
Fast Synchronization in P Systems

Artiom Alhazov1, Maurice Margenstern2, and Sergey Verlan1,3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

str. Academiei 5, MD-2028, Chişinău, Moldova
artiom@math.md

2 Université Paul Verlaine - Metz, LITA, EA 3097, IUT de Metz
Ile du Saulcy, 57045 Metz Cédex, France

margens@univ-metz.fr
3 LACL, Département Informatique, Université Paris Est

61 av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Abstract. We consider the problem of synchronizing the activity of all
membranes of a P system. After pointing the connection with a similar
problem dealt with in the field of cellular automata, where the problem is
called the firing squad synchronization problem, FSSP for short, we pro-
vide two algorithms to solve this problem for P systems. One algorithm
is non-deterministic and works in 2h+3 steps, the other is deterministic
and works in 3h + 3 steps, where h is the height of the tree describing
the membrane structure.

1 Introduction

The synchronization problem can be formulated in general terms with a wide
scope of application. We consider a system constituted of explicitly identified
elements and we require that starting from an initial configuration where one
element is distinguished, after a finite time, all the elements which constitute
the system reach a common feature, which we call state, all at the same time
and the state was never reached before by any element.

This problem is well known for cellular automata, where it was intensively
studied under the name of the firing squad synchronization problem (FSSP): a
line of soldiers have to fire at the same time after the appropriate order of a
general who stands in one end of the line, see [2,5,4,9,10,11]. The first solution
of the problem was found by Goto, see [2]. It works on any cellular automaton
on the line with n cells in the minimal time, 2n−2 steps, and requiring several
thousands of states. A bit later, Minsky found his famous solution which works
in 3n, see [5], with a much smaller number of states, 13 states. Then, a race to
find a cellular automaton with the smallest number of states which synchronizes
in 3n started. See the above papers for references and for the best results; for
generalizations to the planar case, see [9] for results and references.

The synchronization problem appears in many different contexts, in particular
in biology. As P systems model the work of a living cell constituted of many

D. Corne et al. (Eds.): WMC9 2008, LNCS 5391, pp. 118–128, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Fast Synchronization in P Systems 119

micro-organisms, represented by its membranes, it is a natural question to raise
the same issue in this context. Take as an example the meiosis phenomenon,
which probably starts with a synchronizing process which initiates the division
process. Many studies have been dedicated to general synchronization principles
occurring during the cell cycle; although some results are still controversial, it is
widely recognized that these aspects might lead to an understanding of general
biological principles used to study the normal cell cycle, see [8].

We may translate FSSP in P systems terms as follows. Starting from the initial
configuration where all membranes, except the root, contain same objects, the
system must reach a configuration where all membranes contain a distinguished
symbol, F . Moreover, this symbol must appear in all membranes only during at
the synchronization time.

The synchronization problem as defined above was studied in [1] for two classes
of P systems: transitional P systems and P systems with priorities and polariza-
tions. In the first case, a non-deterministic solution to FSSP was presented and
for the second case a deterministic solution was found. These solutions need a
time 3h and 4n + 2h respectively, where n is the number of membranes of a P
system and h is the depth of the membrane tree.

In this article we significantly improve the previous results in the non-deter-
ministic case. In the deterministic case, another type of P system was considered
and this permitted to improve the parameters. The new algorithms synchronize
the corresponding P systems in 2h + 3 and 3h + 3 steps respectively.

2 Definitions

In the following we briefly recall the basic notions concerning P systems. For
more details we refer the reader to [6] and [12].

A transitional P system of degree n is a construct

Π = (O, μ, w1, . . . , wn, R1, . . . , Rn), where:

1. O is a finite alphabet of symbols called objects,
2. μ is a membrane structure consisting of n membranes labeled in a one-

to-one manner by 1, 2, . . . , n (the outermost membrane is called the skin
membrane),

3. wi ∈ O∗, for each 1 ≤ i ≤ n is a multiset of objects associated with the
region i (delimited by membrane i),

4. for each 1 ≤ i ≤ n, Ri is a finite set of rules associated with the region
i which have the following form u → v1, tar1; v2, tar2; . . . ; vm, tarm, where
u ∈ O+, vi ∈ O, and tari ∈ {in, out, here, in!}.

A transitional P system is defined as a computational device consisting of a
set of n hierarchically nested membranes that identify n distinct regions (the
membrane structure μ) where, to each region i, a multiset of objects wi and a
finite set of evolution rules Ri, 1 ≤ i ≤ n, are assigned.

An evolution rule u → v1, tar1; v2, tar2; . . . ; vm, tarm rewrites u by v1, . . . , vm

and moves each vj accordingly to the target tarj . If the tarj target is here, then

120 A. Alhazov, M. Margenstern, and S. Verlan

vj remains in membrane i. Target here can be omitted in the notation. If the
target tarj is out, then vj is sent to the parent membrane of i. If the target tarj

is in, then vj is sent to any inner membrane of i chosen non-deterministically.
If the target tarj is equal to in!, then vj is sent to all inner membranes of i (a
necessary number of copies is made).

A computation of the system is obtained by applying the rules in a non-
deterministic maximally parallel manner. Initially, each region i contains the
corresponding finite multiset wi. A computation is successful if starting from
the initial configuration it reaches a configuration where no rule can be applied.
With a successful computation a result can be associated, but in what follows
we are interested in the computation itself, not in any result of it.

A transitional P system with promoters and inhibitors is a system as defined
as in the previous definition, where the set of rules may contain rules of the form

u → v1, tar1; v2, tar2; . . . ; vm, tarm |P,¬Q,

where P ∈ O is the promoter, Q ∈ O is the inhibitor, tari ∈ {in, out, here, in!},
u ∈ O+ and vi ∈ O. If P and/or Q are absent, we shall omit them. The meaning
of promoter and inhibitor (if present in a rule) is that the rule is not applicable
unless the promoter object exists in the current membrane, while the rule is
applicable unless the inhibitor object is present in the current membrane.

We formulate the FSSP to P systems as follows:

Problem 1. For a class of P systems C find two multisets W , W ′ ∈ O∗, and
two sets of rules R, R′ such that for any P system Π ∈ C of degree n ≥ 2 having

w1 = W ′, R1 = R′, wi = W and Ri = R for all i ∈ {2, . . . , n}, assuming
that the skin membrane has the number 1

it holds

– If the skin membrane is not taken into account, then the initial configuration
of the system is stable (cannot evolve by itself).

– If the system halts, then all membranes contain the designated symbol F
which appears only at the last step of the computation.

3 The Non-deterministic Case

In this section we discuss a non-deterministic solution to the FSSP using tran-
sitional P systems. The main idea of such a synchronization is based on the fact
that if a signal is sent from the root to a leaf, then it will take at most 2h steps
to reach a leaf and return back to the root. In the meanwhile, the root may guess
the value of h and propagate it step by step down the tree. This takes also 2h
steps: h to guess the root, and h to end the propagation and synchronize. Hence,
if the signal sent to the leaf, having depth d ≤ h, returns at the same moment
that the root ended the propagation, then the root guessed the value d. Now, in
order to finish the construction it is sufficient to cut off cases when d < h.

Fast Synchronization in P Systems 121

In order to implement the above algorithm in transitional P systems we use
the following steps.

– Mark leaves and nodes (nodes by S̄ and leaves by S).
– From the root, send a copy of symbol a down. Any inner node must take one

a in order to pass to state S′. If some node is not passed to state S′ then
when the signal c will come inside, it will be transformed to #.

– Then end of the guess is marked by signal c. Symbols S in leaves are trans-
formed to S′′′ and those in inner nodes to S′′.

– In the meanwhile the height is computed with the help of a symbol C3. If
a smaller height d ≤ h is obtained at the root node, then either the symbol
C3 will arrive to the root node and it will contain some symbols b – then
the symbol # will be introduced at the root node, or the guessed value will
be d and then there will be an inner node with S̄ or a leaf with S (because
we have at most d letters a) which leads to the introduction of # in the
corresponding node.

Now let us present the system in details.
Let Π = (O, μ, w1, . . . , wn, R1, . . . , Rn) be the P system to be synchronized.

To solve the synchronization problem, we make the following assumptions on
the objects, the membranes, and the rules. We consider that μ is an arbitrary
membrane structure and

O = {S, S̄, S1, S2, S3, C1, C2, C3, S
′, S′′, S′′′, a, b, c, F, #}.

We also assume that w1 = {S1} and that all other membranes but the skin
one are empty. The sets of rules, R1, . . ., Rn are all equal and they are described
below.

Start:

S1 → S2; C2; S, in!; C1, in (1)

Propagation of S:

S → S̄; S, in! (2)

Root counter (guess):

S2 → S2; b; a, in! S2 → S3; c, in! (3)

Propagate a:

S̄a → S′ a → b; a, in! (4)

Propagate c:

cS′ → S′′; c, in! cSa → S′′′ (5)

122 A. Alhazov, M. Margenstern, and S. Verlan

Decrement:

S′′b → S′′ S′′′a → S′′′ (6)
S′′ → F S′′′ → F (7)
S3b → S3 (8)

Height computing:

C1 → C1, in C2 → C2, in (9)
C1C2 → C3 C2 → # (10)
C3 → C3, out (11)

Root firing:

C3S3 → F (12)

Traps:

cS̄ → # cS → # C3 → # (13)
aF → # bF → # # → # (14)

The system Π has the desired behavior. Indeed, let us consider the functioning
of this system.

Rule (1) produces objects S, C1, C2 and S2. Object S will propagate down
the tree structure by rule (2), leaving S̄ in all intermediate nodes and S in the
leaves. Objects C1 and C2 will be used to count the time corresponding to twice
the depth d of some elementary membrane by rules (9)-(11) (trying to guess the
maximal depth). Finally, object S2 will produce objects b in some multiplicity
by rules (3).

Together with objects b, objects a are produced by the first rule from (3),
and they propagate down the tree structure by (4), one copy being subtracted
at each level.

After the root finishes guessing the depth (second rule of (3)), object c prop-
agates down the tree structure by (5), producing objects S′′ at intermediate
nodes and objects S′′′ at leaves; recall that the root has object S3. These three
objects perform the countdown (and then the corresponding nodes fire) by rules
(6). As for the root, at firing by (12) it also checks that the timing matches twice
the depth of the node visited by C1 and C2. The rules (13)-(14) handle possible
cases of behavior of the system, not leading to the synchronization.

Now we present a more formal proof of the assertion above. We have the
following claims.

– The symbol C3 will appear at the root node at the time 2d+2, d ≤ h, where h
is the height of the membrane structure and d is the depth of the leaf visited
by C1. Indeed, by rules (9) symbols C1 and C2, initially created by rule (1),
go down until they reach a leaf. If they do not reach the same leaf, then the
symbol # is introduced by C2. The symbol C2 reaches the leaf (of depth d)
after d + 1 steps. After that C1 and C2 are transformed to the symbol C3 (1
step) which starts traveling up until it reaches the root node (d steps).

Fast Synchronization in P Systems 123

– All nodes inner nodes will be marked by S̄ and the leaves will be marked by
S. Indeed, rule (2) permits to implement this behavior.

– Let d + 2, 0 ≤ d ≤ h be the moment when the root stops the guess of the
tree height (the second rule from (3) has been applied). At this moment the
contents of w1 is S3b

d and c starts to be propagated. Now consider any node
x except the root. Then:

x is of depth i then symbol c will reach x at time d+ i+1 and the number of
letters a (respectively letters b) present at x if it is a leaf (respectively inner
node) is ad�i (respectively bd�(i+1)), where � denotes the positive subtrac-
tion.

The proof of this assertion may be done by induction. Initially, at step d+2,
symbol c is present in all nodes of depth 1. Let x be such a node. If x is a
leaf, then it received d copies of a. Otherwise, if x is an inner node, it must
contain d � 1 letters b (d letters a reached this node and all of them except
one were transformed to b). The induction step is trivial since the letter
c propagates each step down the tree and because the number of letters a
reaching a depth i is smaller by one than the number of a reaching the depth
i − 1.

– From the above assertion it is clear that all nodes at time 2d + 2 will reach
the configuration where there are no more letters b and a. Hence, all nodes,
including the root node, up to depth d will synchronize at time 2d + 3.

Now, in order to finish the proof it is sufficient to observe that if d �= h, then
either there will be a symbol S̄ in an inner node or the deepest leaf (having the
depth h) will not contain object a (because only d letters a will be propagated
down). Hence, when c will arrive at this node, it will be transformed to #.

Example 1. Consider a system Π having 7 membranes with the following mem-
brane structure:

1

2 3

4 5 6

7

�
�

�
�

�
�

�
�

Now consider the evolution of the system Π constructed as above. We
represent it in a table format where each cell indicates the contents of the cor-
responding membrane at the given time moment. Since the evolution is non-
deterministic, we consider firstly the correct evolution and after that we shall
discuss unsuccessful cases.

124 A. Alhazov, M. Margenstern, and S. Verlan

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S′a S S S̄C2 SC1

4 S2bbb Saaa S′ba Sa Sa S̄a SC1C2

5 S3bbb Saaac S′bbc Saa Saa S′a SC3

6 S3bb S′′′aa S′′bb Saac Saac S′bcC3 Sa

7 S3b S′′′a S′′bC3 S′′′a S′′′a S′′b Sac

8 S3C3 S′′′ S′′ S′′′ S′′′ S′′ S′′′

9 F F F F F F F

The system will fail in the following cases:

1. Signals C1 and C2 go to different membranes.
2. Some symbol S̄ is not transformed to S′ (or the deepest leaf does not contain

a letter a).
3. S3 appears in the root membrane after C3 appears in a leaf.
4. The branch chosen by C3 is not the longest (it has the depth d, d < h).

A possible evolution for the first unsuccessful case is represented in the table
below:

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b SaC2 S̄a S S SC1

3 S2bb Saa# S′a S S S̄ SC1

A possible evolution for the second unsuccessful case is represented in the
table below:

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S̄ba Sa Sa S̄aC2 SC1

4 S2bbb Saaa S̄bba Saa Saa S′a SC1C2

5 S3bbb Saaac S̄bbbc Saaa Saaa S′ab aSC3

6 S3bb S′′′aa #bbb Saaac Saaac S′bbcC3 Saa

Fast Synchronization in P Systems 125

A possible evolution for the third unsuccessful case is represented in the table
below:

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S′a S S S̄C2 SC1

4 S2bbb Saaa S′ba Sa Sa S̄a SC1C2

5 S2bbbb Saaaa S′bba Saa Saa S′a aSC3

6 S3bbbb Saaaac S′bbbc Saaa Saaa S′baC3 Sa

7 S3bbb S′′′aaa S′′bbbC3 Saaac Saaac S′bbc Saa

8 S3bbC3 S′′′aa S′′bb S′′′aa S′′′aa S′′bb Saac

9 S3b# S′′′a S′′b S′′a S′′′a S′′b S′′′a

A possible evolution for the fourth unsuccessful case is represented in the ta-
ble below:

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S SC1 S

3 S2bb Saa S′a S SC1C2 S̄ S

4 S2bbb Saaa S′ba Sa SaC3 S̄a S

5 S3bbb Saaac S′bbcC3 Saa Saa S′a S

6 S3bbC3 S′′′aa S′′bb Saac Saac S′bc Sa

7 S3b# S′′′a S′′bC3 S′′′a S′′′a S′′b Sac

4 The Deterministic Case

Consider now the deterministic case. We take the class of P systems with pro-
moters and inhibitors and solve Problem 1 for this class.

The idea of the algorithm is very simple. A symbol C2 is propagated down
to the leaves and at each step, being at a inner node, it sends back a signal C.
At the root a counter starts to compute the height of the tree and it stop if and
only if there are no more signals C. It is easy to compute that the last signal
C will arrive at time 2h − 1 (there are h inner nodes, and the last signal will
continue for h − 1 steps). At the same time the height is propagated down the
tree as in the non-deterministic case.

The P system Π = (O, μ, w1, . . . , wn, R1, . . . , Rn) for deterministic synchro-
nization is present below. We consider that μ is an arbitrary membrane structure.
The set of objects is O = {S1, S2, S3, S4, S, S̄, S′, S′′, S′′′, C1, C2, C, a, a′, b, F},

126 A. Alhazov, M. Margenstern, and S. Verlan

the initial contents of the skin is w1 = {S1}, the other membranes are empty.
The set of rules R1, . . . , Rn are identical, they are presented below.

Start:

S1 → S2; C′
2; S, in!; C1, in! (15)

Propagation of S:

S → S̄; S, in! (16)

Propagation of C (height computing signal):

C1 → C1, in! C2 → C; C2, in!; C, out (17)
C1C2 → ε C′

2 → C; C2, in! (18)
C → C, out (19)

Root counter:

S2 → S3 S3 → S′
3; b; a, in! |C (20)

C → ε |S3 S′
3 → S3 |C (21)

C → ε |S′
3

S′
3 → S4; a′, in! |¬C (22)

Propagation of a:

S̄a → S′ a → b; a, in! |S′ (23)

End propagate of a:

a′S′ → S′′; a′, in! a′Sa → S′′′ (24)

Decrement:

S′′b → S′′ S′′′a → S′′′ (25)
S′′ → F |¬b S′′′ → F |¬a (26)

Root decrement:

S4b → S4 S4 → F |¬b (27)

We now give a structural explanation of the system. Rule (15) produces four
objects. Similar to the system from the previous section, the propagation of
object S by (16) leads to marking the intermediate nodes by S̄ and the leaves by
S. While objects C1, C2 propagate down the tree structure and send a continuous
stream of objects C up to the root by (17)-(19), object S2 counts, producing by
rules (20)-(22) an object b every other step.

When the counting stops, there will be exactly h copies of object b in the root.
Similar to the construction from the previous section, objects a are produced
together with objects b by the second rule from (20). Objects a are propagated
down the structure and decremented by one at every level by (23).

After the counting stops in the root (the last rule from (22)), object a′ is
produced. It propagates down the tree structure by (24), leading to the appear-
ance of objects S′′ in the intermediate nodes and S′′′ in the leaves. These two

Fast Synchronization in P Systems 127

objects perform the countdown and the corresponding nodes fire by (25). The
root behaves in a similar way by (27).

The correctness of the construction can be argued as follows. It takes h + 1
steps for a symbol C2 to reach all leaves. All this time, symbols C are sent up
the tree. It takes further h−1 steps for all symbols C to reach the root node, and
one more step until symbols C disappear. Therefore, symbols b appear in the
root node every odd step from step 3 until step 2h+1, so h copies will be made.
Together with the production of bh in the root node, this number propagates
down the tree, being decremented by one at each level. For the depth i, the
number h−i is represented, during propagation, by the multiplicity of symbols a
(one additional copy of a is made) in the leaves and by the multiplicity of symbols
b in non-leaf nodes. After 2h + 2 steps, the root node starts the propagation of
the countdown (i.e., decrement of symbols a or b). For a node of depth i, it takes
i steps for the countdown signal (a′) to reach it, another h− i steps to eliminate
symbols a or b, so every node fires after 2h + 2 + i + (h − i) + 1 = 3h + 3 steps
after the synchronization has started.

Example 2. Consider a P system having the same membrane structure as the
system from Example 1. The evolution of the system is as follows:

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C
′
2 SC1 SC1

2 S3C SC1C2 S̄C2 SC1 SC1 SC1

3 S′
3bC Sa S̄aC SC1C2 SC1C2 S̄C2 SC1

4 S3bC Sa S′C S S S̄C SC1C2

5 S′
3bbC Saa S′aC S S S̄ S

6 S3bbC Saa S′b Sa Sa S̄a S

7 S′
3bbb Saaa S′ba Sa Sa S′ S

8 S4bbb a′Saaa a′S′bb Saa Saa S′a S

9 S4bb S′′′aa S′′bb a′Saa a′Saa a′S′b Sa

10 S4b S′′′a S′′b S′′′a S′′′a S′b a′Sa

11 S4 S′′′ S′′ S′′′ S′′′ S′ S′′′

12 F F F F F F F

5 Conclusions

In this article we presented two algorithms that synchronize two given classes
of P systems. The first one is non-deterministic and it synchronizes the class
of transitional P systems (with cooperative rules) in time 2h + 3, where h is
the depth of the membrane tree. The second algorithm is deterministic and it
synchronizes the class of P systems with promoters and inhibitors in time 3h+3.

128 A. Alhazov, M. Margenstern, and S. Verlan

It is worth to note that the first algorithm has the interesting property that
after 2h steps either the system synchronizes and the object F is introduced, or
an object # will be present in some membrane.

The results obtained in this article rely on a rather strong target indication,
in!, which sends an object to all inner membranes. Such a synchronization was
already considered in neural-like P systems where it corresponds to the target
go. It would be interesting to investigate what happens if this target is not used.
We conjecture that a synchronization would be impossible in this case.

The study of the synchronization algorithms for different classes of P sys-
tems is important as it permits to implement different synchronization strategies
which are important for such a parallel device as P systems. In particular, with
this approach it is possible to simulate P systems with multiple global clocks
by P systems with one global clock. It is particulary interesting to investigate
the synchronization problem for P systems which cannot create new objects, for
example for P systems with symport/antiport.

Acknowledgments. The first and the third authors acknowledge the support of
the Science and Technology Center in Ukraine, project 4032.

References

1. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: How to synchronize the
activity of all components of a P system? In: Vaszil, G. (ed.) Proc. Intern. Work-
shop Automata for Cellular and Molecular Computing, MTA SZTAKI, Budapest,
Hungary, pp. 11–22 (2007)

2. Goto, E.: A minimum time solution of the firing squad problem. Harward Univ.
Course Notes for Applied Mathematics, 298 (1962)

3. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. American Mathematical Society 7, 48–50 (1956)

4. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theoretical Science 50, 183–238 (1987)

5. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

6. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
7. Prim, R.C.: Shortest connection networks and some generalizations. Bell System

Technical Journal 36, 1389–1401 (1957)
8. Spellman, P.T., Sherlock, G.: Reply whole-cell synchronization - effective tools for

cell cycle studies. Trends in Biotechnology 22, 270–273 (2004)
9. Umeo, H., Maeda, M., Fujiwara, N.: An efficient mapping scheme for embedding

any one-dimensional firing squad synchronization algorithm onto two-dimensional
arrays. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS,
vol. 2493, pp. 69–81. Springer, Heidelberg (2002)

10. Schmid, H., Worsch, T.: The firing squad synchronization problem with many
generals for one-dimensional CA. In: Proc. IFIP TCS 2004, pp. 111–124 (2004)

11. Yunès, J.-B.: Seven-state solution to the firing squad synchronization problem.
Theoretical Computer Sci. 127, 313–332 (1994)

12. The P systems web page, http://ppage.psystems.eu

http://ppage.psystems.eu

	Fast Synchronization in P Systems
	Introduction
	Definitions
	The Non-deterministic Case
	 The Deterministic Case
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

