(λ t

k) ∈ [− π
3 , π

3 ] for all k = 1, . . . ,n (for a rigorous proof, see

[114]). Therefore Re(λ t
k) ≥ 1

2 |λ t
k| for all k. We have

n
∑

k=1
(Bt)k,k = trBt =

n
∑

k=1
λ t

k =
n
∑

k=1
Reλ t

k ≥ 1
2 |λ t

1| > n. Since the sum of the n numbers (Bt)k,k exceeds n, one of

them must exceed 1.



52 3 Nonnegative Integer Matrices

Sufficiency. Since A ∈ Σ t has nonnegative elements, it follows that ‖Ak‖ ≥ (Ak)i,i,
hence ρ(A) ≥ Ai,i > 1. Now, by the three members inequality (1.6) ρ(Σ) ≥
[ρ(A)]1/t > 1.

Corollary 3.1. For any finite set of nonnegative integer matrices Σ , we have ρ(Σ) >
1 if and only if there is a product A ∈ Σ∗ such that Ai,i ≥ 2 for some i.

Thus, the problem is reduced to testing if there is a product A ∈ Σ∗ that has a diag-
onal element larger or equal to 2. This is equivalent to the requirement that at least
one of the following conditions is satisfied:

1. There is a cycle in the graph G(Σ) containing at least one edge of weight greater
than 2.

2. There is a cycle in the graph G2 containing at least one node (i, i) (with equal
entries) and at least one node (p,q) with p �= q.

Indeed, if Ai,i ≥ 2 for some A ∈ Σ∗, then either there is a path on the graph G(Σ)
from i to i that goes through an edge of weight ≥ 2 (first condition), or there are
two different paths from i to i in the cascade graph corresponding to the product
A, this is equivalent to the second condition. The converse is obvious. To verify
Condition 1 one needs to look over all edges of G(Σ) of weight ≥ 2 and to check
the existence of a cycle containing this edge. This requires at most O(n3) operations.
To verify Condition 2 one needs to look over all 1

2 n2(n− 1) triples (i, p,q) with
p > q and for each of them check the existence in the graph G2 of paths from (i, i)
to (p,q) and from (p,q) to (i, i), which requires at most O(n2) operations. Thus, to
test Condition 2 one needs to perform at most O(n5) operations. This completes the
proof of Theorem 3.1.

Figure 3.2 shows a cascade graph with the second condition above satisfied: there
are two paths from node 2 to node 2, and for every even t, the number of paths is
multiplied by two.

The shortest cycle in the graph G2 with the required properties has at most n2

edges. It therefore follows that whenever ρ > 1, there is a product A of length less
than n2 such that Ai,i ≥ 2 for some i. From this we deduce the following corollary.

Corollary 3.2. Let Σ be a finite set of nonnegative integer matrices of dimension n.
If ρ(Σ) > 1, then ρ(Σ) ≥ 21/n2

.

3.4 Deciding Product Boundedness

If ρ = 1, two different cases are possible: either the maximum norm of products
of length t is bounded by a constant, or it grows less than exponentially with t.
Deciding between these two cases is not trivial. Indeed, we have seen in Chapter
2 that this problem is undecidable for general matrices. In this section we present
a simple criterion that allows us to decide whether the products are bounded, in
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the particular case of nonnegative integer matrices. Our reasoning will be split into
several lemmas. We begin with a simple but crucial observation.

Lemma 3.4. Let Σ be a finite set of nonnegative integer matrices with ρ(Σ) = 1. If
there is a product A ∈ Σ∗ that has an entry larger than 1, then the graph G(Σ) is
not strongly connected.

Proof. Let Ai, j ≥ 2, that is, counting with weights, there are two paths from i to j
in the same cascade graph. If there is another cascade graph with a path from j to
i, then, concatenating the two cascade graphs, we can find two different paths from
i to itself, and by corollary 3.1 ρ(Σ) > 1, which is a contradiction. Hence G(Σ) is
not strongly connected.

Consider the partition of the nodes of G(Σ) into strongly connected sets V1, . . . ,VI

(see Lemma 3.1). Applying Lemma 3.4 we get the following corollaries.

Corollary 3.3. Let Σ be a finite set of nonnegative integer matrices. If ρ(Σ) = 1, but
the products of these matrices are not uniformly bounded, then there exists a per-
mutation matrix P such that for all matrices A in Σ , PT AP is block upper triangular
with at least two blocks.

Proof. A graph is strongly connected if and only if no permutation puts the adja-
cency matrix in block triangular form.

Corollary 3.4. Let Σ be a finite set of nonnegative integer matrices with joint spec-
tral radius one. Then all products of these matrices restricted to any strongly con-
nected set Vk are binary matrices.

We are now able to prove the main result of this section. We first provide a result for
the case of one matrix and then consider the case of several matrices.

Proposition 3.1. Let A be a nonnegative integer matrix with ρ(A) = 1. The set
{‖At‖ : t ≥ 1} is unbounded if and only if there exists some k ≥ 1, and a pair of
indices (i, j) such that

Ak
i,i,A

k
i, j,A

k
j, j ≥ 1. (3.1)

Proof. Sufficiency is easy: One can check that (Akt)i, j ≥ t for any t, and hence
ρ̂ t

t (Σ) is unbounded. Let us prove the necessity : Consider the partition in strongly
connected subsets V1, . . . ,VI . By Corollary 3.3 we have I ≥ 2.

We claim that there are two nontrivial sets Va and Vb, a < b that are connected by
a path (there is a path from an element of Va to an element of Vb). In order to prove
this, we show that if any path in G(Σ) intersects at most one nontrivial set, then their
number must be bounded.

Let a path start from a set Va1 , then go to Va2 etc., until it terminates in Val . We
associate the sequence of indices a1 < · · · < al, l ≤ I to this path. As supposed,
this sequence contains at most one nontrivial set, say Vas . There are at most Kl

paths, counting with weights, corresponding to this sequence, where K is the largest
number of edges between two given sets (still counting with weights). Indeed, each
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path of length t > l begins with the only edge connecting Va1 to Va2 (since Va1 is
trivial), etc. until it arrives in Vas after s−1 steps (for each of the previous steps we
had at most K variants), and the reasoning is the same if one begins by the end of
the path, while, given a starting node in Vas , and a last node in the same set, there is
at most one path between these two nodes, by Corollary 3.4. Since there are finitely
many sequences {a j}l

j=1, l ≤ I, we see that the total number of paths of length t is
bounded by a constant independent of t, which contradicts the assumption.

Hence there are two nontrivial sets Va and Vb, a < b connected by a path. Let this
path go from a node i1 ∈ Va to j1 ∈ Vb and have length l. Since both graphs Va and
Vb are strongly connected, it follows that there is a cycle i1 → . . . → ip → i1 in Va

and a path j1 → . . . → jq → j1 in Vb, p,q ≥ 1. Take now a number s ∈ {1, . . . , p}
such that l + s is divisible by p : l + s = vp, v ∈ N. Take a nonnegative integer x
such that v+x is divisible by q : v+x = uq, u ∈N. Let us show that the matrix Aupq

and the indices i = ip−s+1, j = j1 possess property 3.2. Indeed, a path of length upq
along the first cycle, beginning at node ip−s+1 terminates in the same node, hence
Aupq

ip−s+1,ip−s+1
≥ 1. Similarly (Aupq) j1, j1 ≥ 1. On the other hand, the path going from

ip−s+1 → . . . → i1, then going x times around the first cycle from i1 to itself, and
then going from i1 to j1, has a total length s + xp + l = vp + xp = upq, therefore
Aupq

ip−s+1, j1
≥ 1.

The fact that there must be two nontrivial sets connected by a path had already been
proved by Mandel and Simon [78, Lemma 2.6]. We now provide a generalization of
this result to the case of several matrices.

Proposition 3.2. Let Σ be a finite set of integer nonnegative matrices with ρ(Σ) = 1.
The set of norms {‖A‖ : A ∈ Σ∗} is unbounded if and only if there exists a product
A ∈ Σ∗, and indices i and j (i �= j) such that

Ai,i,Ai, j,A j, j ≥ 1. (3.2)

Proof. The sufficiency is obvious by the previous proposition. Let us prove the ne-
cessity. We have a set Σ of nonnegative integer matrices, and their products in Σ∗
are unbounded. Consider again the partition of the nodes in strongly connected sets
V1, . . . ,VI for Σ . Our proof proceeds by induction on I. For I = 1 the products are
bounded by corollary 3.4, and there is nothing to prove. Let I ≥ 2 and the theorem
holds for any smaller number of sets in the partition. If the value ρ̂ t

t (Σ ,U) is un-
bounded on the set U = ∪I

s=2Vs, then the theorem follows by induction. Suppose
then that the products are bounded on this subset of nodes, by some constant M. Let
us consider a product of t matrices, and count the paths from any leftmost node to
any rightmost node. First, there are less than n2 paths beginning in V1 and ending in
V1, since the corresponding adjacency matrix must have {0,1} entries (recall that n
is the total number of nodes). Second, there are at most Mn2 paths beginning and
ending in U , since each entry is bounded by M. Let us count the paths beginning in
V1 and ending in U : Let i0 → ··· → it be one of these paths. The nodes i0, . . . ir−1

are in V1, the nodes ir, . . . , it are in U and ir−1ir is an edge connecting V1 and U . The
number r will be called a switching level. For any switching level there are at most



3.4 Deciding Product Boundedness 55

KMn2 different paths connecting V1 with U , where K is the maximum number of
edges jumping from V1 to U at the same level, counting with weights. Indeed for one
switching edge ir−1ir, the total number of paths from ir to any node at the last level
is bounded by M, and there are less than n nodes in U . By the same way of thinking,
there is maximum one path from each node in V1 to ir−1, and there are less than n
nodes in V1. The number of switching levels is thus not bounded, because so would
be the number of paths. To a given switching level r we associate a triple (A′,A′′,d),
where A′ = Ad1 . . .Adr−1 |V1

and A′′ = Adr+1 . . .Adt |U are matrices and d = dr is the
index of the rth matrix. The notation A|V1

means the square submatrix of A corre-
sponding to the nodes in V1. Since A′ is a binary matrix (Corollary 3.4), A′′ is an
integer matrix with entries less than M, and d can take finitely many values, it fol-
lows that there exist finitely many, say N, different triples (A′,A′′,d). Taking t large
enough, it can be assumed that the number of switching levels r ∈ {2, . . . ,t − 1}
exceeds N, since for any switching level there are at most KMn2 different paths.
Thus, there are two switching levels r and r + s, s ≥ 1 with the same triple. Define
d = dr = dr+s and

B = A1 . . .Adr−1 , D = Adr+1 . . .Adr+s−1 , E = Adr+s+1 . . .Adt (3.3)

(if s = 1, then D is the identity matrix). Thus, Ad1 . . .Adt = BAdDAdE . Since
A′ = B|V1

= BAdD|V1
it follows that B|V1

= B(AdD)k
|V1

for any k. Similarly A′′ =
E|U = DAdE|U implies that E|U = (DAd)kE|U . Therefore for any k the cascade
graph corresponding to the product B(AdD)kAdE has at least k + 1 paths of length
t +(k−1)s starting at i0. Those paths have switching levels r,r + s, . . . ,r +(k−1)s
respectively. Indeed, for any l ∈ {0, . . . ,k} there is a path from i0 to ir−1+ls = ir−1,
because B(AdD)l

|V1
= B|V1

; there is an edge from ir−1+ls to ir+ls = ir, because
Adr+ls = Adr = Ad ; finally there is a path from ir+ls = ir to it+(k−1)s = it , be-
cause (DAd)k−lE|U = E|U . Therefore, ‖B(AdD)kAdE‖ ≥ k + 1 for any k, hence
‖B(AdD)kAdE‖ → ∞ as k → ∞, and so ‖(AdD)k‖ → ∞. Now we apply Proposi-
tion 3.1 for the matrix AdD; since the powers of this matrix are unbounded it fol-
lows that some power A = (AdD)k, which is (Adr . . .Adr+s−1)

k possesses the property
Ai,i,A j, j,Ai, j ≥ 1 for suitable i and j.

In the last proof, we find a matrix AdD ∈ Σ∗ such that ||(AdD)k|| → ∞. There is a
different way to prove the existence of such a matrix that is based on the generic
theorem of McNaughton and Zalcstein, which states that every torsion semigroup
of matrices over a field is locally finite [84]. We have given here a self-contained
proof that uses the combinatorics for nonnegative integer matrices.

The meaning of the condition (3.2) in terms of cascade graphs can be seen from
the following simple example. If one matrix in Σ has those three entries (and no
other) equal to one, then we have two infinite and separate paths: one is a circuit
passing through the node i, the other is a circuit passing through the node j. Those
cycles are linked in a unique direction, so that the first one is a source and the second
one is a sink, that eventually collects all these paths, as shown on Figure 3.3.
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Fig. 3.3 A cascade graph
with linear growth

We now prove that the criterion of Proposition 3.2 can be checked in polynomial
time.

Theorem 3.2. There is a polynomial time algorithm for verifying product bounded-
ness of families of nonnegative integer matrices.

Proof. Assume we are given a finite set of nonnegative integer matrices Σ . First,
we decide between the cases ρ = 0,ρ = 1 and ρ > 1 with the algorithm provided
in the previous section. In the first case ρ̂ t

t (Σ) is bounded, in the latter it is not.
The main problem is to check boundedness for the case ρ = 1. By Proposition 3.2 it
suffices to check if there exists a product A∈Σ∗ possessing the property of Equation
(3.2) for some indices i, j. Consider the product graph G3 with n3 nodes defined
as follows. The nodes of G3 are ordered triples (i, j,k), where i, j,k ∈ {1, . . . ,n}.
There is an edge from a vertex (i, j,k) to a vertex (i′, j′,k′) if and only if there is a
matrix A ∈ Σ , for which (A)i,i′ ,(A) j, j′ ,(A)k,k′ ≥ 1. (The adjacency matrix of G3 is
obtained by taking the 3-th Kronecker power of each matrix in Σ , and by taking the
maximum of these matrices componentwise.) The above condition means that there
are indices i �= j such that there is a path in G3 from the node (i, i, j) to the node
(i, j, j). The algorithm involves checking n(n− 1) pairs, and for each pair at most
O(n3) operations to verify the existence of a path from (i, i, j) to (i, j, j). In total one
needs to perform O(n5) operations to check boundedness.

3.5 The Rate of Polynomial Growth

We have provided in the previous section a polynomial time algorithm for checking
product boundedness of sets of nonnegative integer matrices. In this section we
consider sets of matrices that are not product bounded and we analyze the rate of
growth of the value ρ̂ t

t (Σ) when t grows. When the set consists of only one matrix
A with spectral radius equal to one, the norm of Ak increases polynomially with k
and the degree of the polynomial is given by the size of the largest Jordan block of
eigenvalue one. A generalization of this for several matrices is given in the following
theorem.

Theorem 3.3. For any finite set of nonnegative integer matrices with joint spectral
radius equal to one, there are positive constants C1 and C2 and an integer k ≥ 0 (the
rate of growth) such that

C1tk ≤ ρ̂ t
t (Σ) ≤ C2tk (3.4)

for all t. The rate of growth k is the largest integer possessing the following property:
there exist k different ordered pairs of indices (i1, j1), . . . ,(ik, jk) such that for every
pair (is, js) there is a product A ∈ Σ∗, for which
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Ais,is , Ais, js , A js, js ≥ 1, (3.5)

and for each 1 ≤ s ≤ k−1, there exists B ∈ Σ∗ such that B js,is+1 ≥ 1.

The idea behind this theorem is the following: if we have a polynomial growth of
degree k, we must have a combination of k linear growths that combine themselves
successively to create a growth of degree k. This can be illustrated by the cascade
graph in Figure 3.4.

Fig. 3.4 A cascade graph
with polynomial growth

Before we give a proof of Theorem 3.3 let us observe one of its corollaries. Con-
sider the ordered chain of maximal strongly connected subsets V1, . . . ,VI provided
by Lemma 3.1. By Corollary 3.4 the elements is, js of each pair (is, js) belong to
different sets and are such that

is ∈Vk, js ∈Vl ⇒ l > k.

This implies that there are fewer such couples than strongly connected subsets, and
then:

Corollary 3.5. The rate of growth k does not exceed I−1, where I is the number of
strongly connected sets of the family Σ . In particular, k ≤ n−1.

We now provide the proof of Theorem 3.3.

Proof. We shall say that a node i is O(tk) if there is a constant C > 0 such
that max

A∈Σ t ,1≤ j≤n
Ai, j ≤ Ctk for all t. Suppose that for some k we have k pairs

(i1, j1), . . . ,(ik, jk) satisfying the assumption of the theorem. We construct a cas-
cade graph similar to the one represented in Figure 3.4: Let As, s = 1, . . . ,k
and Bs, s = 1, . . . ,k − 1 be the corresponding products and m be their maxi-
mal length. Then for any s and any p ∈ N one has (Ap

s )is js ≥ p, and therefore(
Ap

1B1Ap
2B2 . . .Ap

k

)
i1, jk

≥ pk for any p. Denote this product by Dp and its length

by lp. Obviously lp ≤ (pk + k−1)m. For an arbitrary t > (2k−1)m take the largest

p such that lp < t. It follows that lp ≥ t − km, and therefore p ≥ lp
km − 1 + 1

k ≥
t

km −2+ 1
k . In order to complete the product, take for instance A

t−lp
k . Then the prod-

uct DpA
t−lp
k has length t and its (i1 jk)-entry is bigger than pk ≥ (

t
km −2+ 1

k

)k
, which

is bigger than Ctk for some positive constant C. This proves sufficiency.
It remains to establish the converse: if for some k there is a node that is not

O(tk−1), then there exist k required pairs of indices. We prove this by induction on
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the dimension n (number of nodes). For n = 2 and k = 1 it follows from Proposition
3.2. For n = 2 and k > 2 this is impossible, since one node (say, node 1) is an
invariant by Corollary 3.3, then the edge (1,2) is forbidden, and there are at most
t + 2 paths of length t (if all other edges occur at each level).

Suppose the theorem holds for all n′ ≤ n− 1. Let a node i0 be not O(tk−1). As-
sume first that there are two nodes i, j of the graph G(Σ) that are not connected
by any path. Therefore there are no paths containing these nodes. Hence one can
remove one of these nodes (with all corresponding edges) so that i0 is still not
O(tk−1). Now by induction the theorem follows. It remains to consider the case
when any pair of nodes is (weakly) connected. Take the decomposition in strongly
connected subsets V1, . . . ,VI for Σ . The nodes are ordered so that all the matrices
in Σ are in block upper triangular form. Let p be the smallest integer such that all
nodes in Gp = ∪I

s=pVs are O(1), i.e., Gp is the biggest invariant on which the num-
ber of paths is bounded. By Corollary 3.4 such p does exist. On the other hand, by
the assumption we have p ≥ 2. Since the products in Σ∗ restricted to the subspace
corresponding to Gp−1 = Gp ∪Vp−1 are unbounded, it follows from Proposition 3.2
that there is a pair (ik, jk) ∈ Gp−1 realizing Equation (3.2). Observe that ik ∈ Vp−1

and jk ∈ Gp. Otherwise these nodes are either in Vp−1 (hence the restriction of Σ∗ to
Vp−1 is unbounded, which violates Corollary 3.4) or in Gp (contradicts the bound-

edness of Σ∗ on Gp). Now consider the products restricted on the set ∪p−1
s=1 Vs. We

claim that at least one node is not O(tk−2) in this restriction: For any product in Σ∗
of length t consider the corresponding cascade graph. Any path of length t start-
ing at a node i ∈ ∪p−1

s=1 Vs consists of 3 parts (some of them may be empty): a path

i → v ∈ ∪p−1
s=1 Vs of some length l, an edge v → u ∈ Gp, and a path from u inside

Gp of length t − l − 1. Suppose that each entry in the restriction of the products to
∪p−1

s=1 Vs is O(tk−2), then for a given l there are at most Clk−2 paths for the first part
(C > 0 is a constant), for each of them the number of different edges v→ u (counting
with edges) is bounded by a constant K, and the number of paths from u to the end
is bounded by C0 by the assumption. Taking the sum over all l we obtain at most
∑t

l=0 CKC0lk−2 = O(tk−1) paths, which contradicts our assumption.
Hence there is a node in ∪p−1

s=1 Vs that is not O(tk−2). Applying now the inductive
assumption to this set of nodes we obtain k− 1 pairs (is, js), s = 1, . . . ,k− 1 with
the required properties. Note that they are different from (ik, jk), because jk ∈ Gp.
It remains to show that there is a path in G(Σ) from jk−1 to ik. Let us remember that
ik ∈ Vp−1. If jk−1 ∈ Vp−1 as well, then such a path exists, because Vp−1 is strongly
connected. Otherwise, if jk−1 ∈Vj for some j < p−1, then there is no path from ik
to jk−1, which yields that there is a path from jk−1 to ik, since each pair of nodes is
weakly connected.

Remark 3.1. Let us note that the products of maximal growth constructed in the
proof of Theorem 3.3 are not periodic, that is, the optimal asymptotic product is not
the power of one product. Indeed, we multiply the first matrix A0 p times, and then
the second one p times, etc. This leads to a family of products of length t that are
not the repetition of a period. In general, those aperiodic products can be the optimal
ones, as illustrated by the following simple example.
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Σ =

⎧⎨
⎩
⎛
⎝1 1 0

0 1 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0

0 1 1
0 0 1

⎞
⎠
⎫⎬
⎭ .

Any finite product of these matrices has spectral radius equal to one and has at most
linear growth. Indeed, every A ∈ Σ has rank at most two, therefore the condition
of Theorem 3.3 for any k ≥ 2 is not satisfied for the product A. Nevertheless, the

aperiodic sequence of products of the type At/2
0 At/2

1 gives a quadratic growth in t. It
is interesting to compare this phenomenon with the finiteness property (see Section
2.4 and Chapter 4): for this set of matrices, the maximal behavior is a quadratic
growth, which is possible only for aperiodic products.

On the other hand, considering the boundedness of the products, such phe-
nomenon is impossible: by Proposition 3.2 if ρ̂ t

t (Σ) is unbounded, this unbounded
growth can always be obtained by a periodic sequence. This fact is not true for gen-
eral matrices, since the following example gives a set of complex matrices for which
the products are unbounded while all periodic products are bounded:

Σ =
{(

eiθ2π 1
0 1

)
,

(
eiθ2π 0

0 1

)}
.

If 0 ≤ θ ≤ 1 is irrational, then the powers of any A ∈ Σ∗ are bounded, while ρ̂ t
t (Σ)

grows linearly in t.

Proposition 3.3. The rate of growth of a set of nonnegative integer matrices with
joint spectral radius equal to one can be found in polynomial time.

Proof. For each pair (i, j) of vertices one can check in polynomial time whether
there is a product A such that Ai, j, Ai,i,A j, j ≥ 1. For each couple of those pairs
(i1, j1),(i2, j2), we can check in polynomial time whether there is a path from j1
to i2, or from j2 to i1. Finally we are left with a directed graph whose nodes are
the couples (i, j) satisfying Equation (3.2) and with an edge between the nodes
(i1, j1),(i2, j2) if there is a path from j1 to i2. This graph is acyclic (because if there
is also a path from j2 to i1 then there are two paths from i1 to itself, and ρ > 1 by
Lemma 3.3), and it is known that the problem of finding a longest path in a directed
acyclic graph can be solved in linear time.

3.6 Polynomial Growth for Arbitrary Matrices

Theorem 3.3 shows that for a finite family Σ of nonnegative integer matrices with
joint spectral radius equal to one the value ρ̂ t

t (Σ) is asymptotically equivalent to tk,
where k is an integer. Moreover, we have shown that the exponent k can be computed
in polynomial time. A natural question arises: do these properties hold for all sets
of matrices (without the constraint of nonnegative integer entries)?

Open question 3. Is this true that for any set of real matrices Σ with ρ(Σ) = 1 one
has ρ̂ t

t (Σ) � tk for some integer k ?
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In other words, is the asymptotic behavior of the value ρ̂ t
t (Σ) really polynomial with

an integer rate of growth? This property can obviously be reformulated without the
restriction ρ(Σ) = 1 as follows: is it true that for any family of matrices Σ we have

ρ̂ t
t (Σ) � ρ ttk, (3.6)

where ρ = ρ(Σ) and k is an integer ? A more general problem arises if we remove
the strict requirements of asymptotic equivalence up to a positive constant:

Open question 4. Is this true that for any family of matrices Σ the following limit

lim
t→∞

ln ρ−t ρ̂ t
t (Σ)

ln t
, (3.7)

exists and is always an integer?

In particular, does property (3.6) or, more generally, property (3.7) hold for nonneg-
ative integer matrices ? If the answer is positive, can the rate of growth be computed?
We have solved these problems only for the case ρ = 1. Thus, is it possible to ob-
tain a sharper information on the asymptotic behavior of the value ρ̂ t

t (Σ) as t → ∞
than the well-known relation lim

t→∞
ln ρ̂ t

t (Σ)/t = lnρ(Σ)? The question is reduced

to the study of the value r(t) = ρ−t ρ̂ t
t (Σ). For some special families of matrices

this question has appeared in the literature many times. S. Dubuc in 1986 studied
it for a special pair of 2× 2 matrices in connection with the rate of convergence
of some approximation algorithm [40]. In 1991 I. Daubechies and J. Lagarias [34]
estimated the value r(t) for special pairs of n× n matrices to get a sharp informa-
tion on the continuity of wavelets and refinable functions, and their technique was
developed in many later works (see [118] for references). In 1990 B. Reznik [102]
formulated several open problems on the asymptotics of binary partition functions
(combinatorial number theory) that were actually reduced to computing the value
r(t) for special binary matrices [96]. This value also appeared in other works, in
the study of various problems [29, 39, 103]. For general families of matrices very
little is known about the asymptotic behavior of r(t), although some estimates are
available. First, if the matrices in Σ do not have a nontrivial common invariant sub-
space, then r(t) � 1, i.e., the set is nondefective (see Chapter 2 Section 2.1). So,
in this case the answer to Open Question 3 is positive with k = 0. This assump-
tion was relaxed for nonnegative matrices in [96]. It was shown that if a family of
nonnegative matrices is irreducible (has no common invariant subspaces among the
coordinate planes), then we still have r(t)� 1. For all other cases, if the matrices are
arbitrary and may have common invariant subspaces, we have only rough estimates.
For the lower bound we always have r(t) ≥C by the three members inequality. For
the upper bound, as it is shown in [34], we have r(t) ≤ Ctn−1. This upper bound
was sharpened in the following way [29]. Let l be the maximal integer such that
there is a basis in R

n, in which all the matrices from Σ get a block upper-triangular
form with l blocks. Then r(t) ≤Ctl−1. The next improvement was obtained in [98]
(see also Proposition 1.5). Let Σ = {A1, . . . ,AN} and each matrix Ad ∈ Σ are in up-
per triangular form, with diagonal blocks Bd,1, . . . ,Bd,l . Let s be the total number of
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indices j ∈ {1, . . . , l} such that ρ(B1, j, . . . ,BN, j) = ρ(Σ). Then r(t) ≤Cts−1. Thus,
for an arbitrary family of matrices we have C1 ≤ ρ−t ρ̂ t

t (Σ) ≤ C2ts−1. To the best
of our knowledge this is the sharpest information about the asymptotic behavior of
r(t) available thus far.

3.7 Conclusion and Remarks

The results presented in this chapter completely characterize finite sets of nonneg-
ative integer matrices with bounded products and with polynomially growing prod-
ucts. Without any change the results can be applied to general sets of nonnegative
matrices that have no entries between zero and one. Unlike the proofs, which are
quite technical, the results are easily implementable in algorithms. One question we
have not addressed here is that of the exact computation of the joint spectral radius
when ρ > 1, but we know this problem is NP-hard even for binary matrices (see
Chapter 2). We also provide an example of two matrices whose joint spectral radius
is equal to one but for which the optimal asymptotic behavior (quadratic growth) is
not periodic. All periodic products have indeed a linear growth. This example may
possibly help for the analysis of the finiteness property (see Chapter 4). Finally, in
the last section we leave several open problems on possible generalizations of these
results for more general sets of matrices.



Chapter 4
On the Finiteness Property for Rational
Matrices

Abstract. In this chapter we analyze a recent conjecture stating that the finiteness
property holds for pairs of binary matrices. We show that the finiteness property
holds for all pairs of binary matrices if and only if it holds for all sets of nonnegative
rational matrices. We provide a similar result for matrices with positive and negative
entries. We finally prove the conjecture for 2×2 matrices.

4.1 Introduction

Let us recall from previous chapters the definition of the finiteness property1:

Definition 4.1. A set Σ of matrices is said to have the finiteness property if there
exists some product A = A1 . . .At with Ai ∈ Σ for which ρ(Σ) = ρ1/t(A).

This property is of importance in practice, because of the following proposition,
proved in Section 2.4:

Proposition 4.1. Stability is algorithmically decidable for sets of matrices that have
the finiteness property.

In that section we have shown that the finiteness property does not hold in general,
but its definition leads to a number of natural questions: When does the finiteness
property hold? Is it decidable to determine if a given set of matrices satisfies the
finiteness property? Do matrices with rational entries satisfy the finiteness prop-
erty? Do matrices with binary entries satisfy the finiteness property? These ques-
tions have a natural justification. First, we are interested in rational matrices because
for engineering purposes, the matrices that one handles (or enters in a computer) are
rational-valued. So, in some sense, a proof of the finiteness property for rational
matrices would be satisfactory in practice. Moreover, the case of binary matrices
appears to be important in a number of applications. For instance, the rate of growth
of the binary partition function in combinatorial number theory is expressed in terms

1 The chapter presents research work that has been published in [59, 60].

R. Jungers: The Joint Spectral Radius: Theory and Applications, LNCIS 385, pp. 63–74.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



64 4 On the Finiteness Property

of the joint spectral radius of binary matrices, that is, matrices whose entries are ze-
ros and ones [96, 102]. Moision et al. [81–83] have shown how to compute the
capacity of a code under certain constraints (caused by the noise in a channel) by
using the joint spectral radius of binary matrices. Recently the joint spectral radius
of binary matrices has also been used to express trackability of mobiles in a sensor
network [30]. These applications (some of which are presented in Part II) have led to
a number of numerical computations [57, 81, 82]. The results obtained so far seem
to indicate that for binary matrices the finiteness property holds. When the matrices
have binary entries they can be interpreted as adjacency matrices of graphs on an
identical set of nodes and in this context it seems natural to expect optimality to
be obtained for periodic products. Motivated by these observations, the following
conjecture appears in [11]:

Conjecture 4.1. Pairs of binary matrices have the finiteness property.

In the first theorem in this chapter we prove a connection between rational and
binary matrices:

Theorem 4.1. The finiteness property holds for all sets of nonnegative rational ma-
trices if and only if it holds for all pairs of binary matrices.

If Conjecture 4.1 is correct then nonnegative rational matrices also satisfy the finite-
ness property and this in turn implies that stability, that is, the question ρ < 1, is
decidable for sets of matrices with nonnegative rational entries. From a decidabil-
ity perspective this last result would be somewhat surprising since it is known that
the closely related question ρ ≤ 1 is not algorithmically decidable for such sets of
matrices (see Section 2.2).

Motivated by the relation between binary and rational matrices, we prove in a
subsequent theorem that sets of 2×2 binary matrices satisfy the finiteness property.
We have not been able to find a unique argument for all possible pairs and we there-
fore proceed by enumerating a number of cases and by providing separate proofs
for each of them. This somewhat unsatisfactory proof is nevertheless encouraging
in that it could possibly be representative of the difficulties arising for pairs of bi-
nary matrices of arbitrary dimension. In particular, some of the techniques we use
for the 2×2 case can be applied to matrices of arbitrary dimension.

4.2 Rational vs. Binary Matrices

In this section, we prove that the finiteness property holds for nonnegative rational
matrices if and only if it holds for pairs of binary matrices. The proof proceeds in
three steps. First we reduce the nonnegative rational case to the nonnegative integer
case, we then reduce this case to the binary case, and finally we show how to reduce
the number of matrices to two. In the last theorem we give an analogous result for
matrices with arbitrary rational entries: the finiteness property holds for matrices
with rational entries if and only if it holds for matrices with entries in {−1,0,1}.
Proposition 4.2. The finiteness property holds for finite sets of nonnegative rational
matrices if and only if it holds for finite sets of nonnegative integer matrices.
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Proof. Recall that for any α > 0, ρ(Σ) = (1/α)ρ(αΣ). Now, for any set Σ of
matrices with nonnegative rational entries, let us pick an α �= 0 ∈ N such that αΣ ⊆
N

n×n. If there exists a positive integer t and a matrix A ∈ (αΣ)t such that ρ(αΣ) =
ρ1/t(A), then ρ(Σ) = (1/α)ρ1/t(A) = ρ1/t(A/αt), where A/αt ∈ Σ t .

We now turn to the reduction from the integer to the binary case. Figure 4.1 repre-
sents the reduction for a particular example.

Fig. 4.1 The cascade graph
(see Chapter 3) of a non-
negative integer matrix A (a)
and its binary representation
Ã (b)

(a) (b)

Theorem 4.2. The finiteness property holds for finite sets of nonnegative integer
matrices if and only if it holds for finite sets of binary matrices.

Proof. Consider a finite set of nonnegative integer matrices Σ ⊂ N
n×n. We think of

the matrices in Σ as adjacency matrices of weighted graphs on a set of n nodes and
we construct auxiliary graphs such that paths of weight w in the original weighted
graphs are replaced by w paths of weight one in the auxiliary graphs. For every
matrix A ∈ Σ ⊂ N

n×n, we introduce a new matrix Ã ∈ {0,1}nm×nm as follows (see
Figure 4.1). We define m as the largest entry of the matrices in Σ (m = 2 in Figure
4.1). Then, for every node vi (i = 1, . . . ,n) in the original graphs, we introduce m
nodes ṽi,1, . . . , ṽi,m in the auxiliary graphs. The auxiliary graphs have nm nodes; we
now define their edges. For all A ∈ Σ and Ai, j = k �= 0, we define km edges in Ã from
nodes ṽi,s : 1 ≤ s ≤ k to the nodes ṽ j,t : 1 ≤ t ≤ m.

Now, we claim that for all t, and for all A ∈ Σ t , the corresponding product Ã ∈ Σ̃ t

is such that ||A||1 = ||Ã||1, where || · ||1 represents the maximum sum of the absolute
values of all entries of any column in a matrix. This implies that ρ(Σ̃) = ρ(Σ), and
Σ̃ has the finiteness property if and only if so does Σ . This proves the theorem, since
Σ̃ has binary entries. The following reasoning leads to this claim:

1. For any product Ã ∈ Σ̃ t , and for any indices i,r, j,s,s′, Ãṽi,r,ṽ j,s = Ãṽi,r,ṽ j,s′ . This

is due to the fact that for every matrix in Σ̃ , the columns corresponding to ṽi,s

and ṽi,s′ are equal.
2. For any product A ∈ Σ t , and any couple of indices (i, j), the corresponding

product Ã ∈ Σ̃ t has the following property: for all s, Ai, j = ∑r Ãṽi,r,ṽ j,s . We show
this by induction on the length of the product: First, this is true by construction
for every matrix in Σ̃ . Now suppose that it is true for every product of length t,
and consider a product of length t +1 : AB∈Σ t+1 and its corresponding product
ÃB̃ ∈ Σ̃ t+1, with Ã ∈ Σ̃ t and B̃ ∈ Σ̃ . We have the following implications:
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(AB)i, j = ∑
1≤k≤n

Ai,kBk, j

= ∑
1≤k≤n

(
∑

1≤r≤m

Ãṽi,r,ṽk,s

)
Bk, j

= ∑
1≤r≤m

(
∑

1≤k≤n

Ãṽi,r,ṽk,s Bk, j

)

= ∑
1≤r≤m

(
∑

1≤k≤n,1≤s≤m

Ãṽi,r,ṽk,s B̃ṽk,s,ṽ j,s′

)

= ∑
1≤r≤m

(
ÃB̃

)
ṽi,r ,ṽ j,s′

.

In the first implication we used the induction hypothesis for products of length
t, in the second implication we reverse the order of summation, while for the
third implication we use both the induction hypothesis for products of length 1
to transform Bk, j, and moreover we use the item 1 of this proof in order to let
the index s of the matrix Ãṽi,r,ṽk,s vary. Since s′ can be chosen arbitrarily between
1 and m, the proof is done.

3. For all t, and for all A ∈ Σ t , the corresponding product Ã ∈ Σ̃ t is such that
||A||1 = ||Ã||1, where || · ||1 represents the maximum sum of the absolute values
of all entries of any column in a matrix.

4. We have that ρ(Σ) = ρ(Σ̃), and if ρ(Σ̃) = ρ1/T (Ã) : Ã ∈ Σ̃T , then ρ(Σ) =
ρ1/T (A), where A is the product in ΣT corresponding to Ã.

We finally consider the last reduction: we are given a set of matrices and we reformu-
late the finiteness property for this set into the finiteness property for two particular
matrices constructed from the set. The construction is such that all the entries of the
two matrices have values identical to those of the original matrices, except for some
entries that are equal to zero or one.

More specifically, assume that we are given m matrices A1, . . . ,Am of dimension
n. From these m matrices we construct two matrices Ã0, Ã1 of dimension (2m−1)n.
The matrices Ã0, Ã1 consist of (2m− 1)× (2m− 1) square blocks of dimension n
that are either equal to 0, I or to one of the matrices Ai. The explicit construction of
these two matrices is best illustrated with a graph.

Consider the graph G0 on a set of 2m−1 nodes si (i = 1, . . . ,2m−1) and whose
edges are given by (i, i + 1) for i = 1, . . . ,2m − 2. We also consider a graph G1

defined on the same set of nodes and whose edges of weight ai are given by (m +
i−1, i) for i = 1, . . . ,m. These two graphs are represented on Figure 4.2 for m = 5.
In this construction a directed path that leaves the node m returns there after m steps
and whenever it does so, the path passes exactly once through an edge of graph G1.
Let us now describe how to construct the matrices Ã0, Ã1. The matrices are obtained
by constructing the adjacency matrices of the graphs G0 and G1 and by replacing
the entries 1 and 0 by the matrices I and 0 of dimension n, and the weights ai by the
matrices Ai. For m = 5 the matrices Ã0, Ã1 are thus given by:
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Ã0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ã1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

A1 0 0 0 0 0 0 0 0
0 A2 0 0 0 0 0 0 0
0 0 A3 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0
0 0 0 0 A5 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 4.2 Schematic repre-
sentation of the macro tran-
sitions between subspaces.
The full edges represent
transitions in Ã0 and the
dashed edges transitions in
Ã1

The two matrices so constructed inherit some of the properties of the graphs G0

and G1 : loosely speaking, in a product of length m, one is forced to use m−1 times
the matrix Ã0 and one time Ã1, and this product represents the use of one particular
matrix in Σ . The moment one uses Ã1 determines uniquely the matrix in Σ . These
ideas are formalized in the following theorem.

Theorem 4.3. Consider a set of m ≥ 1 matrices

Σ = {A1, . . . ,Am : Ai ∈ R
n×n},

and Σ̃ = {Ã0, Ã1} with the matrices Ã0 and Ã1 as defined above. Then ρ(Σ̃) =
ρ(Σ)1/m. Moreover, the finiteness property holds for Σ if and only if it holds for Σ̃ .

Proof. The crucial observation for the proof is the following. Consider a path in G0

and G1. Edges in G0 and G1 have outdegree at most equal to one. So if a sequence
of graphs among G0 and G1 is given, there is only one path leaving i that follows
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that particular sequence. This fact ensures that any block in any product of matrices
in Σ̃ is a pure product of blocks of the matrices in Σ̃ , and not a sum of such products.
Moreover, any path leaving from i and of length km either returns to i after passing
through k edges of G1, or ends at node i+m after passing through k−1 edges of G1,
or ends at node i+m (mod 2m) after passing through k+1 edges of G1. From this it
follows that in a product of length km of the matrices Ã0 and Ã1 there is exactly one
nonzero block in every line of blocks, and this block is a product of length k−1, k,
or k + 1 of matrices from Σ .

We now show that ρ(Σ̃) ≥ ρ(Σ)1/m by proving that for any matrix A ∈ Σ t , there
is a matrix Ã ∈ Σ̃ tm such that ||Ã|| ≥ ||A||. Define B̃i = Ãi−1

0 Ã1Ãm−i
0 ∈ Σ̃m for i =

1, . . . ,m so that the block in position (m,m) in B̃i is simply equal to Ai. Consider
now some product of length t, A = Ai1 · · ·Ait ∈ Σ t and construct the corresponding
matrix product Ã = B̃i1 . . . B̃it ∈ Σ̃ tm. The block in position (m,m) in Ã is equal to
Ai1 . . .Ait and so ||Ã|| ≥ ||A|| and ρ(Σ̃) ≥ ρ(Σ)1/m.

Let us now show that ρ(Σ̃) ≤ ρ(Σ)1/m. Consider therefore an arbitrary product
Ã ∈ Σ̃ l and decompose Ã = C̃Ã′ with C̃ a product of at most m factors and Ã′ ∈ Σ km.
By the observation above we know that there is at most one nonzero block in every
line of blocks of Ã′, and this block is a product of length k−1, k, or k+1 of matrices
from Σ . Therefore, if the norm is chosen to be the maximum line sum, we have
||Ã|| ≤ K1K2||A|| where A is some product of length k−1 of matrices from Σ , K1 is
the maximal norm of a product of at most m matrices in Σ̃ , and K2 is the maximal
norm of a product of at most 2 matrices in Σ . Using this inequality, we arrive at

||Ã||1/(k−1) ≤ (K1K2)1/(k−1)||A||1/(k−1).

The initial product Ã is an arbitrary product of length l = km+ r and so by letting k
tend to infinity and using the definition of the joint spectral radius we conclude that
ρ(Σ̃) ≤ ρ(Σ)1/m.

We have thus proved that ρ(Σ̃) = ρ(Σ)1/m. It remains to prove the equiva-
lence of the finiteness property. If Σ satisfies the finiteness property then ρ(Σ) =
ρ(A1 . . .At)1/t , then ρ(Σ̃) = ρ(Σ)1/m = ρ(B̃1 . . . B̃t)1/(tm) and so Σ̃ also satisfies the
finiteness property. In the opposite direction, if the finiteness property holds for Σ̃ ,
then we must have ρ(Σ̃) = ρ(B̃1 . . . B̃t)1/t because every other product of matrices
in Σ̃ has its spectral radius equal to zero, and then ρ(Σ) = ρ(Σ̃ )m = ρ(A1 . . .At)1/t .

Combining the results obtained so far we now state the main result of this section.

Theorem 4.4. The finiteness property holds for all sets of nonnegative rational ma-
trices if and only if it holds for all pairs of binary matrices.

The finiteness property holds for all sets of rational matrices if and only if it holds
for all pairs of matrices with entries in {0,1,−1}.

Proof. The proof for the nonnegative case is a direct consequence of Proposition
4.2, Theorem 4.2 and Theorem 4.3.

For the case of arbitrary rational entries, the statements and proofs of Proposition
4.2 and Theorem 4.3 can easily be adapted. We now show how to modify Theorem
4.2 so as to prove that the finiteness property holds for all sets of integer matrices
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if and only if it holds for matrices with entries in {0,−1,1}. The value m in the
proof of Theorem 4.2 is now given by the largest magnitude of the entries of the
matrices in Σ , and we weight the edges of the auxiliary graphs by −1 whenever
they correspond to a negative entry. Then, the arguments for proving items 1 and 2
in the above proof do not need any modification since they rely on equalities that
are also valid for matrices with entries in {0,1,−1}. From this we deduce that

||A|| = ∑
i
|Ai, j| ≤ ∑

i,r
|Ãṽi,r,ṽ j,s | ≤ ||Ã||,

and so ρ(Σ̃)≥ ρ(Σ). Now, let us decompose any product Ã = B̃C̃ : B̃ ∈ Σ̃ , C̃ ∈ Σ̃ t−1,
and consider the corresponding product A = BC ∈ Σ t . Remark that

|Ãvi,r ,v j,s | =
∣∣∣∣∣∣ ∑
k:|Bi,k|≥r

sign(Bi,k)∑
q

C̃vk,q,v j,s

∣∣∣∣∣∣≤∑
k

|Ck, j|.

So, we have ||Ã|| ≤ mn||C||.
Finally, if Σ̃ has the finiteness property, there exists Ã∈ Σ̃ t : ρ(Σ̃ ) = ρ(Ã)1/t , and,

taking the same decomposition A = BC as above, we have the following relations:

ρ(Σ) ≤ ρ(Σ̃) = lim
k→∞

||(B̃C̃)k||1/(kt)

≤ lim
k→∞

(mn||C(BC)k−1||)1/(kt) ≤ ρ(A)1/t ≤ ρ(Σ),

and ρ(Σ) = ρ(A)1/t .

Let us finally remark that for the purpose of reducing the finiteness property of
rational matrices to pairs of binary matrices, we have provided a construction that,
given a set Σ of m matrices with nonnegative rational entries, produces a pair of
matrices Σ̃ with binary entries and an integer k ≥ 0 such that ρ(Σ) = ρ(Σ̃)k. The
joint spectral radius of a set of nonnegative rational matrices can thus be captured
as the power of the joint spectral radius of two binary matrices. In the same way
of thinking, the joint spectral radius of a set of arbitrary rational matrices can be
captured as the power of the joint spectral radius of two matrices with entries in
{0,1,−1}.

4.3 The Finiteness Property for Pairs of 2×2 Binary Matrices

In this section, we prove that the finiteness property holds for pairs of binary ma-
trices of size 2× 2. We will see that, even for this 2× 2 case, nontrivial behaviors
occur. As an illustration, the set of matrices

{(
1 1
0 1

)
,

(
0 1
1 0

)}
,
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whose behavior could at first sight seem very simple, happens to have a joint spec-
tral radius equal to ((3 +

√
13)/2)1/4, and this value is only reached by products

of length at least four. Another interest of this section is to introduce techniques
that may prove useful to establish the finiteness property for matrices of larger
dimension.

There are 256 ordered pairs of binary matrices. Since we are only interested in
unordered sets we can lower this number to (24(24 −1))/2 = 120. We first present
or recall a series of simple properties that allow us to handle most of these cases and
we then give a complete analysis of the few remaining cases. In the following, we
note A ≤ B if the matrix B−A has nonnegative entries.

Proposition 4.3. For any set of matrices Σ = {A0,A1} ⊂ R
2×2, we have

• ρ({A0,A1}) = ρ({AT
0 ,AT

1 }), where AT is the transpose of A,

• ρ({A0,A1}) = ρ({SA0S,SA1S}), where S =
(

0 1
1 0

)
.

Moreover, in both cases the finiteness property holds for one of the sets if and only
if it holds for the other.

Proposition 4.4. The finiteness property holds for sets of symmetric matrices.

Proof. See Corollary 2.3 in Chapter 2.

Proposition 4.5. Let Σ = {A0,A1} ∈ N
n×n. The finiteness property holds in any of

the following situations:

1. ρ(Σ) ≤ 1,
2. A0 ≤ I (or A1 ≤ I).

Proof. 1. We know that for sets of nonnegative integer matrices, if ρ ≤ 1, then either
ρ = 0 and the finiteness property holds, or ρ = 1, and there is a product of matrices
in Σ with a diagonal entry equal to one (see Chapter 3). Such a product A ∈ Σ t

satisfies ρ(Σ) = ρ(A)1/t = 1 and so the finiteness property holds when ρ(Σ) ≤ 1.
2. Suppose first ρ(A1) ≤ 1; then ρ(A)≤ 1 for all A ∈ Σ t because A0 ≤ I and thus

ρ(Σ) ≤ 1 and the result follows from item 1. Now if ρ(A1) > 1 then ρ(Σ) = ρ(A1)
and so the finiteness property holds.

Proposition 4.6. Let Σ = {A0,A1} ∈ N
n×n. The finiteness property holds in the fol-

lowing situations:

1. A0 ≤ A1 (or A1 ≤ A0),
2. A0A1 ≤ A2

1 (or A1A0 ≤ A2
1),

3. A0A1 ≤ A1A0.

Proof. 1. Any product of length t is bounded by At
1. Hence the joint spectral radius

of Σ is given by limt→∞ ||At
1||1/t = ρ(A1).

2. and 3. Let A ∈ Σ t be some product of length t. If A0A1 ≤ A2
1 or A0A1 ≤ A1A0

we have A ≤ At1
1 At0

0 for some t0 + t1 = t. The joint spectral radius is thus given by
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ρ = lim
t→∞

max
t1+t0=t

||At1
1 At0

0 ||1/t ≤ lim
t→∞

max
t1+t0=t

||At1
1 ||1/t ||At0

0 ||1/t

≤ max(ρ(A0),ρ(A1)).

Hence the joint spectral radius is given by max(ρ(A0),ρ(A1)).

In order to analyze all possible sets of matrices, we consider all possible couples
(n0,n1), where ni is the number of nonzero entries in Ai. From Proposition 4.6, we
can suppose ni = 1,2, or 3 and without loss of generality we take n0 ≤ n1.

• n0 = 1 :

– If n1 = 1 or n1 = 2, the maximum row sum or the maximum column sum is
equal to one for both matrices, and since these quantities are norms it follows
from the three members inequality (1.6) that the joint spectral radius is less
than one and from Proposition 4.5 that the finiteness property holds.

– If n1 = 3, it follows from Proposition 4.6 that the only interesting cases are:

Σ =
{(

1 0
0 0

)
,

(
0 1
1 1

)}
and Σ0 =

{(
0 1
0 0

)
,

(
1 0
1 1

)}
.

In the first case the matrices are symmetric and so the finiteness property
holds. We keep Σ0 for later analysis.

• n0 = 2 :

– n1 = 2 : The only interesting cases are:

Σ =
{(

1 1
0 0

)
,

(
0 1
0 1

)}
and Σ1 =

{(
1 1
0 0

)
,

(
1 0
1 0

)}
.

Indeed in all the other cases either the maximum row sum or the maximum
column sum is equal to one and the finiteness property follows from Propo-
sition 4.5. The joint spectral radius of the first set is equal to one. Indeed, the
matrices are upper triangular. We keep Σ1 for further analysis.

– n1 = 3 : If the zero entry of A1 is on the diagonal (say, the second diagonal
entry), then, by Proposition 4.5 we only need to consider the following case:

{(
0 1
0 1

)
,

(
1 1
1 0

)}
.

These matrices are such that A0A1 ≤ A2
1 and so the finiteness property follows

from Proposition 4.6.
If the zero entry of A1 is not a diagonal entry, we have to consider the

following cases:

Σ2 =
{(

1 0
1 0

)
,

(
1 1
0 1

)}
and Σ3 =

{(
0 1
1 0

)
,

(
1 1
0 1

)}
.

We will handle Σ2 and Σ3 later on.
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• n0,n1 = 3 : It has already been noticed by several authors (see, e.g., [111, Propo-
sition 5.17]) that

ρ
({(

1 1
0 1

)
,

(
1 0
1 1

)})
= ρ

((
1 1
0 1

)
·
(

1 0
1 1

))1/2

=

√
1 +

√
5

2
.

After excluding the case of symmetric matrices and using the symmetry argu-
ment of Proposition 4.3, the only remaining case is:

{(
1 1
0 1

)
,

(
1 1
1 0

)}
,

but again these matrices are such that A0A1 ≤ A2
1 and so the finiteness property

follows from Proposition 4.6.

We now analyze the cases Σ0,Σ1,Σ2,Σ3 that we have identified above. For Σ0,
notice that A2

0 ≤ A0A1. Therefore, any product of length t is dominated (that is, is
entrywise smaller) by a product of the form At1

1 A0At2
1 A0 . . .Atl

1 for some t1,tl ≥ 0
and ti ≥ 1 (i = 2, . . . , l − 1). The norm of such a product is equal to (t1 + 1)(tl +
1)t2 . . .tl−1. It is not difficult to see that the maximal rate of growth of this quantity
with the product length is given by 5

√
4 and so the joint spectral radius is equal to

5
√

4 = ρ(A4
1A0)

1/5
, and the finiteness property holds.

For Σ1, simply notice that maxA∈Σ2 ρ(A) = maxA∈Σ2 ||A||∞ = 2, where || · ||∞
denotes the maximum row sum norm. Hence by the three members inequality we
have ρ(Σ) = ρ(A0A1)1/2 =

√
2.

Consider now Σ2. These matrices are such that A2
0 ≤ A0A1 and so any product of

length t is dominated by a product of the form At1
1 A0At2

1 A0 . . .Atl
1 for some t1, tl ≥ 0

and ti ≥ 1 (i = 2, . . . , l −1). We have

At1
1 A0 . . .Atl

1 A0 =
(

(t1 + 1) . . .(tl + 1) 0
(t2 + 1) . . .(tl + 1) 0

)
.

Again it is not difficult to show that the maximum rate of growth of the norm of such
a product is equal to

√
2. This rate is obtained for ti = 3 and ρ = ρ(A3

1A0)1/4 =
√

2.
The last case, Σ3, is more complex and we give an independent proof for it.

Proposition 4.7. The finiteness property holds for the set
{(

0 1
1 0

)
,

(
1 1
0 1

)}
.

Proof. Because A2
0 = I we can assume the existence of a sequence of maximal-

normed products
Πi

of length Li, of the form Bt1 . . .Btl with Bti = Ati
1A0, ∑tk + l = Li, and lim ||Πi||1/Li =

ρ(Σ). We show that actually any maximal-normed product only has factors B3,
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except a bounded number of factors that are equal to B1,B2, or B4 and so the finite-
ness property holds.

Let us analyze one of these products Π . We suppose without loss of generality
that Π begins with a factor B3 (premultiplying by B3 does not change the asymptotic
growth). First, it does not contain any factor Bt : t > 4 because for such t, Bt−3B2 ≥
Bt and we can replace these factors without changing the length.

Now, our product Π has less than 8 factors B4, because replacing the first seven
factors B4 with B3, and the eighth one with (B3)3 we get a product of the same
length but with larger norm (this is because B3 ≥ (3/4)B4, (B3)3 ≥ (33/4)B4, and
(3/4)7(33/4) > 1). We remove these (at most) seven factors B4 and by doing this,
we just divide the norm by at most a constant K0.

We now construct a product Π ′ of larger norm by replacing the left hand sides of
the following inequalities by the respective right hand sides, which are products of
the same length:

BiB1B1B j ≤ BiB3B j,

B2B1B2 ≤ B3B3,

B3B1B2 ≤ B2B2B2,

B2B1B3 ≤ B2B2B2.

If the factor B3B1B3 appears eight times, we replace it seven times with B3
2 ≥

(4/5)B3B1B3 and the last time with B3
2B2

3 which is greater than 7B3
2. By repeating

this we get a new product Π ′′ ≥ 7(4/5)8Π ′(1/K0) > Π ′(1/K0) that has a bounded
number of factors B1. We remove these factors from the product and by doing this
we only divide by at most a constant K1.

If there are more than four factors B2 in the product, we replace the first three
ones with B3, and remove the fourth one. It appears that for any X ∈ {B2,B3},B2

3X >
1.35B3B2X , and on the other hand, B2

3X ≥ B2
3B2X 1

2.4349 . Then each time we replace

four factors B2 we get a new product: Π ′′′ ≥ 1.353

2.4348 Π ′′(1/K1) > Π ′′(1/K1). Finally
we can remove the (at most) last three factors B2 and by doing this, we only divide
the product by at most a constant K2. By doing these operations to every Πi, we get
a sequence of products Π ′′′

i , of length at most Li. Now, introducing K = K0K1K2,
we compute

ρ ≥ lim ||Π ′′′
i ||1/(Li) ≥ lim ||(1/K)Πi||1/(Li) = ρ .

Hence ρ = lim ||(A3
1A0)t ||1/(4t) = ρ(A3

1A0)1/4 = ((3+
√

13)/2)1/4, and the finiteness
property holds.

This concludes the proof of the main theorem of this section:

Theorem 4.5. The finiteness property holds for any pair of 2×2 binary matrices.

4.4 Conclusion

In this Chapter we have analyzed the finiteness property for matrices that have ra-
tional entries. We have shown that the finiteness property holds for matrices with
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nonnegative rational entries if and only if it holds for pairs of matrices with binary
entries. For pairs of binary matrices of dimension 2× 2 we have shown that the
property holds true. It has been conjectured [11] that it holds for pairs of binary
matrices of arbitrary dimension:

Open question 5. Does the finiteness property hold for pairs of binary matrices?

We also ask the equivalent question for matrices with negative entries:

Open question 6. Does the finiteness property hold for pairs of matrices with en-
tries in {0,1,−1}?

To the author’s knowledge, in all the numerical computations that have been per-
formed on binary matrices not only the finiteness property always seemed to hold
but the period length of optimal products was always very short. The computation
of the joint spectral radius is NP-hard even for binary matrices but this does not
exclude the possibility of a bound on the period length that is linear, or polynomial,
in the dimensions of the matrices. In the case of matrices characterizing the capac-
ity of codes avoiding forbidden difference patterns, the length of the period is even
suspected to be sublinear (see Conjecture 1 in [57] or Chapter 6).

A natural way to prove the conjecture for pairs of binary matrices would be to
use induction on the size of the matrices, but this does not seem to be easy. If the
conjecture is true, it follows that the stability question for matrices with nonnegative
rational entries is algorithmically decidable. If the conjecture is false, then the re-
sults and techniques developed in this chapter could possibly help for constructing
a counterexample.

Another way of proving the finiteness property for a set of matrices is to prove the
existence of a complex polytope extremal norm. Preliminary results in this direction
seem promising [47, 51].

Another problem, related to the finiteness property, seems interesting: the alge-
braicity of the joint spectral radius for rational matrices. Clearly, sets of rational
matrices for which the finiteness property holds have a joint spectral radius which is
an algebraic number. Indeed, it is the root of the characteristic polynomial of a finite
product of rational matrices. The question is: is it always the case? Can this fact be
put in relation with Kozyakin’s theorem (Theorem 2.5 in Section 2.2), which tells
us about non algebraicity of stable sets of matrices? Could it lead to a constructive
counterexample to the finiteness property?

Open question 7. Is the joint spectral radius of rational matrices always an alge-
braic number? Can the algebraicity of the joint spectral radius be put in relation
with Kozyakin’s non algebraicity result?

Finally let us add that the constructions provided in this chapter have the additional
interest that they can be used to transform the computation of the joint spectral
radius of matrices with nonnegative rational entries into the computation of the joint
spectral radius of two binary matrices.
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Chapter 5
Continuity of Wavelet Functions

Abstract. This chapter presents a brief survey of an important application of the
joint spectral radius: the continuity of wavelet functions. Historically, this applica-
tion seems to have motivated the interest of mathematicians for the joint spectral
radius. This, and the fact that this application of the joint spectral radius is perhaps
the one that has the greatest impact on the industry, motivates the existence of this
small chapter. Our goal here is not to provide a survey of wavelet theory. We will
limit ourself to present how the joint spectral radius allows to characterize the reg-
ularity of certain wavelets (Sections 5.1 and 5.2). In Section 5.3 we present two
examples of such wavelets.

5.1 From Two-Scale Difference Equations to Matrices

Wavelet transform is a tool of tremendous importance nowadays. For a survey, see
[37, 54, 109]. The basic idea of this concept is to decompose a scalar function in
L

2 in an orthonormal base, just like with the Fourier Transform. However, Wavelets
try to avoid some problems that one encounters with the Fourier Transform. For this
purpose, we are looking here for compactly supported wavelets, that is

∃N : ∀x /∈ [0,N],ψ(x) = 0.

However, we want to keep the nice property that dilations of the wavelets creates an
orthogonal family of functions. So, just like for the fourier transform, the different
functions in the basis will be dilations of ψ(x). However, since ψ has compact
support, we will also need translates to represent arbitrary functions, so that the
basic functions will have the following form:

ψ(2 jx− k).

Remark that here we restrict ourselves to dilations with ratios that are powers
of two.

R. Jungers: The Joint Spectral Radius: Theory and Applications, LNCIS 385, pp. 77–84.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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It is not obvious at first time whether the requirements for compact support and
orthogonality of dilations are compatible. Actually, it was doubted that a continuous
function with both of these nice properties could exist. It is the contribution of Ingrid
Daubechies to have constructed such a family of functions. She shows in [36] how
to obtain a wavelet: First, choose N + 1 coefficients ck : 0 ≤ k ≤ N. Then solve the
following two-scale difference (functional) equation:

φ(x) =
N

∑
0

ckφ(2x− k), (5.1)

where φ(x) is a function with compact support [0,N].
The following theorem, initially inspired from [36], appears under different forms

in [29, 34]:

Theorem 5.1. Let N ∈ N and c0, . . . ,cN ∈ C. Let us suppose that

• ∑k c2k = ∑k c2k+1 = 1,
• ∑k ckc̄k−2m = δ0,m,

where we suppose ck = 0 for k < 0 or k > N.
Then, there exists a nontrivial compactly supported and square-integrable so-

lution φ(x) that satisfies the two-scale difference equation (5.1). Moreover, the
function

ψ(x) = ∑(−1)kcN−kφ(2x− k)

is a compactly supported function such that the family

ψ j,k(x) = ψ(2 jx− k)

forms an orthogonal basis for L
2.

The function φ in the above theorem is called the scaling function and the function
ψ is called the mother function. The simplest example of such a function is the
well known Haar wavelet (see Figure 5.1), obtained from Theorem 5.1 with c0 = 1,
c1 = 1 :

φ(x) = φ(2x)+ φ(2x−1), (5.2)

and thus
ψ(x) = φ(2x)−φ(2x−1). (5.3)

This proves the existence of compactly supported wavelets, but for obvious rea-
sons, one would like these basis functions to be continuous, and here comes linear
algebra and the joint spectral radius. Let us have another look at Equation (5.1):
since this equation is linear, it suggests to define the vector

v(x) =

⎛
⎜⎜⎜⎝

φ(x)
φ(x + 1)

...
φ(x + N −1)

⎞
⎟⎟⎟⎠ 0 ≤ x ≤ 1.
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Fig. 5.1 The Haar wavelet. The scaling function φ and the mother wavelet ψ

Thus, the vectorial function v(x) satisfies the fundamental equations

v(x) = TOv(2x) 0 ≤ x ≤ 1/2,
v(x) = T1v(2x−1) 1/2 ≤ x ≤ 1.

(5.4)

We denote Σ = {T0,T1}. The nonzero entries of T0,T1 are defined as follows:

(T0)i, j = c2i− j−1,

(T1)i, j = c2i− j.

From now on, we write real numbers x ∈ [0,1] in base 2. For instance, 3/4 writes
.1100 . . . . We say that a number is dyadic if its development in base 2 is not unique,
that is, if it can end with an infinite sequence of zeros, or an infinite sequence of
ones. These numbers are exactly the nonnegative integers divided by a power of
two. Thus, introducing the notation

τ(x) = 2x mod 1,
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that is, τ(x) is the real number obtained by erasing the first bit in the binary expan-
sion of x, we get:

v(.b1b2 . . . ) = Tb1v(.b2 . . . ) = Tb1v(τ(x)). (5.5)

We can now write:

v(1/2) = v(.10 . . .),
= T1v(0),

v(.110 . . .) = T1T1v(0),
v(.010 . . .) = T0T1v(0),

and so on. Finally we are able to compute v(x) at each dyadic point.

5.2 Continuity and Joint Spectral Radius

In the following we focus on dyadic numbers. Indeed, if φ is continuous on dyadic
numbers, then it extends to a continuous function over the real numbers. Let us take
two dyadic points that are close to each other:

x = .b1 . . .bkbk+1 . . . , (5.6)

y = .b1 . . .bkb′k+1 . . . . (5.7)

We have |x− y| ≤ 2−k. Now,

v(x)− v(y) = Tb1 . . .Tbk(Txv(0)−Tyv(0)), (5.8)

where Tx,Ty are arbitrary products in Σ∗. Let us still define

W = span{v(x)− v(y) : x,y dyadic}.

The following properties hold:

Lemma 5.1. [29, 33] Let T0,T1,W,v(x) be defined as above. We have the following
properties

1. v(0) = T0v(0), v(1) = T1v(1),
2. T1v(0) = T0v(1),
3. W = span{Tv(0)− v(0) : T ∈ Σ∗}.

Proof. 1. This is obvious from Equation (5.4).
2. Apply again Equation (5.4) with x = 1/2.
3. Just write v(x)− v(y) = (v(x)− v(0))− (v(y)− v(0)).

So, the value of φ(x) at integer points are actually imposed to be the entries of an
eigenvector of T0. Moreover, we will now see that the space W allows for a simple
characterization: it is the smallest linear subspace that contains the vector v(1)−v(0)
and that is invariant under T0 and T1.
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Proposition 5.1. [29]

W = span{T (v(1)− v(0)) : T ∈ Σ∗}.

Proof. The nontrivial part is to prove that W ⊂ span{T (v(1)− v(0)) : T ∈ Σ∗}.
So let us take a vector T v(0)− v(0) and let us prove that it is equal to

∑αiTi(v(1)− v(0)),

for some αi ∈ C and some Ti ∈ Σ∗. We show it by induction on the length t of the
product T.

It is true if T is T0 or T1. Indeed, T0v(0)−v(0) = 0, and T1v(0)−v(0) = T0v(1)−
v(0) = T0(v(1)− v(0)).

If T = Tb1T ′, then by induction

T v(0)− v(0) = Tb1(T
′v(0)− v(0))+ Tb1v(0)− v(0)

= Tb1(∑αiTi(v(1)− v(0)))+∑α ′
i T

′
i (v(1)− v(0)).

Actually, it is possible to derive a slightly stronger result, that will be useful for the
characterization of the continuity in terms of a joint spectral radius:

Corollary 5.1. Let T0|W ,T1|W be the corresponding matrices restricted to the linear
space W, and let ρ(T0|W ,T1|W ) < 1.
Then, there is a constant K such that for all dyadic x,y, |v(x)− v(y)| < K.

Proof. From the proof of Proposition 5.1, we get that if T ∈ Σ t ,

T v(0)− v(0) =
t

∑
1

αiTi(v(1)− v(0)),

where Ti ∈ Σ i, and αi is equal to zero or one. Then, using Proposition 1.4

|T v(0)− v(0)| ≤
t

∑
1

γ i|v(1)− v(0)| ≤ K1,

for some particular norm and any γ : ρ < γ < 1. Finally, |v(x)− v(y)| = |(v(x)−
v(0))− (v(y)− v(0))| ≤ 2K1.

The above reasoning allows us to prove the two main results of this section, that
explicits the link between the joint spectral radius and the continuity of wavelets:

Theorem 5.2. If φ is continuous,

ρ(T0|W ,T1|W ) < 1.

Proof. We prove it by contraposition. If ρ ≥ 1, there is a constant K and there are
arbitrarily long products T ∈ Σ t such that |T (v(1)− v(0))| > K. From (5.8) we get
|v(.b1 . . .bt1)− v(.b1 . . .bt0)| > K, while |.b1 . . .bt1− .b1 . . .bt0| < 2−t . Since this
holds for arbitrary t, we reach a contradiction.
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The converse also holds:

Theorem 5.3. If
ρ(T0|W ,T1|W ) < 1,

then φ is continuous on the dyadic numbers.

Proof. We take two dyadic numbers x and y that are close enough: |x− y| < 2−t ,
for a given t ∈ N. Thus, x = .b1 . . .btbt+1 . . . , y = .b1 . . .btb′t+1 . . . . Now, we invoke
Corollary 5.1, and we obtain some constant K2 such that

|v(x)− v(y)| = Tb1 . . .Tbt (v(τ
t (x))− v(τt(y))) < K2||Tb1 . . .Tbt ||.

So we obtain |v(x)− v(y)| < K1ρ tK2 < Kρ t for some K. This proves that φ is con-
tinuous on the dyadic numbers.

A direct refinement of the above results is possible when looking at Equation (5.8):
the joint spectral radius characterizes the Holder exponent of continuity of the scal-
ing function.

Definition 5.1. A scalar function is said Holder continuous with coefficient α if
there exists a constant K such that

| f (x)− f (y)| ≤ K|x− y|α

for all x,y in the domain of f .

We have the following theorem:

Theorem 5.4. [29] If
ρ(T0|W ,T1|W ) < 1,

then φ is Holder-continuous for all coefficient α < − log2(ρ). If moreover
{T0|W ,T1|W} is nondefective, α = − log2(ρ) is a Holder exponent.

Further details on this can be found in [29]. Let us add finally that with these tech-
niques it is also possible to prove that no scaling function is in C ∞ [32].

5.3 Example

In this section we give an example of a compactly supported continuous square inte-
grable wavelet that was proposed by Daubechies [36]. For this, take the coefficients

c0 =
1
4
(1 +

√
3), c1 =

1
4
(3 +

√
3), c2 =

1
4
(3−

√
3), c3 =

1
4
(1−

√
3).

This example is sometimes referred to as D4 in the literature [108]. A simple appli-
cation of the formulas gives:
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T0 =

⎛
⎝c0 0 0

c2 c1 c0

0 c3 c2

⎞
⎠=

1
4

⎛
⎝1 +

√
3 0 0

3−√
3 3 +

√
3 1 +

√
3

0 1−√
3 3−√

3

⎞
⎠ ,

T1 =

⎛
⎝c1 c0 0

c3 c2 c1

0 0 c3

⎞
⎠=

1
4

⎛
⎝3 +

√
3 1 +

√
3 0

1−√
3 3−√

3 3 +
√

3
0 0 1−√

3

⎞
⎠ .

Thus,

v(0) =

⎛
⎝ 0

1 +
√

3
1−√

3

⎞
⎠ ,

v(1) =

⎛
⎝1 +

√
3

1−√
3

0

⎞
⎠ .

One can show that W = {(x,y,z) : x + y + z = 0}. So, choosing (1,−1,0) and
(1,1,−2) as basis vectors, we get

T0|W =
1
8

(
1 + 3

√
3 3−√

3√
3−3 5−√

3

)
,

T1|W =
1
4

(
2 3 +

√
3

0 1−√
3

)
.

The joint spectral radius of the set {T0|W ,T1|W} is equal to 2−0.55..., so the wavelet
is Holder continuous with exponent 0.55. Figure 5.2 represents the corresponding
scaling function and the mother wavelet.

(a) (b)

Fig. 5.2 Scaling function (a) and mother wavelet (b) for the Daubechies wavelet D4 (the
notation D4 comes from [108])
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Figure 5.3 represents the scaling function and the mother wavelet for another
choice of coefficients ck.

(a) (b)

Fig. 5.3 Scaling function (a) and mother wavelet (b) obtained with c0 = 3/5, c1 = 6/5, c2 =
2/5, c3 = −1/5

5.4 Conclusion

The goal of this chapter was not to give an introduction to the wavelet theory, but
rather to present how the continuity of functions satisfying the two-scale difference
Equation (5.1) is ruled by a joint spectral radius. We end with an obvious question:

Open question 8. Is the joint spectral radius of matrices arising in the context of
wavelets easier to compute than in general?

To the author’s knowledge, no particular algorithm is known, that would be dedi-
cated to this specific family of sets of matrices.



Chapter 6
Capacity of Codes

Abstract. This chapter presents personal research on an application of the joint
spectral radius to a problem in constrained coding: the computation of the capacity
of codes submitted to forbidden differences constraints. We first present how the
joint spectral radius appears to be the good tool to compute the capacity in this par-
ticular problem. We show how the quantity ρ̂t provides bounds on the joint spectral
radius that are tighter than in the general case. We show how the situation is even
better in some particular situations. We then provide a polynomial time algorithm
that decides if the capacity is positive. We introduce a closely related problem that
we prove to be NP-hard. We then prove the existence of extremal norms for sets of
matrices arising in this coding problem.

6.1 Introduction

In certain coding applications one is interested in binary codes whose elements avoid
a set of forbidden patterns1. This problem is rather classical and has been widely
studied in the past century [75]. In order to minimize the error probability of some
particular magnetic-recording systems (see for instance [81]), a more complicated
problem arises when it is desirable to find code words whose differences avoid for-
bidden patterns. We now describe this problem formally.

Let {0,1}t denote the set of words of length t over {0,1} and let u,v ∈ {0,1}t .
The difference u− v is a word of length t over {−1,0,+1} (as a shorthand we shall
use {−,0,+} instead of {−1,0,+1}). The difference u− v is obtained from u and
v by symbol-by-symbol subtraction so that, for example, 0110− 1011 = −+ 0−.
Consider now a finite set D of words over {−,0,+}; we think of D as a set of
forbidden difference patterns. A set (or code) C ⊆ {0,1}t is said to avoid the set D
if none of the differences of words in C contain a word from D as subword, that is,
none of the differences u− v with u,v ∈ C can be written as u− v = xdy for d ∈ D
and some (possibly empty) words x and y over {−,0,+}.

1 The chapter presents research work that has been published in [11, 12].

R. Jungers: The Joint Spectral Radius: Theory and Applications, LNCIS 385, pp. 85–99.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



86 6 Capacity of Codes

We are interested in the largest cardinality, which we denote by δt(D), of sets of
words of length t whose differences avoid the forbidden patterns in D.

δt(D) = max
W⊂{0,1}t :W avoids D

|W |.

If the set D is empty, then there are no forbidden patterns and δt(D) = 2t . We will
see that when D is nonempty, δt(D) grows exponentially with the word length t and
is asymptotically equal to 2cap(D)t where the scalar 0 ≤ cap(D) ≤ 1 is the capacity
of the set D. The capacity is thus a measure of how constraining a set D is; the
smaller the capacity, the more constraining the forbidden difference patterns are.

As an illustration consider the set of forbidden patterns D = {+−,++}. Differ-
ences between two words in C = {u10u20 · · ·0uk : ui ∈ {0,1}} will have a ”0” in
any succession of two characters and will therefore not contain any of the forbidden
patterns. From this it follows that δt ≥ 2�t/2� and so cap(D) ≥ 1/2. One can show
that in fact cap(D) = 1/2. This follows from the next proposition combined with
the simple observation that the capacity of the set D = {+−,++} is identical to the
capacity of the set D = {+−,++,−+,−−}, that we denote D = {+,−}2 as usual.

Proposition 6.1. The capacity of the set {+,−}m is given by (m−1)/m.

Proof. Let Ckm be a code of length km avoiding D. In any given window of length
m, the set of words appearing cannot contain both u and ū (we use ū to denote the
word obtained by inverting the ones and the zeros in u). This implies that there are
at most 2m−1 different words in any given window of size m. Let us now consider
words in Ckm as a concatenation of k words of length m. There are at most 2(m−1)k

words in Ckm and so cap(D) ≤ (m−1)/m.
Now consider the code

Ckm = {z10z20 · · ·0zk : zi ∈ {0,1}m−1}. (6.1)

This code satisfies the constraints, and the bound (m−1)/m is reached.

The computation of the capacity is not always that easy. As an example it is proved
in [82] that the capacity of {+++} is given by log2((1 +(19 + 3

√
33)1/3 +(19−

3
√

33)1/3)/3) = .8791 . . . and the same reference provides numerical bounds for the
capacity of {0 +−+} for which no explicit expression is known.

The capacity of codes that avoid forbidden difference patterns was first intro-
duced and studied by Moision, Orlitsky and Siegel. In [82], these authors provide
explicit values for the capacity of particular sets of forbidden patterns and they prove
that, in general, the capacity of a forbidden set D can be obtained as the logarithm of
the joint spectral radius of a set of matrices that have binary entries. The size of the
matrices constructed in [82] for computing the capacity is not polynomial in the size
of the forbidden set D and so even the construction of the set of matrices is an oper-
ation that cannot be performed in polynomial time. Since moreover the computation
of the joint spectral radius is NP-hard even if the matrices have binary entries, com-
puting the capacity of codes seems at first sight to be a challenging task. However,
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as pointed out in [82], the matrices that arise in the context of capacity computation
have a particular structure and so the capacity could very well be computable in
polynomial time.

In this chapter we first present this in details. We then provide several results ; all
are related to the capacity computation and its complexity.

We first provide new bounds that relate the capacity of a set of forbidden patterns
D with the values δt(D), the maximum size of a code of length t avoiding D. These
bounds depend on parameters that express the number and positions of zeros in the
patterns of D. These new bounds allow us to compute the capacity of any set to any
given degree of accuracy by numerically evaluating δt(D) for some value of t. The
approximation algorithm resulting from these bounds has exponential complexity
but provides an a-priori guaranteed precision, and so the computational effort re-
quired to compute the capacity to a given degree of accuracy can be evaluated before
the calculations are actually performed. As an example, it follows from the bounds
we provide that the capacity of a set of forbidden patterns that does not contain any
0s can be computed with an accuracy of 90% by evaluating δt(D) for t = 10 (see
Corollary 6.3 below).

In a subsequent section, we provide explicit necessary and sufficient conditions
for a set to have positive capacity and we use this condition for producing a poly-
nomial time algorithm that decides whether or not the capacity of a set is positive.
These conditions are directly based on theoretical results presented in Chapter 3.

We then consider the situation where in addition to the forbidden symbols −,0
and + the forbidden patterns in D may also include the symbol ±, where ± stands
for both the symbols + and −. We prove that in this case the problem of computing
the capacity, or even determining if this capacity is positive, becomes NP-hard.

Finally, we show that sets of matrices constructed in order to compute the capac-
ity always have an extremal norm.

These results allow us to better delineate the capacity computation problems that
are polynomial time solvable from those that are not. We do however not provide an
answer to the question, which was the original motivation for the research reported
here, as to whether or not one can compute the capacity of sets of forbidden patterns
over {−,0,+} in polynomial time. This interesting question that was already raised
in [82], remains unsettled.

6.2 Capacity and Joint Spectral Radius

Let D be a set of forbidden patterns over the alphabet {−,0,+} and consider for
any t ≥ 1 the largest cardinality, denoted by δt(D), of sets of words of length t
whose pairwise differences avoid the forbidden patterns in D. The capacity of D is
defined by

cap(D) = lim
t→∞

log2 δt(D)
t

. (6.2)

The existence of this limit is a simple consequence of Fekete’s Lemma (Lemma
1.1). We skip the formal proof, since it will be clear after the formulation of the
problem with a joint spectral radius.
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Moision et al. show in [82] how to represent codes submitted to a set of con-
straints D as products of matrices taken in a finite set Σ(D). The idea of the proof
is to make use of De Bruijn graphs. De Bruijn graphs were introduced in [38]; for
an introduction, see for instance [75]. Let us construct the De Bruijn graph of bi-
nary words of length T equal to the lengths of the forbidden patterns. Edges in these
graphs represent words of length T, and since some pairs of words cannot appear
together, a subgraph of the De Bruijn graph is said admissible if it does not contain
two edges that represent words of length T whose difference is forbidden. Figure
6.1 (a) represents a De Bruijn graph that is admissible for the forbidden pattern
D = {++−}. An efficient way of drawing these graphs is to represent them as cas-
cade graphs (see Chapter 3) as in Figure 6.1 (b). In order to construct longer codes,
one just has to juxtapose admissible cascade graphs, such that each path from left to
right represents an admissible word.

Fig. 6.1 An admissible
De Bruijn graph for D =
{++−} (a), and the same
graph under its cascade
graph form (b)

(a)

(b)

In such a construction, the edges in the leftmost cascade graph represent words
of length T, and each subsequent edge represents the addition of one letter to the
word. A cascade graph for words of length 5 that are admissible for D = {++−}
is represented in Figure 6.2. Since we have a bijection between the paths of length
t in an admissible cascade graph and the words in an admissible code of length
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Fig. 6.2 An admissible cascade graph that represents a maximal set of admissible words of
length 5 for D = {++−}. For example, the path on the top represents the word 00000 and the
dashed path represents the word 01010. Such graphs are maximal in the sense that no word
can be added to the corresponding code, but perhaps another choice of elementary cascade
graphs would generate more paths

T +t−1, the maximal size of a code of length T +t−1 is given by the cascade graph
of length T that maximizes the number of paths from left to right. We have seen in
Chapter 3 how the joint spectral radius of binary matrices represents the asymptotics
of the maximum number of paths in long cascade graphs. This reasoning leads to
the following theorem:

Theorem 6.1. Associated to any set D of forbidden patterns of length at most m,
there exists a finite set Σ(D) of binary matrices for which

δm−1+t = ρ̂ t
t (Σ(D)) = max{‖A1 . . .At‖ : Ai ∈ Σ(D)}. (6.3)

In this expression, the matrix norm used is the sum of the absolute values of the
matrix entries. The main result of this section is then a direct consequence of the
definition of the joint spectral radius:

Corollary 6.1. Let D be a set of forbidden patterns and Σ(D) be the set of binary
matrices constructed as described above, then

cap(D) = log2 (ρ(Σ(D))).

Example 6.1. Let D = {++−}. The set Σ(D) contains two matrices :

A0 =

⎛
⎜⎜⎝

1 1 0 0
0 0 1 1
1 1 0 0
0 0 0 1

⎞
⎟⎟⎠ , A1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 1
1 1 0 0
0 0 1 1

⎞
⎟⎟⎠ .

One can check that the cascade graph in Figure 6.2 represents the product A0A0A1

(the sum of the entries equals the number of paths).
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The joint spectral radius of the set Σ is ρ(Σ) = 1.75 . . . [82], and the product
that ensures this value is A0A0A1A1, that is, ρ(Σ) = ρ(A2

0A2
1)

1/4, and cap(D) =
log2 1.75 . . . = 0.8113 . . . .

Example 6.2. Let D = {+++−}. The set Σ(D) contains two matrices:

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will see that cap(D) = 0.9005 . . . and that the product that ensures this value is
A0A1 (see Example 6.5).

Let us comment here on the number and size of the matrices in Σ(D); these issues
are relevant for the questions raised hereafter: If the forbidden patterns in D have
identical length m, then the number of matrices in Σ(D) can be doubly exponential
in m and all matrices in Σ(D) have dimension 2m−1 × 2m−1. If the forbidden pat-
terns in D have different lengths, then one can construct a set D′ whose forbidden
patterns have equal length and for which cap(D) = cap(D′). Unfortunately, the num-
ber of patterns in D′ can grow exponentially with the size of D so that the number
of matrices in the set Σ(D) is in fact even worse than in the former case. Capac-
ity approximation algorithms based on the direct computation of the set Σ(D) will
therefore not be tractable even for small sets D.

6.3 Upper and Lower Bounds

In this section, we derive bounds that relate the capacity of a set D with δt(D).
Consider some set D of forbidden patterns and denote by r1 (respectively r2) the
maximal k for which 0k is the prefix (respectively suffix) of some pattern in D: No
pattern in D begins with more than r1 zeros and no pattern in D ends with more
than r2 zeros. We also denote by r the maximal number of consecutive zeros in any



6.3 Upper and Lower Bounds 91

pattern in D; obviously, r ≥ max(r1,r2). In the next theorem we provide upper and
lower bounds on the capacity cap(D) in terms of δt(D).

Theorem 6.2. For any t ≥ r1 + r2 we have

log2 δt(D)− (r1 + r2)
t + r + 1− (r1 + r2)

≤ cap(D) ≤ log2 δt(D)
t

. (6.4)

Proof. Let us first consider the upper bound. The following equation is straightfor-
ward, given any positive integers k, t, and any set of forbidden patterns D :

δkt ≤ δ k
t .

Indeed, considering any word of length kt as the concatenation of k subwords of
length t, for each of these subwords we have at most δt possibilities. Taking the 1

kt th
power of both sides of this inequality and taking the limit k → ∞, we obtain :

ρ(Σ) = 2cap(D) ≤ δ 1/t
t .

Now let us consider the lower bound. The optimal code of length t contains at least
�2−r1−r2δt(D)� words that coincide in the first r1 bits and in the last r2 bits (because
there are in total 2r1+r2 different words of length r1 + r2). Denote the set of strings
of all these words from (r1 +1)st bit to (t − r2)th bit by C′. This set contains at least
�2−r1−r2δt(D)� different words of length t − r1 − r2. Then for any l ≥ 1 the code

C =
{

u10r+1u20r+1 · · ·0r+1ul0
r+1 , uk ∈C′, k = 1, . . . , l

}
(6.5)

avoids D. The cardinality of this code is at least �2−r1−r2δt(D)�l and the length of
its words is T = l(t − r1 − r2 + r + 1). Therefore, for any l we have

δT (D) ≥ �2−r1−r2δt(D)�l .

Taking the power 1/T of both sides of this inequality, we get

[
δT (D)

]1/T ≥ �2−r1−r2δt(D)�1/(t−r1−r2+r+1),

which as T → ∞ yields

ρ ≥ �2−r1−r2δt(D)�1/(t−r1−r2+r+1).

Now after elementary simplifications we arrive at the lower bound on cap(D).

Both bounds in Theorem 6.2 are sharp in the sense that they are both attained for
particular sets D. The upper bound is attained for the set D = /0 and the lower
bound is attained, for instance, for the set D = {0m−1+}. Indeed, in this case
r = r1 = m− 1,r2 = 0 and cap(D) = 0, because δt = 2m−1 for t ≥ m− 1. Here
is a direct proof of this equality, drawn from [82]: Clearly, for all t > m−1, we can
construct a code of size δt = 2m−1. It happens that for any given length t this size
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is maximum. Otherwise, there must be two different words u and v whose prefixes
of length k coincide. In order to avoid the forbidden pattern, the k + 1-th symbols
must also be equal, and so on. But then both words are equal, and we have reached
a contradiction.

Corollary 6.2. Let D be given and let r,r1 and r2 be defined as above. Then
log2 δt(D)

t − 1
t max(r1 + r2,r + 1) ≤ cap(D) ≤ log2 δt (D)

t .

Proof. If r1 + r2 ≥ r + 1 this follows from Theorem 6.2 and from simple calcula-
tions. If r1 + r2 < r + 1 simply use the fact that the capacity is always less than one
in Theorem 6.2, and

log2 δt(D)
t

−(r1 +r2)≤ (t +(r+1)−(r1 +r2))cap(D)≤ tcap(D)+(r+1)−(r1 +r2).

These bounds can be used to design an approximation algorithm that computes the
capacity to any desired accuracy by evaluating δt for sufficiently large values of t.
In contrast to previously known algorithms this algorithm has guaranteed computa-
tional cost: once the desired accuracy is given, the corresponding computational cost
can easily be computed. As an illustration, consider the case of a set D for which
r1 = r2 = 2 and r = 4. Then, by Corollary 6.2,

log2 δt(D)
t

− 5
t
≤ cap(D) ≤ log2 δt(D)

t
(6.6)

and we can use log2 δt(D)/t as an estimate for cap(D) and choose a value of t for
which (6.6) provides satisfactory accuracy bounds.

The easiest way of computing δt is to apply Equation (6.3), by evaluating the
maximum-normed product of length t −m+ 1 of matrices taken in the set Σ . Moi-
sion et al. mention in [83] an improvement of this brute force method, similar to
the ones proposed in Chapter 2: The main idea is to compute successively some
sets of matrices Σ̄l , l = 1,2 . . . , with Σ̄1 = Σ . These are sets of products of length
l, obtained by computing iteratively all products of a matrix in Σ̄l−1 with a matrix
in Σ , and then removing from the set Σ̄l a matrix A if it is dominated by another
matrix B in this set, that is, if each entry of A is less or equal than the corresponding
entry of B. For more information about this algorithm, we refer the reader to [83].
We propose here an improvement of this method: given the set Σ̄l , one can directly
compute a set Σ̄2l by computing the set Σ̄2

l and then removing from this set all ma-
trices that are dominated. This small modification of the algorithm has dramatically
improved the computational time for all the examples on which we have used it.

We may specialize the general bounds of Theorem 6.2 to sets of particular
interest.

Corollary 6.3. Let D be given and let r,r1 and r2 be defined as above. Then

1. If cap(D) = 0 the size of any code avoiding D is bounded above by the constant
2r1+r2 .

2. If the patterns in D contain no zero, then
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t cap(D) ≤ log2 δt(D) ≤ (t + 1) cap(D).

3. If none of the patterns in D starts nor ends with a zero, then

t cap(D) ≤ log2 δt(D) ≤ (t + r + 1) cap(D).

6.4 Positive Capacity Can Be Decided in Polynomial Time

As previously seen by a direct argument, the capacity of the set {0m−1+} is equal to
zero. In this section we provide a systematic way of deciding when the capacity of a
set is equal to zero. We first provide a simple positivity criterion that can be verified
in finite time and then exploit this criterion for producing a positivity checking al-
gorithm that runs in polynomial time. In the sequel we shall use the notation −D to
denote the set of elements that are the opposites to the elements of D, for example
if D = {−+ 0,0−−} then −D = {+−0,0 ++}.

Theorem 6.3. Let D be a set of forbidden patterns of lengths at most m. Then
cap(D) > 0 if and only if there exists a word on the alphabet {+,−,0} that does
not contain any word of D ∪−D as subword and that has a prefix 0m and a
suffix +0m−1.

Proof. Let us first suppose 0m /∈ D. The capacity is positive iff ρ(Σ(D)) > 1. We
know (see Chapter 3) that for binary matrices this is equivalent to the fact that there
is a product in Σ∗ that has a diagonal entry larger than one. In turn, by construction
of the set Σ(D), this is equivalent to the existence of two words with the same m−1
first characters, and the same m − 1 last characters, whose difference avoids the
forbidden patterns. Now, this latter fact is possible iff there is a nontrivial sequence
on {0,+,−} of the shape 0m−1d0m−1 that avoids D∪−D.

Now in order to handle the case 0m ∈ D, which implies cap(D) = 0, we add a zero
at the beginning and by doing this, we do not change anything to the admissibility
of this word, except that we remove the possibility 0m ∈ D.

Corollary 6.4. If every word in D contains at least two nonzero symbols, then

cap(D) > 0.

Proof. For any such set the word d = 0m +0m−1 is admissible, and by Theorem 6.3
the capacity is positive.

Corollary 6.5. If D consists of one forbidden pattern p of length m, then its capacity
is zero if and only if p has at least m−1 consecutive zeros.

Proof. If a pattern p is 0m or +0m−1, then obviously there are no admissible strings,
and by Theorem 6.3 the capacity is zero. The same holds for −0m−1, since this is the
negation of +0m−1 and for 0m−1± because of the symmetry. In all the other cases
the admissible string exists and so cap(D) > 0. Indeed, if p has a unique nonzero
character, then the word d = 0m ++0m−1 is admissible, if it has at least two nonzero
characters, then the proof follows from Corollary 6.4.
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We now prove the polynomial-time solvability of the problem of determining
whether the capacity of a set D is positive. The proof is constructive and is based
on the so-called Aho-Corasick automaton that checks whether a given text contains
as a subsequence a pattern taken from a given set [1]. Let P be a set of patterns,
that do not have to be of the same length. The transition graph of the Aho-Corasick
automaton for the set P is defined as follows (see Figure 6.3 for an example). First,
construct the retrieval tree, or trie, of the set P. The trie of P is the directed tree of
which each vertex has a label representing a prefix of a pattern in P, and all prefixes
are represented, including the patterns themselves. The label of the root of the tree
is the empty string. Edges have a label too, which is a symbol of the used alphabet.
There is an edge labeled with the symbol a from a vertex s to a vertex t if t is the
concatenation sa.

In order to have an automaton, we complete the trie by adding edges so that
for each vertex s, and each symbol a, there is an edge labeled a leaving s. This
edge points to the vertex of the trie of which the label is the longest suffix of the
concatenation sa. Note that this vertex can be the root (that is, the empty string) if
no vertex in the trie is a suffix of sa. Finally, the accepting states of the automaton
are the vertices whose labels are patterns of P. This automaton accepts words that
contain a pattern in P and halts whenever this pattern is a suffix of the entered text.

If 0k ∈ D or +0k ∈ D, then, by Theorem 6.3, cap(D) = 0. If this is not the
case, we construct the graph of the automaton of Aho-Corasick for the set P =
D∪(−D)∪{+0m−1}. We then remove any vertex whose label is a complete pattern
in P (i.e., a state reached when a suffix of the text entered is in the set P) except
the vertex labeled {+0m−1}. The size of the constructed graph is polynomial in the
size and the number of the forbidden patterns. Moreover, since we have removed
vertices corresponding to forbidden patterns, any path in the remaining graph is an
admissible word. Let us now denote q0m the state reached after entering the word 0m.
This state is well defined since 0m does not contain any forbidden pattern, and hence
no state reached after entering any prefix of the string 0m was removed from the pri-
mary automaton. We also denote q+0m−1 the state corresponding to the suffix +0m−1

for the entered text (i.e. the accepting state corresponding to the pattern +0m−1 in
the Aho-Corasick automaton). Figure 6.3 presents the graph for D = {0+0} that is
obtained from the Aho-Corasick automaton of the set P = {0 + 0,0−0,+00}.

We have the following criterion for zero-capacity:

Theorem 6.4. The capacity of a set D is positive if and only if there is a path from
q0m to q+0m−1 in the graph constructed above.

Proof. If cap(D) > 0, by Theorem 6.3, there exists a word d, beginning with m
zeros, and ending with +0m−1, that avoids D∪−D. Hence, entering this word in
the automaton, the finite state will be (well defined and will be) the vertex labeled
+0m−1, because the vertices removed from the original automaton of Aho-Corasick
do not make any problem, since we do not reach the vertices labeled with forbidden
patterns.
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Fig. 6.3 The graph for D = {0 + 0}. We have constructed the Aho-Corasick automaton for
P = {0+0,0−0,+00}, and then removed the states 0+0 and 0−0 that are forbidden. The
empty word is represented by ε. The path 0→ 0−→+→+0→+00 provides the admissible
word 000−+00

On the other hand, a path in the constructed graph represents an acceptable word,
since it does not pass through any removed vertex, and hence no suffix of any prefix
of this word will be in the forbidden set.

Moreover, a shortest path will give the shortest acceptable word, since the length
of the path is equal to the length of the represented word.

Corollary 6.6. The problem of determining whether or not the capacity of a given
set of forbidden patterns is positive can be solved in polynomial time.

Proof. Aho shows in [1] that the automaton is constructible in polynomial time. The
determination of the state q0m and the computation of the shortest path are obviously
polynomially feasible.

Corollary 6.7. If for a set D of forbidden patterns there are admissible words, then
the length of a shortest admissible word does not exceed 2M + 2m, where m is the
maximal length of all patterns in D and M is the sum of the lengths of each forbidden
pattern.

Proof. The number of vertices of the graph does not exceed 2M+m+1. Indeed, for
each pattern of length l in D∪−D we add to the automaton at most l states, since
there are no more than l prefixes of this pattern. We still add the pattern {+0m−1}
(maximum m new states), and the root. If there is a path connecting two given ver-
tices, this path can be chosen so that its length (in terms of number of vertices)
will not exceed the total number of vertices (if it does not pass through the same
vertex twice). Every edge of this path adds one bit to the admissible string. The
initial length of the string is m (we start from 0m), therefore the total length of the
admissible word is at most 2M + 2m.
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Proposition 6.2. If the capacity is positive, then cap(D) > 1/(2M + m), where m
is the maximal length of all patterns in D and M is the sum of the lengths of each
forbidden pattern.

Proof. If cap(D) > 0, then there is an admissible string of length t ≤ 2M + 2m
(Corollary 6.7). Consider a code as given by Equation (6.5). Its size is 2l and the
length of its words is at most

Tl = l(2M + 2m−m) = l
(
2M + m

)
.

Therefore
cap(D) = lim

l→∞

log2 δTl
Tl

≥ lim
l→∞

log2 2l

l
(

2M+m
) = 1

2M+m .

6.5 Positive Capacity Is NP-Hard for Extended Sets

We now consider the situation where forbidden patterns are allowed to contain the
± symbol. The symbol ± is to be understood in the following sense: whenever it oc-
curs in a forbidden pattern, both the occurrences of + and of − are forbidden at that
particular location. So, for example, avoiding the forbidden set {0±+±} is equiv-
alent to avoiding the set {0 +++,0 ++−,0−++,0−+−}. All results obtained
for forbidden patterns over {−,0,+} have therefore their natural counterparts in the
situation where the forbidden patterns are defined over the alphabet {−,0,+,±}. In
particular, the results of Section 6.3 do transfer verbatim and the bounds derived in
Theorem 6.2 are valid exactly as stated there. However, the symbol ± allows us to
compress the number of forbidden patterns so that the new instance is exponentially
smaller. Thus, the polynomial time algorithm described above for normal sets could
well not be polynomial in the size of the compressed instance. We now prove that
unless P = NP, there is no polynomial time algorithm to decide zero capacity when
the symbol ± is allowed.

Theorem 6.5. The problem of determining if the capacity of a set of forbidden pat-
terns over {0,+,−,±} is equal to zero is NP-hard.

Proof. The proof proceeds by reduction from the Not-All-Equal 3SAT problem that
is known to be NP-complete (see [44]). In the Not-All-Equal 3SAT problem, we are
given m binary variables x1, . . . ,xm and t clauses that each contain three literals (a
literal can be a variable or its negation), and we search a truth assignment for the
variables such that each clause has at least one true literal and one false literal.

Suppose that we are given a set of clauses. We construct a set of forbidden pat-
terns D such that cap(D) > 0 if and only if the instance of Not-All-Equal 3SAT has
a solution. The first part of D is given by:

{(0±0),(0±±0), . . .,(0±m−1 0)}. (6.7)



6.5 Positive Capacity Is NP-Hard for Extended Sets 97

Words over {−,0,+} that avoid these patterns are exactly those words for which
any two consecutive zeros are either adjacent or have at least m symbols on {+,−}
between them. We use these m symbols as a way of encoding possible truth assign-
ments for the variables (the first one is “+” if x1 = 1, etc...).

We then add to D two patterns for every clause: they will force a sequence of
m nonzero symbols to encode a satisfying assignement for the instance of Not-All-
Equal 3SAT. These patterns are of length m and are entirely composed of symbols
±, except for the positions corresponding to the three variables of the clause, which
we set to + if the clause contains the variable itself, or to − if the clause contains
the negation of the variable. We also add the opposite of this pattern; this last pat-
tern is not necessary for the proof but preserves the symmetry and simplifies the
construction.

For example, if the instance of Not-All-Equal 3SAT consists of the two
clauses (x1, x̄3,x4) and (x̄2,x4,x5), the corresponding set D will be D = {(0 ±
0),(0±±0),(0±±± 0),(0±±±±0),(+±−+±),(−±+−±),(±−±++),
(±+±−−)}.

Such a set D has always a length polynomial in the number of clauses and the
number of variables.

We now prove that there is a solution to the instance of Not-All-Equal 3SAT if
and only if cap(D) > 0. First, suppose that there exists a satisfying truth assignment
for x and denote it by (ω1, . . . ,ωm) ∈ {0,1}m. Associated to any k ≥ 1 we construct
a code of length k(m+ 1) containing 2k words as follows:

Ck(m+1) = {0ω0ω0ω0 · · ·0ω0ω ,0ω0ω0ω0 · · ·0ω0ω̄,

0ω0ω0ω0 · · ·0ω̄0ω , . . . ,0ω̄0ω̄0ω̄0 · · ·0ω̄0ω̄},
where ω = ω1 · · ·ωm.

Any difference between two words in this code is a word of the form

0z10z20 · · ·0zk,

where for every 1 ≤ i ≤ k, zi is either a sequence of m 0’s or a word of length m over
{−,+}. Because ω satisfies the instance of Not-All-Equal 3SAT, these words avoid
the set D constructed above. Moreover, the cardinality of Ck(m+1) is 2k and hence

cap(D) ≥ lim
k→∞

log2 2
k

k(m+1) =
1

m+ 1
> 0. (6.8)

For the converse implication, assume now that cap(D) > 0. The capacity is positive,
and so one can find two words whose differences contain a 0 and a +. But then since
this difference must avoid the first part of the forbidden pattern, for a code C large
enough, there must exist two words in the code whose difference contains a word
over {−,+} of length m. But this sequence avoids also the second part of D, and
thus it represents an acceptable solution to our instance of Not-All-Equal 3SAT.
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Note that a similar proof can be given if we replace the symbol ”±” in the state-
ment of the theorem by a symbol that represents either +, −, or 0.

6.6 Extremal Norms and Computing the Capacity

As we have seen in previous chapters, the existence of an extremal norm can sim-
plify many problems related to the joint spectral radius: it allows for instance to
apply the geometrical algorithm exposed in Section 2.3. Recall that an extremal
norm is a norm || · || such that

max
A∈Σ

||A|| = ρ(Σ).

It turns out that in the case of capacity computation, the matrices do in fact always
possess an extremal norm:

Theorem 6.6. For any set D of forbidden patterns the set Σ(D) possesses an
extremal norm.

Proof. Corollary 6.2 implies that Σ(D) is not defective. To see this, replace cap(D)
by log2 ρ in Corollary 6.2 and recall that δt is, by definition of the set Σ , the maximal
norm of products of length t − (m− 1) of matrices taken in Σ . We have seen in
Section 2.1 that the nondefectiveness implies the existence of an extremal norm.

The existence of an extremal norm for a set of matrices makes it possible to apply
the geometric algorithm described in Section 2.3 for computing the capacity with a
given relative accuracy.

The complexity of this algorithm is exponential with respect to m, as the one pro-
posed in Section 6.3 that approximates the capacity by successive estimations of δt .
The advantages of one algorithm over the other appear in numerical computation
of the capacity. Moreover, in many cases the approximation of invariant bodies by
polytopes can lead to the exact value of the joint spectral radius, as mentioned in
Section 2.3. Let us illustrate this method by computing the exact values of the ca-
pacity for several codes. In Examples 6.3 and 6.4 we find the values of capacities
that were approximated in [82]. Example 6.5 deals with a code with m = 4.

Example 6.3. cap({0 + +}) = log2 ρ(A0) = log2

(√5+1
2

)
= 0.69424191 . . .. The

eigenvector is v = (2,
√

5−1,2,
√

5−1)T . The algorithm terminates after five steps,
the polytope P = P5 has 32 vertices.

Example 6.4. cap({0+−})= log2 ρ(A0) = log2

(√5+1
2

)
. The algorithm terminates

after four steps, v = (2,
√

5−1,
√

5−1,2)T , P = P4, the polytope has 40 vertices.

Example 6.5. cap({+ + +−}) = log2

(√3+2
√

5+1
2

)
= log2

√
ρ(A0A1) = 0.90 . . . .

The algorithm terminates after eleven steps, the polytope P = P11 has 528 vertices.



6.7 Conclusion 99

6.7 Conclusion

One way to compute the capacity of a set of forbidden patterns is to compute the
joint spectral radius of a set of matrices. In practice, this leads to a number of diffi-
culties: first, the size of the matrices is exponential in the size of the set of forbidden
patterns. Second, their number can also be exponential in the size of the instance.
Third, the joint spectral radius is in general NP-hard to compute.

We have shown here that, in spite of these discouraging results, the simpler prob-
lem of checking the positivity of the capacity of a set defined on {+,−,0} is polyno-
mially decidable. However the same problem becomes NP-hard when defined over
the alphabet {+,−,0,±}, so that we see a threshold between polynomial time and
exponential time feasibility. We have also provided bounds that allow faster com-
putation of the capacity. Finally we have proved the existence of extremal norms
for the sets of matrices arising in the capacity computation, which is the only “good
news” that we see concerning the possible feasibility of the capacity computation.
To the best of our knowledge the problem remains open for the moment:

Open question 9. Is the capacity computation/approximation NP-hard?

For instance, one has to keep in mind that the approach that consists in computing
a joint spectral radius cannot lead to a polynomial algorithm because of the expo-
nential size of the sets of matrices. Nevertheless, it is conjectured in [11] that the
sets of matrices with binary entries, and, in particular, those constructed in order to
compute a capacity do always possess the finiteness property:

Open question 10. Do matrices that arise in the context of capacity computation
satisfy the finiteness property?

Numerical results in [82], [57], and in this chapter seem to support this conjecture,
and moreover the length of the period seems to be very short: it seems to be of the
order of the size of the forbidden patterns, which would be surprising, because this
length would be logarithmic in the size of the matrices.

We end this chapter by mentionning another question that has not been solved
yet. We have seen that if the capacity is positive, one is able to exhibit an admissible
word of the shape 0md0m−1. This word has moreover a size which is polynomial in
the size of D since it is represented by a path in the auxiliary graph constructed from
the Aho-Corasick automaton. Now if we allow the use of “±” characters, since the
problem can be translated in a classical instance D′ with characters in {0,+,−}, a
positive capacity also implies the existence of a certificate of the shape 0md0m−1.
But what about the length of this word? Since this length is only polynomial in
the new instance D′, we cannot conclude that there exists a certificate whose size
is polynomial in the former instance. If this was the case, we would have that the
problem with “±” characters would be in NP. This motivates our last open question:

Open question 11. Is the problem of determining if the capacity of a set of for-
bidden patterns D over {0,+,−,±} is equal to zero in NP? Is there, for any set
D ∈ {0,+,−,±}∗, an admissible word of the shape 0md0m−1 whose length is poly-
nomial in the size of D?



Chapter 7
Overlap-Free Words

Abstract. In this chapter we present the notion of overlap-free words and show how
the number un of overlap-free words of length n is ruled by joint spectral charac-
teristics. We use these results to provide tight estimates on the asymptotic growth
of un. We provide new algorithms to estimate the joint spectral subradius and the
Lyapunov exponent, that appear to be very efficient in practice.

7.1 Introduction

Binary overlap-free words have been studied for more than a century1. These are
words over the binary alphabet A = {a,b} that do not contain factors of the form
xvxvx, where x ∈ A and v ∈ A∗ (A∗ is the set of all words on the alphabet A)2. Such
factors are called overlaps, because the word xvx is written twice, with the two
instances of this word overlapping at the middle x.

Perhaps the simplest way to understand overlap-free words is the following: In
combinatorics on words, a square is the repetition of twice the same word, as for
instance the french word bobo. A cube is the repetition of three times the same
word, like bobobo. Now, an overlap is any repetition that is more than a square. For
instance, the word baabaa is overlap-free (it is a square), but the word baabaab is an
overlap, because baa is repeated “more than twice” (one could say that it is repeated
7/3 times). This word satisfies the definition of an overlap, since it can be written
xuxux with x = b and u = aa. See [6] for a recent survey.

Thue [112, 113] proved in 1906 that there are infinitely many overlap-free words.
Indeed, the well-known Thue-Morse sequence3 is overlap-free, and so the set of its
factors provides an infinite number of different overlap-free words. The asymptotics
of the number un of such words of a given length n was analyzed in a number of

1 The chapter presents research work that has been published in [63, 64].
2 This chapter uses classical results from combinatorics on words. For a survey on this branch of

theoretical computer science, we refer the reader to [76].
3 The Thue-Morse sequence is the infinite word obtained as the limit of θ n(a) as n → ∞ with

θ(a) = ab, θ(b) = ba; see [26].

R. Jungers: The Joint Spectral Radius: Theory and Applications, LNCIS 385, pp. 101–114.
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102 7 Overlap-Free Words

subsequent contributions4. The number of factors of length n in the Thue-Morse
sequence is proved in [23] to be larger or equal to 3n− 3, thus providing a linear
lower bound on un:

un ≥ C n.

The next improvement was obtained by Restivo and Salemi [101]. By using a certain
decomposition result, they showed that the number of overlap-free words grows at
most polynomially:

un ≤ C nr,

where r = log(15)≈ 3.906. This bound has been sharpened successively by Kfoury
[67], Kobayashi [68], and finally by Lepistö [73] to the value r = 1.37. One could
then suspect that the sequence un grows linearly. However, Kobayashi proved that
this is not the case[68]. By enumerating the subset of overlap-free words of length
n that can be infinitely extended to the right he showed that un ≥ C n1.155 and so
we have

C1 n1.155 ≤ un ≤C2 n1.37.

Carpi showed that there is a finite automaton allowing to compute un (the sequence
un is 2-regular [25]). In Figure 7.1(a) we show the values of the sequence un for
1 ≤ n ≤ 200 and in Figure 7.1(b) we show the behavior of logun/ logn for larger
values of n. One can see that the sequence un is not monotonic, but is globally
increasing with n. Moreover the sequence does not appear to have a polynomial
growth since the value logun/ logn does not seem to converge. In view of this, a
natural question arises: is the sequence un asymptotically equivalent to nr for some
r ? Cassaigne proved in [26] that the answer is negative. He introduced the lower
and the upper exponents of growth:

α = sup
{

r
∣∣∃C > 0,un ≥Cnr}, (7.1)

β = inf
{

r
∣∣∃C > 0,un ≤Cnr},

and showed that α < β . Cassaigne made a real breakthrough in the study of overlap-
free words by characterizing in a constructive way the whole set of overlap-free
words. By improving the decomposition theorem of Restivo and Salemi he showed
that the numbers un can be computed as sums of variables that are obtained by
certain recurrence relations. These relations are explicitly given in the next section
and all numerical values can be found in Appendix A.1. As a result of this descrip-
tion, the number of overlap-free words of length n can be computed in logarithmic
time. For the exponents of growth Cassaigne also obtained the following bounds:
α < 1.276 and β > 1.332. Thus, combining this with the earlier results described
above, one has the following inequalities:

1.155 < α < 1.276 and 1.332 < β < 1.37. (7.2)

4 The number of overlap-free words of length n is referenced in the On-Line Encyclopedia of
Integer Sequences under the code A007777; see [107]. The sequence starts 1, 2, 4, 6, 10, 14,
20, 24, 30, 36, 44, 48, 60, 60, 62, 72,...
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(a) (b)

Fig. 7.1 The values of un for 1 ≤ n ≤ 200 (a) and logun/ logn for 1 ≤ n ≤ 10000 (b)

In this chapter we develop a linear algebraic approach to study the asymptotic
behavior of the number of overlap-free words of length n. Using the results of Cas-
saigne we show in Theorem 7.2 that un is asymptotically equivalent to the norm
of a long product of two particular matrices A0 and A1 of dimension 20× 20. This
product corresponds to the binary expansion of the number n−1. Using this result
we express the values of α and β by means of certain joint spectral characteristics
of these matrices. We prove that α = log2 ρ̌(A0,A1) and β = log2 ρ(A0,A1). In
Section 7.3, we estimate these values and we obtain the following improved bounds
for α and β :

1.2690 < α < 1.2736 and 1.3322 < β < 1.3326. (7.3)

Our estimates are, respectively, within 0.4% and 0.03% of the exact values. In ad-
dition, we show in Theorem 7.3 that the smallest and the largest rates of growth
of un are effectively attained, and there exist positive constants C1,C2 such that
C1 nα ≤ un ≤ C2 nβ for all n ∈ N.

Although the sequence un does not exhibit an asymptotic polynomial growth,
we then show in Theorem 7.5 that for “almost all” values of n the rate of growth
is actually equal to σ = log2 ρ̄(A0,A1), where ρ̄ is the Lyapunov exponent of the
matrices. For almost all values of n the number of overlap-free words does not grow
as nα , nor as nβ , but in an intermediary way, as nσ . This means in particular that
the value log un

log n converges to σ as n → ∞ along a subset of density 1. We obtain the
following bounds for the limit σ , which provides an estimate within 0.8% of the
exact value:

1.3005 < σ < 1.3098.

These bounds clearly show that α < σ < β .
To compute the exponents α and σ we introduce new efficient algorithms for

estimating the joint spectral subradius ρ̌ and the Lyapunov exponent ρ̄ of matrices.
These algorithms are both of independent interest as they can be applied to arbitrary
matrices.

Our linear algebraic approach not only allows us to improve the estimates of the
asymptotics of the number of overlap-free words, but also clarifies some aspects of
the nature of these words. For instance, we show that the “non purely overlap-free
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words” used in [26] to compute un are asymptotically negligible when considering
the total number of overlap-free words.

The chapter is organized as follows. In the next section we formulate and prove
the main theorems (except for Theorem 7.2, whose proof is quite long and techni-
cal). Then in Section 7.3 we present new algorithms for estimating the joint spectral
subradius and the Lyapunov exponent of a given set of matrices. Applying them to
those special matrices we obtain the estimates for α,β and σ . In the appendices
we write explicit forms of the matrices and initial vectors used to compute un and
present the results of our numerical algorithms.

7.2 The Asymptotics of Overlap-Free Words

To compute the number un of overlap-free words of length n we use several results
from [26] that we summarize in the following theorem:

Theorem 7.1. Let F0,F1 ∈ R
30×30, w,y8, . . . ,y15 ∈ R

30
+ be as given in Appendix A.1.

For n ≥ 16, let yn be the solution of the following recurrence equations

y2n = F0yn,
y2n+1 = F1yn.

(7.4)

Then, for any n≥ 9, the number of overlap-free words of length n is equal to wT yn−1.

It follows from this result that the number un of overlap-free words of length n ≥
16 can be obtained by first computing the binary expansion dt · · ·d1 of n− 1, i.e.,
n−1 = ∑t−1

j=0 d j+12 j, and then computing

un = wT Fd1 · · ·Fdt−4ym, (7.5)

where m = dt−3 +dt−22+dt−122 +dt23 (and dt = 1). To arrive at the results summa-
rized in Theorem 7.2, Cassaigne builds a system of recurrence equations allowing
the computation of a vector Un whose entries are the number of overlap-free words
of certain types (there are 16 different types). These recurrence equations also in-
volve the recursive computation of a vector Vn that counts other words of length n,
the so-called “single overlaps”. The single overlap words are not overlap-free, but
have to be computed, as they generate overlap-free words of larger lengths.

We now present the main result of this section which improves the above the-
orem in two directions. First we reduce the dimension of the matrices from 30 to
20, and second we prove that un is given asymptotically by the norm of a matrix
product. The reduction of the dimension to 20 has a straightforward interpretation:
when computing the asymptotic growth of the number of overlap-free words, one
can neglect the number of “single overlaps” Vn defined by Cassaigne. We call the
remaining words purely overlap-free words, as they can be entirely decomposed in
a sequence of overlap-free words via Cassaigne’s decomposition (see [26] for more
details). In the following Theorem, the notation f (n) � g(n) means that there are
two positive constants K1,K2 such that for all n, K1 f (n) < g(n) < K2 f (n).
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Theorem 7.2. Let A0,A1 ∈ R
20×20
+ be the matrices defined in Appendix A.1 (Equa-

tion (A.3)), let ‖ · ‖ be a matrix norm, and let A(n) : N → R
20×20
+ be defined as

A(n) = Ad1 · · ·Adt with dt . . .d1 the binary expansion of n−1. Then,

un � ||A(n)||. (7.6)

Observe that the matrices F0,F1 in Theorem 7.1 are both nonnegative and hence
possess a common invariant cone K = R

30
+ . We say that a cone K is invariant for a

linear operator B if BK ⊂ K. All cones are assumed to be solid, convex, closed, and
pointed. We start with the following simple result proved in [96].

Lemma 7.1. For any cone K ⊂ R
d, for any norm | · | in R

d and any matrix norm
‖ · ‖ there is a homogeneous continuous function γ : K → R+ positive on intK such
that for any x ∈ intK and for any matrix B that leaves K invariant one has

γ(x)‖B‖ · |x| ≤ |Bx| ≤ 1
γ(x)

‖B‖ · |x|.

Corollary 7.1. Let two matrices A0,A1 possess an invariant cone K ⊂ R
d. Then for

any x ∈ intK, with the notation A(n) of Theorem 7.2, we have

|A(n)x| � ‖A(n)‖.

In view of Corollary 7.1 and of Equation (7.5), Theorem 7.2 may seem obvious,
at least if we consider the matrices Fi instead of Ai. One can however not directly
apply Lemma 7.1 and Corollary 7.1 to the matrices A0,A1 or to the matrices F0,F1

because the vector corresponding to x is not in the interior of the positive orthant,
which is an invariant cone of these matrices.

To prove Theorem 7.2 one has to first construct a common invariant cone K for
the matrices A0,A1. This cone has to contain all the vectors zn , n∈N (the restriction
of yn to R

20, see Theorem 7.1) in its interior, to enable us to apply Lemma 7.1 and
Corollary 7.1.

Then, invoking Lemma 7.1 and Corollary 7.1 it is possible to show that the prod-
ucts F(n) = Fd1 · · ·Fdk are asymptotically equivalent to their corresponding product
A(n) = Ad1 · · ·Adk .

Finally one shows that ‖Ad1 · · ·Adk‖ is equivalent to ‖Ad1 · · ·Adk−4‖.
Putting all this together, one proves Theorem 7.2. Details of the proof can be

found in [63].
Theorem 7.2 allows us to express the rates of growth of the sequence un in terms

of norms of products of the matrices A0,A1 and then to use joint spectral character-
istics of these matrices to estimate the rates of growth. More explicitly, Theorem 7.2
yields the following corollary:

Corollary 7.2. Let A0,A1 ∈ R
20×20
+ be the matrices defined in Appendix A and let

A(n) : N → R
20×20
+ be defined as A(n) = Ad1 · · ·Adk with dk . . .d1 the binary expan-

sion of n−1. Then



106 7 Overlap-Free Words

log2 un

log2 n
− log2 ‖A(n)‖1/k → 0 as n → ∞ . (7.7)

Proof. Observe first that
(

k
log2 n − 1

)
log2 un

k → 0 as n → ∞. Indeed, the first factor

tends to zero, and the second one is uniformly bounded, because, as we have seen,
un ≤Cnr. Hence

lim
n→∞

(
log2 un
log2 n − log2 ‖Ad1

···Adk
‖

k

)
=

lim
n→∞

(
log2 un−log2 ‖Ad1

···Adk
‖

k +
(

k
log2 n − 1

) log2 un
k

)
=

lim
n→∞

(
log2 un−log2 ‖Ad1

···Adk
‖

k

)
= lim

n→∞

log2

(
un·‖Ad1

···Adk
‖−1
)

k ,

and by Theorem 7.2 the value log2

(
un · ‖Ad1 · · ·Adk‖−1

)
is bounded uniformly over

n ∈ N.

We first analyze the smallest and the largest exponents of growth α and β defined
in Equation (7.1).

Theorem 7.3. For t ≥ 1, let αt = min
2t−1<n≤2t

logun
logn and βt = max

2t−1<n≤2t

logun
logn . Then

α = lim
t→∞

αt = log2 ρ̌(A0,A1) and β = lim
t→∞

βt = log2 ρ(A0,A1), (7.8)

where the matrices A0,A1 are defined in Appendix A.1. Moreover, there are positive
constants C1,C2 such that

C1 ≤ min
2t−1<n≤2t

unn−α and C1 ≤ max
2t−1<n≤2t

unn−β ≤ C2 (7.9)

for all t ∈ N.

Proof. The equalities in Equation (7.8) follow immediately from Corollary 7.2 and
the definitions.

The lower bounds in Equation (7.9) are a consequence of Theorem 7.2 and the
fact that ρ̂t ≥ ρ t and ρ̌t ≥ ρ̌ t always hold (see Chapter 1).

For the upper bound in Equation (7.9) we note that the matrices A0,A1 have no
common invariant subspaces among the coordinate planes (to see this observe, for
instance, that (A0 +A1)5 has no zero entry). As shown in Chapter 3, this proves that
the set is nondefective, that is,

ρ̂t ≤C2ρ t .

Corollary 7.3. There are positive constants C1,C2 such that

C1nα ≤ un ≤C2nβ , n ∈ N.

In the next section we show that α < β . In particular, the sequence un does not
have a constant rate of growth, and the value logun

logn does not converge as n → ∞.
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This was already noted by Cassaigne in [26]. Nevertheless, it appears that the value
logun
logn actually has a limit as n → ∞, not along all the natural numbers n ∈ N, but

along a subsequence of N of density 1. A subset A ⊂ N is said to have density 1
if 1

n Card
{

r ≤ n, r ∈ A
}→ 1 as n → ∞. In other terms, the sequence converges

with probability 1. The limit, which differs from both α and β can be expressed by
the so-called Lyapunov exponent ρ̄ of the matrices A0,A1. To show this we apply
the following result proved by Oseledets in 1968. For the sake of simplicity we
formulate it for two matrices, although it can be easily generalized to any finite set
of matrices.

Theorem 7.4. [88] Let A0,A1 be arbitrary matrices and d1,d2, . . . be a sequence of
independent random variables that take values 0 and 1 with equal probabilities 1/2.
Then the value ‖Ad1 · · ·Adt‖1/t converges to some number ρ̄ with probability 1. This
means that for any ε > 0 we have P

(∣∣‖Ad1 · · ·Adt‖1/t − ρ̄
∣∣> ε

)→ 0 as t → ∞.

The limit ρ̄ in Theorem 7.4 is called the Lyapunov exponent of the set {A0,A1}.
This value is given by the following formula:

ρ̄(A0,A1) = lim
t→∞

(
∏

d1,...,dt

‖Ad1 · · ·Adt‖1/t
)1/2t

(7.10)

(for a proof see, for instance, [97]). To understand what this gives for the asymptotics
of our sequence un we introduce some further notation. Let P be some property of
natural numbers. For a given t ∈ N we denote

Pt(P) = 2−(t−1)Card
{

n ∈ {2t−1 + 1, . . . ,2t} : nsatisfiesP
}
.

Thus, Pt is the probability that the integer n uniformly distributed on the set

{2t−1 + 1, . . . ,2t}

satisfies P . Combining Corollary 7.2 and Theorem 7.4 we obtain

Theorem 7.5. There is a number σ such that for any ε > 0 we have

Pt

(∣∣∣ logun

logn
−σ

∣∣∣> ε
)
→ 0 as t → ∞.

Moreover, σ = log2 ρ̄ , where ρ̄ is the Lyapunov exponent of the matrices {A0,A1}
defined in Appendix A.1.

Thus, for almost all n ∈ N the number of overlap-free words un has the same expo-
nent of growth σ = log2 ρ̄ . If positive a and b are large enough and a < b, then for
a number n taken randomly from the segment [a,b] the value logun/ logn is close
to σ . We say that a sequence fn converges to a number f along a set of density 1 if
there is a set A ⊂ N of density 1 such that lim

n→∞,n∈A
fn = f . Theorem 7.5 yields

Corollary 7.4. The value logun
logn converges to σ along a set of density 1.
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Proof. Let us define a sequence {k j} inductively: k1 = 1, and for each j ≥ 2 let k j

be the smallest integer such that k j > k j−1 and

Pk

(∣∣∣ logun

logn
−σ

∣∣∣ >
1
j

)
≤ 1

j
for all k ≥ k j .

By Theorem 7.5 the values k j are well-defined for all j. Let a set A consist of

numbers n, for which
∣∣∣ logun

logn − σ
∣∣∣ ≤ 1

j , where j is the largest integer such that

n ≥ 2k j−1 . Clearly, logun
logn → σ as n → ∞ along A . If, as usual, 2k−1 ≤ n < 2k, then

the total number of integers r ≤ n that do not belong to A is less than

2k

j
+

2k j

j−1
+ · · · +

2k2

1
≤

j

∑
s=1

2k− j+s

s
= 2k− j

j

∑
s=1

2s

s
.

Observe that
j

∑
s=1

2s

s ≤ 3·2 j

j , hence the number of integers r ≤ n that do not belong

to A is less than 3·2k

j ≤ 6n
j , which tends to zero being divided by n as n → ∞. Thus,

A has density 1.

7.3 Estimation of the Exponents

Theorems 7.2 and 7.5 reduce the problem of estimating the exponents of growth of
un to computing joint spectral characteristics of the matrices A0 and A1. In order
to estimate the joint spectral radius we use a modified version of the “ellipsoidal
norm algorithm” presented in Chapter 2. For the joint spectral subradius and for
the Lyapunov exponent we present new algorithms, which seem to be relatively
efficient, at least for nonnegative matrices. The results we obtain can be summarized
in the following theorem:

Theorem 7.6
1.2690 < α < 1.2736,
1.3322 < β < 1.3326,
1.3005 < σ < 1.3098.

(7.11)

In this section we also make (and give arguments for) the following conjecture:

Conjecture 7.1
β = log2

√
ρ(A0A1) = 1.3322 . . . .

7.3.1 Estimation of β and the Joint Spectral Radius

By Theorem 7.3 to estimate the exponent β one needs to estimate the joint spectral
radius of the set {A0,A1}. A lower bound for ρ can be obtained by applying the
three members inequality (1.6). Taking t = 2 and d1 = 0,d2 = 1 we get
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ρ ≥ [
ρ(A0A1)

]1/2 = 2.5179 . . . , (7.12)

and so β > log2 2.5179 > 1.3322 (this lower bound was already found in [26]).
One could also try to derive an upper bound on ρ with the three members in-

equality, that is:
ρ ≤ max

d1,...,dt ∈{1,...,m}
‖Ad1 · · ·Adt‖1/t . (7.13)

This, at least theoretically, gives arbitrarily sharp estimates for ρ . However, in our
case, due to the size of the matrices A0,A1, this method leads to computations that
are too expensive even for relatively small values of t. As we have seen in Chapter 2,
faster convergence can be achieved by finding an appropriate norm. The ellipsoidal
norms are good candidates, because the optimum among these norms can be found
via a simple SDP program. In Appendix A.2 we give an ellipsoidal norm such that
each matrix in Σ14 has a norm smaller than 2.518614. This implies that ρ ≤ 2.5186,
which gives β < 1.3326. Combining this with the inequality β > 1.3322 we com-
plete the proof of the bounds for β in Theorem 7.6.

We have not been able to improve the lower bound of Equation (7.12). However,
the upper bound we obtain is very close to this lower bound, and the upper bounds
obtained with an ellipsoidal norm for Σ t get closer and closer to this value when t
increases. Moreover, as mentioned in Chapter 4, it has already been observed that
for many sets of matrices for which the joint spectral radius is known exactly, and
in particular matrices with nonnegative integer entries, the finiteness property holds,
i.e., there is a product A ∈ Σ t such that ρ = ρ(A)1/t [61]. For these reasons, we
conjecture that the exponent β is actually equal to the lower bound, that is,

β =
√

ρ(A0A1).

7.3.2 Estimation of α and the Joint Spectral Subradius

An upper bound for ρ̌(A0,A1) can be obtained using the three members inequality
for t = 1 and d1 = 0. We have

α = log2(ρ̌) ≤ log2(ρ(A0)) = 1.276... (7.14)

This bound for α was first derived in [26]. It is however not optimal. Taking the
product A10

1 A0 (i.e., t = 11), we get a better estimate:

α ≤ log2

[
(ρ(A10

1 A0)1/11]= 1.2735... (7.15)

One can verify numerically that this product gives the best possible upper bound
among all the matrix products of length t ≤ 14.

We now estimate α from below. As we know, the problem of approximating
the joint spectral subradius is NP-hard [17] and to the best of our knowledge, no
algorithm is known to compute this quantity. Here we propose two new algorithms.
We first consider nonnegative matrices. As proved in Chapter 1, for any t and any set
of matrices Σ , we have ρ̌(Σ t) = ρ̌ t(Σ). Without loss of generality it can be assumed
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that the matrices of the set Σ do not have a common zero column. Otherwise, by
suppressing this column and the corresponding row we obtain a set of matrices of
smaller dimension with the same joint spectral subradius. The vector of ones is
denoted by 1.

Theorem 7.7. Let Σ be a set of nonnegative matrices that do not have any com-
mon zero column. If for some r ∈ R

+,s ≤ t ∈ N, there exists x ∈ R
d satisfying the

following system of linear inequalities

B(Ax− rx) ≥ 0, ∀B ∈ Σ s,A ∈ Σ t ,
x ≥ 0, (x,1) = 1,

(7.16)

then ρ̌(Σ) ≥ r1/t .

Proof. Let x be a solution of (7.16). Let us consider a product of matrices Ak . . .A1 ∈
Σ kt : Ai ∈ Σ t . We show by induction on k that Ak . . .A1x ≥ rk−1Akx : For k = 2, we
have A2(A1x− rx) = CB(A1x− rx) ≥ 0, with B ∈ Σ s,C ∈ Σ t−s. For k > 2 we have
Ak . . .A1x = AkAk−1 . . .A1x ≥ rk−2AkAk−1x ≥ rk−1Akx. In the last inequality the case
for k = 2 was reused.

Hence,
||Ak . . .A1|| = 1T Ak . . .A11 ≥ rk−11T Akx ≥ Krk,

where K = (mink 1T Akx)/r > 0. The last inequality holds because Akx = 0, together
with the first inequality in (7.16), imply that −rBx = 0 for all B ∈ Σ s, which implies
that all B ∈ Σ s have a common zero column. This is in contradiction with our as-
sumption because the matrices in Σ s share a common zero column if and only if the
matrices in Σ do.

Clearly, the size of the instance of the linear program 7.16 grows exponentially
with t and s. We were able to find a solution to the linear programming prob-
lem (7.16) with r = 2.4116, t = 16,s = 6. Hence we get the following lower bound:
α ≥ log2 r/16 > 1.2690. The corresponding vector x is given in Appendix A.3. This
completes the proof of Theorem 7.6.

Theorem 7.7 handles nonnegative matrices, and we propose now a way to gener-
alize this result to arbitrary real matrices. For this purpose, we use the semidefinite
lifting presented in Chapter 2, and we consider the set of linear operators acting on
the cone of positive semidefinite symmetric matrices S as S → AT

i SAi. We know that
the joint spectral subradius of this new set of linear operators is equal to ρ̌(Σ)2.
We use the notation A � B to denote that the matrix A−B is positive semidefinite.
Recall that A � 0 ⇔∀y,yT Ay ≥ 0.

Theorem 7.8. Let Σ be a set of matrices in R
d×d and s ≤ t ∈ N. Suppose that there

are r > 0 and a symmetric matrix S � 0 such that

BT (AT SA− rS)B� 0 ∀A ∈ Σ t ,B ∈ Σ s,
S � 0,

(7.17)

then ρ̌(Σ) ≥ r1/2t .
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Proof. The proof is formally similar to the previous one. Let S be a solution
of (7.17). We denote by Mk the product A1 . . .Ak, where Ai ∈Σ t . It is easy to show by
induction that MT

k SMk � rk−1(AT
k SAk). This is obvious for k = 2 for similar reasons

as in the previous theorem, and for k > 2, if, by induction,

∀y, yT MT
k−1SMk−1y ≥ rk−2yT AT

k−1SAk−1y,

then, with y = Akx, for all x,

xT MT
k SMkx ≥ rk−2xT AT

k AT
k−1SAk−1Akx ≥ rk−1xT AT

k SAkx.

Thus,

sup

{
xT MT

k SMkx

xT Sx

}
≥ rk−1 sup

{
xT AT

k SAkx

xT Sx

}
.

Finally, ||Mk||S ≥ rk/2C, where C is a constant.

For a given r > 0 the existence of a solution S can be established by solving the
semidefinite programming problem (7.17), and the optimal r can be found by bisec-
tion in logarithmic time.

7.3.3 Estimation of σ and the Lyapunov Exponent

The exponent of the average growth σ is obviously between α and β , so 1.2690 <
σ < 1.3326. To get better bounds we need to estimate the Lyapunov exponent
ρ̄ of the matrices A0,A1. The first upper bound can be given by the so-called
1-radius ρ1:

ρ1 = lim
t→∞

(
2−t ∑

d1,...,dt

‖Ad1 · · ·Adt‖
)1/t

.

For matrices with a common invariant cone we have ρ1 = 1
2 ρ(A0 + A1) [96].

Therefore, in our case ρ1 = 1
2 ρ(A0 + A1) = 2.479.... This exponent was first

computed in [26], where it was shown that the value ∑n−1
j=0 u j is asymptotically

equivalent to nη , where η = 1+ log2 ρ1 = 2.310.... It follows immediately from the
inequality between the arithmetic mean and the geometric mean that ρ̄ ≤ ρ1. Thus,
σ ≤ η . In fact, as we show below, σ is strictly smaller than η . We are not aware of
any approximation algorithm for the Lyapunov exponent, except by application of
Definition (7.10). It follows from submultiplicativity of the norm that for any t the

value rt =
(

∏
d1,...,dt

‖Ad1 · · ·Adt‖
) 1

t2t
gives an upper bound for ρ̄ , that is ρ̄ ≤ rt for any

t ∈ N. Since rt → ρ̄ as t → ∞, we see that this estimate can be arbitrarily sharp for
large t. But for the dimension 20 this leads quickly to prohibitive numerical compu-
tations. For example, for the norm ‖ ·‖1 we have r20 = 2.4865, which is even larger
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than ρ1. In order to obtain a better bound for ρ̄ we state the following results. For

any t and x ∈ R
d we denote pt(x) =

(
∏

d1,...,dt

|Ad1 · · ·Adt x|
) 1

2t
and mt = sup

x≥0,|x|=1
pt(x).

In general, this expression is hard to evaluate, but in the following we will use a
particular norm for which mt is easy to handle.

Proposition 7.1. Let A0,A1 be nonnegative matrices in R
d. Then for any norm | · |

and for any t ≥ 1 we have ρ̄ ≤ (mt)1/t .

Proof. By Corollary 7.1, for x > 0 we have rn � [pn(x)]1/n, and consequently

lim
t→∞

[
ptk(x)

] 1/tk → ρ̄

as t → ∞. On the other hand, pk+n(x) ≤ mk pn(x) for any x ≥ 0 and for any n,k ∈ N,
therefore ptk(x) ≤ (mk)t . Thus, ρ̄ ≤ (mk)1/k.

Proposition 7.2. Let A0,A1 be nonnegative matrices in R
d that do not have common

invariant subspaces among the coordinate planes. If ρ̌ < ρ , then ρ̄ < ρ1.

Proof. Let v∗ be the eigenvector of the matrix 1
2

(
AT

0 + AT
1

)
corresponding to its

largest eigenvalue ρ1. Since the matrices have no common invariant coordinate
planes, it follows from the Perron-Frobenius theorem that v∗ > 0. Consider the
norm |x| = (x,v∗) on R

d
+. Take some t ≥ 1 and y ∈ R

d
+, |y| = (y,v∗) = 1, such that

pt(y) = mt . We have

mt = pt(y) ≤ 2−t ∑
d1,...,dt

|Ad1 · · ·Adt y| = 2−t ∑
d1,...,dt

(
Ad1 · · ·Adt y,v∗

)

=
(

y,2−t(AT
0 + AT

1

)t
v∗
)

= ρ t
1

(
y,v∗

)
= ρ t

1.

Thus, mt ≤ ρ t
1, and the equality is possible only if all 2t values |Ad1 · · ·Adt y| are

equal. Since ρ̌ < ρ , there must be a t such that the inequality is strict. Thus, mt < ρ t
1

for some t, and by Proposition 7.1 we have ρ̄ ≤ (mt)1/t < ρ1.

We are now able to estimate ρ̄ for the matrices A0,A1. For the norm |x|= (x,v∗) used
in the proof of Proposition 7.2 the value − 1

t log2 mt can be found as the solution of
the following convex minimization problem with linear constraints:

min − 1
t2t ln2 ∑

d1,...,dt∈{0,1}
ln
(

x,AT
d1
· · ·AT

dt
v∗
)

s.t. x ≥ 0, (x,v∗) = 1.
(7.18)

The optimal value of this optimization problem is equal to −(1/t) log2 mt , which
gives an upper bound for σ = log2 ρ̄ (Proposition 7.1). Solving this problem for
t = 12 we obtain σ ≤ 1.3098. We finally provide a theorem that allows us to derive
a lower bound on σ . The idea is identical to the one used in Theorem 7.7, but
transposed to the Lyapunov exponent.
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Theorem 7.9. Let Σ be a set of m nonnegative matrices that do not have any com-
mon zero column. If for some s ≤ t ∈ N, ri ∈ R+ : 0 ≤ i < mt , there exists x ∈ R

d
+

satisfying the following system of linear inequalities

B(Aix− rix) ≥ 0, ∀B ∈ Σ s,Ai ∈ Σ t ,
x ≥ 0, (x,1) = 1,

(7.19)

then ρ̄(Σ) ≥ ∏i ri
1/(tmt).

The proof is similar to the proof of Theorem 7.7 and is left to the reader. Also,
a similar theorem can be stated for general matrices (with negative entries), but
involving linear matrix inequalities. Due to the number of different variables ri, one
cannot hope to find the optimal x with SDP and bisection techniques. However, by
using the vector x computed for approximating the joint spectral subradius (given
in Appendix A.3), with the values s = 8, t = 16 for the parameters, one gets a good
lower bound for σ : σ ≥ 1.3005.

7.4 Conclusion

The goal of this chapter is to precisely characterize the asymptotic rate of growth of
the number of overlap-free words. Based on Cassaigne’s description of these words
with products of matrices, we first prove that these matrices can be simplified, by
decreasing the state space dimension from 30 to 20. This improvement is not only
useful for numerical computations, but allows to characterize the overlap-free words
that “count” for the asymptotics: we call these words purely overlap-free, as they can
be expressed iteratively as the image of shorter purely overlap free words.

We have then proved that the lower and upper exponents α and β defined by
Cassaigne are effectively reached for an infinite number of lengths, and we have
characterized them respectively as the logarithms of the joint spectral subradius
and the joint spectral radius of the simplified matrices that we constructed. This
characterization, combined with new algorithms that we propose to approximate the
joint spectral subradius, allow us to compute them within 0.4%. The algorithms we
propose can of course be used to reach any degree of accuracy for β (this seems also
to be the case for α and σ , but no theoretical result is known for the approximation
of these quantities). The computational results we report in this chapter have all
been obtained in a few minutes of computation time on a standard PC desktop and
can therefore easily be improved.

Finally we have shown that for almost all values of n, the number of overlap-free
words of length n does not grow as nα , nor as nβ , but in an intermediary way as nσ ,
and we have provided sharp bounds for this value of σ .

This work opens obvious questions: Can joint spectral characteristics be
used to describe the rate of growth of other languages, such as for instance the
more general repetition-free languages ? The generalization does not seem to be
straightforward for several reasons: first, the somewhat technical proofs of the links
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between un and the norm of a corresponding matrix product take into account the
very structure of these particular matrices, and second, it is known that a bifurcation
occurs for the growth of repetition-free words: for some members of this class of
languages the growth is polynomial, as for overlap-free words, but for some others
the growth is exponential, as shown by Karhumaki and Shallit [66]. See [10] for
more on repetition-free words and joint spectral characteristics.



Chapter 8
Trackable Graphs

Abstract. In this chapter we present the notion of trackable graph. We show how
results presented in this monograph allow to efficiently recognize trackable graphs.

Imagine you are responsible for a network on which an agent is moving. The net-
work can be modeled as a (directed) graph, and at each step the agent choses a node
among all neighbors of its current node, and jumps to it. A number of recent con-
tributions deal with the problem of “tracking” such an agent, that is, in some sense
localize the agent on the network [24, 30, 87, 119, 120]. This network is endowed
with sensors that give you information about the node in which the agent is. In prac-
tical applications however, the information is rarely sufficient to determine uniquely
the current node of the agent: for instance, the network can be subject to noise, or
two nodes that are too close can be activated together. Also, the sensors data can be
transmitted in real time through a channel that only allows you to receive at each step
a limited information about the sensors activations. Clearly, in general, the longer
the experience lasts, the more trajectories will be possible. How to compute the set
of all possible trajectories, given a sequence of observations? What are the possible
growths of the number of trajectories when the observation length increases? How
to determine the worst growth for a particular network? In Section 8.1 we formal-
ize this problem and present the notion of trackable graphs recently introduced by
Crespi et al. [30], and we give practical motivations for it. In Section 8.2 we answer
to the above questions. We then conclude and raise some possible future work.

8.1 What Is a Trackable Graph?

Initially motivated by tracking vehicles in noisy sensor networks, the concept of
trackable network has recently been introduced [30] in the framework of Hidden
Markov Models (HMM) (see [42, 100] for a survey on HMM’s). We introduce here
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trackable graphs1 in a self-contained and general framework, in terms of an under-
lying directed graph with colors on edges, but the mathematical reality behind these
two definitions is exactly the same.

Let G = (V,E) be a graph and C a set of colors. To every edge e ∈ E we associate
one (or more) color from C. A word w on C is the concatenation w0 . . .wT of symbols
taken from C; the length |w| of w is the number of its symbols. A subword w[i, j] :
1 ≤ i ≤ j ≤ |w| of w = w1 . . .wT is the concatenation of the symbols wi . . .wj. We
say that a path is allowed by a word w if for all i the ith edge of the path has color wi.
Finally, for a word w and a set S ⊂ V , we denote by Tw(S) the set of paths allowed
by w beginning in a node in S; Tw(V ) is the set of paths in G with the color sequence
w. Since we are interested in the worst case, we introduce the complexity function
N(t) that counts the maximal number of trajectories compatible with an observation
of length t:

N(t) : N → N � max{|Tw(V )| : |w| = t}.
We will say that a graph is trackable if its complexity function grows at most poly-
nomially:

Definition 8.1. A graph is trackable if there exists a polynomial p(t) such that for
any color sequence of length T, the number of possible trajectories compatible with
this observation is bounded by p(T ).

Figure 8.1 presents two similar graphs. The first one (a) is trackable, because the
worst possible observation is DDD . . . for which the number of compatible paths
is Na(t) ≈ t. The second graph (b) is not trackable, because a possible observation
is w = DSDSDS . . . for which the number of possible trajectories is asymptotically
equal to 2�

t
2 �.

Fig. 8.1 Two node-colored graphs. The “colors” are dashed (D) or solid (S). The graph (a) is
trackable but (b) is not

1 The property of being trackable is a property of directed graphs that have their edges colored.
For simplicity, we will talk in the sequel about trackable graphs rather than trackable edge-
colored directed graphs.
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In the seminal article [30], the colors are put on the nodes, rather than on the
edges. This latter situation is a particular case of the one considered here, since this
is equivalent to attribute the same color to each edge pointing to a same node. This
fact is illustrated in Figure 8.2: the first graph (a) has its colors on the nodes, but
one could analyze dynamics on this graph by constructing the edge-colored graph
(b). For any path on the “actual” graph (a) leading to the color sequence w, the
same path on the graph (b) leads to the color sequence w[1,|w|]. So for all t > 0
the complexity functions Na(t), Nb(t) of the graphs (a) and (b) satisfy Na(t + 1) ≤
Nb(t) ≤ mNa(t + 1), with m the number of colors in the graph. So (a) is trackable if
and only if (b) is, and all analysis results presented here are valid for node-colored
graphs. Note however that this is only valid for analysis purposes. In Section 8.3 we
will briefly address the design question. For this sort of questions, the node-colored
case and the edge-colored case are not equivalent, since the set of feasible solutions
is not the same. Indeed, when designing a node-colored graph, if one puts colors
on edges in the corresponding edge-colored graph, he is restricted in that all edges
going to a same node must have the same color.

(a) (b)

Fig. 8.2 A node-colored graphs (a) and the equivalent edge-colored graph (b)

8.2 How to Recognize a Trackable Graph?

In this section, we consider two algorithmic problems. The first problem is that of
counting the possible paths in a graph for a given sequence of color observations.
That problem is easy and we describe a simple solution to it. The second problem is
that of deciding trackability.

Let us consider the first problem: we are given a color sequence and we would
like to count the paths that are compatible with the observed sequence of colors. A
simple algebraic solution is as follows. For every color c, there is an associated graph
Gc for which we can construct the corresponding adjacency matrix Ac. This graph
is simply the graph on the initial set of vertices, but keeping only the edges colored
in c. To a color sequence w = w1, . . . ,w|w| we then associate Aw, the corresponding
product of matrices Aw = Aw1 . . .Aw|w| . It is easy to verify that the (i, j)th entry of
Aw is equal to the number of paths from i to j allowed by w. The total number of
compatible paths |Tw| is therefore obtained by taking the sum of all entries of the
matrix Aw.
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We now turn to the problem of recognizing trackable graphs. We have the fol-
lowing theorem:

Theorem 8.1. [30] Let G be a colored graph and Σ = {Ac} be the set of adjacency
matrices corresponding to each color. G is trackable if and only if ρ(Σ) ≤ 1.

Proof. The proof essentially uses the fact that the number of paths compatible with
the color sequence w is the sum of the entries of Aw. Moreover, since Aw is nonneg-
ative, the sum of its entries is actually a norm:

||Aw||1 = ∑
i, j

(Aw)(i, j).

Now, applying the definition of the joint spectral radius:

ρ(Σ) = lim
t→∞

max{||A||1/t
1 : A ∈ Σ t}, (8.1)

= lim
t→∞

max{∑
i, j

(Aw)(i, j) : |w| = t}(1/t), (8.2)

= lim
t→∞

N(t)1/t , (8.3)

and this latter quantity is less or equal to one if and only if N(t) grows less than
exponentially.

We can now apply all the machinery of Chapter 3 to the adjacency matrices of a
colored graph:

Theorem 8.2. There is a polynomial time algorithm that recognizes trackable
graphs. This algorithm uses at most O(n5) operations, where n is the number of
nodes in the graph. Moreover, only the following cases are possible:

• the length of the paths is bounded, i.e., there exists a T such that for all t ≥ T,
N(t) = 0,

• the function N(t) is bounded,
• the function N(t) grows polynomially with a degree k between 1 and n−1,
• the function N(t) grows exponentially,

and the algorithm recognizes these cases (and in case of polynomial growth can
decide the degree of the polynomial).

Proof. This follows from Theorems 3.1 and 3.2 together with Theorem 8.1.

This theorem answers questions raised in the seminal paper on trackability [31].
We end this section by providing an example inspired from practical applications
presented in [30].

Example 8.1. Figure 8.3 shows a series of abstracted sensor networks. There is a
ground vehicle moving from cell to cell according to a specified kinematics. There is
a sensor which is activated if and only if the vehicle is in one of the grey cells. The
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Fig. 8.3 Four sensor networks on
which a ground vehicle is moving.
Which ones are trackable?

(a) (b)

(c) (d)

white cells are not equipped with a sensor (but this is equivalent to consider that
they are all equipped with a sensor that sends the signal NULL).

The network (a) is trackable because in any (long) observation, a grey flash
means that the vehicle has turned left, and two consecutive flashes mean that the
vehicle has turned right. Now if the vehicle turns right, the number of NULL flashes
before the next grey flash tells how long it stayed in the right loop. Note however
that the function N(t) is not asymptotically equal to one, because a long sequence
of NULL signals at the end of an observation does not determine exactly the final
node (it could be any node lying after the loop and before the grey flash).

The network (b) is actually also trackable, even though a right turn is not indi-
cated by a series of two grey flashes. Indeed, it is indicated by a sequence of more
than seven consecutive NULL signals.

The network (c) is also trackable: the loop which is added is advertised by a
sequence GREY −NULL−GREY.

The network (d) is not trackable, because even the subgraph at the upper right
corner is not (it is a by-product of this chapter that if a subgraph is not trackable,
the whole graph is not trackable either).

8.3 Conclusion and Future Work

In this chapter we have studied the concept of trackable graphs. We have shown how
it relates to the joint spectral radius of a set of nonnegative integer matrices, and how
to recognize them in polynomial time. We have briefly described some applications
of this concept, in tracking vehicles in a noisy (or not fully observed) environment,
or in remote control of a network via a size-constrained bandwith. An interesting
related question is the design question:

Open question 12. Given a directed graph G, how many colors are necessary in
order to have a trackable graph? Is this minimal number computable in polyno-
mial time? If one is given a number of colors, how to arrange these colors in the
best way, so as to minimize the asymptotics of the maximal number of compatible
trajectories N(t)?

Another way of asking this question is the following: given a binary matrix A, what
is the minimal number c of binary matrices Ai : 1 ≤ i ≤ c such that A = ∑Ai and
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ρ({Ai})≤ 1. We have a straightforward upper bound on this problem: c≤ ||Ai1||∞ ≤
n. Indeed, one can decompose a matrix A in at most n matrices such that each line
has at most one nonzero entry, and we have ρ({Ai}) ≤ max ||Ai||∞.

One could also derive a lower bound on the minimal number of colors c by using
techniques from symbolic dynamics: the entropy of the edge-shift of the graph must
be smaller than the entropy of the free shift on the set of colors (for comprehensive
surveys on symbolic dynamics, see [75, 79]). Let us present this idea in a self-
contained way: the number of paths of length t on the graph G is Tt(G) ≥ ρ(AG)t ,
with ρ(AG) the spectral radius of the adjacency matrix of G. If there exists a col-
oration of G with c colors such that the obtained graph is trackable, then the number
of words of length t on C has to be large enough so that at most a polynomial number
of paths share the same word, and we have the simple lower bound ρ ≤ c.

This kind of techniques, though allowing one to quickly derive simple bounds,
can sometimes be relatively inefficient (see [60]).

Open question 13. Are there other (tighter) simple bounds for the minimal number
of colors?

These questions, though interesting, have not been investigated yet, to the best of
the author’s knowledge.



Conclusion

At the time of writing these lines, Linear Algebra and its Applications was editing
a special issue devoted to the joint spectral radius. This is another indication of
the growing interest and the increasing number of applications of the joint spectral
radius. The goal of this work was twofold: to present a survey on the joint spectral
radius, and to report the research that had been done during our Ph.D. on this topic.
In this conclusion, we quickly recall some points developed in this thesis. We then
try to put this work in perspective. We end with a personal conclusion.

Brief summary

Chapters 1 and 2 constitute a survey on the joint spectral radius.
In Chapter 1 we present elementary or fundamental results. Since it was possible

to derive their counterpart concerning the joint spectral subradius, we have decided
to present them.

In Chapter 2 we present more advanced results and try to understand the very
nature of the joint spectral radius. In a first section, we have seen that the whole
behavior is simple at first sight: The joint spectral radius is simply reached by com-
monly irreducible components, and for these components there exists an extremal
norm, that is, a common norm that bounds individually the norm of each matrix
with the exact value of the joint spectral radius. Moreover, these irreducible com-
ponents can effectively be computed by quantifier elimination. In Section 2.2 we
have seen that the reality is more complex: It is impossible to compute exactly the
joint spectral radius. In Section 2.3 we show that despite these infeasibility results,
it is possible to approximate the joint spectral radius up to an arbitrary accuracy, and
that several algorithms exist, which often appear to be complementary. We end by
saying a word on the finiteness property.

Concerning our own research work, two theoretical points were more deeply an-
alyzed: First, the case of nonnegative integer matrices, for which we have delineated
the polynomial time feasible questions, versus the infeasible ones. Second, the fas-
cinating finiteness property: in the course of trying to prove that it holds for nonneg-
ative rational (resp. rational) matrices, we have shown that it suffices to prove it for
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pairs of binary (resp. signed binary) matrices. In addition, we have shown that the
property holds for 2×2 binary matrices.

We have also studied a number of applications of the joint spectral radius: We
start with a classical one: the continuity of wavelet functions. We then turn to the
capacity of codes, for which we have proved some convergence results that are more
accurate than for general matrices. We have shown that the question of zero capac-
ity is solvable in polynomial time, but that this is at the border of polynomial time
feasibility, since adding don’t care characters makes the problem NP-hard. We have
then presented a new application of the joint spectral radius to the computation of
the asymptotics of overlap-free words, a longstanding question that arises in com-
binatorics on words. It has been shown recently that our results can be generalized
to wider applications in this area, but this still needs further investigations. We fi-
nally studied trackable sensor networks, and showed that they are recognizable in
polynomial time.

What is next?

To our knowledge, the theoretical questions analyzed in Chapter 2 have not been
studied for the joint spectral subradius. Some of them are perhaps not as deep as for
the joint spectral radius. Indeed for instance, it is not difficult to show that the finite-
ness property does not hold for the joint spectral subradius: simple counterexamples
exist for which the joint spectral subradius is not reached by a finite product. Nev-
ertheless, we have the feeling that the joint spectral subradius has not been studied
as much as it deserves, for instance for what concerns approximation algorithms.
Perhaps the negative results mentioned in Chapter 1 are responsible for this situa-
tion, but they should not put an end to the analysis of this quantity. In this way of
thinking, we present in Chapter 7 new algorithms for estimating the joint spectral
subradius, that exhibit good performance in practice, at least on the particular ma-
trices that we studied. We think that future research should analyze these algorithms
and their convergence properties.

Research on the joint spectral radius is certainly not an ended story, and we have
tried all along this book to emphasize questions that remain unsolved today. Some of
them have been studied by several researchers from different communities, like for
instance the finiteness conjecture for binary matrices (see Chapter 4). Some others
have (to our knowledge) been less studied, like for instance the maximal growth of
the products when the joint spectral radius is equal to one. In both cases, we felt
it was worth to enlighten them, because they would have important implications in
practice. These questions are summarized at the end of each chapter.

An important work that remains to be done, according to us, is a deeper under-
standing of the algorithms existing to approximate the joint spectral radius. One
should most probably try to classify these algorithms, looking closely at their dif-
ferences and similarities. The presentation of several approximation algorithms in
Chapter 2 is intended to be a first step in this direction, but is definitely not a com-
pleted work. As mentioned in that chapter, it seems that a fair amount of both
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theoretical and numerical work is still needed in order to properly understand the
different ways of approximating the joint spectral radius.

Finally, from the point of view of applications, we are wondering whether or
not the joint spectral radius could be useful for more applied fields of mathematics.
Indeed, as soon as a linear dynamical system is involved, and if the generalization
to a switched dynamical system makes sense, the use of a joint spectral radius (and
related quantities) is very natural. We have the feeling that some applications could
benefit from the theoretical advances that researchers have done these last decades
on such complex systems.

Personal conclusion

Before ending this book, and to summarize this work, we would like to stress one
point: At first sight, and in view of the profusion of negative results on the joint spec-
tral characteristics (undecidability, NP-hardness, non algebraicity,... see Chapter 2),
one could have the impression that studying the joint spectral radius is useless. He
or she could think that hoping to get an information on a system via a joint spectral
radius computation is an utopia.

This is not the case at all.
On the one hand, despite all the infeasibility results, recent contributions have

provided several approximation algorithms that appear to be very efficient in prac-
tice. Clearly, they require a certain amount of time in order to reach a high precision,
but their flexibility often allows one to reach the precision needed. Indeed, a number
of facts are of great help in practice and allow computations up to a reasonable ac-
curacy. For instance, some algorithms allow to compute a priori the time needed to
reach a given accuracy; also, algorithms of very different nature exist; finally, some
algorithms can be tuned depending on algebraic properties of the particular set of
matrices under study (non-negative matrices, cone-preserving matrices, commonly
irreducible matrices,...). Let us mention for example the case of overlap-free words:
even though the size of the matrices was relatively large (twenty by twenty), we have
been able to reach a very satisfactory accuracy for the bounds on the joint spectral
radius and the other related quantities. What is more, the bounds we have derived
significantly outperform preexisting bounds in the literature, that had been derived
with other tools.

On the other hand, the theoretical study of joint spectral characteristics is indis-
pensable to understand the intrinsic behavior of complex systems such as switching
linear systems. In this more theoretical point of view, the joint spectral radius can be
seen as a first step in the understanding of these complex dynamical systems, leading
to a number of questions that remain a source of beautiful results nowadays.
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Appendix A
Numerical Values for Overlap-Free Words

A.1 Numerical Values of Chapter 7

We introduce the following auxiliary matrices. For the sake of simplicity our nota-
tions do not follow exactly those of [26].

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 2 1
0 0 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0
1 2 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 2 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 2 4 2
0 0 1 1 0 1 1 0 0 0
0 0 0 0 0 1 1 1 1 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 1 1
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 1 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C4 =

⎛
⎜⎜⎜⎜⎝

0 1 1 1 1
0 0 0 1 1
0 1 1 0 0
1 0 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Now, defining

F0 =

⎛
⎜⎜⎝

C1 010×10 C2 010×5

D1 B1 010×5 B2

05×10 05×10 C4 05×5

05×10 05×10 05×5 05×5

⎞
⎟⎟⎠ ,

F1 =

⎛
⎜⎜⎝

D1 B1 010×5 B2

010×10 C1 010×5 C2

05×10 05×10 05×5 05×5

05×10 05×10 05×5 C4

⎞
⎟⎟⎠ , (A.1)

w = (1,2,2,2,1,2,2,1,2,1,01×20)T ,

y8 = (4,4,4,2,0,2,2,0,2,0,0,0,0,0,2,6,4,4,2,4,2,0,4,2,2,0,0,0,0,0)T,

y9 = (6,4,4,2,4,2,0,4,2,2,0,0,0,0,0,8,4,4,2,0,4,4,4,0,0,0,0,0,0,0)T,

y10 = (8,4,4,2,0,4,4,4,0,0,0,0,0,0,0,8,4,6,4,8,2,0,4,2,4,0,0,0,0,0)T,

y11 = (8,4,6,4,8,2,0,4,2,4,0,0,0,0,0,8,6,6,2,0,2,6,4,2,0,2,0,2,2,0)T,

y12 = (8,6,6,2,0,2,6,4,2,0,2,0,2,2,0,10,6,4,4,8,2,0,4,2,4,0,0,0,0,0)T,
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y13 = (10,6,4,4,8,2,0,4,2,4,0,0,0,0,0,12,6,4,4,0,6,6,4,2,0,0,0,0,0,0)T,

y14 = (12,6,4,4,0,6,6,4,2,0,0,0,0,0,0,10,6,8,6,12,4,0,0,4,4,0,0,0,0,0)T,

y15 = (10,6,8,6,12,4,0,0,4,4,0,0,0,0,0,8,10,6,6,0,4,8,4,4,0,2,2,0,0,0)T,

and introducing the recurrence relation

y2n = F0yn, y2n+1 = F1yn, n ≥ 8,

one has the relation [26]:
un+1 = wT yn. (A.2)

We finally introduce two new matrices in R
20×20 that rule the asymptotics of un :

A0 =
(

C1 010×10

D1 B1

)
,A1 =

(
D1 B1

010×10 C1

)
. (A.3)



130 A Numerical Values for Overlap-Free Words

A.2 The Ellipsoidal Norm

Define

P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

313 75 23 33 −4 −3 3 4 37 03
75 577 100 63 184 350 163 −58 138 50
23 100 599 113 4 292 42 101 82 08
33 63 113 485 46 135 108 20 69 10
−4 184 4 46 364 235 226 44 89 −12
−3 350 292 135 235 1059 384 95 337 61
3 163 42 108 226 384 590 27 174 92
4 −58 101 20 44 95 27 386 148 −17
37 138 82 69 89 337 174 148 575 86
3 50 8 10 −12 61 92 −17 86 423

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−104 −17 −181 −4 −58 −51 −49 −8 −27 −9
−111 −224 −82 −147 −99 −303 −167 −113 −169 −66
−22 −164 −158 −50 −85 −72 −54 −185 −35 −34
−2 −136 −52 −90 −107 −146 −92 −16 −113 −11
−46 −170 −130 −91 −6 −112 −239 −70 −121 3
−59 −264 −274 −174 −310 −376 −280 −44 −273 −74
−14 −193 −116 −108 −223 −179 −117 −113 −120 −98
−63 21 17 −34 32 −76 2 −52 −31 −14
−74 −159 −47 −67 −122 −173 −116 −53 −68 −16
13 −57 −36 −32 −4 −61 −90 −14 −69 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

291 83 −16 48 −13 −44 6 17 75 11
83 473 136 28 117 198 174 6 100 37
−16 136 466 104 65 249 118 65 125 14
48 28 104 476 51 80 76 51 37 18
−13 117 65 51 328 195 194 76 67 −2
−44 198 249 80 195 648 162 114 138 68

6 174 118 76 194 162 567 76 122 65
17 6 65 51 76 114 76 387 112 −10
75 100 125 37 67 138 122 112 556 42
11 37 14 18 −2 68 65 −10 42 438

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P =
(

P1 P2

PT
2 P4

)
.

Then one has the relations:

AtPA− (2.5186)28P ≺ 0, ∀A ∈ Σ14.

As explained in Chapter 2 Section 2.3, this suffices to prove that ρ(Σ) ≤ 2.5186.
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A.3 The Vector x

Define

x = (153,0,60,0,50,56,99,0,58,1,157,81,0,113,0,72,0,99,0,0)T.

Then, for all B ∈ Σ6 and A ∈ Σ16, one has the relation

B(Ax− rx) ≥ 0,
x ≥ 0,

(A.4)

with r = 2.4116. This proves that ρ̌(Σ) ≥ 2.41.
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edge coloring vs node coloring
for the trackability, 116

ellipsoidal norm, 39
example of stability with ρ ≥ 1, 21
examples

of capacity computation, 98
exponential

size of the matrices in the capacity, 90
extended sets

for capacity computation, 96
extremal norm, 24

nonexistence, 25
extremal norm theorem, 25

Fekete’s lemma, 12
for the capacity, 87

finiteness property
definition, 45
elementary results, 70
example, 59
for 2 by 2 binary matrices, 70
for binary matrices, 64
for rational matrices, 63
for the capacity, 99
length of the period, 74

fundamental theorem, 12

generalized spectral radius
definition, 10

generalized spectral subradius
definition, 11

geometric algorithm, 36

hidden Markov model, 115
Holder exponent, 82
homogeneous polynomial, 42

invariance
under similarity, 15

irreducible
set of matrices, 16, 24

joint spectral radius, 10
and capacity, 89
for the trackability, 118

joint spectral subradius
definition, 11

Kronecker
power, 37
product, 37

Lie algebraic condition, 34
lifting methods, 37
Lyapunov

exponent, 103
function, 40
methods, 38

matrix norm
extremal, 24

methods
convex combinations, 35
Lyapunov, 38
norm, 38

methods of computation
of the jsr, 31

monoid, 15
multivariate polynomial, 42

necessary and sufficient condition, see NSC
negative results

for the joint spectral subradius, 31
for the joint spectral radius, 28

node coloring vs edge coloring
for the trackability, 116

non algebraicity, 29
nondefective, 36

set of matrices, 24, 60
nonexistence

of extremal norms, 25
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nonnegative integer matrices
boundedness decidable, 48
efficient algorithms, 47

norm
Barabanov, 25
extremal, 24
extremal vector, 25

norm methods, 38
normal matrices, 33
norms

the jsr as the infimum over, 15, 38
NP-hardness

for the joint spectral subradius, 31
of the capacity computation, 96
of the jsr computation, 29

NSC
for ρ > 1, 51
for boundedness of the semigroup, 56
for trackability, 118
for zero capacity, 93

open question
capacity computation, 99
for overlap-free words, 108
for the convergence of the SOS method,

43
for the quantity ρ̂ t

t /ρ t , 59
for trackable graphs, 119
JSR and wavelets, 84
on the finiteness property, 74
stability, 30

optimization problem
design of trackable graphs, 119

Oseledets’Theorem, 107
overlap, 101
overlap-free words, 101

paths in a graph
representing admissible words, 89

polynomial
to approximate the jsr, 42

polynomial algorithm
boundedness semigroup, 56

polynomial time algorithm
for nonnegative integer matrices, 59
for checking zero capacity, 95
for positive capacity, 93

positive polynomial, 42

pruning algorithm
for the jsr, 35

quadratic Lyapunov function, 40
common, 40

quantifier elimination, 28

rate of growth
for arbitrary matrices, 59
for nonnegative integer matrices, 56

recurrence
for overlap-free words, 104

reducible
set of matrices, 16

reduction
of Σ to binary matrices, 65
of Σ to integer matrices, 64
of Σ to two matrices, 66

retrieval tree, 94

scaling functions, 77
scaling property, 14
SDP programming

for approximating the jsr, 40
for ellipsoidal norms, 39

semigroup, 15
sensor network, 115
solvable Lie algebra, 34
SOS relaxation, 42
square

of words, 101
stability

and the finiteness property, 45
definition, 21
with ρ ≥ 1, 21

subadditivity, 12
submultiplicative norm, 9
sum of squares, 42
switched linear system, 7
symmetric

algebras, 38
matrices, 33
positive definite matrix, 39

Thue-Morse sequence, 101
trackability

examples, 118
trackable graph, 115, 116

design, 119
triangular matrices, 16, 34
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triangularizability
permutations, 53

triangularizable matrices, 34
trie, 94
two-scale difference equation, 77

undecidability
for the joint spectral subradius, 31
for the joint spectral radius, 30

wavelets, 77
word, 116

zero capacity
polynomial time algorithm, 93

zero spectral radius, 20
proof, 32
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