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Abstract. We define a class of cellular interface problems (short: CIP)
that mathematically model the exchange of molecules in a compartmen-
talised living cell. Defining and eventually solving such compartmental
problems is important for several reasons. They are needed to understand
the organisation of life itself, for example by exploring different ’origin of
life’ hypothesis based on simple metabolic pathways and their necessary
division into one or more compartments. In more complex forms investi-
gating cellular interface problems is a way to understand cellular home-
ostasis of different types, for example ionic fluxes and their composition
between all different cellular compartments. Understanding homeostasis
and its collapse is important for many physiological medical applications.
This class of models is also necessary to formulate efficiently and in de-
tail complex signalling processes taking place in different cell types, with
eukaryotic cells the most complex ones in terms of sophisticated compart-
mentalisation. We will compare such mathematical models of signalling
pathways with rule-based models as formulated in membrane computing
in a final discussion. The latter is a theory that investigates computer
programmes with the help of biological concepts, like a subroutine ex-
changing data with the environment, in this case a programme with its
global variables.

1 Setting the Problem

Most theories about the origin of life depend on the relative closedness of a
reaction volume allowing for either the protected replication of a ’replicator’ like
primitive RNA, or the persistence of a simple metabolic pathway where without
a protective and also selective membrane the reaction system would dilute or
be perturbed and cease to exist (for some speculation see for example [16]).
The membranes of biology are formed by lipids which have astonishing chemical
properties allowing them to build so-called vesicles in a self-organised fashion
and in many different environments. By either allowing the vesicles to split and
preserving the metabolic pathway, or by positioning the replicator into both
daughter vesicles, it is argued that this new entity is able to allow Darwinian
evolution. In this case replication may not be perfect, allowing for mutations,
or the metabolic pathway becomes perturbed, or both. After the subsequent
unavoidable selection process the complexity in terms of ’division of labour’ and
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therefore the possibilities of primitive life to adapt to changing environments, but
also the precision of the replication process itself might have gradually increased.

Such speculations about different possible paths to produce stable life, i.e
cells that are able to reproduce, that have a metabolism (use energy to decrease
their own entropy) and are able to adapt, moreover the ability to evolve on larger
time scales, enable us to better understand the organisatorial prerequisites for the
working of even the simplest present cellular signalling pathway. Compartmental
organisation in other words is defining the necessary system boundaries or form
without which the signalling system and other cellular function would never have
come into existence.

It is fruitful to approach problems in computer science with similar biological
ideas and concepts. Such cross-over is called natural computing, with membrane
computing being an important sub-discipline. We will introduce another type of
computational device, a density approach to molecular concentrations inside the
cell. In other words we will make use of continuous distributions of molecules,
so go from a discrete to a continuous perspective. It is tempting to compare the
latter with ideas from membrane computing.

2 A Modular Approach

The problem which we will call ’Cellular Interface Problem’ (CIP) is constructed
with the help of partial differential equations (PDE) defined on the cell volumes,
and interface or boundary conditions defined on the membranes, depending
whether a membrane is a system boundary, or whether the membrane is enclos-
ing a compartment internal to the system. The state of the system is characterised
by concentrations of molecules, again either defined on compartmental volumes or
as concentrations on the interfaces. Clearly what we have in mind is a direct corre-
spondence between a density of molecules that can be directly measured in a cell,
for example with the help of a confocal microscope. We will come back to this point
in an own section. In this view the system state is very closely chosen to represent
measurable quantities, i.e. can be called ’empirical’. We note that ’empirical’ nec-
essarily can only be defined according to a given spatial scale, which here is the one
of the microscope. We are aiming at simulating the time course of concentration
changes in the cell which if predicted correctly, i.e. if there is a correspondence be-
tween measured data and simulated data, can tell us something about the working
of the ’real’ cell. The system state is a function of time t and space x, so is spatially
explicit. We aremaking this choice becausewe are interested in transport processes
not only across the membrane, but also inside each cellular compartment. Many
more examples and simulations related to this definition can be found in [14].

2.1 Events

Any model describing changes in molecular distribution and reaction between
species is necessarily event driven. Here the basic events are either molecular
displacements, numbers of reactions between species of molecules, or confor-
mational changes of molecules (like proteins), all relative to a given time scale
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(interval) δ > 0 assumed to be small but sufficiently large such that at least one
displacement or reaction/conformational change is expected to happen. There is
a universal clock assumed for all these events, and all possible events can take
place in parallel. At the given typical physical scales related to the microscope
this event structure is assumed to be close to reality.

2.2 Membrane System

The membrane system of a biological cell consists of a lipid bilayer. Its chemical
properties determine which molecules can pass this membrane spontaneously,
or need help in passing it. This might require energy and is then called active
transport. There are other forms of transport in biological cells, for example
vesicles budding from the membrane and fusing to a membrane at a different
location (secretory pathway). But this will not be considered in the following
as this would mean we could not work with a fixed geometry of the membrane
system. Here we consider a fixed general setting, for simplicity in two spatial
dimensions only. The outer membrane (cell wall) is represented by a piecewise
smooth boundary denoted by Γc, see Fig.1. The volume encircled by Γc and
representing the cytoplasm is given by Ωc. There are possibly nested compart-
ments lying entirely inside Ωc. The largest is typically the cell nucleus, and the
mathematical counterpart of the nuclear envelope is denoted by Γn, the volume
encircled by Ωn. There are possibly different substructures inside Ωn, not nec-
essarily modelling a lipid bilayer, but definitely an area with different properties
of the medium where a molecule might have to pass in a different way. Such
areas are modelled again by subdomains Ωi, i = 1, . . . , s, with corresponding
boundaries Γi, i = 1, . . . , s.

Fig. 1. A compact smooth domain Ωc with interior Ωc and sub-subdomains Ωi, i =
1, . . . , s inside a subdomain Ωn of Ωc. The right graph shows the hierarchy of the
domain data-structure of the example.
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2.3 Ion Channels and Transporters

We are interested to consider membranes which are permeable and which al-
low molecules to pass from one compartment to another. Biologically one way
of transport is through channels which are here considered as molecular ma-
chines constituted by macromolecules which can be in different conformations.
Such macromolecules allow to transfer smaller molecules from one membrane
side to the other, often through a regulated mechanism. Experiments show that
the movement of a molecule through the channel can be considered sequentially
and discretely, often corresponding to conformational changes. The nature of the
steps is dictated by the molecular interactions, this implies that from the micro-
scopic point of view the transitions form a stochastic process. In the following we
consider some fundamental structure of such a process. We spend some time on
this example because it will explain very easily why we need to introduce tem-
poral and spatial scales into the derivation of a CIP. A channel can be described
as a cell compartment with a certain number of internal sub-compartments. Let
this number be m. If we want to include the two exits we can say that the total
number is m + 2. A picture of this can be see in Fig.2. A molecule crossing the
channel has to move from compartment 0 to compartment m+1. The transitions
are in general reversible.

Fig. 2. A schematic view of a channel in a membrane. Compartments left and right
are external to the channel.

Now let us observe that the state of the channel can be described by con-
sidering the occupation of one of the m + 2 sub-compartments. We now make
the crucial simplifying assumption that only one single molecule can cross the
channel at one time. This allows us to define the state space of the channel as



40 M. Kirkilionis et al.

S
.= {i ∈ {0, ..., m + 2}}. (1)

Now any motion in the channel of a molecule in the direction from A to B
(see in Fig.2) will correspond to a sequence of transitions in S of the form

i → i + 1.

Similarly any motion of a molecule from B to A (see in Fig.2) will correspond
to a sequence of transitions of the type

i → i − 1.

Since the transitions are stochastic such a structure is naturally described
through the notion of a Markov Chain (MC). On S the Markov chain is con-
structed by determining the transition probabilities

P (s = i|s = j) = pij with i, j ∈ S.

The transition probabilities satisfy the Markov property:

pi1i3 =
∑

i2∈S

pi1i2pi2i3 . (2)

One can easily note that since transition are possible only through adjacent
sub-compartments we have that

pij = 0 for j > i + 1 and j < i − 1.

The natural way to construct the transition probability matrix P = (pij) is
to consider its infinitesimal generator defined as

K = lim
t→0

P (t) − I
t

. (3)

Let pi(t) be the probability that a time t the channel is in state i, then the
time evolution of the Markov chain is governed by

dpi(t)
dt

=
∑

j∈S

pi(t)Kji. (4)

Looking at the scheme in Fig.2 we can encode the Markov chain in a graph,
the so-called Interaction Graph.

Each vertex in the graph represents a sub-compartment and the arrows are
drawn according to the following rule:

There is an arrow from i to j if and only if Kij �= 0. (5)

Recall that in any Markov chain Kii = −
∑

j �=i Kij and Kij ≥ 0 for any
i �= j. We should notice that in the example in Fig.3 the channel is one way: a
molecule that enters the channel in 0 eventually will reach the other end m + 1.



A Definition of Cellular Interface Problems 41

Fig. 3. The channel interaction graph

From the modelling point of view the matrix K is formed by the rates at which
in unit time transitions occur. Such rates can be derived by statistical mechanics
arguments. Finally recall a crucial property of Markov chains: ergodicity. For our
purpose we are interested in observing that for large times (t → ∞) equation
(4) a steady state solution given by solving:

p K = 0 or KT p = 0. (6)

The solution of (6) can be normalised and it is called invariant measure.
Other transporters establishing for example a so-called symport or antiport can
be modelled in a similar way. The concept of assigning a graph to molecular
transitions, with the interaction graph being the most basic one, can be found
in [26], and for mass-action reaction systems in [10].

2.4 Fluxes across Membranes and Movement Inside Compartments

In the following we restrict our attention to derive flux conditions across just a
single membrane. Let therefore Ω now just be a two dimensional domain divided
into two sub-domains Ω1, Ω2 such that

Ω = Ω1 ∪ Ω2.

The membrane is geometrically represented by the common boundary of the
two sub-domains

Γ = Ω1 ∩ Ω2.

Fluxes across Membranes Derived from Microscopic Channel Dynam-
ics. In the membrane (interface) Γ we assume there are channels which can be
open for molecules to cross the membrane, as introduced in the previous section.
For simplicity let us assume there is a simple diffusion process inside each com-
partment described by the standard diffusion equation in both Ω1 and Ω2. Each
of the channels in Γ is described independently by an m-state Markov chain
whose generator is K(y), where y ∈ Γ . Then the diffusion scaling δ2/τ = D
allows two possible boundary conditions at Γ . Let ρi be the molecular density
in Ωi and the membrane be given according to the convention
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Γ = {(x, y) ∈ Ω1 ∪ Ω2 : x = 0}.

As we will motivate in the following there will be two different interface con-
ditions that are induced by the channel dynamics, and which are related to
different relative time-scales of channel transitions with respect to transport in-
side a compartment of a given molecule. By using the interface Γ coordinates,
and by denoting with π(y) = (π1(y), . . . , πm(y)) the transition probabilities of
all channels located at y ∈ Γ (we used the notation p before for a single channel),
these different interface conditions are:

1. If the Markov chain evolves on a time scale equal to the diffusion then the
boundary condition is

ρ1(t, 0, y) = π1(t, y), ρ2(t, 0, y) = πm(t, y),

and

∂ρ1(t, 0, y)
∂x

=
1
D

(k12(y)ρ1(t, 0, y) − k21(y)π2(t, y)) ,

∂ρ2(t, 0, y)
∂x

=
1
D

(−km−1,m(y)ρ2(t, 0, y) + km,m−1(y)πm−1(t, y)) .

(7)

As we consider our previous channel example embedded into a spatial context
it should be noted that the entries of K are nonzero only in the diagonal and
the two off-diagonals. Furthermore it was assumed that at the ’left’ gate we
have K11 = −k12

δ , K12 = k12
δ , K21 = k21

δ and K22 = −k21
δ −k23, with the kij

being given positive transition rates characterising the channel (see Fig.3),
and δ a spatial scale. Symmetric assumptions have been made for transition
rates at the ’right’ channel gate. The spatial scale δ will be the grid size of a
grid introduced to perform the continuum limit of a transport process inside
the volume of the compartments. This setting of the transition rates might
be of course different for different kinds of transport through the membrane
that do not follow the discrete diffusion logic. Here π1(t, y), and πm(t, y) are
the probability distributions on the two exits of the channel at (0, y). Their
dynamics is given by the ODE

dπα(t, y)
dt

=
m∑

β=1

Kαβ(y)πβ(t, y), α = 2, ..., m − 1.

These conditions as the ones below should hold for all y ∈ Γ , and t ∈ [t0, T ],
with t0 the start of the experiment, and T the time where the experiments
or at least its observation stops.

2. If the Markov chain evolves on a time scale faster than the diffusion then
the boundary condition is

ρ1(t, 0, y) = μ1(y), ρ2(t, 0, y) = μm(y),

where μ(y) = (μ1(y), . . . , μm(y)) is the invariant measure of the Markov
chain modelling the channel.
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We now motivate the derivation of the interface conditions given above. Let
us partition Ω into a a two dimensional lattice Λδ = (δZ)2, with δ > 0 being the
fundamental length of the lattice Λδ. Clearly as δ → 0 the lattice tends to R

2.
Each point in Λδ is identified by a couple of coordinates (nx, ny). We denote by
Pi(t, nx, ny) the probability that a particle is in the site (nx, ny) at time t. Let
τ > 0 be a given time scale. We consider the following discrete diffusion process
in Ωi:

Pi(t + τ, nx, ny) =
1
2
Dx(Pi(t, nx, ny)) +

1
2
Dy(Pi(t, nx, ny), ) (8)

where Dx and Dy are operators defined by

Dxf(nx, ny)
.= f(nx + 1, ny) + f(nx − 1, ny), (9)

Dyf(nx, ny)
.= f(nx, ny + 1) + f(nx, ny − 1). (10)

Without loss of generality the membrane Γ can be parameterised by

Γ = {(nx, ny) ∈ Λδ : nx = 0}.

On the membrane the diffusion process implies that

Pi(t + τ, 0, ny) = Pi(t, −1, ny) +
1
2
Dy(Pi(t, 0, ny)). (11)

Now we introduce the channels into Γ . At each point (0, ny) ∈ Γ we assume
that there exists a channel who has a certain number of internal m states as
before (see Figure 2). Let C be the (discrete) state space of a channel. At the
moment we do not enter into the details of the mechanism but simply assume
that each channel is described by a Markov chain of the form

Πα(t + τ, 0, ny) = Πα(t, 0, ny) + τ

m∑

β=1

Kαβ(δ, ny)Πβ(t, ny). (12)

The function Πα(t, 0, ny) is the probability that a single molecule is in (0, ny) ∈
Λδ at time t, and in the state α of the channel. By continuity we need to require
the following boundary conditions:

P1(t, 0, ny) = Π1(t, 0, ny), P2(t, 0, ny) = Πm(t, 0, ny). (13)

Using (13) and substituting (12) into (11) we obtain:

Pi(t, 0, ny)+τ

m∑

β=1

Kiβ(δ, ny)Πβ(t, ny) = Pi(t, −1, ny))+
1
2
Dy(Pi(t, 0, ny)). (14)

Next we take the continuum limit to obtain densities, denoted by ρ:

Pi(t, x/δ, y/δ) = ρi,δ(t, x, y), (15)
Π1(t, y/δ) = ρ1,δ(t, 0, y), (16)
Πm(t, y/δ) = ρ2,δ(t, 0, y), (17)

Πα(t, y/δ) = πα,δ(t, y) for α �= 1, m. (18)
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Note that πα,δ(t, y) can be interpreted as the number of channels in state α
present in a membrane segment of length δ in Γ . Making the substitution in
(8) and taking the limit δ, τ → 0 with δ2

τ = D > 0 we obtain by a standard
calculation that

∂ρi(t, x, y)
∂t

= D∇2ρi(t, x, y), i = 1, 2. (19)

For the boundary condition, retaining δ, τ greater than zero, we obtain

ρi,δ(t + τ, 0, y) − ρ1,δ(t, 0, y) = τ K11(δ, y)ρ1,δ(t, 0, y) + τ K1m(δ, y)ρ2,δ(t, 0, y)+

+τ
∑

β �=1,m

K1β(δ, y)πβ,δ(t, y),

ρm,δ(t + τ, 0, y) − ρm,δ(t, 0, y) = τ Km1(δ, y)ρ1,δ(t, 0, y)+

+τ Kmm(δ, y)ρ2,δ(t, 0, y) + τ
∑

β �=1,m

K1β(δ, y)πβ,δ(t, y),

πα(t + τ, y) − πα(t, y) = τ Kα1(δ, y)ρ1,δ(t, 0, y) + τ Kαm(δ, y)ρ2,δ(t, 0, y)+

+τ
m∑

β=1

Kαβ(δ, y)πβ,δ(t, y) for α �= 1, m,

and

ρ1,δ(t, 0, y) − ρ1,δ(t, −δ, y) = −τ K11(δ, y)ρ1,δ(t, 0, y) − τ K1m(δ, y)ρ2,δ(t, 0, y)+

−τ
∑

β �=1,m

K1β(δ, y)πβ,δ(t, y) +
1
2
(ρ1,δ(t, 0, y + δ) + ρ1,δ(t, 0, y − δ)),

ρ2,δ(t, 0, y) − ρ2,δ(t, −δ, y)=−τ Km1(δ, y)ρ1,δ(t, 0, y) − τ Kmm(δ, y)ρ2,δ(t, 0, y)+

−τ
∑

β �=1,m

Kmβ(δ, y)πβ,δ(t, y) +
1
2
(ρ2,δ(t, 0, y + δ) + ρ2,δ(t, 0, y − δ)).

These expression can be further simplified by considering that K1m(δ, y) =
Km1(δ, y) = 0, because the two ends on the channel do not communicate directly.
The new conditions read

ρ1,δ(t+τ, 0, y)−ρ1,δ(t, 0, y) = τ K11(δ, y)ρ1,δ(t, 0, y)+τ
∑

β �=1,m

K1β(δ, y)πβ,δ(t, y),

ρm,δ(t + τ, 0, y) − ρm,δ(t, 0, y) = τ Kmm(δ, y)ρ2,δ(t, 0, y) +

+τ
∑

β �=1,m

K1β(δ, y)πβ,δ(t, y),
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πα,δ(t + τ, y) − πα,δ(t, y) = τ Kα1(δ, y)ρ1,δ(t, 0, y) + τ Kαm(δ, y)ρ2,δ(t, 0, y)+

+τ
m∑

β=1

Kαβ(δ, y)πβ,δ(t, y) for α �= 1, m,

and

ρ1,δ(t, 0, y) − ρ1,δ(t, −δ, y) = −τ K11(δ, y)ρ1,δ(t, 0, y)+

−τ
∑

β �=1,m

K1β(δ, y)πβ,δ(t, y) +
1
2
(ρ1,δ(t, 0, y + δ) + ρ1,δ(t, 0, y − δ)),

ρ2,δ(t, 0, y) − ρ2,δ(t, −δ, y) = −τ Kmm(δ, y)ρ2,δ(t, 0, y)+

−τ
∑

β �=1,m

Kmβ(δ, y)πβ,δ(t, y) +
1
2
(ρ2,δ(t, 0, y + δ) + ρ2,δ(t, 0, y − δ)).

To simplify these conditions let us consider

πα,δ(t + τ, y) − πα,δ(t, y) = τ
∂πα,δ(t, y)

∂t
+ o(τ),

ρi,δ(t + τ, 0, y) − ρi,δ(t, 0, y) = τ
∂ρi,δ(t, 0, y)

∂t
+ o(τ),

ρi,δ(t, 0, y) − ρi,δ(t, −δ, y) = δ
∂ρi,δ(t, 0, y)

∂x
+ o(δ),

and
ρi,δ(t, 0, y + δ) + ρi,δ(t, 0, y − δ) = o(δ).

Using the previous approximation the boundary condition can finally be
rewritten as

∂ρ1,δ(t, 0, y)
∂t

= K11(δ, y)ρ1,δ(t, 0, y) +
∑

β �=1,m

K1β(δ, y)πβ,δ(t, y),

∂ρ2,δ(t, 0, y)
∂t

= Kmm(δ, y)ρ2,δ(t, 0, y) +
∑

β �=1,m

K1β(δ, y)πβ,δ(t, y),

∂πα,δ(t, y)
∂t

= Kα1(δ, y)ρ1,δ(t, 0, y) + Kαm(δ, y)ρ2,δ(t, 0, y)

+
∑m

β=1 Kαβ(δ, y)πβ,δ(t, y) for α �= 1, m,

∂ρ1,δ(t, 0, y)
∂x

= −τ

δ
K11(δ, y)ρ1,δ(t, 0, y) − τ

δ

∑

β �=1,m

K1β(δ, y)πβ,δ(t, y),

∂ρ2,δ(t, 0, y)
∂x

= −τ

δ
Kmm(δ, y)ρ2,δ(t, 0, y) − τ

δ

∑

β �=1,m

Kmβ(δ, y)πβ,δ(t, y).

(20)
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In the following we want to take the limit δ, τ → 0 while preserving the
diffusive scale δ2

τ = D. By inspection of equations (20) one can note that the
limits that need to be studied are

lim
δ→0

Kαβ(δ, y), (21)

and
lim
δ→0

τ

δ
Kαβ(δ, y) = lim

δ→0

δ

D
Kαβ(δ, y). (22)

The limits (21) and (22) cannot be both finite and different from zero at the
same time. Therefore we have two cases, as introduced in the beginning of this
subsection:

(Case A): Suppose that

lim
δ→0

Kαβ(δ, y) = Kαβ(y). (23)

Clearly we have

lim
δ→0

πδ(t, y) = π(t, y) = (π1(t, y), . . . , πm(t, y))

and in the two compartments the two densities

ρ1(t, x, y), ρ2(t, x, y)

are defined. They satisfy

ρ1(t, 0, y) = π1(t, y), ρ2(t, x, y) = π4(t, y)

by continuity at the boundary. We just consider next the Neumann part of the
interface conditions. When we apply the general equations (20) to our specific
channel setting, moreover using the diffusion scaling D = δ2

τ , we get

∂ρ1(t, 0, y)
∂x

=
1
D

(k12(y)ρ1(t, 0, y) − k21(y)π2(t, y)) ,

∂ρ2(t, 0, y)
∂x

=
1
D

(−km−1,m(y)ρ2(t, 0, y) + km,m−1(y)π3(t, y)) .

(24)

(Case B): Suppose that

lim
δ→0

δ

D
Kαβ(δ, y) =

1
D

K̃αβ(y). (25)

This implies that

Kαβ(δ, y) 
 1
δ

K̃αβ(y).
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So the boundary conditions are of the form

∂ρ1,δ(t, 0, y)
∂t

=
1
δ
K̃11(y)ρ1,δ(t, 0, y) +

1
δ

∑

β �=1,m

K̃1β(y)πβ,δ(t, y),

∂ρ2,δ(t, 0, y)
∂t

=
1
δ
K̃mm(y)ρ2,δ(t, 0, y) +

1
δ

∑

β �=1,m

K̃1β(y)πβ,δ(t, y),

∂πα,δ(t, y)
∂t

=
1
δ
K̃α1(y)ρ1,δ(t, 0, y) +

1
δ
K̃αm(y)ρ2,δ(t, 0, y)+

+ 1
δ

∑m
β=1 K̃αβ(y)πβ,δ(t, y) for α �= 1, m,

∂ρ1,δ(t, 0, y)
∂x

= − 1
D

K̃11(y)ρ1,δ(t, 0, y) − 1
D

∑

β �=1,m

K̃1β(y)πβ,δ(t, y),

∂ρ2,δ(t, 0, y)
∂x

= − 1
D

K̃mm(y)ρ2,δ(t, 0, y) − 1
D

∑

β �=1,m

K̃mβ(y)πβ,δ(t, y).

(26)

For δ → 0 the first three equations can be solved by singular perturbation
theory. The leading order solution is K̃(y)μ(y) = 0 where μ(y) is the invariant
measure of the Markov chain describing the channel. Therefore the interface
conditions we get are

ρ1(t, 0, y) = μ1(y),
πα(t, 0, y) = μα(y) for α = 2...m − 1,
ρ2(t, 0, y) = μm(y).

(27)

Note that the choice (27) solves also the last two equations in (26).

Other Classical Boundary Conditions across Membranes. In case same
relatively small molecules can just cross a lipid bilayer this can be modelled
in a PDE setting by so-called Robin boundary conditions without the need to
introduce an up-scaling step as we have done before in case of a simple channel
dynamics. Consider again some piece of membrane denoted by Γ . Then this
condition is given by

a(t, y)
∂

∂ν
ρ + b(t, y)ρ = c(t, y) on [0, T ] × Γ, (28)

where ν is the outward pointing normal vector (we have now assumed that the
piece of membrane can be curved, whereas before Γ without loss of generality
was considered to be a piece of straight vertical line), and a, b and c are contin-
uous and sufficiently smooth functions characteristic for the membrane and the
molecules we are considering. The concentration ρ is considered to describe the
molecular distributions inside a compartment, whereas the outer compartment
concentration is assumed to be constant and therefore not considered as a state
variable.

Transport Inside Compartments. Let Ω now denote the volume (here area,
as we are only considering the two-dimensional case) of some cellular com-
partment. The molecules will move inside the compartment according to some
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stochastic process. Without doing the up-scaling here explicitly, but indeed fol-
lowing very much the considerations about the channel dynamics in our detailed
previous section on channel dynamics, the resulting equation on a macroscopic
scale (here assumed to be the scale of the microscope) can lead to the following
equations:

∂

∂t
ρ(t, x) − D�ρ(t, x) = 0 on [0, T ] × Ω. (29)

This is the simplest case, i.e. here we would consider isotropic standard dif-
fusion, with a diffusion coefficient D > 0. The operator denoted by � = ∇2

is the so-called Laplace operator already used before in equation (19). Such an
equation would be the limit equation resulting from Brownian motion. There
are more sophisticated processes possible. One assumption could be that the
molecules get stuck from time to time anywhere in Ω which can be modelled by
introducing a mobile and an immobile sub-population of molecules:

∂tρmobile(t, x) = DΔρmobile(t, x)
+ kb ρimmobile(t, x) − kd ρmobile(t, x) on [0, T ] × Ω (30)

∂tρimmobile(t, x) = −kb ρimmobile(t, x) + kd ρmobile(t, x) on [0, T ] × Ω (31)

The positive constants kb and kd determine the rated at which ’bound’ mole-
cules are released and enter the mobile fraction, or get caught and are not able
to diffuse any more. Clearly the observed molecular concentration as observed
by the microscope would be given as the sum of the mobil and immobile frac-
tion, i.e. ρ = ρmobile +ρimmobile. There are of course other mathematical ways to
model such ’sticky’ behaviour, Again one can first introduce certain stochastic
processes (different from Brownian motion) and derive an effective equation by
up-scaling. This can lead to equations with so called fractional diffusion opera-
tors, giving rise to sub-diffusive behaviour. There can be directed movement of
molecules as well, for example given by the fact that transporter molecules can
actively transport other molecules along the cytoskeletton of the cell.

3 Combining the Modules

In order to obtain a complete meaningful specific molecular distribution model,
i.e. one that eventually can be compared with data, we need to ascribe boundary
and interface conditions to each of the boundaries/interfaces Γc, Γn and Γi,
i = 1, 2, 3, see Fig. 1, and transport operators for each of the domains Ωc,
Ωn and Ωi, i = 1, 2, 3. Of course the same holds in case of a more general
membrane system given by a tree describing the hierarchy of any system of
nested subdomains. In the following we give just one simple possible example of
such a complete model, but emphasise the modular character we have introduced.
In reality biological knowledge and insight will lead to different hypothesis about
movement and translocation of specific molecules across membranes, leading to
different transport operators defined inside the compartments, and boundary
and interface conditions between the compartments. Our example model is:
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We assume that at Γc we can impose from outside the cell a fixed molecular
concentration for some time:

ρc(t, y) = c(t, y) on [0, t∗] × Γc, (32)
∂

∂ν
ρc(t, y) = 0 on [t∗, T ] × Γc, (33)

∂tρc(t, x) = DΔρc(t, x) in [0, T ] × Ωc, (34)

At Γn we assume channel dynamics:

ρc(t, y) = π1(t, y), ρn,mobile(t, y) = πm(t, y), on [0, T ] × Γn, (35)
∂ρc(t, y)

∂ν
=

1
D

(k12(y)ρc(t, y) − k21(y)π2(t, y)) , on [0, T ] × Γn, (36)

∂ρn,mobile(t, y)
∂ν

=
1
D

(−km−1,m(y)ρn(t, y) + km,m−1(y)πm−1(t, y)) , (37)

on [0, T ] × Γn,

dπi(t, y)
dt

=

ki−1,i(y)πi−1(t, y) − (ki,i−1(y) + ki,i+1(y))πi(t, y) + ki+1,i(y)πi+1(t, y),(38)
i = 2, ..., m − 1, on [0, T ] × Γn,

Inside Ωn we assume molecules can possibly bind to some structure:

∂tρn,mobile(t, x) = DΔρn,mobile(t, x)
+kb(x) ρn,immobile(t, x) − kd(x) ρn,mobile(t, x) in [0, T ] × Ωn, (39)

∂tρn,immobile(t, x) = −kb(x) ρn,immobile(t, x) + kd(x) ρn,mobile(t, x)
on [0, T ] × Ωn, (40)

Inside Ωn we assume there are some subdomains where diffusing molecules will
not be able to penetrate:

∂

∂ν
ρn,mobile(t, y) = 0 on [0, T ] × Γi, i = 1, 2, 3. (41)

The model still needs to be complemented with initial conditions. The state
of the system is given by the molecular concentrations ρc(t, x), ρn(t, x), and the
states π(t, y) = (π1(t, y), . . . , πm(t, y)), where by continuity π1(t, y) = ρc(t, y)
and πm(t, y) = ρn,mobile(t, y) for y ∈ Γn and al t > 0. The initial conditions can
then be written as:

(i) Initial conditions for concentrations in compartments:

ρc(t, x) =ρc,0(x) on Ωc, (42)

ρn,mobile(t, x) =ρn,mobile,0(x) on Ωn, (43)
ρn,immobile(t, x) =ρn,mobile,0(x) on Ωn, (44)
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(ii) For the channel variable we only need to assign initial values for the states
not directly connected to the compartments:

π2(0) = π2,0, . . . , πm−1(0) = πm−1,0. (45)

All initial conditions which are either functions or constant values are assumed
to be non-negative. We would like to put this well-posed1 mathematical model
into a cell biology context. The boundary Γc is modelling the outer cell wall. The
cell is embedded in a solution where the concentration of a ligand activating some
receptor molecules can be kept controlled in a time interval [0, t∗], with 0 > t∗ >
T . After time t∗ this ligand is washed away. The activated receptor activates a
transcription factor (TF), and it is this activated transcription factor which is
assumed to be our molecular species. The activation is close to the cell wall and
described by the continuous function c(t, y) > 0. The TF cannot leave the cell
after the activation of the receptors has stopped, equation (33). Now the TF is
freely diffusing in the cytoplasm (equation (34)). Some TF molecules will hit the
nuclear envelope modelled by Γn. In order to reach any gene inside the nucleus
the TF has to cross a nuclear porous complex (NPC). In the current model the
NPC is simply modelled by a linear channel, modelled by a linear Markov chain.
It also has to be noted that the pores are not modelled as discrete entities. We
assume there is a concentration of such channels across the membrane system,
of course this is a mathematical abstraction perhaps not justified at a resolution
of a confocal microscope. Inside the nucleus modelled by Ωn the TF can possibly
bind to some structure, for example the chromatin. The TF can also be released
again. The density of the structure and therefore the probability of a TF molecule
to bind or unbind is encoded in the functions kb(x) > 0 and kd(x) > 0. Finally
there are regions in the nucleus where the TF is not able to enter, for example a
nucleosome which is assumed to be too dense. Such regions are modelled by the
domains Ω1, Ω2 and Ω3. At time T we stop to look at this ’in-silico’2 experiment.

3.1 Reactions among Several Species of Molecules

Our model proposed in the previous section, and composed of modules described
earlier, is already having some complexity. Nevertheless we have to remind our-
selves that in reality every such molecule will have to take part in different
molecular reactions, mostly binding to form so-called complexes. A transcrip-
tion factor for example will need to bind to another molecule3 in order to be
really able to cross the NPCs. To include reactions we will need to increase the
number of molecular species. In case these additional species will be present in
the same domains as the TF modelled before, each of these additional species

1 This would not be too hard to prove by standard techniques. Nevertheless this is a
non-standard PDE problem, mostly due to the interface dynamics defined on one of
the boundaries.

2 After implementation in a computer, which still needs a not straightforward discreti-
sation step.

3 For example to the RAN-GDP complex. See the RAN pathway.
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will add the same number of state variables as was needed to model the TF. Re-
actions are transitions between species, and as those we can also formally define
the mobile and immobile phase of the same species as two different populations
of molecules. In this case equations (39) and (40) already show how reaction
terms enter the model. We give a short overview to mass-action kinetics in a
non-spatial setting. The resulting reaction terms would be needed to be incor-
porated to the spatially explicit model at each location x in a domain where
such a reaction can take place. For simplicity we only consider and discuss here
the well known deterministic mass-action reaction systems and fix the notation.
It should be noted that the local dynamical system (i.e. for each location x in
a compartment) derived from the reaction scheme in this interpretation is only
valid with different implicit assumptions made for the mechanisms of the reac-
tions and the properties and abundance of the different molecules involved. In
particular there has been a law of large numbers being applied to the particle
system, and the continuum limit is only represented by the so-called ’average
dynamics’, i.e. any stochastic fluctuations are assumed to be negligible. Also we
assume each particle of every species remains unchanged in its properties during
reactions and only ’varies’ by forming molecules with other species or molecules
of its own kind. Such a chemical mass-action reaction system with r reactions
and m reacting species is then described by a time-continuous dynamical system
defined for each x ∈ Ω which is directly associated to the reaction scheme. Each
such reaction can be written in the form

α1jS1 + · · · + αnjSn
kj→ β1jS1 + · · · + βnjSn, j = 1, ..., r, (46)

where the Si, 1 ≤ i ≤ n, are the chemical species and each kj > 0 is the
kinetic constant of the j-th reaction. The kinetic coefficients take into account
all effects on the reaction rate apart from reactant concentrations, for example,
temperature, light conditions, or ionic strength in the reaction. The coefficients
αij and βij represent the number of Si molecules participating in j-th reaction at
reactant and product stages, respectively. The net amount of species Si produced
or consumed by the reaction is named the stoichiometric coefficient and defined
by nij := βij − αij . These coefficients are arranged in a stoichiometric matrix,
denoted by N . The rate at which the j-th reaction takes place in mass-action
kinetics takes the form of a monomial,

vj(x, kj) = kj

m∏

i=1

(ρi)κij ,

where κij is the molecularity of the species Si in the j-th reaction, and ρi is the
concentration of the ith species. Also in our mass-action kinetic interpretation
the kinetic exponent κij reduces to being simply αij . Kinetic exponents are
arranged in a kinetic matrix, denoted by κ. The time evolution of the species
concentrations is described by the following initial value problem:

ρ̇ = Nv(ρ, k), (47)
ρ(0) > 0, (48)
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where ρ(0) are initial molecular concentrations. The vector

ρ(t, x) = (ρ1(t, x), . . . , ρn(t, x))T

is describing the concentrations of the n different molecular species S1, . . . , Sn at
any location x in one of the compartments of our membrane system. Equation
(47) is delivering the so called reaction terms, it does neglect all transport or
transportation over membranes of any of the species. We need to enlarge the
state space associated to our complete model for a single molecular species as
described in section 3. The state of the extended system is now given by the
molecular concentrations

ρc(t, x) = (ρ1
c(t, x), . . . , ρn

c (t, x))T , ρn(t, x) = (ρ1
n(t, x), . . . , ρn

n(t, x))T ,

and the states π(t, y) = (π1
1(t, y), . . . , πn

m(t, y)) which can now be interpreted as
a m × n-matrix. Of course we make a number of assumption implicitly, like the
one that molecules of different species do not interact in the channel etc. All such
issues would need to be fine-tuned and checked in a realistic modelling attempt.
We should also note that each single equation of the model in the beginning
of section 3 is now becoming a system of n equations corresponding to the n
different species we have introduced. Finally interesting qualitative behaviours
such as bistability and oscillations have been observed in such reaction systems
of mass-action type, see [1,6,9,17,11]. They can be interpreted to result from a
bifurcation, i.e. a qualitative change in the behaviour of the system’s solutions
when one or more of the parameters are varied. Hence, a common approach in
identifying such behaviour has been to derive conditions under which the system
is able to undergo an associated bifurcation, see [29,11]. Such considerations hold
for each location in space independently. In combination with transport of mole-
cules we can expect that from local complex dynamics (such as oscillations) very
complex spatial pattern formation can arise. See for example different chapters
in [24], especially chapter 1 by Fiedler and Scheel, and chapter 3 by Paul Fife.
Very often elementary chemical reactions of mass-action type are too complex
for modelling biological systems. After time scaling the reactions schemes can be
often simplified and then are called ’enzyme kinetics’, see among others [40,23].

3.2 The Necessary Discretisation

There a various way to discretise the PDE models we have finally derived. It
should be noted that the PDE did result from up-scaling of discrete objects, for
example particles jumping on a fine grid which grid size was scaled to zero. In
other words, and for later discussion, we make a step from discrete stochastic
processes to continuum models, and finally a step back to discrete models which
are discretisations of continuum models, as those are the only ones that can be
currently interpreted by present standard computer architecture. We choose a
form of a so-called mesh-free discretisation based on a partition of unity (PUM),
a class of generalised finite element methods. We explain the discretisation step
for a single given diffusion equation in one of our compartments. Let H be an
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appropriate Hilbert space (H = H1 for 2nd order problems like the diffusion
equation). We can obtain the variational form of the PDE using a continuous
bilinear form a : H × H → R and a linear form l ∈ H ′ along with appropriate
boundary or interface conditions. The final problem we seek to solve may be
summarised as

Find u ∈ H s.t. a(u, v) = l(v) ∀v ∈ H. (49)

The basic method of discretisation in the PUM framework is then given by
the following steps:

– Given a domain Ω on which a linear scalar PDE is defined, open sets called
patches are used to form a cover of the domain. (ΩN := {ωi}N

i=1, with Ω ⊂⋃
i ωi).

– A partition of unity {ϕi}N
i=1 subordinate to the cover is constructed.

– The local function space on patch ωi, 1 ≤ i ≤ N , is given by Vi :=
span{ψk

i }pi

k=1, with {ψk
i }pi

k=1 being a set of base functions defining the approx-
imation space for each patch. The global approximation space, also called
the trial or the PUM space, is defined by VPU := span{ϕiψ

k
i }i,k. Replacing

H by the finite dimensional subspace4 VPU, a global approximation uh to
the unknown solution u of the PDE is defined as a (weighted) sum of local
approximation functions on the patches:

uh(x) =
N∑

i=1

ϕi(x)

(
∑

k

ξk
i ψk

i (x)

)
.

– The unknown coefficients ξk
i are determined by substituting the above ap-

proximation into the PDE and using the method of weighted residuals to
derive an algebraic system of equations

Aξ = b. (50)

More detail on the PUM, including a description of its approximation prop-
erties and how to construct the PUM space, may be found in, for example,
[2,3,4,39]. We have implemented the PUM in a C++ code called the Generic
Discretisation Framework (GDF ). See also [12,13,14].

4 What Can Be Measured?

Once the model is implemented on a computer we can compare the simulated
solution with a measured concentration of molecules in a given cell. Typically this
would currently be best done in an in-vivo situation with the help of fluorescent
markers with which the molecules under investigation have been tagged. As

4 Note that VPU is conforming for the Neumann problems we are concerned with in
this article.
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Fig. 4. Key stages of cover construction for a complex shaped compartment. (a) Three
points distributed randomly in a complex domain and the initial cover. (b) An increase
in the number of patches so that the whole domain is covered. Patches have also been
extended by α = 1.2. (c) Optional refinements of the cover. For clarity, the points
are omitted and only the associated patch pictured. Seven patches whose intersection
with the domain are subsets of another patch are labelled ’X’ and will be removed in
the final stage of basic cover construction. (d) The final cover of 159 patches with the
seven patches from frame (c) removed.

there are only very few colours available5 the number of different species that
can be observed at the same time is very limited, and most of the time is just
a single species. We observe the distribution of the molecules with the help of a
microscope, in this context this will be a confocal microscope most of the time.
This can be done at different magnifications which introduces the spatial scale
at which we have to consider the problem. Interestingly enough the pictures we
will retrieve from the microscope are again discrete, i.e. pixel based. This means
we are comparing a discrete solution of a continuum model with the discretised
image of a (on the typical scales given by the resolution chosen) continuous

5 The first one introduced and the one best known is GFP, for Green Fluorescent
Protein.
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distribution of fluorescence in the sample cell. The normal situation we will
encounter is that the fluorescence distribution of the tagged molecules when
starting the observation will be static, i.e. in equilibrium. This is because most
of the experimental conditions start from an equilibrium. If there is for example
a diffusion process, the molecules will have had enough time to evenly distribute
in all compartments which they can enter. In order to make processes visible we
will have to perturb the system. This can be done with the help of a laser with
which we can bleach the fluorescent molecules. In other words we can implement
a sink term for fluorescence6 and the result is a dynamic situation where all
the mechanisms responsible for protein distribution are now acting together to
change the measured fluorescence distribution over time. The most frequently
used approach is FRAP (Fluorescence Recovery After Photobleaching) where a
certain part of the cell is bleached, i.e. all fluorescent molecules in a given area
are bleached in a very short period of time. Subsequently it can be measured
how the now bleached area is recovering its fluorescence. This can only happen
if the tagged molecules outside the bleach area can move, for example again by
a simple diffusion process. We frequently use also longer bleaching periods. This
can be helpful, for example in understanding how many fluorescent molecules
are estimated to be in a closed compartment, or by equilibrating a flux into a
compartment with the sink created by the laser beam. The literature on FRAP
and the other bleaching techniques is huge and we do not try here to give a
complete overview. A paper describing and applying techniques very close to
techniques we frequently use in the laboratory is [31].

The are many more ways of measuring specific parameters and mechanisms
of the model proposed, most of them related to in-vitro measurements, for ex-
ample measuring kinetic constants etc. We cannot go into any detail here, but
emphasise that information from different sources (and on different scales) will be
needed in a successful modelling attempt. Geometrical information is discussed
in the next subsection.

4.1 Cell Compartmental Geometry

The images of Fig. 5 did not allow to retrieve the geometry of the chloroplast. The
membrane system inside a chloropast is very complex, consisting of various so
called thylakoid staples which host the light harvesting complexes. In this case it
would be better get the problem geometry from other sources, for example from
electron microscopy (EM) with a much higher resolution. Sometimes however the
confocal microscopy resolution is sufficient. Figure 6 shows a fibroplast cell which
is almost flat7. Here the essential geometry of the membrane system (plasma
membrane, nuclear envelope) could be recovered.

6 There are also activatable fluorescent molecules which can be activated by a laser
beam. In this case the sink becomes a source.

7 This justifies a 2D approach in the modelling.
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(a) (b)

Fig. 5. The start of two different continuous bleaching experiments with the help of a
confocal microscope. Courtesy of Colin Robinson’s laboratory (University of Warwick).
Each picture shows a single chloroplast inside a single pea protoplast (the outer rigid
cell wall has been removed) plant cell. (a) A bleaching example where pure GFP was
translocated into the chloroplast. This molecule cannot bind to any membranes inside
the chloroplast. As this molecule is rapidly diffusing the bleaching area is only visible
indirectly as a larger area of fluorescence depletion in the lower part of the chloroplast.
(b) A membrane protein has been translocated into the chloroplast. The bleaching
area in the top of the picture can be clearly seen as the protein is largely immobile,
most likely bound to the membrane system. Illustration taken from [13].
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Fig. 6. Domain with nested subdomains. Left the original fibroplast microscopy image
inside a modelling programme to retrieve the (sub-)domain shapes, courtesy of Gimmi
Ratto, see also [33]. Right: The main domain represents the cell body, the main sub-
domain represents the nucleus, and the four inner sub-subdomains (green) represent
nucleoli. Illustration taken from [13].

4.2 Simulation Results

In order to compare measurements with simulations we best visualise the com-
puted solutions on the geometry we have retrieved from the experimental situ-
ation. We illustrate this in Figure 7 with the help of the fibroblast example.



A Definition of Cellular Interface Problems 57

t = 0.05 t = 0.1 t = 0.2

t = 0.3 t = 0.5 t = 1

Fig. 7. Concentration function ρ(t, x) at selected times for a simulation on the entire
two-dimensional fibroblast shape. In this simplified signalling problem a molecule is re-
leased (activated) uniformly at the plasma membrane, diffuses inside the cytoplasm, can
enter the nucleus (a sub-domain, i.e. a nested domain of level 1) following a simple linear
relationship based on concentration differences (not modelling the NPCs in detail), and
finally distributes itself inside the nucleus where it can get bound to the nucleoli modelled
as sub-sub-domains (nested domains of level 2). Illustration taken from [13].

5 The Cell as an Information Processing Device

Membrane computing and modelling and simulation of cellular molecular dis-
tributions have been defined and introduced for completely different purposes.
Membrane computing is very generally speaking taking up successfully ideas
from biology to theoretically analyse algorithms. The concept is to structure
algorithms that eventually can solve certain computational tasks in finite time.
This is a step away from the Turing machine. This theoretical device is as un-
structured as possible, i.e., it was designed to investigate a very general class
of algorithms and checks whether a given programme encoded in bits stops af-
ter performing only finitely many discrete steps (stopping problem). Algorithms
solving problems in a modern world, like regulating traffic in a city, are surely
necessarily much more structured. They are expressed in languages that are ob-
ject oriented, which means there are surely ’membranes’ around the objects that
protect local variables to be overwritten etc. Nevertheless information has to
enter and leave the objects. This is indeed very close to the biological situation
of a cell. As mentioned in the introduction it is very likely that the complex
membrane systems we see in eukaryotic cell are linked to the fact that cells in a



58 M. Kirkilionis et al.

multi-cellular organisation have to solve much more different tasks. Such tasks
are always better and more robustly solved if they can be distributed to differ-
ent specialised sub-units, the organelles. The cell developed different mechanisms
how molecules can pass the membranes, in cell biology called ’translocation’. It
was on purpose we have chosen a transcription factor (TF) to explain how mole-
cular processes do solve the task of reacting to signals stemming from outside the
cell. Such processes are usually called ’signalling pathways’. The transcription
factor is for example released or better activated close to the plasma membrane
where the receptors measuring the outside signal8 are located. They finally have
to reach the respective gene which needs to be activated in order to respond to
the changes of the environment, here signalled by a changing signalling extra-
cellular molecular concentration. Nevertheless the task might not be so straight-
forward. The internal state of the cell may act as a filter of the incoming signal.
A gene might only be switched on if a transcription factor reaches the gene
in the right way. It may be required that the signal is repeated just with the
right amplitude and frequency9. To work as a filtering information processing
device the cell needs to be able to adapt its internal state, including the regu-
lation of membrane proteins enabling other molecules to cross membranes. To
understand these processes it was always good practise to try a forward simu-
lation, i.e. to model the different sub-processes that might lead to the observed
molecular distributions, assemble them in a system, and compare prediction and
measurement for a given period of time. In this paper we have defined a possible
framework with which such computations can be performed. It is striking how
close the concepts are in relation to ideas from membrane computing. This is
no coincidence, as both approaches need to directly abstract cellular biological
performance.

6 Discussion

We can easily see the similarities and differences between membrane computing
and cellular interface problems (CIP) when we look at the definitions of both
’processes’10. Following the definition of a transition P system in [32] (of degree
m ≥ 1) such a system is a construct of the form

Π = (O, C, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm, io),

with

1. O is the (finite and nonempty) alphabet of objects,
2. C ⊂ O is the set of catalysts,
8 For example a hormone.
9 For example such processes are important for synaptic plasticity where only a re-

peated signal should be interpreted as ’learning’, i.e. increasing synaptic transmission
strength.

10 Both membrane computing and cellular interface problems can be called processes
as they necessarily change both generically their state in time.
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3. μ is a membrane structure, consisting of m membranes, labeled 1, 2, . . . , m;
we say that the membrane structure, and hence the system, is of degree m,

4. w1, w2, . . . , wm are strings over O representing the multisets of objects present
in regions 1, 2, . . . , m of the membrane structure,

5. R1, R2, . . . , Rm are nite sets of evolution rules associated with regions 1, 2,
. . . , m of the membrane structure,

6. io is either one of the labels 1, 2, . . . , m, and the respective region is the
output region of the system, or it is 0, and the result of a computation is
collected in the environment of the system.

The rules related to this system are of the form u → v or u → vδ, with u ∈ O+

and v ∈ (O × Tar)∗, where Tar = {here, in, out}. The rules are applied to be
maximally parallel. We first focus on similarities. The membrane structure μ can
be interpreted as identical in the cellular interface problem, but there will be in
addition the geometrical information needed for the simulation. The ’molecules’
in the P systems are also represented by a finite number of different species,
labelled w1, w2, . . .. There is no direct relationship between the evolution rules
R1, R2, . . . , Rm and the transitions in the CIP. Of course the mass-action kinetic
reactions we have briefly discussed do deliver such rules, but there are other
transition rates related to the transport process (not incorporated to the transi-
tion P system) and the translocation processes11 over membranes. The labelling
of the species in order to follow their membership to certain compartments is
done in the same way as in the transition P system.

Many differences between P system and CIP result from the fact that the CIP
is formulated completely discrete, whereas the CIP on its macroscopic level is
completely formulated in a continuous framework. This can be seen by comparing
the alphabet O of the P system and the vector of concentrations ρ formulated for
the CIP. This can be explained by introducing the concept of scale, both in space
and time. For a P system temporal scale is largely irrelevant as it is a powerful
computational concept. Like for a Turing machine it is important to perform
the steps defined by the rules of the P system and the definition of a universal
clock where discrete steps (events) are performed in a maximally parallel way as
long as the system has not reached its final configuration. For the CIP scale is
crucial, both for time and space. Processes can take place at different temporal
and spatial scales, and during the so called multi-scale analysis (see [38,34])
these processes will look different in the final outcome of the model. To make
this point was the reason to include a long discussion of the channel dynamics
where we motivated how to derive the corresponding interface conditions.

It could be argued that this distinction between discrete and continuous frame-
works is artificial. In fact we could just define all transitions of the CIP on a
microscopic scale, where discrete particles would follow stochastic processes. This
is in fact a true statement. Nevertheless a scale problem would arise also in this
framework, the events of different molecular processes would happen at different
time scales. This would mean we would need to go to the smallest time scale
present in the system, and define all other processes in terms of this basic scale.
11 Just as an example we have discussed in detail a given channel dynamics.
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The result would be an infinitely complex system which we presently could not
handle even on large computers. The reason for this is that we would need to
give up using all different averaging procedures which have been developped
to derive simpler, macroscopic, often called ’effective’ equations on relatively
large temporal and spatial scales. It is in fact ’averaging’ in a wider sense that
motivates the use of continuum models if direct modelling and simulation of (bi-
ological) temporal and spatial processes is the given task. It would be interesting
to investigate if such concepts also could apply for the further development of P
systems.
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2. Babuška, I., Banerjee, U., Osborn, J.E.: Meshless and generalized finite element
methods: a survey of some major results. In: [26], p. 120. Springer, Berlin (2003)
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