


Lecture Notes in Computer Science 5413
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Andrea De Lucia Filomena Ferrucci (Eds.)

Software
Engineering

International Summer Schools
ISSSE 2006-2008, Salerno, Italy
Revised Tutorial Lectures

13



Volume Editors

Andrea De Lucia
Filomena Ferrucci
Università di Salerno
Dipartimento di Matematica e Informatica
Via Ponte Don Melillo, 84084, Fisciano, SA, Italy
E-mail: {adelucia,fferrucci}@unisa.it

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, D.1, F.3, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-95887-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-95887-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12605804 06/3180 5 4 3 2 1 0



 

 

Preface 

Software Engineering is widely recognized as one of the most exciting, stimulating, 
and profitable research areas with significant practical impacts on the software indus-
try. Thus, training the future generations of software engineering researchers and 
bridging the gap between academia and industry are especially important. The Interna-
tional Summer School on Software Engineering (ISSSE) aims to contribute both to 
training future researchers and to facilitating knowledge exchange between academia 
and industry. Beginning in 2003, it has become an annual meeting point that is now in 
its fifth edition (2003, 2005, 2006, 2007, and 2008).  

ISSSE is intended for PhD students, university researchers, and professionals from 
industry. Attracting more than 60 participants each year, the program of the school 
includes six state-of-the-art tutorials given by internationally recognized research 
leaders on very relevant topics for the scientific community. Each tutorial provides a 
general introduction to the chosen topic, while also covering the most important con-
tributions in depth and identifying the main research challenges for software engi-
neers. The focus is on methods, techniques, and tools; in some cases theory is required 
to provide a solid basis.  

The format of the school aims at creating extensive discussion forums between lec-
turers and industrial and academic attendees. Besides traditional tutorials, lab sessions 
are also included in the program together with student talks and tool demos to further 
stimulate the interaction. The school is held on the campus of the University of 
Salerno and benefits from the facilities of the university (e.g., laboratories) and from 
its location, very close to some of the most beautiful and historical places of Italy, 
such as the Amalfi Coast, Capri, Pompei, and Paestum.  

This volume collects chapters originating from some tutorial lectures given at the 
last three editions of the school (2006, 2007, and 2008) and aims to provide a contri-
bution on some of the latest findings in the field of software engineering. Several 
interesting topics are covered including software adaptability and dependability, auto-
nomic computing, usability in requirements engineering, testing of service-oriented 
architectures, reverse engineering, collaborative development, web cost estimation 
and productivity assessment, empirical software engineering, and experience factory. 
The volume is organized in three parts, collecting chapters focused on software re-
quirements and design, software testing and reverse engineering, and management.  

In the first chapter, Paola Inverardi and Massimo Tivoli take into account two of 
the key requirements that software in the near ubiquitous future (Softure) will need to 
satisfy, namely, adaptation and dependability. Software systems need to be adaptable 
according to the context changes determined by the diversity of computing platforms 
where software systems are to get deployed and the different execution environments 
where they have to operate. Moreover, the pervasiveness of software systems and the 
highly dynamic nature of service provision make Softure dependability more complex. 
Thus, ensuring the dependability of self-adaptive systems poses numerous challenges 



VI Preface 

 

to software engineers. In the chapter, the authors analyze some of these challenges and 
describe possible solutions. 

In the second chapter, Hausi A. Müller et al. focus on autonomic computing, an ap-
proach to building self-managing computing systems with the aim of addressing the 
management complexity of dynamic computing systems through technology simplifi-
cation and automation. Autonomic computing is inspired by the autonomic nervous 
system of the human body that controls important bodily functions without any con-
scious intervention. It includes a broad range of technologies, models, architecture 
patterns, standards, and processes and is based on some key aspects, such as feedback 
control, adaptation, and self-management. In particular, at the core of an autonomic 
system are the feedback control loops that constantly monitor the system and its envi-
ronment looking for events to handle. The authors address the problem of designing 
such highly dynamical systems, arguing that both a software architecture perspective 
and a feedback control perspective need to be taken into account. Moreover, they 
show how autonomic computing technology can solve continuous evolution problems 
of software-intensive systems. Finally, they illustrate some lessons learned and outline 
some challenges for the future.  

In chap. 3, Natalia Juristo focuses on usability, which represents one of the most 
important quality factors of a software product but it is often insufficient in most soft-
ware systems. In particular, the author proposes an approach to build software with 
higher usability. According to such an approach usability features need to be consid-
ered from a functional viewpoint at requirements stage, because as some empirical 
studies show, software design and usability are related. To address the difficulties of 
usability features elicitation and specification, the author proposes specific guidelines 
that support face-to-face communication among the different stakeholders and lead 
software developers to ask the appropriate questions so as to capture usability re-
quirements information and cut down ambiguous usability details as early as possible. 

Chapters 4 and 5 focus on software testing of service-oriented architectures. In the 
life-cycle of any software system, testing is a crucial activity to ensure adequate soft-
ware dependability but it is also one of the most expensive. This is especially true with 
service-oriented architectures. Indeed, this emerging paradigm for distributed comput-
ing is radically changing the way in which software applications are developed and 
posing several new challenges for software testing. These mainly originate from the 
high flexibility and dynamic nature of service-oriented architectures and the use of 
some unique features such as service discovery and composition, ultra-late binding, 
automated negotiation, autonomic system reconfiguration, and so on. In chap. 4, Ger-
ardo Canfora and Massimiliano Di Penta provide a broad survey of the recent research 
carried out on the topics of testing of service-oriented architectures. The authors ana-
lyze several challenges from the viewpoints of different stakeholders and present solu-
tions for different levels of testing (unit, integration, and regression testing) and for 
both functional and non-functional testing. The authors conclude the chapter by ex-
ploring ways to improve the testability of service-oriented architectures. In chap. 5, 
Antonia Bertolino et al. deepen the discussion to challenges and solutions concerning 
testing activities by focusing on the validation framework developed in the European 
Project PLASTIC. In the framework, different techniques can be combined for the 
verification of functional and non-functional properties for both development time 



  Preface VII 

 

testing and service live usage monitoring. The authors also describe some techniques 
and tools that fit within the proposed framework. 

Chapter 6 focuses on software architecture reconstruction, i.e., the kind of reverse 
engineering where architectural information is reconstructed for an existing system. 
Software architectures are able to provide a global understanding of a software system 
that is essential to effectively carry out many maintenance and migration tasks. Never-
theless, frequently software architecture is not sufficiently described, or it is outdated 
and inappropriate for the task at hand. Thus, it is necessary to reconstruct it gathering 
information from several sources (source code, system's execution, available docu-
mentation, stakeholder interviews, and domain knowledge), applying appropriate 
abstraction techniques, and suitably presenting the obtained information. In this chap-
ter, Rainer Koschke introduces a conceptual framework for architecture reconstruction 
that represents a combination of common patterns and best practices reported in the 
reverse engineering literature. The current state of the art of techniques and methods 
for software architecture reconstruction is also summarized here. Finally, the author 
discusses a number of research challenges that should be tackled in the future. 

In chap. 7, Filippo Lanubile focuses on the globalization of software development 
that represents a trend in today’s software industry. Indeed, developing software using 
teams geographically distributed in different sites can provide an important competi-
tive advantage for software companies but at the same time it presents challenges that 
affect all aspects of a project. The author focuses on the collaboration issues that arise 
from the negative effects of distance, illustrates a taxonomy of software engineering 
tools that support distributed projects, and presents several collaborative development 
environments. Computer-mediated communication theories that can be useful to ad-
dress the development of more effective tools supporting collaboration in distributed 
software development are also discussed. Finally, the author summarizes a family of 
empirical studies which have been carried out to build an evidence-based model of 
task–technology fit for distributed requirements engineering. 

Web applications are constantly increasing both in complexity and number of fea-
tures. As a result, Web effort estimation and productivity analysis are becoming cru-
cial activities for software companies to develop projects that are finished on time and 
within budget. Indeed, they are essential elements for project managers to suitably 
plan the development activities, allocate resources adequately, and control costs and 
schedule. In chap. 8 Emilia Mendes introduces the main concepts and techniques for 
Web effort estimation and reports on a case study where the process for the construc-
tion and validation of a Web effort estimation model is illustrated step-by-step. More-
over, the author introduces the main concepts related to Web productivity measure-
ment and benchmarking and describes a case study on productivity benchmarking. 

In the final chapter, Giuseppe Visaggio addresses the relevant challenge of transfer-
ring research results in production processes and exchanging results between re-
searchers and enterprises. Indeed, competition requires continuous innovation of 
processes and products and a critical issue for organizations is how to speed up 
knowledge creation and sharing. Knowledge management aims to provide an answer 
to this issue by managing the processes of knowledge creation, storage, and sharing. 
The author presents a widely known model of knowledge management, namely, the 
experience factory, that collects empirical knowledge in an experience package with 



VIII Preface 

 

the aim of mitigating the consequences of knowledge loss due to staff turnover, im-
proving products and processes, and assuring near-the-job learning. Based on previous 
technology transfer experiences, the author proposes a model for systematically struc-
turing the content of a package and allowing for an incremental and cooperative pro-
duction of packages. A platform that supports the collection and distribution of 
knowledge-experience packages is also described. 

We wish to conclude by expressing our gratitude to the many people who sup-
ported the publication of this volume with their time and energy. First of all, we wish 
to thank the lecturers and all the authors for their valuable contribution. We also grate-
fully acknowledge the Scientific Committee Members, for their work and for promot-
ing the International Summer School on Software Engineering. Thanks are due to our 
department (Dipartimento di Matematica e Informatica, Università di Salerno) for the 
administrative and organizational support we received every day. We are also grateful 
to Vincenzo Deufemia, Sergio Di Martino, Fausto Fasano, Rita Francese, Carmine 
Gravino, Rocco Oliveto, Ignazio Passero, Michele Risi, and Giuseppe Scanniello, 
who were of great help in organizing the school. Finally, we want to thank Springer 
for providing us with the opportunity to publish this volume.  

We hope you will enjoy reading the chapters and find them relevant and fruitful for 
your work. We also hope that the tackled topics will encourage your research in the 
software engineering field and your participation in the International Summer School 
on Software Engineering.  

 
 

 
October 2008 Andrea De Lucia  

Filomena Ferrucci  
  

 



Table of Contents

Software Requirements and Design

The Future of Software: Adaptation and Dependability . . . . . . . . . . . . . . . 1
Paola Inverardi and Massimo Tivoli

Autonomic Computing Now You See It, Now You Don’t: Design and
Evolution of Autonomic Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Hausi A. Müller, Holger M. Kienle, and Ulrike Stege

Impact of Usability on Software Requirements and Design . . . . . . . . . . . . . 55
Natalia Juristo

Software Testing and Reverse Engineering

Service-Oriented Architectures Testing: A Survey . . . . . . . . . . . . . . . . . . . . 78
Gerardo Canfora and Massimiliano Di Penta

The PLASTIC Framework and Tools for Testing Service-Oriented
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Antonia Bertolino, Guglielmo De Angelis, Lars Frantzen, and
Andrea Polini

Architecture Reconstruction: Tutorial on Reverse Engineering to the
Architectural Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Rainer Koschke

Management

Collaboration in Distributed Software Development . . . . . . . . . . . . . . . . . . 174
Filippo Lanubile

Web Cost Estimation and Productivity Benchmarking . . . . . . . . . . . . . . . . 194
Emilia Mendes

Knowledge Base and Experience Factory for Empowering
Competitiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Giuseppe Visaggio

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257



The Future of Software: Adaptation and
Dependability�

Paola Inverardi and Massimo Tivoli

University of L’Aquila
Dip. Informatica

via Vetoio, 67100 L’Aquila
Fax: +390862433131

{inverard,tivoli}@di.univaq.it

Abstract. Software in the near ubiquitous future (Softure) will need to
cope with variability, as software systems get deployed on an increasingly
large diversity of computing platforms and operates in different execu-
tion environments. Heterogeneity of the underlying communication and
computing infrastructure, mobility inducing changes to the execution
environments and therefore changes to the availability of resources and
continuously evolving requirements require software systems to be adapt-
able according to the context changes. Softure should also be reliable and
meet the users performance requirements and needs. Moreover, due to
its pervasiveness and in order to make adaptation effective and success-
ful, adaptation must be considered in conjunction with dependability,
i.e., no matter what adaptation is performed, the system must continue
to guarantee a certain degree of Quality of Service (QoS). Hence, Sof-
ture must also be dependable, which is made more complex given the
highly dynamic nature of service provision. Supporting the development
and execution of Softure systems raises numerous challenges that in-
volve languages, methods and tools for the systems thorough design and
validation in order to ensure dependability of the self-adaptive systems
that are targeted. However these challenges, taken in isolation are not
new in the software domain. In this paper we will discuss some of these
challenges and possible solutions making reference to the approach un-
dertaken in the IST PLASTIC project for a specific instance of Softure
focused on software for Beyond 3G (B3G) networks.

1 Introduction

The design and the development of dependable and adaptable software applica-
tions in the near ubiquitous future (Softure) cannot rely on the classical desktop-
centric assumption that the system execution environment is known a priori at

� This work is a revised and extended version of [6]. It has been partially supported
by the IST project PLASTIC. We acknowledge all the members of the PLASTIC
Consortium and of the SEALab at University of L’Aquila for joint efforts on all the
research efforts reported in this paper.

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 1–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 P. Inverardi and M. Tivoli

design time and, hence, the application environment of a Softure cannot be
statically anticipated. Softure will need to cope with variability, as software sys-
tems get deployed on an increasingly large diversity of computing platforms and
operates in different execution environments. Heterogeneity of the underlying
communication and computing infrastructure, mobility inducing changes to the
execution environments and therefore changes to the availability of resources and
continuously evolving requirements require software systems to be adaptable ac-
cording to the context changes. At the same time, Softure should be reliable
and meet the users performance requirements and needs. Moreover, due to its
pervasiveness and in order to make adaptation effective and successful, adapta-
tion must be considered in conjunction with dependability, i.e., no matter what
adaptation is performed, the system must continue to guarantee a certain degree
of Quality of Service (QoS). Hence, Softure must also be dependable, which is
made more complex given the highly dynamic nature of service provision.

Supporting the development and execution of Softure systems raises numerous
challenges that involve languages, methods and tools for the systems through de-
sign and validation in order to ensure dependability of the self-adaptive systems
that are targeted.

However these challenges, taken in isolation are not new in the software
domain. Adaptable and re-configurable systems do exist in many software ap-
plication domains from tele-communication to the software domain itself, e.g.,
operating systems. Dependable systems have been intensively investigated and
methods and tools exist to develop them. Hence what are the new challenges for
Softure? In the following we will discuss some of these challenges and possible so-
lutions making reference to the approach undertaken in the IST PLASTIC [13]
project for the specific instance of Softure as software for Beyond 3G (B3G)
networks. Our thesis is that Softure requires to rethink the whole software engi-
neering process and, in particular, it needs to reconcile the static view with the
dynamic view by breaking the traditional division among development phases
by moving some activities from design time to deployment and run time hence
asking for new and more efficient verification and validation techniques. Depend-
ability is achieved with a comprehensive life cycle approach from requirements
to operation, to maintenance by analyzing models, testing code, monitor, and
repair execution. Many software models are involved, from requirements to spec-
ification, to code. In order to support dependability of adaptable applications
new modeling notations are required. These should permit to express and deal
with characteristics that are crucial for a Softure, i.e., QoS, resource-awareness,
evolution, reconfiguration, variability, and uncertainty. At the same time they
should allow for validation techniques affordable at run time. Their cost must be
sustainable under the execution environment resource constraints, e.g. time and
computational resources. In order to easily and consistently integrate the model-
ing layer with the analysis and implementation ones, model transformation and
evolution techniques should be exploited.

The paper is structured as follows. In the following section we discuss the Sof-
ture characteristics in order to identify the two key challenges: adaptability and



The Future of Software: Adaptation and Dependability 3

dependability. Section 3 discusses and compares different notions of adaptability
with different degrees of dependability. This discussion will bring us to consider
the Softure issues in a software process perspective. In Section 4, based on the
previous discussion and comparison of different adaptability and dependability
degrees, we discuss the requirements that the modeling notations to the design,
development, and validation of Softure should satisfy. Section 5 proposes a new
software process and discusses it in the scope of the PLASTIC project [13]. In
Section 6 we conclude by summarizing the thesis originating from the discussion
carried on through the paper.

2 Softure Challenges: Setting the Context

Softure is supposed to execute in an ubiquitous, heterogeneous infrastructure un-
der mobility constraints. This means that the software must be able to carry on
operations while changing different execution environments or contexts. Execu-
tion contexts offer a variability of resources that can affect the software operation.
Context awareness refers to the ability of an application to sense the context in
which it is executing and therefore it is the base to consider (self-)adaptive ap-
plications, i.e., software systems that have the ability to change their behavior
in response to external changes.

It is worthwhile stressing that although a change of context is measured in
terms of availability of resources, that is in quantitative terms, an application can
only be adapted by changing its behavior, i.e., its functional/qualitative specifi-
cation. In particular, (Physical) Mobility allows a user to move out of his proper
context, traveling across different contexts. To our purposes the difference among
contexts is determined in terms of available resources like connectivity, energy,
software, etc. However other dimensions of contexts can exist relevant to the
user, system and physical domains, which are the main context domains iden-
tified in the literature [15]. In the software development practice when building
a system the context is determined and it is part of the (non-functional) re-
quirements (operational, social, organizational constraints). If context changes,
requirements change therefore the system needs to change. In standard software
the pace at which context changes is slow and they are usually taken into ac-
count as evolutionary requirements. For SOFTURE context changes occur due
to physical mobility while the system is in operation. This means that if the
system needs to change this should happen dynamically. This notion leads to
consider different ways to modify a system at run time that can happen in
different forms namely (self-)adaptiveness/dynamicity and at different levels of
granularity, from software architecture to line of code.

Softure needs also to be dependable. Dependability is an orthogonal issue that
depends on QoS attributes, like performance and all other -bilities. Dependability
impacts all the software life cycle.

In general dependability is an attribute for software systems that operate
in specific application domains. For Softure we consider dependability in its
original meaning as defined in [5], that is the trustworthiness of a computing



4 P. Inverardi and M. Tivoli

system which allows reliance to be justifiably placed on the service it delivers ...
Dependability includes such attributes as reliability, availability, safety, security.
Softure encompasses any kind of software system that can operate in the future
ubiquitous infrastructure. The dependability requirement is therefore extended
also to applications that traditionally have not this requirement. Dependability
in this case represents the user requirement that states that the application must
operate in the unknown world (i.e., out of a confined execution environment)
with the same level of reliance it has when operating at home. At home means
in the controlled execution environment where there is complete knowledge of the
system behavior and the context is fixed. In the unknown world, the knowledge
of the system is undermined by the absence of knowledge on contexts, thus the
dependability requirement arises also for conventional applications. Traditionally
dependability is achieved with a comprehensive approach all along the software
life cycle from requirements to operation to maintenance by analyzing models,
testing code, monitor and repair execution.

Therefore the overall challenge is to provide dependable assurance for highly
adaptable applications. Since dependability is achieved throughout the life cycle
many software artifacts are involved, from requirements specification to code.
In the rest of this paper we will consider as such artifacts only models that is
idealized view of the system suitable for reasoning, developing, validating a real
system. Models can be functional and non-functional and can represent different
level of abstractions of the real system, from requirements to code. Our research
bias is on Software Architecture, therefore we will often consider software ar-
chitectural systems models. An architectural model allows the description of
the static and dynamic components of the system and explains how they inter-
act. Software architectures support early analysis, verification and validation of
software systems. Software architectures are the earliest comprehensive system
model along the software lifecycle built from requirements specification. They are
increasingly part of standardized software development processes because they
represent a system abstraction in which design choices relevant to the correct-
ness of the final system are taken. This is particularly evident for dependability
requirements like security and reliability and quantitative ones like performance.

3 Adaptabilty: 3 Examples

In this section we discuss the notion of adaptability. According to what presented
so far, adaptability is the ability to change a system according to context varia-
tions, e.g., driven by QoS requirements. However, the change should maintain the
essence of the system that from now on we will call invariant. From Section 3.2 to
Section 3.4, we will focus on evolving systems that change through adaptation. In
order to classify them we propose to use a 4 dimension metric: the four Ws.

3.1 The Four Ws

The systems we consider can change through adaptability either their structure
and/or their behavior. The four Ws characterize the nature of the change along
the following four dimensions:



The Future of Software: Adaptation and Dependability 5

– Why there is the need to change?
– What does (not) change?
– When does the change happen?
– What/Who manages the change?

Why: this dimension makes explicit the need for the change. In a Software
Engineering perspective this change is always done to meet requirements.
It can be because the requirements evolved or it can be that the system
does not behave properly according to the stated requirements. It is also
worthwhile mentioning that requirements can be functional and non func-
tional requirements. The former class captures the qualitative behavior of a
software system, its functional specification. The latter defines the systemss
quantitative attributes like, performance, reliability, security, etc.

What: here we discuss the part of the system that is affected by the change.
Referring to architectural models, changes can affect the structure and/or the
behavior. For the structure, components can get in and out, new connectors
can be added and removed. For the behavior components can change their
functionality and connectors can change their interaction protocols.

When: this dimension captures the moment during the systems lifetime in which
the change occurs. It does not mean that the change happens necessarily at
run time. This dimension is related with the Static versus Dynamic issue.

What/Who: this is the description of the mechanisms to achieve the change.
It can be a configuration manager or it can be the system itself. Involves
monitoring the system to collect relevant data, evaluating this data, make a
decision about the change alternatives and then perform the actual change.

In the following we will provide 3 examples of functional and non-functional
adaptation. The first one has been developed in the Software Engineering re-
search group at University of L’Aquila.

3.2 Synthesis: An Approach to Automatically Build Failure-Free
Connectors for Component-Based Architectures

Synthesis is a technique equipped with a tool [2,16] that permits to assemble
a component-based application in a deadlock-free way [7,8,18]. Starting from a
set of components Off The Shelf (OTS), Synthesis assembles them together ac-
cording to a so called connector-based architecture by synthesizing a connector
that guarantees deadlock-free interactions among components. The code that
implements the new component representing the connector is derived, in an au-
tomatic way, directly from the OTS (black-box) components interfaces. Synthesis
assumes a partial knowledge of the components interaction behavior described
as finite state automata plus the knowledge of a specification of the system to
assemble given in terms of Message Sequence Charts (MSC) [9,19,20]. Further-
more, by exploiting that MSC specification, it is possible to go beyond deadlock.
Actually, the MSC specification is an implicit failure specification. That is we as-
sume to specify all the desired assembled system behaviors which are failure-free
from the point of view of the system assembler, rather than to explicitly specify



6 P. Inverardi and M. Tivoli

the failure. Under these hypotheses, Synthesis automatically derives the assem-
bling code of the connector for a set of components. The connector is derived in
such a way to obtain a failure-free system. It is shown that the connector-based
system is equivalent according to a suitable equivalence relation to the initial
one once depurated of all the failure behaviors. The initial connector is a no-op
connector that serves to model all the possible component interactions (i.e., the
failure-free and the failing ones). Acting on the initial connector is enough to
automatically prevent both deadlocks and other kinds of failure hence obtaining
the failure-free connector.

Fig. 1. The Synthesis Application Adaptation

As illustrated in Figure 1, the Synthesis framework realizes a form of system
adaptation. The initial software system is changed by inserting a new component,
the connector, in order to prevent interactions failures.

The framework makes use of the following models and formalisms. An archi-
tectural model, the connector-based architecture that constrains the way com-
ponents can interact, by forcing interaction to go through the connector. A
set of behavioral models for the components that describe each single compo-
nents interaction behavior with the ideal1 external context in the form of Label
Transition Systems (LTSs). A behavioral equivalence on LTS to establish the
equivalence among the original system and the adapted one. MSC are used to
specify the behavioral integration failure to be avoided, and then LTSs and LTS
1 The one expected by the component’s developer.



The Future of Software: Adaptation and Dependability 7

synchronous product [1,10] plus a notion of behavioral refinement [11] to synthe-
size the failure-free connector specification, as it is described in detail in [18].
From the connector specification the actual code can then be automatically de-
rived as either a centralized component [18] or a distributed one [3]. The latter
is implemented as a set of wrappers, one for each component, that cooperatively
realize the same behavior as the centralized connector.

SythesisRT. Recently, the Synthesis approach and its related tool has been ex-
tended to the context of real-time systems [17]. This extension, hereafter called
SynthesisRT, has been developed by the Software Engineering research group
at University of L’Aquila in cooperation with the POP ART project team at
INRIA Rhône-Alpes. In [17], it is shown how to deal with the compatibility,
communication, and QoS issues that can raise while building a real-time sys-
tem from reusable black-box components within a lightweight component model
where components follow a data-flow interaction model. Each component de-
clares input and output ports which are the points of interaction with other
components and/or the execution environment. Input (resp., output) ports of
a component are connected to output (resp., input) ports of a different compo-
nent through synchronous links. Analogously to the version of Synthesis without
real-time constraints, a component interface includes a formal description of the
interaction protocol of the component with its expected environment in terms
of sequences of writing and reading actions to and from ports. The interface
language is expressive enough to specify QoS constraints such as writing and
reading latency, duration, and controllability, as well as the component’s clock
(i.e., its activation frequency). In order to deal with incompatible components
(e.g., clock inconsistency, read/write latency/duration inconsistency, mismatch-
ing interaction protocols, etc.) we synthesize component adaptors interposed
between two or more interacting components. An adaptor is a component that
mediates the interaction between the components it supervises, in order to har-
monize their communication. Each adaptor is automatically derived by taking
into account the interface specification of the components it supervises. The
adaptor synthesis allows the developer to automatically and incrementally build
correct-by-construction systems from third-party components.

Figure 2 shows the main steps of the method performed by SynthesisRT by
also highlighting the used formalisms/models.

We take as input the architectural specification of the network of components
to be composed and the component interface specifications. The behavioral mod-
els of the components are generated in form of LTSs that make the elapsing of
time explicit (step 1). Connected ports with different names are renamed such
that complementary actions have the same label in the component LTSs (see
actions a and d in Figure 2). Possible mismatches/deadlocks are checked by
looking for possible sink states into the parallel composition of the LTSs. The
adaptor synthesis process starts only if such deadlocks are detected.

The synthesis first proceeds by constructing a Petri net (PN) [12] represen-
tation of the environment expected from a component in order not to block it
(step 2). It consists in complementing the actions in the component LTSs that



8 P. Inverardi and M. Tivoli

Fig. 2. Main steps of adaptor synthesis for real-time components

are performed on connected ports, considering the actions performed on uncon-
nected ports as internal actions. Moreover, a buffer storing read and written
values is modeled as a place in the environment PN for each IO action. Each
such PN represents a partial view of the adaptor to be built. It is partial since it
reflects the expectation of a single component. In particular, a write (resp. read)
action gives rise to a place (buffer) without outgoing (resp. incoming) arcs.

The partial views of the adaptor are composed together by building causal
dependencies between the reading/writing actions and by unifying time-elapsing
transitions (step 3). Furthermore, the places representing the same buffer are
merged in one single place. This Unification PN models an adaptor that solves
deadlocks using buffers to desynchronize received events from their emission.

However, the unification PN may be not completely correct, in the sense
that it can represent an adaptor that may deadlock and/or that may require
unbounded buffers. In order to obtain the most permissive and correct adaptor,
we generate an extended version of the graph usually known in PNs theory [12]
as the coverability graph [4] (step 4).

Our method automatically restricts the behavior of the adaptor modeled by
the extended coverability graph in order to keep only the interactions that are
deadlock-free and that use finite buffers (i.e., bounded interactions). This is done
by automatically constructing, if possible, an “instrumented” version of our ex-
tended coverability graph, called the Controlled Coverability Graph (CCG). The
CCG is obtained by pruning from the extended coverability graph both the sinking
paths and the unbounded paths, by using a controller synthesis step [14] (step 5).

This process also performs a backwards error propagation step in order to
correctly take into account the case of sinking and unbounded paths originating
from the firing of uncontrollable transitions.



The Future of Software: Adaptation and Dependability 9

If it exists, the maximal CCG generated is the LTS modeling the behavior
of the correct (i.e., deadlock-free and bounded) adaptor. This adaptor models
the correct-by-construction assembly code for the components in the specified
network. If it does not exist, a correct adaptor assembling the components given
as input to our method cannot be automatically derived, and hence our method
does not provide any assembly code for those components.

Let us now analyze the Synthesis(RT) approach to adaptation by means of
the four Ws metric:

Why there is the need to change? Here the purpose of the change is to cor-
rect functional behavior and to make the non-functional one fit. That is to
avoid interaction deadlocks (due to possible clock inconsistency, inconsis-
tent latency / duration for the component actions, mismatching interaction
protocols) and / or enforce a certain interaction property P. This adapta-
tion is not due to changes of context simply because, at assembly time, the
context does not to change. The change here aims at both correcting a func-
tional misbehavior and making different non-functional characteristics of the
components fit.

What does (not) change? It changes the topological structure and the interac-
tion behavior. A new component is inserted in the system and the overall
interaction behavior is changed. The invariant part of the system is repre-
sented by all the correct behaviors. The proof that the adaptation preserves
the invariant is by construction.

When does the change happen? It happens at assembly time, thus prior to de-
ployment and execution. Thus it is actually part of the development process.

What/Who manages the change? An external entity: The developer through
the Synthesis(RT) framework.

3.3 Topological Evolution: Graph Grammars to Describe Software
Architecture Styles

In this section we summarize and discuss (w.r.t. the four Ws) the work by D. Le
Métayer described in [24]. In this work the author proposes to describe software
architectures formally in terms of graphs. The nodes of the graph represent
the individual system entities (i.e., components, in a very general meaning).
The edge corresponds to the communication links (i.e., connectors) between
entities. Architectural styles are defined as context-free graph grammars since
they can be seen as a set of architectures (and, hence, graphs) sharing a common
shape. In other words, an architectural style is the “type” (i.e., form) that an
architecture conform to the style must have at run time, that is the possible
interconnections between its individual entities. A “coordinator” is used to pilot
the overall application, and it is in charge of managing the architecture itself
(creating and removing entities and links). As an illustration, the graph shown
in Figure 3 represents an example of a client-server architecture.

The architecture represented by the graph shown in Figure 3 involves two
clients c1 and c2, two servers s1 and s2, a manager m0 and x0. It is formally
defined as the set D:



10 P. Inverardi and M. Tivoli

Fig. 3. A client-server architecture

{CR(c1, m0), CA(m0, c1), C(c1), CR(c2, m0), CA(m0, c2), C(c2), SR(m0, s1),
SA(s1, m0), S(s1), SR(m0, s2), SA(s2, m0), S(s2), X(x0), M(m0)}

where C, S, M , and X correspond, respectively, to the client, server, manager
and external entity types. The external entity stands for the external world;
it records requests for new clients wanting to be registered in the system. CR
and CA correspond to client request links and client answer links (they are link
types), respectively (SR and SA are the dual links for servers).

D is just one particular representative of a more general class of client-server
architectures. Architectures belonging to this class must include values X(x0)
and M(m0) and any number of servers and clients. Furthermore, they must
follow the communication link pattern exhibited by D. Such a class is specified
as a context-free graph grammar:

HCS = [{CS, CS1}, {M, X, C, S, CR, CA, SR, SA}, R, CS]

where {CS, CS1} is the set of non-terminal symbols with CS the axiom (i.e.,
the origin of any derivation produced by applying the production rules in R),
{M, X, C, S, CR, CA, SR, SA} is the set of terminal symbols, and R the set of
the following four production rules:

1. CS → CS1(m)
2. CS1(m) → CR(c, m), CA(m, c), C(c), CS1(m)
3. CS1(m) → SR(m, s), SA(s, m), S(s), CS1(m)
4. CS1(m) → M(m), X(x)

It is often the case that the architecture of an application should be able
to evolve dynamically. For instance, a client-server organization must allow for
the introduction of new clients or their departure. In the theoretical framework



The Future of Software: Adaptation and Dependability 11

described in this section, the evolution of the architecture is defined by a coor-
dinator. As an illustration, the following coordinator CooCS can be applied to a
client-server architecture:

X(x), M(m) → X(x), M(m), CR(c, m), CA(m, c), C(c)
CR(c, m), CA(m, c), C(c) → ∅

The coordinator is defined as a set of production rules. The two rules above
describe the introduction of a new client in the architecture and its departure,
respectively.

The possibility of expressing architecture transformations is definitely a useful
feature but it also raises a question: is it possible to ensure that a coordinator
does not break the constraints of a given architectural style? For example, had
we forgotten, say CR(c, m) in the right-hand side of the first rule, then the
coordinator would have been able to transform a client-server architecture into
an architecture which would not belong any longer to the client-server class
defined by HCS. To answer this question, in [24], the author defines a static
style checking algorithm which would be the counterpart for coordinators of the
type checking algorithms of classical languages. The algorithm has been applied
to a real-scale case study, see [24] for further details.

Let us analyze the theoretical framework based on graph grammars, that is
summarized in this section, with the four Ws metric:

Why there is the need to change? The change allows the topological evolution of
the system (e.g., new components entering or quitting the system) according
to the constraints imposed by the architectural style the system’s software
architecture conforms to.

What does (not) change? The topological structure of the system changes since
its software architecture changes, but the imposed architectural style is pre-
served. Moreover, the interaction behavior does not change since the system’s
components are constrained to always exhibit the same “style” of interaction.

When does the change happen? At run time with the introduction of a new
component acting as both a coordinator of the other components in the
system and a manager of the links between the system components.

What/Who how is the change managed? By the coordinator and an external
entity that allows the system to be open in the sense that its structure can
evolve.

3.4 Topological and Behavioral Evolution: ArchJava

In this section we recall and discuss (w.r.t. the four Ws) the work by Aldrich et al.
concerning the ArchJava2 language [25,26]. ArchJava is an extension to Javawhich
allows programmer to specify the architecture of the software within the program.

Software architecture is the organization of a software system as a collection of
components, connections between the components, and constraints on how the
components interact. Architecture description languages (ADLs) can be used
2 http://www.cs.washington.edu/homes/jonal/archjava/



12 P. Inverardi and M. Tivoli

to specify and analyze the software architecture and, by equipping/integrating
an ADL with a verification tool, Architecture specifications can be also auto-
matically analyzed. Architecture specification is helpful in software development
and maintenance since it represents the reference skeleton used to compose the
system components and let them interact.

The motivation for ArchJava is the following: using an ADL for specifying
the architecture causes problems since there could be inconsistencies between
the implementation and the specification. This becomes a bigger problem as
the software changes. ArchJava extends Java with constructs for specifying the
architecture of the software. Using ArchJava software developers specify the
architecture of the software within the program. Therefore, the architecture and
the program are always consistent in the sense that a certain set of architectural
constraints always hold in the implementation of the architecture.

Communication integrity is one of the architectural constraints that is worth
checking when implementing an architectural specification into a program. Com-
munication integrity means that the components only communicate directly with
the components they are connected to in the architecture.ByusingArchJava to im-
plementanarchitectural specification intoaprogram, thecommunication integrity,
defined at the architectural-level, is guaranteed by the implemented program.

The new language constructs introduced by ArchJava are Components, Ports,
and Connections. Components are the same as usual Java classes plus architec-
tural constraints. They define architectural objects and must obey the declared
architectural constraints. Ports are points of interaction of the components with
the external environment, that is they define the communication interfaces of
the components by declaring the set of methods that are required and provided
to enable communication. Components communicate through ports and they
can send and receive ordinary (i.e., non-component) objects between each other
through the ports. As an illustration, the following is a part of the ArchJava code
defining a component, Parser, with an input port declaring a required method,
nextToken, and an output port declaring a provided method, parse. In order
to implement parse the “private” method parseExpr is used.

public component class Parser {
public port in {
requires Token nextToken();

}
public port out {
provides AST parse();

}
AST parse() {
Token tok=in.nextToken();
return parseExpr(tok);

}
AST parseExpr(Token tok) { ... }
...

}



The Future of Software: Adaptation and Dependability 13

Components can have sub-components, i.e., several components can be com-
posed to form a composite component. Sub-components communicate through
the connected ports. Connections are used to connect different ports and com-
ponents can only communicate with their sub-components (through ports) and
the components that they are connected to. As an illustration, the following is
a part of the ArchJava code implementing the composite component Compiler:

public component class Compiler {
private final Scanner scanner = new Scanner();
private final Parser parser = new Parser();
private final CodeGen codegen = new CodeGen();
connect scanner.out, parser.in;
connect parser.out, codegen.in;
...

Compiler is formed by three components, Scanner, Parser, and Codegen. The
output port of Scanner (resp., Parser) is connected to input port of Parser
(resp., Codegen). The connect primitive will bind each required method to a
provided method with the same signature. The arguments to connect may be
a components own ports or those of subcomponents in final fields. Connection
consistency checks are performed to ensure that each required method is bound
to unique provided method.

For the sake of clarity, in Figure 4, we show the software architecture of
Compiler.

Fig. 4. Software architecture of a composite component

As mentioned above, ArchJava enforces communication integrity since no
method calls are permitted from one component to another except either from
a parent to its immediate sub-component or through connections in the archi-
tecture. This means that, on the one hand, ArchJava allows calls either between
connected components, or from a parent to its immediate sub-component, or to
shared objects. On the other hand, ArchJava forbids calls either that are ex-
ternal to sub-components, or between unconnected sub-components, or through
shared objects.

In ArchJava, communication integrity can be statically checked (i.e., at com-
pile time). This is due to way the ArchJava Type System has been designed. It
enforces the following invariant: components can only get a typed reference to
sub-components and connected components. Therefore, it is not possible to cast



14 P. Inverardi and M. Tivoli

a component to an Object and avoid the restrictions on communication between
components. This will cause an exception.

By using ArchJava, it is also possible to establish dynamic architectures. In-
stances of components can be dynamically created using new syntax as with
ordinary objects. At creation time each component records the component in-
stance that created it as its parent component. Communication integrity puts
restrictions on how component instances can be used. Typed references to sub-
components should not escape the scope of their parent component. This require-
ment is enforced by putting restrictions on how component types can be used.
Connections can be formed dynamically using a connect expression. A connect
expression must match a connect pattern declared at the enclosing component.
A connection pattern is used to describe a set of connections that can be in-
stantiated at run time. A connect expression matches a connection pattern if
the connected ports are identical and each connected component instance is an
instance of the type specified in the pattern.

Let us analyze the features of the ArchJava language, that are recalled in this
section, with the four Ws metric:

Why there is the need to change? The change allows both the topological and
behavioral evolution of the system.

What does (not) change? The topological structure and the behavior of the sys-
tem, e.g., new type of components can enter the system or old ones quitting
it, and also new types of connections can be instantiated among components
hence, possibly, introducing new interaction behavior. Whatever change is
applied, communication integrity is kept, i.e., it is the invariant.

When does the change happen? At run time with the dynamic creation of
component and connection instances.

What/Who how is the change managed? It is self-managed since the application
itself steers it.

Summarizing in this section we have presented 5 examples of adaptation that
differ with respect to several dimensions. One issue that is raised by the when
dimension in the four Ws metric is whether adaptability is static or dynamic.
The system adapts at run time, how and when the adaptation is computed or
carried out does not change the problem, it is just a matter of cost. The cost
we are referring to here is the cost of carrying out the adaptation maintaining
the original integrity of the part of the application that does not change, i.e. the
invariant. Thus if the application A that exhibits property P is changed into an
application A′ and the change is supposed to preserve the property P , then this
means that also A′ must satisfy P . For example the property P could be type
integrity, thus we require that the change does not undermines type integrity
in the changed application. Obviously, in this case, carrying out the change
statically, i.e. before the system is running permits to prove type integrity of A′

in a less expensive way than if done at run time.



The Future of Software: Adaptation and Dependability 15

4 Requirements on the Modelling Notations to Support
Adaptation and Dependability

In this section we discuss the requirements that the modelling notations for Sof-
ture should satisfy in order to specify, and reason about, computational entities
that will be adaptable to the environment they will be deployed and executed.
We recall that adaptability is, here, intended as the ability to change a system
according to requirement changes and context variations possibly driven by QoS
requirements. However, the change should maintain the behavioural essence of
the system that we call invariant. This premise allows us to set a number of re-
quirements on the notations that should be used in the context of Softure. The
first consideration is that a sole unifying notation will not suffice. This implies
that a bunch of modelling notations should be used and consistently integrated.
These notations will characterize the software at different levels of granularity,
according to the adaptation variability. They will express different attributes of
interest for validation purposes. It shall be possible to characterize the invariant
behaviour of the software as well as its variability and it shall be possible to
define accordingly a notion of cost for the validation of the invariant part upon
adaptation. The adaptation logic itself needs to be described, either embedded
in the software or external but dependent on the observation of the software
to adapt. Besides notations for the adaptable software, notations for character-
izing the context, both statically and at run time, must be defined. Each one
of the above represents a research challenge itself and opens new research op-
portunities. All these new notations will be used to provide a common base for
behavioural and dependability analysis, model checking, model transformation,
correct-by-construction code synthesis and testing. A further challenge then is
to let all the different notations coexist in a common evolutionary development
framework based on model-transformations, which allows the definition of rela-
tionships between the different Softure notations. Summarizing, these notations
should allow the developer to express context-aware adaptation in conjunction
with the desired degree of dependability. In this direction, new modelling nota-
tions should be defined to support the effective development of Softure. These
notations should be able to:

– Express the attributes of interest, operational profile (e.g., workload, proba-
bility of usage), user preferences, testability concepts (e.g., verdict, test case,
test purpose), etc.

– Model relevant context characteristics to be monitored at run time to en-
able applications to adapt accordingly. Such notations should facilitate the
management of context information (and their variations) being retrieved by
different sources in a homogeneous way. They should also allow for advanced
operations on contextual data, e.g., by comparing and reasoning on data for
checking consistency and by combining different types of data.

– Define: (i) which behavioural properties have to be considered as invariants
(i.e., no matter what adaptation will be performed, these properties must
be always guaranteed), and (ii) which ones can be considered parametric



16 P. Inverardi and M. Tivoli

in the possible deployment environments. Depending on the system, on the
properties and on the possible adaptations a static verification can be carried
on. However, in general, their verification needs to be performed dynamically,
under a certain notion of reasonable cost, in conjunction with the validation
of the discovered deployment environment. Thus, how to model this notion
of verification cost should also be another challenge to face.

– Express how to embed the adaptation logic in the system that we assume to
be made of components. Two types of approaches are possible: (i) endoge-
nous, that requires enriching the modelling language to provide this ability
into the component logic; and (ii) exogenous, that refers to an external en-
tity able to monitor the state exported from each component and adapt the
component behaviour to dynamic changes in the environment. The first case
amounts to provide in the component modelling notation higher-order ca-
pabilities. The latter amounts to make the component state available (and,
hence, modelled) to be inspected and managed. Both of them require nota-
tions to effectively specify a kind of “make before break policies” for prepar-
ing the adaptation before the application consistency breaks. For instance,
when switching from a given context to a different one the application might
change its “internal” status according to the new environment it is entering
into.

– Express variability in a declarative style in order to support property ver-
ification for evolving systems [34]. This requires capability in the notation
to express degrees of generality in the component specification that can be
instantiated, maintaining the correctness of the component, at run time de-
pending on the execution context. The challenge, here, is providing the right
balance between generality and verifiability.

All these new notations would be used to provide a common base for be-
havioural and dependability analysis, model checking, model transformation,
correct-by-construction code synthesis, testing, and reconfiguration. Since a
unique notation incorporating all such aspects is unreasonable (as discussed also
in [35]), we envision that all the different notations should be let coexist in a
common evolutionary development framework based on model-transformations,
which allows the definition of relationships between different Softure notations.

5 Softure: The Process View

In this section we cast the above discussed challenges in a process view. The
process view focuses on the set of activities that characterize the production and
the operation of a software system. These activities are traditionally divided into
activities related to the actual production of the software system and activities
that are performed when the system can be executed and goes into operation.
Specification, Design, Validation, and Evolution activities vary depending on the
organization and the type of system being developed. Each Activity requires its
Language, Methods and Tools and works on suitable artifacts of the system. For



The Future of Software: Adaptation and Dependability 17

validation purposes each artifact can be coupled with a model. Models are an
idealized view of the system suitable for reasoning, developing, validating a real
system. To achieve dependability a large variety of models are used from behav-
ioral to stochastic. These models represent the systems at very different levels of
abstraction from requirements specification to code. The ever growing complex-
ity of software has exacerbated the dichotomy development/static/compile time
versus execution/dynamic/interpreter time concentrating as many analysis and
validation activities as possible at development time.

Softure puts new requirements on this standard process. The evolutionary
nature of Softure makes unfeasible a standard approach to validation since it
would require before the system is in execution to predict the system behavior
with respect to virtually any possible change. Therefore in the literature most
approaches that try to deal with the validation of dynamic software system
concentrate the changes to the structure by using graph and graph grammars
formalisms or topological constraints [24,27,28,29,30,31]. As far as changes to
behavior are concerned, only few approaches exist that make use either of be-
havioral equivalence checks or of the type system [25,26,32] or through code
certification [23,33]. If dependability has to be preserved through adaptation,
whatever the change mechanism is, at the time the change occurs a validation
check must be performed. This means that all the models necessary to carry on
the validation step must be available at run time and that the actual validation
time becomes now part of the execution time.

Fig. 5. The Future Engineering Process

The Future development process therefore has to explicitly account for com-
plex validation steps at run time when all the necessary information are avail-
able. Figure 5 represents the process development plane delimited on one side
by the standard process and on the other side by the future development one.
The vertical dimension represents the static versus dynamic time with respect to
the analysis and validation activities involved in the development process. The
horizontal axis represents the amount of adaptability of the system, that is its



18 P. Inverardi and M. Tivoli

ability to cope with evolution still maintaining dependability. The standard de-
velopment process carries out most of the development and validation activities
before the system is running that is during development. The result is a running
system that, at run time, is frozen with respect to evolution. Considering devel-
opment processes that allow increasingly degrees of adaptability allows to move
along the horizontal axis thus ideally tending to a development process that is
entirely managed at run time. In the middle we can place development processes
that allow larger and larger portions of the system to change at run time and
that make use for validation purposes of artifacts that can be produced stati-
cally. In the following section we introduce an instance of the Future Engineering
Process that has been proposed in the scope of the PLASTIC project.

5.1 PLASTIC Services: An Instance of Softure

The PLASTIC project aims to offer a comprehensive provisioning platform for
software services deployed over B3G networks (see Figure 6). A characteristic of
this kind of infrastructure is its heterogeneity, that is it is not possible to assume
that the variety of its components QoS is homogenized through a uniform layer.
PLASTIC aims at offering B3G users a variety of application services exploiting
the network’s diversity and richness, without requiring systematic availability of
an integrated network infrastructure. Therefore the PLASTIC platform needs
to enable dynamic adaptation of services to the environment with respect to
resource availability and delivered QoS, via a development paradigm based on
Service Level Agreements (SLA) and resource-aware programming.

The provided services should meet the user demand and perception of the
delivered QoS, which varies along several dimensions, including: type of service,

Fig. 6. B3G Networks



The Future of Software: Adaptation and Dependability 19

type of user, type of access device, and type of execution network environment.
Referring to the challenges discussed in Section 2, this means that services must
be dependable according to the users expected QoS.

This demands for a software engineering approach to the provisioning of ser-
vices, which encompasses the full service life cycle, from development to valida-
tion, and from deployment to execution.

The PLASTIC answer to the above needs is to offer a comprehensive plat-
form for the creation and provisioning of lightweight, adaptable services for the
open wireless environment. Supporting the development of resource-aware and
self-adapting components composing adaptable services requires focusing on the
QoS properties offered by services besides the functional ones. The whole de-
velopment environment is based on the PLASTIC Conceptual Model [36] whose
main role is to provide an abstract characterization of B3G networks so as to ease
the development of applications that effectively exploit them. To this end, the
model proposes an elicitation of base abstractions that need to be accounted for
developing applications for B3G networking infrastructures. Starting from the
analysis of the characteristics of B3G networks, the relevant abstractions have
been identified and refined according to the PLASTIC goals. The model consid-
ers the Service-Oriented Architecture (SOA), as it offers significant benefits for
the development of applications in the open B3G networking environment. It
relates and refines SOA concepts with concepts associated with B3G networking
abstractions. The result is a reference model for service-oriented B3G applica-
tions, which formalizes the concepts needed to realize context-aware adaptable

Fig. 7. A reference model for B3G networks



20 P. Inverardi and M. Tivoli

applications for B3G networks. The model is specified using UML diagrams, and
is aimed at both application and middleware developers (see Figure 7). Indeed,
a number of abstractions may be made available by the middleware layer, thus
reusable by applications.

Recently, several approaches to conceptualize the world of services have been
proposed. The PLASTIC model takes the move from the SeCSE conceptual
model [37,38] that it has been suitably extended to reflect all the concepts related
to B3G networks and service provision in B3G networks. In particular, it focusses
on the following key concepts:

– Service Level Agreement that clearly set commitment assumed by consumers
and providers and builds on services descriptions that are characterized func-
tionally, via a service interface and non-functionally via a Service Level Spec-
ification (SLS ).

– Context awareness and adaptation as the context is a key feature distinguish-
ing services in the vast B3G networking environment. B3G networking leads
to have diverse user populations, changing availability in system resources,
and multiple physical environments of service consumption and provisioning.
It is then crucial that services adapt as much as possible to the context for
the sake of robustness and to make themselves usable for given contexts.

As illustrated in Figure 8 adaptability is achieved by transferring some of the
validation activities at run time by making available models for different kind

Fig. 8. The PLASTIC Development Process Model



The Future of Software: Adaptation and Dependability 21

of analysis. In particular stochastic models and behavioral ones will be made
available at run time to allow the adaptation of the service to the execution
context and service on line validation, respectively.

In PLASTIC all the development tools will be based on the conceptual model
exploiting as much as possible model-to-model transformations. The definition
of a service will consists of a functional description and of a SLS that defines the
QoS characteristics of the service. The overall service description is obtained by
means of an iterative analysis specification phase that makes use of behavioral
and stochastic models. These models suitably refined with pieces of information
coming from the implementation chain, will then be made available as artifacts
associated to the service specification.

The main novelties of the PLASTIC process model is to consider SLS as part
of a Service Model, as opposite to existing approaches where SLS consists, in best
cases, in additional annotations reported on a (service) functional model. This
peculiar characteristic of our process brings several advantages: (i) as the whole
service model is driven by the conceptual model, few errors can be introduced in
the functional and non-functional specification of a service; (ii) SLS embedded
within a service model better supports the model-to-model transformations to-
wards analysis models and, on the way back, better supports the feedback of the
analysis; (iii) in the path to code generation, the SLS will drive the adaptation
strategies.

With respect to the spectrum presented in Figure 5 the PLASTIC develop-
ment process will present a limited form of adaptability as shown in Figures 9
and 13. The components implementing PLASTIC services will be programmed
using the resource aware programming approach described in [21,22] by using
Java.

In PLASTIC adaptation happens at the time the service request is matched
with a service provision. To better understand how the matching process might
operate, it is useful to refer to the reference style for SOA. Moreover it also useful
to recall the roles played by the main logic entities (Service registry, Service

Fig. 9. The PLASTIC Artifacts to be registered at deployment time



22 P. Inverardi and M. Tivoli

Fig. 10. Service Oriented Interaction Pattern

Provider and Service Consumer) involved in the Service Oriented Interaction
Pattern for service publications, discovery and binding (see Figure 10).

The steps involved in the service provision and consumption are:

1. Service providers publish their service descriptions into a service registry
(the directory of services) so that the service consumer can locate them.

2. According to the service request format, service consumers query the service
registry to discover service providers for a particular service description.

3. If one or more providers are present in the service registry at the moment
of the request the service consumer can select and bind to any of them. The
service registry communicate (according to the service response format) to
the service consumer how to communicate with that provider.

4. When a service requester binds to the service provider, the latter returns a
reference to a service object that implements the service functionality.

Since the PLASTIC service provision will take advantage of Web Services
(WS) technology, it is useful to instantiate the above described interaction pat-
tern in the context of WS. Within the Web Services Interaction Pattern the
Web Services Description Language (WSDL) forms the basis for the interaction.
Figure 11 illustrates the use of WSDL.

The steps involved (in the case of request-response operation call) are:

1. The service provider describes its service using WSDL. This definition is pub-
lished into the registry of services. For instance the registry could use Univer-
sal Description, Discovery, and Integration (UDDI). Other forms of registry
and other discovery meccanisms can also be used (e.g., WS-Inspection WS-
Discovery).

2. The service consumer issues one or more queries to the directory to locate a
service and determine how to communicate with that service.



The Future of Software: Adaptation and Dependability 23

Fig. 11. Web Services Interaction Pattern

3. Part of the WSDL provided by the service provider is passed to the service
consumer. This tells the service consumer what the requests and responses
are for the service provider.

4. The service consumer uses the WSDL to send a request to the service
provider.

5. The service provider provides the expected response to the service consumer.

In Figure 11 all the messages are sent using the envelope provided by SOAP
and, usually, HTTP is used as communication protocol. In general other means
of connection may be used since WSDL does not force a specific communication
protocol.

Considering PLASTIC adaptation, the WS interaction pattern is slightly
modified in order to reach the SLA at the end of the discovery phase. The
steps involved in the PLASTIC service provision and consumption might be the
ones as shown in Figure 12.

In particular, the discovery process has to take into account the user’s QoS
request (i.e., the requested SLS) and the service SLSs (i.e., the offered SLSs). The
result of the match (between the user’s QoS and the service SLSs) will produce
the SLA that defines the QoS constraints of the service provision. During this
matching process, in order to reach an SLA the service code might need to
be adapted according to the previously mentioned resource aware programming
approach hence resulting in a customized service code that satisfies the user’s
QoS request and results in a SLA.

Figure 13 shows an instance of the process model shown in Figure 8. It is a
particular example of the PLASTIC development process.

With respect to the service model analysis, in Figure 13 we have focused
on performance and reliability. SAP•one/XPRIT starts from annotated UML
diagrams and generates a performance model that may be a Queueing Network
(QN) that represents a Software Architecture, if no info about the executing



24 P. Inverardi and M. Tivoli

Fig. 12. PLASTIC Services Interaction Pattern

platform is available; or it may be an Execution Graph (representing the software
workload) and a QN (representing the executing platform) if (some alternative
for) the executing platform is available. The model solution provides performance
indices that are parametric in the first case and numerical in the second one. A
QN solver like SHARPE provides values of these performance indices. COBRA is
a tool that, starting from annotated UML diagrams, generates a reliability model
for component-based or service-based systems. The model takes into account the
error propagation factor. The COBRA solver performs reliability analysis on the
basis of the generated model. Model-to-Model transformations are performed
by means of the ATLAS Transformation Language (ATL) [39] that has been
developed in the context of the MODELWARE European project [40].

With respect to service validation/testing, two kinds of validation are per-
formed: off-line and on-line validation. The former is performed before the ser-
vice execution and it serves to generate test cases. The latter is performed whilst
the service is running and exploits the previously generated test cases. The val-
idation framework of the PLASTIC project is described in Chapter 5 of this
tutorial volume. Thus we refer this chapter for further details.

5.2 The PLASTIC Development Environment

In this section we provide an overall description of the PLASTIC development en-
vironment that implements a part of the PLASTIC development process shown
in Figure 13 (i.e., those process activities regarding the service model specifica-
tion, model functional and non-functional analysis, resource-aware analysis and
development, and code synthesis).

The PLASTIC development environment is one of the three main blocks form-
ing the integrated PLASTIC platform (see Figure 14).

As it is shown in Figure 14, in order to enable the development of robust dis-
tributed lightweight services in the B3G networking environment, the PLASTIC
platform can be organized into three main blocks: (i) a development environ-
ment, (ii) a middleware, and (iii) a validation framework.



The Future of Software: Adaptation and Dependability 25

Fig. 13. The PLASTIC Development Process: an example

In the following, we discuss the main aspects of the PLASTIC development
environment that concern our main contribution to the PLASTIC project. The
middleware and the validation framework will not be further discussed. We refer
to [36] and to Chapter 5, of this tutorial volume, for a detailed description of
the middleware and the validation framework, respectively.

As it has been already mentioned above, all the architectural elements of the
PLASTIC platform rely on a concrete implementation of concepts defined in
the PLASTIC conceptual model. The PLASTIC conceptual model has to be
considered more than documentation and a basis for common understanding.
In fact, it defines all the guide principles and the main conceptual elements
that should be considered in order to rigorously design an integrated framework
for the modeling, analysis, development, validation, and deployment of robust
lightweight services over B3G networked environments.

The PLASTIC development environment can be organized into five main
blocks (see Figure 15): (i) modeling tools, (ii) non-functional analysis tools, (iii)
code generation tools, (iv) resource- aware programming model, and (v) resource-
aware adaptation tools. The PLASTIC development environment allows the de-
veloper to perform all the service design, analysis and development activities
defined by the PLASTIC development process and to manage the process arti-
facts produced by these activities. The overall design depicted in Figure 15 should
be interpreted as a layered architecture: an architectural block that is situated
at an upper layer depends on some artifacts produced by using an architectural



26 P. Inverardi and M. Tivoli

Fig. 14. The integrated PLASTIC platform

block that is situated at a lower layer. For instance, the service model built by us-
ing the modeling tools is exploited by both the non-functional analysis and code
generation tools or, just to give another example, “Universal Queueing Network
solver” exploits the output of “UML to Queueing Network transformation tool”.
The PLASTIC development environment relies on the Eclipse framework [41],
i.e., all the tools of the PLASTIC development environment are implemented
as Eclipse plug-ins. In this way, the development environment results in a fully-
integrated environment relying on the Eclipse IDE. Although a single tool of
the development environment is implemented as an Eclipse plug-in, it has been
developed in a modular way hence providing also an API that would allow a
developer to use the tool also outside Eclipse. This has been done to promote
the use of PLASTIC solutions also outside the development scenario considered
within the PLASTIC project.

The modeling tools block is constituted of two modeling tools: the service
model editor, and the SLA editor. The former is an UML2 modeling editor cus-
tomized in order to be PLASTIC oriented. That is, it embeds a customized
UML2 profile which is suited to model dependable and adaptable services over
B3G networked environments. It is called “PLASTIC UML2 profile” and it is a
concrete implementation of the PLASTIC conceptual model. The service model
editor allows the developer to specify the functional interface of the service plus
its behavioral and non-functional characteristics (e.g., the orchestration of those
(sub-)services that form the service under design, or the QoS characteristics
of a service operation respectively). Furthermore, it allows the specification of



The Future of Software: Adaptation and Dependability 27

Fig. 15. The PLASTIC development environment

context-aware behavior with respect to two kinds of context: the device context
and the network context. The device context is given in terms of the set of re-
sources (and their characteristics) available on a possible execution environment
(e.g., a device modeled as a set of a “display” resource with specific “resolution”
and “refresh frequency” values, and a “CPU” resource with a specific “clock fre-
quency” value). The network context is given in terms of “mobility patterns” [42],
i.e., the set of the different network types the device over which the service runs
can possibly move on. Once the context-aware behavior of the service is speci-
fied, by using the service model editor, the developer can also specify how the
service has to adapt to the possible context changes by still maintaining a cer-
tain degree of dependability. The SLA editor is a GUI for “SLAng” which is
a language for writing SLAs. It allows the developer to specify which are the
parties involved in the agreement (e.g., “doctor” and “eHealth provider”), the
contractual constraints defining the agreement (e.g., “service availability greater
than 80%”), and the penalties that must be applied in the case of agreement
violation (e.g., “the eHealth provider will provide one month of the service for
free”). The syntax and semantics of SLAng are defined by means of EMOF (a
language similar to UML class diagrams) and OCL, respectively. In particular,
EMOF models specify the meta-model of SLAng, that is its abstract syntax
in terms of the modeling constructs and their relationships (such as through-
put constraints, availability, environment, schedules, etc.) that will be used for
specifying SLAs. The models conforming to the SLAng meta-model are checked



28 P. Inverardi and M. Tivoli

with respect to OCL constraints which specify the semantics of the language
in a declarative way. The service model editor and the SLA editor are inte-
grated through a model-to-code transformation. In particular, once the service
model has been specified, a model-to-code transformation can be performed in
order to translate the parts of the service model that are needed for specifying
the agreement (e.g., parties, possible services, operations, etc.) into a HUTN
(Human-Usable Textual Notation) file which is one of the file format that can
be imported by the SLA editor. The “PLASTIC Model to HUTN” tool, depicted
in the block “Code Generation Tools”, performs this transformation which has
been implemented using the JET transformation technology [41].

The non-functional analysis tools block is constituted of two performance
analysis tools: “UML to Queueing Networks transformation tool” and “Universal
Queueing Network solver”. The former is a model-to-model transformation tool
that automatically translates the parts of the service model that are needed for
performance analysis (they are annotated UML2 diagrams which conform to the
PLASTIC UML2 profile) into a performance model that is a Queueing Network
(QN) model. This tool has been implemented by using the UML2 APIs available
in Eclipse [43]. Then, the QN model solution is performed by using “Universal
Queueing Network solver” that is deployed as an independent tool, i.e., a web
service so that it can be used also outside the PLASTIC development scenario.

The resource-aware programming model and the resource-aware adap-
tationtoolsblocksare themainconstituentsof the frameworkdescribed in [21,22].
Since a discussion on these two blocks is not crucial for the purposes of this paper,
for the sake of brevity, we refer to [21,22] for them.

The code generation tools block is constituted of five model-to-code trans-
formation tools. The functionality provided by the “PLASTIC Model to HUTN”
transformation tool has been briefly described above in the discussion concern-
ing the integration between the service model editor and the SLA editor. The
“PLASTIC Model to WSDL” transformation tool starts from the PLASTIC
service functional interface, modeled by using the service model editor, and au-
tomatically generates the WSDL of the provider-side code of the service. Once
this WSDL is obtained, in order to automatically derive the skeleton of the
provider-side code of the service, it is enough to use the facilities provided by
a suitable application server or SOAP engine (e.g., Axis in the case of Web
Services). The “SLA monitor generator” transformation tool starts from the
HUTN file completed by using the SLA editor and automatically generates the
code of Axis handlers used to the run-time monitoring of SLAs. Analogously,
“WS-Agreement generator” takes into account the HUTN file and automatically
generates WS-Agreements. SLAng is maintained for SLA specification purposes
while WS-Agreement is used for validation purposes. The “WS-Agreement gen-
erator” enables the integration between the modeling layer of the PLASTIC plat-
form and the validation one. The “PLASTIC Model to Adaptable JAVA” tool
starts from a specific part of the service model called “implementation view”.
The implementation view models how the service is implemented in terms of
software components (and their relationships) which, in turn, are implemented



The Future of Software: Adaptation and Dependability 29

in terms of “adaptable” classes. By taking into account such an implementation
view, the “PLASTIC Model to Adaptable JAVA” transformation tool automati-
cally translates the implementation view into the corresponding adaptable JAVA
code. This is only a skeleton code and its logic has to be coded by hand.

6 Conclusions

In this paper we have discussed our point of view on software in the future.
Adaptability and Dependability will play a key role in influencing models, lan-
guages and methodologies to develop and execute future software applications.
In a broader software engineering perspective it is therefore mandatory to recon-
cile the static/compile time development approach to the dynamic/interpreter
oriented one thus making models and validation technique manageable light-
weight tools for run time use. There are several challenges in this domain. Pro-
gramming Language must account in a rigorous way of quantitative concerns,
allowing programmers to deal with these concerns declaratively. Models must
become simpler and lighter by exploiting compositionality and partial evalua-
tion techniques. Innovative development processes should be defined to properly
reflect these new concerns arising from software for ubiquitous computing. We
presented the Plastic approach to service development and provision in B3G
networks as a concrete instance of the problem raised by Softure. The solutions
we are experimenting in Plastic are not entirely innovative per se rather they
are used in a completely new and non trivial fashion. Summarizing our message
is that in the Softure domain it is important to think and research point to point
theories and techniques but it is mandatory to re-think the whole development
process in order to cope with the complexity of Softure and its requirements.

References

1. Arnold, A.: Finite Transition Systems. International Series in Computer Science.
Prentice Hall International, UK (1989)

2. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: Synthesis: A tool for automat-
ically assembling correct and distributed component-based systems. In: 29th In-
ternational Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, pp. 784–787. IEEE Computer Society, Los Alamitos (2007),
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.84

3. Autili, M., Mostarda, L., Navarra, A., Tivoli, M.: Synthesis of decentralized and
concurrent adaptors for correctly assembling distributed component-based systems.
Journal of Systems and Software (2008),
http://dx.doi.org/10.1016/j.jss.2008.04.006

4. Finkel, A.: The minimal coverability graph for Petri nets. In: Proc. of the 12th
APN. LNCS, vol. 674. Springer, Heidelberg (1993)

5. IFIP WG 10.4 on Dependable Computing and Fault Tolerance,
http://www.dependability.org/wg10.4/

6. Inverardi, P.: Software of the future is the future of Software? In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 69–85. Springer,
Heidelberg (2007)

http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.84
http://dx.doi.org/10.1016/j.jss.2008.04.006
http://www.dependability.org/wg10.4/


30 P. Inverardi and M. Tivoli

7. Inverardi, P., Tivoli, M.: Deadlock-free software architectures for com/dcom appli-
cations. Elsevier Journal of Systems and Software - Special Issue on component-
based software engineering 65(3), 173–183 (2003)

8. Inverardi, P., Tivoli, M.: Software Architecture for Correct Components Assembly.
In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 92–121.
Springer, Heidelberg (2003)

9. ITU Telecommunication Standardisation sector, ITU-T reccomendation Z.120.
Message Sequence Charts. (MSC 1996). Geneva

10. Keller, R.: Formal verification of parallel programs. Communications of the
ACM 19(7), 371–384 (1976)

11. Milner, R.: Communication and Concurrency. Prentice Hall, New York (1989)
12. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the

IEEE 77(4) (1989)
13. PLASTIC IST Project, http://www.ist-plastic.org
14. Ramadge, P., Wonham, W.: The control of discrete event systems. Proceedings of

the IEEE 1(77) (1989)
15. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE

Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US
(1994)

16. Tivoli, M., Autili, M.: SYNTHESIS, a Tool for Synthesizing Correct and Protocol-
Enhanced Adaptors. RSTI L Objet journal 12(1), 77–103 (2006)

17. Tivoli, M., Fradet, P., Girault, A., Goessler, G.: Adaptor synthesis for real-time
components. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 185–200. Springer, Heidelberg (2007)

18. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-
based architectures. Science of Computer Programming 71(3), 181–212 (2008),
http://dx.doi.org/10.1016/j.scico.2008.03.001

19. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from sce-
narios. In: Proceeding of the 23rd IEEE International Conference on Software En-
gineering (ICSE 2001) (2001)

20. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence
chart specifications. In: ACM Proceedings of the joint 8th ESEC and 9th FSE.
ACM press, New York (2001)

21. Inverardi, P., Mancinelli, F., Nesi, M.: A Declarative Framework for adaptable ap-
plications in heterogeneous environments. In: Proceedings of the 19th ACM Sym-
posium on Applied Computing (2004)

22. Mancinelli, F., Inverardi, P.: Quantitative resource-oriented analysis of Java
(adaptable) applications. In: ACM Proceedings Workshop on Software Perfor-
mance (2007)

23. Necula, G.C.: Proof-Carrying Code. In: Jones, N.D. (ed.) Proceedings of the Sym-
posium on Principles of Programming Languages, Paris, France, January 1997, pp.
106–119. ACM Press, New York (1997)

24. Le Métayer, D.: Describing Software Architecture Styles Using Graph Grammars.
IEEE Transaction on software engineering 24(7) (1998)

25. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture
to Implementation. In: Proceedings of ICSE 2002 (May 2002)

26. Aldrich, J., Chambers, C., Notkin, D.: Architectural Reasoning in ArchJava. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374. Springer, Heidelberg (2002)

27. Hirsch, D., Inverardi, P., Montanari, U.: Graph grammars and constraint solving
for software architecture styles. In: Proc. of the 3rd Int. Software Architecture
Workshop (ISAW-3), pp. 69–72. ACM Press, New York (1998)

http://www.ist-plastic.org
http://dx.doi.org/10.1016/j.scico.2008.03.001


The Future of Software: Adaptation and Dependability 31

28. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for
distributed systems. In: Proc. of the 1st Work. on Self-Healing Systems (WOSS
2002), pp. 33–38. ACM Press, New York (2002)

29. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proc. of
the 4th ACM SIGSOFT Symp. On Foundations of Software Engineering (FSE-4),
pp. 3–14. ACM Press, New York (1996)

30. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by distrib-
uted graph transformation: Towards configurable distributed systems. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 179–193. Springer, Heidelberg (2000)

31. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Style-Based Refinement of Dynamic
Software Architectures. In: WICSA 2004, pp. 155–166 (2004)

32. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans-
actions on Software Engineering and Methodology 6(3), 213–249 (1997)

33. Barthe, G.: Mobius, securing the next generation of java-based global computers.
ERCIM News (2005)

34. Inverardi, P., Mostarda, L.: DESERT: a decentralized monitoring tool generator.
In: IEEE Proceeding of ASE 2007, tool demo (2007)

35. Cortellessa, V., Di Marco, A., Inverardi, P., Mancinelli, F., Pelliccione, P.: A frame-
work for integration of functional and non-functional analysis of software architec-
tures. ENCS 116, 31–44 (2005)

36. PLASTIC IST Project, http://www.ist-plastic.org
37. SeCSE Project, http://secse.eng.it
38. Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalà, M.: Speaking a

common language: A conceptual model for describing service-oriented systems. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
48–60. Springer, Heidelberg (2005)

39. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

40. ModelWare, IST European project 511731, http://www.modelware-ist.org
41. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling

Framework. Addison-Wesley, Reading (2003)
42. Di Marco, A., Mascolo, C.: Performance Analysis and Prediction of Physically

Mobile Systems. In: WOSP 2007 (2007)
43. Eclipse project. Model Development Tools UML2,

http://www.eclipse.org/modeling/mdt/?project=uml2

http://www.ist-plastic.org
http://secse.eng.it
http://www.modelware-ist.org
http://www.eclipse.org/modeling/mdt/?project=uml2


Autonomic Computing
Now You See It, Now You Don’t

Design and Evolution of
Autonomic Software Systems

Hausi A. Müller, Holger M. Kienle, and Ulrike Stege

Department of Computer Science
University of Victoria

{hausi,kienle,stege}@cs.uvic.ca
http://webhome.cs.uvic.ca/∼{hausi,stege}

Abstract. With the rapid growth of web services and socio-technical
ecosystems, the management complexity of these modern, decentralized,
distributed computing systems presents significant challenges for busi-
nesses and often exceeds the capabilities of human operators. Autonomic
computing is an effective set of technologies, models, architecture pat-
terns, standards, and processes to cope with and reign in the manage-
ment complexity of dynamic computing systems using feedback control,
adaptation, and self-management. At the core of an autonomic system
are control loops which sense their environment, model their behavior in
that environment, and take action to change the environment or their
own behavior. Computer science researchers often approach the design of
such highly dynamical systems from a software architecture perspective
whereas engineering researchers start with a feedback control perspec-
tive. In this article, we argue that both design perspectives are needed
and necessary for autonomic system design.

Keywords: Continuous evolution, software ecosystems, software com-
plexity management, autonomic computing, self-managing systems, self-
adaptive systems, feedback loops, autonomic element, autonomic
computing reference architecture, autonomic patterns.

1 Introduction

Two important trends are dominating the computing world in the new millen-
nium. First, many companies are moving from a goods-centric way to a service-
centric way of conducting business [34]. In this service-oriented world, we perform
everyday tasks, such as communication, banking, or shopping, without human-to-
human interaction from the comfort of our living rooms. This apparently seamless
integration of services and computing power has put enormous demands on its
underlying information technology (IT) infrastructure. Second, with the prolifer-
ation of computing devices and enterprise systems, software systems have evolved
from software intensive systems to systems of systems [56], and now to ultra-large-
scale systems and socio-technical ecosystems [51]. With the rapid growth of web

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 32–54, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://webhome.cs.uvic.ca/~{hausi,stege}


Autonomic Computing Systems 33

services and socio-technical ecosystems, themanagement complexity of thesemod-
ern, decentralized, distributed computing systems presents significant challenges
for businesses and often exceeds the capabilities of human operators who manage
these systems.

The continuous evolution from goods-centric to service-centric businesses and
from software intensive systems to socio-technical ecosystems requires new and
innovative approaches for building, running, and managing software systems. Un-
derstanding, managing, and controlling the run-time dynamics of these computing
systems—given the onslaught of ever-changing IT infrastructure—is nowadays a
crucial requirement for the survival and success of many businesses. Therefore,
end-users increasingly demand from business that they provide software systems
that are versatile, flexible, resilient, dependable, robust, service-oriented, mash-
able, inter-operable, continuously available, decentralized, energy-efficient, recov-
erable, customizable, self-healing, configurable, or self-optimizing.

One of the most promising approaches to achieving some of these properties
is to equip software systems with feedback control to address the management of
inherent system dynamics. The resulting self-managing and self-adapting com-
puting systems, which embody multiple feedback control loops at their core, are
better able to cope with and even accommodate changing contexts and environ-
ments, shifting requirements, and computing-on-demand needs.

Over the past decade, many industrial and academic research initiatives have
emerged to attack these problems and challenges head-on and produced impres-
sive and profitable solutions for many businesses. One of the best-documented
and most successful research initiatives is IBM’s Autonomic Computing initia-
tive, launched in 2001 with Horn’s grand challenge for the entire IT sector [26].
The rest of the computing industry followed quickly with major initiatives to
take on this formidable challenge. For example, the goal of Sun’s N1 manage-
ment software is to enable application development across heterogeneous envi-
ronments in a consistent and virtualized manner [58]. The Dynamic Systems
Initiative (DSI) is Microsoft’s technology strategy for products and solutions to
help businesses meet the demands of a rapidly changing and adaptable environ-
ment [44]. Hewlett-Packard’s approach to autonomic computing is reified in its
Adaptive Enterprise Strategy [25]. Intel is deeply involved in the development
of standards for autonomic computing [60].

The goal of this paper is to illustrate the broad applicability of autonomic
computing techniques from IT complexity problems to continuous software evo-
lution problems, to motivate the benefits of mining the rich history of control
theory foundations for autonomic, self-managing and self-adaptive systems, and
to present selected challenges for the future. Section 2 characterizes the problem
of continuous software evolution using different perspectives. Section 3 discusses
selected approaches, issues, and challenges when designing dynamic comput-
ing systems using feedback control. Section 4 introduces the field of autonomic
computing and illustrates how autonomic computing technology can be used to
reduce complexity and solve continuous evolution problems of software-intensive
systems. Section 5 relates traditional feedback control, such as model reference



34 H.A. Müller, H.M. Kienle, and U. Stege

adaptive control (MRAC) or model identification adaptive control (MIAC), to
feedback control for dynamic computing systems. Sections 6 and 7 describe cor-
nerstones of IBM’s autonomic computing technology, including the autonomic
computing reference architecture (ACRA) and two key architecture components,
autonomic element and autonomic manager. Section 8 presents some lessons
learned and outlines selected research challenges for this exciting field, and
Section 9 draws some conclusions and points out selected entries in the references
as good starting points for newcomers to the autonomic computing field.

2 Continuous Evolution of Software Systems

In a world where continuous evolution, socio-technical ecosystems, and service-
centric businesses are prevalent, we are forced to re-examine some of our most
fundamental assumptions about software and its construction. For the past 40
years, we have embraced a traditional engineering perspective to construct soft-
ware in a centralized, top-down manner where functional or extra-functional
requirements are either satisfied or not [51]. Today, many software-intensive sys-
tems of systems emerge through continuous evolution and by means of regulation
rather than traditional engineering. For example, firms are engineered—but the
structure of the economy is not; the protocols of the Internet were engineered—
but not the web as a whole [51]. While software ecosystems, such as the web,
exhibit high degrees of complexity and organization, it is not built through tra-
ditional engineering. However, individual components and subsystems of such
ecosystems are still being built using traditional top-down engineering [51].

Three independent studies, conducted in 2006, seem to confirm that this no-
tion of continuous evolution is taking hold [3,5,51]. In particular, the acclaimed
report of Carnegie Mellon Software Engineering Institute (SEI) on ultra-large-
scale (ULS) systems suggests that traditional top-down engineering approaches
are insufficient to tackle the complexity and evolution problems inherent in de-
centralized, continually evolving software [51].

While there has been recent attention to the problem of continuous evolu-
tion, several researchers have already articulated this problem at the end of the
nineties. In his dissertation, Wong envisioned the Reverse Engineering Notebook
to cope with and manage continuous evolution issues of software systems [62].
At the same time, Truex et al. recognized that the traditional assumption where
“software systems should support organizational stability and structure, should
be low maintenance, and should strive for high degrees of user acceptance” might
be flawed [61]. They suggested an alternate view where “software systems should
be under constant development, can never be fully specified, and are subject to
constant adjustment and adaptation”.

Having investigated software systems and their engineering methods for many
years, we have come to realize that their alternate, continuous evolution view is
as important today—or even more important for certain application domains—
than the traditional view. For narrow domains, well-defined applications, or
safety-critical tasks, the traditional view and engineering approach still applies.



Autonomic Computing Systems 35

For highly dynamic and evolving systems, such as software ecosystems, the con-
tinuous evolution view clearly applies. This is good news for the software engi-
neering research community at large since this shift guarantees research problems
for many years to come. The not so good news is that most software engineer-
ing textbooks, which only treat and advocate the traditional view, will have to
be rewritten or at least updated to incorporate the notion of continuous evolu-
tion [46].

In a 2004 Economist article, Kluth discussed how other industrial sectors
previously dealt with complexity [36]. He and others have argued that for a
technology to be truly successful, its complexity has to disappear. He illustrates
this point by showing how industries such as clocks, automobiles, and power
distribution overcame complexity challenges. For example only mechanics were
able to operate early automobiles successfully and in the early days of the 20th
century, companies had a prominent position of Vice President of Electricity to
deal with power generation and consumption issues. In both cases, the respec-
tive industries managed to reduce the need of human expertise and simplify the
usage of the underlying technology with traditional engineering methods. How-
ever, usage simplicity comes with an increased complexity of the overall system
complexity (e.g., what is under the hood). Basically for every mouse click or
key stroke we take out of the user experience, 20 things have to happen in the
software behind the scenes [36]. Given this historical perspective with this pre-
dictable path of technology evolution, there may be hope for the information
technology sector [45].

Today, there are several research communities (cf. Section 1) which deal with
highly dynamic and evolving systems from a variety of perspectives. For example,
Inverardi and Tivoli argue that the execution environment for future software
systems will not be known a priori at design time and, hence, the application en-
vironment of such a system cannot be statically anticipated [32]. They advocate
reconciling the static view with the dynamic view by breaking the traditional
division among development phases by moving some activities from design time
to deployment and run time. What the approaches of these different communi-
ties have in common is that the resulting systems push design decisions towards
run-time and exhibit capabilities to reason about the systems’ own state and
their environment. However, different communities emphasize different business
goals and technological approaches.

The goal of autonomic computing or self-managing systems is to reduce the to-
tal cost of ownership of complex IT systems by allowing systems to self-manage
by combining a technological vision with on-demand business needs [16,17]. Auto-
nomic communication is more oriented towards distributed systems and services
and the management of network resources [13]. Research on self-adaptation spans
a wide range of applications from user-interface customization and web-service
composition, to mechatronics and robotics systems, to biological systems, and to
system management. As a result, distinct research areas and publication venues
have emerged, including adaptive, self-adaptive, self-managing, autonomic, au-
tonomous, self-organizing, reactive, and ubiquitous systems.



36 H.A. Müller, H.M. Kienle, and U. Stege

Feedback control is at the heart of self-managing and self-adaptive systems.
Building such systems cost-effectively and in a predictable manner is a major
engineering challenge even though feedback control has a long history with huge
successes in many different branches of engineering [59,63]. Mining the rich expe-
riences in these fields, borrowing theories from control engineering [1,6,23,12,50],
and then applying the findings to software-intensive self-adaptive and self-
managing systems is a most worthwhile and promising avenue of research. In
the next section we introduce a generic model of an autonomic control loop
that exposes the feedback control of self-managing and self-adaptive systems,
providing a first step towards reasoning about feedback control (e.g., proper-
ties of the control loop during design, and implications of control loops during
maintenance).

3 Design and Maintenance Issues of Feedback-Based
Systems

Self-adaptive and self-managing systems have several properties in common.
First and foremost such systems are “reflective” in nature and are therefore able
to reason about their state and environment. Secondly these systems address
problems for which selected design decisions are necessarily moved towards run-
time [55,9,2]. Müller et al. proposed a set of problem attributes which suggest
considering self-adaptive and self-managing solutions [47]:

– Uncertainty in the environment, especially uncertainty that leads to substan-
tial irregularity or other disruption or may arise from external perturbations,
rapid irregular change, or imprecise knowledge of the external state.

– Nondeterminism in the environment, especially of a sort that requires sig-
nificantly different responses at different times.

– Requirements, especially extra-functional requirements, which can best be
satisfied through regulation of complex, decentralized systems (as opposed
to traditional, top-down engineering) especially if substantial trade-offs arise
among these requirements.

– Incomplete control of system components (e.g., the system incorporates em-
bedded mechanical components, the task involves continuing action, or hu-
mans are in the operating loop).

The reasoning about a system’s state and environment typically involves feed-
back processes with four canonical activities—collect, analyze, decide, and act—
as depicted in Figure 1 [13]. Sensors, or probes, “collect” data from the executing
process and its context about their current states. The accumulated data is then
cleaned, filtered, and finally stored for future reference to portray an accurate
model of past and current states. The diagnosis engine then“analyzes” the data
to infer trends and identify symptoms. The planning engine then attempts to
predict the future to “decide” on how to “act” on the executing process and its
context through effectors.



Autonomic Computing Systems 37

Fig. 1. Generic control loop [13]

This generic model provides a good overview of the main activities around the
feedback loop, but ignores many properties of the control and data flow around
the loop. In the following we give examples of control loop properties for each
activity (cf. Figure 1) [9]:

Collect
What kinds of data and events are collected from which sources, sensors,
or probes? Are there common event formats? What is the sampling rate
and is it fixed or varying? Are the sampled sources fixed or do they change
dynamically? What are appropriate filters for the data streams?

Analyze
How are the collected data represented and stored? What are appropriate
algorithms or diagnosis methods to analyze the data? How is the current
state of the system assessed? How much past state needs to be kept around?
How are critical states archived? How are common symptoms recognized
(e.g., with the help of a symptoms database)?

Decide
How is the future state of the system inferred and how is a decision reached
(e.g., with off-line simulation, quality of service (QoS) objectives, or util-
ity/goal functions)? What models and algorithms are used for trade-off
analysis? What are the priorities for adaptation across multiple control loops
and within a single control loop? Under what conditions should adaptation
be performed (e.g., allow for head-room or avoid system thrashing while
considering timing issues relating to the required adaptations)?

Act
What are the managed elements and how can they be manipulated (e.g.,
by parameter tuning or by injecting new algorithms)? Are changes of the



38 H.A. Müller, H.M. Kienle, and U. Stege

system pre-computed (e.g., switching between known configurations) or op-
portunistically assembled, composed, or generated?

Only a system designed to be self-adaptive is able to self-manage by mon-
itoring and responding to changes in its own state or its external operating
environment. As a result, designers and maintainers of such systems must take
uncertainty into account because the environment may change in unexpected
ways and cause the system to adapt in such a way that was not foreseeable at
design time. Introducing uncertainty requires trade-offs between flexibility and
assurance. For a maintainer it is critical to know which parts of the environment
are assumed to be fixed and which are expected to introduce uncertainty.

Two key maintenance questions arise in the context of self-adaptive and self-
managing systems [64]:

– How different are the maintainability concerns for self-adaptive and self-
managing systems compared to static systems?

– Is a system that is designed for dynamic variability or adaptation easier to
maintain?

It is reasonable to expect that differences in maintenance exist between the
two kinds of systems because self-managing systems, for instance, have to (1)
introduce pervasive monitoring functionality, (2) reify part of the system’s state
in an executable meta-model (i.e. reflectivity), and (3) include functionality that
performs reasoning and adaptations at run-time. This means that system prop-
erties of a self-managing system have to be verified during run-time whenever
the system dynamically changes or evolves. In contrast, for a static system the
properties can be often assured with off-line analyses before deployment.

Self-adaptation in software-intensive systems comes in many different guises,
including static and dynamic forms. In static self-adaptation all possible adap-
tations are explicitly defined by the designers for the system to choose from
during execution whereas, in dynamic self-adaptation possible adaptations are
determined and selected by the system at run-time. One way to characterize
self-adaptive software systems is by the implementation mechanism used to
achieve self-adaptation [52,53]. Static and dynamic mechanisms include design-
time (e.g., architectural alternatives or hard-wired decision trees), compile-time
(e.g., C++ templates or aspects), load-time (e.g., Java beans or plug-ins), and
run-time (e.g., feedback loops or interpreters of scripting languages). Self-
adaptive and self-managing systems are typically implemented using feedback
mechanisms to control their dynamic behavior—for example, to keep web ser-
vices up and running, to load-balance storage and compute resources, to diagnose
and predict system failures, and to negotiate an obstacle course in a warehouse.

McKinley et al. distinguish between parameter adaptation and compositional
adaptation [43]. Parameter adaptation modifies program variables that determine
behavior whereas compositional adaptation exchanges algorithmic or structural
system components with others to adapt to its environment. With compositional
adaptation, an application can adopt new algorithms for addressing concerns that
were unforeseen during development.



Autonomic Computing Systems 39

In this article, we mostly concentrate on a particular approach for realizing self-
adaptive and self-managing systems, namely autonomic computing. In the next
section we briefly outline the origins of autonomic computing and the community
that has emerged around it. We then discuss selected issues of autonomic com-
puting, including feedback control (cf. Section 5), autonomic element design (cf.
Section 6), and architectures for autonomic systems (cf. Section 7). Even though
this paper concentrates on autonomic computing, we believe that most of the find-
ings also apply to most solutions dealing with dynamic and evolving computing
systems in general. As Huebscher and McCann in their recent survey article on au-
tonomic computing, in this article we basically use the terms autonomic system,
self-Managing system, and self-adaptive system interchangeably [27].

4 Autonomic Computing Systems

A software system is called autonomic1 if it operates mostly without human or
external intervention or involvement according to a set of rules or policies. Such
a system can, for example, self-configure at run-time to meet changing operating
environments, self-tune to optimize its performance, recognize symptoms, deter-
mine root causes, and self-heal when it encounters unexpected obstacles during
its operation.

The autonomic computing community often refers to the human Autonomic
Nervous System (ANS) with its many control loops as a prototypical exam-
ple [35]. The ANS monitors and regulates vital signs such as body temperature,
heart rate, blood pressure, pupil dilation, digestion blood sugar, breathing rate,
immune response, and many more involuntary, reflexive responses in our bodies.
Furthermore the ANS consists of two separate divisions called the parasympa-
thetic nervous system, which regulates day-to-day internal processes and be-
haviors and sympathetic nervous system, which deals with stressful situations.
Studying the ANS might be instructive for the design of autonomic software
systems; for example, physically separating the control loops which deal with
normal and out-of-kilter situations might be a useful design idea for design-
ing autonomic computing systems. Over the past decade distinct architectural
patterns have emerged for specific autonomic problem domains. For example,
Brittenham et al. have distilled common patterns for IT service management
based on the best practices in the IT Infrastructure Library [4,31].

Autonomicity may be addressed at different points along a system-application
dimension. Specifically, it can be built into a design at the hardware level (e.g.,
self-diagnosing hardware), the operating system level (e.g., self-configuring up-
grades or security management), middleware (e.g., self-healing infrastructure), or
the application level (e.g., self-tuning storage management, or optimization of ap-
plication performance and service levels). Autonomicity is not an all-or-nothing
property. One can conceive of software applications that require none, little, or
considerable user input in order to self-manage at run-time. Kephart and Chess

1 The Greek origin for autonomic (αυτoνoµoς), literally means “self-governed”.



40 H.A. Müller, H.M. Kienle, and U. Stege

in their seminal paper state that the essence of autonomic computing is sys-
tem self-management, freeing administrators from low-level task management
while delivering more optimal system behavior [35]. In many cases however,
users and operators usually remain in the loop by assisting and approving self-
management processes.

The IBM autonomic computing initiative has generated an impressive research
community spanning academia and industry. Researchers have founded journals
such as ACM Transactions on Autonomous and Adaptive Systems (TAAS), pro-
duced special issues for established journals on the subject [24,8], and founded
several conferences, including IEEE International Conference on Autonomic
Computing (ICAC), ACM/IEEE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), ACM International Conference on
Autonomic Computing and Communication Systems (Autonomics), IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems (SASO),
and IBM CASCON Workshop on Engineering Autonomic Systems. The pro-
duced research results are significant and have influenced and penetrated many
commercial products in different companies. The results have recently also been
embraced by architectural strategists and standards communities [60], including
web services, service-oriented architecture (SOA) [14], and ubiquitous comput-
ing [28].

IBM has defined the widely applicable autonomic computing reference ar-
chitecture (ACRA) [28] and the highly practical autonomic toolkit [30] which
together comprise a collection of components, tools, scenarios, and documenta-
tion designed for users wanting to learn, adapt, and develop autonomic behavior
in their products and systems. Thus, after almost a decade of intense research
and development in this realm, autonomic computing constitutes an effective set
of technologies, models, architecture patterns, standards, and processes to cope
with and reign in the management complexity of dynamic computing systems
using feedback control, adaptation, and self-management.

5 Feedback Control for Autonomic Computing

While the term autonomic computing was coined at the beginning of this decade,
many of the foundations of autonomic computing have a rich history in engi-
neering [59], operations research [63], and artificial intelligence [54,11]. Feedback
control is really the heart of a self-managing, autonomic or self-adaptive system.
Feedback control, with its control theory history in many branches of engineer-
ing and mathematics, is about regulating the behavior of dynamical systems as
depicted in Figure 2.

A feedback control system consists of a set of components that act together
to maintain actual system attribute values close to desired specifications. The
main idea is to sense output measurements to adjust control inputs to meet the
specified goals. For example, a thermostat controls the temperature of a house
by sensing the air temperature and by turning the heater or air conditioner
on and off. Another canonical example frequently analyzed and implemented in
control theory textbooks is the automotive cruise-control system [1,6,50]. Control



Autonomic Computing Systems 41

Fig. 2. Ubiquitous feedback loop

Fig. 3. Block diagram of a general feedback system [1,6,50]

Fig. 4. Basic structure of model reference adaptive control (MRAC)

theory literature describes control systems using block diagrams and well-defined
terminology as shown in Figure 3.

Control engineering textbooks contain many reference architectures for differ-
ent application domains. One of the most common models is the model-reference
adaptive control (MRAC) architecture depicted in Figure 4, which was originally
proposed for the flight control problem [1,15]. MRAC is also known as model ref-
erence adaptive system (MRAS). MRAC implementations can be used to realize
compositional adaptation.

Significant flexibility and leverage is achieved by defining the model and algo-
rithm separately. Because of the separation of concerns, this solution is ideal for
software engineering applications in general and self-adaptive or self-managed
software-intensive systems in particular. While feedback control of this sort
is common in the construction of engineered devices to bring about desired



42 H.A. Müller, H.M. Kienle, and U. Stege

behavior despite undesired disturbances, it is not as frequently applied as one
might hope for realizing dynamic computing systems—in part due to the inac-
cessibility of control theory for computing practitioners. With the publication
of IBM’s architectural blueprint for autonomic computing [28] and Hellerstein
et al.’s book on Feedback Control of Computing Systems [23], computing practi-
tioners are now in a much better position to address the dynamics of resource
management and other related problems of autonomic computing.

Fig. 5. Block diagram of a feedback control system with disturbance input for com-
puting systems [23,12]

The essential components of a feedback control system suitable for dynamic
computing systems according to Hellerstein et al. are depicted in Figure 5 [23].
The reference input is the desired value of the system’s measured output. The
controller adjusts the setting of control input to the managed system so that its
measured output converges towards to the referenced input [23,12]. This feedback
control encapsulates functionality identified in the generic control loops depicted
in Figures 1 and 3, and in Figure 4 the MRAC reference model and adaptive algo-
rithm are realized in the controller. The main components are as follows [23,12]:

– Control input is a parameter that affects the behavior of the managed system
and can be adjusted dynamically.

– The controller determines the setting of the control input needed to achieve
the reference input. The controller computes values for the control input
based on the history (i.e., current and past values) of the control error (i.e.,
the difference between the reference input and the measured output).

– Disturbance input is any change that affects the way in which the control
input influences the measured output. These are factors that affect the mea-
sured output but for which there is no direct governing control input (e.g.,
workload variations such as running back-ups, and downloading and updat-
ing virus definitions).

– Noise input is any effect that changes the measured output produced by the
managed system. This is also called sensor noise or measurement noise.

– Measured output is a measurable characteristic of the managed system (e.g.,
response time).



Autonomic Computing Systems 43

– Reference input (also referred to as set point) is the desired value of the
measured outputs.

– Managed system (also referred to as process or plant) is the computing
system to be controlled.

– Thetransducer transformsthemeasuredoutputsothat itcanbecomparedwith
the reference input (e.g., relating and converting output units to input units).

The application determines the control objective. Hellerstein et al. concentrate
on regulatory control (e.g., to maintain reserve capacity), disturbance and noise
rejection (e.g., to maximize throughput subject to guaranteed response times
for different customers), and optimization (e.g., optimizing operations according
to service level agreements and compliance requirements) [23]. The crux of the
matter is the construction of a suitable model to quantify the control objective.
Fields such as performance engineering and queuing theory have arrived at ma-
ture models. However, in many application domains are still at their infancy of
modeling the relationships between controlled inputs and outputs.

The feedback loop is a central element of control theory, which provides well-
established mathematical techniques to analyze system performance and correct-
ness. It is not clear if general principles and properties established by this discipline
(e.g., observability, controllability, stability, and hysteresis) are applicable for rea-
soning about autonomic systems. Generally, systems with a single control loop are
easier to reason about than systems with multiple loops—but multi-loop systems
are more common and have to be dealt with.

Good engineering practice calls for reducing multiple control loops to a sin-
gle one—a common approach in control engineering, or making control loops
independent of each other. If this is impossible, the design should make the
interactions of control loops explicit and expose how these interactions are han-
dled. Another typical scheme from control engineering is organizing multiple
control loops in the form of a hierarchy where due to the employed different
times unexpected interference between the levels can be excluded. This scheme
seems to be of particular interest if we separate different forms of adaptation
such as component management, change management, and goal management as
proposed by Kramer and Magee [37,38].

In order to structure an autonomic system’s control loops and to reason about
them, the concept of autonomic element is helpful because it encapsulates a single
control loop and provides an explicit abstraction for it.

6 The Autonomic Element

IBM researchers introduced the notion of an autonomic element as a fundamen-
tal building block for designing self-adaptive and self-managing systems [28,35].
An autonomic element consists of an autonomic manager (i.e., controller), a
managed element (i.e., process), and two manageability interfaces.

The core of an autonomic manager constitutes a feedback loop, often referred
to as monitor-analyze-plan-execute (MAPE) or monitor-analyze-plan-execute-
knowledge (MAPE-K) loop, as depicted in Figure 6. The manager gathers



44 H.A. Müller, H.M. Kienle, and U. Stege

measurements from the managed element as well as information from the cur-
rent and past states from various knowledge sources via a service bus and then
adjusts the managed element if necessary through a manageability interface (i.e.,
the sensors and effectors at the bottom of this figure) according to the control
objective. Note that an autonomic element itself can be a managed element—
the sensors and effectors at the top of the autonomic manager in Figure 6 are
used to manage the element (i.e., provide measurements through its sensors and
receive control input (e.g., rules or policies) through its effectors). If there are
no such effectors, then the rules or policies are hard-wired into the MAPE loop.
Even if there are no effectors at the top of the element, the state of the element
is typically still exposed through its top sensors.

One of the greatest achievements and most compelling benefits of the auto-
nomic computing community is the standardization of the manageability inter-
faces and manageability endpoints (i.e., a manageability endpoint exposes the
state and the management operations for a resource or another autonomic el-
ement) across a variety of managed resources and the standardization of the
information (e.g., events or policies) that is passed through these interfaces [60].

IN 2006 OASIS Web Services Distributed Management Technical Committee
(WSDM TC) approved and published two sets of specifications on Web Services
Distributed Management entitled Management Using Web Services (MUWS)
and Management of Web Services (MOWS) [49]. The standardization of WSDM
1.0 is an important milestone for autonomic computing because it defines the
web services endpoints. Web services endpoints are a necessary technology for
autonomic managers to bring self-managing capabilities to hardware and soft-
ware resources of the IT infrastructure.

The autonomic manager is a controller, which controls the managed element
(i.e., a set of resources or other autonomic elements). Thus, the autonomic man-
ager and the managed element of an autonomic element correspond to the con-
troller and the managed system in the general feedback system (cf. Figure 3).
This connection is depicted in Figure 7 below.

The autonomic element structure can also be characterized as MIAC or MRAC
structure (cf. Section 5). The MIAC or MRAC reference model is stored in the
knowledge base and the adaptive algorithm is decomposed into the four MAPE
components.

The controller, with its MAPE loop, operates in four phases over a knowledge
base to assess the current state of the managed elements, predict future states,
and bring about desired behavior despite disturbances from the environment and
changes in the process. The monitor senses the managed process and its context,
filters the accumulated sensor data, and stores relevant events in the knowledge
base for future reference. The analyzer compares event data against patterns in
the knowledge base to diagnose symptoms and stores the symptoms [29]. The
planner interprets the symptoms and devises a plan to execute the change in the
managed process through the effectors.

While there is plenty of existing literature for designing and implementing
each MAPE component (e.g., artificial intelligence planning algorithms), the



Autonomic Computing Systems 45

Change

Request

Symptom

Monitor

Analyze
Change

Plan

Plan

Execute

Knowledge

Base

EffectorSensor

EffectorSensor

Fig. 6. Autonomic Manager [28,35]

Fig. 7. Autonomic Manager as Controller in Feedback Loop

modeling of control objectives is hard. Therefore, human operators are often kept
in the loop (i.e., performing some of the tasks of the MAPE loop manually). For
example, for root cause analysis in enterprise systems, the monitor and analyze
tasks are frequently fully automated whereas the plan and execute tasks are
completed by experienced human operators. Even if all components of a MAPE
loop can be executed without human assistance, the autonomic manager can
typically be configured to perform only a subset of its automated functions.



46 H.A. Müller, H.M. Kienle, and U. Stege

The four components of a MAPE loop work together by exchanging knowledge
to achieve the control objective. An autonomic manager maintains its own knowl-
edge (e.g., information about its current state as well as past states) and has
access to knowledge which is shared among collaborating autonomic managers
(e.g., configuration database, symptoms database, business rules, provisioning
policies, or problem determination expertise).

To realize an autonomic system, designers build an arrangement of collab-
orating autonomic elements working towards a common goal. In this case, the
maintainability concerns increase significantly due to the interactions of the con-
trol loops of the different autonomic elements. To synthesize arrangements of
autonomic elements, designers employ various techniques including goal mod-
els [39,40] and architectural patterns [64].

7 Autonomic Reference Architecture and Patterns

Autonomic system solutions consist of arrangements of interdependent, collab-
orative autonomic elements. A hierarchy of autonomic managers where higher
level managers orchestrate lower level managers or resources is the most com-
mon and natural arrangement. For example, it reflects how organizations work
or how IT professionals organize their tasks [4].

The autonomic computing reference architecture (ACRA) is a three-layer hi-
erarchy of orchestrating managers, resource managers, and managed resources
which all share management data across an enterprise service interface [28] as
depicted in Figure 8. The ACRA also includes manual managers or operators,
who have access to all levels through dashboards or consoles [42]. Hierarchical
arrangements of autonomic managers also afford separation of concerns (e.g.,
managing performance, availability, or capacity relatively independently).

Brittenham et al. define a set of autonomic architecture and process patterns
called delegation for progressing from manual management, to autonomic man-
agement [4]. Some of the intermediate stages include automated assistance, super-
vised delegation, conditional delegation, task delegation, and full loop delegation.
For example, in conditional delegation the IT professional trusts an autonomic
manager to perform some but not all requests whereas in task delegation the IT
professional trusts an autonomic manager to perform a complete task.

Kramer and Magee proposed a three layer reference architecture for self man-
aged systems consisting of goal management, change management, and compo-
nent management [38]. They follow Gat’s architecture for autonomous robotics
systems [20] and address different time scales of management or control with the
three levels. Immediate feedback actions are controlled at the component level
and the longest actions requiring deliberation are at the goal level.

Litoiu et al. use three levels autonomic management for provisioning, appli-
cation tuning, and component tuning [41]. Another typical scheme from control
engineering is organizing multiple control loops in the form of a hierarchy where,
due to the employed different time periods, unexpected interference between the
levels can be excluded.



Autonomic Computing Systems 47

Fig. 8. Autonomic computing reference architecture (ACRA) [28]

Lapouchnian et al. proposed a novel design technique for autonomic systems
based on goal-driven requirements engineering which results in more compli-
cated autonomic element topologies [39,40]. Goal models capture a spectrum of
alternative system behaviors and/or system configurations, which are all deliv-
ering the same functionality and are able to select at run-time the best behavior
or configuration based on the current context. Goal models provide a unifying
intentional view of the system by relating goals assigned to autonomic elements
to high-level system objectives and quality concerns. This method produces an
arrangement of autonomic elements that is structurally similar to the goal hi-
erarchy of the corresponding goal model. One extreme solution is to realize the
entire goal model using a single autonomic element. On the other side of the spec-
trum is a solution that allocates an autonomic element for each node in the goal
model. A combination of these two extreme mappings appears to be most prac-
tical. Realizing a subtree (i.e., rather than a single node) of a goal model using
an autonomic element seems more appropriate for many applications. Trade-offs
among goal subtrees can be tuned and optimized using higher-level autonomic
elements. Thus, a goal model affords a first architectural decomposition of a
self-managing system into components. Of course, much design information has
to be added to implement the four phases of each autonomic element.

Out of a need to include autonomic features into legacy applications, Chan and
Chieu proposed an autonomic design that treats the monitoring of a software
application as a separate and independent concern [7]. This approach utilizes
aspect-oriented programming to intercept, analyze, and decompose the appli-
cation states of a software application before linking appropriate non-invasive



48 H.A. Müller, H.M. Kienle, and U. Stege

constructs into the software application code to provide application state in-
formation to an autonomic manager through sensors. Kaiser et al. proposed a
similar approach to externalizing monitoring logic [33].

Garlan’s Rainbow framework, which is based on reusable infrastructure, also
uses external adaptation mechanisms to allow the explicit specification of adap-
tation strategies for multiple system concerns. [18,19]. The Rainbow project
investigated the use of software architectural models at runtime as the basis for
reflection and dynamic adaptation.

Zhu et al. [64] identify and categorize types of common forms of autonomic
element patterns grounded in Hawthorne and Perry’s architectural styles [21,22],
and Neti and Müller’s attribute based architectural styles (ABASs) [48]. They
also reveal the inherent relationships among these patterns and assess their par-
ticular maintainability concerns.

The field of autonomic computing has produced control-centric as well as
architecture-centric reference models and patterns. To this point little research
has been devoted to compare and evaluate the advantages and disadvantages of
these two strategies. The selected research challenges outlined in the next section
present good steps in this direction.

8 Lessons Learned and Research Challenges

While much progress has been made over the past decade, many open research
problems and challenges remain in this exciting field of autonomic computing.

Model construction
The process of designing feedback-based computing systems requires the con-
struction of models which quantify the effect of control inputs on measured
outputs [23]. Fields such as performance engineering and queuing theory
have developed advanced models for many different applications. However,
performance, albeit important, constitutes just one dimension of the mod-
eling problem. There are many other quality criteria that come into play
in dynamic autonomic applications. For some of these criteria (e.g., trust)
quantification is difficult [48]. In addition, models are needed to design trade-
off analyses schemes for combinations of quality criteria. Thus, developing
feedback models using quality criteria for various application domains is a
major challenge and critical for the success of this field. Models and quality
criteria related to governance, compliance, and service-level agreements are
of particular importance for service-oriented autonomic business processes
and applications.

Managing and leveraging uncertainty
When we model potential disturbances from the environment of an autonomic
system (e.g., unexpected saturation of the network) or satisfy requirements
by regulation (i.e., trade-off analysis among several extra-functional require-
ments), we introduce some uncertainty. Therefore, designers and maintainers
of such dynamical systems should manage uncertainty because the environ-
ment may change in unexpected ways and, as a result, the system may adapt



Autonomic Computing Systems 49

in such a way that was not foreseeable at design time. Introducing uncertainty
requires trade-offs between flexibility and assurance [9]. For a maintainer it is
critical to know which parts of the environment are assumed to be fixed and
which are expected to introduce uncertainty [64]. Moreover, assurance and
compliance criteria should be continuously validated at run-time (i.e., not just
at system acceptance time). Hence, understanding, managing, and leveraging
uncertainty is important for delivering autonomic systems with reliability and
assurance guarantees.

Making control loops explicit
Software engineers are trained to develop abstractions that hide complexity.
Hiding the complexity of a feedback loop seems obvious and natural. In con-
trast, Müller et al. advocate that feedback loops, which are the bread and
butter of self-adaptive and autonomic systems, should be made first class
design elements [47]. Designers of autonomic systems will realize significant
benefits by raising the visibility of control loops and specifying the major
components and characteristics of the control loops explicitly. Further ben-
efits could be realized by identifying common forms of adaptation and then
distilling design and V&V obligations for specific patterns. When arrange-
ments of multiple control loops interact as in the ACRA (cf. Section 7),
system design and analysis should cover their interactions. As control grows
more complex, it is especially important for the control loops to be explicit in
design and analysis. Hence, it is useful to investigate the trade-offs between
hiding the complexity of feedback loops and treating feedback loops as first
class objects with respect to the construction and operation of autonomic
systems.

Characterizing architectural patterns and analysis frameworks
Another worthwhile avenue of research is to investigate patterns, quality
criteria, and analysis frameworks for self-managing applications for different
business and evolution contexts [48,64,10]. Quality attributes should not only
include traditional quality criteria such as variability, modifiability, reliabil-
ity, availability and security, but also autonomicity-specific criteria such as
dynamic adaptation support, dynamic upgrade support, support for detect-
ing anomalous system behavior, support for how to keep the user informed
and in the loop, support for sampling rate adjustments in sensors, support
for simulation of expected or predicted behavior, support for differencing
between expected and actual behavior, or support for accountability (e.g.,
how users can gain trust by monitoring the underlying autonomic system).

9 Conclusions

On the one hand, dealing with software-intensive ecosystems seems rather daunt-
ing given that there are still many challenges in the top-down construction of
traditional software systems and their subsequent maintenance. On the other
hand, to be able to observe and control independent and competing processes in
a dynamic and changing environment is a necessity in this new world of service-
oriented, decentralized, distributed computing ecosystems.



50 H.A. Müller, H.M. Kienle, and U. Stege

After almost a decade of intense research and development, autonomic com-
puting constitutes an effective set of technologies, models, architecture patterns,
standards, and processes to cope with and reign in the management complex-
ity of dynamic computing systems using feedback control, adaptation, and self-
management. The feedback loops, which are at the core of an autonomic system,
sense their environment, model their behavior in that environment, and take ac-
tion to change the environment or their own behavior. In this article, we argued
that we not only need architecture-centric views, but also control-centric views
to construct, reason about, and operate highly dynamic autonomic systems. We
illustrated that autonomic computing technology is not only useful for managing
IT infrastructure complexity, but also to mitigate continuous software evolution
problems. We also discussed how to leverage the rich history of control theory
foundations for autonomic and self-adaptive systems. Finally, we presented some
valuable lessons learned and outlined selected challenges for the future.

Previously, we advocated to teach the notion of a control loop, together with
the concept of an autonomic element, early in computer science and software
engineering curricula [46]. In contrast to traditional engineering disciplines, com-
puting science programs seem to have neglected the control loop. If we assume
that the two important trends dominating the computing world over the last
decade and outlined at the beginning of this article—moving towards a service-
centric way of conducting business and evolving towards socio-technical soft-
ware ecosystems,—it might be time to give the control loop more prominence
in undergraduate computing curricula so that the next generation of software
engineers and IT professionals is intimately familiar with the foundations of self-
adaptation and self-management. Over a decade ago, Shaw compared a software
design method based on process control to an object-oriented design method [57].
Not surprisingly, the process control pattern described in that paper resembles
an autonomic element. This method could be used to teach simple feedback loops
in an introductory programming course.

The papers listed in the bibliography give a good indication of how quickly
the field of autonomic computing has grown since 2001, but also show that there
is a rich history for many of its foundations. The references contain a number
of papers that can serve as good starting points for newcomers to the field
(i.e., [4,9,12,13,16,23,28,35,38,51,60]).

Acknowledgments

This work grew out of collaboration with colleagues at IBM Toronto Center
for Advanced Studies, CA Labs, and Carnegie Mellon Software Engineering
Institute. We are also deeply indebted to many of friends and students, who
contributed significantly to our appreciation and understanding of autonomic
computing. In particular, we would like to thank John Mylopoulos, Marin Litoiu,
Anatol Kark, Dennis Smith, Grace Lewis, Patricia Oberndorf, Mary Shaw, Linda
Northrop, Ken Wong, Peggy Storey, Kostas Kontogiannis, Gabby Silbermann,
Serge Mankovski, Joanna Ng, Kelly Lyons, Cheryl Morris, Scott Tilley, Andrea



Autonomic Computing Systems 51

De Lucia, Filomena Ferrucci, Qin Zhu, Piotr Kaminski, Sangeeta Neti, Sweta
Gupta, and Dylan Dawson for their continued collaboration and support. This
work was funded in part by the National Sciences and Engineering Research
Council (NSERC) of Canada (CRDPJ 320529-04 and CRDPJ 356154-07) as
well as IBM Corporation and CA Inc. via the CSER Consortium.

References

1. Astrom, K.J., Wittenmark, B.: Adaptive Control, 2nd edn. Addison-Wesley, Read-
ing (1995)

2. Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel,
A., van Steen, M. (eds.): SELF-STAR 2004. LNCS, vol. 3460, pp. 1–20. Springer,
Heidelberg (2005)

3. Boehm, B.: A View of 20th and 21st Century Software Engineering. In: 28th
ACM/IEEE International Conference on Software Engineering (ICSE 2006), pp.
12–29. ACM, New York (2006)

4. Brittenham, P., Cutlip, R.R., Draper, C., Miller, B.A., Choudhary, S., Perazolo, M.:
IT Service Management Architecture and Autonomic Computing. IBM Systems
Journal 46(3), 565–581 (2007)

5. Broy, M., Jarke, M., Nagl, M., Rombach, D.: Manifest: Strategische Bedeutung des
Software Engineering in Deutschland. Informatik-Spektrum 29(3), 210–221 (2006)

6. Burns, R.S.: Advanced Control Engineering. Butterworth-Heinemann (2001)
7. Chan, H., Chieu, T.C.: An Approach to Monitor Application Status for Self-

Managing (Autonomic) Systems. In: 18th ACM Annual SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2003), pp. 312–313. ACM, New York (2003)

8. Chao, L.: Special Issue on Autonomic Computing. Intel Technology Journal 10(4),
253–326 (2006)

9. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, J., Dust-
dar, S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle,
H.M., Kramer, J., Malek, S., Mirandola, R., Müller, H.A., Park, S., Tichy, M.,
Tivoli, M., Weyns, D., Whittle, J.: A Research Roadmap: Software Engineering
for Self-Adaptive Systems. Schloss Dagstuhl Seminar 08031 Report on Software
Engineering for Self-Adaptive Systems, Wadern, Germany, 12 pages (2008); Pre-
sented at ACM/IEEE International ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2008). ACM, New York (2008),
http://www.dagstuhl.de/08031/

10. Dawson, R., Desmarais, R., Kienle, H.M., Müller, H.A.: Monitoring in Adaptive
Systems Using Reflection. In: 3rd ACM/IEEE International ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2008),
pp. 81–88. ACM, New York (2008)

11. De Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing Diagnosis and Systems.
Artificial Intelligence 56(23), 197–222 (1992)

12. Diao, Y., Hellerstein, J.L., Parekh, S., Griffith, R., Kaiser, G.E., Phung, D.: A
Control Theory Foundation for Self-Managing Computing Systems. IEEE Journal
on Selected Areas in Communications 23(12), 2213–2222 (2005)

http://www.dagstuhl.de/08031/


52 H.A. Müller, H.M. Kienle, and U. Stege

13. Dobson, S., Denazis, S., Fernández, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon,
P., Saffre, F., Schmidt, N., Zambonelli, F.: A Survey of Autonomic Communica-
tions. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1(2),
223–259 (2006)

14. Draper, C.: Combine Autonomic Computing and SOA to Improve IT Management.
IBM Developer Works (2006),
http://www.ibm.com/developerworks/library/ac-mgmtsoa/index.html

15. Dumont, G.A., Huzmezan, M.: Concepts, Methods and Techniques in Adaptive
Control. In: American Control Conference (ACC 2002), vol. 2, pp. 1137–1150.
IEEE Computer Society, Washington (2002)

16. Ganek, A.G., Corbi, T.A.: The Dawning of the Autonomic Computing Era. IBM
Systems Journal 42(1), 5–18 (2003)

17. Ganek, A.G.: Overview of Autonomic Computing: Origins, Evolution, Direction.
In: Parashar, M., Hariri, S. (eds.) Autonomic Computing: Concepts, Infrastructure,
and Applications. CRC Press, Boca Raton (2006)

18. Garlan, D., Cheng, S., Schmerl, B.: Increasing System Dependability through
Architecture-based Self-repair. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)
Architecting Dependable Systems. LNCS, vol. 2677. Springer, Heidelberg (2003)

19. Garlan, D., Cheng, S., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. IEEE Com-
puter 37(10), 46–54 (2004)

20. Gat, E.: On Three-layer Architectures. In: Kortenkamp, D., Bonasso, R., Mur-
phy, R. (eds.) Artificial Intelligence and Mobile Robots: Case Studies of Successful
Robot Systems. MIT/AAAI Press (1998)

21. Hawthorne, M.J., Perry, D.E.: Exploiting Architectural Prescriptions for Self-
Managing, Self-Adaptive Systems: A Position Paper. In: 1st ACM SIGSOFT Work-
shop on Self-Managed Systems (WOSS 2004), pp. 75–79 (2004)

22. Hawthorne, M.J., Perry, D.E.: Architectural Styles for Adaptable Self-healing De-
pendable Systems. Technical Report, University of Texas at Austin, USA (2005),
http://users.ece.utexas.edu/∼perry/work/papers/MH-05-Styles.pdf

23. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons, Chichester (2004)

24. Herger, L., Iwano, K., Pattnaik, P., Davis, A.G., Ritsko, J.J.: Special Issue on
Autonomic Computing. IBM Systems Journal 42(1), 3–188 (2003),
http://www.research.ibm.com/journal/sj42-1.html

25. Hewlett-Packard Development Company: HP Unveils Adaptive Enterprise Strategy
to Help Businesses Manage Change and Get More from Their IT Investments
(2003), http://www.hp.com/hpinfo/newsroom/press/2003/030506a.html

26. Horn, P.: Autonomic Computing. Online Whitepaper (2001), http://www.
research.ibm.com/autonomic/manifesto/autonomic computing.pdf

27. Huebscher, M.C., McCann, J.A.: A Survey of Autonomic Computing—Degrees,
Models, and Applications. ACM Computing Surveys 40(3), 7, 1–28 (2008)

28. IBM Corporation: An Architectural Blueprint for Autonomic Computing, 4th edn.
(2006),
http://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper 4th.pdf

29. IBM Corporation: Symptoms Reference Specification V2.0 (2006),
http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/btm/
SymptomSpec v2.0.pdf

30. IBM Corporation: Autonomic Computing Toolkit User’s Guide, 3rd edn. (2005),
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/
autonomic/books/fpu3mst.pdf

http://www.ibm.com/developerworks/library/ac-mgmtsoa/index.html
http://users.ece.utexas.edu/~perry/work/papers/MH-05-Styles.pdf
http://www.research.ibm.com/journal/sj42-1.html
http://www.hp.com/hpinfo/newsroom/press/2003/030506a.html
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/btm/SymptomSpec_v2.0.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/btm/SymptomSpec_v2.0.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/autonomic/books/fpu3mst.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/autonomic/books/fpu3mst.pdf


Autonomic Computing Systems 53

31. Information Technology Infrastructure Library (ITIL). Office of Government Com-
merce, UK (2007), http://www.itil.org.uk/

32. Inverardi, P., Tivoli, M.: The Future of Software: Adaptation and Dependability.
In: De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006–2008, University of Salerno, Italy.
LNCS, vol. 5413, pp. 1–31. Springer, Heidelberg (2009)

33. Kaiser, G., Parekh, J., Gross, P., Valetto, G.: Kinesthetics eXtreme: An External
Infrastructure for Monitoring Distributed Legacy Systems. In: 5th IEEE Annual
International Active Middleware Workshop (AMS 2003), pp. 22–30. IEEE Com-
puter Society, Washington (2003)

34. Kazman, R., Chen, H.-M.: The Metropolis Model: A New Logic for the Development
of Crowdsourced Systems. Communications of the ACM, 18 pages (submitted, 2008)

35. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

36. Kluth, A.: Information Technology—Make It Simple. The Economist (2004),
http://www.economist.com/surveys/displaystory.cfm?story id=E1 PPDSPGP&
CFID=17609242&CFTOKEN=84287974

37. Kramer, J., Magee, J.: Dynamic Structure in Software Architectures. ACM SIG-
SOFT Software Engineering Notes 21(6), 3–14 (1996)

38. Kramer, J., Magee, J.: Self-managed Systems: An Architectural Challenge. In:
Future of Software Engineering (FoSE 2007), pp. 259–268. IEEE Computer Society,
Washington (2007)

39. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards Requirements-
Driven Autonomic Systems Design. In: ICSE Workshop on Design and Evolution of
Autonomic Application Software (DEAS 2005), pp. 45–51. ACM, New York (2005)

40. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-Driven Design
of Autonomic Application Software. In: ACM IBM Center for Advanced Studies
Conference on Collaborative Research (CASCON 2006), pp. 80–93. ACM, New
York (2006)

41. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical Model-based Autonomic Control
of Software Systems. In: ICSE Workshop on Design and Evolution of Autonomic
Application Software (DEAS 2005), pp. 34–40. ACM, New York (2005)

42. Marcus, A.: Dashboards in Your Future. ACM Interactions 13(1), 48–49 (2006)
43. McKinley, P.K., Sadjadi, M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive

Software. IEEE Computer 37(7), 56–64 (2004)
44. Microsoft Corporation: Dynamic Systems 2007: Get Started With Dynamic Sys-

tems Technology Today (2007),
http://www.microsoft.com/business/dsi/dsiwp.mspx

45. Müller, H.A., O’Brien, L., Klein, M., Wood, B.: Autonomic Computing. Technical
Report, Software Engineering Institute, Carnegie Mellon University, CMU/SEI-
2006-TN-006, 61 pages (2006),
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn006.pdf

46. Müller, H.A.: Bits of History, Challenges for the Future and Autonomic Computing
Technology (Keynote). In: 13th IEEE Working Conference on Reverse Engineering
(WCRE 2006), pp. 9–18. IEEE Computer Society, Washington (2006)

47. Müller, H.A., Pezzè, M., Shaw, M.: Visibility of Control in Adaptive Systems.
In: 2nd ACM/IEEE International ICSE Workshop on Ultra-Large-Scale Software-
Intensive Systems (ULSSIS 2008), pp. 23–26. ACM, New York (2008)

48. Neti, S., Müller, H.A.: Quality Criteria and an Analysis Framework for Self-Healing
Systems. In: 2nd ACM/IEEE International ICSE Workshop on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS 2007), pp. 39–48. IEEE
Computer Society, Washington (2007)

http://www.itil.org.uk/
http://www.economist.com/surveys/displaystory.cfm?story_id=E1_PPDSPGP&CFID=17609242&CFTOKEN=84287974
http://www.economist.com/surveys/displaystory.cfm?story_id=E1_PPDSPGP&CFID=17609242&CFTOKEN=84287974
http://www.microsoft.com/business/dsi/dsiwp.mspx
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn006.pdf


54 H.A. Müller, H.M. Kienle, and U. Stege

49. OASIS: Web Services Distributed Management: Management of Web Services
(WSDM-MOWS) 1.1 OASIS Standard (2006),
http://docs.oasis-open.org/wsdm/wsdm-mows-1.1-spec-os-01.htm

50. Ogata, K.: Discrete-Time Control Systems, 2nd edn. Prentice-Hall, Englewood
Cliffs (1995)

51. Northrop, L., Feiler, P., Gabriel, R., Goodenough, J., R., L., Longstaff, T., Kazman,
R., Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale Systems—
The Software Challenge of the Future. Technical Report, Software Engineering
Institute, Carnegie Mellon University, 134 pages (2006),
http://www.sei.cmu.edu/uls

52. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-Based Runtime Software
Evolution (Most Influential Paper Award at ICSE 2008). In: ACM/IEEE Inter-
national Conference on Software Engineering (ICSE 1998), pp. 177–186. IEEE
Computer Society, Washington (1998)

53. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime Software Adaptation: Frame-
work, Approaches, and Styles. In: ACM/IEEE International Conference on Soft-
ware Engineering (ICSE 2008), pp. 899–910. ACM, New York (2008)

54. Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelligence 32(1),
57–95 (1987)

55. Schloss Dagstuhl Seminar 08031. Software Engineering for Self-Adaptive Systems,
Wadern, Germany (2008), http://www.dagstuhl.de/08031/

56. SEI Software-Intensive Systems (ISIS). Integration of Software-Intensive Sys-
tems (ISIS) Initiative: Addressing System-of-Systems Interoperability (2007),
http://www.sei.cmu.edu/isis/

57. Shaw, M.: Beyond Objects: A Software Design Paradigm Based on Process Control.
ACM SIGSOFT Software Engineering Notes 20(1), 27–38 (1995)

58. Sun Microsystems: Sun N1 Service Provisioning System (2007),
http://www.sun.com/software/products/service provisioning/index.xml

59. Tanner, J.A.: Feedback Control in Living Prototypes: A New Vista in Control
Engineering. Medical and Biological Engineering and Computing 1(3), 333–351
(1963), http://www.springerlink.com/content/rh7wx0675k5mx544/

60. Tewari, V., Milenkovic, M.: Standards for Autonomic Computing. Intel Technology
Journal 10(4), 275–284 (2006)

61. Truex, D., Baskerville, R., Klein, H.: Growing Systems in Emergent Organizations.
Communications of the ACM 42(8), 117–123 (1999)

62. Wong, K.: The Reverse Engineering Notebook. Ph.D. Thesis, Department of Com-
puter Science, University of Victoria, Canada, 149 pages (1999) ISBN:0-612-47299-X

63. Tsypkin, Y.Z.: Adaptation and Learning in Automatic Systems. Mir Publishing,
Moscow (1971)

64. Zhu, Q., Lin, L., Kienle, H.M., Müller, H.A.: Characterizing Maintainability Con-
cerns in Autonomic Element Design. In: IEEE International Conference on Soft-
ware Maintenance (ICSM 2008), 10 pages. IEEE Computer Society, Washington
(2008)

http://docs.oasis-open.org/wsdm/wsdm-mows-1.1-spec-os-01.htm
http://www.sei.cmu.edu/uls
http://www.dagstuhl.de/08031/
http://www.sei.cmu.edu/isis/
http://www.sun.com/software/products/service_provisioning/index.xml
http://www.springerlink.com/content/rh7wx0675k5mx544/


A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 55–77, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Impact of Usability on Software Requirements  
and Design 

Natalia Juristo 

Facultad de Informática, Universidad Politécnica de Madrid 
Campus de Montegancedo, 

28660 Boadilla del Monte, Spain 
natalia@fi.upm.es 

Abstract. Like any other quality attribute, usability imposes specific constraints 
on software components. We have empirically corroborated that software de-
sign and usability are related. Therefore usability features impacting design 
need to be considered from a functional viewpoint at requirements stage. But 
discovering and documenting usability features is likely to be beyond the us-
ability knowledge of most requirements engineers, developers and users. We 
propose an approach based on developing specific guidelines that capitalize 
upon key elements recurrently intervening in the usability features elicitation 
and specification. Developers can use these guidelines to ask the appropriate 
questions and capture usability requirements information. This practice should 
lead to build software with higher usability. 

Keywords: SE-Usability gap, Usability requirements, Usability Impact. 

1   Introduction 

There are so many software systems with immature usability that you are sure to have 
had enough frustrating experiences to be able to recognise how little use is made of 
usability strategies, models and methods in software construction. Although usability 
is a topic that crops up over again in discussions with customers, it is evidently not 
properly addressed in most development projects [1] [2]. However, the importance of 
usability is growing. For instance, IBM is convinced that usability “makes business 
effective and efficient and it makes business sense” [3]. In the same line, the Boeing 
Co. changed the way it buys software making a product’s usability a fundamental 
purchasing criterion [4]. 

A number of studies have pointed out a wide range of benefits stemming from us-
ability [5] [6] [7]: it improves productivity and raises team morale, reduces training 
and documentation costs, improves user productivity, increases e-commerce potential, 
etc. Additionally the cost/benefit ratio of usability is highly worthwhile. Donahue 
stated that every dollar spent on usability offers a return of $30.25 [8]. There are also 
studies for e-commerce sites that show that a 5% improvement in usability could 
increase revenues by 10% to 35% [9]. 

Both the HCI and SE communities play a crucial role in the development of usable 
software systems. The HCI community has the knowledge about which features a 



56 N. Juristo 

software system must provide to be usable. The SE community has the knowledge 
about software systems development. 

The HCI community has developed over the last decades a variety of approaches to 
enhance usability in software systems, but they are not the everyday practice in SE. 
HCI approaches are usually regarded as being uncoupled from the mainstream soft-
ware development lifecycles [1]. At the same time, software developers receive only 
rudimentary training in usability [10] so they do not have the knowledge to build 
usable software. 

Two separated processes for building an interactive system –one from SE for the 
system development and another from HCI to enhance usability– are certainly not 
manageable. It is not possible to control and synchronize software development and 
usability design separately.  Also, efficiency falls and costs increase because of the 
overlapping functions between the two processes. Milewski [11] argues that, despite 
improvements in SE-HCI interactions, problems of communication and efficiency 
still remain and deserve further investigation.  One of the most significant difficulties 
that still stands in the way of HCI and SE cooperation is that there is little knowledge 
and communication about each others’ practices. Both communities use different 
vocabulary and sometimes the same word to represent different artifacts. The word 
“design”, for example, can be understood and used differently in both communities: 
to express the software modeling phase (in SE), and the final look and feel of the 
product (in HCI).  

Some widespread expressions, such as “friendliness of the user interface”, and 
“user interface” per se, are some of the underlying obstacles to more usable interac-
tive systems [1].  Such terms give the impression that the user-centered approach and 
usability methods are only for “decorating a thin component sitting on top of the 
software or the “real” system”.  Some software engineers consider themselves the 
“real” designers of the software system, leaving the task of making the UI more “user 
friendly” to the usability people.  

This paper aims to contribute in the direction of incorporating HCI knowledge in 
every day SE practice. To this end, we have analyzed what different types of impact 
usability heuristics and guidelines stated in the Human Computer Interaction (HCI) 
literature are likely to have on a software system. As we will see, some usability fea-
tures appear to have some effect on software design. The next step then is to examine 
what sort of effect this is. With this aim in mind, we have conducted a study of sev-
eral real systems into which we have incorporated the usability features in question. 
As a result of this analysis we have been able to demonstrate that usability really is 
not confined to the system interface and can affect the system’s core functionality. 
The implications of the usability features for design materialize as the creation of 
special items (components, responsibilities, interactions, classes, methods, etc.) that 
affect both the presentation and application layer of the software system architecture. 

We think usability should be brought forward in the development process and con-
sidered at requirements time. We propose an approach in which usability features 
with major implications for software functionality are incorporated as functional re-
quirements. Addressing usability at the requirements stage has the same benefits as 
considering other quality attributes early on in the development process [12]: "The 
earlier key quality attribute requirements are identified and prioritized, the more likely 
it is that the essential quality attributes will be built into the system. It is more  



 Impact of Usability on Software Requirements and Design 57 

cost-effective to reason about quality attribute tradeoffs early in the lifecycle than 
later in the lifecycle when modifications are often difficult, impractical, or even  
impossible”. Building usability into a software system has a cost and calls for negotia-
tion with users and other stakeholders about which usability features should be in-
cluded, the consequences of their inclusion, how to provide them, etc. As applies to 
other quality attributes, it is more cost-effective to reason about usability tradeoffs 
early on the lifecycle. This chapter focuses on particular usability features with high 
functional implications and discusses how to deal with them at the requirements stage.  

2   Usability Is Not Confined to UI 

Software usability is a quality attribute listed in a number of classifications 
[13][14][15]. Although it is not easy to find a standard definition of usability, Nielsen 
gave one of the most well-known descriptions concerning the learnability and memo-
rability of a software system, its efficiency of use, its ability to avoid and manage user 
errors, and user satisfaction [16]. Similarly, ISO 9241-11 [17] defines usability as “the 
extent to which a product can be used by specified users to achieve specified goals 
with effectiveness, efficiency and satisfaction in a specific context of use”. Usability 
is also generally referred to as “quality in use” [18]. Usability reflects the relationship 
between a software system and its users. 

The most widespread view in the field of SE is that usability is chiefly related to 
the user interface UI. In other words, usability mainly affects the UI and not the core 
of the system. Therefore, the good design practice that separates the UI from the core 
functionality would be sufficient to support the development of a usable software 
system. This view means that dealing with usability could be put off until the later 
stages of software system development (commonly during system evaluation), as the 
changes required to improve this quality attribute should not involve a lot of rework.  

To understand the depth and scope of the usability of a system, it is useful to make 
a distinction between the visible part of the user interface (buttons, pull-down menus, 
check-boxes, background color, etc.) and the interaction part of the system. By inter-
action we mean the coordination of information exchange between the user and the 
system. A system’s usability deals not only with the user interface but mainly with the 
user-system interaction. 

The interaction must be carefully designed and must be considered not just when 
designing the visible part of the user interface, but also when designing the rest of the 
system. For example, if our system has to provide continuous feedback to the user for 
usability reasons, we need to bear this in mind when designing the system. System 
operations have to be designed so as to allow information to be frequently sent to the 
user interface to keep the user informed about the current status of the operation. This 
information could be displayed to the user by different means (percentage-completed 
bar, a clock, etc.). These means are interface issues. It is not unusual to find develop-
ment teams thinking that they can design the system and then make it usable after-
wards just by designing a nice set of controls, having the right color combination and 
the right font. This approach is clearly wrong.  

The improvements in system usability involve modifications beyond the interface, 
specifically, to the design of some software components and, therefore, to its core. 



58 N. Juristo 

This relation between usability and software design makes the rework cost to achieve 
an acceptable level of usability much higher than expected according to the hypothe-
sis of separation. Certain functionalities that improve usability are to be dealt with 
earlier in the development process in order to define and evaluate its impact on design 
as soon as possible.  

Recommendations provided by HCI literature in order to obtain usable software 
systems can be put in three groups according to their effect on software development: 
Recommendations impacting on the UI, on the development process or on the design. 

Usability recommendations with impact on the UI are HCI recommendations that 
affect system presentation through buttons, pull-down menus, check boxes, back-
ground color, fonts, etc. The impact of these features on software development can be 
illustrated by an example. Suppose we have a developed system and we want to 
change the color of one of the windows to highlight certain aspects of interest for the 
user or the text associated with certain buttons so that user can get a clearer idea  
of what option to select. These changes that help to improve the software usability 
would be confined to altering the value of some source code variable related to the 
window or buttons. Building these recommendations into a system involves slight 
modifications to the detailed UI design, and no other part of the system needs to be 
modified. If good design practices have been followed, this change would be confined 
to the interface component or subsystem, having no impact on the system core.  

Usability recommendations with impact on the development process can only be 
taken into account by modifying the techniques, activities and/or products used during 
development. These recommendations include guidelines to encourage all user-
system interaction to take place naturally and intuitively for the user. This is the goal 
of usability recommendations like natural mapping, develop a user conceptual model, 
know your uses, involve the user in software construction, reduce the user cognitive 
load, etc., which intend the user to be able to confidently predict the effect of his/her 
actions with the system. In order to incorporate such recommendations the software 
development process needs to be modified. This involves, for example, the use of 
more powerful elicitation techniques, probably coming from other disciplines like 
HCI. There are proposals aimed at modifying the software process for developing 
more usable software. Most of these proposals come from the HCI field [19] [20] with 
a perspective of software development removed from SE’s view. Just a few [21] come 
from SE. 

Usability recommendations with impact on design involve building certain func-
tionalities into the software to improve user-system interaction. For example, features 
like cancel an ongoing task, undo a task, receive feedback on what is going on in the 
system or adapt the software functionalities to the user profile. Suppose that we want 
to build the cancel functionality for specific commands into an application. HCI ex-
perts mention “provide a way to instantly cancel a time-consuming operation, with no 
side effects” [22]. To satisfy such requirements the software system must at least: 
gather information (data modifications, resource usage, etc.) that allow the system to 
recover the status prior to a command execution; stop command execution; estimate 
the time to cancel and inform the user of progress in cancellation; restore the system 
to the status before the cancelled command; etc. Apart from the changes that have to 
be made to the UI to add the cancel button, specific components must be built into the 
software design to deal with these responsibilities. Therefore, building the cancel 



 Impact of Usability on Software Requirements and Design 59 

usability feature into a finished software system involves a substantial amount of 
design rework rather than minor changes to the UI. The same applies to other usabil-
ity recommendations that represent specific functionalities to be incorporated into a 
software system,  

We have termed this type of HCI recommendations functional usability features 
(FUF) [23], as most of these heuristics/rules/principles make recommendations on 
functionalities that the software should provide for the user. Table 1 shows the most 
representative FUFs that can be foreseen to have a crucial effect on system design. As 
we have seen with cancel, this effect is inferred from the detailed descriptions of the 
FUFs provided by HCI authors. In the remainder of this chapter we will focus on this 
category of usability features. 

3   Making the Relationship between Usability and Software Design 
Visible 

In order to confirm what the relationship between FUFs and software design is, we 
have worked on a number of real development projects carried out by UPM Master in 
Software Engineering students as part of their MSc dissertations from 2004 to 2005 
[24]. Students originally developed the respective systems without any FUFs. These 
designs were then modified to include the FUFs listed in Table 1. 

This section discusses an example illustrating the incorporation of one FUF on a 
system developed to manage on-line table bookings for a restaurant chain. The FUF 
addressed is one particular kind of feedback, system status feedback. This usability 
feature involves the system notifying the user of any change of state that is likely to 
be of interest. HCI experts recommend that the notification should be more or less 
striking for the user depending on how important the change is. The status changes 
that the client considered important referred to failures during the performance of 
certain system operations, owing either to runtime faults, insufficient resources or 
problems with devices or external resources (specifically Internet). 

Table 1. Usability features with impact on software design 

Functional 
Usability 
Features 

 
Goal 
 

Feedback To inform users about what is happening in the system 
Undo To undo system actions at several levels 
Cancel To cancel the execution of a command or an application 
Form/Field 
Validation 

To improve data input for users and software correction as soon as 
possible 

Wizard To help do tasks that require different steps with user input 
User Expertise 
Multilevel 
Help 
Different 
Languages 
Alert 

To adapt system functionality to users’ expertise 
To adapt system functionality to users’ expertise 
To make users able to work with their own language, currency, ZIP 
code, etc. 
To warn the user about an action with important consequences 



60 N. Juristo 

Figure 1 illustrates part of the UML class model for this system, including the 
classes involved in the restaurant table booking process only. The original classes 
designed without considering system status feedback are shown on a white back-
ground in the diagram and the classes derived from the later inclusion of this feature 
on a grey background. Let us first analyse this diagram without taking into account 
the system status feedback. The Interface class represents the part of the bookings 
terminal with which the user interacts to book a table at the restaurant over the Inter-
net. The Restaurants-Manager and Reservations-Manager are two classes specialized 
in dealing with restaurants and bookings, respectively. They have been added to make 
the system more maintainable by separating the management processes so that they 
can be modified more efficiently in the future. The Reservations class accommodates 
the information related to each booking that is made at the restaurant, where the res-
taurant is represented by the Restaurant class and each of the tables at this restaurant 
that are not taken are identified by the Table class.  

According to the previous definition of system status feedback, its inclusion into a 
software system involves the following specific responsibilities: 

• R1: The software should be able to listen to commands under execution, be-
cause they can provide information about the system status. If this informa-
tion is useful to the user, the system should be able to pass this information 
on as, when and where needed. 

• R2: As the system may fail, the software should be able to ascertain the state 
of commands under execution, because users should be informed if the 
command is not working owing to outside circumstances. The system should 
be equipped with a mechanism by means of which it can check at any time 
whether a given command is being executed and, if the command fails, in-
form users that the command is not operational. 

• R3: The software should be able to listen to or query external resources, like 
networks or databases, about their status, to inform the user if any resource is 
not working properly.  

• R4: The software should be able to check the status of the internal system re-
sources and alert users in advance to save their work, for instance, if the sys-
tem is running short of a given resource and is likely to have to shut down.  

The following changes (highlighted on a grey background) had to be made to the 
design illustrated in Figure 1 to deal with these responsibilities: 

• Three new classes: 
o Internal-Resource-Checker, responsible for changes and for deter-

mining failures due to internal system resources like memory, etc. 
o External-Resource-Checker, responsible for changes and determin-

ing failures due to external system resources like networks, data-
bases, etc. 

o Status-Feedbacker, responsible for providing the client with infor-
mation stating the grounds for both changes and system failures in 
the best possible format and using the most appropriate heuristic in 
each case. 

 



 Impact of Usability on Software Requirements and Design 61 

• Five new methods: 
o ExternalResourcesAvailable, to determine whether the external re-

sources are available. 
o CheckSystemResources, to determine whether the system has the 

resources it needs to execute the booking operation for the restau-
rant. 

o AreYouAlive, to be able to ask whether the command under execu-
tion is still running correctly. 

o IAmAlive, for the Reservations-Manager to be able to tell the sys-
tem that it is still running, that is, that it is alive. 

o Feedback, to tell the user of any changes or failures identified in the 
system while the table is being booked at the restaurant. 

• Four new associations between: 
o Reservations-Manager&StatusFeedbacker, so that the Reserva-

tionsManager class can tell the StatusFeedbacker about changes or 
system failures that are relevant for the user and about which the 
user is to be informed. 

o Internal-Resource-Checker&Status-Feedbacker and External-
Resource-Checker&Status-Feedbacker, to be able to tell the Status-
Feedbacker class that a change or failure has occurred.  

o Reservations-Manager&Internal-Resources-Checker, so that the In-
ternal-Resources-Checker can check that the reservation process is 
still active and working properly. 

Table 2 summarizes the classes responsible for satisfying each of the identified re-
sponsibilities.  

Table 2. Correspondence between responsibilities and static structure diagram classes 

Class Name Responsibility 
Reservations-Manager R1, R2 
Internal-Resources-Checker R1, R2, R4 

External-Resources-Checker R3 
Status-Feedbacker R1, R2, R3, R4 
  

 
Figure 2 illustrates the sequence diagram for the case in which the user books a 

restaurant table over the Internet. Like Figure 1, this diagram shows the original 
classes designed without taking into account system status feedback on a white back-
ground, whereas as the classes derived from the inclusion of this usability feature are 
shaded grey. Let us analyze this diagram first without taking into account the infor-
mation entered as a result of system status feedback. Looking at the sequence dia-
gram, it is clear that the Client actor interacts with the Interface class to start to book a 
restaurant table. As of this point, the Reservations-Manager takes over to request the 
names of available restaurants from which the client is to select one and enter the 
date, time and table type (smoking or non-smoking).The system can use this informa-
tion to check what tables have already been booked at the restaurant and determine 
which meet the conditions specified by the client. Once the system has gathered what 



62 N. Juristo 

information there is about tables, it displays a map of the restaurant showing the posi-
tion of the vacant tables from which the user can select the one he or she likes best. 
After the user has selected the restaurant table, the system proceeds to materialize the 
booking providing the client with a booking code stating the table booked and giving 
him or her the option to print a ticket stating the booking information.  

After including system status feedback, the following checks need to be run: i) the 
system has not stop while it was making the booking (see UML NOTE A); ii) the 
system has enough resources, memory, etc. (see UML NOTE B) for as long as it took 
to book the table, and iii) the Internet connection has worked properly (see UML 
NOTE C). As you can see, the above checks are done at different times throughout 
the booking process and, therefore, the interactions represented by UML NOTES A, 
B and C appear more than once. 

External-Resources-Chec ker

Id

ExternalResourcesAv ailable()

Restaurants-Manager

Code

Get-List-Of -Restaurants()
Take-Name()
Get-Map(name-restaurant)()
Take-Map(m ap)()
Take-f ree-tables(name-restaurant, date, hour , table-k ind, number-people)()
Lis t-of -f ree-tables (list-of -locations, list -of -tables)()

Restaurant

Nam e
Address
Capacity
Map

Get-Name()
Get-Map()
Get-Free-Tables(date, hour , table-kind, number-people)()
Take-Status(status)()

T able

Max-capac ity
Ty pe (smoking/noon smoking)
Location (x ,y )
code-table

Change-Status()
Get-Status(date, hour, table-kind, num ber-people)()
Take-Status(s tatus)()

Reservation

Date
Hour
Nam e
Num ber-of -people

Get-s tatus(date, hour)()
Make-Reserv ation(code-table, date, hour, table-kind, number-people, name-reserv ation)()

Interface

Location
Terminal-code

NewReserv ation()
ShowList(lis t)()
User-Selection(restaurant-name,  date, hour ,  table-kind, people)()
Show(map, list-of -locations,lis t-of -tables)()
Table-selected(code-table, name-reserv ation)()
PrintTicket(cod-table, date,hour,number-people,nam e-restaurant, nome-reserv ation)()

Internal-Resources-Checker

Id

CheckSy stemResources()
IAm Aliv e()

Status-Feedbacker

Id

Feedback (external-resources-not-av ailable)
Feedback (c lose-the-sy stem)
Feedback (ongoing-com mand-dead)
Feedback (InternetNotW ork ing)()

Reservations-Manager

Code

Get-List-of -Restaurants()
TakeLis t(lis t)()
Selected(name-restaurant, date,hour, table-kind, num ber-people)()
TakeMap(map)()
List-of -f ree-tables(lis t-of -locations,list-of -tables)()
Selected-Table(cod-table, name-reserv ation)()
OK()
AreY ouAliv e()

 
Fig. 1. Class diagram for restaurant management with system status feedback feature 



 Impact of Usability on Software Requirements and Design 63 

 :  
Ex ternal-Res ources-Chec ker

 :  c lient

 : In terface  :  
Reserv ations -Manager

 :  R estaurants -Manager  : Restaurant  : Table  : Reservation :  
Internal-Resources -Check er  :  Network

NewReservation( )
Get-List-of-Rest( )

Get-List-o f-Rest( )
GiveMeName( )

TakeName(Name )

TakeListOfNAmes(list)

Show (l ist)

Us er-Selec t ion(res taurant-name,  date,  hour ,  table-kind,  people)

Selected(name-res taurant ,  date,hour, table-kind, number-people)

DameMapa(nombre-rest)
Get-M ap( )

Take-Map(map)
TakeMap(map)

Take-f ree-tables(name-restaurant ,  date, hour , table-kind, number-people)

Get-Free-Tables (date, hour ,  table-kind, number-people)

Get-Status(date,  hour,  table-k ind, number-people)

Get-status(date, hour)

Take-Status(status)

Take-Status (status)

Lis t-of -f ree-tables(list -of -loc at ions,  list -of -tables)

List-of-free-tables(l i st-o f-locations,li st-o f-tables)

Show(map,  list -of -loc ations, list -of -tables)

Table-selected(code-table, name-reserv at ion)

Selected-Table(c od-table,  name-reserv at ion)

Make-Reserva tion(code-table, da te, hour, table -kind, number-peop le, name-reservation)

OK( )

PrintTicket(cod-table,  date,hour,number-people,name-res taurant , nome-reserv at ion)

CheckSystemResources( )

AreYouAlive( )

IAmAlive( ) CheckExternalResources( )

ExternalResourcesAvailable( )

CheckSystemResources( )

CheckSystemResources( )

NOTE A

NOTE B

NOTE B

NOTE B

NOTE C

AreYouAlive( )

IAmAlive( )

NOTE A

AreYouAlive( )

IAmAlive( )

NOTE A

ExternalResourcesAvailable( )

CheckExternalResources( )

NOTE C

 

Fig. 2. Sequence diagram for reservations management with System Status Feedback feature 

As shown in Figure 3, if an external resource, in this case the network, failed, the 
External-Resources-Checker would take charge of detecting this state of affairs (as no 
ExternalResourceAvailable message would be received) and it would alert the user 
through the Status-Feedbacker. If the shaded classes were omitted, the system would 
not be able to detect the network failure. Explicitly incorporating the components for 
this usability feature at design time provides some assurance that it will be included in 
the final system. 



64 N. Juristo 

The above example illustrates what impact the inclusion of the system status feed-
back feature has on system design (and therefore on later system implementation). 
Other designers could have come up with different, albeit equally valid designs to 
satisfy the above-mentioned responsibilities. For example, a less reusable class model 
might not have included new classes for this type of feedback, adding any new meth-
ods needed to existing classes. In any case, the addition of this new feature to the 
system can be said to involve significant changes at design time.  

Note that this example only shows the effect of this usability feature for a specific 
functionality (table booking). This effect is multiplied if this feature is added to the 
other system functionalities, and, as we will discuss in next section, even more so if 
we consider all the other FUFs.  

In [24] we analyze what effect FUFs have on design in more detail We have quan-
tified the impact of each feature to ascertain the different levels of FUFs complexity 
and, therefore, the level of impact on design. Table 3 shows this information. 

 : External-Resources-Checker

 : client

 : Interface  : Reservations -Manager  : 
Restaurants-Manager

 : 
Restaurant

 : 
Internal-Res ources -Checker  : Network

 : 
Status-Feedbacker

NOTE A

NOTE B
NewReservation( )

Get-List-of-Rest( )
Get-List-of-Rest( )

GiveMeName( )

TakeName(Name )AreYouAlive( )

IAmAlive( )

CheckExternalResources ( )

ExternalResources Available( )

Feedback(InternetNotWorking)

CheckExterna lResources( )

 

Fig. 3. Sequence diagram for bookings management with System Status Feedback feature and a 
network failure 

4   Usability as Functional Requirement 

Both Human HCI and SE disciplines deal with usability as a non-functional require-
ment. Typically usability requirements specify user effectiveness, efficiency or satis-
faction levels that the system should achieve. These specifications can then be used as 
a yardstick at the evaluation stage: “A novice user should learn to use the system in 
less than 10 hours”, or “End user satisfaction with the application should be higher 
than Z on a 1-to-5 scale”. Dealing with usability in the shape of non-functional re-
quirements does not provide developers with enough information about what kind of 
features to provide to satisfy such requirements.  

The features described in Table 1 represent particular functionalities that can be built 
into a software system to increase usability. Since functional requirements describe the 
functions that the software is to execute [25], we consider that the usability features in 



 Impact of Usability on Software Requirements and Design 65 

Table 1 should be treated as functional requirements (even though they are usability-
related requirements). Such functional usability requirements need to be explicitly 
specified, just like any other functionality. If these usability functionalities are properly 
described in the requirements specification, they are more likely to be built into the 
system. They will improve the system’s usability and contribute to the usability levels 
established in the non-functional requirements.  

Usability functionalities could be specified by just stating the respective usability 
features. For example, “the system should provide users with the ability to cancel 
actions” or “the system should provide feedback to the user”. This is actually the level 
of advice that most HCI heuristics provide. The HCI community assumes that this 
level of detail is sufficient for developers to properly build a usability feature into the 
system. For example, one of the most commonly recurring HCI guidelines is Niel-
sen’s feedback heuristic: “The system should always keep users informed about what 
is going on through appropriate feedback within reasonable time” [16]. However, this 
description provides nowhere near enough information to satisfactorily specify the 
feedback functionality, let alone design and implement it correctly.  

To illustrate what information is missing let us look at the complexity and diversity 
of the feedback feature. The HCI literature identifies four types of Feedback: Interac-
tion Feedback to inform users that the system has heard their request; Progress Feed-
back for tasks that take some time to finish; System Status Display to inform users 
about any change in the system status, and Warnings to inform users about irreversi-
ble actions. Additionally, each feedback type has its own peculiarities. For example, 
many details have to be taken into account for a system to provide a satisfactory Sys-
tem Status Feedback: what states to report, what information to display for each state; 
how prominent the information should be in each case (e.g., should the application 
keep control of the system while reporting, or should the system let the user work on 
other tasks while status reporting), etc.  

Therefore, a lot more information than just a description of the usability feature must 
be specified to properly build the whole feedback feature into a software system. Devel-
opers need to discuss this information with and elicit it from the different stakeholders.  

Note that the problem of increasing functional requirements completeness is gener-
ally solved by adding more information to the requirements [26][27]. Even so, re-
quirements completeness is never an easy problem to solve [28][29][30], and this is  
 

Table 3. Functional Usability Features design impact 

 FUF-
Functionality

FUF-
Classes 

FUF-Methods 
Complexity 

FUF-
Interactions 

Feedback  90% 27% MEDIUM 66% 

Undo 40% 10% HIGH 66% 
Cancel 95% 8% HIGH 66% 
User Errors Prevention 36% 11% MEDIUM 6% 
Wizard 7% 10% LOW 70% 
User Profile  8% 37% MEDIUM 10% 
Help  7% 6% LOW 68% 
Use of different languages 51% 10% MEDIUM 70% 
Alert  27% 7% LOW 66% 



66 N. Juristo 

even harder in the case of functional usability requirements. In most cases, neither 
users nor developers are good sources of the information needed to completely spec-
ify a usability feature. Users know that they want feedback; what they do not know is 
what kind of feedback can be provided, which is best for each situation, and less still 
what issues need to be detailed to properly describe each feedback type. Neither do 
software engineers have the necessary HCI knowledge to completely specify such 
functional usability requirements since they are not usually trained in HCI skills. 

The HCI literature suggests that HCI experts should join software development 
teams to deal with this missing expertise [31][19]. However, this solution has several 
drawbacks. The first is that communication difficulties arise between the software 
developer team and HCI experts, as HCI and SE are separate disciplines. They use 
different vocabulary, notations, software development strategies, techniques, etc. 
Misunderstandings on these points can turn out to be a huge obstacle to software 
development. Another impediment is the cost. Large organizations can afford to pay 
for HCI experts, but many small-to-medium software companies cannot.  

5   Guidelines for Gathering Information about Functional 
Usability Features 

Our approach consists of packaging guidelines that empower developers to capture 
functional usability requirements without depending on a usability expert. These 
guidelines help developers to understand the implications of and know how to elicit 
and specify usability features for a software system.  

The information provided by the HCI literature is not directly applicable for this 
purpose. We have analyzed this information from a software development point of 
view and have elaborated elicitation and specification guidelines. In the following we 
describe this work in detail. The usability features that we have worked on are listed 
in Table 4 along with their HCI sources of information.  

First, we extracted and categorized the information about functional usability fea-
tures provided by the different HCI authors. We found the most detailed information 
on usability features in [32][33][34][35][36] This information has served as a basis 
for identifying which issues should be discussed with stakeholders during the elicita-
tion process. However, there is not enough HCI information to derive the essentials to 
be elicited and specified for all the functional usability features in Table 1. This is 
why features like Shortcuts and Reuse, for example, have been left out.  

Each HCI author identifies different varieties of these usability features. We have 
denoted these subtypes as usability mechanisms, and have given them a name that is 
indicative of their functionality (see Table 2). Then we defined the elicitation and 
specification guides for the usability mechanisms.  

We have packaged the elicitation guidelines we have generated in what we call a 
usability elicitation pattern. Our usability elicitation patterns capitalize upon elicita-
tion know-how so that requirements engineers can reuse key usability issues interven-
ing recurrently in different projects. Patterns help developers to extract the necessary 
information to specify a functional usability feature. 

We have developed one usability elicitation pattern for each usability mechanism. 
They are available at http://is.ls.fi.upm.es/research/usability/usability-elicitation-
patterns. Annex A shows an example of the System Status Feedback mechanism pat-
tern. Let us briefly describe the fields making up this pattern:  



 Impact of Usability on Software Requirements and Design 67 

− Identification of the usability mechanism addressed by the pattern (that 
is, its name, the family of usability features to which it belongs and 
possible aliases by which this usability mechanism may be known). 

− Problem addressed by each pattern, that is, how to elicit and specify 
the information needed to incorporate in a software system the corre-
sponding usability mechanism. 

− Usability context in which this pattern will be useful. 
− Solution to the problem addressed by the pattern. This is composed of 

two elements. The usability mechanism elicitation guide provides 
knowledge for eliciting information about the usability mechanism. It 
lists the issues to be discussed to properly define how the usability 
mechanism needs to be considered along with the corresponding HCI 
rationale. The usability mechanism specification guide provides an ex-
ample of a specification skeleton.  

− The related patterns refer to other usability elicitation patterns whose 
contexts are related to the one under study and could also be consid-
ered in the same application 

We use an example of a software system for theatre ticket sales for use by box office 
operators to illustrate pattern use. This is a highly interactive system with a specific user 
type. These two factors condition the usability requirements to be considered quite a lot.  

The use of elicitation patterns involves instantiating them for each particular sys-
tem. They should be applied after a preliminary version of the software requirements 
has been created. There needs to be an initial common vision of system functionality 
before developers and users can discuss whether and how specific usability mecha-
nisms affect the software.  

After this initial understanding of the software to be built, the developer can use 
the identification part of the pattern to appreciate the generics of the usability mecha-
nisms to be addressed. The discussion with the stakeholders starts by examining the 
pattern context section that describes the situations for which this mechanism is use-
ful. If the mechanism is not relevant for the application, its use will be rejected. Oth-
erwise, the respective usability functionality will be elicited and specified using the 
solution part of the pattern.  

In the case of our theatre system, our client considered that the Object Specific 
Undo, Command Aggregation and User Profile-related mechanisms were of no inter-
est. These application users do not get to be expert users because staff turnover is 
high. On this ground and because of the cost of incorporating the first two mecha-
nisms, stakeholders decided that they were not to be built into the system. Again be-
cause of the high turnover, very few, if any, users are on the system long enough for 
the User Profile functionality to be warranted or even feasible.  

The next step is to deal with the solution part of the pattern. Regarding the usability 
mechanism elicitation guide, it is important that developers read and understand the 
HCI rationales in the guide, that is, the HCI recommendations used to derive the re-
spective issues to be discussed with stakeholders. This will help developers to under-
stand why they need to deal with those issues. Not all questions in the patterns require 
the same level of involvement of all kinds of stakeholders. In fact, we can identify 
three groups of questions:   



68 N. Juristo 

Table 4. Usability mechanisms for which usability elicitation and specification guides have 
been developed 

Usability Feature Usability Mechanism Goal 
Feedback System Status To inform users about the internal 

status of the system 
 Interaction To inform users that the system 

has registered a user interaction 
 Warning To inform users of any action with 

important consequences 
 Long Action Feedback To inform users that processing an 

action will take some time 
Undo / Cancel Global Undo To undo system actions at several 

levels 
 Object-Specific Undo To undo several actions on an 

object 
 Abort Operation To cancel the execution of an  

action or the whole application 
 Go Back To go back to a particular state in a 

command execution sequence 
User Error Prevention Structured Text Entry To help prevent the user from 

making data input errors 
Wizard Step-by-Step Execution To help users to do tasks that  

require different steps  
User Profile Preferences To record each user's options for 

using system functions 
 Personal Object Space To record each user's options for 

using the system interface 
 Favourites To record certain places of interest 

for the user 
Help Multilevel Help To provide different help levels for 

different users 

Command Aggregation Command Aggregation 
To express actions to be taken 
through commands built from     
smaller parts 

 

1) Questions that the user/client can answer on his or her own (Which 
statuses are relevant in a particular application?);  

2) Questions that the user/client can answer following the recommendations 
of a GUI expert (Which is the best place to locate the feedback informa-
tion for each situation?- the GUI expert is able to provide guidance for 
displaying this kind of information, whereas the user will choose one of 
the options);  

3) Questions that the developer must answer but on which the user should 
give his opinion (Does the user want the system to provide notification if 
there are not enough resources to execute the ongoing commands? If so, 



 Impact of Usability on Software Requirements and Design 69 

which resources? – the developer must provide information about the in-
ternal resources needed to perform the different tasks, and the user will 
decide about which ones he or she wants to be informed.    

4) Why it is applicable to this system and the specific functionalities that it 
affects. 

The requirements related to the affected functionalities and/or possible new re-
quirements that emerge from the usability issues discussed. In the case of the ticket 
system, no new requirements had to be added for the system status usability mecha-
nism. The elicited usability information can be specified following the pattern specifi-
cation guide. This guide is a prompt for the developer to modify each requirement 
affected by the incorporation of each mechanism. Figure 4 shows a fragment of a 
requirement modified to include all the usability mechanisms that affect it. The parts 
added as a result of using the respective usability elicitation patterns are highlighted in 
bold face and italics. 

Modifying a requirement to include certain usability mechanisms involves adding 
the details describing how to apply these mechanisms to this functionality. As of this 
point, the remaining development phases are undertaken as always, and the new us-
ability functionality is integrated into the development process. This prevents the 
rework that the alternative of incorporating usability features at later development 
stages would entail. 

6   Evaluation 

We have analyzed the potential benefits of the usability elicitation patterns at different 
levels. We have been working with SE Master students who have developed software 
systems to which they added the functional usability features. We worked with five 
groups of three students. Each group was randomly allocated a different software 
requirement specification (SRS) document in IEEE-830 format corresponding to a 
real application. 

Each of the three students in the group was asked to add the functionality derived 
from the functional usability features to the original SRS independently and to build 
the respective software system. The procedure was as follows.  

We gave one of the students the usability elicitation patterns discussed in this chap-
ter. This student used the pattern content to elicit the usability functionality as ex-
plained in the last section.  

Another student was given reduced patterns. This short pattern is just a compilation 
of information from the HCI literature about the usability mechanisms. We have not 
elaborated this information from a development perspective; i.e. the reduced patterns 
do not include the “Issues to be discussed with stakeholders” column in Table 5. The 
idea behind using the reduced patterns was to confirm whether our processing of the 
HCI information resulting in the formulation of specific questions was useful for 
eliciting the functionality related to the mechanisms or whether developers are able to 
extract such details just from the HCI literature.  

Finally, the third student was given just the definitions of the usability features ac-
cording to the usability heuristics found in the HCI literature and was encouraged to 
take information from other sources to expand this description.  



70 N. Juristo 

 
Requirement 3.1.9. Ticket Booking 
 
A booking can be created, but not modified. If you want to modify a book-
ing, it will have to be cancelled (as specified in requirement 3.1.10) and an-
other one created. Cancel implies deleting the booking. 
 
The system will display a succession of windows for creating a booking. 
These windows contain the information described below and three options: 
back, next and cancel booking (Abort Operation, Go Back): 
• First, a screen will be displayed listing what theatres there are for the 

user to choose from (Structured Text Entry). 
• Then the system will display the show times at that theatre for the 

user to choose from (Structured Text Entry). 
• Next the system displays a seating plan showing the seats booked 

and/or sold for the session in question. While this image is being 
loaded, a non-obtrusive window (which the user can minimize) and 
an indicator will be displayed to inform the user that an image is be-
ing loaded and how many seconds it will take to finish (Long Action 
Feedback). Additionally, the user will be given the chance to cancel 
the operation, and the system will again display the selected theatre 
show times (Abort Operation). 

• The user will mark the seats he or she would like to book on this im-
age (Structured Text Entry). 

• Once the user has selected the seats he or she would like to book, 
another window will be displayed containing all the information 
about the selected seats and asking the user to confirm or cancel the 
operation. This window will warn the user that once he or she has 
confirmed the booking, it cannot be modified (Warning). 

• If the user confirms the operation the system will mark the seats as re-
served and they will be allocated a unique booking code. If the user 
cancels, the system will go back to the first window listing what thea-
tres there are (Abort Operation). 

• At the end of the booking process, the system will display a window 
reporting whether or not the operation was a success or failure. This 
information will be displayed obtrusively in a dialogue box (System 
Status Feedback). The possible causes of the operation failing are: 
the seats had already been booked or there was a problem with the 
database connection. 

Fig. 4. Fragment of a requirement modified with usability functionality 

Students of each group were randomly allocated the usability information they 
were to use (completed patterns, reduced patterns, and no patterns) to prevent student 
characteristics from possibly biasing the final result.  

Final system usability was analyzed differently to determine how useful the elicita-
tion patterns were for building more usable software. We ran what the HCI literature 



 Impact of Usability on Software Requirements and Design 71 

defines as usability evaluations carried out by users and heuristic evaluations done by 
usability experts. 

The usability evaluations conducted by users are based on usability tests in which 
the users state their opinion about the system. Before doing the tests, users need to 
carry out a number of standard tasks, called a scenario, to get acquainted with the 
software.  

We worked with three representative users for each system with whom our clients 
put us into touch. Each user evaluated the three versions of each application (one 
developed with full patterns, one with reduced patterns and one with no patterns). 
This way the users could appreciate any differences between versions, although they 
did not know which usability information had been used to develop which version. 
The users evaluated these versions in a different order to prevent scenario learning 
from possibly having a negative effect on the same version of the application.  

All three representative users for each application were assembled in the same 
room. Each user executed the respective scenario for the first version of the applica-
tion and completed the usability test. Users then enacted the same process for the 
second version of the application to be evaluated, and, finally, did the same thing for 
the third version.  

The results of the evaluation are deeply discussed in [23]. Summarizing, the usabil-
ity value for the systems developed using the full patterns was statistically greater 
than the score achieved using the reduced patterns, and both were greater than the 
usability value attained without any pattern. Therefore, we were able to confirm that 
the users perceived the usability of the systems developed with the full usability elici-
tation patterns to be higher.  

With the aim of identifying the reasons that led users to assess the usability of the 
different types of applications differently, we had an expert in HCI run a heuristic 
evaluation.  

A paid independent HCI expert ran the usability evaluation of the applications de-
veloped by our MSc students. The expert analyzed the applications focusing on how 
these systems provided the usability features listed in Table 1.  

Again in [23] can be found the details of this evaluation. In the case of feedback, 
for example, the developers that used the respective elicitation patterns included, on 
average, 94% of the functionalities associated with this mechanism. Developers that 
used the reduced patterns incorporated 47% of the respective functionalities. Finally, 
developers that used no pattern included only 25%. The expert obtained these data 
working to a blind evaluation protocol, that is, the expert was not aware of the usabil-
ity information used as input for each version of the applications.  

We got similar results for each usability feature. All the usability features were 
built into the systems developed using the full patterns better than they were into 
systems developed using the reduced patterns, and both provided more usability de-
tails than systems developed without patterns (with feature definitions only). This 
explains why users perceived differences in the usability of the systems.  

These findings give us some confidence in the soundness of the usability elicitation 
patterns as a knowledge repository that is useful in the process of asking the right 
questions and capturing precise usability requirements for developing software with-
out an HCI expert on the development team. 



72 N. Juristo 

7   Conclusions  

It is critically important to elicit requirements early enough in the development proc-
ess, especially such requirements as have a big impact on software functionality. Our 
work takes a step in this direction, suggesting that usability features with particular 
functional implications should be dealt with at the requirements stage. This is not a 
straightforward task as usability features are more difficult to specify than they may 
appear: a lot of details need to be explicitly discussed among stakeholders, and often 
neither software practitioners nor users have the HCI expertise to do this.  

We propose an alternative solution when HCI experts are not available or the likely 
communication problems between development and HCI teams are not cost justified. 
We have developed specific guidelines that lead software practitioners through the 
elicitation and specification process. This approach supports face-to-face communica-
tion among the different stakeholders during requirements elicitation to cut down 
ambiguous and implicit usability details as early as possible. As we have shown, these 
guidelines help developers to determine whether and how a usability feature applies 
to a particular system, leading to benefits for the usability of the final system. The use 
of these patterns leads to an extra workload during development because more time 
and effort is required to answer questions, modify requirements, etc. On the other 
hand, they save effort by directing developers to proven usability solutions, reducing 
thinking time and rework. 

 Evidently, the use of usability patterns and any other artifact for improving soft-
ware system usability calls for a lot of user involvement throughout the development 
process. This is a premise in the usability literature that is also necessary in this case. 
If this condition cannot be satisfied, the final system is unlikely to be usable. In our 
opinion, therefore, a trade-off has to be made at the beginning of the development 
between user availability, time and cost restrictions, on the one hand, and usability 
results, on the other. 

Finally, note that the functional usability features addressed here are not sufficient 
to make software usable. As we point out in the paper, the usability literature contains 
a host of recommendations on how to do this, and we have focused on the ones with 
the biggest impact on functionality. 

References 

1. Seffah, A., Metzker, E.: The Obstacles and Myths of Usability and Software Engineering. 
Communications of the ACM 47(12), 71–76 (2004) 

2. Bias, R.G., Mayhew, D.J.: Cost-Justifying Usability. An Update for the Internet Age. El-
sevier, Amsterdam (2005) 

3. IBM. Cost Justifying Ease of Use (2005), http://www-3.ibm.com/ibm/easy/ 
eou_ext.nsf/Publish/23 

4. Thibodeau, P.: Users Begin to Demand Software Usability Tests. ComputerWorld (2002), 
http://www.computerworld.com/softwaretopics/software/story/ 
0,10801,76154,00.html 

5. Trenner, L., Bawa, J.: The Politics of Usability. Springer, London (1998) 
 
 



 Impact of Usability on Software Requirements and Design 73 

6. Battey, J.: IBM’s redesign results in a kinder, simpler web site (1999),  
http://www.infoworld.com/cgi-bin/displayStat.pl?/pageone/ 
opinions/hotsites/hotextr990419.htm 

7. Griffith, J.: Online transactions rise after bank redesigns for usability. The Business Jour-
nal (2002), http://www.bizjournals.com/twincities/stories/2002/ 
12/09/focus3.html 

8. Donahue, G.M.: Usability and the Bottom Line. IEEE Software 16(1), 31–37 (2001) 
9. Black, J.: Usability is next to profitability. BusinessWeek (2002), 

http://www.businessweek.com/technology/content/dec2002/tc200
2124_2181.htm 

10. Holzinger, A.: Usability Engineering Methods for Software Developers. Communications 
of the ACM 48(1), 71–74 (2005) 

11. Milewski, A.E.: Software Engineers and HCI Practitioners Learning to Work Together: A 
Preliminary Look at Expectations. In: 17th Conference on Software Engineering Education 
and Training, pp. 45–49. IEEE Computer Society, Washington (2004) 

12. Barbacci, M., Ellison, R., Lattanze, A., Stafford, J.A., Weinstock, C.B.: Quality Attribute 
Workshop, 3rd edn. CMU/SEI-2003-TR-016, Software Engineering Institute, CMU (2003) 

13. IEEE Std 1061: Standard for Software Quality Metrics Methodology (1998)  
14. ISO/IEC 9126: Information Technology - Software quality characteristics and metrics 

(1991)  
15. Boehm, B., et al.: Characteristics of Software Quality. North Holland, New York (1978) 
16. Nielsen, J.: Usability Engineering. AP Professional, Boston (1993) 
17. ISO 9241-11, 98: Ergonomic Requirements for Office work with Visual Display Termi-

nals. Part 11: Guidance on Usability (1998) 
18. ISO/IEC ISO14598-1, 99: Software Product Evaluation: General Overview (1999) 
19. Mayhew, D.J.: The Usability Engineering Lifecycle. Morgan Kaufmann, San Francisco 

(1999) 
20. ISO 18529, 00: Human-Centered Lifecyle Process Descriptions (2000) 
21. Ferre, X., Juristo, N., Moreno, A.: Integration of HCI Practices into Software Engineering 

Development Processes: Pending Issues. In: Ghaoui, C. (ed.) Encyclopedia of Human-
Computer Interaction, pp. 422–428. Idea Group Inc. (2006) 

22. Tidwell, J.: Designing Interfaces. Patterns for Effective Interaction Design. O’Reilliy, 
USA (2005) 

23. Juristo, N., Moreno, A., Sánchez, M.: Guidelines for Eliciting Usability Functionalities. 
IEEE Transactions on SE (2007) 

24. Juristo, N., Moreno, A., Sánchez, M.: Analysing the impact of usability on software de-
sign. Journal of System and Software 80(9) (September 2007) 

25. Guide to the Software Engineering Body of Knowledge (2004), 
http://www.swebok.org 

26. Kovitz, B.: Ambiguity and What to Do about It. In: IEEE Joint International Conference 
on Requirements Engineering (2002) 

27. Benson, C., Elman, A., Nickell, S., Robertson, C.: GNOME Human Interface Guidelines, 
http://developer.gnome.org/projects/gup/hig/1.0/index.html 

28. Chirstel, M.G., Kang, K.C.: Issues in Requirements Elicitation. Technical Report 
CMU/SEI-92-TR-012, Software Engineering Institute, CMU (1992) 

29. Ebert, C., Man, J.D.: Requirements Uncertainty: Influencing Factors and Concrete Im-
provements. In: International Conference on Software Engineering, pp. 553–560 (2005) 

30. Lauesen, S.: Communication Gaps in a Tender Process. Requirements Engineering 10(4), 
247–261 (2005) 



74 N. Juristo 

31. ISO Std 13407: Human-Centred Design Processes for Interactive Systems (1999)  
32. Brighton. Usability Pattern Collection (2003), 

http://www.cmis.brighton.ac.uk/research/patterns/ 
33. Welie, M.: The Amsterdam Collection of Patterns in User Interface Design, 

http://www.welie.com 
34. Tidwell, T.: The Case for HCI Design Patterns, 

http://www.mit.edu/jdidwell/common_ground_onefile.htm 
35. Coram, T., Lee, L.: Experiences: A Pattern Language for User Interface Design (1996), 

http://www.maplefish.com/todd/papers/experiences/ 
Experiences.html 

36. Laasko, S.A.: User Interface Designing Patterns (2003), http://www.cs.helsinki. 
fi/u/salaakso/patterns/index_tree.html 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Impact of Usability on Software Requirements and Design 75 

ID
EN

TI
FI

CA
TI

ON
 

Na
me

:   
Sy

ste
m 

Sta
tus

 Fe
ed

ba
ck

 
Fa

mi
ly:

  F
ee

db
ac

k 
Al

ias
:  

Sta
tus

 D
isp

lay
  

    
    

    
M

od
ell

ing
 Fe

ed
ba

ck
 A

rea
   

PR
OB

LE
M

 
W

hic
h i

nfo
rm

ati
on

 ne
ed

s t
o b

e e
lic

ite
d a

nd
 sp

eci
fie

d f
or 

the
 ap

pli
cat

ion
 to

 pr
ov

ide
 us

ers
 w

ith
 st

atu
s i

nfo
rm

ati
on

. 
CO

NT
EX

T 
W

he
n c

ha
ng

es 
tha

t a
re 

im
po

rta
nt 

to 
the

 us
er 

oc
cu

r o
r w

he
n f

ail
ure

s t
ha

t a
re 

im
po

rta
nt 

to 
the

 us
er 

oc
cu

r, 
for

 ex
am

ple
: d

uri
ng

 ap
pli

ca
tio

n e
xe

cu
tio

n; 
be

ca
us

e t
he

re 
are

 no
t 

en
ou

gh
 sy

ste
m 

res
ou

rce
s; 

be
ca

us
e e

xte
rna

l re
so

urc
es 

are
 no

t w
ork

ing
 pr

op
erl

y. 
Ex

am
ple

s o
f s

tat
us

 fe
ed

ba
ck

 ca
n b

e f
ou

nd
 on

 st
atu

s b
ars

 in
 w

ind
ow

s a
pp

lic
ati

on
s; 

tra
in,

 bu
s o

r a
irl

ine
 sc

he
du

le 
sy

ste
ms

; V
CR

 di
sp

lay
s; 

etc
. 

SO
LU

TI
ON

 
Us

ab
ilit

y M
ech

an
ism

 E
lic

ita
tio

n G
uid

e: 
 sre dlo he ka ts htiw ssuc sid ot  eu ss I

 e lan oitaR ICH
1. 

HC
I 

ex
pe

rts
 a

rgu
e 

tha
t t

he
 u

ser
 w

an
ts 

to 
be

 
no

tif
ied

 w
he

n a
 ch

an
ge

 of
 st

atu
s o

cc
urs

. 
 

Ch
an

ge
s i

n t
he

 sy
ste

m 
sta

tus
 ca

n b
e t

rig
ge

red
 by

 us
er-

req
ue

ste
d o

r o
the

r a
cti

on
s o

r w
he

n t
he

re 
is 

a p
rob

lem
 w

ith
 an

 
ext

ern
al 

res
ou

rce
 or

 an
oth

er 
sys

tem
 re

sou
rce

. 
1.1

 D
oe

s t
he

 us
er 

ne
ed

 th
e s

yst
em

 to
 pr

ov
ide

 no
tifi

ca
tio

n o
f sy

ste
m 

sta
tus

es?
 If 

so,
 w

hic
h o

ne
s? 

1.2
 D

oe
s t

he
 us

er 
ne

ed
 th

e s
yst

em
 to

 pr
ov

ide
 no

tifi
ca

tio
n o

f s
yst

em
 fa

ilu
res

 (th
ey 

rep
res

en
t a

ny
 op

era
tio

n t
ha

t th
e s

yst
em

 is
 

un
ab

le 
to 

co
mp

let
e, 

bu
t th

ey 
are

 no
t fa

ilu
res

 ca
use

d b
y i

nc
orr

ect
 en

tri
es 

by
 th

e u
ser

)? 
If s

o, 
wh

ich
 on

es?
 

1.3
 D

oe
s t

he
 u

ser
 w

an
t t

he
 sy

ste
m 

to 
pro

vid
e n

oti
fic

ati
on

 if
 th

ere
 a

re 
no

t e
no

ug
h 

res
ou

rce
s t

o 
exe

cu
te 

the
 o

ng
oin

g 
co

mm
an

ds?
 If 

so,
 w

hic
h r

eso
urc

es?
 

1.4
 D

oe
s t

he
 us

er 
wa

nt 
the

 sy
ste

m 
to 

pro
vid

e n
oti

fic
ati

on
 if 

the
re 

is 
a p

rob
lem

 w
ith

 an
 ex

ter
na

l r
eso

ur
ce 

or 
de

vic
e w

ith
 

wh
ich

 th
e s

yst
em

 in
ter

ac
ts?

 If 
so,

 w
hic

h o
ne

s? 

 

A
pp

en
di

x 
A

. S
ys

te
m

 S
ta

tu
s 

F
ee

db
ac

k 
U

sa
bi

li
ty

 E
li

ci
ta

tio
n 

P
at

te
rn

 



76 N. Juristo 

SO
LU

TI
O

N 
(C

on
t.)

 
Us

ab
ili

ty
 M

ec
ha

ni
sm

 E
lic

ita
tio

n 
G

ui
de

 (C
on

t.)
: 

H
CI

 R
at

io
na

le 
(C

on
t.)

 
Is

su
e t

o d
isc

us
s w

ith
 st

ak
eh

ol
de

rs
 (C

on
t.)

 
2. 

W
ell

-d
es

ig
ne

d 
di

sp
lay

s 
of

 i
nf

or
ma

tio
n 

to
 b

e 
sh

ow
n 

sh
ou

ld
 b

e 
ch

os
en

. T
he

y 
ne

ed
 to

 b
e 

un
ob

tru
siv

e 
if 

th
e 

in
fo

rm
ati

on
 i

s 
no

t 
cr

iti
ca

lly
 i

mp
or

tan
t, 

bu
t 

ob
tru

siv
e 

if 
so

m
eth

in
g 

cr
iti

ca
l 

ha
pp

en
s. 

Di
sp

lay
s 

sh
ou

ld
 b

e 
ar

ra
ng

ed
 to

 e
m

ph
as

ize
 th

e 
im

po
rta

nt
 th

in
gs

, 
de

-e
m

ph
as

ize
 th

e t
riv

ial
, n

ot
 h

id
e o

r o
bs

cu
re

 a
ny

th
in

g, 
an

d 
pr

ev
en

t 
on

e 
pi

ec
e 

of
 i

nf
or

ma
tio

n 
fro

m
 b

ein
g 

co
nf

us
ed

 w
ith

 a
no

th
er

. 
Th

ey
 s

ho
ul

d 
ne

ve
r 

be
 r

e-
ar

ra
ng

ed
, 

un
les

s 
us

er
s 

do
 s

o 
th

em
se

lv
es

. 
At

ten
tio

n 
sh

ou
ld

 b
e 

dr
aw

n 
to

 im
po

rta
nt

 in
fo

rm
ati

on
 w

ith
 b

rig
ht

 
co

lo
ur

s, 
bl

in
ki

ng
 o

r m
ot

io
n, 

so
un

d 
or

 a
ll 

th
re

e 
– 

bu
t a

 
tec

hn
iq

ue
 a

pp
ro

pr
iat

e 
to

 th
e 

ac
tu

al 
im

po
rta

nc
e 

of
 th

e 
sit

ua
tio

n t
o t

he
 us

er
 sh

ou
ld

 be
 us

ed
. 

2.1
. W

hi
ch

 in
fo

rm
at

io
n 

wi
ll 

be
 sh

ow
n t

o t
he

 us
er

? 
2.2

. 
W

hi
ch

 o
f 

th
is 

in
fo

rm
at

io
n 

wi
ll 

ha
ve

 t
o 

be
 d

isp
la

ye
d 

ob
tru

siv
ely

 b
ec

au
se

 i
t 

is 
re

la
ted

 t
o 

a 
cr

iti
ca

l 
sit

ua
tio

n?
 

Re
pr

es
en

ted
 b

y a
n 

in
di

ca
to

r i
n 

th
e m

ai
n 

di
sp

la
y a

re
a 

th
at

 p
re

ve
nt

s t
he

 u
se

r f
ro

m 
co

nt
in

ui
ng

 u
nt

il 
th

e o
bt

ru
siv

e i
nf

or
ma

tio
n 

is 
clo

se
d. 

2.3
. W

hi
ch

 o
f t

hi
s i

nf
or

ma
tio

n 
wi

ll 
ha

ve
 to

 b
e h

ig
hl

ig
ht

ed
 b

ec
au

se
 it

 is
 re

la
ted

 to
 a

n 
im

po
rta

nt
 b

ut
 n

on
-c

rit
ica

l s
itu

at
io

n?
 

Us
in

g d
iff

er
en

t c
ol

ou
rs

 an
d s

ou
nd

 or
 m

ot
io

n, 
siz

es
, e

tc.
 

2.4
. W

hi
ch

 of
 th

is 
in

fo
rm

at
io

n w
ill

 be
 si

mp
ly 

di
sp

la
ye

d i
n t

he
 st

at
us

 ar
ea

? F
or

 ex
am

pl
e, 

pr
ov

id
in

g s
om

e i
nd

ica
to

r. 
No

tic
e 

th
at 

fo
r 

ea
ch

 p
iec

e 
of

 s
tat

us
 in

fo
rm

ati
on

 to
 b

e 
di

sp
lay

ed
 a

cc
or

di
ng

 to
 it

s 
im

po
rta

nc
e, 

th
e 

ra
ng

e 
wi

ll 
be

 f
ro

m
 

ob
tru

siv
e 

in
di

ca
to

rs 
(e

.g.
, a

 w
in

do
w 

in
 th

e 
m

ain
 d

isp
lay

 a
re

a 
wh

ich
 p

re
ve

nt
s 

th
e 

us
er

 fr
om

 c
on

tin
ui

ng
 u

nt
il 

it 
ha

s 
be

en
 

clo
se

d)
, t

hr
ou

gh
 h

ig
hl

ig
ht

in
g 

(w
ith

 d
iff

er
en

t c
ol

or
s, 

so
un

ds
, m

ot
io

n 
or

 s
ize

s) 
to

 th
e 

lea
st 

str
ik

in
g 

in
di

ca
to

rs 
(li

ke
 a

 s
tat

us
-

id
en

tif
yi

ng
 ic

on
 p

lac
ed

 in
 th

e s
ys

tem
 st

atu
s a

re
a)

. N
ot

e t
ha

t d
ur

in
g 

th
e r

eq
ui

re
m

en
ts 

eli
cit

ati
on

 p
ro

ce
ss

, t
he

 d
isc

us
sio

n 
of

 th
e 

ex
ac

t r
es

po
ns

e 
ca

n 
be

 le
ft 

un
til

 in
ter

fa
ce

 d
es

ig
n 

tim
e, 

bu
t t

he
 im

po
rta

nc
e 

of
 th

e 
di

ffe
re

nt
 s

itu
ati

on
s 

ab
ou

t w
hi

ch
 s

tat
us

 
in

fo
rm

ati
on

 is
 to

 be
 pr

ov
id

ed
 an

d t
he

re
fo

re
 w

hi
ch

 ty
pe

 of
 in

di
ca

to
r i

s t
o b

e p
ro

vi
de

d d
oe

s n
ee

d t
o b

e d
isc

us
se

d a
t t

hi
s s

tag
e. 

 

3. 
As

 re
ga

rd
s t

he
 lo

ca
tio

n 
of

 th
e f

ee
db

ac
k 

in
di

ca
to

r, 
HC

I 
lit

er
atu

re
 m

en
tio

ns
 t

ha
t 

us
er

s 
wa

nt
 o

ne
 p

lac
e 

wh
er

e 
th

ey
 k

no
w 

th
ey

 c
an

 e
as

ily
 f

in
d 

th
is 

sta
tu

s 
in

fo
rm

ati
on

. O
n 

th
e o

th
er

 h
an

d, 
as

id
e f

ro
m

 th
e s

po
t o

n 
th

e 
sc

re
en

 w
he

re
 u

se
rs 

wo
rk

, u
se

rs 
ar

e 
m

os
t l

ik
ely

 to
 

se
e 

fe
ed

ba
ck

 in
 th

e 
ce

nt
re

 o
r a

t t
he

 to
p 

of
 th

e 
sc

re
en

, 
an

d 
ar

e l
ea

st 
lik

ely
 to

 n
ot

ice
 it

 at
 th

e b
ot

to
m

 ed
ge

. T
he

 
sta

nd
ar

d 
pr

ac
tic

e o
f p

ut
tin

g 
in

fo
rm

ati
on

 ab
ou

t c
ha

ng
es

 
in

 st
ate

 o
n 

a 
sta

tu
s l

in
e 

at 
th

e 
bo

tto
m

 o
f a

 w
in

do
w 

is 
pa

rti
cu

lar
ly

 u
nf

or
tu

na
te,

 e
sp

ec
ial

ly
 if

 th
e 

sty
le 

gu
id

e 

3.1
. D

o 
pe

op
le 

fro
m 

di
ffe

re
nt

 cu
ltu

re
s u

se
 th

e s
ys

tem
? 

If 
so

, t
he

 sy
ste

m 
ne

ed
s t

o 
pr

es
en

t t
he

 sy
ste

m 
sta

tu
s i

nf
or

ma
tio

n 
in

 
th

e p
ro

pe
r w

ay
 (a

cc
or

di
ng

 to
 th

e u
se

r’s
 cu

ltu
re

). 
So

, a
sk

 ab
ou

t t
he

 us
er

’s 
re

ad
in

g c
ul

tu
re

 an
d c

us
to

ms
. 

3.2
. W

hi
ch

 is
 th

e b
es

t p
la

ce
 to

 lo
ca

te 
th

e f
ee

db
ac

k i
nf

or
ma

tio
n 

fo
r e

ac
h s

itu
at

io
n?

 

 
 

A
pp

en
di

x 
A

. (
C

on
ti

nu
ed

) 



 Impact of Usability on Software Requirements and Design 77 

 
A

pp
en

di
x 

A
. (

C
on

ti
nu

ed
) 

ca
lls

 fo
r l

ig
ht

we
ig

ht
 ty

pe
 on

 a 
gr

ey
 ba

ck
gr

ou
nd

.  
Us

ab
ili

ty
 M

ec
ha

ni
sm

 S
pe

cif
ica

tio
n 

G
ui

de
:  

Th
e f

ol
lo

wi
ng

 in
fo

rm
ati

on
 w

ill
 ne

ed
 to

 be
 in

sta
nt

iat
ed

 in
 th

e r
eq

ui
re

m
en

ts 
do

cu
m

en
t. 

- 
Th

e s
ys

tem
 st

atu
se

s t
ha

t s
ha

ll 
be

 re
po

rte
d a

re
 X

, X
I, 

XI
I. 

Th
e i

nf
or

m
ati

on
 to

 be
 sh

ow
n i

n t
he

 st
atu

s a
re

a i
s..

... 
Th

e h
ig

hl
ig

hte
d i

nf
or

m
ati

on
 is

 …
 T

he
 ob

tru
siv

e i
nf

or
m

ati
on

 is
…

. 
- 

Th
e s

of
tw

ar
e s

ys
tem

 w
ill

 ne
ed

 to
 pr

ov
id

e f
ee

db
ac

k a
bo

ut
 fa

ilu
re

s I
, I

I, 
III

 oc
cu

rri
ng

 in
 ta

sk
s A

, B
, C

, r
es

pe
cti

ve
ly

. T
he

 in
fo

rm
ati

on
 re

lat
ed

 to
 fa

ilu
re

s I
, I

I, 
etc

…
. m

us
t b

e s
ho

wn
 in

 
sta

tu
s a

re
a…

. T
he

 in
fo

rm
ati

on
 re

lat
ed

 to
 fa

ilu
re

s I
II,

 IV
, e

tc.
, m

us
t b

e s
ho

wn
 in

 hi
gh

lig
ht

ed
 fo

rm
at.

 T
he

 in
fo

rm
ati

on
 re

lat
ed

 to
 fa

ilu
re

s V
, V

I, 
etc

 , m
us

t b
e s

ho
wn

 in
 ob

tru
siv

e 
fo

rm
at.

  
- 

Th
e s

of
tw

ar
e s

ys
tem

 pr
ov

id
es

 fe
ed

ba
ck

 ab
ou

t r
es

ou
rc

es
 D

, E
, F

 w
he

n f
ail

ur
es

 IV
, I

 an
d V

I, 
re

sp
ec

tiv
ely

, o
cc

ur
. T

he
 in

fo
rm

ati
on

 to
 be

 pr
es

en
ted

 ab
ou

t t
ho

se
 re

so
ur

ce
s i

s O
, P

, Q
.  

Th
e i

nf
or

m
ati

on
 re

lat
ed

 to
 fa

ilu
re

s I
, I

I, 
etc

…
.m

us
t b

e s
ho

wn
 in

 th
e s

tat
us

 ar
ea

....
. T

he
 in

fo
rm

ati
on

 re
lat

ed
 to

 fa
ilu

re
s I

II,
 IV

, e
tc.

, m
us

t b
e s

ho
wn

 in
 hi

gh
lig

ht
ed

 fo
rm

at.
 T

he
 

in
fo

rm
ati

on
 re

lat
ed

 to
 fa

ilu
re

s V
, V

I, 
etc

., m
us

t b
e s

ho
wn

 in
 ob

tru
siv

e f
or

m
at.

 
- 

Th
e s

of
tw

ar
e s

ys
tem

 w
ill

 ne
ed

 to
 pr

ov
id

e f
ee

db
ac

k a
bo

ut
 th

e e
xt

ern
al 

re
so

ur
ce

s G
, J

, K
, w

he
n f

ail
ur

es
 V

II,
 V

III
 an

d I
X,

 re
sp

ec
tiv

ely
, o

cc
ur

. T
he

 in
fo

rm
ati

on
 to

 be
 pr

es
en

ted
 ab

ou
t 

th
os

e r
es

ou
rc

es
 is

 R
, S

, T
. T

he
 in

fo
rm

ati
on

 re
lat

ed
 to

 fa
ilu

re
s I

, I
I, 

etc
…

.m
us

t b
e s

ho
wn

 in
 th

e s
tat

us
 ar

ea
....

. T
he

 in
fo

rm
ati

on
 re

lat
ed

 to
 fa

ilu
re

s I
II,

 IV
, e

tc.
, m

us
t b

e s
ho

wn
 in

 
hi

gh
lig

ht
ed

 fo
rm

at.
 T

he
 in

fo
rm

ati
on

 re
lat

ed
 to

 fa
ilu

re
s V

, V
I, 

etc
., m

us
t b

e s
ho

wn
 in

 ob
tru

siv
e f

or
m

at.
 

RE
LA

TE
D 

PA
TT

ER
NS

: D
oe

s n
ot

 ap
pl

y 



Service-Oriented Architectures Testing: A Survey

Gerardo Canfora and Massimiliano Di Penta

RCOST - Research Centre on Software Technology
University of Sannio

Palazzo ex Poste, Via Traiano 82100 Benevento, Italy
{canfora,dipenta}@unisannio.it

Abstract. Testing of Service Oriented Architectures (SOA) plays a critical role
in ensuring a successful deployment in any enterprise. SOA testing must span
several levels, from individual services to inter-enterprise federations of systems,
and must cover functional and non-functional aspects.

SOA unique combination of features, such as run-time discovery of services,
ultra-late binding, QoS aware composition, and SLA automated negotiation, chal-
lenge many existing testing techniques. As an example, run-time discovery and
ultra-late binding entail that the actual configuration of a system is known only
during the execution, and this makes many existing integration testing techniques
inadequate. Similarly, QoS aware composition and SLA automated negotiation
means that a service may deliver with different performances in different con-
texts, thus making most existing performance testing techniques to fail.

Whilst SOA testing is a recent area of investigation, the literature presents
a number of approaches and techniques that either extend traditional testing or
develop novel ideas with the aim of addressing the specific problems of testing
service-centric systems. This chapter reports a survey of recent research achieve-
ments related to SOA testing. Challenges are analyzed from the viewpoints of
different stakeholders and solutions are presented for different levels of testing,
including unit, integration, and regression testing. The chapter covers both func-
tional and non-functional testing, and explores ways to improve the testability of
SOA.

1 Introduction

Service Oriented Architectures (SOA) are rapidly changing the landscape of today and
tomorrow software engineering. SOA allows for flexible and highly dynamic systems
through service discovery and composition [1,2,3], ultra-late binding, Service Level
Agreement (SLA) management and automated negotiation [4], and autonomic system
reconfiguration [5,6,7]. More important, SOA is radically changing the development
perspective, promoting the separation of the ownership of software (software as a prod-
uct) from its use (software as a service) [8].

The increasing adoption of SOA for mission critical systems calls for effective ap-
proaches to ensure high reliability. Different strategies can be pursued to increase con-
fidence in SOA: one possibility is to realize fault tolerant SOA by redundancy. For
example, Walkerdine et al. [9] suggest that each service invoked by a system could be
replaced by a container that invokes multiple, equivalent, services, and acts as a voter.

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 78–105, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



SOA Testing: A Survey 79

Another possibility is to continuously monitor a service-centric system during its
execution [5] and apply corrective actions when needed: whenever an exceptional event
is detected (e.g., a failure of a post condition or a violation of a Quality of Service—
QoS—constraint), a recovery action is triggered. For example, if a temperature service,
part of a whether forecasting system, is not available, an alternative one is located and
invoked.

Whilst monitoring is an effective tool to build self-healing and self-repairing service-
centric systems [10], it requires that adequate recovery actions be implemented for all
possible exceptional events. Thus, testing remains a key process to reduce at a minimum
the number of such exceptional events.

Several consolidated testing approaches, applied for years to traditional systems, ap-
ply to service-centric systems as well. Primarily, the idea that a combination of unit,
integration, system, and regression testing is needed to gain confidence that a system
will deliver the expected functionality. Nevertheless, the dynamic and adaptive nature
of SOA makes most of the existing testing techniques not directly applicable to test ser-
vices and service-centric systems. As an example, most traditional testing approaches
assume that one is always able to precisely identify the actual piece of code that is in-
voked at a given call-site. Or, as in the case of object-centric programming languages,
that all the possible (finite) bindings of a polymorphic component be known. These as-
sumptions may not be true anymore for SOA, which exhibits run-time discovery in an
open marketplace of services and ultra-late binding.

Examples of SOA unique features that add complexity to the testing burden include:

– systems based on services are intrinsically distributed, and this requires that QoS
be ensured for different deployment configurations;

– services in a system change independently from each other, and this has impacts on
regression testing;

– systems implement adaptive behaviors, either by replacing individual services or
adding new ones, and thus integration testing has to deal with changing configura-
tions;

– the limited trust service integrators and users have about the information service
providers use to advertise and describe the service makes it complex the task of
designing test cases;

– ownership over the system parts is shared among different stakeholders, and thus
system testing requires the coordination of these stakeholders.

The adoption of SOA, in addition to changing the architecture of a system, brings
changes in the process of building the system and using it, and this has effects on testing
too. Services are used, not owned: they are not physically integrated into the systems
that use them and run in a provider’s infrastructure. This has several implications for
testing: code is not available to system integrators; the evolution strategy of a service
(that is, of the software that sits behind the service) is not under the control of the system
owner; and, system managers cannot use capacity planning to prevent SLA failures.

This chapter overviews SOA testing, discussing issues and possible solutions for
different testing levels and perspectives, introducing ways to improve service testability,
and outlining open issues as an agenda for future research.



80 G. Canfora and M. Di Penta

The chapter is organized as follows. Section 2 identifies key challenges of SOA test-
ing, while Section 3 discusses testing needs, problems, and advantages from the per-
spectives of different stakeholders. Section 4 focuses on testing levels, namely unit,
integration, regression, and non-functional testing, identifying problems and review-
ing solutions in the literature. Section 5 discusses ways to increase testability in SOA.
Finally, Section 6 concludes the chapter, highlighting open issues and future research
directions.

2 Testing Challenges

When a new technology emerges and new software engineering approaches/processes
have to be developed for such technology, a typical question is whether it is possible to
reuse/adapt existing approaches, previously developed for other kinds of systems. In the
context of this chapter, the question is whether testing approaches and techniques devel-
oped for traditional monolithic systems, distributed systems, component-based systems,
and Web applications, can be reused or adapted to test service-centric systems. An-
swering this question requires an analysis of the peculiarities that make service-centric
systems different from other systems as far as the testing process is concerned.

Key issues that limit the testability of service-centric systems include [11]:

– lack of observability of the service code and structure: for users and system inte-
grators services are just interfaces, and this prevents white-box testing approaches
that require knowledge of the structure of code and flow of data. When further
knowledge is needed for testing purpose—e.g., a description of the dependencies
between service operations, or a complete behavioral model of the service—either
the service provider should provide such information, or the tester has to infer it by
observing the service from the outside.

– dynamicity and adaptiveness: for traditional systems one is always able to deter-
mine the component invoked in a given call-site, or, at least, the set of possible
targets, as it happens in (OO) systems in presence of polymorphism [12]. This is
not true for SOA, where a system can be described by means of a workflow of ab-
stract services that are automatically bound to concrete services retrieved from one
or more registries during the execution of a workflow instance.

– lack of control: while components/libraries are physically integrated in a software
system, this is not the case for services, which run on an independent infrastruc-
ture and evolve under the sole control of the provider. The combination of these
two characteristics implies that system integrators cannot decide the strategy to
migrate to a new version of a service and, consequently, to regression testing the
system [13,14]. In other words, a service may evolve, however this is not notified
to integrators/users accessing it. As a consequence, systems making use of the ser-
vice can unexpectedly change their behavior or, although the functional behavior is
preserved, might not meet SLAs anymore.

– lack of trust: a service might provide descriptions of its characteristics, for instance
a behavioral model, information about the QoS levels ensured, etc. Such informa-
tion can, in theory, be used by integrators to discover the service, to comprehend
its characteristics, and to select it. However, it is not possible to guarantee that



SOA Testing: A Survey 81

any piece of information a service provides corresponds to the truth. In general, a
service provider may lie, providing incorrect/inaccurate description of a service’s
functional and non-functional behavior, thus influencing decisions integrators may
take on the use of the service.

– cost of testing: invoking actual services on the provider’s machine has effects on
the cost of testing, too, if services are charged on a per-use basis. Also, service
providers could experience denial-of-service phenomena in case of massive testing,
and repeated invocation of a service for testing may not be applicable whenever the
service produces side effects, other than a response, as in the case of a hotel booking
service [11].

Any level of SOA testing needs to develop new strategies, or to adapt existing ones,
to deal with these issues. For example, SOA testing has similarities to commercial off-
the-shelf (COTS) testing. The provider can test a component only independently of the
applications in which it will be used, and the system integrator is not able to access the
source code to analyze and retest it. However, COTS are integrated into the user’s sys-
tem deployment infrastructure, while services live in a foreign infrastructure. Thus, the
QoS of services can vary over time more sensibly and unpredictably than COTS. This
QoS issue calls for specific testing to guarantee the SLAs stipulated with consumers.

3 Testing Perspectives

SOA introduces different needs and challenges for different stakeholders involved in
testing activities, i.e. developers, providers, integrators, certifiers, and end-users. Table 1
provides a summary of pros and cons stakeholders experience in different testing levels.

Service Developer. Aiming to release a highly reliable service, the service developer
tests the service to detect the maximum possible number of failures. The developer owns
the service implementation, thus s/he is able to perform white-box testing. Among the
other things, the developer also tries to assess the service’s non-functional properties
and its ability to properly handle exceptions. Although testing costs are limited in this
case (the developer does not have to pay when testing his own service), non-functional
testing is not realistic because it does not account for the provider and consumer in-
frastructure, and the network configuration or load. In general, test cases devised by the
developer may not reflect a real usage scenario.

Service Provider. The service provider tests the service to ensure it guarantees the
requirements stipulated in the SLA with the consumer. Testing costs are limited. How-
ever, the provider might not use white-box techniques, since s/he may be an organi-
zation/person different from who developed the service. Finally, non-functional testing
does not reflect the consumer infrastructure and network configuration or load and, once
again, test cases do not reflect the service real usage scenario.

Service Integrator. The service integrator tests to gain confidence that any service
to be bound to her own composition fits the functional and non-functional assumptions
made at design time. Runtime discovery and ultra-late binding can make this more chal-
lenging because the bound service is one of many possible, or even unknown, services.



82 G. Canfora and M. Di Penta

Table 1. Testing stakeholders: Needs and opportunities [11]. Roles/responsibilities are reported
in italic, advantages with a (+), issues with a(-).

Testing Testing Perspectives
levels Developer Provider Integrator Third–party End–User
Functional
testing

+White-box testing
possible

+Limited cost +Tests the service in
the context where it
is used

+Small resource use
for provider (one
certifier tests the
service instead of
many integrators)

Service-centric
application self-
testing to check
that it ensures
functionality at
runtime

+Limited cost -Needs service
specification to
generate test cases

+White-box testing
for the service com-
position

+(Possible) impar-
tial assessment

-Services have no
interface to allow
user testing

+Service specifi-
cation available to
generate test cases

-Black-box testing
only

-Black-box testing
for services

-Assesses only se-
lected services and
functionality on be-
half of someone else

-Non-representative
inputs

-Non-representative
inputs

-High cost -Non-representative
inputs
-High cost

Integration
testing

Can be service in-
tegrator on his/her
own

NA Must regression test
a composition af-
ter reconfiguration
or rebinding

NA NA

-Test service call
coupling challeng-
ing because of
dynamic binding

Regression
testing

Performs regression
testing after main-
taining/evolving a
service

+Limited cost (ser-
vice can be tested
off-line)

-Might be unaware
that the service s/he
is using changed

+Lower-bandwidth
usage than having
many integrators

Service-centric
application self-
testing to check that
it works properly
after evolution

+Limited cost (ser-
vice can be tested
off-line)

-Can be aware
that the service
has changed but
unaware of how it
changed

-High cost -Re-tests the service
during its lifetime
only on behalf of
integrators, not of
other stakeholders
-Nonrealistic re-
gression test suite

-Unaware of who
uses the service

Non-
functional
testing

Needed to provide
accurate non-
functional specifi-
cations to provider
and consumers

Necessary to check
the ability to meet
SLAs negotiated
with service con-
sumers

-SLA testing must
consider all possible
bindings

Assesses perfor-
mance on behalf of
someone else

Service-centric
application self-
testing to check
that it ensures
performance at
runtime

+Limited cost +Limited cost -High cost +Reduced resource
usage for provider
(one certifier tests
the service instead
of many integrators)

-Nonrealistic testing
environment

-The testing envi-
ronment might not
be realistic

-Results might
depend on network
configuration

-Nonrealistic testing
environment

Furthermore, the integrator has no control over the service in use, which is subject to
changes during its lifetime. Testing from this perspective requires service invocations
and results in costs for the integrator and wasted resources for the provider.

Third-Party Certifier. The service integrator can use a third-party certifier to assess
a service’s fault-proneness. From a provider perspective, this reduces the number of



SOA Testing: A Survey 83

stakeholders—and thus resources—involved in testing activities. To ensure fault toler-
ance, the certifier can test the service on behalf of someone else, from the same per-
spective of a service integrator. However, the certifier does not test a service within
any specific composition (as the integrator does), neither s/he performs testing from the
same network configuration as the service integrator.

End-User. The user has no clue about service testing. His only concern is that the
application s/he is using works while s/he is using it. For the user, SOA dynamicity
represents both a potential advantage—for example, better performance, additional fea-
tures, or reduced costs—and a potential threat. Making a service-centric system capa-
ble of self-retesting certainly helps reducing such a threat. Once again, however, testing
from this perspective entails costs and wastes resources. Imagine if a service-centric
application installed on a smart-phone and connected to the network through a wire-
less network suddenly starts a self-test by invoking several services, while the network
usage is charged based on the bandwidth usage.

4 Testing Levels

This section details problems and existing solutions for different levels of testing, namely
(i) unit testing of atomic services and service compositions, (ii) integration/interoperabi-
lity testing, (iii) regression testing, and (iv) testing of non-functional properties.

4.1 Unit Testing

Testing a single atomic services might, in principle, be considered equivalent to com-
ponent testing. As a matter of fact, there are similarities, but also differences:

– observability: unless when the service is tested by its developer, source code is
not available. This prevents the possibility of using white-box testing techniques
(e.g., code coverage based approaches). For stateful services, it would be useful to
have models—e.g., state machines—describing how the state evolves. Such models
could support, in addition to testing, service discovery [1,2], and composition [3].
Unfortunately, these models are rarely made available by service developers and
providers, due to the lack of proper skills to produce them, or simply to the lack
of time and resources. Nevertheless, approaches for a black-box reverse engineer-
ing of service specifications—for example inspired by likely invariant detection
approaches [15]—are being developed [16,17].

– test data generation: with respect to test data generation techniques developed so
far—see for instance search-based test data generation [18]—the lack of source
code observability makes test data generation harder. With the source code avail-
able, the generation heuristic is guided by paths covered when executing test cases
and by distances from meeting control-flow conditions [19]; in a black-box testing
scenario, test data generation can only be based on input types-ranges and output
values.

– complex input/output types: with respect to existing test data generation techniques,
most of which only handle simple input data generations, many real-world ser-
vices have complex inputs defined by means of XML schema. Test data generation



84 G. Canfora and M. Di Penta

should therefore be able to generate test data according to these XML schema.
Thus, operators of test data generation algorithms for service operations should be
able to produce forests of trees, corresponding to XML representations or opera-
tion parameter. To this aim genetic programming can be used, as it was done by Di
Penta et al. [20].

– input/output types not fully specified: to apply functional testing techniques, e.g., cat-
egory partition, it is necessary to know boundaries or admissible values of each input
datum. In principle, XML schema defining service operation input parameters can
provide such an information (e.g., defining ranges by means of xs:minInclusive and
xs:maxInclusive XML Schema Definition—XSD—tags, or defining occurrences by
means of the xs:maxoccurs) tag. However, in the practice, this is almost never done,
thus the tester has to specify ranges/admissible values manually.

– testing cost and side effects: as explained in Section 2, this is a crosscutting prob-
lem for all testing activities concerning services. Unit testing should either be de-
signed to limit the number of service invocations—making test suite minimization
issues fundamental—or services should provide a “testing mode” interface to allow
testers to invoke a service without being charged a fee, without occupying resources
allocated for the service production version, and above all without producing side
effects in the real world.

Bertolino et al. [21] propose an approach and a tool, named TAXI (Testing by Au-
tomatically generated XML Instances) [22], for the generation of test cases from XML
schema. Although not specifically designed for web services, this tool is well-suited
for performing service black-box testing. The tool partitions domains into sub-domains
and generates test cases using category-partition [23].

Bai et al. [24] proposes a framework to deal with the generation of test data for oper-
ations of both simple and composite services, and with the test of operation sequences.
The framework analyzes services WSDLs (Web Service Description Language) inter-
faces to produce test data. As known, service operation parameters can be simple XSD
types, aggregate types (e.g., arrays) or user defined types. For simple types the frame-
work foresees a database where, for each type and for each testing strategy a tester might
want to adopt, a facet defines default values, minimum and maximum length (e.g., for
strings), minimum and maximum values (e.g. numeric types), lists of admissible val-
ues (strings) etc. This information is used to generate test data for simple parameter
types, while for complex and user defined types the structure is recursively analyzed
until leaves defined in terms of simple types are encountered.

Other than generating test data, the approach of Bai et al. [24] also generates operation
sequences to be tested, based on dependencies existing between operations. Bai et al.
infer operation dependencies from the WSDL, based on the following assumptions:

1. two operations are input dependent if they have common input parameters;
2. two operations are output dependent if they have common output parameters;
3. two operations are input/output dependent if there exist at least one output produced

by an operation that is input for the other.

Conroy et al. [25] exploit user interfaces of legacy applications—hereby referred as
Reference APplications (RAP)—to generate test data for web services—hereby referred
as Target APplications (TAP). Their approach is based on the following key ideas:



SOA Testing: A Survey 85

Client

PUT

PP1 PP2 PP3

(a) WS-BPEL process composition mode

PUTTP0 TP3

TP1 TP2

CP

CP-TP0

CP-TP1 CP-TP2

CP-TP3

(b) Test architecture

Fig. 1. Li et al. [26] WS-BPEL Unit testing

1. GUI element may be (i) input data acceptors (e.g., input fields), (ii) action producers
(e.g., buttons), (iii) output data retrievers (e.g., combo-boxes, tables), or (iv) state
checkpoints (i.e., any GUI element that appear in a particular state in order to make
the application to work correctly).

2. Data can be captured from the GUI using technologies conceived for accessibility
purposes, e.g., to support screen reading for visually impaired.

3. Once data has been captured, the tester can map such data to inputs of the target
application/service, and then enact the replay.

Unit Testing of Service Compositions. Other than atomic services, WS-BPEL
processes also need unit testing. In this section, we analyze WS-BPEL testing issues
from the perspective of a developer, who has access to the WS-BPEL process itself,
and thus can test it using white-box testing strategies. We recall that black-box testing
of a WS-BPEL process is equivalent to service testing, discussed in the previous sec-
tion, since a WS-BPEL process is viewed, from an external point of view, as a service
exposing a WSDL interface. It is very unlikely that WS-BPEL processes are tested in
isolation, since it would require to produce stubs for all the process partners. On the
other hand, the possibility of testing a WS-BPEL process without requiring the avail-
ability of partners would allows for testing it even before partners have been developed,
or in general without involving partners in the testing phase.

Li et al. [26] define a framework for WS-BPEL Unit Testing. Such a framework is,
to some extent, similar to other unit testing frameworks, such as JUnit. The framework
comprises four components:

1. the WS-BPEL process composition model (Fig. 1-a), which includes the WS-BPEL
Process Under Testing (PUT) and its Partner Processes (PPs).

2. the test architecture (Fig. 1-b), where PP are replaced by stubs, named test processes
(TPs), coordinated by a Control Process (CP). Thus, TPs simulate PP, plus they
contain testing control structure and behavior (e.g., error-detecting logic).

3. lifecycle management, that starts-up or stops CPs and TPs by means of a User In-
terface (UI). To this aim, the CP provides a beginTest and endTest interface, and the
TPs have startTest and stopTest interface. When the tester starts the testing activity



86 G. Canfora and M. Di Penta

by invoking beginTest through the CP interface, the CP on its own is responsible to
start the TP it is coordinating. When all TPs complete their activity, the CP termi-
nates as well.

A constraint-solver based approach for test case generation for WS-BPEL processes
has been proposed by Yuan et al. [27]. Test case generation is performed in four steps:

1. WS-BPEL processes are represented as BPEL-Flow-Graphs (BFG), a variation of
Control Flow Graphs (CFG) with fork, merge (the outgoing edge is activated by any
incoming edge) and join (the outgoing edge is activated after all the incoming edges
have been activated) nodes. Exception edges are made explicit, loop unfolded, and
different control flow structures (e.g., switch and pick) are brought back to a single
structure.

2. the BFG is traversed to identify test paths, defined as a partially-ordered list of
WS-BPEL activities;

3. Infeasible paths are filtered out by means of constraint solving. Constraint solving
is used to solve inequalities for path conditions: if no solution is found then the
path is considered unfeasible. Test data produced by constraint solver can be com-
plemented by means of randomly generated test data and manually-produced test
cases.

4. Test cases are generated by combining paths and test data. To this aim, only input
(e.g., message receive) and output (e.g., message reply) activities are considered,
ignoring data handling activities such as assignments. Test case generation also
requires to manually produce expected outputs, i.e., test oracles.

Tsai et al. [28] proposes a shift of perspective in service testing, moving from Indi-
vidual Verification & Validation to Collaborative Verification & Validation. They pro-
pose a technique, inspired from blood testing, that overcomes the need for manually
defining oracles. Testing is performed by invoking multiple, equivalent services and
then using a voter to detect whether a service exhibited a failure; in other words, if
voting is performed upon three equivalent services, and one out of the three provides a
different output, then it is assumed to contain a fault.

4.2 Integration Testing

SOA shifts the development perspective from monolithical applications to applications
composed of services, distributed over the network, developed and hosted by different
organizations, and cooperating together according to a centralized orchestration (e.g.,
described using WS-BPEL) or in a totally-distributed way (as it happens in a peer-to-
peer architectures). Moreover, service compositions can dynamically change to fulfill
varying conditions, e.g., a service unavailability, or the publication of a new service with
better QoS. In such a scenario, it becomes crucial to test services for interoperability,
i.e., to perform service integration testing. This need is also coped by industrial initiative
such as WS-Interoperability1, aimed at suggesting best practices to ensure high service
interoperability.

1 http://www.ws-i.org/



SOA Testing: A Survey 87

The problem of integration testing for service compositions is discussed by Buc-
chiarone et al. [29]. With respect to traditional integration testing, the following issues
have to be handled:

– The lack of information about the integrated components, which makes the produc-
tion of stubs very difficult.

– The impossibility of executing the integrated components in testing mode: this re-
quires to limit the involvement of services in testing activities, since it may cause
costs, resource consumption, and even undesired side effects, as discussed earlier
in this chapter.

As highlighted in our previous work [11], dynamic binding between service compo-
sition and partners make integration testing of service composition even more difficult.
An invocation (hereby referred as “abstract service”) in a service composition (e.g., in
a WS-BPEL process) can be dynamically bound to different end points.

Dynamic binding can be based on QoS constraints and objectives [30,31] or else
on constraints defined upon service functional and non-functional properties (e.g., one
might want to avoid services from a specific provider). This requires to perform inte-
gration testing with all possible bindings, as it happens when performing integration
testing of OO systems [32]. For example, in Fig. 2-a the invocation from method mc()
of class A to method m() of class B can be bound to B::m(), C::m() or D::m(). Re-
garding data-flow, for OO systems there is a call coupling between a method mA and
a method mB when mA invokes mB, and a parameter coupling when mB has an input
parameter that mA defines or an output parameter that mA uses. For such couplings, it
can be possible to define:

– call coupling paths, beginning from the call site where (mA invokes mB) and fini-
shing with a return site.

– parameter coupling paths: (see Fig. 2-b) for input parameters, it starts from the last
definition of the parameter before the call, continues through the call site, and ends
with the first use of the parameter in the callee. Similarly, for output parameters,
it starts from the last definition of output parameter in the callee before the return,
and ands with the first use after call in the caller.

Given the above paths, coverage criteria for OO systems include:

1. all call sites: test cases must cover all call-sites in the caller;
2. all coupling definitions: test cases must cover, for each coupling definition, at least

one coupling path to at least one reachable coupling use;
3. all coupling uses: test cases must cover, for each coupling definition, at least one

coupling path to each reachable coupling use;
4. all coupling paths: test cases must cover all coupling paths from the coupling defi-

nition to all coupling uses.

Ideally, such criteria could apply to test service compositions in the presence of dy-
namic binding. However:

– parameter coupling criteria cannot be applied as they are above defined, since the
partners are invoked on providers’ servers and thus viewed as black box entities. In



88 G. Canfora and M. Di Penta

+mc()

A

+m()

B

+m()

C

+m()

DB->m()

*

*

(a) Dynamic binding in OO

public class A{

int j;

B b1;

…

public int ma(){

…

int x=10;  //Last def before call

if (j > 0) {

z=b1.mb(x); //Call site

…

int v=x*z; //First use after return

} 

…

}

…}

public class B{

…

public int mb(int k){

…

int y=k-1; // First use in callee

…

int j=y++; //Last def before return

… 

return j;  }

}

(b) Call coupling in OO

flightBookingtrainBooking

ConAirflightBooking

SpeedFlight

RegJet

flightBooking

flightBooking

IronWaytrainBooking

Under development

Service not available

Run-time discovered 
service

(c) Dynamic binding in SOA
<assign><copy>

<from variable=“a“/>       Last def before call
<to variable=“request"/>

</copy></assign>
...
<invoke name="invokeAssessor" partner="assessor“   Call site

portType="asns:riskAssessmentPT"
operation="check"
inputVariable="request"
outputVariable="riskAssessment">

<target linkName="receive-to-assess"/>
<source linkName="assess-to-setMessage"

transitionCondition=
"bpws:getVariableData(’riskAssessment’,
’risk’)=’low’"/>

<source linkName="assess-to-approval"
transitionCondition="
bpws:getVariableData(’riskAssessment’,
’risk’)!=’low’"/>

</invoke>
...
<assign><copy>

<from variable=“riskAssessment“/>       First use after return
<to variable=“bar"/>

</copy></assign>

assessor
check

(d) Call coupling in SOA

Fig. 2. Dynamic binding and call-coupling in OO and SOA



SOA Testing: A Survey 89

other words, for parameters defined in the caller, the only visible use is the partner
invocation, while definitions in the callee are only visible from return points (see
Fig. 2-d).

– the set of all possible concrete services for a given abstract service might not be
known a-priori. In fact, some services available at design time might not be avail-
able at run-time, or else, if dynamic discovery in an open marketplace is used, new
services can be made available at runtime (see Fig. 2-c).

– achieving the above coverage criteria for all possible bindings can be overly expen-
sive and, in general, not possible when, as highlighted by Bucchiarone et al. [29],
services cannot be invoked in testing mode.

Tsai et al. defines a framework for service integration testing, named Coyote [33],
supporting both test execution and test scenario management. The Coyote tool consists
of two parts: a test master and a test engine. The test master produces testing scenarios
from the WSDL specifications, while the test engine interacts with the web service
being tested and provides tracing information to the test master.

Bertolino and Polini [34] propose an approach to ensure the interoperability between
a service being registered in a Universal Description, Discovery and Integration (UDDI)
registry and any other service, already registered, that can potentially cooperate with the
service under registration. As Bertolino and Polini suggest, an UDDI registry should
change its role from a passive service directory towards the role of an active “audition”
authority.

SOA calls for integration testing aimed at SLA, too. Since each abstract service in
a workflow can be bound to a set of possible concrete services (equivalent from func-
tional point-of-view, but with different QoS), there might be particular combinations of
bindings that can cause SLA violations. This point is further discussed in Section 4.4.

An important issue, dicussed by Mei et al. [35], concerns the use WS-BPEL makes
of XPath to integrate workflow steps. Services take as input, and produces as output,
XML documents. Thus problems can arise when information is extracted from an XML
document using an XPath expression and then used as input for a service. The authors
indicate the case where a service looks for the availability of DSL lines in a given city.
If the city is provided using a XML document like such as:

<address>
<state>

<name>Beijing</name>
<city>Beijing</city>

</state>
</address>

or

<address>
<state />
<city>Beijing</city>

</address>



90 G. Canfora and M. Di Penta

Different XPaths can return different values in the two cases. For example, both
/city/ and /state/city/ return Beijing for the first document, while for the sec-
ond /state/city/ returns an empty document. To perform BPEL data-flow test-
ing, Mei et al. rewrite XPaths using graphs, named XPath Rewriting Graphs (XRG),
that make explicit different paths through a XML schema. For example, the XPath ex-
pression //city/ can be considered as *//city/* or just *//city/. An XRG
is composed of rewriting nodes, containing the original expression (//city/ in our
case), having edges directed to rewritten nodes, representing the different forms of an
XPath (*//city/* and *//city/ in our case). Then, Mei et al. build models named
X-WSBPEL, that combine CFG extracted from WS-BPEL with the XRG. To perform
data-flow testing on the X-WSBPEL models, Mei et al. define a set of data-flow testing
def-use criteria, based on variable definition and usages over XPaths.

An approach for data-flow testing of service compositions is proposed by Bartolini
et al. [36], who essentially adapts data-flow criteria conceived for traditional CFGs to
WS-BPEL processes to build, from a WS-BPEL process, an annotated CFG, and then
generate test cases achieving different data-flow coverage criteria.

4.3 Regression Testing

An issue that makes service-centric systems very different from traditional applications
is the lack of control a system integrator has over the services s/he is using. System
integrators select services to be integrated in their systems and assume that such ser-
vices will maintain their functional and non-functional characteristics while being used.
However, this is not the case: a system exposed as a service undergoes—as any other
system—maintenance and evolution activities. Maintenance and evolution strategies are
out of the system integrators control, and any changes to a service may impact all the
systems using it. This makes service-centric systems different from component-based
systems: when a component evolves, this does not affect systems that use previous ver-
sions of the component itself. Component-based systems physically integrate a copy of
the component and, despite the improvements or bug fixing performed in the new com-
ponent release, systems can continue to use an old version. In such a context, several
evolution scenarios may arise:

– Changes that do not require modifying the service interface and/or specification,
e.g., because the provider believes this is a minor update, As a consequence, the
changes remain hidden from whoever is using the service.

– Changes that do not affect the service functional behavior, but affect its QoS. Once
again, these are not always documented by the service provider and, as a conse-
quence, the QoS of the system/composition using such a service can be affected.

– A service can be, on its own, a composition of other services. As a matter of fact,
changes are propagated between different system integrators, and it happens that the
distance between the change and the actor affected by the change makes unlikely
that, even if the change is advertised, the integrator will be able to get it and react
accordingly.



SOA Testing: A Survey 91

C
om

m
un

ic
at

io
n 

M
e

ch
an

is
m

Q
ua

lit
y 

M
et

ric
s

M
ea

su
re

d 
Q

oS
R

at
in

g
C

er
tif

ic
at

e
U

s
ag

e 
H

is
to

ry

La
ng

ua
ge

F
ac

et
 S

pe
ci

fic
at

io
n

S
er

vi
ce

 P
ro

pe
rt

y

O
pe

ra
tio

na
l 

S
em

an
tic

s
E

xc
ep

tio
n

S
er

vi
ce

 
In

fo
rm

at
io

n
Te

st
in

g
B

eh
av

io
ra

l 
S

pe
ci

fic
at

io
n

S
er

vi
ce

 
In

va
ria

nt
S

ig
na

tu
re

Q
oS

F
ac

et

S
LA

 
Te

m
pl

at
e

C
om

m
er

ce

0.
..

0.
..

0.
..

re
la

te
s 

to

0.
..

1
0.

.*
1

0.
.*

is
 e

xp
re

ss
ed

 in

1.
.*

1.
.*

1.
.*

1.
.*

ha
s

1

1.
.*

1

1.
.*

is
 s

pe
ci

fie
d 

b
y

1.
.*

1.
.*

1.
.*

1.
.*

sp
ec

ifi
es

F
ig

.3
.F

ac
et

ed
sp

ec
ifi

ca
ti

on
of

a
se

rv
ic

e



92 G. Canfora and M. Di Penta

Fig. 4. Service regression testing: test generation and execution process [14]

The above scenarios raises the need for an integrator to periodically re-test the ser-
vice she/he is using, to ensure that they still meet functional and non functional expec-
tations. To this aim, Di Penta et al. [13,14] propose to complement service descriptions
with a facet providing test cases, in the form of XML-based functional and non func-
tional assertions. A facet is a (XML) document describing a particular property of a
service, such as its interface (in this case the facet can correspond to the WSDL inter-
face), its QoS, a SLA template that can be negotiated with the potential service users [4].
A faceted approach to describe services [37], extends the UDDI registry with an XML-
based registry containing different kinds of facets. However, additional facets could
simply be linked to the service WSDL without the need for requiring a customized,
proprietary registry. Fig. 3 shows an excerpt of the SOA conceptual model [38] related
to facets describing properties of a service. A facet is specified by means of a facet spec-
ification expressed using a language, e.g., WSDL for interfaces, or WS-Agreement for
SLA. As shown in the figure, a service can be described by a number of facets related
to signature, operational semantics, QoS, test cases, etc.

When a service integrator discovers a service and wants to use it, s/he downloads the
testing facet and uses it to check whether the service exhibits the functional and non-
functional properties s/he expects. As a matter of fact, a test suite can be used to support
developers’ comprehension of software artifacts: this has been investigated by Ricca et
al. [39], who empirically assessed the usefulness of acceptance test cases expressed as
Fit (Framework for Integrated Testing) [40] tables in requirement comprehension tasks.
Then, the test suite is used to periodically re-test the service to check whether it still
meets the integrator functional and non-functional needs.

Fig. 4 describes a possible scenario for the test case publication and regression test-
ing process taken from [14]. The scenario involves both a service provider (Jim) and



SOA Testing: A Survey 93

two system integrators (Alice and Jane), and explains the capabilities of the proposed
regression testing approach.

1. At time t0 Jim deploys a service, e.g., a RestaurantService that allows an user to
search for restaurants, gets restaurants info and check for availability. The service
is deployed together with its test suite (facet).

2. At time t1 Alice discovers the service, negotiates the SLA and downloads the test
suite; she can complement the test suite with her own test cases, performs a pre-
execution of the test suite, and measures the service non-functional behavior. A
SLA is agreed with the provider, and Alice stores both the test suite and the QoS
assertions generated during the pre-execution.

3. Then, Alice regularly uses the service, until,
4. after a while, Jim updates the service. In the new version the ID return value for

getRestaurantID is composed of five digits instead of four. Also, because of some
changes in its configuration, the modified service is not able to answer in less than
two seconds.

5. Jane regularly uses the new service with no problems. In fact, she uses a field that
is large enough for visualizing a restaurant ID composed of five digits. Meanwhile,
Jane’s interactions are monitored.

6. Since the service has changed, Alice decides to test it: data monitored from Jane’s
executions can be used to reduce the number of service invocations during testing.
A test log containing successes and failures for both functional test cases and QoS
assertions is reported.

According to Di Penta et al. [14], facets to support service regression testing can
either be produced manually by the service provider or by the tester, or can be generated
from unit test cases of the system exposed as a service, as described in Section 5.

The idea of using test cases as a form of contract between service providers and
service consumers [13,14] also inspired the work of Dai et al. [41]. They foresee a
contract-based testing of web services. Service contracts are produced, in a Design by
Contract [42] scenario, using OWL-S models. Then, Petri nets are used for test data
generation. As for Di Penta et al., test cases are then used to check whether during the
time a service preserves the behavior specified in the contract.

Regression test suite reduction is particularly relevant in SOA, given the high cost
of repeated invocations to services. Ruth and Tu [43,44] defines a safe regression test
suite selection technique largely based on the algorithm defined by Rothermel and Har-
rold [45] for monolithic application. The proposed technique requires the availability
of CFGs (rather than source code) for service involved in the regression testing activity.
The idea is that CFGs should be able to highlight the changes that can trigger regres-
sion testing, while shielding the source code. Unfortunately, such assumption is, in most
cases, pretty stronger in that service providers are unlikely to expose service CFGs.

4.4 Non-functional Testing

Testing non-functional properties is crucial in SOA, for a number of reasons:

– service providers and consumers stipulate a SLA, in which the provider guarantees
to consumers certain pieces of functionality with a given level of QoS. However,



94 G. Canfora and M. Di Penta

under certain execution conditions, caused by unexpected consumer inputs or unan-
ticipated service load, such QoS level could not be met;

– the lack of service robustness, or the lack of proper recovery actions for unexpected
behaviors can cause undesired side effects even on the service side or on the inte-
grator side;

– services are often exposed over the Internet, thus they can be subject to security
attacks, for instance by means of SQL injection.

Robustness Testing. Different approaches have been proposed in the literature to deal
with different aspects of service non-functional testing. Martin et al. [46,47] presents
a tool for automatic service robustness testing. First, the tool automatically generates a
service client from the WSDL. Then, any test generation tool for OO programs could be
used to perform service robustness testing. In particular, the authors use JCrasher2 [48],
a tool that generates JUnit tests. The authors applied their tool on services such as
Google search and Amazon; although no major failures were detected, the authors in-
dicated that, sometimes, services hanged up, suggesting a possible presence of bugs.

Ensuring robustness also means ensuring that exceptional behavior is properly han-
dled and that the service reacts properly to such behavior. However, very often the error
recovery code is not properly tested. Fu et al. [49] proposes an approach for exception
code data-flow testing, suited to web services developed in Java, but that can be applied
to any Java program. In particular, they define the concept of exception-catch (e-c) link,
i.e., the link between a fault-sensitive operation and a catch block in the program to be
tested, and define coverage criteria for such links.

SLA Testing. SLA testing deals with the need for identifying conditions for which a
service cannot be able to provide its functionality with a desired level of SLA. Before
offering a SLA to a service consumer, the service provider would limit the possibility
that it can be violated during service usage. Di Penta et al. [20] proposes an approach
for SLA testing of atomic and composite services using Genetic Algorithms (GA). For a
service-centric system such violations can be due to the combination of different factors,
i.e., (i) inputs, (ii) bindings between abstract and concrete services, and (iii) network
configuration and server load. In the proposed approach, GAs generate combinations of
inputs and bindings for the service-centric system causing SLA violations. For atomic
services, the approach generates test data as inputs for the service, and monitors the
QoS exhibited by the service during test invocations. At minimum, the approach is able
to monitor properties such as response time, throughput, and reliability. However, also
domain specific QoS attributes [50] can be monitored. Monitored QoS properties are
used as fitness function to drive the test data generation (the fitness is used to select
the individuals, i.e., test cases, that should “reproduce” by means of GA crossover and
mutation operators). In other words, the closer a test case is to produce a QoS constraint
violation, the better it is. To allow for test data generation using GA, test inputs are
represented as a forest, where each tree represents a service input parameter according
to its XML schema definition. Proper crossover and mutation operators are defined to
generate new test data from existing one, i.e., evolving the population of GA solutions.

2 www.cc.gatech.edu/jcrasher/



SOA Testing: A Survey 95

ScaleA

ScaleB

PosterizeA

PosterizeB

PosterizeC

ScaleC

GrayA

GrayB

GrayC

SharpenA

SharpenB

SharpenC

dim1≠ dim2dim1=dim2

Iterate
nsharpen

times

posterize=true posterize=false

resolution=200 dpi
resp. time=2 ms

resolution=300 dpi
resp. time=5 ms

resolution=600 dpi
resp. time=10 ms

resolution= 400 dpi
resp. time=7 ms

resolution=900 dpi
resp. time=10 ms

resolution=700 dpi
resp. time=8 ms

resolution=800 dpi
resp. time=10 ms

resolution=300 dpi
resp. time=2 ms

resolution=500 dpi
resp. time=5 ms

resolution=400 dpi
resp. time=7 ms

resolution=500 dpi
resp. time=10 ms

resolution = 300 dpi
resp. time=12 ms

1. Scale

2. Posterize

3. Sharpen

4. Gray

Fig. 5. SLA testing of composite service: example [50]

For service compositions, in particular where dynamic binding between abstract ser-
vices in the workflow and concrete services is possible, GA aims at generating combi-
nations of bindings and inputs that cause SLA violations. In fact, for the same inputs,
different bindings might result in a different QoS. Fig. 5 shows an image processing
workflow. Let us make the following assumptions:

– the service provider guarantees to consumers a response time less than 30 ms and
a resolution greater or equal to 300 dots per inches (dpi);

– a user provides as inputs an image having a size smaller than 20 Mb (which con-
stitutes a precondition for our SLA), posterize = true, dim1 = dim2, and
nsharpen = 2;

– the abstract services are bound to ScaleC, PosterizeC, SharpenB, and GrayA, re-
spectively.

In this case, while the response time will be lower-bounded by 24 ms, and therefore the
constraint would be met, the resolution of the image produced by the composite service
would be of 200 dpi, corresponding to the minimum resolution guaranteed by the in-
voked services. In other cases, the scenario can be much more complex, in particular
when combinations of inputs for each service invoked in the workflow can, on its own,
contribute to the overall SLA violation.

Testing for Dependability. The approach above described has a specific purpose, i.e.,
generating service inputs (and bindings) that violate the SLA. More generally, for ser-
vices used in a business-critical scenario, it would be useful to generate service inputs
that cause:

– security problems, e.g., allowing unauthorized access to sensible data;
– service hang up;
– unexpected, unhandled exceptions;
– a behavior not observable in the service response.



96 G. Canfora and M. Di Penta

Many of the existing approaches rely on SOAP message perturbation. According to
Voas [51], perturbation allows for altering an application internal state without modify-
ing its source code.

To this aim, Offutt and Xu [52] foresee an approach to generate web service test
cases through Data Perturbation (DP). Basically, the process consists in modifying the
request messages, resending them to the web service and analyzing how the response
message changed with respect to the original message. Specifically, the mechanism
foresees two types of perturbation: Data Value Perturbation (DVP), Remote Procedure
Call (RPC) Communication Perturbation (RCP), and Data Communication Perturba-
tion (DCP). DVP produces data input modifications according to the types described in
the service parameter XML schema, and is largely inspired to the concepts of boundary
value testing [53]. For example, for numeric values minimum, maximum and zero are
considered, while for strings the perturbation consists of generating minimum length
or maximum length strings, and upper-casing or lower-casing the string. RCP modifies
message in RPC and data communication, in particular considering data used within
programs and data used as inputs to database queries. For data used within programs,
mutation mechanisms are defined for different data types; for example a numeric datum
n can be changed to to 1/n (Divide), n × n (Multiply), −n (Negative), |n| (Absolute).
Another perturbation exchanges the order of arguments. When data is used to query a
database, perturbation aims at SQL injection, which occurs when an user input, incor-
rectly filtered for string literal, escapes characters embedded in SQL statements, causing
the execution of unauthorized queries.

Offutt and Xu provide the following example: if a service expects 2 input parameters,
username and password, and then checks for the presence of username and password
in a database table using the query:

SELECT username FROM adminuser
WHERE username=’turing’ AND password=’enigma’

then, the Unhautorized perturbation mechanism appends to both username and pass-
word the string ’ OR ’1’=’1. As a result, the query becomes:

SELECT username FROM adminuser
WHERE username=’turing’

OR ’1’=’1’ AND password =’enigma’ OR ’1’=’1’

always providing authentication/access. They also provide an example of data perturba-
tion: given a SOAP message containing a data structure describing, for instance, a book:

<book>
<ISBN>0-781-44371-2</ISBN>
<price>69.99</price>
<year>2003</year>

</book>

Data perturbation entails sending (i) empty instances of the data structure, (ii) an
allowable number of instances, (iii) duplicating instances from the message and (iv) re-
moving an instance from the message. For example, the above message can be mutated
by means of a duplication, as follows:



SOA Testing: A Survey 97

<book>
<ISBN>0-781-44371-2</ISBN>
<price>69.99</price>
<year>2003</year>

</book>
<book>
<ISBN>0-781-44371-2</ISBN>
<price>69.99</price>
<year>2003</year>

</book>

Such a perturbation test would be useful, for instance, to check whether the different
behavior the service exhibits in presence of such a duplicate record is observable from the
response message. A response like “true”or“false”—just indicating whether the insertion
was successful or not—is not sufficient to see how many records have been inserted.

Looker et al. [54] propose to assess service dependability by means of fault injec-
tion techniques. They propose an approach and a tool named WS-FIT (Web Service
Fault Injection Technology) inspired from network fault injection. Basically, they de-
code network messages based on SOAP and inject errors in these messages. They define
a fault model for web services, considering different kinds of faults, namely (i) physical
faults, (ii) software faults (programming or design errors), (iii) resource management
faults (e.g., memory leakage), and (iv) communication faults. In particular, Looker et
al. provide a detailed fault model for communication, considering message duplication,
message omission, the presence of extra (attack) messages, change of message ordering,
or the presence of delays in messages.

When injecting a fault, the service may react in different ways: (i) the service may
crash, (ii) the web server may crash, (iii) the service may hang, (iv) the service may
produce corrupted data, or (v) the response can be characterized message omission, du-
plication, or delay. Thus, the aim of the fault injection is to determine to what extent the
service is able to properly react to faults seed in input messages, with proper exception
handling and recovery actions, without exhibiting any of the above failures.

4.5 Summary Table

Table 2 briefly summarizes the approaches described in this section, providing, for each
work, the reference, the testing level, and a short description.

5 Improving Testability

The intrinsic characteristics of SOA are a strong limit for service testability. According
to Tsai et al. [55], service testability should account for several factors, such as:

– the service accessibility, i.e., source code accessibility, binary accessibility, model
accessibility, signature accessibility;

– the “pedigree” of data describing a service. The origin of such information can
constitute a crucial aspect since integrators might not trust it;

– the level of dynamicity of the SOA.



98 G. Canfora and M. Di Penta

Below, we describe some approaches, summarized in Table 3, that deal with service
testability.

Tsai et al. [56] propose that information to enhance service testability should be
provided by extending WSDL. Specifically, the following information is proposed:

1. Input-Output-Dependency: they introduce a new complex type in the WSDL schema,
named WSInputOutputDependenceType, to account for dependencies between ser-
vice operation inputs and outputs;

2. Invocation Sequences: this represents a crucial issue when testing services, since a
service might delegate to another service the execution of a particular task. The tester
might want to be aware of such dependencies. A WSDL schema type WSInvocation-
DependenceType is defined to represent caller-callee relationships between services;

Table 2. Summary of service testing approaches

Level Reference Description

Functional Bertolino et al. [21,22] Test data generation from XML schema using the cat-
egory partition strategy

Bai et al. [24] WSDL test data generation from XSD types
Conroy et al. [25] Exploit user interfaces of legacy systems to perform

capture-replay over web services
Li et al. [26] Define a framework for BPEL unit testing
Yuan et al. [27] Constraint-solver based approach for WS-BPEL test

case generation
Tsai et al. [28] Builds automatic oracles by invoking multiple equiva-

lent services and comparing results through a voter
Integration Tsai et al. [33] Coyote: a framework for service test integration testing

Bertolino and
Polini [34]

The UDDI registry plays the role of audition authority
to ensure service interoperability

Bucchiarone et al. [29] Discusses problems related to service integration test-
ing

Mei et al. [35] Data-flow testing of WS-BPEL process with focus on
XPath expressions

Bartolini et al. [36] Data-flow testing of service composition
Regression Di Penta et al. [13,14] Generation of service testing facet from system JUnit

test suite. Regression testing of service from the inte-
grator side

Dai et al. [41] Services accompanied with a contract; Petri nets for
generating test cases

Ruth and Tu [43,44] Applies the safe regression technique of Rothermel and
Harrold [45] to web services where source code is un-
available.

Non-functional Martin et al. [46,47] Service robustness testing based on Axis and JCrasher
Fu et al. [49] Framework and criteria to perform exception code cov-

erage
Di Penta et al. [20] Search-based SLA testing of service compositions
Offutt and Xu [52] Perturbation of SOAP messages
Looker et al. [54] WS-FIT: Service fault injection approach and tool



SOA Testing: A Survey 99

Table 3. Approaches for improving service testability

Reference Description
Tsai et al. [56] Complement WSDL with I/O dependencies, external dependencies,

admissible invocation sequences, functional descriptions
Tsai et al. [57] Extension of UDDI registry with testing features to test service I/O

behavior
Heckel and Mariani [58] Extension of UDDI registry with testing information; use of graph

transformation systems to test single web services
Heckel and Lohmann [59] Complement services with contracts at different (model, XML, and

implementation) levels
Di Penta et al. [13,14] Generate service test cases (“facet”) to be used as contracts for re-

gression testing purposed from system test cases
Bai et al. [60] Framework for testing highly dynamic service-centric environments
Bertolino et al. [61] Puppet: QoS test-bed generator for evaluating the QoS properties of

a service under development
Bertolino et al [62] Test-bed generator from extra-functional contracts (SLA) and func-

tional contracts (modeled as state machines)

3. Functional Description: a service functional description can also be included as a
form of hierarchy, to enhance black-box testing. To this aim Tsai et al. define two
sub elements, WSFParents and WSFChildren, that permit the definition of func-
tional structures. However, other than defining a hierarchical form for functional
descriptions, the authors did not indicate which information such description must
contain;

4. Sequence Specification: licit operation calling sequences are described using regu-
lar expressions, e.g., OpenFile · (ReadLine|WriteLine)∗ · Close indicates that
a file opening must be followed by zero or more read or write, then followed by a
file closing.

Tsai et al. [57] also propose to extend the UDDI registry with testing features: the
UDDI server stores test scripts in addition to WSDL specifications.

Heckel and Mariani [58] use graph transformation systems to test individual web
services. Like Tsai et al., their method assumes that the registry stores additional in-
formation about the service. Service providers describe their services with an interface
descriptor (i.e., WSDL) and some graph transformation rules that specify the behavior.

Heckel and Lohmann [59] propose to enable web service testing by using Design
by Contract [42]. In a scenario where a service provider offers a piece of functional-
ity through a service and a service consumer requests it, provider-consumer contracts
describe the offered and required functionality. Heckel and Lohmann foresee service
contract at different levels: (i) at model level, understandable by humans, (ii) at XML
level, to be integrated into existing service standards like WSDL, and (iii) at implemen-
tation level, realized for example using JContract, and used by tools such as Parasoft
Jtest3 to generate test cases. Clearly, a mapping among different levels is required.

3 http://www.parasoft.com



100 G. Canfora and M. Di Penta

As described in Section 4.3, it would be useful to complement a service with facets
containing test cases that can be used as a “contract” to ensure that the service, during
the time, preserves its functional and non-functional behavior. To this aim, Di Penta
et al. [13,14] propose to generate service test cases from test suites developed for the
software system implementing the features exposed by the service. This is useful since,
in most cases, developers are reluctant to put effort in producing a service test suite.
On the other hand, legacy system unit test suites, such as Junit, are very often in use.
Many software development methodologies, e.g., test-driven development, strongly en-
courage developers to produce unit test suites even before implementing the system
itself. However, although these test suites are available, they cannot be directly used by
a service integrator to test the service. This because assertions contained in the JUnit
test cases can involve expressions composed of variables containing references to local
objects and, in general, access to resources that are only visible outside the service in-
terface. Instead, a test suite to be executed by a system integrator can only interact with
the service operations. This requires that any expression part of a JUnit assertion, except
invocations to service operations and Java static methods (e.g., methods of the Math
class), needs to be evaluated and translated into a literal, by executing an instrumented
version of the JUnit test class from the server-side. Such a translation is supported by
the tester, that selectively specifies the operation invocation within the JUnit test suite
that should be left in the testing facet and those that should be evaluated and trans-
lated in literals, since it regards operations not accessible from the service interface or
operations not involved in the testing activity.

Testing activities in highly-dynamic environments, such as SOA with run-time dis-
covery binding, require the presence of a test broker able to decouple test case definition
from their implementation, and the testing environment from the system under test [60].
This allows for a run-time binding and reconfiguration of test agents in case the service
under test change (i) interface operations, (ii) its bindings, or (iii) steps of its underlying
process.

An important issue when testing service-centric systems is the need for test-beds
that can be used to evaluate QoS properties of a service under development, but also,
for instance, to evaluate/test the QoS of a service composition—as described in Sec-
tion 4.4—without having component services available and, even if they are available,
avoiding to invoke them to limit side-effects and reduce the testing costs. Bertolino
et al. [61] proposed Puppet (Pick UP Performance Evaluation Test-bed), a test bed gen-
erator used to evaluate QoS properties of services uder development. Also, they propose
an approach and a tool [62] to generate stubs from extra functional contracts expressed
as SLA and functional contracts expressed as state machines. Further details can be
found in Chapter 5 of this book.

6 Summary

Software testing has long been recognized as one of the most costly and risky activities
in the life-cycle of any software system. With SOA, the difficulty of thoroughly testing
a system increases because of the profound changes that this architectural style induces
on both the system and the software business/organization models. Testing challenges
derive primarily from the intrinsic dynamic nature of SOA and the clear separation of



SOA Testing: A Survey 101

roles between the users, the providers, the owners, and the developers of a service and
the piece of software behind it. Thus, automated service discovery and ultra-late binding
mean that the complete configuration of a system is known only at execution time, and
this hinder integration testing, while per-use-charge of a service affects unit testing and
QoS testing of services and their compositions. Whilst SOA testing is a recent area of
investigation, numerous contributions have been presented in the literature, primarily
in the areas of unit testing of services and orchestrations, integration testing, regres-
sion testing, and testing of non-functional properties. The literature also reports several
investigations into means to improve the testability of services and service-centric sys-
tems. Nevertheless, several problems remain open, calling for additional research work:

– Combining testing and run-time verification. The dynamic nature of SOA entails
that testing-based validation needs to be complemented with runtime verification.
On the one hand, testing is unable to cope with certain aspects of a service-centric
system validation, primarily because of the impossibility to test all—often unfore-
seen—system configurations. On the other hand, run-time monitoring, while able
to deal with the intrinsic dynamism and adaptiveness of SOA, is unable to provide
confidence that a system will behave correctly before it is actually deployed. Thus,
additional research is needed to fully comprehend the role of testing and monitor-
ing in the validation of a service-centric system and to devise systematic ways to
combine them with the aim of increasing the confidence and reducing the cost of
validation [63].

– Improving testability. For system integrators and, more in general, users a service
is just an interface, and this hinders the use of traditional white-box coverage ap-
proaches. Service usage may be charged based on the number of invocations; even
worst, many services have permanent effects in the real world—e.g. booking a
restaurant table—and this makes stress testing approaches infeasible. Lack of ob-
servability and cost of repeated invocations could be addressed by publishing a
(state-full) model of a service and providing testing interface to query and change
the state of a service without affecting the real world. Additional research work
is needed to devise the right formalisms to express the models and to help stan-
dardizing the interfaces. As developing the models is costly and error prone, means
to reverse engineering them from the observation of a service behavior are to be
devised [16,17].

– Validating fully decentralized systems. Currently, the most widespread approach to
service composition is orchestration, which entails the use of an engine that exe-
cutes a process description and coordinates the invocations of services. With this
approach, systems are intrinsically distributed —services run in independent ad-
ministrative domains— but control remains centralized. Nowadays, different forms
of compositions are emerging, such as peer-to-peer choreography, which makes
control, in addition to services, completely decentralized. Fully decentralized com-
positions opens new scenarios, for example, propagation of a query in a network of
active services that may subscribe it based on an introspective knowledge of their
capabilities [64], which poses new challenges to testing and monitoring.

SOA has great potentials for reducing costs and risks of enterprise systems, im-
proving efficiency and agility of organizations, and mitigating the effects of changing



102 G. Canfora and M. Di Penta

technology. However, many of the benefits of SOA become challenges to testing ser-
vices and service-centric systems. Addressing these challenges requires a coherent com-
bination of testing, run-time monitoring, and exception management.

Acknowledgements

This work is partially founded by the European Commission VI Framework IP Project
SeCSE (Service Centric System Engineering) (http://secse.eng.it), Contract No. 511680,
and by the Italian Department of University and Research (MIUR) FIRB Project ART-
DECO.

References

1. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services
capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347.
Springer, Heidelberg (2002)

2. Bromberg, Y.D., Issarny, V.: INDISS: Interoperable discovery system for networked services.
In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 164–183. Springer, Heidelberg
(2005)

3. Pistore, M., Traverso, P.: Assumption-based composition and monitoring of web services. In:
Test and Analysis of web Services, pp. 307–335. Springer, Heidelberg (2007)

4. Di Nitto, E., Di Penta, M., Gambi, A., Ripa, G., Villani, M.L.: Negotiation of service
level agreements: An architecture and a search-based approach. In: Krämer, B.J., Lin, K.-
J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 295–306. Springer, Heidelberg
(2007)

5. Baresi, L., Guinea, S.: Towards dynamic monitoring of WS-BPEL processes. In: Benatallah,
B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282. Springer,
Heidelberg (2005)

6. Kephart, J., Chess, D.: The vision of autonomic computing. IEEE Computer (2003)
7. Hinchey, M.G., Sterritt, R.: Self-managing software. Computer 39, 107–109 (2006)
8. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. IEEE Computer 36,

38–44 (2003)
9. Walkerdine, J., Melville, L., Sommerville, I.: Dependability properties of P2P architectures.

In: 2nd International Conference on Peer-to-Peer Computing (P2P 2002), Linköping, Swe-
den, 5-7 September 2002, pp. 173–174 (2002)

10. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In: Proc. 2nd In-
ternational Conference on Service Oriented Computing (ICSOC 2004), pp. 193–202. ACM,
New York (2004)

11. Canfora, G., Di Penta, M.: Testing services and service-centric systems: Challenges and op-
portunities. IT Professional 8, 10–17 (2006)

12. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to analy-
sis for Java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

13. Bruno, M., Canfora, G., Di Penta, M., Esposito, G., Mazza, V.: Using test cases as contract
to ensure service compliance across releases. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 87–100. Springer, Heidelberg (2005)

14. Di Penta, M., Bruno, M., Esposito, G., Mazza, V., Canfora, G.: Web services regression
testing. In: Baresi, L., Nitto, E.D. (eds.) Test and Analysis of web Services, pp. 205–234.
Springer, Heidelberg (2007)



SOA Testing: A Survey 103

15. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE Trans. Software Eng. 27, 99–123 (2001)

16. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models.
In: 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, pp. 501–510 (2008)

17. Ghezzi, C., Mocci, A., Monga, M.: Efficient recovery of algebraic specifications for state-
ful components. In: IWPSE 2007: Ninth international workshop on Principles of software
evolution, pp. 98–105. ACM, New York (2007)

18. McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verif. Re-
liab. 14, 105–156 (2004)

19. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic structural
testing. Information & Software Technology 43, 841–854 (2001)

20. Di Penta, M., Canfora, G., Esposito, G., Mazza, V., Bruno, M.: Search-based testing of ser-
vice level agreements. In: Proceedings of Genetic and Evolutionary Computation Confer-
ence, GECCO 2007, London, England, UK, July 7-11, 2007, pp. 1090–1097 (2007)

21. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Systematic generation of XML instances
to test complex software applications. In: Guelfi, N., Buchs, D. (eds.) RISE 2006. LNCS,
vol. 4401, pp. 114–129. Springer, Heidelberg (2007)

22. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: TAXI - a tool for XML-based testing. In: 29th
International Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA,
May 20-26, 2007, pp. 53–54 (2007)

23. Ostrand, T., Balcer, M.: The category-partition method for specifying and generating func-
tional tests. Communications of the Association for Computing Machinery 31 (1988)

24. Bai, X., Dong, W., Tsai, W.T., Chen, Y.: Wsdl-based automatic test case generation for web
services testing. In: IEEE International Workshop on Service-Oriented System Engineering
(SOSE), pp. 215–220. IEEE Computer Society, Los Alamitos (2005)

25. Conroy, K., Grechanik, M., Hellige, M., Liongosari, E., Xie, Q.: Automatic test generation
from GUI applications for testing Web services. In: IEEE International Conference on Soft-
ware Maintenance, ICSM 2007, pp. 345–354 (2007)

26. Li, Z., Sun, W., Jiang, Z.B., Zhang, X.: BPEL4WS unit testing: Framework and implemen-
tation. In: 2005 IEEE International Conference on web Services (ICWS 2005), Orlando, FL,
USA, 11-15 July 2005, pp. 103–110 (2005)

27. Yuan, Y., Li, Z., Sun, W.: A graph-search based approach to BPEL4WS test generation.
In: Proceedings of the International Conference on Software Engineering Advances (ICSEA
2006), Papeete, Tahiti, French Polynesia, October 28 - November 2, 2006, p. 14 (2006)

28. Tsai, W.T., Chen, Y., Paul, R.A., Liao, N., Huang, H.: Cooperative and group testing in
verification of dynamic composite web services. In: 28th International Computer Software
and Applications Conference (COMPSAC 2004), Design and Assessment of Trustworthy
Software-Based Systems, Hong Kong, China, Proceedings, 27-30 September 2004, pp. 170–
173 (2004)

29. Bucchiarone, A., Melgratti, H., Severoni, F.: Testing service composition. In: Proceedings of
the 8th Argentine Symposium on Software Engineering (ASSE 2007) (2007)

30. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware binding
and re-binding of composite Web services. Journal of Systems and Software (in press, 2008)

31. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware service
composition based on genetic algorithms. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2005, Proceedings, Washington DC, USA, June 25-29, 2005, pp. 1069–1075.
ACM Press, New York (2005)

32. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley Publishing Company, Reading (2000)



104 G. Canfora and M. Di Penta

33. Tsai, W.T., Paul, R.J., Song, W., Cao, Z.: Coyote: An XML-based framework for Web ser-
vices testing. In: 7th IEEE International Symposium on High-Assurance Systems Engineer-
ing (HASE 2002), Tokyo, Japan, 23-25 October 2002, pp. 173–176 (2002)

34. Bertolino, A., Polini, A.: The audition framework for testing Web services interoperability.
In: 31st EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO-SEAA 2005), Porto, Portugal, 30 August - 3 September 2005, pp. 134–142.
IEEE Computer Society, Los Alamitos (2005)

35. Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service-oriented workflow applications.
In: 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, pp. 371–380 (2008)

36. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based validation of web
services compositions: Perspectives and examples. In: de Lemos, V.R., Di Giandomenico,
F., Muccini, H., Gacek, C., Vieira, M. (eds.) Architecting Dependable Systems. Springer,
Heidelberg (2008)

37. Walkerdine, J., Hutchinson, J., Sawyer, P., Dobson, G., Onditi, V.: A faceted approach to
service specification. In: International Conference on Internet and web Applications and Ser-
vices (ICIW 2007), Le Morne, Mauritius, May 13-19, 2007, p. 20 (2007)

38. Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalà, M.: Speaking a common
language: A conceptual model for describing service-oriented systems. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 48–60. Springer, Heidelberg
(2005)

39. Ricca, F., Torchiano, M., Di Penta, M., Mariano Ceccato, P.T.: Using acceptance tests as
a support for clarifying requirements: A series of experiments. Information and Software
Technology (in press, 2008)

40. Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Integrated
Tests. Prentice-Hall, Englewood Cliffs (2005)

41. Dai, G., Bai, X., Wang, Y., Dai, F.: Contract-based testing for web services. In: 31st Annual
International Computer Software and Applications Conference (COMPSAC 2007), Beijing,
China, 24-27 July 2007, pp. 517–526 (2007)

42. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood Cliffs
(1997)

43. Ruth, M., Tu, S.: Towards automating regression test selection for Web services. In: Proceed-
ings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, pp. 1265–1266 (2007)

44. Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M., Tu, S.: Towards automatic
regression test selection for Web services. In: 31st Annual International Computer Software
and Applications Conference (COMPSAC 2007), Beijing, China, 24-27 July 2007, pp. 729–
736 (2007)

45. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique. ACM
Trans. Softw. Eng. Methodol. 6, 173–210 (1997)

46. Martin, E., Basu, S., Xie, T.: WebSob: A tool for robustness testing of web services. In: 29th
International Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA,
May 20-26, 2007, pp. 65–66 (2007)

47. Martin, E., Basu, S., Xie, T.: Automated testing and response analysis ofweb services. In:
2007 IEEE International Conference on web Services (ICWS 2007), Salt Lake City, Utah,
USA, July 9-13, 2007, pp. 647–654 (2007)

48. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester for Java. Softw. Pract.
Exper. 34, 1025–1050 (2004)

49. Fu, C., Ryder, B.G., Milanova, A., Wonnacott, D.: Testing of Java Web services for robust-
ness. In: Proceedings of the ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2004, Boston, Massachusetts, USA, July 11-14, 2004, pp. 23–34 (2004)



SOA Testing: A Survey 105

50. Canfora, G., Di Penta, M., Esposito, R., Perfetto, F., Villani, M.L.: Service composition
(re)Binding driven by application–specific qoS. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 141–152. Springer, Heidelberg (2006)

51. Voas, J.M.: Fault injection for the masses. IEEE Computer 30, 129–130 (1997)
52. Offutt, J., Xu, W.: Generating test cases for Web services using data perturbation. In: SIG-

SOFT Softw. Eng. Notes - SECTION: Workshop on testing, analysis and verification of Web
services (TAV-WEB), vol. 29, pp. 1–10 (2004)

53. Beizer, B.: Software Testing Techniques, 2nd edn. International Thomson Computer Press
(1990)

54. Looker, N., Munro, M., Xu, J.: Ws-fit: A tool for dependability analysis of Web services. In:
Proceedings of 28th International Computer Software and Applications Conference (COMP-
SAC 2004), Design and Assessment of Trustworthy Software-Based Systems, Hong Kong,
China, 27-30 September 2004, pp. 120–123 (2004)

55. Tsai, W.T., Gao, J., Wei, X., Chen, Y.: Testability of software in service-oriented architecture.
In: 30th Annual International Computer Software and Applications Conference (COMPSAC
2006), Chicago, Illinois, USA, 17-21 September 2006, pp. 163–170 (2006)

56. Tsai, W.T., Paul, R.J., Wang, Y., Fan, C., Wang, D.: Extending WSDL to facilitate Web
services testing. In: 7th IEEE International Symposium on High-Assurance Systems Engi-
neering (HASE 2002), Tokyo, Japan, 23-25 October 2002, pp. 171–172 (2002)

57. Tsai, W.T., Paul, R.J., Cao, Z., Yu, L., Saimi, A.: Verification of Web services using an
enhanced UDDI server. In: Proceedings of the Eighth International Workshop on Object-
Oriented Real-Time Dependable Systems, pp. 131–138 (2003)

58. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg (2005)

59. Heckel, R., Lohmann, M.: Towards contract-based testing of web services. Electr. Notes
Theor. Comput. Sci. 116, 145–156 (2005)

60. Bai, X., Xu, D., Dai, G.: Dynamic reconfigurable testing of service-oriented architecture.
In: 31st Annual International Computer Software and Applications Conference (COMPSAC
2007), Beijing, China, 24-27 July 2007, pp. 368–378 (2007)

61. Bertolino, A., De Angelis, G., Polini, A.: A QoS test-bed generator for web services. In:
Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 17–31.
Springer, Heidelberg (2007)

62. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Model-Based Generation of Test-
beds for Web Services. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) Test-
Com/FATES 2008. LNCS, vol. 5047, pp. 266–282. Springer, Heidelberg (2008)

63. Canfora, G., Di Penta, M.: SOA: Testing and self-checking. In: Keynote speech at the Inter-
national Workshop on Web Services - Modeling and Testing (WS-MATE 2006) (2006)

64. Forestiero, A., Mastroianni, C., Papadakis, H., Fragopoulou, P., Troisi, A., Zimeo, E.: A
scalable architecture for discovery and composition in P2P service networks. In: Grid Com-
puting: Achievements and Prospects. Springer, Heidelberg (2008)



The PLASTIC Framework and Tools for Testing
Service-Oriented Applications

Antonia Bertolino1, Guglielmo De Angelis1, Lars Frantzen1,2,
and Andrea Polini1,3

1 Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche, Pisa, Italy

{antonia.bertolino,guglielmo.deangelis}@isti.cnr.it
2 Institute for Computing and Information Sciences

Radboud University Nijmegen, The Netherlands
lf@cs.ru.nl

3 Department of Mathematics and Computer Science
University of Camerino, Italy
andrea.polini@unicam.it

Abstract. The emergence of the Service Oriented Architecture (SOA) is
changing the way in which software applications are developed. A service-
oriented application consists of the dynamic composition of autonomous
services independently developed by different organizations and deployed
on heterogenous networks. Therefore, validation of SOA poses several
new challenges, without offering any discount for the more traditional
testing problems. In this chapter we overview the PLASTIC validation
framework in which different techniques can be combined for the verifi-
cation of both functional and extra-functional properties, spanning over
both off-line and on-line testing stages. The former stage concerns de-
velopment time testing, at which services are exercised in a simulated
environment. The latter foresees the monitoring of a service live usage,
to dynamically reveal possible deviations from the expected behaviour.
Some techniques and tools which fit within the outlined framework are
presented.

1 Introduction

A widely used approach to validation in industrial software development is test-
ing, which consists of observing the behavior of a program under some controlled
executions [7]. Indeed, testing provides a feasible and effective strategy to check
that a software implementation conforms to the specifications, or to evaluate its
dependability and performance.

In the years, many different methods for test selection and execution have
been proposed. As new software paradigms emerge, testers have to take into
account many new features that in most cases make existing testing techniques
no more sufficient or sometimes not even applicable. Therefore, testing methods
and tools need to be continuously adapted and empowered to face the exigencies
posed by the evolution of the development process and programming approaches.

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 106–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



The PLASTIC Framework 107

The latest shift in software development is the Service-oriented Architecture
(SOA). All leading IT vendors, including IBM, SAP, Microsoft, Oracle, have al-
ready moved towards service-centric. Service-based technology promises to easily
integrate software components deployed across distributed networks by different
providers. Its great appeal derives from the announced flexibility and interoper-
ability among heterogeneous platforms and operating systems, that is achieved by
means of loose coupling, implementation neutrality and flexible configurability [22].

Loose coupling among services means that the mutual dependencies are min-
imized and maintained exclusively through standardized interfaces. The latter
feature ensures implementation neutrality, in that the internal implementation
details of a service must be totally uninfluential: a service must be seen as a
“black box”. But the most compelling feature of SOA is that its configuration
can change dynamically as needed and without loss of correctness [22].

Unfortunately, these very same features that make SOA highly attractive
to vendors and integrators, pose new difficult challenges to testers. Simplifying
in a sentence, testing a program (or a subprogram) amounts at anticipating at
development time a relevant and comprehensive sample of the potential program
invocations in operation. Hence traditional testing presupposes that before a
product is released, someone from the development organization or a third party
is sufficiently acquainted with the intended system behavior and can control its
configuration, so to select and launch an adequate executions sample (the test
suite).

It is evident that in service integration such an assumption does not hold
anymore: according to the SOA paradigm, services can discover each other at
run-time and can select the partner to interact with based on parameters that
are only defined at run-time. Therefore, new approaches and means for testing
must be sought.

Interesting challenges for validation also stem from the great relevance of
extra-functional requirements in SOA. As services are used in a pervasive way, in
fact, ensuring adequate levels of their provided Quality of Service (QoS) becomes
as important as guaranteeing their proper functional behavior. Therefore, an
additional task that testers need to accomplish concerns the advance evaluation
of the QoS characteristics of the System Under Test (SUT).

All the above issues are attracting great interest from researchers in industry
and academia, and several techniques and tools have been proposed for SOA
testing. A broad survey of such approaches is provided in Chapter 4 [9] of this
book, and we refer to it for related work discussion. In this chapter we specifi-
cally focus on the framework for SOA testing developed in the European Project
PLASTIC (Providing Lightweight and Adaptable Service Technology for perva-
sive Information and Communication) [12].

PLASTIC aims at facilitating the cost/effective development of adaptable
context-aware services, with a special emphasis on enforcing service dependabil-
ity. The project has been inspired by the vision that service development plat-
forms for B3G (Beyond 3rd Generation) networks will be effective and successful
only if the services they deliver are adaptive and offer Quality of Service (QoS)



108 A. Bertolino et al.

guarantees to users despite the uncontrolled open wireless environment. This vi-
sion is pursued via a development paradigm based on Service Level Agreements
(SLAs) and resource-aware programming. The project, started in 2006 and now
approaching its conclusion, has developed a SOA platform integrating:

– A development environment leveraging model-driven engineering for the rig-
orous development of SLA- and resource-aware services, which may be de-
ployed on the various networked nodes, including handheld devices;

– A middleware leveraging multi-radio devices and multi-network environ-
ments for applications and services run on mobile devices, further enabling
context-aware and secure discovery and access to such services;

– A validation framework enabling off-line and on-line testing of networked
services, encompassing functional and extra-functional properties.

This chapter is meant as a brief summary of the PLASTIC validation frame-
work and is not exhaustive of all research results and tools achieved in the
project. Further information of the other PLASTIC tools and approaches can be
found in the project deliverables and publications [12]. Indeed, another chapter
in this volume [24] broadly discusses challenges for the software of the future, and
in particular it illustrates possible solutions that have been investigated within
PLASTIC. In this chapter we expand the discussion to challenges and solutions
concerning testing activities.

Focusing on the validation framework, the above distinction between off-line
and on-line approaches concerns the stage and the context in which the testing
is carried on. In off-line testing, the system is still undergoing development or,
in a wider-ranging view, it is already completed but not available for use yet.
Hence, off-line validation implies a more traditional view that a system is tested
in the laboratory, within an environment that reproduces or simulates possi-
ble real interacting situations. The advantage of off-line validation activities is
that these are performed while no customer is using the service, thus avoiding
undesired side-effects. On the other hand, on-line approaches concern a set of
increasingly used techniques to monitor the system in its real working context
after its deployment. A possible scenario is that while the end-users are using the
service, real data are collected and sent back to the developers, e.g., for deter-
mining whether the service behavior is correct or for performing extra-functional
analyses. Hence, on-line “test cases” consist of actual usage scenarios. Another
scenario can be that the development organization performs on-line validation
activities on a fielded service, with selected test cases, possibly during idle times.

In the following of this chapter we first provide (in Sect. 2) a brief overview
of the whole PLASTIC validation framework. In Sect. 3 we provide some back-
ground information to the presented tools, and outline an example scenario on
which the tools application is illustrated. Then, in Sect. 4 we present in more
detail a set of testing tools proposed for testing a service before it is published,
namely the tool Jambition (Sect. 4.1) for functional off-line testing, and the tool
Puppet (Sect. 4.2) for the generation of a testbed respecting both functional
and extra-functional specifications. Sect. 5 presents and discusses the Audition



The PLASTIC Framework 109

framework (Sect. 5.1) that supports on-line testing before a service is published.
Conclusions are drawn in Sect. 6.

2 The PLASTIC Validation Framework

The PLASTIC project aims at enabling the development and deployment of
adaptable robust services for B3G networks. For this purpose, it has developed
a comprehensive platform integrating both adequate software methodologies and
tools, and the supporting middleware. The project has devoted special concern
to equip the platform with suitable validation technology. A team of several
partners has contributed with different approaches and tools for service analysis,
testing and evaluation. Such approaches and tools are intended for usage at
different phases of the lifetime of a service.

With reference to Fig. 1 below, a service life-cycle can include the following
steps: after being developed, it must be installed and deployed for being made
accessible to potential customers. To facilitate discovery, a service provider can
then explicitly request to be registered with a registry (such as the UDDI [28]).
We distinguish between the act of submitting the request for being included
in the register, which we indicate as the “Admission” stage, and the actual
inclusion of the service in the registry (publication), after which the service is
made publicly accessible. Finally, the service enters live usage.

Fig. 1. PLASTIC Testing stages

Considering this service life-cycle model, three testing stages have been iden-
tified in the PLASTIC validation framework. They are shown in the figure with
arrows pointing to the related life-cycle stages (Development, Admission, Live
Usage), and include:

– Development Testing and Experimentation;
– Audition;
– Monitoring.

In principle, it is assumed that the three stages proceed in sequential order, since
a service is first developed, then deployed, then used. There are however clear re-
lationships among the stages. In particular the results of the analyses conducted



110 A. Bertolino et al.

off-line may be used to guide the on-line validation activities. Moreover, the re-
sults from analysis during the on-line validation might provide a feedback to the
service developer or to the service integrator, highlighting necessary or desirable
evolutions for the services, and therefore might be used for off-line validation of
successive enhanced versions of services.

Having made clear the context for the three introduced stages for validation
in PLASTIC, we describe in the following of this section the integrated frame-
work in which all the PLASTIC developed approaches and tools fit together. An
overall picture of the PLASTIC Validation Framework1 is illustrated below in
Fig. 2. Given the broad variety of PLASTIC target applications, this validation
framework is not conceived as a fixed methodology, but rather as a set of tech-
niques/tools that can be used alternatively, or in combination, depending on the
constraints and exigencies of the considered application/scenario.

Fig. 2. PLASTIC Validation Framework

2.1 Development-Time Testing

As shown in Fig. 2, the PLASTIC off-line testing tools include: Jambition (with
its library Minerva), Puppet and Weevil.

The Jambition tool relies on a model-based testing approach originating from
a sound and well-established formal testing theory. The key idea of this tool is
to exploit as much as possible the behavioral description often available for de-
ployed services to automatically derive a conformance test suite for a service
under development. Due to the extreme dynamicity of the service domain, many
authors have suggested to augment the service WSDL description with opera-
tional specifications in order to characterize services in a richer way. Jambition

1 All the PLASTIC test tools can be freely downloaded at [35].



The PLASTIC Framework 111

assumes that such specifications are available in the Symbolic Transition System
formalism, as introduced in Sect. 3.2, or through its UML interface, implemented
via the Minerva library. The Jambition tool is illustrated in Sect. 4.1.

As services are discovered and integrated only at run-time, it is difficult – if at
all possible – to have advance guarantees on service behavior. This is particularly
true when extra-functional properties are considered. Nevertheless, developers
need tools and techniques to assess the quality of a service before its final de-
ployment. Services in general may invoke other services in order to carry out the
computation requested by the clients. If this invocation is directed to a service
that does not refer to stateful resources, then for testing purposes it is possible to
use existing and already running services. Conversely, if the invoked service ac-
cesses stateful resources, this option must be ruled out and the required services
have to be simulated. Within PLASTIC the problems of reproducing predictable
run-time environment is addressed providing two different tools, Puppet and
Weevil, which allow the developers to mock up different live usage scenarios.

In particular,Puppet supports the automated derivation of the elements neces-
sary to recreate a predictable “live” environment that is suitable for the evaluation
of extra-functional properties.Puppetallows testers to automatically generate the
required services in such a way that they yield the “correct functional and extra-
functional behavior” with respect to a given specification. As in the case of Jam-

bition, we assume that the functional specification is given by means of Symbolic
TransitionSystem formalism.Concerning the extra-functional specification,weas-
sume that it is based on the WS-Agreement language, as discussed in Sect. 3.3. How
Puppet works is further discussed in Sect. 3.3.

Finally, Weevil is meant to ease the reproduction of distributed experimental
environments. In particular it permits to recreate expected workload to stimulate
the service under test, to remotely deploy the various element required by the
experiment, and to collect data during the experiment. Weevil is not further
discussed in this chapter, we refer to the PLASTIC project site [12] for more
information and for getting the tool.

2.2 Admission Testing

The SOA foresees the existence of a service broker that is used by services to
search and obtain references to each other. The idea of Admission testing is
to have the service undergo a preliminary testing stage (also referred to as an
audition) whose results will decide the actual registration of the service in the
directory.

The intuition of Admission testing is that the quality of registered services
can be increased by granting the registration only to those services that pass the
audition testing phase. At the same time this should provide better confidence
in the fact that services will interact in a correct way even if they discover each
other at run-time.

Admission testing clearly raises issues regarding the invocations to fully-
operating services (as opposed to services being auditioned). This may be par-
ticularly dangerous if the services invoked are related to stateful resources. In



112 A. Bertolino et al.

order to avoid side effects resulting from invocations fired in the process of au-
diting a service, suitable countermeasures must be taken. Sect. 5.1 introduces
the issues behind admission testing, while Sect. 5.2 presents WS-Guard, which
is an implementation of a directory service conforming the UDDI specification
that permits to test services before their registration.

2.3 Live Usage Verification

Difficulties in applying verification techniques before live usage suggest to extend
the verification phase till run-time. The idea is to add suitable mechanisms to the
SUT and the middleware so as to detect violations with respect to the expected
behavior of services.

Within PLASTIC two different activities, aiming at the development of mon-
itoring mechanisms, have been activated. The first of these approaches, called
Dynamo-AOP, focuses on functional behavior of orchestrated services, and pro-
vides support to augment orchestrating services with checks, in order to verify
that the orchestrated services behave as expected.

Another approach in this category, called SLAngMon, supports the monitor-
ing and logging of extra-functional properties for running services. In particular,
SLAngMon implements a mechanism to automatically generate on-line check-
ers of Service Level Agreements (SLAs). The approach is founded on the timed
automata theory.

Dynamo-AOP and SLangMon are not further discussed in this chapter,
but are both extensively documented and made available in the PLASTIC web
page.

3 Modelling Service Properties

In this section we introduce the modelling notations adopted by the tools pre-
sented in the chapter. The notations are exemplified on a simple case study,
presented below.

3.1 An Example Service Scenario

We will exemplify the several testing approaches and tools on a common case
study. It is a simplified variant of the scenario presented in [2], in which three
services – the customer, the supplier, and the warehouse – cooperate to achieve
the task of a trade. The customer service is interested in buying a certain amount
of a given product, and queries the supplier service for a quote for the product of
interest. Having received the request, the supplier queries the warehouse service
to check if the requested quantity is in stock. The information provided by
the warehouse is then returned to the customer service. If satisfied with the
provided quote, the customer can proceed with the order. We will also look
at advanced interactions like supplier authentication and bonus accounting. We
can realistically assume that the three services are implemented and provided



The PLASTIC Framework 113

Fig. 3. The Customer-Supplier-Warehouse Case Study

by different stakeholders, and that their interactions are governed by functional
specifications under agreed levels of QoS, as shown in Fig. 3.

3.2 Modeling Functional Behavior

The functional behavior of a stateful software entity like a class, component, or
service, is commonly modelled using a state machine. There are many flavors
of such machines defined. For model-based testing purposes there are two main
classes of relevant models - Labelled Transition Systems (LTSs) [8] and Mealy
Machines [26] (often just referred to as Finite State Machines (FSMs)). Most
common model-based testing theories are based on either the LTS or the FSM
model. One important feature of these models is their simplicity - labels on
transitions correspond to basic actions like for instance pushing the button,
or invoking operation succ(41) on the service. Whereas this simplicity
is helpful in defining testing theories and algorithms, it is often hindering for
modeling real-world systems. Instead of using just basic actions, one would like
to use concepts known from programming languages like variables, conditional
branching, etc. Such concepts are sometimes referred to as symbolic concepts.
One prominent symbolic model is the UML 2.0 state machine [29]. To use the
accessible and broadly accepted model of an UML state machine together with
the precise and well-defined testing theories, one has to define a mapping from
UML state machines to LTSs or FSMs.

A model which is somewhat similar to UML state machines is a Symbolic
Transition System (STS). STSs are a well studied formalism in modeling and
testing of reactive systems [16], and they can be mapped to LTSs. Still, also
STSs could sound unfamiliar and difficult for practitioners. But since STSs are
close to UML state machines we developed a library called Minerva [35], which
transforms UML state machines modelled with MagicDraw [19] – a commercial
UML modeling tool – into STS representations understood by the tools we will
present later. Thus, a developer can use MagicDraw to model the functional-
ity of service interfaces in the common formalism of UML state machines. We
do not describe this transformation here, but present instead directly the STS
formalism. Finally, the important notion of a testing relation, which precisely
defines when a system conforms to its specification, is introduced.



114 A. Bertolino et al.

Symbolic Transition Systems. In our setting, STSs specify the functional
aspects of a service interface. Firstly, there are the static constituents like types,
messages, parameters, and operations. This information is commonly denoted
in the WSDL [10]. Secondly, there are the dynamic constituents like states, and
transitions between the states. STSs can be seen as a dynamic extension of a
WSDL. They specify the legal ordering of the message flow at the service inter-
face, together with constraints on the data exchanged via message parameters
(called parts in the WSDL).

An STS can store information in STS-specific variables. Every STS transition
corresponds to either a message sent to the service (input), or a message sent
from the service (output). Furthermore, a transition can be guarded by a logical
expression. After a transition has fired, the values of the variables can be up-
dated. Due to its extent and generality we do not give here the formal definition
of STSs, which can be found in [16]. Instead, we exemplify the concepts in the
setting relevant for this paper.

We assume that data types in the WSDL are specified via XML Schema
types, as commonly done. For our example scenario we first have a closer look at
the warehouse service. Firstly, we need some complex types to represent quote
requests, quotes, and addresses. We depict them in form of a class diagram:

The next table lists the operations we assume to be present in the WSDL of the
warehouse:

Operation Input Message Output Message
checkAvail ?checkAvail(r : QuoteRequest) !checkAvail(q : Quote)
auth ?auth(pw : String) !auth(q : Quote)
cancelTransact ?cancelTransact(ref : Integer) —
orderShipment ?orderShipment(ref : Integer, adr : Address) —

Since the two operations cancelTransact and orderShipment do not have
an output message, they are, in the WSDL jargon, oneway operations. The other
operations have an input and an output message - they are request-response op-
erations. Figure 4 shows an STS specifying the warehouse service. Initially, the
warehouse is in state 1. Now a user of the service (in our example the supplier)
can invoke the checkAvail operation by sending the ?checkAvailmessage. This
corresponds to the transition from state 1 to state 2. The guard of the transi-
tion [between square brackets] restricts the attribute quantity of parameter r
(which is of type QuoteRequest) to be greater than zero. After the transition
has fired, the requested quote object r is saved in the variable qr (which is



The PLASTIC Framework 115

?checkAva i l<r:QuoteReques t>
[ r .quant i ty  > 0]
qr  = r ;

?orderShipment<ref:Integer, adr:Address>
[ref  == q i . re fNumber ]

!checkAva i l<q:Quote>
[q.s ta tus  == SOLDOUT]

?cancelTransact<ref:Integer>
[ ref  == q i . re fNumber ]

1 2 3 4

!checkAva i l<q:Quote>
[qr.quanti ty > MAXQ &&
 q.s ta tus  == AUTHREQ]

!checkAva i l<q:Quote>
[qr.quant i ty  <= MAXQ &&
 q.status == VALIDQUOTE &&
 q.product  == qr.product  &&
 q.quant i ty  == qr .quant i ty  &&
 q.pr ice > 0.0 &&
 q.refNumber > 0]
q i  = q;

?au th<pw:S t r ing>
[ ]
spw = pw;

!au t h<q :Quo te>
[q.s ta tus  == PWINVAL &&
 not va l id(spw)]

5

!au t h<q :Quo te>
[va l id(pw) &&
 q.status == VALIDQUOTE &&
 q.product  == qr.product  &&
 q.quant i ty  == qr .quant i ty  &&
 q.pr ice > 0.0 &&
 q.refNumber > 0]
q i  = q;

Fig. 4. The Warehouse STS

also of type QuoteRequest) via the update statement qr = r;. Next, the ware-
house has to return a Quote object via the return parameter q. Three things can
happen. Firstly, the requested product may not be in stock with the requested
quantity. In this case a Quote object is returned with the status attribute be-
ing SOLDOUT (transition from state 2 to state 1). Secondly, if the product is in
stock and the requested quantity is less than or equal some limit MAXQ, a Quote
object is returned with status VALIDQUOTE, the same product and quantity
as being requested, and a price and refNumber greater than zero (transition
from state 2 to state 5). We save here the issued quote q in the variable qi.
Thirdly, if the requested quantity exceeds MAXQ, a quote is returned with status
AUTHREQ (transition from state 2 to state 3). This informs the supplier to pro-
vide a password string via the auth operation (transition from state 3 to state
4). If the password is invalid, a quote with status PWINVAL is returned (tran-
sition from state 4 to state 3), and the user has to invoke the auth operation
again. Given a valid password, a valid quote is returned (transition from state
4 to state 5). Being in state 5, again two things can happen. Either the user of
the service decides to reject the quote. He/she invokes the one-way operation
cancelTransact by sending the message ?cancelTransact. Here he/she must
refer to the correct issued reference number refNumber. Or he/she decides to
accept the quote. In this case, in addition to the correct reference number, an



116 A. Bertolino et al.

?login<pw:S t r ing>
[ ]
spw = pw;

?newReques t<>

! login<resu l t :Boolean>
[resu l t  == fa lse &&
 not va l id(spw)]

? logou t<>

1 2 3 4

! login<resu l t :Boolean>
[ resu l t  == t rue &&
 va l id(pw)]

! reques tQuote<q:Quote>
[q.status == VALIDQUOTE &&
 q.product == PRODUCT &&
 q.quant i ty  == qr .quant i ty  &&
 q.pr ice > 0.0 &&
 q.refNumber > 0]
q i  = q;

?reques tQuote<r:QuoteReques t>
[r.quanti ty >= MINQUANT &&
 r.product == PRODUCT]
qr  = r ;

! reques tQuote<q:Quote>
[q.s ta tus  == SOLDOUT]

5

? logou t<>

?acceptQuote<ref: Integer>
[ref  = qi . refNumber]

Fig. 5. The Supplier STS

address must be provided as a second parameter to the ?orderShipmentmessage
(both messages are labelled at the transition from state 5 to state 1).

Next we have a look at the STS specifying the supplier service, see Fig. 5.
Its WSDL also specifies the QuoteRequest and Quote complex types, as shown
above. The operations are as follows:

Operation Input Message Output Message
login ?login(pw : String) !login(result : Boolean)
requestQuote ?requestQuote(r : QuoteRequest) !requestQuote(q : Quote)
acceptQuote ?acceptQuote(ref : Integer) —
newRequest ?newRequest() —
logout ?logout() —

The supplier interface is relevant for the customer service to request quotes
at the supplier. After a customer service has passed the login procedure (tran-
sitions between states 1, 2, and 3), a quote can be requested (transition from
state 3 to state 4). This supplier is specified to deal only with one specific prod-
uct, represented by the constant PRODUCT. Only quote requests for this product
are allowed by the guard r.product == PRODUCT. Furthermore, the requested
quantity has to be at least MINQUANT. Also the supplier uses the quote status
SOLDOUT to indicate to the customer that it could not reach a warehouse with
the product in stock (transition from state 4 to state 3). If, instead, a warehouse
could be reached with the product in stock, the corresponding quote is returned
to the customer (transition from state 4 to state 5). Finally, the customer can
either accept the quote, ignore the quote and request a new quote (both via



The PLASTIC Framework 117

transition from state 5 to state 3), or end the transaction (transition from state
5 to state 1).

Testing Relations. A testing relation precisely defines when a SUT conforms to
its specification. Even though SUTs are not formal models, but physical systems,
one can define this relation formally. The trick is to assume that the SUT can be
represented by some formal model (like an LTS or FSM). Having this assumption,
one can reason about the SUT by reasoning about the formal model it represents.
This assumption is referred to as the testing hypothesis. Albeit this formal model
is just assumed to exists, but not known for a given SUT, one can define a
testing relation by relating the formal models representing SUTs with formal
models representing the specifications. The gain of this effort is, that one can
unambiguously express what a testing algorithm is testing for, since the notions
of passing or failing a test case are formally defined. Furthermore, the testing
algorithm itself can be proven to be sound and complete for a given testing
relation, see also [36].

For the tools to be presented later in this paper two testing relations are specif-
ically important – ioco [36] and eco [14]. Both relations originate from the domain
of reactive systems. Such a reactive system is a more complex system than the
services we deal with here. The main difference is that we assume services to be
passive. What does that mean? Every service provides some operations via their
WSDL to potential users, who can connect to the service and invoke those opera-
tions. If it is a request-response operation, the service will send a response message
back, but it will never send a message to the user without being requested before-
hand. Even though the WSDL allows in principle to specify active services via
solicit-response and notification operations, such services are not in common use
since they do not easily map to current programming paradigms and service de-
ployment infrastructures. To overcome some issues related to the lack of active
services, techniques like asynchronous access via callback handlers [27] are used.

Due to the restriction to passive services the testing relations simplify, con-
cepts like quiescence [36] are not relevant here. We do not formally define the
relations, but give instead their intuitive meaning, and some hints to implemen-
tation issues. For the precise definitions please refer to the cited papers.

ioco tests the provided interface of an SUT. For passive services it simplifies
to the requirement: If the Web Service produces a response message x after some
specified trace σ, then the STS specification can also produce response message
x after σ. In other words, each observed response message must be allowed
by the STS specification. For instance, a ioco-tester for the warehouse would
play the role of the supplier, and test if the warehouse behaves conforming to
its STS specification, given in Fig. 4. It requires that the requested quantity
must be greater zero (transition from state 1 to state 2). Since this is an input
message, it is under the control of the ioco-tester, which has to take care to
respect this requirement by constructing a quote request with a positive quantity,
and invoking the checkAvail operation with it. Which exact positive quantity
is chosen, is at the discretion of the tester. We see here two tasks an automatic
test tool must perform:



118 A. Bertolino et al.

– construct input data which respects the given guard
– select a concrete input value in case of multiple solutions

Both problems can be difficult especially when dealing with symbolic models.
We will come back to this when presenting the specific tools.

The STS does not specify what should happen when a zero or negative quan-
tity is requested, we call this a partial specification since there are underspecified
inputs2. Since it is not specified, it is also not tested for, the default interpreta-
tion is that everything is allowed after non-specified inputs.

After having requested the quote, the warehouse must response a Quote ob-
ject. Here, the tester will receive the quote and check if it matches one of the
three cases specified (transitions from state 2 to states 1, 3, and 5). A potential
failure here is for instance a returned quote having status AUTHREQ, even though
the requested quantity was less or equal MAXQ. Or, the returned quote has status
VALIDQUOTE, but deals with a different product or quantity than requested – and
so on. We will come back to ioco-based testing when explaining the Jambition

tool in Sect. 4.1 and the WS-Guard tool in Sect. 5.2.
ioco aims at testing if a service does conform to its interface specification. The

question is: Does the service give the specified responses? The motivation of eco
is to answer the question: Is the service correctly invoked by other services? The
situation is somewhat dual to the ioco case. The starting point in both cases is
an STS specification of some service S. A ioco-tester takes the STS, plays the
role of a user of S, and generates requests to S as explained above. An eco
tester, instead, takes the STS, plays the role of S itself, and checks if a user of S
respects the STS specification. Again in simple words eco means here that each
operation invocation to S must be allowed by its STS specification.

Taking again the warehouse STS specification given in Fig. 4, an eco-tester
plays the role of the warehouse, and in doing so it can test if the supplier, while
using the warehouse, does respect the STS specification. Initially, the STS is in
state 1. The only allowed call here is checkAvail with a quantity greater zero.
If the eco-tester receives a different call from the supplier, it will alert a detected
failure of the supplier. If the call is correct, it moves to state 2. Now the tester
can decide if it either returns a quote with status SOLDOUT (back to state 1), or
if it checks the quantity and proceeds to state 3 or 5. We see here another choice
a test tool has to make:

– choose a transition in case of multiple options

This choice, together with the choice of a concrete input value (see above) does
affect the way the state space of the specification and the SUT is covered. Since
specification- and code-coverage are basically the only means to measure test
effectiveness, several approaches exist for making these choices. From simple
random choices to sophisticated techniques based, for instance, on symbolic

2 Underspecification of inputs has important consequences for the compositionality of
ioco and its interpretation of non-determinism. This is out of the scope of this paper,
please refer to [38].



The PLASTIC Framework 119

execution of the model and/or the source-code of the SUT, exist, see for in-
stance [31,34].

Let us further assume that the eco-tester decides to check the requested quan-
tity and that the quantity is greater MAXQ. It then constructs a quote with status
AUTHREQ, returns it to the supplier, and moves to state 3. Now it waits for the
supplier to invoke the auth operation. Assuming that the supplier does provide
a valid password here, the eco-tester moves the STS to state 4 and sees that the
password is valid. Next it constructs a Quote object with status VALIDQUOTE.
Also here the tester has many choices, every solution to the guard on the transi-
tion from state 4 to state 5 corresponds to a possible quote. After having made
that choice the tester moves the STS to state 5. Now it waits again for the
supplier to either cancel the transaction, or order the shipment. And so on.

One main observation here is, that an eco-tester for a service S does exactly
what we demand from a functionally correct stub for S. It accepts invocations
and always returns responses which are allowed by the given STS specification.
We will come back to eco-based testing when explaining the Puppet tool in
Sect. 4.2 and the WS-Guard tool in Sect. 5.2.

3.3 Modeling Extra-functional Behavior

In recent years both industry and academia have shown a great interest on ex-
pressing and modeling extra-functional properties by means of machine-readable
artifacts. Specifically, several proposals on specification languages for SLAs exist
(e.g. [23], [32], [17]).

Generally speaking, SLAs describe the agreements that a service commits to
accomplish when processing a request from a client, starting from the moment it
receives the request until the moment it replies [33]. QoS guarantees are usually
defined only as a provider constraint, and do not include any kinds of events
that the client may experience, for example due to the mobility of the devices
or traffic congestion problems.

Nevertheless, in some scenarios it would be interesting to deal with the QoS
perceived by the clients rather than the QoS offered by the services. Within
Puppet, we refer to a QoS testbed generator that can take into account also
how the mobility of the devices hosting the services can affect the QoS provided
at the service port (see Sect. 4.2).

In the rest of the section, we describe WS-Agreement [17], one widely used
notation in modeling extra-functional behavior in the Web Service communities.

WS-Agreement [17] is a language defined by the Global Grid Forum aim-
ing at providing a standard layer to build agreement-driven SOAs. The main
ingredients of the language concern the specification of domain-independent ele-
ments of a simple contracting process. Such generic definitions can be augmented
with domain-specific concepts. The top-level structure of a WS-Agreement is
expressed via an XML document comprising the agreement descriptive informa-
tion, the context it refers to and the definition of the agreement items. It includes
the involved parties as well as other aspects such as its expiration date.



120 A. Bertolino et al.

Fig. 6. WS-Agreement Structure

An agreement can be defined for one or more contexts. The defined consensus,
or obligations, of a party core in a WS-Agreement specification are expressed by
means of terms, organized in two logical parts. The Service Description Terms
part specifies the involved services. It describes the reference to a description of a
service, rather than describing it explicitly into the agreement. The second part
of the terms definition specifies measurable guarantees associated with the other
terms in the agreement. Such guarantees can be fulfilled or violated. A Guarantee
Term definition consists of the obliged parties (i.e, Service Consumer and Ser-
vice Provider), the list of services this guarantee applies to (Service Scope), a
boolean expression that defines the condition under which the guarantee applies
(Qualifying Condition), the actual assertions that have to be guaranteed over
the service (Service Level Objective - SLO), and a set of business-related values
(Business Value List) of the described agreement (i.e., importance, penalties,
preferences). In general, the information contained in the fields of a Guarantee
Term is expressed by means of domain-specific languages.

As introduced in Sect. 2.1, within Puppet we use the QoS properties con-
tained in an agreement specification in order to automatically derive the elements
necessary to recreate a testbed that is suitable for predicting the extra-functional
properties of the SUT.

Specifically, for each concept in the WS-Agreement (i.e., SLO, Qualifying
Condition, Service Scope) we define an interpretation of it by means of a
given operational semantics. Clearly, this can be a quite complex and effort-
prone task, but given a specific language and an intended interpretation of the
concepts, it has to be done only once and for all.

Precisely, such operational semantics is defined as a mapping from the declara-
tive XML descriptions of the supported QoS properties to composable Java code
segments. Such segments are then injected into the stubs composing the testbed
in order to emulate the extra-functional behavior. The mapping is specified in
a parametric format that is instantiated each time one occurrence of the con-
cept appears. Within the scope of this paper, we deal with two QoS properties:
latency and reliability. The remainder of this section introduces their character-
istics. Please note that the specifications of such QoS properties conform to the
definitions adopted within the PLASTIC Project [12]. Nevertheless, also other
definitions can be adopted (e.g. as in [30]).



The PLASTIC Framework 121

1 ...
2 <wsag:ServiceLevelObjective>
3 <puppetSLO:PuppetSLO>
4 <puppetSLO:Latency>
5 <value>25000</value>
6 <puppetSLO:Distribution>
7 <Gaussian>10</Gaussian>
8 </puppetSLO:Distribution>
9 </puppetSLO:Latency>

10 </puppetSLO:PuppetSLO>
11 </wsag:ServiceLevelObjective>
12 ...

–A–

1 ...
2 Density D = new Density();
3 long funcElapsedTime = puppet.ambition.Naturals.asNatural

(aMbItIoNinvocationTime - System.currentTimeMillis()
);

4 long maxSleepingPeriod = 25000 - funcElapsedTime;
5 Double sleepingPeriod = D.gaussian(maxSleepingPeriod,10);
6 try {
7 Thread.sleep(sleepValue.longValue());
8 } catch (InterruptedException e) {}
9 ...

–B–

Fig. 7. SLO Mapping for Latency

Latency is defined as a server-side constraint, and does not concern (just
ignores) other kinds of delays that the client may experience, for example due
to network failures or traffic congestion problems. Conditions on latency can
be simulated generating delay instructions into the operation bodies of the ser-
vices stubs. For each Guarantee Term in a WS-Agreement document, informa-
tion concerning the maximum service latency is defined as a Service Level
Objective. As an example, Fig. 7.A reports the XML code for a maximum la-
tency declaration of 25000msec normally distributed, and Fig. 7.B shows the
corresponding Java code that is automatically generated by Puppet.

When dealing with latency constraints, Puppet also has to deal with other
computational tasks, like generating a functionally correct return message, tak-
ing care of reliability constraints, etc. Since these tasks also consume time, Pup-

pet has to adapt the generated latency sleeping period. For example, consider
that the term in Fig. 7. A comes in combination with some functional com-
putation statements. If at run time these computations take 2sec, the delay of
the service is adjusted to the range of [0 ÷ 23000]msec. In case the calculation
of the functionally correct return message takes more than what is allowed by
the latency constraint, the stub raises an exception and has failed its purpose.
Since SLA latency constraints for services are commonly in the order of seconds,
the computational tasks needed to generate the return messages only miss such
deadlines in quite rare cases.

Reliability constraints are declared in the Service Level Objective of a
Guarantee Term, stating the maximal admissible number of failures a service
can raise in a given time window. Such kinds of QoS attributes can be reproduced
introducing code that simulates a service failure. Within Puppet, we map a
reliability failure via an exception raised by the platform hosting the Web Service
stub. An example of the Puppet transformation for reliability constraints is
shown in Fig. 8. Part A shows the XML code specifying a maximum allowed
number of three failures over an observation window of 2 minutes; part B gives
the corresponding Java translation, assuming that the Apache-Tomcat/Axis [3]
platform is used.

A guarantee in a WS-Agreement document could also be stated under an op-
tional condition expressed by means of some Qualifying Condition elements.
Usually such optional constraints are defined in terms of accomplishments that



122 A. Bertolino et al.

1 ...
2 <wsag:ServiceLevelObjective>
3 <puppetSLO:PuppetSLO>
4 <puppetSLO:Reliability>
5 <Reliabilitywindow>
6 120000
7 </Reliabilitywindow>
8 <MaxFailures>
9 3

10 </MaxFailures>
11 <puppetSLO:Distribution>
12 <Gaussian>
13 10
14 </Gaussian>
15 </puppetSLO:Distribution>
16 </puppetSLO:Reliability>
17 </puppetSLO:PuppetSLO>
18 </wsag:ServiceLevelObjective>
19 ...

–A–

1 ...
2 long winSize = 120000;
3 int maxFault = 3;
4 long currentTimeStamp = System.currentTimeMillis();
5 for (int i=0; i<faultBuffer.size();i++){
6 if (currentTimeStamp - faultBuffer.get(i) >= winSize){
7 faultBuffer.remove(i);
8 }
9 }

10 if (faultBuffer.size() < maxFault){
11 Density d = new Density();
12 double dv = d.gaussian(100);
13 if (dv > 50) {
14 String fCode = "Server.NoService";
15 String fString = "PUPPET�EXCEPTION�:�No�target�

service�to�invoke!";
16 org.apache.axis.AxisFault fault = new org.apache.

axis.AxisFault(fCode, fString, "", null);
17 aMbItIoNsim.undo();
18 faultBuffer.add(currentTimeStamp);
19 throw fault;
20 }
21 }
22 ...

–B–

Fig. 8. SLO Mapping for Reliability

the service consumer must meet. For instance, the latency of a service may de-
pend on the value of some parameters provided at run-time. In these cases,
the transformation function can wrap the simulating code obtained from the
Service Level Objective part within a conditional statement. As mentioned,
the scope for a guarantee term describes the list of services to which it applies. In
these cases, for each listed service, the transformation function adds the behav-
ior obtained from the Service Level Objective and Qualifying Condition
transformations only to those operations declared in the scope.

4 Off-Line Testing Tools

In this section two tools for off-line testing will be introduced: Jambition and
Puppet. Whereas the former is a model-based functional testing tool, the latter
is an automatic generator for service stubs respecting both a functional- and
an extra-functional specification. The underlying models and theories have been
explained in the preceding Sect. 3.

4.1 Jambition

Jambition [35] is a Java tool which automatically tests Web Services based on
STS specifications, Fig. 9 shows a screen-shot. The underlying testing relation
is ioco. Both STSs and the ioco relation have been introduced in Sect. 3.2.

The testing approach of Jambition is random and on-the-fly. This basically
means that out of the set of specified input actions one input is chosen randomly,
and then given to the service (i.e., an operation is invoked). Next, the returned



The PLASTIC Framework 123

Fig. 9. The Jambition Testing Tool

message (if any) is received from the service. If that output message is not al-
lowed by the STS, a failure is reported. Otherwise the next input is chosen – and
so on. The on-the-fly approach differs from more classical testing techniques by
not firstly generating a set of test cases, which are subsequently executed on the
system. Instead, the test case generation, -execution, and -assessment happen
in lockstep. So doing has the advantage of allaying the state space explosion
problem faced by several conventional model-based testing techniques. The ra-
tionale here is that a test case developed beforehand has to consider all possible
outputs the system might return, whereas the on-the-fly tester directly observes
the specific output, and can guide the testing accordingly. Another cause of state
space explosion is the transformation of symbolic models like STSs into seman-
tic models like Labeled Transition Systems (LTSs). Several tools like TorX [37]
and TGV [25] do this step to apply test algorithms which are defined on LTSs.
Jambition also solves this issue by skipping this transformation step. Instead,
its test algorithm, which is proven sound and complete for ioco, is dealing di-
rectly with the STS, see [15] for details. We have seen in Sect. 3.2 that a test
tool has to perform three tasks:

1. construct input data which respects the given guard
2. select a concrete input value in case of multiple solutions
3. choose a transition in case of multiple options



124 A. Bertolino et al.

To deal with the first task, Jambition consults the constraint solver of GNU
Prolog [18] via a socket connection. That solver can compute solutions to con-
straints expressed over finite domain variables, which have a domain in the range
[0..max integer]. Since Web Services do not only deal with integer data, it would
be quite restrictive to only allow integer message parameters. Fortunately, sev-
eral types can be mapped to integers, so that constraint solving is still possible
with them. In its current version, Jambition supports the simple types Integer,
Boolean, String, and Enumeration. Furthermore, there is an experimental sup-
port for Double values having a fixed number of decimal places (to express for
instance prices of products, as used in our example case study). Such “fake”
doubles can also be mapped to integers. To express the STS transition guards,
the most usual operators known from common programming languages can be
used for integer- and boolean expressions. For enumerations and strings the only
supported operator is (in)equality, see the manual for details [35]. Sometimes
Web Services also deal with complex types, which store a sequence of data ob-
jects of arbitrary types, either simple or complex. Such a complex type is for
instance used to represent struct data known from C, or objects of classes in
OO languages. When explaining the warehouse service in Sect. 3.2 we have al-
ready seen three examples of complex types - QuoteRequest, Quote, and Address.
Jambition also allows complex types, but not in a recursive manner, meaning
that a complex type must not have a field of its own type. This excludes recursive
types like lists and trees.

To deal with the second task, Jambition either selects a random value in
case the input is not constrained by a guard. If it is constrained, four heuristics
can be applied:

– min: choose the smallest solution
– max: choose the greatest solution
– middle: choose the solution in the middle
– random: choose a random solution

For instance, in Fig. 4 the transition from state 1 to state 2 requires r.quantity
> 0. If we decide to choose the smallest solution, we get r.quantity = 1. But
if MAXQ is greater 0, always choosing r.quantity = 1 will have the consequence
that states 3 and 4 will never be reached. Thus, choosing a random solution is
commonly good practice. To deal with the third task, a purely random choice is
made. Being more sophisticated in these respects is one of our main future work
goals.

To visualize the ongoing testing process, and to understand a reported fail-
ure, Jambition can display the messages exchanged with the service while being
tested in real-time via the Quick Sequence Diagram Editor [20], an exter-
nal Java open-source visualizer for UML sequence diagrams. Figure 10 shows
an excerpt of a sequence diagram representing the message exchange between
Jambition and a warehouse service, being tested based on the STS specification
from Fig. 4.

The left lifeline corresponds to Jambition, the right one to the warehouse
service. The topmost message seen, sent from Jambition to the warehouse,



The PLASTIC Framework 125

Fig. 10. The Quick Sequence Diagram Editor

invokes the checkAvail operation with the QuoteRequest object r. The product
attribute of r is bar, and the quantity equals 33. The corresponding STS tran-
sition goes from state 1 to state 2. Since this is a request-response operation,
the warehouse sends back a response message, depicted as the following return
message (for technical reasons the returned Quote object is called return, not q,
as in the STS). The last field of the offered quote is the status attribute, being
2, which is the encoding of SOLDOUT. Jambition receives the return message and
moves the STS back to state 1. Now it again has to construct a quote request,
this time it chooses a quantity of 34, also for the bar product, and the returned
status is 1, which corresponds to AUTHREQ (transition from state 2 to 3. Next,
Jambition sends a password string (“Ken sent me”) via the auth operation
(transition from state 3 to 4). Since the password string is not constrained, the
probability that Jambition randomly chooses the right one is negligible. To still
make it pick the right one once in a while, extra options can be set. The chosen
password is correct in this case, and the warehouse returns a quote with status
4, meaning VALIDQUOTE. Here Jambition has to check the guard on the transi-
tion from state 4 to state 5, which is true, the warehouse behaves as specified:
the product is bar, the quantity equals 34, the price is 23.4 > 0.0, and the
refNumber is 64 > 0. Finally, Jambition decides to order the shipment via the
oneway operation orderShipment, depicted as an asynchronous message. And
so on.



126 A. Bertolino et al.

Furthermore, Jambition displays the achieved state- and transition coverage
of the STS, see Fig. 9 (Jambition calls states locations and transitions switches).

4.2 Puppet

In this section, we introduce Puppet illustrating first the main characteristics
of the approach and then the logical architecture of the implemented tool. The
idea of Puppet is general and could be applied to any instantiation of the SOA.
However, the current implementation focuses on the Web Services technology.

In SOAs, services collectively interact to execute a unit of programming
logic [2]. Service composition allows for the definition of complex applications
at higher levels of abstractions. Nevertheless, since services are always part of a
larger aggregation, their executions often rely on the interaction with other/ex-
ternal services.

In such a cooperating scenario, let us consider the example of a service provider
who develops a composite service (i.e., the SUT), which is intended to interact
with several other existing services (e.g. the supplier in the example at Sect. 3.1).
In general, we can suppose that the service provider needs to test the implemen-
tation of the SUT, but he/she does not own or control the externally invoked
services: for example interactions may have a cost that is not affordable for
testing purposes, or the external services are being developed in parallel with
the SUT.

The approach proposed by Puppet is to automatically derive stubs for the
externally accessed services Si from published functional and extra-functional
specifications of the external services. Puppet generates an environment (the
services stubs) within which the composite service can be run and tested (see
Fig. 11).

While various kinds of testbed can be generated according to the purposes
of the validation activities, Puppet aims specifically at providing a testbed for
reliable estimation of the exposed QoS properties of the SUT. Concerning the
externally accessed services, Puppet is able to automatically derive stub services
that expose a QoS behavior conforming to the extra-functional specifications
such as agreements among the interacting services.

Once the QoS tested is generated, the service provider may test the SUT by
deploying it on the real machine used at run-time. This would help in providing
realistic QoS measures preventing the problem of recreating a fake deployment
platform; in particular, the QoS evaluations will also take into account the other
applications running on the same machine that compete for resources with the
service under test (it is worth noting that handling this case would be extremely
difficult using analytical techniques).

The stubs developed thus far include the set of operations they export and
the emulation code for the extra-functional behaviors as specified in the WS-
Agreement. Moreover, Puppet includes a module to link each stub with code
emulating the supposed functional behavior [5]. This module is optional, in the
sense that is anyhow possible to skip it and still generate working stubs that
only emulate the extra-functional behavior of the real services.



The PLASTIC Framework 127

Fig. 11. General idea of Puppet

The functional behavior of a service is modeled by means of the STS models
as described in Sect. 3.2. Puppet inserts into the stubs parametric code able
to wrap an STS simulator we have developed [21]. The simulator simulates the
STS according to the eco testing relation. Specifically, for each invocation to a
service the stub can call the STS simulator package, choose one of the possible
functionally correct results, and send it back to answer the service client request.
The STS simulator can keep track of the symbolic states in which the STS
can currently be. Thus, to supply the emulation of the functional behavior,
Puppet would demand that the external services carry on the STS specification
corresponding to their provided interface.

In the following at Sect. 4.3 we will show an example on how the eco testing
relation enhances the ability of the testbed in revealing extra-functional bugs
in the SUT. Also, note that both the specification, and simulation of the STS
are subject to the same restrictions as the ones given for the Jambition tool in
Sect. 4.1 since the STS simulator is also used by Jambition as its underlying
engine.

Latest works on Puppet concerns the module that finally plugs into the
obtained stubs the emulation of the mobility. The detailed description of this
module is given in [6].

In the end, Puppet generates service stubs that can be used by the testers in
order to mock-up the deploying environment they would emulate. The architec-
ture of Puppet is structured in layered modules, whereby each module plays a
specific role within the stub generation process. The detailed description of the
architecture is reported in [5].

4.3 Combined Functional and Extra-functional Testing Mode

The two off-line approaches presented can be fruitfully combined, as functional
testing can be influenced by extra-functional properties and vice-versa. We have



128 A. Bertolino et al.

previously discussed this combined approach in [5]. Below, we provide two ex-
amples extracted from [5], referring again to the customer, supplier, warehouse
scenario introduced in Sect. 3.1.

Detecting Extra-functional Failures. This case refers to the task of the
developer to derive reliable values for the quality levels of the newly developed
service by taking into account the QoS of the external services.

As described in [5], a testbed that emulates the QoS features respecting also
the functional protocols on the one hand it gives a more realistic model of the
deployment environment; on the other hand it can reveal extra-functional leaks
that can be closely related to functional values.

For example, the enforcement of its functional protocol by the warehouse
stub may reveal failures in the extra-functional behavior of the supplier. Going
in detail, let us assume that the supplier has to meet a given SLA on latency
regarding the interactions with its clients, namely processing each request within
40000msec. As defined in the agreement with the warehouse shown in Fig. 7,
each interaction between the warehouse and the supplier service can take up to
25000msec. Take also into account, as described in Sect. 3.2, that the warehouse
service requires an additional authentication step in case the product quantity
exceeds MAXQ (see Fig. 4).

A potential extra-functional failure here is, that when the authentication of
the supplier is required, the time needed by the supplier to fulfill a client request
may violate its SLA. Even if the first password provided is correct, the response
of the warehouses to the availability request (the arc from state 2 to state 3
in Fig. 4), together with the response to the provided password (the arc from
state 4 to state 5 in Fig. 4), may in the worst case sum up to 50000msec,
which respects for each invocation the SLA exposed by the warehouse, but breaks
the supposed SLA between the supplier and the client. Given a warehouse stub
which does not have any notion of the functional protocol might never notice the
necessity of authentication for a supplier. Each request is considered stand-alone,
and no relation to previous or following requests, including data interdependency,
exist. Thus, in a mere extra-functional testbed this extra functional failure can
easily be invisible.

Detecting Functional Failures. Similarly to what discussed above, in [5] it
is shown how the extra-functional correctness of the stubs, can reveal further
functional issues of the services under test.

To exemplify this, assume a supplier offering a special welcome discount to
new clients for their first five purchases. Furthermore, let us consider that the
supplier behaves as depicted in Fig. 12. For a given client, the supplier asso-
ciates a counter FreeOrder, initially being five, which is decremented each time
the client places an order. To fulfill the order request, the supplier invokes the
orderShipment operation of the warehouse stub. In case a reliability failure oc-
curs now, this is propagated to the client. Let us recall that the interactions
between the supplier and the warehouse service is governed by an SLA contain-
ing a reliability clause as specified in Fig. 8. The supplier service is not prepared



The PLASTIC Framework 129

Fig. 12. Functional Fault Revealed by a Reliability Constraint

to deal functionally properties with such a reliability failure in the sense that
it does not increase again the FreeOrder counter to its original value. This is
necessary since the warehouse does not process the order due to its reliability
failure - the products cannot be purchased by the client of the supplier. As a con-
sequence, each reliability failure reduces the number of discounts by one, even
though no goods have been purchased by the client. Such kinds of functional
failures cannot be discovered using a testbed that only reproduces functionally
correct behavior, ignoring the extra-functional specifications.

5 On-Line Testing Approaches

This section discuss on-line web-services testing strategies. Run-time testing can
be a quite dangerous activity in particular when it involves stateful resources.
Therefore in some cases run-time testing of services is not a valid option being
monitoring a possible alternative solution for run-time verification. Obviously the
drawback in this case is that observed fault are “real” i.e. they really exist on the
running system. As a result monitoring approaches have to be combined with
recovery strategies. In this paper we limit our discussion to testing strategies and
in particular in this section with respect to the framework illustrated in Sect. 2
we discuss a suitable approach for the admission testing phase. The interested
reader can refer to [4] for approaches to run-time monitoring.

5.1 The Audition Framework

The basic idea behind the audition framework is to test a service when it asks for
registration within a directory service. Then in case the service fails to show the
required behavior the registration in the directory is not granted. In this sense
we called the framework “Audition”, as if the service undergoes a monitored
trial before being put “on stage”.

It is worth noting that from a scientific point of view the implementation
of the framework does not really introduce novel testing approaches. On the



130 A. Bertolino et al.

Fig. 13. The Audition Framework

contrary one of its target is just to reuse complex software tools (such as test
generators) in a new context trying to take advantage of the new opportunities
provided by the service oriented paradigm, such as for instance the existence of
a “trusted party” corresponding to the service broker.

Nevertheless in order to automatically derive test cases for services asking for
registration the framework requires the use of an increased service information
model that should provide some description in a computer readable format of
the service expected behavior. Such information model has to be provided to the
service registry when a service asks for being included in the registry, and accord-
ing to the framework the behavioral description has to be suitable for automatic
test case derivation. Certainly this request has importance consequences on the
applicability of the framework on a real setting. Nevertheless slightly different
configuration of the framework can be derived for instance relaxing the part on
automatic derivation of test cases with the usage of predefined and static test
suites stored in the registry. This section will only discuss the framework when
an automatic test generator is available. In particular Figure 13 shows the main
elements of the framework. The figure intends to provide just a logical view, i.e.,
the arrows have not to be directly interpreted as invocations on methods pro-
vided by one of the elements. Instead they generally represent a logical step in



The PLASTIC Framework 131

the process and point to the elements that will take the responsibility of carrying
on the associated task.

The process subsumed by the framework is activated by a request made by a
service asking for being listed within the registry and is structured in eight main
steps (the numbers in the list below correspond to the numbers in Figure 13):

1. a service S1 asks the registry (directory service in the figure) to be pub-
lished among the services available to accept invocations. Contextually, S1
provides information concerning both the syntax (WSDL in the framework
of the web service related technology) and a behavioral description of the
offered service (expressing the protocol that a possible client should follow to
correctly interact with the service). The behavioral description format has
to be suitable for automatic test case generation.

2. the registry service stores S1 provided information marking them as “pending
registration”. At the same time S1 related information are sent to a Testing
Driver Service (TDS). The provided behavioral description has to correspond
to the one expected by the specific TDS. It is logically possible to accept
different behavioral description for a service (contract based, automata based
etc.); nevertheless for each accepted description a TDS able to automatically
derive test cases from such a description has to be identified.

3. the TDS starts to make invocations on S1, acting as the driver of the test
session, checking if the service behaves accordingly to the specification.

4. during the audition, unless S1 is a basic service, i.e. a service that does not
require to cooperate with other services to fulfill its task, S1 will query the
registry for references to other services necessary to complete the provision
of its own service. Indeed S1 could use other services without asking to the
registry since the references are hard coded in S1 definition. From the point
of view of the framework in this case S1 is not different from a “basic service”
since also at run-time it will continue to use the statically bound services.

5. the registry checks if the service asking for external references is in a pend-
ing state or not. If not, references for the required service description file
and its relative access point are provided. Instead in case the service is in
a pending state the registry provides the information, such as the interface
and the behavioral description for the requested service to a Proxy/Stub
Service factory. This Service starting from the syntactic and behavioral de-
scription is able to derive proxy or stubs for the requested service. In case of
a proxy generation the generated service will implement the same interface
of the “proxied” service, but at the same time it will check if the invocations
made by S1 are in accordance to the ones defined in the specification and
then expected by the invoked service. In case no errors are discovered the
invocation is redirected to the real implementation of the service.

In some cases a testing invocation to a running service may not be an op-
tion, since it would result in permanent effects on a stateful resource. In such
cases, in order to completely implement the framework, the factory has to
be able to generate service stubs. Obviously this will increase the complexity
of the framework and asks for the provisioning of service description models



132 A. Bertolino et al.

suitable for the automatic generation of service stubs. An STS specification
could be for instance a model suitable for automatic stub derivation.

6. for each inquiry request made by S1 the registry service returns a binding
reference to a Proxy/Stub version of the requested service.

7. on the base of the reference provided by the registry, S1 starts to make
invocations on the Proxy/Stub versions of the required services in order
to fulfill a request made by the test driver service. As a consequence the
Proxy/Stub version of the service checks the content and the order of any
invocation made by S1; In case a violation to the specification for the invoked
service is detected, the Proxy/Stub informs the registry service that S1 is not
suitable for being registered. As a consequence the directory service removes
from the pending entries the service currently under test, and denies the
registration;

8. finally in case one of the invocation made by the TDS results in the detection
of an error the registry is informed. As for the previous case the registration
will be denied.

Considerations on the Framework. The availability of a registry enhanced
with testing capabilities, granting the registration only to “good” services, should
reduce the risk of run-time failures and run-time interoperability mismatches.
As described above, in our vision a service asking for registration will undergo
two different kinds of check before being registered. The first concerns the ability
of the service of behaving according to its specification and the second of being
able to correctly interact with required services. Nevertheless some issues have
to be considered in particular to derive a real implementation of the service and
to better understand the applicability of the framework itself.

A first note concerns the reduced control over a service implementation by
a third party such as the tester. In a SOA setting each organization has full
control over the implementation of exposed services. This would mean that a
service implementation could be changed by the organization to which it belongs,
after its registration has been granted by the registry, and without informing the
registry that otherwise would start another testing campaign. As a result a non-
tested service will be considered as registered. Main consequence of this lack of
control is that the framework can be fruitfully applied only within a semi-open
environment, i.e. in an environment in which the participating organizations are
known and interested in collaborating with the registry in order to guarantee
that no “bad” services will enter the “stage”.

Another relevant request posed by the framework concerns the fact that each
interaction with the registry has to permit the identification of the sender. This
constraint directly derives from the fact that the registry has to recognize the
status of the registration for the invoking service when it asks for references to ex-
ternal services. At the same time it is worth mentioning that a service asking for
registration has to know that it will undergo a testing session. Therefore during
the testing session, and until the registration is not confirmed, the invocations
should not lead to permanent effects.



The PLASTIC Framework 133

A final interesting note concerns the automatic generation of stubs and prox-
ies. Stubs intend to simulate the behavior of an invoked service. However the
automatic generation of a service stub asks for the storing in the registry of a
complex service model such as for instance the one discussed in Sect. 3.2. Indeed
in case the registered service model does not permit the automatic derivation of
a suitable stub the framework foresees the generation of proxy services instead
of stub services. A proxy service will check and log incoming invocations with
respect to the model and then it will redirect the invocation to a real imple-
mentation of the service in order to generate a meaningful answer. However this
option is only acceptable in case the invoked service does not refer to a stateful
resource; or otherwise in case the platform provides specific support for run-time
testing purpose.

Next section shows a partial implementation of the framework that we derived
within the Web Service domain.

5.2 WS-Guard

This section describes some relevant detail of a real implementation of an en-
hanced version of a UDDI registry able to apply the “audition phases”. The re-
sulting registry shows a standard UDDI web service interface and has been called
WS-Guard(Guaranteeing Uddi Audition at Registration and Discovery) [11].

The first decision to take concerns the different technologies can be used for
SOA. In developing WS-Guard we decided to use Apache related technologies
and in particular the Axis2 SOAP container. This permitted us to easily derive,
using the WSDL2Java tool, skeleton classes from the WSDL definitions for the
two interfaces foreseen by the UDDI 2.0 specification : one for publishing services
and the other for inquiring registered services.

Concerning the registry, we adopt an open source version of a UDDI registry
that is provided by the Apache foundation under the project called jUDDI [13].
jUDDI consists of a set of servlets that are able to handle SOAP messages
formatted according to the message format defined by the UDDI specification.
To store the information related to registered services jUDDI requires to be
linked to a suitable database, being MySQL one of the possible options (and the
one we took).

Figure 14 describes the basic elements necessary to set-up a UDDI server
using jUDDI.

Fig. 14. jUDDI environment setting and technology



134 A. Bertolino et al.

Fig. 15. WS-GUARD service logical structure

Another tool that can be usefully adopted in this setting is UDDI4J [1]. This
is a java based library providing an API that permits to directly interact with
a remote servlet based implementation of the UDDI specification. As a result
using UDDI4J it is possible to interact with a jUDDI server just making local
calls to suitable objects derived from the UDDI4J library.

The availability of all these tools permitted to us to drastically reduce the
required implementation effort, making also natural the choice of implementing
our enhanced “UDDI server” as a Proxy service. This means that we were able
to completely decouple the “audition enhancements” from a standard UDDI im-
plementation. So within WS-Guard the functionalities required by the audition
framework are enclosed in the skeletons derived by the UDDI WSDL specifica-
tion using the WSDL2Java tool. At the same time the skeletons act as proxy
implementation for a real UDDI implementation derived using jUDDI. Within
the proxy the interactions with jUDDI are defined through the use of classes
made available by the UDDI4J library.

Figure 15 shows the logical structure of the implementation we derived. The
picture reports the main elements of the WS-Guard implementation and in par-
ticular it shows a supporting services element whose implementation is detailed
in the next subsection.



The PLASTIC Framework 135

5.3 WS-Guard Usage: Issues and Solutions

In this section we illustrate the various implementation choices we took to de-
velop the WS-Guard registry and how the various issues posed by the frame-
work have been solved. For the sake of presentation we illustrate the various steps
reusing the scenario highlighted in Sect. 3.1 assuming that a supplier service
provider wants to register its service on a audition enhanced directory service.

Modeling and Testing Web Services. WS-Guard requires that a service
asking for registration provides a specification of its external behavior (also a
reference to an URL from which such specification can be retrieved). The for-
malism we have adopted for such step is the one described in Sect. 3.2. In order
to store such information we had to change the data structure used by UDDI
and the WSDL-UDDI mapping in order to be able to associate a WSDL de-
scription to an STS specification. So with reference to the Supplier service it is
required that the service provides a reference to a suitable representation of the
STS shown in Figure 5. Such model will be then stored in the registry.

Having services represented as STSs, we could exploit the JAmbition “engine”
illustrated in 4.1 in order to implement a tester service. So JAmbition has been
wrapped within a web service that is then invoked by our WS-Guard proxy
service after receiving a publish request. WS-Guard provides the tester with the
endpoint of the service to be tested and the corresponding STS representation.

Web Services Identification. The Audition framework foresees the ability of
recognizing if a service performing an inquiry corresponds to a service under
test. In such a case the registry returns a reference to a proxy version of the
requested service instead of a direct reference.

To uniquely identify a Web service we decided to choose the service endpoint
reference as an identifier. To gather the endpoint reference, we mandate the usage
of messages compliant to the WS-Addressing specification [39] when interacting
with the registry. Indeed this specification provides a means to the receiver to
identify the service endpoint from which a Web service message request comes
from. Moreover Axis 2 provides mechanisms to support communications and
message generation according to this standard.

Pending Data Structures. A Java HashSet data structure is used to store
identification information of services under test (pending state). The data struc-
ture is maintained in memory in order to make faster the check that have to
be carried on for each incoming inquiry request in order to verify the status
of the sender. All the other service related information are directly inserted in
the database and marked as pending. This is necessary in order to avoid that
the service endpoint is returned as result of inquiry made by already registered
services. So with reference to the example, the supplier service reference will not
be returned to any other service until it is marked as pending. All the entries
related to a service under audition will be deleted in case the service does not
overtake the audition phase.



136 A. Bertolino et al.

Discovery of Services and Generation of Proxies. One key point of the
Audition process is the replies to inquires made by services in a pending state.
Going to our example this is the case of the supplier that needs to access to
retrieve and access to warehouse services. According to the framework in this case
WS-GUARD must returns, to the supplier service, a reference to a proxy version
of the warehouse and not a direct access point. Moreover the proxy service should
be able to identify wrong calls made by the supplier on the warehouse. To do this
we automatically generate proxies that can check received invocations against
the STS defined for the requested service (warehouse in our case). In case of an
error the registry is then informed.

Finally to cope with stateful services WS-Guard make the assumption that
services are deployed in two copies. One copy is the regular service accessible at
the endpoint http://www.mycompany.com/service and that have been regis-
tered in the registry. The second copy is made available only for testing purpose
at http://www.mycompany.com/service test. In order to avoid dangerous us-
age of stateful services WS-Guard generate proxies that only interact with
services at endpoints with extension “ test”.

6 Conclusions

This chapter has overviewed several issues and recent results in the field of SOA
testing, with a special focus on the PLASTIC project, which is also discussed in
Chapter 1 [24].

We have presented several new testing methods facing the exigencies of flexi-
bility posed by SOAs. Such flexibility is mainly expressed in terms of the dynamic
interactions among “black-box” software, provided by different organizations.
We have also addressed the evaluation of extra-functional properties, which are
of outmost importance in pervasive SOAs.

Summarizing, the described PLASTIC framework spans over the whole ser-
vice life-cycle, covering with a coherent set of tools both off-line and on-line
stages, and addressing both functional and QoS concerns. Given the broad va-
riety of PLASTIC applications, the validation framework is not conceived as
a fixed methodology, but rather as a set of techniques/tools that can be used
alternatively, or in combination, depending on the constraints/requirements on
each considered application/scenario.

Although verification and validation of SOA is a very active research topic, as
shown by the many works surveyed in Chapter 4 [9], solutions that can be found
in the literature generally address a specific limited objective. The concerted
effort for service validation in PLASTIC provided the opportunity for developing
a consistent methodology which is unique in terms of comprehensiveness and
flexibility. The platform integrates several approaches that can be applied during
the whole service life-cycle: after being developed, when published on a new
environment, and during the actual live usage.

In particular: Jambition, Puppet, and Weevil allow service developers to
rigorously test a service (using the original STS model) before deployment in a



The PLASTIC Framework 137

realistic reproduction of the deployment context (as opposed to testing in the
real environment or to manually mocking it). SlangMon and Dynamo-AOP

support monitoring against the defined properties with an improved efficiency
with respect to existing solutions, and directly deriving the monitor from the
SLA contracts.

Further work on experimentation on realistic testbeds and on real applications
is required. At the current stage, a set of prototype tools have been released and
are publicly available for download, but their usage on PLASTIC industrial case
studies is still ongoing. Usage of the tools requires some adaptation/modeling
effort and a major open issue is the lack of realistic testbeds on which to perform
experiments that can provide realistic validation.

Acknowledgement

This paper reports about the work carried on in the 32 months European STREP
IST-26955 PLASTIC. All the partners in the project have in different measures
and ways inspired our ideas and collaborated with us. The PLASTIC validation
framework has been mainly developed within Workpackage 4, and we would like
to thank the many colleagues who contributed to it, and in particular Domenico
Bianculli, Franco Raimondi, Antonino Sabetta and Alexander Wolf. Section 2 of
this paper is an excerpt of joint discussions and writings for the WP4 deliverables.
Lars Frantzen is further supported by the Marie Curie Network TAROT (MRTN-
CT-2004-505121) and by the Netherlands Organization for Scientific Research
(NWO) under project STRESS.

References

1. UDDI4J (accessed on June 3rd, 2008), http://uddi4j.sourceforge.net/
2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services–Concepts, Archi-

tectures and Applications. Springer, Heidelberg (2004)
3. Basha, S.J., Irani, R.: AXIS: the next generation of Java SOAP. Wrox Press (2002)
4. Bertolino, A., Bianculli, D., De Angelis, G., Frantzen, L., Kiss, Z.G., Ghezzi, C.,

Polini, A., Raimondi, F., Sabetta, A., Toffetti Carughi, G., Wolf, A.: Test Frame-
work: Assessment and Revision. Technical Report Deliverable D4.3, PLASTIC
Consortium. IST STREP Project (May 2008)

5. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Model-based Generation of
Testbeds for Web Services. In: Proc. of the 20th IFIP Int. Conference on Testing of
Communicating Systems (TESTCOM 2008). LNCS. Springer, Heidelberg (2008)

6. Bertolino, A., De Angelis, G., Lonetti, L., Sabetta, A.: Let The Puppets Move!
Automated Testbed Generation for Service-oriented Mobile Applications. In: Proc.
of the 34rd EUROMICRO CONFERENCE on Software Engineering and Advanced
Applications. IEEE, Los Alamitos (2008)

7. Bertolino, A., Marchetti, E.: A brief essay on software testing. In: Thayer, R.H.,
Christensen, M.J. (eds.) Software Engineering, 3rd edn. Development process,
vol. 1, pp. 393–411. Wiley-IEEE Computer Society Press (2005)

http://uddi4j.sourceforge.net/


138 A. Bertolino et al.

8. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliogra-
phy. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS,
vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

9. Canfora, G., Di Penta, M.: Service Oriented Architectures Testing: A Survey. In:
De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006–2008, University of Salerno, Italy.
LNCS, vol. 5413, pp. 78–105. Springer, Heidelberg (2009)

10. Christensen, E., et al.: Web Service Definition Language (WSDL) ver. 1.1 (2001),
http://www.w3.org/TR/wsdl/

11. Ciotti, F.: Ws-guard - enhancing uddi registries with on-line testing capabilities.
Master’s thesis, Department of Computer Science, University of Pisa (April 2007)

12. PLASTIC european project homepage, http://www.ist-plastic.org
13. Apache Foundation. JUDDI (accessed on June 3rd, 2008),

http://ws.apache.org/juddi/
14. Frantzen, L., Tretmans, J.: Model-Based Testing of Environmental Conformance

of Components. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2006. LNCS, vol. 4709, pp. 1–25. Springer, Heidelberg (2007)

15. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic
specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005)

16. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES
2006 and RV 2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

17. Global Grid Forum. Web Services Agreement Specification (WS–Agreement), ver-
sion 2005/09 edn. (September 2005)

18. GNU Prolog homepage, http://www.gprolog.org/
19. MagicDraw homepage, http://www.magicdraw.com
20. Quick Sequence Diagram Editor homepage, http://sdedit.sourceforge.net/
21. STSimulator homepage, http://www.cs.ru.nl/∼lf/tools/stsimulator/
22. Huhns, M.N., Singh, M.P.: Service-Oriented Computing: Key Concepts and Prin-

ciples. IEEE Internet Computing 9(1), 75–81 (2005)
23. IBM. WSLA: Web Service Level Agreements, version: 1.0 revision: wsla-

2003/01/28 edn. (2003)
24. Inverardi, P., Tivoli, M.: The future of Software: Adaptation and Dependability.

In: De Lucia, A., Ferrucci, F. (eds.) ISSSE 2006–2008, University of Salerno, Italy.
LNCS, vol. 5413, pp. 1–31. Springer, Heidelberg (2009)

25. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. In: IDPT 2002. Society
for Design and Process Science (2002)

26. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey. Proceedings of the IEEE 84, 1090–1126 (1996)

27. NetBeans Tutorial on Asynchronous JAX-WS Web Service Client End-to-End Sce-
nario, http://www.netbeans.org/kb/55/websvc-jax-ws-asynch.html

28. OASIS consortium. Universal Description, Discovery, and Integration (UDDI) (ac-
cessed on June 3rd, 2008),
http://www.oasis-open.org/committees/tc home.php?wg abbrev=uddi-spec

29. Object Management Group. UML 2.0 Superstructure Specification, ptc/03-08-02
edn. Adopted Specification

30. Sahner, R.A., Trivedi, K.S., Puliafito, A.: Performance and Reliability Analysis
of Computer Systems An Example-Based Approach Using the SHARPE Software
Package. Kluwer Academic Publishers, Dordrecht (1995)

http://www.w3.org/TR/wsdl/
http://www.ist-plastic.org
http://ws.apache.org/juddi/
http://www.gprolog.org/
http://www.magicdraw.com
http://sdedit.sourceforge.net/
http://www.cs.ru.nl/~lf/tools/stsimulator/
http://www.netbeans.org/kb/55/websvc-jax-ws-asynch.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec


The PLASTIC Framework 139

31. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

32. Skene, J., Lamanna, D.D., Emmerich, W.: Precise Service Level Agreements. In:
Proc. of ICSE 2004, pp. 179–188. IEEE Computer Society Press, Los Alamitos
(2004)

33. Skene, J., Skene, A., Crampton, J., Emmerich, W.: The Monitorability of Service-
Level Agreements for Application-Service Provision. In: Proc. of WOSP 2007, pp.
3–14. ACM Press, New York (2007)

34. Tillmann, N., de Halleux, J.: Pex–White Box Test Generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

35. PLASTIC tools homepage, http://plastic.isti.cnr.it/wiki/tools
36. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.

Software—Concepts and Tools 17(3), 103–120 (1996)
37. Tretmans, J., Brinksma, E.: TorX : Automated Model Based Testing. In: Hart-

man, A., Dussa-Zieger, K. (eds.) First European Conference on Model-Driven Soft-
ware Engineering, December 11-12 2003, Imbuss, Möhrendorf, Germany (2003)

38. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional Testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004)

39. W3C. WS-Addressing (accessed on June 3rd, 2008),
http://www.w3.org/Submission/ws-addressing/

http://plastic.isti.cnr.it/wiki/tools
http://www.w3.org/Submission/ws-addressing/


Architecture Reconstruction
Tutorial on Reverse Engineering to the Architectural Level

Rainer Koschke�

Universität Bremen
Fachbereich Mathematik und Informatik

Arbeitsgruppe Softwaretechnik
koschke@informatik.uni-bremen.de

Abstract. Software architectures are described by different views which
depend upon the concerns of the respective stakeholders. Far too often,
software architectures are not documented sufficiently. In such cases,
an architecture description must be reconstructed when changes to the
system are to be made.

This article summarizes the current state of the art of techniques and
methods for software architecture reconstruction and relates them to the
viewpoints that have been proposed in architecture design. The article
identifies research opportunities based on the comparison.

Keywords: Reverse engineering, architecture reconstruction, software
architecture, bibliography.

1 Introduction

All but the trivial changes in software systems require a global understanding
of the system to be changed. Such non-trivial task include migrations, auditing,
application integration, or impact analysis. A global understanding cannot be
achieved by looking at every single statement. The source code provides a huge
amount of details in which we cannot see the forest for the trees. Instead, to
understand large systems, we need a more coarse-grained map. This map is
called the software architecture.

Only in very few cases, the software architecture is described sufficiently in
practice. In software engineering classes, we teach to document all the relevant
architectural decisions and their rationales and to update this information when-
ever these decisions are revised. Yet in practice, architecture descriptions are—if
available at all—often outdated and incorrect, or inappropriate for the task at
hand. If information on the architecture is lost, it must be recovered.

Software architecture reconstruction is the form of reverse engineering in
which architectural information is reconstructed for an existing system. Typ-
ically, the information is gathered from the source code, the system’s execution,

� With contributions of Arie van Deursen, Christine Hofmeister, Leon Moonen, and
Claudio Riva.

A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 140–173, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Architecture Reconstruction 141

available documentation, stakeholder interviews, and domain knowledge. Archi-
tecture reconstruction typically involves three steps: extract raw data on the
system, apply the appropriate abstraction technique, and present or visualize
the information obtained.

In this paper, a conceptual framework for architecture reconstruction is intro-
duced. The framework, known as the Symphony framework, is an amalgamation
of common patterns and best practices reported in the reverse engineering lit-
erature [1]. Symphony is based on the concept of architectural views and view-
points. We will introduce these concepts, the Symphony method and techniques
and tools that support this method.

2 Architectural Descriptions

The intent of architecture reconstruction is to reconstruct architectural infor-
mation to be documented by architectural descriptions. One widely accepted
definition for software architecture is given by the standard IEEE Recommended
Practice for Architectural Descriptions: Software architecture is the fundamen-
tal organization of a system embodied in its components, their relationships to
each other and to the environment, and the principles guiding its design and
evolution [2].

One organization, for instance, is the hierarchical decomposition of a sys-
tem into subsystems. Yet, software—like every complex engineering product—
consists of many distinct organizations (also known as structures). As early as
1974, Parnas wrote that there are several organizations beyond the hierarchical
decomposition of a software system [3]. Since then, a large number of architec-
tural structures has been proposed in the literature.

Rather than defining a fixed set of architectural structures to be described,
the IEEE Standard P1471 has recommended to describe a system by several
views [2]. A view describes an architecture from the perspective of a particular
audience (called stakeholders) sharing common interests. For an unambiguous
interpretation, the content of views must be defined precisely. Views are specified
by so called viewpoints, so that their interpretation and use is clear.

2.1 Views and Viewpoints

A view is a representation of a whole system from the perspective of a related
set of concerns [2]. In IEEE P1471, a view conforms to a viewpoint. While a
view describes a particular system, a viewpoint describes the rules and conven-
tions used to create, depict, and analyze a view based on this viewpoint [2]. A
viewpoint specifies the kind of information that can be put in a view. It is the
specification of the type of view used to document a particular system or several
systems. If a view is considered a model of a software system, a viewpoint would
be its meta model.

In forward design, different architectural viewpoints are useful for separating
engineering concerns, which reduces the complexity of design activities. When
the resulting design is captured in separate views, this separation of concerns



142 R. Koschke

helps stakeholders and architects understand the architecture. For architecture
reconstruction, different viewpoints specify what information should be recon-
structed and help to structure the reconstruction process.

2.2 Source, Target, and Hypothesis Views

A software reconstruction process may be structured as a sequence of activities.
Each is specified by the kind of information it expects, the kind of information it
produces, and the resources and mechanisms it uses to produce this information
from the available information. Consequently, reconstruction activities can be
specified by a set of source views which are expected to exists and a set of target
views which ought to be the result of the activity. The target views describe
aspects of the architecture as implemented.

Some of the source views can be extracted directly from artifacts of the system,
such as source code, build files, configuration information, documentation, or
execution traces. Some of these views are so close to the source code or its
execution that they would not be considered architectural views. Some others
are the result of previous activities and may already be rather high level and
abstract.

A target view is a view of a software system that describes the as-implemented
architecture and contains the information needed to solve the problem/perform
the tasks for which the reconstruction process was carried out.

Based on the source and target view, the reconstruction activity can be viewed
as a mapping activity that takes the information in the source view to infer the
target view. Most often this mapping requires involvement of a human expert
although some aspects may be automated. In as much as the forward engineering
process is a creative experience-based activity, we cannot expect that the reverse
of this process can be fully automated.

Often, a hypothetical view is used during the reconstruction. It represents the
working hypothesis for the target view. Because it is just a hypothesis gathered
from the information gathered so far, it may describe the architecture of the
system inaccurately. Such hypothetical views are always used at least informally
and implicitly by the reverse engineer, but they may also be used explicitly and
systematically. If used systematically, the reverse engineer follows a scientific
process in which he or she formulates a hypothesis, determines appropriate mea-
sures to validate the hypothesis, gathers empirical evidence for or against the
hypothesis, and finally falsifies, accepts, or refines the hypothesis based on the
result of the validation.

2.3 Viewpoints in Forward Engineering

Viewpoints used in forward engineering are often also target views in architecture
reconstruction. Among the first authors explicitly proposing several viewpoints
is J. A. Zachman. His viewpoints are meant to describe the architecture of in-
formation system; yet, these viewpoints are generic enough to apply to other
software systems as well.



Architecture Reconstruction 143

Zachman observed from civil engineering that the process of building houses
creates several (interim) products that describe the house from the perspectives
of different stakeholders [4,5]. For houses, we have bubble charts in the first ne-
gotiations between the architect and the customer, an architect’s drawing for
the contract between the architect and the customer, an architect’s plan that
elaborates the drawing, a contractor’s plan representing the building from the
builder’s perspective, the shop plans for the individual manufacturers (i.e., sub-
contractors), and the final building. Zachman notes that each of the architectural
descriptions differs from the others in essence, not merely in level of detail; that
is, they describe different concepts.

Zachman concludes that an analogous set of architectural descriptions is likely
to be produced in building any complex product—including software systems.
The different artifacts created in the process of developing information systems
Zachman observed are scope description (bubble chart), model of the business
(architect’s drawing), model of the information system (architect’s elaborate
plan), technology model (contracter’s plan), detailed description (shop plan),
and the actual system (building).

Orthogonally to the different levels of conceptual descriptions, any product
created in the process of engineering can be described, for different purposes,
in different ways, resulting in different types of descriptions. Zachman suggests
that the following aspects need to be addressed at the same relative level of
description [6]:

– Data: What the thing is being made of.
– Function: How the thing works.
– Network: Where the flows (connections) exist.
– People: Who is building.
– Time: When it is happening.
– Motivation: Why it is built

The combination of the six different conceptual levels and the six different
aspects at each level results in 36 different architectural viewpoints.

Influenced by Zachman’s work, Perry and Wolf suggest three viewpoints in
their classical paper [7]: the viewpoints of data, processing, and connections.
The data viewpoint highlights the data elements and their processing flow. The
processing viewpoint, in contrast, shows the processing elements and the data
flow in between. The connection viewpoint shows how data and processing ele-
ments are connected. These three viewpoints actually contain the same informa-
tion but with different emphasis (similarly to UML collaboration and sequence
diagrams). The similarity of Perry and Wolf’s three different viewpoints to the
data, function, and network viewpoints by Zachman is obvious.

In another classical paper, Kruchten [8] proposes four viewpoints (logical,
process, development, and physical) that cover more distinct aspects of a system.
Kruchten proposes another redundant viewpoint to show how these four different
viewpoints relate to each other by way of usage scenarios.



144 R. Koschke

Table 1. Viewpoint categorization by Clements et al. [11]

– M: Module viewpoints
• M1: Decomposition: module is-part-of module
• M2: Uses: module uses module
• M3: Generalization: module specializes module
• M4: Layering: module belongs-to layer, layer may-use layer

– CC:Component-connector viewpoints (C&C)
• CC1: Pipe-and-filter
• CC2: Shared-data
• CC3: Publish-Subscribe
• CC4: Client-server
• CC5: Peer-to-peer
• CC6: Communicating processes

– A: Allocation viewpoints
• A1: Deployment: software entity is-allocated-to/migrates-to physical entity
• A2: Implementation: module is-allocated-on configuration unit, configuration

unit is-contained-in configuration unit
• A3: Work assignment: software element has-responsible developer

Soni, Nord, and Hofmeister have found four similar viewpoints from field
observations in industry [9]. These four viewpoints have later been elaborated
in their book on applied software architecture [10].

Clements and colleagues categorize many of these viewpoints and describe
how to document them [11]. The categories they consider—without claiming
completeness—are module, component-and-connector, and allocation
viewpoints. Module viewpoints describe the decomposition, layering, and gener-
alization of modules and their use dependencies. A module is a static code unit
that implements a set of responsibilities. Component-and-connector viewpoints
express runtime behavior described in terms of components and connectors. A
component is one of the principal processing units of the executing system; a
connector is an interaction mechanism for the components. Component-and-
connector viewpoints resemble architectural styles [12]. Allocation viewpoints
describe mappings of software units onto elements of the environment (the hard-
ware, the file systems, or the development team). Table 1 summarizes the cate-
gories and viewpoints by stating the entities and their relations that are part of
the viewpoint.

Because the different viewpoint categories are related to each other, mappings
are required that map viewpoints in one category to viewpoints in another cate-
gory. For instance, modules in a programming viewpoint are mapped onto files in
a code viewpoint. These mappings are themselves viewpoints—viewpoints that
anchor in two categories.

3 Architecture Reconstruction Process

The previous sections has introduced the concepts of views and viewpoints and
described example viewpoints proposed in the forward engineering literature.



Architecture Reconstruction 145

This section describes the process of architecture reconstruction which is based
on views and viewpoints.

Architecture reconstruction may be conducted in two major phases. The first
one attempts to determine the problem, to set the context, and to plan the
reconstruction by defining source and target views using viewpoints along with
the mapping rules. This phase is called Reconstruction Design. The next major
phase executes the plan. In this phase, the reverse engineer analyzes the system,
extracts the source views, and applies the mapping rules to populate the target
views. This phase is called the Reconstruction Execution.

These two phases are highly incremental and iterative. The reconstruction
execution may reveal new reconstruction opportunities, which then lead to a
refined understanding of the problem and a refined reconstruction design. The
source viewpoints, target viewpoints, and mapping rules may evolve throughout
the process.

The outcomes of the reconstruction process are twofold: Reconstruction De-
sign results in a well-defined procedure for reconstructing the architecture of the
system. This procedure may be useful beyond the scope of the current recon-
struction: it can play a role in continuous architecture conformance checking and
in future reconstructions. Reconstruction Execution yields the architecture de-
scription needed to solve the problem that triggered the original reconstruction
activity.

In the following, we describe the two phases in more detail.

3.1 Reconstruction Design

During reconstruction design we distinguish problem elicitation in which the
problem triggering the reconstruction is analyzed and discussed with stakehold-
ers, and concept determination, in which the architectural concepts relevant to
the problem at hand and a recovery strategy are identified.

Problem Elicitation. All stakeholders of an architecture must be involved
in reconstructing architectures. Stakeholders may be testers, developers, man-
agement, representatives of the business owning the system, and system users.
Because it is difficult to get so many busy people aboard, there must be a com-
pelling reason to start a reconstruction. Rarely, the reason is to improve just the
maintainability of the system. Typically, there are external drivers experienced
as a pain of the customers such as performance problems, poor reliability, need
for migration, and considerations concerning system replacement or system ex-
tensions. It is important that all stakeholders define their problem explicitly and
in written form. Stakeholders must reach a consensus on the goals and priorities,
otherwise the reconstruction project is doomed to fail.

This list of problems triggers the a software reconstruction activity. The first
step is then to elaborate the problem statement. This is the purpose of the
Problem Elicitation step and requires the involvement of more technical people
in the problem analysis.

There are several techniques that can be used during problem elicitation, such
as structured workshops, checklists, role playing, and scenario analysis.



146 R. Koschke

Outcomes of the Problem Elicitation step include summaries of interviews,
workshop sessions, and relevant discussions; summaries of available high-level
relevant documentation, if available; an elaboration and refinement of the prob-
lem statement based on these summaries; and an initial list of documentation
and other resources that can be used during the reconstruction.

Observe that the original list of problems, the collected summaries and the re-
fined problem statement may very well be ”architecture-agnostic”: they must be
expressed in terms familiar to the stakeholders. The translation of the problems-
as-perceived to software architecture concepts is the purpose of the Concept
Determination step.

Concept Determination. Once the problem is understood, the Concept De-
termination step is used to determine the architectural information needed to
solve the problem and the way to derive this information. In this step, the reverse
engineer is a process designer, defining the architectural reconstruction that will
take place in the final three steps.

There are five outcomes of this step, each of which is described in the remain-
der of this section. The UML diagram in Figure 1 summarizes the relationships
involving the viewpoints and mapping rules produced in this step.

Target Viewpoints
Problem Statement

process designer reverse engineer

Source Viewpoints

stakeholders

actor in

data flow
Information
Interpretation

Target Viewpoints
Mapping RulesProblem

StatementProblem
Elicitation

Concept
Determination

Source Viewpoints

Knowledge
Inference

Data
Gathering

Library of
Viewpoints

Refinement

Fig. 1. Activities in Reconstruction Design

Identify Potentially Useful Viewpoints. The first step towards defining the tar-
get viewpoint is to identify a set of viewpoints that contain the information the
stakeholders believe will be needed to solve the problem as described in Prob-
lem Elicitation. These viewpoints serve as the initial goal of the reconstruction
project.

Typically, technical Stakeholders know which viewpoints will be useful, or
have at least some initial ideas. In most cases, one can at least use some of the
viewpoints described in Section 2.3 as a starting point. After getting input from



Architecture Reconstruction 147

Source
Views

Target
Views

Views
Architectural

stakeholders

Data

reverse engineer

Repository
Data
Gathering

actor in

data flow

Knowledge
Inference

TargetSource

Information
Interpretation

Map

Views Views

Fig. 2. Activities in Reconstruction Execution

the stakeholders, the reverse engineer should review the problems and questions,
looking for additional useful viewpoints. Although the reverse engineer is respon-
sible for producing the list of viewpoints, ultimately the stakeholders must agree
to them.

These viewpoints can come from a library of well-known viewpoints such
as the one by Clements et al. [11], or a new viewpoint can be created for a
specific reconstruction. If the problem is not understood well enough to identify
viewpoints of interest, the Problem Elicitation step should be re-applied.

One of the most commonly used viewpoints for architecture reconstruction
is the Module viewpoint [10]. It identifies the layers, subsystems, and modules
in the system and describes relationships (e.g. usage-dependency and decom-
position) among them. Other common viewpoints are the Code architecture
viewpoint, which describes the directory structure and build relationships, and
the Execution viewpoint, which describes the runtime entities and their mapping
to physical resources [10]. The Conceptual viewpoint [10], describing the func-
tionality of the system in terms of components and connectors, is less commonly
used for reconstruction because it is a more abstract view and is therefore more
difficult to reconstruct.

One useful approach for creating the target viewpoint is to use the Stake-
holder/View tables described by Clements et al. [11], adapted somewhat for
reconstruction. In its original form this is a three-step process culminating in a
prioritized list of views needed for documenting a software system.

In Symphony, the first step, producing a candidate view list, begins with the
potentially useful viewpoints already identified. Each of these should be listed
along with the extent to which it is important for solving the problem. The
second step is to identify the specific relationships of each viewpoint that are
needed. The third step is to prioritize these relationships and eliminate any
duplicates. During this process the reverse engineer should be thinking about
similarities among the relationships, which can be derived from others, which
are most critical to solving the overall problem, and should try to consolidate
them to arrive at the set of relationships in the target viewpoint.



148 R. Koschke

Define/Refine Source Viewpoint. The source viewpoint specifies the source view.
The source view will contain information extracted from the source code and
gathered from other sources; the source viewpoint formally describes this in-
formation. The challenge in defining a source viewpoint is to determine what
information will be needed in order to create the target views. Thus defining
the source viewpoint needs to be done in conjunction with defining the mapping
from source to target viewpoint.

Define/Refine Mapping Rules. The mapping rules are ideally a formal descrip-
tion of how to derive a target view from a source view. Realistically, parts will
often be in the form of heuristics, guidelines, or other informal approaches. If
a mapping can be completely formalized, the reconstruction can be fully auto-
mated. As said earlier, this is not typically possible for software architecture,
thus we expect the mapping to contain both formal and informal parts.

Figure 3 shows that the mapping rules specify the map. The ’mapping rules’
entity is an association class connecting the target viewpoint and source view-
point. Thus it describes the ’maps to’ association between these two entities.
The map, as the instantiation of the mapping rules, describes how specific im-
plementation facts in the source view are abstracted to architectural facts in the
target view.

1 1

{XOR}
∗ ∗

*

1 1 1

* *1 1

{XOR}
∗∗

1

1

extracted
from

extracted
from

specifies specifies specifies

target
view

source
view

hypothetical
view

abstracted
from

abstracted
from

map
specifies

mapping

hypothetical
viewpoint

source
viewpoint

target
viewpoint

Fig. 3. Views and Viewpoints in Symphony

Determine Role and Viewpoint of Hypothetical Views. In addition to the above
activities, the stakeholders and reverse engineers must determine whether a hy-
pothetical view is needed and what its role will be. This role depends on the
purpose of the reconstruction. The most common roles of a hypothetical view
are as a guide during the reconstruction activity and as a baseline to compare
with the system’s current architecture.

When serving as a baseline there are two ways the comparison can be done.
One is to create an explicit comparison view, with the comparison embodied



Architecture Reconstruction 149

in the target view. The second way to use a hypothetical view as a baseline is
informally. In this case it is used in the last step, Information Interpretation.
Typically the reverse engineer browses both the target view and hypothetical
view, compares them, and based on the results may decide to perform another
iteration of the reconstruction process, modifying the target viewpoint, source
viewpoint, mapping, or some combination of these.

The hypothetical view also has a viewpoint that must be defined. If the hy-
pothetical view is embedded in the target view (as in the Reflexion example)
then its viewpoint is defined as part of the target viewpoint. This is shown as
the containment relationship between the two viewpoints in Figure 3. If the hy-
pothetical view is not embedded, then typically its viewpoint is very similar to
the target viewpoint so that the comparison is straightforward. In Figure 3, this
is shown as the ’extracted from’ relationship between the two viewpoints.

3.2 Reconstruction Execution

During reconstruction execution, an extract—abstract—presentapproach is used,
tailored towards the specific needs of architecture reconstruction. The three steps
populate the source view, apply the mapping rules to create the target views, and
interpret the results to solve the problem at hand. The activities to be carried out
were designed in the earlier phase Reconstruction Design.

Data Gathering. The goal of the Data Gathering step is to collect the data that
is required to recover selected architectural concepts from a system’s artifacts.
The motivation is that a large part of the truth about the actual (concrete)
architecture is in the source code. However, in general, one can look at other
artifacts of the system than just its source code. These other artifacts include a
system’s buildfiles/makefiles, (unit) tests, configuration files, etc. The data gath-
ered are stored in a repository and processed in the Knowledge Inference step. A
complementary approach is to gather information by observing the execution of
the program. In Section 4, we will elaborate on such techniques in more detail.

Note that these kinds of analyses do not necessarily have to be developed
by the team that is using them to recover the architecture. Suitable results can
be imported from a wide range of reverse engineering tools (such as clustering
tools, data flow analysis tools, etc.). In practice, often a pragmatic mix-and-
match approach for data gathering is applied, combining the results from various
extraction tools using scripting and glueing, for example, based on UNIX utilities
such as join, split, awk and perl.

The output of the data gathering stage is a populated repository containing
the extracted source views.

Knowledge Inference. The goal of the Knowledge Inference step is to derive the
target view from the source view (typically a large relational data set describing
the implementation of the system). The reverse engineer creates the target view
by condensing the low-level details of the source view and abstracting them
into architectural information. The mapping rules and domain knowledge are
used to define a map between the source and target view. For example, if the



150 R. Koschke

mapping contains a rule about using naming conventions to combine classes into
modules, the resulting map lists each class and the module to which it belongs.
This activity may require either interviewing the system experts in order to
formalize architecturally-relevant aspects not available in the implementation or
to iteratively augment the source view by adding new concepts to the source
viewpoint.

Depending on the degree of formalization of the mapping, this step can be fully
or partly automated. The Knowledge Inference step is conducted initially in close
cooperation with the system experts and, as more domain knowledge becomes for-
malized, more automation is added. This step can be summarized in the following
activities: (1) create the map (containing the domain knowledge), and (2) combine
the source view with the map to produce the target view. In practice, the map is
often created iteratively, with each iteration refining the map or raising its level
of abstraction until it can produce a satisfactory target view.

Existing techniques for the mapping can be categorized as manual, semi-
automatic, or automatic. Manual approaches typically use simple, general-
purpose tools and manual inspection of the system. While they may use
reconstruction-specific tools such as SHRiMP, Rigi, PBS, or Bauhaus to help
visualize intermediate results, there is no automated support for the process.

Semi-automatic approaches help the reverse engineer create architectural views
in an interactive or formal way. They typically rely on the manual definition of the
map. Differences among the approaches concern the expressiveness of the language
used for defining the transformations, support for calculating transitive closures of
relations, degree of repeatability of the process, amount of interaction required by
the user, and the types of architectural views that can be generated.

Relational algebra approaches allow the reverse engineer to define a repeatable
set of transformations for creating a particular architectural view. In the work
of Holt et al.[13], relational algebra is used for creating a hierarchical module
view of the source code (by grouping source files into modules and calculat-
ing the module dependencies). The reverse engineer must manually prepare the
containment relations, but new relationships can also be inferred using algebra
propositions. Postma [14] uses relational partition algebra (RPA) [15] to calcu-
late module dependencies from dependencies extracted from code. RPA is also
used to check the conformance of an extracted target view with a hypothetical
view (established in the design phase). The process is repeatable and is part of
the build process.

Riva has proposed a method for inferring the architectural information based
on relational algebra and Prolog [16]. Mens [17] uses logic meta programming
(Prolog) for mapping implementation artifacts to high-level design and for check-
ing conformance of architectural rules.

More light-weight examples are the Reflexion Model [18], Tcl scripts for defin-
ing graph transformations in Rigi, SQL queries for defining grouping rules (Dali),
or the ad-hoc graph query language (GReQL) of GUPRO.

Fully automatic approaches are based on different kinds of clustering algo-
rithms based on coupling and cohesion (e.g., the Bunch tool) or file names.



Architecture Reconstruction 151

Formal concept analysis and type inference are also used. A more detailed
overview on specific techniques is given in Section 4.

For the creation of the map, technological, organizational, and often historical
background knowledge as well as domain knowledge is required. Moreover, the
mapping is often difficult because of hidden dependencies. Obviously, the quality
of the data gathering is key to a successful knowledge inference. The realization of
poor data quality forces us to reiterate the data gathering with different means.

The output of the Knowledge Inference step is an enriched and structured
repository where the source view and the domain knowledge has been combined
to create the target view.

Information Interpretation. The target views–selected to address a particular
problem–are inspected, interpreted, and eventually applied to solve the problem.
To these ends, the target views need to be made accessible both physically and
mentally to all stakeholders.

The views that result from Knowledge Inference are not the answer to the
problem but provide a foundation to address the problem. In the Information
Interpretation, conclusions are drawn from the reconstructed views. These con-
clusions then lead to measures to be taken to remedy the problem. The measures
themselves are not part of the reconstruction process.

Ideally, the viewpoints were selected to allow an immediate use of the views;
however, even if the viewpoints are carefully tailored, it might become difficult
to get an answer at the level of the target views because they may span a
huge information space. In such cases, presentations are required that make
this information space amenable to all stakeholders. The presentation must be
readable and traceable. Readability relates to the ability to easily find and grasp
relevant information in the views; traceability allows us to trace the inferred
knowledge back to the original data. Visualization and interaction techniques
can be used to support readability and traceability.

For all presentation techniques, we need to determine the scope, the viewers,
and the task to be achieved. The scope of the presentation (i.e., the artifacts and
their aspects to be presented) is already given in form of the selected viewpoints
and target views. The viewers and task to be achieved are stated in the Problem
Elicitation. We focus on presentation and interaction issues in the following.

Although the selected viewpoints define the vocabulary and semantics for the
representation, they do not define how to present the information. Information
presentation addresses this problem, where we take presentation quite liberally:
any means to communicate information to a viewer, be it textually, graphically,
or through other forms of human perception including any form of interaction
with the presentation. Sight is the most often addressed form of human per-
ception by information presentation in the software architecture domain; that is
why we are using the narrower term visualization instead of perception in the
following.

Presentation issues have to do with effective visual communication including
the visual vocabulary, the use of the specific visual elements to convey particular
kinds of information, the organization of visual information, and the order in



152 R. Koschke

which material is presented to the viewer. Most application domains have their
own conventions and symbology that should be used for the visual vocabulary
and elements.

Due to lack of space, the reader is referred to overviews on software visual-
ization in the literature [19,20,21]. Yet, at least I want to point out that graphs
seem to be a ”natural” visualization of architecture elements and their (often
binary) relations, as confirmed by independent surveys that indicate their pop-
ularity [19,22] (in the end, class and object diagrams in UML are just graphs
with predefined semantics and rendering characteristics).

The aspect of interaction refers to the way the visualization is constructed.
Visualizations range from ”hard-wired”, where the viewer has no influence on
the presentation, to arbitrary redefinition by the viewer. Visualizations should
not be static pictures, but should offer querying, zooming in and out, naviga-
tion along cross-references and hierarchies, selective hiding, and gathering of
transitive relations.

Many architecture reconstructions in practice could have benefited from more
advanced and carefully selected means of visualization. Visualization issues are
often brought up as an afterthought and, hence, the potential of visualization
is only partially leveraged. The reason for this shortcoming is simply that the
means of presentation chosen are often opportunistically selected from available
tools. The focus is to solve the problem quickly with available tools. As the initial
processes are repeated more often, we expect that their maturity will improve
by a more careful consideration of presentation issues.

A particular problem of software architecture is the need to understand a
combination of multiple views, which is further complicated when the views are
of conceptually different viewpoints. There have been several suggestions to the
”view fusion” problem. If the views overlap in some of their entities, one can use
certain inferences to map entities with no immediate correspondence to entities
in the other view. For instance, Kazman and Carriere use ”lifting” operations
along containment relations to fuse views [23]. If the entities may be mapped
onto source code, one could leverage overlapping source code regions to identify
correspondences between entities [24]. If there is no such simple correspondence,
the mapping is typically manual. Hillard, Rice, and Schwarm [25], for instance,
systematically cross reference related entities from distinct views and use Ross’s
model tie process from Structured Analysis to integrate the views [26]. These
cross-references are created as part of Symphony’s Knowledge Inference in the
form of the maps and stored so that the connection among views is made explicit.
The cross-references may be implemented and inserted into the views by available
frameworks [27,28].

The output of the Information Interpretation is a hyperstructure offering a
holistic perspective on the software system as a foundation for investigating the
concrete architecture’s impact on the problems signaled. This hyperstructure
includes traceability links between views and links to other software artifacts,
such as the source text, relevant documentation, etc. The ideal hyperstructure
allows you to explore the system at various levels of abstraction: it lets you zoom
in and zoom out between sources and architecture and navigate between views.



Architecture Reconstruction 153

4 Architecture Reconstruction Techniques

This section describes techniques to reconstruct architectural views proposed
in the literature. Another comprehensive summary of existing architecture re-
construction techniques was written by Pollet et al. [29]. The focus in this sec-
tion is on concrete techniques rather than methods. We consider techniques
to be approaches that are (semi-)automated with one particular concrete set
of views as target, whereas we use the term method for approaches that are
more general process descriptions with little focus on particular views (e.g.,
[1,30,31,32,33,34,35,36,37,38]).

The techniques can be described as a mapping from source views to tar-
get views. The following description is based on this distinction. Unfortunately,
source and target views are often only implicit in the literature.

4.1 Source Views

Base source views are views that can be extracted immediately from the system’s
code or execution, people, or existing documentation. Typically, we would not
consider them architectural because they lack abstraction. These views yield the
basic facts upon which the architectural reconstruction can be started.

There are two distinct approaches to analyzing a system. One can either
observe its behavior at runtime or study its static description, that is, its source
code. The former is a dynamic analysis, the latter a static analysis. There are
pros and cons for both approaches and in some cases they can be reasonably
combined.

There are many different types of static analysis to gather architectural knowl-
edge varying in effort, precision, scalability, prerequisites etc. Moreover, source
code is not the only artefact that can be analyzed statically. Other examples
include build files, scripts, configuration files, emails, natural language text, or
version control repositories. The more formal the analyzed document, the easier
can it be processed automatically.

The spectrum of static analyses is as follows:

– Manual analysis: Here, the reverse engineer analyzes the system without any
automated support by reading the code. He or she can examine the directory
structure or the hierarchical structure imposed by the programming language
or by exploring the source code for beacons that signal aspects of interest.

– Lexical analysis: Several tools are available that perform lexical analysis of
textual files. The most well-known is probably grep that searches text for
strings matching a regular expression. Tools like grep generally give little
support to process the matched strings, they just print matching lines. Such
support is available in more advanced text-processing tools such as awk, perl,
and lex that allow one to execute certain actions when a specific expression
is matched.

– Syntactic analysis: Parser-based approaches are used to increase the accuracy
and level of detail that can be expressed. These typically create a syntax tree
of the input and allow the users to traverse, query, or match the tree to look



154 R. Koschke

for certain patterns. This relieves them from having to handle all aspects of
a language and focus on interesting parts.

– Semantical analysis: Additional techniques such as name and type resolution,
control and data flow analysis and points-to analysis can be used to improve
the results from other analyses.

Abstract syntax trees, control and data flow graphs are often used to represent
aspects of a program at the detailed level. More coarse-grained graphs are used
to represent the global declarations such as classes, modules, etc. as nodes and
their dependencies such as inheritance, use, etc. as edges.

The problem of static analysis is that many questions related to the possi-
ble behavior are undecidable in general. Safe static analyses are forced to make
conservative assumption and, hence, yield an overapproximation of the real be-
havior. In particular, if it comes to large systems, one has to sacrifice precision
to achieve scalability.

While conservative static analyses yield every possible behavior and likely
more, dynamic analyses yield only actual behavior but not necessarily every
possible behavior. It may be objectionable to draw general conclusions from
only dynamic information. Also, often one collects a huge amount of events at
runtime and the observation of the program may interfere with the program’s
execution.

Analyzing only the system does not answer all relevant questions. For in-
stance, we cannot know infer how the system should have been nor can we tell
why something is the way it is. Analyzing the system may be complemented
by interviewing developers, studying existing documents and the development
process, or analyzing the version history available in version control systems such
as CVS or Subversion. This additional analysis may create hypotheses for the
reconstruction process which can then be validated under some circumstances
by investigating the system.

4.2 Target Views

Target views are the result of reconstruction activities. This section classifies
existing reconstruction techniques into the target viewpoint categories outlined
in Table 1 in Section 2.3. Table 2 gives an overview using the abbreviations
introduced in Table 1. Some of the target viewpoints cannot be classified to one
particular viewpoint in Table 1, but at least to a viewpoint category therein.

There are some papers addressing multiple viewpoints, in which case they
appear several times in Table 2. The view integration and combination does not
match with Clements et al.’s categorization. Rather they can be viewed as a
meta view connecting different views specified by different viewpoints.

5 Reconstructing Module Viewpoints

Most published techniques address module viewpoints because they are closest to
the source. For this reason, we will focus on these techniques in this paper. Refer-
ences to techniques addressing other viewpoint categories can be found in Table 2.



Architecture Reconstruction 155

Table 2. Categorized published techniques

Cat. Viewp. Content References

M1 decomposition part-of [39,40,41,42,43,44,45,46]
[47,48,49,50,51,52,53,54]
[55,56,57,58,59,60,61,62]
[63,64,65,66,67,68,69,70]
[71,72,73,74,75,76,77,78]
[79,80,81]

M3 class hierarchies inherits, attribute-of,
method-of

[82,83]

M2 class diagrams association, aggregation [84,85,86,87,88,89,90]
[91,92,93]

M2 interfaces provides, requires [94,95,96]
M design pattern element participates-in

pattern
[97,98,99,100,101,102,103]
[104,105,106,107,108]

M conformance conforms-to,
diverges-from

[109,110,111,112,113,114]
[115]

M feature location implemented-by [116,117,118,119,120,121]
[122,123,124,125,126,127]
[128,129,130,131]

M use cases implemented-by [132,133]
M configuration varies-with [134,135]
CC object traces receives-message [136,137]
CC component interaction interacts-with [138,139,140]
CC process interaction interacts-with [141,142,143,144,145,146]

[147,148,80,81]
CC object interaction interacts-with [149,150,151,152,153,154]

[155,156,157,158,159,160]
CC conceptual implemented-by [161,162,80]
A3. responsibility responsible-for [163]
A2 build process generated-from,

generated-by
[164]

A2 files described-in, saved-in [80]
Meta View

integration/combination
element corresponds-to
element

[165,166,167,168,169]

5.1 Decomposition

The most dominating research area in architecture reconstruction is the inference
of the structural decomposition. At the lower level, one groups global declara-
tions such as variables, routines, types, and classes into modules. At the higher
level, modules are clustered into subsystems and layers. The result are flat or
hierarchical modules. Examples for flat modules are abstract data types and
objects [170,171,172,173,174,175,176,177,178,179,180,181,182,183,184].

Hierarchical modules are often called subsystems [185,47,186,57]. While ear-
lier research focused on flat modules for procedural systems, newer research
addresses hierarchical modules.



156 R. Koschke

Typically, static dependencies such as calls, variable accesses, and type rela-
tions are used to determine the grouping. In some cases, similarity of identifiers
are also used [60,40,187,188]. Gall et al. proposed to explicitly model the appli-
cation domain to get more application-oriented concepts [79]. Only one approach
groups using dynamic information gathered through executing use cases [43].

Different techniques are used for the grouping. Software clustering is the most
popular one and leverages existing clustering techniques developed in other fields,
for instance in biology, to categorize animals [58,64,70,78,189,186,187,188]. In
many cases a hierarchical agglomerative similarity clustering is used. The ap-
proaches differ mostly in the underlying definition of similarity that decides
which elements to group.

Other techniques view grouping as a partitioning problem that attempts to
minimize coupling and maximize cohesion between software entities. Because
finding the best partition is NP hard, approximative techniques are used, for
instance, based on generative programming [57] or more traditional search tech-
niques such as hill climbing [55,57].

Also, methods from graph theory are used, as for instance, search for cy-
cles or dominance analysis [185,47,61] and graph pattern matching [66,67,68,69].
Other techniques are based on mathematical methods for binary relations, such
as formal concept analysis [43,45,52,72,73,74,181,175]. The result of formal con-
cept analysis is a concept lattice, which describes a hierarchy of concepts. The
techniques using formal concept analysis differ in the definition of the so called
formal context that defines the objects, attributes, and relation used as input
to concept analysis and also in the use of the resulting lattice. Data mining
techniques [62,65,69] and spectral analysis [71] are also used.

In general, these fully automated techniques are part of an interactive process
[61,189] because the criteria for logically cohesive elements are not defined ex-
actly. In iterative processes, incremental techniques play a prominent role. These
incremental techniques need to group new elements and not yet grouped elements
into existing groups [76,189].

The intensive analysis of these techniques have lead to comparative studies
reflecting about them. For instance, their stability against minor changes in the
input dependencies [75] and the influence of different approaches to generate
call graphs [63] were analyzed. Differences in call graphs can arise from different
techniques used to resolve function pointers and dynamic dispatching. More-
over, competing approaches to validate the results of clustering techniques were
developed [48,190,49,51,54,59,77,189].

5.2 Class Hierarchies

Reverse engineering class hierarchies from object-oriented programs seems trivial
at first sight because the inheritance relation can be retrieved syntactically from
object-oriented programming languages. Yet, the syntactic inheritance yields
only class hierarchies as specified and not how the classes are actually used in
the code. More advanced analyses yield the optimal class hierarchy as mirrored
in using code. Optimal means that a class has only those properties that all of its



Architecture Reconstruction 157

instances actually require [82,83]. The optimal hierarchy is a refinement of the
actual hierarchy where unnecessary properties are removed and where classes as
declared are split into subclasses so that a declared instance of such a class has
all properties that are used through this instance and only those. The means to
obtain the optimal class hierarchy is formal concept analysis.

5.3 Interfaces

Syntactic export interfaces describe all types, operations, and attributes pro-
vided by a module whereas syntactic import interfaces list all types, operations,
and attributes the module requires from other module in order to work correctly.
Syntactic export interfaces can be specified in most languages; in C, it is conven-
tional to specify this type of interface by header files with external declarations
while in more advanced languages such as Java, C#, and C++ there exist syn-
tactic means for the specification. Syntactic import interfaces can typically not
be specified directly, or at least only at a relatively coarse level by import or
include statements. Here, at least one specifies upon which other modules a
module depends. Yet, more interesting is usually what is really used and not
just exported and which other interface elements of other modules are actually
used by a module. This type of information can be reconstructed by global name
resolution, in the compiler domain known as semantic analysis. While direct ref-
erences can be detected relatively easily by name resolution (although it is still
complicated enough when it comes to overloaded methods in C++ or Ada, for
instance) since the names are explicitly mentioned. Indirect references through
function pointers, dispatching calls, or reflection in Java are much more difficult
to obtain. For function pointers, we can use a pointer analysis to obtain the
potential targets of a function pointer call. For dispatching calls, we need a data
flow analysis that tells us which dynamic types an object can take on at runtime
in order to determine which redefined method is called within a class hierarchy.

As soon as we know all references, we can determine the provided and required
interfaces of a module. A generic approach for that is described by Mancoridis [94].
Viljamaa describes a method how the interface of an object-oriented framework
(variation points and call interface) is obtained from different instantiations of this
framework [96]. Once again, formal concept analysis plays a role in this process.

Yet, interfaces are much more than just references and syntax. An interface is
the set of assumptions a modules makes on its client modules and the modules it
requires. Preconditions and postconditions and constraints on the allowable se-
quences of operations offered by the interface are additional aspects one needs to
specify for an interface. In particular, in embedded real-time systems we also need
to specify nonfunctional properties such as memory consumption and timing of
the operations. Preconditions may be retrieved from code as path conditions that
yield to statements that explicitly raise exceptions as proposed by Whaley et al.
[191] in cases where programmers used the strategy of defensive programming.

5.4 Class Models

Class models describe the dependencies between classes beyond inheritance.
Essentially, they reconstruct complete UML class diagrams with associations,



158 R. Koschke

aggregations, and compositions. The techniques range from lightweight tech-
niques analyzing byte code [85,86] to more advanced data flow analyses that
determine which objects may be referenced [87].

The extraction for large systems may yield very detailed yet also overwhelming
data. In order to cope with these data, rules for abstraction may be useful [84].

In class diagrams, we distinguish aggregation and composition from the more
general associations. These types of relations cannot be distinguished syntac-
tically in ordinary programming languages. To distinguish them in the source
code is difficult. There are some approaches that are based on the static life-
time of objects or the propagation by operations [93]. Class models may even be
extracted for procedural languages [91] where the programming language gives
even fewer hints on the intended class model.

5.5 Design Patterns

A relatively new line of research is the detection of design pattern implementations
in source code. In the beginning, structural patterns were the main focus. They
may be detected as structural patterns in class models. Today’s research tackles
behavioral and creational patterns as well using static and dynamic analysis.

Static techniques are based on pattern matching for graphs representing class
models or abstract syntax trees [97,98,99,101,102,104,105,106]. Once these pat-
terns are detected, one can filter these candidates by dynamic analysis on execu-
tion traces of the operations involved in the matched pattern [100]. Data mining
may be used as well [103].

The problem of pattern matching in graphs is to circumvent the combinatorial
explosion of the possible ways to instantiate a pattern. In essence, the underlying
problem here is the NP hard problem of finding isomorphic subgraphs. The
existing approaches are using heuristics and yield approximative solutions. Some
approaches attempt to explicitly model uncertainty of the matching using fuzzy-
set theory [105].

A very different approach to design pattern detection was proposed by Tonella
and Antoniol [107,108]. All other approaches require a library of known pattern
implementations to detect pattern instantiations in code. They are able to find
only patterns which are assumed to exist but cannot find new patterns. Tonella
and Antontiol’s technique attempts to detect new unknown patterns by using
formal concept analysis. Potential patterns are detected in the resulting concept
lattice as frequent occurrences of collaborations of classes. These patterns are
then validated by a reverse engineer.

5.6 Conformance

All manual approaches to architecture reconstruction use hypotheses on the ex-
pected architecture at least implicitly. Theses hypotheses guide the reconstruc-
tion process. Some approaches offer to specify these hypotheses explicitly. These
approaches may also be used to check conformance of the implementation with
the architecture or to track the evolution of the architecture [114].



Architecture Reconstruction 159

The conformance viewpoint is a particularity in architecture reconstruction. It
does not exist in forward engineering because it requires two models: an intended
architecture model and a model of the architecture as implemented.

The reflexion model by Murphy et al. [112,113,192,111,193,194] is the most
prominent hypothesis-driven approach. It consists of several steps. In the first
step, an architecture model is specified on the expected components and their
dependencies. Then the implementation components and their dependencies are
extracted from the code. The implementation components are mapped onto the
architecture components by a reverse engineer. Given this mapping, the com-
monalities and differences between these two models can be determined as three
types of relations:

– a convergence is found when the architecture specifies a dependency that
really exists in the code

– an absence is found when the architecture specifies a dependency that does
not exist in the code

– a divergence is found when the architecture specifies a dependency that does
exist in the code but not in the architecture

Frenzel, Koschke et al. have later extended this technique to reconstructing
the architectures of software variants incrementally [195].

A variation of this technique that does not compare dependencies but coupling
metrics derived from these was proposed by Tvedt et al. [115]. While Murphy
et al. specify the hypothesized architecture model as a separate graph, Aldrich
et al. [109] embed this specification directly in the source code.

5.7 Feature Location

Modules take on responsibilities to implement a coherent set of product func-
tions, also known as features. In many cases, it is not known which feature is
implemented by which module. In these cases, traceability links from features
onto modules must be reconstructed. This can be done through static or dynamic
analysis.

Static approaches extract a global static dependency graph, which can be
browsed by a reverse engineer for the relevant features [117,127]. Dedicated
browsing tools can be used to support the systematic search. Some familiar-
ity with the code is required for an efficient and effective search. Otherwise
the whole dependency graph must be investigated. Other static approaches use
information retrieval techniques to compare significant words in a requirement
specification or change request to identifiers and words in comments in the source
code [126,128,131].

Dynamic analyses observe which routines are executed when the feature of
interest is executed [116,119,125,196]. The reverse engineer can inspect the trace
execution detecting visual patterns of the feature execution.

Other dynamic analyses compute the set difference between the set of routines
when the feature was invoked and the set of routines when the program was
executed without invoking the feature [118,129,197].



160 R. Koschke

An extension to this binary comparison was proposed by Eisenbarth, Koschke
and Simon using formal concept analysis [120,123]. Beyond that they developed
ideas to combine static and dynamic analysis and to apply formal concept analy-
sis incrementally [121,122,124]. A case study of feature location based on formal
concept analysis for programs with a complex and large feature set was reported
by Quante and Koschke [198].

Wilde and Rajlich compared their distinct static and dynamic techniques
in a controlled experiment [130]. The experiment suggests that the dynamic
approach is more suited for large programs that are changed rarely because it
gives only a partial understanding whereas the static approach is better suited
for a more manageable program often changed since it gives a more complete
understanding.

5.8 Use-Cases

Related to feature location is the reconstruction of use cases. A use case can
combine several features to obtain a result meaningful to a user. Again, static
and dynamic approaches can be applied. The dynamic technique by El-Ramly
et al. [133] reconstructs use cases by re-occurring patterns in recorded interac-
tions with user dialogs and their succession.

In the static technique by Lucca et al. [132] those sequences of static calls
between classes are followed that start with an input statement and end in an
output statement. All such paths yield a method-message graph (MM-graph).
A use case corresponds to a path in the MM-graph. Use cases that are part
of another use case can be detected in the MM-graph as inner paths between
forking and joining nodes in the MM-graph.

5.9 Configuration

Source code is often configured using preprocessor directives. At the architectural
level, such preprocessor directives indicate variant components. The code that is
actually analyzed by the compiler depends upon macros. These configurations
are analyzed by Krone and Snelting using formal concept analysis [134,135]. The
resulting concept lattice shows which lines of code depend upon which macro
values and which macros control jointly which code lines.

6 Summary and Future Research

The comparison of viewpoints in architecture reconstruction and viewpoints in
forward engineering in Table 2 shows a large overlap but also a discrepancy.
Largely, module viewpoints are addressed in architecture reconstruction and to
some extent component-and-connector viewpoints. The allocation viewpoints are
hardly addressed.

Consequently, future research should better address the discrepancies. The
effort disproportionately spent on the structural decomposition could be redi-
rected to the lesser addressed viewpoints. The discovery of new design patterns
in the component-connector-viewpoints also deserves more research.



Architecture Reconstruction 161

Current research focuses on the reconstruction of the status quo of a system.
A newer trend is the analysis of evolutionary aspects based on the analysis of
version control systems such as CVS or Subversion. Evolutionary analyses may
detect the underlying drivers for design decisions. Yet, even this work is able
to look back only on what actually happened but not on what should have
happened. That is, we see the consequences of design decisions but not the
influencing factors and alternatives that were ignored along with the rationales
for these decisions.

While there are a few papers on the process of reconstruction, a comprehen-
sive catalogue of techniques with detailed process descriptions when and how
the techniques can be applied is missing. There is a lack of cost models for archi-
tecture reconstruction and knowledge when to prefer one technique over other
techniques. Beyond that an embedding of architecture reconstruction in the nor-
mal development process is missing in order to monitor the evolution and to take
countermeasures against architectural erosion early. Such an embedding would
allow to take measures at the first signs of architectural erosion and would avoid
more expensive large-scale refactorings after the fact.

Another challenge for the future is the reconstruction of architectures of highly
dynamic and adaptive systems. These kinds of systems are gaining more and
more currency.

References

1. van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.: Symphony:
View-driven software architecture reconstruction. In: IEEE/IFIP Working Con-
ference on Software Architecture, pp. 122–132. IEEE Computer Society Press,
Los Alamitos (2004)

2. IEEE P1471: IEEE recommended practice for architectural description of
software-intensive systems—std. 1471-2000 (2000)

3. Parnas, D.L.: On a ’buzzword’: Hierarchical structure. In: Proc. IFIP Congress,
North Holland Publishing Company, Amsterdam (1974)

4. Zachman, J.A.: A framework for information systems architecture. IBM Systems
Journal 26(3) (1987)

5. Sowa, J.F., Zachman, J.A.: Extending and formalising the framework for infor-
mation systems architecture. IBM Systems Journal 31(3), 590–616 (1992)

6. Zachman, J.A.: A framework for information systems architecture. IBM Systems
Journal 38(2&3), 454–470 (1999)

7. Perry, D.E., Wolf, A.L.: Foundations for the study of software. ACM SIG-
SOFT 17(4), 40–52 (1992)

8. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50
(1995)

9. Soni, D., Nord, R.L., Hofmeister, C.: Software architecture in industrial applica-
tions. In: International Conference on Software Engineering, pp. 196–206. ACM
Press, New York (1995)

10. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Object Tech-
nology Series. Addison-Wesley, Reading (2000)

11. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architecture. Addison-Wesley, Boston (2002)



162 R. Koschke

12. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice Hall, Englwood Cliffs (1996)

13. Holt, R.C.: Structural manipulation of software architecture using tarski rela-
tional algebra. In: Blaha, M., Verhoef, C. (eds.) Working Conference on Reverse
Engineering, pp. 210–219. IEEE Computer Society Press, Los Alamitos (1998)

14. Postma, A.: A method for module architecture verification and its application
on a large component-based system. Information and Software Technology 45,
171–194 (2003)

15. Feijs, L., Krikhaar, R., van Ommering, R.: A relational approach to support
software architecture analysis. Software—Practice and Experience 28(4), 371–400
(1998)

16. Riva, C.: Architecture reconstruction in practice. In: IEEE/IFIP Working Con-
ference on Software Architecture. IEEE Computer Society Press, Los Alamitos
(2002)

17. Mens, K.: Automating architectural conformance checking by means of logic meta
programming. Phd thesis, Departement Informatica, Vrije Universiteit Brussel
(2000)

18. Murphy, G.C., Notkin, D.: Reengineering with reflexion models: A case study.
IEEE Computer 30(8), 29–36 (1997)

19. Bassil, S., Keller, R.K.: Software visualization tools: Survey and analysis. In:
International Workshop on Program Comprehension, pp. 7–17. IEEE Computer
Society Press, Los Alamitos (2001)

20. Knight, C., Munro, M.: Mediating diverse visualisations for comprehension. In:
International Workshop on Program Comprehension, pp. 18–25. IEEE Computer
Society Press, Los Alamitos (2001)

21. Wiggins, M.: An overview of program visualization tools and systems. In: 36th An-
nual Southeast Regional Conference, pp. 194–200. ACM Press, New York (1998)

22. Koschke, R.: Software visualization in software maintenance, reverse engineer-
ing, and reengineering: A research survey. Journal on Software Maintenance and
Evolution 15(2), 87–109 (2003)

23. Kazman, R., Carriere, S.: View extraction and view fusion in architectural under-
standing. In: International Conference on Software Reuse (1998)

24. Chase, M.P., Harris, D., Yeh, A.: Manipulating recovered software architecture
views. In: International Conference on Software Engineering, pp. 184–194. ACM
Press, New York (1997)

25. Hillard II, R.F., Rice, T.B., Schwarm, S.C.: The architectural metaphor as foun-
dation for system engineering. In: Annual Symposium of the International Council
on Systems Engineering (1995)

26. Ross, D.T.: Removing the limitations of natural languages (with the principles
behind the rsa language). In: Proceedings of the Software Engineering Workshop.
Academic Press, London (1980)

27. Anderson, K.M., Taylor, R.N., Whitehead Jr., E.J.: Chimera: hypertext for het-
erogeneous software environments. In: Proceedings of the European conference on
Hypermedia technology. ACM Press, New York (1994)

28. Devanbu, P., Chen, R., Gansner, E., Müller, H., Martin, A.: Chime: Customiz-
able hyperlink insertion and maintenance engine for software engineering environ-
ments. In: International Conference on Software Engineering. ACM Press, New
York (1999)



Architecture Reconstruction 163

29. Pollet, D., Ducasse, S., Poyet, L., Alloui, I., Ĉımpan, S., Verjus, H.: Towards
a process-oriented software architecture reconstruction taxonomy. In: European
Conference on Software Maintenance and Reengineering, pp. 137–148. IEEE Com-
puter Society Press, Los Alamitos (2007)

30. Ivkovic, I., Godfrey, M.: Enhancing domain-specific software architecture recovery.
In: International Workshop on Program Comprehension, may 2003, pp. 266–270.
IEEE Computer Society Press, Los Alamitos (2003)

31. Liu, K., Alderson, A., Qureshi, Z.: Requirements recovery from legacy systems
by analyzing and modelling behavior. In: International Conference on Software
Maintenance. IEEE Computer Society Press, Los Alamitos (1999)

32. Riva, C., Yang, Y.: Generation of architectural documentation using XML. In:
Working Conference on Reverse Engineering, pp. 161–169. IEEE Computer Soci-
ety Press, Los Alamitos (2002)

33. Riva, C.: Architecture reconstruction in practice. In: IEEE/IFIP Working Confer-
ence on Software Architecture, pp. 159–173. IEEE Computer Society Press, Los
Alamitos (2002)

34. Bril, R.J., Postma, A., Krikhaar, R.L.: Embedding architectural support in in-
dustry. In: International Conference on Software Maintenance, pp. 348–357. IEEE
Computer Society Press, Los Alamitos (2003)

35. Stoermer, C., O’Brien, L., Verhoef, C.: Practice patterns for architecture recon-
struction. In: Working Conference on Reverse Engineering, pp. 151–160. IEEE
Computer Society Press, Los Alamitos (2002)

36. Stoermer, C., O’Brien, L., Verhoef, C.: Moving towards quality attribute driven
software architecture reconstruction. In: Working Conference on Reverse Engi-
neering, pp. 46–56. IEEE Computer Society Press, Los Alamitos (2003)

37. Stoermer, C., O’Brien, L.: MAP—mining architectures for product line evalua-
tions. In: IEEE/IFIP Working Conference on Software Architecture, pp. 35–44.
IEEE Computer Society Press, Los Alamitos (2001)

38. Ding, L., Medvidovic, N.: Focus: A light-weight, incremental approach to soft-
ware architecture recovery and evolution. In: IEEE/IFIP Working Conference on
Software Architecture, pp. 191–200. IEEE Computer Society Press, Los Alamitos
(2001)

39. Andritsos, P., Tzerpos, V.: Software clustering based on information loss min-
imization. In: Working Conference on Reverse Engineering, pp. 334–343. IEEE
Computer Society Press, Los Alamitos (2003)

40. Anquetil, N., Lethbridge, T.: Extracting concepts from file names: a new file
clustering criterion. In: International Conference on Software Engineering, pp.
84–93. ACM Press, New York (1998)

41. Baniassad, E.L.A., Murphy, G.C.: Conceptual module querying for software
reengineering. In: International Conference on Software Engineering, pp. 64–73.
ACM Press, New York (1998)

42. Bauer, M., Trifu, M.: Architecture-aware adaptive clustering of oo systems. In: Eu-
ropean Conference on Software Maintenance and Reengineering, pp. 3–12. IEEE
Computer Society Press, Los Alamitos (2004)

43. Bojic, D., Velasevic, D.: A use-case driven method of architecture recovery for
program understanding and reuse reengineering. In: European Conference on
Software Maintenance and Reengineering. IEEE Computer Society Press, Los
Alamitos (2000)

44. Chiricota, Y., Jourdan, F., Melançon, G.: Software components capture using
graph clustering. In: International Workshop on Program Comprehension, pp.
217–226. IEEE Computer Society Press, Los Alamitos (2003)



164 R. Koschke

45. van Deursen, A., Kuipers, T.: Identifying objects using cluster and concept analy-
sis. In: International Conference on Software Engineering, pp. 246–255. IEEE
Computer Society Press, Los Alamitos (1999)

46. Embley, D.W., Woodfield, S.N.: Assessing the quality of abstract data types writ-
ten in Ada. In: International Conference on Software Engineering, pp. 144–153.
ACM Press, New York (1988)

47. Girard, J.F., Koschke, R.: Finding components in a hierarchy of modules: a step
towards architectural understanding. In: International Conference on Software
Maintenance. IEEE Computer Society Press, Los Alamitos (1997)

48. Girard, J.F., Koschke, R., Schied, G.: Comparison of abstract data type and
abstract state encapsulation detection techniques for architectural understanding.
In: Working Conference on Reverse Engineering. IEEE Computer Society Press,
Los Alamitos (1997)

49. Koschke, R., Eisenbarth, T.: A framework for experimental evaluation of clus-
tering techniques. In: International Workshop on Program Comprehension. IEEE
Computer Society Press, Los Alamitos (2000)

50. Krikhaar, R.: Reverse architecting approach for complex systems. In: Interna-
tional Conference on Software Maintenance. IEEE Computer Society Press, Los
Alamitos (1997)

51. Lakhotia, A., Gravley, J.: Toward experimental evaluation of subsystem classifi-
cation recovery techniques. In: Working Conference on Reverse Engineering, pp.
262–271. IEEE Computer Society Press, Los Alamitos (1995)

52. Lindig, C., Snelting, G.: Assessing modular structure of legacy code based on
mathematical concept analysis. In: International Conference on Software Engi-
neering, pp. 349–359. IEEE Computer Society Press, Los Alamitos (1997)

53. Lung, C.H.: Software architecture recovery and restructuring through clustering
techniques. In: Proceedings of the third international workshop on Software ar-
chitecture, pp. 101–104. ACM Press, New York (1998)

54. Tzerpos, V., Holt, R.C.: Mojo: A distance metric for software clustering. In: Work-
ing Conference on Reverse Engineering, pp. 187–196. IEEE Computer Society
Press, Los Alamitos (1999)

55. Mahdavi, K., Harman, M., Hierons, R.M.: A multiple hill climbing approach
to software module clustering. In: International Conference on Software Main-
tenance, pp. 315–324. IEEE Computer Society Press, Los Alamitos (2003)

56. Mancoridis, S., Holt, R.C.: Recovering the structure of software systems using
tube graph interconnection clustering. In: International Conference on Software
Maintenance. IEEE Computer Society Press, Los Alamitos (1996)

57. Mancoridis, S., Mitchell, B., Rorres, C., Chen, Y., Gansner, E.: Using automatic
clustering to produce high-level system organizations of source code. In: Interna-
tional Workshop on Program Comprehension. IEEE Computer Society Press, Los
Alamitos (1998)

58. Maqbool, O., Babri, H.A.: The weighted combined algorithm: A linkage algorithm
for software clustering. In: European Conference on Software Maintenance and
Reengineering, pp. 15–24. IEEE Computer Society Press, Los Alamitos (2004)

59. Mitchell, B.S., Mancoridis, S.: Craft: A framework for evaluating software cluster-
ing results in the absence of benchmark decompositions. In: Working Conference
on Reverse Engineering, pp. 93–102. IEEE Computer Society Press, Los Alamitos
(2001)

60. Müller, H.A., Klashinsky, K.: Rigi—a system for programming-in-the-large. In:
International Conference on Software Engineering, pp. 80–86. ACM Press, New
York (1985)



Architecture Reconstruction 165

61. Müller, H.A., Tilley, S.R., Orgun, M.A., Corrie, B.D., Madhavji, N.H.: A reverse
engineering environment based on spatial and visual software interconnection
models. In: Proceedings of the Fifth ACM SIGSOFT Symposium on Software
development environments, pp. 88–98. ACM Press, New York (1992)

62. de Oca, C.M., Carver, D.L.: A visual representation model for software subsystem
decomposition. In: Working Conference on Reverse Engineering. IEEE Computer
Society Press, Los Alamitos (1998)

63. Rayside, D., Reuss, S., Hedges, E., Kontogiannis, K.: The effect of call graph
construction algorithms for object-oriented programs on automatic clustering. In:
International Workshop on Program Comprehension. IEEE Computer Society
Press, Los Alamitos (2000)

64. Saeed, M., Maqbool, O., Babri, H., Hassan, S., Sarwar, S.: Software cluster-
ing techniques and the use of combined algorithm. In: European Conference on
Software Maintenance and Reengineering, pp. 301–310. IEEE Computer Society
Press, Los Alamitos (2003)

65. Sartipi, K., Kontogiannis, K., Mavaddat, F.: Architectural design recovery using
data mining techniques. In: European Conference on Software Maintenance and
Reengineering. IEEE Computer Society Press, Los Alamitos (2000)

66. Sartipi, K., Kontogiannis, K.: A graph pattern matching approach to software
architecture recovery. In: International Conference on Software Maintenance, pp.
408–417. IEEE Computer Society Press, Los Alamitos (2001)

67. Sartipi, K., Kontogiannis, K.: On modeling software architecture recovery as
graph matching. In: International Conference on Software Maintenance, pp. 224–
234. IEEE Computer Society Press, Los Alamitos (2003)

68. Sartipi, K., Kontogiannis, K., Mavaddat, F.: A pattern matching framework for
software architecture recovery and restructuring. In: International Workshop on
Program Comprehension. IEEE Computer Society Press, Los Alamitos (2000)

69. Sartipi, K.: Alborz: A query-based tool for software architecture recovery. In: In-
ternational Workshop on Program Comprehension, pp. 115–117. IEEE Computer
Society Press, Los Alamitos (2001)

70. Schwanke, R.W.: An intelligent tool for re-engineering software modularity. In:
International Conference on Software Engineering. ACM Press, New York (1992)

71. Shokoufandeh, A., Mancoridis, S., Maycock, M.: Applying spectral methods to
software clustering. In: Working Conference on Reverse Engineering, pp. 3–12.
IEEE Computer Society Press, Los Alamitos (2002)

72. Siff, M., Reps, T.: Identifying modules via concept analysis. In: International
Conference on Software Maintenance, pp. 170–179. IEEE Computer Society Press,
Los Alamitos (1997)

73. Siff, M., Reps, T.: Identifying modules via concept analysis. IEEE Computer
Society Transactions on Software Engineering 25(6), 749–768 (1999)

74. Tonella, P.: Concept analysis for module restructuring. IEEE Computer Society
Transactions on Software Engineering 27(4), 351–363 (2001)

75. Tzerpos, V., Holt, R.C.: On the stability of software clustering algorithms. In:
International Workshop on Program Comprehension. IEEE Computer Society
Press, Los Alamitos (2000)

76. Tzerpos, V.: The orphan adoption problem in architecture maintenance. In: Work-
ing Conference on Reverse Engineering. IEEE Computer Society Press, Los Alami-
tos (1997)

77. Wen, Z., Tzerpos, V.: An optimal algorithm for mojo distance. In: International
Workshop on Program Comprehension, pp. 227–236. IEEE Computer Society
Press, Los Alamitos (2003)



166 R. Koschke

78. Abreu, F., Pereira, G., Sousa, P.: A coupling-guided cluster analysis approach to
reengineer the modularity of object-oriented systems. In: European Conference
on Software Maintenance and Reengineering. IEEE Computer Society Press, Los
Alamitos (2000)

79. Gall, H., Klösch, R.: Finding objects in procedural programs: an alternative ap-
proach. In: Working Conference on Reverse Engineering, pp. 208–217. IEEE Com-
puter Society Press, Los Alamitos (1995)

80. Han, M., Hofmeister, C., Nord, R.L.: Reconstructing software architecture for
J2EE web applications. In: Working Conference on Reverse Engineering, pp. 67–
76. IEEE Computer Society Press, Los Alamitos (2003)

81. Mendonca, N.C., Kramer, J.: Developing an approach for the recovery of distrib-
uted software architectures. In: International Workshop on Program Comprehen-
sion. IEEE Computer Society Press, Los Alamitos (1998)

82. Dekel, U., Gil, Y.: Revealing class structure with concept lattices. In: Working
Conference on Reverse Engineering, pp. 353–362. IEEE Computer Society Press,
Los Alamitos (2003)

83. Snelting, G., Tip, F.: Reengineering class hierarchies using concept analysis. In:
Proceedings of the ACM SIGSOFT sixth international symposium on Foundations
of software engineering, pp. 99–110. ACM Press, New York (1998)

84. Egyed, A.: Automated abstraction of class diagrams. ACM Transactions on Soft-
ware Engineering and Methodology 11(4), 449–491 (2002)

85. Jackson, D., Waingold, A.: Lightweight extraction of object models from bytecode.
In: International Conference on Software Engineering, pp. 194–202. ACM Press,
New York (1999)

86. Jackson, D., Waingold, A.: Lightweight extraction of object models from bytecode.
IEEE Computer Society Transactions on Software Engineering 27(2), 159–169
(2001)

87. Milanova, A., Rountev, A., Ryder, B.: Constructing precise object relation dia-
grams. In: International Conference on Software Maintenance, pp. 586–595. IEEE
Computer Society Press, Los Alamitos (2002)

88. Richner, T., Ducasse, S.: Using dynamic information for the iterative recovery of
collaborations and roles. In: International Conference on Software Maintenance,
pp. 34–43. IEEE Computer Society Press, Los Alamitos (2002)

89. Richner, T., Ducasse, S.: Recovering high-level views of object-oriented appli-
cations from static and dynamic information. In: International Conference on
Software Maintenance. IEEE Computer Society Press, Los Alamitos (1999)

90. Riva, C., Rodriguez, J.V.: Combining static and dynamic views for architecture
reconstruction. In: European Conference on Software Maintenance and Reengi-
neering, pp. 47–56. IEEE Computer Society Press, Los Alamitos (2002)

91. Subramaniam, G.V., Byrne, E.J.: Deriving an object model from legacy fortran
code. In: International Conference on Software Maintenance. IEEE Computer
Society Press, Los Alamitos (1996)

92. Tonella, P., Potrich, A.: Reverse engineering of the interaction diagrams from
C++ code. In: International Conference on Software Maintenance, pp. 159–168.
IEEE Computer Society Press, Los Alamitos (2003)

93. Yeh, D., Kuo, W.Y.: Reverse engineering aggregation relationship based on prop-
agation of operations. In: European Conference on Software Maintenance and
Reengineering, pp. 223–231. IEEE Computer Society Press, Los Alamitos (2002)



Architecture Reconstruction 167

94. Mancoridis, S.: Toward a generic framework for computing subsystem interfaces.
In: Joint Proceedings of the Second International Software Architecture Workshop
(ISAW-2) and International Workshop on Multiple Perspectives in Software De-
velopment (Viewpoints 1996) on SIGSOFT 1996 Workshops, pp. 106–110. ACM
Press, New York (1996)

95. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented
component interfaces. In: Proceedings of the International Symposium on Soft-
ware Testing and Analysis (July 2002)

96. Viljamaa, J.: Reverse engineering framework reuse interfaces. In: Proceedings of
the 9th European Software Engineering Conference held jointly with 10th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
217–226. ACM Press, New York (2003)

97. Antoniol, G., Fiutem, R., Cristoforetti, L.: Design pattern recovery in object-
oriented software. In: International Workshop on Program Comprehension. IEEE
Computer Society Press, Los Alamitos (1998)

98. Asencio, A., Cardman, S., Harris, D., Laderman, E.: Relating expectations to
automatically recovered design patterns. In: Working Conference on Reverse En-
gineering, pp. 87–96. IEEE Computer Society Press, Los Alamitos (2002)

99. Balanyi, Z., Ferenc, R.: Mining design patterns from C++ source code. In: In-
ternational Conference on Software Maintenance, pp. 305–314. IEEE Computer
Society Press, Los Alamitos (2003)

100. Heuzeroth, D., Holl, T., Högström, G., Löwe, W.: Automatic design pattern detec-
tion. In: International Workshop on Program Comprehension, pp. 94–103. IEEE
Computer Society Press, Los Alamitos (2003)

101. Keller, R.K., Schauer, R., Robitaille, S., Page, P.: Pattern-based reverse-
engineering of design components. In: International Conference on Software En-
gineering, pp. 226–235. ACM Press, New York (1999)

102. Kramer, C., Prechelt, L.: Design recovery by automated search for structural
design patterns in object-oriented software. In: Working Conference on Reverse
Engineering. IEEE Computer Society Press, Los Alamitos (1996)

103. Michail, A.: Data mining library reuse patterns using generalized association rules.
In: International Conference on Software Engineering, pp. 167–176. ACM Press,
New York (2000)

104. Niere, J., Schäfer, W., Wadsack, J.P., Wendehals, L., Welsh, J.: Towards pattern-
based design recovery. In: International Conference on Software Engineering, pp.
338–348. ACM Press, New York (2002)

105. Niere, J., Wadsack, J.P., Wendehals, L.: Handling large search space in pattern-
based reverse engineering. In: International Workshop on Program Comprehen-
sion, pp. 274–283. IEEE Computer Society Press, Los Alamitos (2003)

106. Seemann, J., von Gudenberg, J.W.: Pattern-based design recovery of java soft-
ware. In: Proceedings of the ACM SIGSOFT sixth international symposium on
Foundations of software engineering, pp. 10–16. ACM Press, New York (1998)

107. Tonella, P., Antoniol, G.: Object oriented design pattern inference. In: Interna-
tional Conference on Software Maintenance. IEEE Computer Society Press, Los
Alamitos (1999)

108. Tonella, P., Antoniol, G.: Inference of object-oriented design patterns. Journal
of Software Maintenance and Evolution: Research and Practice 13(5), 309–330
(2001)

109. Aldrich, J., Chambers, C., Notkin, D.: Archjava: Connecting software architecture
to implementation. In: International Conference on Software Engineering, pp.
187–196. ACM Press, New York (2002)



168 R. Koschke

110. Gannod, G.C., Murthy, S.: Verification of recovered software architectures. In: In-
ternational Workshop on Program Comprehension, pp. 258–267. IEEE Computer
Society Press, Los Alamitos (2003)

111. Koschke, R., Simon, D.: Hierarchical reflexion models. In: Working Conference
on Reverse Engineering, pp. 36–45. IEEE Computer Society Press, Los Alamitos
(2003)

112. Murphy, G.C., Notkin, D., Sullivan, K.: Software reflexion models: Bridging the
gap between source and high-level models. In: Proceedings of the Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp. 18–28.
ACM Press, New York (1995)

113. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the
gap between design and implementation. IEEE Computer Society Transactions
on Software Engineering 27(4) (April 2001)

114. Rötschke, T., Krikhaar, R.: Architecture analysis tools to support evolution of
large industrial systems. In: International Conference on Software Maintenance,
pp. 182–191. IEEE Computer Society Press, Los Alamitos (2002)

115. Tvedt, R., Costa, P., Lindvall, M.: Does the code match the design? a process for
architecture evaluation. In: International Conference on Software Maintenance,
pp. 393–403. IEEE Computer Society Press, Los Alamitos (2002)

116. Chan, K., Liang, Z.C.L., Michail, A.: Design recovery of interactive graphical
applications. In: International Conference on Software Engineering, pp. 114–124.
ACM Press, New York (2003)

117. Chen, K., Rajlich, V.: Case study of feature location using dependence graph.
In: International Workshop on Program Comprehension. IEEE Computer Society
Press, Los Alamitos (2000)

118. Deprez, J.C., Lakhotia, A.: A formalism to automate mapping from program
features to code. In: International Workshop on Program Comprehension. IEEE
Computer Society Press, Los Alamitos (2000)

119. Egyed, A.: A scenario-driven approach to traceability. In: International Confer-
ence on Software Engineering, pp. 123–132. ACM Press, New York (2001)

120. Eisenbarth, T., Koschke, R., Simon, D.: Derivation of feature component maps
by means of concept analysis. In: European Conference on Software Maintenance
and Reengineering, pp. 176–180. IEEE Computer Society Press, Los Alamitos
(2001)

121. Eisenbarth, T., Koschke, R., Simon, D.: Aiding program comprehension by static
and dynamic feature analysis. In: International Conference on Software Mainte-
nance, pp. 602–611. IEEE Computer Society Press, Los Alamitos (2001)

122. Eisenbarth, T., Koschke, R., Simon, D.: Incremental location of combined features
for large-scale programs. In: International Conference on Software Maintenance,
pp. 273–282. IEEE Computer Society Press, Los Alamitos (2002)

123. Eisenbarth, T., Koschke, R., Simon, D.: Feature-driven program understanding
using concept analysis of execution traces. In: International Workshop on Program
Comprehension, pp. 300–309. IEEE Computer Society Press, Los Alamitos (2001)

124. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE
Computer Society Transactions on Software Engineering 29(3) (2003)

125. Lukoit, K., Wilde, N., Stowell, S., Hennessey, T.: Tracegraph: Immediate visual
location of software features. In: International Conference on Software Mainte-
nance. IEEE Computer Society Press, Los Alamitos (2000)

126. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: International Conference on Software
Engineering, pp. 125–134. IEEE Computer Society Press, Los Alamitos (2003)



Architecture Reconstruction 169

127. Murphy, G.C., Lai, A., Walker, R.J., Robillard, M.P.: Separating features in source
code: An exploratory study. In: International Conference on Software Engineering,
pp. 275–284. ACM Press, New York (2001)

128. Pashov, I., Riebisch, M., Philippow, I.: Supporting architectural restructuring by
analyzing feature models. In: European Conference on Software Maintenance and
Reengineering, pp. 25–34. IEEE Computer Society Press, Los Alamitos (2004)

129. Wilde, N., Scully, M.: Software reconnaissance: Mapping from features to code.
Journal on Software Maintenance and Evolution 7, 49–62 (1995)

130. Wilde, N., Buckellew, M., Page, H., Rajlich, V.: A case study of feature loca-
tion in unstructured legacy fortran code. In: European Conference on Software
Maintenance and Reengineering, pp. 68–77. IEEE Computer Society Press, Los
Alamitos (2001)

131. Zhao, W., Zhang, L., Liu, Y., Sun, J., Yang, F.: Sniafl: Towards a static non-
interactive approach to feature location. In: International Conference on Software
Engineering, pp. 293–303. IEEE Computer Society Press, Los Alamitos (2004)

132. Lucca, G.A.D., Fasolino, A.R., Carlini, U.D.: Recovering use case models from
object-oriented code: A thread-based approach. In: Working Conference on Re-
verse Engineering. IEEE Computer Society Press, Los Alamitos (2000)

133. El-Ramly, M., Stroulia, E., Sorenson, P.: Mining system-user interaction traces
for use case models. In: International Workshop on Program Comprehension, pp.
21–30. IEEE Computer Society Press, Los Alamitos (2002)

134. Krone, M., Snelting, G.: On the inference of configuration structures from source
code. In: International Conference on Software Engineering, pp. 49–57. ACM
Press, New York (1994)

135. Snelting, G.: Reengineering of configurations based on mathematical concept
analysis. ACM Transactions on Software Engineering and Methodology 5(2), 146–
189 (1996)

136. Eisenbarth, T., Koschke, R., Vogel, G.: Static object trace extraction for programs
with pointers. Journals of Systems and Software (2005)

137. Eisenbarth, T., Koschke, R., Vogel, G.: Static trace extraction. In: Working Con-
ference on Reverse Engineering. IEEE Computer Society Press, Los Alamitos
(2002)

138. Ivkovic, I., Godfrey, M.W.: Architecture recovery of dynamically linked applica-
tions: A case study. In: International Workshop on Program Comprehension, pp.
178–184. IEEE Computer Society Press, Los Alamitos (2002)

139. Marburger, A., Herzberg, D.: E-cares research project: Understanding complex
legacy telecommunication systems. In: European Conference on Software Mainte-
nance and Reengineering, pp. 139–147. IEEE Computer Society Press, Los Alami-
tos (2001)

140. Moe, J., Carr, D.A.: Understanding distributed systems via execution trace data.
In: International Workshop on Program Comprehension, pp. 60–69. IEEE Com-
puter Society Press, Los Alamitos (2001)

141. Chase, M.P., Christey, S.M., Harris, D.R., Yeh, A.S.: Recovering software archi-
tecture from multiple source code analyses. In: Program Analysis for Software
Technology, pp. 43–50. ACM Press, New York (1998)

142. Chase, M.P., Christey, S.M., Harris, D.R., Yeh, A.S.: Managing recovered function
and structure of legacy software components. In: Working Conference on Reverse
Engineering. IEEE Computer Society Press, Los Alamitos (1998)

143. Fiutem, R., Tonella, P., Antoniol, G., Merlo, E.: A cliche-based environment to
support architectural reverse engineering. In: International Conference on Soft-
ware Maintenance. IEEE Computer Society Press, Los Alamitos (1996)



170 R. Koschke

144. Harris, R., Reubenstein, H.B., Yeh, A.S.: Reverse engineering to the architectural
level. In: International Conference on Software Engineering, pp. 186–195. ACM
Press, New York (1995)

145. Harris, D., Reubenstein, H., Yeh, A.: Recognizers for extracting architectural
features from source code. In: Working Conference on Reverse Engineering, pp.
252–261. IEEE Computer Society Press, Los Alamitos (1996)

146. Holtzblatt, L., Piazza, R., Reubenstein, H., Roberts, S., Harris, D.: Design re-
covery for distributed systems. IEEE Computer Society Transactions on Software
Engineering 23(7), 461–472 (1997)

147. Pinzger, M., Gall, H.: Pattern-supported architecture recovery. In: International
Workshop on Program Comprehension, pp. 53–62. IEEE Computer Society Press,
Los Alamitos (2002)

148. Tonella, P., Fiutem, R., Antoniol, G., Merlo, E.: Augmenting pattern-based archi-
tectural recovery with flow analysis: Mosaic—a case study. In: Working Confer-
ence on Reverse Engineering. IEEE Computer Society Press, Los Alamitos (1996)

149. De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides, J., Yang, J.: Visu-
alizing the execution of java programs. In: Diehl, S. (ed.) Dagstuhl Seminar 2001.
LNCS, vol. 2269, pp. 151–162. Springer, Heidelberg (2002)

150. Briand, L., Labiche, Y., Miao, Y.: Towards the reverse engineering of uml se-
quence diagrams. In: Working Conference on Reverse Engineering, pp. 57–66.
IEEE Computer Society Press, Los Alamitos (2003)

151. Jerding, D.F., Stasko, J.T., Ball, T.: Visualizing interactions in program execu-
tions. In: International Conference on Software Engineering, pp. 360–370. IEEE
Computer Society Press, Los Alamitos (1997)

152. Jerding, D., Rugaber, S.: Using visualization for architectural localization and
extraction. In: Working Conference on Reverse Engineering. IEEE Computer So-
ciety Press, Los Alamitos (1997)

153. Kollmann, R., Gogolla, M.: Capturing dynamic program behaviour with UML
collaboration diagrams. In: European Conference on Software Maintenance and
Reengineering, pp. 58–67. IEEE Computer Society Press, Los Alamitos (2001)

154. Krikhaar, R., Feijs, L., de Jong, R., Medema, J.: Architecture comprehension
tools for a PBX system. In: European Conference on Software Maintenance and
Reengineering. IEEE Computer Society Press, Los Alamitos (1999)

155. Systä, T., Koskimies, K., Müller, H.: Shimba—an environment for reverse engi-
neering java software systems. Software—Practice and Experience 31(4), 371–394
(2001)

156. Systä, T.: Understanding the behavior of java programs. In: Working Conference
on Reverse Engineering, pp. 214–223. IEEE Computer Society Press, Los Alamitos
(2000)

157. Systä, T.: On the Relationships between Static and Dynamic Models in Reverse
Engineering Java Software. In: Proceedings of the 6th Working Conference on
Reverse Engineering, Atlanta, GA, USA, pp. 304–313. IEEE Computer Society
Press, Los Alamitos (1999)

158. Souder, T., Mancoridis, S., Salah, M.: Form: A framework for creating views of
program executions. In: International Conference on Software Maintenance, pp.
612–621. IEEE Computer Society Press, Los Alamitos (2001)

159. Yan, H., Garlan, D., Schmerl, B., Rich, J.A., Kazman, R.: Discotect: A system
for discovering architectures from running systems. In: International Conference
on Software Engineering, pp. 470–479. ACM Press, New York (2004)



Architecture Reconstruction 171

160. Wu, J., Hassan, A.E., Holt, R.C.: Using graph patterns to extract scenarios. In:
International Workshop on Program Comprehension, pp. 239–248. IEEE Com-
puter Society Press, Los Alamitos (2002)

161. Biggerstaff, T.J., Mitbander, B.G., Webster, D.: The concept assignment problem
in program understanding. In: International Conference on Software Engineering,
pp. 482–498. ACM Press, New York (1993)

162. Gall, H., Jazayeri, M., Klösch, R., Lugmayr, W., Trausmuth, G.: Architecture
recovery in ares. In: Joint Proceedings of the Second International Software Ar-
chitecture Workshop (ISAW-2) and International Workshop on Multiple Perspec-
tives in Software Development (Viewpoints 1996) on SIGSOFT 1996 Workshops,
pp. 111–115. ACM Press, New York (1996)

163. Bowman, I.T., Holt, R.C.: Reconstructing ownership architectures to help under-
stand software systems. In: International Workshop on Program Comprehension.
IEEE Computer Society Press, Los Alamitos (1999)

164. Tu, Q., Godfrey, M.W.: The build-time software architecture view. In: Interna-
tional Conference on Software Maintenance, pp. 398–407. IEEE Computer Society
Press, Los Alamitos (2001)

165. Chase, M.P., Harris, D.R., Roberts, S.N., Yeh, A.S.: Analysis and presentation of
recovered software architectures. In: Working Conference on Reverse Engineering.
IEEE Computer Society Press, Los Alamitos (1996)

166. Issarny, V., Saridakis, T., Zarras, A.: Multi-view description of software archi-
tectures. In: ISAW 1998, Proceedings of the Third International Workshop on
Software Architecture, pp. 81–84 (1998)

167. Kazman, R., Carriere, S.J.: View extraction and view fusion in architectural un-
derstanding. In: Proceedings of the Fifth Internation Conference on Software
Reuse. IEEE Computer Society Press, Los Alamitos (1998)

168. Waters, R., Abowd, G.D.: Architectural synthesis: Integrating multiple architec-
tural perspectives. In: Working Conference on Reverse Engineering. IEEE Com-
puter Society Press, Los Alamitos (1999)

169. Yeh, A.S., Harris, D.R., Chase, M.P.: Manipulating recovered software architec-
ture views. In: International Conference on Software Engineering, pp. 184–194.
ACM Press, New York (1997)

170. Canfora, G., Cimitile, A., Munro, M., Taylor, C.J.: Extracting abstract data types
from C programs: A case study. In: International Conference on Software Main-
tenance, pp. 200–209. IEEE Computer Society Press, Los Alamitos (1993)

171. Canfora, G., Cimitile, A., Munro, M.: An improved algorithm for identifying ob-
jects in code. Journal of Software Practice and Experience 26(1), 25–48 (1996)

172. Canfora, G., Cimitile, A., Lucia, A.D., Lucca, G.A.D.: A case study of applying an
eclectic approach to identify objects in code. In: International Workshop on Pro-
gram Comprehension, pp. 136–143. IEEE Computer Society Press, Los Alamitos
(1999)

173. Choi, S., Scacchi, W.: Extracting and restructuring the design of large systems.
IEEE Software 7(1), 66–71 (1990)

174. Belady, L.A., Evangelisti, C.J.: System partitioning and its measure. Journal of
Systems and Software 2(1), 23–29 (1982)

175. Graudejus, H.: Implementing a concept analysis tool for identifying abstract data
types in C code. Diplomarbeit, University of Kaiserslautern, Germany (1998)

176. Hutchens, D.H., Basili, V.R.: System structure analysis: Clustering with data
bindings. IEEE Computer Society Transactions on Software Engineering 11(8),
749–757 (1985)



172 R. Koschke

177. Liu, S.S., Wilde, N.: Identifying objects in a conventional procedural language:
An example of data design recovery. In: International Conference on Software
Maintenance, pp. 266–271. IEEE Computer Society Press, Los Alamitos (1990)

178. Livadas, P., Johnson, T.: A new approach to finding objects in programs. Journal
on Software Maintenance and Evolution 6, 249–260 (1994)

179. Ogando, R.M., Yau, S.S., Wilde, N.: An object finder for program structure un-
derstanding in software maintenance. Journal on Software Maintenance and Evo-
lution 6(5), 261–283 (1994)

180. Patel, S., Chu, W., Baxter, R.: A measure for composite module cohesion. In:
International Conference on Software Engineering, pp. 38–48. ACM Press, New
York (1992)

181. Sahraoui, H., Melo, W., Lounis, H., Dumont, F.: Applying concept formation
methods to object identfication in procedural code. In: International Conference
on Automated Software Engineering, pp. 210–218. IEEE Computer Society Press,
Los Alamitos (1997)

182. Valasareddi, R.R., Carver, D.L.: A graph-based object identification process for
procedural programs. In: Working Conference on Reverse Engineering, pp. 50–58.
IEEE Computer Society Press, Los Alamitos (1998)

183. Weidl, J., Gall, H.: Binding object models to source code: An approach to object-
oriented re-architecturing. In: Proc. of the 22nd Computer Software and Appli-
cations Conference. IEEE Computer Society Press, Los Alamitos (1998)

184. Yeh, A.S., Harris, D., Reubenstein, H.: Recovering abstract data types and object
instances from a conventional procedural language. In: Working Conference on
Reverse Engineering, pp. 227–236. IEEE Computer Society Press, Los Alamitos
(1995)

185. Cimitile, A., Visaggio, G.: Software salvaging and the call dominance tree. Journal
of Systems and Software 28, 117–127 (1995)

186. Schwanke, R.W., Hanson, S.J.: Using neural networks to modularize software.
Machine Learning 15, 136–168 (1994)

187. Girard, J.F., Koschke, R., Schied, G.: A metric-based approach to detect abstract
data types and state encapsulations. In: International Conference on Automated
Software Engineering. IEEE Computer Society Press, Los Alamitos (1997)

188. Girard, J.F., Koschke, R., Schied, G.: A metric-based approach to detect abstract
data types and state encapsulations. Journal on Automated Software Engineer-
ing 6(4) (1999)

189. Koschke, R.: Atomic Architectural Component Recovery for Program Under-
standing and Evolution. Ph.d. thesis, University of Stuttgart (October 1999),
http://www.iste.uni-stuttgart.de/ps/rainer/thesis

190. Girard, J.F., Koschke, R.: A comparison of abstract data type and objects re-
covery techniques. Journal Science of Computer Programming 6(2–3), 149–181
(2000)

191. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented
component interfaces. In: Proceedings of the International Symposium on Soft-
ware Testing and Analysis (July 2002)

192. Murphy, G.C., Notkin, D.: Reengineering with reflexion models: A case study.
IEEE Computer 30(8), 29–36 (1997)

193. Christl, A., Koschke, R., Storey, M.A.: Equipping the reflexion method with au-
tomated clustering. In: Working Conference on Reverse Engineering, pp. 89–98.
IEEE Computer Society Press, Los Alamitos (2005)

194. Christl, A., Koschke, R., Storey, M.A.: Automated clustering to support the re-
flexion method 49(3), 255–274 (2007)

http://www.iste.uni-stuttgart.de/ps/rainer/thesis


Architecture Reconstruction 173

195. Frenzel, P., Koschke, R., Breu, A.P.J., Angstmann, K.: Extending the reflection
method for consolidating software variants into product lines. In: Working Con-
ference on Reverse Engineering, pp. 160–169. IEEE Computer Society Press, Los
Alamitos (2007)

196. Kuhn, A., Greevy, O.: Exploiting the analogy between traces and signal process-
ing. In: International Conference on Software Maintenance. IEEE Computer So-
ciety Press, Los Alamitos (2006)

197. Greevy, O.: Enriching Reverse Engineering through Feature Analysis. Ph.d. thesis,
University of Berne, Switzerland, Software Composition Group (May 2007)

198. Koschke, R., Quante, J.: On dynamic feature location. In: International Con-
ference on Automated Software Engineering, pp. 86–95. ACM Press, New York
(2005)



A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 174–193, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Collaboration in Distributed Software Development 

Filippo Lanubile 

Dipartimento di Informatica, University of Bari 
Via Orabona 4, 70126 Bari, Italy 
lanubile@di.uniba.it 

Abstract. Software development is an intense collaborative process where suc-
cess depends on the ability to create, share and integrate information. Given the 
trend towards globalization in the software development industry, distance cre-
ates an additional challenge to development processes, as fewer opportunities 
for rich interaction and lower frequencies of direct communication. The chapter 
introduces a taxonomy of software engineering tools for distributed projects and 
presents collaborative development environments, ranging from classic plat-
forms for dispersed developers in open source software projects to modern  
environments for flexible and distributed processes. Moreover, it introduces 
computer-mediated communication theories which reveal some patterns of tool 
usage to overcome the challenges of distance. Building upon the theoretical 
background of media selection, the chapter summarizes research activities 
aimed to build an evidence-based model of task-technology fit for communica-
tion-intensive activities such as distributed requirements workshops. 

Keywords: Distributed software development, global software development, 
computer-supported cooperative work, collaborative development environments. 

1   Introduction 

Working across distances has become commonplace for software projects today. 
Nevertheless, distance creates an additional challenge to development processes, 
because of fewer opportunities for rich interaction and lower frequencies of direct 
communication [27].  

In order to support collaborative work on their projects, software engineers com-
municate both directly, through meetings and informal conversations, and indirectly, 
by means of software artifacts. Adequate tool support is paramount to enable collabo-
ration in distributed software development. However, most work in collaborative 
environments for distributed development has focused on code-specific tasks rather 
than on other software engineering activities at a higher level of abstraction like re-
quirements engineering or software design [35].  

This chapter focuses on requirements engineering as an appropriate domain for 
studying distributed engineering teams. In fact requirements engineering is essentially 
a collaborative endeavor which involves a large pool of stakeholders processing sig-
nificant amount of information about the problem domain and solution space. Hence 
requirements engineering involves a complex set of communication-intensive tasks 



 Collaboration in Distributed Software Development 175 

that are significantly affected by the stakeholders’ geographical distribution which 
impedes collocated meetings. Videoconferencing is generally considered the first 
choice communication medium to conduct requirements workshops between remote 
stakeholders. However, while videoconferencing sessions come with an additional 
overhead (e.g., the costs of infrastructure setup and maintenance), even when every-
thing runs smoothly, it is still hard to conduct a long-running and productive discus-
sion during a videoconference, especially when more than a few people are involved.  

There is a need to further our knowledge of what is the most appropriate collabora-
tion toolset to achieve a shared understanding among distributed project stakeholders. 
Distributed software development thus can benefit from an interdisciplinary approach 
in which the research areas of software engineering and computer-supported coopera-
tive work (CSCW) converge. 

This chapter is organized as follows. In Section 2 we provide first the motivation for 
distributed software development and then we introduce the challenges which rise from 
the negative effects of distance. Section 3 introduces a taxonomy of software engineer-
ing tools for distributed projects and presents collaborative development environments, 
ranging from classic platforms for dispersed developers in open source software pro-
jects to modern environments for flexible and distributed processes. Next, in Section 4 
we present computer-mediated communication (CMC) theories from the field CSCW. 
Building upon the theoretical background of media selection, Section 5 summarizes 
our research activities aimed to build an evidence-based model of task-technology fit 
for communication-intensive activities such as distributed requirements workshops. 
The chapter concludes with a brief summary and some remarks.  

2   Distributed Software Development 

Distributed software development (DSD; or GSD for global software development; or 
GSE for global software engineering) means splitting the development of the same 
product or service among globally distributed sites.  

In his seminal book [6], Erran Carmel lists the six main ‘catalyst’ factors, or poten-
tial benefits, which have driven to distributed software development. 

Mergers and acquisitions. The global demand for software products and services that 
began in the 80s lead to a rush for mergers and acquisitions, as ICT firms strived to 
penetrate new markets and adjust or complement their products lines. As a result, 
software teams, no longer independent but yet in their own sites, are forced to col-
laborate as an overall global software team. 

Position as global organizations. Software firms also began in the 80s to position 
themselves as ‘global players,’ to increase business opportunities with other global 
organizations that prefer comprehensive software suppliers for all their global sub-
sidiaries rather than an heterogeneous network of vendors in different countries.  

Increase proximity to the market. The business advantages of proximity to the market 
includes knowledge of customers and local conditions, such as localization,  customi-
zation, and after-sale services, as well as the goodwill engendered by local invest-
ments  such as a favorable tax treatment from governments.  

Access the most talented developers. The quality of the programmers is mentioned as 
the most important factor in software work [25]. This statement is supported by multiple 



176 F. Lanubile 

sources of empirical evidence other than common wisdom. The implication is that or-
ganizations that want to deploy market-winning software products have to hire the most 
talented developers throughout the world, regardless of their geographical location. 

Reduce development costs. Software companies in high-cost countries try to reduce 
development costs by outsourcing development work to programmers in low-cost 
countries (e.g., India, China, Brazil, and East Europe). Most managers mention cost 
reduction by offshoring (i.e., global outsourcing to contracting staff located offshore) 
as the first driving factor for GSD.  

Reduce time to market. Since programmers are scattered across multiple sites, disper-
sion allows for ‘round-the-clock’, or ‘follow-the-sun’, development, which has the 
potential to permit the reduction of development cycles by increasing the amount of 
time in a day that software is being developed. However, there are very few studies on 
the effects of time separation [21] and then the benefits of follow-the-sun develop-
ment are more a claim than a fact based on empirical evidence.   

In spite of the benefits described above, the success of a globally distributed pro-
ject is not guaranteed by just opening a development center in another region of the 
world [17]. Developing software as a team is a challenging task, but developing as a 
global software team is even more challenging due to distance [26]. Distance has an 
impact on the three main forms of cooperation within a team [7]: communication 
coordination, and control. Communication is the exchange between the members of 
information, whether formal or informal, occurring in planned or impromptu interac-
tion. Coordination is that act of orchestrating each task and organizational unit, so 
that they all contribute to the overall objective. Control is the process of adhering to 
goals, policies, standards or quality levels, set either formally (e.g., formal meetings, 
plans, guidelines) or informally (e.g., team culture, peer pressure). Distributed teams 
create further burdens on communication, coordination and control mechanisms, 
primarily the informal ones.  

Because of distance, people cannot coordinate and control by just visiting the other 
team members. The absence of management-by-walking can result in coordination 
and control issues, like misalignment and rework. When control and coordination 
needs of distributed software teams rise, so does the load on all communication chan-
nels available. In fact, software projects have two complementary communication 
needs. First, the more formal, official communications is used for crucial tasks like 
updating project status, escalating project issues, and determining who has responsi-
bility for particular work products. Secondly, informal ‘corridor talk’ allows team 
members to keep a ‘peripheral awareness’ of what is going on around them, what 
other people are working on, what states the various parts of the project are in, and 
many other essential pieces of background information that enable developers to work 
together efficiently. In collocated settings, communication is taken for granted and 
then, its importance often goes unnoticed. When developers are not located together, 
they have much less opportunities of communication. There is empirical evidence that 
the frequency of communication drops off with the physical separation among devel-
opers’ sites [27]. As Fig. 1 shows, distance exacerbates coordination and control prob-
lems directly or indirectly through its negative effects on communication. In other 
words, communication disruption due to distance further increases and aggravates 
coordination and control breakdowns [7]. 



 Collaboration in Distributed Software Development 177 

 
Fig. 1. Impact of distance on distributed software development (from [7]) 

Table 1. GSD threats and dimensions of distance (adapted from [1]) 

 Temporal Distance Geographical 
Distance  

Sociocultural  
Distance  

Communication  - Reduced  
opportunities for 
synchronous  
communication  

- Face-to-face 
meetings difficult  

- Cultural  
misunderstandings  

Coordination  - Typically  
increased  
coordination costs  

- Reduced  
informal contact 
can lead to lack of 
critical task  
awareness  

- Inconsistent work 
practices can impinge 
on effective  
coordination 
- Reduced cooperation 
arising from  
misunderstandings  

Control  - Management of 
project artifacts may 
be subject to delays  

- Difficult to  
convey vision and 
strategy 
- Perceived threat 
from training low-
cost “rivals”  

- Different perceptions 
of authority can  
undermine morale 
- Managers must adapt 
to local regulations  

 
Table 1 summarizes the impact of the three dimensions of distance: geographical, 

temporal, and socio-cultural. Geographical distance is a measure of the spatial disper-
sion, occurring when team members are scattered across different sites. It can be op-
erationalized as the cost or effort required to exchange visits from one site to another. 
Temporal distance is a measure of the temporal dispersion, occurring when team 
members wishing to interact. It can be caused by time-zone differences or just time 
shifting work patterns (e.g., one site having a quick lunch break at noon and another 
site a two-hour lunch time at 1:00 pm). Socio-cultural distance is a measure of the 
effort required by team members to understand the organizational and national cul-
tures (e.g., norms, practices, values, spoken languages) in remote sites.  

3   Collaboration Tools and Environments  

Tools provide a considerable help to software development activities. Software engi-
neering tools to assist distributed projects may fall into the following categories: 



178 F. Lanubile 

Software Configuration management. A software configuration management (SCM) 
tool includes the ability to manage change in a controlled manner, by checking com-
ponents in and out of a repository, and the evolution of software products, by storing 
multiple versions of components, and producing specified versions on command. 
SCM tools also provide a good way to share software artifacts with other team mem-
bers in a controlled manner. Rather than just using a directory to exchange files with 
other people, with an SCM tool developers can make sure that interdependent files are 
changed together and control who is allowed to make changes. Further, SCM tools 
make it possible to save messages about what changed and why. Open-source SCM 
tools, such as Subversion and its predecessor CVS, have become indispensable tools 
for coordinating the interaction of distributed developers. 

Bug and change tracking. This function is centered around a database, accessible by 
all team members through a web-based interface. Other than an identifier and a de-
scription, a recorded bug includes information about who found it, the steps to repro-
duce it, who has been assigned on it, which releases the bug exists in and it has been 
fixed in. Bug tracking systems also define a life cycle for bugs to help team members 
to track the resolution of defects. Fig. 2 shows the life cycle of a defect in Bugzilla 
[3], the bug tracking system originally developed and used by the Mozilla project. 
Trackers are a generalization of bug tracking systems to include the management of 
other issues such as feature requests, support requests, or patches. 

Build and release management. It allows projects to create and schedule workflows 
that execute build scripts, compile binaries, invoke test frameworks, deploy to pro-
duction systems and send email notifications to developers. The larger the project, the 
greater the need for automating the build and release function. Build and release man-
agement tools can also provide a web-based dashboard to view the status of current 
and past builds (see Fig. 3). Build tools, such as CruiseControl and its ancestor like 
the UNIX make utility, are essential tools to perform Continuous Integration [22], an 
agile development practice which allows developers to integrate daily thus reducing 
integration problems.  

Product and process modeling. This function encompasses the core features of what 
was called Computer Aided Software Engineering (CASE), from requirements  
management to visual modeling of both software artifacts and customized software 
processes. Collaboration in software development tends to be around the creation of 
formal or semiformal software artifacts. According to [38], model-based collaboration 
is what distinguishes software engineering collaboration from more general collabora-
tion activities which lack the focus on using the models to create shared meanings.  

Knowledge center. This function is mostly document-driven and web-enabled, and 
allows team members to share explicit knowledge across a work unit. A knowledge 
center includes technical references, standards, frequently asked questions (FAQs) 
and best practices. Recently wiki software for collaborative web publishing has 
emerged as a practical and economical option to consider for creating and maintaining 
group documentation. Wikis are particularly valuable in distributed projects as global 
teams may use them to organize, track, and publish their work [30]. Fig. 4 shows the 
home page of the Fedora project wiki where both developers and users may contribute 
other than find information. Knowledge centers may also include sophisticated 
knowledge management activities to acquire tacit knowledge in explicit forms, such 
as expert identification and skills management [34]. 



 Collaboration in Distributed Software Development 179 

 

Fig. 2. Bug's life cycle (from [3]) 

 

Fig. 3. Project build information within a dashboard (from [12]) 

Communication tools. Software engineers have adopted a wide range of mainstream 
communication technologies for project use in addition or replacement of communi-
cating face-to-face by speech. Asynchronous communication tools include email, 
mailing lists, newsgroups, web forums and, more recently blogs; synchronous tools 
include the classic telephone and conference calls, chat, instant messaging, voice over 
IP, and videoconferencing. Email is the most-widely used and successful collabora-
tive application. Thanks to its flexibility and ease of use, email can support conversa-
tions, but also operate as a task/contact manager. However, one of the drawbacks of 



180 F. Lanubile 

email is that, due to its success, people tend to use email for a variety of purposes and 
often in a quasi-synchronous manner. In addition, email is ‘socially blind’ [20] in that 
it does not enable users to signal their availability. Nevertheless, before becoming an 
indispensable tool ubiquitous in every workplace, email was initially used by the 
niche of research community and opposed by management. Currently, chat and in-
stant messaging are following a similar evolution path. At first mostly used by young 
people for exchanging ‘social’ messages, these synchronous tools have been recently 
spreading more and more in the workplace. While email is socially blind, these tools, 
in contrast, provide a lightweight means to ascertain availability of remote team 
members and contact them in a timely manner.  

 

 

Fig. 4. Fedora Project documentation based on wiki 

General communication tools (i.e., non software engineering specific) fall in the 
category of ‘groupware’ which refers to the class of applications that support groups 
of people engaged in performing a common task [19]. However, the term groupware 
is nowadays almost disused in favor of preferred wordings such as ‘collaborative 
software’, ‘social software,’ or ‘Web 2.0’ [32] which also include systems used out-
side the workplace (e.g., blogs, wikis, instant messaging).   

Interoperability and a familiar user interface provide strong motivations to inte-
grate task-specific solutions and generic groupware into collaborative development 
environments (CDE). A CDE provides a project workspace with a standardized tool-
set to be used by the global software team. Earliest CDE were developed within open 
source software (OSS) projects because OSS projects, from the beginning, have been 
composed of dispersed individuals. Today a number of CDE are available as com-
mercial products, open source initiatives or research prototypes to enable distributed 
software development.   



 Collaboration in Distributed Software Development 181 

 

Fig. 5. Personal SourceForge portal 

SourceForge, from CollabNet, is the most popular CDE with over 170.000 hosted 
projects and 1.800.000 registered users [11]. The original mission of SourceForge was 
to enrich the open source community by providing a centralized place for developers 
to control and manage OSS projects. SourceForge offers a variety of free services: 
web interface for project administration, space for web content and scripts, trackers 
(for reporting bugs, submitting support requests or patches to review, and posting 
feature requests), mailing lists and discussion forums, download notification of new 
releases, shell functions and compile farm, and CVS-based as well as Subversion-
based configuration management. Fig. 5 shows the personal page of the author which 
provides access to a standard toolset which can be used on every project. The com-
mercial versions for corporate use, called SourceForge Enterprise Edition and  
CollabNet Enterprise Edition, add features for tracking, measuring and reporting on 
software project activities. 

GForge [24] is a fork of the 2.61 SourceForge.net project. It has been downloaded 
and configured as in-house server by many industrial and academic organizations (see 
Fig. 6 from [10]. Like SourceForge it also offers a commercial version, called GForge 
Advanced Server. 

Trac [18] provides an integrated wiki, an issue tracking system and a front-end in-
terface to SCM tools, usually Subversion. Project overview and progress tracking is 
allowed by setting a roadmap of milestones, which include a set of so-called “tickets” 
(i.e., tasks, feature requests, bug reports and support issues), and by viewing the time-
line of changes. Trac also allows team members to be notified about project events 
and ticket changes through email messages and RSS feeds. Fig. 7 shows a screenshot 
of a research project at University of Bari with active tickets grouped by milestone 
and colored to indicate different priorities.  



182 F. Lanubile 

 

Fig. 6. A GForge-based CDE  

 

Fig. 7. Active tickets in Trac grouped by milestone 

ADAMS is a CDE developed at University of Salerno [15]. ADAMS puts a great 
emphasis on creating and storing traceability links among software artifacts for the 
purpose of impact analysis and change management during software evolution. 
Events concerning changes to an artifact are automatically propagated along traceabil-
ity links to other artifacts which have been impacted directly or indirectly by the 
change, and then to developers who have been assigned the responsibility of those 
artifacts.  



 Collaboration in Distributed Software Development 183 

Jazz [23] is an extensible platform which leverages the Eclipse’s notion of plug-ins 
to build specific CDE products like the IBM Rational Team Concert. The present ver-
sion has a wide-ranging scope but in the former version of Jazz [8, 28] the goal was to 
integrate synchronous communication and reciprocal awareness of coding tasks into 
the Eclipse IDE. The development of Jazz has been inspired to the Booch and Brown’s 
vision of a “frictionless surface” for development [2], which was motivated by the 
observation that much of the developers’ effort is wasted in switching back and forth 
between different applications to communicate and work together. According to this 
vision, collaborative features should be available as components that extend core ap-
plications (e.g., the IDE), thus increasing the users’ comfort and productivity. Fig. 8 
shows two Jazz client-side plug-ins installed into the Eclipse IDE. 

 

 

Fig. 8. Jazz plugins  

4   Computer-Mediated Communication 

Communication media are usually classified in the classic time/space matrix, accord-
ing to both the spatial dimension (collocated/distributed, i.e., where the interaction 
occurs) and the temporal dimension (synchronous/asynchronous, i.e., when the  
interaction occurs). Media can also be classified according to another dimension, 
‘richness’, which can be defined as the ability of media to convey a large amount of 
information in different forms. Fig. 9 shows the media within the time/space matrix 
and along the media richness continuum. Face-to-face (F2F) is the richest form of 
communication, since it conveys information via audio and video channels, but also 
through cues like gesture and posture. Consequently, videoconference is richer than 
telephone, since the latter lacks video as information channel, whereas email is richer 
than letter, since electronic mail can also attach multimedia content. 



184 F. Lanubile 

 

Fig. 9. Media-Richness continuum in the Time/Space Matrix (adapted from [19]) 

Some CMC theories have agreed on the inadequateness of text-based communica-
tion for complex, collaborative tasks, arguing that, as complexity increases, so should 
the level of richness of the media used, thus suggesting the use of a video link in dis-
tributed contexts. Nevertheless, the last decade has witnessed the success of many 
open-source projects which are coordinated through the almost-exclusive use of  
text-based technologies, such as wikis, email, and instant messaging. Further, nowa-
days the practicality of organizing videoconferencing sessions still remains low due to 
the additional overhead (e.g, infrastructure expensive to setup and maintain at the 
remote sites).  

In the following we review the most prominent, and often conflicting, CMC  
theories.  

The Social Presence (SP) [36] and Media Richness (MR) [13] theories posit group 
effectiveness to decrease when media other than F2F are used to accomplish equivo-
cal tasks that require relational cues to be exchanged. Compared to rich media like 
F2F and video, ‘lean’ media like email and instant messaging lack the ability of con-
veying nonverbal cues (e.g., gaze, tone of voice, facial expressions) that contribute to 
the level of social presence, which in turns fosters individuals’ motivation and mutual 
understanding. Hence, rich media are recommended for accomplishing equivocal 
tasks (i.e., when multiple and conflicting interpretations exist about a situation), for 
which also communicating relation content is relevant. In contrast, lean media are 
sufficient for executing tasks of uncertainty (i.e., the difference between the amount 
of information required and already possessed about a situation), which need only 
task-focused communication. 

Common Ground (CG) theory [9] posits that people should attempt to achieve 
common ground (i.e., mutual understanding) with techniques available in a communi-
cation medium that lead to the least collaborative effort. CG theory presents eight 
properties that a medium may impose as constraints on the grounding process: co-
presence, visibility, audibility, cotemporality, simultaneity, sequentiality, reviewabil-
ity, revisability. No medium has all the attributes at the same time. When a medium 



 Collaboration in Distributed Software Development 185 

lacks one of these characteristics, it forces people to use alternative grounding tech-
niques with different costs for the speaker, the receiver or both. Participants in a F2F 
conversation usually establish common ground on the fly, as they have access to cues 
like facial expression, gestures and voice intonation. Instead, when participants  
communicate over media, the fewer cues they have, the harder to construct it. As a 
consequence, people who do not share mutual knowledge largely benefits from using 
audio/video channels for completing collaborative tasks, whereas those who have an 
extensive preexisting common ground can communicate effectively also on lean  
media such as email.  

The Time-Interaction-Performance (TIP) theory [31] hypothesizes that communi-
cation that occurs in four tasks categories (generating, intellective, judgment, and 
negotiation) can be ordered by complexity and the amount of information required. 
Fig. 10 illustrates the task-media fit attempted by the theory, with respect to the com-
munication media. TIP theory argues that rich media do not always provide the best-
fitting combination regardless of the task type. There are in fact two possible types of 
poor fit:  when a task requires more information that the medium can deliver and 
when the medium provides more information than the task requires (i.e., information 
overload). 

 

Information richness conveyed by Media

In
fo

rm
at

io
n 

ric
hn

es
s 

re
qu

ire
d 

by
 T

as
k

Generating

Intellective

Judgment

Negotiation

Text-based Audio Video F2F

Poor Fit

Poor Fit

Marginal Fit

Marginal Fit

Good Fit

Information richness conveyed by Media

In
fo

rm
at

io
n 

ric
hn

es
s 

re
qu

ire
d 

by
 T

as
k

Generating

Intellective

Judgment

Negotiation

Text-based Audio Video F2F

Poor Fit

Poor Fit

Marginal Fit

Marginal Fit

Good Fit

 

Fig. 10. Task-media fit as suggested by TIP theory (adapted from [31]) 

Media Synchronicity (MS) theory [16] distinguishes between the interplay of two 
different communication processes (the conveyance of additional information, and  
the convergence to shared views), which vary with the degree of synchronicity of the 
medium. The level of ‘medium synchronicity’ measures the extent to which it sup-
ports two inversely proportional properties, that is, immediacy of feedback (i.e., the 
ability of a medium to have rapid bidirectional communication) and parallel input 



186 F. Lanubile 

(i.e., the ability of a medium to allow for more simultaneous conversations at one 
time). F2F conversation and audio/video conference are high-synchronicity media 
because they grant high immediacy of feedback, but no parallel input (i.e., just one 
speaker at a time). In contrast, email, chat and instant messaging are low-
synchronicity media because they ensure high input parallelism and low immediacy 
of feedback. MS theory suggests that when extra-information (i.e., conveyance) is 
needed, low-synchronicity media are to be preferred due to the support of input paral-
lelism, whereas high-synchronicity media are better able to support convergence  
because of the higher degree of immediacy of feedback ensured. However, in media 
selection one must take into account that most tasks require individuals to both con-
vey information and converge on shared meanings, and media that excel at informa-
tion conveyance are often not those that excel at convergence. Thus, choosing one 
single medium for any task may prove less effective than choosing a medium, or set 
of media, which the group uses at different times in performing the task, depending 
on the current communication process (convey or converge). 

Cognitive-Based View (CBV) [33] looks at communication as a cognitive process: 
Not only must the sender’s comfort with the communication medium be taken into 
account, but also the motivation of receivers and, above all, their ability to process the 
message properly. Rich media, require participants to be present at the same time, if 
not at a same place. This requires a high level of commitment to participate in the 
communication process, which in turn provides the ability to reciprocally monitor 
attention. In contrast, lean media allow a receiver to gain time for thinking at their 
will, as well as finding additional information sources, until comprehension is fully 
achieved. However, lean media must compete with other activities on the receiver’s 
side and can be easily ignored with no feedback for the sender. As a result, rich media 
ensure that motivation and attention stays up, while lean media provides a higher 
ability to process information. On the other hand, when faced with highly complex 
messages sent with high social presence, a receiver can be overwhelmed with infor-
mation, thus delaying or biasing the decision. Fig. 11 shows the so-called ‘media 
richness paradox’, that is the inverse relationship between motivation/attention and 
the ability to process.  CBV argues that different media are needed for complex tasks 
where information overload may be generated. In such cases, the use of mixed media, 
or ‘media switching’, is motivated by the need to balance attention and motivation 
required by senders with the ability to process information of receivers. Depending on 
the task at hand, when senders want to get the attention of the receiver and motivate 
them for an immediate response, they should use a rich medium, high in social pres-
ence. In contrast, when deep thought and deliberation are needed to process the in-
formation, the sender should use a lean medium, low in social presence, to give the 
receiver time to objectively elaborate on messages. 

The common denominator of the many existing CMC theories is that the interac-
tion of individuals is deeply influenced not only by media characteristics, but also by 
other factors such as tasks requirements. Drawing upon these theories, we argue that, 
by understanding the driving factors of CMC, groups may be better able to select and 
use the most appropriate sets of media to accomplish their goals. 



 Collaboration in Distributed Software Development 187 

 

Fig. 11. Media richness paradox according to CBV (adapted from [33])   

5   Media Switching in Distributed Requirements Engineering 

Recent CMC theories from the literature suggest that relying on rich media alone may 
not yield the best results in terms of performance, and that a combination with lean 
media would facilitate a more rational approach to decision making. These theories 
form the theoretical basis for our central thesis: a mix of lean and rich media is 
needed to improve requirements engineering activities when stakeholders are geo-
graphically dispersed. 

The rest of this section describes a family of empirical studies [4, 14] in distributed 
requirements engineering which have been conducted jointly by the Collaborative 
Development Group (CDG) at University of Bari, Italy, and the Software Engineering 
Global interAction Laboratory (SEGAL) at University of Victoria, Canada. 

Asynchronous Discussions as a Complement to Videoconference Requirements 
Negotiation Meetings 
To improve the effectiveness of distributed requirements engineering, drawing upon 
the postulates of modern theories on media selection, we have investigated ways to 
increase the effectiveness of videoconference requirements negotiation meetings by 
means of asynchronous text-based discussions as a useful complement for the prepa-
ration of such meetings.  

We conducted a replicated case study of six academic global projects with the par-
ticipation of students from three universities of three different countries: Australia, 
Canada, and Italy. Cross-university student projects were structured as outsourcing 
projects in which work was allocated to a developer group in a different organization 
and country. The project outcome was a requirements specification (RS) as a  



188 F. Lanubile 

negotiated software contract between the developer group and the outsourcing com-
pany (client group). Teamwork was critical in completing the software project as the 
developer group had to frequently interact with the client group to understand the 
required software features.  

Reaching a mutual understanding between clients and developers mean reducing 
equivocality and uncertainty by resolving all open issues found by clients in an evolv-
ing RS throughout the process. Fig. 12 illustrates the RS development workflow over 
a period of 7 weeks. It consisted of eleven phases of continuous requirements discov-
ery and validation through which the understanding and documentation of require-
ments had to be improved. Each of these stages consisted of tasks for either the  
client/developer groups, or project team tasks.  

Project teams negotiated requirements during one-hour synchronous videoconfer-
encing meetings. In our research design, we created two process variants in which 
half of the groups were involved in asynchronous discussions of open issues, using 
the IBIS inspection tool [29], prior to the synchronous negotiation meeting, while the 
other half was not. We were thus able to compare the performance of the groups using 
a mix of media with that of the groups using only videoconferencing meetings. 

Fig. 13 provides empirical evidence for our main hypothesis: groups in the mixed 
media process variant were able to end the requirements engineering process with 
significantly fewer open issues than the groups that were not involved in the asyn-
chronous discussion. More uncertainties than ambiguities were clarified and then 
closed in the asynchronous discussions. Consequently, when participants had already 
discussed asynchronously, they began the videoconference negotiation meetings with 
a shorter list of open issues to be discussed. 

 

 

Fig. 12. Global project workflow (adapted from [14]) 



 Collaboration in Distributed Software Development 189 

 n
o 

as
yn

c 
di

sc
us

si
on

 w
ith

 a
sy

nc
 d

is
cu

ss
io

n

discovery discussion negotiation
0

20

40

60

80

100

120

nu
m

be
r 

of
 o

pe
n 

is
su

es

40

23

1212

13

3
0

112

100

61

74

14

C1

B2

B1

A1

C2A2

 

Fig. 13. Open issues in the six projects throughout three stages (from [14])  

Comparing Text-Based Synchronous Communication and Face-to-Face 
Meetings in Distributed Requirements Workshops   
Requirements workshops, whether for eliciting or negotiating requirements, are com-
plex tasks that require a constant interplay between idea generation, decision making, 
and conflict resolution activities, although in different measure: requirements elicita-
tion is more a generative task, whereas requirements negotiation is more oriented to 
decision making.  

To build a body of knowledge about task/technology fit, rooted in the software en-
gineering field, we evaluated the support of synchronous text-based communication 
for conducting distributed requirements workshops. In particular we investigated two 
research questions: (1) how synchronous text-based requirements workshops vary 
from F2F counterparts, and (2) whether both synchronous text-based elicitation and 
synchronous text-based negotiation represent an appropriate task-technology fit. 

The empirical study involved six academic groups, playing the role of stakeholders 
while completing the project work of a requirements engineering course held at the 
University of Victoria. Analogously to the previous study, the goal of each project 
was to develop a Requirements Specification (RS) document through the interaction 
of a client and a developer team over a period of about ten weeks. Fig. 14 shows the 
workflow of the requirements development process. In order to perform quantitative 
analysis, two satisfaction questionnaires, with Likert scale response items, were ad-
ministered to the students after each workshops session. Table 2 illustrates the ex-
perimental design with three factors, each having two levels: communication mode 
(F2F and CMC); requirements workshop (elicitation and negotiation); and role (client 
and developer). F2F workshops were held in a classroom while CMC workshops were 
run using the eConference tool [5], a text-based, distributed meeting system devel-
oped at University of Bari. 



190 F. Lanubile 

 

Fig. 14. Project workflow in [4] 

The findings from the study were the following:  

− during the requirements meetings, the subjects perceived a higher level of comfort 
with F2F communication mode than with CMC, while keeping an equal level of 
motivation to participate;  

− compared to F2F requirements workshops, CMC workshops grant a higher oppor-
tunity to participate in a more structured, equal, and open discussion;  

− being a customer or a developer has no effect;  
− stakeholders significantly preferred F2F negotiation over F2F elicitation, and F2F 

negotiation over CMC negotiation;  
− CMC elicitation is as good as F2F elicitation 

 
These results suggest that, in order to reduce the negative effects of distance as 

well as the need and the number of collocated requirements workshops, synchronous 
text-based elicitations represent a better task-technology fit than synchronous text-
based negotiations. 

Table 2. Experimental design (adapted from [4]) 

Communication  
Mode  

Requirements 
Workshop  

Role  Subjects  

F2F  elicitation  client  Gr1, Gr3, Gr5  
CMC  elicitation  client  Gr2, Gr4, Gr6  
F2F  negotiation  client  Gr2, Gr4, Gr6  

CMC  negotiation  client  Gr1, Gr3, Gr5  
F2F  elicitation  developer Gr2, Gr4, Gr6  

CMC  elicitation  developer Gr1, Gr3, Gr5  
F2F  negotiation  developer Gr1, Gr3, Gr5  

CMC  negotiation  developer Gr2, Gr4, Gr6  



 Collaboration in Distributed Software Development 191 

6   Conclusions 

Software development is an intense collaborative process where success depends on 
the ability to create, share and integrate information [37]. We presented a number of 
tools and collaborative development environments which are available to support 
distributed teams. We restricted our view to distributed teams of stakeholders when 
engaged in requirements elicitation and negotiation activities. Collaboration-intensive, 
these activities largely rely on face-to-face interactions of the project stakeholders and 
are thus greatly disrupted by distance.  

Main media selection theories from the CSCW field assert that rich media alone do 
not provide the best performance to distributed teams and that switching between rich 
and lean media would smooth the progress of teamwork for complex activities. The 
CSCW body of knowledge about media selection, however, is mostly based on ex-
periments which used generic, game-like tasks involving either idea generation or 
problem solving. Since our interest is in collaborative technologies for distributed 
development, we have presented our empirical software engineering studies about the 
effects of media usage on the execution of software engineering specific tasks such as 
distributed requirements workshops.   

Current research in distributed development is very active in academia as well as in 
industry. Major ACM conferences, such as the International Conference on Software 
Engineering and the Conference on Computer Supported Cooperative Work, include 
technical papers and organize workshops about global software development. Further, 
the IEEE International Conference on Global Software Engineering, now at its third 
edition, has become the annual event for the community of researchers and practitio-
ners interested in exploring how distributed teams work and how the problems can be 
solved. We hope that the state of the art and practice presented in this chapter will 
inspire young researchers to invest their effort into this challenging and interdiscipli-
nary topic.   

Acknowledgments 

We are grateful to Fabio Calefato and Teresa Mallardo whose doctoral research con-
tributed to the theoretical and empirical work reported in this chapter. I would also 
like to express my thanks to Daniela Damian who has been an invaluable partner in 
the research work here reported.  

References 

1. Agerfalk, P.J., Fitzgerald, B.: Flexible and Distributed Software Processes: Old Petunias in 
New Bowls? Communications of the ACM 49(10), 26–34 (2006) 

2. Booch, G., Brown, A.W.: Collaborative Development Environments. In: Advances in 
Computers, vol. 59. Academic Press, London (2003) 

3. Bugzilla Team: The Bugzilla Guide (2008), http://www.bugzilla.org/docs 



192 F. Lanubile 

4. Calefato, F., Damian, D., Lanubile, F.: An Empirical Investigation on Text-Based Com-
munication in Distributed Requirements Workshops. In: Proc. of the Int. Conf. on Global 
Software Engineering, pp. 3–11. IEEE Computer Society, Washington (2007) 

5. Calefato, F., Lanubile, F., Scalas, M.: Evolving a Text-Based Conferencing System: An 
Experience Report. In: Proc. of the 3rd Int. Conf. on Collaborative Computing: Network-
ing, Applications and Worksharing. IEEE Computer Society, Washington (2007) 

6. Carmel, E.: Global Software Teams. Prentice Hall, Upper Saddle River (1999) 
7. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software 

Development. IEEE Software 18(2), 22–29 (2001) 
8. Cheng, L., de Souza, C., Hupfer, S., Patterson, J., Ross, S.: Building Collaboration into 

IDEs. ACM Queue 1(9) (2003-2004) 
9. Clark, H.H., Brennan, S.E.: Grounding in Communication. In: Perspectives on Socially 

Shared Cognition, American Psychological Association, Washington, DC, pp. 127–149 
(1991) 

10. Collaborative Development Group: Collab CDE (2008), http://cde.di.uniba.it/ 
11. CollabNet: SourceForge.net (2008), http://sourceforge.net/ 
12. CruiseControl (2008), http://cruisecontrol.sourceforge.net/ 
13. Daft, R.L., Lengel, R.H.: Organizational Information Requirements, Media Richness and 

Structural Design. Management Science 32(5), 554–571 (1986) 
14. Damian, D., Lanubile, F., Mallardo, T.: On the Need for Mixed Media in Distributed Re-

quirements Negotiations. IEEE Transactions on Software Engineering 34(1), 116–132 
(2008) 

15. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in software 
artifact management systems using information retrieval methods. ACM Trans. Softw. 
Eng. Methodol. 16(4), 13 (2007) 

16. Dennis, A.R., Valacich, J.S.: Rethinking Media Richness: Towards a Theory of Media 
Synchronicity. In: Proc. of the 32nd Annual Hawaii Int. Conf. on System Sciences, p. 
1017. IEEE Computer Society, Washington (1999) 

17. Ebert, C., De Neve, P.: Surviving Global Software Development. IEEE Software 18(2), 
62–69 (2001) 

18. Edgewall Software: The Trac Project (2008), http://trac.edgewall.org/ 
19. Ellis, C.A., Gibbs, S.J., Rein, G.: Groupware: Some Issues and Experiences. Communica-

tions of the ACM 34(1), 39–58 (1991) 
20. Erickson, T., Kellogg, W.A.: Social Translucence: An Approach to Designing Systems 

that Support Social Processes. ACM Transactions on Computer-Human Interaction 7(1), 
59–83 (2000) 

21. Espinosa, J.A., Nan, N., Carmel, E.: Do Gradations of Time Zone Separation Make a Dif-
ference in Performance? A First Laboratory Study. In: Int. Conf. on Global Software Engi-
neering, pp. 12–22. IEEE Computer Society, Los Alamitos (2007) 

22. Fowler, M., Foemmel, M.: Continuous Integration (2006), 
http://martinfowler.com/articles/continuousIntegration.html 

23. Frost, R.: Jazz and the Eclipse Way of Collaboration. IEEE Software 24(6), 114–117 
(2007) 

24. GForge Group: GForge project, http://gforge.org/projects/gforge/ 
25. Glass, R.L.: Software Engineering: Facts and Fallacies. Addison-Wesley Longman Pub-

lishing Co., Inc., Amsterdam (2002) 
26. Herbsleb, J.D., Moitra, D.: Global Software Development. IEEE Software 18(2), 16–20 

(2001) 



 Collaboration in Distributed Software Development 193 

27. Herbsleb, J.D., Mockus, T.A.: An Empirical Study of Speed and Communication in Glob-
ally Distributed Software Development. IEEE Transactions on Software Engineer-
ing 29(6), 481–494 (2003) 

28. Hupfer, S., Cheng, L., Ross, S., Patterson, J.: Introducing collaboration into an application 
development environment. In: Proc. of the ACM Conference on Computer Supported Co-
operative Work, pp. 21–24. ACM, New York (2004) 

29. Lanubile, F., Mallardo, T., Calefato, F.: Tool Support for Geographically Dispersed In-
spection Teams. Software Process: Improvement and Practice 8(4), 217–231 (2003) 

30. Louridas, P.: Using Wikis in Software Development. IEEE Software 23(2), 88–91 (2006) 
31. McGrath, J.E., Hollingshead, A.B.: Groups Interacting with Technology: Ideas, Evidence, 

Issues and an Agenda. Sage, Thousand Oaks (1994) 
32. Murugesan, S.: Understanding Web 2.0. IT Professional 9(4), 34–41 (2007) 
33. Robert, L.P., Dennis, A.R.: Paradox of Richness: A Cognitive Model of Media Choice. 

IEEE Transactions on Professional Communication 48(1), 10–21 (2005) 
34. Rus, I., Lindvall, M.: Knowledge Management in Software Engineering. IEEE Soft-

ware 19(3), 26–38 (2002) 
35. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software develop-

ment. In: Proc. of the 28th Int. Conf. on Software Engineering, pp. 731–740. ACM, New 
York (2006) 

36. Short, J., Williams, E., Christie, B.: The Social Psychology of Telecommunications. John 
Wiley and Sons, London (1976) 

37. Walz, D.B., Elam, J.J., Curtis, B.: Inside a Software Design Team: Knowledge Acquisi-
tion, Sharing, and Integration. Communications of the ACM 36(10), 63–77 (1993) 

38. Whitehead, J.: Collaboration in Software Engineering: A Roadmap. In: Int. Conf. on Soft-
ware Engineering, pp. 214–225. IEEE Computer Society, Washington (2007) 



A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 194–222, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Web Cost Estimation and Productivity Benchmarking 

Emilia Mendes 

The University of Auckland, Private Bag 92019 
Auckland, New Zealand, 0064 9 3737599 ext. 86137 

emilia@cs.auckland.ac.nz 

Abstract. Web cost estimation models and productivity analysis reports help 
project managers allocate resources more adequately, control costs, schedule 
and improve current practices, leading to projects that are finished on time and 
within budget. Therefore this chapter has two main objectives. The first is to in-
troduce the concepts related to Web cost estimation & Web applications’ sizing 
and present a case study where a real Web cost model is built; the second is to 
introduce the concepts of productivity measurement & benchmarking, and to 
also present a case study on productivity benchmarking. 

Keywords: Web cost estimation, Effort accuracy, Multivariate Regression, 
Case-based reasoning, Classification and Regression Trees, Bayesian Networks, 
Web productivity measurement, Web productivity benchmarking. 

1   Introduction 

The distributed nature of the Web and the use of a simple hypertext-based mechanism 
and protocol allows for its use as a delivery platform for numerous types of Web ap-
plications, ranging from complex e-commerce solutions with large back-end data-
bases to on-line personal static Web applications. Such flexibility led to a growing 
number of companies willing to have a Web presence, and as a consequence a grow-
ing number of Web companies bidding for as many Web projects as they can accom-
modate and often using technological solutions they are unfamiliar with. As usual, in 
order to win the bid, companies estimate unrealistic schedules, leading to applications 
that are rarely developed within time and budget. 

Realistic effort estimates are fundamental for the successful management of soft-
ware projects; the Web is no exception. Having realistic effort estimates at an  
early stage in a project's life cycle allows project managers and development organi-
sations to manage their resources effectively. In addition, hand in hand with effort 
estimation is productivity assessment, which enables a company to benchmark its 
efficiency across its own projects, and also in comparison to projects developed by its 
competitors.  

Prediction is a necessary part of an effective process, whether this process is au-
thoring, design, testing, or Web development as a whole. In general a prediction proc-
ess involves the following parts:  



 Web Cost Estimation and Productivity Benchmarking 195 

• The identification of application and project attributes (measures) (e.g. number 
of new Web pages, number of new images, team’s previous experience, devel-
opment tools used) that are believed to influence the effort required to develop a 
new Web application. 

• The formulation of assumptions about the inter-relationship between the se-
lected attributes and the effort required to develop a new Web application (e.g. 
the greater the number of new static Web pages, the greater the development ef-
fort for a new application, the greater the development team the greater the de-
velopment effort).  

• The capturing of historical data (e.g. number of new Web pages, actual effort) 
and/or expertise about past Web projects or even past development phases 
within the same project.  

• The use of this historical data and/or expertise to build models, or as input to es-
timation techniques, for use in predicting effort for new Web projects. 

• The assessment of how effective those effort estimation models/techniques are, 
i.e. the assessment of their prediction accuracy. 

Cost and effort are often used interchangeably within the context of software and 
Web effort estimation (prediction) since effort is taken as the main component of pro-
ject costs. However, given that project costs also take into account other factors such 
as contingency and profit [22] we will use the word “effort” and not “cost” through-
out this chapter.  

Numerous effort estimation techniques have been proposed and compared over the 
last 20 years. A classification and description of such techniques is introduced in Sec-
tion 2 to help provide readers with a broader overview. One of the main predictors of 
effort is application size, so Section 3 discusses issues related to sizing Web applica-
tions. Section 4 briefly introduces a case study where real data on Web projects is 
used to build an effort estimation model. Once these three Sections are detailed, we 
move on to discuss productivity measurement. Section 5 introduces a productivity 
measurement method proposed by Kitchenham and Mendes [20], and detailed in [27], 
followed by Section 6 where a case study using the productivity measurement method 
is detailed. Finally, our conclusions are given in Section 7. 

This Chapter uses reference material from a book on Web cost estimation written 
by this author [26] and a book on Web engineering, edited by this author and Dr. N. 
Mosley [28]. 

2   Effort Estimation Techniques 

2.1   Overview 

The prediction of the amount of effort necessary to produce a given deliverable is 
called effort estimation. This process requires as input data and/or knowledge of pro-
ject characteristics that are believed to affect the amount of effort necessary to pro-
duce a deliverable. Note that a deliverable can be simple (e.g. a Web application’s 
navigational model), or complex (e.g. a complete Web application). Project character-
istics are the input to the estimation process (see Fig. 1), and estimated effort is the 
output of this process.  



196 E. Mendes 

For example, a given Web company may find that in order to estimate the effort 
necessary to produce a new Web application w – the deliverable, it will need to esti-
mate the following: estimated number of new Web pages the new application is likely 
to have, total number of developers who will help develop the new Web application, 
developers’ average number of years of experience with the development tools em-
ployed, and the number of functions/features (e.g. shopping cart) to be offered by the 
new Web application. The effort estimation literature differentiates the input to an 
estimation process into two types: size and cost drivers. Size represents the attributes 
that characterise the size of the “problem” to be delivered. Typical size attributes 
(measures) are the number of new Web pages, number of new images, number of 
features/functions that the application will have. Conversely, cost drivers are any at-
tributes that do not characterise the size of an application, such as developers’ average 
Web development experience, number of tools employed in the development, devel-
opment team size.  

 

 

 

 

 

 
 
 
 
 

 

 

 

Fig. 1. Components of an effort model [26] 

Fig. 1 shows that, in addition to the input attributes, data/knowledge from past fin-
ished Web projects can also be of use when estimating effort for a new project. How-
ever, the sequence in which they (input, data/knowledge from past projects) are used 
depends on the effort estimation technique being applied.  

Several effort estimation techniques have been proposed over the past 30 years, 
falling into three general categories [43]: expert opinion, algorithmic techniques and 
artificial intelligence techniques. Each is going to be detailed next.  

Estimated 
size Deriving 

an effort 
estimate

Estimated 
effort 

Data/knowledge 
from past finished 

Web projects

Step ? Step ?

Step ?

Cost  
drivers

+

Step ?

Effort 
model 

building 



 Web Cost Estimation and Productivity Benchmarking 197 

2.2   Expert Opinion 

Expert opinion represents the process of estimating effort based on experts’ judgment, 
and is often based on previous experience from developing/managing similar projects. 
Although this technique is still widely used by software and Web companies, it has a 
clear drawback: it is very difficult to quantify and to determine those attributes that 
have been used to derive an estimate, making it difficult to repeat.  

However, studies show that this technique can be an effective estimating tool when 
used in combination with other less subjective techniques (e.g. algorithmic tech-
niques) [11],[36],[37].  

Fig. 2 shows a similar diagram to the one presented in Fig. 1, and outlines the se-
quence of steps used with expert opinion when estimating effort for a new project:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Sequence used when estimating effort based on expert opinion [26] 

Step 1) An expert estimates size and cost drivers related to a new Web application for 
which effort needs to be estimated. 

Step 2) Based on the estimates obtained in Step 1, the expert uses his/her own knowl-
edge from past finished similar projects and/or data on past finished projects for 
which actual effort is known.  

Step 3) Based on the data/knowledge retrieved in Step 2, and the input from Step 1, the 
expert now subjectively estimates effort for the new project. Deriving an accurate effort 
estimate is more likely to occur when there are completed projects similar to the one 
having its effort estimated. The knowledge regarding the characteristics of a new project 
is necessary to retrieve, from memory and/or a database, knowledge/data on finished 
similar projects. Once this data/knowledge is retrieved, effort can be estimated.  

2.3   Algorithmic Techniques 

To date, the most popular techniques described in the effort estimation literature are 
algorithmic techniques. Such techniques attempt to formalise the relationship between 
effort and one or more project characteristics by creating an algorithmic model. This 
formalisation is often translated as an equation such as that shown by Equations 1 and 2. 

Estimated 
size Deriving 

an effort 
estimate

Estimated 
effort 

Data/knowledge 
from past finished 

Web projects

Step 1 Step 3

Step 2

Cost  
drivers

+



198 E. Mendes 

Equations such as these are commonly obtained by applying regression analysis tech-
niques [39] on datasets of past completed projects. Equation 1 assumes a linear relation-
ship between effort and its size/cost drivers whereas Equation 2 assumes a non-linear 
relationship. In Equation 2, when the exponent is < 1 we have economies of scale, i.e., 
larger projects use less effort comparatively to smaller projects. The opposite situation 
(exponent > 1) gives diseconomies of scale, i.e. larger projects use more effort compara-
tively to smaller projects.  

nnCDaCDaprojEstSizeNewaCffortEstimatedE ++++= L110          (1) 

na
n

aa CDCDprojEstSizeNewCffortEstimatedE L10
1=                        (2) 

where: 
C is a constant denoting the initial estimated effort (assuming size and cost drivers 

to be zero) derived from past data.  
a0 ... an are parameters derived from past data.  
CD1…CDn are other project characteristics, other than size, that have an impact on 

effort. 
Regression-based algorithmic models are most suitable to local circumstances such 

as “in-house” analysis as they are derived from past data that often represents projects 
from the company itself. Regression analysis, used to generate regression-based algo-
rithmic models, provides a procedure for determining the “best” straight-line fit to a 
set of project data that represents the relationship between effort and project charac-
teristics (e.g. size, experience, tools) [39]. The regression line (see Fig. 3) is  
 

a

slope b

 

Fig. 3. Example of a Regression line [26] 



 Web Cost Estimation and Productivity Benchmarking 199 

represented as an equation, such as those given by Equations 1 and 2. The effort esti-
mation model to be detailed in the case study falls into this category. 

Regarding the regression analysis itself, two of the most widely used techniques are 
multiple regression (MR) and stepwise regression (SWR). The difference between both 
is that MR obtains a regression line using all the input variables (size measures and cost 
drivers) at the same time, whereas SWR is a technique that examines different combina-
tions of input variables, looking for the best grouping to explain the greatest amount of 
variation in effort. Both use least squares regression, where the regression line selected 
is the one that minimises the sum of the squared errors. Errors are calculated as the dif-
ference between actual and estimated effort and are known as the residuals [39]. 

The Equation corresponding to the Regression line in Fig. 3 is shown below: 

Effort = a + b totalWebPages                        (3) 

where a is called the intercept, obtained when b totalWebPages = 0; and b is called 
the slope of the regression line.  

Fig. 4 shows the diagram presented in Fig. 1 and outlines the sequence of steps used 
with a regression-based algorithmic technique when estimating effort for a new project:  

Step 1) Data on past finished projects is retrieved. 
Step 2) The data retrieved in Step 1 is used to build a regression-based effort estima-
tion Equation (model). 
Step 3) The estimated size and cost drivers are used as input to the Equation built 
from Step 2) 
Step 4) The output of the Equation is the estimated effort for the new Web project. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Sequence used when estimating effort using an algorithmic technique [26] 

Estimated 
size Deriving 

an effort 
estimate

Estimated 
effort 

Data from past 
finished Web  

projects

Step 3 Step 4

Step 1

Cost  
drivers

+

Step 2

Effort 
model 

building



200 E. Mendes 

A detailed description of regression analysis and how to build an effort estimation 
model using regression analysis is give in [26].  

2.4   Artificial Intelligence Techniques 

Artificial intelligence techniques have, in the last 12 to 13 years, been used as a com-
plement to, or as an alternative to, the previous two categories. Examples include 
fuzzy logic [24], regression trees [40], neural networks [44], case-based reasoning 
[43], and Bayesian Networks [15]. We will briefly introduce case-based reasoning 
(CBR), regression trees (CART) and Bayesian Networks (BNs) in more detail as they 
are currently the most popular machine learning techniques employed for Web cost 
estimation. A useful summary of numerous machine learning techniques can also be 
found in [10]. 

Case-Based Reasoning 
Case-based reasoning (CBR) provides estimates by comparing the current project to 
be estimated against a library of historical information from completed projects with a 
known effort (case base). It involves [1]:  

i. Characterising a new project p, for which an estimate is required, with attributes 
common to those completed projects stored in the case base. In terms of effort es-
timation, attributes represent size measures and cost drivers which have a bearing 
on effort. Attribute values are normally standardized (between 0 and 1) such that 
they have the same degree of influence on the result.  

ii. Use of this characterisation as a basis for finding similar (analogous) completed 
projects, for which effort is known. This process can be achieved by measuring the 
“distance” between two projects, based on the values of the number of attributes (k) 
for these projects. Although numerous techniques can be used to measure similar-
ity, nearest neighbour algorithms using the unweighted Euclidean distance measure 
have been the most widely used to date in both software and Web engineering. 

iii. Generation of a predicted value of effort for project p based on the effort for 
those completed projects that are similar to p. The number of similar projects will 
depend on the size of the case base. For small case bases (e.g. up to 90 cases), 
typical values are 1, 2, and 3 closest neighbours (analogies). For larger case bases 
no conclusions have been reached regarding the best number of similar projects 
to use. The calculation of estimated effort is obtained using the same effort value 
as the closest neighbour, or the mean effort for two or more analogies. This is the 
common choice in both Web and software engineering.   

 

When using CBR there are six parameters to consider, each to be briefly introduced 
below [41]: 

• Feature Subset Selection 
• Similarity Measure 
• Scaling 
• Number of Analogies 
• Analogy Adaptation 
• Adaptation Rules 



 Web Cost Estimation and Productivity Benchmarking 201 

Feature Subset Selection 
Feature subset selection involves determining the optimum subset of attributes that 
yield the most accurate estimation. Some existing CBR tools, e.g. ANGEL [42] op-
tionally offer this functionality using a brute force algorithm, searching for all possi-
ble feature subsets. Other CBR tools (e.g. CBR-Works) have no such functionality, 
and therefore to obtain estimated effort, we must use all of the known attributes of a 
project to retrieve the most similar cases.  

 
Similarity Measure 
The similarity measure measures the level of similarity between different cases, with 
several similarity measures proposed in the literature. The most popular similarity 
measure in the current Web/software engineering literature [1],[29],[41] is the un-
weighted Euclidean distance. Other similarity measures are presented in [1].  

Unweighted Euclidean distance: The unweighted Euclidean distance measures the 
Euclidean (straight-line) distance d between the points (x0,y0) and (x1,y1), given by the 
equation: 

2
10

2
10 )()( yyxxd −+−=                                               (4) 

Scaling 
Scaling (also known as standardisation) represents the transformation of attribute val-
ues according to a defined rule, such that all attributes present values within the same 
range and hence have the same degree of influence on the results [1]. A common 
method of scaling is to assign zero to the minimum observed value and one to the 
maximum observed value [16].    

 
Number of Analogies 
The number of analogies refers to the number of most similar cases that will be used 
to generate the estimation. With small sets of data it is reasonable to consider only a 
small number of analogies [1]. Several studies have restricted their analysis to the 
closest analogy )0.1( =k [3],[36], while others have used two and three analogies 

[1],[13],[14],[29],[30],[32],[38]. 
 
Analogy Adaptation 
Once the similar cases have been selected the next step is to decide how to generate 
the estimation for project Pnew. Choices of analogy adaptation techniques presented in 
the literature vary from the nearest neighbour [3],[14], the mean of the closest analo-
gies [42], the median [1], inverse distance weighted mean and inverse rank weighted 
mean [16], to illustrate just a few. The adaptations used to date for Web engineering 
are the nearest neighbour, mean of the closest analogies [29],[30], and the inverse 
rank weighted mean [31],[32].    

  
Adaptation Rules 
Adaptation rules are used to adapt estimated effort, according to a given criterion, such 
that it reflects the characteristics of the target project more closely. For example, in the 
context of effort prediction, the estimated effort to develop an application would be 
adapted such that it would also take into consideration the application’s size values. 



202 E. Mendes 

Fig. 5 shows a similar diagram to that presented in Fig. 1, and outlines the sequence 
of steps used with the CBR technique when estimating effort for a new project:  

 

Step 1) The estimated size and cost drivers relating to a new project are used to re-
trieve similar projects from the case base, for which actual effort is known.  
Step 2) Using the input from Step 1) a suitable CBR tool retrieves similar projects to 
the one represented by the input. 
Step 3) Once similar projects were retrieved, they are used to obtain the estimated 
effort for a new project. 
 

 

 

 

 

 

 

 

 

 

Fig. 5. Sequence used when estimating effort using CBR [26] 

Classification and Regression Trees 
The objective of a Classification and Regression Tree (CART) model within this con-
text is to develop a simple binary tree-structured decision process for describing the 
distribution of values of effort given a set of size measures and cost drivers [5]. For 
example, assume the estimated effort to develop a Web application can be determined 
by an estimated number of pages (WP), number of images (IM), and number of func-
tions (FN). A regression tree such as the one shown in Fig. 6 is generated from data 
obtained from past finished Web applications, taking into account their existing val-
ues of effort, WP, IM, and FN.  

Once the tree has been built, it is used to estimate effort for a new project. So, to 
estimate effort for a new project where the estimated WP = 25, estimated IM = 15, 
and estimated FN = 4 we would navigate down the tree structure to find the estimated 
effort, which would be 45 person hours.  

Whenever size and cost drivers are numerical the CART tree is called a regression 
tree and whenever size and cost drivers are categorical the CART tree is called a clas-
sification tree. Details on how CART models are built are found in [26]. 

Fig. 7 shows the diagram presented in Fig. 1 and outlines the sequence of steps 
used with a CART technique when estimating effort for a new project:  

Estimated 
size Deriving 

an effort 
estimate

Estimated 
effort 

Data from past 
finished Web  

projects

Step 1 Step 3

Step 2

Cost  
drivers

+



 Web Cost Estimation and Productivity Benchmarking 203 

 

Fig. 6. Example of a regression tree for Web cost estimation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Sequence used when estimating effort using CART [26] 
 

Step 1) Past data is used to generate a CART model. 
Step 2) A CART model is built using the past data obtained in Step 1). 
Step 3) Estimates values for size and cost drivers are used to traverse the CART tree 
(model) built in Step 2). 
Step 4) Estimated effort for a new project is obtained after traversing the model built 
in Step 2) using the estimated values from Step 3). 

 WP 

 IM  IM 

 FN Effort = 25 

Effort = 65Effort = 45 

Effort = 110 Effort = 75

WP < = 40 WP > 40

IM  > = 15IM < 15 IM  > 30 IM < =  30

FN > = 7FN < 7 

Estimated 
size Deriving 

an effort 
estimate 

Estimated 
effort 

Data from past 
finished Web  

projects

Step 3 Step 4

Step 1

Cost  
drivers

+

Step 2

Effort 
model 

building



204 E. Mendes 

3   Sizing a Web Application 

To date numerous Web size measures have been proposed in the literature, and a detailed 
survey is presented in [26]. However, in this Chapter we are only going to discuss one of 
these proposals, corresponding to the set of measures used in the Tukutuku Benchmark-
ing project [34]. This is an ongoing project (http://www.cs.auckland.ac.nz/tukutuku), 
which collects data on Web projects, for the development of effort estimation models and 
to benchmark productivity across and within Web companies. The size measures and 
cost drivers were obtained from the results of a survey investigation, using data from 133 
on-line Web forms that provided quotes on Web development projects [34][35]. They 
were also confirmed by an established Web company and a second survey involving 33 
Web companies in New Zealand. Consequently, it is our belief that the variables identi-
fied are suitable for Web effort estimation, and are meaningful to Web companies. The 
set of Tukutuku size measures is detailed below: 

 

Web application 
• Web Pages: measures the total number of Web pages contained in a Web ap-

plication. 
• New Web Pages: measures the total number of Web pages contained in a Web 

application that were created from scratch. 
• New Images: measures the total number of new images/photos/icons/buttons 

created from scratch for a given Web application.  
• Total Images: measures the total number of images (reused and new) con-

tained in a given Web application. 
• Fots: measures the total number of features off-the-shelf (FOTS) contained in 

a given Web application. Features off-the-shelf are features that have been re-
used as they are, without any adaptation.  

• High FotsA: measures the total number of High-effort FOTS contained in a 
Web application, which were reused and adapted to local circumstances. High 
effort here represents the minimum number of hours to adapt a single func-
tion/feature by one experienced developer that is considered high (above aver-
age). This number is currently set to 4 hours based on collected data from  
industrial Web projects. 

• High New: measures the total number of new High-effort Feature / Functional-
ity contained in a Web application, which were developed from scratch. High 
effort represents the minimum number of hours necessary to develop a single 
function/feature by one experienced developer that is considered high (above 
average). This number is currently set to 15 hours based on collected data 
from industrial Web projects.   

• FotsA: measures the total number of Low-effort FOTS contained in a Web ap-
plication, which were adapted to local circumstances. 

• New: measures the total number of Low-effort Feature/Functionality contained 
in a Web application, which were developed from scratch. 

 

Examples of feature/functionality are listed below: 
• Auction/Bid utility 
• Bulletin Boards 



 Web Cost Estimation and Productivity Benchmarking 205 

• Discussion Forum/Newsgroups 
• Chat Rooms 
• Database creation 
• Database integration 
• Other persistent storage integration (e.g. flat files) 
• Credit Card Authorization 
• Member login 
• Online Secure Order Form 
• Charts 
• File upload/download  
• Traffic Statistics 
• Search Engine 
• User Guest book 
• Visitor statistics 
 
The next Section will briefly introduce a case study where a regression-based algo-

rithmic model was built and employed for effort estimation using data on 87 Web 
projects from the Tukutuku database. This case study is fully detailed in [28].  

4   Web Effort Estimation Case Study 

The case study briefly introduced in this Chapter provides an overview of the neces-
sary steps required to build a regression-based effort estimation model. This model is 
built using data on industrial Web projects, developed by Web companies worldwide, 
from the Tukutuku database. 

The dataset used in this chapter contains data on 87 Web projects: 34 and 13 
 are from 2 single Web companies respectively and the remaining 40 projects come 
from another 23 companies. The Tukutuku database uses 25 variables to store specif-
ics about each company that volunteered projects, particulars about each project, and 
data about each Web application (see Table 1). Company data is obtained once, and 
both project and application data are gathered for each project a Web company  
volunteers. 

All results presented were obtained using the statistical software package SPSS 
12.0 for Windows produced and sold by SPSS Inc. Further details on the statistical 
methods used throughout this case study are given in [26]. Finally, all the statistical 
tests set the significance level at 95% (α = 0.05).  

The data analysis procedure presented herein is adapted from [25], and  
consists of: 

1. Data validation 
2. Variables and model selection 
3. Model inspection 
4. Extraction of effort equation 
5. Model validation 
 



206 E. Mendes 

Table 1. Variables for the Tukutuku database 

NAME DESCRIPTION 
COMPANY DATA 
COUNTRY Country company belongs to. 
ESTABLISHED Year when company was established. 
SERVICES Type of services company provides. 
NPEOPLEWD Number of people who work on Web design and development. 
CLIENTIND Industry representative of those clients to whom applications are  

provided. 
PROJECT DATA 
TYPEPROJ Type of project (new or enhancement). 
LANGS Implementation languages used. 
DOCPROC If project followed defined and documented process. 
PROIMPR If project team involved in a process improvement programme. 
METRICS If project team part of a software metrics programme. 
DEVTEAM Size of a project’s development team.  
TEAMEXP Average team experience with the development language(s) employed. 
TOTEFF Actual total effort in person hours used to develop the Web  

application.  
ESTEFF Estimated total effort in person hours necessary to develop the Web 

application. 
ACCURACY Procedure used to record effort data. 
WEB APPLICATION 
TYPEAPP Type of Web application developed. 
TOTWP Total number of Web pages (new and reused). 
NEWWP Total number of new Web pages.  
TOTIMG Total number of images (new and reused).  
NEWIMG Total number of new images created. 
FOTS Number of reused features/functions without adaptation. 
HFOTSA Number of reused high-effort features/functions adapted. 
HNEW Number of new high-effort features/functions. 
FOTSA Number of reused low-effort features adapted. 
NEW Number of new low-effort features/functions. 

 
Each of these steps is described below, and examples are given accordingly. 
 

Data Validation  
The Data validation (DV) step is used to perform the first screening of the data that 
has been collected. In general, this involves understanding what the variables are (e.g. 
their purpose, scale type) and also includes the use of descriptive statistics (e.g. mean, 
median, minimum, maximum) to help identify any missing or unusual cases.  

Table 2 shows an example of descriptive statistics for some of the variables in the 
Tukutuku database (only the numerical variables). Here the objective is to check if 
there are any strange patterns in the data, which would require further investigation. 
For example, the maximum number of Web pages has a value of 2000 Web pages. 
Although it does not seem possible at first to have such large number of pages, we 
cannot simply assume this has been a data entry error. When a situation such as this 
one arises, the first step is to contact the company that provided the data and to  



 Web Cost Estimation and Productivity Benchmarking 207 

confirm the data is correct. Unfortunately, in our case, we were unable to obtain con-
firmation from the source company. However, further investigation revealed that in 
relation to the Web project that contains 2000 Web pages, 1980 pages were developed 
from scratch, and numerous new functions/features (five high-effort and seven low-
effort) were also implemented. In addition, the development team consisted of two 
people who had very little experience with the six programming languages used. The 
total effort was 947 person hours, which corresponds to a three-month project assum-
ing both developers worked at the same time. If we only consider number of pages 
and effort, the ratio of number of minutes per page is 27:1, which seems reasonable 
given the lack of experience of the development team and the number of different 
languages they had to use [26]. 

Table 2. Descriptive statistics for numerical variables [26] 

Variables Minimum Maximum  Mean Median Std. dev. 
DEVTEAM 1 8 2.37 2 1.35 
TEAMEXP 1 10 3.40 2 1.93 
TOTWP 1 2000 92.40 25 273.09 
NEWWP 0 1980 82.92 7 262.98 
TOTIMG 0 1820 122.54 40 284.48 
NEWIMG 0 800 51.90 0 143.25 
HFOTSA 0 4 .29 0 .75 
HNEW 0 10 1.24 0 2.35 
FOTS 0 15 1.07 0 2.57 
FOTSA 0 10 1.89 1 2.41 
NEW 0 13 1.87 0 2.84 
TOTEFF 1 5000 261.73 43 670.36 

 

Table 3. Frequency table for type of project [26] 

Type of project Frequency % Cumulative % 
New 39 44.8 44.8 
Enhancement 48 55.2 100.0 
Total 87 100.0   

Once we have checked the numerical variables, our next step is to check the cate-
gorical variables using their frequency tables as a tool. One example of a frequency 
table is shown in Table 3, and suggests that no unusual trends are apparent.  

Once the data validation is complete, we are ready to move on to the next step, 
namely variables and model selection. 

 
Variables and Model Selection 
The second step part of the data analysis methodology is sub-divided into two sepa-
rate and distinct phases: preliminary analysis and model building. 

Preliminary analysis allows us to choose which variables to use, discard, modify, 
and, where necessary, sometimes create. Model building is used to construct an effort 
estimation model based on our data set and variables.  



208 E. Mendes 

The Preliminary analysis phase is used to create new variables based on existing 
variables, discard unnecessary variables, and modify existing variables (e.g. joining 
categories). The net result of this phase is to obtain a set of variables that are ready to 
use in the next phase, model building. Since this phase will construct an effort model 
using stepwise regression we need to ensure that the variables comply with the as-
sumptions underlying regression analysis, which are as follows [25][28][26]:  

1. The input variables (size measures and cost drivers) are measured without error. 
If this cannot be guaranteed then these variables need to be normalised using a 
transformation.  

2. The relationship between size measures & cost drivers and effort is linear.                                                          
3. No important input variables have been omitted. This ensures that there is no 

specification error associated with the dataset. The use of a prior assumption-
based model justifying the choice of input variables ensures this assumption is 
not violated.  

4. The variance of the residuals is the same for all combinations of input variables 
(i.e. the residuals are homoscedastic rather than heteroscedastic). A residual 
within the context of this book is the difference between actual and estimated ef-
fort. 

5. The residuals must be normally distributed. 
6. The residuals must be independent, i.e. not correlated.  
7. The size measures & cost drivers are not linearly dependent, i.e. there are no lin-

ear dependencies between these variables.  

The first task within the preliminary analysis phase is to examine the entire set of 
variables and check if there are any variables containing a significant amount of miss-
ing values (> 40%). If yes, they should be automatically discarded as they prohibit the 
use of imputation methods, which are methods used to replace missing values with 
estimated values, and will further prevent the identification of useful trends in the 
data.  

Our next step is to look for symptoms (e.g. skewness, heteroscedasticity, and out-
liers) that may suggest the need for variables to be normalised, i.e. having their values 
transformed such that they more closely resemble a normal distribution. This step 
uses histograms, boxplots, and scatter plots.  

Skewness measures to what extent the distribution of data values is symmetrical 
about a central value; heteroscedasticity represents unstable variance of values; fi-
nally, outliers are unusual values.  

Histograms, or bar charts, provide a graphical display, where each bar summarises 
the frequency of a single value or range of values for a given variable. They are often 
used to check if a variable is normally distributed, in which case the bars are dis-
played in the shape of a bell-shaped curve. Some of the Histograms for the numerical 
variables are shown in Figure 8, and suggest that variables present skewed distribu-
tions, i.e. values not symmetrical about a central value.  

Next, boxplots are used to check the existence of outliers.  
The boxplots for some of the numerical variables (see Fig. 9) indicate that they 

present a large number of outliers and peaked distributions that are not symmetric. 
Whenever outliers are present they should be investigated further, since they may be a 
result of data entry error. In our analysis we looked at all cases, in particular in  



 Web Cost Estimation and Productivity Benchmarking 209 

NEWWP

1880.01440.01000.0560.0120.0

NEWWP

F
re

qu
en

cy

100

80

60

40

20

0

Std. Dev = 262.98  

Mean = 82.9

N = 87.00

TOTWP

1880.01440.01000.0560.0120.0

TOTWP

F
re

qu
en

cy

100

80

60

40

20

0

Std. Dev = 271.04  

Mean = 101.3

N = 87.00

87878787N =

IMGNEW

TOTIMG

NEWWP

TOTWP

2250
2000
1750
1500
1250
1000

750
500

250
0

-250

relation to projects that exhibited very large effort values, but did not find anything in 
the data to suggest they should be removed from the data set. Note that when there are 
doubts about the correctness of the data, the best solution is to contact the data source 
for confirmation. An assessment should only be based on consistency with other vari-
ables if the source is not available. 

 

 

 
 

 

 

 

 

 
 

Fig. 8. Examples of Histograms [26] 

 
 
 
 
 
 
 
 
 
 

Fig. 9. Examples of Boxplots [26] 

In terms of the Tukutuku data used in this Section, both histograms and boxplots 
indicated symptoms of skewness and outliers. When this situation arises it is common 
practice to normalise the data, i.e. to transform the data trying to approximate the val-
ues to a normal distribution. A common transformation is to take the natural log (ln), 
which makes larger values smaller and brings the data values closer to each other 
[25]. However, before transforming the data a statistical test can be used to confirm if 
the data is not normally distributed. If the dataset is small the test to use is the 
Shapiro-Wilk test of normality; otherwise it is the One-Sample Kolmogorov-Smirnov 
Test (K-S test). Both tests compare an observed distribution to a theoretical distribu-
tion. The K-S test found that none of the variables had distributions that matched the 
normal distribution. Therefore all variables had to be transformed. The transformation 



210 E. Mendes 

LTOTWP

86420-2

LT
O

T
E

F
F

10

8

6

4

2

0

-2

LTOTHIGH

3.02.52.01.51.0.50.0-.5

LT
O

T
E

F
F

10

8

6

4

2

0

-2

applied in our case to all numerical variables was the natural log transformation. For 
consistency, all variables with a value of zero had one added to their values prior to 
being transformed, as there is no natural log of zero. 

The last part of the preliminary analysis is to check if the relationship between the 
effort and the size measures & cost drivers is linear. The tool used to check such rela-
tionships is a scatter plot. Scatter plots are used to explore possible relationships be-
tween numerical variables. They also help to identify strong and weak relationships 
between two numerical variables. A strong relationship is represented by observations 
(data points) falling very close to or on the trend line. A weak relationship is shown 
by observations that do not form a clear pattern, which in our case is a straight line.  

Examples of scatter plots for the Tukutuku dataset are shown in Fig. 10.   

 

 

 

 

 

 

 

 

 

Fig. 10. Examples of Scatter plots [26] 

Whenever a size measure or cost driver exhibits a large number of zero values (e.g. 
LTOTHIGH in Fig. 10), it causes the dependent variable to exhibit more variability at 
the zero point, i.e. when size measures & cost drivers have zero values, compared 
with non-zero values. This behaviour violates the fourth assumption underlying linear 
regression. Therefore, whenever this happens, the variable that exhibits a large num-
ber of zero values needs to be excluded from any subsequent analysis. 

Our next step is to build the regression-based effort model using a two-step proc-
ess. The first step is to use a manual stepwise regression based on residuals to select 
the categorical and numerical variables that jointly have a statistically significant ef-
fect on effort. The second step is to use these selected variables to build the final  
effort model using multivariate regression, which is a linear regression that uses more 
than one predictor variable.  

Building the Model Using a Two-Step Process  
The manual stepwise procedure uses data on the residuals to select the best predictor 
variables. This procedure, proposed by Kitchenham [19], enables the use of informa-
tion on residuals to handle relationships amongst predictor variables (size measures 
and cost drivers). In addition, it only selects the input variables that jointly have a sta-
tistically significant effect on effort, thus avoiding any multi-collinearity problems. A 
detailed example explaining the use of this procedure is presented in [26]. Once the 



 Web Cost Estimation and Productivity Benchmarking 211 

best predictor variables have been selected, the next step is to construct the full regres-
sion-based algorithmic effort estimation model, by applying a multivariate regression 
using only the variables that have been selected from the manual stepwise procedure.  

At each stage of the stepwise process we also need to verify the stability of the 
model. This involves identifying if there are high–influence data points that could be 
responsible for driving all the observed patterns in the model. In addition, we also 
check if residuals are homoscedastic and normally distributed. Several types of plots 
(e.g. residual, leverage, probability) and statistics are available in most statistics tools 
to accomplish such tasks, and several examples are given in [26].  

Based on the dataset used in this Chapter, the manual stepwise procedure selected 
the variables LNEWWP, LTOTHIGH and LDEVTEAM. When they are used to-
gether as input to a regression-based algorithmic technique (multivariate regression), 
they provide the results shown in Table 4. The model’s adjusted R2 is 0.765 suggest-
ing that LNEWWP, LTOTHIGH and LDEVTEAM can explain 76.5% of the varia-
tion in LTOTEFF.    

Table 4. Coefficients of the regression-based effort model [26] 

Variable Coeff. Std. error t P>|t| [95% conf. interval] 
(Constant) 1.544 0.185 8.368 0.000 1.177 1.912 
LNEWWP 0.523 0.056 9.270 0.000 0.411 0.635 
LTOTHIGH 0.797 0.157 5.076 0.000 0.485 1.110 
LDEVTEAM 0.860 0.201 4.274 0.000 0.460 1.260 

 
Extraction of the Effort Equation 
The Equation obtained from Table 4 is shown to be:  

 

LDEVTEAMLTOTHIGHLNEWWPLTOTEFF 860.0797.0523.0544.1 +++=   (5) 
 
This equation uses four variables that had been previously transformed; therefore 

we need to transform them back to their original states, which gives the following 
Equation: 

860.0797.0523.0 )()1()1(683.4 DEVTEAMTOTHIGHNEWWPTOTEFF ++=       (6) 

In Equation 6, the multiplicative value 4.683 can be interpreted as the effort re-
quired developing a single Web page.   

Obtaining a model that has a good fit to the data and alone can explain a large de-
gree of the variation in effort is not enough to assume this model will provide good 
effort predictions for new projects. To confirm this, this model also needs to be vali-
dated. This is the procedure explained in the next Section. 

Model Validation 
In order to validate an effort estimation model, we need to use data from completed 
Web projects as input to the model, in order to check, for each of the projects used as 
input, if the estimated effort suggested by the model matches the project’s actual ef-
fort. To simulate this situation the following steps are followed: 



212 E. Mendes 

1. The original dataset d is split into a training set t and a validation set v. Here 
we may use several training and validation sets; however within the context of 
this chapter we will only employ a single training & validation set. 

2. Use t to produce an effort estimation model te.  
3. Use te to predict effort for each of the projects in v, as if these projects were 

new projects for which effort was unknown.  

This process is known as cross-validation. For an n-fold cross-validation, n differ-
ent training/validation sets are used. In this section we will show the cross-validation 
procedure using a one-fold cross-validation, with a 66% split. This split means that 
66% of our project data will be used as training set for model building, the remaining 
34% to validate the model, i.e. the training set will have 66% of the total number of 
projects and the validation set will have the remaining 34%.  

As previously mentioned the initial data set had 87 projects, which were split into 
training and validation sets containing 58 and 29 projects, respectively. Generally 
projects are allocated to training/validation sets randomly.  

We created a regression-based algorithmic effort model using the 58 projects in the 
training set. Here we do not need to repeat the manual stepwise procedure. We simply 
use as predictor variables the only three variables that have been previously selected 
using the manual stepwise procedure: LNEWWP, LTOTHIGH and LDEVTEAM. 
The model’s coefficients are presented in Table 5, and the transformed equation is 
presented as Equation 7. The model’s adjusted R2 was 0.668. 

677.0714.0391.0 )()1()1(935.10 DEVTEAMTOTHIGHNEWWPTOTEFF ++=     (7) 

Table 5. Coefficients of the regression-based training set effort model [26] 

Variable Coeff. Std. error t P>|t| [95% conf. interval] 
(Constant) 2.392 0.268 8.908 0.000 1.853 2.930 
LNEWWP 0.391 0.069 5.677 0.000 0.253 0.529 
LTOTHIGH 0.714 0.157 4.549 0.000 0.399 1.029 
LDEVTEAM 0.677 0.225 3.013 0.004 0.227 1.127 

To measure this model’s prediction accuracy we used the following measures [6]: 

• Mean Magnitude of Relative Error (MMRE), which is the mean MRE. 
• Median Magnitude of Relative Error (MdMRE), which is the median 

MRE. 
• Prediction at 25% (Pred(25)), which measures the percentage of projects 

with MRE <= 0.25 

MRE is the basis for calculating MMRE and MdMRE, and defined as: 

MRE = 
e

êe −
                                                      (8) 

where e represents actual effort and ê estimated effort. 



 Web Cost Estimation and Productivity Benchmarking 213 

87
 p

ro
je

ct
s 

T
ra

in
in

g 
se

t  
(5

8 
pr

oj
ec

ts
) 

V
al

id
at

io
n 

se
t 

(2
9 

pr
oj

ec
ts

) 

Model in Equation 7 

E stimated effort, 
Actual effort 
MRE, 
Residual  

MMRE, 
MdMRE, 
Pred(25) 

(1)

(1)

(2)
(3)

(4)

(5)

 

Fig. 11. Steps used in the cross-validation process [26] 

Table 6. Accuracy of training set-based model [26] 

Measure % 
MMRE 129 
MdMRE 73 
Pred(25) 17.24 

 
MRE is gathered for each of the projects in the validation set (see Fig. 11) 
How do we know if the prediction obtained for our model is reasonable?  
If we were to use, instead of the effort model, the average actual effort (average = 

261) or the median actual effort for the 58 projects (median = 43) as the estimated 
effort for each of the projects in the validation set, then prediction accuracy would be 
considerably worse (see Table 7). This means that, although the accuracy obtained 
using MMRE, MdMRE and Pred(25) does not seem wonderful, it would still be ad-
vantageous for a Web company to have used our effort model rather than to simply 
use as estimated effort the mean or median effort for past finished Web projects. 

We suggest that a viable approach for a Web company would be to use the effort 
model described above to obtain an estimated effort, and to revisit the effort sug-
gested by the model taking into account factors such as previous experience with 
similar projects and the skills of the developers. This means that the estimated effort 
provided by our model could still be calibrated to local circumstances, which would 
dictate the final estimate to be used for a new Web project. 

Table 7. Prediction accuracy measures based on average and median effort [26] 

 Average effort as estimated effort Median effort as estimated effort 
MMRE 4314% 663% 
MdMRE 1413% 149% 
Pred(25) 6.89% 3.44% 



214 E. Mendes 

5   Web Productivity Measurement 

Productivity is commonly measured as the ratio of output to input. The more output 
per unit of input, the more productive a project is assumed to be. Within the context 
of software development the output of the software production process is often taken 
to be product size and the input to the process to be effort. Therefore, productivity is 
represented by the following equation [20]: 

 

Productivity = Size/Effort                                            (9) 
 

Equation 9 can be used whenever product size is represented by a single dominant 
size measure (e.g. product size measured in lines of code or function points). How-
ever, there are circumstances when there are several different effort-related size 
measures and there is no standard model for aggregating these measures. When we 
have more than one size measure related to effort and no theoretical model for aggre-
gating those measures, it is difficult to construct a single size measure. In these cir-
cumstances, Equation 9 cannot be used to measure productivity. This is exactly the 
problem we face when attempting to measure Web application productivity. The ma-
jority of studies published in the Web sizing literature have identified the need to use 
a variety of different measures to adequately characterise the size of a Web applica-
tion, but there is no widely accepted method for aggregating the measures into a sin-
gle size measure. In order to provide a solution to this problem, Kitchenham and 
Mendes [20] proposed a productivity measurement method that allows for the use of 
multiple effort-related size measures. It is based on the idea that any size-based effort 
estimation model constructed using the stepwise regression technique is by definition 
a function of effort-related size measures. Thus the size-based effort estimation model 
can be regarded as an AdjustedSize measure, and used in the following equation to 
represent productivity [20]: 

Productivity = AdjustedSize/Effort                                      (10) 

The AdjustedSize measure contains only size measures that together are strongly 
associated with effort. In addition, the relationship between these size measures and 
effort does not need to be linear. 

The benefits of using this method for measuring productivity are as follows [20]: 

• The standard value of productivity is one, since it is obtained using the ratio of 
estimated to actual effort. 

• A productivity value greater than one suggests above-average productivity. 
• A productivity value smaller than one suggests below-average productivity. 
• The stepwise regression technique used to build a regression model that repre-

sents the AdjustedSize measure can also be employed to construct upper and 
lower bounds on the productivity measure. These bounds can be used to assess 
whether the productivity achieved by a specific project is significantly better or 
worse than expected. 

• The productivity measure automatically allows for diseconomies (or economies) of 
scale before being used in a productivity analysis. This means that an investigation 



 Web Cost Estimation and Productivity Benchmarking 215 

of factors that affect productivity will only select factors that affect the productivity 
of all projects. If we ignore the impact of diseconomies (or economies) or scale, we 
run the risk of detecting factors that differ between large and small projects rather 
than factors that affect the productivity of all projects. 

6   Web Productivity Measurement Case Study 

The analysis presented in this Section was based on six datasets of Web projects from 
the Tukutuku database [35]. As shown in Table 8, the data comprises 111 Web pro-
jects contributed by six companies. These projects represent industrial Web applica-
tions developed by Web companies from four different countries. In Table 8 ‘Enh’ 
means Enhancement projects; ‘Co’ means Company.  

All single-company datasets available as part of the Tukutuku database were used 
in this study because the productivity method used automatically accounts for econo-
mies and diseconomies of scale, therefore contrasting application sizes and effort will 
not have a bearing upon the results of our productivity analysis. 

Table 8 shows that all six companies presented similar team experience with the 
development languages employed in their projects, and provided carefully collected & 
validated data. Five companies follow a defined and documented process, and three 
have development teams that are involved in a process improvement programme & 
software metrics programmes. Four companies were formed over 10 years ago, and 
only one company does not follow a defined and documented development process. 
In terms of the amount of project data volunteered, except for Co-5, all companies 
volunteered a very similar number of projects.  

Table 8. Comparison amongst companies’ datasets 

Criterion Co-1 Co-2 Co-3 Co-4 Co-5 Co-6 
Number of projects used 13 14 20 15 31 18 
Average team experience 
(number of years) with the 
development language(s) 
 employed 

7 5 5 4 6 5 

Average team size 3 3 2 7 1 1 
Follows a defined and 
documented development process 

Yes  Yes  No Yes Yes Yes 

Its development team is involved 
in a process improvement 
programme 

Yes Yes No Yes No Yes 

Its development team is part of a 
software metrics programme 

Yes  Yes  No Yes No No 

Type of projects All 
New 

13 Enh 
1 New 

All Enh All 
New 

All 
New 

1 Enh 
17 New 

Was the data carefully collected 
and validated? 

Yes Yes Yes Yes Yes Yes 

Company’s age >10 
years 

<10 
years 

<10 
years 

>10 
years 

>10 
years 

>10 
years 



216 E. Mendes 

AdjustedSize Models 
For each of the six datasets the following steps were carried out to obtain the Ad-
justedSize Model:  

The Manual Stepwise procedure proposed by Kitchenham [19] was used to iden-
tify the size variables that were strongly related with effort. While applying this pro-
cedure, we also verified the stability of each partial regression model generated. This 
involved identifying large residual and high-influence data points (i.e. projects), and 
also checking whether residuals were homoscedastic and normally distributed. Sev-
eral types of plots (e.g. residual, leverage, probability) and statistics are available in 
most statistics tools to accomplish such task. The ones we have employed, all avail-
able in SPSS v15, were the following: 

• A residual plot showing residuals vs. fitted values, to check if the residuals are 
random and normally distributed (data points distributed randomly about zero).  

• A normal P–P plot (probability plots) for the residuals. Normal P–P plots are 
generally employed to verify whether the distribution of a variable is consis-
tent with the normal distribution. If the distribution is Normal, the data 
points are close to linear.  

• Cook’s D statistic to identify projects that exhibited jointly a large influence 
and large residual. Any projects with D greater than 4/n, where n represents 
the total number of projects, are considered to have high influence on the re-
sults. When there are high-influence projects the stability of the model needs  
to be tested by removing these projects, and observing the effect their re-
moval has on the model. If the coefficients remain stable and the adjusted R2 
increases, this indicates that the high-influence projects are not destabilising 
the model and therefore do not need to be removed.  

 
We also obtained upper and lower bounds of the AdjustedSize model to construct up-

per and lower bounds for the productivity values. This mechanism allows us to check the 
existence of productivity values significantly different from one (the baseline productiv-
ity). A detailed description on how to obtain upper and lower bounds is described in [28]. 

Once each size-based effort model, i.e. size-based effort Equation, was obtained, 
they were used as the AdjustedSize models, and, by applying Equation 10, productiv-
ity values were obtained for each of the six datasets used in this investigation. Ad-
justedSize models and corresponding adjusted R2 are presented below:   

AdjustedSize model for Co-1 (adjusted R2 = 0.540) 
964.0307.2 TotWPTotEff =                                           (11) 

AdjustedSize model for Co-2 (adjusted R2 = 0.376) 
407.0)1Im(944.9 += gTotTotEff                                    (12)  

AdjustedSize model for Co-3 (adjusted R2 = 0.467) 
124.1Im529.2 gNewTotEff =                                         (13)  

AdjustedSize model for Co-4 (adjusted R2 = 0.693) 
HnewTotEff 80.114953.886 +=                                        (14)  



 Web Cost Estimation and Productivity Benchmarking 217 

AdjustedSize model for Co-5 (adjusted R2 = 0.939) 
939.0)1(818.5 += TotHighTotEff                                     (15) 

AdjustedSize model for Co-6 (adjusted R2 = 0.694) 
715.0244.12 TotWPTotEff =                                         (16) 

The adjusted R2 is a measure that indicates what percentage of variation in the de-
pendent variable is explained by the independent variable(s). The closer it is to 1, the 
higher the explanatory power of the independent variable(s) selected by the model. 
For example TotHigh + 1 (see Equation 15) explains 93.9% of the variation in TotEff, 
which is remarkable. A low adjusted R2 suggests that there are other variables that 
may also contribute to explain the variation in the dependent variable. These variables 
are very likely environmental (e.g. team’s experience), and removed from our analy-
sis for not being size measures.  

 

Productivity Comparison 
Once the AdjustedSize models were obtained, our next step was to use Equation 10 to 
calculate productivity for each of the six datasets. Their descriptive statistics are shown 
in Table 9, where Co_1_p, Co_2_p, Co_3_p, Co_4_p, Co_5_p, and Co_6_p correspond 
to productivities for companies Co-1, Co-2, Co-3, Co-4, Co-5, and Co-6, respectively.  

Table 9. Descriptive statistics for Productivity values 

Statistics Co_1_p Co_2_p Co_3_p Co_4_p Co_5_p Co_6_p 
Mean 1.37 1.34 0.42 1.04 0.81 1.01 
Median 0.97 0.75 0.33 0.99 0.84 0.98 
Std. Deviation 1.05 1.23 0.46 0.20 0.35 0.36 
Minimum 0.11 0.44 0.00 0.82 0.30 0.40 
Maximum 3.80 4.27 1.45 1.44 2.26 1.57 

 

Fig. 12. Boxplots of productivity values for all six Companies 



218 E. Mendes 

Table 9 shows that three companies (Co-6, Co-1, Co-4) had their median produc-
tivity very close to the productivity baseline of 1, indicating that half of their projects 
presented above average productivity and the other half presented below average pro-
ductivity. Companies Co-5 and Co-2 presented median productivity slightly smaller 
than 1, indicating that more than half of their projects presented below average pro-
ductivity. Finally, company Co-3 presented median productivity well below 1, thus 
indicating that most of its projects presented below average productivity. Companies 
Co-1 and Co-2 presented productivity values with a larger spread than the other com-
panies, as indicated by their standard deviation. 

A visual complement to descriptive statistics is boxplots of productivity values.  
Fig. 12 shows boxplots of the productivity distributions for the six different com-

panies. These boxplots suggest that the productivity values for companies Co_6, Co_1 
and Co_4 are normally distributed, confirmed by the Shapiro-Wilk normality test 
(α = 0.05). Company Co_4 presents a very peaked distribution showing that most of 
its productivity values lay around the baseline of 1; conversely, companies Co_1 and 
Co_2 present flatter distributions with a wider spread of values. Company Co_3 
presented 19 of its productivity values below the baseline, indicating very poor pro-
ductivity. The number of projects (and percentages) above 1, equal to 1 and below 1, 
per company, are detailed in Table 10. 

Table 10. Productivity values < 1, = 1, > 1 

 Number and (Percentage) of Projects 
Companies Above 1  Equal to 1 Below 1 

Co-1 6 (46%) 0 (0%) 7 (54%) 
Co-2 6 (43%) 0 (0%) 8 (57%) 
Co-3 3 (15%) 0 (0%) 17 (85%) 
Co-4 7 (47%) 0 (0%) 8 (53%) 
Co-5 5 (16%) 1 (3%) 25 (81%) 
Co-6 9 (50%) 0 (0%) 9 (50%) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Findings for the Statistical Significance test 

Co_5 Co_6 

Co_1 

Co_2 

Co_3 

Co_4 

p = 0.859 

p= 0.667 

p > 0.01

p = 0.656 

p=0.054 

p = 0.004

p = 0.002 

p = 0.462

p = 0.185 



 Web Cost Estimation and Productivity Benchmarking 219 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Productivity and confidence intervals for all six Companies 

These overall trends suggest that the companies that presented the best productivity 
were Co-6, followed by Co-4, Co-1 and Co-2. However, we still need to conduct a 
statistical significance test to ensure that the observed productivity differences be-
tween companies are legitimate, rather than having occurred due to chance. Statistical 
significance tests are used to check if different groups of data present similar distribu-
tions. If they do, this means that any observed differences between groups are due to 
chance alone. The statistical significance test used was the Mann-Whitney U test be-
cause the samples being compared were independent, and productivity values were 
not randomly distributed, confirmed using the Shapiro-Wilk normality test. Statistical 
significance was set at 95%.  

(f) 

0

0.5

1

1.5
2

2.5

3

3.5
4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LICI_p Prod UICI_p

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

LICI_p Prod UICI_p

(e) 

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36

1 2 3 4 5 6 7 8 9 10 11 12 13

LICI_p Prod UICI_p

(a) 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LICI_p Prod UICI_p

(b) 

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LICI_p Prod UICI_p

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LICI_p Prod UICI_p

(c) (d) 



220 E. Mendes 

The results of the Mann-Whitney U test are presented in Fig. 13, where an arrow 
from Company A to Company B indicates that Company A presented significantly 
superior productivity than Company B. A single line between two Companies indi-
cates that there were no real differences between these Companies’ productivity.  

These results show that Company Co_3 presented statistically worse productivity 
than Co_5 and Co_6, and that Co_4 presented significantly superior productivity  
to Co_5. Overall Co_1, Co_2, Co_5 and Co_6 all presented similar productivity; Co_4 
presented similar productivity to Co_6 and significantly better productivity  
than Co_5.  

We have also obtained confidence intervals that were used to check if productivity 
values were significantly different from 1 (see Fig. 14).  

In Fig. 14 productivity is identified as ‘Prod’, lower individual confidence interval 
as ‘LICI_p’, and upper individual confidence interval as ‘UICI_p’. The productivity 
for companies Co_1, Co_2, Co_3, Co_4, Co_5, and Co_6 are displayed in Fig. 3(a), 
Fig. 3(b), Fig. 3(c), Fig. 3(d), Fig. 3(e), and Fig. 3(f), respectively. What we would 
normally expect is to see the productivity line always in between the lower (LICI_p) 
and upper (UICI_p) confidence interval lines, as this is an indication that all produc-
tivity values are not drastically low or high. This was clearly the pattern observed for 
all Companies, except for Co_3, which presented productivity values below the 
LICI_p threshold for seven of its 20 projects, indicating extremely poor productivity 
for those projects. 

7   Conclusions 

This Chapter presented an introduction to Web effort estimation and Web productiv-
ity measurement, and in addition it also presented two case studies, one on Web effort 
estimation, and another on Web productivity benchmarking. Both case studies used 
data on Web projects from the Tukutuku database.  

References 

[1] Angelis, L., Stamelos, I.: A Simulation Tool for Efficient Analogy Based Cost Estimation. 
Empirical Software Engineering 5, 35–68 (2000) 

[2] Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981) 
[3] Briand, L.C., El-Emam, K., Surmann, D., Wieczorek, I., Maxwell, K.D.: An Assessment 

and Comparison of Common Cost Estimation Modeling Techniques. In: Proceedings of 
ICSE 1999, Los Angeles, USA, pp. 313–322 (1999) 

[4] Briand, L.C., Langley, T., Wieczorek, I.: A Replicated Assessment and Comparison of 
Common Software Cost Modeling Techniques. In: Proceedings of ICSE 2000, Limerick, 
Ireland, pp. 377–386 (2000) 

[5] Brieman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. 
Wadsworth, Belmont (1984) 

[6] Conte, S., Dunsmore, H., Shen, V.: Software Engineering Metrics and Models. Benjamin/ 
Cummings, Menlo Park (1986) 



 Web Cost Estimation and Productivity Benchmarking 221 

[7] DeMarco, T.: Controlling Software Projects: Management, Measurement and Estimation. 
Yourdon, New York (1982) 

[8] Finnie, G.R., Wittig, G.E., Desharnais, J.-M.: A Comparison of Software Effort Estima-
tion Techniques: Using Function Points with Neural Networks, Case-Based Reasoning 
and Regression Models. Journal of Systems and Software 39, 281–289 (1997) 

[9] Gray, A., MacDonell, S.: Applications of Fuzzy Logic to Software Metric Models for De-
velopment Effort Estimation. In: Proceedings of IEEE Annual Meeting of the North 
American Fuzzy Information Processing Society - NAFIPS, Syracuse, NY, USA, pp. 
394–399 (1997) 

[10] Gray, A., MacDonell, S.: A comparison of model building techniques to develop predic-
tive equations for software metrics. Information and Software Technology 39, 425–437 
(1997) 

[11] Gray, R., MacDonell, S.G., Shepperd, M.J.: Factors Systematically associated with errors 
in subjective estimates of software development effort: the stability of expert judgement. 
In: Proceedings of the 6th IEEE Metrics Symposium (1999) 

[12] Hughes, R.T.: An Empirical investigation into the estimation of software development ef-
fort. PhD thesis, Dept. of Computing, University of Brighton (1997) 

[13] Jeffery, R., Ruhe, M., Wieczorek, I.: A Comparative study of two software development 
cost modelling techniques using multi-organizational and company-specific data. Infor-
mation and Software Technology 42, 1009–1016 (2000) 

[14] Jeffery, R., Ruhe, M., Wieczorek, I.: Using Public Domain Metrics to Estimate Software 
Development Effort. In: Proceedings of the 7th IEEE Metrics Symposium, London, UK, 
pp. 16–27 (2001) 

[15] Jensen, F.V.: An introduction to Bayesian networks. UCL Press, London (1996) 
[16] Kadoda, G., Cartwright, M., Chen, L., Shepperd, M.J.: Experiences Using Case-Based 

Reasoning to Predict Software Project Effort. In: Proceedings of the EASE 2000 Confer-
ence, Keele, UK (2000) 

[17] Kemerer, C.F.: An Empirical Validation of Software Cost Estimation Models. Communi-
cations of the ACM 30(5), 416–429 (1987) 

[18] Kirsopp, C., Shepperd, M.J.: Making Inferences with Small Numbers of Training Sets, 
January, TR02-01, Bournemouth University (2001) 

[19] Kitchenham, B.A.: A Procedure for Analyzing Unbalanced Datasets. IEEE Transactions 
on Software Engineering 24(4), 278–301 (1998) 

[20] Kitchenham, B.A., Mendes, E.: Software Productivity Measurement Using Multiple Size 
Measures. IEEE Transactions on Software Engineering 30(12), 1023–1035 (2004) 

[21] Kitchenham, B.A., MacDonell, S.G., Pickard, L.M., Shepperd, M.J.: What accuracy sta-
tistics really measure. IEEE Proceedings Software 148(3), 81–85 (2001) 

[22] Kitchenham, B.A., Pickard, L.M., Linkman, S., Jones, P.: Modelling Software Bidding 
Risks. IEEE Transactions on Software Engineering 29(6), 54–554 (2003) 

[23] Kok, P., Kitchenham, B.A., Kirakowski, J.: The MERMAID Approach to software cost 
estimation. In: Proceedings of the ESPRIT Annual Conference, Brussels, pp. 296–314 
(1990) 

[24] Kumar, S., Krishna, B.A., Satsangi, P.S.: Fuzzy systems and neural networks in software 
engineering project management. Journal of Applied Intelligence 4, 31–52 (1994) 

[25] Maxwell, K.: Applied Statistics for Software Managers. Prentice Hall PTR, Englewood 
Cliffs (2002) 

[26] Mendes, E.: Cost Estimation Techniques for Web Projects. IGI Publishing (2007) 
[27] Mendes, E., Kitchenham, B.A.: Web Productivity Measurement and Benchmarking. In: 

Mendes, E., Mosley, N. (eds.) Web Engineering, pp. 75–105. Springer, Heidelberg (2005) 



222 E. Mendes 

[28] Mendes, E., Mosley, N. (eds.): Web Engineering. Springer, Heidelberg (2005) 
[29] Mendes, E., Counsell, S., Mosley, N.: Measurement and Effort Prediction of Web Appli-

cations. In: Murugesan, S., Desphande, Y. (eds.) Web Engineering. LNCS, vol. 2016, pp. 
57–74. Springer, Heidelberg (2001) 

[30] Mendes, E., Mosley, N., Counsell, S.: Web Metrics – Estimating Design and Authoring 
Effort. IEEE Multimedia, Special Issue on Web Engineering, 50–57 (January/March 
2001) 

[31] Mendes, E., Mosley, N., Counsell, S.: The Application of Case-Based Reasoning to Early 
Web Project Cost Estimation. In: Proceedings of COMPSAC 2002, Oxford, UK (2002) 

[32] Mendes, E., Mosley, N., Counsell, S.: Do Adaptation Rules Improve Web Cost Estima-
tion? In: Proceedings of the ACM Hypertext conference 2003, Nottingham, UK (2003) 

[33] Mendes, E., Mosley, N., Counsell, S.: A Replicated Assessment of the Use of Adaptation 
Rules to Improve Web Cost Estimation. In: Proceedings of the ACM and IEEE Interna-
tional Symposium on Empirical Software Engineering, Rome, Italy, pp. 100–109 (2003) 

[34] Mendes, E., Mosley, N., Counsell, S.: Early Web Size Measures and Effort Prediction for 
Web Costimation. In: Proceedings of the IEEE Metrics Symposium, Sydney, Australia, 
pp. 18–29 (September 2003) 

[35] Mendes, E., Mosley, N., Counsell, S.: Investigating Web Size Metrics for Early Web Cost 
Estimation. Journal of Systems and Software 77(2), 157–172 (2005) 

[36] Myrtveit, I., Stensrud, E.: A Controlled Experiment to Assess the Benefits of Estimating 
with Analogy and Regression Models. IEEE Transactions on Software Engineering 25(4), 
510–525 (1999) 

[37] Ruhe, M., Jeffery, R., Wieczorek, I.: Cost Estimation for Web Applications. In: Proceed-
ings of ICSE 2003, Portland, USA (2003) 

[38] Schofield, C.: An empirical investigation into software estimation by analogy. PhD thesis, 
Dept. of Computing, Bournemouth University (1998) 

[39] Schroeder, L., Sjoquist, D., Stephan, P.: Understanding Regression Analysis: An Intro-
ductory Guide, No. 57. In: Quantitative Applications in the Social Sciences. Sage Publica-
tions, Newbury Park (1986) 

[40] Selby, R.W., Porter, A.A.: Learning from examples: generation and evaluation of decision 
trees for software resource analysis. IEEE Transactions on Software Engineering 14, 
1743–1757 (1998) 

[41] Shepperd, M.J., Kadoda, G.: Using Simulation to Evaluate Prediction Techniques. In: 
Proceedings of the IEEE 7th International Software Metrics Symposium, London, UK, 
pp. 349–358 (2001) 

[42] Shepperd, M.J., Schofield, C.: Estimating Software Project Effort Using Analogies. IEEE 
Transactions on Software Engineering 23(11), 736–743 (1997) 

[43] Shepperd, M.J., Schofield, C., Kitchenham, B.: Effort Estimation Using Analogy. In: Pro-
ceedings of ICSE-18, Berlin (1996) 

[44] Srinivasan, K., Fisher, D.: Machine Learning approaches to estimating software develop-
ment effort. IEEE Transactions on Software Engineering 21, 126–137 (1995) 

[45] Stensrud, E., Foss, T., Kitchenham, B.A., Myrtveit, I.: An Empirical validation of the re-
lationship between the magnitude of relative error and project size. In: Proceedings of the 
IEEE 8th Metrics Symposium, Ottawa, pp. 3–12 (2002) 

 



A. De Lucia and F. Ferrucci (Eds.): ISSSE 2006–2008, LNCS 5413, pp. 223–256, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Knowledge Base and Experience Factory for 
Empowering Competitiveness 

Giuseppe Visaggio 

Dipartimento di Informatica 
SER& Practices s.r.l.- Spin off- 

UNIVERSITA’ DI BARI 
visaggio@di.uniba.it 

Abstract. As it is well-known, knowledge exploitation is becoming the focus of 
the economy for the competitiveness of both organizations and countries. In this 
chapter some models that enable enterprises towards the knowledge society are 
presented. An Experience Factory is suggested as support to such behavioral 
models. It collects empirical experiences as Experience-Knowledge Packages. 
The most relevant innovation of the chapter is represented by the contents and 
structure of the packages which are different from ones in the literature. The 
changes made to the structure aim to convince potential addressees to use the 
contents of the packages and favor their adoption independently from the 
author(s) of the package. Consequently, the proposed structure allows to 
produce packages incrementally and cooperatively. The proposed changes 
derive from the lessons learnt in previous experiences of technology transfer. 
The chapter presents the PROMETHEUS platform which implements all the 
requirements for collecting and distributing Knowledge-Experience Packages.  

Keywords: Experience Factory, knowledge transfer, experience base; knowledge 
management. 

1   Introduction 

The competitive pressure for organizations and countries has moved the focus of 
economy from material to immaterial assets. Acquiring competitiveness in terms of 
immaterial factors requires empowering the capabilities for managing the immaterial 
assets through the knowledge chain. The comparative advantage of a public 
administration, of an enterprise or of a physical person (all referred to as organism in 
the rest of the chapter) based on immaterial factors is more enduring than the one 
based on material ones. Indeed, it is difficult to fill the knowledge gap that represents 
the benefit. The knowledge cycle for improving the competitive advantage is the basis 
of any knowledge society and of the development of new economic, technological and 
scientific paradigms related to it. It is characterized by an exploitation of knowledge 
as predominant factor for generating profit [16]. 

Given the space limitations of this chapter and in order to assure proper readability 
and comprehension, only part of the ample context of knowledge economy will be 
considered. Consequently, this chapter considers the economical aspects of knowledge 



224 G. Visaggio 

from an enterprise perspective and according to the Information Technology (IT) 
production and user enterprises. The chapter faces topics in a general way so that most 
of the concepts and technologies illustrated can be applied to any intensive knowledge 
business, but the chapter puts specific attention to Small to Medium Enterprises (SME) 
because they have the most difficulties in moving towards a knowledge economy and 
must therefore be supported. Moreover, in the IT sector they represent not less than 90% 
of the enterprises world wide [18].      

Among the factors that favour an efficient use of knowledge, this chapter refers to 
the acquisition and enforcement of technological capabilities that characterize the 
excellence and diversity of an organism within a business domain [17]. Indeed, 
diversity provides a competitive benefit; excellence transforms such benefit into 
market opportunities. In order to develop and preserve the comparative advantage and 
to transform it into economical benefits, the behavioural models of the interested 
organisms can be different and not exclusive one from another.  

Due to the dynamism of markets, both in the demand and offer, these capabilities 
must be continuously adapted through innovation that must consequently be frequent 
and rapid. Frequent innovation requires for an organism to dispose of original 
research results in its business domain, be able to quickly transform them in 
technological innovation to adapt in its business processes and socialize the new 
knowledge produced in order to preserve excellent and distinctive capabilities. Many 
investments are needed to achieve these goals. As so, an organism tends to limit the 
number of capabilities to invest on, in order to enhance excellence and diversity. The 
extension of the enterprise capabilities for each organism can be regulated according 
to the capabilities of investments and to the number of human resources of the 
organism itself. A minor extension of the enterprise capabilities corresponds to a 
lower request of human and financial resources, needed to support the acquisition, 
maintenance and continuous update of competences it is based on.  

Research results are produced by unpredictable processes in terms of time and 
investments. Their transformation into innovation is also difficult to predict. 
Furthermore, specialised competences developed within an organism, through 
research and socialization of research results, create further risk for turnover; and 
make research and development investments highly risky. For example, the loss of a 
researcher implies the loss of the tacit knowledge assets that he/she has acquired 
during the research and development processes. Also, the unpredictability of research 
processes make the risk of wrong investment predictions and time needed for 
achieving satisfactory results important. So, it is important to go from a Closed 
Innovation towards an Open Innovation model [11]. In the Closed Innovation model 
the entire knowledge chain, from research to innovation, is carried out within the 
organism. On the other hand, in the Open Innovation, each organism provides 
research results or technologies produced during internally financed research and 
development projects that it is unable to use in a short term, but uses results made 
available by other organisms to create the innovations it needs, according to its 
strategic goals. Forwarding the knowledge produced by an organism’s research to 
others allows for a quicker return of investments. Having the need to formalize 
research results, the organism must pay attention to the knowledge acquired during 
the job (near-the-job learning). Furthermore, exchanging knowledge with other 



 Knowledge Base and Experience Factory for Empowering Competitiveness 225 

organisms increases the number of knowledge providers, and reduces the risk of 
knowledge assets loss.   

In spite of the incomes achievable with Open Innovation, the acquisition and 
enforcement of excellence capabilities is costly. This affects the costs of resources that 
support such capabilities, and therefore the project costs that the resources are involved 
in. To support competition, the project costs must decrease. As so, activities with low 
added value are distributed and transferred to enterprises with lower staff costs (off 
shoring or outsourcing), while the activities requesting excellence capabilities with high 
added value tend to be kept within the organism. This behavioural model, distributed 
production, allows speeding up the production and maintenance processes and facing 
time to market issues which inevitably have to cope with small time spaces. To adopt 
this approach the organisms must have good project planning and monitoring 
capabilities. Also, they must dispose of instruments for evaluating supplier and their 
own capabilities. Finally, in distributed projects, the risk of turnover of human resources 
increases, as so, the adoption of this model requires the ability to rapidly recover the 
lack of competences.  

In some cases, the organism in charge of the project may not have all the 
excellence capabilities required for the project execution. In these cases it must 
cooperate with other organisms and make up the Digital Business Ecosystem (DBE) 
[15]. In such a situation, the organism in charge of the project is the customer and the 
other cooperating organisms are the suppliers. It is obvious that the customer 
organism in a DBE must have capabilities for managing distributed projects. For 
completeness, large enterprises use an alternative paradigm to DBE, without 
excluding it, for acquiring complementary excellence capabilities through Merge & 
Acquisition processes.  

In the previous behavioural models, the common denominator that this chapter 
intends to analyze is knowledge management. Currently, the Experience Factory (EF) 
model that collects empirical knowledge in an Experience Base (EB) repository is 
well known [10]. The EF aims to understand, plan, predict, control, verify and 
improve business processes. The collection of empirical knowledge in an Experience 
Package (EP) aims to reduce the consequences of knowledge loss due to staff 
turnover that tacitly detain the knowledge, improve products and processes, and 
assure near-the-job learning for improving the quality of tasks to carry out.  

This chapter proposes a model for systematically structuring the content of a 
Package particularly oriented to explicit practices for adopting knowledge (acquisition 
and exploitation) in a business process of a productive organism. The organism we refer 
to can be a research one, or a service/product production one. Different types of contents 
are expressed in a same Package such as: research results, experience, tools, and 
innovative technologies. The structure of the package can be adapted to different types 
of contents. The package has a modular structure and expresses the relation between the 
state of art the package refers to, and the package contents: the research results, the 
practices, and the experience for adoption in a business process. Explicit experience is 
able to convince the potential users of the values deriving from the adoption of the 
Package. The structure of the package has components that guide user organisms in 
adopting it. The knowledge expressed according to this structure is called from here on 
Knowledge-Experience Package (KEP). The repository that contains the KEP is called, 
Knowledge-Experience Base (KEB). 



226 G. Visaggio 

The proposal in this chapter is innovative with respect to current literature and to 
other existing knowledge bases, for the contents and the structure of the KEP along 
with its components that derive from lessons learned during knowledge management 
and exploitation in business processes. Indeed, the chapter shows that thanks to  
the outlined structure, the proposed KEP, together with conventional activities of EF, 
is a good support for any organism operating within knowledge economy with 
behavioural models expressed in the previous paragraphs.  

The remaining part of the chapter is organized as follows: section 2 provides a 
rigorous definition of data, information, knowledge and experience according to the 
perspective of this chapter. Section 3 describes the state of art about the EB and EF. 
Section 4 describes the author’s proposal for extending the EB and KEB and increases 
its efficacy given the aim of the chapter. Section 5 describes the PROMETHEUS 
platform that is an experimental prototype of the KEB with the characteristics 
presented in the previous paragraph. Section 6 describes the guidelines for producing 
and evolving KEB contents. Next, section 7 analyzes the value of PROMETHEUS for 
stakeholders as support to how the KEB can contribute to satisfy the requirements of 
relational and business models as factors of knowledge economy. Finally, conclusions 
are drawn. References are provided for further details on the topics faced in the 
chapter.        

2   Data, Information, Knowledge and Experience  

In order to better understand the contents of the chapter, it is important to have 
suitable definitions of data, information, knowledge and experience. In literature there 
are many definitions of these concepts that are adapted to the context they are applied 
to, but they are not effective for the aims of this chapter. As so, it is necessary to 
provide rigorous definitions appropriate to the context of application considering that 
they are different from the meaning attributed to them in literature and in everyday 
language. 

Knowledge of IT in most cases derives from empirical induction. As so, it is 
important that the definition of data should indicate the value of one of the attributes 
required to describe a Fact (F); each attribute corresponds to one aspect of a fact and 
is relevant to the point of view from which it is being considered. Formally, a fact is 
described by a set of data that can be expressed as in (1) where: K is the number of 
attributes, generic dij is a data that represents the j-th attribute of the i-th fact.  

Fi =  (< di1, di2, di3,… diK>) .               (1) 

For example, table 1 shows the data that describe facts: Maintenance requests, 
sorted by date, for a software system S. Each fact is described by a set of attributes  
<# Maintenance Request, Maintenance Type, Effort Spent, Components Involved>. 

Information is a concept that assumes many meanings. In common language it 
describes something material (i.e. a product, a tool) or immaterial (i.e. historical, 
television, radio event); this type of information can be defined as Descriptive 
Information. In many scientific contexts information is contained and coded in a 
message transferred by a source (i.e. codes from electronic transmissions, genes of a 
DNA, data inserted into an information system, etc), it can be classified as Entropic  
 



 Knowledge Base and Experience Factory for Empowering Competitiveness 227 

Table 1. Example of Data 

#Maintenance 
Request for S 

 
Maintenance Type 

Effort Spent 
(Man/days) 

Components 
Involved 

1 C (Corrective) 2 1 

2 A (Adaptive) 4 35 

3 C 4 7 

4 C 4 8 

5 C 5 10 

6 C 6 8 

7 P (Perfective) 15 43 

8 C 2 2 

… … … … 

29 C 6 8 

 
Information. Some times this concept is used to identify data classification models 
used to confirm or reject elements useful for someone or something (i.e. surveys, exit 
pool,  and so on). These can be identified as Notion Information. 

Since the aim of the chapter is empirical induction, we are interested in information 
that can be extracted from data that describe facts. It will be called Information 
Mining to distinguish it from other types of information described previously. The 
generic term of Information (INF) in the context of this chapter refers to this type of 
definition. It is the interpretation of a set of facts or relations. The information reveals 
the underlying meaning of facts and makes it useful for the users who perform tasks 
and make decisions. Formally, this can be represented as a function M (Mining) 
applied on a set of facts:  

INFl   = Ml{F1, F2, F3,…, Fn}= Ml ({dij}: i =1,…N; J =1,…,K(i))           (2) 

Ml is a function that points out and interprets data patterns that describe facts, 
classified in the best way to extract useful information.  

For example, some information mined from the facts in table 1, with different M 
functions to classify, extract patterns and interpret them, are listed as follows. To ease 
reading, codes have been used instead of generic INFl. 

Ec,:  effort for corrective maintenance increases over time as it appears from Fig. 1 that 
graphically illustrates the effort spent over the course of time to satisfy each corrective 
maintenance request. If a longer series of facts were available it would be possible to 
extract other information from the set of data, such as the prediction model for the trend 
of number of maintenance requests and for the effort needed to fulfil them.  

Na.: adaptive maintenance requests are less frequent than corrective or perfective ones; 

Ea: the effort required to make the software evolve tends to increase in time, and it is 
greater than for corrective maintenance;  

Np: requests for perfective maintenance are less frequent than corrective ones but 
more frequent than adaptive ones.  



228 G. Visaggio 

EP: the effort required for perfective maintenance is generally greater than corrective 
and lower than effort for adaptive maintenance;  

Ra: after an adaptive maintenance request, the number of requests for corrective 
maintenance increases 

Rp: after perfective maintenance, the number of corrective maintenance requests 
decreases. 

 
Effort Spent (Man/days)

0
5

10
15
20
25
30
35
40

C E C C C C P C C E C C C C C C C E C C C C C C C P C C C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Effort Spent (Man/days)

 

Fig. 1. Effort spent vs Maintenance Requests 

A further Mining of the facts presented in table 1 showing the number of 
components involved in each request for maintenance, is presented in Fig. 2 Other 
information can be extracted.  

 
Involved Components 

0
5

10
15
20
25
30
35
40
45
50

C E C C C C P C C E C C C C C C C E C C C C C C C P C C C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Involved Components 

 

Fig. 2. Maintenance Request vs Components Involved 

Ca. The corrective and adaptive maintenance changes gradually increase the number 
of components involved.  

Cp. The perfective maintenance changes reduce the number of software components 
involved.  

 

The concept of knowledge in everyday life, as well as in literature is defined as one 
or more relations between notions, extracted from what data and facts describe.  

In order to favour empirical induction, it is important to provide a definition that 
points out the concept of knowledge as induced from information and that requires 
formalization so that it can be used independently from who has generated it. As so, we 
define Mined Knowledge as broader than data and information, which requires 
understanding of information along with the relations between information mined by the 
data. To make the definition clearer, we assume that: the relations between information 
elements are complex. Consequently, they can be interpreted from a view point that 



 Knowledge Base and Experience Factory for Empowering Competitiveness 229 

reduces the relevant aspects of the relation. Such view point is expressed by a problem 
that knowledge application must contribute to solve, usually identified as Pi. 

For clearness, a problem, in the remaining part of this chapter, is a question, simple 
or complex, of relevant interest for a knowledge domain having difficulties and that 
may lead to inconveniences. Its solution is made up of notion information known in 
certain circumstances. According to the scope of the question, a Problem can be 
classified as: decisional if the solution supports decisions for overcoming negative 
effects that occur or may occur during process execution; transcendental if it requires 
deductive reasoning, even formal based on proven theories.     

For Pi the contents of a set of information items: 

{INF}:{ < INF1, INF2, INF3,…. INFi>}     (3) 

and the relationships among information items are needed:  

 {R({INF})}:{ R1{ INF1}; R2{ INF2} R3{ INF3}… Rl{ INFl}}    (4) 

In these formulas (3 and 4), each { INFk} is a combination of elements in {INF}. In 
the rest of the chapter Mined Knowledge will be referred to as Knowledge (KW). 

Formally, KW can be represented by a function G (Generates):  

KWi = Gi ( Pi, {R({INF})})          (5) 

Function Gi selects the information components and the relations, among the ones 
available from the data and M functions, and generalizes the interpretation of the 
information and of the relations. The generic Gi function is produced by a competent 
organism that is able to identify which information and which relations, among the 
available ones, are effective to provide a solution to problem Pi, and interpret and 
generalize such relations. Once the generic KWi is expressed, it can be used by all 
organisms in spite of the knowledge producer.  

For example: suppose to have a problem P <how can software quality degradation 
be reduced during maintenance?>. The problem domain is software maintenance. The 
information that describes the context where the maintenance process is executed has 
been extracted from table 1. The essential relations, among the extractable ones, to 
solve the problem are: after corrective or adaptive maintenance the number of 
components impacted (Ca) increases, this implies that corrective maintenance tends to 
increase the internal cohesion of a system. Consequently, perfective maintenance 
should be carried out to mitigate such complexity (Rp); following to perfective 
maintenance, the number of corrective maintenance requests is less (Cp), this reduces 
the trend of quality degradation. Consequently, in this case the application of formula 
(5) gives the following result:  

KW = < to reduce quality degradation of a software system, when quality of a 
system decays following to corrective and adaptive maintenance, perfective 
maintenance is advisable > = G (P, R(Ce, Rp, Cp)).   

 

Experience in everyday contexts as well as in literature is tacit, it is closed in the 
mind of who has acquired it by continuously applying knowledge and abilities. 
Experience can also have various classifications. For example, Common Experience, 
Critical Experience, Religious Experience and so on.  



230 G. Visaggio 

This chapter refers to Empirical Experience (EXP), acquired by applying knowledge 
in various contexts and by extracting data and facts from its application that confirm or 
deny the previous extracted knowledge. Application of knowledge can be required by a 
project, or by a laboratory experiment replicated in a controlled context to confirm or 
deny a conjecture or a principle.  

Project is intended as the execution of a set of correlated processes that use 
knowledge or technology to validate their efficacy in practice. In this chapter, a 
controlled experiment, carried out in a laboratory context to prove the efficacy of the 
innovation when adopted and applied to a process, is also intended as a project.  

Applications of interest of this chapter are the acquisition and exploitation of 
knowledge in order to improve business process goals along with the quality of its 
products and services; performances, execution speed, costs, conformity, stability, 
capability. The application of knowledge requires proper indicators that allow to 
make a cost-benefit analysis following to each acquisition or exploitation. Such 
indicators must be empirically validated in different contexts. The more the 
replications of experiments, the more confident managers and researchers will be in 
acquiring and exploiting knowledge. 

EXP is critical for the scope of this chapter. Indeed, acquired or exploited knowledge 
in a business process goes from the state of art to the state of practice and then becomes 
a technology that supports continuous improvements in process performances. If the 
knowledge that is transformed into technology is a set of research results, this 
transformation carries out an innovation and, normally, it increases the competitive 
benefit of who uses it. Moreover, if the research result is used to improve the product of 
the business process, it is defined as product innovation, if it refers to an improvement 
of the performances, then it is defined as process innovation.      

Formally, an EXP is a function EE (Empirical Evidence) of a chunk of knowledge 
used in Acquisition or Exploitation projects (A/E) from where a set of process or 
performance indicators (I) are extracted. 

EXP(KWi) = EE (KWi, {A/Ei1,{Ii1}, A/Ei2,{Ii2}, A/Ei3,{Ii3},…, A/EiN,{IiN}})    (6) 

KWi is the knowledge to require. It can be descriptive and/or formally expressed, 
as defined above; 

A/Eij, describes the project where KWi was applied the j-th time; 

{Iij} is the set of indicators measured on the business process during the application 
of the j-th chunk of KWi knowledge. 

The number of N applications varies in time because the application of KWi may 
be replicated in an increasing number of projects in the package life time.  

The set of {Iij} indicators can be different from the set {Iik} because the k previous 
experiences may have led to decisions for validating the efficacy of KWi by adding or 
modifying indicators. 

EE is a function that abstracts the main results after applying KWi. For example, 
suppose to have a problem P < improve the maintainability of a software system > 
and a KW <the maintainability of a software system can be improved by a Reverse 
engineering (RE) and Renewal process; Renewal is guided by software quality 
indicators>. KW would also include a formal description of the process, the 
techniques and the tools used for its description. For space reasons we have omitted it.  



 Knowledge Base and Experience Factory for Empowering Competitiveness 231 

Table 2. Example of EXP 

Acquisition Last trimester without RE First trimester 
without RE 

N

T Staff EA C MU E ER IM IR MU E ER IM IR 
1 20 IH, 

DK
600 630 60 2520 92 7 85 42 1272 22 2 15 

2 12 IH 280 336 72 2870 91 6.3 83 45 1356 5 2 8  
Legend 
T= time needed to acquire RE in working days. 
Staff = competences that the enterprise does not have and that must be identified 
externally 
EA = effort for acquisition in man hrs. This includes the effort for transferring and the 
effort for acquiring and eventually the effort for training. 
C = cost in thousands of Euros 
MU = number of Maintenance Unit (MU) carried out. A MU is a set of maintenance 
requests that are assigned to an individual developer. It is expected that they require 
about 30 man hrs of effort to be satisfied. This time includes the changes to software 
documentation; 
E = average effort in man hrs spent for carrying out MU; 
ER = Effort Risk in percentage = Ni/M.U. *100 where Ni is the number of MU having 
E > (30 ± 0,05*30); 
IM = average number of components impacted by the MU carried out; 
IR = Impact Risk in percentage = Ni/U.M. *100 where Ni is the number of MU having 
IM > (IMexpected ± 0,05*30). 
IH = knowledge of Information Hiding and of the practices needed to develop it 
DK = knowledge of the application domain 

 
In order to measure the efficacy of RE, a set of measures has been set. In the 

example, they correspond to {MU, E, ER, IM, IR}. Other measures that express the 
contexts in which projects are carried out have been collected {T, EA, Staff, IM, IR}. 
Note that the indicators, the projects and the measurement values are fictitious and are 
only used for explanatory reasons for clearing the concepts of EXP. The two projects 
we have applied RE to, shown in table 2, refer to different contexts, with different 
competences. The second project already has the IH competence, the dimensions of 
the problem are different because the second project has more UM and the software is 
more maintainable. Applying RE generates the following EE < RE makes the system 
more maintainable by reducing the impact of changes and the risk of incorrect 
predictions; increases software quality by reducing maintenance requests along with 
MU; reduces Effort and its prediction risks making the maintenance process more 
stable and assuring that costs return in reasonable time spans>    

3   State of Art on EB and EF 

3.1   Aim and Representation of the EB 

The aim of the EB is to support enterprise competitiveness. Indeed, in order to win 
competition it is important to dispose of a well defined set of products able to satisfy 



232 G. Visaggio 

customer needs. As so, the EB must contain product models and how their 
characteristics relate with the expectations of a specific market sector. It must also 
contain process models that continuously improve products and services included in 
the enterprise assets. Finally it must contain process and product quality models that 
allow evaluating the enterprise placement with respect to strategic goals. In this case 
the models must also specify improvement actions in case the measures collected are 
far from the expected values.  

 

 

Fig. 3. Experience Package 

Fig. 3 shows the representation of the contents of an Experience Package (EP) as 
known in the literature the author refers to [8]. It represents the process, product and 
quality models along with the details needed for adopting the package. This component 
may also contain training material for learning how to use the knowledge to apply. The 
second view covers the Process Control Model, i.e. models for how to evaluate the 
quality of process goals and performances before and after applying the Knowledge 
Package. The third view covers the empirical experience of how to use the Knowledge 
Package. The essential elements for building an Experience Package according to [8] 
are: the Goal Question Metrics paradigm for measuring and controlling quality; the 
Quality Improvement Paradigm (QIP) and the Experience Factory.   

3.2   Aim and Representation of the Experience Factory  

The EF represents a continuous cycle that allows learning from experience collected 
in the EB during project execution. The learning process starts from a quality control 
and assurance cycle. The first consists in collecting measures, according to specific 
quality models, evaluating their achievement with respect to the project in execution, 
and identifying improvement actions. The second consists in collecting information 
from executed projects and improving the EP in order to assure that their adoption 
reduces the gap between project goals and strategic enterprise ones. 

The control cycle relies on the Goal Question Metrics (GQM) paradigm, while the 
quality assurance one uses the Quality Improvement Paradigm (QIP). 

GQM is a paradigm for building goal oriented, and therefore flexible, quality 
models. It is a systematic approach for specializing goals according to specific project 
and organization needs, process or product models, quality values [24]. GQM  



 Knowledge Base and Experience Factory for Empowering Competitiveness 233 

produces operational results of quality model measurements in a systematic manner. 
In other words, a same combination of measurement values is associated to an 
interpretation that is independent from who carries it out and when it is carried out. 
The GQM schema is represented in Fig. 4.  

 

 

Fig. 4. GQM Model Representation 

 
Fig. 5. Quality Improvement Paradigm 

The Quality Improvement Paradigm is the underlying methodological framework 
for systematic improvement [8]. As such, it guides the activities and goals of the 
continuous improvement oriented organizations. QIP is essentially based on an 
appropriate characterization of the environment. The paradigm provides a context for 
goal definition and is essentially based on the systematic reuse of obtained 
experiences by packaging them in structured knowledge. The improvement process 
due to QIP is defined as an iterative process that repeatedly performs a sequence of 
basic activities. QIP includes two different cycles. One cycle can be seen as a step 
towards project related improvement (project level). Simultaneously, it is a step  
 



234 G. Visaggio 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Experience Factory Model 

Table 3. QIP Activities Description 

QIP Step Project Level Activities Strategic Level Activities 
Characterize Characterize Project and identify 

relevant models to be reused. 
Characterize organizations and 
identify future trends. 

Set Goals Define project goals in measurable 
terms and derive related metrics. 

Define improvement goals and add 
hypothesis in measurable terms. 

Choose Models Choose appropriate processes and 
develop project plan. 

Identify projects or pilots for 
investigating the hypothesis.  

Execute Perform project according to plan, 
collect data, and provide on line 
feedback for project guidance. 

Perform projects or pilots and collect 
data. 

Analyze Analyze project and collect data and 
suggest improvements. 

Analyze project and pilots and 
evaluation hypotheses. 

Package Package analysis results into 
improved reusable models. 

Package experiences for use in future 
projects. 

 
towards long-term learning and improvement in an organization (strategic level). The 
QIP process is summarized in Fig. 4. The project level improvement process is 
integrated into the strategic-level improvement process, because achieving a long 
term improvement goal is typically done by means of improvement in multiple 
projects or pilot studies. 

During the last 25 years, the topic of knowledge transferring, reuse and storing has 
largely been discussed in literature. In 1989, evolving research previously conducted 
by Rombach [8], was extended by Basili with the Experience Factory (EF) [23]. The 
EF concept was developed in research and industrial context and refined 
(http://www.esernet.org), surveyed [17], taught [19], specialized to different domains  
 

  

  

Knowledge- - 
Experience  

Base  

Support  

Analyze  

  
Execute 

Process 
  

Collect Data   

Execute   

  

Choose 
Proc ess   

Characterize   

Set Goals   

Plan   

  

Generalize   

Formalize  

Tailor   

Package   

 

Product, lessons learned, data,.. 
  

Data, Informations, Knowledge, 
Experience

 

Selected KEP, Competences
 

  

KEP for improvement, Competences
 

Data or Quality Indicators
 



 Knowledge Base and Experience Factory for Empowering Competitiveness 235 

Table 4. EB characterization 

Name Organization Goal Contents Users 

CeBase National Science 
Foundation 
(NSF): Centre 
for Empirically 
Based Software 
Engineering 

Collect empirical 
models in order to 
provide validated 
guidelines for 
selecting techniques 
and models, for 
research, and for 
supporting software 
engineering 
education. 

A variety of empirical 
data on topics such as 
COTS or reading 
techniques:  
- FAQs 
- Lessons learned 
- publications/ 

papers 

Empirical 
researchers 

Acquisition 
Best Practices 
Clearinghouse 

US Department 
of Defence 
(DoD) 

To provide a 
centralized repository 
of validated, 
actionable practice 
information that have 
been approved and 
deemed useful 

descriptions/ 
characterization of 
practices : 
- applicable context 

descriptions; 
- cost/benefit 

information 
- validity 

information 
- empirical studies 

about the practices
- contacts to experts 

and discussion 
groups 

DoD 
workforce and 
government 
contractors 

VSEK German BMBF 
(Ministry for 
Education and 
Research) 
developed by a 
consortium of 
research 
organizations 

Exchange experience 
to engineer 
increasingly complex 
software via web-
portal, presentations 
and workshops, and 
project collaboration. 

Software Engineering 
topics: 
- Software 

Engineering Body 
of Knowledge 
SWEBOK;  

- application 
domains systems;  

- extensive glossary 
of terms 

Open 
Community 

ESERNET Fraunhofer IESE Information extracted 
from empirical 
studies and their 
packaging so they can 
be reused across 
company boundaries. 
Fraunhofer provides 
training and coaching 
people to support 
experience extraction 
via empirical studies. 
It thereby establishes 
a world-leading 
network of excellence 
in Experimental 
Software Engineering 
(ESE). 

Current topic areas of 
interest are: 
- Inspections and 

Testing 
- Object-oriented 

design and 
implementation 

- Component-based 
software 
engineering Agile 
Software 
Development 

European 
software 
intensive 
organizations. 

 



236 G. Visaggio 

Table 4. (Continued) 

The MIT 
Process 
Handbook 

MIT Online libraries for 
sharing and managing 
many kinds of 
knowledge about 
business. 

The area of interest is  
- Process model 
- Process activities  
- Process elements  
- Process Example 
- Process 

Applications 

Researcher and 
Business 
people 

HPCBugBase  Experimental 
Software 
Engineering 
Group (ESEG) at 
the University of 
Maryland 

Accumulate empirical 
knowledge about 
commonly occurring 
defects in HPC codes 
using an incremental 
approach. 

Patterns of:  
- functional bugs 
- performance 

bottlenecks 
- portability 

problems 
- bad practices 

Practitioners 
and 
programmers 

Software 
Program 
Managers 
Networks 

Assistant 
Secretary of the 
Navy 

To identify proven 
industry and 
government software 
best practices and 
convey them to 
managers of large-
scale software-
intensive acquisition 
programs.  

- Best practices 
- Best practices 

acquisition 
models 

Organization, 
managers and 
subject matter 
experts 
interested in 
improving the 
practice of 
managing 
software 
development 
and 
maintenance 
programs. 

 
 

[1], [2], [11], [12], [16], [22], [23], and implemented [17]. EF is a logical 
organization, which may have a separate physical implementation [23].  

The EF interacts with business processes as shown in Fig. 5. 

3.3   Interrelationship between QIP and EF 

The literature analysis and study of QIP and Experience Factory issues are strictly 
linked to practices and applications. Indeed, QIP and EF emerge as consequence to  
the collaboration of research and industrial communities (http://bpch.dau.mil; http:// 
ccs.mit.edu/ph/).  

With refer to Fig. 6, at a strategic level the cycle abstracts and packages empirical 
experience extracted during the project level cycle. The latter uses experience 
collected in the EB to eliminate or at least mitigate the shifting between the goals 
expected for each project and the ones carried out during project execution.  

More precisely, table 3 describes the activities carried out according to the QIP 
paradigm and how they fill the EF.  

3.4   EB and EF in Industrial Contexts  

Many EF and EB are developed in industrial contexts. An important reference for 
analysis is the website http://ccs.mit.edu/ph. It contains a list of developed and 



 Knowledge Base and Experience Factory for Empowering Competitiveness 237 

experimented EB. Table 4 lists the most common and used EB. The analysis of the 
EB listed in the table shows that EB contents, goals and stakeholders are very 
different. None of them is able to fulfil the motivations and the goals of this chapter, 
outlined in the introduction.  

As so, the author has defined the structure and the contents of an EB according to 
the aims of the chapter.  

4   Implementation of the EB in KEB 

The aim of the KEB is, as for the EB, to support enterprise competitiveness. KEB 
considers the fact that enterprises move towards knowledge economy and in doing so, 
they use the behavioural models described in the introduction. Consequently, the 
contents of the KEB are oriented to explicit the practices for adopting research results 
or innovation. Furthermore, the KEB adds all the useful components to the EB that 
can guide an organism in adopting the KEP. From this point on, KEP will generically 
identify either: a package only containing knowledge, or one containing knowledge 
and experience.  

The relations between KEB and GQM, QIP and EF are the same as described for EB.  

4.1   Types of KEP 

KEP can be classified by their content. In the following, a set of types are listed. They 
are not to be intended as a check list because experience can point out the need to 
define other KEP.  

Product. Descriptive information of tools, software tools of any abstraction level that 
can be used in one or more activities of a software process in order to improve them. 
The KEP must contain information that expresses how to specialize them in the 
various contexts, how and when to use or reuse them and the experiences collected as 
they are adopted in various projects.   

Process. Paradigms or models of process parts; details of procedures, techniques or 
algorithms to use in development processes to improve them. The experience 
collected in development projects following to their enactment. 

Relations. Relations among observable process or product characteristics and specific 
quality goals. They may also contain relations among competences (knowledge and 
abilities) and the enterprise capabilities to develop, and between the competences and 
the tests for evaluating them. Finally, they contain the empirical evidence of their 
validity collected during the projects they were used in.    

Management. Useful knowledge for managing co-located and distributed projects. In 
particular, the knowledge needed to monitor and mitigate project risks that use 
different process paradigms (i.e. product line development, component development 
including COTS, OSS development; service development). The experiences 
connected contain indicators for evaluating the efficacy of the application of 
knowledge in real projects.  



238 G. Visaggio 

Intelligence. Knowledge derived from the statistical analysis of collected data for 
various scopes. For example, logs of tools or software usage, semantic extraction of 
messages collected by tools assisting users on a product or service. Essentially, this 
type of package explicates stakeholder knowledge of a process or product. The 
experiences connected are needed to confirm or deny the same knowledge in different 
contexts and in different projects.   

It is the case to recall that a KEP can be a hybrid, in other words, its content can be 
made up of pieces belonging to different types of packages. In each case, the 
readability and comprehensibility of the KEP should be guaranteed. To comprehend a 
KEP in the meaning of the chapter, one must be able to understand the semantics of 
its contents and learn the practices to adopt it.   

4.2   Structure of the Contents of a KEP 

The presentation of information and of the relations that represent the knowledge and 
the indicators that express their application or knowledge exploitation can be done 
through Formal Reports or Narrative Stories [14]. The first are cheap to produce and 
minimize the ambiguities in the description of contents, but they are complex to 
comprehend. The second ones require relevant effort to be produced and can have 
many ambiguities, although they are easier to comprehend.  

The first innovation introduced by the author’s proposal consists in using a 
structured form of presentation using various types of expression, according to the 
contents to represent: graphs, algorithms, mechanisms to package experience (such as 
decision tables, dynamic prediction models), and text. The schema of the contents is 
represented in Fig. 7. 

 

Fig. 7. Hierarchical schema of the KEP 

The description is logically organized as a tree. The contents of each node must be 
adapted to a screen so it remains easy to read. The root node describes the problems 
the KEP refers to. It contains a reasoned index of the overall structure and explains 
the reader which part of the solution is expressed in each of the underlying nodes. In 
case of a complex problem, sub problems can be identified each focusing on a 



 Knowledge Base and Experience Factory for Empowering Competitiveness 239 

specific section of the KEP. The intermediate nodes describe a sub problem or an 
aspect of the solution they refer to and contain the index of the underlying levels of 
nodes. The intermediate nodes contain the information and the relations among them. 
If there are nodes relating to knowledge, extracted following to the acquisition or to 
the exploitation of knowledge in projects, the package is a KEP. The leaf nodes 
contain details of the knowledge or of the experience that the intermediate node refers 
to. In particular, they contain the information and the relations that make up the 
described knowledge. It is the case to point out that the index contained in the node 
allows the reader to select the parts he/she is interested in, or decide the sequence for 
reading the contents. This structure generally improves the readability of the KEP [6]. 

To assure readability it is advisable that a node does not depend from more than 
eight other ones. Also, the tree underlying a KEP should not have more than three 
levels. In case the description needs more levels of detail, the KEP should be divided 
into multiple KEP connected one to another. The division can be made according to 
sub-problems, acquisition experience, knowledge exploitation, or according to a 
combination of the previous elements. The choice is left to the author of the KEP.    

4.3   Contents of a KEP 

The second innovation of the author concerns the KEP content [6]. A KEP must 
contain problems one intends answering. As so, the information derives from research 
results or previous projects together with the relations that are able to provide an 
answer to the problem. 

The specific contents of knowledge can be left to literature and to other conventional 
sources, while the content of the KEP must pay attention to expressing the relations 
between research results and extracted knowledge used to answer the problem. 
Furthermore, the KEP must express how the knowledge is transformed in practice, i.e. 
the processes and the activities that it must innovate and how it should be applied to 
provide an efficacious answer to the problems. In order to promote the reuse of a KEP 
its specific contents should indicate the knowledge that users should have to adopt it. In 
this sense, a set of indications is reported. It can be improved as a KEP is adopted and 
new knowledge is developed.  

The requirements for acquiring and for efficiently using the research or innovation 
results proposed by the KEP include: enterprise capabilities, competences, economical 
and instrumental resources. It is also the case to point out the adoption risks of the 
KEP. Among these, the experts of the problem domain faced by the KEP should 
identify the barriers that they expect to overcome with the solutions. Without this 
correspondence they will most likely discard the KEP and not consider it relevant for 
the problem domain [5], [13], [20]. Improvement initiatives should be enacted for each 
risk so that users become confident in overcoming possible barriers in adopting the 
KEP and are sure to achieve the expected goals [5], [20]. Another aspect to point out is 
the plan for adopting the experience package. It must point out the activities, times, 
resources and the competences needed. The plan should provide all the information for 
evaluating adoption costs. In order to make a precise cost-benefit analysis the impact 
on processes and products connected to the involved knowledge should be pointed out. 
The description of the impact should possibly be formal, or at least rigorous to allow 
for a cost-benefit analysis of the adoption and exploitation of the knowledge in the 



240 G. Visaggio 

KEP. All stakeholders should participate to this process to favour KEP adoption. Also, 
to induce this participation all the values that adoption generates should be pointed out 
and classified by each stakeholder [2], [14], [20].       

Among the experiences that have to be added to knowledge, it is important to 
consider the ones showing that the application of KEP is efficacious in one or more 
projects. GQM can be used to point out the goals that evaluate the efficacy of 
adoption in previous projects, monitor the adoption process, and describe the metrics 
model. The metrics model should evaluate each business aspect and therefore set 
perspectives of interest, from the stakeholders’ point of view. As so, it must 
quantitatively express the values for stakeholders. Furthermore, it must express the 
statistical indicators that show the validity of results achieved with the reuse of KEP. 
The indicators expected by the metrics model should be used to enforce and support 
the empirical validity of KEP reuse. In particular, they must point out the success or 
failure of reusing the KEP with respect to the aspects of interest: goals predicted and 
achieved enactment of financial and economical returns, risk control and mitigation, 
appropriateness of improvement initiatives. KEP should be continuously improved, as 
so the QIP paradigm can be used.     

The history of a KEP should be reported in order to point out the maturity of the 
package, track the evolutions and the motivations for change, along with the decisions 
made during each change. Decisions should be supported by empirical evidence, 
extracted after reusing KEP in projects. It must describe the initiatives carried out for 
improving KEP, the acquisition processes, the corresponding metrics model, and 
possible failures that arise during the adoption process. To better point out the history 
of the KEP its content can be divided into two sections: the current KEP and the 
history of its evolution with all the decisions adopted. The improvement must concern 
KEP components, described in the next section.  

The content of the KEP must be adaptable to various contexts [5], [8], [20]. As so, 
its presentation must specify how it can be tailored to each context. In detail, the 
author of the KEP should describe an invariant and variant part of the acquisition 
process that describes the portability, scalability and usability in various contexts.  

If a KEP is complex, its acquisition is incremental [20]. For this reason, in case of 
a complex KEP (i.e. with a long acquisition process, with high costs, a high number 
of risks and expensive improvement actions) the author should break it down into 
simpler KEP connected one to another that can be acquired by following a specific 
sequence.  

4.4   Components of the KEP 

The components of a KEP aim, in the author’s proposal, to quickly improve 
comprehension of the KEP. The rapidity of acquiring a KEP in research or production 
processes is favoured by tools that automate repetitive process acquisition activities 
[3], [5]. So, it is the case to adopt tools that support KEP reuse and training courses 
that speed up learning. Furthermore, it is important to include competence producers 
that are able to support researchers and practitioners in acquiring and exploiting a 
KEP. The projects that have adopted a KEP should also be described and contain the 
context, the specializations carried out on the KEP to tailor it to the context, the 
values of the measures carried out to monitor the project. These can be used to verify  
 



 Knowledge Base and Experience Factory for Empowering Competitiveness 241 

  

  

 

 

Fig. 8. Knowledge-Experience Package 

the efficacy of the KEP according to the metric model described in the KEP and to 
collect other observations that may be useful for improving the KEP in any of its 
components.  

The details of the project may not be available, for privacy restrictions of the 
organism. In each case, it is important to know the characteristics of the investigation 
that has been carried out with the project details and the results used for proving the 
cause-effect relation between the application of the KEP and the values expressed in 
the indicators that characterize the KEP [5], [20]. Such information makes up the 
contents of the evidences component.    

In projects and in evidences, the data must be controlled to increase the confidence 
level for potential users of the KEP [20]. As so, the contents of the two components 
should describe the process and the instruments for controlling data and the result of 
their application during process execution. Project descriptions should also refer to 
tools and resources used during their execution. The relation between competences, 
tools, projects and evidences assures the appropriateness of tools and of available 
competences for the KEP. Given the incremental adoption of KEP, the time needed to 
complete this process tends to increase [20]. To mitigate the risk of resources 
volatility when adopting a KEP, which increases as the process time increases, it is 
advisable to have a consistent number of knowledge suppliers in the competences 
component.  

A good comprehension of a KEP favours the consent among stakeholders in terms of 
its application [20]. This leads to enriching a KEP with instructive e-learning courses 



242 G. Visaggio 

that supply seminars and lessons on the KEP, and training e-learning for details on the 
acquisition or exploitation process. To reuse the KEP, the user must be sure of the 
available resources [5]. Resources in the competences component should be certified to 
prove their appropriateness. Also, the available competences within the same organism, 
or formed and trained through e-learning must be evaluated according to their 
appropriateness. To satisfy such need, the e-learning packages should be complete with 
evaluation tests for each of the components or abilities. Specific attention is placed 
during monitoring of the KEP for what concerns the efficacy of the learning units 
included in e-learning and of the relative evaluation tests. Indeed, the human resources 
become critical for what concerns adoption and management of KEP.  

With refer to the EP schema (Fig. 3), the KEP proposed in this chapter can be 
represented as in Fig. 8. It points out that the process and control model is substituted 
by the Art&Practices (AP) component to point out that its content can express only 
research results (Art) or both, the components and the process models (Practices). 
Furthermore, other components have been pointed out by the structure of the KEP 
presented in this chapter. 

4.5   Resources of KEP 

As mentioned, the content of a KEP is oriented towards the practices for its adoption 
in business processes, as so it should be supported by documentation that describes 
the scientific and technological knowledge domain from where the practices derive 
[13], [20].  

In spite of the interest towards rigour of each author, a KEP can contain ambiguities 
and incomplete parts that a user may want to clear. It is therefore important to have 
contacts with KEP knowledge suppliers.    

4.6   Metadata 

In a public or private KEB the number of collected KEP tend to increase. As so, the 
KEB should be supported by search tools for quickly searching candidate solutions 
and to evaluate its appropriateness. In particular, researchers must find all the 
available research results in the KEB that can favour achieving expected goals [20]. 
Practitioners must find the available solutions to give a consistent and convincing 
solution to the problems that they face in projects [14].     

Practitioners that do not find available KEP, tend to face problems that arise during 
project execution according to their own experience. Such experience is most likely 
tacit and therefore costly to apply and scarce in terms of quality. Novice practitioners 
are more conformant to the contents of a KEP. Otherwise they are disoriented, do not 
assure a good quality level, and end up making many attempts before reaching a 
satisfactory goal [14].  

To facilitate the search of KEP and KEB, metadata are used. The author’s proposal 
consists in using two sets of metadata. The first set answers the question: does the 
KEB provide at least a solution that can be used for a specific problem? This set 
contains: the type of KEP, the knowledge domain area that for a software engineer 
can be: techniques, methods, processes, quality models, empirical validation, 
keywords, problems that a KEP can answer. The second set answers the question: 



 Knowledge Base and Experience Factory for Empowering Competitiveness 243 

among the available KEB, which have the most appropriate contents? This second set 
of metadata contains a synthetic description of contents like requirements, risks, plan, 
balance, value and history.  

5   PROMETHEUS 

Practices pROcess and Methods Evolution Through Experience Unfolded Systematically 
(PROMETHEUS) is a platform developed in the Software Engineering Research 
LABoratory (SERLAB) of the University of Bari. It is made up of a framework that 
specializes the KEB with the components and the relations between components, 
adaptable to the needs of the organization using the platform. As so, it can assume 
different configurations.  

PROMETHEUS has been conceived as a public platform because its aim is to 
support knowledge transfer among all the organisms that can contribute to accumulate 
transferable knowledge within business process as innovation, and accumulate 
experience that increases the confidence of the efficacy of available knowledge. 
Nevertheless, PROMETHEUS limits the access of deposited knowledge. Indeed, a 
public or private organization, user of PROMETHEUS, can make part of its KEP 
public and restrict access to another part of it.  

In the following the platform with all the components and relations described in the 
chapter is outlined. The KEB is made up of different sections, one for each 
component of the KEP. The decomposition in sections of the KEB allows incremental 
publishing of a KEP and eases its consultation. The KEB schema is reported in Fig. 9. 
All the components have contents structured as a tree (Fig. 7) to express knowledge. 
The metadata described previously are those associated to the AP component which is 
the main one of the KEP. The other components have metadata that answer the same 
questions, but their attributes are generally different. The relations between the KEB 
components represent all the paths that a user can follow in the platform. For 
example: a user can search for a Knowledge Experience Content and after reading it 
he/she may want to know about other tools cited in the contents and/or the 
competences that can be used as support to KEP adoption.  

Each section of the KEP can be populated independently from the others. So the 
KEB can be enriched incrementally. For example, a practitioner may introduce his 
profile in CM though he is not the author of a KEP, but if he has the competences for 
adopting a KEP in a business process he can be connected to it. Also, if he has 
certified competences in a set of projects described in PR its profile can be connected 
to these projects. Tools can also be presented in TO as support to the adoption of a 
KEP. Evidences are described in EV and show the positive effects that arise in the 
project due to its use.         

The consultation interface of each section contains connections to resources and to 
relations of other components of the KEP. Through the e-learning link, seminars, 
courses, and or details can be consulted. The Relations connect the KEP section to 
analogous sections of other KEP that are in some way connected with the one being 
consulted. This is particularly interesting in that the author has divided the KEP to 
make it less complex. The Attachments contain papers, books, reports or other forms 
of conventional sources that detail the motivations of the KEP with respect to a  
 



244 G. Visaggio 

 

Fig. 9. Schema of Prometheus Art and Practices Component 

 

Fig. 10. Example of content for AP 

specific section. The Help Supply communicates with the authors of a KEP to ask for 
clarifications or make observations on the KEP; or with the administrators of 
PROMETHEUS to make observations, claims and other types of communication 
concerning usability and the level of satisfaction of the platform. The left side refers 
to a tree that lists all the other sections of the KEP that is being consulted.  



 Knowledge Base and Experience Factory for Empowering Competitiveness 245 

The Art and Practices Component (AP) is the central one. An example of its 
content is shown in Fig. 10; it is possible to note a root node and the pointers to 
intermediate nodes. Fig. 11 shows the metadata related to the KEP which are the ones 
expressed in the main component, AP.   

 

 
 

Fig. 11. AP Attributes 

5.1   Project Component  

Project Components contain all the information useful for Project characterization: 
Project description and Project contest description; Project used resources; Project 
results; Events occurred during the project execution.  

Many factors characterize the contexts. A tentative list for software engineering is 
the following: 

- human factors: number of people, level of competence with refer to one 
or more standards, propensity towards group work, integration of groups 
in projects, experience on problems that arise during projects, 
experience on process resources, techniques and tools to use; 

- problem characterization: application domain, novelty with respect to 
the state of art, problem restrictions 

- product characterization: development and exploitation machines, 
available time and budget, existing software.  

Each project should include the metrics model used for monitoring and therefore 
the values collected by the measures. Of particular interest are the economical 
indexes: expected cost of the planned work; actual costs of the work carried out, 
predicted cost of the work carried out. 



246 G. Visaggio 

A project may contain the detailed data if the organization does not consider it 
critical. The organism providing the data can decide to make it available to the 
platform but allow access only to those having specific access credentials. Detailed 
data in the platform can be used to extract empirical experiences different from the 
collected ones, and therefore represent an important source for producing information. 
Detailed data is accessible through the Attachments button. 

The metadata of this component are: Brief Description, a brief project abstract that  
contain the project aim; Project Keywords, key words summarizing the Project; 
Project Domain; thematic area in which the project experience can be located and 
applied; Starting Data, expected and actual start date; Ending Data, expected and 
actual project ending data; Applied Competence, Competences applied during the 
project execution; Project Effort,  Total number of man/hours expected and used 
during project execution for each applied Competence, the expected and actual risks.  

 

 

Fig. 12. Project Component 

5.2   Tool Component 

This component contains a short description of the tool, and the knowledge that can 
convince possible users to adopt it. Consequently, as for AP, it is important to 
describe the problems that the tool allows to overcome and answer and which 
problems it is appropriate for. The competences needed should be outlined, along 
with the adoption risks and mitigation initiatives. To speed up adoption, stakeholders 
should be involved. Finally, the tool maturity should be pointed out explicating the 



 Knowledge Base and Experience Factory for Empowering Competitiveness 247 

number of versions released, the motivations that have led to change version and the 
changes carried out. Training courses should also be planned. 

The metadata are: short description, technical domain area covered by the tool, 
keywords, date of first release, adoption requirements; competences and adoption 
risks, plan for adoption, classification values for type of stakeholder, number of 
versions and history.  

 

Fig. 13. Tool Component 

5.3   Evidence of Components 

The EV contains the description of all the empirical investigations that validate the 
cause-effect relation between research results the innovations proposed and the 
answers to the problems. In particular this component should describe the data used, 
the controls carried out on them to assure their accuracy and the mechanisms needed 
to carry them out, the experimental design, the statistical analysis and the results 
obtained.  

In some cases it may be necessary to produce material to prepare the experimental 
subjects for the investigation or the instrumentation to use during the investigation 
itself. In this case the instrumentation can be stored in a repository and be accessible 
via the attachments button. Some times the process can also be supported by training. 
The EV should express the empirical evidences of all the changes carried out in the 
KEP and in all its components.  

The description of the investigation should be supported by details able to convince 
the reader of their accuracy and allow for replications. It is obvious that in both cases 
the PROMETHEUS community expects that these replications be registered in the 



248 G. Visaggio 

platform to enforce evidence. A possible guide for outlining a replicable experimental 
investigation is [7]. 

The contents of EV are closely related to PR and AP Components. The metadata 
are: Brief Evidence Description, brief abstract synthesizing the Evidence Content; 
Evidence Kind, Empirical evidence, Industrial context. 

 

 

Fig. 14. Evidence Component 

5.4   Competence Component  

The Competence Component (CM) collects people or organizations with competences 
in the first case, and capabilities in the second that support the adoption of a KEP or 
of a Tool. Each subject referring to this component is characterized by a description 
of the combination of knowledge, skills and behaviours that are part of the 
professional assets. In CM a subject can be explicitly referred to or use a fictitious 
name according to his preferences.  

Each subject has a portfolio of experience that certifies his professional profile. 
Often it includes projects, which should be described in the PR component as well. In 
case it is not possible, a synthesis of the project can be provided in CM. Details like 
application domain, total hrs implied in the project, professional profiles necessary 
and included in CM.  

The e-learning connected to this component allows for details on the components, 
and skills, along with tests for each knowledge item and skill. This is important for 
validating competences that do not have any other type of certification. In the 
continuous improvement plan for a KEB the contents of the courses and of tests are 
improved. The improvement is enacted each time a competence prepared with the 
available course or certified with the available tests, ends up not being perfectly 
adequate to the projects it is used in.  

The metadata for this competence are made up by the list of professional profiles 
according to the standards used. PROMETHEUS provides the following syllabus for 
defining competences: EUCIP (EUropean Certification of Informatics Professionals 



 Knowledge Base and Experience Factory for Empowering Competitiveness 249 

http://www.cepis.org), SFIA (Skills For the Information Age http://www.sfia.org.uk), 
CIGREF (Nomenclature of ICT Job Profiles http://www.cigref.fr), AITTS (Advanced 
IT Training System http://www.kibnet.org).  

The curriculum vitae and/or other certification of competences that a person wants 
to provide can be consulted through the attachments button.  

 

 

Fig. 15. Competence Component 

6   Guidelines for Production 

6.1   Production and Publication 

First of all the structure of the KEP allows to continuously improve PROMETHEUS. 
Indeed, if all the community surrounding the platform uses the same standard for 
contents, a single model can be used to evaluate if they satisfy all the KEP.  

The contents of a KEP require relevant effort to be produced and often a long time 
to be completed. The effort for production is due to the high amount of knowledge 
that must be formalized in the KEP. The production time results to be long because 
experience must be collected as knowledge is applied. To mitigate the first problem, a 
KEP can be produced incrementally. When part of the knowledge is available for AP, 
a first version of KEP can be published on the platform. As so it can evolve in time 
and lead to further versions. The other components of the KEP can be produced in 
other moments. It is recommended that the production of other parts of KEP be 
planned so that interested people know when they will be available. The components 
of the KEP may also be planned according to the requests of users. This is indeed one 
of the secondary effects of an open community, in that it promotes the production of 
KEP parts according to the interest or the need of a specific period.  

For what concerns the empirical evidence of the experience of KEP, it can be 
collected as the KEP is adopted in executed projects in various contexts. The 



250 G. Visaggio 

collection of experiences is clearly another effect of the community that relies on 
PROMETHEUS and of the cooperation that is enacted among its members.  

The empirical investigation that produced evidence related to a KEP should be 
rigorously described so that it is clearly comparable to all the other investigations carried 
out with the same KEP. Moreover, they must make up a family of experiments [9].  

In case of a production project, the essential data should be extracted from all the 
available data to describe the empirical investigation and express the evidences 
supporting the KEP. 

It should be clear to the author of a KEP that a package published with partial 
contents restricts the range of possible stakeholders. Indeed, a package that only 
contains knowledge can be interesting for those researchers that intend applying Open 
Innovation to speed up their research. A KEP that only has a controlled experiment 
carried out on students as experience can be interesting for researchers who may want 
to replicate the experiment. In this case, the investigations must be described so they 
can be replicated and increase the knowledge and experience collected. Likewise, a 
KEP with low experience of application will be considered by an enterprise if it 
provides answers to problems that represent a higher risk than those related to the 
adoption of the package itself.  

6.2   Technique for Producing a New KEP 

In order to produce a new AP the author must synthesize large amounts of information 
and knowledge. The author of the KEP must find the most accredited information and 
knowledge from other sources. So, the first task is to identify the sources to consult. A 
possible set of sources for a software engineer can be: IEEExplore, ACM Digital 
Library, Google Scholar (http://scholar.google.com), Citeseer Library (http://citeseerx. 
ist.psu.edu/), Inspec (http://www.theiet.org/publishing/), Science Direct (www. 
sciencedirect.com), EI Compendex (www.engineeringvillage2.org/Controller/Servlet/ 
AthensService/). In case of industrial knowledge sources of implicit or explicit 
knowledge can be consulted such as: developers, market analysts, salesmen, support, 
reports, users, customers.  

Literature can be synthesized through Systematic Literature Review [21]. It is 
made up of three main phases: Planning, Conducting and Documenting. During the 
planning phase, the motivation of the study is pointed out, along with the strategy, and 
research questions related to the problems that a KEP intends to answer. The protocol 
is described and it is then verified and validated. The sources used for extracting the 
literature are then subject to quality assurance criteria which allows to select and filter 
the documents. When conducting the review, information is extracted according to the 
data extraction tables defined in the protocol and the answers to the research questions 
are formalized. During the documentation phase, the AP component is produced.  

During the synthesis carried out to produce AP, the author identifies if there are 
empirical evidences on the application of the knowledge being extracted. They 
produce the EV component. The same can be said for training material that produces 
e-learning resources of one or more components.  

The synthesis process identifies possible knowledge suppliers of the KEP being 
produced. If appropriately authorized by the knowledge suppliers, the author could 
produce part of the CM component.  



 Knowledge Base and Experience Factory for Empowering Competitiveness 251 

6.3   Identification Expressions 

The nodes underlying the displayed node in a KEP component are indicated as links 
within the package. Internal links are distinguished from links to other packages with 
the following standard: [Name of Link]-[Type of component]. [Name of Link] is 
chosen by the author of the package and identifies the element it points to. [Type of 
Component] relates to the component the link refers to. So: [Type of component] є 
{Art&Practices, Learning, Tool, Evidence, Project, Competence}. 

6.4   Verification and Validation of Packages 

The author of the KEP is in charge of its verification. Currently, the check list used 
for verification is the following:  

I. the names of the components must not contain synonyms; 
II. all the links of a node must be reachable; 
III. no loop links must be defined; 
IV. contents of the components are traceable with the knowledge contained in 

the component according to the guidelines of the PROMETHEUS platform.  

It can me improved with experience as KEP are produced and improved. Validation 
is carried out mainly with the use and application of KEP on behalf of users. More so, 
the validation will be carried out in different moments than when the KEP is published 
and will be more accurate as the KEP is applied. The users will validate the KEP and 
communicate their satisfaction/dissatisfaction and their motivations through the Help 
Supply.  

6.5   Evolution of KEP 

During verification and validation of KEP one or more elements concerning completeness, 
correctness, ambiguity of KEP may be pointed out. In this case the package is subject to 
corrective changes. These changes do not have to be motivated.  

Thanks to the application of QIP in the EF, failures in the indicators characterizing 
the KEP can be pointed out along with failures in any of the KEP components. In this 
case perfective changes are carried out. They require explicating decisions that relate 
to the changes. KP must contain a new version of the updated contents and a new 
element of its history.  

By interacting with users, the author of a KEP can receive suggestions for changes 
that improve the comprehension and attractiveness of a KEP. In this case, adaptive 
changes arise. As for the previous ones, they must be motivated, and decisions for 
changes must be described and registered in a new history element of the KEP-  

The set of decisions and versions prove the maturity of the package.  

6.6   Cooperation for Development  

Production organizations provide knowledge to a KEB concerning: models (resources, 
quality, product and process), product or process components and data that can be used 
to extract experience from the application of knowledge.  



252 G. Visaggio 

Knowledge and experience are extracted from the KEB to support projects in 
execution or planned. They transfer the innovations contained in the KEP to business 
processes and collect further experiences that enrich the KEB. 

The research organizations or single researchers internal or external to the 
organization provide research results even without the experience component. They 
produce technological innovation from research results collected by different sources. 
This is a way to confirm or deny the knowledge contained in the KEP through various 
types of empirical investigations.  

The organisms that have validated capabilities through projects they have been 
involved in, can explicit them in the CM component. The same information can be 
attributed to the KEB on behalf of single persons that have competences explicable in 
CM and that can be validated in PR. If parts of these competences are also useful for 
adopting a KEP, they can be related to them. The organisms looking for specialised 
competences, for a project or the adoption of a KEP, can find the available ones in the 
KEB with the requested certification. When the competences are included in other 
projects by other organisms that have chosen them, their certification is enforced.  

The training and research organisms provide training and education material along 
with tests for evaluating the useful competences for adopting the KEP and the 
decision models used to plan the training courses and improvement initiatives for 
overcoming competence gaps. The organisms using competences that have been 
prepared and validated through e-learning and tests can evaluate the appropriateness 
of the competences themselves.  

7   Values of PROMETHEUS 

To attract subjects that can make up one or more stakeholder communities of 
PROMETHEUS it is the case to list the benefits that being part of the community 
provides to stakeholders. The following is a tentative list. Some of the values listed are 
typical of knowledge bases and others are specific for PROMETHEUS for the services 
that distinguish this platform from the concurrent ones.  

7.1   Physical Subjects 

The physical subjects are knowledge workers external to the organizations. They can be 
practitioners or researchers according to the scope of their work: carry out productive 
goals or create new knowledge or diffuse technological innovation. They can use 
PROMETHEUS to collect knowledge or available practices and can provide experience 
to the platform and contribute to its improvement. Furthermore, they can provide their 
time and competences to other stakeholders. In this case PROMETHEUS represents a 
marketplace for them extended to the entire globe.  

A knowledge supplier has economical returns not from his knowledge but from the 
application of his knowledge to the production goals. Furthermore, unexpressed 
knowledge is lost due to the volatility of tacit knowledge. As so, it is important for a 
knowledge supplier to explicit the practices for its application. Explicated knowledge 
that is published in PROMETHEUS increases the reputation of suppliers, and 



 Knowledge Base and Experience Factory for Empowering Competitiveness 253 

therefore the chance of being selected to be included in other projects by other 
stakeholders.  

The subjects in PROMETHEUS can certify their competences through projects 
they have been part of and through the KEP they produce and publish. Furthermore, 
they can increase their reputation by being part of the online support for stakeholders 
of PROMETHEUS. This interaction allows subjects to communicate with others by 
exchanging information, knowledge and experiences [14].  

The importance of rigorously defining KEP contents, used in PROMETHEUS, 
allows for standard contents and therefore improves KEP comprehension. This eases 
acquisition and minimizes the need for tailoring the KEP. To collect evidence on this 
statement, a first experiment has been carried out to show how a KEP is a more 
efficient and effective means than conventional sources for transferring knowledge 
and practices for application. For space reasons, this experiment has not been 
described in this chapter but it can be consulted in [4].      

7.2   Organizations 

The organizations are a structured set of knowledge workers. They are interested in 
enforcing the services and intensifying the relation and cooperation between subjects. 
Particular attention is given to relations and cooperation based on the use of 
PROMETHEUS and consists in exchanging knowledge between subjects of the 
organization. According to the PROMETHEUS perspective, the interacting organizations 
act as a single organism. Productive organizations can be distinguished from research 
ones. The first put particular attention to increase business, the second to increase 
knowledge by innovating and transferring it to business processes.   

The possibility of using and specializing a KEB for a specific context of the user 
organizations preserves their identity in spite of the collaboration with a community 
based on a KEB [5]. 

The knowledge that makes up the KEP represents problems from different 
perspectives for a same package. Furthermore due to the structure of the model, 
described in this chapter, they are divided and located in the various components of 
the KEP. The structure of the contents allows the reader to define a reading navigation 
path according to his level of knowledge and experience.  

The user organisms find research results in the KEB that can be used to rapidly 
reach the goals or to answer problems arisen during the innovation process. The KEP 
also contains the adoption process, the risks presented from the process and the ways 
for overcoming them. All this allows the adopting organism to have an important 
benchmark that favours the adoption on behalf of the knowledge-workers internal to 
an organism, along with a rapid socialization of the KEP which produces new 
knowledge and innovates business processes.   

The EF allows collecting data from executed projects and transforming them in 
empirical evidence for validating the KEP. This analysis continuously improves the 
KEP in all its components with the knowledge acquired during job learning which 
gives more confidence in using the KEP on behalf of interested organisms.  

KEP explicit the knowledge that is tacitly collected during work and that tend to 
remain in the mind of the project manager or expressed in various documents 
distributed within the organism. As so it is difficult to localize. If the contents of a 



254 G. Visaggio 

KEP refer to project management problems, the acquisition of knowledge improves 
project management.  

In managing cooperation, the socialization of a KEP can be used to harmonize the 
competences between the cooperating organisms. PROMETHEUS offers resources for 
empirically validating the capabilities of organisms that are candidates to cooperation. 
In case of turnover of human resources, PROMETHEUS identifies subjects with the 
competences searched. In delocalizing the production, PROMETHEUS offers resources 
for searching available organisms for empirical validation. Also, it provides resources 
for evaluating competences of the organisms for outsourcing or off shoring along with 
the training material.     

The organizations that are part of the PROMETHEUS community, and exchange 
knowledge, minimize the costs and production risks of knowledge and experience 
contained in the KEB. These minimizations represent a return which increases as the 
use of the KEP increases. In synthesis, PROMETHEUS promotes scale economy in 
the market within the community. 

The organization that makes knowledge and experience available defines all the 
circumstances for making them available, according to a personal business model. The 
acquiring organization has the research results immediately available with defined costs. 
As so, the market within the community that surrounds PROMETHEUS is able o create 
scale economy for its suppliers and provide it to the users of the KEP. 

8   Conclusions 

This chapter has proposed definitions of knowledge and experiences oriented towards 
the adoption of research results in business processes or research projects that use it as 
starting point to carry out new research goals. These definitions are based on 
problems that knowledge intends answering and on the empirical evidence that the 
research results want to provide to the problem. 

From these definitions and keeping in mind the lessons learnt, both known in 
literature and learnt by the author, a structure of Knowledge-Experience Package has 
been suggested. It allows or contributes to overcome the barriers that arise in adopting 
a new knowledge in business processes and in exchanging research results. The 
content of the KEP is complementary to knowledge which can be collected by 
conventional sources. Thanks to the structure the KEP has a high level of readability 
and comprehensibility although its production requires high effort. For this reason it is 
advisable for it to be incremental and defined in collaboration with other stakeholders 
of the KEP.   

The chapter also describes a platform, PROMETHEUS, which manages the KEB 
and collects KEP that are available to the community around PROMETHEUS. In the 
analysis of the values produced by PROMETHEUS for different types of stakeholders 
the contribution for supporting user organisms is important for moving towards 
knowledge economy. In particular, it is important for supporting behavioural models: 
diversity and competitive advantage based on high level technological competences; 
open innovation, distributed production, digital business ecosystems. 

Many of the assertions made in this chapter need empirical evidence to become 
universally accredited or recognized. As so, much work must still be done to produce 



 Knowledge Base and Experience Factory for Empowering Competitiveness 255 

such empirical evidence. This work can be seen as a proposal of the author who 
invites all researchers and practitioners and organisms interested in these topics to 
collaborate by joining the PROMETHEUS community. 

References 

1. Aamodt, A., Nygard, M.: Different roles and mutual dKEPendencies of data, information 
and knowledge - An AI perspective on their integration. Data and Knowledge 
Engineering 16, 191–222 (1995) 

2. Althoff, K., Decker, B., Hartkopf, S., Jedlitschka, A.: Experience Management: The 
Fraunhofer IESE Experience Factory. In: Perner, P. (ed.) Proc. Industrial Conference Data 
Mining, Institute for Computer Vision and applied Computer Sciences, Leipzig, Germany, 
July 24-25, 2001, pp. 12–29 (2001) 

3. Ardimento, P., Baldassarre, M.T., Caivano, D., Visaggio, G.: Innovation Diffusion through 
Empirical Studies. In: 17th International conference on Software Engineering and 
Knowledge Engineering (SEKE), Taipei China, pp. 701–706 (July 2005) 

4. Ardimento, P., Caivano, D., Cimitile, M., Visaggio, G.: Empirical Investigation of the 
Efficacy and Efficiency of tools for transferring software engineering knowledge. Journal 
of Information & Knowledge Management (submitted, 2007) 

5. Ardimento, P., Baldassarre, M.T., Caivano, D., Cimitile, M., Visaggio, G.: Controlled 
Experiment on Search Engine Knowledge Extraction Capabilities. In: 3rd International 
Conference on Software and Data Technologies (ICSOFT), 5-8 July, pp. 388–395. INSTIC 
Press, Porto Portugal (2008) 

6. Ardimento, P., Baldassarre, M.T., Cimitile, M., Visaggio, G.: Empirical Validation of 
Knowledge Packages as Facilitators for Knowledge Transfer. Knowledge and Information 
Systems, an International Journal (submitted) 

7. Baldassarre, M.T., Visaggio, G.: Report on Empirical Investigations. White paper, 
http://serlab.di.uniba.it/about_us_it/people_it/ 
TBaldassarre_it/ 

8. Basili, V.R., Caldiera, C., Rombach, H.D.: Experience Factory. In: Encyclopedia of 
Software Engineering, vol. 2, pp. 469–476. John Wiley &Sons, Chichester (1994) 

9. Basili, V., Shull, F., Lanubile, F.: Building Knowledge through Families of Experiments. 
IEEE Transactions on Software Engineering 25, 456–473 (1999) 

10. Basili, V.R., Caldiera, C., Rombach, H.D.: Experience Factory Concepts as a Set of 
Experiences Bases. In: 13th Conference on Software Engineering and Knowledge 
engineering (SEKE), Buenos Aires, Argentina, pp. 102–109 (June 2001) 

11. Chesbourg, H.: Open innovation. Harvard Business School Press, Harvard (2002) 
12. Chesbrough, H.: Open Platform Innovation: Creating Value from Internal and External 

Innovation. Intel. Technology Journal 7, 5–9 (2003) 
13. Reidar, C., Torgeir, D.: Software Experience Bases: A Consolidated Evaluation and Status 

Report. In: Bomarius, F., Oivo, M. (eds.) PROFES 2000. LNCS, vol. 1840, pp. 391–406. 
Springer, Heidelberg (2000) 

14. Desouza, K.C., Awazu, Y., Baloh, P.: Managing Knowledge in Global Software 
Development Efforts: Issues and Practices. IEEE Software 23, 30–37 (2006) 

15. Dini, P., Darking, M., Rathbone, N., Vidal, M., Hernandez, P., Ferronato, P., Briscoe, G., 
Hendryx, S.: The Digital Ecosystems Research Vision: 2010 and Beyond. Creative 
Commons, Stanford, California (2005), http://www.digital-ecosystems.org/ 
events/2005.05/de_position_paper_vf.pdf 



256 G. Visaggio 

16. Department of Trade and Industry (DTI), Competitive Futures: Building the Knowledge 
Driven Economy, DTI, London (1998) 

17. Economic and Social Research Council, Annual Report, 2004-2005 Published by The 
Stationery Office (TSO),  

  http://www.official-documents.gov.uk/document/hc0506/hc00/ 
 0092/0092.asp  

18. Kemp, R.G.M., Mosselman, M., Blees, J., Maas, J.: Barriers to Entry, EIM (Research 
report / EIM, Business & Policy Research H200301), p. 153 (2003) 

19. Foray, D.: The Economics of Knowledge. MIT, Cambridge (2006) 
20. Gorschek, T., Wohlin, C., Garre, P., Larsson, S.: A Model For Technology Transfer in 

Practice. IEEE Software 23, 88–95 (2006) 
21. Kitchenham, B.: Guidelines for Performing Systematic Literature Reviews in Software 

Engineering. EBSE Technical Report (2007) 
22. Reifer, D.J.: Is the Software Engineering State of the Practice Getting Closer to the State of 

the Art? IEEE Software 20, 78–83 (2003) 
23. Schneider, K., Schwinn, T.: Maturing Experience Base ConcKEPts at DaimlerChrysler. 

Software Process Improvement and Practice 6, 85–96 (2001) 
24. Solingen, R.V., Berghout, E.: The Goal/Question/Metric Method: a Practical Guide for 

Quality Improvement of Software Development. McGraw Hill, London (1999) 



Author Index

Bertolino, Antonia 106

Canfora, Gerardo 78

De Angelis, Guglielmo 106
Di Penta, Massimiliano 78

Frantzen, Lars 106

Inverardi, Paola 1

Juristo, Natalia 55

Kienle, Holger M. 32
Koschke, Rainer 140

Lanubile, Filippo 174

Mendes, Emilia 194
Müller, Hausi A. 32

Polini, Andrea 106

Stege, Ulrike 32

Tivoli, Massimo 1

Visaggio, Giuseppe 223


	Title Page
	Preface
	Table of Contents
	Software Requirements and Design
	The Future of Software: Adaptation and Dependability
	Introduction
	Softure Challenges: Setting the Context
	Adaptabilty: 3 Examples
	The Four Ws
	Synthesis: An Approach to Automatically Build Failure-Free Connectors for Component-Based Architectures
	Topological Evolution: Graph Grammars to Describe SoftwareArchitecture Styles
	Topological and Behavioral Evolution: ArchJava

	Requirements on the Modelling Notations to Support Adaptation and Dependability
	Softure:TheProcessView
	PLASTIC Services: An Instance of Softure
	The PLASTIC Development Environment

	Conclusions
	References

	Autonomic Computing Now You See It, Now You Don’t
	Introduction
	Continuous Evolution of Software Systems
	Design and Maintenance Issues of Feedback-Based Systems
	Autonomic Computing Systems
	Feedback Control for Autonomic Computing
	The Autonomic Element
	Autonomic Reference Architecture and Patterns
	Lessons Learned and Research Challenges
	Conclusions
	References

	Impact of Usability on Software Requirements and Design
	Introduction
	Usability Is Not Confined to UI
	Making the Relationship between Usability and Software Design Visible
	Usability as Functional Requirement
	Guidelines for Gathering Information about Functional Usability Features
	Evaluation
	Conclusions
	References


	Software Testing and Reverse Engineering
	Service-Oriented Architectures Testing: A Survey
	Introduction
	Testing Challenges
	Testing Perspectives
	TestingLevels
	Unit Testing
	Integration Testing
	Regression Testing
	Non-functional Testing
	Summary Table

	Improving Testability
	Summary
	References

	The PLASTIC Framework and Tools for Testing Service-Oriented Applications
	Introduction
	The PLASTIC Validation Framework
	Development-Time Testing
	Admission Testing
	Live Usage Verification

	Modelling Service Properties
	An Example Service Scenario
	Modeling Functional Behavior
	Modeling Extra-functional Behavior

	Off-Line Testing Tools
	\sc{Jambition}
	\sc{Puppet}
	Combined Functional and Extra-functional Testing Mode

	On-Line Testing Approaches
	The Audition Framework
	WS-{\sc Guard}
	WS-Guard Usage: Issues and Solutions

	Conclusions
	References

	Architecture Reconstruction
	Introduction
	Architectural Descriptions
	Views and Viewpoints
	Source, Target, and Hypothesis Views
	Viewpoints in Forward Engineering

	Architecture Reconstruction Process
	Reconstruction Design
	Reconstruction Execution

	Architecture Reconstruction Techniques
	Source Views
	Target Views

	Reconstructing Module Viewpoints
	Decomposition
	Class Hierarchies
	Interfaces
	Class Models
	Design Patterns
	Conformance
	Feature Location
	Use-Cases
	Configuration

	Summary and Future Research
	References


	Management
	Collaboration in Distributed Software Development
	Introduction
	Distributed Software Development
	Collaboration Tools and Environments
	Computer-Mediated Communication
	Media Switching in Distributed Requirements Engineering
	Conclusions
	References

	Web Cost Estimation and Productivity Benchmarking
	Introduction
	Effort Estimation Techniques
	Overview
	Expert Opinion
	Algorithmic Techniques
	Artificial Intelligence Techniques

	Sizing a Web Application
	Web Effort Estimation Case Study
	Web Productivity Measurement
	Web Productivity Measurement Case Study
	Conclusions
	References

	Knowledge Base and Experience Factory for Empowering Competitiveness
	Introduction
	Data, Information, Knowledge and Experience
	State of Art on EB and EF
	Aim and Representation of the EB
	Aim and Representation of the Experience Factory
	Interrelationship between QIP and EF
	EB and EF in Industrial Contexts

	Implementation of the EB in KEB
	Types of KEP
	Structure of the Contents of a KEP
	Contents of a KEP
	Components of the KEP
	Resources of KEP
	Metadata

	PROMETHEUS
	Project Component
	Tool Component
	Evidence of Components
	Competence Component

	Guidelines for Production
	Production and Publication
	Technique for Producing a New KEP
	Identification Expressions
	Verification and Validation of Packages
	Evolution of KEP
	Cooperation for Development

	Values of PROMETHEUS
	Physical Subjects
	Organizations

	Conclusions
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




