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gabriel@info.uaic.ro

Abstract. This paper aims to answer the following question: given a P
system configuration M , how do we find each configuration N such that
N evolves to M in one step? While easy to state, the problem has not a
simple answer. To provide a solution to this problem for a general class of
P systems with simple communication rules and without dissolution, we
introduce the dual P systems. Essentially these systems reverse the rules
of the initial P system and find N by applying reversely valid multisets
of rules. We prove that in this way we find exactly those configurations
N which evolve to M in one step.

1 Introduction

Often when solving a (mathematical) problem, one starts from the end and
tries to reach the hypothesis. P systems [4] are often used to solve problems, so
finding a method which allows us to go backwards is of interest. When looking
at a cell-like P system with rules which only involve object rewriting (of type
u → v, where u, v are multisets of objects) in order to reverse a computation
it is natural to reverse the rules (u → v becomes v → u) and find a condition
equivalent to maximal parallelism. The dual P system ˜Π is the one with the
same membranes as Π and the rules of Π reversed. However, when rules of type
u → (v, out) or u → (v, inchild) are used, two ways of reversing computation
appear. The one we focus on is to employ a special type of rule reversal and
to move the rules between membranes: for example, u → (v, out) associated to
the membrane with label i in Π is replaced with v → (u, ini) associated to the
membrane with label parent(i) in ˜Π . This is described in detail in Section 4.
Another way of defining the dual P system is by reversing all the rules without
moving them between membranes (and thus allow rules of form (v, out) → u).
To capture the backwards computation we have to move objects according to
the existence of communicating rules in the P system. The object movement
corresponds to reversing the message sending stage of the evolution of a mem-
brane. After that the maximally parallel rewriting stage is reversed. This is only
sketched in Section 5 as a starting point for further research.

The structure μ of a P system is represented by a tree structure (with the skin
as its root), or equivalently, by a string of correctly matching parentheses, placed
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in a unique pair of matching parentheses; each pair of matching parentheses
corresponds to a membrane. Graphically, a membrane structure is represented
by a Venn diagram in which two sets can be either disjoint, or one a subset
of the other. The membranes are labeled in a one-to-one manner. A membrane
without any other membrane inside is said to be elementary.

A membrane system of degree m is a tuple Π = (O, μ, w1, . . . wm, R1, . . . ,
Rm, io) where:

– O is an alphabet of objects;
– μ is a membrane structure, with the membranes labeled by natural numbers

1, . . . , m, in a one-to-one manner;
– wi are multisets over O associated with the regions 1, . . . , m defined by μ;
– R1, . . . , Rm are finite sets of rules associated with the membranes with labels

1, . . . , m; the rules have the form u → v, where u is a non-empty multiset of
objects and v a multiset over messages of the form (a, here), (a, out), (a, inj);

The membrane structure μ and the multisets of objects and messages from its
compartments define a intermediate configuration of a P system. If the multisets
from its compartments contain only objects, they define a configuration. For a
intermediate configuration M we denote by wi(M) the multiset contained in
the inner membrane with label i. We denote by C#(Π) the set of intermediate
configurations and by C(Π) the set of configurations of the P system Π .

Since we work with two P systems at once (namely Π and ˜Π), we use the
notation RΠ

1 , . . . , RΠ
m for the sets of rules R1, . . . , Rm of the P system Π .

We consider a multiset w over a set S to be a function w : S → N. When
describing a multiset characterized by, for example, w(s) = 1, w(t) = 2, w(s′) =
0, s′ ∈ S\{s, t}, we use its string representation s+2t, to simplify its description.
To each multiset w we associate its support, denoted by supp(w), which contains
those elements of S which have a non-zero image. A multiset is called non-empty
if it has non-empty support. We denote the empty multiset by 0S . The sum of
two multisets w, w′ over S is the multiset w + w′ : S → N, (w + w′)(s) =
w(s) + w′(s). For two multisets w, w′ over S we say that w is contained in w′ if
w(s) ≤ w′(s), ∀s ∈ S. We denote this by w ≤ w′. If w ≤ w′ we can define w′ −w
by (w′ − w)(s) = w′(s) − w(s). To work in a uniform manner, we consider all
multisets of objects and messages to be over

Ω = O ∪ O × {out} ∪ O × {inj | j ∈ {1, . . . , m}}

Definition 1. The set M(Π) of membranes in a P system Π together with the
membrane structure are inductively defined as follows:

– if i is a label and w is a multiset over O ∪ O × {out} then 〈i|w〉 ∈ M(Π);
〈i|w〉 is called an elementary membrane, and its structure is 〈〉;

– if i is a label, M1, . . . , Mn ∈ M(Π), n ≥ 1 have distinct labels i1, . . . , in,
each Mk has structure μk and w is a multiset over O ∪ O × {out} ∪ O ×
{ini1 , . . . , inin} then 〈i|w; M1, . . . , Mn〉 ∈ M(Π); 〈i|w; M1, . . . , Mn〉 is called
a composite membrane, and its structure is 〈μ1 . . . μn〉.
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Note that if i is the label of the skin membrane then 〈i|w; M1, . . . , Mn〉 defines
an intermediate configuration.

We use the notations parent(i) for the label indicating the parent of the
membrane labeled by i (if it exists) and children(i) for the set of labels indicating
the children of the membrane labeled by i, which can be empty.

By simple communication rules we understand that all rules inside mem-
branes are of the form u → v where u is a multiset of objects (supp(u) ⊆ O)
and v is either a multiset of objects, or a multiset of objects with the message
inj (supp(v) ⊆ O × {inj} for a j ∈ {1, . . . , m}) or a multiset of objects with
the message out (supp(v) ⊆ O × {out}). Moreover we suppose that the skin
membrane does not have any rules involving objects with the message out.

We use multisets of rules R : RΠ
i → N to describe maximally parallel appli-

cation of rules. For a rule r : u → v we use the notations lhs(r) = u, rhs(r) = v.
Similarly, for a multiset R of rules from RΠ

i , we define the following multisets
over Ω:

lhs(R)(o) =
∑

r∈RΠ
i

R(r) · lhs(r)(o) and rhs(R)(o) =
∑

r∈RΠ
i

R(r) · rhs(r)(o)

for each object or message o ∈ Ω. The following definition captures the meaning
of “maximally parallel application of rules”:

Definition 2. We say that a multiset of rules R : RΠ
i → N is valid in the

multiset w if lhs(R) ≤ w. The multiset R is called maximally valid in w if it
is valid in w and there is no rule r ∈ RΠ

i such that lhs(r) ≤ w − lhs(R).

2 P Systems with One Membrane

Suppose that the P system Π consists only of the skin membrane, labeled by
1. Since the membrane has no children and we have assumed it has no rules
concerning out messages, all its rules are of form u → v, with supp(u), supp(v) ⊆
O. Given the configuration M in the system Π = (O, μ, w1, R

Π
1 ) we want to find

all configurations N such that N rewrites to M in a single maximally parallel
rewriting step. To do this we define the dual P system ˜Π = (O, μ, w1, R

�Π
1 ), with

evolution rules given by:

(u → v) ∈ R
�Π
1 if and only if (v → u) ∈ RΠ

1

For each M = 〈1|w〉 ∈ C#(Π), we consider the dual intermediate configuration
˜M = 〈1|w〉 ∈ C#( ˜Π) which has the same content (w = w1(˜M) = w1(M)) and
membrane structure as M . Note that the dual of a configuration is a configura-
tion. The notation ˜M is used to emphasize that it is an intermediate configura-
tion of the system ˜Π .

The name dual is used for the P system ˜Π under the influence of category
theory, where the dual category is the one obtained by reversing all arrows.

Remark 1. Note that using the term of dual for ˜Π is appropriate because ˜

˜Π = Π .
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When we reverse the rules of a P system, dualising the maximally parallel ap-
plication of rules requires a different concept than the maximal validity of a
multiset of rules.

Definition 3. The multiset R : RΠ
i → N is called reversely valid in the multiset

w if it is valid in w and there is no rule r ∈ RΠ
i such that rhs(r) ≤ w − lhs(R).

Note that the difference from maximally valid is that here we use the right-hand
side of a rule r in rhs(r) ≤ w − lhs(R), instead of the left-hand side.

Example 1. Consider the configuration M = 〈1|b + c〉, in the P system ˜Π with
O = {a, b, c}, μ = 〈〉 and with evolution rules RΠ

1 = {r1, r2}, where r1 : a → b,
r2 : b → c. Then ˜M = 〈1|b + c〉 ∈ C( ˜Π), with evolution rules R

�Π
1 = {r̃1, r̃2},

where r̃1 : b → a, r̃2 : c → b. The valid multisets of rules in w1(˜M) = b + c are
0

R�Π1
, r̃1, r̃2 and r̃1 + r̃2. The reversely valid multiset of rules ˜R in w(˜M1) can

be either r̃1 or r̃1 + r̃2. If ˜R : r̃1 then ˜M rewrites to 〈1|a + c〉; if ˜R : r̃1 + r̃2

then ˜M rewrites to 〈1|a + b〉. These yield the only two configurations that can
evolve to M in one maximally parallel rewriting step (in Π). This example
clarifies why reversely valid multisets of rules must be applied: validity ensures
that some objects are consumed by rules r̃ (dually, they were produced by some
rules r) and reverse validity ensures that objects like b (appearing in both the
left and right-hand sides of rules) are always consumed by rules r̃ (dually, they
were surely produced by some rules r, otherwise it would contradict maximal
parallelism for the multiset R).

Note that if M ′ = 〈1 | 2a〉 in the P system Π , then there is no multiset of
rules ˜R valid in w1( ˜M ′) = 2a for the dual ˜M ′. This happens exactly because
there is no configuration N ′ such that N ′ rewrites to M ′ by applying at least
one of the rules r1, r2.

We present the operational semantics for both maximally parallel application
of rules (mpr) and inverse maximally parallel application of rules (m̃pr) on
configurations in a P system with one membrane.

Definition 4

– 〈1|w〉 R→mpr 〈1|w − lhs(R) + rhs(R)〉 if and only if R is maximally valid in w;
– 〈1|w〉 R→

�mpr 〈1|w − lhs(R) + rhs(R)〉 if and only if R is reversely valid in w.

The difference between the two semantics is coming from the difference between
the conditions imposed on the multiset R (maximally valid and reversely valid,
respectively).

For a multiset R of rules over RΠ
1 we denote by ˜R the multiset of rules over R

�Π
1

for which ˜R(u → v) = R(v → u). Then lhs(R) = rhs( ˜R) and rhs(R) = lhs( ˜R).

Proposition 1. N
R→mpr M if and only if ˜M

�R→
�mpr

˜N .

Proof. If N
R→mpr M then R is maximally valid in w1(N) and w1(M) = w1(N)−

lhs(R)+ rhs(R); then w1(M)− rhs(R) = w1(N)− lhs(R). By duality, we have
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w1(M) = w1(˜M) and rhs(R) = lhs( ˜R); it follows that w1(˜M) − lhs( ˜R) =
w1(N) − lhs(R) ≥ 0, therefore lhs( ˜R) ≤ w1(˜M), and so ˜R is valid in ˜M .
Suppose ˜R is not reversely valid in w1(˜M), i.e., there exists r̃ ∈ R

�Π
1 such that

rhs(r̃) ≤ w1(˜M) − lhs( ˜R), which is equivalent to lhs(r) ≤ w1(M) − rhs(R).
Since w1(M) − rhs(R) = w1(N) − lhs(R) it follows that R is not maximally
valid in w1(N), which yields a contradiction.

If ˜M
�R→
�mpr

˜N then ˜R is reversely valid in w1(˜M); since w1(N) − lhs(R) =
w1(˜M) − lhs( ˜R) ≥ 0 it follows that R is valid in w1(N). If we suppose that R
is not maximally valid in w1(N) then, reasoning as above, we obtain that ˜R is
not reversely valid in w1(˜M)(contradiction). ��

3 P Systems without Communication Rules

If the P system has more than one membrane but it has no communication rules
(i.e., no rules of form u → v, with supp(v) ⊆ O ×{out} or supp(v) ⊆ O ×{inj})
the method of reversing the computation is similar to that described in the
previous section. We describe it again but in a different way, since here we
introduce the notion of a (valid) system of multisets of rules for a P system
Π . This notion is useful for P systems without communication rules, and is
fundamental in reversing the computation of a P system with communication
rules. This section provides a technical step from Section 2 to Section 4.

Definition 5. A system of multisets of rules for a P system Π of degree m
is a tuple R = (R1, R2, . . . , Rm), where each Ri is a multiset over RΠ

i , i ∈
{1, . . . , m}.

A system of multisets of rules R is called valid, maximally valid or reversely
valid in the configuration M if each Ri is valid, maximally valid or reversely
valid in the multiset wi(M), which, we recall, is the multiset contained in the
inner membrane of configuration M which has label i.

The P system ˜Π dual to the P system Π is defined analogously to the one in
Section 2: ˜Π = (O, μ, w1, . . . wm, R

�Π
1 , . . . , R

�Π
m) where (u → v) ∈ R

�Π
1 if and only

if (v → u) ∈ RΠ
1 . Note that ˜

˜Π = Π .
If R = (R1, . . . , Rm) is a system of multisets of rules for a P system Π , we

denote by ˜R the system of multisets of rules for the dual P system ˜Π given by
˜R = (˜R1, . . . , ˜R2).

Example 2. Consider the configuration M = 〈1|b + c; N〉, N = 〈2|2a〉 of the P
system Π with evolution rules RΠ

1 = {r1, r2}, RΠ
2 = {r3, r4}, where r1 : a → c,

r2 : d → c, r3 : a + b → a, r4 : a → d. Then ˜M = 〈1|b + c; 〈2|2a〉〉, with
evolution rules R

�Π
1 = {r̃1, r̃2}, R

�Π
2 = {r̃3, r̃4}, where r̃1 : c → a, r̃2 : c → d,

r̃3 : a → a + b, r̃4 : d → a. In order to find all membranes which evolve to M
in one step, we look for a system ˜R = (˜R1, ˜R2) of multisets of rules, which is
reversely valid in the configuration ˜M . Then ˜R1 can be either 0

R�Π1
, r̃1 or r̃2 and
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the only possibility for ˜R2 is 2r̃3. We apply ˜R to the skin membrane ˜M and
we obtain three possible configurations ˜P such that P ⇒ M ; namely, P can be
either 〈1|b + c; 〈2|2a + 2b〉〉 or 〈1|b + a; 〈2|2a + 2b〉〉 or 〈1|b + d; 〈2|2a + 2b〉〉.
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dual

( �r1, 2 �r3)

�M

1

2

dual

1
2

(r1, 2r3)

b + c

r1 : a → c

r2 : d → c

2a

r3 : a + b → a

r4 : a → d

b + c

M

�r1 : c → a

�r2 : c → d

2a

�r3 : a → a + b

�r4 : d → a

�N

b + a

�r1 : c → a

�r2 : c → d

2a + 2b

�r3 : a → a + b

�r4 : d → a
N

b + a

r1 : a → c

r2 : d → c

2a + 2b

r3 : a + b → a

r4 : a → d

We give a definition of the operational semantics for both maximally parallel
application of rules (mpr) and inverse maximally parallel application of rules
(m̃pr) in a P system without communication rules. We use R as label to sug-
gest that rule application is done simultaneously in all membranes, and thus to
prepare the way toward the general case of P systems with communication rules.

Definition 6. For M, N ∈ C(Π) we define:

– M
R→mpr N if and only if R = (R1, . . . , Rm) is maximally valid in M and

wi(N) = wi(M) − lhs(Ri) + rhs(Ri);

– M
R→
�mpr N if and only if R = (R1, . . . , Rm) is reversely valid in M and

wi(N) = wi(M) − lhs(Ri) + rhs(Ri).

The two operational semantics are similar in their effect on the membranes, but
differ in the conditions required for the multisets of rules R.

Proposition 2. If N ∈ C(Π), then

N
R→mpr M if and only if ˜M

�R→
�mpr

˜N

Proof. If N
R→mpr M then R is maximally valid in the configuration N , which

means that Ri is maximally valid in wi(N), and wi(M) = wi(N) − lhs(Ri) +
rhs(Ri). By using the same reasoning as in the proof of Proposition 1 it follows
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that ˜Ri is reversely valid in wi(˜M), for all i ∈ {1, . . . , m}. Therefore ˜R is re-
versely valid in the configuration ˜M of the dual P system ˜Π . Moreover, we have

wi( ˜N) = wi(˜M) − lhs(˜Ri) + rhs(˜Ri), so ˜M
�R→
�mpr

˜N .

If ˜M
�R→
�mpr

˜N the proof follows in the same manner. ��

4 P Systems with Communication Rules

When the P system has communication rules we no longer can simply reverse
the rules and obtain a reverse computation; we also have to move the rules
between membranes. When saying that we move the rules we understand that
the dual system can have rules r̃ associated to a membrane with label i while r
is associated to a membrane with label j (j is either the parent or the child of i,
depending on the form of r). We need a few notations before we start explaining
in detail the movement of rules.

If u is a multiset of objects (supp(u) ⊆ O) we denote by (u, out) the mul-
tiset with supp(u, out) ⊆ O × {out} given by (u, out)(a, out) = u(a), for all
a ∈ O. More explicitly, (u, out) has only messages of form (a, out), and their
number is that of the objects a in u. Given a label j, we define (u, inj) similarly:
supp(u, inj) ⊆ O × {inj} and (u, inj)(a, inj) = u(a), for all a ∈ O.

The P system ˜Π dual to the P system Π is defined differently from the case
of P systems without communication rules: ˜Π = (O, μ, w1, . . . wm, R

�Π
1 , . . . , R

�Π
m)

such that:

1. r̃ = u → v ∈ R
�Π
i if and only if r : v → u ∈ RΠ

i ;
2. r̃ : u → (v, out) ∈ R

�Π
i if and only if r : v → (u, ini) ∈ RΠ

parent(i);

3. r̃ : u → (v, inj) ∈ R
�Π
i if and only if r : v → (u, out) ∈ RΠ

j , i = parent(j);

where u, v are multisets of objects. Note the difference between rule duality
when there are no communication rules and the current class of P systems with
communication rules.

Proposition 3. The dual of the dual of a P system is the initial P system:
˜

˜Π = Π

Proof. Clearly, u → v ∈ R
�

�Π
i iff u → v ∈ RΠ

i . Moreover, ˜r̃ : u → (v, out) ∈ R
�

�Π
i

iff r̃ : v → (u, ini) ∈ R
�Π
parent(i) which happens iff r : u → (v, out) ∈ RΠ

i

(the condition related to the parent amounts to parent(i) = parent(i)). Then,
˜r̃ : u → (v, inj) ∈ R

�

�Π
i iff r̃ : v → (u, out) ∈ R

�Π
j and i = parent(j), which

happens iff r : u → (v, inj) ∈ RΠ
parent(j)=i. ��

If R = (R1, . . . , Rm) is a system of multisets of rules for a P system Π we
also need a different dualisation for it. Namely, we denote by ˜R the system of
multisets of rules for the dual P system ˜Π given by ˜R = (˜R1, . . . , ˜R2), such that:
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– if r̃ : u → v ∈ R
�Π
i then ˜Ri(r̃) = Ri(r);

– if r̃ : u → (v, out) ∈ R
�Π
i then ˜Ri(r̃) = Rparent(i)(r);

– if r̃ : u → (v, inj) ∈ R
�Π
i then ˜Ri(r̃) = Rj(r).

Example 3. Consider M = 〈1|d; N〉, N = 〈2|c + e; P 〉, P = 〈3|c〉 in the P system
Π with RΠ

1 = {r1, r2}, RΠ
2 = {r3, r4} and RΠ

3 = {r5}, where r1 : a → (c, in2),
r2 : a → c, r3 : e → (c, in3), r4 : a → (d, out) and r5 : b → (e, out). Then ˜M =
〈1|d; 〈2|c + e; 〈3|c〉〉〉 in the dual P system ˜Π , with R

�Π
1 = {r̃2, r̃4}, R

�Π
1 = {r̃1, r̃5},

R
�Π
3 = {r̃3}, where r̃1 : c → (a, out), r̃2 : c → a, r̃3 : c → (e, out), r̃4 : d → (a, in2)

and r̃5 : e → (b, in3). For a system of multisets of rules R = (r1 + r2, 2r4, 3r5) in
Π the dual is ˜R = (2r̃4 + r̃2, r̃1 + 3r̃5, 0R�Π3

).
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1

2
3

d

r1 : a → (c, in2)

r2 : a → c

c + e

r3 : e → (c, in3)

r4 : a → (d, out)

c

r5 : b → (e, out)

dual

1

2
3

d

r̃2 : c → a

r̃4 : d → (a, in2)

c + e

r̃1 : c → (a, out)

r̃5 : e → (b, in3)

c

r̃3 : c → (e, out)

(r̃4, r̃5, r̃3), msg(0, r3 + r4, r5); msg

1

2
3

∅
r1 : a → (c, in2)

r2 : a → c

a + c + e

r3 : e → (c, in3)

r4 : a → (d, out)

b

r5 : b → (e, out)

dual

1

2
3

∅
r̃2 : c → a

r̃4 : d → (a, in2)

a + c + e

r̃1 : c → (a, out)

r̃5 : e → (b, in3)

b

r̃3 : c → (e, out)

The definitions for validity and maximal validity of a system of multisets of
rules are the same as in Section 3. However, we need to extend the definition of
reverse validity to describe situations arising from a rule being moved.

Definition 7. A system of multisets of rules R = (R1, . . . , Rn) for a P system
Π is called reversely valid in the configuration M if:

– R is valid in the configuration M (i.e., lhs(Ri) ≤ wi(M));
– ∀i ∈ {1, . . . , m}, there is no rule r : u → v ∈ RΠ

i such that rhs(r) = v ≤
wi(M) − lhs(Ri);
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– ∀i ∈ {1, . . . , m} such that there exists parent(i), there is no rule r : u →
(v, ini) ∈ RΠ

parent(i) such that v ≤ wi(M) − lhs(Ri);
– ∀i, j ∈ {1, . . . , m} such that parent(j) = i, there is no rule r : u → (v, out) ∈

RΠ
j such that v ≤ wi(M) − lhs(Ri).

While this definition is more complicated than the one in Section 3, it can be
seen in the proof of Proposition 4 that it is exactly what is required to reverse
a computation in which a maximally parallel rewriting takes place.

Example 3 continued. We look for ˜R reversely valid in ˜M . Since ˜R must be
valid, ˜R1 can be equal to 0

R�Π1
or r̃4; ˜R2 equal to 0

R�Π2
, r̃1, r̃5 or r̃1 + r̃5; ˜R3

equal to 0
R�Π3

or r̃3. According to Definition 7, we can look at any of those pos-
sibilities for Ri to see if it can be a component of a reversely valid system R. In
this example the only problem (with respect to reverse validity) appears when
˜R2 = 0

R�Π2
or when ˜R2 = r̃1, since in both cases we have e ≤ w2(˜M) − lhs(˜R2)

and rule c → (e, out) ∈ R
�Π
3 . Let us see why we exclude exactly these two

cases. Suppose ˜R2 = r̃1 and, for example, ˜R1 = r̃4, ˜R3 = r̃3. If ˜R is applied,
˜M rewrites to 〈1|(a, in2); 〈2|(a, out) + e; 〈3|(e, out)〉〉〉; after message sending, we
obtain 〈1|a; 〈2|a + 2e; 〈3|0O〉〉〉 which cannot rewrite to M while respecting max-
imal parallelism (otherwise there would appear two c’s in the membrane P with
label 3). The same thing would happen when ˜R2 = 0

R�Π2
.

In P systems with communication rules we work with both rewriting and mes-
sage sending. We have presented two semantics for rewriting in Section 3: →mpr

(maximally parallel rewriting) and →
�mpr (inverse maximally parallel rewriting).

They are also used here, with the remark that the notion of reversely valid
system has been extended (see Definition 7).

Before giving the operational semantics for message sending we present a few
more notations. Given a multiset w : Ω → N we define the multisets obj(w),
out(w), inj(w) which consist only of objects (i.e., supp(obj(w)), supp(out(w)),
supp(inj(w)) ⊆ O), as follows:

– obj(w) contains all the objects from w: obj(w)(a) = w(a), ∀a ∈ O;
– out(w) contains all the objects a which are part of a message (a, out) in w:

out(w)(a) = w(a, out), ∀a ∈ O;
– inj(w) contains all the objects a which are part of a message (a, inj) in w:

inj(w)(a) = w(a, inj), ∀a ∈ O, ∀j ∈ {1, . . . , m}.

Definition 8. For a intermediate configuration M , M →msg N if and only if

wi(N) = obj(wi(M)) + ini(wparent(i)(M)) +
∑

j∈children(i)

out(wj(M))

To elaborate, the message sending stage consists of erasing messages from the
multiset in each inner membrane with label i, adding to each such multiset
the objects a corresponding to messages (a, ini) in the parent membrane (inner
membrane with label parent(i)) and furthermore, adding the objects a corre-
sponding to messages (a, out) in the children membranes (all inner membranes
with label j, j ∈ children(i)).
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Proposition 4. If M is a configuration of Π then

M
R→mpr→msg N implies ˜N

�R→
�mpr→msg

˜M.

If ˜N is a configuration of ˜Π then

˜N
�R→
�mpr→msg

˜M implies M
R→mpr→msg N.

Proof. We begin by describing some new notations. Consider a system of multisets
of rules R = (R1, . . . , Rm) for a P system Π with evolution rules RΠ

1 , . . . , RΠ
m. We

define the following multisets of objects:

lhsobj(Ri), rhsobj(Ri), lhsout(Ri), rhsout(Ri), lhsinj (Ri), rhsinj (Ri)

such that, for u, v multisets of objects:

lhsobj(Ri)(a) =
∑

r:u→v∈RΠ
i

Ri(r) · u(a);

rhsobj(Ri)(a) =
∑

r:u→v∈RΠ
i

Ri(r) · v(a),

lhsout(Ri)(a) =
∑

r:u→(v,out)∈RΠ
i

Ri(r) · u(a);

rhsout(Ri)(a) =
∑

r:u→(v,out)∈RΠ
i

Ri(r) · v(a),

lhsinj (Ri)(a) =
∑

r:u→(v,inj)∈RΠ
i

Ri(r) · u(a);

rhsinj (Ri)(a) =
∑

r:u→(v,inj)∈RΠ
i

Ri(r) · v(a).

We have the following properties:

– lhsobj(Ri) = rhsobj(˜Ri) and rhsobj(Ri) = lhsobj(˜Ri);
– lhsout(Ri) = rhsini( ˜Rparent(i)) and rhsout(Ri) = lhsini( ˜Rparent(i));
– if j ∈ children(i) then lhsinj (Ri) = rhsout(˜Rj), rhsinj (Ri) = lhsout(˜Rj);
– lhs(Ri) = lhsobj(Ri) + lhsout(Ri) +

∑

j∈children(i) lhsinj (Ri).

Now we can prove the statements of this Proposition. We prove only the first
one; the proof of the second one is similar. If M

R→mpr→msg N then there exists

an intermediate configuration P such that M
R→mpr P and P →msg N . Then

Ri are maximally valid in wi(M) and wi(P ) = wi(M)−lhs(Ri)+rhs(Ri). Since
wi(M) is a multiset of objects, it follows that obj(wi(P )) = wi(M) − lhs(Ri) +
rhsobj(Ri). If j ∈ children(i) we have inj(wi(P )) = rhsinj (Ri) and moreover,
out(wi(P )) = rhsout(Ri). Since P →msg N we have wi(N) = obj(wi(P )) +
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ini(wparent(i)(P )) +
∑

j∈children(i) out(wj(P )). Replacing wi(P ), wparent(i)(P )
and wj(P ) we obtain

wi(N) = wi(M) − lhs(Ri) + rhsobj(Ri)

+ rhsini (Rparent(i)) +
∑

j∈children(i)

rhsout(Rj)

which is equivalent to

wi( ˜N) = wi(M) − lhs(Ri) + lhsobj(˜Ri) + lhsout(˜Ri) +
∑

j∈children(i)

lhsinj ( ˜Ri)

i.e., wi( ˜N) = wi(M) − lhs(Ri) + lhs(˜Ri). Therefore ˜Ri is valid in wi( ˜N), ∀i ∈
{1, . . . , m}. Suppose that ˜R is not reversely valid in ˜N . Then we have three
possibilities, given by Definition 7. First, if there is i ∈ {1, . . . , m} and r̃ : u →
v ∈ R

�Π
i such that v ≤ wi( ˜N)− lhs(˜Ri) it means that lhs(r) ≤ wi(M)− lhs(Ri),

which contradicts the maximal validity of Ri. Second, if there is i ∈ {1, . . . , m}
and r̃ : u → (v, ini) ∈ R

�Π
parent(i) such that v ≤ wi( ˜N) − lhs(˜Ri) then again

lhs(r) ≤ wi(M)− lhs(Ri) (contradiction). The third situation leads to the same
contradiction. Thus, there exists an intermediate configuration Q in ˜Π such that
˜N
�R→
�mpr Q. We have to show that Q →msg

˜M , i.e., to prove

wi(˜M) = obj(wi(Q)) + ini(wparent(i)(Q)) +
∑

j∈children(i)

out(wj(Q))

Since wi(Q) = wi( ˜N)− lhs(˜Ri)+ rhs(˜Ri) it follows that obj(wi(Q)) = wi(M)−
lhs(Ri) + rhsobj(˜Ri). We also have that ini(wparent(i)(Q)) = rhsini ( ˜Rparent(i))
and out(wj(Q)) = rhsout(˜Rj). So the relation we need to prove is equivalent to

wi(˜M) = wi(M) − lhs(Ri) + rhsobj(˜Ri)

+ rhsini ( ˜Rparent(i)) +
∑

j∈children(i)

rhsout(˜Rj)

which is true because

lhs(Ri) = lhsobj(Ri) + lhsout(Ri) +
∑

j∈children(i)

lhsinj (Ri). ��

5 An Alternative Approach

Another way to reverse a computation N
R→mpr→msg M is to move objects

instead of moving rules. We start by reversing all rules of the P system Π ;
since these rules can be communication rules, by their reversal we do not obtain
another P system. For example, a rule a → (b, out) yields (b, out) → a, whose
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left-hand side contains the message out and therefore is not a rule. However, we
can consider a notion of extended P system in which we allow rules to also have
messages in their left-hand side. We move objects present in the membranes and
transform them from objects to messages according to the rules of the membrane
system. The aim is to achieve a result of form

M
R→mpr N →msg P if and only if ˜P →

�msg
˜N
�R→
�mpr

˜M

An example illustrating the movement of the objects is the following:
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1

2
3

d

r1 : a → (c, in2)

r2 : a → c

c + e

r3 : e → (c, in3)

r4 : a → (d, out)

c

r5 : b → (e, out)

dual

1

2
3

d

r̃1 : (c, in2) → a

r̃2 : c → a

c + e

r̃3 : (c, in3) → e

r̃4 : (d, out) → a

c

r̃5 : (e, out) → b

m̃sgmpr; msg

1

2
3

∅
r1 : a → (c, in2)

r2 : a → c

a + e

r3 : e → (c, in3)

r4 : a → (d, out)

b

r5 : b → (e, out)

mpr

dual

1

2
3

(c, in2)
r̃1 : (c, in2) → a

r̃2 : c → a

(d, out) + (c, in3)

r̃3 : (c, in3) → e

r̃4 : (d, out) → a

(e, out)

r̃5 : (e, out) → b

where the “dual” movement →
�msg of objects between membranes is:

– d in membrane 1
called by rule r̃4

− − − − − −→ (d, out) in membrane 2;

– c in membrane 2
called by rule r̃1

− − − − − −→ (c, in2) in membrane 1;

– e in membrane 2
called by rule r̃5

− − − − − −→ (e, out) in membrane 3;

– c in membrane 3
called by rule r̃3

− − − − − −→ (c, in3) in membrane 2.

By applying the dual rules, messages are consumed and turned into objects, thus
performing a reversed computation to the initial membrane.
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6 Conclusion

In this paper, we solve the problem of finding all the configurations N of a P
system which evolve to a given configuration M in a single step by introducing
dual P systems. The case of P systems without communication rules is used as a
stepping stone towards the case of P systems with simple communication rules.
In the latter case, two approaches are presented: one where the rules are reversed
and moved between membranes, and the other where the rules are only reversed.
On dual membranes we employ a semantics which is surprisingly close to the
one giving the maximally parallel rewriting (and message sending, if any).

The dual P systems open new research opportunities. A problem directly
related to the subject of this paper is the predecessor existence problem in dy-
namical systems [1]. Dual P systems provide a simple answer, namely that a
predecessor for a configuration exists if and only if there exists a system of
multisets of rules which is reversely valid.

Dualising a P system is closely related to reversible computation [3]. Reversible
computing systems are those in which every configuration is obtained from at
most one previous configuration (predecessor). A paper which concerns itself
with reversible computation in energy-based P systems is [2].

Further development will include defining dual P systems for P systems with
general communication rules. Other classes of P systems will also be studied.
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