
The Future of Software: Adaptation and
Dependability�

Paola Inverardi and Massimo Tivoli

University of L’Aquila
Dip. Informatica

via Vetoio, 67100 L’Aquila
Fax: +390862433131

{inverard,tivoli}@di.univaq.it

Abstract. Software in the near ubiquitous future (Softure) will need to
cope with variability, as software systems get deployed on an increasingly
large diversity of computing platforms and operates in different execu-
tion environments. Heterogeneity of the underlying communication and
computing infrastructure, mobility inducing changes to the execution
environments and therefore changes to the availability of resources and
continuously evolving requirements require software systems to be adapt-
able according to the context changes. Softure should also be reliable and
meet the users performance requirements and needs. Moreover, due to
its pervasiveness and in order to make adaptation effective and success-
ful, adaptation must be considered in conjunction with dependability,
i.e., no matter what adaptation is performed, the system must continue
to guarantee a certain degree of Quality of Service (QoS). Hence, Sof-
ture must also be dependable, which is made more complex given the
highly dynamic nature of service provision. Supporting the development
and execution of Softure systems raises numerous challenges that in-
volve languages, methods and tools for the systems thorough design and
validation in order to ensure dependability of the self-adaptive systems
that are targeted. However these challenges, taken in isolation are not
new in the software domain. In this paper we will discuss some of these
challenges and possible solutions making reference to the approach un-
dertaken in the IST PLASTIC project for a specific instance of Softure
focused on software for Beyond 3G (B3G) networks.

1 Introduction

The design and the development of dependable and adaptable software applica-
tions in the near ubiquitous future (Softure) cannot rely on the classical desktop-
centric assumption that the system execution environment is known a priori at

� This work is a revised and extended version of [6]. It has been partially supported
by the IST project PLASTIC. We acknowledge all the members of the PLASTIC
Consortium and of the SEALab at University of L’Aquila for joint efforts on all the
research efforts reported in this paper.

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 1–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 P. Inverardi and M. Tivoli

design time and, hence, the application environment of a Softure cannot be
statically anticipated. Softure will need to cope with variability, as software sys-
tems get deployed on an increasingly large diversity of computing platforms and
operates in different execution environments. Heterogeneity of the underlying
communication and computing infrastructure, mobility inducing changes to the
execution environments and therefore changes to the availability of resources and
continuously evolving requirements require software systems to be adaptable ac-
cording to the context changes. At the same time, Softure should be reliable
and meet the users performance requirements and needs. Moreover, due to its
pervasiveness and in order to make adaptation effective and successful, adapta-
tion must be considered in conjunction with dependability, i.e., no matter what
adaptation is performed, the system must continue to guarantee a certain degree
of Quality of Service (QoS). Hence, Softure must also be dependable, which is
made more complex given the highly dynamic nature of service provision.

Supporting the development and execution of Softure systems raises numerous
challenges that involve languages, methods and tools for the systems through de-
sign and validation in order to ensure dependability of the self-adaptive systems
that are targeted.

However these challenges, taken in isolation are not new in the software
domain. Adaptable and re-configurable systems do exist in many software ap-
plication domains from tele-communication to the software domain itself, e.g.,
operating systems. Dependable systems have been intensively investigated and
methods and tools exist to develop them. Hence what are the new challenges for
Softure? In the following we will discuss some of these challenges and possible so-
lutions making reference to the approach undertaken in the IST PLASTIC [13]
project for the specific instance of Softure as software for Beyond 3G (B3G)
networks. Our thesis is that Softure requires to rethink the whole software engi-
neering process and, in particular, it needs to reconcile the static view with the
dynamic view by breaking the traditional division among development phases
by moving some activities from design time to deployment and run time hence
asking for new and more efficient verification and validation techniques. Depend-
ability is achieved with a comprehensive life cycle approach from requirements
to operation, to maintenance by analyzing models, testing code, monitor, and
repair execution. Many software models are involved, from requirements to spec-
ification, to code. In order to support dependability of adaptable applications
new modeling notations are required. These should permit to express and deal
with characteristics that are crucial for a Softure, i.e., QoS, resource-awareness,
evolution, reconfiguration, variability, and uncertainty. At the same time they
should allow for validation techniques affordable at run time. Their cost must be
sustainable under the execution environment resource constraints, e.g. time and
computational resources. In order to easily and consistently integrate the model-
ing layer with the analysis and implementation ones, model transformation and
evolution techniques should be exploited.

The paper is structured as follows. In the following section we discuss the Sof-
ture characteristics in order to identify the two key challenges: adaptability and

The Future of Software: Adaptation and Dependability 3

dependability. Section 3 discusses and compares different notions of adaptability
with different degrees of dependability. This discussion will bring us to consider
the Softure issues in a software process perspective. In Section 4, based on the
previous discussion and comparison of different adaptability and dependability
degrees, we discuss the requirements that the modeling notations to the design,
development, and validation of Softure should satisfy. Section 5 proposes a new
software process and discusses it in the scope of the PLASTIC project [13]. In
Section 6 we conclude by summarizing the thesis originating from the discussion
carried on through the paper.

2 Softure Challenges: Setting the Context

Softure is supposed to execute in an ubiquitous, heterogeneous infrastructure un-
der mobility constraints. This means that the software must be able to carry on
operations while changing different execution environments or contexts. Execu-
tion contexts offer a variability of resources that can affect the software operation.
Context awareness refers to the ability of an application to sense the context in
which it is executing and therefore it is the base to consider (self-)adaptive ap-
plications, i.e., software systems that have the ability to change their behavior
in response to external changes.

It is worthwhile stressing that although a change of context is measured in
terms of availability of resources, that is in quantitative terms, an application can
only be adapted by changing its behavior, i.e., its functional/qualitative specifi-
cation. In particular, (Physical) Mobility allows a user to move out of his proper
context, traveling across different contexts. To our purposes the difference among
contexts is determined in terms of available resources like connectivity, energy,
software, etc. However other dimensions of contexts can exist relevant to the
user, system and physical domains, which are the main context domains iden-
tified in the literature [15]. In the software development practice when building
a system the context is determined and it is part of the (non-functional) re-
quirements (operational, social, organizational constraints). If context changes,
requirements change therefore the system needs to change. In standard software
the pace at which context changes is slow and they are usually taken into ac-
count as evolutionary requirements. For SOFTURE context changes occur due
to physical mobility while the system is in operation. This means that if the
system needs to change this should happen dynamically. This notion leads to
consider different ways to modify a system at run time that can happen in
different forms namely (self-)adaptiveness/dynamicity and at different levels of
granularity, from software architecture to line of code.

Softure needs also to be dependable. Dependability is an orthogonal issue that
depends on QoS attributes, like performance and all other -bilities. Dependability
impacts all the software life cycle.

In general dependability is an attribute for software systems that operate
in specific application domains. For Softure we consider dependability in its
original meaning as defined in [5], that is the trustworthiness of a computing

4 P. Inverardi and M. Tivoli

system which allows reliance to be justifiably placed on the service it delivers ...
Dependability includes such attributes as reliability, availability, safety, security.
Softure encompasses any kind of software system that can operate in the future
ubiquitous infrastructure. The dependability requirement is therefore extended
also to applications that traditionally have not this requirement. Dependability
in this case represents the user requirement that states that the application must
operate in the unknown world (i.e., out of a confined execution environment)
with the same level of reliance it has when operating at home. At home means
in the controlled execution environment where there is complete knowledge of the
system behavior and the context is fixed. In the unknown world, the knowledge
of the system is undermined by the absence of knowledge on contexts, thus the
dependability requirement arises also for conventional applications. Traditionally
dependability is achieved with a comprehensive approach all along the software
life cycle from requirements to operation to maintenance by analyzing models,
testing code, monitor and repair execution.

Therefore the overall challenge is to provide dependable assurance for highly
adaptable applications. Since dependability is achieved throughout the life cycle
many software artifacts are involved, from requirements specification to code.
In the rest of this paper we will consider as such artifacts only models that is
idealized view of the system suitable for reasoning, developing, validating a real
system. Models can be functional and non-functional and can represent different
level of abstractions of the real system, from requirements to code. Our research
bias is on Software Architecture, therefore we will often consider software ar-
chitectural systems models. An architectural model allows the description of
the static and dynamic components of the system and explains how they inter-
act. Software architectures support early analysis, verification and validation of
software systems. Software architectures are the earliest comprehensive system
model along the software lifecycle built from requirements specification. They are
increasingly part of standardized software development processes because they
represent a system abstraction in which design choices relevant to the correct-
ness of the final system are taken. This is particularly evident for dependability
requirements like security and reliability and quantitative ones like performance.

3 Adaptabilty: 3 Examples

In this section we discuss the notion of adaptability. According to what presented
so far, adaptability is the ability to change a system according to context varia-
tions, e.g., driven by QoS requirements. However, the change should maintain the
essence of the system that from now on we will call invariant. From Section 3.2 to
Section 3.4, we will focus on evolving systems that change through adaptation. In
order to classify them we propose to use a 4 dimension metric: the four Ws.

3.1 The Four Ws

The systems we consider can change through adaptability either their structure
and/or their behavior. The four Ws characterize the nature of the change along
the following four dimensions:

The Future of Software: Adaptation and Dependability 5

– Why there is the need to change?
– What does (not) change?
– When does the change happen?
– What/Who manages the change?

Why: this dimension makes explicit the need for the change. In a Software
Engineering perspective this change is always done to meet requirements.
It can be because the requirements evolved or it can be that the system
does not behave properly according to the stated requirements. It is also
worthwhile mentioning that requirements can be functional and non func-
tional requirements. The former class captures the qualitative behavior of a
software system, its functional specification. The latter defines the systemss
quantitative attributes like, performance, reliability, security, etc.

What: here we discuss the part of the system that is affected by the change.
Referring to architectural models, changes can affect the structure and/or the
behavior. For the structure, components can get in and out, new connectors
can be added and removed. For the behavior components can change their
functionality and connectors can change their interaction protocols.

When: this dimension captures the moment during the systems lifetime in which
the change occurs. It does not mean that the change happens necessarily at
run time. This dimension is related with the Static versus Dynamic issue.

What/Who: this is the description of the mechanisms to achieve the change.
It can be a configuration manager or it can be the system itself. Involves
monitoring the system to collect relevant data, evaluating this data, make a
decision about the change alternatives and then perform the actual change.

In the following we will provide 3 examples of functional and non-functional
adaptation. The first one has been developed in the Software Engineering re-
search group at University of L’Aquila.

3.2 Synthesis: An Approach to Automatically Build Failure-Free
Connectors for Component-Based Architectures

Synthesis is a technique equipped with a tool [2,16] that permits to assemble
a component-based application in a deadlock-free way [7,8,18]. Starting from a
set of components Off The Shelf (OTS), Synthesis assembles them together ac-
cording to a so called connector-based architecture by synthesizing a connector
that guarantees deadlock-free interactions among components. The code that
implements the new component representing the connector is derived, in an au-
tomatic way, directly from the OTS (black-box) components interfaces. Synthesis
assumes a partial knowledge of the components interaction behavior described
as finite state automata plus the knowledge of a specification of the system to
assemble given in terms of Message Sequence Charts (MSC) [9,19,20]. Further-
more, by exploiting that MSC specification, it is possible to go beyond deadlock.
Actually, the MSC specification is an implicit failure specification. That is we as-
sume to specify all the desired assembled system behaviors which are failure-free
from the point of view of the system assembler, rather than to explicitly specify

6 P. Inverardi and M. Tivoli

the failure. Under these hypotheses, Synthesis automatically derives the assem-
bling code of the connector for a set of components. The connector is derived in
such a way to obtain a failure-free system. It is shown that the connector-based
system is equivalent according to a suitable equivalence relation to the initial
one once depurated of all the failure behaviors. The initial connector is a no-op
connector that serves to model all the possible component interactions (i.e., the
failure-free and the failing ones). Acting on the initial connector is enough to
automatically prevent both deadlocks and other kinds of failure hence obtaining
the failure-free connector.

Fig. 1. The Synthesis Application Adaptation

As illustrated in Figure 1, the Synthesis framework realizes a form of system
adaptation. The initial software system is changed by inserting a new component,
the connector, in order to prevent interactions failures.

The framework makes use of the following models and formalisms. An archi-
tectural model, the connector-based architecture that constrains the way com-
ponents can interact, by forcing interaction to go through the connector. A
set of behavioral models for the components that describe each single compo-
nents interaction behavior with the ideal1 external context in the form of Label
Transition Systems (LTSs). A behavioral equivalence on LTS to establish the
equivalence among the original system and the adapted one. MSC are used to
specify the behavioral integration failure to be avoided, and then LTSs and LTS
1 The one expected by the component’s developer.

The Future of Software: Adaptation and Dependability 7

synchronous product [1,10] plus a notion of behavioral refinement [11] to synthe-
size the failure-free connector specification, as it is described in detail in [18].
From the connector specification the actual code can then be automatically de-
rived as either a centralized component [18] or a distributed one [3]. The latter
is implemented as a set of wrappers, one for each component, that cooperatively
realize the same behavior as the centralized connector.

SythesisRT. Recently, the Synthesis approach and its related tool has been ex-
tended to the context of real-time systems [17]. This extension, hereafter called
SynthesisRT, has been developed by the Software Engineering research group
at University of L’Aquila in cooperation with the POP ART project team at
INRIA Rhône-Alpes. In [17], it is shown how to deal with the compatibility,
communication, and QoS issues that can raise while building a real-time sys-
tem from reusable black-box components within a lightweight component model
where components follow a data-flow interaction model. Each component de-
clares input and output ports which are the points of interaction with other
components and/or the execution environment. Input (resp., output) ports of
a component are connected to output (resp., input) ports of a different compo-
nent through synchronous links. Analogously to the version of Synthesis without
real-time constraints, a component interface includes a formal description of the
interaction protocol of the component with its expected environment in terms
of sequences of writing and reading actions to and from ports. The interface
language is expressive enough to specify QoS constraints such as writing and
reading latency, duration, and controllability, as well as the component’s clock
(i.e., its activation frequency). In order to deal with incompatible components
(e.g., clock inconsistency, read/write latency/duration inconsistency, mismatch-
ing interaction protocols, etc.) we synthesize component adaptors interposed
between two or more interacting components. An adaptor is a component that
mediates the interaction between the components it supervises, in order to har-
monize their communication. Each adaptor is automatically derived by taking
into account the interface specification of the components it supervises. The
adaptor synthesis allows the developer to automatically and incrementally build
correct-by-construction systems from third-party components.

Figure 2 shows the main steps of the method performed by SynthesisRT by
also highlighting the used formalisms/models.

We take as input the architectural specification of the network of components
to be composed and the component interface specifications. The behavioral mod-
els of the components are generated in form of LTSs that make the elapsing of
time explicit (step 1). Connected ports with different names are renamed such
that complementary actions have the same label in the component LTSs (see
actions a and d in Figure 2). Possible mismatches/deadlocks are checked by
looking for possible sink states into the parallel composition of the LTSs. The
adaptor synthesis process starts only if such deadlocks are detected.

The synthesis first proceeds by constructing a Petri net (PN) [12] represen-
tation of the environment expected from a component in order not to block it
(step 2). It consists in complementing the actions in the component LTSs that

8 P. Inverardi and M. Tivoli

Fig. 2. Main steps of adaptor synthesis for real-time components

are performed on connected ports, considering the actions performed on uncon-
nected ports as internal actions. Moreover, a buffer storing read and written
values is modeled as a place in the environment PN for each IO action. Each
such PN represents a partial view of the adaptor to be built. It is partial since it
reflects the expectation of a single component. In particular, a write (resp. read)
action gives rise to a place (buffer) without outgoing (resp. incoming) arcs.

The partial views of the adaptor are composed together by building causal
dependencies between the reading/writing actions and by unifying time-elapsing
transitions (step 3). Furthermore, the places representing the same buffer are
merged in one single place. This Unification PN models an adaptor that solves
deadlocks using buffers to desynchronize received events from their emission.

However, the unification PN may be not completely correct, in the sense
that it can represent an adaptor that may deadlock and/or that may require
unbounded buffers. In order to obtain the most permissive and correct adaptor,
we generate an extended version of the graph usually known in PNs theory [12]
as the coverability graph [4] (step 4).

Our method automatically restricts the behavior of the adaptor modeled by
the extended coverability graph in order to keep only the interactions that are
deadlock-free and that use finite buffers (i.e., bounded interactions). This is done
by automatically constructing, if possible, an “instrumented” version of our ex-
tended coverability graph, called the Controlled Coverability Graph (CCG). The
CCG is obtained by pruning from the extended coverability graph both the sinking
paths and the unbounded paths, by using a controller synthesis step [14] (step 5).

This process also performs a backwards error propagation step in order to
correctly take into account the case of sinking and unbounded paths originating
from the firing of uncontrollable transitions.

The Future of Software: Adaptation and Dependability 9

If it exists, the maximal CCG generated is the LTS modeling the behavior
of the correct (i.e., deadlock-free and bounded) adaptor. This adaptor models
the correct-by-construction assembly code for the components in the specified
network. If it does not exist, a correct adaptor assembling the components given
as input to our method cannot be automatically derived, and hence our method
does not provide any assembly code for those components.

Let us now analyze the Synthesis(RT) approach to adaptation by means of
the four Ws metric:

Why there is the need to change? Here the purpose of the change is to cor-
rect functional behavior and to make the non-functional one fit. That is to
avoid interaction deadlocks (due to possible clock inconsistency, inconsis-
tent latency / duration for the component actions, mismatching interaction
protocols) and / or enforce a certain interaction property P. This adapta-
tion is not due to changes of context simply because, at assembly time, the
context does not to change. The change here aims at both correcting a func-
tional misbehavior and making different non-functional characteristics of the
components fit.

What does (not) change? It changes the topological structure and the interac-
tion behavior. A new component is inserted in the system and the overall
interaction behavior is changed. The invariant part of the system is repre-
sented by all the correct behaviors. The proof that the adaptation preserves
the invariant is by construction.

When does the change happen? It happens at assembly time, thus prior to de-
ployment and execution. Thus it is actually part of the development process.

What/Who manages the change? An external entity: The developer through
the Synthesis(RT) framework.

3.3 Topological Evolution: Graph Grammars to Describe Software
Architecture Styles

In this section we summarize and discuss (w.r.t. the four Ws) the work by D. Le
Métayer described in [24]. In this work the author proposes to describe software
architectures formally in terms of graphs. The nodes of the graph represent
the individual system entities (i.e., components, in a very general meaning).
The edge corresponds to the communication links (i.e., connectors) between
entities. Architectural styles are defined as context-free graph grammars since
they can be seen as a set of architectures (and, hence, graphs) sharing a common
shape. In other words, an architectural style is the “type” (i.e., form) that an
architecture conform to the style must have at run time, that is the possible
interconnections between its individual entities. A “coordinator” is used to pilot
the overall application, and it is in charge of managing the architecture itself
(creating and removing entities and links). As an illustration, the graph shown
in Figure 3 represents an example of a client-server architecture.

The architecture represented by the graph shown in Figure 3 involves two
clients c1 and c2, two servers s1 and s2, a manager m0 and x0. It is formally
defined as the set D:

10 P. Inverardi and M. Tivoli

Fig. 3. A client-server architecture

{CR(c1, m0), CA(m0, c1), C(c1), CR(c2, m0), CA(m0, c2), C(c2), SR(m0, s1),
SA(s1, m0), S(s1), SR(m0, s2), SA(s2, m0), S(s2), X(x0), M(m0)}

where C, S, M , and X correspond, respectively, to the client, server, manager
and external entity types. The external entity stands for the external world;
it records requests for new clients wanting to be registered in the system. CR
and CA correspond to client request links and client answer links (they are link
types), respectively (SR and SA are the dual links for servers).

D is just one particular representative of a more general class of client-server
architectures. Architectures belonging to this class must include values X(x0)
and M(m0) and any number of servers and clients. Furthermore, they must
follow the communication link pattern exhibited by D. Such a class is specified
as a context-free graph grammar:

HCS = [{CS, CS1}, {M, X, C, S, CR, CA, SR, SA}, R, CS]

where {CS, CS1} is the set of non-terminal symbols with CS the axiom (i.e.,
the origin of any derivation produced by applying the production rules in R),
{M, X, C, S, CR, CA, SR, SA} is the set of terminal symbols, and R the set of
the following four production rules:

1. CS → CS1(m)
2. CS1(m) → CR(c, m), CA(m, c), C(c), CS1(m)
3. CS1(m) → SR(m, s), SA(s, m), S(s), CS1(m)
4. CS1(m) → M(m), X(x)

It is often the case that the architecture of an application should be able
to evolve dynamically. For instance, a client-server organization must allow for
the introduction of new clients or their departure. In the theoretical framework

The Future of Software: Adaptation and Dependability 11

described in this section, the evolution of the architecture is defined by a coor-
dinator. As an illustration, the following coordinator CooCS can be applied to a
client-server architecture:

X(x), M(m) → X(x), M(m), CR(c, m), CA(m, c), C(c)
CR(c, m), CA(m, c), C(c) → ∅

The coordinator is defined as a set of production rules. The two rules above
describe the introduction of a new client in the architecture and its departure,
respectively.

The possibility of expressing architecture transformations is definitely a useful
feature but it also raises a question: is it possible to ensure that a coordinator
does not break the constraints of a given architectural style? For example, had
we forgotten, say CR(c, m) in the right-hand side of the first rule, then the
coordinator would have been able to transform a client-server architecture into
an architecture which would not belong any longer to the client-server class
defined by HCS. To answer this question, in [24], the author defines a static
style checking algorithm which would be the counterpart for coordinators of the
type checking algorithms of classical languages. The algorithm has been applied
to a real-scale case study, see [24] for further details.

Let us analyze the theoretical framework based on graph grammars, that is
summarized in this section, with the four Ws metric:

Why there is the need to change? The change allows the topological evolution of
the system (e.g., new components entering or quitting the system) according
to the constraints imposed by the architectural style the system’s software
architecture conforms to.

What does (not) change? The topological structure of the system changes since
its software architecture changes, but the imposed architectural style is pre-
served. Moreover, the interaction behavior does not change since the system’s
components are constrained to always exhibit the same “style” of interaction.

When does the change happen? At run time with the introduction of a new
component acting as both a coordinator of the other components in the
system and a manager of the links between the system components.

What/Who how is the change managed? By the coordinator and an external
entity that allows the system to be open in the sense that its structure can
evolve.

3.4 Topological and Behavioral Evolution: ArchJava

In this section we recall and discuss (w.r.t. the four Ws) the work by Aldrich et al.
concerning the ArchJava2 language [25,26]. ArchJava is an extension to Javawhich
allows programmer to specify the architecture of the software within the program.

Software architecture is the organization of a software system as a collection of
components, connections between the components, and constraints on how the
components interact. Architecture description languages (ADLs) can be used
2 http://www.cs.washington.edu/homes/jonal/archjava/

12 P. Inverardi and M. Tivoli

to specify and analyze the software architecture and, by equipping/integrating
an ADL with a verification tool, Architecture specifications can be also auto-
matically analyzed. Architecture specification is helpful in software development
and maintenance since it represents the reference skeleton used to compose the
system components and let them interact.

The motivation for ArchJava is the following: using an ADL for specifying
the architecture causes problems since there could be inconsistencies between
the implementation and the specification. This becomes a bigger problem as
the software changes. ArchJava extends Java with constructs for specifying the
architecture of the software. Using ArchJava software developers specify the
architecture of the software within the program. Therefore, the architecture and
the program are always consistent in the sense that a certain set of architectural
constraints always hold in the implementation of the architecture.

Communication integrity is one of the architectural constraints that is worth
checking when implementing an architectural specification into a program. Com-
munication integrity means that the components only communicate directly with
the components they are connected to in the architecture.ByusingArchJava to im-
plementanarchitectural specification intoaprogram, thecommunication integrity,
defined at the architectural-level, is guaranteed by the implemented program.

The new language constructs introduced by ArchJava are Components, Ports,
and Connections. Components are the same as usual Java classes plus architec-
tural constraints. They define architectural objects and must obey the declared
architectural constraints. Ports are points of interaction of the components with
the external environment, that is they define the communication interfaces of
the components by declaring the set of methods that are required and provided
to enable communication. Components communicate through ports and they
can send and receive ordinary (i.e., non-component) objects between each other
through the ports. As an illustration, the following is a part of the ArchJava code
defining a component, Parser, with an input port declaring a required method,
nextToken, and an output port declaring a provided method, parse. In order
to implement parse the “private” method parseExpr is used.

public component class Parser {
public port in {
requires Token nextToken();

}
public port out {
provides AST parse();

}
AST parse() {
Token tok=in.nextToken();
return parseExpr(tok);

}
AST parseExpr(Token tok) { ... }
...

}

The Future of Software: Adaptation and Dependability 13

Components can have sub-components, i.e., several components can be com-
posed to form a composite component. Sub-components communicate through
the connected ports. Connections are used to connect different ports and com-
ponents can only communicate with their sub-components (through ports) and
the components that they are connected to. As an illustration, the following is
a part of the ArchJava code implementing the composite component Compiler:

public component class Compiler {
private final Scanner scanner = new Scanner();
private final Parser parser = new Parser();
private final CodeGen codegen = new CodeGen();
connect scanner.out, parser.in;
connect parser.out, codegen.in;
...

Compiler is formed by three components, Scanner, Parser, and Codegen. The
output port of Scanner (resp., Parser) is connected to input port of Parser
(resp., Codegen). The connect primitive will bind each required method to a
provided method with the same signature. The arguments to connect may be
a components own ports or those of subcomponents in final fields. Connection
consistency checks are performed to ensure that each required method is bound
to unique provided method.

For the sake of clarity, in Figure 4, we show the software architecture of
Compiler.

Fig. 4. Software architecture of a composite component

As mentioned above, ArchJava enforces communication integrity since no
method calls are permitted from one component to another except either from
a parent to its immediate sub-component or through connections in the archi-
tecture. This means that, on the one hand, ArchJava allows calls either between
connected components, or from a parent to its immediate sub-component, or to
shared objects. On the other hand, ArchJava forbids calls either that are ex-
ternal to sub-components, or between unconnected sub-components, or through
shared objects.

In ArchJava, communication integrity can be statically checked (i.e., at com-
pile time). This is due to way the ArchJava Type System has been designed. It
enforces the following invariant: components can only get a typed reference to
sub-components and connected components. Therefore, it is not possible to cast

14 P. Inverardi and M. Tivoli

a component to an Object and avoid the restrictions on communication between
components. This will cause an exception.

By using ArchJava, it is also possible to establish dynamic architectures. In-
stances of components can be dynamically created using new syntax as with
ordinary objects. At creation time each component records the component in-
stance that created it as its parent component. Communication integrity puts
restrictions on how component instances can be used. Typed references to sub-
components should not escape the scope of their parent component. This require-
ment is enforced by putting restrictions on how component types can be used.
Connections can be formed dynamically using a connect expression. A connect
expression must match a connect pattern declared at the enclosing component.
A connection pattern is used to describe a set of connections that can be in-
stantiated at run time. A connect expression matches a connection pattern if
the connected ports are identical and each connected component instance is an
instance of the type specified in the pattern.

Let us analyze the features of the ArchJava language, that are recalled in this
section, with the four Ws metric:

Why there is the need to change? The change allows both the topological and
behavioral evolution of the system.

What does (not) change? The topological structure and the behavior of the sys-
tem, e.g., new type of components can enter the system or old ones quitting
it, and also new types of connections can be instantiated among components
hence, possibly, introducing new interaction behavior. Whatever change is
applied, communication integrity is kept, i.e., it is the invariant.

When does the change happen? At run time with the dynamic creation of
component and connection instances.

What/Who how is the change managed? It is self-managed since the application
itself steers it.

Summarizing in this section we have presented 5 examples of adaptation that
differ with respect to several dimensions. One issue that is raised by the when
dimension in the four Ws metric is whether adaptability is static or dynamic.
The system adapts at run time, how and when the adaptation is computed or
carried out does not change the problem, it is just a matter of cost. The cost
we are referring to here is the cost of carrying out the adaptation maintaining
the original integrity of the part of the application that does not change, i.e. the
invariant. Thus if the application A that exhibits property P is changed into an
application A′ and the change is supposed to preserve the property P , then this
means that also A′ must satisfy P . For example the property P could be type
integrity, thus we require that the change does not undermines type integrity
in the changed application. Obviously, in this case, carrying out the change
statically, i.e. before the system is running permits to prove type integrity of A′

in a less expensive way than if done at run time.

The Future of Software: Adaptation and Dependability 15

4 Requirements on the Modelling Notations to Support
Adaptation and Dependability

In this section we discuss the requirements that the modelling notations for Sof-
ture should satisfy in order to specify, and reason about, computational entities
that will be adaptable to the environment they will be deployed and executed.
We recall that adaptability is, here, intended as the ability to change a system
according to requirement changes and context variations possibly driven by QoS
requirements. However, the change should maintain the behavioural essence of
the system that we call invariant. This premise allows us to set a number of re-
quirements on the notations that should be used in the context of Softure. The
first consideration is that a sole unifying notation will not suffice. This implies
that a bunch of modelling notations should be used and consistently integrated.
These notations will characterize the software at different levels of granularity,
according to the adaptation variability. They will express different attributes of
interest for validation purposes. It shall be possible to characterize the invariant
behaviour of the software as well as its variability and it shall be possible to
define accordingly a notion of cost for the validation of the invariant part upon
adaptation. The adaptation logic itself needs to be described, either embedded
in the software or external but dependent on the observation of the software
to adapt. Besides notations for the adaptable software, notations for character-
izing the context, both statically and at run time, must be defined. Each one
of the above represents a research challenge itself and opens new research op-
portunities. All these new notations will be used to provide a common base for
behavioural and dependability analysis, model checking, model transformation,
correct-by-construction code synthesis and testing. A further challenge then is
to let all the different notations coexist in a common evolutionary development
framework based on model-transformations, which allows the definition of rela-
tionships between the different Softure notations. Summarizing, these notations
should allow the developer to express context-aware adaptation in conjunction
with the desired degree of dependability. In this direction, new modelling nota-
tions should be defined to support the effective development of Softure. These
notations should be able to:

– Express the attributes of interest, operational profile (e.g., workload, proba-
bility of usage), user preferences, testability concepts (e.g., verdict, test case,
test purpose), etc.

– Model relevant context characteristics to be monitored at run time to en-
able applications to adapt accordingly. Such notations should facilitate the
management of context information (and their variations) being retrieved by
different sources in a homogeneous way. They should also allow for advanced
operations on contextual data, e.g., by comparing and reasoning on data for
checking consistency and by combining different types of data.

– Define: (i) which behavioural properties have to be considered as invariants
(i.e., no matter what adaptation will be performed, these properties must
be always guaranteed), and (ii) which ones can be considered parametric

16 P. Inverardi and M. Tivoli

in the possible deployment environments. Depending on the system, on the
properties and on the possible adaptations a static verification can be carried
on. However, in general, their verification needs to be performed dynamically,
under a certain notion of reasonable cost, in conjunction with the validation
of the discovered deployment environment. Thus, how to model this notion
of verification cost should also be another challenge to face.

– Express how to embed the adaptation logic in the system that we assume to
be made of components. Two types of approaches are possible: (i) endoge-
nous, that requires enriching the modelling language to provide this ability
into the component logic; and (ii) exogenous, that refers to an external en-
tity able to monitor the state exported from each component and adapt the
component behaviour to dynamic changes in the environment. The first case
amounts to provide in the component modelling notation higher-order ca-
pabilities. The latter amounts to make the component state available (and,
hence, modelled) to be inspected and managed. Both of them require nota-
tions to effectively specify a kind of “make before break policies” for prepar-
ing the adaptation before the application consistency breaks. For instance,
when switching from a given context to a different one the application might
change its “internal” status according to the new environment it is entering
into.

– Express variability in a declarative style in order to support property ver-
ification for evolving systems [34]. This requires capability in the notation
to express degrees of generality in the component specification that can be
instantiated, maintaining the correctness of the component, at run time de-
pending on the execution context. The challenge, here, is providing the right
balance between generality and verifiability.

All these new notations would be used to provide a common base for be-
havioural and dependability analysis, model checking, model transformation,
correct-by-construction code synthesis, testing, and reconfiguration. Since a
unique notation incorporating all such aspects is unreasonable (as discussed also
in [35]), we envision that all the different notations should be let coexist in a
common evolutionary development framework based on model-transformations,
which allows the definition of relationships between different Softure notations.

5 Softure: The Process View

In this section we cast the above discussed challenges in a process view. The
process view focuses on the set of activities that characterize the production and
the operation of a software system. These activities are traditionally divided into
activities related to the actual production of the software system and activities
that are performed when the system can be executed and goes into operation.
Specification, Design, Validation, and Evolution activities vary depending on the
organization and the type of system being developed. Each Activity requires its
Language, Methods and Tools and works on suitable artifacts of the system. For

The Future of Software: Adaptation and Dependability 17

validation purposes each artifact can be coupled with a model. Models are an
idealized view of the system suitable for reasoning, developing, validating a real
system. To achieve dependability a large variety of models are used from behav-
ioral to stochastic. These models represent the systems at very different levels of
abstraction from requirements specification to code. The ever growing complex-
ity of software has exacerbated the dichotomy development/static/compile time
versus execution/dynamic/interpreter time concentrating as many analysis and
validation activities as possible at development time.

Softure puts new requirements on this standard process. The evolutionary
nature of Softure makes unfeasible a standard approach to validation since it
would require before the system is in execution to predict the system behavior
with respect to virtually any possible change. Therefore in the literature most
approaches that try to deal with the validation of dynamic software system
concentrate the changes to the structure by using graph and graph grammars
formalisms or topological constraints [24,27,28,29,30,31]. As far as changes to
behavior are concerned, only few approaches exist that make use either of be-
havioral equivalence checks or of the type system [25,26,32] or through code
certification [23,33]. If dependability has to be preserved through adaptation,
whatever the change mechanism is, at the time the change occurs a validation
check must be performed. This means that all the models necessary to carry on
the validation step must be available at run time and that the actual validation
time becomes now part of the execution time.

Fig. 5. The Future Engineering Process

The Future development process therefore has to explicitly account for com-
plex validation steps at run time when all the necessary information are avail-
able. Figure 5 represents the process development plane delimited on one side
by the standard process and on the other side by the future development one.
The vertical dimension represents the static versus dynamic time with respect to
the analysis and validation activities involved in the development process. The
horizontal axis represents the amount of adaptability of the system, that is its

18 P. Inverardi and M. Tivoli

ability to cope with evolution still maintaining dependability. The standard de-
velopment process carries out most of the development and validation activities
before the system is running that is during development. The result is a running
system that, at run time, is frozen with respect to evolution. Considering devel-
opment processes that allow increasingly degrees of adaptability allows to move
along the horizontal axis thus ideally tending to a development process that is
entirely managed at run time. In the middle we can place development processes
that allow larger and larger portions of the system to change at run time and
that make use for validation purposes of artifacts that can be produced stati-
cally. In the following section we introduce an instance of the Future Engineering
Process that has been proposed in the scope of the PLASTIC project.

5.1 PLASTIC Services: An Instance of Softure

The PLASTIC project aims to offer a comprehensive provisioning platform for
software services deployed over B3G networks (see Figure 6). A characteristic of
this kind of infrastructure is its heterogeneity, that is it is not possible to assume
that the variety of its components QoS is homogenized through a uniform layer.
PLASTIC aims at offering B3G users a variety of application services exploiting
the network’s diversity and richness, without requiring systematic availability of
an integrated network infrastructure. Therefore the PLASTIC platform needs
to enable dynamic adaptation of services to the environment with respect to
resource availability and delivered QoS, via a development paradigm based on
Service Level Agreements (SLA) and resource-aware programming.

The provided services should meet the user demand and perception of the
delivered QoS, which varies along several dimensions, including: type of service,

Fig. 6. B3G Networks

The Future of Software: Adaptation and Dependability 19

type of user, type of access device, and type of execution network environment.
Referring to the challenges discussed in Section 2, this means that services must
be dependable according to the users expected QoS.

This demands for a software engineering approach to the provisioning of ser-
vices, which encompasses the full service life cycle, from development to valida-
tion, and from deployment to execution.

The PLASTIC answer to the above needs is to offer a comprehensive plat-
form for the creation and provisioning of lightweight, adaptable services for the
open wireless environment. Supporting the development of resource-aware and
self-adapting components composing adaptable services requires focusing on the
QoS properties offered by services besides the functional ones. The whole de-
velopment environment is based on the PLASTIC Conceptual Model [36] whose
main role is to provide an abstract characterization of B3G networks so as to ease
the development of applications that effectively exploit them. To this end, the
model proposes an elicitation of base abstractions that need to be accounted for
developing applications for B3G networking infrastructures. Starting from the
analysis of the characteristics of B3G networks, the relevant abstractions have
been identified and refined according to the PLASTIC goals. The model consid-
ers the Service-Oriented Architecture (SOA), as it offers significant benefits for
the development of applications in the open B3G networking environment. It
relates and refines SOA concepts with concepts associated with B3G networking
abstractions. The result is a reference model for service-oriented B3G applica-
tions, which formalizes the concepts needed to realize context-aware adaptable

Fig. 7. A reference model for B3G networks

20 P. Inverardi and M. Tivoli

applications for B3G networks. The model is specified using UML diagrams, and
is aimed at both application and middleware developers (see Figure 7). Indeed,
a number of abstractions may be made available by the middleware layer, thus
reusable by applications.

Recently, several approaches to conceptualize the world of services have been
proposed. The PLASTIC model takes the move from the SeCSE conceptual
model [37,38] that it has been suitably extended to reflect all the concepts related
to B3G networks and service provision in B3G networks. In particular, it focusses
on the following key concepts:

– Service Level Agreement that clearly set commitment assumed by consumers
and providers and builds on services descriptions that are characterized func-
tionally, via a service interface and non-functionally via a Service Level Spec-
ification (SLS).

– Context awareness and adaptation as the context is a key feature distinguish-
ing services in the vast B3G networking environment. B3G networking leads
to have diverse user populations, changing availability in system resources,
and multiple physical environments of service consumption and provisioning.
It is then crucial that services adapt as much as possible to the context for
the sake of robustness and to make themselves usable for given contexts.

As illustrated in Figure 8 adaptability is achieved by transferring some of the
validation activities at run time by making available models for different kind

Fig. 8. The PLASTIC Development Process Model

The Future of Software: Adaptation and Dependability 21

of analysis. In particular stochastic models and behavioral ones will be made
available at run time to allow the adaptation of the service to the execution
context and service on line validation, respectively.

In PLASTIC all the development tools will be based on the conceptual model
exploiting as much as possible model-to-model transformations. The definition
of a service will consists of a functional description and of a SLS that defines the
QoS characteristics of the service. The overall service description is obtained by
means of an iterative analysis specification phase that makes use of behavioral
and stochastic models. These models suitably refined with pieces of information
coming from the implementation chain, will then be made available as artifacts
associated to the service specification.

The main novelties of the PLASTIC process model is to consider SLS as part
of a Service Model, as opposite to existing approaches where SLS consists, in best
cases, in additional annotations reported on a (service) functional model. This
peculiar characteristic of our process brings several advantages: (i) as the whole
service model is driven by the conceptual model, few errors can be introduced in
the functional and non-functional specification of a service; (ii) SLS embedded
within a service model better supports the model-to-model transformations to-
wards analysis models and, on the way back, better supports the feedback of the
analysis; (iii) in the path to code generation, the SLS will drive the adaptation
strategies.

With respect to the spectrum presented in Figure 5 the PLASTIC develop-
ment process will present a limited form of adaptability as shown in Figures 9
and 13. The components implementing PLASTIC services will be programmed
using the resource aware programming approach described in [21,22] by using
Java.

In PLASTIC adaptation happens at the time the service request is matched
with a service provision. To better understand how the matching process might
operate, it is useful to refer to the reference style for SOA. Moreover it also useful
to recall the roles played by the main logic entities (Service registry, Service

Fig. 9. The PLASTIC Artifacts to be registered at deployment time

22 P. Inverardi and M. Tivoli

Fig. 10. Service Oriented Interaction Pattern

Provider and Service Consumer) involved in the Service Oriented Interaction
Pattern for service publications, discovery and binding (see Figure 10).

The steps involved in the service provision and consumption are:

1. Service providers publish their service descriptions into a service registry
(the directory of services) so that the service consumer can locate them.

2. According to the service request format, service consumers query the service
registry to discover service providers for a particular service description.

3. If one or more providers are present in the service registry at the moment
of the request the service consumer can select and bind to any of them. The
service registry communicate (according to the service response format) to
the service consumer how to communicate with that provider.

4. When a service requester binds to the service provider, the latter returns a
reference to a service object that implements the service functionality.

Since the PLASTIC service provision will take advantage of Web Services
(WS) technology, it is useful to instantiate the above described interaction pat-
tern in the context of WS. Within the Web Services Interaction Pattern the
Web Services Description Language (WSDL) forms the basis for the interaction.
Figure 11 illustrates the use of WSDL.

The steps involved (in the case of request-response operation call) are:

1. The service provider describes its service using WSDL. This definition is pub-
lished into the registry of services. For instance the registry could use Univer-
sal Description, Discovery, and Integration (UDDI). Other forms of registry
and other discovery meccanisms can also be used (e.g., WS-Inspection WS-
Discovery).

2. The service consumer issues one or more queries to the directory to locate a
service and determine how to communicate with that service.

The Future of Software: Adaptation and Dependability 23

Fig. 11. Web Services Interaction Pattern

3. Part of the WSDL provided by the service provider is passed to the service
consumer. This tells the service consumer what the requests and responses
are for the service provider.

4. The service consumer uses the WSDL to send a request to the service
provider.

5. The service provider provides the expected response to the service consumer.

In Figure 11 all the messages are sent using the envelope provided by SOAP
and, usually, HTTP is used as communication protocol. In general other means
of connection may be used since WSDL does not force a specific communication
protocol.

Considering PLASTIC adaptation, the WS interaction pattern is slightly
modified in order to reach the SLA at the end of the discovery phase. The
steps involved in the PLASTIC service provision and consumption might be the
ones as shown in Figure 12.

In particular, the discovery process has to take into account the user’s QoS
request (i.e., the requested SLS) and the service SLSs (i.e., the offered SLSs). The
result of the match (between the user’s QoS and the service SLSs) will produce
the SLA that defines the QoS constraints of the service provision. During this
matching process, in order to reach an SLA the service code might need to
be adapted according to the previously mentioned resource aware programming
approach hence resulting in a customized service code that satisfies the user’s
QoS request and results in a SLA.

Figure 13 shows an instance of the process model shown in Figure 8. It is a
particular example of the PLASTIC development process.

With respect to the service model analysis, in Figure 13 we have focused
on performance and reliability. SAP•one/XPRIT starts from annotated UML
diagrams and generates a performance model that may be a Queueing Network
(QN) that represents a Software Architecture, if no info about the executing

24 P. Inverardi and M. Tivoli

Fig. 12. PLASTIC Services Interaction Pattern

platform is available; or it may be an Execution Graph (representing the software
workload) and a QN (representing the executing platform) if (some alternative
for) the executing platform is available. The model solution provides performance
indices that are parametric in the first case and numerical in the second one. A
QN solver like SHARPE provides values of these performance indices. COBRA is
a tool that, starting from annotated UML diagrams, generates a reliability model
for component-based or service-based systems. The model takes into account the
error propagation factor. The COBRA solver performs reliability analysis on the
basis of the generated model. Model-to-Model transformations are performed
by means of the ATLAS Transformation Language (ATL) [39] that has been
developed in the context of the MODELWARE European project [40].

With respect to service validation/testing, two kinds of validation are per-
formed: off-line and on-line validation. The former is performed before the ser-
vice execution and it serves to generate test cases. The latter is performed whilst
the service is running and exploits the previously generated test cases. The val-
idation framework of the PLASTIC project is described in Chapter 5 of this
tutorial volume. Thus we refer this chapter for further details.

5.2 The PLASTIC Development Environment

In this section we provide an overall description of the PLASTIC development en-
vironment that implements a part of the PLASTIC development process shown
in Figure 13 (i.e., those process activities regarding the service model specifica-
tion, model functional and non-functional analysis, resource-aware analysis and
development, and code synthesis).

The PLASTIC development environment is one of the three main blocks form-
ing the integrated PLASTIC platform (see Figure 14).

As it is shown in Figure 14, in order to enable the development of robust dis-
tributed lightweight services in the B3G networking environment, the PLASTIC
platform can be organized into three main blocks: (i) a development environ-
ment, (ii) a middleware, and (iii) a validation framework.

The Future of Software: Adaptation and Dependability 25

Fig. 13. The PLASTIC Development Process: an example

In the following, we discuss the main aspects of the PLASTIC development
environment that concern our main contribution to the PLASTIC project. The
middleware and the validation framework will not be further discussed. We refer
to [36] and to Chapter 5, of this tutorial volume, for a detailed description of
the middleware and the validation framework, respectively.

As it has been already mentioned above, all the architectural elements of the
PLASTIC platform rely on a concrete implementation of concepts defined in
the PLASTIC conceptual model. The PLASTIC conceptual model has to be
considered more than documentation and a basis for common understanding.
In fact, it defines all the guide principles and the main conceptual elements
that should be considered in order to rigorously design an integrated framework
for the modeling, analysis, development, validation, and deployment of robust
lightweight services over B3G networked environments.

The PLASTIC development environment can be organized into five main
blocks (see Figure 15): (i) modeling tools, (ii) non-functional analysis tools, (iii)
code generation tools, (iv) resource- aware programming model, and (v) resource-
aware adaptation tools. The PLASTIC development environment allows the de-
veloper to perform all the service design, analysis and development activities
defined by the PLASTIC development process and to manage the process arti-
facts produced by these activities. The overall design depicted in Figure 15 should
be interpreted as a layered architecture: an architectural block that is situated
at an upper layer depends on some artifacts produced by using an architectural

26 P. Inverardi and M. Tivoli

Fig. 14. The integrated PLASTIC platform

block that is situated at a lower layer. For instance, the service model built by us-
ing the modeling tools is exploited by both the non-functional analysis and code
generation tools or, just to give another example, “Universal Queueing Network
solver” exploits the output of “UML to Queueing Network transformation tool”.
The PLASTIC development environment relies on the Eclipse framework [41],
i.e., all the tools of the PLASTIC development environment are implemented
as Eclipse plug-ins. In this way, the development environment results in a fully-
integrated environment relying on the Eclipse IDE. Although a single tool of
the development environment is implemented as an Eclipse plug-in, it has been
developed in a modular way hence providing also an API that would allow a
developer to use the tool also outside Eclipse. This has been done to promote
the use of PLASTIC solutions also outside the development scenario considered
within the PLASTIC project.

The modeling tools block is constituted of two modeling tools: the service
model editor, and the SLA editor. The former is an UML2 modeling editor cus-
tomized in order to be PLASTIC oriented. That is, it embeds a customized
UML2 profile which is suited to model dependable and adaptable services over
B3G networked environments. It is called “PLASTIC UML2 profile” and it is a
concrete implementation of the PLASTIC conceptual model. The service model
editor allows the developer to specify the functional interface of the service plus
its behavioral and non-functional characteristics (e.g., the orchestration of those
(sub-)services that form the service under design, or the QoS characteristics
of a service operation respectively). Furthermore, it allows the specification of

The Future of Software: Adaptation and Dependability 27

Fig. 15. The PLASTIC development environment

context-aware behavior with respect to two kinds of context: the device context
and the network context. The device context is given in terms of the set of re-
sources (and their characteristics) available on a possible execution environment
(e.g., a device modeled as a set of a “display” resource with specific “resolution”
and “refresh frequency” values, and a “CPU” resource with a specific “clock fre-
quency” value). The network context is given in terms of “mobility patterns” [42],
i.e., the set of the different network types the device over which the service runs
can possibly move on. Once the context-aware behavior of the service is speci-
fied, by using the service model editor, the developer can also specify how the
service has to adapt to the possible context changes by still maintaining a cer-
tain degree of dependability. The SLA editor is a GUI for “SLAng” which is
a language for writing SLAs. It allows the developer to specify which are the
parties involved in the agreement (e.g., “doctor” and “eHealth provider”), the
contractual constraints defining the agreement (e.g., “service availability greater
than 80%”), and the penalties that must be applied in the case of agreement
violation (e.g., “the eHealth provider will provide one month of the service for
free”). The syntax and semantics of SLAng are defined by means of EMOF (a
language similar to UML class diagrams) and OCL, respectively. In particular,
EMOF models specify the meta-model of SLAng, that is its abstract syntax
in terms of the modeling constructs and their relationships (such as through-
put constraints, availability, environment, schedules, etc.) that will be used for
specifying SLAs. The models conforming to the SLAng meta-model are checked

28 P. Inverardi and M. Tivoli

with respect to OCL constraints which specify the semantics of the language
in a declarative way. The service model editor and the SLA editor are inte-
grated through a model-to-code transformation. In particular, once the service
model has been specified, a model-to-code transformation can be performed in
order to translate the parts of the service model that are needed for specifying
the agreement (e.g., parties, possible services, operations, etc.) into a HUTN
(Human-Usable Textual Notation) file which is one of the file format that can
be imported by the SLA editor. The “PLASTIC Model to HUTN” tool, depicted
in the block “Code Generation Tools”, performs this transformation which has
been implemented using the JET transformation technology [41].

The non-functional analysis tools block is constituted of two performance
analysis tools: “UML to Queueing Networks transformation tool” and “Universal
Queueing Network solver”. The former is a model-to-model transformation tool
that automatically translates the parts of the service model that are needed for
performance analysis (they are annotated UML2 diagrams which conform to the
PLASTIC UML2 profile) into a performance model that is a Queueing Network
(QN) model. This tool has been implemented by using the UML2 APIs available
in Eclipse [43]. Then, the QN model solution is performed by using “Universal
Queueing Network solver” that is deployed as an independent tool, i.e., a web
service so that it can be used also outside the PLASTIC development scenario.

The resource-aware programming model and the resource-aware adap-
tationtoolsblocksare themainconstituentsof the frameworkdescribed in [21,22].
Since a discussion on these two blocks is not crucial for the purposes of this paper,
for the sake of brevity, we refer to [21,22] for them.

The code generation tools block is constituted of five model-to-code trans-
formation tools. The functionality provided by the “PLASTIC Model to HUTN”
transformation tool has been briefly described above in the discussion concern-
ing the integration between the service model editor and the SLA editor. The
“PLASTIC Model to WSDL” transformation tool starts from the PLASTIC
service functional interface, modeled by using the service model editor, and au-
tomatically generates the WSDL of the provider-side code of the service. Once
this WSDL is obtained, in order to automatically derive the skeleton of the
provider-side code of the service, it is enough to use the facilities provided by
a suitable application server or SOAP engine (e.g., Axis in the case of Web
Services). The “SLA monitor generator” transformation tool starts from the
HUTN file completed by using the SLA editor and automatically generates the
code of Axis handlers used to the run-time monitoring of SLAs. Analogously,
“WS-Agreement generator” takes into account the HUTN file and automatically
generates WS-Agreements. SLAng is maintained for SLA specification purposes
while WS-Agreement is used for validation purposes. The “WS-Agreement gen-
erator” enables the integration between the modeling layer of the PLASTIC plat-
form and the validation one. The “PLASTIC Model to Adaptable JAVA” tool
starts from a specific part of the service model called “implementation view”.
The implementation view models how the service is implemented in terms of
software components (and their relationships) which, in turn, are implemented

The Future of Software: Adaptation and Dependability 29

in terms of “adaptable” classes. By taking into account such an implementation
view, the “PLASTIC Model to Adaptable JAVA” transformation tool automati-
cally translates the implementation view into the corresponding adaptable JAVA
code. This is only a skeleton code and its logic has to be coded by hand.

6 Conclusions

In this paper we have discussed our point of view on software in the future.
Adaptability and Dependability will play a key role in influencing models, lan-
guages and methodologies to develop and execute future software applications.
In a broader software engineering perspective it is therefore mandatory to recon-
cile the static/compile time development approach to the dynamic/interpreter
oriented one thus making models and validation technique manageable light-
weight tools for run time use. There are several challenges in this domain. Pro-
gramming Language must account in a rigorous way of quantitative concerns,
allowing programmers to deal with these concerns declaratively. Models must
become simpler and lighter by exploiting compositionality and partial evalua-
tion techniques. Innovative development processes should be defined to properly
reflect these new concerns arising from software for ubiquitous computing. We
presented the Plastic approach to service development and provision in B3G
networks as a concrete instance of the problem raised by Softure. The solutions
we are experimenting in Plastic are not entirely innovative per se rather they
are used in a completely new and non trivial fashion. Summarizing our message
is that in the Softure domain it is important to think and research point to point
theories and techniques but it is mandatory to re-think the whole development
process in order to cope with the complexity of Softure and its requirements.

References

1. Arnold, A.: Finite Transition Systems. International Series in Computer Science.
Prentice Hall International, UK (1989)

2. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: Synthesis: A tool for automat-
ically assembling correct and distributed component-based systems. In: 29th In-
ternational Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, pp. 784–787. IEEE Computer Society, Los Alamitos (2007),
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.84

3. Autili, M., Mostarda, L., Navarra, A., Tivoli, M.: Synthesis of decentralized and
concurrent adaptors for correctly assembling distributed component-based systems.
Journal of Systems and Software (2008),
http://dx.doi.org/10.1016/j.jss.2008.04.006

4. Finkel, A.: The minimal coverability graph for Petri nets. In: Proc. of the 12th
APN. LNCS, vol. 674. Springer, Heidelberg (1993)

5. IFIP WG 10.4 on Dependable Computing and Fault Tolerance,
http://www.dependability.org/wg10.4/

6. Inverardi, P.: Software of the future is the future of Software? In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 69–85. Springer,
Heidelberg (2007)

http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.84
http://dx.doi.org/10.1016/j.jss.2008.04.006
http://www.dependability.org/wg10.4/

30 P. Inverardi and M. Tivoli

7. Inverardi, P., Tivoli, M.: Deadlock-free software architectures for com/dcom appli-
cations. Elsevier Journal of Systems and Software - Special Issue on component-
based software engineering 65(3), 173–183 (2003)

8. Inverardi, P., Tivoli, M.: Software Architecture for Correct Components Assembly.
In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 92–121.
Springer, Heidelberg (2003)

9. ITU Telecommunication Standardisation sector, ITU-T reccomendation Z.120.
Message Sequence Charts. (MSC 1996). Geneva

10. Keller, R.: Formal verification of parallel programs. Communications of the
ACM 19(7), 371–384 (1976)

11. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)
12. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the

IEEE 77(4) (1989)
13. PLASTIC IST Project, http://www.ist-plastic.org
14. Ramadge, P., Wonham, W.: The control of discrete event systems. Proceedings of

the IEEE 1(77) (1989)
15. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE

Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US
(1994)

16. Tivoli, M., Autili, M.: SYNTHESIS, a Tool for Synthesizing Correct and Protocol-
Enhanced Adaptors. RSTI L Objet journal 12(1), 77–103 (2006)

17. Tivoli, M., Fradet, P., Girault, A., Goessler, G.: Adaptor synthesis for real-time
components. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 185–200. Springer, Heidelberg (2007)

18. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-
based architectures. Science of Computer Programming 71(3), 181–212 (2008),
http://dx.doi.org/10.1016/j.scico.2008.03.001

19. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from sce-
narios. In: Proceeding of the 23rd IEEE International Conference on Software En-
gineering (ICSE 2001) (2001)

20. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence
chart specifications. In: ACM Proceedings of the joint 8th ESEC and 9th FSE.
ACM press, New York (2001)

21. Inverardi, P., Mancinelli, F., Nesi, M.: A Declarative Framework for adaptable ap-
plications in heterogeneous environments. In: Proceedings of the 19th ACM Sym-
posium on Applied Computing (2004)

22. Mancinelli, F., Inverardi, P.: Quantitative resource-oriented analysis of Java
(adaptable) applications. In: ACM Proceedings Workshop on Software Perfor-
mance (2007)

23. Necula, G.C.: Proof-Carrying Code. In: Jones, N.D. (ed.) Proceedings of the Sym-
posium on Principles of Programming Languages, Paris, France, January 1997, pp.
106–119. ACM Press, New York (1997)

24. Le Métayer, D.: Describing Software Architecture Styles Using Graph Grammars.
IEEE Transaction on software engineering 24(7) (1998)

25. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture
to Implementation. In: Proceedings of ICSE 2002 (May 2002)

26. Aldrich, J., Chambers, C., Notkin, D.: Architectural Reasoning in ArchJava. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374. Springer, Heidelberg (2002)

27. Hirsch, D., Inverardi, P., Montanari, U.: Graph grammars and constraint solving
for software architecture styles. In: Proc. of the 3rd Int. Software Architecture
Workshop (ISAW-3), pp. 69–72. ACM Press, New York (1998)

http://www.ist-plastic.org
http://dx.doi.org/10.1016/j.scico.2008.03.001

The Future of Software: Adaptation and Dependability 31

28. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for
distributed systems. In: Proc. of the 1st Work. on Self-Healing Systems (WOSS
2002), pp. 33–38. ACM Press, New York (2002)

29. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proc. of
the 4th ACM SIGSOFT Symp. On Foundations of Software Engineering (FSE-4),
pp. 3–14. ACM Press, New York (1996)

30. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by distrib-
uted graph transformation: Towards configurable distributed systems. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 179–193. Springer, Heidelberg (2000)

31. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Style-Based Refinement of Dynamic
Software Architectures. In: WICSA 2004, pp. 155–166 (2004)

32. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans-
actions on Software Engineering and Methodology 6(3), 213–249 (1997)

33. Barthe, G.: Mobius, securing the next generation of java-based global computers.
ERCIM News (2005)

34. Inverardi, P., Mostarda, L.: DESERT: a decentralized monitoring tool generator.
In: IEEE Proceeding of ASE 2007, tool demo (2007)

35. Cortellessa, V., Di Marco, A., Inverardi, P., Mancinelli, F., Pelliccione, P.: A frame-
work for integration of functional and non-functional analysis of software architec-
tures. ENCS 116, 31–44 (2005)

36. PLASTIC IST Project, http://www.ist-plastic.org
37. SeCSE Project, http://secse.eng.it
38. Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalà, M.: Speaking a

common language: A conceptual model for describing service-oriented systems. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
48–60. Springer, Heidelberg (2005)

39. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

40. ModelWare, IST European project 511731, http://www.modelware-ist.org
41. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling

Framework. Addison-Wesley, Reading (2003)
42. Di Marco, A., Mascolo, C.: Performance Analysis and Prediction of Physically

Mobile Systems. In: WOSP 2007 (2007)
43. Eclipse project. Model Development Tools UML2,

http://www.eclipse.org/modeling/mdt/?project=uml2

http://www.ist-plastic.org
http://secse.eng.it
http://www.modelware-ist.org
http://www.eclipse.org/modeling/mdt/?project=uml2

	The Future of Software: Adaptation and Dependability
	Introduction
	Softure Challenges: Setting the Context
	Adaptabilty: 3 Examples
	The Four Ws
	Synthesis: An Approach to Automatically Build Failure-Free Connectors for Component-Based Architectures
	Topological Evolution: Graph Grammars to Describe Software Architecture Styles
	Topological and Behavioral Evolution: ArchJava

	Requirements on the Modelling Notations to Support Adaptation and Dependability
	Softure: The Process View
	PLASTIC Services: An Instance of Softure
	The PLASTIC Development Environment

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

