
The PLASTIC Framework and Tools for Testing
Service-Oriented Applications

Antonia Bertolino1, Guglielmo De Angelis1, Lars Frantzen1,2,
and Andrea Polini1,3

1 Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche, Pisa, Italy

{antonia.bertolino,guglielmo.deangelis}@isti.cnr.it
2 Institute for Computing and Information Sciences

Radboud University Nijmegen, The Netherlands
lf@cs.ru.nl

3 Department of Mathematics and Computer Science
University of Camerino, Italy
andrea.polini@unicam.it

Abstract. The emergence of the Service Oriented Architecture (SOA) is
changing the way in which software applications are developed. A service-
oriented application consists of the dynamic composition of autonomous
services independently developed by different organizations and deployed
on heterogenous networks. Therefore, validation of SOA poses several
new challenges, without offering any discount for the more traditional
testing problems. In this chapter we overview the PLASTIC validation
framework in which different techniques can be combined for the verifi-
cation of both functional and extra-functional properties, spanning over
both off-line and on-line testing stages. The former stage concerns de-
velopment time testing, at which services are exercised in a simulated
environment. The latter foresees the monitoring of a service live usage,
to dynamically reveal possible deviations from the expected behaviour.
Some techniques and tools which fit within the outlined framework are
presented.

1 Introduction

A widely used approach to validation in industrial software development is test-
ing, which consists of observing the behavior of a program under some controlled
executions [7]. Indeed, testing provides a feasible and effective strategy to check
that a software implementation conforms to the specifications, or to evaluate its
dependability and performance.

In the years, many different methods for test selection and execution have
been proposed. As new software paradigms emerge, testers have to take into
account many new features that in most cases make existing testing techniques
no more sufficient or sometimes not even applicable. Therefore, testing methods
and tools need to be continuously adapted and empowered to face the exigencies
posed by the evolution of the development process and programming approaches.

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 106–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The PLASTIC Framework 107

The latest shift in software development is the Service-oriented Architecture
(SOA). All leading IT vendors, including IBM, SAP, Microsoft, Oracle, have al-
ready moved towards service-centric. Service-based technology promises to easily
integrate software components deployed across distributed networks by different
providers. Its great appeal derives from the announced flexibility and interoper-
ability among heterogeneous platforms and operating systems, that is achieved by
means of loose coupling, implementation neutrality and flexible configurability [22].

Loose coupling among services means that the mutual dependencies are min-
imized and maintained exclusively through standardized interfaces. The latter
feature ensures implementation neutrality, in that the internal implementation
details of a service must be totally uninfluential: a service must be seen as a
“black box”. But the most compelling feature of SOA is that its configuration
can change dynamically as needed and without loss of correctness [22].

Unfortunately, these very same features that make SOA highly attractive
to vendors and integrators, pose new difficult challenges to testers. Simplifying
in a sentence, testing a program (or a subprogram) amounts at anticipating at
development time a relevant and comprehensive sample of the potential program
invocations in operation. Hence traditional testing presupposes that before a
product is released, someone from the development organization or a third party
is sufficiently acquainted with the intended system behavior and can control its
configuration, so to select and launch an adequate executions sample (the test
suite).

It is evident that in service integration such an assumption does not hold
anymore: according to the SOA paradigm, services can discover each other at
run-time and can select the partner to interact with based on parameters that
are only defined at run-time. Therefore, new approaches and means for testing
must be sought.

Interesting challenges for validation also stem from the great relevance of
extra-functional requirements in SOA. As services are used in a pervasive way, in
fact, ensuring adequate levels of their provided Quality of Service (QoS) becomes
as important as guaranteeing their proper functional behavior. Therefore, an
additional task that testers need to accomplish concerns the advance evaluation
of the QoS characteristics of the System Under Test (SUT).

All the above issues are attracting great interest from researchers in industry
and academia, and several techniques and tools have been proposed for SOA
testing. A broad survey of such approaches is provided in Chapter 4 [9] of this
book, and we refer to it for related work discussion. In this chapter we specifi-
cally focus on the framework for SOA testing developed in the European Project
PLASTIC (Providing Lightweight and Adaptable Service Technology for perva-
sive Information and Communication) [12].

PLASTIC aims at facilitating the cost/effective development of adaptable
context-aware services, with a special emphasis on enforcing service dependabil-
ity. The project has been inspired by the vision that service development plat-
forms for B3G (Beyond 3rd Generation) networks will be effective and successful
only if the services they deliver are adaptive and offer Quality of Service (QoS)

108 A. Bertolino et al.

guarantees to users despite the uncontrolled open wireless environment. This vi-
sion is pursued via a development paradigm based on Service Level Agreements
(SLAs) and resource-aware programming. The project, started in 2006 and now
approaching its conclusion, has developed a SOA platform integrating:

– A development environment leveraging model-driven engineering for the rig-
orous development of SLA- and resource-aware services, which may be de-
ployed on the various networked nodes, including handheld devices;

– A middleware leveraging multi-radio devices and multi-network environ-
ments for applications and services run on mobile devices, further enabling
context-aware and secure discovery and access to such services;

– A validation framework enabling off-line and on-line testing of networked
services, encompassing functional and extra-functional properties.

This chapter is meant as a brief summary of the PLASTIC validation frame-
work and is not exhaustive of all research results and tools achieved in the
project. Further information of the other PLASTIC tools and approaches can be
found in the project deliverables and publications [12]. Indeed, another chapter
in this volume [24] broadly discusses challenges for the software of the future, and
in particular it illustrates possible solutions that have been investigated within
PLASTIC. In this chapter we expand the discussion to challenges and solutions
concerning testing activities.

Focusing on the validation framework, the above distinction between off-line
and on-line approaches concerns the stage and the context in which the testing
is carried on. In off-line testing, the system is still undergoing development or,
in a wider-ranging view, it is already completed but not available for use yet.
Hence, off-line validation implies a more traditional view that a system is tested
in the laboratory, within an environment that reproduces or simulates possi-
ble real interacting situations. The advantage of off-line validation activities is
that these are performed while no customer is using the service, thus avoiding
undesired side-effects. On the other hand, on-line approaches concern a set of
increasingly used techniques to monitor the system in its real working context
after its deployment. A possible scenario is that while the end-users are using the
service, real data are collected and sent back to the developers, e.g., for deter-
mining whether the service behavior is correct or for performing extra-functional
analyses. Hence, on-line “test cases” consist of actual usage scenarios. Another
scenario can be that the development organization performs on-line validation
activities on a fielded service, with selected test cases, possibly during idle times.

In the following of this chapter we first provide (in Sect. 2) a brief overview
of the whole PLASTIC validation framework. In Sect. 3 we provide some back-
ground information to the presented tools, and outline an example scenario on
which the tools application is illustrated. Then, in Sect. 4 we present in more
detail a set of testing tools proposed for testing a service before it is published,
namely the tool Jambition (Sect. 4.1) for functional off-line testing, and the tool
Puppet (Sect. 4.2) for the generation of a testbed respecting both functional
and extra-functional specifications. Sect. 5 presents and discusses the Audition

The PLASTIC Framework 109

framework (Sect. 5.1) that supports on-line testing before a service is published.
Conclusions are drawn in Sect. 6.

2 The PLASTIC Validation Framework

The PLASTIC project aims at enabling the development and deployment of
adaptable robust services for B3G networks. For this purpose, it has developed
a comprehensive platform integrating both adequate software methodologies and
tools, and the supporting middleware. The project has devoted special concern
to equip the platform with suitable validation technology. A team of several
partners has contributed with different approaches and tools for service analysis,
testing and evaluation. Such approaches and tools are intended for usage at
different phases of the lifetime of a service.

With reference to Fig. 1 below, a service life-cycle can include the following
steps: after being developed, it must be installed and deployed for being made
accessible to potential customers. To facilitate discovery, a service provider can
then explicitly request to be registered with a registry (such as the UDDI [28]).
We distinguish between the act of submitting the request for being included
in the register, which we indicate as the “Admission” stage, and the actual
inclusion of the service in the registry (publication), after which the service is
made publicly accessible. Finally, the service enters live usage.

Fig. 1. PLASTIC Testing stages

Considering this service life-cycle model, three testing stages have been iden-
tified in the PLASTIC validation framework. They are shown in the figure with
arrows pointing to the related life-cycle stages (Development, Admission, Live
Usage), and include:

– Development Testing and Experimentation;
– Audition;
– Monitoring.

In principle, it is assumed that the three stages proceed in sequential order, since
a service is first developed, then deployed, then used. There are however clear re-
lationships among the stages. In particular the results of the analyses conducted

110 A. Bertolino et al.

off-line may be used to guide the on-line validation activities. Moreover, the re-
sults from analysis during the on-line validation might provide a feedback to the
service developer or to the service integrator, highlighting necessary or desirable
evolutions for the services, and therefore might be used for off-line validation of
successive enhanced versions of services.

Having made clear the context for the three introduced stages for validation
in PLASTIC, we describe in the following of this section the integrated frame-
work in which all the PLASTIC developed approaches and tools fit together. An
overall picture of the PLASTIC Validation Framework1 is illustrated below in
Fig. 2. Given the broad variety of PLASTIC target applications, this validation
framework is not conceived as a fixed methodology, but rather as a set of tech-
niques/tools that can be used alternatively, or in combination, depending on the
constraints and exigencies of the considered application/scenario.

Fig. 2. PLASTIC Validation Framework

2.1 Development-Time Testing

As shown in Fig. 2, the PLASTIC off-line testing tools include: Jambition (with
its library Minerva), Puppet and Weevil.

The Jambition tool relies on a model-based testing approach originating from
a sound and well-established formal testing theory. The key idea of this tool is
to exploit as much as possible the behavioral description often available for de-
ployed services to automatically derive a conformance test suite for a service
under development. Due to the extreme dynamicity of the service domain, many
authors have suggested to augment the service WSDL description with opera-
tional specifications in order to characterize services in a richer way. Jambition

1 All the PLASTIC test tools can be freely downloaded at [35].

The PLASTIC Framework 111

assumes that such specifications are available in the Symbolic Transition System
formalism, as introduced in Sect. 3.2, or through its UML interface, implemented
via the Minerva library. The Jambition tool is illustrated in Sect. 4.1.

As services are discovered and integrated only at run-time, it is difficult – if at
all possible – to have advance guarantees on service behavior. This is particularly
true when extra-functional properties are considered. Nevertheless, developers
need tools and techniques to assess the quality of a service before its final de-
ployment. Services in general may invoke other services in order to carry out the
computation requested by the clients. If this invocation is directed to a service
that does not refer to stateful resources, then for testing purposes it is possible to
use existing and already running services. Conversely, if the invoked service ac-
cesses stateful resources, this option must be ruled out and the required services
have to be simulated. Within PLASTIC the problems of reproducing predictable
run-time environment is addressed providing two different tools, Puppet and
Weevil, which allow the developers to mock up different live usage scenarios.

In particular,Puppet supports the automated derivation of the elements neces-
sary to recreate a predictable “live” environment that is suitable for the evaluation
of extra-functional properties.Puppetallows testers to automatically generate the
required services in such a way that they yield the “correct functional and extra-
functional behavior” with respect to a given specification. As in the case of Jam-

bition, we assume that the functional specification is given by means of Symbolic
TransitionSystem formalism.Concerning the extra-functional specification,weas-
sume that it is based on the WS-Agreement language, as discussed in Sect. 3.3. How
Puppet works is further discussed in Sect. 3.3.

Finally, Weevil is meant to ease the reproduction of distributed experimental
environments. In particular it permits to recreate expected workload to stimulate
the service under test, to remotely deploy the various element required by the
experiment, and to collect data during the experiment. Weevil is not further
discussed in this chapter, we refer to the PLASTIC project site [12] for more
information and for getting the tool.

2.2 Admission Testing

The SOA foresees the existence of a service broker that is used by services to
search and obtain references to each other. The idea of Admission testing is
to have the service undergo a preliminary testing stage (also referred to as an
audition) whose results will decide the actual registration of the service in the
directory.

The intuition of Admission testing is that the quality of registered services
can be increased by granting the registration only to those services that pass the
audition testing phase. At the same time this should provide better confidence
in the fact that services will interact in a correct way even if they discover each
other at run-time.

Admission testing clearly raises issues regarding the invocations to fully-
operating services (as opposed to services being auditioned). This may be par-
ticularly dangerous if the services invoked are related to stateful resources. In

112 A. Bertolino et al.

order to avoid side effects resulting from invocations fired in the process of au-
diting a service, suitable countermeasures must be taken. Sect. 5.1 introduces
the issues behind admission testing, while Sect. 5.2 presents WS-Guard, which
is an implementation of a directory service conforming the UDDI specification
that permits to test services before their registration.

2.3 Live Usage Verification

Difficulties in applying verification techniques before live usage suggest to extend
the verification phase till run-time. The idea is to add suitable mechanisms to the
SUT and the middleware so as to detect violations with respect to the expected
behavior of services.

Within PLASTIC two different activities, aiming at the development of mon-
itoring mechanisms, have been activated. The first of these approaches, called
Dynamo-AOP, focuses on functional behavior of orchestrated services, and pro-
vides support to augment orchestrating services with checks, in order to verify
that the orchestrated services behave as expected.

Another approach in this category, called SLAngMon, supports the monitor-
ing and logging of extra-functional properties for running services. In particular,
SLAngMon implements a mechanism to automatically generate on-line check-
ers of Service Level Agreements (SLAs). The approach is founded on the timed
automata theory.

Dynamo-AOP and SLangMon are not further discussed in this chapter,
but are both extensively documented and made available in the PLASTIC web
page.

3 Modelling Service Properties

In this section we introduce the modelling notations adopted by the tools pre-
sented in the chapter. The notations are exemplified on a simple case study,
presented below.

3.1 An Example Service Scenario

We will exemplify the several testing approaches and tools on a common case
study. It is a simplified variant of the scenario presented in [2], in which three
services – the customer, the supplier, and the warehouse – cooperate to achieve
the task of a trade. The customer service is interested in buying a certain amount
of a given product, and queries the supplier service for a quote for the product of
interest. Having received the request, the supplier queries the warehouse service
to check if the requested quantity is in stock. The information provided by
the warehouse is then returned to the customer service. If satisfied with the
provided quote, the customer can proceed with the order. We will also look
at advanced interactions like supplier authentication and bonus accounting. We
can realistically assume that the three services are implemented and provided

The PLASTIC Framework 113

Fig. 3. The Customer-Supplier-Warehouse Case Study

by different stakeholders, and that their interactions are governed by functional
specifications under agreed levels of QoS, as shown in Fig. 3.

3.2 Modeling Functional Behavior

The functional behavior of a stateful software entity like a class, component, or
service, is commonly modelled using a state machine. There are many flavors
of such machines defined. For model-based testing purposes there are two main
classes of relevant models - Labelled Transition Systems (LTSs) [8] and Mealy
Machines [26] (often just referred to as Finite State Machines (FSMs)). Most
common model-based testing theories are based on either the LTS or the FSM
model. One important feature of these models is their simplicity - labels on
transitions correspond to basic actions like for instance pushing the button,
or invoking operation succ(41) on the service. Whereas this simplicity
is helpful in defining testing theories and algorithms, it is often hindering for
modeling real-world systems. Instead of using just basic actions, one would like
to use concepts known from programming languages like variables, conditional
branching, etc. Such concepts are sometimes referred to as symbolic concepts.
One prominent symbolic model is the UML 2.0 state machine [29]. To use the
accessible and broadly accepted model of an UML state machine together with
the precise and well-defined testing theories, one has to define a mapping from
UML state machines to LTSs or FSMs.

A model which is somewhat similar to UML state machines is a Symbolic
Transition System (STS). STSs are a well studied formalism in modeling and
testing of reactive systems [16], and they can be mapped to LTSs. Still, also
STSs could sound unfamiliar and difficult for practitioners. But since STSs are
close to UML state machines we developed a library called Minerva [35], which
transforms UML state machines modelled with MagicDraw [19] – a commercial
UML modeling tool – into STS representations understood by the tools we will
present later. Thus, a developer can use MagicDraw to model the functional-
ity of service interfaces in the common formalism of UML state machines. We
do not describe this transformation here, but present instead directly the STS
formalism. Finally, the important notion of a testing relation, which precisely
defines when a system conforms to its specification, is introduced.

114 A. Bertolino et al.

Symbolic Transition Systems. In our setting, STSs specify the functional
aspects of a service interface. Firstly, there are the static constituents like types,
messages, parameters, and operations. This information is commonly denoted
in the WSDL [10]. Secondly, there are the dynamic constituents like states, and
transitions between the states. STSs can be seen as a dynamic extension of a
WSDL. They specify the legal ordering of the message flow at the service inter-
face, together with constraints on the data exchanged via message parameters
(called parts in the WSDL).

An STS can store information in STS-specific variables. Every STS transition
corresponds to either a message sent to the service (input), or a message sent
from the service (output). Furthermore, a transition can be guarded by a logical
expression. After a transition has fired, the values of the variables can be up-
dated. Due to its extent and generality we do not give here the formal definition
of STSs, which can be found in [16]. Instead, we exemplify the concepts in the
setting relevant for this paper.

We assume that data types in the WSDL are specified via XML Schema
types, as commonly done. For our example scenario we first have a closer look at
the warehouse service. Firstly, we need some complex types to represent quote
requests, quotes, and addresses. We depict them in form of a class diagram:

The next table lists the operations we assume to be present in the WSDL of the
warehouse:

Operation Input Message Output Message
checkAvail ?checkAvail(r : QuoteRequest) !checkAvail(q : Quote)
auth ?auth(pw : String) !auth(q : Quote)
cancelTransact ?cancelTransact(ref : Integer) —
orderShipment ?orderShipment(ref : Integer, adr : Address) —

Since the two operations cancelTransact and orderShipment do not have
an output message, they are, in the WSDL jargon, oneway operations. The other
operations have an input and an output message - they are request-response op-
erations. Figure 4 shows an STS specifying the warehouse service. Initially, the
warehouse is in state 1. Now a user of the service (in our example the supplier)
can invoke the checkAvail operation by sending the ?checkAvailmessage. This
corresponds to the transition from state 1 to state 2. The guard of the transi-
tion [between square brackets] restricts the attribute quantity of parameter r
(which is of type QuoteRequest) to be greater than zero. After the transition
has fired, the requested quote object r is saved in the variable qr (which is

The PLASTIC Framework 115

?checkAvail<r:QuoteRequest>
[r .quant i ty > 0]
qr = r ;

?orderShipment<ref:Integer, adr:Address>
[ref == q i . re fNumber]

!checkAvai l<q:Quote>
[q.status == SOLDOUT]

?cancelTransact<ref:Integer>
[ref == q i . re fNumber]

1 2 3 4

!checkAvai l<q:Quote>
[qr.quanti ty > MAXQ &&
 q.status == AUTHREQ]

!checkAvai l<q:Quote>
[qr.quant i ty <= MAXQ &&
 q.status == VALIDQUOTE &&
 q.product == qr.product &&
 q.quant i ty == qr .quant i ty &&
 q.pr ice > 0.0 &&
 q.refNumber > 0]
q i = q;

?auth<pw:Str ing>
[]
spw = pw;

!au th<q :Quote>
[q.status == PWINVAL &&
 not val id(spw)]

5

!au th<q :Quote>
[val id(pw) &&
 q.status == VALIDQUOTE &&
 q.product == qr.product &&
 q.quant i ty == qr .quant i ty &&
 q.pr ice > 0.0 &&
 q.refNumber > 0]
q i = q;

Fig. 4. The Warehouse STS

also of type QuoteRequest) via the update statement qr = r;. Next, the ware-
house has to return a Quote object via the return parameter q. Three things can
happen. Firstly, the requested product may not be in stock with the requested
quantity. In this case a Quote object is returned with the status attribute be-
ing SOLDOUT (transition from state 2 to state 1). Secondly, if the product is in
stock and the requested quantity is less than or equal some limit MAXQ, a Quote
object is returned with status VALIDQUOTE, the same product and quantity
as being requested, and a price and refNumber greater than zero (transition
from state 2 to state 5). We save here the issued quote q in the variable qi.
Thirdly, if the requested quantity exceeds MAXQ, a quote is returned with status
AUTHREQ (transition from state 2 to state 3). This informs the supplier to pro-
vide a password string via the auth operation (transition from state 3 to state
4). If the password is invalid, a quote with status PWINVAL is returned (tran-
sition from state 4 to state 3), and the user has to invoke the auth operation
again. Given a valid password, a valid quote is returned (transition from state
4 to state 5). Being in state 5, again two things can happen. Either the user of
the service decides to reject the quote. He/she invokes the one-way operation
cancelTransact by sending the message ?cancelTransact. Here he/she must
refer to the correct issued reference number refNumber. Or he/she decides to
accept the quote. In this case, in addition to the correct reference number, an

116 A. Bertolino et al.

?login<pw:Str ing>
[]
spw = pw;

?newRequest<>

! login<resul t :Boolean>
[resul t == fa lse &&
 not val id(spw)]

? logou t<>

1 2 3 4

! login<resul t :Boolean>
[resu l t == t rue &&
 val id(pw)]

! requestQuote<q:Quote>
[q.status == VALIDQUOTE &&
 q.product == PRODUCT &&
 q.quant i ty == qr .quant i ty &&
 q.pr ice > 0.0 &&
 q.refNumber > 0]
q i = q;

?requestQuote<r:QuoteRequest>
[r.quanti ty >= MINQUANT &&
 r.product == PRODUCT]
qr = r ;

! requestQuote<q:Quote>
[q.status == SOLDOUT]

5

? logou t<>

?acceptQuote<ref: Integer>
[ref = qi . refNumber]

Fig. 5. The Supplier STS

address must be provided as a second parameter to the ?orderShipmentmessage
(both messages are labelled at the transition from state 5 to state 1).

Next we have a look at the STS specifying the supplier service, see Fig. 5.
Its WSDL also specifies the QuoteRequest and Quote complex types, as shown
above. The operations are as follows:

Operation Input Message Output Message
login ?login(pw : String) !login(result : Boolean)
requestQuote ?requestQuote(r : QuoteRequest) !requestQuote(q : Quote)
acceptQuote ?acceptQuote(ref : Integer) —
newRequest ?newRequest() —
logout ?logout() —

The supplier interface is relevant for the customer service to request quotes
at the supplier. After a customer service has passed the login procedure (tran-
sitions between states 1, 2, and 3), a quote can be requested (transition from
state 3 to state 4). This supplier is specified to deal only with one specific prod-
uct, represented by the constant PRODUCT. Only quote requests for this product
are allowed by the guard r.product == PRODUCT. Furthermore, the requested
quantity has to be at least MINQUANT. Also the supplier uses the quote status
SOLDOUT to indicate to the customer that it could not reach a warehouse with
the product in stock (transition from state 4 to state 3). If, instead, a warehouse
could be reached with the product in stock, the corresponding quote is returned
to the customer (transition from state 4 to state 5). Finally, the customer can
either accept the quote, ignore the quote and request a new quote (both via

The PLASTIC Framework 117

transition from state 5 to state 3), or end the transaction (transition from state
5 to state 1).

Testing Relations. A testing relation precisely defines when a SUT conforms to
its specification. Even though SUTs are not formal models, but physical systems,
one can define this relation formally. The trick is to assume that the SUT can be
represented by some formal model (like an LTS or FSM). Having this assumption,
one can reason about the SUT by reasoning about the formal model it represents.
This assumption is referred to as the testing hypothesis. Albeit this formal model
is just assumed to exists, but not known for a given SUT, one can define a
testing relation by relating the formal models representing SUTs with formal
models representing the specifications. The gain of this effort is, that one can
unambiguously express what a testing algorithm is testing for, since the notions
of passing or failing a test case are formally defined. Furthermore, the testing
algorithm itself can be proven to be sound and complete for a given testing
relation, see also [36].

For the tools to be presented later in this paper two testing relations are specif-
ically important – ioco [36] and eco [14]. Both relations originate from the domain
of reactive systems. Such a reactive system is a more complex system than the
services we deal with here. The main difference is that we assume services to be
passive. What does that mean? Every service provides some operations via their
WSDL to potential users, who can connect to the service and invoke those opera-
tions. If it is a request-response operation, the service will send a response message
back, but it will never send a message to the user without being requested before-
hand. Even though the WSDL allows in principle to specify active services via
solicit-response and notification operations, such services are not in common use
since they do not easily map to current programming paradigms and service de-
ployment infrastructures. To overcome some issues related to the lack of active
services, techniques like asynchronous access via callback handlers [27] are used.

Due to the restriction to passive services the testing relations simplify, con-
cepts like quiescence [36] are not relevant here. We do not formally define the
relations, but give instead their intuitive meaning, and some hints to implemen-
tation issues. For the precise definitions please refer to the cited papers.

ioco tests the provided interface of an SUT. For passive services it simplifies
to the requirement: If the Web Service produces a response message x after some
specified trace σ, then the STS specification can also produce response message
x after σ. In other words, each observed response message must be allowed
by the STS specification. For instance, a ioco-tester for the warehouse would
play the role of the supplier, and test if the warehouse behaves conforming to
its STS specification, given in Fig. 4. It requires that the requested quantity
must be greater zero (transition from state 1 to state 2). Since this is an input
message, it is under the control of the ioco-tester, which has to take care to
respect this requirement by constructing a quote request with a positive quantity,
and invoking the checkAvail operation with it. Which exact positive quantity
is chosen, is at the discretion of the tester. We see here two tasks an automatic
test tool must perform:

118 A. Bertolino et al.

– construct input data which respects the given guard
– select a concrete input value in case of multiple solutions

Both problems can be difficult especially when dealing with symbolic models.
We will come back to this when presenting the specific tools.

The STS does not specify what should happen when a zero or negative quan-
tity is requested, we call this a partial specification since there are underspecified
inputs2. Since it is not specified, it is also not tested for, the default interpreta-
tion is that everything is allowed after non-specified inputs.

After having requested the quote, the warehouse must response a Quote ob-
ject. Here, the tester will receive the quote and check if it matches one of the
three cases specified (transitions from state 2 to states 1, 3, and 5). A potential
failure here is for instance a returned quote having status AUTHREQ, even though
the requested quantity was less or equal MAXQ. Or, the returned quote has status
VALIDQUOTE, but deals with a different product or quantity than requested – and
so on. We will come back to ioco-based testing when explaining the Jambition

tool in Sect. 4.1 and the WS-Guard tool in Sect. 5.2.
ioco aims at testing if a service does conform to its interface specification. The

question is: Does the service give the specified responses? The motivation of eco
is to answer the question: Is the service correctly invoked by other services? The
situation is somewhat dual to the ioco case. The starting point in both cases is
an STS specification of some service S. A ioco-tester takes the STS, plays the
role of a user of S, and generates requests to S as explained above. An eco
tester, instead, takes the STS, plays the role of S itself, and checks if a user of S
respects the STS specification. Again in simple words eco means here that each
operation invocation to S must be allowed by its STS specification.

Taking again the warehouse STS specification given in Fig. 4, an eco-tester
plays the role of the warehouse, and in doing so it can test if the supplier, while
using the warehouse, does respect the STS specification. Initially, the STS is in
state 1. The only allowed call here is checkAvail with a quantity greater zero.
If the eco-tester receives a different call from the supplier, it will alert a detected
failure of the supplier. If the call is correct, it moves to state 2. Now the tester
can decide if it either returns a quote with status SOLDOUT (back to state 1), or
if it checks the quantity and proceeds to state 3 or 5. We see here another choice
a test tool has to make:

– choose a transition in case of multiple options

This choice, together with the choice of a concrete input value (see above) does
affect the way the state space of the specification and the SUT is covered. Since
specification- and code-coverage are basically the only means to measure test
effectiveness, several approaches exist for making these choices. From simple
random choices to sophisticated techniques based, for instance, on symbolic

2 Underspecification of inputs has important consequences for the compositionality of
ioco and its interpretation of non-determinism. This is out of the scope of this paper,
please refer to [38].

The PLASTIC Framework 119

execution of the model and/or the source-code of the SUT, exist, see for in-
stance [31,34].

Let us further assume that the eco-tester decides to check the requested quan-
tity and that the quantity is greater MAXQ. It then constructs a quote with status
AUTHREQ, returns it to the supplier, and moves to state 3. Now it waits for the
supplier to invoke the auth operation. Assuming that the supplier does provide
a valid password here, the eco-tester moves the STS to state 4 and sees that the
password is valid. Next it constructs a Quote object with status VALIDQUOTE.
Also here the tester has many choices, every solution to the guard on the transi-
tion from state 4 to state 5 corresponds to a possible quote. After having made
that choice the tester moves the STS to state 5. Now it waits again for the
supplier to either cancel the transaction, or order the shipment. And so on.

One main observation here is, that an eco-tester for a service S does exactly
what we demand from a functionally correct stub for S. It accepts invocations
and always returns responses which are allowed by the given STS specification.
We will come back to eco-based testing when explaining the Puppet tool in
Sect. 4.2 and the WS-Guard tool in Sect. 5.2.

3.3 Modeling Extra-functional Behavior

In recent years both industry and academia have shown a great interest on ex-
pressing and modeling extra-functional properties by means of machine-readable
artifacts. Specifically, several proposals on specification languages for SLAs exist
(e.g. [23], [32], [17]).

Generally speaking, SLAs describe the agreements that a service commits to
accomplish when processing a request from a client, starting from the moment it
receives the request until the moment it replies [33]. QoS guarantees are usually
defined only as a provider constraint, and do not include any kinds of events
that the client may experience, for example due to the mobility of the devices
or traffic congestion problems.

Nevertheless, in some scenarios it would be interesting to deal with the QoS
perceived by the clients rather than the QoS offered by the services. Within
Puppet, we refer to a QoS testbed generator that can take into account also
how the mobility of the devices hosting the services can affect the QoS provided
at the service port (see Sect. 4.2).

In the rest of the section, we describe WS-Agreement [17], one widely used
notation in modeling extra-functional behavior in the Web Service communities.

WS-Agreement [17] is a language defined by the Global Grid Forum aim-
ing at providing a standard layer to build agreement-driven SOAs. The main
ingredients of the language concern the specification of domain-independent ele-
ments of a simple contracting process. Such generic definitions can be augmented
with domain-specific concepts. The top-level structure of a WS-Agreement is
expressed via an XML document comprising the agreement descriptive informa-
tion, the context it refers to and the definition of the agreement items. It includes
the involved parties as well as other aspects such as its expiration date.

120 A. Bertolino et al.

Fig. 6. WS-Agreement Structure

An agreement can be defined for one or more contexts. The defined consensus,
or obligations, of a party core in a WS-Agreement specification are expressed by
means of terms, organized in two logical parts. The Service Description Terms
part specifies the involved services. It describes the reference to a description of a
service, rather than describing it explicitly into the agreement. The second part
of the terms definition specifies measurable guarantees associated with the other
terms in the agreement. Such guarantees can be fulfilled or violated. A Guarantee
Term definition consists of the obliged parties (i.e, Service Consumer and Ser-
vice Provider), the list of services this guarantee applies to (Service Scope), a
boolean expression that defines the condition under which the guarantee applies
(Qualifying Condition), the actual assertions that have to be guaranteed over
the service (Service Level Objective - SLO), and a set of business-related values
(Business Value List) of the described agreement (i.e., importance, penalties,
preferences). In general, the information contained in the fields of a Guarantee
Term is expressed by means of domain-specific languages.

As introduced in Sect. 2.1, within Puppet we use the QoS properties con-
tained in an agreement specification in order to automatically derive the elements
necessary to recreate a testbed that is suitable for predicting the extra-functional
properties of the SUT.

Specifically, for each concept in the WS-Agreement (i.e., SLO, Qualifying
Condition, Service Scope) we define an interpretation of it by means of a
given operational semantics. Clearly, this can be a quite complex and effort-
prone task, but given a specific language and an intended interpretation of the
concepts, it has to be done only once and for all.

Precisely, such operational semantics is defined as a mapping from the declara-
tive XML descriptions of the supported QoS properties to composable Java code
segments. Such segments are then injected into the stubs composing the testbed
in order to emulate the extra-functional behavior. The mapping is specified in
a parametric format that is instantiated each time one occurrence of the con-
cept appears. Within the scope of this paper, we deal with two QoS properties:
latency and reliability. The remainder of this section introduces their character-
istics. Please note that the specifications of such QoS properties conform to the
definitions adopted within the PLASTIC Project [12]. Nevertheless, also other
definitions can be adopted (e.g. as in [30]).

The PLASTIC Framework 121

1 ...
2 <wsag:ServiceLevelObjective>
3 <puppetSLO:PuppetSLO>
4 <puppetSLO:Latency>
5 <value>25000</value>
6 <puppetSLO:Distribution>
7 <Gaussian>10</Gaussian>
8 </puppetSLO:Distribution>
9 </puppetSLO:Latency>

10 </puppetSLO:PuppetSLO>
11 </wsag:ServiceLevelObjective>
12 ...

–A–

1 ...
2 Density D = new Density();
3 long funcElapsedTime = puppet.ambition.Naturals.asNatural

(aMbItIoNinvocationTime - System.currentTimeMillis()
);

4 long maxSleepingPeriod = 25000 - funcElapsedTime;
5 Double sleepingPeriod = D.gaussian(maxSleepingPeriod,10);
6 try {
7 Thread.sleep(sleepValue.longValue());
8 } catch (InterruptedException e) {}
9 ...

–B–

Fig. 7. SLO Mapping for Latency

Latency is defined as a server-side constraint, and does not concern (just
ignores) other kinds of delays that the client may experience, for example due
to network failures or traffic congestion problems. Conditions on latency can
be simulated generating delay instructions into the operation bodies of the ser-
vices stubs. For each Guarantee Term in a WS-Agreement document, informa-
tion concerning the maximum service latency is defined as a Service Level
Objective. As an example, Fig. 7.A reports the XML code for a maximum la-
tency declaration of 25000msec normally distributed, and Fig. 7.B shows the
corresponding Java code that is automatically generated by Puppet.

When dealing with latency constraints, Puppet also has to deal with other
computational tasks, like generating a functionally correct return message, tak-
ing care of reliability constraints, etc. Since these tasks also consume time, Pup-

pet has to adapt the generated latency sleeping period. For example, consider
that the term in Fig. 7. A comes in combination with some functional com-
putation statements. If at run time these computations take 2sec, the delay of
the service is adjusted to the range of [0 ÷ 23000]msec. In case the calculation
of the functionally correct return message takes more than what is allowed by
the latency constraint, the stub raises an exception and has failed its purpose.
Since SLA latency constraints for services are commonly in the order of seconds,
the computational tasks needed to generate the return messages only miss such
deadlines in quite rare cases.

Reliability constraints are declared in the Service Level Objective of a
Guarantee Term, stating the maximal admissible number of failures a service
can raise in a given time window. Such kinds of QoS attributes can be reproduced
introducing code that simulates a service failure. Within Puppet, we map a
reliability failure via an exception raised by the platform hosting the Web Service
stub. An example of the Puppet transformation for reliability constraints is
shown in Fig. 8. Part A shows the XML code specifying a maximum allowed
number of three failures over an observation window of 2 minutes; part B gives
the corresponding Java translation, assuming that the Apache-Tomcat/Axis [3]
platform is used.

A guarantee in a WS-Agreement document could also be stated under an op-
tional condition expressed by means of some Qualifying Condition elements.
Usually such optional constraints are defined in terms of accomplishments that

122 A. Bertolino et al.

1 ...
2 <wsag:ServiceLevelObjective>
3 <puppetSLO:PuppetSLO>
4 <puppetSLO:Reliability>
5 <Reliabilitywindow>
6 120000
7 </Reliabilitywindow>
8 <MaxFailures>
9 3

10 </MaxFailures>
11 <puppetSLO:Distribution>
12 <Gaussian>
13 10
14 </Gaussian>
15 </puppetSLO:Distribution>
16 </puppetSLO:Reliability>
17 </puppetSLO:PuppetSLO>
18 </wsag:ServiceLevelObjective>
19 ...

–A–

1 ...
2 long winSize = 120000;
3 int maxFault = 3;
4 long currentTimeStamp = System.currentTimeMillis();
5 for (int i=0; i<faultBuffer.size();i++){
6 if (currentTimeStamp - faultBuffer.get(i) >= winSize){
7 faultBuffer.remove(i);
8 }
9 }

10 if (faultBuffer.size() < maxFault){
11 Density d = new Density();
12 double dv = d.gaussian(100);
13 if (dv > 50) {
14 String fCode = "Server.NoService";
15 String fString = "PUPPET�EXCEPTION�:�No�target�

service�to�invoke!";
16 org.apache.axis.AxisFault fault = new org.apache.

axis.AxisFault(fCode, fString, "", null);
17 aMbItIoNsim.undo();
18 faultBuffer.add(currentTimeStamp);
19 throw fault;
20 }
21 }
22 ...

–B–

Fig. 8. SLO Mapping for Reliability

the service consumer must meet. For instance, the latency of a service may de-
pend on the value of some parameters provided at run-time. In these cases,
the transformation function can wrap the simulating code obtained from the
Service Level Objective part within a conditional statement. As mentioned,
the scope for a guarantee term describes the list of services to which it applies. In
these cases, for each listed service, the transformation function adds the behav-
ior obtained from the Service Level Objective and Qualifying Condition
transformations only to those operations declared in the scope.

4 Off-Line Testing Tools

In this section two tools for off-line testing will be introduced: Jambition and
Puppet. Whereas the former is a model-based functional testing tool, the latter
is an automatic generator for service stubs respecting both a functional- and
an extra-functional specification. The underlying models and theories have been
explained in the preceding Sect. 3.

4.1 Jambition

Jambition [35] is a Java tool which automatically tests Web Services based on
STS specifications, Fig. 9 shows a screen-shot. The underlying testing relation
is ioco. Both STSs and the ioco relation have been introduced in Sect. 3.2.

The testing approach of Jambition is random and on-the-fly. This basically
means that out of the set of specified input actions one input is chosen randomly,
and then given to the service (i.e., an operation is invoked). Next, the returned

The PLASTIC Framework 123

Fig. 9. The Jambition Testing Tool

message (if any) is received from the service. If that output message is not al-
lowed by the STS, a failure is reported. Otherwise the next input is chosen – and
so on. The on-the-fly approach differs from more classical testing techniques by
not firstly generating a set of test cases, which are subsequently executed on the
system. Instead, the test case generation, -execution, and -assessment happen
in lockstep. So doing has the advantage of allaying the state space explosion
problem faced by several conventional model-based testing techniques. The ra-
tionale here is that a test case developed beforehand has to consider all possible
outputs the system might return, whereas the on-the-fly tester directly observes
the specific output, and can guide the testing accordingly. Another cause of state
space explosion is the transformation of symbolic models like STSs into seman-
tic models like Labeled Transition Systems (LTSs). Several tools like TorX [37]
and TGV [25] do this step to apply test algorithms which are defined on LTSs.
Jambition also solves this issue by skipping this transformation step. Instead,
its test algorithm, which is proven sound and complete for ioco, is dealing di-
rectly with the STS, see [15] for details. We have seen in Sect. 3.2 that a test
tool has to perform three tasks:

1. construct input data which respects the given guard
2. select a concrete input value in case of multiple solutions
3. choose a transition in case of multiple options

124 A. Bertolino et al.

To deal with the first task, Jambition consults the constraint solver of GNU
Prolog [18] via a socket connection. That solver can compute solutions to con-
straints expressed over finite domain variables, which have a domain in the range
[0..max integer]. Since Web Services do not only deal with integer data, it would
be quite restrictive to only allow integer message parameters. Fortunately, sev-
eral types can be mapped to integers, so that constraint solving is still possible
with them. In its current version, Jambition supports the simple types Integer,
Boolean, String, and Enumeration. Furthermore, there is an experimental sup-
port for Double values having a fixed number of decimal places (to express for
instance prices of products, as used in our example case study). Such “fake”
doubles can also be mapped to integers. To express the STS transition guards,
the most usual operators known from common programming languages can be
used for integer- and boolean expressions. For enumerations and strings the only
supported operator is (in)equality, see the manual for details [35]. Sometimes
Web Services also deal with complex types, which store a sequence of data ob-
jects of arbitrary types, either simple or complex. Such a complex type is for
instance used to represent struct data known from C, or objects of classes in
OO languages. When explaining the warehouse service in Sect. 3.2 we have al-
ready seen three examples of complex types - QuoteRequest, Quote, and Address.
Jambition also allows complex types, but not in a recursive manner, meaning
that a complex type must not have a field of its own type. This excludes recursive
types like lists and trees.

To deal with the second task, Jambition either selects a random value in
case the input is not constrained by a guard. If it is constrained, four heuristics
can be applied:

– min: choose the smallest solution
– max: choose the greatest solution
– middle: choose the solution in the middle
– random: choose a random solution

For instance, in Fig. 4 the transition from state 1 to state 2 requires r.quantity
> 0. If we decide to choose the smallest solution, we get r.quantity = 1. But
if MAXQ is greater 0, always choosing r.quantity = 1 will have the consequence
that states 3 and 4 will never be reached. Thus, choosing a random solution is
commonly good practice. To deal with the third task, a purely random choice is
made. Being more sophisticated in these respects is one of our main future work
goals.

To visualize the ongoing testing process, and to understand a reported fail-
ure, Jambition can display the messages exchanged with the service while being
tested in real-time via the Quick Sequence Diagram Editor [20], an exter-
nal Java open-source visualizer for UML sequence diagrams. Figure 10 shows
an excerpt of a sequence diagram representing the message exchange between
Jambition and a warehouse service, being tested based on the STS specification
from Fig. 4.

The left lifeline corresponds to Jambition, the right one to the warehouse
service. The topmost message seen, sent from Jambition to the warehouse,

The PLASTIC Framework 125

Fig. 10. The Quick Sequence Diagram Editor

invokes the checkAvail operation with the QuoteRequest object r. The product
attribute of r is bar, and the quantity equals 33. The corresponding STS tran-
sition goes from state 1 to state 2. Since this is a request-response operation,
the warehouse sends back a response message, depicted as the following return
message (for technical reasons the returned Quote object is called return, not q,
as in the STS). The last field of the offered quote is the status attribute, being
2, which is the encoding of SOLDOUT. Jambition receives the return message and
moves the STS back to state 1. Now it again has to construct a quote request,
this time it chooses a quantity of 34, also for the bar product, and the returned
status is 1, which corresponds to AUTHREQ (transition from state 2 to 3. Next,
Jambition sends a password string (“Ken sent me”) via the auth operation
(transition from state 3 to 4). Since the password string is not constrained, the
probability that Jambition randomly chooses the right one is negligible. To still
make it pick the right one once in a while, extra options can be set. The chosen
password is correct in this case, and the warehouse returns a quote with status
4, meaning VALIDQUOTE. Here Jambition has to check the guard on the transi-
tion from state 4 to state 5, which is true, the warehouse behaves as specified:
the product is bar, the quantity equals 34, the price is 23.4 > 0.0, and the
refNumber is 64 > 0. Finally, Jambition decides to order the shipment via the
oneway operation orderShipment, depicted as an asynchronous message. And
so on.

126 A. Bertolino et al.

Furthermore, Jambition displays the achieved state- and transition coverage
of the STS, see Fig. 9 (Jambition calls states locations and transitions switches).

4.2 Puppet

In this section, we introduce Puppet illustrating first the main characteristics
of the approach and then the logical architecture of the implemented tool. The
idea of Puppet is general and could be applied to any instantiation of the SOA.
However, the current implementation focuses on the Web Services technology.

In SOAs, services collectively interact to execute a unit of programming
logic [2]. Service composition allows for the definition of complex applications
at higher levels of abstractions. Nevertheless, since services are always part of a
larger aggregation, their executions often rely on the interaction with other/ex-
ternal services.

In such a cooperating scenario, let us consider the example of a service provider
who develops a composite service (i.e., the SUT), which is intended to interact
with several other existing services (e.g. the supplier in the example at Sect. 3.1).
In general, we can suppose that the service provider needs to test the implemen-
tation of the SUT, but he/she does not own or control the externally invoked
services: for example interactions may have a cost that is not affordable for
testing purposes, or the external services are being developed in parallel with
the SUT.

The approach proposed by Puppet is to automatically derive stubs for the
externally accessed services Si from published functional and extra-functional
specifications of the external services. Puppet generates an environment (the
services stubs) within which the composite service can be run and tested (see
Fig. 11).

While various kinds of testbed can be generated according to the purposes
of the validation activities, Puppet aims specifically at providing a testbed for
reliable estimation of the exposed QoS properties of the SUT. Concerning the
externally accessed services, Puppet is able to automatically derive stub services
that expose a QoS behavior conforming to the extra-functional specifications
such as agreements among the interacting services.

Once the QoS tested is generated, the service provider may test the SUT by
deploying it on the real machine used at run-time. This would help in providing
realistic QoS measures preventing the problem of recreating a fake deployment
platform; in particular, the QoS evaluations will also take into account the other
applications running on the same machine that compete for resources with the
service under test (it is worth noting that handling this case would be extremely
difficult using analytical techniques).

The stubs developed thus far include the set of operations they export and
the emulation code for the extra-functional behaviors as specified in the WS-
Agreement. Moreover, Puppet includes a module to link each stub with code
emulating the supposed functional behavior [5]. This module is optional, in the
sense that is anyhow possible to skip it and still generate working stubs that
only emulate the extra-functional behavior of the real services.

The PLASTIC Framework 127

Fig. 11. General idea of Puppet

The functional behavior of a service is modeled by means of the STS models
as described in Sect. 3.2. Puppet inserts into the stubs parametric code able
to wrap an STS simulator we have developed [21]. The simulator simulates the
STS according to the eco testing relation. Specifically, for each invocation to a
service the stub can call the STS simulator package, choose one of the possible
functionally correct results, and send it back to answer the service client request.
The STS simulator can keep track of the symbolic states in which the STS
can currently be. Thus, to supply the emulation of the functional behavior,
Puppet would demand that the external services carry on the STS specification
corresponding to their provided interface.

In the following at Sect. 4.3 we will show an example on how the eco testing
relation enhances the ability of the testbed in revealing extra-functional bugs
in the SUT. Also, note that both the specification, and simulation of the STS
are subject to the same restrictions as the ones given for the Jambition tool in
Sect. 4.1 since the STS simulator is also used by Jambition as its underlying
engine.

Latest works on Puppet concerns the module that finally plugs into the
obtained stubs the emulation of the mobility. The detailed description of this
module is given in [6].

In the end, Puppet generates service stubs that can be used by the testers in
order to mock-up the deploying environment they would emulate. The architec-
ture of Puppet is structured in layered modules, whereby each module plays a
specific role within the stub generation process. The detailed description of the
architecture is reported in [5].

4.3 Combined Functional and Extra-functional Testing Mode

The two off-line approaches presented can be fruitfully combined, as functional
testing can be influenced by extra-functional properties and vice-versa. We have

128 A. Bertolino et al.

previously discussed this combined approach in [5]. Below, we provide two ex-
amples extracted from [5], referring again to the customer, supplier, warehouse
scenario introduced in Sect. 3.1.

Detecting Extra-functional Failures. This case refers to the task of the
developer to derive reliable values for the quality levels of the newly developed
service by taking into account the QoS of the external services.

As described in [5], a testbed that emulates the QoS features respecting also
the functional protocols on the one hand it gives a more realistic model of the
deployment environment; on the other hand it can reveal extra-functional leaks
that can be closely related to functional values.

For example, the enforcement of its functional protocol by the warehouse
stub may reveal failures in the extra-functional behavior of the supplier. Going
in detail, let us assume that the supplier has to meet a given SLA on latency
regarding the interactions with its clients, namely processing each request within
40000msec. As defined in the agreement with the warehouse shown in Fig. 7,
each interaction between the warehouse and the supplier service can take up to
25000msec. Take also into account, as described in Sect. 3.2, that the warehouse
service requires an additional authentication step in case the product quantity
exceeds MAXQ (see Fig. 4).

A potential extra-functional failure here is, that when the authentication of
the supplier is required, the time needed by the supplier to fulfill a client request
may violate its SLA. Even if the first password provided is correct, the response
of the warehouses to the availability request (the arc from state 2 to state 3
in Fig. 4), together with the response to the provided password (the arc from
state 4 to state 5 in Fig. 4), may in the worst case sum up to 50000msec,
which respects for each invocation the SLA exposed by the warehouse, but breaks
the supposed SLA between the supplier and the client. Given a warehouse stub
which does not have any notion of the functional protocol might never notice the
necessity of authentication for a supplier. Each request is considered stand-alone,
and no relation to previous or following requests, including data interdependency,
exist. Thus, in a mere extra-functional testbed this extra functional failure can
easily be invisible.

Detecting Functional Failures. Similarly to what discussed above, in [5] it
is shown how the extra-functional correctness of the stubs, can reveal further
functional issues of the services under test.

To exemplify this, assume a supplier offering a special welcome discount to
new clients for their first five purchases. Furthermore, let us consider that the
supplier behaves as depicted in Fig. 12. For a given client, the supplier asso-
ciates a counter FreeOrder, initially being five, which is decremented each time
the client places an order. To fulfill the order request, the supplier invokes the
orderShipment operation of the warehouse stub. In case a reliability failure oc-
curs now, this is propagated to the client. Let us recall that the interactions
between the supplier and the warehouse service is governed by an SLA contain-
ing a reliability clause as specified in Fig. 8. The supplier service is not prepared

The PLASTIC Framework 129

Fig. 12. Functional Fault Revealed by a Reliability Constraint

to deal functionally properties with such a reliability failure in the sense that
it does not increase again the FreeOrder counter to its original value. This is
necessary since the warehouse does not process the order due to its reliability
failure - the products cannot be purchased by the client of the supplier. As a con-
sequence, each reliability failure reduces the number of discounts by one, even
though no goods have been purchased by the client. Such kinds of functional
failures cannot be discovered using a testbed that only reproduces functionally
correct behavior, ignoring the extra-functional specifications.

5 On-Line Testing Approaches

This section discuss on-line web-services testing strategies. Run-time testing can
be a quite dangerous activity in particular when it involves stateful resources.
Therefore in some cases run-time testing of services is not a valid option being
monitoring a possible alternative solution for run-time verification. Obviously the
drawback in this case is that observed fault are “real” i.e. they really exist on the
running system. As a result monitoring approaches have to be combined with
recovery strategies. In this paper we limit our discussion to testing strategies and
in particular in this section with respect to the framework illustrated in Sect. 2
we discuss a suitable approach for the admission testing phase. The interested
reader can refer to [4] for approaches to run-time monitoring.

5.1 The Audition Framework

The basic idea behind the audition framework is to test a service when it asks for
registration within a directory service. Then in case the service fails to show the
required behavior the registration in the directory is not granted. In this sense
we called the framework “Audition”, as if the service undergoes a monitored
trial before being put “on stage”.

It is worth noting that from a scientific point of view the implementation
of the framework does not really introduce novel testing approaches. On the

130 A. Bertolino et al.

Fig. 13. The Audition Framework

contrary one of its target is just to reuse complex software tools (such as test
generators) in a new context trying to take advantage of the new opportunities
provided by the service oriented paradigm, such as for instance the existence of
a “trusted party” corresponding to the service broker.

Nevertheless in order to automatically derive test cases for services asking for
registration the framework requires the use of an increased service information
model that should provide some description in a computer readable format of
the service expected behavior. Such information model has to be provided to the
service registry when a service asks for being included in the registry, and accord-
ing to the framework the behavioral description has to be suitable for automatic
test case derivation. Certainly this request has importance consequences on the
applicability of the framework on a real setting. Nevertheless slightly different
configuration of the framework can be derived for instance relaxing the part on
automatic derivation of test cases with the usage of predefined and static test
suites stored in the registry. This section will only discuss the framework when
an automatic test generator is available. In particular Figure 13 shows the main
elements of the framework. The figure intends to provide just a logical view, i.e.,
the arrows have not to be directly interpreted as invocations on methods pro-
vided by one of the elements. Instead they generally represent a logical step in

The PLASTIC Framework 131

the process and point to the elements that will take the responsibility of carrying
on the associated task.

The process subsumed by the framework is activated by a request made by a
service asking for being listed within the registry and is structured in eight main
steps (the numbers in the list below correspond to the numbers in Figure 13):

1. a service S1 asks the registry (directory service in the figure) to be pub-
lished among the services available to accept invocations. Contextually, S1
provides information concerning both the syntax (WSDL in the framework
of the web service related technology) and a behavioral description of the
offered service (expressing the protocol that a possible client should follow to
correctly interact with the service). The behavioral description format has
to be suitable for automatic test case generation.

2. the registry service stores S1 provided information marking them as “pending
registration”. At the same time S1 related information are sent to a Testing
Driver Service (TDS). The provided behavioral description has to correspond
to the one expected by the specific TDS. It is logically possible to accept
different behavioral description for a service (contract based, automata based
etc.); nevertheless for each accepted description a TDS able to automatically
derive test cases from such a description has to be identified.

3. the TDS starts to make invocations on S1, acting as the driver of the test
session, checking if the service behaves accordingly to the specification.

4. during the audition, unless S1 is a basic service, i.e. a service that does not
require to cooperate with other services to fulfill its task, S1 will query the
registry for references to other services necessary to complete the provision
of its own service. Indeed S1 could use other services without asking to the
registry since the references are hard coded in S1 definition. From the point
of view of the framework in this case S1 is not different from a “basic service”
since also at run-time it will continue to use the statically bound services.

5. the registry checks if the service asking for external references is in a pend-
ing state or not. If not, references for the required service description file
and its relative access point are provided. Instead in case the service is in
a pending state the registry provides the information, such as the interface
and the behavioral description for the requested service to a Proxy/Stub
Service factory. This Service starting from the syntactic and behavioral de-
scription is able to derive proxy or stubs for the requested service. In case of
a proxy generation the generated service will implement the same interface
of the “proxied” service, but at the same time it will check if the invocations
made by S1 are in accordance to the ones defined in the specification and
then expected by the invoked service. In case no errors are discovered the
invocation is redirected to the real implementation of the service.

In some cases a testing invocation to a running service may not be an op-
tion, since it would result in permanent effects on a stateful resource. In such
cases, in order to completely implement the framework, the factory has to
be able to generate service stubs. Obviously this will increase the complexity
of the framework and asks for the provisioning of service description models

132 A. Bertolino et al.

suitable for the automatic generation of service stubs. An STS specification
could be for instance a model suitable for automatic stub derivation.

6. for each inquiry request made by S1 the registry service returns a binding
reference to a Proxy/Stub version of the requested service.

7. on the base of the reference provided by the registry, S1 starts to make
invocations on the Proxy/Stub versions of the required services in order
to fulfill a request made by the test driver service. As a consequence the
Proxy/Stub version of the service checks the content and the order of any
invocation made by S1; In case a violation to the specification for the invoked
service is detected, the Proxy/Stub informs the registry service that S1 is not
suitable for being registered. As a consequence the directory service removes
from the pending entries the service currently under test, and denies the
registration;

8. finally in case one of the invocation made by the TDS results in the detection
of an error the registry is informed. As for the previous case the registration
will be denied.

Considerations on the Framework. The availability of a registry enhanced
with testing capabilities, granting the registration only to “good” services, should
reduce the risk of run-time failures and run-time interoperability mismatches.
As described above, in our vision a service asking for registration will undergo
two different kinds of check before being registered. The first concerns the ability
of the service of behaving according to its specification and the second of being
able to correctly interact with required services. Nevertheless some issues have
to be considered in particular to derive a real implementation of the service and
to better understand the applicability of the framework itself.

A first note concerns the reduced control over a service implementation by
a third party such as the tester. In a SOA setting each organization has full
control over the implementation of exposed services. This would mean that a
service implementation could be changed by the organization to which it belongs,
after its registration has been granted by the registry, and without informing the
registry that otherwise would start another testing campaign. As a result a non-
tested service will be considered as registered. Main consequence of this lack of
control is that the framework can be fruitfully applied only within a semi-open
environment, i.e. in an environment in which the participating organizations are
known and interested in collaborating with the registry in order to guarantee
that no “bad” services will enter the “stage”.

Another relevant request posed by the framework concerns the fact that each
interaction with the registry has to permit the identification of the sender. This
constraint directly derives from the fact that the registry has to recognize the
status of the registration for the invoking service when it asks for references to ex-
ternal services. At the same time it is worth mentioning that a service asking for
registration has to know that it will undergo a testing session. Therefore during
the testing session, and until the registration is not confirmed, the invocations
should not lead to permanent effects.

The PLASTIC Framework 133

A final interesting note concerns the automatic generation of stubs and prox-
ies. Stubs intend to simulate the behavior of an invoked service. However the
automatic generation of a service stub asks for the storing in the registry of a
complex service model such as for instance the one discussed in Sect. 3.2. Indeed
in case the registered service model does not permit the automatic derivation of
a suitable stub the framework foresees the generation of proxy services instead
of stub services. A proxy service will check and log incoming invocations with
respect to the model and then it will redirect the invocation to a real imple-
mentation of the service in order to generate a meaningful answer. However this
option is only acceptable in case the invoked service does not refer to a stateful
resource; or otherwise in case the platform provides specific support for run-time
testing purpose.

Next section shows a partial implementation of the framework that we derived
within the Web Service domain.

5.2 WS-Guard

This section describes some relevant detail of a real implementation of an en-
hanced version of a UDDI registry able to apply the “audition phases”. The re-
sulting registry shows a standard UDDI web service interface and has been called
WS-Guard(Guaranteeing Uddi Audition at Registration and Discovery) [11].

The first decision to take concerns the different technologies can be used for
SOA. In developing WS-Guard we decided to use Apache related technologies
and in particular the Axis2 SOAP container. This permitted us to easily derive,
using the WSDL2Java tool, skeleton classes from the WSDL definitions for the
two interfaces foreseen by the UDDI 2.0 specification : one for publishing services
and the other for inquiring registered services.

Concerning the registry, we adopt an open source version of a UDDI registry
that is provided by the Apache foundation under the project called jUDDI [13].
jUDDI consists of a set of servlets that are able to handle SOAP messages
formatted according to the message format defined by the UDDI specification.
To store the information related to registered services jUDDI requires to be
linked to a suitable database, being MySQL one of the possible options (and the
one we took).

Figure 14 describes the basic elements necessary to set-up a UDDI server
using jUDDI.

Fig. 14. jUDDI environment setting and technology

134 A. Bertolino et al.

Fig. 15. WS-GUARD service logical structure

Another tool that can be usefully adopted in this setting is UDDI4J [1]. This
is a java based library providing an API that permits to directly interact with
a remote servlet based implementation of the UDDI specification. As a result
using UDDI4J it is possible to interact with a jUDDI server just making local
calls to suitable objects derived from the UDDI4J library.

The availability of all these tools permitted to us to drastically reduce the
required implementation effort, making also natural the choice of implementing
our enhanced “UDDI server” as a Proxy service. This means that we were able
to completely decouple the “audition enhancements” from a standard UDDI im-
plementation. So within WS-Guard the functionalities required by the audition
framework are enclosed in the skeletons derived by the UDDI WSDL specifica-
tion using the WSDL2Java tool. At the same time the skeletons act as proxy
implementation for a real UDDI implementation derived using jUDDI. Within
the proxy the interactions with jUDDI are defined through the use of classes
made available by the UDDI4J library.

Figure 15 shows the logical structure of the implementation we derived. The
picture reports the main elements of the WS-Guard implementation and in par-
ticular it shows a supporting services element whose implementation is detailed
in the next subsection.

The PLASTIC Framework 135

5.3 WS-Guard Usage: Issues and Solutions

In this section we illustrate the various implementation choices we took to de-
velop the WS-Guard registry and how the various issues posed by the frame-
work have been solved. For the sake of presentation we illustrate the various steps
reusing the scenario highlighted in Sect. 3.1 assuming that a supplier service
provider wants to register its service on a audition enhanced directory service.

Modeling and Testing Web Services. WS-Guard requires that a service
asking for registration provides a specification of its external behavior (also a
reference to an URL from which such specification can be retrieved). The for-
malism we have adopted for such step is the one described in Sect. 3.2. In order
to store such information we had to change the data structure used by UDDI
and the WSDL-UDDI mapping in order to be able to associate a WSDL de-
scription to an STS specification. So with reference to the Supplier service it is
required that the service provides a reference to a suitable representation of the
STS shown in Figure 5. Such model will be then stored in the registry.

Having services represented as STSs, we could exploit the JAmbition “engine”
illustrated in 4.1 in order to implement a tester service. So JAmbition has been
wrapped within a web service that is then invoked by our WS-Guard proxy
service after receiving a publish request. WS-Guard provides the tester with the
endpoint of the service to be tested and the corresponding STS representation.

Web Services Identification. The Audition framework foresees the ability of
recognizing if a service performing an inquiry corresponds to a service under
test. In such a case the registry returns a reference to a proxy version of the
requested service instead of a direct reference.

To uniquely identify a Web service we decided to choose the service endpoint
reference as an identifier. To gather the endpoint reference, we mandate the usage
of messages compliant to the WS-Addressing specification [39] when interacting
with the registry. Indeed this specification provides a means to the receiver to
identify the service endpoint from which a Web service message request comes
from. Moreover Axis 2 provides mechanisms to support communications and
message generation according to this standard.

Pending Data Structures. A Java HashSet data structure is used to store
identification information of services under test (pending state). The data struc-
ture is maintained in memory in order to make faster the check that have to
be carried on for each incoming inquiry request in order to verify the status
of the sender. All the other service related information are directly inserted in
the database and marked as pending. This is necessary in order to avoid that
the service endpoint is returned as result of inquiry made by already registered
services. So with reference to the example, the supplier service reference will not
be returned to any other service until it is marked as pending. All the entries
related to a service under audition will be deleted in case the service does not
overtake the audition phase.

136 A. Bertolino et al.

Discovery of Services and Generation of Proxies. One key point of the
Audition process is the replies to inquires made by services in a pending state.
Going to our example this is the case of the supplier that needs to access to
retrieve and access to warehouse services. According to the framework in this case
WS-GUARD must returns, to the supplier service, a reference to a proxy version
of the warehouse and not a direct access point. Moreover the proxy service should
be able to identify wrong calls made by the supplier on the warehouse. To do this
we automatically generate proxies that can check received invocations against
the STS defined for the requested service (warehouse in our case). In case of an
error the registry is then informed.

Finally to cope with stateful services WS-Guard make the assumption that
services are deployed in two copies. One copy is the regular service accessible at
the endpoint http://www.mycompany.com/service and that have been regis-
tered in the registry. The second copy is made available only for testing purpose
at http://www.mycompany.com/service test. In order to avoid dangerous us-
age of stateful services WS-Guard generate proxies that only interact with
services at endpoints with extension “ test”.

6 Conclusions

This chapter has overviewed several issues and recent results in the field of SOA
testing, with a special focus on the PLASTIC project, which is also discussed in
Chapter 1 [24].

We have presented several new testing methods facing the exigencies of flexi-
bility posed by SOAs. Such flexibility is mainly expressed in terms of the dynamic
interactions among “black-box” software, provided by different organizations.
We have also addressed the evaluation of extra-functional properties, which are
of outmost importance in pervasive SOAs.

Summarizing, the described PLASTIC framework spans over the whole ser-
vice life-cycle, covering with a coherent set of tools both off-line and on-line
stages, and addressing both functional and QoS concerns. Given the broad va-
riety of PLASTIC applications, the validation framework is not conceived as
a fixed methodology, but rather as a set of techniques/tools that can be used
alternatively, or in combination, depending on the constraints/requirements on
each considered application/scenario.

Although verification and validation of SOA is a very active research topic, as
shown by the many works surveyed in Chapter 4 [9], solutions that can be found
in the literature generally address a specific limited objective. The concerted
effort for service validation in PLASTIC provided the opportunity for developing
a consistent methodology which is unique in terms of comprehensiveness and
flexibility. The platform integrates several approaches that can be applied during
the whole service life-cycle: after being developed, when published on a new
environment, and during the actual live usage.

In particular: Jambition, Puppet, and Weevil allow service developers to
rigorously test a service (using the original STS model) before deployment in a

The PLASTIC Framework 137

realistic reproduction of the deployment context (as opposed to testing in the
real environment or to manually mocking it). SlangMon and Dynamo-AOP

support monitoring against the defined properties with an improved efficiency
with respect to existing solutions, and directly deriving the monitor from the
SLA contracts.

Further work on experimentation on realistic testbeds and on real applications
is required. At the current stage, a set of prototype tools have been released and
are publicly available for download, but their usage on PLASTIC industrial case
studies is still ongoing. Usage of the tools requires some adaptation/modeling
effort and a major open issue is the lack of realistic testbeds on which to perform
experiments that can provide realistic validation.

Acknowledgement

This paper reports about the work carried on in the 32 months European STREP
IST-26955 PLASTIC. All the partners in the project have in different measures
and ways inspired our ideas and collaborated with us. The PLASTIC validation
framework has been mainly developed within Workpackage 4, and we would like
to thank the many colleagues who contributed to it, and in particular Domenico
Bianculli, Franco Raimondi, Antonino Sabetta and Alexander Wolf. Section 2 of
this paper is an excerpt of joint discussions and writings for the WP4 deliverables.
Lars Frantzen is further supported by the Marie Curie Network TAROT (MRTN-
CT-2004-505121) and by the Netherlands Organization for Scientific Research
(NWO) under project STRESS.

References

1. UDDI4J (accessed on June 3rd, 2008), http://uddi4j.sourceforge.net/
2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services–Concepts, Archi-

tectures and Applications. Springer, Heidelberg (2004)
3. Basha, S.J., Irani, R.: AXIS: the next generation of Java SOAP. Wrox Press (2002)
4. Bertolino, A., Bianculli, D., De Angelis, G., Frantzen, L., Kiss, Z.G., Ghezzi, C.,

Polini, A., Raimondi, F., Sabetta, A., Toffetti Carughi, G., Wolf, A.: Test Frame-
work: Assessment and Revision. Technical Report Deliverable D4.3, PLASTIC
Consortium. IST STREP Project (May 2008)

5. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Model-based Generation of
Testbeds for Web Services. In: Proc. of the 20th IFIP Int. Conference on Testing of
Communicating Systems (TESTCOM 2008). LNCS. Springer, Heidelberg (2008)

6. Bertolino, A., De Angelis, G., Lonetti, L., Sabetta, A.: Let The Puppets Move!
Automated Testbed Generation for Service-oriented Mobile Applications. In: Proc.
of the 34rd EUROMICRO CONFERENCE on Software Engineering and Advanced
Applications. IEEE, Los Alamitos (2008)

7. Bertolino, A., Marchetti, E.: A brief essay on software testing. In: Thayer, R.H.,
Christensen, M.J. (eds.) Software Engineering, 3rd edn. Development process,
vol. 1, pp. 393–411. Wiley-IEEE Computer Society Press (2005)

http://uddi4j.sourceforge.net/

138 A. Bertolino et al.

8. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

9. Canfora, G., Di Penta, M.: Service Oriented Architectures Testing: A Survey. In:
De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006–2008, University of Salerno, Italy.
LNCS, vol. 5413, pp. 78–105. Springer, Heidelberg (2009)

10. Christensen, E., et al.: Web Service Definition Language (WSDL) ver. 1.1 (2001),
http://www.w3.org/TR/wsdl/

11. Ciotti, F.: Ws-guard - enhancing uddi registries with on-line testing capabilities.
Master’s thesis, Department of Computer Science, University of Pisa (April 2007)

12. PLASTIC european project homepage, http://www.ist-plastic.org
13. Apache Foundation. JUDDI (accessed on June 3rd, 2008),

http://ws.apache.org/juddi/
14. Frantzen, L., Tretmans, J.: Model-Based Testing of Environmental Conformance

of Components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2006. LNCS, vol. 4709, pp. 1–25. Springer, Heidelberg (2007)

15. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic
specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005)

16. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES
2006 and RV 2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

17. Global Grid Forum. Web Services Agreement Specification (WS–Agreement), ver-
sion 2005/09 edn. (September 2005)

18. GNU Prolog homepage, http://www.gprolog.org/
19. MagicDraw homepage, http://www.magicdraw.com
20. Quick Sequence Diagram Editor homepage, http://sdedit.sourceforge.net/
21. STSimulator homepage, http://www.cs.ru.nl/∼lf/tools/stsimulator/
22. Huhns, M.N., Singh, M.P.: Service-Oriented Computing: Key Concepts and Prin-

ciples. IEEE Internet Computing 9(1), 75–81 (2005)
23. IBM. WSLA: Web Service Level Agreements, version: 1.0 revision: wsla-

2003/01/28 edn. (2003)
24. Inverardi, P., Tivoli, M.: The future of Software: Adaptation and Dependability.

In: De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006–2008, University of Salerno, Italy.
LNCS, vol. 5413, pp. 1–31. Springer, Heidelberg (2009)

25. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. In: IDPT 2002. Society
for Design and Process Science (2002)

26. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. Proceedings of the IEEE 84, 1090–1126 (1996)

27. NetBeans Tutorial on Asynchronous JAX-WS Web Service Client End-to-End Sce-
nario, http://www.netbeans.org/kb/55/websvc-jax-ws-asynch.html

28. OASIS consortium. Universal Description, Discovery, and Integration (UDDI) (ac-
cessed on June 3rd, 2008),
http://www.oasis-open.org/committees/tc home.php?wg abbrev=uddi-spec

29. Object Management Group. UML 2.0 Superstructure Specification, ptc/03-08-02
edn. Adopted Specification

30. Sahner, R.A., Trivedi, K.S., Puliafito, A.: Performance and Reliability Analysis
of Computer Systems An Example-Based Approach Using the SHARPE Software
Package. Kluwer Academic Publishers, Dordrecht (1995)

http://www.w3.org/TR/wsdl/
http://www.ist-plastic.org
http://ws.apache.org/juddi/
http://www.gprolog.org/
http://www.magicdraw.com
http://sdedit.sourceforge.net/
http://www.cs.ru.nl/~lf/tools/stsimulator/
http://www.netbeans.org/kb/55/websvc-jax-ws-asynch.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec

The PLASTIC Framework 139

31. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

32. Skene, J., Lamanna, D.D., Emmerich, W.: Precise Service Level Agreements. In:
Proc. of ICSE 2004, pp. 179–188. IEEE Computer Society Press, Los Alamitos
(2004)

33. Skene, J., Skene, A., Crampton, J., Emmerich, W.: The Monitorability of Service-
Level Agreements for Application-Service Provision. In: Proc. of WOSP 2007, pp.
3–14. ACM Press, New York (2007)

34. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

35. PLASTIC tools homepage, http://plastic.isti.cnr.it/wiki/tools
36. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.

Software—Concepts and Tools 17(3), 103–120 (1996)
37. Tretmans, J., Brinksma, E.: TorX : Automated Model Based Testing. In: Hart-

man, A., Dussa-Zieger, K. (eds.) First European Conference on Model-Driven Soft-
ware Engineering, December 11-12 2003, Imbuss, Möhrendorf, Germany (2003)

38. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional Testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

39. W3C. WS-Addressing (accessed on June 3rd, 2008),
http://www.w3.org/Submission/ws-addressing/

http://plastic.isti.cnr.it/wiki/tools
http://www.w3.org/Submission/ws-addressing/

	The PLASTIC Framework and Tools for Testing Service-Oriented Applications
	Introduction
	The PLASTIC Validation Framework
	Development-Time Testing
	Admission Testing
	Live Usage Verification

	Modelling Service Properties
	An Example Service Scenario
	Modeling Functional Behavior
	Modeling Extra-functional Behavior

	Off-Line Testing Tools
	Jambition
	Puppet
	Combined Functional and Extra-functional Testing Mode

	On-Line Testing Approaches
	The Audition Framework
	WS-Guard
	WS-Guard Usage: Issues and Solutions

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

