
Solving PP-Complete and #P-Complete
Problems by P Systems with Active Membranes

Artiom Alhazov1, Liudmila Burtseva1, Svetlana Cojocaru1,
and Yurii Rogozhin1,2

1 Academy of Sciences of Moldova
Institute of Mathematics and Computer Science

Academiei 5, MD-2028, Chişinău, Moldova
{artiom,burtseva,sveta,rogozhin}@math.md

2 Rovira i Virgili University
Research Group on Mathematical Linguistics

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

Abstract. Membrane computing is a formal framework of distributed
parallel multiset processing. Due to massive parallelism and exponen-
tial space some intractable computational problems can be solved by
P systems with active membranes in a polynomial number of steps. In
this paper we generalize this approach from decisional problems to the
computational ones, by providing a solution of a #P-complete problem,
namely to compute the permanent of a binary matrix. The implication
of this result to the PP complexity class is discussed and compared to
known results about NP ∪ co − NP.

1 Introduction

Membrane systems are a convenient framework of describing polynomial-time
solutions to certain intractable problems in a massively parallel way. Division
of membranes makes it possible to create an exponential space in linear time,
suitable for attacking problems in NP and even in PSPACE. Their solutions by
so-called P systems with active membranes have been investigated in a number
of papers since 2001, later focusing on solutions by restricted systems.

The description of rules in P systems with active membranes involves mem-
branes and objects; the typical types of rules are (a) object evolution, (b), (c)
object communication, (d) membrane dissolution, (e) membrane division – see
Subsection 2.2. Since membrane systems are an abstraction of living cells, the
membranes are arranged hierarchically, yielding a tree structure. A membrane
is called elementary if it is a leaf of this tree, i.e., if it does not contain other
membranes.

The first efficient semi–uniform solution to SAT was given in [4], using division
for non–elementary membranes and three electrical charges. This result was
improved in [5] using only division for elementary membranes.

Different efficient uniform solutions have been obtained in the framework of
recognizer P systems with active membranes, with polarizations and only using

D. Corne et al. (Eds.): WMC9 2008, LNCS 5391, pp. 108–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Solving PP-Complete and #P-Complete Problems 109

division rules for elementary membranes (see, e.g., [8], [6], [3], [7], [9] and their
references).

The goal of this paper is to generalize the approach from decisional prob-
lems to the computational ones, by considering a #P-complete (pronounced
sharp-P complete) problem of computing the permanent of a binary matrix; see
also Section 1.3.7 in [11] for a presentation of Complexity Theory of counting
problems.

Let us cite [12] for additional motivation:

While 3SAT and the other problems in NP-complete are widely assumed
to require an effort at least proportional to 2n, where n is a measure of
the size of the input, the problems in #P-complete are harder, being
widely assumed to require an effort proportional to n2n.

While attacking NP complexity class by P systems with active membranes have
been often motivated by P ?= NP problem, we recall from [13] the following fact:

If the permanent can be computed in polynomial time by any method,
then FP=#P which is an even stronger statement than P= NP.

Here, by “any method” one understands “... on sequential computers” and FP
is the set of polynomial-computable functions.

In Section 4 we recall the definition of PP (the probabilistic polynomial time
complexity class) and present an approach to solving the problems in PP.

2 Definitions

Membrane computing is a recent domain of natural computing started by Gh.
Păun in 1998. The components of a membrane system are a cell-like membrane
structure, in the regions of which one places multisets of objects which evolve
in a synchronous maximally parallel manner according to given evolution rules
associated with the membranes.

2.1 Computing by P Systems

Let O be a finite set of elements called objects. In this paper, like it is standard
in membrane systems literature, a multiset of objects is denoted by a string,
so the multiplicity of object is represented by number of its occurrences in the
string. The empty multiset is thus denoted by the empty string, λ.

To speak about the result of the computation of a P system we need the
definition of a P system with output.

Definition 1. A P system with output, Π, is a tuple

Π =
(
O, T, H, E, μ, w1, · · · , wp, R, i0

)
, where:

– O is the working alphabet of the system whose elements are called objects.
– T ⊆ O is the output alphabet.
– H is an alphabet whose elements are called labels.

110 A. Alhazov et al.

– E is the set of polarizations.
– μ is a membrane structure (a rooted tree) consisting of p membranes injec-

tively labeled by elements of H.
– wi is a string representing an initial multiset over O associated with mem-

brane i, 1 ≤ i ≤ p.
– R is a finite set of rules defining the behavior of objects from O and mem-

branes labeled by elements of H.
– i0 identifies the output region.

A configuration of a P system is its “snapshot”, i.e., the current membrane
structure and the multisets of objects present in regions of the system. While
initial configuration is C0 = (μ, w1, · · · , wp), each subsequent configuration C′

is obtained from the previous configuration C by maximally parallel application
of rules to objects and membranes, denoted by C ⇒ C′ (no further rules are
applicable together with the rules that transform C into C′). A computation is
thus a sequence of configurations starting from C0, respecting relation ⇒ and
ending in a halting configuration (i.e., one where no rules are applicable).

The P systems of interest here are those for which all computations give the
same result. This is because it is enough to consider one computation to obtain
all information about the result.

Definition 2. A P system with output is confluent if (a) all computations halt;
and (b) at the end of all computations of the system, region i0 contains the same
multiset of objects from T .

In this case one can say that the multiset mentioned in (b) is the result given
by a P system, so this property is already sufficient for a convenient usage of P
systems for computation.

However, one can still speak about a stronger property: a P system is strongly
confluent if not only the result of all computation is the same, but also the
halting configuration is the same. A yet stronger property is determinism: a P
system is called deterministic if it only has one computation.

In what follows we represent computational problems by triples: domain, range
and the function (from that domain into that range) that needs to be computed.
The notation PMC∗

R of the class of problems that are polynomially computable
by semi-uniform families of P systems with active membranes has been intro-
duced by M.J. Pérez-Jiménez and his group, see, e.g., [8]. The definition below
generalizes it from decisional problems to computational ones.

Definition 3. Let X = (IX , F, θX) be a computational problem: θX : IX → F .
We say that X is solvable in polynomial time by a (countable) family R of
confluent P systems with output Π = (Π(u))u∈IX , and we denote this by X ∈
PMC∗

R, if the following are true.

1 The family Π is polynomially uniform by Turing machines, i.e., there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(u) from the instance u ∈ IX .

Solving PP-Complete and #P-Complete Problems 111

2 The family Π is polynomially bounded: for some polynomial function p(n)
for each instance u ∈ IX of the problem, all computations of Π(u) halt in,
at most, p(|u|) steps.

3 There exists a polynomial-time computable function dec such that the family
Π correctly answers X with respect to (X, dec): for each instance of the
problem u ∈ IX , the function dec applied to the result given by Π(u) returns
exactly θX(u).

We say that the family Π is a semi–uniform solution to the problem X .
Now we additionally consider input into P systems and we deal with P systems

solving computational problems in a uniform way in the following sense: all
instances of the problem with the same size (according to a previously fixed
polynomial time computable criterion) are processed by the same system, on
which an appropriate input, representing the specific instance, is supplied.

If w is a multiset over the input alphabet Σ ⊆ O, then the initial configuration
of a P system Π with an input w over alphabet Σ and input region iΠ is

(μ, w1, · · · , wiΠ−1, wiΠ ∪ w, wiΠ+1 · · · , wp).

In the definition below we present the notation PMCR of the class of prob-
lems that are polynomially computable by uniform families of P systems with
active membranes introduced by M.J. Pérez-Jiménez and his group, see, e.g., [8],
generalized from decisional problems to computational ones.

Definition 4. Let X = (IX , F, θX) be a computational problem. We say that X
is solvable in polynomial time by a family Π = (Π(n))n∈N of confluent membrane
systems with input, and we denote it by X ∈ PMCR, if

1 The family Π is polynomially uniform by TM: some deterministic TM con-
structs in polynomial time the system Π(n) from n ∈ N.

2 There exists a pair (cod, s) of polynomial-time computable functions whose
domain is IX and a polynomial-time computable function dec whose range
is F , such that for each u ∈ IX , s(u) is a natural number, cod(u) is an input
multiset of the system Π(s(u)), verifying the following:

2a The family Π is polynomially bounded with respect to (X, cod, s); that is,
there exists a polynomial function p(n) such that for each u ∈ IX every
computation of the system Π(s(u)) with input cod(u) halts in at most p(|u|)
steps.

2b There exists a polynomial-time computable function dec such that the family
Π correctly answers X with respect to (X, cod, s, dec): for each instance of
the problem u ∈ IX , the function dec, being applied to the result given by
Π(s(u)) with input cod(u), returns exactly θX(u).

We say that the family Π is a uniform solution to the problem X .

2.2 P Systems with Active Membranes

To speak about P systems with active membranes, we need to specify the rules,
i.e., the elements of the set R in the description of a P system. They can be of
the following forms:

112 A. Alhazov et al.

(a) [a → v]e
h
, for h ∈ H, e ∈ E, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the polarization of the membranes, but not directly involv-
ing the membranes, in the sense that the membranes are neither taking part
in the application of these rules nor are they modified by them);

(b) a[]e1
h → [b]e2

h , for h ∈ H, e1, e2 ∈ E, a, b ∈ O
(communication rules; an object is introduced into the membrane; the ob-
ject can be modified during this process, as well as the polarization of the
membrane can be modified, but not its label);

(c) [a]e1
h → []e2

h b, for h ∈ H, e1, e2 ∈ E, a, b ∈ O
(communication rules; an object is sent out of the membrane; the object can
be modified during this process; also the polarization of the membrane can
be modified, but not its label);

(d) [a]eh → b, for h ∈ H, e ∈ E, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(e) [a]e1
h → [b]e2

h [c]e3
h , for h ∈ H, e1, e2, e3 ∈ E, a, b, c ∈ O

(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, possibly of
different polarizations; the object specified in the rule is replaced in the two
new membranes by possibly new objects).

In this paper we do not need division, dissolution or rules that bring an object
inside a membrane, but they are mentioned in the definition for completeness.

The rules of type (a) are considered to only involve objects, while all other
rules are assumed to involve objects and membranes mentioned in their left-
hand side. An application of a rule consists in subtracting a multiset described
in the left-hand side from a corresponding region (i.e., associated to a membrane
with label h and polarization e for rules of types (a) and (d), or associated to
a membrane with label h and polarization e1 for rules of type (c) and (e), or
immediately outer of such a membrane for rules of type (b)), adding a multiset
described in the right-hand side of the rule to the corresponding region (that
can be the same as the region from where the left-hand side multiset was sub-
tracted, immediately inner or immediately outer, depending on the rule type),
and updating the membrane structure accordingly if needed (changing mem-
brane polarization, dividing or dissolving a membrane).

The rules can only be applied simultaneously if they involve different objects
and membranes (we repeat that rules of type (a) are not considered to involve
a membrane), and such parallelism is maximal if no further rules are applicable
to objects and membranes that were not involved.

2.3 Permanent of a Matrix

The complexity class #P, see [15], was first defined in [10] in a paper on the
computation of the permanent.

Solving PP-Complete and #P-Complete Problems 113

Definition 5. Let Sn be the set of permutations of integers from 1 to n, i.e.,
the set of bijective functions σ : {1, · · · , n} → {1, · · · , n}. The permanent of a
matrix A = (ai,j)1≤i,j≤n is defined as

perm(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i).

Informally, consider a combination of n matrix elements containing one ele-
ment from every row and one element from every column. The permanent
is the sum over all such combinations of the product of the combination’s
elements.

A matrix is binary if its elements are either 0 or 1. In this case, the permanent
is the number of combinations of n matrix elements with value 1, containing one
element from each row and one element from each column. For example,

perm

⎛

⎝
1 0 1
0 1 0
1 0 1

⎞

⎠ = 2.

Unlike the determinant of a matrix, the permanent cannot be computed by
Gauss elimination.

3 Main Result

Theorem 1. The problem of computing the permanent of a binary matrix is
solvable in polynomial time by a uniform family of deterministic P systems with
active membranes with two polarizations and rules of types (a), (c), (e).

Proof. Let A = (ai,j) be an n × n matrix. We define N = �log2(n)	, and n′ =
2N < 2n is the least power of two not smaller then n. The input alphabet is
Σ(n) = {〈i, j〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n}, and the matrix A is given as a multiset
w(A) containing for every element ai,j = 1 of the matrix one symbol 〈i, j〉. Let
the output alphabet be T = {o}, we will present a P system Π(n) giving operm(A)

as the result when given input w(A) in region iΠ(n) = 2.

Π(n) =
(
O, T, H, E, μ, w1, w2, R, 1

)
,

O = Σ(n) ∪ T ∪ {c} ∪ {di, ai | 0 ≤ i ≤ Nn} ∪ {Di | 0 ≤ i ≤ n + 1}
∪ {〈i, j, k, l〉 | 0 ≤ i ≤ Nn − 1, 0 ≤ j ≤ n − 1, 0 ≤ k ≤ Nn − 1,

0 ≤ l ≤ n′ − 1},

μ = [[]02]01, H = {1, 2}, E = {0, 1},

w1 = λ, w2 = d0.

and the rules are presented and explained below.

114 A. Alhazov et al.

A1 [〈i, j〉 → 〈Ni − 1, j − 1, Nn − 1, 0〉]02, 1 ≤ i ≤ n, 1 ≤ j ≤ n

Preparation of the input objects: tuple representation. Informal meaning of the
tuple components is 1) number of steps remaining until row i is processed, 2)
column number, starting from 0, 3) number of steps remaining until all rows are
processed, 4) will be used for memorizing the chosen column.

A2 [di]e2 → [di+1]02[di+1]12, 0 ≤ i ≤ Nn − 1, e ∈ E

Division of the elementary membrane for Nn times.

A3 [〈i, j, k, l〉 → 〈i − 1, j, k − 1, 2l + e〉]e2,
0 ≤ i ≤ Nn − 1, i is not divisible by N ,
0 ≤ j ≤ n − 1, 1 ≤ k ≤ Nn − 1, 0 ≤ l ≤ (n − 1 − e)/2, e ∈ E

For i times, during N − 1 steps input objects corresponding to row i memorize
the polarization history. The binary representation of the chosen column for
the current row corresponds to the history of membrane polarizations during N
steps.

A4 [〈i, j, k, l〉 → λ]e2,
0 ≤ i ≤ Nn − 1, 0 ≤ j ≤ n − 1, 1 ≤ k ≤ Nn − 1,
(n − 1 − e)/2 ≤ l ≤ n′/2 − 1, e ∈ E

Erase all input objects if the chosen column is invalid, i.e., its number exceeds
n − 1.

A5 [〈i, j, k, l〉 → 〈i − 1, j, k − 1, 0〉]e2,
1 ≤ i ≤ Nn − 1, 0 ≤ j ≤ n − 1, j �= 2l + e,
0 ≤ k ≤ Nn − 1, 0 ≤ l ≤ (n − 1 − e)/2, e ∈ E

If element’s row is not reached and element’s column is not chosen, proceed to
the next row.

A6 [〈i, j, k, l〉 → λ]e
2,

1 ≤ i ≤ Nn − 1, 0 ≤ j ≤ n − 1, j = 2l + e,
0 ≤ k ≤ Nn − 1, 0 ≤ l ≤ (n − 1 − e)/2, e ∈ E

Erase the chosen column, except the chosen element.

A7 [〈0, j, k, l〉 → λ]e
2,

0 ≤ j ≤ n − 1, j �= 2l + e,
0 ≤ k ≤ Nn − 1, 0 ≤ l ≤ (n − 1 − e)/2, e ∈ E

Erase the chosen row, except the chosen element.

A8 [〈0, j, k, l〉 → ak−1]e
2,

0 ≤ j ≤ n − 1, j = 2l + e,
0 ≤ k ≤ Nn − 1, 0 ≤ l ≤ (n − 1 − e)/2, e ∈ E

Solving PP-Complete and #P-Complete Problems 115

If chosen element is present (i.e., it has value 1 and its column has not been
chosen before), produce object ak−1.

A9 [ak → ak−1]e2, 1 ≤ k ≤ Nn − 1, e ∈ E

Objects ak wait until all rows are processed. Then a membrane represents a
solution if n copies of a0 are present.

B1 [dNn → D1−ec
n+e]e

2, e ∈ E

If polarization is 0, produce n copies of object c and a counter D1. Otherwise,
produce one extra copy of c and set the counter to D0; this will reduce to the
previous case in one extra step.

B2 [c]12 → []02c

B3 [a0]02 → []12a0

B4 [Di → Di+1]12, 0 ≤ i ≤ n

Each object a0 changes polarization to 1, the counter Di counts this, and then
object c resets the polarization to 0.

B5 [Dn+1]12 → []02o

If there are n chosen elements with value 1, send one object o out.
The system is deterministic. Indeed, for any polarization and any object (other

than di, i < Nn, c, a0 or Dn+1), there exist at most one rule of type (a) and no
other associated rules. As for the objects in parentheses above, they have no rules
of type (a) associated with them and they cause a well-observed deterministic
behavior of the system: division rules are applied during the first Nn steps; then,
depending on the polarization, symbols a0 or c are sent out; finally, wherever
Dn+1 is produced, it is sent out.

The system computes the permanent of a matrix in at most n(2 + N) + 1 =
O(n log n) steps. Indeed, the first Nn steps correspond to membrane divisions
corresponding to finding all permutations of Sn, see Definition 5, while the fol-
lowing steps correspond to counting the number of non-zero entries of the matrix
associated to these permutations (there are at most 2n + 1 of them since the
system counts to at most n and each count takes two steps; one extra step may
be needed for a technical reasons: to reset to 0 the polarization of membranes
that had polarization 1 after the first Nn steps).

It should be noted that the requirement that the output region is the environ-
ment (typically done for decisional problem solutions) has been dropped. This
makes it possible to give non-polynomial answers to the permanent problem
(which is a number between 0 and n!) in a polynomial number of steps without
having to recall from [1] rules sending objects out that work in parallel.

116 A. Alhazov et al.

4 Attacking PP Complexity Class

The probabilistic polynomial complexity class PP, also called Majority-P, has
been introduced in [2]. It is the class of decision problems solvable by a prob-
abilistic Turing machine in polynomial time, with an error probability of less
than 1/2 for all instances, see also [14]. It is known that PP ⊇ NP ∪ co − NP,
and the inclusion is strict if P �= NP. Therefore, showing a solution to a PP-
complete problem by P systems with active membranes without division of non-
elementary membranes and without membrane creation would improve the best
known results relating P systems to NP ∪ co − NP.

In this section we show a way to do this, paying a small price of post-
processing. We recall that the framework of solving decisional problems by P
systems with active membranes includes two encoding functions (computing the
description of a P system from the size of the problem instance and computing
the input multiset from the instance of the problem). Unlike a more general case
of solving computational problems, there was no need for the decoding function,
since the meaning of objects yes and no sent to the environment was linked with
the answer. While the decoding function was necessary for extending the frame-
work for the computational problems (computing the answer to the instance of
the problem from the output multiset of a P system in polynomial time), we
would like to underline that it is useful even for the decisional problems.

It is not difficult to see that the problem “given a matrix A of size n, is
Perm(A) > n!/2?” is PP-complete. Hence, we only have to compare the result
of the computation of the matrix permanent with n!/2. Doing it by usual P
systems with active membranes would need a non-polynomial number of steps.
We can propose two approaches.

– Generalizing rules of type (a) to cooperative ones. It would then suffice to
generate n!/2 copies of a new object z, then erase pairs of o and z and
finally check if some object o remains. However, this class of P systems is
not studied.

– Consider, as before, the number of objects o as the result of the computation
of a P system. Use the decoding function

dec(x) =
{
no , x ≤ n!/2,
yes , x > n!/2.

The function dec can obviously be computed in polynomial time.

5 Discussion

In this paper we presented a solution to the problem of computing the perma-
nent of a binary matrix by P systems with active membranes, namely with two
polarizations and rules of object evolution, sending objects out and membrane
division. This problem is known to be #P-complete. The solution has been
preceded by the framework that generalizes decisional problems to computing

Solving PP-Complete and #P-Complete Problems 117

functions: now the answer is much more than one bit. This result suggests that
P systems with active membranes without non–elementary membrane division
still compute more than decisions of the problems in NP ∪ co − NP. Indeed,
paying the small price of using the decoding function also for decisional problem
this approach allows to solve problems in the class PP, which is strictly larger
than that (assuming P �= NP).

Acknowledgments. All authors gratefully acknowledge the support by the Sci-
ence and Technology Center in Ukraine, project 4032. Yurii Rogozhin gratefully
acknowledges the support of the European Commission, project MolCIP, MIF1-
CT-2006-021666.

References

1. Alhazov, A., Pan, L., Păun, G.: Trading polarizations for labels in P systems with
active membranes. Acta Informaticae 41, 111–144 (2004)

2. Gill, J.: Computational complexity of probabilistic Turing machines. SIAM Journal
on Computing 6, 675–695 (1977)

3. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A fast P system
for finding a balanced 2-partition. Soft Computing 9, 673–678 (2005)

4. Păun, G.: P systems with active membranes: Attacking NP–complete problems. J.
Automata, Languages and Combinatorics 6, 75–90 (2001)

5. Păun, G., Suzuki, Y., Tanaka, H., Yokomori, T.: On the power of membrane divi-
sion in P systems. Theoretical Computer Sci. 324, 61–85 (2004)

6. Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the subset-sum problem by active
membranes. New Generation Computing 23, 367–384 (2005)

7. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity
classes in cellular computing with membranes. Natural Computing 2, 265–285
(2003)

8. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Computationally
hard problems addressed through P systems. In: Ciobanu, G., et al. (eds.) Appli-
cations of Membrane Computing, pp. 315–346. Springer, Heidelberg (2006)

9. Pérez Jiménez, M.J., Romero Campero, F.J.: Attacking the common algorithmic
problem by recognizer P systems. In: Margenstern, M. (ed.) MCU 2004. LNCS,
vol. 3354, pp. 304–315. Springer, Heidelberg (2005)

10. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Sci. 8, 189–201 (1979)

11. Wegener, I.: Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer, Heidelberg (2005)

12. Williams, R.M., Wood, D.H.: Exascale computer algebra problems interconnect
with molecular reactions and complexity theory. DIMACS Series in Discrete Math-
ematics and Theoretical Computer Sci. 44, 267–275 (1999)

13. http://en.wikipedia.org/wiki/Permanent (updated 05.05.2008)
14. http://en.wikipedia.org/wiki/PP complexity (updated 09.09.2008)
15. http://en.wikipedia.org/wiki/Sharp-P (updated 13.12.2007)

http://en.wikipedia.org/wiki/Permanent
http://en.wikipedia.org/wiki/PP_complexity
http://en.wikipedia.org/wiki/Sharp-P

	Solving PP-Complete and #P-Complete Problems by P Systems with Active Membranes
	Introduction
	Definitions
	Computing by P Systems
	P Systems with Active Membranes
	Permanent of a Matrix

	Main Result
	Attacking PP Complexity Class
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

