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Abstract. In the last decade, different computing paradigms and de-
vices inspired by biological and biochemical systems have been proposed.
Here, we recall the notions of membrane systems and the variant of
τ -DPP. We introduce the framework of chemical computing, in order to
show how to describe computations by means of a chemical reaction sys-
tem. Besides the usual encoding of primitive Boolean functions, we also
present encodings for register machines instructions. Finally will discuss
how this computing components can be composed in a more complex
chemical computing system, with a structure based on the membrane
structure of τ -DPP, to move toward a wet implementation using the
micro reactors technology.

1 Introduction

In the recent years, several computational models derived from the formal ab-
straction of chemical reacting systems, such as the chemical abstract machine
[3], and others inspired by the structure and functioning of living cells, have
been proposed. One of these models, introduced in [14], is called P systems
(or membrane systems). The basic definition of P systems consists of a hier-
archical structure composed by several compartments, each one delimited by a
membrane. Inside every compartment, a set of evolution rules and a multiset of
objects are placed. The rules – precisely, multiset rewriting rules – are used to
describe the modification and the communication among the membranes of the
objects occurring inside the system. In particular, the current system state is
represented by means of objects quantities.

Among the different variants of P systems, here we consider τ -DPP, presented
in [5]. Within the framework of τ -DPP, the probabilities are associated to the
rules, following the method introduced by Gillespie in [7]. In particular, τ -DPP
extends the tau-leaping procedure [4] in order to quantitatively simulate the
behavior of complex biological and chemical systems, embedded in membrane
structures composed by different volumes.

The aim of this work is to implement the computational model based on
chemical reacting systems using micro reactors. Micro reactors [9] are laboratory
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devices consisting of several reacting volumes (reactors) with a size at the scale
of the μl, connected by channels used to transport molecules.

Hence, in this paper we will establish a correspondence between τ -DPP and
chemical reacting systems occurring inside micro reactors. There is a close re-
lation between the topological description of the two systems: they are both
composed by several volumes, and among these volumes it is possible to com-
municate molecules. Moreover, the approach based on multiset rewriting rules,
that characterizes τ -DPP, is similar to the chemical reacting process occurring
within a micro reactor. Furthermore, both τ -DPP and chemical reacting systems
emphasize the intrinsic stochasticity of chemical processes. The “noise”, associ-
ated to the stochastic behavior, rules the system dynamics at the micro-scales.
At this scale, the small volumes and the high dilutions result in a system where
particles interaction should be described in a discrete fashion. Finally, the com-
munication processes described by means of communication rules within τ -DPP,
are strictly related to the channels interconnecting the reactors.

In this paper, we show how these analogies can be exploited to build a feasible
wet implementation of P systems (in particular, of τ -DPP). To obtain a descrip-
tion of τ -DPP that can be implemented using micro reactors in a straightforward
way, we consider the encoding of Boolean functions and register machine instruc-
tions through chemical reactions, following the chemical computing principles.

Chemical computing [6] is a technique used to process information by means of
real molecules, modified by chemical reactions, or by using electronic devices that
are programmed following some principles coming from chemistry. Moreover, in
chemical computing, the result of a computation is represented by the emergent
global behavior, obtained from the application of small systems characterized by
chemical reactions.

Exploiting the chemical organization theory [12], we can define a chemical
network in order to describe a system as a collection of reactions applied to a
given set of molecular species. Moreover, we can identify the set of (so called)
organizations, in the set of molecular species, to describe the behavior of such
system. So doing, the behavior is traced by means of “movement” between
organizations.

Furthermore, a different kind of problem encoding will be presented, this is
based on the instructions of register machines [13]. This approach is similar to the
one related to the chemical computing field. The idea is to use a set of chemical
reactions to realize the instructions of the register machines. For instance, in
Section 4, the formalization and the simulation of a decrement instruction by
means of τ -DPP, is presented.

The paper is organized as follows: in Section 2, membrane systems and its
variant of τ -DPP are explained. The chemical computing framework and chem-
ical organization theory are presented in Section 3. In Section 4, we show the
results of the simulations of small components, such as the NAND logic circuit
and the decrement instruction of a register machine. We conclude with some
discussion in Section 5.
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2 Membrane Systems and τ -DPP

In this section we describe the framework of membrane systems [15], recalling
their basic notions and definitions.

We then present τ -DPP, a computational method firstly introduced in [5], used
to describe and perform stochastic simulations of complex biological or chemical
systems. The “complexity” of the systems that can be handled by means of
τ -DPP, is not only related to the number of reactions (rules) and species (objects)
involved, but it results also from the topological structure of the system, that
can be composed by many volumes.

2.1 Membrane Systems

P systems, or membrane systems, have been introduced in [14] as a class of
unconventional computing devices of distributed, parallel and nondeterministic
type, inspired by the compartmental structure and the functioning of living cells.

In order to define a basic P system, three main parts need to be introduced:
the membrane structure, the objects and the rules.

The membrane structure defines the topological and hierarchical organization
of a system consisting of distinct compartments. The definition of membrane
structure is given through a set of membranes with a distinct label (usually
numbers), hierarchically organized inside a unique membrane, named skin mem-
brane. Among others, a representation of a membrane structure is given by using
a string of square parentheses.

In particular, each membrane identifies a region, delimited by the membrane
itself and any other adjacent membrane possibly present inside it. The number
of membranes in a membrane structure is called the degree of the P system. The
whole space outside the skin membrane is called the environment.

The internal state of a P system is described by the objects occurring inside
the membranes. An object can be either a symbol or a string over a specified
alphabet V . In order to denote the presence of multiple copies of objects inside
the membranes, multisets are usually used.

The objects inside the membranes of a P system are transformed by means of
evolution rules. These are multiset rewriting rules of the form ri : u → v, where
u and v are multisets of objects. The meaning of the generic rule i is that the
multiset u is modified into the multiset v. There exists a special symbol δ used to
dissolve (namely, remove) the membrane where the rule is applied together with
its set of rules. In this paper we will not make use of the dissolving operation.

Moreover, it is possible to associate a target to v, representing the membrane
where the multiset v is placed when the rule is applied. There are three different
types of target. If the target is here, then the object remains in the region
where the rule is executed (usually, this target label is omitted in the systems
description). If the target is out, then the object is sent out from the membrane
containing the rule and placed to the outer region. Note that, if a rule with
this target indication is applied inside the skin membrane, then the object is
sent to the environment. Finally, if the target is inj, where j is a label of a
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membrane, then the object is sent into the membrane labeled with j. It is possible
to apply this kind of rule, only if the membrane j is placed immediately inside
the membrane where the rule is executed.

Starting from an initial configuration (described by a membrane structure
containing a certain number of objects and a fixed set of rules), and letting the
system evolve, a computation is obtained. A universal clock is assumed to exist:
at each step, all rules in all regions are simultaneously applied to all objects
which can be the subjects of evolution rules. So doing, the rules are applied in
a maximal parallel manner, hence the membranes evolve simultaneously. If no
further rule can be applied, the computation halts. The result of a computation
is the multiset of objects contained into previously specified output membrane
or sent from the skin of the system to the environment.

For a complete and extensive overview of P systems, we refer the reader to
[15], and to the P Systems Web Page (http://ppage.psystems.eu).

2.2 τ -DPP

We now introduce a novel stochastic simulation technique called τ -DPP [5].
The aim of τ -DPP is to extend the single-volume algorithm of tau-leaping [4], in
order to simulate multi-volume systems, where the distinct volumes are arranged
according to a specified hierarchy. The structure of the system is required to be
kept fixed during the evolution. In Section 2.1, we shown that the framework
of membrane system satisfies this requirement, hence, the spatial arrangement
of P system is exploited in the τ -DPP description. In particular, τ -DPP has
been defined starting from a variant of P systems called dynamical probabilistic
P systems (DPP). DPP were introduced in [18]: they exploit the membrane
structure of P systems and they associate probabilities with the rules, such values
vary (dynamically), according to a prescribed strategy, during the evolution of
the system. For the formal definitions of DPP and examples of simulated systems,
we refer the reader to [16,17,1,2].

There is a difference between these two membrane systems variants: DPP
provides only a qualitative description of the analyzed system, that is, “time” is
not associated to the evolution steps, while τ -DPP is able to give a quantitative
description tracing the time-stream of the evolution.

The τ -DPP approach is designed to share a common time increment among
all the membranes, used to accurately extract the rules that will be executes in
each compartment (at each step). This improvement is achieved using, inside
the membranes of τ -DPP, a modified tau-leaping algorithm, which gives the
possibility to simulate the time evolution of every volume as well as that of the
entire system.

The internal behavior of the membranes is therefore described by means of
a modified tau-leaping procedure. The original method, first introduced in [8],
is based on the stochastic simulation algorithm (SSA) presented in [7]. These
approaches are used to describe the behavior of chemical systems, computing
the probabilities of the reactions placed inside the system and the length of
the step (at each iteration), according to the current system state. While SSA
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is proved to be equivalent to the Chemical Master Equation (CME), therefore
it provides the exact behavior of the system, the tau-leaping method describes
an approximated behavior with respect to the CME, but it is faster for what
concerns the computational time required.

To describe the correct behavior of the whole system, all the volumes evolve
in parallel, through a strategy used to compute the probabilities of the rules
(and then, to select the rules that will be executed), and to choose the “com-
mon” time increment that will be used to update the system state. The method
applied for the selection of the time step length is the following. Each membrane
independently computes a candidate time increment (exploiting the tau-leaping
procedure), based on its internal state. The smallest time increment among all
membranes is then selected and used to describe the evolution of the whole sys-
tem, during the current iteration. Since all volumes locally evolve according to
the same time increment, τ -DPP is able to correctly work out the global dy-
namics of the system. Moreover, using the “common” time increment inside the
membranes, it is possible to manage the communication of objects among them.
This is achieved because the volumes are naturally synchronized at the end of
each iterative step, when all the rules are executed.

The modified tau-leaping procedure of τ -DPP is also used to select the set of
rules that will be executed during the current leap. This is done locally, that is,
each membrane selects the kind of evolution it will follow, independently from
other volumes. The membrane can evolve in three different manners (as described
in [4]), executing either (1) a SSA-like step, or (2) non-critical reactions only, or
(3) a set of non-critical reactions plus one critical reaction. A reaction is critical,
if its reactants are present inside the system in very small amounts. The critical
and non-critical reaction sets are identified at the beginning of every iteration.
The separation of these two sets is needed in order to avoid the possibility of
obtaining negative quantities after the execution of the rules (we refer the reader
to [8] for more details).

After this first stage of the procedure, the membranes select the rules that will
be used to update the system, exploiting the common time increment previously
chosen. A detailed description of the algorithm will be given later on.

Formally, a τ -DPP Υ is defined as

Υ = (V0, . . . , Vn, μ, S, M0, . . . , Mn, R0, . . . , Rn, C0 . . . Cn),

where:

– V0, . . . , Vn are the volumes of the system, n ∈ N;
– μ is a membrane structure representing the topological arrangement of the

volumes;
– S = {X1, . . . , Xm} is the set of molecular species, m ∈ N, that is, the

alphabet of the system;
– M0, . . . , Mn, are the sets of multisets over S occurring inside the membranes

V0, . . . , Vn, representing the internal state of the volumes. The multiset Mi

(0 ≤ i ≤ n) is defined over S∗;
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– R0, . . . , Rn are the sets of rules defined in volumes V0, . . . , Vn, respectively.
A rule can be of internal or of communication type (as described below);

– C0, . . . , Cn are the sets of stochastic constants associated to the rules defined
in volumes V0, . . . , Vn.

Inside the volumes of a system described by means of τ -DPP, two kinds of
evolution rules can be placed. These are called internal and communication
rules. Internal rules describe the evolution of objects that remain in the region
where the rule is executed (i.e. target here). Communication rules send objects
from the membrane where they are applied to an adjacent volume(i.e. target inj

or out). Moreover, they can also modify the objects during the communication
process.

The sets of stochastic constants C0, . . . , Cn, associated to the sets of rules
R0, . . . , Rn, are needed to compute the probabilities of the rule applications (also
called propensity functions), along with a combinatorial function depending on
the left-hand side of the rule [7].

The general form of internal and communication rules is α1X1 +α2X2 + . . .+
αkXk → (β1X1 + β2X2 + . . . + βkXk, target), where X1, . . . , Xk ∈ S are the
molecular species and α1, . . . , αk, β1, . . . , βk ∈ N represent the multiplicities of
the objects involved in the rule. Note that we will usually consider the case where
at most three objects appear in the left-hand side of the rule. This assumption
is related to the fact that the probability of a reaction involving more than three
objects is close to zero.

The target of the rules follows the same definition given for the membrane
systems in Section 2.

There is a difference in the application of internal and communication rules
during the computation of the time increment (τ). In the procedure use to com-
pute τ , while for internal rules both left-hand and right-hand sides are involved,
for communication rules only the left-hand side is involved. This distinction is
needed because the right-hand side of internal and communication rules is dif-
ferently used to update the system state. For internal rules the right-hand side
modifies the membrane where the rule is applied, whereas for communication
rules it affects the state of another membrane, hence it is not considered during
the τ computation.

Obviously, the right-hand side of communication rules will contribute to the
update of the system state, which takes place at the end of the iterative step,
and will be therefore considered to determine the state of the target volume for
the next iteration.

We now describe the τ -DPP algorithm needed to simulate the evolution of
the entire system. Each step is executed independently and in parallel within
each volume Vi (i = 0, . . . , n) of the system. In the following description, the
algorithm execution naturally proceeds according to the order of instructions,
when not otherwise specified by means of “go to” commands.

Step 1. Initialization: load the description of volume Vi, which consists of the
initial quantities of all object types, the set of rules and their respective
stochastic constants.
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Step 2. Compute the propensity function aμ of each rule rμ, μ = 1, . . . , l, and
evaluate the sum of all the propensity functions in Vi, a0 =

∑l
μ=1 aμ. If

a0 = 0, then go to step 3, otherwise go to step 5.
Step 3. Set τi, the length of the step increment in volume Vi, to ∞.
Step 4. Wait for the communication of the smallest time increment τmin =

min{τ0, . . . , τn} among those generated independently inside all volumes
V0, . . . , Vn, during the current iteration, then go to step 13.

Step 5. Generate the step size τi according to the internal state, and select
the way to proceed in the current iteration (i.e., SSA-like evolution, or tau-
leaping evolution with non-critical reactions only, or tau-leaping evolution
with non-critical reactions and one critical reaction), using the selection pro-
cedure defined in [4].

Step 6. Wait for the communication of the smallest time increment τmin =
min{τ0, . . . , τn} among those generated independently inside all volumes,
during the current iteration. Then:
– if the evolution is SSA-like and the value τi = τSSA generated inside the

volume is greater than τmin, then go to step 7 ;
– if the evolution is SSA-like and τi = τSSA is equal to τmin, then go to

step 10 ;
– if the evolution is tau-leaping with non-critical reactions plus one critical

reaction, and τi = τnc1c is equal to τmin, then go to step 11 ;
– if the evolution is tau-leaping with non-critical reactions plus one critical

reaction and τi = τnc1c is greater than τmin, then go to step 12 ;
– if the evolution is tau-leaping with non-critical reactions only (τi = τnc),

then go to step 12.
Step 7. Compute τSSA = τSSA − τmin.
Step 8. Wait for possible communication of objects from other volumes, by

means of communication rules. If some object is received, then go to step
2, otherwise go to step 9.

Step 9. Set τi = τSSA for the next iteration, then go to step 6.
Step 10. Using the SSA strategy [7], extract the rule that will be applied in

the current iteration, then go to step 13.
Step 11. Extract the critical rule that will be applied in the current iteration.
Step 12. Extract the set of non-critical rules that will be applied in the current

iteration.
Step 13. Update the internal state by applying the extracted rules (both internal

and communication) to modify the current number of objects, and then check
for objects (possibly) received from the other volumes. Then go to step 2.

The algorithm begins loading the initial conditions of the membrane. The next op-
eration is the computation of the propensity functions (and their sum a0) in order
to check if, inside the membrane, it is possible to execute some reaction. If the sum
of the propensity functions is zero, then the value of τ is set to ∞ and the mem-
brane waits for the communication of the smallest τ computed among the other
membranes (τmin) in order to synchronize with them; then, it checks if it is the
target of some communication rule applied inside the other volumes. These oper-
ations are needed in order to properly update the internal state of the membrane.
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On the other hand, if the sum of all the propensity functions is greater than
zero, the membrane will compute a τ value based only on its internal state,
following the first part of the original tau-leaping procedure [4]. Besides this
operation, the membrane selects the kind of evolution for the current iteration
(like the computation of τ , this procedure is executed independently from the
other volumes).

The algorithm proceeds to step 6, where the membrane receives the smallest τ
value computed by the volumes. This will be the common value used to update
the state of the entire system. It is necessary to proceed inside every membrane
using the same time increment, in order to manage the communication of objects.

At this stage, the membrane knows the length of the time step and the kind
of evolution to perform. The next step consists in the extraction of the rules that
will be applied in the current iteration. In order to properly extract the rules,
several conditions need to be checked.

In the case the membrane is evolving using the SSA strategy: if τmin is the
value generated inside itself, then it is possible to extract the rule, otherwise
the execution of the rule is not allowed, because the step is “too short”. In the
next stage, the membrane verifies for possible incoming objects, to update its
internal state according to the communication rules (possibly) executed inside
other regions. Finally, if its state is changed (according to some internal or com-
munication rule), then the membrane, in the successive iteration, will compute
a new value of τ . On the contrary, the value of the time increment will be the
result of the application of step 7.

If the evolution strategy corresponds to a tau-leaping step with the application
of a set of non-critical reactions and one critical reaction, the algorithm verifies
if the value of τ computed by the membrane is equal to τmin. If this is true, the
membrane selects the set of non-critical reactions to execute as well as the criti-
cal reaction. The execution of the critical reaction is allowed because, here τmin

represents the time needed to execute it. Otherwise, the application of the critical
reaction is forbidden and the membrane will execute non-critical reactions only.

If the membrane is following the tau-leaping strategy with the execution of
non-critical reactions only, τmin is used to extract the rules (from the set of
non-criticals) to apply in the current iteration.

The last step is the system update. Here every membrane executes the selected
rules and updates its state according to both internal and communication rules.
This step is executed in parallel inside every membrane, therefore it is possible
to correctly manage the “passage” of objects and to synchronize the volumes.

3 Chemical Computing

In this section we introduce the basic notions of chemical computing, a novel
computational paradigm where the information is processed by means of chemi-
cal reactions. In particular, starting from the chemical computing field, we recall
the basic definitions of chemical organization theory, used to analyze chemical
computing systems in order to obtain useful knowledge, such as the emergent
behavior of the studied system.
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Biological systems are characterized by different mechanisms, employed in
their evolution, that make them able to process information. These characteris-
tics are: robustness, self-organization, concurrency, fault-tolerance and evolvabil-
ity. The global information process comes by using, inside the biological system,
a large number of simple components. In particular, information is transformed
by means of chemical processes, and for this reason, chemical reactions have been
used to build a novel computational paradigm [6]. This new approach is called
chemical computing, and it is related to the computation with both real mole-
cules and electronic devices, programmed using principles taken from chemistry.

In general, the analysis of the solutions of chemical reaction processes is hard
because of their nonlinearity. The same problems are related to the analysis of
biological systems since the behavior of local parts can be very different from
the global behavior.

In order to work out this problem, the notions of chemical organization theory
can be used to obtain the emergent behavior of the system, starting from its small
components, hence linking the evolution governed by every single reaction with
the global dynamics of the system.

Chemical organization theory [12] is used to identify a hierarchy of self main-
taining sub-networks, belonging to a chemical reaction network. These sub-
networks are called organizations. In particular, a chemical organization is a
set of molecular species that satisfies two properties, that is, it is algebraically
closed and stoichiometrically self-maintaining. Here we report an informal defi-
nition of these concepts, and refer the reader to [12] for formal definitions and
further details.

A reaction network is a tuple 〈M, R〉, where M is a set of molecular species
and R is a set of reactions (also called rules). The rules in R are given by the
relation R : PM(M)×PM(M) where PM(M) denotes the set of all the multisets
of the elements in M. The general form of a reaction is α1m1 + α2m2 + . . . +
αkmk → β1m1 + β2m2 + . . . + βkmk, where m1, . . . , mk ∈ M are the molecular
species involved in the rule and α1, . . . , αk, β1, . . . , βk ∈ N are the coefficients
associated to the molecules.

A set of molecular species C ∈ R is closed, if its elements are involved in
reactions that produce only molecular species of the set C. On the other hand,
the self-maintenance property is satisfied when the molecules consumed by the
reactions involved in the set, can also be produced by some other rule related
to the self-maintaining set. Note that, in order to find the organizations of a
chemical network, only stoichiometric information (set of rules) is needed.

The set of organizations of a chemical network can be exploited to describe
the dynamics of the system, by means of the movement among different organi-
zations. Namely, the dynamics is traced looking at the system state and at the
organizations “represented” by the molecules occurring in the system. Therefore,
this analysis consists in the study of processes where molecular species appear
or disappear from the system (that is, when their amount become positive or
go to zero). Note that, only the algebraic analysis of chemical organizations
is sufficient in order to obtain this behavior. Furthermore, the behavior of the
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system can either take place spontaneously or can be induced by means of ex-
ternal events, such as the addition of input molecules.

If we want to use reaction networks to compute, we need to assume that a
computational problem can be described as a Boolean function, which in turn
can be computed as a composition of many simple functions (e.g. the binary
NAND). Therefore, we will create a reaction network (called Boolean network),
based on a set of Boolean functions and Boolean variables.

Consider a set of M Boolean functions F1, . . . , FM and a set of N (with
N ≥ M) Boolean variables {b1, . . . , bM , . . . , bN}. The variables bj , such that
1 ≤ j ≤ M , are determined by the Boolean functions (they are also called
internal variables). The remaining variables (bj such that M < j ≤ N) represent
the input variables of the Boolean network. The values computed by the M
Boolean functions, are defined as {bi = Fi(bq(i,1), . . . , bq(i,ni)) with i = 1, . . . , M}.
bq(i,k) is the value of the Boolean variable corresponding to the k-th argument of
the i-th function. In general, the function Fi has ni arguments, therefore, there
are 2ni different input combinations.

Given a Boolean network (as described above), the associated reaction net-
work 〈M, R〉, as presented in [12], is defined as follows. For each Boolean variable
bj, two different molecular species, representing the values 0 and 1 of the vari-
able, are added to M. In particular, lowercase letters are used for the molecular
species representing the value 0 and uppercase letters for the value 1 of the vari-
ables. Therefore, the set M contains 2N molecular species. The set R of rules is
composed by two kinds of reactions: logical and destructive. Logical reactions are
related to the rows of the truth tables of the functions involved in the Boolean
network; hence the left-hand side of the rule represents the input values of the
Boolean function, while the right-hand side is the output value. The destruc-
tive reactions are needed to avoid the possibility to have, inside the system, two
molecular species representing both states of the same variable at the same time
(i.e. two molecules representing the state 0 and 1 of the same Boolean variable).

The resulting chemical network 〈M, R〉 implements the Boolean network
without inputs specified. The input variables of the Boolean network must be
externally initialized because they are not set by the Boolean functions. The
initialization is encoded by means of inflow reactions. These reactions are zero-
order reactions producing molecules from the empty set.

4 Definition and Simulation of Component Reaction
Networks Using τ -DPP

To lay out our path from a model of computation to a chemical computing de-
vice, we define and simulate test case τ -DPP systems using techniques inspired
by the literature on reaction systems [6,12]. Those simple systems must be pow-
erful enough to compute, when assembled in more complex combination, any
computable (Boolean) function.

Hence, in this section we describe the implementations of the NAND and
XOR logic circuits, and of the decrement and increment instructions of register
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machines, through sets of chemical reactions. We then present some simulation
results of our systems.

We recall that register machines [13] are universal abstract computing de-
vices, where a finite set of uniquely labeled instructions is given, and which
keep updated a finite set of registers at any time (holding integer numbers) by
performing a sequence of instructions, chosen according to their labels. Every
instruction can be of one of the following, here informally introduced:

– ADD: a specified register is increased by 1, and the label of next instruc-
tion is nondeterministically chosen between two labels specified in the last
instruction applied,

– SUB: a specified register is checked, and if it is non-empty, then it is decreased
by 1, otherwise it will not be changed; the next label will be differently chosen
in the two cases,

– HALT: the machine stops.

Later, we will describe τ -DPP implementations of SUB and ADD instructions.

4.1 The NAND and XOR Logic Circuits

The NAND logic circuit has been implemented with the sequential composition
of an AND and a NOT gate as shown in Figure 1 (left). Following the chemical
computing guidelines described in Section 3, we define the logic circuit with the
rules listed in Figure 1 (right). Rules r1, . . . , r4 compute the AND function, rules
r5, . . . , r6 compute the NOT function and rules r7, . . . , r10 “clean” the system
when both values of a variable are present at the same time, as described in
Section 3. Finally, rules r11, . . . , r14 represent the inputs of the gate because
they produce the molecules a, A, b and B, representing the inputs A = 0, A = 1,
B = 0 and B = 1 of the NAND logic circuit, respectively. For instance, when the
constants of the rules r11 and r13 are set to 1, the input given to the NAND gate is
0 for both the input lines because molecules a and b are produced. The rationale
behind this, is that the different inputs for the system are obtained producing
the molecular species used to represent that particular values. The values of the
costants reported in the table have been used to perform the simulation of the
NAND behavior by means of τ -DPP.

Starting from the set of rules presented above for the NAND logic circuit, it
is possible to define the τ -DPP which encodes the logic circuit. Formally, the
τ -DPP ΥNAND is defined as

ΥNAND = (V0, μ, S, M0, R0, C0),

where:

– V0 is the unique volume of the NAND logic circuit;
– μ is the membrane structure [0 ]0;
– S = {a, A, b, B, c, C, d, D} is the set of molecular species;
– M0 = {ama, AmA , bmb , BmB , cmc , CmC , dmd , DmD}, is the set of multisets

occurring inside the volume V0. ma, mA, mb, mB, mc, mC , md and mD ∈ N;
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Reaction Constant
r1 : a + b → c c1 = 1 · 10−3

r2 : a + B → c c2 = 1 · 10−3

r3 : A + b → c c3 = 1 · 10−3

r4 : A + B → C c4 = 1 · 10−3

r5 : c → D c5 = 1 · 10−2

r6 : C → d c6 = 1 · 10−2

r7 : a + A → λ c7 = 1 · 10−1

r8 : b + B → λ c8 = 1 · 10−1

r9 : c + C → λ c9 = 1 · 10−1

r10 : d + D → λ c10 = 1 · 10−1

r11 : λ → a c11 ∈ {1, 0}
r12 : λ → A c12 ∈ {1, 0}
r13 : λ → b c13 ∈ {1, 0}
r14 : λ → B c14 ∈ {1, 0}

Fig. 1. The NAND logic circuit (left) and the set of reactions used to implement it
(right)

– R0 = {r1, . . . , r14} is the set of rules defined in volume V0 and reported in
Table 1. Due to the membrane structure μ, all the rules here involved are
internal.

– C0 = {c1, . . . , c14} is the set of stochastic constants associated to the rules
defined in R0, and reported in Table 1.

In Figure 2, the result of the simulation of the NAND gate is reported. In the
initial configuration of the system, the multisets are empty, that is, the amounts
of all the molecular species are set to zero. At time t = 0, the input of the
system is a, B, corresponding to the first input line set to zero and the second
line set to one. This is formulated as a τ -DPP configuration where the constants
of rules r11 and r14 are set to 1, while the constants of rules r12 and r13 are set
to zero. The output obtained with this configuration is 1, indeed the system,
at the beginning of the simulation, produces the molecules D corresponding to
the expected output value. At time t = 400, the input values of the system are
change from a, B to A, B, setting c11 and c14 to 0 and c12 and c13 to 1. The
system starts producing d molecules, but the output of the system changes only
when all the D molecules have been degraded (by means of rule r10) and the
molecules d are then accumulated inside the membrane.

The XOR logic circuit (see Figure 3 (left)) has been implemented using the
set of rules listed in Figure 3 (right). The rules r1, . . . , r4 compute the XOR
function and r5, . . . , r7 “clean” the system when both values of a variable are
present at the same time, as described in Section 3. Finally, the rules r8, . . . , r11
represent the inputs of the gate. For instance, when the constants of the rules
r8 and r10 are set to 1, the input given to the XOR gate is 0 for both the input
lines. The values of the constant reported in the table have been used to perform
the simulation by means of τ -DPP.
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Fig. 2. Plot of the dynamics of the NAND unit with two inputs in succession. The
initial multiset is 0 for all the molecular species.

Reaction Constant
r1 : a + b → c c1 = 1 · 10−3

r2 : a + B → C c2 = 1 · 10−3

r3 : A + b → C c3 = 1 · 10−3

r4 : A + B → c c4 = 1 · 10−3

r5 : a + A → λ c5 = 1 · 10−1

r6 : b + B → λ c6 = 1 · 10−1

r7 : c + C → λ c7 = 1 · 10−1

r8 : λ → a c8 ∈ {1, 0}
r9 : λ → A c9 ∈ {1, 0}
r10 : λ → b c10 ∈ {1, 0}
r11 : λ → B c11 ∈ {1, 0}

Fig. 3. The XOR logic circuit (left), and set of reactions used to implement it (right)

Formally, the τ -DPP ΥXOR, corresponding to the XOR logic circuit, is
defined as

ΥXOR = (V0, μ, S, M0, R0, C0),

where:

– V0 is the unique volume of the XOR logic circuit;
– μ is the membrane structure [0 ]0;
– S = {a, A, b, B, c, C, d, D} is the set of molecular species;
– M0 = {ama , AmA , bmb , BmB , cmc , CmC }, is the set of multisets occurring

inside the membrane V0. ma, mA, mb, mB, mc, and mC ∈ N;
– R0 = {r1, . . . , r11} is the set of rules defined in volumes V0 and reported in

Table 3. Due to the membrane structure μ, all the rules here involved are
internal.

– C0 = {c1, . . . , c11} is the set of stochastic constants associated to the rules
defined in V0 and reported in Table 3.
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In Figure 4, the result of the simulation of the XOR gate is reported. In the
initial configuration of the system, the multisets are empty, that is, the amounts
of all the molecular species are set to zero. At time t = 0, the input of the system
is a, B, corresponding to the first input line set to zero and the second one set to
one. This is formulated as a τ -DPP configuration where the constants of rules r8
and r11 are set to 1, while the constants of rules r9 and r10 are set to zero. The
output obtained with this configuration is 1, indeed the system, at the begin-
ning of the simulation, produces the molecules C corresponding to the expected
output value. At time t = 200 the input values of the system change from a, B
to A, B, setting c8 to 0 and c9 to 1. The system starts producing c molecules,
but the output of the system changes only when all the C molecules have been
degraded (by means of rule r7) and the molecules c are then accumulated inside
the membrane.
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Fig. 4. Plot of the dynamics of the XOR unit with two inputs in succession. The initial
multiset is 0 for all the molecular species.

4.2 The SUB Instruction

We now describe and simulate a τ -DPP composed by 2 volumes reproducing, by
means of chemical reactions operating on a set of molecular species, the behavior
of a SUB instruction of a register machine. This type of instruction is important
because it hides a conditional behavior, checking whether a register is zero or not,
respectively choosing a different label for the next instruction. The availability
of conditional instructions is a key issue in computing devices.

We implement a system where the quantity stored inside the register is repre-
sented by the amount of objects u occurring in volume V1. The label for the next
instruction in related to the production of objects p or z in volume V0. Finally,
to start the system, objects s are produced inside V0. s′ and z′ are additional
molecular species used to implement the instruction.
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In order to correctly execute the SUB instruction, when molecules s are sent
inside the volume V1, the system first checks if the register value is zero, that
is, if any u molecule occurs inside V1, then, the label for the next instruction is
produced.

Formally, a τ -DPP ΥSUB is defined as

ΥSUB = (V0, V1, μ, S, M0, M1, R0, R1, C0, C1),

where:

– V0, V1 are the volumes of the SUB unit;
– μ is the nested membrane structure [0 [1 ]1 ]0;
– S0 = {p, s, s′, z} and S1 = {p, s, u, z, z′} are the sets of molecular species of

volumes V0 and V1, respectively;
– M0 = {pmp , sms , s′ms′ , zmz}, M1 = {pmp , sms , umu , zmz , z′mz′ }, are the

multisets occurring inside the membranes V0 and V1, respectively. mp, ms,
ms′ , mz, mu and mz′ ∈ N;

– R0 = {r01 , . . . , r05}, R1 = {r11 , . . . , r13} are the sets of rules defined in
volumes V0, V1, respectively, and reported in Table 1;

– C0 = {c01 , . . . , c05}, C1 = {c11 , . . . , c13} is the sets of stochastic constants
associated to the rules defined in V0 and V1, respectively, and reported in
Table 1.

Table 1. Reactions for the SUB unit (R0 on the left and R1 on the right). The initial
multisets are {s′40} in V0, and {u20, z5} in V1.

Reaction Constant
r01 : 2p → (p, here) c01 = 1
r02 : z + p → (z, here) c02 = 1
r03 : 2z → (z, here) c03 = 1
r04 : s → (s, in1) c04 = 1
r05 : s′ → (s, here) c05 = 6 · 10−2

Reaction Constant
r11 : s + u → (p, out) c11 = 1 · 103

r12 : s + z → (z + z′, here) c12 = 1
r13 : z′ → (z, out) c13 = 1

The simulation starts with a positive register value within V1, represented
by the u molecules; the system receives a sequence of SUB requests, due to the
presence of s′ molecules in V0, transformed in s by the application of rule r05

and then sent to V1 by rule r04 . Figure 5 shows the two execution phases: in
the first phase the counter is decremented, as long as there are s′ molecules
available in V0, and objects p are produced in V0. Afterwards, when the register
counter reaches zero (all u molecules are consumed), only objects z are produced
in V0.

This system is initialized with small quantities for molecular species, and this
makes it fragile with respect to the inherent stochasticity, but our goal is to
qualitatively show the required sharp change of behavior occurring when the
simulated register goes to zero.
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Fig. 5. Plot of the dynamics of the SUB unit

4.3 The SUBADD Module

The SUB unit can be extended to perform both a SUB and an ADD instructions,
according to the object received from the environment: s or a, respectively. The
register value is stored inside volume V2 and it is represented by the amount
of molecules u occurring inside of it. The rules shown in Table 2 are defined
to perform both operations, and the choice of molecular species avoid mixing
them. In particular, rules r01 , . . . , r04 , r11 , . . . , r16 and r21 , . . . , r23 define the
SUB instruction (checking whether the register value is zero or not). The other
rules are used to perform the ADD instruction.

The τ -DPP ΥSUBADD implementing the SUBADD module is defined as

ΥSUBADD = (V0, V1, V2, μ, S, M0, M1, M2, R0, R1, R2, C0, C1, C2),

where:

– V0, V1, V2 are the volumes of the SUBADD module;
– μ is the nested membrane structure [0 [1 [2 ]2 ]1 ]0;
– S0 = {l, l′, s, z, m, n, p, k, k′, a, A, o, q}, S1 = {s, p, z, a, A} and S2 = {s, u, z,

z′, a, a′} are the sets of molecular species;
– M0 = {lml , l′ml′ , sms , zmz , mmm , nmn , pmp , kmk , k′mk′ , ama , AmA , omo , qmq},

M1 = {sms , pmp , zmz , ama , AmA} and M2 = {sms , umu , pmp , zmz , z′mz′ ,
a′ma′ }, are the multisets occurring inside the membranes V0, V1 and V2,
respectively. ml, ml′ , mm, mk, mk′ , mo, mq, ms, mp, mz, ma, mA, mu, mz′

and ma′ ∈ N;
– R0 = {r01 , . . . , r08}, R1 = {r11 , . . . , r18}, R2 = {r21 , . . . , r25} are the sets of

rules defined in volumes V0, V1 and V2 respectively, and reported in Table 2;
– C0 = {c01 , . . . , c08}, C1 = {c11 , . . . , c18}, C2 = {c21 , . . . , c25} are the sets of

stochastic constants associated to the rules defined in V0, V1 and V2, respec-
tively, and reported in Table 2.

The results of the simulations are shown in Figure 6.
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Table 2. Reactions for the SUBADD module (R0 on the left, R1 on the right and R2

on the bottom). The initial multisets M0 and M1 are empty, while M2 is {u30}.

Reaction Constant
r01 : l → (l′ + s, here) c01 = 1
r02 : s → (s, in1) c02 = 1
r03 : l′ + z → (n, here) c03 = 1
r04 : l′ + p → (m, here) c04 = 1
r05 : k → (k′ + a, in1) c05 = 1
r06 : a → (a, in1) c06 = 1
r07 : k′ + A → (o, here) c07 = 1
r08 : k′ + A → (q, here) c08 = 1

Reaction Constant
r11 : s → (s, in2) c11 = 1
r12 : 2p → (p, here) c12 = 1
r13 : 2z → (z, here) c13 = 1
r14 : p + z → (p, here) c14 = 1
r15 : z → (z, out) c15 = 1
r16 : p → (p, out) c16 = 1
r17 : a → (a, in2) c17 = 1
r18 : A → (A, out) c18 = 1

Reaction Constant
r21 : s + u → (p, out) c21 = 1 · 103

r22 : s + z → (z + z′, here) c22 = 1
r23 : z′ → (z, out) c23 = 1
r24 : a → (u + a′, here) c24 = 1
r25 : a′ → (A, out) c25 = 1
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Fig. 6. Plot of the dynamics of the SUBADD module performing a decrement instruc-
tion (left) and an increment instruction (right) on a register

5 Complete Systems, Discussion, and Open Problems

Our results are a starting point, since they only tackle the building of basic
elements of a computing device. A more complex problem is related to the con-
nectivity among these components.

The general instance of Boolean network, as well as the general reaction net-
work considered in literature, often require a complex grid of channels commu-
nicating variables/objects to the required destination gates/volumes.

For usual P systems, such a grid of channels can only be reproduced with a
tree-like structure of nested membranes, communicating between adjacent ones.
To avoid this limitation, we could move our studies to other variants of P systems,
which allow more free adjacency relations between membranes, such as “Tissue P
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Systems” [11]. In particular, this P systems variant can be exploited to represent
general micro reactors grids.

Within our approach, by using SUBADD modules, we can outline the struc-
ture of a τ -DPP system simulating a complete register machine with just three
levels of nested membranes: the skin membrane, enclosing a number of “regis-
ter” membranes structured like volume V1 in SUBADD module. The key idea to
be developed, is to simulate the steps of the register machine by having inside
the skin membrane the molecules representing the current instruction label. For
instance, if instruction l increments register r, then the rules would be defined to
produce objects ar and send them to an internal membrane representing register
r. That internal membrane will then produce objects Ar, and a rule in skin mem-
brane would transform pairs of objects l+Ar into (non-deterministically chosen)
objects m, where m is one of the outcome labels specified by the ADD instruction
being simulated. Additional details related to the halting of the computation
need to be specified.

This approach to the implementation of complex systems leads to some open
problems worth being studied. How does the passage from single simple com-
ponents to complete universal devices, with the required connectivity, scale?
It is well known that small universal register machines can be built, as shown
in [10], but their τ -DPP implementation, and eventually their chemical system
implementation have to be evaluated.

Moreover, the computational efficiency of these systems can be studied, for
instance with respect to NP-complete problems such as SAT. Anyway, the usual
trade-off between space and time in structural complexity perhaps has to be
applied with negative results to τ -DPP, since objects could exponentially grow
in polynomial time (by using rules like p → 2p), but the space structure of
volumes is fixed. Note that, the stochasticity of τ -DPP has to be considered in
the computational complexity study.
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